ST7
8-BIT MCU FAMILY

USER GUIDE

July 2002

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.

STMicroelectronics PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN
LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF
STMicroelectronics. As used herein:

1. Life support devices or systems are those 2. A critical component is any component of a life

which (a) are intended for surgical implant into support device or system whose failure to
the body, or (b) support or sustain life, and perform can reasonably be expected to cause
whose failure to perform, when properly used in the failure of the life support device or system,
accordance with instructions for use provided or to affect its safety or effectiveness.

with the product, can be reasonably expected
to result in significant injury to the user.

Table of Contents

LINTRODUCTION . .. e e e e e e e e e e e e 12
1.1 WHOISTHISBOOK WRITTEN FOR? e 12
1.2 ABOUT THE AUTHORS e e e e 12
1.3 HOWIS THIS BOOK ORGANIZED? e 12
1.4 WHY A MICROCONTROLLER? e e e e 13

1.4.1 EIeCtroniC CirCUItIY o e 15
1.4.2 Choice of microcontroller model e 17
1.4.3 Choice of developmenttools 17

2 HOW DOES A TYPICAL MICROCONTROLLER WORK? i 19
2.1 THE CENTRAL PROCESSING UNIT e e 20
2.2 HOW THE CPU AND ITS PERIPHERALS MAKE UP A SYSTEM 21

2.2, 0 CPU o 21
2.2.2 MEIMOIY . oo 21
2.2.3 INPUE-OULPULS . .ot e 23
2.2.4 Interrupt Controller 24
2.2 5 BUS .ttt 25
2.2.6 CloCK GeNEratOr . .. 25
2.2.7 Resel GeNeralor e e 25

2.3 CORE ... 25
2.3.1 Arithmetic and Logic Unit (ALU) 25
2.3.2 Program CoOUNTEI e 26
2.3.3 InStruction DECOEN oo 26
2.3.4 Stack PoOINter 26

2.4 PERIPHERALS e e 27
2.4.1 Parallel Input-OUtpULSo 27
2.4.2 Analogto Digital Converter 28
2.4.3 Programmable Timer e 28
2.4.4 Serial Peripheral Interface 28
2.4.5 Watchdog Timer e 28

2.5 THE INTERRUPT MECHANISM AND HOW TOUSEIT 29
251 Interrupt handling 29
2.5.1.1 Hardware mechanism 31

2.5.1.2 Hardware sources of interrupt 31

2.5.1.3 Globalinterruptenable bit 32

4

3/315

Table of Contents

2.5.1.4 Software interrupt instruction 32

2.5.1.5 Saving the state of the interrupted program 32

2.5.1.6 Interrupt VECtOrization 32

2.5.1.7 Interrupt SErviCe roUtiNe it 34

2.5.1.8 Interrupt Return instruction 34

2.5.2 Software precautions related to interrupt service routines 34
2.5.2.1 Savingthe Y registero 34

2.5.2.2 Managingthe stack 35

2.5.2.3 Resetting the hardware interrupt requestflags 35

2.5.2.4 Making an interrupt service routine interruptible 35

2.5.2.5 Data desynchronization and atomicity i i 36

2.5.3 Conclusion: the benefits of interrupts 38

2.6 AN APPLICATION USING INTERRUPTS: A MULTITASKING KERNEL 39
2.6.1 Pre-emptive multitasking 39
2.6.2 Cooperative multitasking 41
2.6.3 Multitasking Kernels e 42
2.6.3.1 Advantages of programming with a multitasking kernel 42

2.6.3.2 Thetask declaration and allocation 42

2.6.3.3 Tasksleepingand waking-up 42

2.6.3.4 Multitasking kerneloverhead 43

3 PROGRAMMING A MICROCONTROLLER e 45
3.1 ASSEMBLY LANGUAGE e e e 45
3.1.1 Whentouse assembly language i 45
3.1.2 Development process in assembly languageou i, 46
3.1.2.1 Assemblylanguage 47

3.1.2.2 ASSEmMbIer .. 48

3.1.2.3 LINKEr oo 49

3.1.2.4 The project builder/make utility 51

3.1.25 EPROMbBUMErs 52

3.1.2.6 SIMUIALOIS 53

3.1.2.7 In-circuit emulators 54

3.2 CLANGUAGE ... e e e e e e 55
32,1 WY USE G ottt e e e 55
3.2.2 ToolsusedwithClanguage e 57
3.2.3 Debugging in C 58

3.3 DEVELOPMENT CHAIN SUMMARY e e e e 60
3.4 APPLICATION BUILDERS e e e e e 61
3.5 FUZZY-LOGIC COMPILERS e e e 61

41315 172

Table of Contents

4 ARCHITECTUREOF THE ST7T CORE e e 62
4.1 POSITION OF THE ST7 WITHIN THE ST MCU FAMILY 62
4.2 ST7 CORE ... e e e 63

4.2.1 AdAresSSINgG SPACE . ..o vttt 65
4.2.2 Internal registerso 65
4.2.2.1 AcCUmMUIAtOr (A) . .o 65
4.2.2.2 Condition Code register (CC) ...t e e 65
4.2.2.3 Indexregisters (Xand Y) 67
4.2.2.4 Program Counter (PC) 68
4.2.25 Stack Pointer (SP) o 68
4.3 INSTRUCTION SET AND ADDRESSING MODES 70
4.3.1 Aword about mnemonic language 70
4.3.2 AdAressiNng MOOES it 72
4.3.3 INSIIUCHION SeL . . . oo 73
4.3.4 Coding of the instructions and the address, 74
4.3.4.1 Prefix byte 74
4.3.4.2 Opcode byte 75
4.3.4.3 The addressing modesindetail 77

4.4 ADVANTAGES OF THE ST7 INSTRUCTION SET AND ADDRESSING MODES 82

D PERIPHERALS . . 84
5.1 CLOCK GENERATOR ... e e e e e e e e 84
5.1.1 ST72251 Miscellaneous Register e 84
5.1.2 ST72311 Miscellaneous Register e 85

5.2 INTERRUPT PROCESSING e e e e e e e 86
5.2.1 Interrupt sources and interrupt VECtOrS oottt i 86
5.2.1.1 |Interrupts sources forthe ST72251 87

5.2.1.2 Interrupt sources forthe ST72311 88

5.2.2 Interrupt VECIONzZation 89
5.2.3 Globalinterruptenable bit 90
5.2.4 TRAPINSIUCHONot e e e e e e 91
5.2.5 Interrupt mechanism 91
5.2.5.1 Saving the interrupted program state 91

5.2.5.2 INnterrupt ServiCe roUtine i 91

5.2.5.3 Restoring the interrupted program state: The IRET instruction 92

5.2.6 Nesting the interrupt SErviCes e e e 92

5.3 PARALLEL INPUT-OUTPUT PORTS i i e 94

172 5/315

Table of Contents

B5.3.1 ST72251 1/0 POMS .ottt e e e e 94
5.3.2 ST72311 /0 POMS .ottt e e e 96

54 WATCHDOG TIMER e e e e e e e e 99
5.4.1 Aimofthewatchdog e e e 99
5.4.2 Watchdog Description 100
5.4.3 Using the Watchdog to protect an application 103

5.5 16-BIT TIMER e e e e e e e e e e e 103
B.5.1 Timerclock e 104
5.5.2 Free running COoUNTEr e e e e 105
5.5.2.1 Reading the free running counter 105

5.5.2.2 Resetting the free running counter i 106

5,523 TheTOFflago e e e 107

5.5.3 Inputcapture Operation 108
5.5.4 Output compare operationt 110
5.5.5 0Nne-pulse MOde 113
5.5.6 Pulse-Width Modulation mode 115

5.6 ANALOG TO DIGITAL CONVERTER i 117
B.6.1 DESCHPION . .ttt e 117
5.6.2 Using the Analog to Digital Converter i 118
5.6.3 The problem of the converter's accuracyc.cmnnnnnnnnnnninn. 119
5.6.4 Using the ADC to convert positive and negative voltages; increasing its resolution ..120
5.6.4.1 Measuring negative and positivevoltages o L 120

5.6.4.2 Increasing theresolution 121

5.6.4.3 Application Examples 124

5.7 SERIAL PERIPHERAL INTERFACE 125
5.8 SERIAL COMMUNICATION INTERFACE i, 128
5.8.1 Bitrate generatort 128
5.8.2 Send and receive mechanisSm 129
5.8.3 StatUS regiStert e 132
5.8.4 Control RegisSter 2 oo 132
5.8.5 Using the Wake-Up feature in a multiprocessorsystem 133
5.8.6 Handling the interrupts e e 133

6 STMICROELECTRONICS PROGRAMMING TOOLS i 135
6.1 ASSEMBLER e e 135
6.1.1 An overview of the assembler function 135
6.1.2 InStruction COdiNgo 137

6/315 V<72

6.2

6.3

6.4

173

4

Table of Contents

6.1.3 Declaring variables 138
6.1.4 Declarng CoNStants 140
6.1.4.1 Constantdata 140
6.1.4.2 Symboldefinition 141
6.1.5 Relocationcommands 142
6.1.5.1 Whatis relocation? 142
6.1.5.2 Segmentdefinition 143
6.1.5.3 Using the Segment directive in the sourcefile 145
6.1.5.4 Segmentallocation e 146
6.1.5.5 |Initialization of variables at power-on.......... 148
6.1.5.6 Referencing symbols and labels between modules 151
6.1.6 Conditional @assembly e 154
B.1.7 MACIOS ..ttt 156
6.1.7.1 Replaceable parameters 157
6.1.7.2 Local symbols 158
6.1.7.3 Conditional statements iNMacros, 160
6.1.8 Some miscellaneous features 162
6.1.8.1 EQU and CEQU PSEUdO-0PS v vttt e i e i e 162
6.1.8.2 #DEFINE PSEUdO-0P . ..\ttt e e e 162
6.1.8.3 Numbering syntax direCtives e 163
6.1.9 Objectandlisting files 163
6.1.9.1 Objectfiles 163
6.1.9.2 Listing files 164
LINKER AND ASCII-HEX CONVERTER e 165
6.2.1 The lINKING PrOCESS . . . v vttt e e e e e e e 165
6.2.2 Hexfile translator 167
6.2.3 The back-annotation pass oftheassembler 168
INSTALLING WINEDIT AND THE SOFTWARETOOLS 168
6.3.1 WINEdittext editor 168
6.3.1.1 Installing WInEdit 168
6.3.1.2 Configuring WINEdit 169
6.3.2 Installing the STMicroelectronics Software Tools 169
BUILDING A DEMONSTRATION PROGRAM i 170
6.4.1 Purpose of the demonstration program it 170
6.4.2 Inventory of the program files 170
6.4.3 Description of the program files 171
6.4.3.1 The PROJECT.WPJfile i 171
6.4.3.2 The main source file, MAIN.ASM and the timer source file, TIMER500.ASM . . .
6.4.3.3 The REG72251.ASM file and the REGISTER.INCfile 176
6.4.3.4 The MAP72251.ASMfile e 178
71315

Table of Contents

6.4.3.5 The CATERPIL.BATfile i 179

6.4.4 Using WinEdit to change and compile thefiles 180

7 DEBUGGER AND PROM PROGRAMMER TUTORIAL FOR ST72251 183
7.1 STMICROELECTRONICS HARDWARE TOOLSot 183
7.1.1 EPROM Programming Boards it 183
7.1.2 Starter KitS ..ot 184
7.1.3 Development Kits 184
7.1 4 EMUIAIOrS . .o 184

7.2 EPROM PROGRAMMER BOARDS e e 184
7.2.1 EPROM programmer Installation i, 185
7.2.2 Usingthe EPROMER software i 185

7.3 EMULATOR AND DEBUGGER e 189
7.3.1 Introducing the emulator and the debugger 189
7.3.2 Installing the emulator and the debugger 189
7.3.3 Usingthe debugger 191
7.3.3.1 Loadingthe application 191

7.3.3.2 Running the application e 193

7.3.3.3 Watching the registersand variables 193

7.3.34 UsingInspectandWatch e 195

7.3.3.5 Using breakpoints 197

7.3.3.6 Watching the contents ofthe stack 198

7.3.3.7 Watching the executiontrace i, 199

7.3.3.8 More featurestocomelater 200

7.4 PURPOSE OF THE TUTORIAL e e e e e 200
7.5 SCHEMATIC DRAWING OF THE PRINTED CIRCUITBOARD 202
7.6 DEVELOPING THE PROGRAM e e e e 202
7.6.1 Peripherals used to implement the solution 202
7.6.2 The algorithmof eachtask 203
7.6.3 A simple multitasking kernel forthe ST7 204
7.6.3.1 StartTasksroutine 204

7.6.3.2 TheYieldroutine i 206

7.6.4 The source code of the application 209
7.6.4.1 Main file (Multitsk.asm) 210

7.6.4.2 ADC source file(ACana.asm)ttt i 214

7.6.4.3 Kernel source file (Littlk.asm) 215

7.7 RUNNING THE APPLICATION e e e e 217

8/315 V<72

Table of Contents

7.8 SUMMARY REMARKS e e e e e 217
8 CLANGUAGE AND THE C COMPILER e e 219
8.1 C LANGUAGE EXTENSIONS FOR MICROCONTROLLERS 219
8.2 DESCRIPTION AND INSTALLATION OF THE HICROSS TOOL CHAIN 220
8.3 USING THE C COMPILER e e 224
8.3.1 Memory allocation 224
8.3.1.1 Read-only constants e 225

8.3.1.2 EEPROM non-volatile storage it .. 226

8.3.1.3 Page Zerovariables 227

8.3.1.4 Farand near pOiNterSt 227

8.3.2 Initialization of variables and constantvariables 228
8.3.3 INpuUtsS and OULPULS o 228
8.3.3.1 First method: uUSiNg MacCroSt 229

8.3.3.2 Second method: defining variables i 229

8.3.4 Interrupt handling 230
8.3.5 Limitations put on the full implementation of Clanguage 230

8.4 USING THE ASSEMBLER e e e 231
8.4.1 Using In-line assembler statements within a C sourcetext 231
8.4.1.1 Single-statementassemblerblock 231

8.4.1.2 Multiple-statement assembler block L 232

8.4.2 Using the Hiware assembler 233

8.5 USING THE LINKER e e e e 233
8.6 USINGTHEEPROMBURNER i 235
8.7 PROJECT DIRECTORY STRUCTURE i, 237
8.7.1 Config direCtory e 237
8.7.2 ObJeCt direCtOry . . .ot e 239
8.7.3 S0UIrCes direClOrY ot 239

8.8 HINTS ON CWRITING STYLEFORTHEST7 241
8.8.1 Accessing individual bitsinregisters 241
8.8.2 Setting configuration registers 243
8.8.3 Using macros to define external devices i 243
8.8.4 OptimiIziNg r€SOUMCE USATE . . . o v vt vttt ettt et ettt e et e 245
8.8.4.1 Define a function when a group of statements is repeated several times 245

8.8.4.2 Use shifts instead of multiplication and division 245

8.8.4.3 Limit the size of variables to the very minimum 246

4

9/315

Table of Contents

8.9 CONCLUSION . .. e e e e e e 246
9 A CARRIER-CURRENT SYSTEM FOR DOMESTIC REMOTE CONTROL 247
9.1 CARRIER CURRENT CONTROL AND THE X-10 STANDARD 248
9.2 TRANSMITTER e e e e e e e e 253
9.2.1 INStrUCtiONS fOr USEot 253
9.2.2 Description of the electronic circuit 253
9.2.3 Description of the software 257
9.2.3.1 Themain programttt e e 257

9.2.3.2 Timer A Capture interrupt service routineo, 260

9.2.3.3 The Timer B overflow interrupt service routine 267

9.3 RECEIVER ... e e 270
9.3.1 INSHrUCtiONS fOr USEot 270
9.3.2 EIeCtroniC CIrCUItIY oot e e e e e 270
0.3.3 SOftWANE . ..o 274
9.3.3.1 Interrupt fUNCLIONS 274

9.3.3.2 Main PrOgram . .o ottt et e e e 277

9.4 CONCLUSION e e e e e e e 283
10 SECOND APPLICATION: A SAILING COMPUTER 284
10.1 THEORY OF THE COMPUTATION e e e e e 286
10.2 INTERFACING THE MEASUREMENT DEVICES 289
10.2.1 Frequency-type devices: speedometer and windgauge 289
10.2.1.1 Interfacing the speedometerttt 289

10.2.1.2 Interfacing thewind gauge it 289

10.2.1.3 Using a common timer for both speed measurement devices 290

10.2.2 Interfacing the weathervane i 291
10.3 INTERFACING THE DISPLAY ... e e e e 292
10.3.1 Display CirCUIt e 293
10.3.2 Push-button Circuit 296
10.3.3 LED CilCUIL ..ottt e e e e e e e e 297
10.4 INTERFACING THE OPTIONAL PERSONAL COMPUTER 297
10.5 PROGRAM ARCHITECTURE e 298
10.5.1 Reading and conversion of the speeds 298
10.5.2 Refreshing of the display i i e 300

10/315 172

Table of Contents

10.5.3 Polling the push-buttons 302

10.5.4 Reading and filtering the wind direction, 303

10.5.5 The periodic interrupt service routine, 304

10.5.6 Computation of theresults 305

10.5.7 Handling of the serial interface i 307

10.5.8 Initialization of the peripherals and the parameters 308

10.6 MEMORY ALLOCATION AND COMPILE AND LINK OPTIONS 310
10.7 CONCLUSION . .. s e e e 312

11 SOME LAST REMARKS ... e e e e e e e e e 313
[7[11/315

1 - Introduction

1 INTRODUCTION

1.1 WHO IS THIS BOOK WRITTEN FOR?

This book is a technical guide for ST7 users and may be approached in different ways:

» For students and anyone unfamiliar with microprocessors, but with some experience of logic
circuits; they should start by reading Chapters 1 through 3.

« For trained engineers wanting to get specific knowledge about the ST7 and microcontroller
programming in C language; they may skip Chapters 1 through 3 and go straight to Chapter
4.

« For designers already familiar with the ST7, needing more details about C-language
programming and how to use the ST7 internal peripherals; the application descriptions in
Chapters 5 and 8 through 10 are of special interest for them.

1.2 ABOUT THE AUTHORS

Jean-Luc Gregoriades teaches automated systems and industrial computer science at the
Electrical Engineering department of the University of Cergy-Pontoise, France.

Jean-Marc Delaplace is an electronics and software engineer at Gilson S.A., a laboratory au-
tomation instrument maker.

As a team, they have already written books on the ST6 (published at Dunod Editions) and the
ST9 (published by STMicroelectronics).

1.3 HOW IS THIS BOOK ORGANIZED?

This book contains the following chapters:

Chapter 1: Introduction.

Chapter 2: How does a typical microcontroller work internally and how to use it.
Chapter 3: Programming a microcontroller.

Chapter 4: Architecture of the ST7 core.

Chapter 5: The peripherals.

Chapter 6: The STMicroelectronics programming tools.

Chapter 7: The Debugger and the PROM programmer through a pedagogic application using
a ST72251.

Chapter 8: The C language and the C compiler.
Chapter 9: Application of the ST72251: a carrier-current system for domestic remote control.

Chapter 10: Application of the ST72311: a sailing computer.

12/315 172

1 - Introduction

Chapter 11: Conclusion.

Chapters 1, 2 and 3 are a refresher on the concept of a microcontroller. Chapter 1 introduces
the concept, Chapter 2 addresses the hardware and Chapter 3 addresses the software as-
pects.

Chapters 4 through 7 describe the ST7 and its programming tools, taking only assembly lan-
guage into account.

Chapter 8 discusses the C language and techniques for using the C Compiler for the ST7 mi-
crocontroller, its strengths and also its limitations.

Chapters 9 and 10 describe application projects using the ST72251 and the ST72311 mem-
bers of the ST7 family. They tell the story of the design of devices that, though they do work,
were not intended to be commercial products.

1.4 WHY A MICROCONTROLLER?

The microcontroller is just another choice when one has to design an application, and it com-
petes with other technologies, like wired logic, a microprocessor system, or a Programmable
Logic Device of which many types are available.

All these solutions tend to reduce the number of components, the area of printed circuit used,
the number of connections, while increasing the computing power and keeping the cost low.

4

13/315

1 - Introduction

The following table shows a comparison of these solutions. Each one is discussed below.

Solution type Advantages Drawbacks

i . Very high speed . o
Wired logic Only for simple circuits
Cheap

Limited number processing

High speed Programming languages are specific
Able to handle complex digital signals | and non-portable

May be expensive

Programmable logic

Powerful

Wide choice of models Many components even for simple sys-
Microprocessor Configurable in wide limits tems

Allows almost all popular programming | Relatively expensive

languages

. S . Standard configurations rarely exactl
Simple electronic circuits are possible g y y

. fit the application’s needs implying the
. with few components .
Microcontroller Al H |) use of over-sized models
ows the most popular programming Special configurations available, but
languages such as BASIC or C. .
only for large quantities.

Wired logic uses commercially available logic functions and sometimes linear chips. Though it
is simple, it is neither practical nor economical to consider this technology for building applica-
tions as complex as those that are usually needed today. It can only be considered for very
special subfunctions where high speed is required.

Programmable Logic Devices (PLD) are the modern form of wired logic, and are often used for
combinatory and sequential logic. The biggest models allow intensive numeric processing, but
only on integer numbers. They use programming languages that do not belong to the family of
computer languages commonly used today.

The last two technologies are the microprocessor and the microcontroller. In principle, both
are very much alike and they are both well suited to programmed data processing. The main
difference between them is the size of the application.

The microprocessor is a component that includes mainly the computing core, and perhaps the
logic closely related to it like the clock generator, the interrupt controller, etc. Many more chips
must be added to it in order to make a functional application, memory chips in particular. Ac-
tually, this solution is only used in computers, either general-purpose computers like PCs, or
built-in to complex applications like industrial robots. It allows the designer to tailor his circuit
exactly to his needs.

The microcontroller is defined as a complete programmed system in one chip. This means
that one chip is sufficient to fulfil the need, or that only a few more chips are required to

14/315 172

1 - Introduction

achieve the required computational power. These external chips may simply be interface com-
ponents, to adapt the electric signals to the input-output pins of the microcontroller, or addi-
tional memory or peripheral components if the buses are available externally on the pins of the
microcontroller.

In any case, these components require two different but equally important jobs for putting
them to work: electronic circuit design, and programming.

Both of these need be done as easily, quickly and economically as possible. A thorough study
of both aspects will be the basis for selecting the most appropriate model from the wide range
of products available today. Here are a few considerations related to these aspects.

1.4.1 Electronic circuitry

This is where the designer strives to reduce the external component count, and to carefully se-
lect each one to get the best value. In order to satisfy this requirement, the various chip man-
ufacturers offer for each family a choice of variants, to allow the designer to select the one that
best fits his needs in terms of input-outputs and auxiliary circuitry.

Roughly speaking, a microcontroller variant that is loaded with features will allow a simpler ex-
ternal circuitry, at the expense of an increase in the microcontroller cost. The ideal choice
would be the variant that has the exact peripherals required by the application, and no more.

To illustrate this, we shall take a simple example. Let us consider an application that requires,
as an input, a numeric keypad, and as an output, a galvanometer to provide an analog display.
The ideal combination would call for an Analog to Digital Converter for the input, and a pro-
grammable timer with Pulse Width Modulation capability for the output. This would lead to the
following very simple schematic:

4

15/315

1 - Introduction

+5v
Current Array of R
generator resistors

e

Analog input [l L R
GND - E _—

R

Micro }
_—
controller
R
Push pull J,
output with Analog display R
|

PWM signal E _——

| R
I—/—ﬂ

Analog keyboard

Example of simplified circuitry using a microcontroller

Ol-anal

Such peripherals are typically available in many families. This example shows how two periph-
erals properly selected can drastically reduce the component count and thus the printed circuit
area. The solution shown may or may not fit the needs, but it is difficult to imagine a simpler
design.

16/315

4

1 - Introduction

1.4.2 Choice of microcontroller model

The selected model of microcontroller must meet the requirements in terms of computational
power. It must be able to handle the input-outputs, process the data in the required amount of
time, and have enough memory to store both the program and the data.

An application is made of both hardware and software. So, there is a trade-off between the
processing done by hardware and that done by software. Using dumb peripherals requires
more computational power from the core; using sophisticated peripherals relieves the core
from time-consuming calculations and thus allows a less powerful core to be chosen.

Determining the computational power is a difficult matter since there is no internationally rec-
ognized measurement unit that expresses the speed of a microprocessor or similar device.

Some benchmarks that compare several products in the same application are available from
various sources, but they only give an idea of the relative capability of one product versus an-
other one.

Thus a certain margin must be considered, or there would be a risk that some time in the de-
velopment process that one comes to the conclusion that the selected microcontroller is un-
suitable for the application. This event would have serious consequences, as costly tools may
have been invested to develop the application, not to mention the delay in the product availa-
bility with its commercial consequences.

Also, even if a microcontroller is suited to the product as it is first commercialized, this product
may undergo changes during its commercial life. As a general rule, changes are always addi-
tions, never removals. If the chosen microcontroller matches current needs too closely in
terms of capability, there is a risk that it could prevent the product from evolving to meet future
needs. This could make the product become obsolete sooner than expected.

To summarize, it is difficult to tell in advance whether a microcontroller will fit an application.
As aresult, itis current practice to select a model with excess power in order to guarantee suc-
cessful performance initially, and also to allow for product updates.

1.4.3 Choice of development tools

Once the needed power has been determined, one must investigate the development tools
available for the applicable products. The first step is to compare their prices; but this is not the
consideration that will determine the choice.

The real issue is how the tools will help writing the software, test it, and pinpoint its flaws. The
hourly cost of a software engineer, who spends more time on software development because
of the lack of efficiency of the tools, easily outweighs any savings that could have been made
when investing in them.

Development tools include all that is needed to write the program, either in assembly language
or in high level language, then translate it into machine language and load it into the program

172 17/315

1 - Introduction

memory of the application. The tools are able to test both the hardware and the software, and
analyze any malfunctioning in order to allow corrections to be made. This can be done using
only a Personal Computer, or external instruments connected to the computer, such as an
emulator, analyzer, PROM programmer, etc. depending on the development phase. The dia-
gram below shows where each phase takes place:

Source text editor
Compiler
Assembly software tool >
Linkage software tool
Simulation or emulation software tool

These software tools
are specificto a
microcontroller family

4 Debugging using an emulator

v

Emulation tool

PC
Simulation

Probe
YA [\ \ \
// / [\ \ \ \
/7 / | \ \ i

‘ Application

Typing of the program source text

PC-based development environment

01-proc

The microcontroller itself, and the related development tools are described in Chapters 2 and
3.

18/315

4

2 - How does atypical microcontroller work?

2 HOW DOES A TYPICAL MICROCONTROLLER WORK?

There is a wide range of microcontrollers available on the market. They differ in their compu-
tational power, their internal organization, the number of their inputs and outputs, the type of
peripherals they provide. However, a microcontroller is always a complete system on a chip
that includes a core connected to some memory and surrounded by peripherals. A typical
block diagram of a microcontroller is the following:

i Multifunction Watchdog
Peripherals timer(s) timer
”‘ ”‘Internal buses
EEPROM 4_» | General purpose and } Interrupt
} dedicated registers, | controller
‘ accumulators \
Internal | 'Arith | Reset
rithmetic i
" ‘ Instruction decoder ||| generator
RAM , /and IcyiKc unit | |\
| | Stack || Clock
} Core | Program counter H generator
Internal 4} - — = — — /
& +
(EPROM) Analog to , .
digital Serial Parallel input / output
interface ports
converter

vA

xtal

Communication with the outside world of the microcontroller

Typical block diagram of a microcontroller

02-basic

The peripherals shown here are only the most common that one can find in a microcontroller.
Other peripherals, designed for special tasks or communication protocols, may be found as
well. Let us mention just a few:

« 12C serial interface

» Radio Data System decoder

« Liquid Crystal Display interface, etc.

We shall gain an overview of the main blocks in the remainder of this chapter.

b7

19/315

2 - How does a typical microcontroller work?

2.1 THE CENTRAL PROCESSING UNIT
What is the Central Processing Unit (CPU)?
It is made up of the core, and auxiliary blocks like the clock generator, the reset circuitry, etc.

The CPU of a microcontroller is the actual programmed logic circuitry that is the heart of the
application based around the microcontroller. It is where all computation and decision-making
takes place. The CPU acts on data received from the outside world through the peripherals;
this data is processed in a predetermined way to produce more data that will act on the the
outside world.

The CPU is the part of a microcontroller that corresponds to what is usually called a micro-
processor. A microprocessor contains only the computing logic; it must be surrounded with
devices like memory and input-output interfaces. A microcontroller bundles all these in a
single chip. For simple projects, this allows an application to be built with just one chip plus a
few components. This has been made possible by progress in the scale of integration that al-
lows powerful chips to be manufactured at a relatively low cost. This has opened up a new and
very wide application field: bringing the capabilities of a computer to even the cheapest appli-
ances. For example, nowadays home audio systems incorporate a radio receiver, a CD
player, two cassette decks and an amplifier and speakers; all controlled by a common control
panel with a large display that shows the FM frequency, or the CD track number and elapsed
time, etc. Here, a single microcontroller performs the overall control, displays the data, re-
sponds to the keys that are pressed by the user to select the required radio channel, CD track,
etc.

The word data, that is so commonly used, must be understood here in the widest sense.
Though we may first think of data as numbers, data are not only humbers; they may be a wide
range of objects like binary values (the state of an on/off switch), the voltage at a terminal (the
wiper of a potentiometer), a character string (a piece of text), and many other things. The fact
that data is thought of as numbers just comes from the fact that we are discussing machines
based on binary signals. Virtually all the data processors in the world only process binary
digits. These binary digits (bits) are always grouped in packs of variable lengths that are proc-
essed in parallel, thus multiplying the processor throughput by the number of these bits proc-
essed at the same time.

The first microprocessors, historically, were four-bit machines. There are still four-bit micro-
controllers sold today for simple applications like telephones, washing machines, and others
requiring little processing power.

In the sense that is given to this word today, a microprocessor is at least a 8-bit wide machine.
The market is shared between machines of several types, with their power increasing along
with the number of bits they can process in parallel. The following table gives an overview of
the main classes of microprocessors today.

20/315 172

2 - How does a typical microcontroller work?

Table 1. Table of the main processor sizes

Data size Relative Common applications
power

4 bits Lowest Watches, calculators, TV remote control, washing machines.

8 bits Low Industrial products and home computers in the '80s; most
microcontrollers today where little numeric computation is required.

16 bits Medium As a microprocessor, the former PCs; as a microcontroller,
industrial and automotive products used in car bodies.

32 bits High All PCs wuse this size of microprocessor today; some
microcontrollers are also becoming available commercially such as
automotive injection calculators.

64 bits Highest Only in mainframes; microcontrollers of this size are just coming out
from the laboratories.

2.2 HOW THE CPU AND ITS PERIPHERALS MAKE UP A SYSTEM

The CPU cannot work alone. It is the central piece of a system that includes the following com-
ponents:

2.2.1 CPU

It computes and coordinates. It controls almost all the other components of the system, except
in some cases like interrupts or direct memory access where some peripherals take the initia-
tive.

2.2.2 Memory

It stores both the program, that tells the CPU what to do, and the data, that is temporarily
stored by the CPU like intermediate computation results, and the global state of the system.

« In computers, there is only one memory to store both. This memory is volatile, so that a
supplementary, high-capacity and non-volatile storage is required to hold the contents of the
memory when the system is not powered-on, in most cases a hard magnetic disk. The cost
per bit stored of the memory being much higher than that of the hard disk, the capacity of the
memory is usually much lower than that of the disk. Only a fraction of the disk contents
resides in memory at any time.

« In microprocessor-based systems, the memory is the only storage, and various types of
memory are used according to its use: read-only memory for the program, read-write
memory for the data, and/or non-volatile solid-state memory for those data that must be
preserved from one session to the next, the system being powered-off between two
sessions.

172 21/315

2 - How does a typical microcontroller work?

The microcontroller has thus to handle two different kinds of things related to memory: the pro-
gram, made of numbers that encodes the programming language instructions, and the data,
that are what the calculations act on, and the result of these calculations. Although they are
both mere numbers, they have completely different functions. Also, the characteristics of the
storage are different: while the program must be kept unchanged throughout the life of the
product, the data continuously change. This calls for a non-volatile, read only memory in the
first case, and a read-write memory that may or may not be volatile in the second case.

The difference in roles of these two memories has led to two different approaches in the
memory architecture:

The first one, named «Von Neumann» after the name of its inventor, provides only one ad-
dressable space. The program and the data are only distinguished by the address they oc-
cupy in this space. The ST7 belongs to this category:

0000h
Data
memory
space
RAM Memory
017Fh bus
(Not used) % 16 Core
EO00Oh
Program
memory
space
ROM
FFEOh
Interrupt &
reset vectors
FFFFh

ST72251 memory space

a Von Neumann architecture

02-vonne

22/315

4

2 - How does a typical microcontroller work?

The second one, named «Harvard», provides separate addressing spaces for the program
and data. No instruction can thus write anything into the program space, protecting the pro-
gram from accidental changes and doubling the total addressing range. Examples of this ar-
chitecture are the ST6, the ST9, and the 8051:

000h
00h
Program Data
mer%or Program Data memory
: acey memory memory space
P bus bus
12 Core 8)
RAM
ROM
(EPROM) FFh
Interrupt &
reset vectors FFFh

ST6 memory spaces :

a Harvard architecture

02-harvd
2.2.3 Input-Outputs

Often called peripherals, these are the point of contact between the system and the reality that
surrounds it and that the system is supposed to interact with. As stated above, the data from
and to the outside world are often of the analog type, and must be translated back and forth so
that the system, that is fully numeric, can process them. The peripherals can be just input-
output gates, for some data that are of the numeric type in the external world; or they can be
somewhat complicated, if the data is either analog, or numeric but conforming to some strin-
gent timing pattern. All the translation job performed by the peripherals saves the equivalent
load to the CPU. So the total throughput of a system does not merely rely on the power of the
CPU, but also on the efficiency of the peripherals.

b7

23/315

2 - How does atypical microcontroller work?

2.2.4 Interrupt Controller

This is a piece of logic circuitry that manages the implementation of the interrupt concept de-
scribed later in this chapter. Interrupts are the most common means of altering the normal
course of the program, when an unexpected event (or an expected one but occurring at an un-
expected time) occurs. It may be more or less complicated according to the features it pro-

vides.

24/315

The main
program
is
interrupted

Return
to the main
program

Non maskable or

authorized
interrupt #1
requested

.

Interrupt #2
requested
but masked

The main
Interrupt #2 program
enabled 1S
interrupted
1 <
Return

to the main

program

.

Flowchart of a program with interrupt sub-routines

02-inter

4

2 - How does a typical microcontroller work?

Features provided may include queueing of interrupt requests, handling requests according to
their priorities, or even modification of priorities to increase the chance that low-priority re-
qguests will be eventually processed in a context where there are numerous requests.

2.2.5Bus

The bus is the set of connections that links all the components of the system and allows all the
data moves, and the distribution of the address and control signals.

2.2.6 Clock Generator

This is the basic coordination circuitry that supplies a set of calibrated clock signals, at a pre-
cise frequency, that schedules all the data movement along the bus and the computations in
the CPU. In some models, the clock frequency can be chosen by software.

2.2.7 Reset Generator

This circuit detects when the system has just been powered up, and resets it in a known state
from which the program execution will start. The reset ensures that each time the system
starts, everything occurs exactly the same way. This is a major condition for the reproducibility
of the behaviour of the system.

2.3 CORE

The main components of the core are:

2.3.1 Arithmetic and Logic Unit (ALU)

This is where all the computations take place. Depending on the microcontroller used, the
ALU provides a different set of operations. Roughly speaking, the basic set of operations
available to all ALUs is the following:

» Addition and addition with carry, to provide for multiple precision calculations
« Subtraction and subtraction with carry
» Increment and decrement

» Bitwise shift, leftward or rightward, straight or circular (the outgoing bit in re-injected at the
other end of the data word)

» Logical bitwise OR, AND and EXclusive-OR
» Logical complement

Some provide additional operations like:

« Multiplication

= Division

=« and more

172 25/315

2 - How does a typical microcontroller work?

The ALU is connected to a register that holds the state of the last calculation done, with bits in-
dicating (among other things) whether the result was zero, negative, or overflowed the ca-
pacity of the ALU. It thus provides a means of testing the data and changing the program flow
accordingly. This register is called the status register.

2.3.2 Program Counter

This register holds the address of the next instruction to execute. It is initialized by the reset
generator to a known value, called the entry point of the program. The first instruction of the
program must thus be found at that address in the program memory.

2.3.3 Instruction Decoder

This circuit takes the instruction fetched from the program memory and translates their native
code into its meaning, determining the actions performed by the core. The instructions fall into
the following categories:

» Data processing instructions: they give the type of operation to perform (add, subtract, shift,
etc.) and the address of the operand to be processed.

« Program flow control instructions: these instructions modify the value of the program
counter, so that the next instruction executed will not be the one that follows the current one
in program memory. They are called jump and call instructions. In particular, some of these
instructions perform their action only if one or more bits of the status register have certain
values, so as to jump only if, for example, the last calculation produced a zero value, or
continue in sequence otherwise. These instructions provide the means of translating the
branching boxes in an algorithm.

2.3.4 Stack Pointer

The stack is a storage area that has the particularity that the data put into it in a certain order,
can only be retrieved in the opposite order. It is the mechanism used to handle temporary pro-
gram flow disruptions, where the main flow of the program is temporarily put aside and re-
sumed later. This is done using a pair of special instructions. The first one, named CALL, first
stores the address of the next instruction to execute into the stack, before jumping to some
other place. The reciprocal instruction, named RETurn, retrieves this address from the stack
and jumps to the corresponding location, thus resuming the program execution.

These features give the system the capability to execute a program that reads data or binary
states from external sources, performs computations, detects particular characteristics in the
data, and reacts a predefined way to this before sending new data out. Using the interrupt me-
hanism, external events can suspend current processing and allow the incoming data to be
processed and then resume the processing that was interrupted.

26/315

4

2 - How does a typical microcontroller work?

2.4 PERIPHERALS

The peripherals are the places where the core, that executes computer code, is in contact with
the real world that is represented by electrical signals.

These signals may just be binary levels that change relatively infrequently, in which case it is
easy to process them using a program. They also may change quickly, too fast for the pro-
gram to handle them without imparing the computing power of the core.

In other cases, the signal is a value that belongs to a continuous range. This type of signal is
called an analog value; by nature, it cannot be processed by the core, and must be converted
into binary data.

An analog value may have several shapes, but it eventually falls into one of two categories:

» The data is represented by the time interval between two pulses, or by the frequency of an
AC signal, or by the number of pulses of a pulse train. All these cases can appropriately be
handled by a programmable timer or a UART, for example.

» The data is represented by the voltage of an input signal, or the value of a resistor that can
easily be converted into a voltage. This kind of data is handled by the Analog to Digital
Converter.

These considerations justify the presence of specialized peripherals, that include the required
circuitry for processing the data, convert it, etc. so that it is easier to handle for the core. The
less work the core has to do, the more it is available for other tasks. According to the proper-
ties of the signal, the peripheral designed to process it (we say “interface it”) may be anything
from very simple to very sophisticated. We shall give here an idea of some of the most
common peripherals of the ST7, starting with the simplest.

2.4.1 Parallel Input-Outputs

When the data going to or coming from the outside world is made of groups of bits, and if they
can remain stable for a relatively long amount of time (at the scale of an electronic device, that
may be less than one millisecond), parallel input-output ports are the right choice. They only
consist of a set of gates or latches that allow for communications between the inside and the
outside at times that the program chooses. This is used for example to read input switches
and keyboards, and to output signals that drive lamps, motors, etc.

The capabilities of these input-outputs vary greatly from product to product. In some products,
they are unidirectional or bidirectional TTL levels, fixed by hardware. In other products, they
include a latch that can capture the state of the inputs on the transition of an auxiliary strobe
input.

Some manufacturers, including STMicroelectronics, provide configurable input-output pins.
These pins can be set as either inputs, with or without a pull-up resistor, or as an output either

172 271315

2 - How does a typical microcontroller work?

push-pull or open drain. Some outputs also allow for a higher current to directly drive relays,
LEDs or opto-isolators.

In addition, these pins can also be used at the same time as the input-output pins of other pe-
ripherals like Timers, Serial to Parallel Interfaces, or as inputs to the interrupt circuitry or an
Analog to Digital Converter.

The configurability of these pins helps reduce the number of components in the schematic di-
agram, and thus the size of the circuit board.

2.4.2 Analog to Digital Converter

The ADC is a way of converting an incoming voltage into a number. The ADC is calibrated so
that the relationship between the voltage and the number is well known, which allows the pro-
gram to process a representative measurement of the signal.

2.4.3 Programmable Timer

This is a complex block based on a counter that can be used in many ways, so that it can ei-
ther count pulses, or measure the duration of pulses or frequencies, or produce precisely
timed output pulses. This peripheral is so flexible that it is virtually impossible to describe all its
possible applications. In addition, the presence of a programmable timer leads the circuit de-
signer to use it intensively, since it is the peripheral that provides the highest accuracy, when
taken as a measuring device. Thus, when the measurement of a physical parameter (like a
temperature, a level, a pressure, etc.) is needed, instead of designing a sensor that outputs an
analog voltage, it is easier and more accurate to design it to produce a square signal with a
frequency that reflects the parameter. Such signals are also easier to transport than voltages
that may suffer from electromagnetic interference.

2.4.4 Serial Peripheral Interface

This interface is based on a shift register that can perform serial to parallel conversion and
vice-versa. It transmits eight bits at a time, using only two or three pins. This saves pins on the
the chip, and also simplifies multiplexing when connecting a number of microcontrollers to-
gether.

It can also be used to interface serial-access memory chips that provide non-volatile storage
at low cost.

2.4.5 Watchdog Timer

The watchdog timer is a supplementary timer that can be used to protect the system against
failures either due to the program itself (e.g. when a certain case has not been considered and
the program cannot process it correctly); or a power supply brownout or electromagnetic inter-
ference has disturbed the normal working of the microcontroller. In both cases, the program
may crash and the system that is built on it will no longer be stable. This can have conse-

28/315 172

2 - How does a typical microcontroller work?

guences in applications where the microcontroller must keep in control, like in automotive ap-
plications or in security systems.

Various solutions have been imagined to prevent such situations. The most popular is the
watchdog timer. This is a timer that is set for a certain duration at power up. The program must
reset it to its start value periodically; failing to do so, the timer will overflow and this event gen-
erates a hardware reset. This restores the system to the state it was at power up.

To use the watchdog timer properly, the program must reset it at the appropriate time, in a pe-
riodic manner. To do this efficiently requires some care. A word of advice is given on this sub-
jectin a later chapter.

2.5 THE INTERRUPT MECHANISM AND HOW TO USE IT

A microcontroller is a programmed computer that executes a single string of statements
known as «the program». Therefore, it apparently cannot perform more than one task at a
time.

However, most if not all applications require a single microcontroller to handle many things at
once. Usually, for cost-effectiveness and simplicity, the designer of a microcontroller-based
system tries to pack as many functions as possible in a single chip.

The answers to this problem are based both on hardware and on software. The hardware ap-
proach is called «interrupt handling» and the software approach is called «multitasking».

2.5.1 Interrupt handling

An interrupt, in computer terminology, is a mechanism that allows the currently executing pro-
gram to be interrupted, as the name implies, when an external event occurs. The computer
then starts to execute a specially-written piece of code that is intended to process the in-
coming event. Once this processing is finished, the main program resumes exactly where it
was interrupted. Nothing else happens to this program except that its execution is delayed by
the time it took to process the interrupt-triggered code.

4

29/315

2 - How does atypical microcontroller work?

The effect of the interrupt is shown in the following diagram:

30/315

An interrupt is requested
and authorized

:

The current instruction is executed, the PC is incremented

v

The PC and a small number of registers are saved, they are
automatically pushed onto the stack. The registers to be saved
are defined by hardware: accumulator, code condition register

etc.

B

v

Depending on the type of microcontroller, the lower
priority or all the maskable interrupt sources are masked

v

The PC is loaded with the interrupt vector address which
is a pointer to the address of the interrupt sub-routine

v

The sub-routine is executed and ends with
the 'return from interrupt' instruction

v

The masked interrupt sources are authorized

Done
by
hardware

1

f

* Done
by hardware
The PC and predefined registers are popped from stack ¢

v

The next instruction of the interrupted
program is fetched and executed

Interrupt processing flowchart

02-flow

4

2 - How does a typical microcontroller work?

2.5.1.1 Hardware mechanism

The hardware mechanism is important to understand. It is different for each product, so what
we shall describe here pertains specifically to the ST7.

An interrupt request is a binary signal (a flag) generated by several external sources. Most pe-
ripherals of the ST7 can produce interrupt requests, for example the 1/O ports, the timers, the
SPI, the I°C interface, and so on. The external cause of the interrupt request depends on the
type of the peripheral: the 1/O ports may have some bits configured to generate an interrupt,
either on low-level, falling edge, rising edge, or both. The timer may request an interrupt on
timer overflow, external capture or output comparison. The SPI may request an interrupt on
end of transmission, etc.

2.5.1.2 Hardware sources of interrupt

The hardware interrupt sources are summarized in the diagram below.

Input pin

TExternaI source

edge detect | €9 : parallel input port pin

circuit
w Global interrupt enable bit
eg : timer overflow /
J/ Control register
of the CPU

Status register
of the peripheral ’

> Interrupt trigger
to the core

Control register

of the peripheral /

Interrupt enable bit

Interrupt flag bit

Other maskable Non maskable
interrupt sources interrupt sources

Diagram of the interrupt mechanism

02-mec

31/315

4

2 - How does a typical microcontroller work?

2.5.1.3 Global interrupt enable bit

The various sources of interrupt may be inhibited as a whole using the | bit in the condition
code register. When this bit is set, no interrupts are generated. However, the interrupt re-
guests are not forgotten; they will be processed as soon as the | bit is reset.

2.5.1.4 Software interrupt instruction

In addition to the hardware sources, a special instruction, TRAP, produces the same effect as
an externally-generated interrupt request, but under program control. Strange as it may seem
(interrupts are provided for handling unexpected events, or at least, events whose time of oc-
currence is not known), the TRAP instruction utilizes the whole interrupt mechanism within the
regular execution of the main program.

The trap instruction triggers the interrupt processing regardless of the state of the | bit in the
condition code register.

An example of the use of the TRAP instruction is the real-time debugger. When the user sets
a breakpoint somewhere in the program, the debugger replaces the instruction at which the
execution must stop with a TRAP instruction. The interrupt thus generated is processed by
displaying on the screen the state of the microcontroller at that precise time. However, this in-
struction may be used in other ways as well.

2.5.1.5 Saving the state of the interrupted program

When an interrupt request triggers an interrupt, the first task of the core (after completing the
current instruction), is to save its current state so it will be able to restore it after the interrupt
processing is finished. This is done by pushing all the core registers on the stack. For ex-
ample, in the ST7, the Program Counter, the X-register, the Accumulator and the Condition
Code Reqgister. It should be noted that the Y register is not saved, (this is because the ST7 has
evolved from an architecture that did not have a Y register). If needed, the Y register should be
pushed explicitly on the stack at the beginning of the interrupt service routine.

To protect the interrupt service routine from being interrupted, the | bit of the Condition Code
Register is set automatically.

At this point, the interrupt service routine may execute whatever instructions the programmer
chooses to write. The status of the interrupted program is known and can be restored when
needed.

2.5.1.6 Interrupt vectorization

When the core decides to grant an interrupt request, it must know the address of the code that
must be executed in such an event. This is the purpose of the interrupt vectors.

The interrupt vectors are a table of 16-bit words in program memory that contain the address
of the beginning of the various interrupt service routines.

32/315 172

2 - How does atypical microcontroller work?

Depending on the source of the interrupt (I/O, timer, etc.), the core fetches, from a predefined
location in memory, the address of the interrupt service routine especially written to process
that event. The vectors are always located at the end of the addressing space. There is one
vector for each interrupt source, plus one for the reset. When the microcontroller is interrupted
or reset, one of these interrupt vectors is fetched in order to get the start address of either the
interrupt service routine or the start of the main program.

The following table shows the interrupt vectors:

Memory
address
FFEO Lower priority
not used
FFE4 2C
Bus Interface
FFEG
not used
FFEE
Timer B
FFFO
not used
FFF2
Timer A
FFF4 Serial Peripheral
Interface
FFF6
not used
FFF8
Ports Band C
FFFA
Port A
FFFC TRAP
Software Interrupt
FFFE A 4
Reset vector . L
Higher priority

Interrupt vector table of the ST72251

02-tabv

4

33/315

2 - How does a typical microcontroller work?

2.5.1.7 Interrupt service routine

When the processor has granted an interrupt request, and read the interrupt vector, it starts
executing the interrupt service routine. This routine is merely a segment of program, written
with exactly the same ease and constraints as the main program. It may be written using the
same language and tools, or in any other language.

The interrupt service routine is supposed to take appropriate action according to the source of
the interrupt. For example, if an input bit has changed its state, the service routine may change
the state of an output bit; if the interrupt was generated by the timer, this may produce the
transmission of a byte by the SPI, etc. according to the structure of the application as defined
by the programmer.

Eventually, the service routine is finished. Then the core may return to the main program. This
is done by executing the IRET instruction.

2.5.1.8 Interrupt Return instruction

As described above, an interrupt service routine looks a little bit like a subroutine. Like in a
subroutine, the return address is stored in the stack, and the execution of the RET instruction
returns to the calling program.

However, some more things have to be done before returning to the interrupted program. All
the core registers were pushed on the stack when the the interrupt request was granted (ex-
cept the Y register). They must now be restored, so that the execution of the service routine
will not leave any trace in the core. This is the role of the IRET instruction in the ST7.

The IRET instruction proceeds by popping all the data off the stack that had previously been
pushed, namely the Condition Code register (at this point the | bit is also restored), the Accu-
mulator, the X register and the Program Counter.

From this time on, execution of the interrupted program resumes.

2.5.2 Software precautions related to interrupt service routines

As described above, the interrupt mechanism is fairly simple to use, since it only consists of
setting the interrupt vectors to the address of the corresponding service routines, and writing
a piece of code that must end with a IRET instruction.

Actually, an interrupt service routine may do anything in the system, since it uses the regular
instruction set of the core and has access to the whole memory. It may thus affect the state of
the main program, even though the core registers have been preserved. The following para-
graphs deal with the precautions to take when using interrupts.

2.5.2.1 Saving the Y register

(This point is specific to the ST7.) If the service routine uses the Y register, one must re-
member that this register is not saved automatically by the interrupt granting mechanism.

34/315 172

2 - How does a typical microcontroller work?

Thus it is up to the programmer to save it, by pushing it to the stack at the beginning of the
service routine, and popping it before executing the IRET statement.

2.5.2.2 Managing the stack

This is just a reminder, since it applies anywhere in the program. The service routine must
track the usage it makes of the stack, so as to pop at the end as many bytes as it had pushed
at the beginning. This may look trivial, but if some pushes occur in some conditions and not
others (i.e. the service routine has conditional statements somewhere), the popping must
occur in exactly the reverse way, taking into account the same conditions as those that pro-
duced the pushing. This may not be very obvious to code.

2.5.2.3 Resetting the hardware interrupt request flags

In some peripherals, the hardware flag that produced the interrupt request is automatically
cleared on servicing the interrupt. In this case, no special care need be taken.

On the contrary, in some other peripherals (such as the timer), the interrupt request flag keeps
its state after the interrupt is granted. This flag must be cleared anywhere in the interrupt
service routine, but necessarily before the | bit of the Condition Code Register is cleared (on
execution of the IRET instruction). Otherwise, the interrupt service routine would be called
again immediately after executing the IRET instruction, and the core would loop indefinitely
through this interrupt service routine, thus blocking the main program.

How to reset the interrupt request flag is described as part of the description of each periph-
eral.

2.5.2.4 Making an interrupt service routine interruptible

On interrupt granting, the | bit of the Condition Code Register is set, to prevent the service rou-
tine being interrupted by incoming interrupt requests. Further interrupt requests will then suffer
from a delay before they are serviced. This delay is called «interrupt latency». Actually this
term includes the reaction time of the core itself, to which the time for the servicing in progress
must be added.

However, there are cases where it is necessary to allow an interrupt service routine to be itself
interrupted. This is the case if a service routine performs processing that takes a certain
amount of time, and another interrupt source requires that its request be processed immedi-
ately, i.e. the permitted latency is short.

The solution is then to allow the slow service routine to be interrupted. This may be done by re-
setting the | bit of the Condition Code Register. This must be done after the hardware interrupt
request flag that triggered the interrupt currently in progress is cleared, for the same reason as
explained above. Please note, however, that this must only be done when necessary, since
the size of the stack is often limited in small microcontrollers.

172 35/315

2 - How does a typical microcontroller work?

2.5.2.5 Data desynchronization and atomicity

This paragraph addresses the precautions that must be taken, in the main program or any
service routine that may be interrupted.

In many cases, data is organized in blocks in memory, that is, several bytes, successive or
not, make up a piece of data. Some coherence rules must be followed when using these data.
Failure to observe these rules may produce unexpected results and, very likely, an application
crash.

When no interrupts are used, the main program can easily follow these rules by taking care to
perform all data changes in the appropriate order and respecting the predefined relationships
between each of the bytes that constitute a piece of data.

When interrupts are used, respecting the coherence rules may become more complex. Actu-
ally, an interrupt is an asynchronous action that can occur at any time. Let us assume that the
main program is currently altering one piece of data that is made of several bytes. It first writes
some bytes, then more bytes until it is finished with a new data in memory.

If an interrupt occurs in the middle of the process of altering the data, the following risk may
appear. If the interrupt service routine uses the data that the main program is writing, the
service routine may get data that fail to follow the coherence rules, since not all bytes have
been updated yet. The service routine may then be misled by an incorrect value that it cannot
handle properly, or just interpret that data differently from what it was expected to mean if it
had been fully modified. This may have very serious consequences on the working of the ap-
plication. This circumstance is called «data desynchronization».

To avoid this, some precautions may be taken in cases where interrupt service routine may
find incoherent data. They all ensure that all the data will be updated at once, and never used
unless completely updated. This condition is called «atomicity», from a Greek root meaning
«that cannot be cut». To properly handle multi-byte variables that are shared by a main pro-
gram and an interrupt service routine, or by two interrupt service routines of which one may in-
terrupt the other, the handling must be made “atomic”.

4

36/315

2 - How does a typical microcontroller work?

The following example shows:
« What happens when the data are desynchronized.

Let us assume the main program wants to increment the word variable reg (16-bit register in
page zero), that currently contains 42FF hex. The following code will be used:

; word variable reg contains 42FF hex
; increment word variable reg by 1

inc reg+l ; add 1 to the |ow byte
; low byte is increnmented. reg
= 4200 hex
jrne endinc ; increment high byte if carry
endinc : ... ; here the program continues

; both bytes are increnmented. reg = 4300 hex

If an interrupt service routines uses the value of reg, and if the interrupt request occurs for ex-
ample at the first line of the code above, the interrupt service routine will see that reg is 4200
while it is actually either 42FF or 4300. This error may have serious consequences.

« How to make the handling atomic.
To avoid this situation, it is sufficient to mask out all the interrupts, by changing the code as fol-
lows:

; increment word variable X by 1

sim ; prevent interrupts from
occurring
inc reg+l ; add 1 to the |ow byte
jrne endinc ; increment high byte if carry
endi nc rim ; allowinterrupts to occur

; here the program continues

; both bytes are increnmented. reg = 4300 hex, now the interrupt can be
per f or med

All interrupt requests that occur between the SIM and the RIM instructions are delayed for the
duration of that piece of code. If this would cause an excessive latency for one particular inter-
rupt that does not use that data, it is possible to mask out the specific interrupt source whose
service routine actually uses this value.

This example mentions the case where the data is written by the main program, and read by
the interrupt service routine. Actually, the reverse case is also a source of problem: if the main
program reads the data, and the interrupt service routine writes it, the main program may start

172 371315

2 - How does a typical microcontroller work?

reading the first bytes of the data, then the interrupt occurs; on return, the remainder of the
data are read, but unfortunately there may not be coherence between the first byte that was
read before the interrupt and those read after it.

2.5.3 Conclusion: the benefits of interrupts

The interrupt system is a very appropriate means of processing events that have the following
features:

« They are triggered by a hardware signal coming from outside. Theses sighals are connected
to appropriate pins of the microcontroller; or they are the result of the working of internal
peripherals that reach a certain condition, for example the internal timer has overflowed.
Though the timer is built-in the same chip as the core, it is functionally considered external
to the core.

« They occur at their own time, and thus unexpectedly for the main program.

« They require a quick reaction from the core, either because they occur frequently or because
the status of the external device that requests the interrupt would not keep its meaning after
too long a delay.

« They do not require complex processing; typically, they require reading some data from
outside and storing it to memory, or transferring data from the memory to the external
circuitry.

4

38/315

2 - How does a typical microcontroller work?

2.6 AN APPLICATION USING INTERRUPTS: A MULTITASKING KERNEL

The conclusion in the previous paragraph states that interrupts are well-suited for a certain
class of events to be processed. However, there are other cases outside this category. Some
of them are better addressed by the concept of multitasking.

In many applications, several processings are required that do not match the specificity of the
interrupt-driven processes. For example:

« Two or more processes are continuously active, that each take long processing times.
» These processes are not (or not directly) started by external events.

« They do not require a quick reaction time.

In such cases, the interrupt concept is obviously inappropriate. Actually, these processes
seem to require each a core of their own. However, considerations of cost may not allow for
multiple microcontrollers on the same board. The concept of multitasking is the answer to this
requirement. It is a software solution that does not require extra components, and makes the
system believe the various tasks run on different cores, although it is simply the same core
that is shared between all the tasks at the expense of the computing power that is shared be-
tween this tasks, plus a certain waste produced by the specific mechanisms that provide for
the multitasking. This waste limits the frequency at which the tasks can be switched; if they are
switched too often, the proportion of the time taken to switch tasks becomes too large, and the
corresponding part of the microcontroller computing power is lost. The designer must check
whether the power remaining for each task is sufficient or not; if not, the type of microcontroller
is probably unsuitable for the project.

There are two kinds of multitasking, namely pre-emptive multitasking and non pre-emptive
multitasking. The second kind is also called cooperative multitasking.

2.6.1 Pre-emptive multitasking

Pre-emptive means that the computing power that is allocated to a task is withdrawn from it
without notice, that is, that particular task is stopped at an unexpected place by brute force.
Then, the power is allocated to another task, until it is stopped in turn, and so on for all the
tasks; then, the first task that is currently sleeping regains control and continues for some time.

The task switching is done under control of an interrupt triggered by a timer. This allows the
core time to be partitioned at will between the various tasks. The time for which each task is al-
lowed to run may be the same for all tasks; or it may be decided to allow more time for some
more important (or time-consuming) tasks, and less for others. In a word, the multitasking
kernel may fine-tune the resource sharing between the tasks.

The main drawback of this system is that since the tasks are interrupted at any place in the
code, many precautions must be taken to ensure the coherence of the data, just as explained
above about interrupts. In fact, if a task starts to write a piece of data and is put asleep in the

172 39/315

2 - How does a typical microcontroller work?

process of updating the data, and another task uses that data, there is a risk of desynchroni-
zation. The same type of precautions must be taken to ensure atomicity of data updates. The
same problem may also occur if more than one task handles control sequences for an external
device. If this external device needs a precise control sequence that must be completed be-
fore a new sequence is started, there is a risk that a task may lose control before the sequence
is complete and control may be transferred to a task that attempts to use the same device. The
attempt may then fail or interfere with the unfinished sequence of the previous task. Here
again, a protection mechanism is required.

In summary, the advantage of pre-emptive multitasking is that task switching is done automat-
ically and independently from the code of each task; the relative power attributed to each task
may be adjusted to fit the requirements of each task.

The drawback is the opposite of the advantage: since the task switching happens at any time
and any place in the code, the programmer must locate the critical areas of code where spe-
cial protection mechanisms must be included. This may be more difficult than it might appear,
for it is not always easy to find all the possible collisions and keep them from happening.

» ~
e SQ
/ N
// First task \
/ |
Time
An allotted time
is assigned
Fourth task to each task Second task
/
k\ ;
\\ //
\\\ A’//
Third task

Preemptive multitasking

02-preem

4

40/315

2 - How does atypical microcontroller work?

2.6.2 Cooperative multitasking

Cooperative multitasking draws its name from the fact that task switching is not spontaneous.
It only occurs when the task-switching function is called by the currently active task. This im-
plies two facts:

» Task switching occurs only when the code decides it. As a consequence, it is easy to avoid
data desynchronization and access collisions by placing the task switching calls at the
proper places.

« The partitioning of the core time between tasks cannot be set at will, since it is not possible
either to insert into the code as many calls to the switching function as necessary or to put
them at the right places to control the time intervals allocated to that task.

The reader can easily see that the strong and the weak points of one type of multitasking are
the opposite to those of the other system. This explains why both are used, the type being
chosen to best match the application’s requirements. In addition to theses features it is fair to
say that cooperative multitasking is easier to implement and less resource-consuming than its
competitor.

Next task \
(Yield) \\
* P e //’ * ‘l
Next task
(Yield)
1 4
s V
Next task
(Yield)
L] L+ | |
\\ //
. //

~——

Cooperative multitasking ; simplified example

02-coop

41/315

4

2 - How does a typical microcontroller work?

2.6.3 Multitasking kernels

2.6.3.1 Advantages of programming with a multitasking kernel

The multitasking kernel is the piece of code that controls the multitasking. The way it does it,
and the flexibility it offers may vary greatly from one kernel to the other. It is generally supplied
ready made, and the programmer has to give his program the appropriate architecture to get
the benefits of it.

Writing an application with multitasking in mind is easy and leads to a clear, organized struc-
ture. The work to do is divided in tasks, and these tasks are written separately as procedures.
They exchange data using either communication mechanisms built-in to the kernel, or
common data in memory, taking care to avoid collisions. The main difficulty is to identify what
atask actually is. For example, two processings that are always performed one after the other,
and always in the same order, constitute a single task. On the contrary, two processings that
either may or must be performed at the same time are two separate tasks.

The features of a kernel vary from product to product. One must first know which kernel is
being used, the type of multitasking (pre-emptive or cooperative), and the services provided
by the kernel. Some of these are discussed below.

2.6.3.2 The task declaration and allocation

The kernel must be aware of the existence of the tasks, their number and their start ad-
dresses. Some kernels expect this to be stated at compile time; in this case, the number of
tasks is known from the beginning of program execution and cannot change afterwards.

Some others allow tasks to be added (or created) while the program is running. This allows
tasks to be created when the need shows up, for example to process an incoming event and
then terminate. In this case, it is convenient to also have the ability to remove or Kill the task.
Again, there are two options: a task may terminate when it decides to do so (kill itself or “sui-
cide™); or it may be killed by any task, including itself.

2.6.3.3 Task sleeping and waking-up

A task may be alive but have nothing to do; in this case, to save computing power, it is wise to
completely stop allocating core time to it. The task is then asleep. This can be done by calling
a function often called Sleep, passing to it the identification of the task to be put asleep. A task
can put itself asleep if it is waiting for some event.

Obviously, it is necessary to have a means of waking-up a sleeping task. This cannot of
course be done by the sleeping task itself, and can only be done either by other tasks or by an
interrupt service routine. For example, let us consider a task that processes the keystrokes
generated by a keypad. The hardware of the keypad may generate an interrupt when a key is
pressed. This interrupt may wake-up the keypad task that reads the keycode and takes the
appropriate action. When this is done, the task may go asleep again. One might ask why it is

42/315 172

2 - How does a typical microcontroller work?

not simpler to perform the processing right in the interrupt service routine, instead of this ap-
parent complexity. Actually, the processing of the keystroke can take a long time, too long to
allow it to freeze the remainder of the application as happens when an interrupt is being serv-
iced.

Other services may be supplied by the multitasking kernel, coping with priorities, intertask
communication, etc.

2.6.3.4 Multitasking kernel overhead

The purpose of a multitasking kernel is to share the power of a single processor or core be-
tween several tasks. Obviously this sharing means less power for each task, except perhaps
if all tasks but one are asleep. However, even in that case, the task does not benefit from the
whole computing power, since some of the core power is drawn off by the kernel itself. In ad-
dition, it is equally obvious that the kernel is a piece of code that occupies a certain amount of
program memory as well as data memory. But overall, the main concern with memory require-
ments relates to the stack.

The stack is the place where the state of a program is continuously stored. This amount of
data is often referred to as the “context”. Each task has its own context, which consists of all
the return addresses of all nested procedures and functions; most compilers also store the
function arguments and local data in the stack. This can add up to a large amount of memory,
not to mention that some free space must remain in the stack to handle interrupts that may
themselves consume a certain amount of stack, in the same way as the main program.

This implies generally that the stack space must be very large, since the amount of data men-
tioned above must be multiplied by the number of tasks alive at the same time.

The ST7, being a small 8-bit core, provides for at most 256 bytes of stack. This allows for a
multitasking kernel with a limited number of tasks and services.

4

43/315

2 - How does atypical microcontroller work?

Common parts
of the program

pointer
Code of the
first task
Stack area
for task #1
< @ Stack area
Code of the (3 for task #2
second task [/

A\
A\

Code of the
last task

Interrupt vector
table

Program memory

®
®
®
®

Stack area
f for the last task

Stack RAM

Selection of the task : The stack pointer points to
the last data of the task to activate that is stored
in the stack.

Activation of the task : The popping of the data off
the stack restores the tasks as it was before being
unselected.

Deselection of the current task : The state of the pro-
gram is saved in the stack before it is deselected.

Selection of the following task : The stack pointer
points to the last data saved from the next tasks
to activate.

Working mechanism of a simplified multitasking kernel

44/315

02-task

4

3 - Programming a microcontroller

3 PROGRAMMING A MICROCONTROLLER

A microcontroller is basically a programmable component. This means that it can do almost
anything, when properly programmed.

In fact, the design of the electrical schematic of a microcontroller-based application raises few
guestions; the input and output pins of the microcontroller are simply connected to the binary
signals either produced or used by the external application. The designer only has to take care
to select the right pins, since some signals must be connected to special peripherals like the
Analog to Digital Converter, the Timer, etc.

Itis the program that configures the pins so that they have the correct electrical behaviour, and
that processes the data to produce the appropriate response to the input signals. Since the
board will be designed with as little electronic processing as possible, all the processing is
done by software.

This produces the flexibility that is the main feature of any programmed system: unless a hard-
ware problem arises, most of the fixes and changes done to a programmed system will be
done in software.

Programming the processor is thus the key activity of the designer, the one that will take the
largest part of his time. For this reason, the use of the right tool to program the application is
critical, since program design and testing time can vary greatly according to the tools and the
language chosen.

This chapter addresses the two main issues the programmer faces: selecting the appropriate
language for the best productivity, then selecting the appropriate software tools that will allow
not only to program in that language, but also to test the program written in that language. We
will learn that an investment made prior to starting the design can prove very efficient in terms
of development time, and therefore, pay for itself.

3.1 ASSEMBLY LANGUAGE

3.1.1 When to use assembly language

Assembly language is the native language of each microprocessor. It used to be the only way
of programming a small microcontroller until high-level language compilers were made avail-
able. Programming in assembler was a job that required a lot of care and very many lines of
source code relative to the size of the application. It was justified when program memory was
small and assembly language was the only way to optimize the code size. Nowadays, micro-
controllers, except for those at the lowest-end, can afford enough memory to cope with the
code expansion factor inherent in high-level languages. Thus, for reasons explained in the fol-
lowing paragraph, a high-level language is strongly recommended and using assembly lan-
guage should not be considered except when absolutely needed.

172 45/315

3 - Programming a microcontroller

There are, in almost all applications, parts of the code that still require assembly programming.
These parts are, most of the time, small but have an important impact on the program. Here
are a few such cases:

« The initialization part of the program. All high-level languages provide for initialization of the
core and the memory. However, the basic organisation of the memory (address of the ROM
and the RAM, reset and interrupt vectors) and a few other kinds of initialization are supplied
as an assembly-language template, that has to be adapted to suit the actual application.

« Some interrupt service routines that require very fast processing.

« Some repetitive functions that are frequently invoked and whose optimization in terms of
speed has an important impact on the performance of the whole program.

The third case implies that the programmer carefully reads the implementation chapter of his
compiler's manual. The way arguments and return values are passed back and forth are spe-
cific to each compiler. Failure to comply with these conventions will prevent the assembly
code from working.

3.1.2 Development process in assembly language

The development of a program consists of three main phases: analyzing, writing the code, de-
bugging. In other words, the successive phases can be described as follows:

« The first phase is when the programmer defines what the program should do. This is only
paperwork, even if it is done using a computer and a word processor or a spreadsheet. This
phase defines the main program blocks, the data inputs and outputs, the storage, and some
of the algorithms.

» The second phase is the translation of the first one into the chosen computer language. The
result of it is the source code and a few files that drive the various programming tools. The
tools used in this phase are the text editor, to type and amend the source code, and the
assembler and the linker to check its syntactic correctness. The Make utility is also a
convenient tool, that helps keeping the program up-to-date, when any of its parts have been
changed, by processing only the changed source files.

« The third phase consists of all that is needed to make the source code work. It involves
removing all programming errors, that is, the flaws in the first and second phases related to
logic, coordination, and data management. This third phase is by far the most difficult and
requires the most development time. The tools used, the Simulator and In-Circuit Emulator,
have to be very powerful because many errors are difficult to find.

When the program is fully functional, it is often stored in an EPROM that is either external, or
as in the ST7, internal to the microcontroller. This produces a prototype of the microcontroller
that must be extensively tested before being launched to production, especially if, for large

46/315 172

3 - Programming a microcontroller

guantity production, the microcontroller includes a masked ROM programmed by the device
manufacturer and that cannot be altered afterwards.

3.1.2.1 Assembly language

Assembly language is merely a set of mnemonics that duplicates each instruction in a more
legible way, to help writing the programs. Machine language is just a series of numbers that
obeys a certain code to indicate to the core which instruction to execute and which data to use.
Assembly language provides acronyms that are easier to remember. The following example
shows an excerpt from an assembly listing. The first two columns show numeric data, which
represent the addresses of the instructions and the machine-language code. The Source line
column shows the machine code in mnemonic language. It is obvious that, provided one has
learned that | d means the instruction Load, and that, of the two operands of this instruction,
the destination operand comes first, it is easy to understand the first lines of source code as
documented in the comment column:

Loc Obj . code Source line Coment

000000 AG6FF Id A #$FF ; load accurul ator with i nmedi ate
data FF (hex)

000002 AE64 Id X, #100 ; load X register with value 100

000004 F7 loop: Id (X)), A ; load location pointed to by X
with contents of A

000005 5A dec X ; decrenent X register

000006 26FC jrne | oop ; junp to label loop if X not equal
to zero

This short program is a loop that fills memory addresses 100 to 1 (decimal) inclusive with the
value FF hex.

Programming in assembly language involves using a text editor to write a text file that obeys
the syntax and conventions of the specific assembler that is to be used. It should be noted that
assembly language is not standardized in any way, for two reasons:

« The instruction set changes from one processor to another

» For a specific processor or microcontroller, software tool sets from different suppliers each
have their own syntax, although two source files written for two different tool sets may seem
very close.

Thus, to write an assembly language source file, the programmer must first know which proc-
essor or microcontroller will be chosen for his project, then which software tool set he will use.
Then, he has to learn both the characteristics of the processor’s instruction set (instruction
types, addressing modes, etc.) and the specific syntax of the assembler he will use.

47/315

4

3 - Programming a microcontroller

Then, once he masters both, he may start to write his source file. Obviously, if later he has to
do the same job with a different processor, the source file will be of no use in the future project.

3.1.2.2 Assembler

The word assembler has usually two meanings. Properly used, it is a program that translates
a text file, written according certain rules, into a binary file that contains a series of instructions
specific to a microprocessor or a microcontroller. However, the word Assembler is often im-
properly used instead of “assembly language”, for example in the sentence: “this program is
written in assembler”. This paragraph introduces the translating tool, or “assembler”.

The assembler is a program that runs on whatever computer is used by the programmer for
his regular job. It takes the source file, as explained above, as an input; then, after translation,
it outputs, depending on the user-specifed options, any of the following files:

« The obiject file, containing binary data intended for further processing. It can not be read by
man.

« The listing file, is a report containing both the original source code and its numeric
translation, presented in a tabulated manner. It can be read by man and used for reference
purposes.

=« In some cases, other files like lists of variables and labels, or additional data. This varies
from one assembler to another.

If the assembler encounters an error in the syntax of the source file, or some ambiguity or lack
of information preventing it from completely processing the source file, it generates an error
report, this may be output in the listing, in a separate file, or directly on the computer console.

The error messages tell where the error is located, and, as much as possible, the cause of the
error, as in the following example:

TRI AL. ASM 6): ERROR not a ST7 instruction or directive

48/315

4

3 - Programming a microcontroller

Here again, the format of all the above mentioned files is chosen by the assembler's manufac-

turer, and differs from one to another.
<

e ————
O ———

File.obj

—— / -
Relocatable object file

— >

\\/
File.Ist

~—~

Listing file
Assembler invocation

File.asm Assembler

Source file

03-asm
3.1.2.3 Linker

If the whole application program is small, it is easy to put the source text into a single file. The
assembler then produces an object file that contains the whole machine code ready for use.
This is called absolute assembling.

However, there are very few applications so simple that their source text occupies only a few
pages. In most cases, the total source text amounts to thousands of lines that may represent
hundreds of pages. In such a case, it would be impractical to edit a single large source file. Not
only would the assembly process take a long time but this time would be spent whenever a
change was made to the text.

It would be better to divide the whole text into several files, and to assemble them separately.
This way, a change would affect only one of the files, which can be quickly re-assembled.

Working this way requires additional features:

« A means of telling that a particular source file references a data variable or a label that is
defined in another source file, in order to prevent the assembler from merely stopping and
issuing an error message saying that something referred to has not been found defined in
the same source file.

« A tool to glue all the generated object files into a single object file, ready for use.

The first issue is addressed by additional syntax features that typically provide declarative
statements such as “External” and “Public”. The “External” statement declares that a certain
label referenced in the source file will intentionally not be found there, since it comes from an-
other source file. The “Public” statement declares that a label (or a variable) defined in this file
will be referenced by another source file.

172 49/315

3 - Programming a microcontroller

The tool that glues together all the object files, each the result of assembling the source files,
is called the Linker.

The linker performs the following tasks:

« It takes all the object files, and merges them into a single object file by concatenating them
one after the other.

» It corrects the address values in all the instruction operands that refer to objects whose
location in memory has been set or altered by the concatenation.

To do this, in addition to the set of object files, the linker requires a control file that tells it the
list of the object files to link together, the order in which they must be put, and the absolute ad-
dresses at which the result will be installed in the microcontroller's memory.

This may look complex; but actually, it make processing large programs easier and faster.
When a change has to be made to a particular source file, only this file must be edited. Then
only this one must be re-assembled, which saves time; then, all the object files must be linked
again. The linking process is fast, compared to assembly, since the files contain binary data
and their format is optimized to make the linker’s job easier.

If a hardware change is made to the board that changes the address of some memory or a pe-
ripheral, it may be only necessary to alter the linker control file and link the program again.

Once the program is linked, the resulting object file contains the whole program. This file is
said to be an absolute object file, meaning that all addresses are defined; as distinct from ob-
ject files before the link process that are said to be relocatable, i.e. their addresses can be
changed later.

The absolute object file can be used either to be downloaded into an emulator to check and
debug the program; or into an EPROM programmer to program the chip that will hold the
code.

As for the assembler, the linker is built to process relocatable files produced by the assembler
frim the same tool set. It is usually not possible to mix the tools, like assembling with the as-
sembler from supplier A then linking with the linker from supplier B.

4

50/315

3 - Programming a microcontroller

@ File.cod
File1.0bj Filo abs
v\ Absolute object file
———
File2.obj —P» Linker File.sym
—
Q Symbol table
File3.obj /1
File.map
—
Relocatable object files Map file

Linker invocation

03-link

3.1.2.4 The project builder/make utility

In the process introduced above, that relies on splitting-up the processing to save time, it is im-
portant to keep track of which sources have been altered, only re-assemble these and not the
others and then link all the object files. Forgetting to do this may waste a lot of time. For ex-
ample, after making a correction, if a program still shows the same incorrect behavior as pre-
viously, one is tempted to suspect another part of the code. Trying to identify which other part
of the program produced the problem will be a useless effort, if the real reason was that the file
containing the change had not been re-assembled and linked.

Thus, a tool that can guarantee that the programmer will never forget to reprocess his files is
an invaluable help. This tool is called Maker or Make utility.

The maker is a tool that works under the control of a file that gives the names of the source
files, the name of the output object file, the names of the tools needed to process a file to an-
other file (assembler, linker), and the dependency relationships between the files.

For example, the dependency relationships specify that the final object file is produced by ap-
plying the linker tool to the files named in the linker control file; that each of the individual ob-
ject files is produced by applying the assembler tool to the corresponding source file, etc.

The maker works as follows:

172 51/315

3 - Programming a microcontroller

Each time a file has a successor with a date older than its predecessor, the corresponding tool
is run to update the successor. This is done in an orderly fashion, from the top of the hierarchy
(the source files) to the bottom (the absolute object file). Then, at a given time, all those source
files that have been modified since the last run of the maker are reprocessed, and only those
files. This both guarantees that no file will be forgotten in the updating process (provided that
the control file correctly describes all the dependencies), and that only the necessary
processing will be done, to save time.

The maker is an essential component of any set of programming tools. But unlike what was
said about matching the same brand of assembler and linker, any maker may be used in a
project, since all work the same way. The control file, in fact, uses a different syntax; but this
does not affect the overall result. So, if you buy a new set of software tools for a microcon-
troller, you can still keep the maker you are accustomed to.

3.1.2.5 EPROM burners

EPROM burners, or programmers, are tools that have a hardware interface with a zero-inser-
tion force socket that matches the characteristics of the specific EPROM chip or microcon-
troller with built-in EPROM. They transfer the contents of an absolute object file into the phys-
ical programmable memory. Burner software usually accepts several input formats. This gives
some flexibility to the user and can allow using a burner from one manufacturer with software
tools from another. Apart from accepting absolute object files generated by the linker in the
same tool set, burners also frequently accept one or other of the more widely-used printable
hexadecimal formats.

To use a hexadecimal format, either the linker must be able to output an absolute file in that
format, or a code converter must be used that takes an absolute object file as an input, and
produces a hexadecimal file as an output. Such converters are often supplied with in the soft-
ware tool set. The use of these converters may save you the price of a new burner if you al-
ready own one for the right type of programmable component.

4

52/315

3 - Programming a microcontroller

File.cod Executable file . Eprom
or f tt rles19 rogrammer
File.abs ormatter prog
Absolute object file Memory content
image file

microcontroller ! !
with built-in EPROM || ”

Programming a microcontroller

03-prom

3.1.2.6 Simulators

A simulator is a tool that pretends to run an absolute executable program. Like the other tools,
it runs on the programmer’s own PC. It interprets the machine code that is specific to the
chosen processor or microcontroller, and outputs the results on the PC screen, without the
need for actually building the application hardware or even obtaining a sample of the target mi-
crocontroller.

The simulator allows the program to be run step-by-step (instruction-by-instruction), allowing
the programmer to watch the values changing in any register or memory location that result
from the execution of the instructions. It also makes it possible to put breakpoints in the pro-
gram, which are traps that stop the execution it reaches the address of the instruction where
the breakpoint was put. This can be used to run some parts at full speed and then stop on
reaching parts that are not yet fully functional, to avoid walking step-by-step through a lot of in-
structions that have already proven to be correct.

The progress of the execution can be followed on the screen in a special window that shows
the source file, and a cursor indicating the next line to be executed. At the same time, other
windows may display items like a range of data memory, the registers, the values of selected
data in a selected format (byte, word, character string...).

The user is even allowed to alter the values of the registers of the core, of the input-outputs, or
in memory, for example to correct a programming mistake, and continue the execution with

172 53/315

3 - Programming a microcontroller

the correct values, so as to avoid having to edit and make the program each time an error is
found.

In fact, simulation is limited to pieces of code that do not access the input-outputs, since this
would require a complex program at simulator level to also simulate the behaviour of the ex-
ternal world that the application is supposed to interact with. But still, most simulators can cor-
rectly emulate the operation of the built-in peripherals, in particular the programmable timers,
and can trigger interrupts whose servicing can be monitored on screen.

Simulation, though limited in its possibilities, has the advantage that it allows to you start de-
bugging the application program before the hardware becomes available,. It can speed up the
debugging process by ensuring that some pieces of code are already functional when the time
comes to test and debug the hardware.

3.1.2.7 In-circuit emulators

In-circuit emulators are complex and expensive instruments that, for the application hardware,
behave exactly like the intended microcontroller would do. From the user’s point of view, an
emulator is an inspection device that shows the calculations in progress in the application
hardware and the state of the input-outputs, as well as the contents of the memory at any time.
It is the electronic equivalent of a spy in the real world: an intermediate entity that, while
playing its role correctly in the real world (the application hardware), at the same time informs
an external intelligence (the programmer) of everything that happens in that world.

An emulator offers exactly the same features as a simulator does, in terms of running an ap-
plication either at full speed or step-by-step, setting breakpoints, examining registers, memory
and input-outputs. The major difference is that while running the program, the microcontroller
actually interacts with the external world, producing actions on the product to be tested, and
acquiring real data that it can process in a realistic way.

The simulator and the emulator are so close together in functionality that the manufacturer en-
deavours to provide the same user interface, i.e. the same presentation on the screen and the
same controls through the keyboard and the mouse for both tools, so that the user has very
little additional learning to do when switching from the simulator to the emulator.

One last feature that is found on top-range emulators (the very expensive ones) is so-called
real-time tracing. This is a hardware system that records all events on the buses (address,
control and data) and attaches a time tag to them. The memory capacity is at least one thou-
sand events, and can exceed ten thousand in the most expensive emulators. This allows you
to run the program at full speed, record what is going on, then quietly analyze the record to see
what happened. In real-time applications, this may be the only way to understand what hap-
pens and the problems that occur, as most of these applications do not permit step-by-step
debugging, since the processor must follow the activities of the external world in real-time. In

54/315 172

3 - Programming a microcontroller

this type of situation, its a difficult task for the programmer to complete the debugging of the
application so that it can be validated.

3.2 C LANGUAGE
3.2.1 Why use C?

Many high-level language exist; some have been written specifically for a family of microcon-
trollers, while others are widely-used languages from the computer world that have been
adapted to suit the needs of microcontrollers. Today, one language that prevails in microcon-
troller programming, that is C language.

The primary advantage of C is the ability to write very simple statements that actually involve
hundreds of machine instructions. As an example, the small sample of assembly source code
given in the paragraph about the assembly language has five lines. It could be replaced by the
following line:

menmset ((void*)1, OxFF, 100) ;
This example is not very impressive. However, a C-language statement like:

int UnitPrice, Quantity, Cost ;
fl oat Di scount ;

void main ()

{
Cost = (float)(UnitPrice * Quantity) * (1 - Discount) ;
}

is easy to read and translates into about eighty instructions, without taking into account the
subroutines that perform multiplication and subtraction. We can see at a glance the produc-
tivity gain we can expect from a high-level language.

C language was initially designed as the programming language that came along with the
UNIX operating system. The power and relative simplicity of it made it spread to many dif-
ferent cores, until it became the standard programming language for microcontrollers.

The advantage of C is that it is a language that, though being very powerful, remains very
close to the hardware. This is a key feature for microcontroller applications, especially where
parts of the code are written in assembler. Being close to the hardware means the ability for
the compiler to produce very optimized code by choosing the best instructions for a given job,
when several instructions are available. In particular, setting a port pin high or low must not

172 55/315

3 - Programming a microcontroller

take a long string of instructions, since the designer of the microcontroller has worked hard to
provide efficient instructions to do the job.

C is a structured language, meaning that code can easily be divided into blocks that can
readily become functions, or the body of looping or conditional statements, keeping the source
code legible if the writer has taken some precautions in the layout of the source text and pro-
vided useful comments.

Saying that C is a powerful language means that a short statement, taking only a single line of
source text, may perform complex operations, involving hundreds or thousands of basic in-
structions. Not only does this conciseness help keep the source text easy to read, but also it
guarantees the correct execution of the code it hides, since this code has already been exten-
sively tested by the manufacturer of the compiler.

The availability of C on many computers makes it possible for you write and test some parts of
the program directly on your PC. Most of the time, if the language constraints have been ad-
hered to, a piece of code that works on a PC will work straight off on the target microcontroller.
This is a recommended method of development, since it allows you to start writing and testing
the program before the hardware of the application has actually been built. The less debug-
ging is done directly on the hardware, the quicker the development takes.

The portability of C is also a guarantee for the future. The microcomputer world evolves so
fast, that it is not unusal to have to redesign an existing application for another microcontroller,
or to reuse parts of the code of a previous application for a future one. In such an event, the C
language allows you to reuse code with virtually no change from project to project. This fea-
ture alone, pays back the moderate investment the C compiler represents.

To remove any doubts you might have about the sincerity of these arguments and since
nothing is perfect, the drawbacks of C are be listed here.

The first drawback is that C was originally designed for mainframe computers. In these ma-
chines, there is only one memory space, that contains both code and data. In the ST7, there
is also a single memory space that contains code, data and input-outputs, but the code re-
sides in ROM and data in RAM. Standard C has no provision for specifying the address
ranges of these parts of memory.

The interrupt service routines may, and if possible, should be written in C, like any other part
of the code. However, standard C does not know anything about interrupts.

Inputs and outputs are handled in a mainframe through the operating system. Thus standard
C has no special provision for handling them.

These drawbacks would totally prevent you from using C for microcontroller appilactions if the
various implementations of C available did not provide solutions for these cases. These solu-
tions vary from implementation to implementation, and constitute the main cause of non-port-

56/315 172

3 - Programming a microcontroller

ability of programs to another machine. You will have to take account of this, especially when
testing the code on your PC first as suggested above. This can in most cases be solved by a
declaration file that is included in the project and that exists in two versions, or uses condi-
tional compilation, to fill the gap between two different dialects of C. This point is actually the
most tricky and that which requires most care from the programmer.

Having read these pros and cons, you have hopefully concluded that C is the language of
choice for today if you want to save time and keep the fruit of your efforts over several years.
We have kept the last argument for the conclusion, that will, undoubtedly, be decisive in the
years to come.

The pressure for quality products is growing more every day. In some types of application, like
medical apparatus and life-sustaining devices, equipment reliability has to be certified. More
and more products, through ISO9000 standards or the constraints of product liability must be
ready for quality assurance certification. Software quality assurance is a very difficult subject;
it is not the purpose of this book to enter this field. But one thing is sure, only properly docu-
mented and structured software is likely to meet these quality assurance requirements.

3.2.2 Tools used with C language

Just like the assembler translates mnemonic language into machine code, the C compiler is a
tool that translates a C-language source file into a relocatable object file. Here also, the appli-
cation will be divided into files, also called modules, that are compiled separately. The whole
group of object files is then linked to produce an absolute object file, the same as with assem-
bler-generated object files. Actually, there is virtually no difference between an assembler-
generated object file and one generated by a C compiler. This means that some modules may
be written in C, and some in assembler; you can select the language according to the advan-
tages and drawbacks of each language for each part of the application, as explained earlier.

57/315

4

3 - Programming a microcontroller

v: _
C . .
File.c —> File.obj

compiler
|

C source file Relocatable object file

— —

——

(on some
File.asm

compilers)
S

Assembler source file

C compiler invocation

03-comp

3.2.3 Debugging in C

Debugging in C is done the same way as explained for assembly language. However, the sim-
ulator and debugger screens designed for high-level languages can also show the progress of
the execution directly in the C-language source text, while another window shows the corre-
sponding assembly language statements. A cursor in each window keep the correspondence
between both.

Another powerful feature offered by high-level language debuggers is the capability of dis-
playing the data of selected variables according to their type, even for complex types like
structures, arrays, strings, etc. This dramatically improves the productivity of the debugging
phase, in the same proportion as choosing a high-level language does, in terms of shrinking
the source code.

Thus the advantage of high-level languages is twofold: it reduces both the programming time
and the debugging time. This is an invaluable benefit, as the resource that is probably the
scarcest nowadays is time, even more than money. However, you are advised to check
whether of the programming tools you selected fully support C language from one end to the
other; just to mention a few essentials:

« A text-editor that provides features that are useful in C language, like auto-indenting,
bracketed block selection, syntax highlighting, and so on;

« A compiler, an assembler and a linker that are really suited to working with the selected
microcontroller, offering flexible addressable space allocation, efficient access to the ports,

58/315 172

3 - Programming a microcontroller

easy interrupt declaration and servicing in both assember and C language; efficient
optimization that may be switched off at critical places;

« A simulator and a debugger that properly display the C source text, allowing you to easily
change the values of variables or even code in memory to make patches, and that correctly
synchronizes the timers during step-by-step execution.

These are just a few of the features that may make the difference between apparently equiv-
alent competing products.

4

59/315

3 - Programming a microcontroller

3.3 DEVELOPMENT CHAIN SUMMARY

The development chain discussed above can be understood more clearly using a diagram.
The diagram below shows the various files involved in the development process as cylinders;
the translators used to change one file type into another are shown as rectangles.

Relocatable
C source files object files

Main
program

Compiling, assembling and
linking instructions can be
written in a make utility file

(1 (1

include files O
~—— To the EPROM
programmer
C module— » —» or the debugger
#1 Absolute | — ¢, simulation
\ — > object file or in-circuit
include files / C combiler > emulation
v
Assembler
source files Assembler
Assemble || (1) Linker

module
#1

parameter file

(1) Depending on the
development tools chain,
this file which contains

the memory map of the
project, can be a source
file instead of a parameter
file for the linker

A

Assembler
module
#2

afu)

\ Linker

Typical software development tool chain

03-tchai

4

60/315

3 - Programming a microcontroller

3.4 APPLICATION BUILDERS

An application builder is a graphical language that allows you to define the function of the pro-
gram by manipulating icons on a computer screen. Each icon represents a standard function,
like addition, integration, comparison, etc. Each icon has inputs and outputs, and by drawing
lines on the screen between the output of one icon and the input of another, you connect these
icons, that is, feed one program block with the output of the previous program block. This kind
of programming tool is becoming popular in laboratory and plant automation since it allows
you to build a complete application without leaving the block diagram conceptual level. This
makes it a quick and easy-to-use programming tool for non-programmers.

An application builder for the ST6 and the ST7, the STRealizer, allows you to use graphical
input techniques and build programs based on functional block diagrams. Version 2.2 of the
STRealizer is available on the ST7 CD-ROM.

3.5 FUZZY-LOGIC COMPILERS

Fuzzy logic is a mathematical theory that has been applied to cope with problems that are at
the border between logical and analog computation. It has lead to many articles and books to
explain both its basic theory and various methods of implementing it using microprocessors.
Although it is a very attractive theory, there is no evidence so far of a typical application do-
main, though quite a few claims have been made about robots, washing machines and
vacuum cleaners, that have been said to be able to adapt their operation to the job they have
to do. One example was a washing machine able to determine the proper amount of water
needed for a certain weight of clothes--without using a scale to measure the weight.

Several fuzzy-logic compilers are available today, in particular one for the ST6 family, how-
ever there is none yet for the ST7.

4

61/315

4 - Architecture of the ST7 core

4 ARCHITECTURE OF THE ST7 CORE

4.1 POSITION OF THE ST7 WITHIN THE ST MCU FAMILY

The STMicroelectronics range of microcontrollers is very wide, from proprietary architectures
like ST6 to ST10 to second-source products like microprocessors for PCs and Digital Signal
Processors.

The proprietary range can be summarized as follows:

Type | Word size Main features Typical applications

Very low power consumption, 1.2 to 8
KB ROM, Appliances, home automation (suitable

ST6 8 bits)) . .
timer, ADC, watchdog timer and more | for direct power line supply)
depending on the subtype.
Industry-standard instruction set, 256 to

ST7 8 bits 3K bytes RAM, 4 to 60 KB ROM, ADC, | TV remote control, car radio control,

SPI, 16-bit timer, and more depending | RDS decoder, etc.
on the subtype.

250 ns instructions (on a 16-bit word),
many internal registers, powerful ad-
dressing modes, interrupt priority con-
ST9 8/16 bits | troller, DMA controller, plus a whole
range of peripherals capable of complex
processing. 16 to 128 KB ROM, more
than 256 bytes RAM.

Automotive body applications and car
radio.

100 ns instructions (on a 16-bitword), 72 | Engine management systems, air bags,
ST10 16 bits KB Flash EPROM, 10+ KB RAM, ADC, | etc.
16-bit timer, USART, and more.

As the table shows, the ST7 is positioned towards the low-end. It provides an economical
trade-off between speed and price and is suitable where moderate computational power is
needed together with a low-consumption device, like in TV remote control transmitters.

Alhough it is a low-end product, because the ST7 combines the world’s best-selling 8-bit in-
struction set with a host of added functions from a range of smart peripheral blocks, it is re-
markably versatile for a microcontroller of its class. It has a wide choice of versions in order to
minimize the component count of each specific application.

62/315

4

4 - Architecture of the ST7 core

4.2 ST7 CORE

The ST7 core uses an extended version of an industry-standard instruction set. This set is
both exhaustive (almost all instructions are available, with the exception of division) and fairly
orthogonal (the instructions allow for most addressing modes). This makes the instruction set
of the ST7 both clear and easy to use when programming in assembler.

For those of you already familiar with the standard instruction set, the extension resides
mainly in the following two points:

« A second index register, Y, that can be used anywhere the X register is used (like indexed
addressing), or like X, moved to any other register;

» The indirect addressing modes, that come in addition to the direct, long, and indexed modes.

The core as described here is limited to the processing unit, excluding the reset and interrupt
circuitry. They will be described in the chapter dealing with the peripherals. The block diagram
of the core and the addressing space is shown below:

4

63/315

4 - Architecture of the ST7 core

CPU Control

Core
Accumulator
Reset Arithmetic | |)
and logic n —
unit Y index register
M’) /\ X iﬁdex'regiéter
Stack boint'er
Interrupt . . .
requests from 'Program counter
peripherals A ! . L .
" Condition code r'egis"(er '

Page 0
8 lines wide)
Data Memory
from 0000h to 017Fh:
Peripheral registers
User RAM ®
Stack RAM 3
: . ©
S (16 lines wide) o
0
[%)]
0
o
S B (8 lines wide)
< = =
Program Memory

]] from EOOOh to FFFFh
(16 lines wide) user ROM
Interrupt & reset vectors

The core and the addressing space of the ST72251

04-core

64/315

4

4 - Architecture of the ST7 core

4.2.1 Addressing space

The ST7, as said earlier, is based on a Von Neumann architecture. This means that there is
only one addressing space in which the program, the data and the input-output peripherals are
mapped. The advantages are:

» Access to any byte (of program, of data or of input-output) using the same instructions
« No special instructions to access constant data in program memory or input-output
« Ease of programming, due to simplification resulting from the first two advantages

As a typical 8-bit processor, the address bus of the ST7 is 16 bits wide, and thus able to ad-
dress 65,536 bytes. This is enough for most applications within the range of the ST7.

To improve the efficiency of the code, the addressable space is actually divided in two parts:

The addresses ranging from 0 to 255 (0FFh) are said to belong to page zero. An 8-bit address
is enough to reach them.

The remainder, from 256 (80h) to 65,535 (OFFFFh), is accessed using 16-bit addresses.

The use of page zero can greatly improve the speed of the code if the most frequently ac-
cessed data are located in page zero. Also, in the ST7, all input-outputs are always located in
page zero.

4.2.2 Internal registers

The core uses only six registers: A, X, Y, PC, SP and CC.

4.2.2.1 Accumulator (A)

The accumulator is the register where the arithmetic and logic operations are performed. To
perform a two-operand operation between two values stored in memory, one of the values
must first be moved to the accumulator, since the instruction code provides only one address.
It must be moved back to memory when the operation is done.

The instructions that require only one operand, like | NCrement, DECrement, ComPLement,
CompPare, Test for Negative or zZero, Bit ComPare, and so on, can act on the accumulator, or di-
rectly on the data in memory, if so desired.

4.2.2.2 Condition Code register (CC)

This register holds several bits that are actually more or less independent from one another.
These bits are set or reset (or left unchanged) after the execution of certain instructions. For
example, if an addition produces a null result, the z flag is set; otherwise, it is reset. If the result
is negative, the N flag is set, otherwise it is reset and so on. The CC register remembers the
conditions after each instruction, and these conditions are used by the conditional jump in-
structions. The CCis laid out as follows:

172 65/315

4 - Architecture of the ST7 core

1T(1|1|H|I |[N|Z]|C

Condition code register

04-ccreg

The leftmost three bits, indicated as ones, are not used. When read, they yield ones.

C bit

The Chbit is the carry that is generated by an addition or subtraction. When adding 16-bit num-
bers, for example, we first add the two least-significant bytes together, then the most signifi-
cant ones. If the result of the first addition yields a result greater than 255, it cannot fit in a byte.
For example, adding 1200 and 6230 in decimal yields 7430. In hexadecimal notation, this is:

4B0 + 1856 = 1D06

Adding these numbers is performed in two steps. First, B0 is added to 56, yielding 06 with a
carry of one. Then, 4 is added to 18, yielding 1C, and with the addition of the carry we get 1D.

The role of the C bit of the Condition Code register is to remember that carry between the two
additions. The first addition is performed using the ADD instruction, and the second must use
the ADC instruction (add with carry) that increments the result of the addition if the Cbit is a one.

The instructions that affect the carry bit are mainly addition and subtraction, the shift and ro-
tate instructions, and of course instructions that directly affect the CCregister.

The instructions that use the Cbit are ADC and SBC (subtract with carry), the rotate instructions,
and some conditional jump instructions.
Z bit

This bit is set to one to reflect the fact that a value is zero, whenever the accumulator is loaded
or after any arithmetic or logical operation. If the value is not zero, the z bit is cleared. The in-
structions that affect or use the z bit are the same as those for the C bit.

N bit

This bit is set to one to reflect the fact that a value is negative, in two’s complement notation.
A negative number has its most significant bit set to one; so the N bit reflects the most signifi-
cant bit whenever the accumulator is loaded or after any arithmetic or logical operation. If the
value is positive, the bit Nis cleared. The value zero is considered positive. The instructions
that affect or use the N bit are the same as those for the C bit.

| bit

This bit is the global interrupt mask. When this bit is set, all interrupts are ignored. However, if
an interrupt request is present, clearing the I bit immediately triggers an interrupt.

66/315 172

4 - Architecture of the ST7 core

H bit
This bit is a similar to the Cbit, since it is set when a carry occurs. This time, it is the carry be-
tween the two nibbles of a byte. A byte is composed of two four-bit groups called nibbles. The

H bit is set whenever an arithmetic instruction produces a carry between bit 3 and bit 4 of the
accumulator.

This half-carry is used when performing decimal arithmetic. In this case, each nibble contains
a BCD digit, so that the bit pattern for 23 in decimal is 00100011, and reads also 23 in hexa-
decimal. This kind of coding is called Packed BCD. To correctly add two packed BCD num-
bers, some correction is necessary, which is made possible by the H bit. Several cases must
then be considered:

» First case: adding the numbers 23 and 52.
Once coded in packed BCD, they read 23h and 52h. If we add these numbers, we expect to
find 75. Actually, if we perform the ADD instructions on these numbers, we find 75h, as the
rules for adding two binary numbers imply. We directly get the right answer in packed BCD.
No half-carry has occurred.

» Second case: adding the numbers 23 and 59.
Once coded in packed BCD, they read 23h and 59h. If we add these numbers, we expect to
find 82. But if we perform the ADD instructions on these numbers, we find 7Ch, as the rules
for adding two binary numbers imply. This is because 3 + 9 = Cin hexadecimal. Cis not an
acceptable digitin BCD. However, itis easy to see that if we add 6 to the total (the difference
between 15 and 9), we get 82h, which is also the right answer in packed BCD. No half-carry
has occurred.

« Third case: adding 28 and 59.
We expect to get 87. Once added as above, we get 81h. This time, a half-carry occurred.
This indicates that we must add 6 to the result, giving 87h, which is the right answer.

To summarize, if the addition of two packed BCD numbers gives no half-carry and if the least-
significant nibble is less than 0Ah, the result is correct as it is. Otherwise, adding 6 will correct
the result.

The same thing applies for the most-significant nibble: if it has a value less than A, and there
is no carry, the result is correct; otherwise, adding 60h will correct the result.

Complicated as it might seem, the handling of packed BCD avoids having to convert numbers
back and forth between binary and decimal, although this may be easier in some cases.

4.2.2.3 Index registers (X and Y)

The index registers are meant to hold addresses, unlike the accumulator which is meant to
hold data. The value stored in X or Y is involved in the effective address calculation in some ad-
dressing modes. The availability of two index registers allows for calculating and managing

172 67/315

4 - Architecture of the ST7 core

two addresses as is needed in a memory-to-memory data move, with or without alteration in
between. However, these registers may also be used to store temporary data.

4.2.2.4 Program Counter (PC)

The program counter is the register that controls the sequencing of the instructions. The pro-
gram is written as a series of instructions, and these instructions are stored in consecutive
cells of the program memory. The Program Counter contains the address of the next instruc-
tion to be executed. This instruction is read from memory, then executed, and the PCis incre-
mented so that it then points to the next instruction in the sequence.

It is possible to alter the contents of the PC while the program is executing. In this case, the
next instruction will not necessarily be the next in the sequence, but an instruction somewhere
else in memory. Changing the course of the program is called jumping or branching.

Jump and Branch are the names of instructions that actually change the contents of the PC by
setting it to a value specified with the instruction. Jumps may also be conditional, that is, the
jump instruction effectively alters the contents of the PC if certain conditions are met. These
conditions can be the values of one or more bits of the Condition Code Register. For example,
the JREQinstruction changes the PCto the specified address if the Z bit of the CCregister is set,
otherwise the program continues in sequence.

Another kind of jump is the Subroutine Call, that first saves the address of the next instruction
in sequence (the one that follows the jump instruction) before jumping. A special instruction,
RETurn, retrieves this address and puts it into the PC. The next instruction executed is once
again the one that follows the CALL instruction.

4.2.2.5 Stack Pointer (SP)

The stack is the part of the read-write memory where return addresses are stored by the CALL
instructions and retrieved by the RET instruction.

68/315

4

4 - Architecture of the ST7 core

0140h Top of the stack A
p” 64 bytes of RAM L
017Fh Bottom of the stack (Reset value)

Stack organization of the ST72251

04-stack

When a value is stored using the stack pointer, the stack is decremented, so that the next
value stored will be placed at the address just below the previous one. This process of storing
and decrementing the pointer is called Pushing, and can be done either by a PUSH instruction
or by a CALL instruction that pushes the return address.

When the data is read back from the stack, the SP is incremented so that the next data re-
trieved will be the one situated at the address above the previous value retrieved. This is
called popping the data, and can be done using the PCP instruction or the RET instruction that
pops one address off the stack and jumps to that address.

If several addresses are stored successively because several CALLS were executed succes-
sively, the first RET instruction will pop the last address pushed, the second RET will pop the
one-but-last address, and so on. This feature provides for the nesting of subroutines, where
the last called is the first exited.

Interrupts, being a kind of subroutine call, also use the stack to store the context of the inter-
rupted process. Since interrupts occur at unexpected times, all the core registers must be
saved on entering the interrupt service routine. This is performed automatically by the interrupt
mechanism that pushes in order PC, X, Aand CC. The return from interrupt must thus use a dif-
ferent instruction from the return from subroutine, where only the PC was saved. The instruc-
tion | RET is supplied for this purpose, and restores the initial values of these registers. It
should be noted that the Y index register is not saved automatically. The industry-standard

172 69/315

4 - Architecture of the ST7 core

core has no Y index register, so its instruction set does not take the Y index register into ac-
count. If needed, it must be pushed on entering the interrupt service routine using a PUSH Y in-
struction, and restored by putting a POP Y just before the | RET.

The stack pointer must be initialized at the start of the execution. The RSP instruction resets it
to its bottom value, that differs from one variant of the ST7 to another depending on the
number of registers provided at the beginning of page zero.

The value of the SP may be transferred to A, X or Y or set from these registers. This allows you
to access the data in the stack or to save the stack pointer. This is useful for example for
building multitasking kernels, as mentioned in Chapter 2 and illustrated in Chapter 7.

The PUSH and PCP instructions mentioned earlier in this paragraph may be used to temporarily
store a register that has to be reused later. This is very useful as the core has not many in-
ternal registers.

4.3 INSTRUCTION SET AND ADDRESSING MODES

4.3.1 A word about mnemonic language

In the text above, we have given examples that use the mnemonic language. For those of you
that are not familiar with the mnemonic language of the ST7, here is a refresher. More details
will be given in the paragraph that discusses addressing modes and in the chapter about the
assembler.

The mnemonic language spans the gap between machines whose language is exclusively nu-
meric, and humans who are more comfortable with letters and words. Unlike high-level lan-
guages that provide for complex concepts that must be translated into machine language
using complex constructs, mnemonic language is easily translated into machine language
since there is almost a word-for-word correspondence between numeric machine language
and verbal mnemonic language.

Mnemonic language, also called assembly language, associates short names to the various
objects the programmer uses. A translation program, called Assembler, translates these
words into numbers. The words involved belong to the following classes:

« Labels

« Operation mnemonics
« Operand names

=« Macro names

« Numbers

« Comments

4

70/315

4 - Architecture of the ST7 core

From the categories above, numbers can be distinguished because they start with a decimal
figure. For hexadecimal numbers that may start with a letter, there are two main conventions:

In the so-called Intel convention, a number will only be recognized as such if the first digit is a
figure; for example, FAh is not considered a number; OFAh is;

In the Motorola and and few other conventions, any hexadecimal number must start with a
special character, like $ for Motorola; no ambiguity is possible then. The ST7 tools use this
convention by default.

All other categories except comments are made of single words that begin with a letter. For
example, HERE is a legal name for a label.

The vocabulary of the Operation Mnemonic category is defined by the manufacturer. It con-
tains the operation codes specific to the microcontroller, commonly called opcodes. There are
also other words that are not opcodes, but that have a similar function in the language. For
that reason, they are named pseudo-ops.

Opcodes are named after the abbreviation of the function of the instruction. Some are ob-
vious, like ADD; some abbreviated, like SUB (subtract); others are acronyms like TNZ (Test for
Negative or Zero).

The pseudo-ops include commands to the assembly program, to direct it to make memory res-
ervations, like DS (reserve Data Storage) or DCW(Define Constant Word), or other similar com-
mands.

The labels are names that the programmer freely assigns to data in memory, constant values,
or pieces of code. This improves the clarity of the source text. For example, if the programmer
has reserved a byte in memory for the result of an analog to digital conversion, he uses the fol-
lowing statement:

Vol t age: DS 1 ; Vol tage read back from i nput

He can then use this name to load this value into the accumulator:

Id A Voltage ; Get value into accunul ator

Which is easier to read than the numeric sequence:

Co 01 24

4

71/315

4 - Architecture of the ST7 core

That is the translation of the statement above, supposing the variable Vol t age had been as-
signed to the memory address 124h.

In the examples of source lines above, the text that follows the semicolon (;) is a comment. It
is ignored by the assembler, and its sole purpose is to inform the human reader of the source
text, when he later reads it.

The last category of words listed above is the macro name. A macro is a piece of text the pro-
grammer may define freely and which he can give a name. Inserting the macro name in the
source text will replace that word by the whole predefined text, saving the programmer typing
effort.

4.3.2 Addressing modes

The ST7 has many addressing modes. In addition to those inherited from the industry-
standard architecture, there are those involving the second index register, Y, that duplicate the
addressing modes available with the X index register, and all the indirect addressing modes.

Having a choice of addressing modes might seems surprising. Anyone might think that indi-
cating the address of the source or destination of a data move should be a straightforward
matter. Actually, there are several cases to handle:

« Ifthe address of the byte to be read or written is known at the time the program is written, the
direct addressing mode is used. This mode has two variants: short direct mode addresses
page zero; long direct mode addresses the whole range.

« If the address of the byte is not known when the program is written, this means that the data
has the form of a record, a string, an array or any other structure that holds complex data.
Since the ST7 only processes bytes, it is necessary to process this kind of data byte-by-byte.
Then, the address of the byte to be read is computed when the program executes, and it is
this address that indicates which byte must be read. According to the structure of the data,
one addressing mode or another might prove more convenient, or fast, or efficient. The ST7
has a choice of addressing modes that take the address from an index register (indexed
addressing), or from the contents of a memory byte (indirect addressing), or a combination.

» Instructions that load constants into a register use immediate addressing, which means that
the data is located just after the instruction code in program memory. This data is skipped to
reach the next instruction.

« Jump instructions often branch to an address that is close to the address of the jump
instruction. If the distance of the jump is within the range -128 to +127 from the instruction
that follows the jump, relative addressing is efficient since the address of the destination of
the jump is obtained by adding the single byte that follows the jump instruction to the current
value of the Program Counter. This byte is called displacement. This instruction thus saves
one byte of program memory. All conditional jumps use this addressing mode.

72/315 172

4 - Architecture of the ST7 core

« Thelast mode, called inherent, means that the data involved in the instruction does not need
to be designated by an address, such as the instruction that increments the accumulator.

The many indexed and indirect modes available are useful for translating programs written in
C language, since these programs frequently use complex data structures.

4.3.3 Instruction set

The instruction set of the ST7 includes many instructions. They can be sorted in different
ways. Here is a grouping by number of addressing modes available. This kind of sorting may
seem arbitrary, but there are actually groups of instructions that have a common function and
also the same set of addressing modes.

Table 2. Table of the number of addressing modes versus the instruction types.

Type of instruction
Load
No Multipli- Load Sinagle memory i
cation%nd Push and | memory | Load and oper%nd with Two
operand b h with compare ithmeti operand
ranc pop index arithmetic | agccumulat arithmetic
(system) | (relative) index and test or and
jump long
1
. 2 4 9 10 11 14 15
(inherent)
CLR

HALT CPL

ADC
IRET DEC

ADD
NOP MUL INC

AND
RCF BRES CP X NEG BCP
RET BSET bop ')-(D mem, b x' RLC CALL P A
RIM BTJF PUSH LD mem CP Y' RRC " LD A'
RSP BTJT v ’ ' SLA LD mem, '

LDY, A OR

SCF CALLR SLL

SBC
SIM JR* SRA

SUB
TRAP SRL XOR
WFI SWAP

TNZ
‘7, 73/315

4 - Architecture of the ST7 core

4.3.4 Coding of the instructions and the address

The instructions are coded using bytes stored in program memory. One instruction takes one
to four bytes according to its type and the addressing mode. These bytes are, in order:

The prefix byte (optional); the operation code (opcode), and one or two bytes of address (op-
tional).

4.3.4.1 Prefix byte

The prefix byte is used to extend the range of instructions. The opcode being a single byte, no
more than 256 combinations of an operation and an addressing mode may be coded. The
original industry-standard instruction set only uses one byte for the opcode. The ST7 in-
creased the choice of addressing modes so that it was no longer possible to code them all
using a single byte. A prefix byte has been created. When this prefix is put before an opcode,
it changes the addressing mode of the opcode. There are three prefixes:

»« PDY (90h) means that the next instruction must use the Y index instead of the X index.

» PI X (92h) means that the next instruction must change its addressing mode (whichever it is)
to the corresponding indirect addressing mode.

« PIY (91h) is a combination of the above: the addressing mode is indirect, and the index
register used is V.

4

74/315

4 - Architecture of the ST7 core

4.3.4.2 Opcode byte

The opcode uses a bit-level coding to specify the type of operation to perform (add, subtract,
jump, etc.) and the addressing mode used (direct, indexed, indirect, etc.) in a single byte.

The tables below summarize the available instruction codes. The lines are the value of the
higher nibble of the opcode; the columns are the lower nibble. The grouping of the instructions
is clearly visible.

Low digit
High 0 1 2 3 4 5 6 7
digit
0 BTJT BTJF BTJT BTJF BTJT BTJF BTJT BTJF
mO m O m1l m1l m 2 m 2 m 3 m 3
1 BSET BRES BSET BRES BSET BRES BSET BRES
mO m O m1l m1l m 2 m 2 m 3 m 3
2 JRA JRF JRUGT | JRULE| JRMC JRC JRNE JREQ
short 3 NEG - - CPL SRL - RRC SRA
A 4 NEG - MJUL CPL SRL - RRC SRA
X 5 NEG - - CPL SRL - RRC SRA
short, X 6 NEG - - CPL SRL - RRC SRA
X) 7 NEG - - CPL SRL - RRC SRA
8 | RET RET - TRAP POP A| POP X (P:gj -
9 i i i LD LD LD LD LD
XY S, X S, A X S X, A
immediate A SUB P A SBC cP X AND BCP LD A -
#n #n #n
short B SUB P A SBC CcP X AND BCP LD A LD
m m m m A
long C SUB P A SBC CcP X AND BCP LD A LD
m m m m A
long, (X) D SUB P A SBC CcP X AND BCP LD A LD
m m m m A
short, (X) E SUB P A SBC CcP X AND BCP LD A LD
m m m m A
X) F SUB P A SBC CcP X AND BCP LD A LD
m m m m A

b7

75/315

4 - Architecture of the ST7 core

Low digit
High 8 9 A B C D E F
digit
0 BTJT | BTJF | BTJT | BTJF | BTJT | BTJF | BTJT | BTJF
m 4 m 4 mb5 mb5 m 6 m 6 m7 m7
1 BSET | BRES | BSET | BRES | BSET | BRES | BSET | BRES
m 4 m 4 mb5 mb5 m 6 m 6 m7 m7
2 JRNH | JRH JRPL | JRM JRNM | JRM JRIL | JRIH
short 3 SLL RLC DEC - I NC ™N SWAP | CLR
A 4 SLL RLC DEC - I NC ™N SWAP | CLR
X 5 SLL RLC DEC - I NC ™N SWAP | CLR
short, X | 6 SLL RLC DEC - I NC ™N SWAP | CLR
X) 7 SLL RLC DEC - I NC ™N SWAP | CLR
PUSH | PUSH | PUSH
8 A X o - - - HALT | WEI
LD LD
9 RCF SCF RI M SI'M RSP NOP AS A X
immedi |\ XOR ADC R ADD ; CALLR | P X ;
ate #n
short B XOR ADC R ADD JP caL | PX | LB
m m X
long C XOR ADC R ADD JP caL | PX | LB
m m X
long, (X)| D XOR ADC R ADD JP caL | PX | LB
m m X
short, E XOR ADC R ADD JP caL | PX | LB
X) m m X
(X) F XOR ADC R ADD JP caL | PX | Lb
m m X

As said about the prefix, this table changes to either Y index, or indirect, or both according to
the prefix byte. The letter m indicates «memory» in instructions such as LD m, X.

76/315

4

4 - Architecture of the ST7 core

4.3.4.3 The addressing modes in detail

Immediate mode

When a register has to be loaded with a constant value that has been fixed in the program
source, that value is determined in the program source text and must be stored in the program
memory to make it fixed and permanent. In such a case, the most effective way to retrieve the
value is to use the immediate addressing mode. In this mode, it is not necessary to supply the
address of the data. The processor expects the data to immediately follow the opcode in the
program memory. This saves both time and memory size.

Example: the instruction
LD A, #10h

A is |loaded with a constant val ue between 00h and FFh.

loads the accumulator with the value 10, not the value stored at address 10. The coding of the
instruction is (in hexadecimal):
A6 10

This instruction takes two bytes of memory.

Direct short mode

There are two direct addressing modes: short and long. They are identical, except for the
number of bytes of the address of the operand. Direct addressing means that the opcode is
followed by the address of the data in memory to be read or written. In the short version, the
address is situated between the addresses 0 and 255, and only one byte is used for it.

Example: the instruction
LD A, 10h

Ais loaded with the value stored in an absol ute nenory address
in zero page.

loads the accumulator with the value stored in memory at address 10h. The coding of the in-
struction is (in hexadecimal):
B6 10

This instruction takes two bytes of memory.

Direct long mode

This mode works like the direct short mode, except that the full 16-bit address is supplied. The
address then takes two bytes instead of one, lengthening the instruction by one byte. This is
why direct short addressing mode should be used as much as possible to speed up execution
and save memory space. This means that the most frequently accessed data must be placed

172 771315

4 - Architecture of the ST7 core

in memory below address 100h. The assembler automatically takes care of this, by selecting
the appropriate addressing mode when possible.

Example: the instruction
LD A, 1234h

Ais |oaded with the value stored in an absol ute extended nenory
addr ess.

loads the accumulator with the value stored in memory at address 1234h. The coding of the in-
struction is (in hexadecimal):

C6 12 34
This instruction takes three bytes of memory. It should be noted that the most significant byte
of the address comes first.

Indexed mode

In this mode, the contents of register X (or Y if the prefix is used) is used as the address of the
data to read or write. As the index register is only 8-bit, the address is lower than 100h.

Example: if the register X contains the value 26h, the instruction:
LD A (X)

Ais loaded with the value stored in a nenory address in page
zero pointed to by the chosen index register

loads the accumulator with the value stored in memory at address 26h. The coding of the in-
struction is (in hexadecimal):

F6
This instruction takes only one byte of memory. This mode is used if the address of the op-
erand is not known at assembly time and must be calculated according to some rule.

Indexed with short offset mode

This mode works like indexed mode, but the instruction is followed by a byte, called displace-
ment or offset, whose value is added to the value in the index to get the effective address.

Example: to access byte 4 of a character string starting at 23h in data memory, we first load
the X index with the value 4. Then, the instruction:
LD A, (23h, X)
A is loaded with the value of the RAM address nenory pointed

to by the sumof the specified 8-bit offset and the contents
of the chosen index register

loads the accumulator with the value stored in memory at address 27h (23 + 4). The coding of
the instruction is (in hexadecimal):

78/315 172

4 - Architecture of the ST7 core

E6 23

This instruction takes two bytes of memory. The farthest address that can be reached is 1FEh
(OFFh + OFFh).

Caution: there must be no space on either side of the comma within the parenthesis. Example:
(23h, X) isincorrect.

Indexed with long offset mode

This mode is similar to the indexed with short offset mode, but the offset is a 16-bit number
that takes two bytes. It allows any address to be reached within the whole addressing range.

Example: to access byte 64h of a character string starting at 4523h in data memory, we first
load the X index with the value 64h. Then, the instruction
LD A, (4523h, X)

A is loaded with the value of the RAM address nenory pointed
to by the 16-bit sum of the specified 16-bit offset and the
contents of the chosen index register. The whol e nenory can be
reached.

loads the accumulator with the value stored in memory at address 4587h (4523h + 64h). The
coding of the instruction is (in hexadecimal):

D6 45 23
This instruction takes three bytes of memory. If the sum of X and the offset exceeds OFFFFh,
the effective address rolls over zero. For example, if X contains 83h and the offset is FFC2h, the
effective address will be 45h.

Caution: there must be no space on either side of the comma within the parenthesis. Example:
(4523h, X) isincorrect.

Relative direct mode

This addressing mode is only used in jump instructions. The opcode is followed by a byte that
represents the offset or the displacement of the destination of the jump, relative to the current
value of the Program Counter. This displacement is a 8-bit signed number, so that the range
of such a jump is limited to -128 to +127 from the instruction following the jump. This mode is
efficient in conditional jumps, since the pieces of code that correspond to opposite cases (test
was true or false) are often located close to each other. When longer conditional jumps are re-
quired, the solution is to do a relative jump to a location within the reach of a relative jump,
where an absolute jump is made to the final destination.

These short-range jumps are usually called branches to contrast with the jump instruction that
uses long addressing mode and that can jump anywhere in the addressing space. In the ST7,
they are called relative jumps.

172 791315

4 - Architecture of the ST7 core

Example:

At address 1200h, the following instruction:
JRA 11F1h

The absol ute address supplied inthe source code will be transl ated
into a relative displacenent by the assenbl er

is coded as:
20 EF

The two bytes of the instruction occupy addresses 1200h and 1201h. Thus, the next instruction
will be found at address 1202h. The offset is calculated from this displacement. The distance
between 1202h and 11F1h is -11h. In 8-bit, two’s complement, this is noted EFh. Adding EFh to
1202h yields 11F1, which is the address of the destination of the jump. It should be noted that
although the jump is relative, the operand of the jump instruction is the destination of the jump.
The assembler automatically calculates the difference. If the destination is out of reach, that is
farther than 127 bytes in either direction, the assembler generates an error message.

Relative indirect mode

This mode is also only used for Jump Relative instructions. The opcode is followed by a byte
that is the address in memory that contains the displacement.

Example: if the displacement EEh is stored in the memory byte at address 58h, the following in-
struction is stored at address 1200h:
JRA [58h]

The val ue of the relative displacenent is stored at the specified
menory address in page zero

is coded as:

92 20 58
The three bytes of the instruction occupy addresses 1200h to 1202h. Thus, the next instruction
will be found at address 1203h. The byte at address 58h is read, giving EEh or - 12h that is
added to the Program Counter, giving 1203h - 12h = 11F1h

In this mode, the operand of the jump instruction is the address of the displacement. This dis-
placement must be supplied separately, if necessary by an expression that is calculated at as-
sembly time. Example:

Di spl dc.b THERE - HERE

It is up to the progranmer to supply the right expression

for the displacenent, but the calculation with the actua
values will be perfornmed by the assenbler

80/315

4

4 - Architecture of the ST7 core

where THERE and HERE are labels respectively designating the destination of the jump, and the
address of the instruction that follows the jump instruction. Here again, if the difference yields
a number that exceeds the range of a one-byte value, the assembler generates an error mes-
sage.

Indirect short mode

In this mode, the address that follows the opcode is that of a memory byte called a pointer that
contains the address of the data to read or write. This allows the effective address to be
formed by the result of a previous calculation. For example, if the pointer at address 23h con-
tains 79h, and the byte at address 79h contains 0, the instruction

LD A, [23]

Ais loaded with the value stored at the short address pointed
to by the specified nenory address in page zero.

loads the accumulator with the contents of address 79h (and not 23h) that is zero. The coding
of the instruction is (in hexadecimal)
92 B6 10

where the first byte is the PI X prefix. This instruction takes three bytes of memory.

The indirect short mode is similar to the indexed mode, except that it is not hecessary to load
the index register with the address of the operand; it may be used directly where it resides in
memory.

Indirect long mode

This mode is similar to the indirect short mode, but the effective address contained in memory
is a 16-bit word. This allows the whole address range to be accessed. The pointer must still be
placed at an address below 100h.

For example, if the pointer at addresses 23h and 24h contains 7954h, and the byte at address
7954h contains 0, the instruction
LD A [23.w]

Ais |l oaded with the val ue stored at the extended address poi nt ed
to by the specified nmenory address anywhere in nenory.

loads the accumulator with the contents of address 7954h (and not 23h) that is zero. The
coding of the instruction is (in hexadecimal):

92 C6 10
where the first byte is the PI X prefix. This instruction takes three bytes of memory. Please note
the «. w» that indicates that the long indirect mode must be used.

4

81/315

4 - Architecture of the ST7 core

Indexed with indirect short offset mode

This mode is similar to the indirect short mode, in that the address that follows the instruction
is the address of a 8-bit pointer in memory that contains an address. The difference is that this
address is not used right away; it is first added to the contents of the index register, and the
sum is the effective address that will be read or written.

Taking the same example as for the indirect short mode, if the pointer at address 23h contains
79h, the index register X contains 5, and the byte at address 7Eh contains 0, the instruction
LD A, ([23],X)

A is loaded with the value stored at the address pointed to
by the sum of the 8-bit offset stored at the specified short
address and the contents of the chosen index register. The
range of this nmode is 0 to 1FEh.

reads the contents of the address 23h, that is 79h, and adds it to the contents of X, that is 5,
yielding the value 7Eh. This value is taken as the effective address whose contents are read,
giving is zero. The coding of the instruction is (in hexadecimal):

92 E6 23

where the first byte is the PI X prefix. This instruction takes three bytes of memory.

Indexed with indirect long offset mode

This mode takes a 16-bit index in memory, and adds its contents with the 8-bit contents of the
index register, yielding the effective 16-bit address of the operand.

For example, if the 16-bit pointer at address 23h contains 7945h, the index register X contains
5, and the byte at address 794Ah contains 0, the instruction
LD A, ([23.w],X)
A is loaded with the value stored at the address pointed to
by the sum of the 16-bit offset stored at the specified

ext ended address and the contents of the chosen index
regi ster. Thus, the whole RAM nenory space can be addressed.

reads the contents of address 23h, that is 7945h, and adds it to the contents of X, that is 5,
yielding the value 794Ah. This value is taken as the effective address whose contents are
read, giving zero. The coding of the instruction is (in hexadecimal):

92 D6 23

where the first byte is the PI X prefix. This instruction takes three bytes of memory.

4.4 ADVANTAGES OF THE ST7 INSTRUCTION SET AND ADDRESSING MODES

In many programming applications, data may have complex forms. To ease data handling,
high-level languages have been created that simplify coding by allowing expressions like:

82/315 172

4 - Architecture of the ST7 core

AK = Al + B[J]
Where A, Band C are arrays of numbers, and | , J and K the indexes to these arrays. The high-
level language compiler translates this so as to read the | t h element of array A using the avail-
able machine-language instruction. If these are arrays of bytes whose base address is some-
where in page zero, the following instruction sequence can be used:

LD X, | ; Set Index register to value of index |I of array A
LD A, ([A],X); Get value All]

LD X, J ; Set Index register to value of index J of array B
ADD A, ([B],X); Add value of B[J]

LD X, K ; Set Index register to value of index K of array C

LD ([C],X), A, Put result into (K]

This is only one of the many examples where powerful addressing modes help translate high-
level languages efficiently. In this case, the whole addition is performed in 22 cycles, or 5.5 us
at 8 MHz, and consumes 12 bytes of code.

4

83/315

5 - Peripherals

5 PERIPHERALS

5.1 CLOCK GENERATOR

The core of the ST7 is supplied with an internal clock that comes from the division of the os-
cillator frequency. This division rate is programmable, allowing you to select the best compro-
mise between speed and power consumption.

This choice is programmed using bits located in the Miscellaneous Register. This register also
contains bits used for other purposes; their function will be detailed later in this chapter.

The Miscellaneous Register is laid out differently from one ST7 device type to another. We will
describe only two variants here.

5.1.1 ST72251 Miscellaneous Register

The SMS (slow mode select) bit, when set, places the core and the peripherals in slow mode.
This speed is 1/16 the normal speed, which is the oscillator frequency divided by 2.

The bit MCO (main clock out), when set, enables a clock signal with this frequency to be
output on bit 2 of port C (PC2).

0 normal 1/O 0 normal mode
1Pc2 =1, 1 slow mode
|PEI3| PEI2[Mco | PEI|PEIO| - | - |sSMS|
Oscillator

ST72251 ’—i i
. %16 %2
PC2 _‘ f.p, to the core and

normal /O port peripherals

Main Clock Out and Slow Mode Select bits
of the ST72251 Miscellaneous Register

05-miscl

4

84/315

5 - Peripherals

5.1.2 ST72311 Miscellaneous Register

The SMS bit works the same way as in the ST72251 (see previous paragraph), but in addition,
the two bits PSM1 and PSMO (prescaler for slow mode) select the supplementary division rate

between 2 and 16.

The bit MCO (main clock out), when set, enables a clock signal with this frequency to be
output on bit 0 of port F (PFO).

0 normal I/0O
1 PfO =1,

0 normal mode

1 slow mode

| PEI3| PEI2| Mco | PEI1|PEIO [PSM1PSM2| SMS |

ST72311

PFO

4

:

normal

I/O port

%2 0 ()E Oscillator
%8 | 0 |1 J

%4 |1 |0 %2

%16 1 | 1—

fop, to the core and

peripherals

Main Clock Out, Slow Mode Select and Prescaler bits

of the ST72311 Miscellaneous Register

05-misc?2

85/315

5 - Peripherals

5.2 INTERRUPT PROCESSING

Interrupt requests may be generated by several external or internal sources. Most peripherals
of the ST7 can produce interrupt requests, such as the 1/O ports, the timers or the SPI. The In-
terrupt request depends on the type of the peripheral: the I/O ports may have some bits con-
figured to generate an interrupt, either on low-level, falling edge, rising edge, or both. The
timer may request an interrupt on timer overflow, external capture or output comparison. The
SPI may request an interrupt on end of transmission, etc.

Hardware external sources
eg: /O Ports,
Timer Input capture ...

Hardware internal sources
eg: Timer Overflow,
Timer comparison,

SPIl end of transmission...é

P

¥

Interrupt request
sent to the core

f

Special interrupt :The Reset Vector.

external : Reset pin,

internal : Power-on Reset,
Watchdog end of count

\

Software source :
TRAP interrupt

The various sources of interrupts

05-sourc

5.2.1 Interrupt sources and interrupt vectors

The interrupt sources are summarised in the tables of the following paragraphs. There are
compared the interrupt-related information for the ST72251 and the ST72311. It is interesting

to see the differences.

86/315

4

5 - Peripherals

5.2.1.1 Interrupts sources for the ST72251

Source Block Description Register Vector address Pc:irc()jrei:y
Reset Reset N/A FFFEh-FFFFh Highest
Trap Software N/A FFFCh-FFFDh
EIO PAO-PA7 N/A FFFAh-FFFBh
Ell PBO-PB7 PCO-PC5 N/A FFF8h-FFF9h
Not used FFF6h-FFF7h
SP| Transfer complete SPISR FFF4h-FFF5h

Mode fault
Input capture 1
Output compare 1
TIMER A Input capture 2 TASR FFF2h-FFF3h
Output compare 2
Timer overflow
Not used FFFOh-FFF1h
Input capture 1
Output compare 1
TIMER B Input capture 2 TBSR FFEEh-FFEFh
Output compare 2
Timer overflow
Not used FFECh-FFEDhO
Not used FFEAh-FFEBh
Not used FFE8h-FFESh
Not used FFE6h-FFE7h
12C _IZC Peripheral 12CSR1 FFE4h-FFES5h
interrupt I2CSR2
Not used FFE2h-FFE3h V
Not used FFEOh-FFE1h Lowest
ﬁ 87/315

5 - Peripherals

5.2.1.2 Interrupt sources for the ST72311

Source Block Description Register Vector address Priority order
Reset Reset N/A FFFEh-FFFFh
Trap Software N/A FFFCh-FFFDh Highest
Not used FFFAh-FFFBh
Not used FFF8h-FFF9h
EIO PAO-PA3 N/A FFF6h-FFF7h
Ell PFO-PF2 N/A FFF4h-FFF5h
El2 PB0-PB3 N/A FFF2h-FFF3h
EI3 PB4-PB7 N/A FFFOh-FFF1h
Not used FFEEh-FFEFh
SPI Transfer complete
Node Aok SPISR FFECh-FFEDhA
Input capture 1
TIMER A Output compare 1
Input capture 2 TASR FFEAh-FFEBhO
Output compare 2
Timer overflow
Input capture 1
Output compare 1
TIMER B Input capture 2 TBSR FFE8h-FFE9h
Output compare 2
Timer overflow
Transmit buffer empty
Transmit complete
SCI Receive buffer full SCISR FFE6h-FFE7h
Idle line detect
Overrun v
Not used FFE4h-FFE5h
Not used FFE2h-FFE3h Lowest
Not used FFEOh-FFE1h
88/315 Kﬁ

5 - Peripherals

As shown in the rightmost column of these tables, these sources are prioritized. This means
that if several interrupt requests are active at the same time, the interrupt controller will choose
to service the highest priority request. When this interrupt is fully serviced, the next highest pri-
ority request will be serviced.

Please note that the tables are not identical: the number of vectors is different, and each
vector groups a different set of interrupt causes, in particular the external interrupts (El) are
different. For other peripherals, such as the timer, SPI, etc. the grouping is identical, but the in-
terrupt numbers and hence the priorities are different.

External interrupt inputs are further discussed in the paragraph about the parallel input-out-
puts.

5.2.2 Interrupt vectorization

When the core decides to grant an interrupt, it must know the address of the code to be exe-
cuted when this event occurs. This is the purpose of the interrupt vectors.

The interrupt vectors are a table of 16-bit words in program memory that contain the address
of the beginning of the various interrupt service routines.

According to the source of the interrupt (I/O, timer, etc.), the core fetches from a predefined lo-
cation in memory, the address of the interrupt service routine especially written for processing
that event. The vectors have a fixed location at the end of the addressing space. In addition to
the interrupt vectors, the vector table also contains the reset vector that is fetched when the
microcontroller is reset in order to get the address of the beginning of the main program.

4

89/315

5 - Peripherals

An interrupt is requested

v

Its relative pending bit is set

this interrupt will

Is the | bit of the
be serviced when
CC reqister reset 2

the | bit is reset

Yes

The core finishes its current instruction.
PC, X, A, CC are pushed onto the stack.
The | bit is set.

The PC is loaded with the address of the interrupt vector.

L

The interrupt program starts.

At the beginning of this program, the programmer can
Temporarily save data if needed, such as the Y register.
He must restore them at the end.

Before returning, the pending bit must be cleared.

v

The iret instruction causes:

CC, A, X, PC to be popped from stack.
The interrupted program to resume or another interrupt

program to start.

The interrupt mechanism of the ST7 family

05-int

5.2.3 Global interrupt enable bit

RESET and TRAP (explained in the next paragraph) are non-miscible interrupt; the other
sources of interrupt may be inhibited as a whole thanks to the | bit of the condition code reg-

90/315 172

5 - Peripherals

ister. When this bit is set, no interrupts are generated. However, the interrupt requests are not
forgotten; they will be processed as soon as the | bit is reset.

5.2.4 TRAP instruction

In addition to the hardware sources, a special instruction, TRAP, produces the same effect as
an externally generated interrupt request, but under program control. Strange as this may
seems (interrupts are provided to handle unexpected events, or at least, events for which the
time of occurrence is not known), the TRAP instruction uses of the interrupt mechanism within
the regular execution of the main program.

The trap instruction triggers interrupt processing regardless of the state of the | bit in the Con-
dition Code register.

An example of the use of the TRAP instruction is the real-time debugger. When the user sets
a breakpoint somewhere in the program, the debugger replaces the instruction at which the
execution must stop with a TRAP instruction. The interrupt thus generated is processed by
displaying on the screen the state of the microcontroller at that precise time. However, other
uses of this instruction may be found as well.

5.2.5 Interrupt mechanism

5.2.5.1 Saving the interrupted program state

When the interrupt request triggers an interrupt, the first task of the core is to save its current
state so as it will be able to restore it after the interrupt processing is finished. This is done by
pushing all the core registers to the stack, namely the Program Counter, the X-register, the
Accumulator and the Condition Code Register. It should be noted that the Y register is not
saved, for compatibility with the standard instruction set which the ST7 adheres to. If needed,
the Y register may be pushed explicitly to the stack at the beginning of the interrupt service
routine.

At this point (and with the restriction above mentioned about the Y register), the interrupt
service routine may execute freely. The status of the interrupted program is known and can be
restored when needed.

To protect the interrupt service routine from other interrupt requests, the | bit of the Condition
Code Register is then automatically set by hardware.

5.2.5.2 Interrupt service routine

When the processor has granted the interrupt request, and read the interrupt vector, it starts
executing the interrupt service routine. This routine is merely a segment of program, written
with exactly the same ease and constraints as the main program. It can be written using the
same language and tools, or in any other language.

172 91/315

5 - Peripherals

The interrupt service routine is supposed to take the appropriate actions that will vary ac-
cording to the interrupt source. For example, if an Input bit has changed its state, the service
routine may change the state of an output bit; if the interrupt was generated by the timer, this
may produce the transmission of a byte by the SPI, etc. depending on the structure of the ap-
plication as defined by the programmer.

Some interrupt vectors are common to several interrupt sources (e.g. the timers that have five
sources). In this case, the first task of the service routine must be to check which source has
requested the interrupt, before taking the appropriate action. This is done by testing the state
of the various bits in the peripheral’s Status Register.

Eventually, the service routine is finished. Then the core may return to the main program by
ecuting the IRET instruction.

5.2.5.3 Restoring the interrupted program state: The IRET instruction

As described above, an interrupt service routine looks a little bit like a subroutine. Like in a
subroutine, the return address is stored in the stack, and the execution of the RET instruction
returns to the calling program.

Here, more things are to be done before returning to the interrupted program. All the core reg-
isters have been pushed on granting the interrupt request (except the Y register). They must
now be restored, so that the execution of the service routine will not leave any trace in the
core. This is the role of the IRET instruction.

The IRET instruction proceeds with popping off the stack all the data that had been pushed
previously, namely the Condition Code (then the | bit is also restored), the Accumulator, the X
register and the Program Counter.

From this time on, execution of the interrupted program resumes.

5.2.6 Nesting the interrupt services

Some interrupts may require the quickest service possible, for example if they signal the avail-
ability of some data that it volatile, that is, will not remain for a long time. In such a case, the
fact that an interrupt service routine is not interruptible by default may be a problem, if the time
to service this interrupt is longer than the allowable latency for the interrupt requiring a quick
service. For so, it is possible to clear the global interrupt mask within an interrupt service rou-
tine.

At that time, one would probably like to restrain the interrupt request sources that may actually
interrupt the service routine in progress. Some prioritizing, here also, is needed. But this is not
the same priority mechanism as that mentioned above.

This priority mentioned about the interrupt sources is only taken into account when the core
has to decide between two concurrent requests. It does not apply when interrupts are re-ena-

92/315 172

5 - Peripherals

bled during the service of an interrupt. In this case, all interrupts are validated and the service
routine may be itself interrupted by a request having a lower priority than its own. If the service
routine must be interruptible only by certain requests and not others, the routine must first
clear the interrupt enable flags of all peripherals that are not allowed at that time, then clear the
global interrupt mask. It is wise to save the value of these flags before clearing them, if several
interrupts may interrupt each other and each selects a different set of allowed interrupt re-
quests.

Another maskable interrupt (nested interrupt) is

serviced, within the current one, whatever its priority

Without the intervention

of the programmer, bit | =0;

interrupt # k
A maskable /V P the interrupt # j can again

interrupt occurs be interrupted

\1 interrup£#j\ interrupt #j

Here, the programmer
resets the | bit **

Main :bit 1=0 \ Main :bit I=0
\The | bit is set by hardware

** Note: before resetting the | bit, you should clear the pending bit that started the current
interrupt, otherwise an endless recursive interrupt service call will be performed !

Nested interrupts

05-nest

This core is perfectly well able to handle nested interrupt servicing, with a limited nesting
depth. However, care must be taken about two things:

The size of the stack. Each interrupt pushes five bytes on the stack, plus the interrupt service
routine may push some bytes to protect any data in memory that may be used globally.

The problem of atomicity as explained in Chapter 2. If an interruptible service routine handles
multi-byte data, it must take into account the possibility of being interrupted in the middle of a
data read or write with the risk of data incoherence.

The applications described in Chapters 9 and 10 illustrate several uses of interrupts, in con-
junction with various peripherals.

172 93/315

5 - Peripherals

5.3 PARALLEL INPUT-OUTPUT PORTS

The purpose of the parallel input-outputs is basically to make binary signals either get into or
out of the core. For the core and once initialized, they appear as a memory location that can
be written or read. But in many cases, direct byte-wide input-output is not sufficient. Bit-ori-
ented I/O is often required in systems driven by a microcontroller. This implies individually
reading or writing any of the bits of each port. In addition, some of the external signals of the
other peripherals (timers, UARTS, etc.) use an external connection without increasing the pin
count by diverting some bits from the parallel I/O ports (alternate function).

The ST7 offers a very flexible feature on its parallel I/O that it shares with many other STMi-
croelectronics families: each bit can be independently configured as either an input with two
options (with or without pull-up resistor), or an output with also two options (open-drain or
push-pull).

Some pins are also available with high-current sink drivers, like Port A of the ST72251. These
pin may sink up to 15 mA, and Port A has only one output configuration: open drain.

Selecting these options is done through registers that are associated with each port. They are
memory-mapped, and are named Option Register (OR) and Data Direction Registers (DDR).

Some pins configured as input may also be connected to the external interrupt circuitry when
the corresponding bit of the Option Register is set. This allows an interrupt request to be trig-
gered when the state of the pin goes low, rises, or falls, as configured in the Miscellaneous
Register already mentioned at the beginning of this chapter and detailed on the diagrams that
follow. However some |/O pins can't be interrupt inputs. See the tables below for the 72251
and the 72311 1/O configurations.

5.3.1 ST72251 1/O Ports

All bits of Port A are configurable as interrupt inputs when the corresponding bit of OR is set.
The option for the edge and level of these inputs is set by the bits PEIO and PEI1 (external in-
terrupt polarity option) of the miscellaneous register. The external interrupt source is EIO and
its corresponding interrupt vector is in FFFAh-FFFBh.

All bits of Ports B and C are configurable as interrupt inputs when the corresponding bit of OR
is set. The option for the edge and level of these inputs is set by the bits PEI2 and PEI3 in the
same register. The external interrupt source is EI1 and its corresponding interrupt vector is in
FFF8h-FFF9h.

4

94/315

5 - Peripherals

Table 3. ST72251 1/0 configuration

Input configuration Output configuration
(DDR =0) (DDR =1)
External interrupt
source,
OR=0 OR=1 . . . |[|OR=0 OR=1
Port Polarity option bits
Port A: ing wi EIO
Floating _FIoatmg with Tru_e open Reserved
PAO-PA7 interrupt PEIO-PEI1 drain
Port B: - i
PBO-PB7 Floating E]Ltjgr:]upp\t’wth Ell Open drain Push-pull
) PEI2-PEI3
Port C: - i Ell
Floating _PuII up with Open drain Push-pull
PCO-PC5 interrupt PEI2-PEI3

In addition, some pins also serve as inputs for other peripherals, or may be held from their
normal output function and be taken as the output pins of some peripherals if those periph-
erals are specially configured to do so by setting a bit in one of their control registers. As an ex-
ample, pin PBO is also used as the capture input of Timer A, and pin PC1 is the output com-
pare 1 pin of Timer B if the OCL1E bit of register TCR2 of this timer is set. The interaction with
the pins and the required precautions are discussed, when needed, in the paragraph related
to the corresponding peripheral.

Table 4. ST72251 1/O alternate functions

I/O pin Alternate function 1 Alternate function 2
PA4 SLC (12C)
PA6 SDA (12C)
PBO ICAP1_A (Timer A)
PB1 OCMP1_A (Timer A)
PB2 ICAP2_A (Timer A)
PB3 OCMP2_A (Timer A)
PB4 MOSI (SPI)
PB5 MISO (SPI)
PB6 SCK (SPI)
PB7 SS (SPI)
PCO ICAP1_B (Timer B) Ain0 (ADC)
PC1 OCMP1_B (Timer B) Ainl (ADC)
PC2 CLKOUT (Internal clock out) Ain2 (ADC)
PC3 ICAP2_B (Timer B) Ain3 (ADC)
PC4 OCMP2_B (Timer B) Ain4 (ADC)
PC5 EXTCLK_A (Timer A) Ain5 (ADC)
Note: All pins of port C have two alternate functions.
Kﬁ 95/315

5 - Peripherals

EM:Ports B&C| | EIO: Port A

vector address: vector address:é

. FFF8-FFF9 | | FFFAFFFB |

TPEI3| PEI2|MCO [PEM[PEIO] - | - [SMS]
ST72251

0 0 | Falling edge and low level (reset state)
1 0 | Falling edge only
0 1 Rising edge only
1 1 Rising and falling edge

External interrupt polarity Options EIO and EI1

of the Miscellaneous register

5.3.2 ST72311 1/O Ports

05-EI251

Bits 0 to 3 of Port A and bits 0 to 2 of Port F of are configurable as interrupt inputs. The option
for the edge and level of these inputs is set by bits PEIO and PEI1 (external interrupt polarity
option) in the miscellaneous register. The interrupt vector for Port A is FFF6-FFF7, and FFF4-

FFF5 for Port F.

All bits of Port B are configured by the PEI2 and PEI3 bits in the same register. However, bits
0 to 3 are assigned to the vector at FFF2-FFF3, while bits 4 to 7 are assigned to the vector at

FFFO-FFF1.

Note: PB5 to PB7 are not available on the smaller packages (J series).

96/315

4

5 - Peripherals

Table 5. ST72311N I/O configuration

Input configuration Output configuration
(DDR =0) (DDR = 1)
Port External interrupt
OR=0 OR=1 source, OR=0 OR=1
Polarity option bits

Floating | Pull-up with EIO Open drain Push-pull
PAO-PA3 interrupt PEIO-PEI1
PA4-PA7 Floating n/a True open drai_n_, high sink

capability

Floating | Pull-up with El2 Open drain Push-pull
PBO-PB3 interrupt PEI2-PEI3

Floating | Pull-up with EI3 Open drain Push-pull
PB4-PBY interrupt PEI2-PEI3
PCO0-PC7 || Floating Pull-up n/a Open drain Push-pull
PDO-PD7 || Floating Pull-up n/a Open drain Push-pull
PEO-PE1 || Floating Pull-up n/a Open drain Push-pull
PE4-PE7 Floating Reserved n/a High s_ir_1k reserved

capability

Floating | Pull-up with Ell Open drain Push-pull
PFO-PF2 interrupt PEI0-PEI1
PF4, PF6, || Floating Pull-up n/a Open drain Push-pull

PF7

Note: PAO-PA2, PB5-PB7, PD6-PD7 and PE4-PE7 are not available on the ST72311J ver-

sion.

In addition, some pins also serve as inputs for other peripherals, or may be held from their
normal output function and be taken as the output pins of some peripherals if those periph-
erals are specially configured to do so by setting a bit in one of their control registers. As an ex-
ample, the PC2 pin is also used as the capture input of Timer A, and pin PC1 is the output
compare 1 pin of Timer B if the OCL1E bit in the TCR2 register of this timer is set. The interac-
tion with the pins and the required precautions are discussed, when needed, in the paragraph
related to the corresponding peripheral.

4

97/315

5 - Peripherals

Note: None of the pins have two alternate functions, unlike the ST72251.

Table 6. ST72311N I/O alternate functions

I/0O pin Alternate function 1
PCO OCMP2_B (Timer B)
PC1 OCMP1_B (Timer B)
PC2 ICAP2_B (Timer B)
PC3 ICAP1_B (Timer B)
PC4 MISO (SPI)
PC5 MOSI (SPI)
PC6 SCK (SPI)
PC7 SS (SPI)
PDO Ain0 (ADC)
PD1 Ainl (ADC)
PD2 Ain2 (ADC)
PD3 Ain3 (ADC)
PD4 Ain4 (ADC)
PD5 Ain5 (ADC)
PD6 Ain6 (ADC)
PD7 Ain7 (ADC)
PEO TDO (SCI)
PE1 RDI (SCI)
PFO CLKOUT (Internal clock out)
PF4 OCMP1_A (Timer A)
PF6 ICAP1_A (Timer A)
PF7 EXTCLK_A (Timer A)

Since the pins can produce interrupt requests in some modes, you must take care, when pro-
gramming the port configuration registers, to perform the transisitons in a particular order as

specified in the transition map in the datasheet.

All the applications described in this book (Chapters 6, 7, 9 and 10) give examples of using the
parallel ports in various combinations.

98/315

4

5 - Peripherals

El2: Pb0-Pb3

Vector address:

FFF2-FFF3

EIO: Pa0-Pa3

Vector address:

FFF6-FFF7

El3: Pb4-Pb7
Vector address:

. FFFO-FFF1

El1: PfO-Pf2

Vector address:

\ FFF4-FFF5

| PEI3| PEI2 |/|v|00 | PEI1 |PEI0 | - |sms]

N

Falling edge and low level (reset state)

1 0 | Falling edge only
0 1 Rising edge only

1 1 Rising and falling edge

External interrupt polarity Options EIO, El1, EI2 and EI3
of the Miscellaneous register

05-EI311

Note: Although the pins of the ports may be individually selected as interrupt inputs, the direc-
tion of the edge or the active level is selected by groups in the Miscellaneous Register. This
implies that the electrical schematic takes this into account, and that signals that are rising-
edge active be wired to a different group from those either falling-edge active or level-active

5.4 WATCHDOG TIMER

5.4.1 Aim of the watchdog

The watchdog timer is a safety device rather than a peripheral. Its purpose is not to handle ex-
ternal events, but to detect and correct internal malfunctions. However, it is implemented just
like a peripheral, and this is why it has been included in this chapter with the peripherals.

A microcontroller, or any programmed machine, is not an electronic brain, in spite of how it
was first introduced. Rather, it is an automaton that has a precise job to perform, taking into
account events and conditions that are considered when the program is written. However, not
all events can be taken into account; some occurrences are even neglected, since they are
supposed to never happen. Rightly or wrongly, the code is thus made shorter. If, however, ei-
ther because the programmer made a mistake or because a hardware failure produced an un-

172 99/315

5 - Peripherals

foreseen event, the program may be fooled and the whole application may fail to work or even
produce harmful actions.

To prevent this, two actions may be taken.

Write better code. Check what happens if a neglected condition arises. Lead the execution to
a recovery routine in such an event. In short, take all precautions to prevent the program from
crashing in any event. This is actually a requirement, not a choice. But still, things may happen
that are totally out of the control of the author of the program. For example, an electromagnetic
aggression or a power brownout to the product that is controlled by the microcontroller. Then,
the proper working of the microcontroller may not be guaranteed and the system fails. This is
when the watchdog can play its part.

Methods of detecting processor failure by electronic means are virtually non-existant. A pop-
ular method relies on a timer that acts like an alarm-clock. The clock is wound up for a certain
delay. If it has not been rewound before the expiration of this delay, the clock perform a hard-
ware reset to the microcontroller.

Itis up to the program to periodically rewind the clock (the watchdog timer) to indicate that it is
still alive. Actually, it is not a full protection, since some parts of the program may crash while
the part that has been elected to rewind the timer still functions. It is up to the wise pro-
grammer to find the program segment that is very unlikely to still work while some other part
has crashed. Well implemented, this method gives rather good results. Of course, resetting
the program is not a good way to recover from a fault, since the crash may have sent com-
mands to the external world that are themselves faulty. The watchdog timer is actually a last
ditch safety device, somewhat like a lifeboat in a shipwreck.

5.4.2 Watchdog Description

The ST7 watchdog timer is controlled by a register that includes two control bits (bits 7 and 6)
and six time-setting bits.

The general control bit, bit 7, starts the watchdog activity if it is set to one. From that time on,
it continues to work, even if one tries to reset it to zero. This is a safety measure that prevents
the program from accidentally stopping it. The presence of this bit corresponds to what is com-
mercially known as the “software activated watchdog”. This is the only option available for the
72251.

100/315

4

5 - Peripherals

Activation bit: Reset
cleared by hardware
ft t
arer a reset, 72251: software watchdog only on
can be set once
by software Eprom and OTP versions
can only be cleared
by another reset Watchdog control register
WGDA T6 | T5 | T4 [T3 | T2 [T1 [T0 | Downcount
1 0 0 0 0 0 0 yansition producing
0 | 1 1 1 1 1 1 | a watchdog reset
up to 64 decrements
fCpu Clock divider
_>

1/12288

ST72251 Watchdog timer operating description

05-wdgl

In some ST7 family products, for example the ST72311, two options are available for the
Watchdog: software-activated, as above, and hardware-activated, where the Watchdog is al-
ways active, regardless of the state of the MSB of the WDGCR register. This option is selected
differently in the ROM version and the EPROM version.

« In the EPROM version, a so-called Option Register (OPTREG) has a bit that selects
hardware- or software-activation. This register does not belong to the addressable space of
the ST7, and is only accessible by the EPROM programmer.

« In the ROM version, the customer has the option to select software- or hardware-activation
by specifying it on the order form.

4

101/315

5 - Peripherals

Software-activated:

Activation bit is Reset Watchdog status register
cleared by hardware
after a reset, | | | | | | | |WDOGF|
can be set once |
by software. Flag bit set by a watchdog reset

Can only be cleared
by another reset
Hardware-activated:
WGDA = 1 permanently

cleared by software or power-on reset

Watchdog control register

GDA 16 | T5 [T4 | T3 | 12| T1[T0 | Downcount

1 0 0 0 0 0 0 transition producing
0 | 1 1 1 1 1 1 | awatchdog reset

72311: software- or hardware- up to 64 decrements
activated watchdog selected in the Clock divider £
Option byte in the Epromer or 1/12288 «

as a mask option

ST72311 Watchdog timer operating description

05-wgd2

Bit 6 must be set high at all times. Setting it low immediately resets the microcontroller. This
may be used to reset the whole application if needed under program control (e.g. a message
received is coded as a reset request).

Bits 5 through 0 select the time-out value in increments of 12 288 machine cycles, which is
roughly 1.5 ms at full speed. The time-out may be set in up to 64 increments, that is about 98
ms at full speed.

The watchdog control register is a read-write register, thus it is possible to read the time re-
maining in the watchdog counter. If the watchdog is not activated (by setting bit 7 to one for the
software-activated version), it can be used as a real-time clock by simply reading its value.

To rewind the watchdog, it is sufficient to write a new value to it, keeping the two high-order
bits high. It is possible to rewind the watchdog to different value, depending on the circum-
stances, to allow a shorter or longer time-out.

In the 72311, the watchdog has an extra register, the Watchdog Status Register (WDGSR)
that only has one meaningful bit, WDOGF.

4

102/315

5 - Peripherals

This bit is set whenever the last reset was triggered by the Watchdog. This allows the program
to check whether the current start is a fresh one, or results from the recovering from an error
condition.

5.4.3 Using the Watchdog to protect an application

The right value for the watchdog time-out is always difficult to find, except when the rewinding
is performed in the service routine of a timer interrupt, that occurs at a fixed frequency. This is
not the best way to use the watchdog, considering what has been said above, since itis likely
that a timer interrupt will keep on being serviced even when the main program has crashed.

If the rewinding is done in the main program, it is often difficult to estimate the greatest pos-
sible interval between rewindings, since this time may vary depending on the various events
that may occur. Here are two pieces of advice for anyone wanting use the watchdog timer:

« Do not activate the watchdog timer while debugging the program. Otherwise you may get
some unexpected resets that may fool the in-circuit emulator.

« When the program is fully debugged, try several values by dichotomy. First set the value to
half the maximum. If the reset occurs (which is detected by putting a breakpoint at the entry
point of the main program), double this value and try again. If no reset occurs, take the value
at midway and try again. Reduce the value this way as much as possible, each time using
the program with all its features if possible. When you think you have found the smallest
value that never produces a reset, multiply this value by a safety factor and keep it.

The safety factor depends on how much opportunity you had to actually test the program
through all its paths, nooks and crannies. If this were actually possible, a factor of 1.5 may be
sufficient. Otherwise, a factor of 2 or more is advisable. The terms of the trade-off are, on one
hand, getting unwanted resets when nothing goes wrong, and in the other hand, reducing the
efficiency of the safety device.

On models that have a WDOGF bit in the watchdog status register, the program may be
written so that it behaves differently if the restart has been caused by a previous malfunction.

5.5 16-BIT TIMER

This peripheral is a powerful piece of hardware that illustrates the ideas put forth in the intro-
duction of this chapter. Its purpose is to handle time-related events, such as pulse counting,
frequency measurement, interval measurement, and pulse generation, either single or peri-
odic. Good quality processing of such events usually implies a time accuracy in the micro-
second range. This is out of reach for a low-end, 8-bit microcontroller. This is where the timer
comes in to play: it does the time-related processing, and frees the core from stringent timing
constraints.

4

103/315

5 - Peripherals

5.5.1 Timer clock

Two clock sources are available for the timer: either the core clock, or an external clock sup-
plied on a pin that takes up one port pin.

When the internal clock is used, the timer is actually fed with the core clock after passing
through a frequency divider that can divide the core clock frequency by 2, 4 or 8. The core fre-
guency is itself derived from the crystal oscillator by dividing it by 2 (normal mode) or a higher
value that depends on the variant of ST7 considered (slow mode), as selected in the miscel-

laneous register (see the beginning of this chapter).

The external clock, when selected, changes one parallel input-output pin into a clock input.
The frequency applied to the pin is directly fed to the timer with no predivision. The external
clock is only available on Timer A on the ST72251 and ST72311.

Prescaler] imer Clk/CpU oIk
0O O 1/4
CPU clock
’ 0 1 1/2 Internal
or
1 0 1/8 timer clock
External »
. 1 1 External
timer clock | | |
. CCCCO) EXEDG * External clock pins are available
Timer Al control | . .
ister 2| (TACR? I g Ty only on timerA :
register 2|() — Tinsingorfaling) pog for the ST72251

External timer

clock pin *

..............

— 0 edge selection Pf7 for the ST72311

Maximum frequency of
the external clock = 1/4 CPU clock

Timer Clock selection

05-timck

To give an idea of the time resolution of the timer, the following table give the resolutions avail-

able with a 16 MHz crystal for all divider selections:

Timer clock predivisor

Core predivisor 1/2 1/4 1/8
1/2 0.25 0.5 1
1/32 4 8 16

104/315

4

5 - Peripherals

5.5.2 Free running counter

The main component of the 16-bit timer is the Free-Running counter, called the CHR (Most
Significant Byte) and CLR (Least Significant Byte) register. This is a binary counter that incre-
ments by one at each clock cycle, hence its name. It is possible to read the value of this timer,
butitis only possible to reset it to its start value that is FFFCh, either under program control or
automatically depending on the working mode selected.

Each time the free-running counter overflows from FFFFh to 0000, the TOF bit (Timer Over-
Flow) is set in the TSR status register. Resetting this bit involves reading the CLR register. In
cases where it is necessary to read the free-running counter but it is not desirable to clear the
TOF bit, the same free-running counter is accessible at another register address called ACLR
where reading does not alter the TOF bit.

5.5.2.1 Reading the free running counter

The free running counter can be read at any time. However, since this is a 16-bit register, and
the core is an 8-bit one, it is not possible to take a snapshot of the counter value at once. This
can lead to data desynchronization problems, as mentioned earlier in this book.

To avoid this problem, the timer has a buffering feature that works as follows:

When the high byte of the counter is read, the value of the low byte is captured in a transparent
latch. When the program reads at the address of the low byte of the counter, it actually reads
the value previously frozen in the latch, and the latch is re-enabled. This means that when the
low byte of the counter is read, for fast clock rates, the counter may not have the value read.
The program must take this into account.

Reading the free running counter

The low byte of the counter

can be read "on the fly"

\ 4
When the high byte of the counter

is read, the low byte is bufferised

until a reading access to it is performed

05-read

105/315

4

5 - Peripherals

If the low byte is read again, the actual value of the low byte of the counter can be read. To
benefit from the latching feature, it is necessary to read the high byte first. Conversely, reading
the high byte one more time will always yield the same value as before: a read of the high byte
must be followed by a read or the low byte.

This mechanism works identically for the CLR and the ACLR registers.

5.5.2.2 Resetting the free running counter

The free-running counter is actually a read-only register. However, it is possible to reset it by
writing any value to the low byte of either CLR or ACLR (the value written is irrelevant). It is im-
portant to note that when reset, the counter is not set to zero, but FFFCh (or -4). This must be
taken into account in the timing calculations.

The hardware reset also resets the timer to this value.

To make a software reset of the free running counter

Any writting access to the
low byte of the free running

counter or alternate free

running counter

v

::> free running counter = #FFFCh ** } Reset

CCo0=0

::> prescaler = 1/4* CC1=0

* except CCO & CCH1, the other bits of the control register 2 are not affected
** the TOF flag goes high at the FFFFh - 0000h transition of the counter, that

state

is to say 4 timer clock pulses after resetting the free running counter.

05-timrs

106/315

4

5 - Peripherals

5.5.2.3 The TOF flag

The Timer OverFlow flag is a bit in the Timer Status Register. It is set each time the free-run-
ning counter overflows from FFFF to 0000.

It can be cleared under program control by the following sequence:
« A read to the TSR register, followed by

« A read or write to the CLR register.

Any other sequence does not alter the TOF flag, especially using the ACLR instead of the CLR
register. This is summarized in the diagram below:

(TOF : bit #5 of TSR)

Timer overflow flag TOF is set by the A write access to the low byte
transition FFFFh - 0000h of the 16 bit of the free running counter
free running counter ‘ resets the counter to FFFCh
TOF bit to / _
be cleared y . TOF bit not to
First step : reading access to TSR . becleared
/ g
) 4) 4
Second step : a read or a write A read access to the low
access to the low byte of the free byte of the alternate free running
running counter (TACLR or TBCLR) counter (TAACLR or TBACLR)

—> TOF is cleared —— >TOF is not modified

Resetting the TOF bit in the Timer Status Register

05-tof

The timer overflow event is an interrupt source that can be either enabled or disabled by the
TOIE bit of Timer Control Register 1. For this interrupt to be serviced, interrupt requests must
be globally enabled by the | bit of the Condition Code Register:

107/315

4

5 - Peripherals

TOIE : Timer overflow enable bit (bit 7 of TCR1)
TOF : Timer overflow bit (bit 5 of TSR)
I : Global interrupt enable bit (bit 3 of CCR)

jFFh - 0000h (counter)

TOF

TOIE

Timer control register 1 (TCR1) Timer status register (TSR) Timer overflow

interrupt to the core

Condition code

register (CCR)

o)

TOF interrupt mechanism

05-intof

The interrupt service routine must clear the TOF bit before returning, using the sequence de-
scribed above. No automatic clearing is performed by the interrupt service mechanism.

5.5.3 Input capture operation

The counter, as discussed above, can be read on-the-fly by the program. This is not what the
capture feature means here.

Note before continuing: each 16-bit timer has two capture channels, 1 and 2. In the following
text, the letter i in the register names must be replaced by 1 or 2 accordingly.

The capture feature is a mechanism that takes a snapshot of the counter value at the time of
the transition of an external signal applied to a pin. The capture mode is always enabled; the
ICAPIpin is shared with a parallel input-output port pin, and that port must be configured with
the corresponding pin as an input to be able to use the capture input.

The IEDG:I bit in the Timer Control Register 1 selects either the rising or the falling edge of the
ICAPI pin as the active transition. When the transition occurs, the ICiHR-ICIiLR pair contains
the value of the counter at the time of the transition, plus one.

The capture event also sets the ICFi bit in the TSR register, and that bit can produce an inter-
rupt request if the ICIE mask bit in the TCR1 register is set.

108/315 172

5 - Peripherals

The clearing of ICFi is done by a sequence similar to that described for the TOF bit:
» Read the TSR register, and

« Either read or write the ICILR register.
Only the ICIE flag is common to both channels. Thus, if both channels are used simultane-
ously, on interrupt, the TSR register must be read to determine whether the ICF1 or the ICF2

bit is set (or both). The ICFi capture flag bit(s) must be cleared by the interrupt service routine
since no automatic clearing mechanism is provided.

The following table summarizes the registers and the bits involved.

« Timer A:
Channel 1 Channel 2 Function
Input capture registers
TAIC1HR & TAIC1LR| TAIC2HR & TAIC2LR .
(16-bit, read only access)
ICAP1_A ICAP2_A
PBO on ST72251 PB2 on ST72251 Input capture pin
PF6 on ST72311 doesn’t exist on ST72311
ICF1 ICF2 Capture event flag in TASR
IEDG1 or TACR1 IEDG2 of TACR2 Capture Input Edge Selector.
ICIE Common Interrupt Mask Flag in TACR1
« Timer B:
Channel 1 Channel 2 Function
Input capture registers
TBIC1HR & TBIC1LR| TBIC2HR & TBIC2LR .
(16-bit, read only access)
ICAP1_B ICAP2_B
PCO on ST72251 PC3 on ST72251 Input capture pin
PC3 on ST72311 PC2 on ST72311
ICF1 ICF2 Capture event flag in TBSR
IEDG1 or TBCR1 IEDG2 of TBCR2 Capture Input Edge Selector.
ICIE Common Interrupt Mask Flag in TBCR1

The diagram below represents the timer A capture channel 1; the reader can transpose it for
the other channel or the other timer by substituting the register, bit and pin hames as in the
table above.

172 109/315

5 - Peripherals

ICF1 : Input capture flag 1 bit (bit 7 of TASR)
ICIE : Input capture interrupt enable bit (bit 7 of TACR1)
(common bit to both channels of the timer)

IEDGH1 : Input edge 1 bit (bit 1 of TACR1)
| : Global interrupt enable bit (bit 3 of CCR)
load 16 bit input capture register
Input —P> TAIC1HR, TAIC1LR
capture 1 . (Read only registers)
pin
k)

‘M1 o
Free running counter

Timer A control
register 1 (TACR1) *ICF1 is cleared by reading
ICIE IEDG1 the TASR followed by an access
/A
’ to TAIC1LR
Condition code
register (CCR) A 4
I ICF1*
Timer A status
register (TASR) Input capture
—p» interrupt to
0 the core

Input capture and corresponding interrupt mechanism:

diagram for channel 1, timer A

05-Capt
5.5.4 Qutput compare operation

The output compare is a feature that produces an event when the current value of the free-
running counter matches the value of a register called Output Compare Register (OCnR,
where n is 1 or 2 for the first of the second compare registers, respectively).

This event may produce various effects:

= An interrupt request;

4

110/315

5 - Peripherals

« The change of the state of an output pin;

« The reset of the free-running counter (only in PWM mode).

The PWM mode will be studied later.

The block diagram of one of the compare circuits is the following:

OCF1 : Output compare flag 1 bit
OCIE : Output compare interrupt enable bit
OLVL1 : Output level 1 bit
OCH1E : Output compare 1 enable bit
reset : general purpose |/O pin

| : Global interrupt enable bit

set :timer A output compare 1 pin (OCMP1)

(bit 6 of TASR)
(bit 6 of TACR1)
(bit 0 of TACR1)
(bit 7 of TACR2)

(bit 3 of CCR)

Free running counter

16

7

*cleared by a TASR read access
followed by an access to TAOC1LR

16 bit output compare register
TAOC1HR, TAOC1LR
(Read / write registers)

16

Compare

Timer A control
register 1 (TACR1)

|OCIE| ’ |OLVL1|

Timer A status

OC1E

Timer A control
register 2 (TACR2)

register (TASR) 7
latch —|
_> Clk
Condition code A o = ¢ <1
register (CCR
i () Output compare 1 v
interrupt to
the core General
purpose
1/0 channel Output
compare 1

& or —Jp timer A

Output compare and corresponding interrupt mechanism:

diagram for channel 1, timer A

05-comp

4

pin for

111/315

5 - Peripherals

There are two such compare circuits for each free-running timer; the table below summarizes
the register, bit, and pin names for both timers A and B and for compare 1 and compare 2 cir-

cuits of each.

« Timer A:
Channel 1 Channel 2 Function
Output compare register
TAOCIHR & TAOC2HR & TAOC2LR " pl.J P . gisters
TAOCILR (16-bit, read-write access)
OCMP1_A OCMP2_A

PB1 on ST72251
PF4 on ST72311

PB3 on ST72251
doesn't exist on ST72311

Output compare pins (1 and 2)

OCF1

OCF2

Output compare event flag (bit in TASR).

OC1E OC2E Output pin enable bit in TACR2.

oLvL1 OLVL2 Level to be output on compare (bit in TACRL1).

FOLV1 FOLV2 Force compare bit in TACR1

OCIE Common Interrupt Mask Flag in TACR1
« Timer B:
Channel 1 Channel 2 Function

Output compare registers

TBOCIHR & TBOC2HR & TBOC2LR p_ P . J

TBOCI1LR (16-bit, read-write access)

OCMP1_B OCMP2_B

PC1 on ST72251
PC1 on ST72311

PC4 on ST72251
PCOon ST72311

Output compare pins (1 and 2)

OCF1 OCF2 Output compare event flag (bit in TBSR).
OC1E OC2E Output pin enable bit in TBCR2.
oLvL1 OLvL2 Level to be output on compare (bit in TBCR1).
FOLV1 FOLV2 Force compare bit in TBCR1

OCIE Common Interrupt Mask Flag in TBCR1

In the following text, we shall only consider the Output Compare 1 function of Timer A. The
other combinations are exactly the same, if the letters A, B and the figures 1, 2 are replaced

appropriately.

112/315

(572

5 - Peripherals

The TAOC1HR-TAOCILR pair is a 16 bit register whose value is continuously compared to
the free-running counter. If the compare function is not used, it can be used for general
purpose storage.

When the match occurs, the OCF1 flag is set in the TASR register. This bit can only be reset
by the following sequence: a read of TASR, then an access (read or write) to TAOC1LR.

If the OCIE bit in the TACRL register is set, this event triggers an interrupt request. The
OCF1 bit is not cleared automatically, and must be cleared by the program as said above.

If the OCLE bit is set in the TACR2 register, the OCMP1_A pin is driven by Timer A. When
the OCF1 bit is set, this copies the level of the OLVL1 bit of the TACRL1 register to the pin.

The FOLV1 bit, when set, switches the timer into a mode where the output pin constantly
reflects the state of the OLVLL1 bit. The FOLV1 bit can only be set by software; to reset it, it
is necessary to perform a hardware reset.

5.5.5 One-pulse mode

The input capture and output compare features are intermingled in One Pulse Mode. This
mode is selected by setting the OPM bit in the TACR2 register (or TBCR2 for Timer B).

In this mode, an active edge on the ICAP1_A pin toggles the OCMP1_A output pin, then, after
a predefined delay, this pin is toggled back to its initial level. This is the numeric equivalent of
a one-shot multivibrator.

The settings for this mode are performed as follows:

4

Setthe TAOC1HR-TAOCILR register pair to the number of ticks corresponding to the delay
(this number depends on the clock frequency), minus 4.

Set the OLVL2 bit of the TACRL1 register to the state required for the output pin for the
duration of the pulse, and OLVL1 of TACR1 to the complement of this state to terminate the
pulse.

Set the IEDGL1 bit of TACRL for the desired active edge on the input (0 for falling edge, 1 for
rising edge).

Set the OPM bit of TACR2 to enable the one-pulse mode.
Set the OCL1E bit of TACR2 to enable the output pin.

113/315

5 - Peripherals

loaded with the duration
Input

ture 1 of the pulse
cap I.Jre 16 bit output compare register
pin Free running counter TAOC1HR, TAOC1LR
Configuration of the 16 16
; ; Compare
input captL.Jre pin FEFCh
(see the input
capture mode
diagram)
— Timer A control
OPM register 1 (TACR1)
Timer A control ICIE|OCIE OoLvL2 OLVL1

register 2 (TACR2)

Timer A status

register (TASR) r - —4|
ICF1 OCF2 — latch latch

P Clk : : Clk [
Condition code
register (CCR) L S —
Configuration of
l the output compare pin
(see the output compare
\/ mode diagram) Output
| [compare 1
pin

Interrupt to
the core

One pulse mode and corresponding interrupt mechanism:

diagram for timer A

05-pulse

The input capture event both toggles the output and resets the free-running counter to FFFCh,
and a successful match with the value in the register TAOCL1R toggles the output back. This is
why the compare register should be set to the calculated value minus 4.

The leading and trailing edges of the pulse can generate interrupts if desired:

4

114/315

5 - Peripherals

« The input capture event, corresponding to the leading edge, sets the ICF1 bit of TASR. This
can trigger an interrupt if the ICIE mask bit is set. It must then be reset by software as
explained above.

« The output compare 2 event, corresponding to the trailing edge, sets the OCF2 bit of TASR.
This can trigger an interrupt if the OCIE mask bit is set. It must then be reset by software as
explained above.

The OCF1 bit is never set in this mode. This allows the interrupt requests generated by these
two events to be separately enabled or disabled.

5.5.6 Pulse-Width Modulation mode

Two output compare circuits of the same timer are involved simultaneously in Pulse-Width
Modulation mode. This mode is selected by setting the PWM bit of the TACR2 register (or
TBCR2 for Timer B). The PWM mode and the OPM mode are exclusive; if both selection bits
are set at the same time, OPM mode is overridden by PWM mode.

In this mode, no external event resets the free-running timer; instead, the second compare cir-
cuitis used. Output Compare register 2 should be set to the value of the repetition period, con-
verted in timer ticks, minus 4. Each time the free-running timer matches the Output Compare
2 register, the same events occur as an the input capture occurs in One Pulse Mode: output
pin OCMP1_A is toggled, and the free-running counter is reset to FFFCh. Later, a successful
match with the value in the TAOCLR register toggles the output back.

4

115/315

5 - Peripherals

loaded with the duration loaded with the duration
of the period of the pulse
Free running counter 16 bit output compare register 16 bit output compare register
TAOC2HR, TAOC2LR TAOC1HR, TAOC1LR
16 16 16
FFFCh Compare Compare
/
16

PWM
Timer A control
register 2
(TACR2)
Timer A control
\\/ register 1 (TACR1)
ICIE OLVL2 OLVL1
Timer A status]
register (TASR)
\ 4
ICF1 — latch latch
P Clk : | Clk [«—
Condition code
register (CCR) —p S

Configuration of
the output compare pin
(see the output compare;
mode diagram)

Interrupt to Output 1
the core compgre
pin

PWM mode and corresponding interrupt mechanism:

diagram for timer A

05-PWM

The settings for this mode are performed as follows:

» Setthe TAOC1IHR-TAOCILR pair to the number of ticks corresponding to the duration of
the output pulse (this number depends on the clock frequency), minus 4.

4

116/315

5 - Peripherals

» Set the TAOC2HR-TAOC2LR register pair to the number of ticks corresponding to the
duration of the whole cycle (this number depends on the clock frequency), minus 4.

« Set the OLVL2 bit in the TACRL register to the state required for the output pin for the
duration of the pulse, and OLVL1 in TACRL1 to the complement of this state to terminate the
pulse.

« Set the PWM bit in TACR2 to enable the Pulse-Width Modulation mode.
« Setthe PWM bit in TACR2 to enable the output pin.

The OCF1 and OCF2 bits are never set in this mode. However, the leading edge of the pulse,
corresponding to the start of cycle, can generate an interrupt if desired. Actually, the Compare
2 event, as mentioned before, mimics a Capture 1 event. This sets the ICF1 bit in the TASR
register. This can trigger an interrupt if the ICIE mask bit is set. It must then be reset by soft-
ware as explained for Input Capture.

The physical Capture 1 input, ICAP1_A, is inhibited for this reason, but the other input pin,
ICAP2_A remains active. This allows input captures to be performed while the timer is used in
Pulse-Width Modulation mode. An example of this is given in the first application in Chapter 9.
In this application, the timer generates periodic pulses while its frequency is controlled using a
Phase-Locked Loop scheme to synchronize it with an external reference frequency.

The application described in Chapter 9 uses the timer in PWM mode with interrupt generation.
The capture feature is also used at the same time to synchronize pulse generation with an ex-
ternal signal, using a Phase-Locked Loop. Another timer is used to produce an interrupt after
a delay each time the timer is reinitialized for the program’s needs.

5.6 ANALOG TO DIGITAL CONVERTER

5.6.1 Description

As a measuring device, the converter is specified by parameters that give the degree of accu-
racy of the conversion. These are:

« Input range: positive. Negative voltages are not converted.
« Type of conversion: ratiometric.
« Resolution: 8 bits, that is, 256 discrete values.

» Linearity: the conversion is guaranteed monotonic. This means that when the input voltage
increases, the converted value either remains the same or increases, never decreases. The
same applies when the voltage decreases.

»« Accuracy: to within 1 LSB worst case, all causes of error included; typical 0.3 LSB. This
means that for any voltage at the input, the conversion result does not differ from the
expected result by more than 1/255 of the supply voltage in the worst case, or 0.12%

typically.

172 117/315

5 - Peripherals

« Conversion time: 64 clock cycles of the ADC. The ADC being fed with the core clock
frequency.

These somewhat cryptic features actually mean the following simple facts:

The input voltage must remain positive or null; below zero volt, the conversion yields zero. In
addition, the voltage at any input is limited to —0.3 V. If a signal ranges includes the zero, two
solutions are available as described later in this chapter.

The ADC of the ST7 is a ratiometric converter, that is, it returns a binary number that ex-
presses the ratio between the input voltage and the supply voltage. A input of zero volt (or
lower) provides a binary result of zero; an input of Vpp (or more) provides a result of 255. The
resolution is eight bits, which means that the converter distinguishes between 28 voltage
values, that is 256 values.

Accuracy and linearity are important features since they determine whether a converter is suit-
able or not for a certain job. A discussion of this subject is given below.

The conversion time depends on the core clock frequency. This is a factor that must be taken
into account when selecting the crystal frequency and the division rate, since in slow mode the
clock to the converter is also slowed down.

5.6.2 Using the Analog to Digital Converter
Controlling the ADC is fairly simple, since it is controlled by a single register (ADCCSR).

Bit 5 of the CSR (ADON) is the on/off switch of the ADC. When off, it does not consume powetr,
reducing the dissipation of the ST7. When switched on again, for the first 30 usecs, conver-
sions may be inaccurate.

Bits 2 to 0 select the input pin whose value is to be read. The inputs to the ADC are actually
pins taken from a parallel port. So the pins that are to be used as analog inputs must be con-
figured as input, no pull-up, no interrupt (DDR=0, OR=0) to put them in high-impedance and
avoid any disturbance on them.

Six analog inputs are available on the ST72251: PCO to PC5
Eight analog input are available on the ST72311: PDO to PD?7.

Any write to the ADCCSR register stops the conversion in progress and starts a new one.
When conversion is finished, bit 7 of the ADCCSR (COCO) is set to one meaning that data is
available in the Data Register (ADCDR), and a new conversion starts. The converter thus con-
tinuously converts the input value; any read from the ADCDR will return a value that gives the
voltage of the corresponding input, measured at a time no earlier than the conversion time
specified above (2 speeds). If you do not need a time precision greater than this value, it is
simplest just to leave the converter running continuously and read the value whenever you
need it.

118/315 172

5 - Peripherals

The COCO bit is reset when the ADCCSR register is written.

COCO - ADON| O - CH2 | CH1 | CHO
? ¢ ADC Control / Status register (ADCCSR)
fCPU
ADC COCO : Conversion Complete
- ADON: A/D converter On
AINO f CH2-CHO: Channel selection
Analog Sample
mux ——p» and
hold
ADC Data register (ADCDR)
AINn
AD7 | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 | ADO

ADC block diagram

05-adcO
5.6.3 The problem of the converter’'s accuracy

Linearity and accuracy are different ways of expressing the same reality: the successive
voltage steps that correspond to each of the binary values are not absolutely equally spaced
(otherwise the converter would be perfect), leading to a conversion error. Depending on the
type of work the converter is employed for, one way or the other is better for expressing the
suitability of the converter.

If the converter is to be used as a measuring input, like measuring a temperature, a voltage,
the level in a tank, to send it for information purposes, accuracy is the best expression. It indi-
cates how much confidence one can have in the data.

If the converter is to be used as the feedback input for a servo loop of the second order, for ex-
ample a positioning device using a DC motor and a feedback potentiometer, then linearity is
the key factor. Not only must a servo loop be accurate (since this accuracy translates into an
error expressed in mm in the positioning system) but also it must be stable. So, the parame-
ters of the whole system must meet certain conditions summarized in the so-called Nyquist

172 119/315

5 - Peripherals

criterion, that states the shape of the curve that relates the closed-loop gain with the phase
shift. These parameters depend on the gain and phase shift of all of the components of the
system, including the ADC. The local gain of the converter is the slope of the conversion
curve. This value is given by the ratio between the actual height of the step and its theoretical
height. This number is either greater or less than zero, depending on the point considered.
This local gain multiplies the total loop gain, and thus may greatly affect it. Thus there may be
some points where the gain is too high to meet the Nyquist criterion, leading to instability at
these points.

Generally speaking, implementing a numeric servo loop requires very high resolution and lin-
earity, combined with a short conversion time. This means an expensive converter, and will be
outside the range of the ST7 ADC unless the application just needs a servo loop but does not
need high performance.

5.6.4 Using the ADC to convert positive and negative voltages; increasing its resolution

5.6.4.1 Measuring negative and positive voltages

There are two ways of handling both positive and negative voltages with a converter that can
only handle positive voltages.

The first way is to amplify or attenuate the signal and to shift it by adding a fixed DC voltage so
that when it varies within its whole range, the ADC is fed with a voltage between zero and Vpp
(that is 5V in most cases). Then, when reading the ADCDR register as an unsigned value,
subtracting the DC offset yields a signed number that is zero when the signal to read is zero.

This method is simple, but it reduces the resolution since the whole signal range must fit the
256-value range of the converter.

VanaD['VDDA/Z +VDDA/2] Analog
Oo—— input
Vin
ADC ::> ADCDR
Offset = +V,,/2
O—— L
Conversion result =
s5igned byte (ADCDR + 128

Measuring relative voltages using an analog offset

05-adc1

4

120/315

5 - Peripherals

The second method uses an absolute rectifier circuit that produces a voltage that is the abso-
lute value of the input voltage. This circuit also provides a bit that indicates the sign of the input
voltage. Thus the conversion of the whole range is increased by one extra bit that doubles the
resolution.

v R1 RZ —
ana Analog
o4 R R — input

Vv,
[0, +Vdd]

ok Signof V.,

7 Digital
input
(low =
negative)

T

Measuring signed voltages using an absolute rectifier

05-adc2
5.6.4.2 Increasing the resolution

The resolution of the converter is the number of different values of the input voltage that it can
distinguish. This number depends on the actual number of discrete voltages that the converter
can internally produce and compare to the input voltage. It would appear that it is not possible
to change it since it is built into the silicon chip.

Luckily, there are ways of doing it from the outside. Let us examine the principle first, then a
real application.

Let us assume that we feed the converter with a voltage VO. This voltage will lead to the con-
version result Adc0. What does this mean? It means that the converter has seen a voltage
ranging between that of the step Adc0O and that of the step AdcO + 1. We do not know where
this voltage lies within that range.

172 121/315

5 - Peripherals

Let us now add to that voltage VO, a small voltage, that is equal to half the smallest step, that
is,

Vdda
255 % 2

If the voltage VO is included within

10

vdda x aAch +=
O

Vdda><AchS Vo< 2

255 255

the converter will convert it as AdcO.

If the voltage VO is included within

10

Vdda x ZAdcO + =

EA 20 Vdda x (Adc0 + 1)
<V0<

255 255

the converter will convert it as AdcO + 1.

We can now distinguish more finely between two values of the input voltage, as soon as they
differ by more than

Vdda
255 % 2

Let us exploit this by doing two successive conversions of the voltage V: the first time with VO
alone, the next time with

122/315

4

5 - Peripherals

Vdda

VO+ Seews

This will yield two results, AdcO and Adcl. If we take the sum of these values, whatever the
value of V, it will range from 0 + 0 = 0 to 255 + 255 =510. This new result now has a resolution
of 511 points, which is almost double the original resolution.

The figure below depicts this.

Extra step = analog voltage
equivalent to 1/2 Isb (Vopa / 510)
2 acquisitions:

ZO\\ 1°) acquisition of Vana
O— 2°) acquisition of Vana + extra step
107 Vin
&>
Ie Analog
Vana input
i Conversion
AConversmn A
adc0+1 —I adc0+1 _I
V1=V0 +AV
with
adcd AV=Vyp, /255 adcd
and
extra step = AV /2
Vin ! Vin
L
V0 T Vo | Vi »
? |
ana IEana

min min

| VO < Vana < (VO + AV/2) | | (VO + AV/2) < Vana < v1|
Vin acquisition

adc0 «— without extra step:

Vin =Vana

adc0

Vin acquisition

_»
+ adc0 «— with extra step: —» adc0 + 1
_»

Vin = Vana +AV / 2
= 2adc0 <_ 9 bits accuracy
Result:

Example of a simplest scheme using an extra step
signal to double the accuracy

2adc0 + 1

05-adc3

4

123/315

5 - Peripherals

Actually, this method is not very convenient, because the typical error of the converter is 0.3
LSB which is too high compared to the small voltage that we intend to use as an extra step.
Also, the noise would make this increased resolution meaningless.

A practical way of increasing the converter resolution is to use the method of low-pass filtering
of noisy signals.

Let us assume that we disturb the voltage we want to measure with a random voltage that has
the following characteristics:

» The statistical average of the random voltage is zero, that is, is has a null D.C. component;
» Its average amplitude is about one LSB of the converter or more.

If we take a certain number of readings with the input voltage VO fixed, but with a noise with
the above characteristics added to it, and we compute the average, we shall find the same
value as a single conversion with no noise, since the average of the noise voltage is zero. But
if we look at the successive values that have been converted, they are not all equal because
of the noise that has either added of subtracted a certain count to or from the ideal conversion
result. If, instead of taking the mean of these values, we just add them, we get a number that
ranges from 0 to n * 255 where n is the number of readings added together. Since the succes-
sive conversion results are not identical, all the values in the range are possible. For example,
if we sum four readings, the result ranges to 4 * 255 = 1020. We can now distinguish 1021 dif-
ferent values of the input voltage.

This explanation is a bit too simple also, for the average of the successive values of the noise
tends to zero for a large number of readings. If we only take a small number of readings, the
sum of the readings will itself be affected by a noise. It is possible to calculate the number of
readings that must be summed together to have that noise smaller than the resolution we ex-
pect to get.

5.6.4.3 Application Examples

The application described in Chapter 7 uses the converter to get a value derived from the po-
sition of a potentiometer. This is a convenient and cheap way of inputting an 8-bit value, also
used in the second application, in Chapter 10, where three calibration values are input using
three potentiometers.

In Chapter 9, the converter is used as a comparator to produce a logical signal depending on
whether the analog input signal is above or below a predefined threshold.

An example of increasing the resolution using the summing method above is given in the
second application, Chapter 10.

4

124/315

5 - Peripherals

5.7 SERIAL PERIPHERAL INTERFACE

The Serial Peripheral Interface is a device that allows synchronous, bit serial communication
between a microcontroller and a peripheral such as a serial-access memory, a Liquid Crystal
Display module, etc.; or between two or more microcontrollers. This interface only requires
three lines, thus saving pins for other purposes. The data is sent on a byte by byte basis. To
perform the same function using a byte-wide parallel interface, at least ten lines are needed:
eight for the data plus two for the handshake.

When connected to a peripheral, the SPI is configured as a master; when connected to an-
other microcontroller, it is configured either as a master or as a slave.

The maximum bit rate of a master is 4 MHz with a 16-MHz crystal, or 250 kBytes per second.
With this speed, serial transmission is just as fast as parallel transmission, since the instruc-
tions needed to put or get a byte through the channel take longer than the transmission.

Actually, transfer is bi-directional; at the same time that data is sent on one line, it is received
from the other line; this allows full-duplex transmission at the rate mentioned above when two
microcontrollers are connected together.

A supplementary pin, SS, allows the SPI to be enabled when it is in slave mode. This allows
a master to be connected to several slaves and to communicate with only one slave at a time.
All the logic needed for multidrop communication is provided, including collision detection.
This permits reliable interprocessor communication. When the SPI is in master mode, this pin
must be set to a high level.

Here is an example of two microcontrollers connected together:

Voo
MSTR=1 SS MSTR=0
L p» MOSI MOSI
|8-bit shift register|<-|v||so MISO <—|8-bit shift register’«J
f—;) SCK SCK —— T
SPI Clock SS
generator
permanent permanent
MASTER SLAVI_E
configuration configuration

Simplest configuration for a dialogue with SPls
between two microcontrollers

05-spil

125/315

4

5 - Peripherals

When one master controls two or more slaves, a method must be used to distinguish between
the two slaves. Several methods are available. The one shown below uses the SS pin of each
slave to control which slave is active at any given time. These pins are each driven by a sep-
arate output pin of the master controller:

Voo
MSTR=1 SS MSTR=0
» MOSI ‘ MOSI
\-fs-bit shift register|<-|v||so | MISO 4—}8-bit shift register’«J
f—;) SCK SCK —— T
SPICloc Output -1- SS
generator
Output2
permanent
MASTER SLAVE 1

MSTR=0

MOSI
|v||so<—}8-bit shift register’{J
SCK —J

SS

SLAVE 2

Single master system for a dialogue with SPIs
between three microcontrollers

05-spi2

4

126/315

5 - Peripherals

An example of the use of the SPI to send data to a LCD display module is given in the second
application, Chapter 10. The configuration used is shown in the figure below with the appro-
priate values in the registers.

Parallel data out

i i

Serial Serial
< < data out data in «
4094 4094
Clock
External shift registers
ST72311
— MOSI
Internal data bus I_.
SPRO-SPR1-SPR2: Rate selection
SPIDR)
- - - MISO SPIE: Interrupt enable
—»— 8-bit shift register (pp— SPE: Output enable
8 MSTR: Master
/I SCK CPOL: Clock polarity
» = CPHA: Clock phase

SPI |—» SPI

Clock —P» State [P 55 vad

Generator Control < T
3* T r """"" rI/O or alternate function

circuitry (SPE), master or
SPICR | _ | |
——

slave configuration (MSTR)
SPIE| SPE |SPR2MSTRICPOL|CPHA[SPR1[SPRO
0 1 1 1 0 0 0 0

» Max speed (f,,, / 4)
» Permanent master mode «

» SPI alternate functions connected to pins

» No interrupt in this application

Expanding the parallel outputs using the SPI and external shift registers

05-app10

4

127/315

5 - Peripherals

The CPOL and CPHA bits in the control register allow you to select which clock edge is used
externally as the active one (leading or trailing) and its polarity (low or high level after trans-
mission).

5.8 SERIAL COMMUNICATION INTERFACE

The Serial Communication Interface is perhaps the most classical interface used when two
systems are connected together. This is especially true when a small system is connected to
a PC, either permanently, or temporarily, for instance for calibration, logging or maintenance.

The SCI differs from the SPI in several ways:

» The clock is not transmitted along with the data;
« The first data bit is preceded by a Start bit;

« The first data bit sent is the low-order bit;

» The last data bit is followed by a Stop bit.

5.8.1 Bit rate generator

The bit clock is derived from the CPU clock, divided by a user-selectable value. There are two
ways of doing this:

For the most popular bit rates, the Baud Rate Register offers a choice of four prescaler values,
and the output of the prescaler is further divided by two separate divisors that provide the re-
ceive bit rate and the transmit bit rate. The prescaler is driven by the core clock divided by 32.

This gives the following combinations (only the receive bit rate is considered here, because
the transmit bit rate is produced exactly the same way):

For a 8 MHz core clock (16 MHz crystal):

Prescaler value
Divider value 1 3 4 13
1 250000 83333 62500 19231
2 125000 41667 31250 9615
4 62500 20833 15625 4808
8 31250 10417 7813 2404
16 15625 5208 3906 1202
32 7813 2604 1953 601
64 3906 1302 977 300
128 1953 651 488 150
128/315 Kﬁ

5 - Peripherals

With another core clock, we would get different values. The values in bold are the most com-
monly used. Please note that they are not exact; however, asynchronous serial transmission
is by nature tolerant of bit rate errors of up to 4%. The error here is only 0.16%.

The division ratio is selected by bits in the Baud Rate Register, with two bits for the prescaler
value, then three bits for the receive divisor, and three more bits for the transmit divisor.

If no combination of the core clock and the division ratio provided by the BRR fits the your re-
quirements, you can specify a value between 1 and 255 as a prescaler for the receiver by
writing that value in the Extended Receiver Prescaler Register. The core clock is then divided
by 16, and by this division ratio. If the ERPR is set to zero, then the selections of the BRR
above apply.

Similarly, the transmitter bit rate can be fine-tuned using the Extended Transmit Prescaler
Register.

5.8.2 Send and receive mechanism

The data to be sent and the data that is received are both put in the Data Register. When this
register is written, it starts the transmit process. When a word is received, it is copied to that
register where it can be read.

The word length is set in the Control Register 1 by the M bit. If the M bit is cleared, the word
length is 8 bits; otherwise, it is 9 bits. The ninth bit, when received, is copied to the R8 bit of
that same register. To transmit a 9-bit word, the first 8 bits are taken from the Data Register
(least-significant bit first) and the value of the T8 bit of the CR1 register is used as the ninth bit.

No automatic parity generation or checking is provided. If needed, parity may be calculated by
software, then copied to either bit 7 of the byte to send, if the word length is 7 bits plus parity,
or to bit T8, if the word length is 8 bits plus parity.

The serial transmission is straightforward: if the transmit shift register is empty, the data byte
written to the Transmit Data Register is copied to it. The serial sending process starts then, by
sending a zero bit (the start bit), then the byte to transmit, LSB first, then the T8 bit if the word
length is set to 9 bits, then a one bit (the stop bit). The transmission is then complete.

As soon as the Transmit Data Register is empty, the TDRE bit in the Status Register is set.
When the transmission is complete (when the shift register is empty), the TC bit is set. These
bits are cleared by first reading the SCISR register then accessing the SCITDR register.

The SCITDR acts as a buffer to allow a continuous data flow on the serial line, by reacting to
the interrupts that are generated when TDRE is set. This allows the core to supply the next
character in the time needed to transmit a character (about 500 us at 19200 bits per second).

4

129/315

5 - Peripherals

TCIE: Transmission complete interrupt enable
TE: assign TDO pin to alternate function
TDRE: Transmit data register empty

1=9 bits TC: Transmission complete

0=8 bits T8: to store the 9th bit when M=1

M: Word length

SCICR1
T8 M
| | | | Internal data bus
Internal
write command
TDR
| | D:ata r%agist%ar | | |
- YIVI VYV Y
cpu aud rate 1 . . . 0 |
2 generator _»O/O_’)stop tlrans|;n|t IshlftI relglstelr start_g_».
— 8or9bitslong — A
4
Transmit |
control
' SCISR
—IIL TDRE | TC
CCR

Interrupt to
>_r the core

SCICR? |
ITEfCE \\ [TE |

SCI simplified transmit bock diagram

05-SClI1

The receive mechanism is a bit more complicated. The receive clock must first be set to the
same frequency as the transmit clock of the source of the serial data to be received. Since the
start bit is used to resynchronize the clocks, the clock frequency has a fairly wide tolerance
since it is allowed to shift by a half-bit period at the end of the transmission, that is, 11 bits. This
gives a tolerance of about 5%, which is not a problem to achieve.

130/315 V<72

5 - Peripherals

The resynchronization is the most difficult thing. It uses a clock a 16 times the bit rate, and the
state of the receive data pin is checked at each period of that clock. When a falling edge is de-
tected, a mechanism takes that time plus half a bit period as the reference time for the sam-
pling of all subsequent bits. The start bit is also checked to be a zero at the sampling time. It
is not, it is considered a false start bit. The NF bit is set in the SCISR, and the receiving se-
guence is not initiated. All successive bits are shifted into the receive shift register. When the
stop bit arrives, it is also checked for a one. If it is a zero, the FE bit is set in the SCISR. The
RDRF bit is set when the reception is complete. It can generate an interrupt, so that the re-
ceived character may be picked up.

4

SCICR1 g
Receive : 129 bits
f counter:|1/9 if M=0 l‘ 0=8 bits
cpu A 1/10 if M=1
Recemver Bit OFF only if =1 Receive shift register
rat
baud rate ;)) O/ 0) _g
generator oN Stopl 8 | 7 |6 [5 |4 |3 |2 1 0
16xBit GOO(A
rate start bit _>| | | | | | | | |
P> Start bit ,
detection Receive . riomal data b
Bad | control 1if bafj nternal data bus
RDI start bit | » I stop bit | i RERF=1
—7> O/O | 1 | i while a good
‘ SCISR start bit occurs
RORF|IDLE [OR | NF | FE |

R8:Receive data bit 8

M: Word length

RDRF: Receive data ready flag
IDLE: Idle line detect

OR: Overrun error

NF: Noise flag

FE: Framing error

RIE: Receiver interrupt enable
ILIE: Idle line interrupt enable
RE: Receiver enable

s

Interrupt to

the core

CCR

SCICR2

|RIE|ILIE|

[Re|

SCI simplified receive bock diagram

05-sci2

131/315

5 - Peripherals

5.8.3 Status register
The Status Register includes the following bits that show the current status of the SCI:

« The TDRE and TC bits, if set, indicate that a new character may be supplied to continue the
transmission. The difference between these bits comes from the fact the SCI has a buffer
before the transmit shift register. The TDRE bit indicates that the buffer is empty, but the shift
register may not be empty. TC indicates that the shift register is empty, which also implies
that the buffer is empty. Depending on what you want to do, either or both of these bits may
be taken into account: TDRE indicates that the next character to send may now be supplied;
TC indicates that the last character is sent.

« The RDRF bit indicates that a character has been received.

« The IDLE bit goes to one when a full character time or more has elapsed since the last
character was received, indicating that the incoming character flow is suspended.

» The next three bits show that an error condition has been detected. The OR bit (OverRun)
indicates that the last-but-one character that remained unread in the Data Register has been
overwritten by the last character received: it is thus lost. Each bit is sampled three times, if
the three sample are not the same, the NF bit (Noise Flag) is set and the bit value is
determined according to the 2 to 1 majority rule. The FE bit (Framing Error) indicates that a
proper stop bit was not present at the end of the character. The interpretation of these error
conditions is not necessarily pertinent; however, the occurrence of any of these errors tends
to mean there is a transmission problem and that the data transfer is not reliable. The
character received in the Data Register is probably incorrect.

There is one case where a Framing Error is detected and where this condition is expected. It
is the case of a Break condition. A Break is a state of the line where it is in its active state
(“Mark”, or zero) for at least one character period. This may indicate that the line has been dis-
connected. It is also possible that the transmitter puts a normally connected line in Break con-
dition. This may be used to signal a particular event and it is up to the system designer to de-
cide which event.

5.8.4 Control Register 2

The Control Register 2 contains the following bits:

« TIE and TCIE, if set, enable an interrupt request when the TDRE or TC bits in the Status
Register are set, respectively.

« RIE, if set, enables an interrupt when the RDRF bit in the Status Register is set.
« ILIE, if set, enables an interrupt when the IDLE bit in the Status Register is set.

» TE and RE enable the transmitter and the receiver respectively, and change the appropriate
port pins to Serial Output and Serial Input.

132/315

4

5 - Peripherals

« RWU, when set, places the receiver in a mode where the RDRF bit is not set and a receive
interrupt is not generated, even when characters are received. The SCI exits this sleep state
only when one of the following events occur: the ninth bit is a one, with the word length set
to 9; or when an idle line condition is detected. Which of these events wakes up the SCI
depends on the state of the WAKE bit in Control Register 1. If cleared, the Idle line condition
wakes the SCI; if set, the ninth bit set does it.

« SBRK sets the transmit line to the Break condition. The line remains in this condition until
SBRK is cleared. No characters can be sent while in Break condition.

5.8.5 Using the Wake-Up feature in a multiprocessor system

Waking-up the SCI when the ninth bit is set allows you to build a network of microcontrollers,
all connected to the same line. Then, by convention, if a device sends a character with that bit
set, it can be considered by all microcontrollers as an address character. If the value of the ad-
dress received does not match the local address, a microcontroller has nothing to do, since it
will only be interrupted when addresses are received. If the address matches the local ad-
dress, the microcontroller may clear its RWU bit, thus switching the SCI to normal mode. It
then receives all the characters. Next time an address is received, and if that address is not its
own, the microcontroller just sets its RWU bit and from that time on, it is not disturbed by the
traffic on the line.

5.8.6 Handling the interrupts

All the interrupt causes of the SCI share the same interrupt vector. Thus, the same interrupt
service routine is used for all causes, and the interrupt service routine must start by testing the
Status Register bits to know which event caused the interrupt.

For this reason, and as ususal for most of the ST7 peripherals, once an interrupt has been ac-
cepted and the interrupt service routine is started, the interrupt request must be cleared by
program. The way to do it depends on the interrupt considered.

« The receive interrupt request bit is cleared by a read of the Status Register followed by a
read of the Data Register. Since these actions must anyway be done in the program, first
testing which bit is set in the Status Register and then reading the received character, the
clearing of the interrupt request is transparent to the programmer.

« The transmit interrupt request bit (either TD or TDRE) is cleared when the Status Register
is read and the Data Register is written. As above, this is transparent to the programmer.

« The IDLE condition interrupt request bit is only reset by resetting the RE (Receive Enable)
bit, even temporarily.

« The error bits OR, NF and FE are also only reset by resetting RE.

Using interrupt-driven software to handle the SCI is generally a good solution. A received
character or string is written to a buffer, then the main program is informed that something has

172 133/315

5 - Peripherals

been received by a flag set by the interrupt service routine. Conversely, if the main program
wants to send data, it prepares the character or string to send into a buffer in memory, then
starts the transmission by enabling the transmit interrupt. This will make the interrupt mecha-
nism send the characters one at a time, an interrupt occurring each time the SCI has sent a
character. The sending is terminated either by exhausting a character counter or encountering
a terminator at the end of the buffer. An example of this type of handling is described in the
second application, Chapter 10.

4

134/315

6 - STMicroelectronics Programming Tools

6 STMICROELECTRONICS PROGRAMMING TOOLS

This chapter describes the STMicroelectronics programming tools, their installation and their
use, based on a simple example program.

The standard STMicroelectronics ST7 programming tools package includes the following
items:

» Assembler ASM.EXE V1.9

» Linker LYN.EXE V1.7

» Librarian LIB.EXE V1.2

» Object code converter OBSEND.EXE V1.2

« EPROM programmer and debugger, described in the next chapter

This package, supplied for free, runs on DOS only, or in a DOS box under Windows.

Other packages can be purchased that offer C-language programming. One of them is intro-
duced in the Chapter 8. Thus C language is omitted on purpose in this chapter.

To write and modify the source files, a text editor is required. Any text editor will suit; however,
STMicroelectronics recommends using WinEdit, and the STMicroelectronics programming
tools expect to find WinEdit already installed on the computer before they can be installed. So
the installation of WinEdit is also described, and all subsequent references to text editing in-
volve WinEdit.

This chapter concludes with the demonstration of a very simple program that shows how to
write source code, assembile it, and link it. A more complete program will be demonstrated in
the next chapter, where the EPROM programmer and debugging tools are described.

6.1 ASSEMBLER

6.1.1 An overview of the assembler function

The program, as the programmer writes it, is a kind of text that uses a conventional grammar
to specify which instruction to use, with which operands, what are the data involved, where the
program and the data reside in memory, and more. This text, called the Source Text, obeys a
conventional grammar that is usually called Assembler or Assembly Language. The assem-
bler is a translator program that converts the source text into machine language. The result is
a file called an Object file.

4

135/315

6 - STMicroelectronics Programming Tools

include files EX: register declaration

< segment definition

File2.inc

S

——

File.obj

1

Relocatable object file

asm.exe

File.asm
(-li option) \Q
Assembler File.Ist
source file
v
Listing file

Assembler invocation :
"asm -li file"; -li option produces a listing file (.Ist).

06-ast7

The source text is, like an ordinary text, made of words. There are two kinds of words (groups
of characters in the text): the predefined words, that are the opcodes and the pseudo-ops, and
user-defined words, called identifiers, that according to their use are called either Labels or
Symbols. Both obey the rule below:

Syntax: a label or a symbol name must start with a letter, and the other characters may include
letters and figures, and the underscore character (). Any number of characters is allowed;
however, only the first 30 characters are meaningful, that is, if two hames have the same first
30 characters, they will be considered the same and an error will occur. The ST7 assembler is
case-sensitive, that is, upper-case and lower-case characters are considered different. Ex-
ample: Thi sLabel and Thi sl abel are different.

The source text is made up of lines, that are terminated by a carriage-return character. Each
of the lines of the source text represents one complete command and is called a Statement. A
statement itself is divided in fields, numbered from left to right.

Syntax: A statement may have zero to four fields, separated by at least one space or tabula-
tion character. These fields are called, in order: the label field, the operation field, the operand
field and the comment field.

136/315

4

6 - STMicroelectronics Programming Tools

The label field must start on the first character of the line. The label is a name that identifies the
address in memory of the objects defined in the current line, or, if none, on the next non-empty
line. The label name may if desired and for sake of clarity be followed by a colon, as in the ex-
ample below where both labels are correct:

MyFirstLabel : ADD A, #2
MySecondLabel ADD A, #2

The operation field may contain either an opcode, or a pseudo-op, or a macro hame. The con-
cept of macro will be defined later. If there is no label in the line, there must be at least one
space or tabulation character before the operation field.

The operand field may contain various kinds of objects, according to the type of the operation
field. It must be preceded by at least one space or tabulation character.

The comment field must be preceded by at least one space or tabulation character, then a
semicolon (;). The remainder of the line is ignored by the assembler. This allows to add com-
ments in the source code to help to maintain the program by explaining the working of the in-
structions used.

The various services that the ST7 assembler provides are detailed below.

6.1.2 Instruction coding
This is the most obvious task of the assembler.

As mentioned in the chapter that discusses the instruction set, all instructions are symbolized
by their mnemonic name. For example, the add instruction is called ADD, the jump instruction
is called JP, and so on.

The role of the assembler is not as simple as that. The ADDinstruction is not translated into one
byte; instead, the addressing mode is also coded in the opcode. For example, as shown in the
complete instruction table of the Chapter 4, the opcodes of the add instruction are:

ADD Immediate AB
ADD Short BB
ADD Long CB
ADD Long, (X) DB
ADD Short, (X) EB
ADD (X) FB

137/315

4

6 - STMicroelectronics Programming Tools

The assembler automatically recognizes the addressing mode after the syntax of the operand,
as in the following examples:

LD A, #2; inmmredi ate

LD A VALUE; direct short

LD A VALUE2; direct |ong

LD A VALUE, (X); indexed with short displacenent

LD A VALUE2, (X); indexed with |ong displacenent

LD A (X); indexed

LD A [VALUE]; indirect short

LD A [VALUE2]; indirect |ong

LD A [VALUE, (X)]; indirect indexed with short displacenment
LD A [VALUEZ2, (X)]; indirect indexed with |ong displacenment

assuming that the address of VALUE is less than 100h and the address of VALUE2 is above that
address.

The assembler translates each statement in turn, and assigns them to successive locations in
program memory. Provided the address of the first instruction is specified, all the following in-
structions have a defined place in memory.

6.1.3 Declaring variables

A variable, in the programming sense, is a piece of memory allocated to hold a particular data
object. This piece can range in size anywhere from a bit to the whole memory space; the most
common data types are bytes, words (double bytes), double words and arrays of these basic
data types. Whatever its type, a variable is given a symbolic name to be used in a program.
Another feature of a variable is that it may be changed during the execution of the program, in
which case it must reside in read-write memory or RAM.

We have already introduced the notion of symbolic data. The term VALUE given in the exam-
ples above is the symbolic name that the programmer may assign to a data object somewhere
in the addressable space. Since these names can be freely chosen, they can be meaningful
words that help the reader locate and recognize the various data. This is absolutely necessary
since numeric addresses immediately lead to confusion.

The second task the assembler performs is to assign addresses in memory. This is obvious as
far as the program is concerned: the successive instructions are put at consecutive ad-
dresses, and the programmer only needs to supply the start address of the program for the
whole code to be determined. However, when data are involved, things are not so clear. A var-
iable is assigned a place in memory, by giving an address for its first byte. Some variables are
only one byte long; others are one word long, or two bytes; others are more complex data like
double words, structures, arrays, etc. To avoid one variable to overlapping another, it is nec-
essary to space them properly, according to their length. It is very cumbersome to calculate

138/315 172

6 - STMicroelectronics Programming Tools

the position of the data in the memory by hand, and this is susceptible to mistakes; in addition,
inserting an extra variable in the middle of a list implies recalculating the addresses of all those
that follow it.

On the other hand, the absolute position of a variable in memory is virtually irrelevant, pro-
vided it is positioned within the addressable space. For the ST7, there is a little subtlety with
this point. There are addressing modes called Short, or variants thereof, as explained in the
chapter about the instruction set. These modes can only reach variables within the range 0 to
OFFh in memory, called page zero; in exchange, these addressing modes provide faster exe-
cution of the instruction. This means you can optimize your code by allocating the most fre-
guently-used variables to page zero. Coming back to the question of the absolute address of
a variable, we can say that a variable must be defined as either in page zero, or anywhere.
Once this is defined, the absolute position of the variable in memory is of little importance.

Allocating variables in memory is very cumbersome. Luckily, the assembler performs this
task, provided that the programmer specifies the length of each variable and the address of
the first one of the list. This is done using pseudo-ops, that are not machine instructions but
commands that the assembler interprets for specific results.

Syntax: the data storage for variables is specified with the pseudo-ops DS. B, DS. Wand DS. L
that reserve a byte, a word or a double word of data storage respectively, the address of the
first byte in all cases being associated with the name in the label field. An optional operand
field may exist, that indicates the number of objects of the specified type to be created from the
address associated with the label. Thus, DS. B 2 is equivalent to DS. Wand DS. W 2 is equivalent
to DS. L.

For example:
aByt e: DS.B 1 ; a one-byte variable
aWrd: DS. W1 ; a one-word variable
Arrayl: DS. B 20 ; an array of 20 one-byte variables
Array2: DS. W40 ; an array of 40 one-word vari abl es

here, it is easy to perform any change like insertion, deletion, change in the size of one vari-
able, and still be sure that the addresses are correctly calculated. If the start address is 50h for
example, the address of aByt e is 50h, awor d is 51h, Arrayl is 52h and Array2 is 72h.

These identifiers are now worth their addresses; they can be used in lieu of numeric ad-
dresses in the instructions, like:

LD A aByte ; aByte = 50h

4

139/315

6 - STMicroelectronics Programming Tools

Thus the assembler relieves the programmer from any calculation. Any change in the program
will be automatically accounted for when the source text is re-assembled.

6.1.4 Declaring constants

A constant, in assembler, may be of one of two kinds: the constant data, and the symbol def-
inition. In both cases, they are numeric (or string) values that are defined in the source text,
and remain unchanged for the whole life of the program.

6.1.4.1 Constant data

Constant data are similar to variables, in that they take up some bytes in memory to hold data.
The difference is that the data are defined in the source text, and cannot be changed while the
program is executing. For so, they are located in read-only memory (ROM). They are ac-
cessed in exactly the same way as variables. The value of these memory locations are de-
fined in the source text. Thus, a special pseudo-op is available that both reserves memory and
sets it to a user-defined value.

Syntax: The constant data are define using one of the pseudo-ops DC. B, DC. W DC. L, BYTE,
VORD, LONG and STRI NG. The DC pseudo-ops work like the DS pseudo-ops above, but in addi-
tion, they set the memory to the value of the operand field. Example:

.Power&2 DC. B 1,2,4,8,16, 32,64, 128 ; powers of 2

The following instruction reads one byte from the table according to the value of the index X.
The input value being loaded first into X, the value in A after the execution is 2 raised to the
power X (1 for X=0, 2 for X=1, 4 for X=2, etc.):

LD A Power O 2, (X)

The pseudo-ops BYTE, WORD and LONG are similar to DC. B, DC. Wand DC. L, respectively, but
with an important difference. When word and long data are stored in memory, it is important to
take care of the order of the bytes that make up a word or a long value. For example, the hex-
adecimal number 1234h can be stored in bytes of increasing addresses either as the se-
guence 12h, 34h, or as the sequence 34h, 12h. The same applies to long values that are
stored in four bytes. Either method has its advantages and drawbacks, and in fact the market
is divided into the proponents of one method or the other. The Motorola style is to put the most
significant byte first, that is 34h, 12h. The Intel style is the opposite, i.e. 12h, 34h. The ST7 fol-
lows the Motorola style in its instruction syntax: when extended addressing mode is used, the
first byte of the address is the most significant one. The JP instruction, using the long indexed
mode, reads the destination address in memory starting with the most significant byte. If you

140/315 172

6 - STMicroelectronics Programming Tools

wish to build a table of jump addresses, you must use this order to make the jumps occur as
expected.

On the other hand, a CALL instruction pushes the return address Most Significant Byte first,
which means that in memory the Most Significant Byte is stored at a higher address than the
Least Significant Byte that is stored next. If you wish to write a subroutine that compares the
return address, as found in the stack, with a constant address stored in memory (for example
to identify the caller of the subroutine), you must store the constant address Least Significant
Byte first.

To allow for both cases, two sets of pseudo-ops are available:

The pseudo-ops DC. B, DC. Wand DC. L put the Most Significant Byte first.
The pseudo-ops BYTE, WORD and LONG put the Least Significant Byte first.
Actually, DC. B and BYTE are equivalent, since only one byte comes into play.

The STRI NG pseudo-op is primarily used to define character strings, but actually any sequence
of bytes can be defined with it:

Message: STRING "Hell o"; this nmessage is the sanme as the foll ow ng:
Message2: STRI NG 48h, 45h, 4Ch, 4Ch, 4Fh

6.1.4.2 Symbol definition

Symbols are like constant data, in that they are defined in the source text, and they cannot be
changed by program execution. The difference is, that constant data uses up bytes in memory
for storage while symbols have values at assembly time but these values do not remain in
memory at execution time. Symbols are especially useful, however, for generating constant
data.

Syntax: a symbolic value is defined using the pseudo-op EQU. Example:

A DOZEN EQU 12

From this time on, the word A_Dozen can be used anywhere the number 12 would be appro-
priate. This is useful if a value is used in several different parts of a program, but may change
if the program is revised to take account of a hardware change. For example, a program that
displays characters on a liquid-crystal display must know at various points, the number of
characters that the display is able to show:

DI SPLAY_W DTH EQU 16

4

141/315

6 - STMicroelectronics Programming Tools

If you use the symbol DI SPLAY_W DTH several times in your program, and you place the above
declaration at a convenient place in the source text (in general at the beginning), when the dis-
play is later enlarged to 24 characters, this line is the only one you have to change:

DI SPLAY_W DTH EQU 24

for the program to be able to handle the new display size and without risking discrepancies re-
sulting from failing to change all occurances of 16 to 24.

Another use of symbols is in expressions:

DI SPLAY_W DTH EQU 24
DI SPLAY_HEI GHT EQU 4

Total _Chars: DC.B (DI SPLAY W DTH * DI SPLAY_HEI GHT)

Here, two symbols are defined: DI SPLAY_W DTHand DI SPLAY_HEI GHT. This does not affect the
memory contents in any way. However the last statement sets a memory byte to a value that
is the product of the two symbols above. Again, when constant data may vary depending on
the program version or other factors, it is advisable to define symbols that in turn give their
value to data in memory. This makes it easier to adapt the program to changes that can occur
later.

6.1.5 Relocation commands

6.1.5.1 What is relocation?

According to the description of the assembler so far, writing a program (besides the logical
analysis it involves) looks pretty straightforward. The program is made of a sequence of in-
structions starting from a specified address and extending towards upper memory. Similarly,
the variables in memory are mapped by increasing addresses from a certain start address.

Actually, things cannot be that simple. A program is almost never contained in a single source
file. The main reason is that this would generally lead to a very big file that would be difficult to
edit, and long to assemble. Another reason, almost as common, is that in an industrial envi-
ronment, a program is seldom written from scratch. Parts of it (and this is good programming
practice) come from previous programs, with some adaptation if necessary. Also, when a pro-
gram is written by a team of people, they cannot all work at the same time on the same source
file.

For all these reasons, a program is divided into source files called Modules, and one or more
modules are written by a certain person, while others are written by other people. This implies
that the structure of the program and its main functions have been thoroughly analyzed, that

142/315 172

6 - STMicroelectronics Programming Tools

the way that these functions communicate with each other has been defined, and that some
common writing rules have been set out.

Since the program is divided into several files, a problem arises because each programmer
does not know at which address his program should start. Supposing a colleague did as-
semble his own work, and that he told you the last address used by his piece of program, you
would also have to know the address of each of the routines of the other file that you have to
call from your own file.

This is why the concept of relocation has been created.

Relocation means that each programmer writes his own code without bothering about the lo-
cation of his part of the program in memory. The addresses of the objects (data and routines)
that he uses in his piece of code are left open like a plane return ticket. Such unknown ad-
dresses are just declared External, that is, not known at this time. Then, the programmer can
assemble his own piece of code. All external references are given null addresses; all labels
and data defined in that piece of code are given increasing addresses from zero.

When all the pieces have been assembled, all the object files (in machine language) are fed to
yet another translator program called a Linker. This program puts all the pieces together,
placing the pieces of code one after the other in memory, and does the same for the variables
defined throughout the files. Then, all external references made in each piece are adjusted to
match the true addresses of the referenced objects.

The object files fed to the linker, having no absolute memory addresses, are called relocatable
objects, which means that they can later be placed in memory at any address. The linker pro-
duces two files. The first one is the complete program, in machine language, with all the ad-
dresses fixed. This file is called the absolute object file, as opposed to the relocatable files that
were input. The second file is a text file, called the Map File, that indicates start address of
each piece of program, and the addresses of all labels and data used across modules. This
file is helpful for debugging, to know exactly where a certain object is in memory.

6.1.5.2 Segment definition

The linker is the translator that places the various program pieces in the memory map. Though
a particular sequence of instructions, or data storage area is not influenced by the absolute
position it occupies in memory, the linker has to apply some memory allocation rules for the
following reasons:

« The memory map is typically divided in four classes: Read Only Memory, Read-Write
Memory, Input-output, and non-existant.

« Each of these classes have a definite position in the addressable space which is fixed by
hardware.

172 143/315

6 - STMicroelectronics Programming Tools

« The read-write memory is divided into two areas: a short-addressable area and the
remainder, which is accessible using extended addressing.

» The input-output area is organized as a collection of individual registers that each have their
own function, and that are not interchangeable with other registers. The address of this area
is fixed by hardware.

For these reasons, it is necessary to be able to control the allocation mechanism. This is done
through the definition of segments in the source text. A Segment is a range of addresses
within the addressable space that has properties that can be defined. These properties drive
the linker’'s behaviour related to the placement of these segments in memory.

The main idea of a Segment is that, instead of defining a precise start address for a piece of
code or data, it is declared as belonging to a certain segment. Any number of segments may
be defined; but in practice, it is not necessary to define more segments than the number of
areas in memory where the objects can be placed.

To be used in the program, a segment must first be defined. The definition can involve the fol-
lowing items:
Name

This is necessary if the same segment is used in more than one place; it is optional otherwise.

Alignment type

When the segment is allocated, it must start at addresses that meet the following require-
ments:

Table 7. Table of the alignment options

Alignment type Properties

byt e No special requirement. Any address is valid.
wor d The start address must be even, that is, at the beginning of a word.
| ong The start address must be a multiple of four, that is, at the beginning of a double word.
para The start address must be a multiple of 16.
64 The start address must be a multiple of 64
128 The start address must be a multiple of 128
page The start address must be a multiple of 256
1K The start address must be a multiple of 1024
4K The start address must be a multiple of 4096

144/315 ﬁ

6 - STMicroelectronics Programming Tools

Combine option

This option has the following effects:

Key word Properties

(none) If none of the options below is chosen, the currently defined
segment is appended to the list of the segments of the same class

AT (start address) -|The segment must start at the address specified. The end address
(end address) is optional; if omitted, the hyphen must be omitted as well.

Conmon The segment defined with this option uses the same memory areal
as all segments with the same name in the same class.

The effect of these options is detailed in the next paragraph.

Class name

A class is a group of segments. The notion of class does not have any other properties, and
any number of classes may be created. However, the concept of class has been created to
help you organize your addressable space according to the characteristics of the various
areas. Typically, there should be a set of classes as shown in the table below:

Class name (examples) Class type and use
'ROM’ in read-only memory, for program instructions
'RAMO’ in read-write memory, in page zero (addresses lower than
100h)
'RAM’ in read-write memory, using extended addressing
'STACK’ in read-write memory, accessible to the stack pointer
10’ for input-output registers (always in page zero)

6.1.5.3 Using the Segment directive in the source file

When a block of instructions or of data is defined, it may be declared as belonging to a seg-
ment by inserting the pseudo-op SEGVENT before it. From that time on, and until the end of the
file, or until the next SEGVENT pseudo-op, whichever comes first, the block is considered to be-
long to that segment. Example:

segnment ’'rom
reset:
Id a, #cpudiv2
Id mscr, a ; fqg 8wz /2 = CPU clock = 4MHz

145/315

4

6 - STMicroelectronics Programming Tools

etc.

For a block of code, the SEGVENT directive may only occur after either an unconditional jump or
areturn instruction. This is because two segments are independent objects, that can be put in
different places in memory. In other words, two segments that are consecutive in the source
file may be put in non-consecutive places in memory. The only condition that allows for this is
that the last instruction before the END statement or the SEGVENT pseudo-op must be a jump,
that will be adjusted at link time.

Dividing a program into segments is not just done for fun; it must be to make the allocation of
the program in memory easier. You should only divide the source code where this is neces-
sary; you should not feel you have to cut your program into slices just to make it look impres-
sive.

6.1.5.4 Segment allocation

When all the source files are assembled, each segment in the object file starts at address
zero, except the segments with the combine option AT (see above) that start at the specified
address.

Such segments are called absolute segments. They apply a constraint to the linker, since the
linker is not free to place them anywhere there is room, but at a precise address. This can lead
to conflicts, if two absolute segments overlap by mistake. This is why absolute segments must
only be used where necessatry.

There are two cases where this is necessary: at the start of a class, and for input-output reg-
isters.

As shown in the previous paragraph, the notion of class is intended to distinguish the main
areas in addressable space. For example, the ST72251 has an input-output area from 0 to
7Fh; a page zero RAM area from 80 to OFFh; a RAM area from 100h to 13Fh; a STACK area
of 140h to 17Fh; and a ROM area from OEO0Oh to OFFFFh. The start (and perhaps the end)
address must be specified when the first segment of that class is introduced, using a state-
ment like:

. Program SEGVENT byte AT OEO00 ' ROM

Please note that the value after AT must be hexadecimal and that any radix, prefix or suffix is
forbidden. This statement declares that the ROMclass starts at OEO0Oh as does the segment
Pr ogr amthat belongs to that class.

All segments found later in the program with the same class name will be allocated after this
one. To make this work, the module that defines the classes has to be first in the object file list
when you invoke the linker.

146/315 172

6 - STMicroelectronics Programming Tools

If two segments of the same class have the same name, they are put at successive ad-
dresses, in the order they arrive in the list of object files. When all the segments with the same
name have been placed, then the next name is processed and all segments of that name in
the same class are laid out sequentially in memory. This process continues until all the seg-
ments have been allocated.

If a class have been given stringent requirement in terms of addressing (both a start address
and an end address are given), and if all segments in the list do not fit in that space, the linker
generates an error message.

As you can see, the process of allocating segments is fairly straightforward. The linker looks
in the class definitions, then in each class for absolute segment definitions; these segments
are allocated at the specified addresses. Then, all other segments are allocated in sequence,
starting in each class with the next segment of the same name, then with the first segment of
the next name, and so on until all the segments have been allocated. The result is that objects
that are in sequence in a source text may be dispersed in the memory; and on the other hand,
objects that are scattered thoughout the various modules may be contiguous in memory, if
they belong to segments defined in this way.

This mechanism is slightly altered when a segment is specified with the conmmon combine op-
tion. As said above, all segments that have the same name and the same class and that have
the common option share the same memory area. This area will have the size of the largest
segment of that group. This leads to having objects that overlap in memory. While the main
task of the linker is to avoid this situation, the programmer may want some objects to overlap
on purpose. There may be two reasons for this:

« To save memory. If two or more routines each use temporary variables that are not
preserved on exit, and if these routines do not call each other, it is possible to save memory
by overlapping the local variables of these routines.

« To allow data to change its type. In many circumstances, it is necessary to consider some
data in various ways at the same time. For example, a long variable (double word) may need
to be considered also as four successive one-byte variables. This corresponds to the notion
of Conditional Records In Pascal or Unions in C. This can be done by defining two sets of
data and giving the common attribute to their segments, as in the following example:

datal SEGMVENT byte conmon ' DATA
.LongValue DS.L 1 ; a long nunber
datal SEGVENT byte common ' DATA
. Bytel DS.B 1 ; first byte of the long val ue
. Byte2 DS.B 1 ; second one
[7[147/315

6 - STMicroelectronics Programming Tools

. Byte3 DS.B 1 ; third one
. Byte4 DS.B 1 ; fourth one

With this declaration, the four bytes Byt el to Byt e4 exactly overlap those of the value Long-
Val ue. It is then possible to access this storage either as a long value, or as four individual
bytes.

Obviously, the common attribute makes sense only for data storage.

6.1.5.5 Initialization of variables at power-on

The variables used in a program, being both read from and written to, have to be located in
RAM. This type of memory keeps the data as long as the power is applied; the contents of the
RAM are undefined at power on.

To start properly, a program must be able to rely on the values of the variables. It is good prac-
tice to design a program so that the default, or initial, or empty state of all variables is zero.
This means you initialize the RAM using a loop that sets all bytes in the RAM area to zero. This
is very easy to do, and for security, you should do it in all your programs .

There are variables, however, that must have an initial value other than zero. You must supply
values for them, and ensure that all the variables are initialized, each with its own value, be-
fore the main work of the program is activated.

This can be done using a string of load instructions that writes all the variables that need be in-
itialized, as in the example:

InitialVal uelEQU 100
Initial Val ue2EQU 12
Initial Val ueSEQU -2

LD A, #lnitial Val uel
LD Vari ablel, A
LD A #lnitial Val ue2
LD Vari able2, A
LD A, #lnitial Val ue3
LD Vari abl e3, A

etc.

Obviously, this method is cumbersome, and prone to having variables forgotten and left
floating. This is a very dangerous situation, because the value of a memory byte at power-on
is undetermined but often reproducible for a given chip. For example, by an unlucky chance an
uninitialized variable could have a value that does not prevent the program from working cor-
rectly during debugging; but when the product is put into production or, even worse, later at
the customer, the byte could then have a value that makes the program behave wrongly. The
consequences would then be very serious.

148/315 172

6 - STMicroelectronics Programming Tools

To provide a more convenient way of initializing all the variables that need to be, and to guar-
antee that they are all initialized without exception, the assembler has a feature that we shall
describe here.

The idea is to put all variables that must be initialized (with values other than zero, since all
others will be zeroed by a clearing loop as said above), in a single segment in RAM. All varia-
bles need not be declared in the same module, provided they use the same segment name.
Then, data constants are defined in another segment in ROM, in the same order and with the
same size as those in RAM. This looks like the following:

The segment in RAM is declared as a series of DS statements since these are storage for var-
iables:

data segnent ' | NI TDATA
VARI ABLES: EQU *
di. w DS. L
d2: DS. L
d3: DS. L
d4: DS. W
d5: DS. B

SIZE.RAM EQU {* - VARI ABLES}

The segment in ROM is declared as a series of DC statements, that give the initial values for
the corresponding variables:

data segnent ' ROM
I NI TI AL_VALUES: EQU *
cdl. w DC. L $1234
cd2: DC. L 12

cd3: DC. L 131000
cd4: DC. W 50000
cd5: DC. B 50

Based on this, all the variables can then be initialized by inserting a loop, at the beginning of
the code, that copies every ROM byte to the corresponding RAM byte:

InitVariables: Id X, #{low SIZE RAM; Start fromend of block to copy

I nitVarl: Id A ({INITIAL_VALUES-1}, X) ; Copy one byte
Id ({VARI ABLES- 1}, X), A
dec X; Next byte
jrne InitVarl

4

149/315

6 - STMicroelectronics Programming Tools

This routine uses the addresses of both segments, and the length of one of the segments, as
calculated by the expression SI ZE_ RAM EQU {* - VARI ABLES} where the * character means
“the current address in memory”.

Each start address is decreased by one because the structure of the loop is such that the
index goes from SI ZE_RAMto 1 instead of going from SI ZE_RAM 1 to 0. This simplifies the loop,
and makes it faster. Note the expression {l ow SI ZE_RAM that returns the low byte of the
value. The label SI ZE_RAMbeing calculated from two relocatable values, its type is WORD. Since
the Xregister requires a byte value, the assembler would produce an error without this precau-
tion.

This way of initializing the RAM variables works well, and indeed is used in high-level lan-
guages. However, it suffers from a major drawback: you have to take care that the two related
segments in ROM and RAM have exactly the same structure, otherwise the wrong values
would go to the wrong variables.

To avoid this problem, the assembler provides a syntax that allows to you create two seg-
ments at once for these data, using this sequence of declarations:

data segnent byte at 80 ' | Nl TDATA
VARI ABLES: EQU *

data segnent byte at E100 ' ROM

I NI TI AL_VALUES: EQU *

data segnent byte ' | Nl TDATA>ROM
dil. w DC. L $1234

d2: DC. L 12

d3: DC. L 131000

d4: DC. W 50000

d5: DC. B 50

SIZE.RAM EQU {* - VARI ABLES}

Here, we declare a composite segment. Based on its composite name, the addresses of the
objects it contains are situated in the segment at the left of the “>" sign (here | Nl TDATA), but
all the objects it contains are constant declarations that are put in ROM. What this syntax
does, is automatically create the RAM segment that contains the memory reservations (the DS
statements in the example above) whose structure exactly matches that of the constant
values declaration. So you don’t have to take care of making the two memory blocks con-
sistant; each constant you declare in the composite segment automatically has its storage cre-
ated in RAM. Provided that you pay attention to the proper declaration of the three labels that
drive the data copy loop in the piece of code above, you get your variables initialized in a con-
venient and error-free way.

4

150/315

6 - STMicroelectronics Programming Tools

6.1.5.6 Referencing symbols and labels between modules

Declaring external symbols

If a program is split into several modules, you have to use special declarations in the modules
to tell the assembler that some symbols are not defined in the current module, but in another
one, and that this is not a mistake; otherwise the assembler would produce an error message.
In addition, saying that a symbol is external, makes the assembler take special care of this
symbol by building a list of external symbols and of the place where they are used in the cur-
rent module. This list will be used by the linker that will resolve the addresses of theses sym-
bols, and correct the object file of that module with the right addresses at the places men-
tioned in the list.

The syntax of the declaration of external symbols is as in the example below:

EXTERNAL Val uel. b, Value2.w

where two identifiers are declared external. Each identifier is given a type, that is either byte,
word or long. This applies to the address of the identifier, that is either contained in a byte
(when the identifier is located in page zero) or in a word (when the identifier must be accessed
using extended addressing mode).

Caution: These suffixes do not mean that these data are of the byte or word type, i.e. that they
store bytes or words; it is their address that is either a byte or a word.

Byte or word identifiers are symbols or labels; long identifiers can only be generated using the
EQU pseudo-op.

Declaring public symbols

The notion of external symbols goes together with that of public symbols. For a symbol, de-
fined in a module, to be referenced in one or more other modules, it is necessary to declare
them as public. This action may seem superfluous, as you might expect that all symbols de-
fined in a module be should public in nature, and thus be accessible from everywhere.

Though this could be, it would actually be more an impediment than a comfort. Large pro-
grams have many symbols defined, and this would lead to both an overload of the linker, and
also a risk of collision between names defined in different modules.

In a team project, each programmer is responsible for a part of the total program. He is as-
signed a precise job to do, by writing a piece of code that performs a specified function that
has a specified set of data as the input and produces another set of specified data as the
output. Besides this, he is free to organize his work as he likes — though some writing style
rules might have been given to the team for sake of homogeneity of style and ease of mainte-

172 151/315

6 - STMicroelectronics Programming Tools

nance afterwards. The consequence is that he may define as many symbols he wants in his
module, and he is free to choose their names. This is because these symbols will not be
known outside of his module; they are called private, or local, symbols. The input and output
symbols, on the contrary, have been specified both for their names and for their types, values,
etc. These symbols are public, and may be used by everybody in the team since everybody
knows them.

If there were no local symbols, each time one programmer wished to create a new symbol, he
would have to consult all his colleagues to ensure that a symbol of the same name had not yet
been created.

The syntax of the declaration of public symbols is as in the example below:

PUBLI C Val uel, Val ue2

where two identifiers are declared public. Unlike in the EXTERN directive, each identifier already
has a type, that is either byte, word or long and that has been defined with the identifier itself.

The following example will show the difference between the type of the identifier and the type
of the object it represents.

PUBLI C Val uel, Val ue2, Constantl
Constant 1.1 EQU 1350000 ; a large value that does not fit a word

SEGMVENT ' DATA Page0’
Val uel. b DS. W1 ; a word data in page zero

SEGMVENT ' DATA_Ext ended’
Val ue2. w DS.B 1 ; a byte data in extended nenory

Val uel is a word variable, that is, the data requires two successive bytes for its storage; how-
ever, since this data is located in a segment that is meant to be located in page zero, the type
of the public symbol is byte. Conversely, Val ue2 is a byte variable, that is, only one byte is
needed to store the value. But this variable is located anywhere in memory, and requires ex-
tended addressing. The label val ue2 must thus be given the word type.

These subtleties are required because the assembler does not know about the location of var-
iables in memory at assembly time, since the segments are relocatable and will be assigned
absolute addresses only at link time. Without these declarations we could not use short ad-
dressing at all. Thus, the you are advised to pay special attention to these questions if you
want to optimize the execution time of your program by using the data in page zero.

4

152/315

6 - STMicroelectronics Programming Tools

Another way of declaring an identifier as public is to insert a dot before its name in the line
where it is defined. Using this notation, the example above becomes:

.Constant1.1 EQU 1350000 ; a large value that does not fit a word

SEGMVENT ' DATA Page0’
.Valuel. b DS. W1 ; a word data in page zero

SEGMVENT ' DATA_Ext ended’
.Value2.w DS.B 1 ; a byte data in extended nenory

You are free to use either notation as you prefer.

There is yet another way of declaring the identifiers’ sizes: instead of using the suffixes . b, . w
or .| as above, the labels may be declared using their plain name, and the current default type
applies. You may select the appropriate default type using one of the pseudo-ops BYTES,
WORDS or LONGS. In the example above this could give:

LONGS
. Constant1l EQU 1350000 ; a large value that does not fit a word

SEGMVENT ' DATA Page0’
BYTES
. Val uel DS. W1 ; a word data in page zero

SEGMVENT ' DATA_Ext ended’
WORDS
. Val ue2 DS.B 1 ; a byte data in extended nenory

Any number of identifiers may be declared before the default type is changed; it is not neces-
sary to repeat either of the pseudo-ops LONGS, WORDS or BYTES before each declaration if it is
the same type as the previous one.

The choice of this notation is independent of the choice of the method for declaring the pub-
lics; so, the example above may also be written:

PUBLI C Val uel, Val ue2, Constantl

LONGS

Constant 1 EQU 1350000 ; a large value that does not fit a word
SEGMVENT ' DATA Page0’
BYTES

Val uel DS. W1 ; a word data in page zero

SEGVENT °’ DATA_Ext ended’

4

153/315

6 - STMicroelectronics Programming Tools

WORDS
Val ue2 DS.B 1 ; a byte data in extended nenory

The lines containing the SEGVENT pseudo-op may appear either before or after the line with the
BYTES, WORDS or LONGS pseudo-op.

6.1.6 Conditional assembly

Conditional assembly is a convenience that all assemblers and compilers provide that helps
write a program that can allow variants, for example to accommodate various hardware con-
figurations.

It is frequent that a product actually exists in a family of variants that only differ by a few de-
tails. Writing as many programs as the number of variants is cumbersome and leads to mis-
takes when a change is made in a part that is common to all variants, but that has been for-
gotten in one of the variants.

For these types of situations, conditional assembly provide an efficient way of mastering the
updates of all versions simultaneously.

Conditional assembly uses structures IF...ENDIF or IF...ELSE...ENDIF like in high-level lan-
guages. The general syntax is:

#IF <condition> #|F <condition>
one or more lines of source text... one or more lines of source text...
#ENDIF #ELSE
one or more lines of source text...
#ENDIF

If the condition is satisfied, the lines between| If the condition is satisfied, the lines between
IF and ENDIF are processed by the|lFand ELSE are processed by the assembiler.
assembler. Otherwise, they are ignored, like| Otherwise, the lines between ELSE and
comments. ENDIF are processed by the assembler. The
other group of lines is ignored, like comments.

There are several types of conditions. Most use expressions evaluated from symbols that may
either be defined in the current module, or supplied in the assembler command line. Thus,
changing only one symbol may switch the groups of lines that are assembled is as many
places of the source text as the number of such IF... structures.

As an example, let us consider a product for which two different suppliers of displays are con-
sidered. These two displays are almost the same, except for a few differences. The product is
produced for some time with one type of display, then a better price has been negotiated with
the second supplier, so the production switches to the second type of display. Later, for similar
reason but the other way, products with the first type of display are manufactured.

154/315 172

6 - STMicroelectronics Programming Tools

If this situation is considered at design time, the best thing is to write the program with the ap-
propriate code for both cases. Then, by changing one line at the top of the source file, either
the code for the first display or the code for the second display is assembled. The program
could be structured like this:

#DEFI NE FI RST_TYPE
some program source lines...

#| FDEF FI RST_TYPE ; first conditional bl ock
source text for the first type of display...

#ELSE
source text for the second type of display...

#ENDI F
continuation of the program...

#| FDEF FI RST_TYPE ; second conditional bl ock
source text for the first type of display...

#ELSE
source text for the second type of display...

#ENDI F
continuation of the program...

#| FDEF FI RST_TYPE ; third conditional block
source text for the first type of display...

#ELSE
source text for the second type of display...

#ENDI F

continuation of the program...
end ; end of the program

In this example, the program is changed in three places to accommodate the change of the
display. The pseudo-op | FDEF is true if the identifier that follows it is defined in the source; it is
false otherwise. The pseudo-op #DEFI NE creates an identifier that equals an empty string; but
the identifier does exist, which is what we are testing.

In this version, the program will produce the version for the first display. To assemble the pro-
gram for the second display, the line:

#DEFI NE FI RST_TYPE

155/315

4

6 - STMicroelectronics Programming Tools

must be removed, or changed, like this:

#DEFI NE SECOND_TYPE

Then, the identifier FI RST_TYPE is no longer defined; that the identifier SECOND_TYPE is defined
instead does not prevent the FI RST_TYPE throughout the program being false, and thus ena-
bles the assembly of the ELSE part of the source.

The | FDEF line may also become a comment, like this:

; #DEFI NE FI RST_TYPE

with the same result.

It is even possible to change the version being assembled without altering a single line of the
source text. For this to happen, there must be no #DEFI NE pseudo-ops in the source text; in-
stead, the invocation line of the assemble must have the argument - D FI RST_TYPE. This de-
fines the identifier FI RST_TYPE before the program is assembled. Then, the program is assem-
bled for the first type of display. If this argument is omitted, or changed, the program is assem-
bled for the second type of display.

There are other types of #1 F pseudo-ops; although they can be used for the same function,
they are usually more often used within macros, so they will be explained in the paragraph that
discusses macros.

6.1.7 Macros

A macro is basically a predefined block of text that is associated with an identifier. Using this
identifier in lieu of an operation code, causes the text to be inserted at the position of the iden-
tifier. Example:

The code below defines a macro that contains three statements.

My Code MACRO
inc CounterlLo
Id A CounterHi
adc A, #0
MEND

The following code, in the same module, invokes the macro by inserting its name in the oper-
ation field.

4

156/315

6 - STMicroelectronics Programming Tools

ld A d
Idd

1
, A
My Code

ld A d3

The result is, when assembled:

35 0000 R C60000 Id A di

36 0003 R C70000 Id d2, A

37

38 My Code

38 0006 3C00 inc Count er Lo
38 0008 B601 Id A, CounterH
38 000A A900 adc A, #0

39 000C

40 000C R C60000 I d A, d3

We see that the word MyCode itself does not produce any code; but the following three lines
were not present in the source text above; they have been inserted by the expansion of the
macro.

If a macro were only that, it would not be worth it. Macros can actually be complex constructs,
using replaceable parameters and conditional assembly. A well-defined macro can save lots
of lines of text and provide error-free text generation, since the expansions always conform to
the definition of the macro. This means that once a macro is fine-tuned, it can be used in sev-
eral places in the source text with a guarantee of success.

We shall study the various features that macros allow and illustrate why macros can be so
helpful.

6.1.7.1 Replaceable parameters

Macros may be defined so that they accept one or more parameters. A parameter is a char-
acter string that is passed when the macro is invoked, and that affects the result of the expan-
sion. To define a macro argument, just add the formal nhame of the argument after the MACRO
pseudo-op in the macro definition. On invocation, this formal name, if used in the body of the
definition, will be replaced by the actual argument. Example: we shall build a macro that incre-
ments a data byte by two. It will perform an increment instruction twice on the byte. The defi-
nition of the macro is:

I ncBy Two MACRO TheByt e
i nc TheByte
i nc TheByte

4

157/315

6 - STMicroelectronics Programming Tools

MEND

The macro is used by adding the symbol of the byte to be incremented:

I ncByTwo CounterlLo

The macro is expanded by the assembler to the following code:

44 I ncByTwo CounterlLo
44 000F 3C00 inc Count er Lo
44 0011 3C00 inc Count er Lo

Two or more arguments may be used. The following macro adds two variables and puts the
result in a third variable. The definition of the macro is:

Addi ti on MACRO Var A, VarB, Result
Id A VarA
add A, VarB
Ild Result, A
MEND

The macro is used by typing the names of the symbols to be added and that of the result:

Addi ti on NbCOf Appl es, NbOF Pears, NbOf Fruit

The macro is expanded by the assembler into the following code:

57 Addi tion NbOf Appl es, NbCOF Pears,
NbOf Frui t

57 0013 B602 Id A, NoOF Appl es

57 0015 BB03 add A, NbOF Pears

57 0017 B704 Id NoOf Fruit, A

6.1.7.2 Local symbols

You can insert statements that define symbols inside a macro, or labels in front of some oper-
ations. However, this can lead to problems. Let us consider the following macro that incre-
ments a word variable. Unlike the example above, the low byte is incremented, then we test if
it is zero. If yes, we increment the high byte:

I ncWord MACRO LowByte, Hi Byte

158/315

4

6 - STMicroelectronics Programming Tools

i nc LowByte
jrne Nol ncHi gh
i nc H Byte

Nol ncHi gh:

this macro expands correctly when invoked:

63
63
63
63
63

MEND

0013 3C00
0015 R 2602
0017 3C01

| ncWord
inc
jrne
inc

Nol ncHi gh:

Count er Lo, CounterHi
Count er Lo
Nol ncHi gh
Count er Hi

But if we attempt to expand this macro one more time, we get an error. This is because the
label Nol ncH gh is also defined in the second expansion, which makes a duplicated identifier.
Obviously, a macro that can be expanded only once is not very useful.

To get rid of this difficulty, the macro language allows you to define local symbols. When a
symbol is defined as local to the macro, it will be automatically replaced by a special symbol,
that is unique for each expansion. So, the following, slightly modified macro:

I ncWword MACRO LowByt e,

| ocal Nol ncHi gh
i nc LowByte
jrne Nol ncHi gh
inc H Byte

Nol ncHi gh:

MEND

Hi Byt e

when expanded twice, produces the following text:

65
65
65
65
65
65
66
67
67
67
67
67
67

4

0013 3C00
0015 R 2602
0017 3C01
0019

0019 3C00
001B R 2602
001D 3C01

LOCO:

LOCL:

| ncWord

inc
jrne
inc

| ncWord
inc

jrne
i nc

Count er Lo, CounterHi
Counter Lo
LOCO
Count er Hi

Count er Lo, CounterHi
Counter Lo

LOC1
Count er Hi

159/315

6 - STMicroelectronics Programming Tools

We can see that the label Nol ncHi gh has been replaced in the first expansion by LOC0 and in
the second by LOC1. The multiple definition problem is how avoided.

6.1.7.3 Conditional statements in macros

You can have the macro expand a different way according to the value of the arguments. This
provides for completely optimized code, since only the expanded lines will produce code; un-
like a subroutine call that must perform tests during execution and thus consume time and
memory. Of course, conditional macro expansions only apply for conditions that can be deter-
mined at assembly time; if you need to wait until the execution has started to know the values
of the conditions, only a subroutine can do it then.

Conditional statements are a powerful way of making flexible macros, that can produce dif-
ferent code depending on their argument values. We have already seen the #IFDEF condition.
Here are some other conditions that can be tested.

#IFB Conditional.

This conditional tests whether an argument is blank. This may be used to mean something
special. For example, let us look again at the Addition macro. This macro requires three argu-
ments: two values to add, and a variable to receive the result. Let us improve this macro by
saying that if the third argument is missing, the result is to be written to the second argument,
to compute the total of several values for example. Here is the modified macro:

Addi tion MACRO Var A, VarB, Result
ld A VarA
add A, VarB
#|1 FB Resul t
ld VarB, A ; result in second argunent
#ELSE
ld Result, A ; result in third argunent
#ENDI F
MEND

here are two expansions of the macro, the first one with three arguments, the second one with
two arguments. Please pay attention to the lines that actually produce code. These lines have
something in the third column, that is the generated code. The unselected option has its
source line shown, but no code in the third column.

95 Addi ti on NbCOf Appl es, NbOF Pears, NbOf Fruit

95 001F B602 Id A, NoCOF Appl es

95 0021 BB03 add A, NbOF Pears

95 0023 #1 FB NbOf Frui t

95 0023 B704 I d NoOf Fruit, A ; result in third argunent
95 0025 #ENDI F

160/315 172

6 - STMicroelectronics Programming Tools

96 0025

97

98 Addi tion NbOf Appl es, NoOFFruit,

98 0025 B602 Id A, NoOF Appl es

98 0027 BB04 add A, NoOFFruit

98 0029 #1 FB

98 0029 B704 I d NbOf Fruit, A ; result in second argunent
98 002B #ELSE

#IFLAB <identifier> Conditional.

This conditional tests whether an argument is a label. This may be used to distinguish be-
tween a label and a constant. For example, let us consider again the addition macro, but
changed so that the first two arguments may be at will either labels or constants. The third ar-
gument must be a label. The macro is:

AddFI ex MACRO argA, argB, Result
#1 FLAB ar gA
ld A argA
#ELSE
Id A #argA ; lst arg is constant
#ENDI F
#| FLAB ar gB
add A, argB
#ELSE
add A, #argB ; 2nd arg i s constant
#ENDI F
ld Result, A
MEND

We see that according to whether the argument is a label or not , a different addressing mode
is used (extended or immediate). Here are two expansions with different arrangements of ar-
guments:

115 AddFl ex NbOf Apples, 3, NbOf Fruit
115 002D #1 FLAB NbCOf Appl es
115 002D B602 Id A, NoOF Appl es
115 002F #ELSE
115 002F #l FLAB 3
115 O002F ABO3 add A, #3 ; 2nd arg i s constant
115 0031 #ENDI F
115 0031 B704 Id NbOf Fruit, A
116 0033
117 AddFl ex 3, NbOf Appl es, NbOf Fruit
117 0033 #1 FLAB 3
117 0033 A603 I d A, #3 ; 1lst arg i s constant
117 0035 #ENDI F
117 0035 #1 FLAB NbOf Appl es
117 0035 BB02 add A, NbOf Appl es

161/315

4

6 - STMicroelectronics Programming Tools

117 0037 #ELSE
117 0037 B704 Id NoOf Fruit, A

6.1.8 Some miscellaneous features

Here are a few pseudo-ops or controls that help writing and assembling code.

6.1.8.1 EQU and CEQU pseudo-ops

The EQU pseudo-op has already been mentioned. Both EQU and CEQU work pretty much the
same way; however, EQU assigns a value to an identifier that cannot be changed later, other-
wise the assembler would produce an error. The pseudo-op CEQU, on the contrary, allows an
identifier to be set to various values all along the program. This can be useful in writing macros
or in conjunction with conditional statements. The identifier defined has the same properties
as a label and can be used anywhere a label is used. Example:

d2A EQU {d2 + $100}

Be careful with the syntax of expressions. They always must be enclosed in curly braces.
Please refer to the ST7 Software Tools Manual for more details. The identifier on the left of the
EQU statement, being a label, must start on the first character of the line. As a label, it has a
size that is derived from the current default (BYTES, WORDS or LONGS) or that can be specified
using a modifier like:

d2A. b EQU {d2 + $10}

6.1.8.2 #DEFINE pseudo-op

The #DEFINE pseudo-op gives an identifier a value that is a character string. Examples:

#DEFI NE THREE 3
#DEFI NE RESULT Nunber OF Appl es

This being a pseudo-op, it must not start on the first character of the line. Apparently, this
seems no different from the EQU pseudo-op. Actually, it is very different in that the identifier is
not a label. It is more like a macro, that instead of a group of lines is associated with a word (in
the literary sense: a string of characters). So, each time the identifier THREE of the example
above is encountered in the program, the assembler replaces it with the figure 3; when the
identifier RESULT is encountered, it is replaced with Number OFf Appl es. No other processing or
property is involved. The #DEFI NE statements are often put at the top of the source text, to

162/315 172

6 - STMicroelectronics Programming Tools

allow some constants to be changed globally in the program by only changing one line that is
easy to locate.

Once an identifier is defined, the #| FDEF <i denti fi er > conditional is true, even if the value
is an empty string. Example:

#| FNDEF THREE
#DEFI NE THREE 3
#| FDEF THREE
#DEFI NE THREE 4

The first line checks if THREE is not defined. Since it is not, it will be defined as 3. Then the third
line checks if THREE is defined. Since it now is , it is redefined as 4.

6.1.8.3 Numbering syntax directives

The most popular chip makers have defined for their products a numbering syntax for non-
decimal numbers. Unfortunately, these are not all the same. The ST7 assembler offers the
choice of four different notations, so that the programmer may keep his habits or just choose
the syntax he prefers. These syntaxes are summarized in the following table.

Table 8. Table of the numbering radix notations

INTEL MOTOROLA TEXAS ZILOG
Binary numbers 1010B %1010 2?1010 %(2)1010
Octal numbers 1750 or 175Q |~175 ~175 %(8)175
Hexadecimal numbers |4582H or $4582 or >4582 or %4582 or
OFFFFH $FFFF >FFFF %FFFF

Note: Both upper and lower case letters are allowed.

To select one of these syntaxes, use the appropriate pseudo-op of the first line of the table at
the top of the source text. By default, the MOTOROLA style is used.

6.1.9 Object and listing files

Note: For the invocation of the assembler and the command-line options, refer to the ST7
Software Tools User Manual, paragraph 4.6.

6.1.9.1 Object files

The result of the assembly of the source text is its translation into machine language. This is
a binary file that contains the binary values of the instructions, addresses and constant data.
This file is called the object file, and is named by default with the same name as the source
text, but with the extension. OBJ.

172 163/315

6 - STMicroelectronics Programming Tools

This file is not legible, and is not intended to be read by humans.

When we say the object file contains machine language in binary form, we must distinguish
two cases:

« The program has been written in only one file and all its addresses are defined in the source
text. In this case, the contents of the object file are sufficient to generate the EPROM
programming file. This case is possible, but is not the most frequent.

« The program has been spread over several source files. In this case, the object file cannot
contain the absolute references for the objects that are declared EXTERNAL in the source
text. Instead, the object file contains tables that give the names of the unresolved references
and the locations in the file where these references are used. This information will be used
by the linker to merge the object file together and correct the references using the values
supplied by those obiject files where the corresponding symbols are defined.

6.1.9.2 Listing files

The obiject file is always produced when the assembler is invoked. In contrast, the listing file is
only produced if the assembler is invoked with the - LI option in the command line.

Unlike the object file, the listing file is intended to be read by humans. For this purpose, it is
presented in the form of a tabulated text. Here is an extract from a typical listing file:

81 segnment at 90 ' DATA

82 0090 CounterLo: DS. B

83 0091 CounterHi : DS.B

84

85 0092 NbOF Appl es: DS 1

86 0093 NbCf Pears: DS 1

87 0094 NoCOfF Fruit: DS 1

88

89 code segnent ' ROM

90

91 0000 R C60000 I d A dil

92 0003 R C70000 I d dz2, A

93

94 My Code

94 0006 3C90 i nc CounterlLo
94 0008 B691 I d A, Counter Hi
94 000A A900 adc A #0

95 000C

96 000C R C60000 I d A, d3

97

98 I nitVari abl es:

99 000F R AEOO I d X, #{low SI ZE_ RAM

164/315

4

6 - STMicroelectronics Programming Tools

The first column is the number of the line of source text. Here, the line 94 appears four times
because the source text contains the invocation of the macro MyCode that is expanded with
three more lines.

The second column is the address. In the example, the first lines belong to the segment DATA
that is absolute and starts from address 90h. The last label defined there is at address 94h.
Then, the segment is changed to a relocatable one. The addresses start from zero again,
since the exact address of the segment is not known yet.

The fourth column is the machine language. For example, in line 94, the source text i nc
Count er Lo is translated into 3C90. This is possible since the address of Count er Lo is known
as 90h. On the contrary, in lines 91, 92, 96 and 99, the addresses of the objectsd1, d2, d3 and
the expression | ow SI ZE_RAMare not known at assembly time, since they are declared in an-
other module. There, the address field of the instruction is left at zero, and a letter R is added
in the third column, to indicate that this address is relocatable.

The fifth column contains the exact reproduction of the corresponding source text.

6.2 LINKER AND ASCII-HEX CONVERTER

Note: For the invocation of the linker and the command-line options, refer to the ST7 Software
Tools User Manual, paragraph 5.2.

6.2.1 The linking process

Once all source files have been assembled, we have a collection of object files that must be
merged so as to give a whole, single, and complete file where nothing is left undefined and
that can be transferred to the program memory of the microcontroller.

This operation is performed by the linker. The linker is another translator that reads all the ob-
ject files, concatenates them so that all the code and data definitions coming from the various
source files are put in sequence to occupy continuous blocks of memory. Then, all the global
declarations have their addresses calculated and kept in a table with their symbolic names.
The last step is to update each of the external (or relocatable) references, those marked with
a Rin the assembly listing file, with the final value of the corresponding symbol, taken from the
table.

The result of this work is called the executable object file and is written to the output file with
the extension . COD.

4

165/315

6 - STMicroelectronics Programming Tools

—
] Absolute object file
File2.obj %;;;;;;E
T File.grp
= /vv
File1 Obj _» |yn oxe Memory usage map
| ———
_/
File.ma
— S Femar
. . v
File3.obj Segment map data base
- ——
Relocatable object files
File.sym
Linker invocation :
S
"lyn file1+file2+file3, file" Symbol table

06-lyn
Caution: The linker is invoked with the list of object files (. OBJ) to be linked, and if you wish,
with the name of the resulting file (. COD). The modules that define the absolute segment loca-
tions must be put in the list before those that use these segments. Failure to do so produces
an error message and the linker cannot produce the executable object file.

For the linker to succeed in generating an absolute executable object file, it must know all the
addresses of the relocatable objects. If the linker does not find the definition of the address of
an object across all the relocatable object files supplied to it as the input, it will produce an
error message and the linking process will fail. The same would occur if an object is defined
twice across two different relocatable object files.

Another kind of error that is only detected at link time, is when an external object is defined in
one source file as a one-byte address (a label with a . b suffix) and the symbol happens to be
defined as global in another source file as a two-byte address (the label has a . w suffix).

The linker invocation may specify the name of one or more library files. A library file is a pre-
assembled collection of object files from which the program being linked can pick one or more
pieces of code. This may be useful when code coming from existing (and well working) appli-
cations must be reused. This code might as well be included in the list of source files to as-
semble; but with the following drawbacks:

166/315 172

6 - STMicroelectronics Programming Tools

A source file may be modified accidentally, leading to a malfunctioning code. The problem is
then difficult to pinpoint since the reused code is generally considered error-free;

The assembly of this code takes time, while using the object form of the same code is quicker
since it only has to be linked with the remainder of the program.

The ST7 programming tools include a librarian that can be used to build library files. If you are
interested in using libraries, we suggest you refer to the ST7 Programming Tools User
Manual, Chapter 7.

In addition to the absolute object file, the linker generates three more files.

The file with a . MAP extension is a listing file that summarizes the location of the segments and
the address of the global symbols. This file is intended to be read by the author of the program,
or the engineer who will debug the program.

The files with . GRP and . SYMextensions are used by the debugger. They contain the same in-
formation as the map file, but their internal format is especially defined to be read by a pro-
gram instead of a human being.

6.2.2 Hex file translator

The .COD file generated by the linker is not suitable for either debugging or PROM program-
ming. It must be translated into one of the available ascii-hex output file formats. The transla-
tion merely consists of formatting the same binary values into to one of the various popular
ascii-hex formats.

The OBSEND obiject translator is invoked using the following line:
OBSEND <obj ect file>. COD, f, <hex file> <fornmat>

The formats available are:

Table 9. Table of the hex file translator options

Format identifier Format name
<none> straight binary, in hexadecimal form, with no checksums
f straight binary, with holes between segments filled with FFh values
i Intel hex (16 bytes per line)
i32 Intel hex, 32 bytes per line
iX Extended Intel-hex

s Motorola S format

X Extended Motorola S format

2 ST format with 2 bytes per address
4

g

ST format with 4 bytes per address
GP industrial binary format

167/315

4

6 - STMicroelectronics Programming Tools

This choice allows you to download the executable program to virtually any commercial
EPROM programmer. When using the WGDB7 debugger, the program is loaded into the de-
bugger using either the Intel or Motorola format.

6.2.3 The back-annotation pass of the assembler

When the WGDB7 debugger is used, to work properly, it expects the listing files to be fully
documented with the actual absolute addresses.

We have seen above that the listing file, when a module uses external references, does not
give the absolute addresses, but temporary values instead that are marked with a R, waiting
for resolution in the linking process. This is not suitable for the debugger.

To solve this problem, the assembler provides a back-annotation mode for the listing files.

In this mode, once the linking is done, all the source files must be re-assembled using the op-
tion

-Fl<name of map file>.MAP

This option forces the assembler to take the map file generated by the linker as the source of
absolute addresses, and to correct the relocatable addresses with the final absolute ad-
dresses. The result is a listing file where all the addresses are absolute. The debugger can

then display the source text and the corresponding code with the actual addresses in a
window.

This extra assembler pass is not required when using another debugger, for the other debug-
gers perform the external resolution themselves using the relocatable listing files and the map
file generated by the linker.

6.3 INSTALLING WINEDIT AND THE SOFTWARE TOOLS

6.3.1 WinEdit text editor

WinEdit is a text editor that is meant for use by anybody who has programs to write in any lan-
guage. It allows the user to configure it to fit his needs when he works on a given project with
given tools. This paragraph will not fully describe this text editor firstly because it comes with
its on-line help that is self-explanatory, and also because editing with a text editor, unlike a
word processor, is straightforward, at least for a user familiar with the Windows environment.

This section will thus only cover how to configure of WinEdit for working with the STMicroelec-
tronics tools.

6.3.1.1 Installing WinEdit

WinEdit consists of a set of compressed files and a SETUP.EXE file. To start the installation
process, locate this file using the explorer, for example, and double-click on it. The first choice

168/315 172

6 - STMicroelectronics Programming Tools

to be made is to select the directory into which WinEdit will be stored. It is always advisable to
follow the suggested directory.

The second choice is that of the components to be installed. Unless there is a shortage of disk
space, it is recommended to keep all the components selected. Proceed then with the instal-
lation to the end.

After installation, a WinEdit folder is added in the Run menu.

6.3.1.2 Configuring WinEdit

WinEdit is tailored to a project through the use of a project file. This file, suffixed. WPJ, contains
the following information:

« The name of the project;
« The directory of the files of the project;
« The command line for each of the tools to assemble, link, debug, etc.;

» The syntax of the assembler-generated error messages, to interpret them automatically,
display the error message in the editor's status bar, and place the cursor on the
corresponding line of the faulty file.

Once the project file is defined and saved, the development process is made much more com-
fortable, since once the source file is written or corrected, pressing a button on the tool bar of
WinEdit starts the assembly process, and if an error is detected by the assembler, the mes-
sage describing the cause of the error is displayed at the bottom of the screen, while the
cursor is automatically put at the line where the error has occurred, and this line is highlighted.
You have to figure out what is wrong in this line, correct it, and press the assembly button
again, until the source file is completely error-free. This considerably speeds up the develop-
ment.

6.3.2 Installing the STMicroelectronics Software Tools

These tools come in a single diskette. Just run the SETUP. EXE program of the diskette. A box
is displayed that lists the version numbers of the various components of the package.

Pressing OK, another box is shown requesting the directory in which the tools must be in-
stalled. Keeping the suggested path is a good choice, unless there is a need to use a different
one (for example if these tools must be installed in a different hard disk). Then the installation
proceeds. At the end, the ST7 Tools group is added to the Run menu (or a group under Win-
dows 3), and a box requests whether you want to read the Readme file that gives some ver-
sion information. For users upgrading a previously installed set of tools, this gives information
about improvements from the previous version.

4

169/315

6 - STMicroelectronics Programming Tools

After having closed the readme file, a box shows a completion message and indicates that the
autoexec.bat file should be amended as follows:

- path line should be altered to insert the chosen path for the ST7 tools in addition to the al-
ready defined paths ;

- insert anywhere the line SET METAI = <the same path>

This means that you must edit your Aut oexec. bat file and do the changes required. They are
necessary for running the tools. This can be done using either WinEdit or Notepad. The
changes performed will only be taken into account after the computer has been rebooted.

6.4 BUILDING A DEMONSTRATION PROGRAM

To illustrate both the assembly language and the assembly procedures, we have written a
small project for you. It is available in the directory \ ST7\ WORK\ CATERPI L of the accompanying
software. This directory and its contents should be copied to the hard disk of your work station.
We assume that it will be copied to directory C:\ ST7\ WORK\ CATERPI L. This directory is men-
tioned in the configuration file. If you want to use another directory, you must modify the
PRQIECT. WPJ file accordingly.

6.4.1 Purpose of the demonstration program

The program drives a set of eight LEDs connected to port A of a ST72251. When the program
runs, all of the LEDs but one are lit at the same time, and the unlit position changes twice per
second to the LED connected to the nextmost significant bit of port A. When the LED con-
nected to bit 7of port A is off, the next LED off will be that connected to bit 0 of port A, and the
cycle resumes. The 500 ms delay is done using a loop of instructions that is tuned to last for
exactly 500 ms, taking into account the cycle time of each instruction with an 8 MHz crystal.

6.4.2 Inventory of the program files

The program includes the following input files:

« The PRQIECT. WPJ project file that contains the settings and the tool references for the
project, and the GDB7XXX. I NI file that configures the debugger.

« The main source file, MAI N. ASM that contains most of the code, and the timer source file,
TI MER500. ASMthat contains only the timing routine.

» The REGr2251. ASM file that contains the definitions of all the peripheral registers and the
REG STER. | NC, file that contains the external references to the definitions of all the
peripheral registers made in the previous file.

« The MAP72251. ASM file that contains the description of the available memory and its type
(RAM, ROM).

4

170/315

6 - STMicroelectronics Programming Tools

The CATERPI L. BAT file that drives the global building of the project, by starting the assembly,
link, hex file generation and back annotation process.

All these files constitute the source files, in the widest sense, of the project.

At this point, we suggest you open all these files with WinEdit, and see what they contain.

Some remarks about the files.

The true source files of the project are actually MAI N. ASMand Tl MER500. ASM All other files
are auxiliary files.

The PRQIECT. WPJ file is the configuration file for the editor itself; it defines also the tools to
be used.

The REG72251. ASMfile is a service file that declares all the registers as global identifiers, so
that the linker will be able to know their addresses. The REG STER. | NC file is complementary
to the previous one; it is meant to be included in all the source files that make use of one or
more peripheral devices or system registers. It provides the EXTERN definitions for all the
registers defined as PUBLI C in the previous files, and also a set of EQUate statements that
associate the predefined names of the individual bits in some peripheral or system registers
with constants, so that the mnemonic names of these bits can be used in instructions like
BSET or BRES that expect a bit number. The MAP72251. ASM file is a bit similar to
REG72251. ASM It defines the location and size of the memory available in the ST72251.

CATERPI L. BAT is the file that defines the assembly, link, hex file generation and the back
annotation process.

The two files REG72251. ASMand MAP72251. ASMdefine the microcontroller that is used for
the project. If the project has to be changed to use another member of the ST7 family, it is
only necessary to change these two files for those of another microcontroller of the ST7
family and the project will work the same way—provided the new microcontroller contains all
the resources required by the project.

6.4.3 Description of the program files

6.4.3.1 The PROJECT. WPJ file

This file contains the settings and the tool references for the project, that is the current working
directory and the commands for assembling, linking and executing the program. Most of them
are grouped in the menu option Project/Configure... that shows the following dialog box:

4

171/315

6 - STMicroelectronics Programming Tools

Project Management [x| |

FProject Mame:

Open...

W arking Direchan: IE:“«STF"'&WDHKMD‘-‘«TEHF‘IL
Save...

Compiler: I Clipper j

&f = file name %n = baze name, no extenzion Ze = file extenszion only

Corpile command: Iasm - En W Capture Output
M ake command: In:aterpil.l:uat [T Capture Output
Rebuild command: Iasm En -fi=CATERPIL.map W Capture Output

Debug command: IE:'&STF"RWQEIIJ?HWEDB?.EHE target="ernust| [Capture Output

Execute command: I [T Capture Output
W Save files before running tools W Prompt before saving files
] 8 Cancel | Help
06-proj.bmp

The Proj ect Nane is just free text. It is not the name of the project file that can be saved by
pressing the Save... button. The Wor ki ng Directory is that of the project. It is advisable to
have one separate directory for each project.

The Conpi | e command is the command that launches the assembler, in the present case. The
command-line argument is -1 i to say that a listing is required. The name of the file to as-
semble is produced by the expansion of the macro %, as explained above in the box. The
name of the file whose edit window is active at the time the compile command is given is
passed to the command. For example, if the currently active edit window is that of the source
file MAI N. ASM the command that will be generated will be ASM -1i MAI N. ASM

Similarly, the Make conmmand is set to the name of the batch file that performs the building of the
project. Finally, the Debug command is the path of the Windows Debugger.

172/315 172

6 - STMicroelectronics Programming Tools

The Conpi | er field that is currently set to Cl i pper selects the rules for decoding the assem-
bler or compiler report. It is used in conjunction with the Capture Qut put option that must
then be enabled.

When the assembler is launched, and the Capt ure Qut put option is enabled, the report gen-
erated by the assembler is captured, and on completion, is analyzed according to the speci-
fied rules. If error messages are generated, they will be displayed in the status box at the
bottom of the WinEdit window, and the line where the error stands is highlighted. This makes
the correction and assembly cycle a lot faster.

Once all the source files are error-free, the whole project must be built using the build com-
mand (the hammer button).

To launch the debugger from WinEdit, it is not sufficient to write its path in the Debug com-
mand field; you must also add a few parameters, so that the command to be placed in the
Debug Command box of the configuration parameters looks like the following text:

C:\ ST7\ WGDB7\ WGDB7. EXE -target="enust7 I ptl -dll st7hds2.dll’

This supposes that the debugger is installed in the directory C: \ ST7\ WGDB?.

The two files mentioned here are present in the companion software, so the settings above
need not be made by hand. You just have to select the Pr oj ect / Conf i gur e option, then press
the Open button, to select the file CATERPI L. WPJ that does all this.

6.4.3.2 The main source file, MAI N. ASMand the timer source file, TI| MER500. ASM

The source files of the project are very short. They are shown below. They illustrate what has
been said about assembly language regarding addressing modes, declarations, segments,
etc.

173/315

4

6 - STMicroelectronics Programming Tools

The main program is the following:

174/315

ST7/

#i ncl ude "Regi ster.i
EXTERN Del ay500 ; By

; definition of the constants

nc

default, external |abel defined as a word

BYTES ; The followi ng constants defined as bytes
wat ch EQU $FF
cpudi v2 EQU 0O ; nornal speed
segnment ’rom
WORDS ; Next |abels are words.
; Initialisations
reset
Id a, #cpudiv2
Id mscr, a ; fqg 8wz /2 = CPU clock = 4MHz
Id a, #watch
ld wdgr, a ; Start watchdog
I d paddr, a ; port A as output
clr paor ; open drain, no pull up
Id padr, a ; leds off
rsp ; initialize stack

; Main program

Id a, (table,x)
I d padr, a ;
call Del ay500 ;
inc x
cp x, #08 ;
jreq Start
jra Next

; table of the patterns that

tabl e: dc.b 1, 2, 4, 8, 16,
; Interrupt vectors

vectit ;

(7]
[¢°]
T Q

33883
sss5%3

Switch one LED on pa0 OFF, others ON
according to table contents

If at end of table, go back to the beginning

are output in sequence

32, 64, 128

($FFEO)
skip 8 vectors

4

6 - STMicroelectronics Programming Tools

; skip 7 vectors

88833333333
sssssssssss

eset ; reset vector ($FFFE)

m
Z

D

The main program calls the following subroutine that has been written in a separate file on pur-
pose, though it would be easier to write it in the main source file:

Thi s subroutine generates a 500ns timng by | ooping.
PUBLI C Del ay500
#i ncl ude "Register.inc"

definition of the constants

BYTES ; The follow ng constants are defined as 1 byte val ues

wat ch EQU $FF
DELAY1 EQU 10

DELAY2 EQU 100
DELAY3 EQU 140

definition of the variables (in page 0)

segnment ’'ranD’

Ti me: ds.b 3 ; reserve menory space in RAM for

; a page zero variable nanmed Tine,
; that is 3 byte |ong.

segnment ’rom
WORDS

Tim ng routine for 500ns

175/315

6 - STMicroelectronics Programming Tools

Del ay500:
Id a, #DELAY1 ; 2 cycles
Id Tine, a ;4 cycles
Loopl:
Id a, #DELAY2 ; 2 cycles
Id {Time+l}, a ; 4 cycles
Loop2:
Id a, #DELAY3 ; 2 cycles
Id {Time+2}, a ; 4 cycles
Loop3
Id a, #watch ; 2 cycles
Id wdgr, a ;4 cycles
dec {Ti me+2} ; 5 cycles
jrne Loop3 ; 3 cycles
dec {Ti nme+l1} ; 5 cycles
jrne Loop2 ; 3 cycles
dec Tine ; 5 cycles
jrne Loopl ; 3 cycles

ret
END

; Internal |oop: 14 cycles

; Intermediate | oop: 14 cycles

; External |oop: 14 cycles

; total: (((((14*DELAY3+14)*DELAY2)+14)*DELAY1) +14)*0. 25
; =493519 mi croseconds

You may have noticed that the secondary source file provides one public label, and that the
corresponding external declaration stands in the main program.

6.4.3.3 The REG72251. ASM file and the REG STER. | NCfile

The REG72251. ASMfile contains the declaration of all the registers of the ST72251 in an abso-
lute segment, because their addresses are fixed by hardware. Each declaration is made
public by adding a dot before each label, so that any other source file of the project can make
reference to the registers, provided the necessary EXTERN statements are added to that
source file. Here is an excerpt from the REG72251. ASMfile:

ST7/
R R SR S S I S S I I I Ik kR R R I R I I
;* ST72251 registers

*
;* of the Input/Qutput peripherals. The bit nunbers
*

; This file declares the |abels of all the registers
: within each register and the correspondi ng EXTERN

176/315

4

6 - STMicroelectronics Programming Tools

D declarations are in the include file REG/2251.1NC t hat

* nmust be included in the source files that use them

EEE Ik Sk S kS S S I S S S R S S R I S I S O
’

BYTES ; the followi ng addresses are 8-bit |ong

R Sk Sk b o R Sk kS kSR S S O S R R O R R S

segnent byte at 0-71 ’periph

R S Sk S b Sk R S S Sk kS Rk I R S

LR Rk b S R R Rk S S o R Rk Rk ok kO R R o O R R O R

I/O Ports registers

ERE Ik Sk S Sk S S Sk I S kR S S S R Rk S S S R S S O S
’

. pcdr DS.B 1 ; port C data register
. pcddr DS.B 1 ; port C data direction register
. pcor DS.B 1 ; port C option register

DS.B 1 ; enpty byte
. pbdr DS.B 1 ; port B data register
. pbddr DS.B 1 ; port B data direction register
. pbor DS.B 1 ; port B option register

DS.B 1 ; enpty byte

(to be continued)

When you get to the point of inserting EXTERN declarations in the source files, you have two

choices:

You may add only the external declarations you need;

You may include the REG STER. | NCfile, and get the whole set of external declarations at once,
since adding useless externals does no harm. This method is obviously quicker and easier.

Here is an excerpt from the REG STER. | NCfile:

4

EEE Ik Sk S Sk S Ik I kS Sk S S Rk I S I S S

* ST72251 registers

* This file contains the EXTERN decl arations for al

* the peripheral registers and the EQUates for the bit
* positions within the registers. It nust be included
* in source files that use the peripherals.

*

Rk S I kR Sk S S R Rk S Rk S S O R R

BYTES ; the followi ng addresses are 8-bit |ong

ERE Sk Sk S kS S S Sk S Sk I S S S SRR S S R S S o S O

I/O Ports registers

R S Sk S b S R S S Rk Sk Sk S R kS R S O O

177/315

6 - STMicroelectronics Programming Tools

EXTERN padr ; port A data register

EXTERN paddr ; port A data direction register
EXTERN paor ; port A option register

EXTERN pbdr ; port B data register

EXTERN pbddr ; port B data direction register
EXTERN pbor ; port B option register

EXTERN pcdr ; port C data register

EXTERN pcddr ; port C data direction register
EXTERN pcor ; port C option register

ERE Sk kS kS R Sk S kS S SRR S O I R I S S S S
’

; SPI registers

IR R R R RS RS SRR SRR E R RS E R R EE RS EREEEREEEREEEREEEREEEREEEREEEREEES]
’

EXTERN spi dr ; SPlI data register
EXTERN spi cr ; SPlI control register
EXTERN spi sr ; SPlI status register

; bits names of spicr

SPI E equ 7 ; serial peripheral interrupt enable
SPE equ 6 ; serial peripheral output enable
MSTR equ 4 ; master

CPOL equ 3 ; clock polarity

CPHA equ 2 ; clock phase

SPR1 equ 1 ; serial peripheral rat