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USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.

STMicroelectronics PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN 
LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF 
STMicroelectronics. As used herein:

1. Life support devices or systems are those
which (a) are intended for surgical implant into
the body, or (b) support or sustain life, and
whose failure to perform, when properly used in
accordance with instructions for use provided
with the product, can be reasonably expected
to result in significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to
perform can reasonably be expected to cause
the failure of the life support device or system,
or to affect its safety or effectiveness. 
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1 INTRODUCTION

1.1 WHO IS THIS BOOK WRITTEN FOR?

This book is a technical guide for ST7 users and may be approached in different ways: 

■ For students and anyone unfamiliar with microprocessors, but with some experience of logic
circuits; they should start by reading Chapters 1 through 3.

■ For trained engineers wanting to get specific knowledge about the ST7 and microcontroller
programming in C language; they may skip Chapters 1 through 3 and go straight to Chapter
4.

■ For designers already familiar with the ST7, needing more details about C-language
programming and how to use the ST7 internal peripherals; the application descriptions in
Chapters 5 and 8 through 10 are of special interest for them.

1.2 ABOUT THE AUTHORS

Jean-Luc Gregoriades teaches automated systems and industrial computer science at the
Electrical Engineering department of the University of Cergy-Pontoise, France.

Jean-Marc Delaplace is an electronics and software engineer at Gilson S.A., a laboratory au-
tomation instrument maker.

As a team, they have already written books on the ST6 (published at Dunod Editions) and the
ST9 (published by STMicroelectronics).

1.3 HOW IS THIS BOOK ORGANIZED?

This book contains the following chapters:

Chapter 1: Introduction.

Chapter 2: How does a typical microcontroller work internally and how to use it.

Chapter 3: Programming a microcontroller.

Chapter 4: Architecture of the ST7 core.

Chapter 5: The peripherals.

Chapter 6: The STMicroelectronics programming tools.

Chapter 7: The Debugger and the PROM programmer through a pedagogic application using
a ST72251.

Chapter 8: The C language and the C compiler.

Chapter 9: Application of the ST72251: a carrier-current system for domestic remote control.

Chapter 10: Application of the ST72311: a sailing computer.
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Chapter 11: Conclusion.

Chapters 1, 2 and 3 are a refresher on the concept of a microcontroller. Chapter 1 introduces
the concept, Chapter 2 addresses the hardware and Chapter 3 addresses the software as-
pects.

Chapters 4 through 7 describe the ST7 and its programming tools, taking only assembly lan-
guage into account.

Chapter 8 discusses the C language and techniques for using the C Compiler for the ST7 mi-
crocontroller, its strengths and also its limitations.

Chapters 9 and 10 describe application projects using the ST72251 and the ST72311 mem-
bers of the ST7 family. They tell the story of the design of devices that, though they do work,
were not intended to be commercial products. 

1.4 WHY A MICROCONTROLLER?

The microcontroller is just another choice when one has to design an application, and it com-
petes with other technologies, like wired logic, a microprocessor system, or a Programmable
Logic Device of which many types are available.

All these solutions tend to reduce the number of components, the area of printed circuit used,
the number of connections, while increasing the computing power and keeping the cost low.
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The following table shows a comparison of these solutions. Each one is discussed below.

Wired logic uses commercially available logic functions and sometimes linear chips. Though it
is simple, it is neither practical nor economical to consider this technology for building applica-
tions as complex as those that are usually needed today. It can only be considered for very
special subfunctions where high speed is required.

Programmable Logic Devices (PLD) are the modern form of wired logic, and are often used for
combinatory and sequential logic. The biggest models allow intensive numeric processing, but
only on integer numbers. They use programming languages that do not belong to the family of
computer languages commonly used today.

The last two technologies are the microprocessor and the microcontroller. In principle, both
are very much alike and they are both well suited to programmed data processing. The main
difference between them is the size of the application.

The microprocessor is a component that includes mainly the computing core, and perhaps the
logic closely related to it like the clock generator, the interrupt controller, etc. Many more chips
must be added to it in order to make a functional application, memory chips in particular. Ac-
tually, this solution is only used in computers, either general-purpose computers like PCs, or
built-in to complex applications like industrial robots. It allows the designer to tailor his circuit
exactly to his needs.

The microcontroller is defined as a complete programmed system in one chip. This means
that one chip is sufficient to fulfil the need, or that only a few more chips are required to

Solution type Advantages Drawbacks

Wired logic
Very high speed

Cheap
Only for simple circuits

Programmable logic
High speed

Able to handle complex digital signals

Limited number processing

Programming languages are specific 
and non-portable

May be expensive

Microprocessor

Powerful

Wide choice of models

Configurable in wide limits

Allows almost all popular programming 
languages

Many components even for simple sys-
tems

Relatively expensive

Microcontroller

Simple electronic circuits are possible 
with few components

Allows the most popular programming 
languages such as BASIC or C.

Standard configurations rarely exactly 
fit the application’s needs implying the 
use of over-sized models

Special configurations available, but 
only for large quantities.
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achieve the required computational power. These external chips may simply be interface com-
ponents, to adapt the electric signals to the input-output pins of the microcontroller, or addi-
tional memory or peripheral components if the buses are available externally on the pins of the
microcontroller.

In any case, these components require two different but equally important jobs for putting
them to work: electronic circuit design, and programming.

Both of these need be done as easily, quickly and economically as possible. A thorough study
of both aspects will be the basis for selecting the most appropriate model from the wide range
of products available today. Here are a few considerations related to these aspects.

1.4.1 Electronic circuitry

This is where the designer strives to reduce the external component count, and to carefully se-
lect each one to get the best value. In order to satisfy this requirement, the various chip man-
ufacturers offer for each family a choice of variants, to allow the designer to select the one that
best fits his needs in terms of input-outputs and auxiliary circuitry.

Roughly speaking, a microcontroller variant that is loaded with features will allow a simpler ex-
ternal circuitry, at the expense of an increase in the microcontroller cost. The ideal choice
would be the variant that has the exact peripherals required by the application, and no more.

To illustrate this, we shall take a simple example. Let us consider an application that requires,
as an input, a numeric keypad, and as an output, a galvanometer to provide an analog display.
The ideal combination would call for an Analog to Digital Converter for the input, and a pro-
grammable timer with Pulse Width Modulation capability for the output. This would lead to the
following very simple schematic:
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01-anal

Such peripherals are typically available in many families. This example shows how two periph-
erals properly selected can drastically reduce the component count and thus the printed circuit
area. The solution shown may or may not fit the needs, but it is difficult to imagine a simpler
design.
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1.4.2 Choice of microcontroller model

The selected model of microcontroller must meet the requirements in terms of computational
power. It must be able to handle the input-outputs, process the data in the required amount of
time, and have enough memory to store both the program and the data.

An application is made of both hardware and software. So, there is a trade-off between the
processing done by hardware and that done by software. Using dumb peripherals requires
more computational power from the core; using sophisticated peripherals relieves the core
from time-consuming calculations and thus allows a less powerful core to be chosen.

Determining the computational power is a difficult matter since there is no internationally rec-
ognized measurement unit that expresses the speed of a microprocessor or similar device.

Some benchmarks that compare several products in the same application are available from
various sources, but they only give an idea of the relative capability of one product versus an-
other one. 

Thus a certain margin must be considered, or there would be a risk that some time in the de-
velopment process that one comes to the conclusion that the selected microcontroller is un-
suitable for the application. This event would have serious consequences, as costly tools may
have been invested to develop the application, not to mention the delay in the product availa-
bility with its commercial consequences.

Also, even if a microcontroller is suited to the product as it is first commercialized, this product
may undergo changes during its commercial life. As a general rule, changes are always addi-
tions, never removals. If the chosen microcontroller matches current needs too closely in
terms of capability, there is a risk that it could prevent the product from evolving to meet future
needs. This could make the product become obsolete sooner than expected.

To summarize, it is difficult to tell in advance whether a microcontroller will fit an application.
As a result, it is current practice to select a model with excess power in order to guarantee suc-
cessful performance initially, and also to allow for product updates.

1.4.3 Choice of development tools

Once the needed power has been determined, one must investigate the development tools
available for the applicable products. The first step is to compare their prices; but this is not the
consideration that will determine the choice. 

The real issue is how the tools will help writing the software, test it, and pinpoint its flaws. The
hourly cost of a software engineer, who spends more time on software development because
of the lack of efficiency of the tools, easily outweighs any savings that could have been made
when investing in them.

Development tools include all that is needed to write the program, either in assembly language
or in high level language, then translate it into machine language and load it into the program
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memory of the application. The tools are able to test both the hardware and the software, and
analyze any malfunctioning in order to allow corrections to be made. This can be done using
only a Personal Computer, or external instruments connected to the computer, such as an
emulator, analyzer, PROM programmer, etc. depending on the development phase. The dia-
gram below shows where each phase takes place:

01-proc

The microcontroller itself, and the related development tools are described in Chapters 2 and
3.
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2 HOW DOES A TYPICAL MICROCONTROLLER WORK?

There is a wide range of microcontrollers available on the market. They differ in their compu-
tational power, their internal organization, the number of their inputs and outputs, the type of
peripherals they provide. However, a microcontroller is always a complete system on a chip
that includes a core connected to some memory and surrounded by peripherals. A typical
block diagram of a microcontroller is the following:

02-basic
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2.1 THE CENTRAL PROCESSING UNIT

What is the Central Processing Unit (CPU)?

It is made up of the core, and auxiliary blocks like the clock generator, the reset circuitry, etc.

The CPU of a microcontroller is the actual programmed logic circuitry that is the heart of the
application based around the microcontroller. It is where all computation and decision-making
takes place. The CPU acts on data received from the outside world through the peripherals;
this data is processed in a predetermined way to produce more data that will act on the the
outside world. 

The CPU is the part of a microcontroller that corresponds to what is usually called a micro-
processor. A microprocessor contains only the computing logic; it must be surrounded with
devices like memory and input-output interfaces. A microcontroller bundles all these in a
single chip. For simple projects, this allows an application to be built with just one chip plus a
few components. This has been made possible by progress in the scale of integration that al-
lows powerful chips to be manufactured at a relatively low cost. This has opened up a new and
very wide application field: bringing the capabilities of a computer to even the cheapest appli-
ances. For example, nowadays home audio systems incorporate a radio receiver, a CD
player, two cassette decks and an amplifier and speakers; all controlled by a common control
panel with a large display that shows the FM frequency, or the CD track number and elapsed
time, etc. Here, a single microcontroller performs the overall control, displays the data, re-
sponds to the keys that are pressed by the user to select the required radio channel, CD track,
etc.

The word data, that is so commonly used, must be understood here in the widest sense.
Though we may first think of data as numbers, data are not only numbers; they may be a wide
range of objects like binary values (the state of an on/off switch), the voltage at a terminal (the
wiper of a potentiometer), a character string (a piece of text), and many other things. The fact
that data is thought of as numbers just comes from the fact that we are discussing machines
based on binary signals. Virtually all the data processors in the world only process binary
digits. These binary digits (bits) are always grouped in packs of variable lengths that are proc-
essed in parallel, thus multiplying the processor throughput by the number of these bits proc-
essed at the same time.

The first microprocessors, historically, were four-bit machines. There are still four-bit micro-
controllers sold today for simple applications like telephones, washing machines, and others
requiring little processing power.

In the sense that is given to this word today, a microprocessor is at least a 8-bit wide machine.
The market is shared between machines of several types, with their power increasing along
with the number of bits they can process in parallel. The following table gives an overview of
the main classes of microprocessors today.



21/315

2 - How does a typical microcontroller work?

Table 1. Table of the main processor sizes

2.2 HOW THE CPU AND ITS PERIPHERALS MAKE UP A SYSTEM

The CPU cannot work alone. It is the central piece of a system that includes the following com-
ponents:

2.2.1 CPU

It computes and coordinates. It controls almost all the other components of the system, except
in some cases like interrupts or direct memory access where some peripherals take the initia-
tive.

2.2.2 Memory

It stores both the program, that tells the CPU what to do, and the data, that is temporarily
stored by the CPU like intermediate computation results, and the global state of the system. 

■ In computers, there is only one memory to store both. This memory is volatile, so that a
supplementary, high-capacity and non-volatile storage is required to hold the contents of the
memory when the system is not powered-on, in most cases a hard magnetic disk. The cost
per bit stored of the memory being much higher than that of the hard disk, the capacity of the
memory is usually much lower than that of the disk. Only a fraction of the disk contents
resides in memory at any time.

■ In microprocessor-based systems, the memory is the only storage, and various types of
memory are used according to its use: read-only memory for the program, read-write
memory for the data, and/or non-volatile solid-state memory for those data that must be
preserved from one session to the next, the system being powered-off between two
sessions.

Data size
Relative 
power

Common applications

4 bits Lowest Watches, calculators, TV remote control, washing machines.

8 bits Low Industrial products and home computers in the ’80s; most
microcontrollers today where little numeric computation is required.

16 bits Medium As a microprocessor, the former PCs; as a microcontroller,
industrial and automotive products used in car bodies.

32 bits High All PCs use this size of microprocessor today; some
microcontrollers are also becoming available commercially such as
automotive injection calculators.

64 bits Highest Only in mainframes; microcontrollers of this size are just coming out
from the laboratories.
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The microcontroller has thus to handle two different kinds of things related to memory: the pro-
gram, made of numbers that encodes the programming language instructions, and the data,
that are what the calculations act on, and the result of these calculations. Although they are
both mere numbers, they have completely different functions. Also, the characteristics of the
storage are different: while the program must be kept unchanged throughout the life of the
product, the data continuously change. This calls for a non-volatile, read only memory in the
first case, and a read-write memory that may or may not be volatile in the second case.

The difference in roles of these two memories has led to two different approaches in the
memory architecture:

The first one, named «Von Neumann» after the name of its inventor, provides only one ad-
dressable space. The program and the data are only distinguished by the address they oc-
cupy in this space. The ST7 belongs to this category:
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The second one, named «Harvard», provides separate addressing spaces for the program
and data. No instruction can thus write anything into the program space, protecting the pro-
gram from accidental changes and doubling the total addressing range. Examples of this ar-
chitecture are the ST6, the ST9, and the 8051:

02-harvd

2.2.3 Input-Outputs

Often called peripherals, these are the point of contact between the system and the reality that
surrounds it and that the system is supposed to interact with. As stated above, the data from
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that the system, that is fully numeric, can process them. The peripherals can be just input-
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CPU, but also on the efficiency of the peripherals.
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2.2.4 Interrupt Controller

This is a piece of logic circuitry that manages the implementation of the interrupt concept de-
scribed later in this chapter. Interrupts are the most common means of altering the normal
course of the program, when an unexpected event (or an expected one but occurring at an un-
expected time) occurs. It may be more or less complicated according to the features it pro-
vides.
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Features provided may include queueing of interrupt requests, handling requests according to
their priorities, or even modification of priorities to increase the chance that low-priority re-
quests will be eventually processed in a context where there are numerous requests.

2.2.5 Bus

The bus is the set of connections that links all the components of the system and allows all the
data moves, and the distribution of the address and control signals.

2.2.6 Clock Generator

This is the basic coordination circuitry that supplies a set of calibrated clock signals, at a pre-
cise frequency, that schedules all the data movement along the bus and the computations in
the CPU. In some models, the clock frequency can be chosen by software.

2.2.7 Reset Generator

This circuit detects when the system has just been powered up, and resets it in a known state
from which the program execution will start. The reset ensures that each time the system
starts, everything occurs exactly the same way. This is a major condition for the reproducibility
of the behaviour of the system.

2.3 CORE

The main components of the core are:

2.3.1 Arithmetic and Logic Unit (ALU)

This is where all the computations take place. Depending on the microcontroller used, the
ALU provides a different set of operations. Roughly speaking, the basic set of operations
available to all ALUs is the following:

■ Addition and addition with carry, to provide for multiple precision calculations

■ Subtraction and subtraction with carry

■ Increment and decrement

■ Bitwise shift, leftward or rightward, straight or circular (the outgoing bit in re-injected at the
other end of the data word)

■ Logical bitwise OR, AND and EXclusive-OR

■ Logical complement

Some provide additional operations like:

■ Multiplication

■ Division

■ and more
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The ALU is connected to a register that holds the state of the last calculation done, with bits in-
dicating (among other things) whether the result was zero, negative, or overflowed the ca-
pacity of the ALU. It thus provides a means of testing the data and changing the program flow
accordingly. This register is called the status register.

2.3.2 Program Counter

This register holds the address of the next instruction to execute. It is initialized by the reset
generator to a known value, called the entry point of the program. The first instruction of the
program must thus be found at that address in the program memory.

2.3.3 Instruction Decoder

This circuit takes the instruction fetched from the program memory and translates their native
code into its meaning, determining the actions performed by the core. The instructions fall into
the following categories:

■ Data processing instructions: they give the type of operation to perform (add, subtract, shift,
etc.) and the address of the operand to be processed.

■ Program flow control instructions: these instructions modify the value of the program
counter, so that the next instruction executed will not be the one that follows the current one
in program memory. They are called jump and call instructions. In particular, some of these
instructions perform their action only if one or more bits of the status register have certain
values, so as to jump only if, for example, the last calculation produced a zero value, or
continue in sequence otherwise. These instructions provide the means of translating the
branching boxes in an algorithm.

2.3.4 Stack Pointer

The stack is a storage area that has the particularity that the data put into it in a certain order,
can only be retrieved in the opposite order. It is the mechanism used to handle temporary pro-
gram flow disruptions, where the main flow of the program is temporarily put aside and re-
sumed later. This is done using a pair of special instructions. The first one, named CALL, first
stores the address of the next instruction to execute into the stack, before jumping to some
other place. The reciprocal instruction, named RETurn, retrieves this address from the stack
and jumps to the corresponding location, thus resuming the program execution.

These features give the system the capability to execute a program that reads data or binary
states from external sources, performs computations, detects particular characteristics in the
data, and reacts a predefined way to this before sending new data out. Using the interrupt me-
hanism, external events can suspend current processing and allow the incoming data to be
processed and then resume the processing that was interrupted.
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2.4 PERIPHERALS

The peripherals are the places where the core, that executes computer code, is in contact with
the real world that is represented by electrical signals. 

These signals may just be binary levels that change relatively infrequently, in which case it is
easy to process them using a program. They also may change quickly, too fast for the pro-
gram to handle them without imparing the computing power of the core.

In other cases, the signal is a value that belongs to a continuous range. This type of signal is
called an analog value; by nature, it cannot be processed by the core, and must be converted
into binary data. 

An analog value may have several shapes, but it eventually falls into one of two categories: 

■ The data is represented by the time interval between two pulses, or by the frequency of an
AC signal, or by the number of pulses of a pulse train. All these cases can appropriately be
handled by a programmable timer or a UART, for example.

■ The data is represented by the voltage of an input signal, or the value of a resistor that can
easily be converted into a voltage. This kind of data is handled by the Analog to Digital
Converter.

These considerations justify the presence of specialized peripherals, that include the required
circuitry for processing the data, convert it, etc. so that it is easier to handle for the core. The
less work the core has to do, the more it is available for other tasks. According to the proper-
ties of the signal, the peripheral designed to process it (we say “interface it”) may be anything
from very simple to very sophisticated. We shall give here an idea of some of the most
common peripherals of the ST7, starting with the simplest.

2.4.1 Parallel Input-Outputs

When the data going to or coming from the outside world is made of groups of bits, and if they
can remain stable for a relatively long amount of time (at the scale of an electronic device, that
may be less than one millisecond), parallel input-output ports are the right choice. They only
consist of a set of gates or latches that allow for communications between the inside and the
outside at times that the program chooses. This is used for example to read input switches
and keyboards, and to output signals that drive lamps, motors, etc.

The capabilities of these input-outputs vary greatly from product to product. In some products,
they are unidirectional or bidirectional TTL levels, fixed by hardware. In other products, they
include a latch that can capture the state of the inputs on the transition of an auxiliary strobe
input.

Some manufacturers, including STMicroelectronics, provide configurable input-output pins.
These pins can be set as either inputs, with or without a pull-up resistor, or as an output either
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push-pull or open drain. Some outputs also allow for a higher current to directly drive relays,
LEDs or opto-isolators.

In addition, these pins can also be used at the same time as the input-output pins of other pe-
ripherals like Timers, Serial to Parallel Interfaces, or as inputs to the interrupt circuitry or an
Analog to Digital Converter.

The configurability of these pins helps reduce the number of components in the schematic di-
agram, and thus the size of the circuit board.

2.4.2 Analog to Digital Converter

The ADC is a way of converting an incoming voltage into a number. The ADC is calibrated so
that the relationship between the voltage and the number is well known, which allows the pro-
gram to process a representative measurement of the signal.

2.4.3 Programmable Timer

This is a complex block based on a counter that can be used in many ways, so that it can ei-
ther count pulses, or measure the duration of pulses or frequencies, or produce precisely
timed output pulses. This peripheral is so flexible that it is virtually impossible to describe all its
possible applications. In addition, the presence of a programmable timer leads the circuit de-
signer to use it intensively, since it is the peripheral that provides the highest accuracy, when
taken as a measuring device. Thus, when the measurement of a physical parameter (like a
temperature, a level, a pressure, etc.) is needed, instead of designing a sensor that outputs an
analog voltage, it is easier and more accurate to design it to produce a square signal with a
frequency that reflects the parameter. Such signals are also easier to transport than voltages
that may suffer from electromagnetic interference.

2.4.4 Serial Peripheral Interface

This interface is based on a shift register that can perform serial to parallel conversion and
vice-versa. It transmits eight bits at a time, using only two or three pins. This saves pins on the
the chip, and also simplifies multiplexing when connecting a number of microcontrollers to-
gether.

It can also be used to interface serial-access memory chips that provide non-volatile storage
at low cost.

2.4.5 Watchdog Timer

The watchdog timer is a supplementary timer that can be used to protect the system against
failures either due to the program itself (e.g. when a certain case has not been considered and
the program cannot process it correctly); or a power supply brownout or electromagnetic inter-
ference has disturbed the normal working of the microcontroller. In both cases, the program
may crash and the system that is built on it will no longer be stable. This can have conse-
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quences in applications where the microcontroller must keep in control, like in automotive ap-
plications or in security systems.

Various solutions have been imagined to prevent such situations. The most popular is the
watchdog timer. This is a timer that is set for a certain duration at power up. The program must
reset it to its start value periodically; failing to do so, the timer will overflow and this event gen-
erates a hardware reset. This restores the system to the state it was at power up.

To use the watchdog timer properly, the program must reset it at the appropriate time, in a pe-
riodic manner. To do this efficiently requires some care. A word of advice is given on this sub-
ject in a later chapter. 

2.5 THE INTERRUPT MECHANISM AND HOW TO USE IT

A microcontroller is a programmed computer that executes a single string of statements
known as «the program». Therefore, it apparently cannot perform more than one task at a
time.

However, most if not all applications require a single microcontroller to handle many things at
once. Usually, for cost-effectiveness and simplicity, the designer of a microcontroller-based
system tries to pack as many functions as possible in a single chip.

The answers to this problem are based both on hardware and on software. The hardware ap-
proach is called «interrupt handling» and the software approach is called «multitasking». 

2.5.1 Interrupt handling

An interrupt, in computer terminology, is a mechanism that allows the currently executing pro-
gram to be interrupted, as the name implies, when an external event occurs. The computer
then starts to execute a specially-written piece of code that is intended to process the in-
coming event. Once this processing is finished, the main program resumes exactly where it
was interrupted. Nothing else happens to this program except that its execution is delayed by
the time it took to process the interrupt-triggered code.
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The effect of the interrupt is shown in the following diagram:
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2.5.1.1 Hardware mechanism

The hardware mechanism is important to understand. It is different for each product, so what
we shall describe here pertains specifically to the ST7.

An interrupt request is a binary signal (a flag) generated by several external sources. Most pe-
ripherals of the ST7 can produce interrupt requests, for example the I/O ports, the timers, the
SPI, the I2C interface, and so on. The external cause of the interrupt request depends on the
type of the peripheral: the I/O ports may have some bits configured to generate an interrupt,
either on low-level, falling edge, rising edge, or both. The timer may request an interrupt on
timer overflow, external capture or output comparison. The SPI may request an interrupt on
end of transmission, etc. 

2.5.1.2 Hardware sources of interrupt

The hardware interrupt sources are summarized in the diagram below.
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2.5.1.3 Global interrupt enable bit

The various sources of interrupt may be inhibited as a whole using the I bit in the condition
code register. When this bit is set, no interrupts are generated. However, the interrupt re-
quests are not forgotten; they will be processed as soon as the I bit is reset.

2.5.1.4 Software interrupt instruction

In addition to the hardware sources, a special instruction, TRAP, produces the same effect as
an externally-generated interrupt request, but under program control. Strange as it may seem
(interrupts are provided for handling unexpected events, or at least, events whose time of oc-
currence is not known), the TRAP instruction utilizes the whole interrupt mechanism within the
regular execution of the main program. 

The trap instruction triggers the interrupt processing regardless of the state of the I bit in the
condition code register.

An example of the use of the TRAP instruction is the real-time debugger. When the user sets
a breakpoint somewhere in the program, the debugger replaces the instruction at which the
execution must stop with a TRAP instruction. The interrupt thus generated is processed by
displaying on the screen the state of the microcontroller at that precise time. However, this in-
struction may be used in other ways as well.

2.5.1.5 Saving the state of the interrupted program 

When an interrupt request triggers an interrupt, the first task of the core (after completing the
current instruction), is to save its current state so it will be able to restore it after the interrupt
processing is finished. This is done by pushing all the core registers on the stack. For ex-
ample, in the ST7, the Program Counter, the X-register, the Accumulator and the Condition
Code Register. It should be noted that the Y register is not saved, (this is because the ST7 has
evolved from an architecture that did not have a Y register). If needed, the Y register should be
pushed explicitly on the stack at the beginning of the interrupt service routine.

To protect the interrupt service routine from being interrupted, the I bit of the Condition Code
Register is set automatically.

At this point, the interrupt service routine may execute whatever instructions the programmer
chooses to write. The status of the interrupted program is known and can be restored when
needed. 

2.5.1.6 Interrupt vectorization

When the core decides to grant an interrupt request, it must know the address of the code that
must be executed in such an event. This is the purpose of the interrupt vectors.

The interrupt vectors are a table of 16-bit words in program memory that contain the address
of the beginning of the various interrupt service routines.
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Depending on the source of the interrupt (I/O, timer, etc.), the core fetches, from a predefined
location in memory, the address of the interrupt service routine especially written to process
that event. The vectors are always located at the end of the addressing space. There is one
vector for each interrupt source, plus one for the reset. When the microcontroller is interrupted
or reset, one of these interrupt vectors is fetched in order to get the start address of either the
interrupt service routine or the start of the main program. 

The following table shows the interrupt vectors:
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2.5.1.7 Interrupt service routine

When the processor has granted an interrupt request, and read the interrupt vector, it starts
executing the interrupt service routine. This routine is merely a segment of program, written
with exactly the same ease and constraints as the main program. It may be written using the
same language and tools, or in any other language.

The interrupt service routine is supposed to take appropriate action according to the source of
the interrupt. For example, if an input bit has changed its state, the service routine may change
the state of an output bit; if the interrupt was generated by the timer, this may produce the
transmission of a byte by the SPI, etc. according to the structure of the application as defined
by the programmer.

Eventually, the service routine is finished. Then the core may return to the main program. This
is done by executing the IRET instruction.

2.5.1.8 Interrupt Return instruction

As described above, an interrupt service routine looks a little bit like a subroutine. Like in a
subroutine, the return address is stored in the stack, and the execution of the RET instruction
returns to the calling program.

However, some more things have to be done before returning to the interrupted program. All
the core registers were pushed on the stack when the the interrupt request was granted (ex-
cept the Y register). They must now be restored, so that the execution of the service routine
will not leave any trace in the core. This is the role of the IRET instruction in the ST7.

The IRET instruction proceeds by popping all the data off the stack that had previously been
pushed, namely the Condition Code register (at this point the I bit is also restored), the Accu-
mulator, the X register and the Program Counter. 

From this time on, execution of the interrupted program resumes.

2.5.2 Software precautions related to interrupt service routines

As described above, the interrupt mechanism is fairly simple to use, since it only consists of
setting the interrupt vectors to the address of the corresponding service routines, and writing
a piece of code that must end with a IRET instruction.

Actually, an interrupt service routine may do anything in the system, since it uses the regular
instruction set of the core and has access to the whole memory. It may thus affect the state of
the main program, even though the core registers have been preserved. The following para-
graphs deal with the precautions to take when using interrupts.

2.5.2.1 Saving the Y register

(This point is specific to the ST7.) If the service routine uses the Y register, one must re-
member that this register is not saved automatically by the interrupt granting mechanism.
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Thus it is up to the programmer to save it, by pushing it to the stack at the beginning of the
service routine, and popping it before executing the IRET statement.

2.5.2.2 Managing the stack

This is just a reminder, since it applies anywhere in the program. The service routine must
track the usage it makes of the stack, so as to pop at the end as many bytes as it had pushed
at the beginning. This may look trivial, but if some pushes occur in some conditions and not
others (i.e. the service routine has conditional statements somewhere), the popping must
occur in exactly the reverse way, taking into account the same conditions as those that pro-
duced the pushing. This may not be very obvious to code.

2.5.2.3 Resetting the hardware interrupt request flags

In some peripherals, the hardware flag that produced the interrupt request is automatically
cleared on servicing the interrupt. In this case, no special care need be taken.

On the contrary, in some other peripherals (such as the timer), the interrupt request flag keeps
its state after the interrupt is granted. This flag must be cleared anywhere in the interrupt
service routine, but necessarily before the I bit of the Condition Code Register is cleared (on
execution of the IRET instruction). Otherwise, the interrupt service routine would be called
again immediately after executing the IRET instruction, and the core would loop indefinitely
through this interrupt service routine, thus blocking the main program.

How to reset the interrupt request flag is described as part of the description of each periph-
eral.

2.5.2.4 Making an interrupt service routine interruptible

On interrupt granting, the I bit of the Condition Code Register is set, to prevent the service rou-
tine being interrupted by incoming interrupt requests. Further interrupt requests will then suffer
from a delay before they are serviced. This delay is called «interrupt latency». Actually this
term includes the reaction time of the core itself, to which the time for the servicing in progress
must be added. 

However, there are cases where it is necessary to allow an interrupt service routine to be itself
interrupted. This is the case if a service routine performs processing that takes a certain
amount of time, and another interrupt source requires that its request be processed immedi-
ately, i.e. the permitted latency is short.

The solution is then to allow the slow service routine to be interrupted. This may be done by re-
setting the I bit of the Condition Code Register. This must be done after the hardware interrupt
request flag that triggered the interrupt currently in progress is cleared, for the same reason as
explained above. Please note, however, that this must only be done when necessary, since
the size of the stack is often limited in small microcontrollers.
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2.5.2.5 Data desynchronization and atomicity

This paragraph addresses the precautions that must be taken, in the main program or any
service routine that may be interrupted.

In many cases, data is organized in blocks in memory, that is, several bytes, successive or
not, make up a piece of data. Some coherence rules must be followed when using these data.
Failure to observe these rules may produce unexpected results and, very likely, an application
crash.

When no interrupts are used, the main program can easily follow these rules by taking care to
perform all data changes in the appropriate order and respecting the predefined relationships
between each of the bytes that constitute a piece of data.

When interrupts are used, respecting the coherence rules may become more complex. Actu-
ally, an interrupt is an asynchronous action that can occur at any time. Let us assume that the
main program is currently altering one piece of data that is made of several bytes. It first writes
some bytes, then more bytes until it is finished with a new data in memory.

If an interrupt occurs in the middle of the process of altering the data, the following risk may
appear. If the interrupt service routine uses the data that the main program is writing, the
service routine may get data that fail to follow the coherence rules, since not all bytes have
been updated yet. The service routine may then be misled by an incorrect value that it cannot
handle properly, or just interpret that data differently from what it was expected to mean if it
had been fully modified. This may have very serious consequences on the working of the ap-
plication. This circumstance is called «data desynchronization».

To avoid this, some precautions may be taken in cases where interrupt service routine may
find incoherent data. They all ensure that all the data will be updated at once, and never used
unless completely updated. This condition is called «atomicity», from a Greek root meaning
«that cannot be cut». To properly handle multi-byte variables that are shared by a main pro-
gram and an interrupt service routine, or by two interrupt service routines of which one may in-
terrupt the other, the handling must be made “atomic”.
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The following example shows:

■ What happens when the data are desynchronized.

Let us assume the main program wants to increment the word variable reg (16-bit register in
page zero), that currently contains 42FF hex. The following code will be used:

; word variable reg contains 42FF hex
; increment word variable reg by 1

inc reg+1 ; add 1 to the low byte
; low byte is incremented. reg 
= 4200 hex

jrne endinc ; increment high byte if carry

endinc : ... ; here the program continues
; both bytes are incremented. reg = 4300 hex

If an interrupt service routines uses the value of reg, and if the interrupt request occurs for ex-
ample at the first line of the code above, the interrupt service routine will see that reg is 4200

while it is actually either 42FF or 4300. This error may have serious consequences.

■ How to make the handling atomic.

To avoid this situation, it is sufficient to mask out all the interrupts, by changing the code as fol-
lows:

; increment word variable X by 1
sim ; prevent interrupts from 

occurring
inc reg+1 ; add 1 to the low byte
jrne endinc ; increment high byte if carry

endinc rim ; allow interrupts to occur
... ; here the program continues

; both bytes are incremented. reg = 4300 hex, now the interrupt can be 
performed

All interrupt requests that occur between the SIM and the RIM instructions are delayed for the
duration of that piece of code. If this would cause an excessive latency for one particular inter-
rupt that does not use that data, it is possible to mask out the specific interrupt source whose
service routine actually uses this value.

This example mentions the case where the data is written by the main program, and read by
the interrupt service routine. Actually, the reverse case is also a source of problem: if the main
program reads the data, and the interrupt service routine writes it, the main program may start
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reading the first bytes of the data, then the interrupt occurs; on return, the remainder of the
data are read, but unfortunately there may not be coherence between the first byte that was
read before the interrupt and those read after it.

2.5.3 Conclusion: the benefits of interrupts

The interrupt system is a very appropriate means of processing events that have the following
features:

■ They are triggered by a hardware signal coming from outside. Theses signals are connected
to appropriate pins of the microcontroller; or they are the result of the working of internal
peripherals that reach a certain condition, for example the internal timer has overflowed.
Though the timer is built-in the same chip as the core, it is functionally considered external
to the core.

■ They occur at their own time, and thus unexpectedly for the main program.

■ They require a quick reaction from the core, either because they occur frequently or because
the status of the external device that requests the interrupt would not keep its meaning after
too long a delay.

■ They do not require complex processing; typically, they require reading some data from
outside and storing it to memory, or transferring data from the memory to the external
circuitry.
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2.6 AN APPLICATION USING INTERRUPTS: A MULTITASKING KERNEL

The conclusion in the previous paragraph states that interrupts are well-suited for a certain
class of events to be processed. However, there are other cases outside this category. Some
of them are better addressed by the concept of multitasking.

In many applications, several processings are required that do not match the specificity of the
interrupt-driven processes. For example:

■ Two or more processes are continuously active, that each take long processing times.

■ These processes are not (or not directly) started by external events. 

■ They do not require a quick reaction time.

In such cases, the interrupt concept is obviously inappropriate. Actually, these processes
seem to require each a core of their own. However, considerations of cost may not allow for
multiple microcontrollers on the same board. The concept of multitasking is the answer to this
requirement. It is a software solution that does not require extra components, and makes the
system believe the various tasks run on different cores, although it is simply the same core
that is shared between all the tasks at the expense of the computing power that is shared be-
tween this tasks, plus a certain waste produced by the specific mechanisms that provide for
the multitasking. This waste limits the frequency at which the tasks can be switched; if they are
switched too often, the proportion of the time taken to switch tasks becomes too large, and the
corresponding part of the microcontroller computing power is lost. The designer must check
whether the power remaining for each task is sufficient or not; if not, the type of microcontroller
is probably unsuitable for the project.

There are two kinds of multitasking, namely pre-emptive multitasking and non pre-emptive
multitasking. The second kind is also called cooperative multitasking.

2.6.1 Pre-emptive multitasking

Pre-emptive means that the computing power that is allocated to a task is withdrawn from it
without notice, that is, that particular task is stopped at an unexpected place by brute force.
Then, the power is allocated to another task, until it is stopped in turn, and so on for all the
tasks; then, the first task that is currently sleeping regains control and continues for some time.

The task switching is done under control of an interrupt triggered by a timer. This allows the
core time to be partitioned at will between the various tasks. The time for which each task is al-
lowed to run may be the same for all tasks; or it may be decided to allow more time for some
more important (or time-consuming) tasks, and less for others. In a word, the multitasking
kernel may fine-tune the resource sharing between the tasks.

The main drawback of this system is that since the tasks are interrupted at any place in the
code, many precautions must be taken to ensure the coherence of the data, just as explained
above about interrupts. In fact, if a task starts to write a piece of data and is put asleep in the
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process of updating the data, and another task uses that data, there is a risk of desynchroni-
zation. The same type of precautions must be taken to ensure atomicity of data updates. The
same problem may also occur if more than one task handles control sequences for an external
device. If this external device needs a precise control sequence that must be completed be-
fore a new sequence is started, there is a risk that a task may lose control before the sequence
is complete and control may be transferred to a task that attempts to use the same device. The
attempt may then fail or interfere with the unfinished sequence of the previous task. Here
again, a protection mechanism is required.

In summary, the advantage of pre-emptive multitasking is that task switching is done automat-
ically and independently from the code of each task; the relative power attributed to each task
may be adjusted to fit the requirements of each task.

The drawback is the opposite of the advantage: since the task switching happens at any time
and any place in the code, the programmer must locate the critical areas of code where spe-
cial protection mechanisms must be included. This may be more difficult than it might appear,
for it is not always easy to find all the possible collisions and keep them from happening.
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2.6.2 Cooperative multitasking

Cooperative multitasking draws its name from the fact that task switching is not spontaneous.
It only occurs when the task-switching function is called by the currently active task. This im-
plies two facts:

■ Task switching occurs only when the code decides it. As a consequence, it is easy to avoid
data desynchronization and access collisions by placing the task switching calls at the
proper places.

■ The partitioning of the core time between tasks cannot be set at will, since it is not possible
either to insert into the code as many calls to the switching function as necessary or to put
them at the right places to control the time intervals allocated to that task.

The reader can easily see that the strong and the weak points of one type of multitasking are
the opposite to those of the other system. This explains why both are used, the type being
chosen to best match the application’s requirements. In addition to theses features it is fair to
say that cooperative multitasking is easier to implement and less resource-consuming than its
competitor.
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2.6.3 Multitasking kernels

2.6.3.1 Advantages of programming with a multitasking kernel

The multitasking kernel is the piece of code that controls the multitasking. The way it does it,
and the flexibility it offers may vary greatly from one kernel to the other. It is generally supplied
ready made, and the programmer has to give his program the appropriate architecture to get
the benefits of it.

Writing an application with multitasking in mind is easy and leads to a clear, organized struc-
ture. The work to do is divided in tasks, and these tasks are written separately as procedures.
They exchange data using either communication mechanisms built-in to the kernel, or
common data in memory, taking care to avoid collisions. The main difficulty is to identify what
a task actually is. For example, two processings that are always performed one after the other,
and always in the same order, constitute a single task. On the contrary, two processings that
either may or must be performed at the same time are two separate tasks.

The features of a kernel vary from product to product. One must first know which kernel is
being used, the type of multitasking (pre-emptive or cooperative), and the services provided
by the kernel. Some of these are discussed below.

2.6.3.2 The task declaration and allocation

The kernel must be aware of the existence of the tasks, their number and their start ad-
dresses. Some kernels expect this to be stated at compile time; in this case, the number of
tasks is known from the beginning of program execution and cannot change afterwards.

Some others allow tasks to be added (or created) while the program is running. This allows
tasks to be created when the need shows up, for example to process an incoming event and
then terminate. In this case, it is convenient to also have the ability to remove or kill the task.
Again, there are two options: a task may terminate when it decides to do so (kill itself or “sui-
cide”); or it may be killed by any task, including itself.

2.6.3.3 Task sleeping and waking-up

A task may be alive but have nothing to do; in this case, to save computing power, it is wise to
completely stop allocating core time to it. The task is then asleep. This can be done by calling
a function often called Sleep, passing to it the identification of the task to be put asleep. A task
can put itself asleep if it is waiting for some event.

Obviously, it is necessary to have a means of waking-up a sleeping task. This cannot of
course be done by the sleeping task itself, and can only be done either by other tasks or by an
interrupt service routine. For example, let us consider a task that processes the keystrokes
generated by a keypad. The hardware of the keypad may generate an interrupt when a key is
pressed. This interrupt may wake-up the keypad task that reads the keycode and takes the
appropriate action. When this is done, the task may go asleep again. One might ask why it is
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not simpler to perform the processing right in the interrupt service routine, instead of this ap-
parent complexity. Actually, the processing of the keystroke can take a long time, too long to
allow it to freeze the remainder of the application as happens when an interrupt is being serv-
iced.

Other services may be supplied by the multitasking kernel, coping with priorities, intertask
communication, etc.

2.6.3.4 Multitasking kernel overhead

The purpose of a multitasking kernel is to share the power of a single processor or core be-
tween several tasks. Obviously this sharing means less power for each task, except perhaps
if all tasks but one are asleep. However, even in that case, the task does not benefit from the
whole computing power, since some of the core power is drawn off by the kernel itself. In ad-
dition, it is equally obvious that the kernel is a piece of code that occupies a certain amount of
program memory as well as data memory. But overall, the main concern with memory require-
ments relates to the stack.

The stack is the place where the state of a program is continuously stored. This amount of
data is often referred to as the “context”. Each task has its own context, which consists of all
the return addresses of all nested procedures and functions; most compilers also store the
function arguments and local data in the stack. This can add up to a large amount of memory,
not to mention that some free space must remain in the stack to handle interrupts that may
themselves consume a certain amount of stack, in the same way as the main program.

This implies generally that the stack space must be very large, since the amount of data men-
tioned above must be multiplied by the number of tasks alive at the same time.

The ST7, being a small 8-bit core, provides for at most 256 bytes of stack. This allows for a
multitasking kernel with a limited number of tasks and services.
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3 PROGRAMMING A MICROCONTROLLER

A microcontroller is basically a programmable component. This means that it can do almost
anything, when properly programmed.

In fact, the design of the electrical schematic of a microcontroller-based application raises few
questions; the input and output pins of the microcontroller are simply connected to the binary
signals either produced or used by the external application. The designer only has to take care
to select the right pins, since some signals must be connected to special peripherals like the
Analog to Digital Converter, the Timer, etc.

It is the program that configures the pins so that they have the correct electrical behaviour, and
that processes the data to produce the appropriate response to the input signals. Since the
board will be designed with as little electronic processing as possible, all the processing is
done by software.

This produces the flexibility that is the main feature of any programmed system: unless a hard-
ware problem arises, most of the fixes and changes done to a programmed system will be
done in software.

Programming the processor is thus the key activity of the designer, the one that will take the
largest part of his time. For this reason, the use of the right tool to program the application is
critical, since program design and testing time can vary greatly according to the tools and the
language chosen.

This chapter addresses the two main issues the programmer faces: selecting the appropriate
language for the best productivity, then selecting the appropriate software tools that will allow
not only to program in that language, but also to test the program written in that language. We
will learn that an investment made prior to starting the design can prove very efficient in terms
of development time, and therefore, pay for itself.

3.1 ASSEMBLY LANGUAGE

3.1.1 When to use assembly language

Assembly language is the native language of each microprocessor. It used to be the only way
of programming a small microcontroller until high-level language compilers were made avail-
able. Programming in assembler was a job that required a lot of care and very many lines of
source code relative to the size of the application. It was justified when program memory was
small and assembly language was the only way to optimize the code size. Nowadays, micro-
controllers, except for those at the lowest-end, can afford enough memory to cope with the
code expansion factor inherent in high-level languages. Thus, for reasons explained in the fol-
lowing paragraph, a high-level language is strongly recommended and using assembly lan-
guage should not be considered except when absolutely needed.
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There are, in almost all applications, parts of the code that still require assembly programming.
These parts are, most of the time, small but have an important impact on the program. Here
are a few such cases:

■ The initialization part of the program. All high-level languages provide for initialization of the
core and the memory. However, the basic organisation of the memory (address of the ROM
and the RAM, reset and interrupt vectors) and a few other kinds of initialization are supplied
as an assembly-language template, that has to be adapted to suit the actual application.

■ Some interrupt service routines that require very fast processing.

■ Some repetitive functions that are frequently invoked and whose optimization in terms of
speed has an important impact on the performance of the whole program.

The third case implies that the programmer carefully reads the implementation chapter of his
compiler’s manual. The way arguments and return values are passed back and forth are spe-
cific to each compiler. Failure to comply with these conventions will prevent the assembly
code from working.

3.1.2 Development process in assembly language

The development of a program consists of three main phases: analyzing, writing the code, de-
bugging. In other words, the successive phases can be described as follows:

■ The first phase is when the programmer defines what the program should do. This is only
paperwork, even if it is done using a computer and a word processor or a spreadsheet. This
phase defines the main program blocks, the data inputs and outputs, the storage, and some
of the algorithms.

■ The second phase is the translation of the first one into the chosen computer language. The
result of it is the source code and a few files that drive the various programming tools. The
tools used in this phase are the text editor, to type and amend the source code, and the
assembler and the linker to check its syntactic correctness. The Make utility is also a
convenient tool, that helps keeping the program up-to-date, when any of its parts have been
changed, by processing only the changed source files.

■ The third phase consists of all that is needed to make the source code work. It involves
removing all programming errors, that is, the flaws in the first and second phases related to
logic, coordination, and data management. This third phase is by far the most difficult and
requires the most development time. The tools used, the Simulator and In-Circuit Emulator,
have to be very powerful because many errors are difficult to find. 

When the program is fully functional, it is often stored in an EPROM that is either external, or
as in the ST7, internal to the microcontroller. This produces a prototype of the microcontroller
that must be extensively tested before being launched to production, especially if, for large
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quantity production, the microcontroller includes a masked ROM programmed by the device
manufacturer and that cannot be altered afterwards.

3.1.2.1 Assembly language

Assembly language is merely a set of mnemonics that duplicates each instruction in a more
legible way, to help writing the programs. Machine language is just a series of numbers that
obeys a certain code to indicate to the core which instruction to execute and which data to use.
Assembly language provides acronyms that are easier to remember. The following example
shows an excerpt from an assembly listing. The first two columns show numeric data, which
represent the addresses of the instructions and the machine-language code. The Source line
column shows the machine code in mnemonic language. It is obvious that, provided one has
learned that ld means the instruction Load, and that, of the two operands of this instruction,
the destination operand comes first, it is easy to understand the first lines of source code as
documented in the comment column:

Loc    Obj. code   Source line                  Comment
------ ---------   -----------               -------------
000000 A6FF              ld A, #$FF   ; load accumulator with immediate 

data FF (hex)
000002 AE64              ld X, #100   ; load X register with value 100
000004 F7          loop: ld (X), A    ; load location pointed to by X 

with contents of A
000005 5A                dec X        ; decrement X register
000006 26FC              jrne loop    ; jump to label loop if X not equal 

to zero

This short program is a loop that fills memory addresses 100 to 1 (decimal) inclusive with the
value FF hex.

Programming in assembly language involves using a text editor to write a text file that obeys
the syntax and conventions of the specific assembler that is to be used. It should be noted that
assembly language is not standardized in any way, for two reasons:

■ The instruction set changes from one processor to another

■ For a specific processor or microcontroller, software tool sets from different suppliers each
have their own syntax, although two source files written for two different tool sets may seem
very close. 

Thus, to write an assembly language source file, the programmer must first know which proc-
essor or microcontroller will be chosen for his project, then which software tool set he will use.
Then, he has to learn both the characteristics of the processor’s instruction set (instruction
types, addressing modes, etc.) and the specific syntax of the assembler he will use.
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Then, once he masters both, he may start to write his source file. Obviously, if later he has to
do the same job with a different processor, the source file will be of no use in the future project.

3.1.2.2 Assembler

The word assembler has usually two meanings. Properly used, it is a program that translates
a text file, written according certain rules, into a binary file that contains a series of instructions
specific to a microprocessor or a microcontroller. However, the word Assembler is often im-
properly used instead of “assembly language”, for example in the sentence: “this program is
written in assembler”. This paragraph introduces the translating tool, or “assembler”.

The assembler is a program that runs on whatever computer is used by the programmer for
his regular job. It takes the source file, as explained above, as an input; then, after translation,
it outputs, depending on the user-specifed options, any of the following files:

■ The object file, containing binary data intended for further processing. It can not be read by
man.

■ The listing file, is a report containing both the original source code and its numeric
translation, presented in a tabulated manner. It can be read by man and used for reference
purposes.

■ In some cases, other files like lists of variables and labels, or additional data. This varies
from one assembler to another.

If the assembler encounters an error in the syntax of the source file, or some ambiguity or lack
of information preventing it from completely processing the source file, it generates an error
report, this may be output in the listing, in a separate file, or directly on the computer console.

The error messages tell where the error is located, and, as much as possible, the cause of the
error, as in the following example: 

TRIAL.ASM(6): ERROR: not a ST7 instruction or directive
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Here again, the format of all the above mentioned files is chosen by the assembler’s manufac-
turer, and differs from one to another.

03-asm

3.1.2.3 Linker

If the whole application program is small, it is easy to put the source text into a single file. The
assembler then produces an object file that contains the whole machine code ready for use.
This is called absolute assembling.

However, there are very few applications so simple that their source text occupies only a few
pages. In most cases, the total source text amounts to thousands of lines that may represent
hundreds of pages. In such a case, it would be impractical to edit a single large source file. Not
only would the assembly process take a long time but this time would be spent whenever a
change was made to the text. 

It would be better to divide the whole text into several files, and to assemble them separately.
This way, a change would affect only one of the files, which can be quickly re-assembled.

Working this way requires additional features:

■ A means of telling that a particular source file references a data variable or a label that is
defined in another source file, in order to prevent the assembler from merely stopping and
issuing an error message saying that something referred to has not been found defined in
the same source file.

■ A tool to glue all the generated object files into a single object file, ready for use.

The first issue is addressed by additional syntax features that typically provide declarative
statements such as “External” and “Public”. The “External” statement declares that a certain
label referenced in the source file will intentionally not be found there, since it comes from an-
other source file. The “Public” statement declares that a label (or a variable) defined in this file
will be referenced by another source file.
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The tool that glues together all the object files, each the result of assembling the source files,
is called the Linker.

The linker performs the following tasks:

■ It takes all the object files, and merges them into a single object file by concatenating them
one after the other.

■ It corrects the address values in all the instruction operands that refer to objects whose
location in memory has been set or altered by the concatenation.

To do this, in addition to the set of object files, the linker requires a control file that tells it the
list of the object files to link together, the order in which they must be put, and the absolute ad-
dresses at which the result will be installed in the microcontroller’s memory.

This may look complex; but actually, it make processing large programs easier and faster.
When a change has to be made to a particular source file, only this file must be edited. Then
only this one must be re-assembled, which saves time; then, all the object files must be linked
again. The linking process is fast, compared to assembly, since the files contain binary data
and their format is optimized to make the linker’s job easier.

If a hardware change is made to the board that changes the address of some memory or a pe-
ripheral, it may be only necessary to alter the linker control file and link the program again.

Once the program is linked, the resulting object file contains the whole program. This file is
said to be an absolute object file, meaning that all addresses are defined; as distinct from ob-
ject files before the link process that are said to be relocatable, i.e. their addresses can be
changed later.

The absolute object file can be used either to be downloaded into an emulator to check and
debug the program; or into an EPROM programmer to program the chip that will hold the
code.

As for the assembler, the linker is built to process relocatable files produced by the assembler
frim the same tool set. It is usually not possible to mix the tools, like assembling with the as-
sembler from supplier A then linking with the linker from supplier B.



51/315

3 - Programming a microcontroller

03-link

3.1.2.4 The project builder/make utility

In the process introduced above, that relies on splitting-up the processing to save time, it is im-
portant to keep track of which sources have been altered, only re-assemble these and not the
others and then link all the object files. Forgetting to do this may waste a lot of time. For ex-
ample, after making a correction, if a program still shows the same incorrect behavior as pre-
viously, one is tempted to suspect another part of the code. Trying to identify which other part
of the program produced the problem will be a useless effort, if the real reason was that the file
containing the change had not been re-assembled and linked.

Thus, a tool that can guarantee that the programmer will never forget to reprocess his files is
an invaluable help. This tool is called Maker or Make utility.

The maker is a tool that works under the control of a file that gives the names of the source
files, the name of the output object file, the names of the tools needed to process a file to an-
other file (assembler, linker), and the dependency relationships between the files. 

For example, the dependency relationships specify that the final object file is produced by ap-
plying the linker tool to the files named in the linker control file; that each of the individual ob-
ject files is produced by applying the assembler tool to the corresponding source file, etc.

The maker works as follows:
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Each time a file has a successor with a date older than its predecessor, the corresponding tool
is run to update the successor. This is done in an orderly fashion, from the top of the hierarchy
(the source files) to the bottom (the absolute object file). Then, at a given time, all those source
files that have been modified since the last run of the maker are reprocessed, and only those
files. This both guarantees that no file will be forgotten in the updating process (provided that
the control file correctly describes all the dependencies), and that only the necessary
processing will be done, to save time.

The maker is an essential component of any set of programming tools. But unlike what was
said about matching the same brand of assembler and linker, any maker may be used in a
project, since all work the same way. The control file, in fact, uses a different syntax; but this
does not affect the overall result. So, if you buy a new set of software tools for a microcon-
troller, you can still keep the maker you are accustomed to.

3.1.2.5 EPROM burners

EPROM burners, or programmers, are tools that have a hardware interface with a zero-inser-
tion force socket that matches the characteristics of the specific EPROM chip or microcon-
troller with built-in EPROM. They transfer the contents of an absolute object file into the phys-
ical programmable memory. Burner software usually accepts several input formats. This gives
some flexibility to the user and can allow using a burner from one manufacturer with software
tools from another. Apart from accepting absolute object files generated by the linker in the
same tool set, burners also frequently accept one or other of the more widely-used printable
hexadecimal formats.

To use a hexadecimal format, either the linker must be able to output an absolute file in that
format, or a code converter must be used that takes an absolute object file as an input, and
produces a hexadecimal file as an output. Such converters are often supplied with in the soft-
ware tool set. The use of these converters may save you the price of a new burner if you al-
ready own one for the right type of programmable component.
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3.1.2.6 Simulators

A simulator is a tool that pretends to run an absolute executable program. Like the other tools,
it runs on the programmer’s own PC. It interprets the machine code that is specific to the
chosen processor or microcontroller, and outputs the results on the PC screen, without the
need for actually building the application hardware or even obtaining a sample of the target mi-
crocontroller.

The simulator allows the program to be run step-by-step (instruction-by-instruction), allowing
the programmer to watch the values changing in any register or memory location that result
from the execution of the instructions. It also makes it possible to put breakpoints in the pro-
gram, which are traps that stop the execution it reaches the address of the instruction where
the breakpoint was put. This can be used to run some parts at full speed and then stop on
reaching parts that are not yet fully functional, to avoid walking step-by-step through a lot of in-
structions that have already proven to be correct.

The progress of the execution can be followed on the screen in a special window that shows
the source file, and a cursor indicating the next line to be executed. At the same time, other
windows may display items like a range of data memory, the registers, the values of selected
data in a selected format (byte, word, character string...).

The user is even allowed to alter the values of the registers of the core, of the input-outputs, or
in memory, for example to correct a programming mistake, and continue the execution with
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the correct values, so as to avoid having to edit and make the program each time an error is
found.

In fact, simulation is limited to pieces of code that do not access the input-outputs, since this
would require a complex program at simulator level to also simulate the behaviour of the ex-
ternal world that the application is supposed to interact with. But still, most simulators can cor-
rectly emulate the operation of the built-in peripherals, in particular the programmable timers,
and can trigger interrupts whose servicing can be monitored on screen.

Simulation, though limited in its possibilities, has the advantage that it allows to you start de-
bugging the application program before the hardware becomes available,. It can speed up the
debugging process by ensuring that some pieces of code are already functional when the time
comes to test and debug the hardware.

3.1.2.7 In-circuit emulators

In-circuit emulators are complex and expensive instruments that, for the application hardware,
behave exactly like the intended microcontroller would do. From the user’s point of view, an
emulator is an inspection device that shows the calculations in progress in the application
hardware and the state of the input-outputs, as well as the contents of the memory at any time.
It is the electronic equivalent of a spy in the real world: an intermediate entity that, while
playing its role correctly in the real world (the application hardware), at the same time informs
an external intelligence (the programmer) of everything that happens in that world.

An emulator offers exactly the same features as a simulator does, in terms of running an ap-
plication either at full speed or step-by-step, setting breakpoints, examining registers, memory
and input-outputs. The major difference is that while running the program, the microcontroller
actually interacts with the external world, producing actions on the product to be tested, and
acquiring real data that it can process in a realistic way.

The simulator and the emulator are so close together in functionality that the manufacturer en-
deavours to provide the same user interface, i.e. the same presentation on the screen and the
same controls through the keyboard and the mouse for both tools, so that the user has very
little additional learning to do when switching from the simulator to the emulator.

One last feature that is found on top-range emulators (the very expensive ones) is so-called
real-time tracing. This is a hardware system that records all events on the buses (address,
control and data) and attaches a time tag to them. The memory capacity is at least one thou-
sand events, and can exceed ten thousand in the most expensive emulators. This allows you
to run the program at full speed, record what is going on, then quietly analyze the record to see
what happened. In real-time applications, this may be the only way to understand what hap-
pens and the problems that occur, as most of these applications do not permit step-by-step
debugging, since the processor must follow the activities of the external world in real-time. In
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this type of situation, its a difficult task for the programmer to complete the debugging of the
application so that it can be validated.

3.2 C LANGUAGE

3.2.1 Why use C?

Many high-level language exist; some have been written specifically for a family of microcon-
trollers, while others are widely-used languages from the computer world that have been
adapted to suit the needs of microcontrollers. Today, one language that prevails in microcon-
troller programming, that is C language.

The primary advantage of C is the ability to write very simple statements that actually involve
hundreds of machine instructions. As an example, the small sample of assembly source code
given in the paragraph about the assembly language has five lines. It could be replaced by the
following line:

memset ( (void*)1, 0xFF, 100 ) ;

This example is not very impressive. However, a C-language statement like:

int UnitPrice, Quantity, Cost ;
float Discount ;

void main ()
   {
   Cost = (float)( UnitPrice * Quantity ) * ( 1 - Discount ) ;
   }

is easy to read and translates into about eighty instructions, without taking into account the
subroutines that perform multiplication and subtraction. We can see at a glance the produc-
tivity gain we can expect from a high-level language.

C language was initially designed as the programming language that came along with the
UNIX operating system. The power and relative simplicity of it made it spread to many dif-
ferent cores, until it became the standard programming language for microcontrollers.

The advantage of C is that it is a language that, though being very powerful, remains very
close to the hardware. This is a key feature for microcontroller applications, especially where
parts of the code are written in assembler. Being close to the hardware means the ability for
the compiler to produce very optimized code by choosing the best instructions for a given job,
when several instructions are available. In particular, setting a port pin high or low must not
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take a long string of instructions, since the designer of the microcontroller has worked hard to
provide efficient instructions to do the job.

C is a structured language, meaning that code can easily be divided into blocks that can
readily become functions, or the body of looping or conditional statements, keeping the source
code legible if the writer has taken some precautions in the layout of the source text and pro-
vided useful comments.

Saying that C is a powerful language means that a short statement, taking only a single line of
source text, may perform complex operations, involving hundreds or thousands of basic in-
structions. Not only does this conciseness help keep the source text easy to read, but also it
guarantees the correct execution of the code it hides, since this code has already been exten-
sively tested by the manufacturer of the compiler.

The availability of C on many computers makes it possible for you write and test some parts of
the program directly on your PC. Most of the time, if the language constraints have been ad-
hered to, a piece of code that works on a PC will work straight off on the target microcontroller.
This is a recommended method of development, since it allows you to start writing and testing
the program before the hardware of the application has actually been built. The less debug-
ging is done directly on the hardware, the quicker the development takes.

The portability of C is also a guarantee for the future. The microcomputer world evolves so
fast, that it is not unusal to have to redesign an existing application for another microcontroller,
or to reuse parts of the code of a previous application for a future one. In such an event, the C
language allows you to reuse code with virtually no change from project to project. This fea-
ture alone, pays back the moderate investment the C compiler represents.

To remove any doubts you might have about the sincerity of these arguments and since
nothing is perfect, the drawbacks of C are be listed here.

The first drawback is that C was originally designed for mainframe computers. In these ma-
chines, there is only one memory space, that contains both code and data. In the ST7, there
is also a single memory space that contains code, data and input-outputs, but the code re-
sides in ROM and data in RAM. Standard C has no provision for specifying the address
ranges of these parts of memory. 

The interrupt service routines may, and if possible, should be written in C, like any other part
of the code. However, standard C does not know anything about interrupts.

Inputs and outputs are handled in a mainframe through the operating system. Thus standard
C has no special provision for handling them.

These drawbacks would totally prevent you from using C for microcontroller appilactions if the
various implementations of C available did not provide solutions for these cases. These solu-
tions vary from implementation to implementation, and constitute the main cause of non-port-
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ability of programs to another machine. You will have to take account of this, especially when
testing the code on your PC first as suggested above. This can in most cases be solved by a
declaration file that is included in the project and that exists in two versions, or uses condi-
tional compilation, to fill the gap between two different dialects of C. This point is actually the
most tricky and that which requires most care from the programmer.

Having read these pros and cons, you have hopefully concluded that C is the language of
choice for today if you want to save time and keep the fruit of your efforts over several years.
We have kept the last argument for the conclusion, that will, undoubtedly, be decisive in the
years to come.

The pressure for quality products is growing more every day. In some types of application, like
medical apparatus and life-sustaining devices, equipment reliability has to be certified. More
and more products, through ISO9000 standards or the constraints of product liability must be
ready for quality assurance certification. Software quality assurance is a very difficult subject;
it is not the purpose of this book to enter this field. But one thing is sure, only properly docu-
mented and structured software is likely to meet these quality assurance requirements.

3.2.2 Tools used with C language

Just like the assembler translates mnemonic language into machine code, the C compiler is a
tool that translates a C-language source file into a relocatable object file. Here also, the appli-
cation will be divided into files, also called modules, that are compiled separately. The whole
group of object files is then linked to produce an absolute object file, the same as with assem-
bler-generated object files. Actually, there is virtually no difference between an assembler-
generated object file and one generated by a C compiler. This means that some modules may
be written in C, and some in assembler; you can select the language according to the advan-
tages and drawbacks of each language for each part of the application, as explained earlier.
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03-comp

3.2.3 Debugging in C

Debugging in C is done the same way as explained for assembly language. However, the sim-
ulator and debugger screens designed for high-level languages can also show the progress of
the execution directly in the C-language source text, while another window shows the corre-
sponding assembly language statements. A cursor in each window keep the correspondence
between both.

Another powerful feature offered by high-level language debuggers is the capability of dis-
playing the data of selected variables according to their type, even for complex types like
structures, arrays, strings, etc. This dramatically improves the productivity of the debugging
phase, in the same proportion as choosing a high-level language does, in terms of shrinking
the source code.

Thus the advantage of high-level languages is twofold: it reduces both the programming time
and the debugging time. This is an invaluable benefit, as the resource that is probably the
scarcest nowadays is time, even more than money. However, you are advised to check
whether of the programming tools you selected fully support C language from one end to the
other; just to mention a few essentials:

■ A text-editor that provides features that are useful in C language, like auto-indenting,
bracketed block selection, syntax highlighting, and so on;

■ A compiler, an assembler and a linker that are really suited to working with the selected
microcontroller, offering flexible addressable space allocation, efficient access to the ports,
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easy interrupt declaration and servicing in both assember and C language; efficient
optimization that may be switched off at critical places;

■ A simulator and a debugger that properly display the C source text, allowing you to easily
change the values of variables or even code in memory to make patches, and that correctly
synchronizes the timers during step-by-step execution.

These are just a few of the features that may make the difference between apparently equiv-
alent competing products.
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3.3 DEVELOPMENT CHAIN SUMMARY

The development chain discussed above can be understood more clearly using a diagram.
The diagram below shows the various files involved in the development process as cylinders;
the translators used to change one file type into another are shown as rectangles.
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3.4 APPLICATION BUILDERS

An application builder is a graphical language that allows you to define the function of the pro-
gram by manipulating icons on a computer screen. Each icon represents a standard function,
like addition, integration, comparison, etc. Each icon has inputs and outputs, and by drawing
lines on the screen between the output of one icon and the input of another, you connect these
icons, that is, feed one program block with the output of the previous program block. This kind
of programming tool is becoming popular in laboratory and plant automation since it allows
you to build a complete application without leaving the block diagram conceptual level. This
makes it a quick and easy-to-use programming tool for non-programmers.

An application builder for the ST6 and the ST7, the STRealizer, allows you to use graphical
input techniques and build programs based on functional block diagrams. Version 2.2 of the
STRealizer is available on the ST7 CD-ROM. 

3.5 FUZZY-LOGIC COMPILERS

Fuzzy logic is a mathematical theory that has been applied to cope with problems that are at
the border between logical and analog computation. It has lead to many articles and books to
explain both its basic theory and various methods of implementing it using microprocessors.
Although it is a very attractive theory, there is no evidence so far of a typical application do-
main, though quite a few claims have been made about robots, washing machines and
vacuum cleaners, that have been said to be able to adapt their operation to the job they have
to do. One example was a washing machine able to determine the proper amount of water
needed for a certain weight of clothes--without using a scale to measure the weight.

Several fuzzy-logic compilers are available today, in particular one for the ST6 family, how-
ever there is none yet for the ST7.
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4 ARCHITECTURE OF THE ST7 CORE

4.1 POSITION OF THE ST7 WITHIN THE ST MCU FAMILY

The STMicroelectronics range of microcontrollers is very wide, from proprietary architectures
like ST6 to ST10 to second-source products like microprocessors for PCs and Digital Signal
Processors.

The proprietary range can be summarized as follows:

As the table shows, the ST7 is positioned towards the low-end. It provides an economical
trade-off between speed and price and is suitable where moderate computational power is
needed together with a low-consumption device, like in TV remote control transmitters. 

Alhough it is a low-end product, because the ST7 combines the world’s best-selling 8-bit in-
struction set with a host of added functions from a range of smart peripheral blocks, it is re-
markably versatile for a microcontroller of its class. It has a wide choice of versions in order to
minimize the component count of each specific application.

Type Word size Main features Typical applications

ST6 8 bits

Very low power consumption, 1.2 to 8 
KB ROM,

timer, ADC, watchdog timer and more 
depending on the subtype.

Appliances, home automation (suitable 
for direct power line supply)

ST7 8 bits

Industry-standard instruction set, 256 to 
3K bytes RAM, 4 to 60 KB ROM, ADC, 
SPI, 16-bit timer, and more depending 
on the subtype.

TV remote control, car radio control, 
RDS decoder, etc.

ST9 8/16 bits

250 ns instructions (on a 16-bit word), 
many internal registers, powerful ad-
dressing modes, interrupt priority con-
troller, DMA controller, plus a whole 
range of peripherals capable of complex 
processing. 16 to 128 KB ROM, more 
than 256 bytes RAM.

Automotive body applications and car 
radio.

ST10 16 bits
100 ns instructions (on a 16-bit word), 72 
KB Flash EPROM, 10+ KB RAM, ADC, 
16-bit timer, USART, and more. 

Engine management systems, air bags, 
etc.
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4.2 ST7 CORE

The ST7 core uses an extended version of an industry-standard instruction set. This set is
both exhaustive (almost all instructions are available, with the exception of division) and fairly
orthogonal (the instructions allow for most addressing modes). This makes the instruction set
of the ST7 both clear and easy to use when programming in assembler.

For those of you already familiar with the standard instruction set, the extension resides
mainly in the following two points:

■ A second index register, Y, that can be used anywhere the X register is used (like indexed
addressing), or like X, moved to any other register;

■ The indirect addressing modes, that come in addition to the direct, long, and indexed modes.

The core as described here is limited to the processing unit, excluding the reset and interrupt
circuitry. They will be described in the chapter dealing with the peripherals. The block diagram
of the core and the addressing space is shown below:
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4.2.1 Addressing space

The ST7, as said earlier, is based on a Von Neumann architecture. This means that there is
only one addressing space in which the program, the data and the input-output peripherals are
mapped. The advantages are:

■ Access to any byte (of program, of data or of input-output) using the same instructions 

■ No special instructions to access constant data in program memory or input-output

■ Ease of programming, due to simplification resulting from the first two advantages

As a typical 8-bit processor, the address bus of the ST7 is 16 bits wide, and thus able to ad-
dress 65,536 bytes. This is enough for most applications within the range of the ST7.

To improve the efficiency of the code, the addressable space is actually divided in two parts: 

The addresses ranging from 0 to 255 (0FFh) are said to belong to page zero. An 8-bit address
is enough to reach them.

The remainder, from 256 (80h) to 65,535 (0FFFFh), is accessed using 16-bit addresses.

The use of page zero can greatly improve the speed of the code if the most frequently ac-
cessed data are located in page zero. Also, in the ST7, all input-outputs are always located in
page zero.

4.2.2 Internal registers

The core uses only six registers: A, X, Y, PC, SP and CC.

4.2.2.1 Accumulator (A)

The accumulator is the register where the arithmetic and logic operations are performed. To
perform a two-operand operation between two values stored in memory, one of the values
must first be moved to the accumulator, since the instruction code provides only one address.
It must be moved back to memory when the operation is done. 

The instructions that require only one operand, like INCrement, DECrement, ComPLement,
ComPare, Test for Negative or Zero, Bit ComPare, and so on, can act on the accumulator, or di-
rectly on the data in memory, if so desired.

4.2.2.2 Condition Code register (CC)

This register holds several bits that are actually more or less independent from one another.
These bits are set or reset (or left unchanged) after the execution of certain instructions. For
example, if an addition produces a null result, the Z flag is set; otherwise, it is reset. If the result
is negative, the N flag is set, otherwise it is reset and so on. The CC register remembers the
conditions after each instruction, and these conditions are used by the conditional jump in-
structions. The CC is laid out as follows:
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04-ccreg

The leftmost three bits, indicated as ones, are not used. When read, they yield ones.

C bit

The C bit is the carry that is generated by an addition or subtraction. When adding 16-bit num-
bers, for example, we first add the two least-significant bytes together, then the most signifi-
cant ones. If the result of the first addition yields a result greater than 255, it cannot fit in a byte.
For example, adding 1200 and 6230 in decimal yields 7430. In hexadecimal notation, this is:

4B0 + 1856 = 1D06

Adding these numbers is performed in two steps. First, B0 is added to 56, yielding 06 with a
carry of one. Then, 4 is added to 18, yielding 1C, and with the addition of the carry we get 1D. 

The role of the C bit of the Condition Code register is to remember that carry between the two
additions. The first addition is performed using the ADD instruction, and the second must use
the ADC instruction (add with carry) that increments the result of the addition if the C bit is a one.

The instructions that affect the carry bit are mainly addition and subtraction, the shift and ro-
tate instructions, and of course instructions that directly affect the CC register.

The instructions that use the C bit are ADC and SBC (subtract with carry), the rotate instructions,
and some conditional jump instructions.

Z bit

This bit is set to one to reflect the fact that a value is zero, whenever the accumulator is loaded
or after any arithmetic or logical operation. If the value is not zero, the Z bit is cleared. The in-
structions that affect or use the Z bit are the same as those for the C bit.

N bit

This bit is set to one to reflect the fact that a value is negative, in two’s complement notation.
A negative number has its most significant bit set to one; so the N bit reflects the most signifi-
cant bit whenever the accumulator is loaded or after any arithmetic or logical operation. If the
value is positive, the bit N is cleared. The value zero is considered positive. The instructions
that affect or use the N bit are the same as those for the C bit.

I bit

This bit is the global interrupt mask. When this bit is set, all interrupts are ignored. However, if
an interrupt request is present, clearing the I bit immediately triggers an interrupt.

C o n d i t i o n  c o d e  r e g i s t e r

11 1 1 H I N Z C
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H bit

This bit is a similar to the C bit, since it is set when a carry occurs. This time, it is the carry be-
tween the two nibbles of a byte. A byte is composed of two four-bit groups called nibbles. The
H bit is set whenever an arithmetic instruction produces a carry between bit 3 and bit 4 of the
accumulator.

This half-carry is used when performing decimal arithmetic. In this case, each nibble contains
a BCD digit, so that the bit pattern for 23 in decimal is 00100011, and reads also 23 in hexa-
decimal. This kind of coding is called Packed BCD. To correctly add two packed BCD num-
bers, some correction is necessary, which is made possible by the H bit. Several cases must
then be considered:

■ First case: adding the numbers 23 and 52. 
Once coded in packed BCD, they read 23h and 52h. If we add these numbers, we expect to
find 75. Actually, if we perform the ADD instructions on these numbers, we find 75h, as the
rules for adding two binary numbers imply. We directly get the right answer in packed BCD.
No half-carry has occurred.

■ Second case: adding the numbers 23 and 59. 
Once coded in packed BCD, they read 23h and 59h. If we add these numbers, we expect to
find 82. But if we perform the ADD instructions on these numbers, we find 7Ch, as the rules
for adding two binary numbers imply. This is because 3 + 9 = C in hexadecimal. C is not an
acceptable digit in BCD. However, it is easy to see that if we add 6 to the total (the difference
between 15 and 9), we get 82h, which is also the right answer in packed BCD. No half-carry
has occurred.

■ Third case: adding 28 and 59. 
We expect to get 87. Once added as above, we get 81h. This time, a half-carry occurred.
This indicates that we must add 6 to the result, giving 87h, which is the right answer.

To summarize, if the addition of two packed BCD numbers gives no half-carry and if the least-
significant nibble is less than 0Ah, the result is correct as it is. Otherwise, adding 6 will correct
the result.

The same thing applies for the most-significant nibble: if it has a value less than A, and there
is no carry, the result is correct; otherwise, adding 60h will correct the result.

Complicated as it might seem, the handling of packed BCD avoids having to convert numbers
back and forth between binary and decimal, although this may be easier in some cases.

4.2.2.3 Index registers (X and Y)

The index registers are meant to hold addresses, unlike the accumulator which is meant to
hold data. The value stored in X or Y is involved in the effective address calculation in some ad-
dressing modes. The availability of two index registers allows for calculating and managing
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two addresses as is needed in a memory-to-memory data move, with or without alteration in
between. However, these registers may also be used to store temporary data.

4.2.2.4 Program Counter (PC)

The program counter is the register that controls the sequencing of the instructions. The pro-
gram is written as a series of instructions, and these instructions are stored in consecutive
cells of the program memory. The Program Counter contains the address of the next instruc-
tion to be executed. This instruction is read from memory, then executed, and the PC is incre-
mented so that it then points to the next instruction in the sequence.

It is possible to alter the contents of the PC while the program is executing. In this case, the
next instruction will not necessarily be the next in the sequence, but an instruction somewhere
else in memory. Changing the course of the program is called jumping or branching.

Jump and Branch are the names of instructions that actually change the contents of the PC by
setting it to a value specified with the instruction. Jumps may also be conditional, that is, the
jump instruction effectively alters the contents of the PC if certain conditions are met. These
conditions can be the values of one or more bits of the Condition Code Register. For example,
the JREQ instruction changes the PC to the specified address if the Z bit of the CC register is set,
otherwise the program continues in sequence.

Another kind of jump is the Subroutine Call, that first saves the address of the next instruction
in sequence (the one that follows the jump instruction) before jumping. A special instruction,
RETurn, retrieves this address and puts it into the PC. The next instruction executed is once
again the one that follows the CALL instruction.

4.2.2.5 Stack Pointer (SP)

The stack is the part of the read-write memory where return addresses are stored by the CALL
instructions and retrieved by the RET instruction.
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04-stack

When a value is stored using the stack pointer, the stack is decremented, so that the next
value stored will be placed at the address just below the previous one. This process of storing
and decrementing the pointer is called Pushing, and can be done either by a PUSH instruction
or by a CALL instruction that pushes the return address.

When the data is read back from the stack, the SP is incremented so that the next data re-
trieved will be the one situated at the address above the previous value retrieved. This is
called popping the data, and can be done using the POP instruction or the RET instruction that
pops one address off the stack and jumps to that address.

If several addresses are stored successively because several CALLs were executed succes-
sively, the first RET instruction will pop the last address pushed, the second RET will pop the
one-but-last address, and so on. This feature provides for the nesting of subroutines, where
the last called is the first exited.

Interrupts, being a kind of subroutine call, also use the stack to store the context of the inter-
rupted process. Since interrupts occur at unexpected times, all the core registers must be
saved on entering the interrupt service routine. This is performed automatically by the interrupt
mechanism that pushes in order PC, X, A and CC. The return from interrupt must thus use a dif-
ferent instruction from the return from subroutine, where only the PC was saved. The instruc-
tion IRET is supplied for this purpose, and restores the initial values of these registers. It
should be noted that the Y index register is not saved automatically. The industry-standard

0 1 4 0 h T o p  o f  t h e  s t a c k

0 1 7 F h B o t t o m  o f  t h e  s t a c k ( R e s e t  v a l u e )

6 4  b y t e s  o f  R A M

S t a c k  o r g a n i z a t i o n  o f  t h e  S T 7 2 2 5 1
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core has no Y index register, so its instruction set does not take the Y index register into ac-
count. If needed, it must be pushed on entering the interrupt service routine using a PUSH Y in-
struction, and restored by putting a POP Y just before the IRET.

The stack pointer must be initialized at the start of the execution. The RSP instruction resets it
to its bottom value, that differs from one variant of the ST7 to another depending on the
number of registers provided at the beginning of page zero.

The value of the SP may be transferred to A, X or Y or set from these registers. This allows you
to access the data in the stack or to save the stack pointer. This is useful for example for
building multitasking kernels, as mentioned in Chapter 2 and illustrated in Chapter 7.

The PUSH and POP instructions mentioned earlier in this paragraph may be used to temporarily
store a register that has to be reused later. This is very useful as the core has not many in-
ternal registers.

4.3 INSTRUCTION SET AND ADDRESSING MODES

4.3.1 A word about mnemonic language

In the text above, we have given examples that use the mnemonic language. For those of you
that are not familiar with the mnemonic language of the ST7, here is a refresher. More details
will be given in the paragraph that discusses addressing modes and in the chapter about the
assembler.

The mnemonic language spans the gap between machines whose language is exclusively nu-
meric, and humans who are more comfortable with letters and words. Unlike high-level lan-
guages that provide for complex concepts that must be translated into machine language
using complex constructs, mnemonic language is easily translated into machine language
since there is almost a word-for-word correspondence between numeric machine language
and verbal mnemonic language.

Mnemonic language, also called assembly language, associates short names to the various
objects the programmer uses. A translation program, called Assembler, translates these
words into numbers. The words involved belong to the following classes:

■ Labels

■ Operation mnemonics

■ Operand names

■ Macro names 

■ Numbers

■ Comments
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From the categories above, numbers can be distinguished because they start with a decimal
figure. For hexadecimal numbers that may start with a letter, there are two main conventions:

In the so-called Intel convention, a number will only be recognized as such if the first digit is a
figure; for example, FAh is not considered a number; 0FAh is;

In the Motorola and and few other conventions, any hexadecimal number must start with a
special character, like $ for Motorola; no ambiguity is possible then. The ST7 tools use this
convention by default.

All other categories except comments are made of single words that begin with a letter. For
example, HERE is a legal name for a label.

The vocabulary of the Operation Mnemonic category is defined by the manufacturer. It con-
tains the operation codes specific to the microcontroller, commonly called opcodes. There are
also other words that are not opcodes, but that have a similar function in the language. For
that reason, they are named pseudo-ops.

Opcodes are named after the abbreviation of the function of the instruction. Some are ob-
vious, like ADD; some abbreviated, like SUB (subtract); others are acronyms like TNZ (Test for
Negative or Zero).

The pseudo-ops include commands to the assembly program, to direct it to make memory res-
ervations, like DS (reserve Data Storage) or DCW (Define Constant Word), or other similar com-
mands.

The labels are names that the programmer freely assigns to data in memory, constant values,
or pieces of code. This improves the clarity of the source text. For example, if the programmer
has reserved a byte in memory for the result of an analog to digital conversion, he uses the fol-
lowing statement:

Voltage: DS 1 ; Voltage read back from input

He can then use this name to load this value into the accumulator:

ld A, Voltage ; Get value into accumulator

Which is easier to read than the numeric sequence:

C6 01 24
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That is the translation of the statement above, supposing the variable Voltage had been as-
signed to the memory address 124h.

In the examples of source lines above, the text that follows the semicolon (;) is a comment. It
is ignored by the assembler, and its sole purpose is to inform the human reader of the source
text, when he later reads it.

The last category of words listed above is the macro name. A macro is a piece of text the pro-
grammer may define freely and which he can give a name. Inserting the macro name in the
source text will replace that word by the whole predefined text, saving the programmer typing
effort.

4.3.2 Addressing modes

The ST7 has many addressing modes. In addition to those inherited from the industry-
standard architecture, there are those involving the second index register, Y, that duplicate the
addressing modes available with the X index register, and all the indirect addressing modes.

Having a choice of addressing modes might seems surprising. Anyone might think that indi-
cating the address of the source or destination of a data move should be a straightforward
matter. Actually, there are several cases to handle:

■ If the address of the byte to be read or written is known at the time the program is written, the
direct addressing mode is used. This mode has two variants: short direct mode addresses
page zero; long direct mode addresses the whole range.

■ If the address of the byte is not known when the program is written, this means that the data
has the form of a record, a string, an array or any other structure that holds complex data.
Since the ST7 only processes bytes, it is necessary to process this kind of data byte-by-byte.
Then, the address of the byte to be read is computed when the program executes, and it is
this address that indicates which byte must be read. According to the structure of the data,
one addressing mode or another might prove more convenient, or fast, or efficient. The ST7
has a choice of addressing modes that take the address from an index register (indexed
addressing), or from the contents of a memory byte (indirect addressing), or a combination.

■ Instructions that load constants into a register use immediate addressing, which means that
the data is located just after the instruction code in program memory. This data is skipped to
reach the next instruction.

■ Jump instructions often branch to an address that is close to the address of the jump
instruction. If the distance of the jump is within the range -128 to +127 from the instruction
that follows the jump, relative addressing is efficient since the address of the destination of
the jump is obtained by adding the single byte that follows the jump instruction to the current
value of the Program Counter. This byte is called displacement. This instruction thus saves
one byte of program memory. All conditional jumps use this addressing mode.
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■ The last mode, called inherent, means that the data involved in the instruction does not need
to be designated by an address, such as the instruction that increments the accumulator.

The many indexed and indirect modes available are useful for translating programs written in
C language, since these programs frequently use complex data structures.

4.3.3 Instruction set

The instruction set of the ST7 includes many instructions. They can be sorted in different
ways. Here is a grouping by number of addressing modes available. This kind of sorting may
seem arbitrary, but there are actually groups of instructions that have a common function and
also the same set of addressing modes.

Table 2. Table of the number of addressing modes versus the instruction types.

Type of instruction

No 
operand 
(system)

Multipli-
cation and 

branch 
(relative)

Push and 
pop

Load 
memory 

with 
index

Load and 
compare 

index

Single 
operand 

arithmetic 
and test

Load 
memory 

with 
accumulat

or and 
jump long

Two-
operand 

arithmetic

1 

(inherent)
2 4 9 10 11 14 15

HALT

IRET

NOP

RCF

RET

RIM

RSP

SCF

SIM

TRAP

WFI

MUL

BRES

BSET

BTJF

BTJT

CALLR

JR*

POP

PUSH

LD mem, 
X

LD mem, 
Y

CP X,

LD X,

CP Y,

LD Y,

CLR

CPL

DEC

INC

NEG

RLC

RRC

SLA

SLL

SRA

SRL

SWAP

TNZ

CALL

JP

LD mem, 
A

ADC

ADD

AND

BCP

CP A,

LD A,

OR

SBC

SUB

XOR
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4.3.4 Coding of the instructions and the address

The instructions are coded using bytes stored in program memory. One instruction takes one
to four bytes according to its type and the addressing mode. These bytes are, in order:

The prefix byte (optional); the operation code (opcode), and one or two bytes of address (op-
tional).

4.3.4.1 Prefix byte

The prefix byte is used to extend the range of instructions. The opcode being a single byte, no
more than 256 combinations of an operation and an addressing mode may be coded. The
original industry-standard instruction set only uses one byte for the opcode. The ST7 in-
creased the choice of addressing modes so that it was no longer possible to code them all
using a single byte. A prefix byte has been created. When this prefix is put before an opcode,
it changes the addressing mode of the opcode. There are three prefixes:

■ PDY (90h) means that the next instruction must use the Y index instead of the X index.

■ PIX (92h) means that the next instruction must change its addressing mode (whichever it is)
to the corresponding indirect addressing mode.

■ PIY (91h) is a combination of the above: the addressing mode is indirect, and the index
register used is Y.
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4.3.4.2 Opcode byte

The opcode uses a bit-level coding to specify the type of operation to perform (add, subtract,
jump, etc.) and the addressing mode used (direct, indexed, indirect, etc.) in a single byte. 

The tables below summarize the available instruction codes. The lines are the value of the
higher nibble of the opcode; the columns are the lower nibble. The grouping of the instructions
is clearly visible.

Low digit

High 
digit

0 1 2 3 4 5 6 7

0
BTJT 
m,0

BTJF 
m,0

BTJT 
m,1

BTJF 
m,1

BTJT 
m,2

BTJF 
m,2

BTJT 
m,3

BTJF 
m,3

1
BSET 
m,0

BRES 
m,0

BSET 
m,1

BRES 
m,1

BSET 
m,2

BRES 
m,2

BSET 
m,3

BRES 
m,3

2 JRA JRF JRUGT JRULE JRMC JRC JRNE JREQ

short 3 NEG - - CPL SRL - RRC SRA

A 4 NEG - MUL CPL SRL - RRC SRA

X 5 NEG - - CPL SRL - RRC SRA

short, X 6 NEG - - CPL SRL - RRC SRA

(X) 7 NEG - - CPL SRL - RRC SRA

8 IRET RET - TRAP POP A POP X
POP 
CC

-

9 - - -
LD 
X,Y

LD 
S,X

LD 
S,A

LD 
X,S

LD 
X,A

immediate A SUB
CP A, 
#n

SBC
CP X, 
#n

AND BCP
LD A, 
#n

-

short B SUB
CP A, 
m

SBC
CP X, 
m

AND BCP
LD A, 
m

LD 
m,A

long C SUB
CP A, 
m

SBC
CP X, 
m

AND BCP
LD A, 
m

LD 
m,A

long, (X) D SUB
CP A, 
m

SBC
CP X, 
m

AND BCP
LD A, 
m

LD 
m,A

short, (X) E SUB
CP A, 
m

SBC
CP X, 
m

AND BCP
LD A, 
m

LD 
m,A

(X) F SUB
CP A, 
m

SBC
CP X, 
m

AND BCP
LD A, 
m

LD 
m,A
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As said about the prefix, this table changes to either Y index, or indirect, or both according to
the prefix byte. The letter m indicates «memory» in instructions such as LD m, X.

Low digit

High 
digit

8 9 A B C D E F

0
BTJT 
m,4

BTJF 
m,4

BTJT 
m,5

BTJF 
m,5

BTJT 
m,6

BTJF 
m,6

BTJT 
m,7

BTJF 
m,7

1
BSET 
m,4

BRES 
m,4

BSET 
m,5

BRES 
m,5

BSET 
m,6

BRES 
m,6

BSET 
m,7

BRES 
m,7

2 JRNH JRH JRPL JRMI JRNM JRM JRIL JRIH

short 3 SLL RLC DEC - INC TNZ SWAP CLR

A 4 SLL RLC DEC - INC TNZ SWAP CLR

X 5 SLL RLC DEC - INC TNZ SWAP CLR

short, X 6 SLL RLC DEC - INC TNZ SWAP CLR

(X) 7 SLL RLC DEC - INC TNZ SWAP CLR

8
PUSH 
A

PUSH 
X

PUSH 
CC

- - - HALT WFI

9 RCF SCF RIM SIM RSP NOP
LD 
A,S

LD 
A,X

immedi
ate

A XOR ADC OR ADD - CALLR
LD X, 
#n

-

short B XOR ADC OR ADD JP CALL
LD X, 
m

LD 
m, X

long C XOR ADC OR ADD JP CALL
LD X, 
m

LD 
m, X

long, (X) D XOR ADC OR ADD JP CALL
LD X, 
m

LD 
m, X

short, 
(X)

E XOR ADC OR ADD JP CALL
LD X, 
m

LD 
m, X

(X) F XOR ADC OR ADD JP CALL
LD X, 
m

LD 
m, X
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4.3.4.3 The addressing modes in detail

Immediate mode

When a register has to be loaded with a constant value that has been fixed in the program
source, that value is determined in the program source text and must be stored in the program
memory to make it fixed and permanent. In such a case, the most effective way to retrieve the
value is to use the immediate addressing mode. In this mode, it is not necessary to supply the
address of the data. The processor expects the data to immediately follow the opcode in the
program memory. This saves both time and memory size.

Example: the instruction 
LD A, #10h

A is loaded with a constant value between 00h and FFh.

loads the accumulator with the value 10, not the value stored at address 10. The coding of the
instruction is (in hexadecimal):

A6 10

This instruction takes two bytes of memory.

Direct short mode

There are two direct addressing modes: short and long. They are identical, except for the
number of bytes of the address of the operand. Direct addressing means that the opcode is
followed by the address of the data in memory to be read or written. In the short version, the
address is situated between the addresses 0 and 255, and only one byte is used for it.

Example: the instruction
LD A, 10h

      A is loaded with the value stored in an absolute memory address 
in zero page.

loads the accumulator with the value stored in memory at address 10h. The coding of the in-
struction is (in hexadecimal):

B6 10

This instruction takes two bytes of memory. 

Direct long mode

This mode works like the direct short mode, except that the full 16-bit address is supplied. The
address then takes two bytes instead of one, lengthening the instruction by one byte. This is
why direct short addressing mode should be used as much as possible to speed up execution
and save memory space. This means that the most frequently accessed data must be placed
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in memory below address 100h. The assembler automatically takes care of this, by selecting
the appropriate addressing mode when possible.

Example: the instruction
LD A, 1234h

      A is loaded with the value stored in an absolute extended memory 
address.

loads the accumulator with the value stored in memory at address 1234h. The coding of the in-
struction is (in hexadecimal):

C6 12 34

This instruction takes three bytes of memory. It should be noted that the most significant byte
of the address comes first.

Indexed mode

In this mode, the contents of register X (or Y if the prefix is used) is used as the address of the
data to read or write. As the index register is only 8-bit, the address is lower than 100h.

Example: if the register X contains the value 26h, the instruction:
LD A, (X)

       A is loaded with the value stored in a memory address in page 
zero pointed to by the chosen index register.

loads the accumulator with the value stored in memory at address 26h. The coding of the in-
struction is (in hexadecimal):

F6

This instruction takes only one byte of memory. This mode is used if the address of the op-
erand is not known at assembly time and must be calculated according to some rule.

Indexed with short offset mode

This mode works like indexed mode, but the instruction is followed by a byte, called displace-
ment or offset, whose value is added to the value in the index to get the effective address.

Example: to access byte 4 of a character string starting at 23h in data memory, we first load
the X index with the value 4. Then, the instruction:

LD A, (23h,X)

       A is loaded with the value of the RAM address memory pointed 
to by the sum of the specified 8-bit offset and the contents 
of the chosen index register.

loads the accumulator with the value stored in memory at address 27h (23 + 4). The coding of
the instruction is (in hexadecimal):
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E6 23

This instruction takes two bytes of memory. The farthest address that can be reached is 1FEh
(0FFh + 0FFh).

Caution: there must be no space on either side of the comma within the parenthesis. Example:
(23h, X) is incorrect.

Indexed with long offset mode

This mode is similar to the indexed with short offset mode, but the offset is a 16-bit number
that takes two bytes. It allows any address to be reached within the whole addressing range.

Example: to access byte 64h of a character string starting at 4523h in data memory, we first
load the X index with the value 64h. Then, the instruction

LD A, (4523h,X)

       A is loaded with the value of the RAM address memory pointed 
to by the 16-bit sum of the specified 16-bit offset and the 
contents of the chosen index register. The whole memory can be 
reached.

loads the accumulator with the value stored in memory at address 4587h (4523h + 64h). The
coding of the instruction is (in hexadecimal):

D6 45 23

This instruction takes three bytes of memory. If the sum of X and the offset exceeds 0FFFFh,
the effective address rolls over zero. For example, if X contains 83h and the offset is FFC2h, the
effective address will be 45h.

Caution: there must be no space on either side of the comma within the parenthesis. Example:
(4523h, X) is incorrect.

Relative direct mode

This addressing mode is only used in jump instructions. The opcode is followed by a byte that
represents the offset or the displacement of the destination of the jump, relative to the current
value of the Program Counter. This displacement is a 8-bit signed number, so that the range
of such a jump is limited to -128 to +127 from the instruction following the jump. This mode is
efficient in conditional jumps, since the pieces of code that correspond to opposite cases (test
was true or false) are often located close to each other. When longer conditional jumps are re-
quired, the solution is to do a relative jump to a location within the reach of a relative jump,
where an absolute jump is made to the final destination.

These short-range jumps are usually called branches to contrast with the jump instruction that
uses long addressing mode and that can jump anywhere in the addressing space. In the ST7,
they are called relative jumps.
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Example:

At address 1200h, the following instruction:
JRA 11F1h

    The absolute address supplied in the source code will be translated 
into a relative displacement by the assembler.

is coded as:
20 EF

The two bytes of the instruction occupy addresses 1200h and 1201h. Thus, the next instruction
will be found at address 1202h. The offset is calculated from this displacement. The distance
between 1202h and 11F1h is -11h. In 8-bit, two’s complement, this is noted EFh. Adding EFh to
1202h yields 11F1, which is the address of the destination of the jump. It should be noted that
although the jump is relative, the operand of the jump instruction is the destination of the jump.
The assembler automatically calculates the difference. If the destination is out of reach, that is
farther than 127 bytes in either direction, the assembler generates an error message.

Relative indirect mode

This mode is also only used for Jump Relative instructions. The opcode is followed by a byte
that is the address in memory that contains the displacement.

Example: if the displacement EEh is stored in the memory byte at address 58h, the following in-
struction is stored at address 1200h:

JRA [58h]

     The value of the relative displacement is stored at the specified 
memory address in page zero

is coded as:
92 20 58

The three bytes of the instruction occupy addresses 1200h to 1202h. Thus, the next instruction
will be found at address 1203h. The byte at address 58h is read, giving EEh or -12h that is
added to the Program Counter, giving 1203h - 12h = 11F1h

In this mode, the operand of the jump instruction is the address of the displacement. This dis-
placement must be supplied separately, if necessary by an expression that is calculated at as-
sembly time. Example:

Displ dc.b THERE - HERE

           It is up to the programmer to supply the right expression 
for the displacement, but the calculation with the actual 
values will be performed by the assembler.
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where THERE and HERE are labels respectively designating the destination of the jump, and the
address of the instruction that follows the jump instruction. Here again, if the difference yields
a number that exceeds the range of a one-byte value, the assembler generates an error mes-
sage.

Indirect short mode

In this mode, the address that follows the opcode is that of a memory byte called a pointer that
contains the address of the data to read or write. This allows the effective address to be
formed by the result of a previous calculation. For example, if the pointer at address 23h con-
tains 79h, and the byte at address 79h contains 0, the instruction 

LD A,[23] 

      A is loaded with the value stored at the short address pointed 
to by the specified memory address in page zero.

loads the accumulator with the contents of address 79h (and not 23h) that is zero. The coding
of the instruction is (in hexadecimal)

92 B6 10

where the first byte is the PIX prefix. This instruction takes three bytes of memory.

The indirect short mode is similar to the indexed mode, except that it is not necessary to load
the index register with the address of the operand; it may be used directly where it resides in
memory. 

Indirect long mode

This mode is similar to the indirect short mode, but the effective address contained in memory
is a 16-bit word. This allows the whole address range to be accessed. The pointer must still be
placed at an address below 100h.

For example, if the pointer at addresses 23h and 24h contains 7954h, and the byte at address
7954h contains 0, the instruction 

LD A,[23.w] 

      A is loaded with the value stored at the extended address pointed 
to by the specified memory address anywhere in memory.

loads the accumulator with the contents of address 7954h (and not 23h) that is zero. The
coding of the instruction is (in hexadecimal):

92 C6 10

where the first byte is the PIX prefix. This instruction takes three bytes of memory. Please note
the «.w» that indicates that the long indirect mode must be used.
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Indexed with indirect short offset mode

This mode is similar to the indirect short mode, in that the address that follows the instruction
is the address of a 8-bit pointer in memory that contains an address. The difference is that this
address is not used right away; it is first added to the contents of the index register, and the
sum is the effective address that will be read or written.

Taking the same example as for the indirect short mode, if the pointer at address 23h contains
79h, the index register X contains 5, and the byte at address 7Eh contains 0, the instruction 

LD A, ([23],X) 

        A is loaded with the value stored at the address pointed to 
by the sum  of the 8-bit offset stored at the specified short 
address and the contents of the chosen index register. The 
range of this mode is 0 to 1FEh.

reads the contents of the address 23h, that is 79h, and adds it to the contents of X, that is 5,
yielding the value 7Eh. This value is taken as the effective address whose contents are read,
giving is zero. The coding of the instruction is (in hexadecimal):

92 E6 23

where the first byte is the PIX prefix. This instruction takes three bytes of memory.

Indexed with indirect long offset mode

This mode takes a 16-bit index in memory, and adds its contents with the 8-bit contents of the
index register, yielding the effective 16-bit address of the operand.

For example, if the 16-bit pointer at address 23h contains 7945h, the index register X contains
5, and the byte at address 794Ah contains 0, the instruction 

LD A, ([23.w],X) 

        A is loaded with the value stored at the address pointed to 
by the sum  of the 16-bit offset stored at the specified 
extended address and the contents of the chosen index 
register. Thus, the whole RAM memory space can be addressed.

reads the contents of address 23h, that is 7945h, and adds it to the contents of X, that is 5,
yielding the value 794Ah. This value is taken as the effective address whose contents are
read, giving zero. The coding of the instruction is (in hexadecimal):

92 D6 23

where the first byte is the PIX prefix. This instruction takes three bytes of memory.

4.4 ADVANTAGES OF THE ST7 INSTRUCTION SET AND ADDRESSING MODES

In many programming applications, data may have complex forms. To ease data handling,
high-level languages have been created that simplify coding by allowing expressions like:



83/315

4 - Architecture of the ST7 core

C[K] = A[I] + B[J]

Where A, B and C are arrays of numbers, and I, J and K the indexes to these arrays. The high-
level language compiler translates this so as to read the Ith element of array A using the avail-
able machine-language instruction. If these are arrays of bytes whose base address is some-
where in page zero, the following instruction sequence can be used:

LD X, I ; Set Index register to value of index I of array A
LD A, ([A],X); Get value A[I]
LD X, J ; Set Index register to value of index J of array B
ADD A, ([B],X); Add value of B[J]
LD X, K ; Set Index register to value of index K of array C
LD ([C],X), A; Put result into C[K]

This is only one of the many examples where powerful addressing modes help translate high-
level languages efficiently. In this case, the whole addition is performed in 22 cycles, or 5.5 µs
at 8 MHz, and consumes 12 bytes of code.
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5 PERIPHERALS

5.1 CLOCK GENERATOR

The core of the ST7 is supplied with an internal clock that comes from the division of the os-
cillator frequency. This division rate is programmable, allowing you to select the best compro-
mise between speed and power consumption.

This choice is programmed using bits located in the Miscellaneous Register. This register also
contains bits used for other purposes; their function will be detailed later in this chapter.

The Miscellaneous Register is laid out differently from one ST7 device type to another. We will
describe only two variants here.

5.1.1 ST72251 Miscellaneous Register

The SMS (slow mode select) bit, when set, places the core and the peripherals in slow mode.
This speed is 1/16 the normal speed, which is the oscillator frequency divided by 2.

The bit MCO (main clock out), when set, enables a clock signal with this frequency to be
output on bit 2 of port C (PC2).

05-misc1

P E I 3 P E I 2 P E I 1 P E I 0M C 0 - - S M S

M a i n  C l o c k  O u t  a n d  S l o w  M o d e  S e l e c t  b i t s

o f  t h e  S T 7 2 2 5 1  M i s c e l l a n e o u s  R e g i s t e r

% 1 6 % 2

O s c i l l a t o r

P C 2

n o r m a l  I / O  p o r t

f C P U  t o  t h e  c o r e  a n d

p e r i p h e r a l s

0  n o r m a l  m o d e

1  s l o w  m o d e

0  n o r m a l  I / O

1  P c 2  =  f C P U

S T 7 2 2 5 1
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5.1.2 ST72311 Miscellaneous Register

The SMS bit works the same way as in the ST72251 (see previous paragraph), but in addition,
the two bits PSM1 and PSM0 (prescaler for slow mode) select the supplementary division rate
between 2 and 16. 

The bit MCO (main clock out), when set, enables a clock signal with this frequency to be
output on bit 0 of port F (PF0).

05-misc2

P E I 3 P E I 2 P E I 1 P E I 0M C 0 P S M 1 S M S

M a i n  C l o c k  O u t ,  S l o w  M o d e  S e l e c t  a n d  P r e s c a l e r  b i t s

o f  t h e  S T 7 2 3 1 1  M i s c e l l a n e o u s  R e g i s t e r

% 2

O s c i l l a t o r

P F 0

n o r m a l

I / O  p o r t

f C P U  t o  t h e  c o r e  a n d

p e r i p h e r a l s

0  n o r m a l  m o d e

1  s l o w  m o d e

0  n o r m a l  I / O

1  P f 0  =  f C P U

S T 7 2 3 1 1

P S M 2

% 2      0      0

% 8      0      1

% 4      1      0

% 1 6    1      1
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5.2 INTERRUPT PROCESSING

Interrupt requests may be generated by several external or internal sources. Most peripherals
of the ST7 can produce interrupt requests, such as the I/O ports, the timers or the SPI. The In-
terrupt request depends on the type of the peripheral: the I/O ports may have some bits con-
figured to generate an interrupt, either on low-level, falling edge, rising edge, or both. The
timer may request an interrupt on timer overflow, external capture or output comparison. The
SPI may request an interrupt on end of transmission, etc.

05-sourc

5.2.1 Interrupt sources and interrupt vectors

The interrupt sources are summarised in the tables of the following paragraphs. There are
compared the interrupt-related information for the ST72251 and the ST72311. It is interesting
to see the differences.

I n t e r r u p t  r e q u e s t
s e n t  t o  t h e  c o r e

H a r d w a r e  e x t e r n a l  s o u r c e s
e g :   I / O  P o r t s ,
       T i m e r  I n p u t  c a p t u r e  . . .
 

H a r d w a r e  i n t e r n a l  s o u r c e s
e g :  T i m e r  O v e r f l o w ,
      T i m e r  c o m p a r i s o n ,
      S P I  e n d  o f  t r a n s m i s s i o n . . .

S o f t w a r e  s o u r c e  :
T R A P  i n t e r r u p t  

S p e c i a l  i n t e r r u p t  : T h e  R e s e t  V e c t o r .
e x t e r n a l  :  R e s e t  p i n ,
i n t e r n a l  :  P o w e r - o n  R e s e t ,  
               W a t c h d o g  e n d  o f  c o u n t

T h e  v a r i o u s  s o u r c e s  o f  i n t e r r u p t s
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5.2.1.1 Interrupts sources for the ST72251

Source Block Description Register Vector address
Priority 
order

Reset Reset N/A FFFEh-FFFFh Highest

Trap Software N/A FFFCh-FFFDh

EI0 PA0-PA7 N/A FFFAh-FFFBh

EI1 PB0-PB7 PC0-PC5 N/A FFF8h-FFF9h

Not used FFF6h-FFF7h

SPI
Transfer complete

SPISR
FFF4h-FFF5h

Mode fault

TIMER A

Input capture 1

TASR FFF2h-FFF3h

Output compare 1

Input capture 2

Output compare 2

Timer overflow

Not used FFF0h-FFF1h

TIMER B

Input capture 1

TBSR FFEEh-FFEFh

Output compare 1

Input capture 2

Output compare 2

Timer overflow

Not used FFECh-FFEDh

Not used FFEAh-FFEBh

Not used FFE8h-FFE9h

Not used FFE6h-FFE7h

I2C
I2C Peripheral 

interrupt

I2CSR1
FFE4h-FFE5h

I2CSR2

Not used FFE2h-FFE3h

Not used FFE0h-FFE1h Lowest
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5.2.1.2 Interrupt sources for the ST72311

Source Block Description Register Vector address Priority order

Reset Reset N/A FFFEh-FFFFh
Highest

Lowest

Trap Software N/A FFFCh-FFFDh

Not used FFFAh-FFFBh

Not used FFF8h-FFF9h

EI0 PA0-PA3 N/A FFF6h-FFF7h

EI1 PF0-PF2 N/A FFF4h-FFF5h

EI2 PB0-PB3 N/A FFF2h-FFF3h

EI3 PB4-PB7 N/A FFF0h-FFF1h

Not used FFEEh-FFEFh

SPI Transfer complete
SPISR FFECh-FFEDh

TIMER A

Mode fault

Input capture 1

TASR FFEAh-FFEBh

Output compare 1

Input capture 2

Output compare 2

Timer overflow

TIMER B

Input capture 1

TBSR FFE8h-FFE9h

Output compare 1

Input capture 2

Output compare 2

Timer overflow

SCI

Transmit buffer empty

SCISR FFE6h-FFE7h

Transmit complete

Receive buffer full

Idle line detect

Overrun

Not used FFE4h-FFE5h

Not used FFE2h-FFE3h

Not used FFE0h-FFE1h
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As shown in the rightmost column of these tables, these sources are prioritized. This means
that if several interrupt requests are active at the same time, the interrupt controller will choose
to service the highest priority request. When this interrupt is fully serviced, the next highest pri-
ority request will be serviced.

Please note that the tables are not identical: the number of vectors is different, and each
vector groups a different set of interrupt causes, in particular the external interrupts (EI) are
different. For other peripherals, such as the timer, SPI, etc. the grouping is identical, but the in-
terrupt numbers and hence the priorities are different.

External interrupt inputs are further discussed in the paragraph about the parallel input-out-
puts.

5.2.2 Interrupt vectorization

When the core decides to grant an interrupt, it must know the address of the code to be exe-
cuted when this event occurs. This is the purpose of the interrupt vectors.

The interrupt vectors are a table of 16-bit words in program memory that contain the address
of the beginning of the various interrupt service routines.

According to the source of the interrupt (I/O, timer, etc.), the core fetches from a predefined lo-
cation in memory, the address of the interrupt service routine especially written for processing
that event. The vectors have a fixed location at the end of the addressing space. In addition to
the interrupt vectors, the vector table also contains the reset vector that is fetched when the
microcontroller is reset in order to get the address of the beginning of the main program. 
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05-int

5.2.3 Global interrupt enable bit

RESET and TRAP (explained in the next paragraph) are non-miscible interrupt; the other
sources of interrupt may be inhibited as a whole thanks to the I bit of the condition code reg-

A n  i n t e r r u p t  i s  r e q u e s t e d

I t s  r e l a t i v e  p e n d i n g  b i t  i s  s e t

I s  t h e  I  b i t  o f  t h e

C C  r e g i s t e r  r e s e t  ?

t h i s  i n t e r r u p t  w i l l

b e  s e r v i c e d  w h e n

t h e  I  b i t  i s  r e s e t

T h e  c o r e  f i n i s h e s  i t s  c u r r e n t  i n s t r u c t i o n .  

P C ,  X ,  A ,  C C  a r e  p u s h e d  o n t o  t h e  s t a c k .

T h e  I  b i t  i s  s e t .

T h e  P C  i s  l o a d e d  w i t h  t h e  a d d r e s s  o f  t h e  i n t e r r u p t  v e c t o r .

T h e  i n t e r r u p t  p r o g r a m  s t a r t s .

A t  t h e  b e g i n n i n g  o f  t h i s  p r o g r a m ,  t h e  p r o g r a m m e r   c a n

T e m p o r a r i l y  s a v e  d a t a  i f  n e e d e d ,  s u c h  a s  t h e  Y  r e g i s t e r .

H e  m u s t  r e s t o r e  t h e m  a t  t h e  e n d .

B e f o r e  r e t u r n i n g ,  t h e  p e n d i n g  b i t  m u s t  b e  c l e a r e d .   

T h e  i r e t  i n s t r u c t i o n  c a u s e s :

C C ,  A ,  X ,  P C  t o  b e  p o p p e d  f r o m  s t a c k .

T h e  i n t e r r u p t e d  p r o g r a m  t o  r e s u m e  o r  a n o t h e r  i n t e r r u p t

p r o g r a m  t o  s t a r t .  

Y e s

N o

T h e  i n t e r r u p t  m e c h a n i s m  o f  t h e  S T 7  f a m i l y
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ister. When this bit is set, no interrupts are generated. However, the interrupt requests are not
forgotten; they will be processed as soon as the I bit is reset.

5.2.4 TRAP instruction

In addition to the hardware sources, a special instruction, TRAP, produces the same effect as
an externally generated interrupt request, but under program control. Strange as this may
seems (interrupts are provided to handle unexpected events, or at least, events for which the
time of occurrence is not known), the TRAP instruction uses of the interrupt mechanism within
the regular execution of the main program. 

The trap instruction triggers interrupt processing regardless of the state of the I bit in the Con-
dition Code register.

An example of the use of the TRAP instruction is the real-time debugger. When the user sets
a breakpoint somewhere in the program, the debugger replaces the instruction at which the
execution must stop with a TRAP instruction. The interrupt thus generated is processed by
displaying on the screen the state of the microcontroller at that precise time. However, other
uses of this instruction may be found as well.

5.2.5 Interrupt mechanism

5.2.5.1 Saving the interrupted program state

When the interrupt request triggers an interrupt, the first task of the core is to save its current
state so as it will be able to restore it after the interrupt processing is finished. This is done by
pushing all the core registers to the stack, namely the Program Counter, the X-register, the
Accumulator and the Condition Code Register. It should be noted that the Y register is not
saved, for compatibility with the standard instruction set which the ST7 adheres to. If needed,
the Y register may be pushed explicitly to the stack at the beginning of the interrupt service
routine.

At this point (and with the restriction above mentioned about the Y register), the interrupt
service routine may execute freely. The status of the interrupted program is known and can be
restored when needed.

To protect the interrupt service routine from other interrupt requests, the I bit of the Condition
Code Register is then automatically set by hardware.

5.2.5.2 Interrupt service routine

When the processor has granted the interrupt request, and read the interrupt vector, it starts
executing the interrupt service routine. This routine is merely a segment of program, written
with exactly the same ease and constraints as the main program. It can be written using the
same language and tools, or in any other language.
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The interrupt service routine is supposed to take the appropriate actions that will vary ac-
cording to the interrupt source. For example, if an Input bit has changed its state, the service
routine may change the state of an output bit; if the interrupt was generated by the timer, this
may produce the transmission of a byte by the SPI, etc. depending on the structure of the ap-
plication as defined by the programmer.

Some interrupt vectors are common to several interrupt sources (e.g. the timers that have five
sources). In this case, the first task of the service routine must be to check which source has
requested the interrupt, before taking the appropriate action. This is done by testing the state
of the various bits in the peripheral’s Status Register.

Eventually, the service routine is finished. Then the core may return to the main program by
ecuting the IRET instruction.

5.2.5.3 Restoring the interrupted program state: The IRET instruction

As described above, an interrupt service routine looks a little bit like a subroutine. Like in a
subroutine, the return address is stored in the stack, and the execution of the RET instruction
returns to the calling program.

Here, more things are to be done before returning to the interrupted program. All the core reg-
isters have been pushed on granting the interrupt request (except the Y register). They must
now be restored, so that the execution of the service routine will not leave any trace in the
core. This is the role of the IRET instruction.

The IRET instruction proceeds with popping off the stack all the data that had been pushed
previously, namely the Condition Code (then the I bit is also restored), the Accumulator, the X
register and the Program Counter. 

From this time on, execution of the interrupted program resumes.

5.2.6 Nesting the interrupt services

Some interrupts may require the quickest service possible, for example if they signal the avail-
ability of some data that it volatile, that is, will not remain for a long time. In such a case, the
fact that an interrupt service routine is not interruptible by default may be a problem, if the time
to service this interrupt is longer than the allowable latency for the interrupt requiring a quick
service. For so, it is possible to clear the global interrupt mask within an interrupt service rou-
tine.

At that time, one would probably like to restrain the interrupt request sources that may actually
interrupt the service routine in progress. Some prioritizing, here also, is needed. But this is not
the same priority mechanism as that mentioned above.

This priority mentioned about the interrupt sources is only taken into account when the core
has to decide between two concurrent requests. It does not apply when interrupts are re-ena-
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bled during the service of an interrupt. In this case, all interrupts are validated and the service
routine may be itself interrupted by a request having a lower priority than its own. If the service
routine must be interruptible only by certain requests and not others, the routine must first
clear the interrupt enable flags of all peripherals that are not allowed at that time, then clear the
global interrupt mask. It is wise to save the value of these flags before clearing them, if several
interrupts may interrupt each other and each selects a different set of allowed interrupt re-
quests.

05-nest

This core is perfectly well able to handle nested interrupt servicing, with a limited nesting
depth. However, care must be taken about two things:

The size of the stack. Each interrupt pushes five bytes on the stack, plus the interrupt service
routine may push some bytes to protect any data in memory that may be used globally.

The problem of atomicity as explained in Chapter 2. If an interruptible service routine handles
multi-byte data, it must take into account the possibility of being interrupted in the middle of a
data read or write with the risk of data incoherence.

The applications described in Chapters 9 and 10 illustrate several uses of interrupts, in con-
junction with various peripherals.

M a i n  : b i t  I = 0

A  m a s k a b l e

i n t e r r u p t  o c c u r s

i n t e r r u p t  #  j i n t e r r u p t  #  j

i n t e r r u p t  #  k

M a i n  : b i t  I = 0

H e r e ,  t h e  p r o g r a m m e r
r e s e t s  t h e  I  b i t  * *

T h e  I  b i t  i s  s e t  b y  h a r d w a r e

A n o t h e r  m a s k a b l e  i n t e r r u p t  ( n e s t e d  i n t e r r u p t )  i s

s e r v i c e d ,  w i t h i n  t h e  c u r r e n t  o n e ,  w h a t e v e r  i t s  p r i o r i t y
W i t h o u t  t h e  i n t e r v e n t i o n

o f  t h e  p r o g r a m m e r ,  b i t  I  = 0 ;

t h e  i n t e r r u p t  #  j  c a n  a g a i n  

b e  i n t e r r u p t e d

N e s t e d  i n t e r r u p t s

* *  N o t e :  b e f o r e  r e s e t t i n g  t h e  I  b i t ,  y o u  s h o u l d  c l e a r  t h e  p e n d i n g  b i t  t h a t  s t a r t e d  t h e  c u r r e n t
    i n t e r r u p t ,  o t h e r w i s e  a n  e n d l e s s  r e c u r s i v e  i n t e r r u p t  s e r v i c e  c a l l  w i l l  b e  p e r f o r m e d  !
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5.3 PARALLEL INPUT-OUTPUT PORTS

The purpose of the parallel input-outputs is basically to make binary signals either get into or
out of the core. For the core and once initialized, they appear as a memory location that can
be written or read. But in many cases, direct byte-wide input-output is not sufficient. Bit-ori-
ented I/O is often required in systems driven by a microcontroller. This implies individually
reading or writing any of the bits of each port. In addition, some of the external signals of the
other peripherals (timers, UARTs, etc.) use an external connection without increasing the pin
count by diverting some bits from the parallel I/O ports (alternate function). 

The ST7 offers a very flexible feature on its parallel I/O that it shares with many other STMi-
croelectronics families: each bit can be independently configured as either an input with two
options (with or without pull-up resistor), or an output with also two options (open-drain or
push-pull).

Some pins are also available with high-current sink drivers, like Port A of the ST72251. These
pin may sink up to 15 mA, and Port A has only one output configuration: open drain.

Selecting these options is done through registers that are associated with each port. They are
memory-mapped, and are named Option Register (OR) and Data Direction Registers (DDR).

Some pins configured as input may also be connected to the external interrupt circuitry when
the corresponding bit of the Option Register is set. This allows an interrupt request to be trig-
gered when the state of the pin goes low, rises, or falls, as configured in the Miscellaneous
Register already mentioned at the beginning of this chapter and detailed on the diagrams that
follow. However some I/O pins can’t be interrupt inputs. See the tables below for the 72251
and the 72311 I/O configurations.

5.3.1 ST72251 I/O Ports

All bits of Port A are configurable as interrupt inputs when the corresponding bit of OR is set.
The option for the edge and level of these inputs is set by the bits PEI0 and PEI1 (external in-
terrupt polarity option) of the miscellaneous register. The external interrupt source is EI0 and
its corresponding interrupt vector is in FFFAh-FFFBh.

All bits of Ports B and C are configurable as interrupt inputs when the corresponding bit of OR
is set. The option for the edge and level of these inputs is set by the bits PEI2 and PEI3 in the
same register. The external interrupt source is EI1 and its corresponding interrupt vector is in
FFF8h-FFF9h.
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Table 3. ST72251 I/O configuration 

In addition, some pins also serve as inputs for other peripherals, or may be held from their
normal output function and be taken as the output pins of some peripherals if those periph-
erals are specially configured to do so by setting a bit in one of their control registers. As an ex-
ample, pin PB0 is also used as the capture input of Timer A, and pin PC1 is the output com-
pare 1 pin of Timer B if the OC1E bit of register TCR2 of this timer is set. The interaction with
the pins and the required precautions are discussed, when needed, in the paragraph related
to the corresponding peripheral.
Table 4. ST72251 I/O alternate functions 

Note: All pins of port C have two alternate functions.

Input configuration 

( DDR = 0)

Output configuration 

( DDR = 1)

Port
OR = 0 OR = 1

External interrupt 
source,

Polarity option bits
OR = 0 OR = 1

Port A:

PA0-PA7
Floating

Floating with 
interrupt

EI0

PEI0-PEI1
True open 
drain

Reserved

Port B:

PB0-PB7
Floating

Pull-up with 
interrupt

EI1

PEI2-PEI3

Open drain Push-pull

Port C:

PC0-PC5
Floating

Pull-up with 
interrupt

EI1

PEI2-PEI3
Open drain Push-pull

I/O pin Alternate function 1 Alternate function 2

PA4 SLC  (I²C)
PA6 SDA (I²C)
PB0 ICAP1_A  (Timer A)
PB1 OCMP1_A  (Timer A)
PB2 ICAP2_A  (Timer A)
PB3 OCMP2_A  (Timer A)
PB4 MOSI  (SPI)
PB5 MISO  (SPI)
PB6 SCK  (SPI)
PB7 SS  (SPI)
PC0 ICAP1_B  (Timer B) Ain0 (ADC)
PC1 OCMP1_B  (Timer B) Ain1 (ADC)
PC2 CLKOUT  (Internal clock out) Ain2 (ADC)
PC3 ICAP2_B  (Timer B) Ain3 (ADC)
PC4 OCMP2_B (Timer B) Ain4 (ADC)
PC5 EXTCLK_A (Timer A) Ain5 (ADC)
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05-EI251

5.3.2 ST72311 I/O Ports

Bits 0 to 3 of Port A and bits 0 to 2 of Port F of are configurable as interrupt inputs. The option
for the edge and level of these inputs is set by bits PEI0 and PEI1 (external interrupt polarity
option) in the miscellaneous register. The interrupt vector for Port A is FFF6-FFF7, and FFF4-
FFF5 for Port F.

All bits of Port B are configured by the PEI2 and PEI3 bits in the same register. However, bits
0 to 3 are assigned to the vector at FFF2-FFF3, while bits 4 to 7 are assigned to the vector at
FFF0-FFF1.

Note: PB5 to PB7 are not available on the smaller packages (J series).

P E I 3 P E I 2 P E I 1 P E I 0M C 0 - - S M S

S T 7 2 2 5 1

0          0

1          0

0          1

1          1

F a l l i n g  e d g e  a n d  l o w  l e v e l  ( r e s e t  s t a t e )

F a l l i n g  e d g e  o n l y

R i s i n g  e d g e  o n l y

R i s i n g  a n d  f a l l i n g  e d g e

E x t e r n a l  i n t e r r u p t  p o l a r i t y  O p t i o n s  E I 0  a n d  E I 1

o f  t h e  M i s c e l l a n e o u s  r e g i s t e r

E I 1 :  P o r t s  B  &  C

v e c t o r  a d d r e s s :

F F F 8 - F F F 9

E I 0 :  P o r t  A

v e c t o r  a d d r e s s :

F F F A - F F F B
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Table 5. ST72311N I/O configuration 

Note: PA0-PA2, PB5-PB7, PD6-PD7 and PE4-PE7 are not available on the ST72311J ver-
sion.

In addition, some pins also serve as inputs for other peripherals, or may be held from their
normal output function and be taken as the output pins of some peripherals if those periph-
erals are specially configured to do so by setting a bit in one of their control registers. As an ex-
ample, the PC2 pin is also used as the capture input of Timer A, and pin PC1 is the output
compare 1 pin of Timer B if the OC1E bit in the TCR2 register of this timer is set. The interac-
tion with the pins and the required precautions are discussed, when needed, in the paragraph
related to the corresponding peripheral.

Input configuration 

( DDR = 0)

Output configuration 

( DDR = 1)

Port
OR = 0 OR = 1

External interrupt 
source,

Polarity option bits
OR = 0 OR = 1

PA0-PA3
Floating Pull-up with 

interrupt
EI0

PEI0-PEI1
Open drain Push-pull

PA4-PA7
Floating n/a True open drain, high sink 

capability

PB0-PB3
Floating Pull-up with 

interrupt
EI2

PEI2-PEI3
Open drain Push-pull

PB4-PB7
Floating Pull-up with 

interrupt
EI3

PEI2-PEI3
Open drain Push-pull

PC0-PC7 Floating Pull-up n/a Open drain Push-pull

PD0-PD7 Floating Pull-up n/a Open drain Push-pull

PE0-PE1 Floating Pull-up n/a Open drain Push-pull

PE4-PE7
Floating Reserved n/a High sink 

capability
reserved

PF0-PF2
Floating Pull-up with 

interrupt
EI1

PEI0-PEI1
Open drain Push-pull

PF4, PF6, 
PF7

Floating Pull-up n/a Open drain Push-pull
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Table 6. ST72311N I/O alternate functions

Note: None of the pins have two alternate functions, unlike the ST72251.

Since the pins can produce interrupt requests in some modes, you must take care, when pro-
gramming the port configuration registers, to perform the transisitons in a particular order as
specified in the transition map in the datasheet.

All the applications described in this book (Chapters 6, 7, 9 and 10) give examples of using the
parallel ports in various combinations.

I/O pin Alternate function 1

PC0 OCMP2_B  (Timer B)

PC1 OCMP1_B (Timer B)

PC2 ICAP2_B  (Timer B)

PC3 ICAP1_B  (Timer B)

PC4 MISO  (SPI)

PC5 MOSI  (SPI)

PC6 SCK  (SPI)

PC7 SS  (SPI)

PD0 Ain0 (ADC)

PD1 Ain1 (ADC)

PD2 Ain2 (ADC)

PD3 Ain3 (ADC)

PD4 Ain4 (ADC)

PD5 Ain5 (ADC)

PD6 Ain6 (ADC)

PD7 Ain7 (ADC)

PE0 TDO (SCI)

PE1 RDI (SCI)

PF0 CLKOUT (Internal clock out)

PF4 OCMP1_A (Timer A)

PF6 ICAP1_A (Timer A)

PF7 EXTCLK_A (Timer A)
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05-EI311

Note: Although the pins of the ports may be individually selected as interrupt inputs, the direc-
tion of the edge or the active level is selected by groups in the Miscellaneous Register. This
implies that the electrical schematic takes this into account, and that signals that are rising-
edge active be wired to a different group from those either falling-edge active or level-active

5.4 WATCHDOG TIMER

5.4.1 Aim of the watchdog

The watchdog timer is a safety device rather than a peripheral. Its purpose is not to handle ex-
ternal events, but to detect and correct internal malfunctions. However, it is implemented just
like a peripheral, and this is why it has been included in this chapter with the peripherals.

A microcontroller, or any programmed machine, is not an electronic brain, in spite of how it
was first introduced. Rather, it is an automaton that has a precise job to perform, taking into
account events and conditions that are considered when the program is written. However, not
all events can be taken into account; some occurrences are even neglected, since they are
supposed to never happen. Rightly or wrongly, the code is thus made shorter. If, however, ei-
ther because the programmer made a mistake or because a hardware failure produced an un-

P E I 3 P E I 2 P E I 1 P E I 0M C 0 - - S M S

S T 7 2 3 1 1

0          0

1          0

0          1

1          1

F a l l i n g  e d g e  a n d  l o w  l e v e l  ( r e s e t  s t a t e )

F a l l i n g  e d g e  o n l y

R i s i n g  e d g e  o n l y

R i s i n g  a n d  f a l l i n g  e d g e

E x t e r n a l  i n t e r r u p t  p o l a r i t y  O p t i o n s  E I 0 ,  E I 1 ,  E I 2  a n d  E I 3

o f  t h e  M i s c e l l a n e o u s  r e g i s t e r

 E I 3 :  P b 4 - P b 7

V e c t o r  a d d r e s s :

F F F 0 - F F F 1

E I 1 :  P f 0 - P f 2

V e c t o r  a d d r e s s :

F F F 4 - F F F 5

 E I 2 :  P b 0 - P b 3

V e c t o r  a d d r e s s :

F F F 2 - F F F 3

E I 0 :  P a 0 - P a 3

V e c t o r  a d d r e s s :

F F F 6 - F F F 7
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foreseen event, the program may be fooled and the whole application may fail to work or even
produce harmful actions.

To prevent this, two actions may be taken.

Write better code. Check what happens if a neglected condition arises. Lead the execution to
a recovery routine in such an event. In short, take all precautions to prevent the program from
crashing in any event. This is actually a requirement, not a choice. But still, things may happen
that are totally out of the control of the author of the program. For example, an electromagnetic
aggression or a power brownout to the product that is controlled by the microcontroller. Then,
the proper working of the microcontroller may not be guaranteed and the system fails. This is
when the watchdog can play its part.

Methods of detecting processor failure by electronic means are virtually non-existant. A pop-
ular method relies on a timer that acts like an alarm-clock. The clock is wound up for a certain
delay. If it has not been rewound before the expiration of this delay, the clock perform a hard-
ware reset to the microcontroller.

It is up to the program to periodically rewind the clock (the watchdog timer) to indicate that it is
still alive. Actually, it is not a full protection, since some parts of the program may crash while
the part that has been elected to rewind the timer still functions. It is up to the wise pro-
grammer to find the program segment that is very unlikely to still work while some other part
has crashed. Well implemented, this method gives rather good results. Of course, resetting
the program is not a good way to recover from a fault, since the crash may have sent com-
mands to the external world that are themselves faulty. The watchdog timer is actually a last
ditch safety device, somewhat like a lifeboat in a shipwreck.

5.4.2 Watchdog Description

The ST7 watchdog timer is controlled by a register that includes two control bits (bits 7 and 6)
and six time-setting bits.

The general control bit, bit 7, starts the watchdog activity if it is set to one. From that time on,
it continues to work, even if one tries to reset it to zero. This is a safety measure that prevents
the program from accidentally stopping it. The presence of this bit corresponds to what is com-
mercially known as the “software activated watchdog”. This is the only option available for the
72251.
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In some ST7 family products, for example the ST72311, two options are available for the
Watchdog: software-activated, as above, and hardware-activated, where the Watchdog is al-
ways active, regardless of the state of the MSB of the WDGCR register. This option is selected
differently in the ROM version and the EPROM version.

■ In the EPROM version, a so-called Option Register (OPTREG) has a bit that selects
hardware- or software-activation. This register does not belong to the addressable space of
the ST7, and is only accessible by the EPROM programmer.

■ In the ROM version, the customer has the option to select software- or hardware-activation
by specifying it on the order form.

W G D A T 6 T 4T 5 T 3 T 2 T 1 T 0

A c t i v a t i o n  b i t :
c l e a r e d  b y  h a r d w a r e    

a f t e r  a  r e s e t ,
c a n  b e  s e t  o n c e  
b y  s o f t w a r e

c a n  o n l y  b e  c l e a r e d
b y  a n o t h e r  r e s e t

R e s e t

1         0         0          0         0         0         0

0         1         1          1         1         1         1

D o w n c o u n t

t r a n s i t i o n  p r o d u c i n g

a  w a t c h d o g  r e s e t

u p  t o  6 4  d e c r e m e n t s

W a t c h d o g  c o n t r o l  r e g i s t e r

C l o c k  d i v i d e r

1 / 1 2 2 8 8

f c p u

S T 7 2 2 5 1  W a t c h d o g  t i m e r  o p e r a t i n g  d e s c r i p t i o n

7 2 2 5 1 :  s o f t w a r e  w a t c h d o g  o n l y  o n

E p r o m  a n d  O T P  v e r s i o n s
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05-wgd2

Bit 6 must be set high at all times. Setting it low immediately resets the microcontroller. This
may be used to reset the whole application if needed under program control (e.g. a message
received is coded as a reset request).

Bits 5 through 0 select the time-out value in increments of 12 288 machine cycles, which is
roughly 1.5 ms at full speed. The time-out may be set in up to 64 increments, that is about 98
ms at full speed.

The watchdog control register is a read-write register, thus it is possible to read the time re-
maining in the watchdog counter. If the watchdog is not activated (by setting bit 7 to one for the
software-activated version), it can be used as a real-time clock by simply reading its value.

To rewind the watchdog, it is sufficient to write a new value to it, keeping the two high-order
bits high. It is possible to rewind the watchdog to different value, depending on the circum-
stances, to allow a shorter or longer time-out.

In the 72311, the watchdog has an extra register, the Watchdog Status Register (WDGSR)
that only has one meaningful bit, WDOGF.

W G D A T 6 T 4T 5 T 3 T 2 T 1 T 0

R e s e t

1         0         0          0         0         0         0

0         1         1          1         1         1         1

D o w n c o u n t

t r a n s i t i o n  p r o d u c i n g

a  w a t c h d o g  r e s e t

u p  t o  6 4  d e c r e m e n t s

W a t c h d o g  c o n t r o l  r e g i s t e r

C l o c k  d i v i d e r

1 / 1 2 2 8 8

f c p u

S T 7 2 3 1 1  W a t c h d o g  t i m e r  o p e r a t i n g  d e s c r i p t i o n

7 2 3 1 1 :  s o f t w a r e -  o r  h a r d w a r e -

a c t i v a t e d  w a t c h d o g  s e l e c t e d  i n  t h e

O p t i o n  b y t e  i n  t h e  E p r o m e r  o r  

a s  a  m a s k  o p t i o n

W D O G F

W a t c h d o g  s t a t u s  r e g i s t e r

F l a g  b i t  s e t  b y  a  w a t c h d o g  r e s e t  

c l e a r e d  b y  s o f t w a r e  o r  p o w e r - o n  r e s e t

S o f t w a r e - a c t i v a t e d :
A c t i v a t i o n  b i t  i s

c l e a r e d  b y  h a r d w a r e    
a f t e r  a  r e s e t ,

c a n  b e  s e t  o n c e  
b y  s o f t w a r e .

C a n  o n l y  b e  c l e a r e d
b y  a n o t h e r  r e s e t

H a r d w a r e - a c t i v a t e d :
W G D A  =  1  p e r m a n e n t l y
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This bit is set whenever the last reset was triggered by the Watchdog. This allows the program
to check whether the current start is a fresh one, or results from the recovering from an error
condition.

5.4.3 Using the Watchdog to protect an application

The right value for the watchdog time-out is always difficult to find, except when the rewinding
is performed in the service routine of a timer interrupt, that occurs at a fixed frequency. This is
not the best way to use the watchdog, considering what has been said above, since it is likely
that a timer interrupt will keep on being serviced even when the main program has crashed.

If the rewinding is done in the main program, it is often difficult to estimate the greatest pos-
sible interval between rewindings, since this time may vary depending on the various events
that may occur. Here are two pieces of advice for anyone wanting use the watchdog timer:

■ Do not activate the watchdog timer while debugging the program. Otherwise you may get
some unexpected resets that may fool the in-circuit emulator.

■ When the program is fully debugged, try several values by dichotomy. First set the value to
half the maximum. If the reset occurs (which is detected by putting a breakpoint at the entry
point of the main program), double this value and try again. If no reset occurs, take the value
at midway and try again. Reduce the value this way as much as possible, each time using
the program with all its features if possible. When you think you have found the smallest
value that never produces a reset, multiply this value by a safety factor and keep it.

The safety factor depends on how much opportunity you had to actually test the program
through all its paths, nooks and crannies. If this were actually possible, a factor of 1.5 may be
sufficient. Otherwise, a factor of 2 or more is advisable. The terms of the trade-off are, on one
hand, getting unwanted resets when nothing goes wrong, and in the other hand, reducing the
efficiency of the safety device.

On models that have a WDOGF bit in the watchdog status register, the program may be
written so that it behaves differently if the restart has been caused by a previous malfunction.

5.5 16-BIT TIMER

This peripheral is a powerful piece of hardware that illustrates the ideas put forth in the intro-
duction of this chapter. Its purpose is to handle time-related events, such as pulse counting,
frequency measurement, interval measurement, and pulse generation, either single or peri-
odic. Good quality processing of such events usually implies a time accuracy in the micro-
second range. This is out of reach for a low-end, 8-bit microcontroller. This is where the timer
comes in to play: it does the time-related processing, and frees the core from stringent timing
constraints.
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5.5.1 Timer clock

Two clock sources are available for the timer: either the core clock, or an external clock sup-
plied on a pin that takes up one port pin.

When the internal clock is used, the timer is actually fed with the core clock after passing
through a frequency divider that can divide the core clock frequency by 2, 4 or 8. The core fre-
quency is itself derived from the crystal oscillator by dividing it by 2 (normal mode) or a higher
value that depends on the variant of ST7 considered (slow mode), as selected in the miscel-
laneous register (see the beginning of this chapter).

The external clock, when selected, changes one parallel input-output pin into a clock input.
The frequency applied to the pin is directly fed to the timer with no predivision. The external
clock is only available on Timer A on the ST72251 and ST72311.

05-timck

To give an idea of the time resolution of the timer, the following table give the resolutions avail-
able with a 16 MHz crystal for all divider selections:

Timer clock predivisor

Core predivisor 1/2 1/4 1/8

1/2 0.25 0.5 1 

1/32 4 8 16 

P r e s c a l e r T i m e r  c l k  
C P U  c l k

0       0

0       1

1       0

1       1

1  /  4

1  /  2

1  /  8

E x t e r n a l

C C 1 C C 0 E X E D G

1

0

r i s i n g  o r  f a l l i n g

e d g e  s e l e c t i o n

E x t e r n a l  t i m e r

c l o c k  p i n  *

E x t e r n a l

t i m e r  c l o c k

C P U  c l o c k

o r
I n t e r n a l

t i m e r  c l o c k

*  E x t e r n a l  c l o c k  p i n s  a r e  a v a i l a b l e
o n l y  o n  t i m e r A  :

P c 5  f o r  t h e  S T 7 2 2 5 1
P f 7  f o r  t h e  S T 7 2 3 1 1

M a x i m u m  f r e q u e n c y  o f
t h e  e x t e r n a l  c l o c k  =  1 / 4  C P U  c l o c k

T i m e r  C l o c k  s e l e c t i o n

T i m e r  A   c o n t r o l
r e g i s t e r  2  ( T A C R 2 )
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5.5.2 Free running counter

The main component of the 16-bit timer is the Free-Running counter, called the CHR (Most
Significant Byte) and CLR (Least Significant Byte) register. This is a binary counter that incre-
ments by one at each clock cycle, hence its name. It is possible to read the value of this timer,
but it is only possible to reset it to its start value that is FFFCh, either under program control or
automatically depending on the working mode selected.

Each time the free-running counter overflows from FFFFh to 0000, the TOF bit (Timer Over-
Flow) is set in the TSR status register. Resetting this bit involves reading the CLR register. In
cases where it is necessary to read the free-running counter but it is not desirable to clear the
TOF bit, the same free-running counter is accessible at another register address called ACLR
where reading does not alter the TOF bit.

5.5.2.1 Reading the free running counter

The free running counter can be read at any time. However, since this is a 16-bit register, and
the core is an 8-bit one, it is not possible to take a snapshot of the counter value at once. This
can lead to data desynchronization problems, as mentioned earlier in this book.

To avoid this problem, the timer has a buffering feature that works as follows:

When the high byte of the counter is read, the value of the low byte is captured in a transparent
latch. When the program reads at the address of the low byte of the counter, it actually reads
the value previously frozen in the latch, and the latch is re-enabled. This means that when the
low byte of the counter is read, for fast clock rates, the counter may not have the value read.
The program must take this into account.

05-read

R e a d i n g  t h e  f r e e  r u n n i n g  c o u n t e r

T h e  l o w  b y t e  o f  t h e  c o u n t e r

c a n  b e  r e a d  " o n  t h e  f l y "

W h e n  t h e  h i g h  b y t e  o f  t h e  c o u n t e r

i s  r e a d ,  t h e  l o w  b y t e  i s  b u f f e r i s e d

u n t i l  a  r e a d i n g  a c c e s s  t o  i t  i s  p e r f o r m e d  
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If the low byte is read again, the actual value of the low byte of the counter can be read. To
benefit from the latching feature, it is necessary to read the high byte first. Conversely, reading
the high byte one more time will always yield the same value as before: a read of the high byte
must be followed by a read or the low byte.

This mechanism works identically for the CLR and the ACLR registers.

5.5.2.2 Resetting the free running counter

The free-running counter is actually a read-only register. However, it is possible to reset it by
writing any value to the low byte of either CLR or ACLR (the value written is irrelevant). It is im-
portant to note that when reset, the counter is not set to zero, but FFFCh (or -4). This must be
taken into account in the timing calculations.

The hardware reset also resets the timer to this value.

05-timrs

T o  m a k e  a  s o f t w a r e  r e s e t  o f  t h e  f r e e  r u n n i n g  c o u n t e r

A n y  w r i t t i n g  a c c e s s  t o  t h e

l o w  b y t e  o f  t h e  f r e e  r u n n i n g

c o u n t e r  o r  a l t e r n a t e  f r e e

r u n n i n g  c o u n t e r

 f r e e  r u n n i n g  c o u n t e r  =  # F F F C h  * *

 C C 0  =  0

 C C 1  =  0
p r e s c a l e r  =  1 / 4 *

*  e x c e p t  C C 0  &  C C 1 ,  t h e  o t h e r  b i t s  o f  t h e  c o n t r o l  r e g i s t e r  2  a r e  n o t  a f f e c t e d

R e s e t

s t a t e

* *  t h e  T O F  f l a g  g o e s  h i g h  a t  t h e  F F F F h  -  0 0 0 0 h  t r a n s i t i o n  o f  t h e  c o u n t e r ,  t h a t

 i s  t o  s a y  4  t i m e r  c l o c k  p u l s e s  a f t e r  r e s e t t i n g  t h e  f r e e  r u n n i n g  c o u n t e r .
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5.5.2.3 The TOF flag

The Timer OverFlow flag is a bit in the Timer Status Register. It is set each time the free-run-
ning counter overflows from FFFF to 0000.

It can be cleared under program control by the following sequence:

■ A read to the TSR register, followed by

■ A read or write to the CLR register.

Any other sequence does not alter the TOF flag, especially using the ACLR instead of the CLR
register. This is summarized in the diagram below:

05-tof

The timer overflow event is an interrupt source that can be either enabled or disabled by the
TOIE bit of Timer Control Register 1. For this interrupt to be serviced, interrupt requests must
be globally enabled by the I bit of the Condition Code Register:

( T O F  :  b i t  # 5  o f  T S R )  

T i m e r  o v e r f l o w  f l a g  T O F  i s  s e t  b y  t h e
 t r a n s i t i o n  F F F F h  -  0 0 0 0 h  o f  t h e  1 6  b i t

f r e e  r u n n i n g  c o u n t e r

T O F  b i t  t o
b e  c l e a r e d

F i r s t  s t e p  :  r e a d i n g  a c c e s s  t o  T S R

S e c o n d  s t e p  :  a  r e a d  o r  a  w r i t e  
a c c e s s  t o  t h e  l o w  b y t e  o f  t h e  f r e e

r u n n i n g  c o u n t e r  ( T A C L R  o r  T B C L R )

A  r e a d  a c c e s s  t o  t h e  l o w  
b y t e  o f  t h e  a l t e r n a t e  f r e e  r u n n i n g
c o u n t e r  ( T A A C L R  o r  T B A C L R )

T O F  b i t  n o t  t o
b e  c l e a r e d

T O F  i s  c l e a r e d T O F  i s  n o t  m o d i f i e d

A  w r i t e  a c c e s s  t o  t h e  l o w  b y t e
o f  t h e  f r e e  r u n n i n g  c o u n t e r  
r e s e t s  t h e  c o u n t e r  t o  F F F C h

R e s e t t i n g  t h e  T O F  b i t  i n  t h e  T i m e r  S t a t u s  R e g i s t e r



108/315

5 - Peripherals

05-intof

The interrupt service routine must clear the TOF bit before returning, using the sequence de-
scribed above. No automatic clearing is performed by the interrupt service mechanism.

5.5.3 Input capture operation

The counter, as discussed above, can be read on-the-fly by the program. This is not what the
capture feature means here.

Note before continuing: each 16-bit timer has two capture channels, 1 and 2. In the following
text, the letter i in the register names must be replaced by 1 or 2 accordingly.

The capture feature is a mechanism that takes a snapshot of the counter value at the time of
the transition of an external signal applied to a pin. The capture mode is always enabled; the
ICAPipin is shared with a parallel input-output port pin, and that port must be configured with
the corresponding pin as an input to be able to use the capture input.

The IEDGi bit in the Timer Control Register 1 selects either the rising or the falling edge of the
ICAPi pin as the active transition. When the transition occurs, the ICiHR-ICiLR pair contains
the value of the counter at the time of the transition, plus one.

The capture event also sets the ICFi bit in the TSR register, and that bit can produce an inter-
rupt request if the ICIE mask bit in the TCR1 register is set.

T O F  i n t e r r u p t  m e c h a n i s m

T O F

F F F F h  -  0 0 0 0 h  ( c o u n t e r )

T i m e r  s t a t u s  r e g i s t e r  ( T S R )

I

C o n d i t i o n  c o d e

r e g i s t e r  ( C C R )

T O I E

T i m e r  c o n t r o l  r e g i s t e r  1  ( T C R 1 ) T i m e r  o v e r f l o w

i n t e r r u p t  t o  t h e  c o r e

T O I E  :  T i m e r  o v e r f l o w  e n a b l e  b i t   ( b i t  7  o f  T C R 1 )

T O F   :  T i m e r  o v e r f l o w  b i t               ( b i t  5  o f  T S R )

I         :  G l o b a l  i n t e r r u p t  e n a b l e  b i t  ( b i t  3  o f  C C R )  
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The clearing of ICFi is done by a sequence similar to that described for the TOF bit:

■ Read the TSR register, and

■ Either read or write the ICiLR register.

Only the ICIE flag is common to both channels. Thus, if both channels are used simultane-
ously, on interrupt, the TSR register must be read to determine whether the ICF1 or the ICF2
bit is set (or both). The ICFi capture flag bit(s) must be cleared by the interrupt service routine
since no automatic clearing mechanism is provided.

The following table summarizes the registers and the bits involved.

■ Timer A:

■ Timer B:

The diagram below represents the timer A capture channel 1; the reader can transpose it for
the other channel or the other timer by substituting the register, bit and pin names as in the
table above.

Channel 1 Channel 2 Function

TAIC1HR & TAIC1LR TAIC2HR & TAIC2LR
Input capture registers

(16-bit, read only access)

ICAP1_A

PB0 on ST72251

PF6 on ST72311

ICAP2_A

PB2 on ST72251

doesn’t exist on ST72311

Input capture pin

ICF1 ICF2 Capture event flag in TASR

IEDG1 or TACR1 IEDG2 of TACR2 Capture Input Edge Selector.

ICIE Common Interrupt Mask Flag in TACR1

Channel 1 Channel 2 Function

TBIC1HR & TBIC1LR TBIC2HR & TBIC2LR
Input capture registers

(16-bit, read only access)

ICAP1_B

PC0 on ST72251

PC3 on ST72311

ICAP2_B

PC3 on ST72251

PC2 on ST72311

Input capture pin

ICF1 ICF2 Capture event flag in TBSR

IEDG1 or TBCR1 IEDG2 of TBCR2 Capture Input Edge Selector.

ICIE Common Interrupt Mask Flag in TBCR1
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05-Capt

5.5.4 Output compare operation

The output compare is a feature that produces an event when the current value of the free-
running counter matches the value of a register called Output Compare Register (OCnR,
where n is 1 or 2 for the first of the second compare registers, respectively).

This event may produce various effects:

■ An interrupt request;

I n p u t  c a p t u r e  a n d  c o r r e s p o n d i n g  i n t e r r u p t  m e c h a n i s m :

d i a g r a m  f o r  c h a n n e l  1 ,  t i m e r  A

I C F 1 *

T i m e r  A  s t a t u s
r e g i s t e r  ( T A S R )

I

C o n d i t i o n  c o d e
r e g i s t e r  ( C C R )

I C I E

T i m e r  A  c o n t r o l
r e g i s t e r  1  ( T A C R 1 )

I n p u t  c a p t u r e
i n t e r r u p t  t o
t h e  c o r e

1

0

I n p u t  
c a p t u r e  1

p i n  

I E D G 1

F r e e  r u n n i n g  c o u n t e r

1 6  b i t  i n p u t  c a p t u r e  r e g i s t e r

T A I C 1 H R ,  T A I C 1 L R
( R e a d  o n l y  r e g i s t e r s )

l o a d

I C F 1  :  I n p u t  c a p t u r e  f l a g  1  b i t          ( b i t  7  o f  T A S R )
I C I E  :  I n p u t  c a p t u r e  i n t e r r u p t  e n a b l e  b i t   ( b i t  7  o f  T A C R 1 )
( c o m m o n  b i t  t o  b o t h  c h a n n e l s  o f  t h e  t i m e r )
I E D G 1  :  I n p u t  e d g e  1  b i t   ( b i t  1  o f  T A C R 1 )
I  :  G l o b a l  i n t e r r u p t  e n a b l e  b i t   ( b i t  3  o f  C C R )  

* I C F 1  i s  c l e a r e d  b y  r e a d i n g

t h e  T A S R  f o l l o w e d  b y  a n  a c c e s s

t o  T A I C 1 L R



111/315

5 - Peripherals

■ The change of the state of an output pin;

■ The reset of the free-running counter (only in PWM mode).

The PWM mode will be studied later.

The block diagram of one of the compare circuits is the following:

05-comp

O u t p u t  c o m p a r e  a n d  c o r r e s p o n d i n g  i n t e r r u p t  m e c h a n i s m :

d i a g r a m  f o r  c h a n n e l  1 ,  t i m e r  A

I

C o n d i t i o n  c o d e
r e g i s t e r  ( C C R )

O C I E

T i m e r  A  c o n t r o l
r e g i s t e r  1  ( T A C R 1 )

O u t p u t  c o m p a r e  1
i n t e r r u p t  t o
t h e  c o r e

O L V L 1

F r e e  r u n n i n g  c o u n t e r

1 6  b i t  o u t p u t  c o m p a r e  r e g i s t e r

T A O C 1 H R ,  T A O C 1 L R
( R e a d  /  w r i t e  r e g i s t e r s )

O C F 1  :  O u t p u t  c o m p a r e  f l a g  1  b i t           ( b i t  6  o f  T A S R )
O C I E  :  O u t p u t  c o m p a r e  i n t e r r u p t  e n a b l e  b i t   ( b i t  6  o f  T A C R 1 )
O L V L 1  :  O u t p u t  l e v e l  1  b i t    ( b i t  0  o f  T A C R 1 )
O C 1 E  :  O u t p u t  c o m p a r e  1  e n a b l e  b i t   ( b i t  7  o f  T A C R 2 )
 r e s e t  :  g e n e r a l  p u r p o s e  I / O  p i n
 s e t     :  t i m e r  A  o u t p u t  c o m p a r e  1  p i n   ( O C M P 1 )  
I  :  G l o b a l  i n t e r r u p t  e n a b l e  b i t    ( b i t  3  o f  C C R )  

1 6 1 6
C o m p a r e

O C F 1 *

T i m e r  A  s t a t u s
r e g i s t e r  ( T A S R )

C l k

O u t p u t
c o m p a r e  1
p i n  f o r  
t i m e r  A

G e n e r a l
 p u r p o s e

I / O  c h a n n e l

O C 1 E

T i m e r  A  c o n t r o l
r e g i s t e r  2  ( T A C R 2 )

o r

* c l e a r e d  b y  a  T A S R  r e a d  a c c e s s
f o l l o w e d  b y  a n  a c c e s s  t o  T A O C 1 L R

l a t c h

10
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There are two such compare circuits for each free-running timer; the table below summarizes
the register, bit, and pin names for both timers A and B and for compare 1 and compare 2 cir-
cuits of each.

■ Timer A:

■ Timer B:

In the following text, we shall only consider the Output Compare 1 function of Timer A. The
other combinations are exactly the same, if the letters A, B and the figures 1, 2 are replaced
appropriately.

Channel 1 Channel 2 Function

TAOC1HR & 
TAOC1LR 

TAOC2HR & TAOC2LR 
Output compare registers

(16-bit, read-write access)

OCMP1_A

PB1 on ST72251

PF4 on ST72311

OCMP2_A

PB3 on ST72251

doesn’t exist on ST72311

Output compare pins (1 and 2)

OCF1 OCF2 Output compare event flag (bit in TASR).

OC1E OC2E Output pin enable bit in TACR2.

OLVL1 OLVL2 Level to be output on compare (bit in TACR1).

FOLV1 FOLV2 Force compare bit in TACR1

OCIE Common Interrupt Mask Flag in TACR1

Channel 1 Channel 2 Function

TBOC1HR & 
TBOC1LR 

TBOC2HR & TBOC2LR 
Output compare registers

(16-bit, read-write access)

OCMP1_B

PC1 on ST72251

PC1 on ST72311

OCMP2_B

PC4 on ST72251

PC0 on ST72311

Output compare pins (1 and 2)

OCF1 OCF2 Output compare event flag (bit in TBSR).

OC1E OC2E Output pin enable bit in TBCR2.

OLVL1 OLVL2 Level to be output on compare (bit in TBCR1).

FOLV1 FOLV2 Force compare bit in TBCR1

OCIE Common Interrupt Mask Flag in TBCR1
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■ The TAOC1HR-TAOC1LR pair is a 16 bit register whose value is continuously compared to
the free-running counter. If the compare function is not used, it can be used for general
purpose storage.

■ When the match occurs, the OCF1 flag is set in the TASR register. This bit can only be reset
by the following sequence: a read of TASR, then an access (read or write) to TAOC1LR.

■ If the OCIE bit in the TACR1 register is set, this event triggers an interrupt request. The
OCF1 bit is not cleared automatically, and must be cleared by the program as said above.

■ If the OC1E bit is set in the TACR2 register, the OCMP1_A pin is driven by Timer A. When
the OCF1 bit is set, this copies the level of the OLVL1 bit of the TACR1 register to the pin.

■ The FOLV1 bit, when set, switches the timer into a mode where the output pin constantly
reflects the state of the OLVL1 bit. The FOLV1 bit can only be set by software; to reset it, it
is necessary to perform a hardware reset.

5.5.5 One-pulse mode

The input capture and output compare features are intermingled in One Pulse Mode. This
mode is selected by setting the OPM bit in the TACR2 register (or TBCR2 for Timer B).

In this mode, an active edge on the ICAP1_A pin toggles the OCMP1_A output pin, then, after
a predefined delay, this pin is toggled back to its initial level. This is the numeric equivalent of
a one-shot multivibrator.

The settings for this mode are performed as follows:

■ Set the TAOC1HR-TAOC1LR register pair to the number of ticks corresponding to the delay
(this number depends on the clock frequency), minus 4.

■ Set the OLVL2 bit of the TACR1 register to the state required for the output pin for the
duration of the pulse, and OLVL1 of TACR1 to the complement of this state to terminate the
pulse.

■ Set the IEDG1 bit of TACR1 for the desired active edge on the input (0 for falling edge, 1 for
rising edge).

■ Set the OPM bit of TACR2 to enable the one-pulse mode.

■ Set the OC1E bit of TACR2 to enable the output pin.
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05-pulse

The input capture event both toggles the output and resets the free-running counter to FFFCh,
and a successful match with the value in the register TAOC1R toggles the output back. This is
why the compare register should be set to the calculated value minus 4.

The leading and trailing edges of the pulse can generate interrupts if desired:

O n e  p u l s e  m o d e  a n d  c o r r e s p o n d i n g  i n t e r r u p t  m e c h a n i s m :

d i a g r a m  f o r  t i m e r  A

I n t e r r u p t  t o
t h e  c o r e

I n p u t  
c a p t u r e  1

p i n  
F r e e  r u n n i n g  c o u n t e r

1 6  b i t  o u t p u t  c o m p a r e  r e g i s t e r

T A O C 1 H R ,  T A O C 1 L R

1 6 1 6
C o m p a r e

l o a d e d  w i t h  t h e  d u r a t i o n
o f  t h e  p u l s e

O C I E

T i m e r  A  c o n t r o l
r e g i s t e r  1  ( T A C R 1 )

O L V L 1O L V L 2

C o n f i g u r a t i o n  o f  t h e
 i n p u t  c a p t u r e  p i n
( s e e  t h e  i n p u t
c a p t u r e  m o d e
 d i a g r a m )

C l k

l a t c h

C l k

l a t c h

C o n f i g u r a t i o n  o f  
t h e  o u t p u t  c o m p a r e  p i n
( s e e  t h e  o u t p u t  c o m p a r e

m o d e  d i a g r a m )

I C I E

I C F 1 O C F 2

I

C o n d i t i o n  c o d e
r e g i s t e r  ( C C R )

T i m e r  A  s t a t u s
r e g i s t e r  ( T A S R )

O u t p u t
c o m p a r e  1

p i n

F F F C h

O P M

T i m e r  A  c o n t r o l
r e g i s t e r  2  ( T A C R 2 )
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■ The input capture event, corresponding to the leading edge, sets the ICF1 bit of TASR. This
can trigger an interrupt if the ICIE mask bit is set. It must then be reset by software as
explained above.

■ The output compare 2 event, corresponding to the trailing edge, sets the OCF2 bit of TASR.
This can trigger an interrupt if the OCIE mask bit is set. It must then be reset by software as
explained above.

The OCF1 bit is never set in this mode. This allows the interrupt requests generated by these
two events to be separately enabled or disabled.

5.5.6 Pulse-Width Modulation mode

Two output compare circuits of the same timer are involved simultaneously in Pulse-Width
Modulation mode. This mode is selected by setting the PWM bit of the TACR2 register (or
TBCR2 for Timer B). The PWM mode and the OPM mode are exclusive; if both selection bits
are set at the same time, OPM mode is overridden by PWM mode.

In this mode, no external event resets the free-running timer; instead, the second compare cir-
cuit is used. Output Compare register 2 should be set to the value of the repetition period, con-
verted in timer ticks, minus 4. Each time the free-running timer matches the Output Compare
2 register, the same events occur as an the input capture occurs in One Pulse Mode: output
pin OCMP1_A is toggled, and the free-running counter is reset to FFFCh. Later, a successful
match with the value in the TAOC1R register toggles the output back.
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05-PWM

The settings for this mode are performed as follows:

■ Set the TAOC1HR-TAOC1LR pair to the number of ticks corresponding to the duration of
the output pulse (this number depends on the clock frequency), minus 4.

P W M  m o d e  a n d  c o r r e s p o n d i n g  i n t e r r u p t  m e c h a n i s m :

d i a g r a m  f o r  t i m e r  A

I n t e r r u p t  t o
t h e  c o r e

F r e e  r u n n i n g  c o u n t e r
1 6  b i t  o u t p u t  c o m p a r e  r e g i s t e r

T A O C 1 H R ,  T A O C 1 L R

1 6
1 6

C o m p a r e

l o a d e d  w i t h  t h e  d u r a t i o n
o f  t h e  p u l s e

T i m e r  A  c o n t r o l
r e g i s t e r  1  ( T A C R 1 )

O L V L 1O L V L 2

C l k

l a t c h

C l k

l a t c h

C o n f i g u r a t i o n  o f  
t h e  o u t p u t  c o m p a r e  p i n
( s e e  t h e  o u t p u t  c o m p a r e

m o d e  d i a g r a m )

I C I E

I C F 1

I

C o n d i t i o n  c o d e
r e g i s t e r  ( C C R )

T i m e r  A  s t a t u s
r e g i s t e r  ( T A S R )

O u t p u t
c o m p a r e  1

p i n

F F F C h

P W M

T i m e r  A  c o n t r o l
r e g i s t e r  2
( T A C R 2 )

1 6  b i t  o u t p u t  c o m p a r e  r e g i s t e r

T A O C 2 H R ,  T A O C 2 L R

l o a d e d  w i t h  t h e  d u r a t i o n
o f  t h e  p e r i o d

C o m p a r e

1 6

1 6
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■ Set the TAOC2HR-TAOC2LR register pair to the number of ticks corresponding to the
duration of the whole cycle (this number depends on the clock frequency), minus 4.

■ Set the OLVL2 bit in the TACR1 register to the state required for the output pin for the
duration of the pulse, and OLVL1 in TACR1 to the complement of this state to terminate the
pulse.

■ Set the PWM bit in TACR2 to enable the Pulse-Width Modulation mode.

■ Set the PWM bit in TACR2 to enable the output pin.

The OCF1 and OCF2 bits are never set in this mode. However, the leading edge of the pulse,
corresponding to the start of cycle, can generate an interrupt if desired. Actually, the Compare
2 event, as mentioned before, mimics a Capture 1 event. This sets the ICF1 bit in the TASR
register. This can trigger an interrupt if the ICIE mask bit is set. It must then be reset by soft-
ware as explained for Input Capture.

The physical Capture 1 input, ICAP1_A, is inhibited for this reason, but the other input pin,
ICAP2_A remains active. This allows input captures to be performed while the timer is used in
Pulse-Width Modulation mode. An example of this is given in the first application in Chapter 9.
In this application, the timer generates periodic pulses while its frequency is controlled using a
Phase-Locked Loop scheme to synchronize it with an external reference frequency.

The application described in Chapter 9 uses the timer in PWM mode with interrupt generation.
The capture feature is also used at the same time to synchronize pulse generation with an ex-
ternal signal, using a Phase-Locked Loop. Another timer is used to produce an interrupt after
a delay each time the timer is reinitialized for the program’s needs.

5.6 ANALOG TO DIGITAL CONVERTER

5.6.1 Description

As a measuring device, the converter is specified by parameters that give the degree of accu-
racy of the conversion. These are:

■ Input range: positive. Negative voltages are not converted.

■ Type of conversion: ratiometric.

■ Resolution: 8 bits, that is, 256 discrete values.

■ Linearity: the conversion is guaranteed monotonic. This means that when the input voltage
increases, the converted value either remains the same or increases, never decreases. The
same applies when the voltage decreases.

■ Accuracy: to within 1 LSB worst case, all causes of error included; typical 0.3 LSB. This
means that for any voltage at the input, the conversion result does not differ from the
expected result by more than 1/255 of the supply voltage in the worst case, or 0.12%
typically.
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■ Conversion time: 64 clock cycles of the ADC. The ADC being fed with the core clock
frequency.

These somewhat cryptic features actually mean the following simple facts:

The input voltage must remain positive or null; below zero volt, the conversion yields zero. In
addition, the voltage at any input is limited to –0.3 V. If a signal ranges includes the zero, two
solutions are available as described later in this chapter.

The ADC of the ST7 is a ratiometric converter, that is, it returns a binary number that ex-
presses the ratio between the input voltage and the supply voltage. A input of zero volt (or
lower) provides a binary result of zero; an input of VDD (or more) provides a result of 255. The
resolution is eight bits, which means that the converter distinguishes between 28 voltage
values, that is 256 values.

Accuracy and linearity are important features since they determine whether a converter is suit-
able or not for a certain job. A discussion of this subject is given below.

The conversion time depends on the core clock frequency. This is a factor that must be taken
into account when selecting the crystal frequency and the division rate, since in slow mode the
clock to the converter is also slowed down.

5.6.2 Using the Analog to Digital Converter

Controlling the ADC is fairly simple, since it is controlled by a single register (ADCCSR).

Bit 5 of the CSR (ADON) is the on/off switch of the ADC. When off, it does not consume power,
reducing the dissipation of the ST7. When switched on again, for the first 30 µsecs, conver-
sions may be inaccurate.

Bits 2 to 0 select the input pin whose value is to be read. The inputs to the ADC are actually
pins taken from a parallel port. So the pins that are to be used as analog inputs must be con-
figured as input, no pull-up, no interrupt (DDR=0, OR=0) to put them in high-impedance and
avoid any disturbance on them.

Six analog inputs are available on the ST72251: PC0 to PC5

Eight analog input are available on the ST72311: PD0 to PD7.

Any write to the ADCCSR register stops the conversion in progress and starts a new one.
When conversion is finished, bit 7 of the ADCCSR (COCO) is set to one meaning that data is
available in the Data Register (ADCDR), and a new conversion starts. The converter thus con-
tinuously converts the input value; any read from the ADCDR will return a value that gives the
voltage of the corresponding input, measured at a time no earlier than the conversion time
specified above (2 speeds). If you do not need a time precision greater than this value, it is
simplest just to leave the converter running continuously and read the value whenever you
need it.
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The COCO bit is reset when the ADCCSR register is written.

05-adc0

5.6.3 The problem of the converter’s accuracy

Linearity and accuracy are different ways of expressing the same reality: the successive
voltage steps that correspond to each of the binary values are not absolutely equally spaced
(otherwise the converter would be perfect), leading to a conversion error. Depending on the
type of work the converter is employed for, one way or the other is better for expressing the
suitability of the converter.

If the converter is to be used as a measuring input, like measuring a temperature, a voltage,
the level in a tank, to send it for information purposes, accuracy is the best expression. It indi-
cates how much confidence one can have in the data.

If the converter is to be used as the feedback input for a servo loop of the second order, for ex-
ample a positioning device using a DC motor and a feedback potentiometer, then linearity is
the key factor. Not only must a servo loop be accurate (since this accuracy translates into an
error expressed in mm in the positioning system) but also it must be stable. So, the parame-
ters of the whole system must meet certain conditions summarized in the so-called Nyquist

A I N 0

A I N n

A n a l o g
m u x

S a m p l e
a n d
h o l d

A D C

C O C O - A D O N 0 - C H 2 C H 1 C H 0

f C P U

A D 0A D 7

A D C  D a t a  r e g i s t e r  ( A D C D R )

A D C  C o n t r o l  /  S t a t u s  r e g i s t e r  ( A D C C S R )

C O C O  :  C o n v e r s i o n  C o m p l e t e

A D O N :  A / D  c o n v e r t e r  O n

C H 2 - C H 0 :  C h a n n e l  s e l e c t i o n

A D C  b l o c k  d i a g r a m

A D 6 A D 5 A D 4 A D 3 A D 2 A D 1
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criterion, that states the shape of the curve that relates the closed-loop gain with the phase
shift. These parameters depend on the gain and phase shift of all of the components of the
system, including the ADC. The local gain of the converter is the slope of the conversion
curve. This value is given by the ratio between the actual height of the step and its theoretical
height. This number is either greater or less than zero, depending on the point considered.
This local gain multiplies the total loop gain, and thus may greatly affect it. Thus there may be
some points where the gain is too high to meet the Nyquist criterion, leading to instability at
these points.

Generally speaking, implementing a numeric servo loop requires very high resolution and lin-
earity, combined with a short conversion time. This means an expensive converter, and will be
outside the range of the ST7 ADC unless the application just needs a servo loop but does not
need high performance.

5.6.4 Using the ADC to convert positive and negative voltages; increasing its resolution

5.6.4.1 Measuring negative and positive voltages

There are two ways of handling both positive and negative voltages with a converter that can
only handle positive voltages.

The first way is to amplify or attenuate the signal and to shift it by adding a fixed DC voltage so
that when it varies within its whole range, the ADC is fed with a voltage between zero and VDD

(that is 5V in most cases). Then, when reading the ADCDR register as an unsigned value,
subtracting the DC offset yields a signed number that is zero when the signal to read is zero.

This method is simple, but it reduces the resolution since the whole signal range must fit the
256-value range of the converter.

05-adc1

V a n a ∈[- V D D A / 2 ,  + V D D A / 2 ]

O f f s e t  =  + V D D A / 2
A D C A D C D R

C o n v e r s i o n  r e s u l t  =
s i g n e d  b y t e  ( A D C D R  +  1 2 8 )

V i n

M e a s u r i n g  r e l a t i v e  v o l t a g e s  u s i n g  a n  a n a l o g  o f f s e t

A n a l o g
i n p u t
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The second method uses an absolute rectifier circuit that produces a voltage that is the abso-
lute value of the input voltage. This circuit also provides a bit that indicates the sign of the input
voltage. Thus the conversion of the whole range is increased by one extra bit that doubles the
resolution.

05-adc2

5.6.4.2 Increasing the resolution

The resolution of the converter is the number of different values of the input voltage that it can
distinguish. This number depends on the actual number of discrete voltages that the converter
can internally produce and compare to the input voltage. It would appear that it is not possible
to change it since it is built into the silicon chip.

Luckily, there are ways of doing it from the outside. Let us examine the principle first, then a
real application.

Let us assume that we feed the converter with a voltage V0. This voltage will lead to the con-
version result Adc0. What does this mean? It means that the converter has seen a voltage
ranging between that of the step Adc0 and that of the step Adc0 + 1. We do not know where
this voltage lies within that range.

V i n ∈
[ 0 ,  + V d d ]

R R

R 1 R 2
V a n a

 V a n a  

S i g n  o f  V a n a

A n a l o g
i n p u t

D i g i t a l
i n p u t
( l o w  =

n e g a t i v e )

M e a s u r i n g  s i g n e d  v o l t a g e s  u s i n g  a n  a b s o l u t e  r e c t i f i e r

V d d

+

+

+

-

-

-
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Let us now add to that voltage V0, a small voltage, that is equal to half the smallest step, that
is, 

If the voltage V0 is included within 

the converter will convert it as Adc0.

If the voltage V0 is included within

the converter will convert it as Adc0 + 1.

We can now distinguish more finely between two values of the input voltage, as soon as they
differ by more than 

Let us exploit this by doing two successive conversions of the voltage V: the first time with V0
alone, the next time with

Vdda
255 2×
------------------

Vdda Adc0×
255

--------------------------------- V0

Vdda Adc0
1
2
---+ 

 ×

255
------------------------------------------------≤ ≤

Vdda Adc0
1
2
---+ 

 ×

255
------------------------------------------------ V0

Vdda Adc0 1+( )×
255

-----------------------------------------------≤ ≤

Vdda
255 2×
------------------
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This will yield two results, Adc0 and Adc1. If we take the sum of these values, whatever the
value of V, it will range from 0 + 0 = 0 to 255 + 255 = 510. This new result now has a resolution
of 511 points, which is almost double the original resolution. 

The figure below depicts this.

05-adc3

V0
Vdda

255 2×
------------------+

A D C a d c d r
V i n

A n a l o g
i n p u tV a n a

E x t r a  s t e p  =  a n a l o g  v o l t a g e
e q u i v a l e n t  t o  1 / 2  l s b ( V D D A  /  5 1 0 )

1

2

a d c 0

a d c 0 + 1

V 0 V 1

V a n a  m i n

V 1  =  V 0  +  ∆ V
w i t h

∆ V =  V D D A  /  2 5 5
a n d

e x t r a  s t e p  =  ∆ V  /  2

V 0  ≤ V a n a  <  ( V 0  +  ∆ V / 2 )

a d c 0

a d c 0 + 1

V 0 V 1

V a n a  m i n

( V 0  +  ∆ V / 2 )  ≤ V a n a  <  V 1
V i n  a c q u i s i t i o n

w i t h o u t  e x t r a  s t e p :
V i n  =  V a n a

a d c 0 a d c 0

V i n  a c q u i s i t i o n
w i t h  e x t r a  s t e p :

V i n  =  V a n a  + ∆ V  /  2
 

a d c 0       a d c 0  +  1

9  b i t s  a c c u r a c y
R e s u l t :

2 a d c 0 2 a d c 0  +  1

V i n V i n

C o n v e r s i o n
C o n v e r s i o n

+

=

E x a m p l e  o f  a  s i m p l e s t  s c h e m e  u s i n g  a n  e x t r a  s t e p
s i g n a l  t o  d o u b l e  t h e  a c c u r a c y

 2  a c q u i s i t i o n s :
1 ° )  a c q u i s i t i o n  o f  V a n a
2 ° )  a c q u i s i t i o n  o f  V a n a  +  e x t r a  s t e p
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Actually, this method is not very convenient, because the typical error of the converter is 0.3
LSB which is too high compared to the small voltage that we intend to use as an extra step.
Also, the noise would make this increased resolution meaningless.

A practical way of increasing the converter resolution is to use the method of low-pass filtering
of noisy signals.

Let us assume that we disturb the voltage we want to measure with a random voltage that has
the following characteristics:

■ The statistical average of the random voltage is zero, that is, is has a null D.C. component;

■ Its average amplitude is about one LSB of the converter or more.

If we take a certain number of readings with the input voltage V0 fixed, but with a noise with
the above characteristics added to it, and we compute the average, we shall find the same
value as a single conversion with no noise, since the average of the noise voltage is zero. But
if we look at the successive values that have been converted, they are not all equal because
of the noise that has either added of subtracted a certain count to or from the ideal conversion
result. If, instead of taking the mean of these values, we just add them, we get a number that
ranges from 0 to n * 255 where n is the number of readings added together. Since the succes-
sive conversion results are not identical, all the values in the range are possible. For example,
if we sum four readings, the result ranges to 4 * 255 = 1020. We can now distinguish 1021 dif-
ferent values of the input voltage.

This explanation is a bit too simple also, for the average of the successive values of the noise
tends to zero for a large number of readings. If we only take a small number of readings, the
sum of the readings will itself be affected by a noise. It is possible to calculate the number of
readings that must be summed together to have that noise smaller than the resolution we ex-
pect to get.

5.6.4.3 Application Examples

The application described in Chapter 7 uses the converter to get a value derived from the po-
sition of a potentiometer. This is a convenient and cheap way of inputting an 8-bit value, also
used in the second application, in Chapter 10, where three calibration values are input using
three potentiometers.

In Chapter 9, the converter is used as a comparator to produce a logical signal depending on
whether the analog input signal is above or below a predefined threshold.

An example of increasing the resolution using the summing method above is given in the
second application, Chapter 10.
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5.7 SERIAL PERIPHERAL INTERFACE

The Serial Peripheral Interface is a device that allows synchronous, bit serial communication
between a microcontroller and a peripheral such as a serial-access memory, a Liquid Crystal
Display module, etc.; or between two or more microcontrollers. This interface only requires
three lines, thus saving pins for other purposes. The data is sent on a byte by byte basis. To
perform the same function using a byte-wide parallel interface, at least ten lines are needed:
eight for the data plus two for the handshake.

When connected to a peripheral, the SPI is configured as a master; when connected to an-
other microcontroller, it is configured either as a master or as a slave. 

The maximum bit rate of a master is 4 MHz with a 16-MHz crystal, or 250 kBytes per second.
With this speed, serial transmission is just as fast as parallel transmission, since the instruc-
tions needed to put or get a byte through the channel take longer than the transmission.

Actually, transfer is bi-directional; at the same time that data is sent on one line, it is received
from the other line; this allows full-duplex transmission at the rate mentioned above when two
microcontrollers are connected together.

A supplementary pin, SS, allows the SPI to be enabled when it is in slave mode. This allows
a master to be connected to several slaves and to communicate with only one slave at a time.
All the logic needed for multidrop communication is provided, including collision detection.
This permits reliable interprocessor communication. When the SPI is in master mode, this pin
must be set to a high level.

Here is an example of two microcontrollers connected together:

05-spi1

M O S I

M I S O

M O S I

M I S O

S C KS C K

S S

S S

V D D

p e r m a n e n t
M A S T E R
c o n f i g u r a t i o n

8 - b i t  s h i f t  r e g i s t e r

S P I  C l o c k
g e n e r a t o r

8 - b i t  s h i f t  r e g i s t e r

p e r m a n e n t
S L A V E

c o n f i g u r a t i o n

S i m p l e s t  c o n f i g u r a t i o n  f o r  a  d i a l o g u e  w i t h  S P I s
b e t w e e n  t w o  m i c r o c o n t r o l l e r s

M S T R = 1 M S T R = 0
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When one master controls two or more slaves, a method must be used to distinguish between
the two slaves. Several methods are available. The one shown below uses the SS pin of each
slave to control which slave is active at any given time. These pins are each driven by a sep-
arate output pin of the master controller:

05-spi2

M O S I

M I S O

M O S I

M I S O

S C KS C K

S S

S S

V D D

p e r m a n e n t

M A S T E R

8 - b i t  s h i f t  r e g i s t e r

S P I  C l o c k
g e n e r a t o r

8 - b i t  s h i f t  r e g i s t e r

S L A V E  1

S i n g l e  m a s t e r  s y s t e m  f o r  a  d i a l o g u e  w i t h  S P I s
b e t w e e n  t h r e e  m i c r o c o n t r o l l e r s

M S T R = 1 M S T R = 0

M O S I

M I S O

S C K

S S

8 - b i t  s h i f t  r e g i s t e r

S L A V E  2

M S T R = 0

O u t p u t 1

O u t p u t 2
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An example of the use of the SPI to send data to a LCD display module is given in the second
application, Chapter 10. The configuration used is shown in the figure below with the appro-
priate values in the registers.

05-app10

8 - b i t  s h i f t  r e g i s t e r

S P I D R

I n t e r n a l  d a t a  b u s
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0

S P R 0
0

M a x  s p e e d  ( f c p u  /  4 )

P e r m a n e n t  m a s t e r  m o d e

S P I  a l t e r n a t e  f u n c t i o n s  c o n n e c t e d  t o  p i n s

N o  i n t e r r u p t  i n  t h i s  a p p l i c a t i o n

S S
V d d
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S t a t e
C o n t r o l
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S e r i a l
 d a t a   o u t

S e r i a l
 d a t a   i n
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8
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S P R 0 - S P R 1 - S P R 2 :  R a t e  s e l e c t i o n

S P I E :  I n t e r r u p t  e n a b l e

S P E :  O u t p u t  e n a b l e

M S T R :  M a s t e r

C P O L :  C l o c k  p o l a r i t y

C P H A :  C l o c k  p h a s e
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The CPOL and CPHA bits in the control register allow you to select which clock edge is used
externally as the active one (leading or trailing) and its polarity (low or high level after trans-
mission).

5.8 SERIAL COMMUNICATION INTERFACE

The Serial Communication Interface is perhaps the most classical interface used when two
systems are connected together. This is especially true when a small system is connected to
a PC, either permanently, or temporarily, for instance for calibration, logging or maintenance.

The SCI differs from the SPI in several ways:

■ The clock is not transmitted along with the data;

■ The first data bit is preceded by a Start bit;

■ The first data bit sent is the low-order bit;

■ The last data bit is followed by a Stop bit.

5.8.1 Bit rate generator

The bit clock is derived from the CPU clock, divided by a user-selectable value. There are two
ways of doing this:

For the most popular bit rates, the Baud Rate Register offers a choice of four prescaler values,
and the output of the prescaler is further divided by two separate divisors that provide the re-
ceive bit rate and the transmit bit rate. The prescaler is driven by the core clock divided by 32.

This gives the following combinations (only the receive bit rate is considered here, because
the transmit bit rate is produced exactly the same way):

For a 8 MHz core clock (16 MHz crystal):

Prescaler value

Divider value 1 3 4 13

1 250000 83333 62500 19231

2 125000 41667 31250 9615

4 62500 20833 15625 4808

8 31250 10417 7813 2404

16 15625 5208 3906 1202

32 7813 2604 1953 601

64 3906 1302 977 300

128 1953 651 488 150
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With another core clock, we would get different values. The values in bold are the most com-
monly used. Please note that they are not exact; however, asynchronous serial transmission
is by nature tolerant of bit rate errors of up to 4%. The error here is only 0.16%.

The division ratio is selected by bits in the Baud Rate Register, with two bits for the prescaler
value, then three bits for the receive divisor, and three more bits for the transmit divisor.

If no combination of the core clock and the division ratio provided by the BRR fits the your re-
quirements, you can specify a value between 1 and 255 as a prescaler for the receiver by
writing that value in the Extended Receiver Prescaler Register. The core clock is then divided
by 16, and by this division ratio. If the ERPR is set to zero, then the selections of the BRR
above apply.

Similarly, the transmitter bit rate can be fine-tuned using the Extended Transmit Prescaler
Register.

5.8.2 Send and receive mechanism

The data to be sent and the data that is received are both put in the Data Register. When this
register is written, it starts the transmit process. When a word is received, it is copied to that
register where it can be read.

The word length is set in the Control Register 1 by the M bit. If the M bit is cleared, the word
length is 8 bits; otherwise, it is 9 bits. The ninth bit, when received, is copied to the R8 bit of
that same register. To transmit a 9-bit word, the first 8 bits are taken from the Data Register
(least-significant bit first) and the value of the T8 bit of the CR1 register is used as the ninth bit.

No automatic parity generation or checking is provided. If needed, parity may be calculated by
software, then copied to either bit 7 of the byte to send, if the word length is 7 bits plus parity,
or to bit T8, if the word length is 8 bits plus parity.

The serial transmission is straightforward: if the transmit shift register is empty, the data byte
written to the Transmit Data Register is copied to it. The serial sending process starts then, by
sending a zero bit (the start bit), then the byte to transmit, LSB first, then the T8 bit if the word
length is set to 9 bits, then a one bit (the stop bit). The transmission is then complete.

As soon as the Transmit Data Register is empty, the TDRE bit in the Status Register is set.
When the transmission is complete (when the shift register is empty), the TC bit is set. These
bits are cleared by first reading the SCISR register then accessing the SCITDR register.

The SCITDR acts as a buffer to allow a continuous data flow on the serial line, by reacting to
the interrupts that are generated when TDRE is set. This allows the core to supply the next
character in the time needed to transmit a character (about 500 µs at 19200 bits per second).
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05-SCI1

The receive mechanism is a bit more complicated. The receive clock must first be set to the
same frequency as the transmit clock of the source of the serial data to be received. Since the
start bit is used to resynchronize the clocks, the clock frequency has a fairly wide tolerance
since it is allowed to shift by a half-bit period at the end of the transmission, that is, 11 bits. This
gives a tolerance of about 5%, which is not a problem to achieve.
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T I E

I n t e r n a l
w r i t e  c o m m a n d
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The resynchronization is the most difficult thing. It uses a clock a 16 times the bit rate, and the
state of the receive data pin is checked at each period of that clock. When a falling edge is de-
tected, a mechanism takes that time plus half a bit period as the reference time for the sam-
pling of all subsequent bits. The start bit is also checked to be a zero at the sampling time. It
is not, it is considered a false start bit. The NF bit is set in the SCISR, and the receiving se-
quence is not initiated. All successive bits are shifted into the receive shift register. When the
stop bit arrives, it is also checked for a one. If it is a zero, the FE bit is set in the SCISR. The
RDRF bit is set when the reception is complete. It can generate an interrupt, so that the re-
ceived character may be picked up.

05-sci2
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5.8.3 Status register

The Status Register includes the following bits that show the current status of the SCI:

■ The TDRE and TC bits, if set, indicate that a new character may be supplied to continue the
transmission. The difference between these bits comes from the fact the SCI has a buffer
before the transmit shift register. The TDRE bit indicates that the buffer is empty, but the shift
register may not be empty. TC indicates that the shift register is empty, which also implies
that the buffer is empty. Depending on what you want to do, either or both of these bits may
be taken into account: TDRE indicates that the next character to send may now be supplied;
TC indicates that the last character is sent.

■ The RDRF bit indicates that a character has been received.

■ The IDLE bit goes to one when a full character time or more has elapsed since the last
character was received, indicating that the incoming character flow is suspended.

■ The next three bits show that an error condition has been detected. The OR bit (OverRun)
indicates that the last-but-one character that remained unread in the Data Register has been
overwritten by the last character received: it is thus lost. Each bit is sampled three times, if
the three sample are not the same, the NF bit (Noise Flag) is set and the bit value is
determined according to the 2 to 1 majority rule. The FE bit (Framing Error) indicates that a
proper stop bit was not present at the end of the character. The interpretation of these error
conditions is not necessarily pertinent; however, the occurrence of any of these errors tends
to mean there is a transmission problem and that the data transfer is not reliable. The
character received in the Data Register is probably incorrect.

There is one case where a Framing Error is detected and where this condition is expected. It
is the case of a Break condition. A Break is a state of the line where it is in its active state
(“Mark”, or zero) for at least one character period. This may indicate that the line has been dis-
connected. It is also possible that the transmitter puts a normally connected line in Break con-
dition. This may be used to signal a particular event and it is up to the system designer to de-
cide which event.

5.8.4 Control Register 2

The Control Register 2 contains the following bits:

■ TIE and TCIE, if set, enable an interrupt request when the TDRE or TC bits in the Status
Register are set, respectively.

■ RIE, if set, enables an interrupt when the RDRF bit in the Status Register is set.

■ ILIE, if set, enables an interrupt when the IDLE bit in the Status Register is set.

■ TE and RE enable the transmitter and the receiver respectively, and change the appropriate
port pins to Serial Output and Serial Input.
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■ RWU, when set, places the receiver in a mode where the RDRF bit is not set and a receive
interrupt is not generated, even when characters are received. The SCI exits this sleep state
only when one of the following events occur: the ninth bit is a one, with the word length set
to 9; or when an idle line condition is detected. Which of these events wakes up the SCI
depends on the state of the WAKE bit in Control Register 1. If cleared, the Idle line condition
wakes the SCI; if set, the ninth bit set does it.

■ SBRK sets the transmit line to the Break condition. The line remains in this condition until
SBRK is cleared. No characters can be sent while in Break condition.

5.8.5 Using the Wake-Up feature in a multiprocessor system

Waking-up the SCI when the ninth bit is set allows you to build a network of microcontrollers,
all connected to the same line. Then, by convention, if a device sends a character with that bit
set, it can be considered by all microcontrollers as an address character. If the value of the ad-
dress received does not match the local address, a microcontroller has nothing to do, since it
will only be interrupted when addresses are received. If the address matches the local ad-
dress, the microcontroller may clear its RWU bit, thus switching the SCI to normal mode. It
then receives all the characters. Next time an address is received, and if that address is not its
own, the microcontroller just sets its RWU bit and from that time on, it is not disturbed by the
traffic on the line.

5.8.6 Handling the interrupts

All the interrupt causes of the SCI share the same interrupt vector. Thus, the same interrupt
service routine is used for all causes, and the interrupt service routine must start by testing the
Status Register bits to know which event caused the interrupt. 

For this reason, and as ususal for most of the ST7 peripherals, once an interrupt has been ac-
cepted and the interrupt service routine is started, the interrupt request must be cleared by
program. The way to do it depends on the interrupt considered.

■ The receive interrupt request bit is cleared by a read of the Status Register followed by a
read of the Data Register. Since these actions must anyway be done in the program, first
testing which bit is set in the Status Register and then reading the received character, the
clearing of the interrupt request is transparent to the programmer.

■ The transmit interrupt request bit (either TD or TDRE) is cleared when the Status Register
is read and the Data Register is written. As above, this is transparent to the programmer.

■ The IDLE condition interrupt request bit is only reset by resetting the RE (Receive Enable)
bit, even temporarily.

■ The error bits OR, NF and FE are also only reset by resetting RE.

Using interrupt-driven software to handle the SCI is generally a good solution. A received
character or string is written to a buffer, then the main program is informed that something has
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been received by a flag set by the interrupt service routine. Conversely, if the main program
wants to send data, it prepares the character or string to send into a buffer in memory, then
starts the transmission by enabling the transmit interrupt. This will make the interrupt mecha-
nism send the characters one at a time, an interrupt occurring each time the SCI has sent a
character. The sending is terminated either by exhausting a character counter or encountering
a terminator at the end of the buffer. An example of this type of handling is described in the
second application, Chapter 10.
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6 STMICROELECTRONICS PROGRAMMING TOOLS

This chapter describes the STMicroelectronics programming tools, their installation and their
use, based on a simple example program.

The standard STMicroelectronics ST7 programming tools package includes the following
items:

■ Assembler ASM.EXE V1.9

■ Linker LYN.EXE V1.7

■ Librarian LIB.EXE V1.2

■ Object code converter OBSEND.EXE V1.2

■ EPROM programmer and debugger, described in the next chapter

This package, supplied for free, runs on DOS only, or in a DOS box under Windows.

Other packages can be purchased that offer C-language programming. One of them is intro-
duced in the Chapter 8. Thus C language is omitted on purpose in this chapter.

To write and modify the source files, a text editor is required. Any text editor will suit; however,
STMicroelectronics recommends using WinEdit, and the STMicroelectronics programming
tools expect to find WinEdit already installed on the computer before they can be installed. So
the installation of WinEdit is also described, and all subsequent references to text editing in-
volve WinEdit.

This chapter concludes with the demonstration of a very simple program that shows how to
write source code, assemble it, and link it. A more complete program will be demonstrated in
the next chapter, where the EPROM programmer and debugging tools are described.

6.1 ASSEMBLER

6.1.1 An overview of the assembler function

The program, as the programmer writes it, is a kind of text that uses a conventional grammar
to specify which instruction to use, with which operands, what are the data involved, where the
program and the data reside in memory, and more. This text, called the Source Text, obeys a
conventional grammar that is usually called Assembler or Assembly Language. The assem-
bler is a translator program that converts the source text into machine language. The result is
a file called an Object file.
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06-ast7

The source text is, like an ordinary text, made of words. There are two kinds of words (groups
of characters in the text): the predefined words, that are the opcodes and the pseudo-ops, and
user-defined words, called identifiers, that according to their use are called either Labels or
Symbols. Both obey the rule below:

Syntax: a label or a symbol name must start with a letter, and the other characters may include
letters and figures, and the underscore character (_). Any number of characters is allowed;
however, only the first 30 characters are meaningful, that is, if two names have the same first
30 characters, they will be considered the same and an error will occur. The ST7 assembler is
case-sensitive, that is, upper-case and lower-case characters are considered different. Ex-
ample: ThisLabel and Thislabel are different.

The source text is made up of lines, that are terminated by a carriage-return character. Each
of the lines of the source text represents one complete command and is called a Statement. A
statement itself is divided in fields, numbered from left to right.

Syntax: A statement may have zero to four fields, separated by at least one space or tabula-
tion character. These fields are called, in order: the label field, the operation field, the operand
field and the comment field.

Ex: register declaration
      segment definition

File.asm

Assembler
source file

asm.exe

(-li option)

File.obj

File.lst

Relocatable object file

Listing file

                Assembler invocation :
"asm -li file"; -li option produces a listing file (.lst).

File1.inc

include files

File2.inc
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The label field must start on the first character of the line. The label is a name that identifies the
address in memory of the objects defined in the current line, or, if none, on the next non-empty
line. The label name may if desired and for sake of clarity be followed by a colon, as in the ex-
ample below where both labels are correct:

MyFirstLabel: ADD A, #2
MySecondLabel ADD A, #2

The operation field may contain either an opcode, or a pseudo-op, or a macro name. The con-
cept of macro will be defined later. If there is no label in the line, there must be at least one
space or tabulation character before the operation field.

The operand field may contain various kinds of objects, according to the type of the operation
field. It must be preceded by at least one space or tabulation character.

The comment field must be preceded by at least one space or tabulation character, then a
semicolon (;). The remainder of the line is ignored by the assembler. This allows to add com-
ments in the source code to help to maintain the program by explaining the working of the in-
structions used.

The various services that the ST7 assembler provides are detailed below.

6.1.2 Instruction coding

This is the most obvious task of the assembler. 

As mentioned in the chapter that discusses the instruction set, all instructions are symbolized
by their mnemonic name. For example, the add instruction is called ADD, the jump instruction
is called JP, and so on. 

The role of the assembler is not as simple as that. The ADD instruction is not translated into one
byte; instead, the addressing mode is also coded in the opcode. For example, as shown in the
complete instruction table of the Chapter 4, the opcodes of the add instruction are:

ADD Immediate AB

ADD Short BB

ADD Long CB

ADD Long, (X) DB

ADD Short, (X) EB

ADD (X) FB
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The assembler automatically recognizes the addressing mode after the syntax of the operand,
as in the following examples:

LD A,#2; immediate
LD A,VALUE; direct short
LD A,VALUE2; direct long
LD A,VALUE,(X); indexed with short displacement
LD A,VALUE2,(X); indexed with long displacement
LD A,(X); indexed
LD A,[VALUE]; indirect short
LD A,[VALUE2]; indirect long
LD A,[VALUE,(X)]; indirect indexed with short displacement
LD A,[VALUE2,(X)]; indirect indexed with long displacement

assuming that the address of VALUE is less than 100h and the address of VALUE2 is above that
address.

The assembler translates each statement in turn, and assigns them to successive locations in
program memory. Provided the address of the first instruction is specified, all the following in-
structions have a defined place in memory.

6.1.3 Declaring variables

A variable, in the programming sense, is a piece of memory allocated to hold a particular data
object. This piece can range in size anywhere from a bit to the whole memory space; the most
common data types are bytes, words (double bytes), double words and arrays of these basic
data types. Whatever its type, a variable is given a symbolic name to be used in a program.
Another feature of a variable is that it may be changed during the execution of the program, in
which case it must reside in read-write memory or RAM.

We have already introduced the notion of symbolic data. The term VALUE given in the exam-
ples above is the symbolic name that the programmer may assign to a data object somewhere
in the addressable space. Since these names can be freely chosen, they can be meaningful
words that help the reader locate and recognize the various data. This is absolutely necessary
since numeric addresses immediately lead to confusion.

The second task the assembler performs is to assign addresses in memory. This is obvious as
far as the program is concerned: the successive instructions are put at consecutive ad-
dresses, and the programmer only needs to supply the start address of the program for the
whole code to be determined. However, when data are involved, things are not so clear. A var-
iable is assigned a place in memory, by giving an address for its first byte. Some variables are
only one byte long; others are one word long, or two bytes; others are more complex data like
double words, structures, arrays, etc. To avoid one variable to overlapping another, it is nec-
essary to space them properly, according to their length. It is very cumbersome to calculate
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the position of the data in the memory by hand, and this is susceptible to mistakes; in addition,
inserting an extra variable in the middle of a list implies recalculating the addresses of all those
that follow it. 

On the other hand, the absolute position of a variable in memory is virtually irrelevant, pro-
vided it is positioned within the addressable space. For the ST7, there is a little subtlety with
this point. There are addressing modes called Short, or variants thereof, as explained in the
chapter about the instruction set. These modes can only reach variables within the range 0 to
0FFh in memory, called page zero; in exchange, these addressing modes provide faster exe-
cution of the instruction. This means you can optimize your code by allocating the most fre-
quently-used variables to page zero. Coming back to the question of the absolute address of
a variable, we can say that a variable must be defined as either in page zero, or anywhere.
Once this is defined, the absolute position of the variable in memory is of little importance.

Allocating variables in memory is very cumbersome. Luckily, the assembler performs this
task, provided that the programmer specifies the length of each variable and the address of
the first one of the list. This is done using pseudo-ops, that are not machine instructions but
commands that the assembler interprets for specific results. 

Syntax: the data storage for variables is specified with the pseudo-ops DS.B, DS.W and DS.L
that reserve a byte, a word or a double word of data storage respectively, the address of the
first byte in all cases being associated with the name in the label field. An optional operand
field may exist, that indicates the number of objects of the specified type to be created from the
address associated with the label. Thus, DS.B 2 is equivalent to DS.W and DS.W 2 is equivalent
to DS.L.

For example:

aByte: DS.B 1 ; a one-byte variable
aWord: DS.W 1 ; a one-word variable
Array1: DS.B 20 ; an array of 20 one-byte variables
Array2: DS.W 40 ; an array of 40 one-word variables

here, it is easy to perform any change like insertion, deletion, change in the size of one vari-
able, and still be sure that the addresses are correctly calculated. If the start address is 50h for
example, the address of aByte is 50h, aWord is 51h, Array1 is 52h and Array2 is 72h.

These identifiers are now worth their addresses; they can be used in lieu of numeric ad-
dresses in the instructions, like:

LD A,aByte ; aByte = 50h
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Thus the assembler relieves the programmer from any calculation. Any change in the program
will be automatically accounted for when the source text is re-assembled.

6.1.4 Declaring constants

A constant, in assembler, may be of one of two kinds: the constant data, and the symbol def-
inition. In both cases, they are numeric (or string) values that are defined in the source text,
and remain unchanged for the whole life of the program.

6.1.4.1 Constant data

Constant data are similar to variables, in that they take up some bytes in memory to hold data.
The difference is that the data are defined in the source text, and cannot be changed while the
program is executing. For so, they are located in read-only memory (ROM). They are ac-
cessed in exactly the same way as variables. The value of these memory locations are de-
fined in the source text. Thus, a special pseudo-op is available that both reserves memory and
sets it to a user-defined value. 

Syntax: The constant data are define using one of the pseudo-ops DC.B, DC.W, DC.L, BYTE,
WORD, LONG and STRING. The DC pseudo-ops work like the DS pseudo-ops above, but in addi-
tion, they set the memory to the value of the operand field. Example:

.PowerOf2 DC.B 1,2,4,8,16,32,64,128 ; powers of 2

The following instruction reads one byte from the table according to the value of the index X.
The input value being loaded first into X, the value in A after the execution is 2 raised to the
power X (1 for X=0, 2 for X=1, 4 for X=2, etc.):

LD A, PowerOf2,(X)

The pseudo-ops BYTE, WORD and LONG are similar to DC.B, DC.W and DC.L, respectively, but
with an important difference. When word and long data are stored in memory, it is important to
take care of the order of the bytes that make up a word or a long value. For example, the hex-
adecimal number 1234h can be stored in bytes of increasing addresses either as the se-
quence 12h, 34h, or as the sequence 34h, 12h. The same applies to long values that are
stored in four bytes. Either method has its advantages and drawbacks, and in fact the market
is divided into the proponents of one method or the other. The Motorola style is to put the most
significant byte first, that is 34h, 12h. The Intel style is the opposite, i.e. 12h, 34h. The ST7 fol-
lows the Motorola style in its instruction syntax: when extended addressing mode is used, the
first byte of the address is the most significant one. The JP instruction, using the long indexed
mode, reads the destination address in memory starting with the most significant byte. If you
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wish to build a table of jump addresses, you must use this order to make the jumps occur as
expected.

On the other hand, a CALL instruction pushes the return address Most Significant Byte first,
which means that in memory the Most Significant Byte is stored at a higher address than the
Least Significant Byte that is stored next. If you wish to write a subroutine that compares the
return address, as found in the stack, with a constant address stored in memory (for example
to identify the caller of the subroutine), you must store the constant address Least Significant
Byte first.

To allow for both cases, two sets of pseudo-ops are available:

The pseudo-ops DC.B, DC.W and DC.L put the Most Significant Byte first.

The pseudo-ops BYTE, WORD and LONG put the Least Significant Byte first.

Actually, DC.B and BYTE are equivalent, since only one byte comes into play.

The STRING pseudo-op is primarily used to define character strings, but actually any sequence
of bytes can be defined with it:

Message: STRING "Hello"; this message is the same as the following:
Message2: STRING 48h, 45h, 4Ch, 4Ch, 4Fh

6.1.4.2 Symbol definition

Symbols are like constant data, in that they are defined in the source text, and they cannot be
changed by program execution. The difference is, that constant data uses up bytes in memory
for storage while symbols have values at assembly time but these values do not remain in
memory at execution time. Symbols are especially useful, however, for generating constant
data.

Syntax: a symbolic value is defined using the pseudo-op EQU. Example:

A_DOZEN EQU 12

From this time on, the word A_Dozen can be used anywhere the number 12 would be appro-
priate. This is useful if a value is used in several different parts of a program, but may change
if the program is revised to take account of a hardware change. For example, a program that
displays characters on a liquid-crystal display must know at various points, the number of
characters that the display is able to show: 

DISPLAY_WIDTH EQU 16
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If you use the symbol DISPLAY_WIDTH several times in your program, and you place the above
declaration at a convenient place in the source text (in general at the beginning), when the dis-
play is later enlarged to 24 characters, this line is the only one you have to change:

DISPLAY_WIDTH EQU 24

for the program to be able to handle the new display size and without risking discrepancies re-
sulting from failing to change all occurances of 16 to 24.

Another use of symbols is in expressions:

DISPLAY_WIDTH EQU 24
DISPLAY_HEIGHT EQU 4

Total_Chars: DC.B (DISPLAY_WIDTH * DISPLAY_HEIGHT)

Here, two symbols are defined: DISPLAY_WIDTH and DISPLAY_HEIGHT. This does not affect the
memory contents in any way. However the last statement sets a memory byte to a value that
is the product of the two symbols above. Again, when constant data may vary depending on
the program version or other factors, it is advisable to define symbols that in turn give their
value to data in memory. This makes it easier to adapt the program to changes that can occur
later.

6.1.5 Relocation commands

6.1.5.1 What is relocation?

According to the description of the assembler so far, writing a program (besides the logical
analysis it involves) looks pretty straightforward. The program is made of a sequence of in-
structions starting from a specified address and extending towards upper memory. Similarly,
the variables in memory are mapped by increasing addresses from a certain start address.

Actually, things cannot be that simple. A program is almost never contained in a single source
file. The main reason is that this would generally lead to a very big file that would be difficult to
edit, and long to assemble. Another reason, almost as common, is that in an industrial envi-
ronment, a program is seldom written from scratch. Parts of it (and this is good programming
practice) come from previous programs, with some adaptation if necessary. Also, when a pro-
gram is written by a team of people, they cannot all work at the same time on the same source
file.

For all these reasons, a program is divided into source files called Modules, and one or more
modules are written by a certain person, while others are written by other people. This implies
that the structure of the program and its main functions have been thoroughly analyzed, that
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the way that these functions communicate with each other has been defined, and that some
common writing rules have been set out.

Since the program is divided into several files, a problem arises because each programmer
does not know at which address his program should start. Supposing a colleague did as-
semble his own work, and that he told you the last address used by his piece of program, you
would also have to know the address of each of the routines of the other file that you have to
call from your own file. 

This is why the concept of relocation has been created.

Relocation means that each programmer writes his own code without bothering about the lo-
cation of his part of the program in memory. The addresses of the objects (data and routines)
that he uses in his piece of code are left open like a plane return ticket. Such unknown ad-
dresses are just declared External, that is, not known at this time. Then, the programmer can
assemble his own piece of code. All external references are given null addresses; all labels
and data defined in that piece of code are given increasing addresses from zero.

When all the pieces have been assembled, all the object files (in machine language) are fed to
yet another translator program called a Linker. This program puts all the pieces together,
placing the pieces of code one after the other in memory, and does the same for the variables
defined throughout the files. Then, all external references made in each piece are adjusted to
match the true addresses of the referenced objects.

The object files fed to the linker, having no absolute memory addresses, are called relocatable
objects, which means that they can later be placed in memory at any address. The linker pro-
duces two files. The first one is the complete program, in machine language, with all the ad-
dresses fixed. This file is called the absolute object file, as opposed to the relocatable files that
were input. The second file is a text file, called the Map File, that indicates start address of
each piece of program, and the addresses of all labels and data used across modules. This
file is helpful for debugging, to know exactly where a certain object is in memory.

6.1.5.2 Segment definition

The linker is the translator that places the various program pieces in the memory map. Though
a particular sequence of instructions, or data storage area is not influenced by the absolute
position it occupies in memory, the linker has to apply some memory allocation rules for the
following reasons:

■ The memory map is typically divided in four classes: Read Only Memory, Read-Write
Memory, Input-output, and non-existant.

■ Each of these classes have a definite position in the addressable space which is fixed by
hardware.
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■ The read-write memory is divided into two areas: a short-addressable area and the
remainder, which is accessible using extended addressing.

■ The input-output area is organized as a collection of individual registers that each have their
own function, and that are not interchangeable with other registers. The address of this area
is fixed by hardware.

For these reasons, it is necessary to be able to control the allocation mechanism. This is done
through the definition of segments in the source text. A Segment is a range of addresses
within the addressable space that has properties that can be defined. These properties drive
the linker’s behaviour related to the placement of these segments in memory.

The main idea of a Segment is that, instead of defining a precise start address for a piece of
code or data, it is declared as belonging to a certain segment. Any number of segments may
be defined; but in practice, it is not necessary to define more segments than the number of
areas in memory where the objects can be placed.

To be used in the program, a segment must first be defined. The definition can involve the fol-
lowing items:

Name

This is necessary if the same segment is used in more than one place; it is optional otherwise.

Alignment type 

When the segment is allocated, it must start at addresses that meet the following require-
ments:

Table 7. Table of the alignment options

Alignment type Properties

byte No special requirement. Any address is valid.

word The start address must be even, that is, at the beginning of a word.

long The start address must be a multiple of four, that is, at the beginning of a double word.

para The start address must be a multiple of 16.

64 The start address must be a multiple of 64

128 The start address must be a multiple of 128

page The start address must be a multiple of 256

1K The start address must be a multiple of 1024

4K The start address must be a multiple of 4096
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Combine option

This option has the following effects:

The effect of these options is detailed in the next paragraph.

Class name

A class is a group of segments. The notion of class does not have any other properties, and
any number of classes may be created. However, the concept of class has been created to
help you organize your addressable space according to the characteristics of the various
areas. Typically, there should be a set of classes as shown in the table below:

6.1.5.3 Using the Segment directive in the source file

When a block of instructions or of data is defined, it may be declared as belonging to a seg-
ment by inserting the pseudo-op SEGMENT before it. From that time on, and until the end of the
file, or until the next SEGMENT pseudo-op, whichever comes first, the block is considered to be-
long to that segment. Example:

segment ’rom’
reset:
         ld a, #cpudiv2
         ld miscr, a       ; fq 8MHz /2 = CPU clock = 4MHz

Key word Properties

(none) If none of the options below is chosen, the currently defined
segment is appended to the list of the segments of the same class

AT (start address) -
(end address)

The segment must start at the address specified. The end address
is optional; if omitted, the hyphen must be omitted as well.

Common The segment defined with this option uses the same memory area
as all segments with the same name in the same class.

Class name (examples) Class type and use

’ROM’ in read-only memory, for program instructions

’RAM0’ in read-write memory, in page zero (addresses lower than
100h)

’RAM’ in read-write memory, using extended addressing

’STACK’ in read-write memory, accessible to the stack pointer

’IO’ for input-output registers (always in page zero)
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etc.

For a block of code, the SEGMENT directive may only occur after either an unconditional jump or
a return instruction. This is because two segments are independent objects, that can be put in
different places in memory. In other words, two segments that are consecutive in the source
file may be put in non-consecutive places in memory. The only condition that allows for this is
that the last instruction before the END statement or the SEGMENT pseudo-op must be a jump,
that will be adjusted at link time.

Dividing a program into segments is not just done for fun; it must be to make the allocation of
the program in memory easier. You should only divide the source code where this is neces-
sary; you should not feel you have to cut your program into slices just to make it look impres-
sive.

6.1.5.4 Segment allocation

When all the source files are assembled, each segment in the object file starts at address
zero, except the segments with the combine option AT (see above) that start at the specified
address.

Such segments are called absolute segments. They apply a constraint to the linker, since the
linker is not free to place them anywhere there is room, but at a precise address. This can lead
to conflicts, if two absolute segments overlap by mistake. This is why absolute segments must
only be used where necessary.

There are two cases where this is necessary: at the start of a class, and for input-output reg-
isters.

As shown in the previous paragraph, the notion of class is intended to distinguish the main
areas in addressable space. For example, the ST72251 has an input-output area from 0 to
7Fh; a page zero RAM area from 80 to 0FFh; a RAM area from 100h to 13Fh; a STACK area
of 140h to 17Fh; and a ROM area from 0E000h to 0FFFFh. The start (and perhaps the end)
address must be specified when the first segment of that class is introduced, using a state-
ment like:

.Program SEGMENT byte AT 0E000 ’ROM’

Please note that the value after AT must be hexadecimal and that any radix, prefix or suffix is
forbidden. This statement declares that the ROM class starts at 0E000h as does the segment
Program that belongs to that class.

All segments found later in the program with the same class name will be allocated after this
one. To make this work, the module that defines the classes has to be first in the object file list
when you invoke the linker.
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If two segments of the same class have the same name, they are put at successive ad-
dresses, in the order they arrive in the list of object files. When all the segments with the same
name have been placed, then the next name is processed and all segments of that name in
the same class are laid out sequentially in memory. This process continues until all the seg-
ments have been allocated.

If a class have been given stringent requirement in terms of addressing (both a start address
and an end address are given), and if all segments in the list do not fit in that space, the linker
generates an error message.

As you can see, the process of allocating segments is fairly straightforward. The linker looks
in the class definitions, then in each class for absolute segment definitions; these segments
are allocated at the specified addresses. Then, all other segments are allocated in sequence,
starting in each class with the next segment of the same name, then with the first segment of
the next name, and so on until all the segments have been allocated. The result is that objects
that are in sequence in a source text may be dispersed in the memory; and on the other hand,
objects that are scattered thoughout the various modules may be contiguous in memory, if
they belong to segments defined in this way.

This mechanism is slightly altered when a segment is specified with the common combine op-
tion. As said above, all segments that have the same name and the same class and that have
the common option share the same memory area. This area will have the size of the largest
segment of that group. This leads to having objects that overlap in memory. While the main
task of the linker is to avoid this situation, the programmer may want some objects to overlap
on purpose. There may be two reasons for this:

■ To save memory. If two or more routines each use temporary variables that are not
preserved on exit, and if these routines do not call each other, it is possible to save memory
by overlapping the local variables of these routines. 

■ To allow data to change its type. In many circumstances, it is necessary to consider some
data in various ways at the same time. For example, a long variable (double word) may need
to be considered also as four successive one-byte variables. This corresponds to the notion
of Conditional Records In Pascal or Unions in C. This can be done by defining two sets of
data and giving the common attribute to their segments, as in the following example:

data1 SEGMENT byte common ’DATA’
.LongValue DS.L 1 ; a long number

data1 SEGMENT byte common ’DATA’
.Byte1 DS.B 1 ; first byte of the long value
.Byte2 DS.B 1 ; second one
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.Byte3 DS.B 1 ; third one

.Byte4 DS.B 1 ; fourth one

With this declaration, the four bytes Byte1 to Byte4 exactly overlap those of the value Long-
Value. It is then possible to access this storage either as a long value, or as four individual
bytes.

Obviously, the common attribute makes sense only for data storage. 

6.1.5.5 Initialization of variables at power-on

The variables used in a program, being both read from and written to, have to be located in
RAM. This type of memory keeps the data as long as the power is applied; the contents of the
RAM are undefined at power on. 

To start properly, a program must be able to rely on the values of the variables. It is good prac-
tice to design a program so that the default, or initial, or empty state of all variables is zero.
This means you initialize the RAM using a loop that sets all bytes in the RAM area to zero. This
is very easy to do, and for security, you should do it in all your programs .

There are variables, however, that must have an initial value other than zero. You must supply
values for them, and ensure that all the variables are initialized, each with its own value, be-
fore the main work of the program is activated.

This can be done using a string of load instructions that writes all the variables that need be in-
itialized, as in the example:

InitialValue1EQU 100
InitialValue2EQU 12
InitialValue3EQU -2

LD A, #InitialValue1
LD Variable1, A
LD A, #InitialValue2
LD Variable2, A
LD A, #InitialValue3
LD Variable3, A

etc.

Obviously, this method is cumbersome, and prone to having variables forgotten and left
floating. This is a very dangerous situation, because the value of a memory byte at power-on
is undetermined but often reproducible for a given chip. For example, by an unlucky chance an
uninitialized variable could have a value that does not prevent the program from working cor-
rectly during debugging; but when the product is put into production or, even worse, later at
the customer, the byte could then have a value that makes the program behave wrongly. The
consequences would then be very serious.
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To provide a more convenient way of initializing all the variables that need to be, and to guar-
antee that they are all initialized without exception, the assembler has a feature that we shall
describe here.

The idea is to put all variables that must be initialized (with values other than zero, since all
others will be zeroed by a clearing loop as said above), in a single segment in RAM. All varia-
bles need not be declared in the same module, provided they use the same segment name.
Then, data constants are defined in another segment in ROM, in the same order and with the
same size as those in RAM. This looks like the following:

The segment in RAM is declared as a series of DS statements since these are storage for var-
iables:

data        segment ’INITDATA’
VARIABLES: EQU *
d1.w: DS.L
d2: DS.L
d3: DS.L
d4: DS.W
d5: DS.B
SIZE_RAM: EQU {* - VARIABLES}

The segment in ROM is declared as a series of DC statements, that give the initial values for
the corresponding variables:

data segment ’ROM’
INITIAL_VALUES: EQU *
cd1.w: DC.L $1234
cd2: DC.L 12
cd3: DC.L 131000
cd4: DC.W 50000
cd5: DC.B 50

Based on this, all the variables can then be initialized by inserting a loop, at the beginning of
the code, that copies every ROM byte to the corresponding RAM byte:

InitVariables: ld X, #{low SIZE_RAM}; Start from end of block to copy
        
InitVar1: ld A, ({INITIAL_VALUES-1},X) ; Copy one byte

ld ({VARIABLES-1},X), A 
dec X; Next byte
jrne InitVar1
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This routine uses the addresses of both segments, and the length of one of the segments, as
calculated by the expression SIZE_RAM: EQU {* - VARIABLES} where the * character means
“the current address in memory”.

Each start address is decreased by one because the structure of the loop is such that the
index goes from SIZE_RAM to 1 instead of going from SIZE_RAM-1 to 0. This simplifies the loop,
and makes it faster. Note the expression {low SIZE_RAM} that returns the low byte of the
value. The label SIZE_RAM being calculated from two relocatable values, its type is WORD. Since
the X register requires a byte value, the assembler would produce an error without this precau-
tion.

This way of initializing the RAM variables works well, and indeed is used in high-level lan-
guages. However, it suffers from a major drawback: you have to take care that the two related
segments in ROM and RAM have exactly the same structure, otherwise the wrong values
would go to the wrong variables.

To avoid this problem, the assembler provides a syntax that allows to you create two seg-
ments at once for these data, using this sequence of declarations:

data segment byte at 80 ’INITDATA’
VARIABLES: EQU *
data segment byte at E100 ’ROM’
INITIAL_VALUES: EQU *

data segment byte ’INITDATA>ROM’
d1.w: DC.L $1234
d2: DC.L 12
d3: DC.L 131000
d4: DC.W 50000
d5: DC.B 50
SIZE_RAM: EQU {* - VARIABLES}

Here, we declare a composite segment. Based on its composite name, the addresses of the
objects it contains are situated in the segment at the left of the “>” sign (here INITDATA), but
all the objects it contains are constant declarations that are put in ROM. What this syntax
does, is automatically create the RAM segment that contains the memory reservations (the DS
statements in the example above) whose structure exactly matches that of the constant
values declaration. So you don’t have to take care of making the two memory blocks con-
sistant; each constant you declare in the composite segment automatically has its storage cre-
ated in RAM. Provided that you pay attention to the proper declaration of the three labels that
drive the data copy loop in the piece of code above, you get your variables initialized in a con-
venient and error-free way.
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6.1.5.6 Referencing symbols and labels between modules

Declaring external symbols

If a program is split into several modules, you have to use special declarations in the modules
to tell the assembler that some symbols are not defined in the current module, but in another
one, and that this is not a mistake; otherwise the assembler would produce an error message.
In addition, saying that a symbol is external, makes the assembler take special care of this
symbol by building a list of external symbols and of the place where they are used in the cur-
rent module. This list will be used by the linker that will resolve the addresses of theses sym-
bols, and correct the object file of that module with the right addresses at the places men-
tioned in the list.

The syntax of the declaration of external symbols is as in the example below:

EXTERNAL Value1.b, Value2.w

where two identifiers are declared external. Each identifier is given a type, that is either byte,
word or long. This applies to the address of the identifier, that is either contained in a byte
(when the identifier is located in page zero) or in a word (when the identifier must be accessed
using extended addressing mode).

Caution: These suffixes do not mean that these data are of the byte or word type, i.e. that they
store bytes or words; it is their address that is either a byte or a word. 

Byte or word identifiers are symbols or labels; long identifiers can only be generated using the
EQU pseudo-op.

Declaring public symbols

The notion of external symbols goes together with that of public symbols. For a symbol, de-
fined in a module, to be referenced in one or more other modules, it is necessary to declare
them as public. This action may seem superfluous, as you might expect that all symbols de-
fined in a module be should public in nature, and thus be accessible from everywhere.

Though this could be, it would actually be more an impediment than a comfort. Large pro-
grams have many symbols defined, and this would lead to both an overload of the linker, and
also a risk of collision between names defined in different modules.

In a team project, each programmer is responsible for a part of the total program. He is as-
signed a precise job to do, by writing a piece of code that performs a specified function that
has a specified set of data as the input and produces another set of specified data as the
output. Besides this, he is free to organize his work as he likes – though some writing style
rules might have been given to the team for sake of homogeneity of style and ease of mainte-
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nance afterwards. The consequence is that he may define as many symbols he wants in his
module, and he is free to choose their names. This is because these symbols will not be
known outside of his module; they are called private, or local, symbols. The input and output
symbols, on the contrary, have been specified both for their names and for their types, values,
etc. These symbols are public, and may be used by everybody in the team since everybody
knows them.

If there were no local symbols, each time one programmer wished to create a new symbol, he
would have to consult all his colleagues to ensure that a symbol of the same name had not yet
been created.

The syntax of the declaration of public symbols is as in the example below:

PUBLIC Value1, Value2

where two identifiers are declared public. Unlike in the EXTERN directive, each identifier already
has a type, that is either byte, word or long and that has been defined with the identifier itself.

The following example will show the difference between the type of the identifier and the type
of the object it represents.

PUBLIC Value1, Value2, Constant1

Constant1.l EQU 1350000 ; a large value that does not fit a word

SEGMENT ’DATA_Page0’
Value1.b DS.W 1 ; a word data in page zero

SEGMENT ’DATA_Extended’
Value2.w DS.B 1 ; a byte data in extended memory

Value1 is a word variable, that is, the data requires two successive bytes for its storage; how-
ever, since this data is located in a segment that is meant to be located in page zero, the type
of the public symbol is byte. Conversely, Value2 is a byte variable, that is, only one byte is
needed to store the value. But this variable is located anywhere in memory, and requires ex-
tended addressing. The label Value2 must thus be given the word type.

These subtleties are required because the assembler does not know about the location of var-
iables in memory at assembly time, since the segments are relocatable and will be assigned
absolute addresses only at link time. Without these declarations we could not use short ad-
dressing at all. Thus, the you are advised to pay special attention to these questions if you
want to optimize the execution time of your program by using the data in page zero.
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Another way of declaring an identifier as public is to insert a dot before its name in the line
where it is defined. Using this notation, the example above becomes: 

.Constant1.l EQU 1350000 ; a large value that does not fit a word

SEGMENT ’DATA_Page0’
.Value1.b DS.W 1 ; a word data in page zero

SEGMENT ’DATA_Extended’
.Value2.w DS.B 1 ; a byte data in extended memory

You are free to use either notation as you prefer.

There is yet another way of declaring the identifiers’ sizes: instead of using the suffixes .b, .w
or .l as above, the labels may be declared using their plain name, and the current default type
applies. You may select the appropriate default type using one of the pseudo-ops BYTES,
WORDS or LONGS. In the example above this could give:

LONGS
.Constant1 EQU 1350000 ; a large value that does not fit a word

SEGMENT ’DATA_Page0’
BYTES

.Value1 DS.W 1 ; a word data in page zero

SEGMENT ’DATA_Extended’
WORDS

.Value2 DS.B 1 ; a byte data in extended memory

Any number of identifiers may be declared before the default type is changed; it is not neces-
sary to repeat either of the pseudo-ops LONGS, WORDS or BYTES before each declaration if it is
the same type as the previous one.

The choice of this notation is independent of the choice of the method for declaring the pub-
lics; so, the example above may also be written:

PUBLIC Value1, Value2, Constant1

LONGS
Constant1 EQU 1350000 ; a large value that does not fit a word

SEGMENT ’DATA_Page0’
BYTES

Value1 DS.W 1 ; a word data in page zero

SEGMENT ’DATA_Extended’
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WORDS
Value2 DS.B 1 ; a byte data in extended memory

The lines containing the SEGMENT pseudo-op may appear either before or after the line with the
BYTES, WORDS or LONGS pseudo-op.

6.1.6 Conditional assembly

Conditional assembly is a convenience that all assemblers and compilers provide that helps
write a program that can allow variants, for example to accommodate various hardware con-
figurations.

It is frequent that a product actually exists in a family of variants that only differ by a few de-
tails. Writing as many programs as the number of variants is cumbersome and leads to mis-
takes when a change is made in a part that is common to all variants, but that has been for-
gotten in one of the variants.

For these types of situations, conditional assembly provide an efficient way of mastering the
updates of all versions simultaneously.

Conditional assembly uses structures IF...ENDIF or IF...ELSE...ENDIF like in high-level lan-
guages. The general syntax is:

There are several types of conditions. Most use expressions evaluated from symbols that may
either be defined in the current module, or supplied in the assembler command line. Thus,
changing only one symbol may switch the groups of lines that are assembled is as many
places of the source text as the number of such IF... structures.

As an example, let us consider a product for which two different suppliers of displays are con-
sidered. These two displays are almost the same, except for a few differences. The product is
produced for some time with one type of display, then a better price has been negotiated with
the second supplier, so the production switches to the second type of display. Later, for similar
reason but the other way, products with the first type of display are manufactured.

#IF <condition>
one or more lines of source text...
#ENDIF

#IF <condition>
one or more lines of source text...
#ELSE
one or more lines of source text...
#ENDIF

If the condition is satisfied, the lines between
IF and ENDIF are processed by the
assembler. Otherwise, they are ignored, like
comments.

If the condition is satisfied, the lines between
IF and ELSE are processed by the assembler.
Otherwise, the lines between ELSE and
ENDIF are processed by the assembler. The
other group of lines is ignored, like comments.
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If this situation is considered at design time, the best thing is to write the program with the ap-
propriate code for both cases. Then, by changing one line at the top of the source file, either
the code for the first display or the code for the second display is assembled. The program
could be structured like this:

#DEFINE FIRST_TYPE

some program source lines...
#IFDEF FIRST_TYPE ; first conditional block

source text for the first type of display...
#ELSE

source text for the second type of display...
#ENDIF

continuation of the program...
#IFDEF FIRST_TYPE ; second conditional block

source text for the first type of display...
#ELSE

source text for the second type of display...
#ENDIF

continuation of the program...
#IFDEF FIRST_TYPE ; third conditional block

source text for the first type of display...
#ELSE

source text for the second type of display...
#ENDIF

continuation of the program...
end ; end of the program

In this example, the program is changed in three places to accommodate the change of the
display. The pseudo-op IFDEF is true if the identifier that follows it is defined in the source; it is
false otherwise. The pseudo-op #DEFINE creates an identifier that equals an empty string; but
the identifier does exist, which is what we are testing.

In this version, the program will produce the version for the first display. To assemble the pro-
gram for the second display, the line:

#DEFINE FIRST_TYPE
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must be removed, or changed, like this:

#DEFINE SECOND_TYPE

Then, the identifier FIRST_TYPE is no longer defined; that the identifier SECOND_TYPE is defined
instead does not prevent the FIRST_TYPE throughout the program being false, and thus ena-
bles the assembly of the ELSE part of the source.

The IFDEF line may also become a comment, like this:

; #DEFINE FIRST_TYPE

with the same result.

It is even possible to change the version being assembled without altering a single line of the
source text. For this to happen, there must be no #DEFINE pseudo-ops in the source text; in-
stead, the invocation line of the assemble must have the argument -D FIRST_TYPE. This de-
fines the identifier FIRST_TYPE before the program is assembled. Then, the program is assem-
bled for the first type of display. If this argument is omitted, or changed, the program is assem-
bled for the second type of display.

There are other types of #IF pseudo-ops; although they can be used for the same function,
they are usually more often used within macros, so they will be explained in the paragraph that
discusses macros.

6.1.7 Macros

A macro is basically a predefined block of text that is associated with an identifier. Using this
identifier in lieu of an operation code, causes the text to be inserted at the position of the iden-
tifier. Example: 

The code below defines a macro that contains three statements.

MyCode  MACRO
inc CounterLo
ld A, CounterHi
adc A, #0
MEND

The following code, in the same module, invokes the macro by inserting its name in the oper-
ation field.



157/315

6 - STMicroelectronics Programming Tools

ld A, d1
ld d2, A

MyCode

ld A, d3

The result is, when assembled:

  35  0000 R C60000                        ld       A, d1
  36  0003 R C70000                        ld       d2, A
  37                             
  38                                       MyCode   
  38  0006   3C00                          inc      CounterLo
  38  0008   B601                          ld       A, CounterHi
  38  000A   A900                          adc      A, #0
  39  000C                       
  40  000C R C60000                        ld       A, d3

We see that the word MyCode itself does not produce any code; but the following three lines
were not present in the source text above; they have been inserted by the expansion of the
macro.

If a macro were only that, it would not be worth it. Macros can actually be complex constructs,
using replaceable parameters and conditional assembly. A well-defined macro can save lots
of lines of text and provide error-free text generation, since the expansions always conform to
the definition of the macro. This means that once a macro is fine-tuned, it can be used in sev-
eral places in the source text with a guarantee of success.

We shall study the various features that macros allow and illustrate why macros can be so
helpful.

6.1.7.1 Replaceable parameters

Macros may be defined so that they accept one or more parameters. A parameter is a char-
acter string that is passed when the macro is invoked, and that affects the result of the expan-
sion. To define a macro argument, just add the formal name of the argument after the MACRO
pseudo-op in the macro definition. On invocation, this formal name, if used in the body of the
definition, will be replaced by the actual argument. Example: we shall build a macro that incre-
ments a data byte by two. It will perform an increment instruction twice on the byte. The defi-
nition of the macro is:

IncByTwo MACRO TheByte
inc TheByte
inc TheByte
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MEND

The macro is used by adding the symbol of the byte to be incremented:

IncByTwo CounterLo

The macro is expanded by the assembler to the following code:

  44                                       IncByTwo CounterLo
  44  000F   3C00                          inc      CounterLo
  44  0011   3C00                          inc      CounterLo

Two or more arguments may be used. The following macro adds two variables and puts the
result in a third variable. The definition of the macro is:

Addition        MACRO VarA, VarB, Result
        ld A, VarA
        add A, VarB
        ld Result, A
        MEND

The macro is used by typing the names of the symbols to be added and that of the result:

Addition NbOfApples, NbOfPears, NbOfFruit

The macro is expanded by the assembler into the following code:

  57                                       Addition NbOfApples, NbOfPears, 
NbOfFruit

  57  0013   B602                          ld       A, NbOfApples
  57  0015   BB03                          add      A, NbOfPears
  57  0017   B704                          ld       NbOfFruit, A

6.1.7.2 Local symbols

You can insert statements that define symbols inside a macro, or labels in front of some oper-
ations. However, this can lead to problems. Let us consider the following macro that incre-
ments a word variable. Unlike the example above, the low byte is incremented, then we test if
it is zero. If yes, we increment the high byte:

IncWord MACRO LowByte, HiByte
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inc LowByte
jrne NoIncHigh
inc HiByte

NoIncHigh:
MEND

this macro expands correctly when invoked:

  63                                       IncWord  CounterLo, CounterHi
  63  0013   3C00                          inc      CounterLo
  63  0015 R 2602                          jrne     NoIncHigh
  63  0017   3C01                          inc      CounterHi
  63                             NoIncHigh:

But if we attempt to expand this macro one more time, we get an error. This is because the
label NoIncHigh is also defined in the second expansion, which makes a duplicated identifier.
Obviously, a macro that can be expanded only once is not very useful.

To get rid of this difficulty, the macro language allows you to define local symbols. When a
symbol is defined as local to the macro, it will be automatically replaced by a special symbol,
that is unique for each expansion. So, the following, slightly modified macro:

IncWord MACRO LowByte, HiByte
        local NoIncHigh
        inc LowByte
        jrne NoIncHigh
        inc HiByte
NoIncHigh:
        MEND

when expanded twice, produces the following text:

  65                                       IncWord  CounterLo, CounterHi
  65                             
  65  0013   3C00                          inc      CounterLo
  65  0015 R 2602                          jrne     LOC0
  65  0017   3C01                          inc      CounterHi
  65                             LOC0:     
  66  0019                       
  67                                       IncWord  CounterLo, CounterHi
  67                             
  67  0019   3C00                          inc      CounterLo
  67  001B R 2602                          jrne     LOC1
  67  001D   3C01                          inc      CounterHi
  67                             LOC1:
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We can see that the label NoIncHigh has been replaced in the first expansion by LOC0 and in
the second by LOC1. The multiple definition problem is now avoided.

6.1.7.3 Conditional statements in macros

You can have the macro expand a different way according to the value of the arguments. This
provides for completely optimized code, since only the expanded lines will produce code; un-
like a subroutine call that must perform tests during execution and thus consume time and
memory. Of course, conditional macro expansions only apply for conditions that can be deter-
mined at assembly time; if you need to wait until the execution has started to know the values
of the conditions, only a subroutine can do it then.

Conditional statements are a powerful way of making flexible macros, that can produce dif-
ferent code depending on their argument values. We have already seen the #IFDEF condition.
Here are some other conditions that can be tested.

#IFB Conditional.

This conditional tests whether an argument is blank. This may be used to mean something
special. For example, let us look again at the Addition macro. This macro requires three argu-
ments: two values to add, and a variable to receive the result. Let us improve this macro by
saying that if the third argument is missing, the result is to be written to the second argument,
to compute the total of several values for example. Here is the modified macro:

Addition MACRO VarA, VarB, Result
ld A, VarA
add A, VarB
#IFB Result
ld VarB, A      ; result in second argument
#ELSE
ld Result, A ; result in third argument
#ENDIF
MEND

here are two expansions of the macro, the first one with three arguments, the second one with
two arguments. Please pay attention to the lines that actually produce code. These lines have
something in the third column, that is the generated code. The unselected option has its
source line shown, but no code in the third column.

  95 Addition NbOfApples, NbOfPears, NbOfFruit
  95  001F   B602 ld       A, NbOfApples
  95  0021   BB03 add      A, NbOfPears
  95  0023 #IFB     NbOfFruit
  95  0023   B704 ld       NbOfFruit, A ; result in third argument
  95  0025 #ENDIF   
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  96  0025                       
  97                             
  98 Addition NbOfApples, NbOfFruit,
  98  0025   B602 ld       A, NbOfApples
  98  0027   BB04 add      A, NbOfFruit
  98  0029 #IFB     
  98  0029   B704 ld       NbOfFruit, A ; result in second argument
  98  002B #ELSE

#IFLAB <identifier> Conditional.

This conditional tests whether an argument is a label. This may be used to distinguish be-
tween a label and a constant. For example, let us consider again the addition macro, but
changed so that the first two arguments may be at will either labels or constants. The third ar-
gument must be a label. The macro is:

AddFlex MACRO argA, argB, Result
#IFLAB argA
ld A, argA
#ELSE
ld A, #argA     ; 1st arg is constant
#ENDIF
#IFLAB argB
add A, argB
#ELSE
add A, #argB     ; 2nd arg is constant
#ENDIF
ld Result, A
MEND

We see that according to whether the argument is a label or not , a different addressing mode
is used (extended or immediate). Here are two expansions with different arrangements of ar-
guments:

 115 AddFlex  NbOfApples, 3, NbOfFruit
 115  002D #IFLAB   NbOfApples
 115  002D   B602 ld       A, NbOfApples
 115  002F #ELSE    
 115  002F #IFLAB   3
 115  002F   AB03 add      A, #3         ; 2nd arg is constant
 115  0031 #ENDIF   
 115  0031   B704 ld       NbOfFruit, A

 116  0033                                 
 117 AddFlex  3, NbOfApples, NbOfFruit
 117  0033 #IFLAB   3
 117  0033   A603 ld       A, #3         ; 1st arg is constant
 117  0035 #ENDIF   
 117  0035 #IFLAB   NbOfApples
 117  0035   BB02 add      A, NbOfApples
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 117  0037 #ELSE    
 117  0037   B704 ld       NbOfFruit, A

6.1.8 Some miscellaneous features

Here are a few pseudo-ops or controls that help writing and assembling code.

6.1.8.1 EQU and CEQU pseudo-ops

The EQU pseudo-op has already been mentioned. Both EQU and CEQU work pretty much the
same way; however, EQU assigns a value to an identifier that cannot be changed later, other-
wise the assembler would produce an error. The pseudo-op CEQU, on the contrary, allows an
identifier to be set to various values all along the program. This can be useful in writing macros
or in conjunction with conditional statements. The identifier defined has the same properties
as a label and can be used anywhere a label is used. Example:

d2A       EQU      {d2 + $100}

Be careful with the syntax of expressions. They always must be enclosed in curly braces.
Please refer to the ST7 Software Tools Manual for more details. The identifier on the left of the
EQU statement, being a label, must start on the first character of the line. As a label, it has a
size that is derived from the current default (BYTES, WORDS or LONGS) or that can be specified
using a modifier like:

d2A.b       EQU      {d2 + $10}

6.1.8.2 #DEFINE pseudo-op

The #DEFINE pseudo-op gives an identifier a value that is a character string. Examples:

#DEFINE THREE 3
#DEFINE RESULT NumberOfApples

This being a pseudo-op, it must not start on the first character of the line. Apparently, this
seems no different from the EQU pseudo-op. Actually, it is very different in that the identifier is
not a label. It is more like a macro, that instead of a group of lines is associated with a word (in
the literary sense: a string of characters). So, each time the identifier THREE of the example
above is encountered in the program, the assembler replaces it with the figure 3; when the
identifier RESULT is encountered, it is replaced with NumberOfApples. No other processing or
property is involved. The #DEFINE statements are often put at the top of the source text, to
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allow some constants to be changed globally in the program by only changing one line that is
easy to locate.

Once an identifier is defined, the #IFDEF <identifier> conditional is true, even if the value
is an empty string. Example:

#IFNDEF THREE
#DEFINE THREE 3
#IFDEF THREE
#DEFINE THREE 4

The first line checks if THREE is not defined. Since it is not, it will be defined as 3. Then the third
line checks if THREE is defined. Since it now is , it is redefined as 4.

6.1.8.3 Numbering syntax directives

The most popular chip makers have defined for their products a numbering syntax for non-
decimal numbers. Unfortunately, these are not all the same. The ST7 assembler offers the
choice of four different notations, so that the programmer may keep his habits or just choose
the syntax he prefers. These syntaxes are summarized in the following table.

Table 8. Table of the numbering radix notations

Note: Both upper and lower case letters are allowed.

To select one of these syntaxes, use the appropriate pseudo-op of the first line of the table at
the top of the source text. By default, the MOTOROLA style is used.

6.1.9 Object and listing files

Note: For the invocation of the assembler and the command-line options, refer to the ST7
Software Tools User Manual, paragraph 4.6.

6.1.9.1 Object files

The result of the assembly of the source text is its translation into machine language. This is
a binary file that contains the binary values of the instructions, addresses and constant data.
This file is called the object file, and is named by default with the same name as the source
text, but with the extension.OBJ.

INTEL MOTOROLA TEXAS ZILOG

Binary numbers 1010B %1010 ?1010 %(2)1010

Octal numbers 175O or 175Q ~175 ~175 %(8)175

Hexadecimal numbers 4582H or 
0FFFFH

$4582 or 
$FFFF

>4582 or 
>FFFF

%4582 or 
%FFFF
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This file is not legible, and is not intended to be read by humans.

When we say the object file contains machine language in binary form, we must distinguish
two cases:

■ The program has been written in only one file and all its addresses are defined in the source
text. In this case, the contents of the object file are sufficient to generate the EPROM
programming file. This case is possible, but is not the most frequent.

■ The program has been spread over several source files. In this case, the object file cannot
contain the absolute references for the objects that are declared EXTERNAL in the source
text. Instead, the object file contains tables that give the names of the unresolved references
and the locations in the file where these references are used. This information will be used
by the linker to merge the object file together and correct the references using the values
supplied by those object files where the corresponding symbols are defined.

6.1.9.2 Listing files

The object file is always produced when the assembler is invoked. In contrast, the listing file is
only produced if the assembler is invoked with the -LI option in the command line.

Unlike the object file, the listing file is intended to be read by humans. For this purpose, it is
presented in the form of a tabulated text. Here is an extract from a typical listing file:

81  segment  at 90 ’DATA’
82  0090                       CounterLo:  DS.B     
83  0091                       CounterHi:  DS.B     
84                             
85  0092                       NbOfApples: DS       1
86  0093                       NbOfPears:  DS       1
87  0094                       NbOfFruit:  DS       1
88                             
89                             code      segment  ’ROM’
90                             
91  0000 R C60000                        ld       A, d1
92  0003 R C70000                        ld       d2, A
93                             
94                                       MyCode   
94  0006   3C90                          inc      CounterLo
94  0008   B691                          ld       A, CounterHi
94  000A   A900                          adc      A, #0
95  000C                       
96  000C R C60000                        ld       A, d3
97                             
98                             InitVariables:  
99  000F R AE00                          ld       X, #{low SIZE_RAM}
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The first column is the number of the line of source text. Here, the line 94 appears four times
because the source text contains the invocation of the macro MyCode that is expanded with
three more lines.

The second column is the address. In the example, the first lines belong to the segment DATA
that is absolute and starts from address 90h. The last label defined there is at address 94h.
Then, the segment is changed to a relocatable one. The addresses start from zero again,
since the exact address of the segment is not known yet. 

The fourth column is the machine language. For example, in line 94, the source text inc
CounterLo is translated into 3C90. This is possible since the address of CounterLo is known
as 90h. On the contrary, in lines 91, 92, 96 and 99, the addresses of the objects d1, d2, d3 and
the expression low SIZE_RAM are not known at assembly time, since they are declared in an-
other module. There, the address field of the instruction is left at zero, and a letter R is added
in the third column, to indicate that this address is relocatable.

The fifth column contains the exact reproduction of the corresponding source text.

6.2 LINKER AND ASCII-HEX CONVERTER

Note: For the invocation of the linker and the command-line options, refer to the ST7 Software
Tools User Manual, paragraph 5.2.

6.2.1 The linking process

Once all source files have been assembled, we have a collection of object files that must be
merged so as to give a whole, single, and complete file where nothing is left undefined and
that can be transferred to the program memory of the microcontroller.

This operation is performed by the linker. The linker is another translator that reads all the ob-
ject files, concatenates them so that all the code and data definitions coming from the various
source files are put in sequence to occupy continuous blocks of memory. Then, all the global
declarations have their addresses calculated and kept in a table with their symbolic names.
The last step is to update each of the external (or relocatable) references, those marked with
a R in the assembly listing file, with the final value of the corresponding symbol, taken from the
table.

The result of this work is called the executable object file and is written to the output file with
the extension .COD.
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06-lyn

Caution: The linker is invoked with the list of object files (.OBJ) to be linked, and if you wish,
with the name of the resulting file (.COD). The modules that define the absolute segment loca-
tions must be put in the list before those that use these segments. Failure to do so produces
an error message and the linker cannot produce the executable object file.

For the linker to succeed in generating an absolute executable object file, it must know all the
addresses of the relocatable objects. If the linker does not find the definition of the address of
an object across all the relocatable object files supplied to it as the input, it will produce an
error message and the linking process will fail. The same would occur if an object is defined
twice across two different relocatable object files.

Another kind of error that is only detected at link time, is when an external object is defined in
one source file as a one-byte address (a label with a .b suffix) and the symbol happens to be
defined as global in another source file as a two-byte address (the label has a .w suffix).

The linker invocation may specify the name of one or more library files. A library file is a pre-
assembled collection of object files from which the program being linked can pick one or more
pieces of code. This may be useful when code coming from existing (and well working) appli-
cations must be reused. This code might as well be included in the list of source files to as-
semble; but with the following drawbacks:

F i l e 3 . o b j

l y n . e x e

F i l e . s y m
R e l o c a t a b l e  o b j e c t  f i l e s

M e m o r y  u s a g e  m a p

   L i n k e r  i n v o c a t i o n  :

" l y n  f i l e 1 + f i l e 2 + f i l e 3 ,  f i l e "

F i l e 1 . o b j

F i l e 2 . o b j

F i l e . m a p

F i l e . g r p

F i l e . c o d

A b s o l u t e  o b j e c t  f i l e

S e g m e n t  m a p  d a t a  b a s e

S y m b o l  t a b l e
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A source file may be modified accidentally, leading to a malfunctioning code. The problem is
then difficult to pinpoint since the reused code is generally considered error-free;

The assembly of this code takes time, while using the object form of the same code is quicker
since it only has to be linked with the remainder of the program.

The ST7 programming tools include a librarian that can be used to build library files. If you are
interested in using libraries, we suggest you refer to the ST7 Programming Tools User
Manual, Chapter 7.

In addition to the absolute object file, the linker generates three more files.

The file with a .MAP extension is a listing file that summarizes the location of the segments and
the address of the global symbols. This file is intended to be read by the author of the program,
or the engineer who will debug the program.

The files with .GRP and .SYM extensions are used by the debugger. They contain the same in-
formation as the map file, but their internal format is especially defined to be read by a pro-
gram instead of a human being.

6.2.2 Hex file translator

The .COD file generated by the linker is not suitable for either debugging or PROM program-
ming. It must be translated into one of the available ascii-hex output file formats. The transla-
tion merely consists of formatting the same binary values into to one of the various popular
ascii-hex formats.

The OBSEND object translator is invoked using the following line:
OBSEND <object file>.COD, f, <hex file>, <format>

The formats available are:
Table 9. Table of the hex file translator options

Format identifier Format name

<none> straight binary, in hexadecimal form, with no checksums

f straight binary, with holes between segments filled with FFh values

i Intel hex (16 bytes per line)

i32 Intel hex, 32 bytes per line

ix Extended Intel-hex

s Motorola S format

x Extended Motorola S format

2 ST format with 2 bytes per address

4 ST format with 4 bytes per address

g GP industrial binary format
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This choice allows you to download the executable program to virtually any commercial
EPROM programmer. When using the WGDB7 debugger, the program is loaded into the de-
bugger using either the Intel or Motorola format.

6.2.3 The back-annotation pass of the assembler

When the WGDB7 debugger is used, to work properly, it expects the listing files to be fully
documented with the actual absolute addresses. 

We have seen above that the listing file, when a module uses external references, does not
give the absolute addresses, but temporary values instead that are marked with a R, waiting
for resolution in the linking process. This is not suitable for the debugger.

To solve this problem, the assembler provides a back-annotation mode for the listing files.

In this mode, once the linking is done, all the source files must be re-assembled using the op-
tion 

-FI<name of map file>.MAP

This option forces the assembler to take the map file generated by the linker as the source of
absolute addresses, and to correct the relocatable addresses with the final absolute ad-
dresses. The result is a listing file where all the addresses are absolute. The debugger can
then display the source text and the corresponding code with the actual addresses in a
window.

This extra assembler pass is not required when using another debugger, for the other debug-
gers perform the external resolution themselves using the relocatable listing files and the map
file generated by the linker.

6.3 INSTALLING WINEDIT AND THE SOFTWARE TOOLS

6.3.1 WinEdit text editor

WinEdit is a text editor that is meant for use by anybody who has programs to write in any lan-
guage. It allows the user to configure it to fit his needs when he works on a given project with
given tools. This paragraph will not fully describe this text editor firstly because it comes with
its on-line help that is self-explanatory, and also because editing with a text editor, unlike a
word processor, is straightforward, at least for a user familiar with the Windows environment.

This section will thus only cover how to configure of WinEdit for working with the STMicroelec-
tronics tools.

6.3.1.1 Installing WinEdit

WinEdit consists of a set of compressed files and a SETUP.EXE file. To start the installation
process, locate this file using the explorer, for example, and double-click on it. The first choice
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to be made is to select the directory into which WinEdit will be stored. It is always advisable to
follow the suggested directory.

The second choice is that of the components to be installed. Unless there is a shortage of disk
space, it is recommended to keep all the components selected. Proceed then with the instal-
lation to the end.

After installation, a WinEdit folder is added in the Run menu.

6.3.1.2 Configuring WinEdit

WinEdit is tailored to a project through the use of a project file. This file, suffixed.WPJ, contains
the following information:

■ The name of the project;

■ The directory of the files of the project;

■ The command line for each of the tools to assemble, link, debug, etc.;

■ The syntax of the assembler-generated error messages, to interpret them automatically,
display the error message in the editor’s status bar, and place the cursor on the
corresponding line of the faulty file.

Once the project file is defined and saved, the development process is made much more com-
fortable, since once the source file is written or corrected, pressing a button on the tool bar of
WinEdit starts the assembly process, and if an error is detected by the assembler, the mes-
sage describing the cause of the error is displayed at the bottom of the screen, while the
cursor is automatically put at the line where the error has occurred, and this line is highlighted.
You have to figure out what is wrong in this line, correct it, and press the assembly button
again, until the source file is completely error-free. This considerably speeds up the develop-
ment.

6.3.2 Installing the STMicroelectronics Software Tools

These tools come in a single diskette. Just run the SETUP.EXE program of the diskette. A box
is displayed that lists the version numbers of the various components of the package.

Pressing OK, another box is shown requesting the directory in which the tools must be in-
stalled. Keeping the suggested path is a good choice, unless there is a need to use a different
one (for example if these tools must be installed in a different hard disk). Then the installation
proceeds. At the end, the ST7 Tools group is added to the Run menu (or a group under Win-
dows 3), and a box requests whether you want to read the Readme file that gives some ver-
sion information. For users upgrading a previously installed set of tools, this gives information
about improvements from the previous version. 
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After having closed the readme file, a box shows a completion message and indicates that the
autoexec.bat file should be amended as follows: 

- path line should be altered to insert the chosen path for the ST7 tools in addition to the al-
ready defined paths ;

- insert anywhere the line SET METAI =  <the same path>

This means that you must edit your Autoexec.bat file and do the changes required. They are
necessary for running the tools. This can be done using either WinEdit or Notepad. The
changes performed will only be taken into account after the computer has been rebooted.

6.4 BUILDING A DEMONSTRATION PROGRAM

To illustrate both the assembly language and the assembly procedures, we have written a
small project for you. It is available in the directory \ST7\WORK\CATERPIL of the accompanying
software. This directory and its contents should be copied to the hard disk of your work station.
We assume that it will be copied to directory C:\ST7\WORK\CATERPIL. This directory is men-
tioned in the configuration file. If you want to use another directory, you must modify the
PROJECT.WPJ file accordingly.

6.4.1 Purpose of the demonstration program

The program drives a set of eight LEDs connected to port A of a ST72251. When the program
runs, all of the LEDs but one are lit at the same time, and the unlit position changes twice per
second to the LED connected to the nextmost significant bit of port A. When the LED con-
nected to bit 7of port A is off, the next LED off will be that connected to bit 0 of port A, and the
cycle resumes. The 500 ms delay is done using a loop of instructions that is tuned to last for
exactly 500 ms, taking into account the cycle time of each instruction with an 8 MHz crystal.

6.4.2 Inventory of the program files

The program includes the following input files:

■ The PROJECT.WPJ project file that contains the settings and the tool references for the
project, and the GDB7XXX.INI file that configures the debugger.

■ The main source file, MAIN.ASM that contains most of the code, and the timer source file,
TIMER500.ASM that contains only the timing routine.

■ The REG72251.ASM, file that contains the definitions of all the peripheral registers and the
REGISTER.INC, file that contains the external references to the definitions of all the
peripheral registers made in the previous file.

■ The MAP72251.ASM, file that contains the description of the available memory and its type
(RAM, ROM).
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■ The CATERPIL.BAT file that drives the global building of the project, by starting the assembly,
link, hex file generation and back annotation process.

All these files constitute the source files, in the widest sense, of the project.

At this point, we suggest you open all these files with WinEdit, and see what they contain.

Some remarks about the files.

■ The true source files of the project are actually MAIN.ASM and TIMER500.ASM. All other files
are auxiliary files.

■ The PROJECT.WPJ file is the configuration file for the editor itself; it defines also the tools to
be used. 

■ The REG72251.ASM file is a service file that declares all the registers as global identifiers, so
that the linker will be able to know their addresses. The REGISTER.INC file is complementary
to the previous one; it is meant to be included in all the source files that make use of one or
more peripheral devices or system registers. It provides the EXTERN definitions for all the
registers defined as PUBLIC in the previous files, and also a set of EQUate statements that
associate the predefined names of the individual bits in some peripheral or system registers
with constants, so that the mnemonic names of these bits can be used in instructions like
BSET or BRES that expect a bit number. The MAP72251.ASM file is a bit similar to
REG72251.ASM. It defines the location and size of the memory available in the ST72251. 

■ CATERPIL.BAT is the file that defines the assembly, link, hex file generation and the back
annotation process.

■ The two files REG72251.ASM and MAP72251.ASM define the microcontroller that is used for
the project. If the project has to be changed to use another member of the ST7 family, it is
only necessary to change these two files for those of another microcontroller of the ST7
family and the project will work the same way—provided the new microcontroller contains all
the resources required by the project.

6.4.3 Description of the program files 

6.4.3.1 The PROJECT.WPJ file 

This file contains the settings and the tool references for the project, that is the current working
directory and the commands for assembling, linking and executing the program. Most of them
are grouped in the menu option Project/Configure... that shows the following dialog box:
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06-proj.bmp

The Project Name is just free text. It is not the name of the project file that can be saved by
pressing the Save... button. The Working Directory is that of the project. It is advisable to
have one separate directory for each project. 

The Compile command is the command that launches the assembler, in the present case. The
command-line argument is -li to say that a listing is required. The name of the file to as-
semble is produced by the expansion of the macro %n, as explained above in the box. The
name of the file whose edit window is active at the time the compile command is given is
passed to the command. For example, if the currently active edit window is that of the source
file MAIN.ASM, the command that will be generated will be ASM -li MAIN.ASM. 

Similarly, the Make command is set to the name of the batch file that performs the building of the
project. Finally, the Debug command is the path of the Windows Debugger.
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The Compiler field that is currently set to Clipper selects the rules for decoding the assem-
bler or compiler report. It is used in conjunction with the Capture Output option that must
then be enabled.

When the assembler is launched, and the Capture Output option is enabled, the report gen-
erated by the assembler is captured, and on completion, is analyzed according to the speci-
fied rules. If error messages are generated, they will be displayed in the status box at the
bottom of the WinEdit window, and the line where the error stands is highlighted. This makes
the correction and assembly cycle a lot faster. 

Once all the source files are error-free, the whole project must be built using the build com-
mand (the hammer button).

To launch the debugger from WinEdit, it is not sufficient to write its path in the Debug com-
mand field; you must also add a few parameters, so that the command to be placed in the
Debug Command box of the configuration parameters looks like the following text:

C:\ST7\WGDB7\WGDB7.EXE -target=’emust7 lpt1 -dll st7hds2.dll’

This supposes that the debugger is installed in the directory C:\ST7\WGDB7. 

The two files mentioned here are present in the companion software, so the settings above
need not be made by hand. You just have to select the Project/Configure option, then press
the Open button, to select the file CATERPIL.WPJ that does all this.

6.4.3.2 The main source file, MAIN.ASM and the timer source file, TIMER500.ASM

The source files of the project are very short. They are shown below. They illustrate what has
been said about assembly language regarding addressing modes, declarations, segments,
etc.
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The main program is the following:
ST7/
;=============================================================
;=                       Main (caterpillar)                  =
;=============================================================

         #include "Register.inc"

         EXTERN Delay500 ; By default, external label defined as a word
        
; definition of the constants
; =========================
         BYTES ; The following constants defined as bytes
        
watch             EQU $FF
cpudiv2           EQU 0 ; normal speed

segment ’rom’
         WORDS ; Next labels are words.
; Initialisations
; ===============
reset:
         ld a, #cpudiv2
         ld miscr, a ; fq 8MHz /2 = CPU clock = 4MHz
         
         ld a, #watch
         ld wdgr, a        ; Start watchdog
         ld paddr, a       ; port A as output
         clr paor          ; open drain, no pull up
         ld padr, a        ; leds off
         rsp               ; initialize stack
; Main program
; ============
Start:   
         ld x, #00
Next:
         ld a, (table,x)
         ld padr, a        ; Switch one LED on pa0 OFF, others ON
         call Delay500     ; according to table contents
         inc x
         cp x, #08         ; If at end of table, go back to the beginning
         jreq Start
         jra Next
; table of the patterns that are output in sequence
; =================================================
table:   dc.b 1, 2, 4, 8, 16, 32, 64, 128
; Interrupt vectors
; =======================
         
         segment ’vectit’  ; ($FFE0)
         DC.W     0        ; skip 8 vectors
         DC.W     0
         DC.W     0
         DC.W     0
         DC.W     0
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         DC.W     0
         DC.W     0
         DC.W     0
         DC.W     0         ; skip 7 vectors
         DC.W     0
         DC.W     0
         DC.W     0
         DC.W     0
         DC.W     0
         DC.W     0
         DC.W     reset    ; reset vector ($FFFE)
                
         END

The main program calls the following subroutine that has been written in a separate file on pur-
pose, though it would be easier to write it in the main source file:

ST7/
;=============================================================
;=                    timer 0.5 second                       =
;=============================================================

; This subroutine generates a 500ms timing by looping.
         
         PUBLIC Delay500

         #include "Register.inc"

; definition of the constants
; ===========================
        BYTES  ; The following constants are defined as 1 byte values
        
watch    EQU $FF
DELAY1   EQU 10
DELAY2   EQU 100
DELAY3   EQU 140
   
; definition of the variables (in page 0)
; ==================================

         segment ’ram0’

Time:   ds.b 3   ; reserve memory space in RAM for
                  ; a page zero variable named Time, 
                  ; that is 3 byte long.

         segment ’rom’
         WORDS

; Timing routine for 500ms
; =====================================
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Delay500:
         ld a, #DELAY1  ; 2 cycles
         ld Time, a     ; 4 cycles
Loop1:
         ld a, #DELAY2  ; 2 cycles
         ld {Time+1}, a ; 4 cycles
Loop2:    
         ld a, #DELAY3  ; 2 cycles
         ld {Time+2}, a ; 4 cycles

Loop3
         ld a, #watch   ; 2 cycles
         ld wdgr, a     ; 4 cycles
         dec {Time+2}   ; 5 cycles
         jrne Loop3     ; 3 cycles

         dec {Time+1}   ; 5 cycles
         jrne Loop2     ; 3 cycles

         dec Time       ; 5 cycles
         jrne Loop1     ; 3 cycles

         ret

         END

; Internal loop: 14 cycles
; Intermediate loop: 14 cycles
; External loop: 14 cycles
; total: (((((14*DELAY3+14)*DELAY2)+14)*DELAY1)+14)*0.25
; =493519 microseconds

You may have noticed that the secondary source file provides one public label, and that the
corresponding external declaration stands in the main program. 

6.4.3.3 The REG72251.ASM file and the REGISTER.INC file

The REG72251.ASM file contains the declaration of all the registers of the ST72251 in an abso-
lute segment, because their addresses are fixed by hardware. Each declaration is made
public by adding a dot before each label, so that any other source file of the project can make
reference to the registers, provided the necessary EXTERN statements are added to that
source file. Here is an excerpt from the REG72251.ASM file:

ST7/
;*************************************************************
;*                     ST72251 registers : 
;*    This file declares the labels of all the registers 
;*    of the Input/Output peripherals. The bit numbers
;*    within each register and the corresponding EXTERN 
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;*    declarations are in the include file REG72251.INC that
;*    must be included in the source files that use them.
;*************************************************************

         BYTES    ; the following addresses are 8-bit long

;*************************************************************
         segment byte at 0-71 ’periph’
;*************************************************************

;*************************************************************
;        I/O Ports registers
;*************************************************************

.pcdr    DS.B 1   ; port C data register

.pcddr   DS.B 1   ; port C data direction register

.pcor    DS.B 1   ; port C option register
         DS.B 1   ; empty byte
                           
.pbdr    DS.B 1   ; port B data register
.pbddr   DS.B 1   ; port B data direction register
.pbor    DS.B 1   ; port B option register
         DS.B 1   ; empty byte
                         

(to be continued)

When you get to the point of inserting EXTERN declarations in the source files, you have two
choices:

You may add only the external declarations you need;

You may include the REGISTER.INC file, and get the whole set of external declarations at once,
since adding useless externals does no harm. This method is obviously quicker and easier.

Here is an excerpt from the REGISTER.INC file:

;
;*************************************************************
;*                     ST72251 registers 
;*   This file contains the EXTERN declarations for all
;*   the peripheral registers and the EQUates for the bit
;*   positions within the registers. It must be included
;*   in source files that use the peripherals. 
;*************************************************************

         BYTES    ; the following addresses are 8-bit long

;*************************************************************
;        I/O Ports registers
;*************************************************************
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    EXTERN padr    ; port A data register
    EXTERN paddr   ; port A data direction register
    EXTERN paor    ; port A option register

    EXTERN pbdr    ; port B data register
    EXTERN pbddr   ; port B data direction register
    EXTERN pbor    ; port B option register

    EXTERN pcdr    ; port C data register
    EXTERN pcddr   ; port C data direction register
    EXTERN pcor    ; port C option register

;*************************************************************
;        SPI  registers
;*************************************************************

    EXTERN spidr   ; SPI data register
    EXTERN spicr   ; SPI control register
    EXTERN spisr   ; SPI status register

; bits names of spicr :

SPIE     equ 7    ; serial peripheral interrupt enable
SPE      equ 6    ; serial peripheral output enable
MSTR     equ 4    ; master
CPOL     equ 3    ; clock polarity
CPHA     equ 2    ; clock phase
SPR1     equ 1    ; serial peripheral rate bit1
SPR0     equ 0    ; serial peripheral rate bit0

; bit names of spisr :

SPIF     equ 7    ; serial peripheral data transfert flag
WCOL     equ 6    ; write collision status bit
MODF     equ 4    ; mode fault flag 

(to be continued)

In addition to the external declarations, this file provides the EQU definitions of some con-
stants that allow you to name the bits within the bytes using mnemonics. This improves the
legibility of the source text. 

6.4.3.4 The MAP72251.ASM file 

This file contains only absolute segment declarations. These declarations tell the linker where
the ROM, the RAM and the stack are. Here is the text of the file:

ST7/
;*************************************************************
;*                 ST72251 memory mapping 



179/315

6 - STMicroelectronics Programming Tools

;* 
;*************************************************************
         BYTES    ; following addresses are 8 bit long
;*************************************************************
         segment byte at 80-FF ’ram0’
; user ram in zero page
;*************************************************************
         WORDS    ; following addresses are 16 bit long
;*************************************************************
         segment byte at 100-13F ’ram1’
; extended user ram 
;*************************************************************
;*************************************************************
         segment byte at 140-17F ’stack’
; stack ram         
;*************************************************************
;************************************************************* 
         segment byte at E000-FFDF ’rom’
; program rom         
;*************************************************************
;*************************************************************
         segment byte at FFE0-FFFF ’vectit’
; interrupt vector table          
;*************************************************************
        END

Typically, this file remains the same for all projects; you should only alter these settings for
special reasons relating to the memory map of the component that is fixed by hardware. When
changing the type of microcontroller, you have to change this file and replace it with a file spe-
cially written for the other model of microcontroller.

6.4.3.5 The CATERPIL.BAT file

This file drives the assembly, link, hex file generation and back annotation of the listing files.
The contents of the file are:

asm -li Map72251
asm -li Reg72251
asm -li MAIN
asm -li TIMER500 
lyn REG72251+MAP72251+TIMER500+MAIN,CATERPIL,
pause
obsend CATERPIL,f,CATERPIL.s19,s
asm Map72251 -sym -fi=CATERPIL.map
asm Reg72251 -sym -fi=CATERPIL.map
asm MAIN -sym -fi=CATERPIL.map
asm TIMER500 -sym -fi=CATERPIL.map
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The first four lines make the assembler translate the four source files of the project.

The fifth line gives the object files to link, then the name of the result file, and the name of the
libraries that may be needed. Here, no libraries are used, hence the comma that terminates
the line. The result files are CATERPIL.COD and CATERPIL.MAP that contain the machine code
and the list of the segments and external symbols.

The pause command allows you to read the result of the linking on the screen before pro-
ceeding.

The next line converts the CATERPIL.COD file into a text file encoded using one of the possible
ascii-hex formats, here the Motorola format. The result is the CATERPIL.S19 file.

The last four lines cause the two source files to be re-assembled, but with the option 
-FI=CATERPIL.MAP that tells the assembler to produce an absolute listing, taking the informa-
tion from the CATERPIL.MAP file to evaluate the effective addresses of the relocatable ob-
jects.The -sym option, also used, causes the table of symbols to be built. This table is used by
the emulator to identify and locate the various program objects.

06-fi

6.4.4 Using WinEdit to change and compile the files

To load WinEdit, click on its icon in the start menu. It is also convenient to add a shortcut to
WinEdit on the desktop; so you can open WinEdit by double-clicking on it .

Using the Open File tool, or the menu File/Open, select the type “Asm Source files”. Then the
four .ASM files are listed. Select MAIN.ASM, and open it.

F i l e . m a p

a s m . e x e

( - f i  o p t i o n )
F i l e 1 . l s t

  A s s e m b l e r  i n v o c a t i o n  :
- f i = f i l e . m a p  o p t i o n ;

" a s m  f i l e 1  - f i = f i l e . m a p "
p r o d u c e s  a  d o c u m e n t e d  w i t h
a b s o l u t e  a d d r e s s e s  l i s t i n g  f i l e .  

F i l e 1 . a s m

U p  d a t e d
l i s t i n g  f i l e
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The source text is shown in an editing window. As many files as you wish may be open at the
same time. Try first to assemble it by clicking on the funnel tool, or select the Project/Compile
option. A DOS box appears for a short time, then the following box appears:

Pressing the space bar, or the enter key, or clicking on Analyze Results, makes the sentence
“No errors on assembly of 'C:\ST7\WORK\CATERPIL\MAIN.ASM'” be displayed in the status
bar at the bottom of the screen. This is the message from the assembler. 

We saw above that WinEdit was configured to recognize the syntax of the assembler mes-
sages. We can check this feature by altering the source text so as to intentionally make a
syntax error. For example, let us change the line that contains the include statement so that it
reads:

#include "register.inc"

and let us press the funnel button. A box appears then, requesting whether we want to save
the source file before assembling. We must answer yes, because the assembler uses the files
on the disk and not the contents of the editor buffer. Then, after assembly and analysis of the
results, the status bar at the bottom of the screen shows:

Error 56: unrecognised opcode ’         #include "register.inc"’

and the altered line is shown in reverse video. So it is easy to locate the error and correct it.

Actually, this error has also caused a chain of other errors. By pressing the right arrow at the
top of the screen, the next error is displayed, and the corresponding line is then highlighted.
Multiple errors can then be corrected. However, in many cases, the other errors are a conse-
quence of the first one, so it is advisable to correct the first error and assemble again, unless
the following lines shown as being in error are obviously faulty.
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To assemble all the source files, open all of them, and on each, perform the assembly in turn.
When all the source files are assembled, it is time to build the result files.

To do this, press the hammer button. This starts the batch file described above. A DOS box
then opens, and the linker is started. Since the output is not captured for this command (it
cannot be captured because it is a batch file), we have to monitor what is going on on the
screen. If the linking finishes with the mention “no error”, press the space bar and the process
resumes with the assembly of all the source files. Here again, errors may be displayed on the
screen. Take note of them if any, and when the process is finished, close the DOS box. Then
make the appropriate changes.

Most of the errors detected at link time are one of the following:

■ An external label is used in a source file, that is not defined anywhere or is not public;

■ An external label is used with short addressing mode, and it happens not to be defined in
page zero.

It is sometimes not easy to see that a label is defined somewhere as a word, and used some-
where else as a byte. When talking about labels, do not confuse a byte label with the label of
a DC.B pseudo-op that defines a byte variable: the variable is a byte, but its address is a word.
Carefully read the text about byte and word labels in the chapter that discusses the assembler.

Caution: If the debugger is open and the corresponding project is loaded, the map file is
locked out. It is then impossible to perform the link. So when you are debugging, if you find an
error and want to recompile the project, do not forget to first close it from within the debugger
before attempting to rebuild it. Now that our program is completely assembled and linked, we
can test it. This is the subject of the next chapter.
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7 DEBUGGER AND PROM PROGRAMMER TUTORIAL FOR ST72251

The tools supplied by STMicroelectronics at no cost are those described in the previous
chapter, plus the following:

■ The EPROM programmer board software EPROMER, and

■ WGDB7.EXE which is a high-level language source-level debugger software that can run
both as a simulator and as a debugger with one of the ST7 hardware emulators.

Both software packages run on Windows with a user-friendly graphical interface.

This chapter describes these products and installing them on your computer. To demonstrate
the use of the debugger, an application has been written to illustrate most of the concepts con-
tained in the previous chapters. 

This application is only for learning purposes, to show both what can be done with a ST7, and
how to debug it using the emulator and debugger.

These tools are backed up by a complete set of hardware that provides a range of equipment
from lightweight PROM programmers to full real-time emulators.

7.1 STMICROELECTRONICS HARDWARE TOOLS

The STMicroelectronics tools range has three levels: EPROM Programming Boards, Develop-
ment Kits, and Emulators. For each level, several models are available, depending on the type
of microcontroller involved. However, only two software packages are required to drive them
all: the EPROMER to program and check the programming of EPROM devices, and the De-
bugger that handles all the debugging work with any of the emulating tools.

Another category is the range of Starter Kits, which are actually kits including an EPROM Pro-
gramming Board plus all the software and documentation needed to get started with one of the
ST7 chips.

7.1.1 EPROM Programming Boards

The EPROM Programming Boards are driven using the EPROMER software. They do not pro-
vide any emulating capability. They exist in the following models:

■ ST7MDT1-EPB for the ST72101, ST72212, ST72213 and ST72251 except R and N
variants;

■ ST7MDT2-EPB for the ST72121, ST72311 and ST72331 except N6 variants;

■ ST7MDT3-EPB for the ST72311N6, ST72331N6 and ST72251N and R variants;

■ ST7MDT4-EPB for the ST72272 and ST72671.
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7.1.2 Starter Kits

The Starter Kits are exist in three flavors, each providing a different EPROM programming
board. They include the STMicroelectronics Software Tools, so that the board can be driven
using the EPROMER software. They do not provide any emulating capability but the De-
bugger can run in simulation mode. They also include a selection of ST7 chips depending on
the flavor selected.

They exist as the following models:

■ ST7MDT1-KIT for the ST72101, ST72212, ST72213 and ST72251 except R and N variants;

■ ST7MDT2-KIT for the ST72121, ST72311 and ST72331 except N6 variants;

■ ST7MDT4-KIT for the ST72272 and ST72671.

7.1.3 Development Kits

The Development Kits go a step further than the Starter Kits, for the board supplied is at the
same time an EPROM Programmer and a low-cost emulator. Roughly speaking, they provide
all that emulators do, except real-time tracing. They constitute a very convenient and cost-ef-
fective development tool. They also include a selection of ST7 chips plus the software tools
and documentation. They exist in the following models:

■ ST7MDT1-DVP for the ST72101, ST72212, ST72213 and ST72251 except R and N
variants;

■ ST7MDT2-DVP for the ST72121, ST72311 and ST72331 except N6 variants.

7.1.4 Emulators

The Emulators provide the full functionality of debugging and real-time tracing for all the mem-
bers of the ST7 family. They come with the Debugger software.

They exist in the following models:

■ ST7MDT1-EMU for the ST72101, ST72212, ST72213 and ST72251 except R and N
variants;

■ ST7MDT2-EMU for the ST72121, ST72311 and ST72331 except N6 variants;

■ ST7MDT3-EMU for the ST72311N6, ST72331N6 and ST72251N and R variants;

■ ST7MDT4-EMU for the ST72272 and ST72671.

7.2 EPROM PROGRAMMER BOARDS

In this section we describe the installation and use of the EPROMER software and the
EPROM Programming Boards, or the EPROM programming part of the Development Boards.

All these boards are supplied with:
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■ A power supply, that connects to a wall outlet and to the programming board though a
coaxial jack

■ A cable that connects the programming board to a parallel port of the computer

■ The software stored on disk

7.2.1 EPROM programmer Installation

First connect the parallel port of the computer to the programmer using the supplied cable,
then apply power to the board using the power supply provided.

The software has already been installed with the STMicroelectronics Software Tools as de-
scribed in the previous chapter.

7.2.2 Using the EPROMER software

The EPROMER is accessible from the ST7 Tools program group that the installation has put
on the hard disk of your computer.

Using the shortcut, launch the EPROMER. The following window opens:

07-prog1.bmp

The EPROMER must now be configured both for the actual board connected to it, and for the
type of chip to program.
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Select the option Configure/Configure EPROMER, then the following window pops up. It is
made of two tabs, Select hardware and port, and Select Chip. Let us start with the first one:

07-prog2.bmp

In the left-hand box, select the type of board; in the right-hand one, select the port number.
Next switch to the second tab:

07-prog3.bmp
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In this window, select the device that will be used. Then press OK. The EPROMER is now
configured.

Typically, to program an EEPROM, we need to load the hexadecimal file into the programmer,
then to program the device.

The hexadecimal file has already been produced in the previous chapter. It has a .S19 exten-
sion. So, let us select File/Open, and in the file type combobox, select S19 files (the default is
HEX files) Select now the name of the file to read, and press OK. Once the file is read, etc..
Once the file is read, its content is displayed in the window:

07-prog4.bmp

Please note that the range of the addresses in the hexadecimal file must fit the actual memory
size of the selected device. The display above allows you to scroll throughout the entire
memory range, but not past its limits. Any record in the hexadecimal file that is outside this
range will be ignored.
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This window is an edit window, that allows you to alter the values to be programmed directly
by putting the cursor on one byte and typing in the new value.

The tabs at the bottom allow you to select between the program memory (EPROM) and the
non-volatile memory that is reprogrammable by the application program (EEPROM). This last
type of memory does not exist on all devices.

The edit menu allows you to fill a range of addresses with the same byte. This allows you for
example to fill the memory with NOP codes, with a jump instruction just before the interrupt
vectors. This is one of the ways of protecting the program against software or hardware mal-
functioning.

If we are done with loading and altering the program, we can program the chip. Using the Pro-
gram menu, you can select either the current memory space or part of it, or all of them (when
a device includes EEPROM).

07-prog5.bmp

It is also possible to read back an already programmed chip using the Read menu with, here
again, the option of reading all spaces, one space, or just a part of one space. This allows you
either to store it to disk or to program a new device with the same code or an amended version
of it. 

To check whether a device is blank or not, use the Verify/Blank option. Also, the Verify/All,
Verify/Current and Verify/Range options allow you to check a device agains the current con-
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tents of the window. However, this test is automatically performed prior to programming, and
thus, is optional.

7.3 EMULATOR AND DEBUGGER

7.3.1 Introducing the emulator and the debugger

The emulator and the debugger constitute together the essential tool for testing and debug-
ging a program. They allow you to load the program, have it run either at full speed, or step by
step, or at full speed from one point and stop at a predefined point or when a predefined con-
dition is met. This allows you to see where the program goes and the value of the data pro-
duced.

To achieve this, we need both software and hardware.

The hardware part may be either the Developer Kit or the Emulator. In our case, it is the
ST7MDT1-DVP, when it comes to the Developer Kit; or the ST7MDT1-EMU for the emulator.
Both have a probe that is terminated by a male socket identical to that of the selected micro-
controller, here the ST72251. This socket, when inserted in lieu of the real microcontroller,
makes believe it is a microcontroller, and performs exactly as such in the application. But, on
the other side, the Development Kit board or the Emulator enclosure is connected to the PC,
and from here, we can drive program execution and monitor what is going on, as well as
reading and writing any memory byte or register (except that it is not possible to write into
read-only peripheral registers).

The debugger is the software part of the system that drives the emulator, by presenting the
data in a legible way on the screen, and providing controls for startins, stopping, stepping
through the execution or setting breakpoints.

The WGDB7 debugger allows you to debug programs by following the execution both on a
display showing the machine language, and a display showing the corresponding source text.
We shall see in the later chapters that this is also possible using C language, and the execu-
tion can be traced on the C source text as well as on the machine language display.

We shall start by installing the emulator and the debugger, and try out their functions using the
example program from the previous chapter.

7.3.2 Installing the emulator and the debugger

The emulator is composed of two enclosures, the main emulator block, and the probe. The
main block is connected to one of the PC serial ports at one end, and to the probe at the other.
It receives power from the power line.

The probe is connected to the main block at one end, and to the target application at the other,
through a socket that must be plugged in the same place that the real microcontroller would be
inserted in the application. The probe is supplied by the power block.
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07-emu

Now that the hardware is connected, we can install the debugger.

In the ST7 tools directory of the CR-ROM, launch the setup program. It first requests you to
enter the name of the directory where to install the software is to be installed. We have chosen
C:\ST7Tools. Press Next. Then a box prompts for the software components to install. Unless
you need the space on your disk, keep all boxes checked. Press Next. A third box requests
you to select the port(s) to which the Development Kit and/or the emulator are connected.

When this is done, press Next, then Next in the following window, and the installation starts.
When the files are copied, a box shows up requesting whether you want to let the install pro-
gram perform the required changes in AUTOEXEC.BAT, or if you want to do it yourself. It is a
good idea to let the program do it. Press Next, and the next box reminds you that the installa-
tion will not be fully performed until the computer has been rebooted. Press OK. the last box
allows you to quit, and if you want to read the readme file, or start the debugger. It is recom-
mended to quit, then to reboot the computer before using the software.

P e r s o n a l  c o m p u t e r
 u n d e r  W i n d o w s  w i t h  

d e v e l o p m e n t  t o o l s  i n s t a l l e d .

S T 7 M D T 1 - E M U  E m u l a t o r

L P T 1  o r  L P T 2

P r i n t e d  c i r c u i t  b o a r d
w i t h  S T 7 2 2 5 1  s o c k e t
( t a r g e t  a p p l i c a t i o n )

S T 7 2 2 5 1
P r o b e

I n s t a l l i n g  t h e  d e v e l o p m e n t  e n v i r o n m e n t  :  d e b u g g e r  a n d  e m u l a t o r .
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7.3.3 Using the debugger

7.3.3.1 Loading the application

Start WGDB7. After a delay, the debugger is started and the following box shows up:

07-emu5.bmp

This is the main window of the debugger, that is called the Toolbox. The first thing to do now,
is to load the map file of the project. This file provides all the required information for finding all
other files of the project. Using the File/Open option, we select the hexadecimal file of the
project described in the previous chapter:

07-emu6.bmp

Press OK. The hexadecimal file, containing the machine-language program, is loaded. The
debugger expects that the map file of the project also resides in the same directory and has
the same name, but with the extension .MAP. For this to happen, the batch file that builds the
program must produce a .S19 file with the same name as the output file of the linker: 

lyn REG72251+MAP72251+TIMER500+MAIN,CATERPIL,
obsend CATERPIL,f,CATERPIL.s19,s
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This is common practice and should be adhered to. When you open this file for the first time,
you have to specify which microcontroller type you are using, with the Command/Micro name
option. Then you can select the appropriate type from the list supplied:

07-emu6b.bmp

All other times the same file is opened, this setting is remembered and you do not need to
make this selection again.

After loading, the window of the main source file opens:

07-emu7.bmp

Since the processor has been automatically reset after the object file was opened, the first line
of the program is underlined, showing where the execution will start from.

Opening the Sources pull-down menu, we get the list of the modules of the project. As many
other source files as you wish may be opened at the same time.
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7.3.3.2 Running the application

We are now ready to run the program. Let us first do a few steps using step mode. There are
two step buttons, named Next and Step in all windows, except in the disassembler window
where they are called Nexti and Stepi. These buttons have the same behavior on simple state-
ments; they only differ on statements that produce subroutine calls, like CALL in assembler, or
function names in C. There, pressing Next goes to the following line, while Step enters the
subroutine or function. We can test this by stepping through the program first using Next, until
line 45 of the source text where the first call is. Press Next once again: the PC now points to
the line that follows the code, inc x.

Let us restart from the beginning and try the effect of the Step button. To return to the begin-
ning, select Command/Reset again in the toolbox. The execution point then returns to the start
of the program.

When a section of program is known to be working, like the first lines of the program up to line
44, it is more convenient to execute it at full speed and stop where it is worthwhile stepping
again. To do this, let us click on line 44. This line is then highlighted in blue. Press the Goto
button of the source window, or press F4. Line 44 is now underlined, meaning that the pro-
gram has been executed from the previous position of the program counter (the beginning) to
the highlighted line, and then has stopped.

Press Step. We go through the instruction that precedes the call, then Step again: a new
window opens, showing the source file Timer500.asm. The current position of the PC is the
first line of the subroutine. We can now step through the subroutine, using either Next or Step.

7.3.3.3 Watching the registers and variables

While stepping through the program, it is useful to know the values of the registers of the core
and the value of the memory bytes. Select the toolbox Windows/Registers option. A window
then opens, showing the values of all the registers of the core. In particular, the flags in the
condition code register are shown individually. We can now step through the timing loops and
see the values change.

In this box, the background of all the fields is yellow, meaning these are “hot” fields, that is,
they are updated each time execution is stopped. In addition, in fields whose value has
changed since last time, the value is written in bold characters:
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07-emu8.bmp

Now, we want to see how the timer routine affects the variables in memory. Let us select the
toolbox Windows/Dump option. A window opens, showing the contents of the whole memory.
Using the scroll bar, let us watch the value of the memory bytes near the address of the timer
variables, situated at 80h:

07-emu9.bmp

Now we know the value of the three bytes of the timer at 80, 81 and 82. This window shows
the memory contents at the time it was opened. If we step through the program, the window
will not reflect the changes. We have two solutions for this:

Press the Refresh button when we want to see the latest values;

Check the Hot box. From that time on, the window will be refreshed automatically each time
the program stops. The background of the window turns yellow to indicate it is hot:
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07-emu10.bmp

Now, if we step through the timing loops, we can see the values changing.

7.3.3.4 Using Inspect and Watch

The memory inspection as shown above gives access to the whole data and program in
memory; however, it only gives the raw data that is not necessarily easy to understand and
that is buried among a lot of irrelevant information.

When your attention is focused on a particular variable, it is much more convenient to use the
Inspect function as follows:

■ First, place the cursor anywhere on the name of a variable in the source window.

■ Then, press the button “Inspect” at the top of the window. Let us assume that we have
selected the variable Time in the Timer500 source window.

■ The following box then opens, showing the contents of the variable. Here, the variable has
been declared as an array of three bytes, and it is displayed accordingly:

07-emu10b.bmp
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The address and the type of the variable, shown here, are only displayed if the Misc/Info op-
tion of the box is selected. The Misc/Hot option also allows this window to be refreshed each
time the execution of the program is suspended. This allows you to follow the execution re-
sults step by step, as can be tried by stepping into the Delay500 routine (this is where the pro-
gram spends most of its time, so if you allow it to run for a short time then stop, you will find
yourself in this routine).

Each variable for which the Inspect button has been pressed, is displayed in a separate
window. This can lead to a large number of windows; it may then be more efficient to group
them all in a single window, called the Watch window. To do this, just select the Add Watch-
option in the Inspect window. A new window will open, and display the data in a slightly dif-
ferent format. For each variable, a different format may be selected using the various Display
menu options :

07-emu10c.bmp

By nature, a watch window is Hot; so the information it contains is always up-to-date.

It is also possible to watch any data in memory that is not declared in the source files, or to dis-
play a variable in a different way, using C-like type statements. For example, to display the two
bytes at address 81 that make up an integer word, type (int*)*0x81 in the box at the top of
the window; then a new variable will be displayed:

07-emu10d.bmp
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7.3.3.5 Using breakpoints

Our timing loop is very long. It is impractical to step through it. There is an easier way to do it:
put a breakpoint. For example, we want to watch what happens to the outer loop. Put the
cursor on line 57, where the conditional jump that closes the outer loop stands. Press the
Break button: this line is now highlighted in bold, with a stop sign in the margin:

07-emu11.bmp

Now press Continue on the toolbox, or press F5. The execution point is now on that line, as in-
dicated by it being underlined. We can watch the values of the three counter bytes. Only the
first one is non-zero, since we can only arrive here if each inner loop has its counter at zero.
Let us press F5 (or Continue) again and again: we see the value of the first byte of the counter
decreasing from 9 down to 0. Each time we pressed Continue, we went through one round of
the outer loop. Since the initial value was 10, after ten presses on Continue we reach zero.
The inner loops themselves have done many more rounds. Now we can, for example, press
Step repeatedly and watch the program exiting from the subroutine to the main program.

Several breakpoints may be set at various places in the program. To recollect them all, select
the Window/Soft Breakpoints option in the toolbox. The following window then appears, indi-
cating where the breakpoints are and whether they are enabled. From this box you can delete
a breakpoint, disable it or re-enable it. A disabled breakpoint is displayed with the source line
in bold, but the stop sign in the margin is gray instead of red. The execution will not stop at a
disabled breakpoint, but it is ready to be quickly re-enabled. This allows you to prepare all the
breakpoints before starting the execution, then enable and disable only those that are useful
at certain times.
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07-emu12.bmp

When we press Continue, the program runs at full speed until the next breakpoint, if any.
During this time, we are blind to what happens in memory. To compensate for this, we have a
tool called the trace recorder.

Select the toolbox Windows/Trace option. The window that opens shows all the memory ac-
cess cycles. Double-click on one of the lines shown, then on the single left-arrow at the top of
the window. We see the highlighted line moving up, and in the corresponding source window,
the corresponding line highlighted.

Then remove all the breakpoints, and press Run. The program now runs continuously, and if
eight LEDs are connected to port A, we see the unlit LED moving from one position to the next
one each half second. To return control to the debugger, press the Stop button on the toolbox.
The application must be stopped to close the debugger.

7.3.3.6 Watching the contents of the stack

Another piece of information we can get from the debugger is the contents of the return stack.
This is useful if we stop somewhere in a deeply nested subroutine, and want to know where it
was called from. As an example, we shall put a breakpoint at the deepest point of this small
program, for example at the first instruction of the Delay500 subroutine. Press Run, and wait
for the program to stop. Choosing Window/Stack in the toolbox, the following window shows
up:

07-emu13.bmp
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The top line is where we are now. The next line is where we came from. If we click on this
second line, and select the View/Source option, the window showing the Main.asm source-
pops up and line 45 is highlighted in blue. This is very convenient, especially in C language as
we shall see later.

7.3.3.7 Watching the execution trace

An emulator is used to watch a program executing, see which branches it takes, and the
values it reads and produces. The stepping method described above seems okay; but actu-
ally, it might not always be usable. The main two reasons for this are:

■ The piece of program to run is too long to be traced in a reasonable amount of time;

■ This particular piece of program deals with real events that cannot be slowed down, and the
program must run at full speed to correctly handle them.

The answer to this problem is the real-time trace.

Let us start the program at full speed, then either stop it by hand or let it stop at a breakpoint.
Now, choosing the Windows/Trace option, we can see a new window opening. It looks like the
following:

07-emu14.bmp

The display is made of lines that are successively red, blue and black. 
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The first line of the above display, which is red, shows the current source line. 

The second line, which is blue, shows on the right the absolute code corresponding to the
source line. For example, the identifier cpudiv2 in the source text has zero value. The begin-
ning of the line shows the address of the instruction and the corresponding machine code.
This line actually shows the Fetch cycle of the instruction, that is, the cycle where the instruc-
tion code is read. For example, the instruction 

ld a, #0

is coded as A6. The next byte, 00, is actually read on the following line. The letter R tells that
this is a read cycle.

There may be several following lines if the instruction takes more than two memory cycles al-
together. For example, the instruction

ld 0x20, a

does a dummy read to address 20, that is actually not used by the core, and then a true write
to that address to store the value of the accumulator, that is zero.

With all these tools, we can now debug the next application.

7.3.3.8 More features to come later 

The Windows Debugger offer more options than those described here. These other options
are specifically designed for working with C language, and we shall discuss them when we
have introduced C-language programming in the next chapter.

7.4 PURPOSE OF THE TUTORIAL

This chapter has as its sole purpose to help you build an application using the ST7 from
scratch. This includes designing the test board, writing the program and debugging it.

The subject of this application is the demonstration of a simple multitasking kernel. This will
show that multitasking is not necessarily a feature only for top-range microprocessors, and
that programming in such an environment can improve the program structure.

The kernel will provide for four distinct tasks to be run. All of these tasks are exactly the same:
they take the voltage at the wiper of a potentiometer as an input, and switch a LED on or off at
the output. The LED will blink at a frequency is proportional to the position of the wiper of the
potentiometer. We shall thus get four potentiometers whose position sets the blinking fre-
quency of four LEDs, and we shall see that each channel is completely independent of the
others, that is, varying the position of one potentiometer does not change the blinking rate of
any of the other three LEDs.

We have arbitrarily set the function that relates the frequency to the position of the wiper as
shown in the diagram below. The potentiometer is wired so that if it is set at the lowest posi-
tion, it produces a zero voltage that will be converted to a zero by the Analog to Digital Con-
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verter. When at the highest position, it provides the full VCC voltage that is converted to a value
of 255. The relationship provides for a frequency that changes from about 0.5 Hz to 10 Hz. 

07-func

Since we use a timer to produce a frequency, this formula must be inverted to give something
like:

This formula requires performing 16-bit division at least . Since this would take too long a time,
we shall use a look-up table to convert the converted voltage into a number that can be written
to the timer reload register.
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7.5 SCHEMATIC DRAWING OF THE PRINTED CIRCUIT BOARD

The schematic of the resulting board is the following:

07-vfx4

7.6 DEVELOPING THE PROGRAM

7.6.1 Peripherals used to implement the solution

Three peripherals will be used here: the 16-bit Timer, the Analog to Digital Converter, and a
parallel port.

The Analog to Digital Converter is used to convert the input voltage produced by the potenti-
ometer. Since it only converts one channel at a time, the proper channel must be selected
prior to reading the potentiometer position.
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The 16-bit Timer runs continuously and generates an interrupt every 10 ms. A software
counter is used to count the half-period time of the blinking.

The parallel input-output ports are used both to input the four voltages to the ADC and to
switch the four LEDs.

7.6.2 The algorithm of each task

Since the functionality for each channel is identical, we shall describe only one of them.

The algorithm is the following:

07-task

Four such algorithms will run simultaneously, each belonging to one task. The initialization
part of the program will thus initialize the core and the peripherals, then start all four tasks.
They will run forever, since they are made of a loop with no exit condition.
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7.6.3 A simple multitasking kernel for the ST7

As mentioned in a previous chapter, to implement a multitasking kernel on the ST7, you must
sacrifice a lot of features. On the other hand, the ST7 is not expected to handle programs re-
quiring extensive computing power, and so the reduction in performance can be outweighed
by the advantages of simpler programming, and better coordination between tasks that a mul-
titasking approach brings to the programmer.

This kernel is of the cooperative type. It provides only two routines: StartTasks and Yield,
described below.

7.6.3.1 StartTasks routine

The main program defines the table AddrTasks that contains four constant words that are the
start addresses of the four tasks. Each task must be written as an infinite loop that receives no
argument and that never returns. When CreateTask is called in the initialization part of the ap-
plication, it builds the stack structure that will allow each task to have its own stack, by dividing
the whole stack (64 bytes in the ST72251) in four smaller stacks (16 bytes), as shown in the
diagram:

07-stack
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Now, at the top of each of the stacks, the routine writes the address of the beginning of each
task, and initializes the variable Permut to zero. This variable keeps track of the number of the
current task. The code is laid out in the memory space as follows:

07-space
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Everything is ready to start multitasking. Now, the stack pointer is set to the contents of
ImStack1, and the ret instruction that terminates StartTasks is executed. But since the stack
has been reorganized, the execution will not return to the instruction that follows the Call
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7.6.3.2 The Yield routine

A call to this routine must be inserted in the code of each task, at least once within the main
loop. As many calls to Yield as you wish may be inserted in each task. When this function is
executed, the current task is suspended and control is passed to the next task in the order
they have been declared. This task will in turn call Yield some time later, and the following
task will be activated; and so on, until all other tasks have been executed once for a segment
of code included between two calls to Yield. Then, the first task will continue. 

The mechanism is the following: calling Yield has automatically pushed, on the stack that be-
longs to the current task, the address of the instruction that follows the call to Yield. The value
of the stack pointer is then stored in the element of the ImStack table that corresponds to the
current task, whose number is kept in Permut. Now, all the information on the state of the task
we leave is saved. Permut is incremented, or, if at the number of the last task, it is reset. The
contents of the element of the ImStack table that corresponds to the new value of Permut are
then copied to the stack pointer. The stack pointer now points to the next task’s own stack, and
to the return address from Yield that was pushed when this task called Yield the last time it
was active. The Yield routine then executes its final ret instruction; but instead of returning
to the place where it was just called, it returns to next task in sequence.

This process seems confusing; you must mentally follow what is going on in each of the tasks.
Let us put things another way:

From each task’s point of view, the Yield function is a function that does nothing but insert an
unpredictable delay in the execution. Each task sees Yield the same way, and all of them
think they are the only one executing on the microcontroller.
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This mechanism is illustrated in the diagram below:
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The next figure shows, in detail, the modifications to the stack when moving from task one to
task two.
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The Yield functions are characteristic of cooperative multitasking. It is the programmer’s job
to select the places to put them. 

The advantage is that they can easily be put at places where task-switching is safe, thus
solving the problem of data coherence and collision protection. The drawback is that the time
interval between two successive calls to Yield within a single task is difficult to estimate and
depends on how long each of the other tasks execute between two successive calls to Yield,
so once Yield is called, it is difficult to know how long it will be before the task can proceed.

This kernel is very simple and does not provide any feature other than task switching. Also, the
stack capacity for each task is small, as there are only 16 bytes available for each stack (for
the 72251; other members of the ST7 family have bigger stacks). Since 5 bytes are needed for
an interrupt, 16 bytes of stack is not a lot, is not a lot. However, the advantage of this kernel is
its speed, since the code of Yield is very short and does not take many machine cycles. 

To finish this discussion about the mechanism of the stack, we should bear in mind that the
role of the stack is to store whatever is pushed into it, in particular when servicing an interrupt
request:

07-order
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■ Multitsk.bat, that is the batch file that does the linking and the back-annotation.

Here are details on each of these.

7.6.4.1 Main file (Multitsk.asm)

The main file contains the code for the initialization of the system, that is terminated by a call
to StartTasks. As explained earlier, this call does not return; so it is not surprising that the
code is not continued there.

The timer interrupt service routine decrements by one each of the four counters Reg1 to Reg4.
These are used in the body of the tasks to perform the timing.

As said earlier, this application has four identical tasks. To emphasize this, the body of the
tasks is written as a macro, that is expanded four times, once for each task. The macro has
one parameter that is the task number; for the only differences between the tasks are the an-
alog channel used, the bit of port A that is toggled, and the timing register used. The body of
the tasks is an infinite loop. The result of the analog to digital conversion is retrieved, then con-
verted using the lookup table defined in this file. The number found in the table is written to the
timing register, Regn, where n is the task number. Then there is a loop that decrements Regn
and calls Yield. This loop is only exited when the count has reached zero; then the corre-
sponding bit of port A is toggled, and the endless loop resumes. 

This algorithm is a very typical algorithm that could be written the same way if it were the only
task that the microcontroller has to do. Here, there are four such tasks running simultaneously,
but they all use this same algorithm. The trick is the use of the Yield subroutine in the wait
loop. For each task, this subroutine is a “do nothing” routine. Actually, it does not alter anything
within the current task. But it is while this subroutine executes that the other tasks are given
control; and when they release it, the current task regains it.

Here is the power of a multitasking kernel: each task is written as though it were running alone
in the system, but by inserting a call to a magic subroutine at the appropriate places, this al-
lows the core to also run the other tasks, although no special precautions related to the other
tasks are taken by the current task.
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The source code for the main program and for the multitasking kernel follow. First, the main
program:

ST7/
;==================================================================
;=   Demonstration of a simplified real-time cooperative kernel   =
;==================================================================
; This program performs a voltage to frequency conversion on four
; independent channels.
; Pc0 through Pc3 are the analog inputs,
; Pa0 through Pa3 are the corresponding outputs (blinking led’s).
; Declaration of the macro that provides the code for all tasks.
; =================
TASK    MACRO   Channel
        LOCAL TaskLoop,InnerLoop,TaskCont
               
TaskLoop:
        ld A,#{Channel-1} ; Pc0 analog input
        call acana ; Convert voltage
        ld X, adcdr
        ld A, (TimingTable,X) ; Get result of timing function from 

table
        ld reg&Channel, A
        
InnerLoop:
        ld A, reg&Channel
        tnz A
        jreq TaskCont             ; Yield until timing register = 0
        call Yield
        jra InnerLoop
TaskCont:
        ld A, #{1 SHL {Channel-1}}; When register is zero, toggle output
        xor A, padr
        ld padr, A        
        jra TaskLoop   ; Continue looping for this task
        MEND
        #include "Register.inc"
        EXTERN StartTasks, Yield, acana
        PUBLIC watch, AddrTasks
        
; Constants
; ==========
cpudiv2.b       EQU 0           ; CPU clock ratio 1/2
watch.b         EQU $7F         ; Watchdog reload value
t_timer.b       EQU $14         ; 10 ms timer reload value
; Registers
; =========
        Segment ’ram0’
reg1.b  DS.B 1  ; Timing register 1 
reg2.b  DS.B 1  ; Timing register 2
reg3.b  DS.B 1  ; Timing register 3
reg4.b  DS.B 1  ; Timing register 4 
        Segment ’rom’   ; set in ANACLMAP.ASM to E000h
        Words
; Table of start adresses of each task
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AddrTasks:
        DC.W Task1, Task2, Task3, Task4                
; Table of pulse duration. Returns the result of the voltage to period 

function.
TimingTable:
 
        DC.B 100, 93, 87, 82, 77, 73, 69, 66
        DC.B  63, 60, 57, 55, 53, 51, 49, 47
        DC.B  46, 44, 43, 41, 40, 39, 38, 37
        DC.B  36, 35, 34, 33, 32, 32, 31, 30
        DC.B  30, 29, 28, 28, 27, 27, 26, 26
        DC.B  25, 25, 24, 24, 23, 23, 23, 22 
        DC.B  22, 22, 21, 21, 21, 20, 20, 20
        DC.B  19, 19, 19, 19, 18, 18, 18, 18
        DC.B  17, 17, 17, 17, 16, 16, 16, 16
        DC.B  16, 16, 15, 15, 15, 15, 15, 15
        DC.B  14, 14, 14, 14, 14, 14, 13, 13
        DC.B  13, 13, 13, 13, 13, 13, 12, 12
        DC.B  12, 12, 12, 12, 12, 12, 12, 12
        DC.B  11, 11, 11, 11, 11, 11, 11, 11
        DC.B  11, 11, 11, 10, 10, 10, 10, 10
        DC.B  10, 10, 10, 10, 10, 10, 10, 10
        DC.B  09, 09, 09, 09, 09, 09, 09, 09
        DC.B  09, 09, 09, 09, 09, 09, 09, 09
        DC.B  09, 08, 08, 08, 08, 08, 08, 08
        DC.B  08, 08, 08, 08, 08, 08, 08, 08
        DC.B  08, 08, 08, 08, 08, 08, 08, 07
        DC.B  07, 07, 07, 07, 07, 07, 07, 07
        DC.B  07, 07, 07, 07, 07, 07, 07, 07
        DC.B  07, 07, 07, 07, 07, 07, 07, 07
        DC.B  07, 07, 07, 06, 06, 06, 06, 06
        DC.B  06, 06, 06, 06, 06, 06, 06, 06
        DC.B  06, 06, 06, 06, 06, 06, 06, 06
        DC.B  06, 06, 06, 06, 06, 06, 06, 06
        DC.B  05, 05, 05, 05, 05, 05, 05, 05
        DC.B  05, 05, 05, 05, 05, 05, 05, 05
        DC.B  05, 05, 05, 05, 05, 05, 05, 05
; Initialization
; ==============
reset:  
        ld A, #cpudiv2          ; CPU clock prescaler
        ld miscr, A             ; CPU clock=4Mhz
        
        ld A, #watch            ; Load the watchdog
        ld wdgr, A
        ld A, #$FF              ; Port A open drain
        ld paddr, A
        clr paor
        ld padr, A              ; leds off
        
        ld A, #$40              ; Initialize the timer
        ld tacr1, A             ; Enable interrupt
        ld A, #8                ; on compare
        ld tacr2, A             ; Prescaler 1/8
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        ld A, #t_timer          ; Initialize TAOCR1 register
        ld taoc1hr, A           ; (comparison register)
        clr taoc1lr
        inc A                   ; A counter reset will happen
        ld taoc2hr, A           ; before it reaches the value
                                ; in TAOCR2
        rim                     ; Enable maskable interrupts
                
; Main
; ====
Main:
        call StartTasks ; Start kernel

; Though it is a call, it will never return
; Timer A interrupt (every 10ms)
; ==================================
intTim_A:
        dec reg1        ; Update timing registers
        dec reg2
        dec reg3
        dec reg4
        
        clr taclr       ; Reset free running counter
        tnz tasr
        clr taoc1lr     ; Clear OCF1
        iret
; Code of task 1
; =================
Task1:   TASK 1
; Code of task 2
; =================
Task2:   TASK 2
        
; Code of task 3
; =================
Task3:   TASK 3
        
; Code of task 4
; =================
Task4:  TASK 4
                          
; Vecteurs d’interruption
; =======================
        
        segment ’vectit’        ; ($FFE0)
        DC.W    0               ; skip unused vectors
        DC.W    0
        DC.W    0
        DC.W    0
        DC.W    0
        DC.W    0
        DC.W    0
        DC.W    0
        DC.W    0
tim_A:        
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        DC.W    intTim_A        ; Timer A: ($FFF2)
        DC.W    0
        DC.W    0
        DC.W    0
        DC.W    0
        DC.W    0
res:    
        DC.W    reset           ; vecteur de reset ($FFFE)
        END 

7.6.4.2 ADC source file(Acana.asm)

The analog to digital conversion handling is done in this short file:

ST7/
;=============================================================
;=                Analog to digital conversion               =
;=============================================================

; relocatable sub-routine to initialise the ADC and to run a
; conversion

; The program which calls this routine selects the channel to
; be converted by loading the accumulator with the channel number

        #include "REGISTER.INC"

        PUBLIC acana
        EXTERN watch.b

        SEGMENT ’rom’
        WORDS

; ADC initialization
; ==================
acana:                   ; On entry, A contains the channel selector bit
        add A, #$20      ; Make up the ADC control word : set ADON: A/D 

converter on
        ld adccsr, a     ; Start the conversion
        
; Analog to digital conversion
; ======================
bclacana:
        ld a, #watch     ; Load the watchdog
        ld wdgr, a
        btjf adccsr,#COCO,bclacana ; wait for the acquisition

        ret              ; Conversion finished.

        END
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7.6.4.3 Kernel source file (Littlk.asm)

The multitasking kernel is contained in the following file:

ST7/
;==============================================================
;=                  Simple real time kernel                   =
;==============================================================

        PUBLIC StartTasks, Yield
        EXTERN wdgr.b, AddrTasks
        
; Constants
; ==========
org1.b          EQU $7F         ; addresses of the top 
org2.b          EQU $6F         ; of each of the stacks
org3.b          EQU $5F
org4.b          EQU $4F
watch.b         EQU $FF         ; Value to reload into the watchdog timer

; Variables that drive the kernel
; ===============================

        Segment ’ram0’  ; in page zero
        
ImStack1.b  DS.B  ; Position of the stack pointer for task 1 
ImStack2.b  DS.B  ; Position of the stack pointer for task 2 
ImStack3.b  DS.B  ; Position of the stack pointer for task 3 
ImStack4.b  DS.B  ; Position of the stack pointer for task 4
Permut.b    DS.B  ; Number of the current task (0 to 3)

        Segment ’rom’
        Words 

; StartTask
; =========
; This routine creates and initializes the stack for all four tasks.

StartTasks:        
; This macro initializes the stack for one task which numer is passe
; as an argument
        ld A, #org4             ; Top of stack for task 4
        ld S, A       
        ld X, {AddrTasks+7}     ; LSB address Task
        push X                  
        ld X, {AddrTasks+6}     ; MSB address Task
        push X                  ; Written at top of stack
        ld A, S    
        ld ImStack4, A          ; Remember position of stack pointer
                    
        ld A, #org3             ; Top of stack for task 3
        ld S, A       
        ld X, {AddrTasks+5}     ; LSB address Task
        push X                  
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        ld X, {AddrTasks+4}     ; MSB address Task
        push X                  ; Written at top of stack
        ld A, S    
        ld ImStack3, A          ; Remember position of stack pointer
                    
        ld A, #org2             ; Top of stack for task 2
        ld S, A       
        ld X, {AddrTasks+3}     ; LSB address Task
        push X                  
        ld X, {AddrTasks+2}     ; MSB address Task
        push X                  ; Written at top of stack
        ld A, S    
        ld ImStack2, A          ; Remember position of stack pointer
                    
        ld A, #org1             ; Top of stack for task 1
        ld S, A       
        ld X, {AddrTasks+1}     ; LSB address Task
        push X                  
        ld X, AddrTasks         ; MSB address Task
        push X                  ; Written at top of stack
        ld A, S    
        ld ImStack1, A          ; Remember position of stack pointer

        clr Permut              ; Set task counter to first
        ret                     ; Jump to first task
        
; Yield
; =====

Yield:
        ld A, #watch            ; Loading the watchdog
        ld wdgr, A
        ld X, Permut            ; To select the element where to save
        ld A, S                 ; The stack pointer of the current task
        ld (ImStack1,X), A
        ld A, X
        inc A                   ; Increment number of task
        and A, #3               ; If last, go to first
        ld Permut, A            
        ld X, A                
        ld A, (ImStack1,X)      ; Get next stack pointer
        ld S, A
        ret
        
        END                    
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7.7 RUNNING THE APPLICATION

This application is assembled and built as already described in the previous chapter:

■ Open WinEdit

■ Select File/Configure (if no previous configuration is loaded) or Project/Configure (if there is
a current configuration), click on Open, then find the file Project.wpj in the directory
\ST7\Work\Multitsk

Here, it is possible to assemble one or several sources files one at a time, as follows:

■ Open all the required source files (.ASM)

■ Select the option Window/Tile to see them all

■ Click on the top left window to activate it

■ Click on the Funnel tool to assemble it

■ Select the next window, assemble it, and repeat until all the windows have been assembled

However the build command does all this at once, using the batch files that in addition to the
assembly of all files, also perform the linking, the hex file conversion and the back annotation
of all files:

■ Click on the hammer tool to build the object file

Then start the debugger:

■ Click on the bug tool

■ Load the file Multitsk.s19 and press Run.

Each potentiometer sets the blinking frequency of the corresponding LED, and it is easy to see
that varying the frequency of one channel does not affect the others.

If you want to execute the program step by step, there is a point to pay attention to.

Each of the tasks is contained in a single line of the source file, since it is written as one ex-
pansion of a macro defined at the beginning of the source file. Thus, stepping is not possible
at source level. To step in one task, first put a breakpoint on that task or stop the execution,
highlight the line of the source where the macro is located, and press the Goto button. Then,
turning to the disassembler window, you can step instruction by instruction using Stepi.

7.8 SUMMARY REMARKS

The function of the application is so obvious that is only serves to illustrate the advantages of
using a real time kernel. This very special way of programming is a good training ground for
learning to use the software tools and the emulator, before considering the more complex ap-
plications in the following chapters. You may experiment with the material supplied, try writing
the thing differently and see what happens, and explore the various commands of the emu-
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lator. When you have played with it for a while, you will be ready to consider designing your
own application.

The following chapter will first introduce the C language and related software tools and dis-
cuss its advantages. It will also introduce the debugger functions that are specifically meant
for C-language programming.

Once you are familiar with the the tools and languages, you will be able to analyze the two ap-
plications that make up the following two chapters, that fully use the capabilities of the micro-
controller and the power of C language.
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8 C LANGUAGE AND THE C COMPILER

The C language has been introduced in the chapter “Programming a Microcontroller”. The
present chapter relates specifically to the HICROSS C Compiler for the ST7.

The software tools introduced in the previous chapters are supplied by STMicroelectronics.
They allow you to write and debug an application in assembler. Except for the emulator and
the EPROM programmer, that are pieces of hardware and that must be purchased from STMi-
croelectronics, the set of software tools is freely distributed. Anyone is free to write a program
using these tools.

The HICROSS development tools, that include all the software tools from the C Compiler to
the linker and the debugger (but not the emulator), must be purchased separately, either
through STMicroelectronics or directly at their manufacturer's, HIWARE AG, Basel, Switzer-
land.

The HICROSS development chain is compatible with the STMicroelectronics emulator for the
ST7, but the file formats between the C Compiler, the Assembler, the Linker and the software
accessories (librarian, decoder, simulator, EPROM burner) are not compatible with those of
the STMicroelectronics Software Tools. Thus, if a project has part of it written in C, the parts
that are written in assembler must be written in the HICROSS dialect and assembled using the
HICROSS assembler. It is not possible to reuse source files or object files from the STMicro-
electronics Software Tools in a project using the HICROSS development chain.

8.1 C LANGUAGE EXTENSIONS FOR MICROCONTROLLERS

The C language, formerly designed for mainframes, has been extended for the use in the mi-
crocontroller environment. These extensions come from two sources:

■ The ANSI standard for C language, that recognizes the properties of ROM, RAM and Input-
Output indirectly though the const and volatile data type modifiers, for example.

■ Special implementations by manufacturers, to handle specific features for each
microcontroller. An example is the addition of far and near modifiers for pointers and
#pragma pseudo-statements for declaring interrupt service routines.

The first type of extensions are standardized. This means that they are uniform from one com-
piler to another. The second type, on the contrary, is specific to a compiler, and can be very
different for each one. This leads to extra work if the development chain product must be
changed while a project is under development.

Several compilers exist on the market for the ST7. They have different features that vary in
terms of completeness or power. In some cases, the lack of a specific feature is sufficient to
reject one compler in favour of another. You may have to compare the features of several
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compilers to see which one matches your needs, and carefully read the user manual of that
compiler. 

The details given below apply only to the HICROSS development chain.

8.2 DESCRIPTION AND INSTALLATION OF THE HICROSS TOOL CHAIN

The HICROSS development tool chain contains:

■ The Hiware Tools, that is actually a control panel that allows you to make settings and
launch the following items

■ The HICROSS ANSI C Compiler

■ The HICROSS Assembler

■ The HICROSS EPROM Burner

■ And more accessories that are described in the HIWARE manual

The installation itself calls for no special comment. After all files have been copied, it asks
whether Winedit’s configuration file should be updated. Answer yes. Then, you are told that
Notepad is the default editor, and you are asked whether Winedit should be used instead. An-
swer yes. Continuing to answer yes to the following boxes, you end up with the Hicross Tools
window at the top of the screen, and are advised to change the selected editor.

08-HWTOO.BMP
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To do this, press the left-hand button which is the configuration button. The following window
opens:

08-HWTO2.BMP

This box allows you to create a project configuration, open an existing one, or change the cur-
rently open configuration. For the time being, press Change.

08-HWTO3.BMP
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Click on the Editor Tab and select the Winedit option in the combobox. In the Executable box,
write the path for Winedit. You may use the Browse... button next to it. In our case, Winedit is
installed in the directory C:\Program Files\WinEdit\Winedit.exe:

08-HWTO4.BMP
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Now click on the Additional tab, and complete the line with ERRORFILE so that it reads:
ERRORFILE=\edout

08-HWTO5.BMP

Press OK twice. We are done with the Hiware Tools. The second button of the tool bar now
shows the Winedit icon.

The last line of the last box directs the error messages of the Hicross compiler and other tools
to the EDOUT file in the root directory. This works in conjunction with a setting in the win-
edit.ini file in the windows directory. To make the setting, use Explorer to locate win-
edit.ini in the windows directory. Double-click on it to open it in Notepad. 

Do not use Winedit for this purpose!

Look for the lines
OUTPUT=.\EDOUT

There are three of them. At each occurrence, alter it so that it reads
OUTPUT=\EDOUT

This setting, although it is the default one, gives better results with the directory tree structure
described further in this chapter.
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8.3 USING THE C COMPILER 

It is not the purpose of this book to teach the basics of C language. The reader is expected to
have had some introduction to the C language, even if he is not an expert; but some experi-
ence is required to appreciate the specific features of C programming for the ST7.

When programming in C for a microcontroller, the following points must be taken into account:

■ Memory allocation

■ Initialization of variables

■ Inputs and outputs

■ Interrupt handling

■ Limitations put on the full implementation of the C language

These points will be detailed here. The C language will be used in the applications described
in the next chapters, and you will see how easy it is to write an application program using C
language compared to assembler.

8.3.1 Memory allocation

In a microcontroller, the program is stored in ROM and variables are stored in RAM, as every-
body knows. This means that you must take care to specify, for the development tools, the ad-
dresses in memory of ROM and RAM, so that the linker puts the right things in the right place.
This is not required when programming in C for example for a PC: the development chain de-
cides by itself where to allocate everything, the program works, and there is no need to worry. 

The final allocation of memory is performed at the linker level. The linker parameter file con-
tains the information for the linker to place the various segments at the appropriate addresses.
This file must of course match the memory map of the type of microcontroller chosen.

In most cases, no special care must be taken at the C language source level. By default, the
compiler allocates all the code and the initial values of the variable in segments that will be
placed in ROM, while the data storage is placed in segments that will be placed in RAM. 
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The available memory varies with the model of ST7 chosen. To optimize the access to
memory, the compiler offers four memory models that set the rules for data allocation. These
models are:

These modes govern the default selections; however, it is still possible in all models to depart
from them using appropriate segment specifications, as mentioned below. To alter the alloca-
tion mechanism, controls are provided to suit the user’s needs in some special cases. Here
are some of these cases:

8.3.1.1 Read-only constants

By default, all variables are allocated in RAM. According to the syntax of C, any variable may
be given an initial value. This initial value is automatically stored in ROM by the compiler, and
an initialization routine copies the contents of the ROM to the RAM before the user program is
started.

In many cases, some variables are only read by the program, but never written to: they are ac-
tually constants. In C, unlike Pascal or other languages, constants do not exist. Instead, the
modifier const may be applied to a regular variable declaration for the same purpose. It is
used as follows:

const int SIZE = 100 ;

Model name Local data Global data Effect

Small direct direct

Data are referenced using direct addressing or near 
pointers, except constant data that are accessed through 
extended addressing and/or far pointers. Only for small 
applications.

Small extend-
ed

extended direct
Same as above, but local data is located above 100h and 
thus accessed using extended addressing.

Large direct extended

Local data is located in page zero, and global data is put 
above 100h and accessed using extended addressing. 
This is the default mode, since it is generally the most ju-
dicious.

Large Extend-
ed

extended extended
This mode assumes there is a large amount of both local 
and global data. It is probably irrelevant with the currently 
available ST7 products.
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The effect of the const modifier is to generate an error message whenever a statement tries
to assign a new value to that constant, as in the following example:

SIZE = 200 ;/* here the compiler will generate an error message */

This method, standard for C programs, has the drawback of consuming memory space in
RAM, even for constants that are never written to. This is not acceptable in a microcontroller
where the RAM space is scarce. To alleviate this problem, the compiler offers the -Cc com-
mand line option . This option allocates the constant to a special segment named ROM_VAR,
and does not reserve the equivalent space in RAM.

8.3.1.2 EEPROM non-volatile storage

Some members of the ST7 family have, in addition to RAM and ROM, some EEPROM that
constitutes some non-volatile storage to store data and configuration parameters over power-
off periods.

The data that must be saved are read-write variables declared like any other variable. How-
ever, to ensure that these variables are allocated to EEPROM, a special segment must be de-
fined, that will be later linked and located at the start address of the EEPROM. 

By default, variables are allocated to the predefined segment DEFAULT_RAM. To direct that
a variable is to be allocated to another segment, a statement such as the following must be
used:

#pragma DATA_SEG MyEEPROM

Where MyEEPROM is the name of the new segment that must be defined. All the variables dec-
larations that follow this statement will be placed in the segment MyEEPROM. To restore the
normal default segment for the variables that do not reside in EEPROM, the following state-
ment is used:

#pragma DATA_SEG DEFAULT

From that time on, the variables declared are put in the segment DEFAULT_RAM again. The
following example defines a few variables, of which two are placed in EEPROM:

int i, j ; { define two integer variables }
#pragma DATA_SEG MyEEPROM
int UserOption ;
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float Coefficient ;{ two non-volatile parameters }
#pragma DATA_SEG DEFAULT
int Value[10] ;{ an array of ten integers, volatile }

8.3.1.3 Page Zero variables

Direct addressing, as mentioned in the chapter that discusses addressing modes, is much
more efficient than extended addressing, both in terms of code size and speed. Thus, as much
data as possible should be allocated to page zero; and to optimize speed, it should be the
most frequently used data.

To allocate a variable to page zero, two options are possible: 

■ Create a new segment with the SHORT attribute:

#pragma DATA_SEG SHORT FAST_DATA
int FastVariable ;

■ Use the predefined _ZEROPAGE segment. This segment is always defined for temporary
data generated by the compiler, and may be enlarged with the user’s variables:

#pragma DATA_SEG _ZEROPAGE
int FastVariable ;

Of course, the effect of these pragmas must be reversed as appropriate using

#pragma DATA_SEG DEFAULT

8.3.1.4 Far and near pointers

Two kinds of addressing mode, short and extended, are to be found in direct addressing as
well as in indexed and indirect addressing. This leads to two types of pointers: near and far
pointers.

The near and far modifiers are not standard; they are an extension to the C language that,
actually, is found on many compilers for many other processors. They are used as follows:

int * far pI ; /* a far pointer to an integer */
char * near pC ; /* a near pointer to a character */
char * far * far pFFC ;/* a far pointer to a far pointer to a character */
char * far * near pFNC ;/* a near pointer to a far pointer to a character */

A near pointer consists of a single byte and thus can only reach addresses below 100h.
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8.3.2 Initialization of variables and constant variables

On starting, a C program initializes all variables to zero, except those that are defined with an
initial value. Example:

int i ;
int j = 3 ;

Here i is initialized to zero, and j is initialized to 3. This is performed as follows:

Any HIWARE C program must be linked with an additional file called Start07 that is available
in the software package. In most cases, this file is suitable as is, and its object file, Start07.o
can be directly linked with the other object files issuing from the compilation of the C source
files of the project. In case this file should be altered (which can only be done by an expert pro-
grammer), its source text, Start07.c, is also available. This file may be copied to the project
directory and altered to meet the requirements of the project. It becomes one of the modules
of the project, and will be compiled along with the other files.

As explained above, all variables are allocated by default to the DEFAULT_RAM, and they are
initialized before the user program starts by copying their values, stored by the compiler in
ROM, into the appropriate RAM locations. If initialized variables are actually constants, and
especially if they are bulky, do not forget to move them into the ROM_VAR segment, using the
const attribute and the -Cc command-line option, otherwise the RAM memory would very
quickly overflow. For example, here is the conversion table that, when accessed with a
number between 0 and 15, returns the appropriate character to express that number in hexa-
decimal:

const char HEXADECIMAL[] = {’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, 
’9’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’} ;

If the -Cc option is used, this array will not clutter up the RAM.

8.3.3 Inputs and outputs

Inputs and outputs are accessed using their registers that are mapped in the lower data
memory, that is, in page zero. The C compiler has no provision for defining these registers.
However, since they are mapped in memory, they can be considered as mere variables. The
only constraint is that they must occupy precise addresses.



229/315

8 - C Language and the C Compiler

8.3.3.1 First method: using macros

The method that the documentation of the compiler suggests relies on the definition of a
macro that produces a pointer definition, as in the following example that defines PADR that is
located at address 8:

#define PADR * ((unsigned char *)(8))

This notation is almost equivalent to a variable definition; it allows the following syntaxes:

PADR = 0x10 ; /* Set port A to 10 h */
PADR &= ~0x10 ; /* Reset bit 4 of PA */

8.3.3.2 Second method: defining variables

This method is the one that is recommended by STMicroelectronics. Several definition files
are already written and are available in the example files that come with this book. It consists
of defining a segment for each peripheral, and within this segment, the list of the registers as
a series of variables of the unsigned character type:

/* Serial Peripheral Interface */                                            
#pragma DATA_SEG SHORT SPI
  volatile unsigned char SPIDR;               /* SPI Data Register */
  volatile unsigned char SPICR;               /* SPI Control Register */
  volatile unsigned char SPISR;               /* SPI Status Register */

All the register definitions are conveniently grouped in an include file named MAP7225.C; and
the corresponding external declarations are grouped in the header file MAP7225.H.

On linking, these segments will be positioned at the right addresses by declarations like:

SECTIONS
/* some declarations... */
ASPI     = READ_WRITE     0x21 TO   0x23;
/* more declarations... */

PLACEMENT
/* some declarations... */
    SPI                                    INTO  ASPI;
/* more declarations... */
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Special care has to be taken at this stage: the linker normally optimizes the code by removing
unused declarations. If we let it do so, it will remove some of the register declarations, and
thus shift the addresses of the following registers. To prevent the linker from unwisely opti-
mizing the declaration file (and only this file), the name of this file must be followed by a + sign
in the list of the object files to be linked:

NAMES 
    main.o
    interrup.o
    map7225.o+ 
    start07.o 
    ansi.lib 
    END

All these directives are grouped in the file LINK.PRM. The working of the linker is explained in
more detail later in this chapter.

8.3.4 Interrupt handling

Interrupts are very much like subroutine calls, so they can easily be handled using C lan-
guage. However, the following precautions must be taken:

A function may be declared as being an interrupt service routine. This function must have no
argument and must not return any value. The declaration must be preceded by the statement

#pragma TRAP_PROC

that says that the routine must end with a IRET instruction. 

Since the ST7 does not have a large stack, the standard interrupt call only saves the registers
necessary for character and integer arithmetic. However, it is possible to use long and float
arithmetic in interrupt subroutines, provided that the work area used for this arithmetic is ex-
plicitly saved using procedures provided for that purpose with the package. More details are
given in the following paragraph.

8.3.5 Limitations put on the full implementation of C language

In typical implementations of C, all the function parameters, return values, and local variables
are stored on the stack. This provides for nesting, recursion and re-entrance at a depth that is
only limited by the size of the stack. Thus, C may require a large amount of stack for function
nesting and parameter passing in complicated constructs. 

The ST7 family provides a limited RAM size, of which the stack takes only a part, that can be
as small as 64 bytes. This does not allow the use of the stack for parameter passing. Thus, the
implementation of C for the ST7 uses registers and a few memory locations to pass the pa-
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rameters, and allocates local variables to RAM just like global variables. This works the same
way as in a typical implementation, but with the following restrictions:

■ Functions are neither reentrant nor can they be used recursively.

■ The compiler uses temporary variables in memory at fixed addresses and thus are not
reentrant. If an interrupt service routine is written in C, these variables must be preserved.
This means the pragma SAVE_REGS must be added to TRAP_PROC. It pushes these variables
on the stack on entry and restores them on exit:

#pragma TRAP_PROC SAVE_REGS

■ Long and floating expressions use additional temporary variables in memory. They must
also be saved if long or floating arithmetic is used within the interrupt service function. Four
public functions are available:
SaveLong and RestoreLong, for long arithmetic; and SaveFloat and RestoreFloat, for
floating arithmetic. The first procedure of each pair must be called at the beginning of the
interrupt service function; the second at the end. Either or both of these pairs must be used
depending on the need. However, there is no stack to save the variables. It is not possible
to nest two levels of interrupt that use long or floating arithmetic.

Other, less important restrictions also apply that are detailed in the compiler manual.

8.4 USING THE ASSEMBLER

There are two ways of using assembly language: using in-line assembler statements and
using the Hiware assembler. 

8.4.1 Using In-line assembler statements within a C source text

In-line assembler statements are a very convenient feature of the Hiware C compiler. Since
assembler is the best way of totally controlling the processor, actions that are closely related
to the hardware and the specifics of the core are more easily handled in assembler. 

To add assembler lines to a C source text, there are two methods.

8.4.1.1 Single-statement assembler block

If only one statement is used, this syntax can be used:

asm <statement> ;

examples of this are the macros that are predefined in the supplied header file hidef.h, and
that allow you to enable or disable interrupts:
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#define EnableInterrupts   {asm RIM;}
#define DisableInterrupts  {asm SIM;}

8.4.1.2 Multiple-statement assembler block

When a block of several lines must be included, the lines must be enclosed in an asm block, as
follows:

asm {
<statement>
<statement>
<statement>
etc.
<statement>
}

An example of in-line assembler statements is transferring word values to or from word regis-
ters.

The timers have 16-bit registers that must be written in a certain order to guarantee the proper
operation of the timer. Since the C compiler optimizes the code size, some assignments might
not be performed in the order they are written. In this case, it is safer to use in-line assembly
language as in this example:

asm
{
ld a, TAIC2HR
ld Position, a
ld a, TAIC2LR
ld Position:1, a
}

This assembly code is logically equivalent to the following expression, that reads a word value
at the address starting from that of the high-order byte of the register:

Position = *((int *) &TAIC2HR)

but the order of reading of the two bytes is important, and C does not give any guarantee re-
garding the order. 

Please note that the syntax Position:1 means the byte following the one placed at address
Position.
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8.4.2 Using the Hiware assembler

The Hiware assembler is comparable to the assembler described in Chapter 6. The same
principles apply, so they will not be repeated here.

However, the syntax that Hiware uses is specific and different from that of the STMicroelec-
tronics assembler. The result is that a source text written for one assembler cannot be trans-
lated using the other assembler. The question of the incompatibility of the two development
chains has already been mentioned, so if you want to build a project that mixes C source files
and assembly source files, you must adhere to the Hiware syntax.

Of course, these differences do not apply to the coding of the instructions, that use the same
opcodes; but the pseudo-ops are different, as is the macro language.

When an assembler module is to be linked with C modules, the calling of functions to or from
the assembler module obeys precise rules that are detailed in the Hiware manual. Functions
written in assembler receive their arguments in a certain way, and return the result in a prede-
fined manner. For more details on this, refer to the Hiware manual, paragraph III.3.

8.5 USING THE LINKER 

The Hiware linker offers a powerful tool that allows you to finely control the memory allocation,
module and section placement, and more. Its operation is guided by a parameter file, called
link.prm in the examples used in this chapter. This file may be simple or complicated; it must
at least give the following information:

■ Name of the final object file (absolute object file)

■ List of the names of the object files and library files to be linked

■ List of the sections in memory. A section is a block of continuous addresses that is given an
attribute that can be READ_ONLY, READ_WRITE, PAGED, or NO_INIT. Each of these blocks will
receive one or several programming objects (code or data) which are themselves grouped
in segments

■ List of the placement of the segments in the sections. A segment is a continuous string of
bytes representing a block of code or data; this block is positioned in memory by assigning
it to an already defined section

■ Stack size

■ List of the restart and interrupt vectors, with the label to branch to when the corresponding
event occurs
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Here is an example of a link parameter file taken from the X10XMIT project described in
Chapter 9:

LINK X10XMIT.abs
 
NAMES 
    main.o
    interrup.o
    map72251.o+ 
    start07.o 
    ansi.lib 
    END
SECTIONS
    APORTC   = READ_WRITE     0x00 TO   0x02;  /* For ST72251 */
    APORTB   = READ_WRITE     0x04 TO   0x06;   
    APORTA   = READ_WRITE     0x08 TO   0x0A;   
    AMISC    = READ_WRITE     0x20 TO   0x20;
    ASPI     = READ_WRITE     0x21 TO   0x23;
    AWDG     = READ_WRITE     0x24 TO   0x24;
    AI2C     = READ_WRITE     0x28 TO   0x2E;
    ATIMERA  = READ_WRITE     0x31 TO   0x3F; 
    ATIMERB  = READ_WRITE     0x41 TO   0x4F; 
    AADC     = READ_WRITE     0x70 TO   0x71;
    AZRAM    = READ_WRITE     0x80 TO   0xFF;
    ARAM     = READ_WRITE    0x100 TO  0x13F;
    ASTACK   = READ_WRITE    0x140 TO  0x17F;
    AROM     = READ_ONLY    0xE000 TO 0xFFDF;
    
    
PLACEMENT
    DEFAULT_ROM, ROM_VAR, STRINGS          INTO  AROM;
    DEFAULT_RAM                            INTO  ARAM;
    _ZEROPAGE, _OVERLAP                    INTO  AZRAM;
    SSTACK                                 INTO  ASTACK;
    PORTA                                  INTO  APORTA;
    PORTB                                  INTO  APORTB;
    PORTC                                  INTO  APORTC;
    MISC                                   INTO  AMISC;
    WDG                                    INTO  AWDG;
    I2C                                    INTO  AI2C;
    SPI                                    INTO  ASPI;
    TIMERA                                 INTO  ATIMERA;
    TIMERB                                 INTO  ATIMERB;
    ADC                                    INTO  AADC;
END
STACKSIZE 0x40
VECTOR ADDRESS 0xFFE4 DummyInterrupt    /* I2C */
VECTOR ADDRESS 0xFFEE DelayCounter      /* Timer B */
VECTOR ADDRESS 0xFFF2 TimerAInterrupt   /* Timer A */
VECTOR ADDRESS 0xFFF4 DummyInterrupt    /* SPI */
VECTOR ADDRESS 0xFFF8 DummyInterrupt    /* Ext. B & C */
VECTOR ADDRESS 0xFFFA DummyInterrupt    /* Ext. A */
VECTOR ADDRESS 0xFFFE _Startup   
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The name of the absolute object file is X10MIT.ABS.

In the list of the object files to be linked, START07.O is a predefined file supplied with the
package; ANSI.LIB is the library of C functions from which the linker will extract the required
functions, and only those that are used in the program.

The sections corresponding to the various peripherals, RAM, stack and ROM are defined as
their position in memory, and whether they can be read or written. The attribute NO_INIT, not
used here, prevents the corresponding section from being erased when the program starts, as
are all the variables according to the standard definitionof the C language. This is useful either
to save time, or to protect the memory contents in case they had been preserved by a battery,
for example, between two sessions.

The list of the segments that will be accommodated in each section is given next. If a segment
or a group of segments is bigger than the size of the section it is meant to fit in, an error mes-
sage is generated and the absolute file is not produced.

The size of the stack comes next.

The last item is the list of the vectors. Each vector address has a corresponding interrupt
cause, and any interrupts that are enabled must be vectored to the corresponding service rou-
tine. Unused vectors are connected here to a special function for safety.

The linker, in addition to the absolute object file, produces a map file that gives the addresses
of all the segments, variables, and other information useful for debugging.

8.6 USING THE EPROM BURNER 

The output of the linker is a .abs file. This format is not suitable for programming the built-in
EPROM of the microcontroller. This is the purpose of the EPROM Burner.

The HIWARE Burner is intended for third-party EPROM Programmers, and thus cannot drive
the STMicroelectronics EPROM Programmer Board. We must use the EPROMer software as
described in Chapter 7. However, this programming software needs an input file in ASCII-Hex
(.s19) format. When the STMicroelectronics programming tools are used, the program OB-
SEND is used to convert the absolute file (.cod) into the required ASCII-Hex file.

When the HIWARE tool chain is used, the HIWARE Burner is used instead. This program can
translate the absolute file into an ASCII-Hex file.

To perform the translation, just type the file name in the Input File box (the Select button allows
you to browse the disk), select the File destination, and type the file name in the next box. The
format is Motorola S, the data bus width is 1 byte (the ST7 is an 8-bit core). To start the con-
version, press the button 1st Byte. The resulting file is created in the same directory as the
input file.
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08-Burn.bmp

Then use the EPROMer programmer software as described in Chapter 7.
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8.7 PROJECT DIRECTORY STRUCTURE 

Needless to say, a well organized set of files on the computer’s hard disk helps in designing
and in maintaining a software project. Using the following recommended directory structure
will make your project easier to support, since STmicroelectronics engineers, if solicited for
assistance, will quickly be able figure out where the files are, a very important thing when de-
fining the environment file, link parameter files, and more.

This structure is organized as follows:

08-tree.bmp

This figure shows the structure of the first application as described in Chapter 9. The top di-
rectory is the main directory of the project. 

It contains the default.env file that contains all the settings that may be defined in the Paths
and Additional tabs in the configuration box that is displayed when you press the left-hand
button of the Hiware Tools bar.

It is also divided into three subdirectories: 

8.7.1 Config directory 

Config holds the auxiliary files, that is, the configuration file for WinEdit (project.wpj), the
link parameter file (link.prm), the map file resulting from the link process (.map), etc. The
project.wpj file reflects the settings made in the Tools tab in the configuration box of the Hi-
ware Tools. 

The entry for the link operation should be changed in that tab so that the command line spec-
ifies the link parameter file:
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08-HWTO6.BMP

Press OK.

The path tab contains lists of paths grouped in classes. In the current example, the appro-
priate settings for each group are:

■ Absolute:

this is where the absolute file created by the linker is put:

C:\ST7\WORK\X10xmit\object

■ General path:

C:\hicross\LIB\ST7C

C:\hicross\LIB\ST7C\INCLUDE

C:\hicross\LIB\ST7C\SRC

C:\hicross\LIB\ST7C\LIB

C:\ST7\WORK\X10xmit

C:\ST7\WORK\X10xmit\config

■ Library:
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this is where the include files and the libraries are searched from:

C:\hicross\LIB\ST7C

C:\hicross\LIB\ST7C\INCLUDE

C:\ST7\WORK\X10xmit\sources\map

C:\ST7\WORK\X10xmit\sources\lib

■ Object:

this is where the object files created by the assembler and the compiler are put:

C:\ST7\WORK\X10xmit\object

■ Text is not used and is left blank.

8.7.2 Object directory 

As the name implies, this directory contains the object files generated by various phases of the
process: the compiler objects, the assembler objects, the absolute object files, and the hexa-
decimal file (if any).

This directory must also contain an information file that will tell the debugger where to find the
various source files to show in the source windows while debugging. This file must be called
by the same name as the object file, but with the extension .GDB, like X10XMIT.GDB in our ex-
ample. This file contains the list of the directories where sources may be found, as follows:

directory C:\ST7\WORK\X10XMIT\SOURCES\MAIN
directory C:\ST7\WORK\X10XMIT\SOURCES\INTSUB
directory C:\ST7\WORK\X10XMIT\SOURCES\MAP
directory C:\ST7\WORK\X10XMIT\CONFIG

8.7.3 Sources directory 

This directory contains the user-written source files, and the header files, either user-written or
supplied in the package or by STMicroelectronics. It is divided into four subdirectories, each
containing source files (.C) and the related header files (.H), if they are specific to that group.
The header files common to the whole project are put into the Lib directory:

■ The Main directory contains the sources related to the code of the main program.

■ The IntSub directory contains the sources related to the interrupt service routines.

■ The Map directory contains the sources that define the registers and the memory mapping.

■ The Lib directory contains the header files or other files that are common to the whole
project.

To allow the compiler, linker, etc. to find their way in this structure, the DEFAULT.ENV file placed
in the main directory of the project, specifies the various paths. In the example below, the path
of the project is c:\st7\work\x10xmit. You will of course replace it with your own path. Paths



240/315

8 - C Language and the C Compiler

prefixed by a asterisk indicate that the files must not be searched only in that directory, but
also in any of its subdirectories.

Finally, the main path of the project is specified as the working path in the configuration panel
of WinEdit.

Here is an example of the environment file:

LIBPATH=*C:\ST7\Work\x10Xmit\sources;C:\ST7\HICROSS\LIB\ST7C        
GENPATH=*C:\ST7\Work\x10Xmit;C:\ST7\HICROSS\LIB\ST7C
OBJPATH=C:\ST7\Work\x10Xmit\OBJECT
ABSPATH=C:\ST7\Work\x10Xmit\OBJECT
TXTPATH=C:\ST7\Work\x10Xmit\OBJECT
MAPPATH=C:\ST7\Work\x10Xmit\OBJECT
COMP=C:\st7\HICROSS\PROG\CST7.EXE
LINK=C:\st7\HICROSS\PROG\LINKER.EXE
FLAGS=-W2 
COMPOPTIONS=-Or -Cni -Cc
ERRORFILE=\EDOUT
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8.8 HINTS ON C WRITING STYLE FOR THE ST7

STMicroelectronics supplies a set of files that define the registers and the memory map of the
ST7. Also, to make support easier, a particular directory tree arrangement is recommended.
This paragraph gives advice and rules that will provide you with pre-written definitions and a
working frame that will help you start and organize your work.

8.8.1 Accessing individual bits in registers

The MAP72251.C and MAP72251.H files provide the declarations of the registers of the
72251; a set of thse files also exists for each variant of the ST7. 

The header file looks like the excerpt below:

#pragma DATA_SEG SHORT TIMERA
/* timer A control register 2 */

extern    volatile unsigned char TACR2;
/* timer A control register 1 */

extern    volatile unsigned char TACR1;
/* timer A status register */

extern    volatile unsigned char TASR; 
/* timer A input capture 1 high register */

extern    volatile unsigned char TAIC1HR; 
/* timer A input capture 1 low register */

extern    volatile unsigned char TAIC1LR;
/* timer A output compare 1 high register */

extern    volatile unsigned char TAOC1HR; 
/* timer A output compare 1 low register */

extern    volatile unsigned char TAOC1LR;
/* timer A counter high register */

extern    volatile unsigned char TACHR; 
/* timer A counter low register */

extern    volatile unsigned char TACLR; 
/* timer A alternate counter high register */

extern    volatile unsigned char TAACHR;
/* timer A alternate counter low register */

extern    volatile unsigned char TAACLR; 
/* timer A input capture 2 high register */

extern    volatile unsigned char TAIC2HR; 
/* timer A input capture 2 low register */

extern    volatile unsigned char TAIC2LR; 
/* timer A output compare 2 high register */

extern    volatile unsigned char TAOC2HR;
/* timer A output compare 2 low register */

extern    volatile unsigned char TAOC2LR; 
(.....)

/* Timers A&B Control Register 2 bit definition  */

#define OC1E        0x07        // Output compare 1 pin
#define OC2E        0x06        // Output compare 1 pin
#define OPM         0x05        // One pulse mode
#define PWM         0x04        // PWM Mode
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#define IEDG2       0x01        // Input edge 2

/* Timers A&B Status Register bit definition  */

#define ICF1        0x07        // input capture interrupt bit
#define OCF1        0x06        // output capture interrupt bit
#define TOF         0x05        // overflow interrupt bit
#define ICF2        0x04        // input capture interrupt bit
#define OCF2        0x03        // output capture interrupt bit

Some registers hold numeric values, like TAOC2HR or TAOC2LR; in such registers, reading or
writing a value is done using an assignment statement:

TAOC2HR = TimerAPeriod >> 8 ;       /* Set new period as calculated in 
the capture */

TAOC2LR = TimerAPeriod & 0xff ;     /* interrupt service function. High 
*MUST* be written first. */

or:

CurrentPeriod = TAOC2LR ;

Other registers, on the contrary, are made of a set of 8 independent bits that are grouped to
occupy only one address in the addressable space. This the case for example of configuration
registers like TACR1, TACR2 and TASR. For these registers, a set of #define statements asso-
ciate the name of each bit (e.g. OC1E) with its position within the register (here, 7).

Since the ST7 does not provide for individual bit addresses, to reach a single bit it is necessary
to give the name of the register that holds that bit, and the number of the bit in the register.

To test the state of a single bit, the following syntax is suggested:

if ( TASR & ( 1 << ICF1 ) )     /* Determine which interrupt cause. */

where the expression ( 1 << ICF1 ) yields the value 0x80 (1 shifted left seven times); anding
the whole register with this value yields a non-zero result if the bit is true, a zero value other-
wise. This result is correctly tested using an if statement, since C defines a boolean true as
anything different from zero.

To set a particular bit within a register, the following syntax works well:

TACR1 |= ( 1 << OLVL1 ) ;   /* Validate pulse for next interrupt */
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The register is ored with the 1, shifted by the appropriate number of bits; the result is written
back into the register.

To reset the bit, this syntax produces the reverse effect:

TACR1 &= ~( 1 << OLVL1 ) ;   /* Invalidate pulse for next interrupt */

The register is anded with the one’s complement of 1 shifted by the appropriate number of
places, which preserves all bits except the one that we want to reset; and the result is written
back into the register.

8.8.2 Setting configuration registers

The syntax above can be extended to load a configuration register in a very legible manner:

TACR1 = ( 1 << ICIE )  |
        ( 0 << OCIE )  |
        ( 0 << TOIE )  |        /* Interrupt on overflow. */
        ( 0 << OLVL2 ) |        /* Cycle starts with output low for 2.3 

ms ... */
        ( 0 << IEDG1 ) |
        ( 0 << OLVL1 ) ;        /* and ends with output high (when active) 

for 1 ms. */

This syntax shows clearly that of all the bits of the register, we set ICIE to one, and all other
bits to zero. This allows for later changes that can be done easily with little chance of confu-
sion.

8.8.3 Using macros to define external devices

When designing an application, the programmer and the electronics engineer have to consult
each other to define which pins are connected to which device, so that the programmer will as-
sign certain bits of certain registers to these devices.

In many cases, when devices need less than eight bits, like switches, decoders, etc. the circuit
designer connects several of them to the same eight-bit port, to fully use the capabilities of the
device. This will require the programmer to use binary expressions to extract those bits he
needs at a certain time, without taking into account the other bits that are only relevant at other
times.

If a certain device is used at several places in the program, the same expression must be used
in each place. Such expressions requires some care from the programmer in order to be done
correctly.
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Unfortunately, in the process of developing a project, it happens more than once that the elec-
trical schematic has to be changed for some reason. If the pin assignment of a device
changes, the programmer has to update all the places where this device is used, introducing
the risk of a change being forgotten, which will make the changed program fail.

To avoid this, the programmer can use a macro that defines the expression to be used each
time the device is accessed. This macro can be defined in the main project header file, which
allows changes like that mentioned above to be performed at one time in one place.

For example, in the project given in Chapter 9, three push-buttons are called CLOSE, OPEN
and TIME. These push-buttons are wired so that pressing one grounds the corresponding pin,
that is otherwise kept high by a pull-up resistor. The following macro yields a zero when no
button is pressed:

#define PUSH_BUTTONS ( ( ~PBDR ) & 0xE0 )    /* upper three bits */

The following constants give the value of the above expression when one of the buttons is
pressed:

#define CLOSE_BUTTON 0x80               
#define OPEN_BUTTON  0x40               
#define TIME_BUTTON  0x20

These definitions allow you to write simple expressions that are easy to read, like:

if ( PUSH_BUTTONS )
    {
    /* code to be executed if any button is pressed */
    }

More complex expressions may be written, like:

if ( PUSH_BUTTONS == CLOSE_BUTTON )
    {
    /* code to be executed if the CLOSE button is pressed */
    }

if ( PUSH_BUTTONS == ( CLOSE_BUTTON | OPEN_BUTTON ) )
    {
    /* code to be executed if CLOSE button or OPEN button is pressed */
    }
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Such expressions both make the code easier to read, and improve the ability of the program
to be changed, when the hardware is modified. 

8.8.4 Optimizing resource usage

This chapter has shown that thanks to its intrinsic qualities, C language is suitable for virtually
any microcontroller, since it is a high-level language that still leaves access to the in-depth ma-
chine-specific objects, at least using in-line assembly statements.

However, this does not mean that you should adopt a loose programming style, as it is often
the case when programming for computers. There, a clear style, using techniques that can be
quickly written, is recommended, but this may be at the expense of memory and/or the proc-
essor resource.

When programming in C for microcontrollers, you must keep in mind that both memories (pro-
gram and data) are scarce, and that the processor speed is not elastic. This means that you
must carefully design your program to avoid wasting either the memory or the processor cy-
cles. Of course, the very purpose of a high-level language is to hide the machine instructions
from you; so you cannot know exactly how your code is translated.

It is still possible to set up a few rules that will help your programs avoid wasting resources.

8.8.4.1 Define a function when a group of statements is repeated several times

The C language is powerful and may generate a lot of code for a single line. For example, the
following statement:

for ( p1 = string1, p2 = string2  ; ( *p2 = *p1 ) ; p1++, p2++ ) ;

copies one string to another by copying each byte from the first location in memory to the
second one, incrementing both pointers, looping back and stopping when the zero character
is encountered.

The code generated occupies 95 bytes of memory. This illustrates that it may be beneficial in
terms of memory usage to define a function for a piece of code that is repeated several times,
even sometimes it is only a single line.

8.8.4.2 Use shifts instead of multiplication and division

Division, and to a lesser degree multiplication, are very time-consuming operations. When the
divisor is a power of two, it is much more efficient to use shifts instead. Example:

A = B / 16 ;
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is better replaced by 

A = B >> 4 ;

The compiler handles shifts in a very optimized way; for example, if a word is shifted right by
8 places, the compiler merely takes the high-order byte of the source and puts it in the low-
order byte of the destination, and clears the high-order byte of the destination.

8.8.4.3 Limit the size of variables to the very minimum

Do not use long integers where integers are sufficient; and above all, avoid using floating arith-
metic. Floating operations take a long time to process, and may impede the response time of
a program. In addition, floating arithmetic does not guarantee proper results for equality tests.
Sine the ST7 is a 8-bit machine, try to use as char variables as often as possible. 

Another point about long and floating arithmetic was described earlier, some precautions are
needed when interrupts are used.

8.9 CONCLUSION

This chapter has demonstrated that C language is well suited to microcontrollers like the ST7;
when care is taken as specified throughout this chapter, the performance of the program
written in C is adequate, and the ease you will gain writing it will make you have no regrets
about using it rather than assembly programming. C makes debugging, documenting and
maintaining your software easier, and will better prepare you to face the requirements of soft-
ware quality assurance.
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9 A CARRIER-CURRENT SYSTEM FOR DOMESTIC REMOTE CONTROL 

The application described here is a basically a system that allows the remote control of electric
appliances of any kind with no wiring other than the regular power wiring of a house or other
type of premises. The exact purpose of the project is to allow the control of all the blinds of the
house from a single point; the blinds are supposed to be already actuated by motors, with a
switch near each one to have them close or open or stop in any intermediary position.

The objectives of the project illustrate the implementation of various functionalities of the ST7
such as:

■ Pushbutton interface

■ Zero-crossing detection

■ Motor current detection

■ Transformerless power supply, etc.

The architecture of the system is the following:

09-inst

A . C .
s o c k e t

R e c e i v e r  b o a r d
# 1

 M
1

B l i n d  m o t o r

T r a n s m i t t e r  b o a r d

A C  l i n e

C a r r i e r - c u r r e n t  i n s t a l l a t i o n  f o r  b l i n d s  r e m o t e  c o n t r o l

B l i n d  m o t o r

R e c e i v e r  b o a r d
# 2

 M
1
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We shall first explain what carrier-current control is, taking the X-10 standard as a reference;
then, we shall describe the transmitter. The second part of this chapter will describe the re-
ceiver.

9.1 CARRIER CURRENT CONTROL AND THE X-10 STANDARD

Carrier-current is a means of wireless communication between two electronic devices. The
term “wireless” must be understood as “not needing to connect both devices by a special
cable”, since they are actually connected together, but only by the wires of the power line.

The basic principle of carrier-current transmission relies on the capability of the line to conduct
radio-frequency signals in addition to the AC power. Since the line has not primarily been de-
signed for that purpose, it is obvious that the performance of the line acting in this role is less
than ideal, and the following constraints must be taken into account:

■ The carrier frequency must be chosen so that is suffers the least attenuation from the
transmitter to the receiver.

■ The carrier power must be minimal to avoid radio-frequency interference, for the whole
wiring of a house involves tens or hundreds of meters of wire that constitute a antenna with
a large extent.

This translates into:

■ The best value for the carrier frequency lies in the 100-150 kHz range;

■ The voltage of the R.F. signal must be barely more than one volt.

The consequences are the following:

■ The frequency chosen is almost completely blocked by the electric meter, thus limiting the
extent of the usable wiring.

■ Due to the presence of various electric appliances, in particular light dimmers and brush-
type motors, the signal to noise ratio of the transmission can be very poor.

As a conclusion, only a low data rate can be expected, but with a significant error rate. This is
why several standards have been devised, providing various trade-offs between data rate,
error rate and system cost.

The X-10 standard described here under is oriented towards low cost. Thus, the data rate has
been deliberately sacrificed to provide a error rate sufficiently low to make a reliable system.

The following explanation comes from the X-10 theory found on the Web1).

X-10 communicates between transmitters and receivers by sending a receiving signals over
the power line wiring. These signals involve short RF bursts which represent digital informa-

1 X-10 Technology Transmission Theory. Author: David Gaddis, August 14, 1995. 
http://www.hometeam.com
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tion. They are synchronized to the zero crossing point of the AC power line. They must be
transmitted as close to the zero crossing point as possible, but certainly within 200 microsec-
onds of the zero crossing point.

A Binary 1 is represented by a 1 millisecond burst of 120 kHz at the zero crossing point, and
a Binary 0 by the absence of 120 kHz. These 1 millisecond bursts should equally be trans-
mitted three times to coincide with the zero crossing point of all three phases in a three phase
distribution system.

The figure below shows the timing relationship of these bursts relative to zero crossing.

09-timing

A complete code transmission encompasses eleven cycles of the power line. The first two cy-
cles represent a Start Code, as follows:

09-xst

T r a n s m i s s i o n  w i n d o w s

T  :  2 0 m s  ( 5 0 H z )

T / 6

T / 3

X - 1 0  T e c h n o l o g y  :  S t a r t  c o d e

1 1 1 0
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The next four cycles represent the House Code and the last five cycles represent either the
Number Code (1 thru 16) or a Function Code (On, Off, etc.). This complete block, (Start Code,
House Code, Key Code) should always be transmitted in groups of 2 with 3 power line cycles
between each group of 2 codes. Bright and dim commands are exceptions to this rule and
should be transmitted continuously (at least twice) with no gaps between codes. See figure
below.

09-xcode

Example: the next figure shows the transmission of Key 2 to House Code A:

09-xex
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Within each block of data, each four or five bit code should be transmitted in true complement
form on alternate half cycles of the power line. So, if a 1 millisecond burst of signal is trans-
mitted on one half cycle (binary 1) then no signal should be transmitted on the next cycle, (bi-
nary 0). See the following figure.

09-xbit

A  b u r s t  o n  t h e
z e r o  c r o s s i n g

p o i n t
f o l l o w e d  b y
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( H o u s e  &  K e y  c o d e s ,  e x c e p t  S t a r t  c o d e )
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z e r o  c r o s s i n g

p o i n t
f o l l o w e d  b y
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 The tables in the next figure show the binary codes to be transmitted for each House Code
and Key Code. The Start Code is always 1110 which is a unique code and is the only code
which does not follow the true complementary relationship on alternate half cycles.

09-xtab

H o u s e  c o d e s K e y  c o d e s
H 1 H 2 H 4 H 8 N u m b e r

c o d e s
D 1 D 2 D 4 D 8 D 1 6

A 0 1 1 0 1 0 1 1 0 0
B 1 1 1 0 2 1 1 1 0 0
C 0 0 1 0 3 0 0 1 0 0
D 1 0 1 0 4 1 0 1 0 0
E 0 0 0 1 5 0 0 0 1 0
F 1 0 0 1 6 1 0 0 1 0
G 0 1 0 1 7 0 1 0 1 0
H 1 1 0 1 8 1 1 0 1 0
I 0 1 1 1 9 0 1 1 1 0
J 1 1 1 1 1 0 1 1 1 1 0
K 0 0 1 1 1 1 0 0 1 1 0
L 1 0 1 1 1 2 1 0 1 1 0
M 0 0 0 0 1 3 0 0 0 0 0
N 1 0 0 0 1 4 1 0 0 0 0
O 0 1 0 0 1 5 0 1 0 0 0
P 1 1 0 0 1 6 1 1 0 0 0

F u n c t i o n  c o d e s
A l l  U n i t s  O f f 0 0 0 0 1
A l l  L i g h t  O n 0 0 0 1 1

O n 0 0 1 0 1
O f f 0 0 1 1 1
D i m 0 1 0 0 1
B r i g h t 0 1 0 1 1

A l l  L i g h t s  O f f 0 1 1 0 1
E x t e n d e d  C o d e 0 1 1 1 1
H a i l  R e q u e s t 1 0 0 0 1

H a i l  A c k n o w l e d g e 1 0 0 1 1
P r e - S e t  D i m 1 0 1 X 1

E x t e n d e d  D a t a  ( a n a l o g ) 1 1 0 1 1
S t a t u s  =  O n 1 1 0 1 1
S t a t u s  =  O f f 1 1 1 0 1

S t a t u s  R e q u e s t 1 1 1 1 1

X 1 0 - T e c h n o l o g i e  :  H o u s e  a n d  K e y  c o d e s  t a b l e s
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Note 1: Hail Request is transmitted to see if there are any X-10 transmitters within listening
range. This allows the user to assign a different House Code if a “Hail Acknowledge” is re-
ceived.

Note 2: In a Pre-Set Dim instruction, the D8 bit represents the Most Significant Bit of the level
and H1, H2, H4 and H8 bits represent the Least Significant Bits. 

Note 3: The Extended Data code is followed by 8-bit bytes which can represent Analog Data
(after A/D conversion). There should be no gaps between the Extended Data code and the ac-
tual data, and no gaps between data bytes. The first 8-bit byte can be used to say how many
bytes of data will follow. If gaps are left between data bytes, these codes could be received by
X-10 modules causing erroneous operation.

Extended Code is similar to Extended Data: 8-bit bytes which follow Extended Code (with no
gaps) can represent additional codes. This allows the designer to expand beyond the 256
codes presently available.

X-10 Receiver Modules require a “silence” of at least 3 power cycles between each pair of 11
bit code transmissions (no gaps between each pair). The one exception to this rule is bright
and dim codes. These are transmitted continuously with no gaps between each 11 bit dim
code or 11 bit bright code. A 3 cycle gap is necessary between different codes, i.e. between
bright and dim, or 1 and dim, or on and bright, etc.

9.2 TRANSMITTER

9.2.1 Instructions for use

The transmitter has a control panel with the following controls:

The OPEN button immediately opens the blinds.

The CLOSE button immediately closes the blinds.

The TIME button sets the delay after which the blinds must be closed. When pressed, it incre-
ments an hour counter by one each time is pressed. The hour count is displayed on a 2-digit
display, and the maximum delay that can be set is 15 hours. As soon as the count is greater
than zero, an internal timer counts the time, decrementing the count by one after each hour
spent. When the time reaches zero, the CLOSE command is sent to the blinds. Pressing ei-
ther of the buttons CLOSE or OPEN resets the time to zero. To cancel a delay that is already
set, without closing the blinds, press the OPEN button.

9.2.2 Description of the electronic circuit

The transmitter is powered by the line through a step-down transformer; however, the ground
voltage (VSS) of the circuit is directly connected to one of the conductors of the line.
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The PB1 pin is connected to the gate of a transistor that switches the 120 kHz oscillator on or
off. The output of this oscillator is amplified, and injected to the second pole of the line through
a capacitor.

The same pole of the line is used to detect the zero-crossing. To do this, it is connected to the
base of a transistor through a 1 Megohm resistor. A diode protects the base against the
voltage reversal. The collector is loaded by a 100 kOhm resistor, and this signal is fed to the
PB2 pin.

The three pushbuttons are connected to PB5 thru PB7, with a pull-up resistor, so that the pin
is pulled to the ground when the button is pressed.

The display is made of two one-digit, seven-segment LED devices. Each of the segments of
both devices are connected in parallel and to one pin of port A, and the common electrode of
each device is driven by a transistor, controlled by PA7. The drive circuit is arranged so that
when PA7 is high, one digit is lit; when low, the other digit is lit.

The House Code is set using a four-bit DIP switch that is fed to PC0 thru PC3.

Function Input number

OPEN PB5

CLOSE PB6

TIME PB7
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The features of the 72251 are used as follows:

The first timer is set to PWM mode. It is configured to generate a pulse on the OCMP1_A
output, that is the alternate function of the PB1 pin. The repetition period is set to exactly 1/6
of a power line cycle, and the duration of the pulse is set to 1 ms. 

As specified in the ST72251 datasheet, when in PWM mode, a timer cannot generate com-
pare interrupts. However, Timer A has a special feature, that is, a Compare 2 event makes be-
lieve a Capture 1 occurred. This application takes advantage of this fact to produce an inter-
rupt request once for each period of the counter (that is six times for each power line cycle). To
allow this, the interrupt mask bit for the capture events is set.

The sine voltage from the second wire of the line (the first one being already connected to
VSS) is used to generate a square wave that is fed to the PB2 input actually used as the
second capture input of Timer A (ICAP2_A). So a capture of the value of the free-running timer
is performed once at each positive to negative zero-crossing of the line voltage, that is, once
per cycle. Since the capture interrupt mask is set, as said above, the Capture 2 events also
produce an interrupt request. Which event produced the request is distinguished in the inter-
rupt service routine by testing two bits, ICF1 and ICF2 in the Timer Status Register (TSRA).

The external circuit that supplies the RF energy to the power line is gated to control the times
the carrier is present. This is done using the PB1 pin that is used as the Output Compare of
Timer A (OCMP1_A). This is configured by the Output Compare Enable bit of Timer Control
Register 2 (OC1E of register TACR2) that is set to 1.

Thus configured, the timer would produce a continuous burst of 1 ms pulses. To modulate
these pulses according to the X-10 standard, the OLVL1 bit in register TACR1 is alternatively
set to one or zero to send a pulse, or not to send it. This bit sets the level that is output on
Compare 1 events. Since the OLVL2 bit sets the level that is output on Compare 2 events
(when the timer is in PWM mode), and this bit is permanently set to zero, the output
OCMP1_A either remains low, or is pulsed high, according to the state of OLVL1.

The pulses must be sent in phase with the line voltage. To obtain this, a phase-locked loop
scheme is used.

On the power line zero-crossing interrupt, the value of the free-running counter of the timer is
captured, and an interrupt request is generated. The interrupt service routine tests this value.
The aim is that it be equal to a reference value; actually, it will be either greater (ahead of time)
or smaller (behind time). A fraction of the difference between the actual and target values is
added to the reference period, and the sum is written to the Compare 2 register, thus altering
the repetition rate of the timer. This scheme is that of a closed-loop system, that stabilizes the
frequency to six times the line frequency, and the phase, so that the start of the pulse will co-
incide exactly with the zero-crossing, as required by the X-10 standard.
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So the repetition period will remain within the correct value. The variation of the timer period is
constrained within narrow bounds, so that large frequency deviations are not possible. This
prevents surges or stray pulses on the line from erroneously changing the position of the 120
kHz pulses relative to the actual zero crossing of the power line.

Timer B is set to PWM mode so that it overflows 64 times per second. It triggers an interrupt
request.

9.2.3 Description of the software

The software is divided into a main program and three interrupt service routines.

The main program checks for the control buttons and defines the command sequences to be
sent. It runs continuously.

The first interrupt service routine is run after each pulse has been sent. Once every three
times (that is once for each half cycle), it determines whether a pulse should be sent, ac-
cording to the X-10 standard and to the message to send, and sets the OLVL1 bit accordingly.

The second interrupt service routine is run once at each line zero crossing. It synchronizes the
timer.

The third interrupt service routine is run each time Timer B overflows. This occurs 64 times per
second. The service routine does two things:

It refreshes the display that is multiplexed and that must be switched fast enough to appear as
steady.

It counts down the time, providing the necessary time base for the delay displayed.

The software has been entirely written in C, except for a few lines in assembler; the need for
them is explained below. This shows that it is easy to write (and even more to later read) an
application in C even when the task looks simple and apparently does not require much pro-
gramming.

We shall study these pieces of software in detail here.

9.2.3.1 The main program

The main program includes the initialization code and an endless loop that processes the
pushbuttons.

The initialization code sets the ports, the timers and all the required registers.

The endless loop reads the buttons, waits for them to be stable for a sufficient duration (de-
bouncing), and takes the appropriate action depending on the button that is pressed:

For buttons OPEN and CLOSE, the function SendCommand is called. It sets global variables to
signal to the interrupt service routine that a message is to be transmitted:
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/* This function triggers the sending of one command */
void SendCommand ( Byte Command )
    {
    KeyCode = Codes[Command] ;         /* prepare the two variables that */
    HouseCode = Codes[HOUSE_CODE] ;    /* contain the data to send. */
    CycleNumber = 1 ;                  /* start sending process */
    }

The global variables used are also used by the interrupt that sends the pulses.

As said earlier, the codes transmitted do not correspond to their binary equivalent. This is why
the value to transmit is retrieved from a lookup table Codes[], located in ROM as explained
later.

For the TIME button, the hour counter is incremented if it is less than 15.

The debouncing is done by the following function. It reads the state of the three inputs con-
nected to the buttons, and checks whether the current reading is equal to the previous one. If
this holds true for a certain number of readings, the set of buttons is regarded as stable. Then,
the value of these three bits is tested. If only one button is pressed, the value of that button is
returned. If no buttons, or more than one button are pressed, the value zero is returned.

/* This function waits until the state of the buttons is stable, and */
/* returns the code of the button pressed. If several, returns 0. */
Byte Debounce ( void )
    {
    Byte PreviousButton = PUSH_BUTTONS ;
    int DebounceTime = DEBOUNCE_TIME ;

    /* Wait for state stable */
    while ( DebounceTime != 0 )
        {
        if ( PreviousButton != PUSH_BUTTONS )
            {
            DebounceTime = DEBOUNCE_TIME ;  /* state changed : restart 

delay */
            PreviousButton = PUSH_BUTTONS ;
            }
        else
            DebounceTime-- ;
        }
    switch ( PreviousButton )
        {
        case CLOSE_BUTTON :
        case OPEN_BUTTON :
        case TIME_BUTTON :
            return PreviousButton ;

        default:
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            return 0 ;      /* No button pressed or more than one button 
pressed. */

        }
    }

Please note the use of the macro PUSH_BUTTONS in the text. This macro is defined as follows:

#define PUSH_BUTTONS ( ( ~PBDR ) & 0xE0 )    /* upper three bits */
#define CLOSE_BUTTON 0x80               
#define OPEN_BUTTON  0x40               
#define TIME_BUTTON  0x20

This expression complements the bits read from port B, for they read as zero when the button
is activated; and only the three bits corresponding to the buttons are returned. Using such a
definition at the beginning of the source text allows you to easily rewire the electronic circuit so
that the buttons can be connected to another input, in a different order, or set the level to high
when active: only these four lines have to be changed, which is easier than having to scan the
source text to find where and how the push buttons are read.

The main program is the following:
void main ( void )
{
InitPorts () ; 
InitTimerA() ;
InitTimerB() ;
MISCR = 0x00 ;     /* Normal mode (clock/2). */
EnableInterrupts ;

while (1) 
    {
    switch ( Debounce () ) 
        {
        case CLOSE_BUTTON :
            Delay = 0 ;     /* Cancel wait. */
            SendCommand ( CLOSE_COMMAND ) ;
            break ;

        case OPEN_BUTTON :
            Delay = 0 ;     /* Cancel wait. */
            SendCommand ( OPEN_COMMAND ) ;
            break ;

        case TIME_BUTTON :
           Hour = 3600 ;      /* To make the first hour accurate. */
           if ( Delay < 15 )
                Delay++ ;
            break ;
        }        
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    while ( CycleNumber != 0 ) ;    /* wait for end of transmission */
    
    while ( Debounce () != 0 ) ;    /* wait for all buttons released */
    }
}

Only those lines that are not self-explanatory have been commented.

9.2.3.2 Timer A Capture interrupt service routine

There are two different capture events that can occur for each timer. However, these events
share the same interrupt vector, so that the same interrupt service routine is called for either
event. The first task of the service routine is to determine which event produced the interrupt. 

The common Timer A interrupt service routine.

Here is the code of the interrupt service routine:

#pragma TRAP_PROC SAVE_REGS
void TimerAInterrupt ( void )
    {
    WDGR = 0xFF ;   /* reload watchdog */
    if ( TASR & ( 1 << ICF1 ) )     /* Determine which interrupt cause. */
        {     /* This is a pseudo-capture 1 interrupt */
        TAOC2HR = TimerAPeriod >> 8 ;       /* Set new period as calculated 

in the capture */
        TAOC2LR = TimerAPeriod & 0xff ;     /* interrupt service function. 

High *MUST* be written first. 
*/

        asm
            {
            ld a, TAIC1LR ;  /* Dummy read to clear interrupt request */
            }
        if ( CycleNumber != 0 )     /* transmission is in progress if 

not zero */
            {
            if ( Phase == 0 )
                SendOneFrameElement () ;    /* Change element every 3 

interrupts. */
            Phase++ ;   /* increment phase for next time */
            if ( Phase > 2 ) 
            Phase = 0 ;     /* 0, 1, 2, 0, 1, 2 ... */
            }        
        }
    else
        {   /* This is a capture 2 interrupt. */
        PhaseLockedLoop () ;    
        /* The interrupt request is cleared there by the read at TAIC2LR */
        }
    }
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The ICF1 flag is first tested to know whether the interrupt was caused by a Capture 1 event. If
yes, the first block is executed; if not, the second block is executed.

In the first case, the two bytes of Compare register 2 are set to the value held in the global var-
iable TimerPeriod. Since this is a word value, its two bytes are extracted using two simple ex-
pressions. Please note that the high byte must be written first, or the compare function would
be inhibited, as specified in the data sheet.

To clear the interrupt request, the data sheet indicates that the Status Register must be read,
then the low byte of the capture register must be accessed. Here, the Status Register is al-
ready read by the test that determines the interrupt cause. Then, we have chosen to read the
TAIC1LR register. To perform a read in C, its value must be assigned to a variable that is used
later, or the optimization by the compiler would remove this apparently useless access. Thus,
the simplest way to read that register is an in-line assembly statement:

asm
   {
   ld a, TAIC1LR ;  /* Dummy read to clear interrupt request */
   }

The value read in the accumulator will be ignored by the rest of the process, but the read from
TAIC1LR is ensured.

Then, a counter is incremented so as to count three interrupt services; the SendOneFrameEle-
ment function is called every third interrupt. This is because the X-10 standard requires that
each pulse be sent three times for each half-period, so that receivers connected to other
phases of the power line, and thus synchronized 120 or 240 degrees away from the trans-
mitter, find the pulses anyway.

If the interrupt cause is a Capture 2 event, the PhaseLockedLoop function is called.

The SendOneFrameElement function.

This function is relatively long, but actually it is very simple. Its behavior is driven by the global
variable CycleNumber that selects one of 50 cases. It is incremented each time, so that each
case is executed once for each interrupt service. Since interrupts occur twice per line cycle,
each bit to send is processed twice, by two consecutive interrupts.

The first four bits are the prefix, or synchronization, bits. They must always be 1110.

The next four pairs of bits carry the House Code. In each pair, the second bit is the comple-
ment of the first one. This is why the values 5, 7, 9, and 11 of CycleNumber are processed by
the same block of code, as are the values 6, 8, 10, and 12, but with another block of code that
produces the complementary result. This block also shifts the HouseCode variable right by one
bit, so that the next bit will be used in the next interrupt.
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The next five pairs of bits carry the Key Code, and work exactly the same way as for the House
Code. 

Since the whole process above must be repeated, all the case tags are duplicated with an
offset of 22.

When CycleNumber reaches 45, the frame is finished. The output is turned off, to silence the
transmitter. As three cycles are required between two successive transmissions, six more in-
terrupts are processed, though they do nothing. On the 50th interrupt, CycleNumber is reset to
zero to mean that no transmission is in progress. This condition is tested in the main program,
that will not attempt to send a message while one is in progress. Please note that the low-
order bit is sent first.

The source code is the following:

/* This function is the frame transmission procedure. It is called when 
*/

/* a time element of a frame is to be sent, that is, 2 times per line 
cycle. */

void SendOneFrameElement ( void )
    {
    static Byte TempKeyCode, TempHouseCode ;
    
    switch ( CycleNumber++ )    /* Increment counter just after test */
        {
        case 1 :    /* First 3 half cycles must have a pulse (start 

condition) */
        case 23 :   /* Start of second group */
            TempKeyCode = KeyCode ;
            TempHouseCode = HouseCode ;
            TACR1 |= ( 1 << OLVL1 ) ;   /* Validate pulse for next 

interrupt */
            break ;
        
        case 2 :    /* Second and third pulses of start code (1st group) */
        case 3 :
        case 24 :   /* Second and third pulses of start code (2nd group) */
        case 25 :
            break ;
        
        case 4 :    /* 4th half cycle must have no pulse ; end of start */
        case 26 :
            TACR1 &= ~( 1 << OLVL1 ) ;   /* Invalidate pulse for next 

interrupt */
            break ;

        case 5 :
        case 7 :
        case 9 :   /* Transmit one of the four bits of house code */
        case 11 :
        case 27 :
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        case 29 :
        case 31 :
        case 33 :
            if ( ( TempHouseCode & 1 ) != 0 )
                TACR1 |= ( 1 << OLVL1 ) ;   /* Validate pulse for next 

interrupt */
            else
                TACR1 &= ~( 1 << OLVL1 ) ;   /* Invalidate pulse for next 

interrupt */
            break ;
    
        case 6 :
        case 8 :
        case 10 :   /* Transmit the complement of one of the four bits 

of house code */
        case 12 :
        case 28 :
        case 30 :
        case 32 :
        case 34 :
            if ( ( TempHouseCode & 1 ) == 0 )
                TACR1 |= ( 1 << OLVL1 ) ;   /* Validate pulse for next 

interrupt */
            else
                TACR1 &= ~( 1 << OLVL1 ) ;   /* Invalidate pulse for next 

interrupt */
            TempHouseCode >>= 1 ;   /* Finished with this bit. Ready for 

next bit */
            break ;
    
        case 13 :
        case 15 :
        case 17 :   /* Transmit one of the five bits of Key code */
        case 19 :
        case 21 :
        case 35 :
        case 37 :
        case 39 :
        case 41 :
        case 43 :
            if ( ( TempKeyCode & 1 ) != 0 )
                TACR1 |= ( 1 << OLVL1 ) ;   /* Validate pulse for next 

interrupt */
            else
                TACR1 &= ~( 1 << OLVL1 ) ;   /* Invalidate pulse for next 

interrupt */
            break ;
    
        case 14 :
        case 16 :
        case 18 :   /* Transmit the complement of one of the five bits 

of Key code */
        case 20 :
        case 22 :
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        case 36 :
        case 38 :
        case 40 :
        case 42 :
        case 44 :
            if ( ( TempKeyCode & 1 ) == 0 )
                TACR1 |= ( 1 << OLVL1 ) ;   /* Validate pulse for next 

interrupt */
            else
                TACR1 &= ~( 1 << OLVL1 ) ;   /* Invalidate pulse for next 

interrupt */
            TempKeyCode >>= 1 ;   /* Finished with this bit. Ready for 

next bit */
            break ;

        case 45 :                       
            TACR1 &= ~( 1 << OLVL1 ) ;   /* Invalidate pulse for next 

interrupt */
            break ;                    

        case 46 :       /* Three full cycles of silence are required */
        case 47 :       /* before the next transmisson */
        case 48 :   
        case 49 :   
            break ;                    
            
        case 50 :   
            CycleNumber = 0 ;     /* Reset cycle counter to terminate 

stream */
            break ;               /* and re-enable the transmission. */
        }            
    }

The basic structure is a switch statement that jumps to the piece of code related to the current
bit number. This number is incremented just after it is tested, so that it travels from 1 to 23.
Then, it is set to zero. When it is zero, the common interrupt service routine does not call Sen-
dOneFrameElement any more until CycleNumber is set to 1 again by the SendCommand func-
tion.

switch ( CycleNumber++ )    /* Increment counter just after test */
        {
        case 1 :    /* First 3 half cycles must have a pulse (start 

condition) */

Each word to send (House Code and Key Code) is shifted right after the rightmost bit has been
picked. According to the state of this bit, the OLVL1 bit in the TACR1 register is either set or
reset, to generate a pulse or no pulse. This is done by this block of statements:
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if ( ( KeyCode & 1 ) == 0 )
    TACR1 |= ( 1 << OLVL1 ) ;   /* Validate pulse for next interrupt */
else
    TACR1 &= ~( 1 << OLVL1 ) ;   /* Invalidate pulse for next interrupt */
KeyCode >>= 1 ;   /* Finished with this bit. Ready for next bit */

The PhaseLockedLoop function.

This function measures the phase shift between the nominal position of the zero crossing and
the start of the 1 ms pulse. According to the difference found, the timer period is increased or
decreased, so as to reduce that difference to the smallest value. Actually, once locked, the pe-
riod will oscillate slightly about the nominal value of the line frequency.

The code is the following:

void PhaseLockedLoop ( void )
    {
    int Position, Deviation ;
    
    asm
        {
        ld a, TAIC2HR
        ld Position, a
        ld a, TAIC2LR
        ld Position:1, a
        }
    /* This assembler code is logically equivalent to : */
    /* Position = *((int *) &TAIC2HR) ;   get signed value of counter */
    /* but the order of reading of the two bytes is important, and C does 

*/
    /* not give any guarantee regarding the order. Thus assembler is 

used. */
    Deviation = Position - ( TIMER_A_PERIOD - PULSE_LENGTH ) ;
    Deviation >>= 4 ;       /* Divide by 16 (feedback coefficient). */
    if ( Deviation < -PERIOD_DEVIATION )
        Deviation = -PERIOD_DEVIATION ;    /* Do not pass either limit, 

though. */
    else 
        if ( Deviation > PERIOD_DEVIATION )
            Deviation = PERIOD_DEVIATION ;
    TimerAPeriod = TIMER_A_PERIOD + Deviation ;   /* Alter theoretical 

period. */
    }

The value captured is read using four in-line assembler statements. This is because the cap-
ture register is defined as two separate 8-bit registers, and because these bytes must be read
in a certain order.
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As described in the ST72251 data sheet, a mechanism to avoid data desynchronization pre-
vents any captures occuring once the high register has been read, until the low register has
been also read. This implies that we must ensure that the high byte is read first, then the low
byte. Due to the compiler optimization, the only way to guarantee the right order is to use the
assembler. This is why the capture register is read using the code above. The convention of
the compiler is that in a 16-bit variable, the most significant byte comes first in the address
space, thus the notation Position:1 for the low-order byte.

The phase deviation is then computed as the difference between the capture register value
and the position of the rising edge of the pulse. This deviation is divided by 16 by shifting it
right four times (here the time for a normal division would have been too long) to reduce the
loop gain, and the deviation is clamped to less than 0.5% of the nominal frequency. The final
value for the period is obtained by adding this signed value to the nominal period value. This
value is stored in the global variable TimerAPeriod that is used at the beginning of the inter-
rupt service routine to update the compare register. This ensures that the compare register is
updated separately from the comparison, avoiding the problem that would occur if the compar-
ison occured between the writes of the two bytes of the register, as the value of the period is
computed on zero-crossing interrupts, that has no particular relationship with the compare
events, especially when the system is seeking synchronization.

The nominal period is defined in the X10XMIT.H header file, as follows:

/* #define F60HZ */  /* Remove the comments for 60 Hz. */

#ifdef F60HZ
#define TIMER_A_PERIOD 5555 - 5 /* Nominal for 60 Hz, in 1/2 microseconds 

*/
#else
#define TIMER_A_PERIOD 6666 - 5 /* Nominal for 50 Hz, in 1/2 microseconds 

*/
#endif

This source text is set for a 50 Hz power system. To change it for a 60 Hz system, the first
#define should be re-instated by removing the comment marks (/* */). For 50 Hz, the timer pe-
riod must be 1/6 the line period, that is, 3.333 ms. Since the timer is driven by a 2 MHz clock,
this makes 6666 ticks. But when the Compare 2 event occurs, the counter is reset to FFFCh,
that is -5 in two’s complement notation. Thus the nominal value for the Compare 2 register is
actually 6666 - 5, or 6661.
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The operation of the PLL is illustrated by the diagram below:

09-pll
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This routine has a dual role: it refreshes the display and counts down the time.
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The interrupts are triggered by an overflow of the free-running counter. At each interrupt, the
PA7 bit is toggled, so that each digit is lit every other interrupt, that is, there are 32 refresh cy-
cles per second.

Since the values to be displayed range from zero to 15, driving of the display could be per-
formed easily using the following arrangement:

The various patterns that make up the display are stored in a constant two-dimensional array,
with 15 rows of 2 elements. Each couple corresponds to a value to be displayed; each element
of a couple is one of the two values that must be written to PA, alternately, so that the display
is both chopped and updated in such a way that it looks like a steady two digit display.

The constant array is defined as follows:

const Byte SevenSegment[16][2] = {
            {0xff, 0x84}, {0xff, 0xed}, {0xff, 0xa2}, {0xff, 0xa8}, /* 

0-3 */
            {0xff, 0xc9}, {0xff, 0x98}, {0xff, 0x90}, {0xff, 0xad}, /* 

4-7 */
            {0xff, 0x80}, {0xff, 0x88}, {0x6d, 0x84}, {0x6d, 0xed}, /* 

8-11 */
            {0x6d, 0xa2}, {0x6d, 0xa8}, {0x6d, 0xc9}, {0x6d, 0x98}  /* 

12-15 */
            } ;

This constant table is located in ROM (or program segment) by means of the const modifier,
and the -Cc compiler option added in the Compoptions item of the environment file. The same
way, the Codes[] table mentioned earlier is defined as follows:

const Byte Codes[] = {6, 7, 4, 5, 8, 9, 10, 11, 14, 15, 12, 13, 0, 1, 2, 3,
                      16, 24, 20, 28, 18, 26, 22, 30, 17, 25, 21, 19, 

27, 23, 31} ;

Updating the display is done easily using the following statement, where Delay contains the
number to display, and Second is decremented at each interrupt:

PADR = SevenSegment[Delay][Second & 1] ;   /* Light one of both digits 
at a time. */

When the delay reaches zero, the display is switched off by merely writing 0xff to it. This also
causes the display to blink at the rate of once per second:
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if ( Second > 50 )    /* The display blinks at 1 Hz with a short duty 
cycle. */

            PADR = DISPLAY_OFF ;    /* Switch LED off. */
        else
            PADR = SevenSegment[Delay][Second & 1] ;   /* Light one of 

both digits at a time. */

Since second ranges from 63 to zero, the display is lit 23/64 of the time every second.

The remainder of the code of the whole interrupt routine merely maintains the counters that
count 64 interrupts to make one second, then 3600 seconds to make one hour, then from 0 to
15 full hours. When the delay has elapsed, the CLOSE command is sent and the display is
switched off.

The code is the following:

#pragma TRAP_PROC SAVE_REGS
void DelayCounter ( void )
    {
    WDGR = 0xFF ;   /* reload watchdog */
    asm
        {
        ld a, TBSR ;
        ld a, TBCLR ;  /* Dummy read to clear interrupt request */
        }
    if ( Delay == 0 )
        PADR = DISPLAY_OFF ;    /* Switch LED off. */
    else
        {
        if ( Second > 50 )    /* The display blinks at 1 Hz with a short 

duty cycle. */
            PADR = DISPLAY_OFF ;    /* Switch LED off. */
        else
            PADR = SevenSegment[Delay][Second & 1] ;   /* Light one of 

both digits at a time. */
        if ( Second == 0 )
            {
            Second = 63 ;      /* One second is elapsed: reload counter. */
            if ( Hour == 0 )
                {
                Hour = 3600 ;   /* One hour is elapsed: reload counter. */
                if ( Delay == 1 )     /* Last hour finished ? */
                    SendCommand ( CLOSE_COMMAND ) ; /* Close now. */
                Delay-- ;       /* Decrement anyway ; if 1, set to zero, 

and terminate delay. */
                }
            else
                Hour-- ;
            }
        else
            Second-- ;
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9.3 RECEIVER

9.3.1 Instructions for use

Whereas there is only one transmitter in a house, there are several receivers, each located
near the blind to be controlled. All receivers are identical, and, provided they are set to the
same house code as the transmitter, they receive the same commands at the same time.
Thus, when the operator presses the CLOSE button of the transmitter, all blinds will close si-
multaneously.

In addition to the remote control, each blind must be controlled locally. Each receiver has a
pushbutton for this purpose that allows the blind to be cycled through the following states:
OPEN, STOP, CLOSE, STOP, OPEN... in a circular manner.

9.3.2 Electronic circuitry

The main blocks of the electronic circuit are:

■ The power supply, that provides the power for the rest of the circuit

■ The microcontroller, that controls the global working, decodes the X10 frames, and
coordinates the motion of the blinds

■ The filter and detector, that select the carrier frequency while rejecting the interference, and
produce a logic signal that is true when the carrier is present

■ The relays and their drivers, that switch the blind motors on and off, and select the direction
of the motion (open or close)

The receiver must be designed to take the following constraints into account:

■ It must be small, to be easily installed where needed, with an acceptable appearance and
size 

■ It must be cheap

These constraints preclude the use of a transformer for the power supply, because it is both
bulky and expensive. For this reason, the power is drawn directly from the power line through
a capacitor. This is a cheap method, but it cannot provide a high current, to keep the capacitor
size and cost within reasonable limits.

This will lead to a careful design of the circuit to minimize power consumption. The filter uses
a single-transistor stage, with high load resistors to save power. The relays are of the locking
type, that is, they have two coils each: one to switch the relay in one direction, the other to
switch it in the other. Once switched, the relays do not current to flow continuously through the
coils. Thus, a short pulse of current (40 mA during 5 ms) suffices to trip the relay. The required
power is stored in the filtering capacitor of the power supply, and the frequency of the switch-
ings is limited by software so as to allow the capacitor to recharge between two pulses. With
a main capacitor value of 220 and since in most cases two relays must be switched at the
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same time, this produces a voltage drop of about 1 V across the capacitor. The ST72251 al-
lows a comfortable range of power supply voltages, so that the drop is acceptable.

The ST7 will also be used in an economical manner. For this reason, it is clocked by a 1 MHz
crystal, that provides an internal clock of 500 kHz. Being a CMOS device, the ST7 has a con-
sumption roughly proportional to its main clock frequency. Reducing the frequency will there-
fore reduce the current drawn.

In addition, the Analog to Digital converter is only powered when needed, and the core is set
to wait state whenever it has nothing to do but wait. The power is reduced in this state. 
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The following figures show the schematics of the receiver:
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The four switches at the top select the House Code of the receiver. The receiver only obeys
the commands that are sent to its own House Code.

The power supply circuit looks like a classical Scheinkel voltage doubler. Actually, the input
capacitor (0.1 µF) presents a reactance that limits the current to about 7 mA RMS. Only half of
this current is rectified to charge the filtering capacitor (220 µF). The first diode both rectifies
the current and limits the voltage when blocked to 6.2 V. However, two diode drops should be
subtracted from that voltage, which produces a net voltage of about 5 V.

The filter has an adjustable resistor to tune its center frequency to that of the transmitter.
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The relay coils are driven by MOS transistors, since the current specification of the parallel
port does not allow for direct connection of the coil to the port. The pull-down resistors guar-
antee that at power on, no coil is powered, allowing the ST7 to start with enough power and
preventing undue activation of the motor.

The motor has a three-terminal winding with a phase shift capacitor connected across two of
them. The circuit below the motor rectifies the voltage present at both of these ends. The D.C.
voltage produced remains within 5 V, and is connected to one input of the Analog to Digital
Converter. When the motor is still, the voltage rectified corresponds to the line voltage, here
230 VAC. This gives a voltage of about 2.5 VDC at the output of the rectifier. When the motor
is running, the unconnected terminal has a voltage much higher than that, relative to the
common terminal. This produces a higher D.C. voltage to the converter, and using an appro-
priate threshold, the microcontroller can detect when the motor is running and when it has
been stopped by one of its integral end-of-travel switches.

9.3.3 Software

9.3.3.1 Interrupt functions

The receiver works basically like the transmitter. Timer A is used to produce an interrupt every
half cycle of the power line (10 ms at 50 Hz), and it is synchronized with the line voltage using
a phase-lock-loop technique. Only the parameters differ from that of the transmitter, because
the internal clock is slower and the interrupts must occur once instead of three times per half-
cycle.

When the interrupt occurs, the OCF1 bit of the TASR register is checked to see if it is a capture
interrupt or a timer overflow. In the latter case, the ReceiveOneFrameElement function is
called. The code of this function is given below:

void ReceiveOneFrameElement ( void )
    {
    static Byte TempHouseCode, TempKeyCode, TempHouseCode2, TempKeyCode2, 

CarrierDetected ;

    /* First determine if carrier is present */    
    CarrierDetected = ( ReadADC ( CARRIER_ADC_CHANNEL ) > 

CARRIER_THRESHOLD ) ;
    switch ( CycleNumber++ )    /* Increment counter just after test */
        {
        case 23 :   
            TempHouseCode2 = TempHouseCode ;     /* Keep command received 

in 1st frame. */
            TempKeyCode2 = TempKeyCode ;

        case 1 :
        case 2 :
        case 3 :
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        case 24 :
        case 25 :
            /* First 3 half cycles must have a pulse (start condition) */
            if ( ! CarrierDetected )
                CycleNumber = 1 ;   /*  Reset the whole process if 

incorrect header. */
            break ;
        
        case 4 :    /* 4th half cycle must have no pulse ; end of start */
        case 26 :
            if ( CarrierDetected )
                CycleNumber = 1 ;   /*  Reset the whole process if 

incorrect header. */
            break ;

case 5 :   /* Receive one of the four bits of house code */
case 27 :

            TempHouseCode = 0 ;       /* First, initialize house code 
value. */

case 7 :
case 9 :
case 11 :
case 29 :
case 31 :
case 33 :

TempHouseCode >>= 1 ;       /* Shift right by one bit */
            if ( CarrierDetected )
                TempHouseCode |= 8 ; /* Set most-significant bit to one */
            break ;                     /* House code has four bits */
    
        case 6 :
        case 8 :
        case 10 :

case 12 :   /* Check that the next even bit sent is the complement 
of the odd one. */

case 28 :
case 30 :
case 32 :
case 34 :

            if ( ( ( TempHouseCode & 8 ) != 0 ) == CarrierDetected )
                CycleNumber = 1 ;   /*  Reset the whole process if 

incorrect check bit. */
            break ;
    
        case 13 :   /* Receive one of the five bits of Key code */
        case 35 :
            TempKeyCode = 0 ;       /* First, initialize Key code value. */
        case 15 :
        case 17 :
        case 19 :
        case 21 :
        case 37 :
        case 39 :
        case 41 :
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        case 43 :
            TempKeyCode >>= 1 ;       /* Shift right by one bit */
            if ( CarrierDetected )
                TempKeyCode |= 0x10 ;    /* Set least-significant bit to 

one */
            break ;                    /* Key code has five bits */
    
        case 14 :
        case 16 :
        case 18 :
        case 20 :
        case 22 :   /* Check that the next even bit sent is the complement 

of the odd one. */
        case 36 :
        case 38 :
        case 40 :
        case 42 :
        case 44 :
            if ( ( ( TempKeyCode & 0x10 ) != 0 ) == CarrierDetected )
                CycleNumber = 1 ;   /*  Reset the whole process if 

incorrect check bit. */
            break ;

        case 45 :   
            CycleNumber = 1 ;     /* Stream terminated: reset cycle 

counter. */
            /* Check that the command is received twice identically */
            if ( ( TempHouseCode2 == TempHouseCode ) && ( TempKeyCode2 

== TempKeyCode ) )
                {
                HouseCode = TempHouseCode ;     /* Make data received 

accessible to main program. */
                KeyCode = TempKeyCode ;
                }
            break ;                    
        default :
                CycleNumber = 1 ;   /*  Reset the whole process if 

incorrect bit number. */
            break ;
        }            
    }

The first thing this function does is to read the analog voltage at the output of the detector.
Then, for each bit position, the value of the bit is either recorded or checked against the rules
set forth by the X10 standard. The bits are recorded by adding them at the fourth or fifth place
for the House Code, or the Key Code, respectively, after the code has been shifted right by
one place:

TempKeyCode >>= 1 ;       /* Shift right by one bit */
    if ( CarrierDetected )
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        TempKeyCode |= 0x10 ;    /* Set least-significant bit to one */

At the end of the reception, these codes can be checked to determine if the receiver has any-
thing to do with them. In the checking phases, if the bit is found to be incorrect, the receive
process is aborted by setting CycleNumber back to 1:

if ( ( ( TempKeyCode & 0x10 ) != 0 ) == CarrierDetected )
    CycleNumber = 1 ;   /*  Reset the whole process if incorrect check bit.

As the X-10 standard states, each command is sent twice. The receiver is also designed so
that two successive frames are received in succession. After the second frame is received, the
codes received in the first frame are compared with the codes received in the second frame.
If they match, the codes are considered valid and are passed to the main program to produce
the expected effect.

9.3.3.2 Main program

The main program starts with a few initialization functions that are very similar to that of the
transmitter. It then runs into an endless loop that controls the sequencing of the blind motion.

Timer B control

Timer B is used to generate an interrupt after a predefined delay, using the Compare 1 reg-
ister. When a delay is required, the WaitDelay function is called. This function sets up Timer
B by first setting the free-running counter to FFFC, then setting the Compare 1 register to the
required time delay (-5 to compensate from the resetting to FFFC). Then, all interrupt requests
are cleared, and the interrupt on compare is unmasked.

This function is partly written in assembler, to avoid the side-effects of the compiler regarding
the order of the assignments. While waiting, the core is set to the Wait state using the WFI in-
struction. This reduces the power consumption. Since there are other interrupts, exiting from
the wait state does not necessarily mean that the time has elapsed. To check whether the time
has elapsed, the WFI instruction is executed repeatedly in a loop that is only exited when the
condition is fulfilled. This condition, TimeElapsed, is actually a macro defined as follows:

#define TimeElapsed ( TBSR & ( 1 << OCF1 ) )

This expression is only true if the OCF1 bit in the TBSR register is set. 

The Output Compare Interrupt Enable bit enables both Compare 1 and Compare 2 events at
the same time. Here, it is necessary to clear the OCF2 Compare 2 event flag before enabling
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the interrupts, for whatever the initial value of TBOC2R, there will necessarily be a Compare
2 event before the free-running counter overflows. This would trigger an interrupt request as
soon as the interrupt mask bit is set. To avoid this, the Compare 2 event flag is also cleared
though it is not actually used.

The complete code of the function is:

void WaitDelay ( Word Time )
    {
asm
        {
        clr TBCLR           /* Any write to free-running timer sets it 

to FFFC. */
        ld a, TBSR          /* Clear pending interrupt for compare 2 */
        ld a, TBOC2LR       
        ld a, Time          /* Set time to go, high byte. Compares are 

now inhibited. */
        ld TBOC1HR, a
        ld a, TBSR          /* First step to clear pending interrupt. */
        ld a, Time:1
        ld TBOC1LR, a       /* Write low byte to re-enable compare. */
        bset TBCR1, #OCIE   /* Enable interrupt on compare */
        }
    while ( ! TimeElapsed )
        WaitForInterrupt ; /* Keep asleep until time elapsed. */
    }

When the comparison occurs, it triggers an interrupt that is served by the following code:

void CoilEndOfPulse ( void )
    {
    COILS = DE_ENERGIZE ;
    TBCR1 &= ~( 1 << OCIE ) ;    /* Inhibit further interrupts. */
    }

This function masks out the interrupt requests generated by Timer B, and also switches off all
the relay coils. Since these two functions are mainly used to produce current pulses within the
relay coils, the de-energizing of the coils is done right in the interrupt service routine. As stated
above, the correct behavior of the power supply makes it essential that the duration of the cur-
rent pulses in the relay coils be strictly limited to the necessary time, i.e. 5 ms.

Analog to digital converter control

The analog to digital converter is used to measure two different voltages: the output of the car-
rier detector, and the motor winding voltage. The latter measurement is necessary for
checking whether the blind motor is currently running, or stopped by its integral end-of-stroke
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switches. To allow this, the voltage at both phases of the motor is reduced, then rectified and
the resulting voltage is the higher of the two. When the motor is steady, the voltage at its ter-
minals is the line voltage (e.g. 230 VAC); if running, one of the terminals is at a higher voltage,
due to the effect of the phase-shift capacitor. This difference in voltage tells us when the motor
is stopped.

To save power, the analog to digital converter is only powered when used. Thus, the following
function first sets the ADC control register with the channel number and also sets the ADON
bit to start the operation of the converter. A first loop waits until the first conversion is finished;
but, as specified in the data sheet, to produce accurate results, the converter needs time to
stabilize after being powered on. This first reading will be discarded, and a second loop will
wait until the second conversion is complete. The value read is then returned:

#pragma NO_OVERLAP      /* This function is also called from an interrupt 
service routine */

Byte ReadADC ( Byte Channel )
    {
    TACR1 &= ~( 1 << ICIE ) ;   /* Disable timer A interrupts to avoid 

re-entrancy. */
    ADCCSR = Channel | ( 1 << ADON ) ;
    while ( ! ( ADCCSR & ( 1 << COCO ) ) )
        ;                                   /* Perform one reading to stabilize. */
    ADCCSR = Channel | ( 1 << ADON ) ;
    while ( ! ( ADCCSR & ( 1 << COCO ) ) )
        ;                                   /* Perform good reading. */
    ADCCSR = 0 ;                             /* Turn off ADC. */
    TACR1 |= ( 1 << ICIE ) ;   /* Re-enable timer A interrupts. */
    return ADCDR ;
    }

Here is a special remark about this function. It is called both from the main program and the
Timer A interrupt service routine, through the ReceiveOneFrameElement function. Since func-
tions are not re-entrant in Hiware C, we must take care that it cannot be called in a re-entrant
manner, that is, while it is being called by the main program. For this purpose, the interrupt en-
able bit of Timer A is reset on entry, and set again on exit.

Please pay attention to the pragma just before the function header. By default, the compiler
tries to locate the local variables (either explicit, those defined in the C source text, or implicit,
those used for the purpose of the C- to-assembler translation) in the _OVERLAP segment, to re-
duce the consumption of read-write memory. An intelligent mechanism determines which
function calls which function, in order to avoid collisions. However, this mechanism does not
work if the function can be called by an interrupt service routine, since interrupts constitute a
distinct calling tree. Collisions are thus avoided by explicitly declaring that this function may
not share its storage with others, hence the pragma.
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The control of the relay coils

The relays are arranged so that one relay switches the motor on or off, while the other relay
selects the open or close direction.

As said above, the relays are of the locking- or bistable-type. This means that only a short
pulse of current in the coil is needed to trip the relay from one state to the other, thus con-
serving energy.

■ The difficulty with this type of relay is that we cannot know which position they are, since with
both coils de-energized they may be in either position. Thus, to start the motor in one
direction, we must do the following:

■ Pulse the direction relay to the desired direction

■ Pulse the on-off relay to the on position

To stop the motor, we must do the following:

■ Pulse the on-off relay to the off position

The function for stopping the motor is very simple:

void StopMotor ( void )
    {
    COILS = STOP ;
    WaitDelay ( COIL_PULSE ) ;
    }

It energizes the appropriate coil, and starts the timer as described above. When the time has
elapsed, the current in the coil is switched off.

To start the motor in one direction, the job is a little bit more complicated. To simplify the
writing of the C source text, and make it more legible, a general function has been written. It
receives a message (four are possible) and acts as required. The message is made of a value
defined by an enumerated type:

enum eStates { START_CLOSE, START_OPEN, STOP_CLOSE, STOP_OPEN } ;

and the function handles that message according to its value:

void SwitchMotor ( enum eStates Direction )
    {
    LastDirection = Direction ;
    switch ( Direction )
        {
        case STOP_OPEN:
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        case STOP_CLOSE:
            StopMotor () ;
            break ;
        
        case START_OPEN:
            COILS = OPEN ;
            WaitDelay ( COIL_PULSE ) ;
            COILS = START ;
            WaitDelay ( COIL_PULSE ) ;
            WaitDelay ( 5 * TENTH_SECOND ) ;
            break ;

        case START_CLOSE:
            COILS = CLOSE ;
            WaitDelay ( COIL_PULSE ) ;
            COILS = START ;
            WaitDelay ( COIL_PULSE ) ;
            WaitDelay ( 5 * TENTH_SECOND ) ;
            break ;
        }        
    }

When the message means “stop”, the function StopMotor above is called. Otherwise, the ap-
propriate coil is energized, then the timer is started for 5 ms, then an additional delay is in-
cluded. This delay guarantees that the cycle could not be repeated to fast, to avoid having the
power supply voltage fall dangerously. This also allows the motor to start, and the motor
stopped detector to work properly.

Main function.

Now we can look at the main program. It is made of a few lines, because most of the
processing is done in functions called from it. This both saves the code size and improves the
clarity of the code for later modification.

After initializing, the program enters an endless loop. Each time a remote command is re-
ceived that requests either to open or close the blind, the motor is started in the appropriate di-
rection. Then, if the button is pressed, the current state is changed for the next start in this
cycle: open, stop, close, stop, open...

Eventually, if the state is START_OPEN or START_CLOSE, and if the motor is found stopped, this
means that the motion is complete and that the end-of-stroke switch has been actuated. The
state is then changed to the corresponding STOP_ state, so that the system is ready to start in
the opposite direction the next time the button is pressed.

The main program is the following:

void main ( void )
    {
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    InitPorts () ; 
    InitTimerA() ;
    InitTimerB() ;
    MISCR = 0x0 ;     /* Normal mode (clock/2). */
    EnableInterrupts ;
    LastDirection = STOP_OPEN ; /* to properly start manual cycle */
    StopMotor () ;         /* To guarantee motor off at power on */

    while (1) 
        {
        if ( HOUSE_CODE == Codes[HouseCode] )
            {
            switch ( Codes[KeyCode] )
                {   /* If code acceptable, energize one of the coils. */
                    /* They will be de-energized by timer interrupt. */
                case CLOSE_COMMAND :
                    SwitchMotor ( START_CLOSE ) ;
                    break ;
            
                case OPEN_COMMAND :
                    SwitchMotor ( START_OPEN ) ;
                    break ;
                }
            KeyCode = NO_COMMAND ;      /* Erase order. */
            HouseCode = NO_COMMAND ;    /* Erase order. */
            }

        if ( ButtonPressed () )
            /* Take into account the push button. It overrides the remote 

control. */
            switch ( LastDirection )
                {
                case START_OPEN :
                    SwitchMotor ( STOP_OPEN ) ;
                    break ;

                case STOP_OPEN :
                    SwitchMotor ( START_CLOSE ) ;
                    break ;

                case START_CLOSE :
                    SwitchMotor ( STOP_CLOSE ) ;
                    break ;
                
                case STOP_CLOSE :
                    SwitchMotor ( START_OPEN ) ;
                    break ;
                }

        /* Update state when end-of travel automatic stop. */
        switch ( LastDirection )
            {
            case START_OPEN :
                if ( ReadADC ( MOTOR_ADC_CHANNEL ) < RUNNING_VOLTAGE )
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                    SwitchMotor ( STOP_OPEN ) ;
                break ;

            case START_CLOSE :
                if ( ReadADC ( MOTOR_ADC_CHANNEL ) < RUNNING_VOLTAGE )
                    SwitchMotor ( STOP_CLOSE ) ;
                    break ;
                }
        }
    }

9.4 CONCLUSION

This first application has been designed to emphasize the following features:

■ Using C language in a small system

■ The various uses of the timers

■ Use of the analog to digital converter

■ The features relating to power consumption, both hardware and software

The C code used here shows that C is not a language that requires extensive hardware and a
huge investment in know-how. On the contrary, with a little practice, very few parts of your pro-
grams will turn out to be written in assembler, because you will find it much easier to write in
C. When adequately commented and structured, a C program is naturally easier to read and
modify later in the life of the product than an assembly program. Also, we can see that any
parts of the program that still require assembler can be written very easily, within the C source
code, without needing to write and assemble another file for assembler language.

The timers have been used in PWM mode with capturing and in free-running mode with com-
parison. These are only some of the ways of using the timers, but these are worth knowing.
Actually, the application could have been done in a less sophisticated way, especially relating
to the phase lock loop scheme; but this application gives a good example of the possibilities
available even in a low-end product like the 72251. This scheme adds robustness to the
working of the transmitter and the receiver, at no cost except for a few additonal program lines.
This can make the difference between a good product and a poor one, and does not add to the
hardware cost.

The analog to digital converter has been fully used, since it does not have many modes; its
shut-down feature contributed to the solution to the power consumption problem.

The power drainage of the ST7, already low, could be further reduced by slowing the clock
down as much as possible taking into account the required computing power needed. With the
help of the wait instruction that stops the core, and the shut-down feature of the analog to dig-
ital converter, the requirement of a total consumption less than 3 mA was met, even with re-
lays that consume 40 mA each for short periods.
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10 SECOND APPLICATION: A SAILING COMPUTER

The aim of this application is to build a calculator for optimizing the steering of a yacht when
going against the wind. In this situation, sailors have to make tacks, that is, sail close to the
wind alternately on the port side then on the starboard side. The problem is to position the boat
the best way. Most sailors rely on they own experience to choose the right angle so that the
projection of the boat speed in the eye of the wind is the greatest possible but it is difficult to
estimate it accurately, because that speed is a combination of the boat speed and the wind di-
rection.

The calculator described here takes into account the boat’s speed, as given by the speedom-
eter, the wind speed, using a wind gauge and the relative wind direction, as given by the
weather vane. Using this data, a relatively simple trigonometric computation gives the compo-
nent of the boat speed that is parallel to the real wind direction, called Vmg, which is what we
need. In addition, the absolute speed and direction of the wind are displayed, as it is useful in
all cases. This is also relevant when sailing before the wind.

In this application, the ST7 peripherals are used as follows:

■ A timer is used for measuring the period of the digital signal supplied by the speedometer.
This a square signal with a frequency proportional to the speed. The edges of the signal
trigger the timer capture function.

■ The same timer is used for the wind gauge, that supplies the same kind of signal as the
speedometer; the other capture input is used the same way as above.

■ The Analog to Digital Converter reads the voltage at the cursor of a potentiometer, whose
shaft is driven by the weather vane. It also reads the push-buttons that are wired so that a
different voltage is produced for each button pressed. In addition, three trimmer
potentiometers provide the necessary calibration values using the Analog to Digital
Converter.

■ The Serial Communication Interface sends the information to a computer that can display
the situation graphically. This part of the software falls outside the scope of this book and will
not be described here.

■ The Serial Peripheral Interface connects to a liquid-crystal display using only two wires (not
counting the power supply), so that the display can be placed remotely from the computer’s
enclosure.

For this application, the ST72311 is chosen, since it has a built-in Serial Communication Inter-
face. A memory size of 16 Kbytes of ROM is necessary to accommodate the program, and the
512 bytes of RAM are used for a large part of it.

The block diagram is as follows:
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10.1 THEORY OF THE COMPUTATION

The following diagrams apply against the wind, starboard side and before the wind, port side,
respectively.

10-again

 A g a i n s t  t h e  w i n d

A l p h a V

A l p h a R

B s

V M G

B s

V M G

R w

V w
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10-befor

B s

R w

V w

V M G

A l p h a R

A l p h a V

B e f o r e  t h e  w i n d
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The meaning of the symbols used in these diagrams is the following:

The mathematical relationships involved in the calculation of

are given from the equations:

and 

These relationships are rewritten under the following shape:

and: 

Which give:

Symbol Meaning

AlphaV Visible wind angle (weather vane)

Vw Visible wind speed (anemometer)

Bs Boat speed (speedometer)

AlphaR Real  wind angle

Rw Real wind speed

VMG Real boat speed against the wind, or in before the wind

MGR VRw ,, α

( ) ( )[ ] 2/1
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They apply for Alpha ranging from zero included to 360° excluded. The angles are counted
clockwise, according to nautical usage.

10.2 INTERFACING THE MEASUREMENT DEVICES

There are three measurement devices to interface: the speedometer, the wind gauge and the
weather vane. The first two work on the same principle: they close a switch periodically, at a
frequency that corresponds to the speed. The weather vane is attached to the shaft of single
turn potentiometer without mechanical stops.

10.2.1 Frequency-type devices: speedometer and wind gauge

Since these devices work on the same principle, they will be interfaced the same way; the only
difference will come from their different calibration coefficients.

10.2.1.1 Interfacing the speedometer

The speedometer used, which is a typical one, supplies a square signal with a frequency of
7.5 Hz per nautical knot (a knot is a speed of 1.852 km/h). The range of speeds measured is
within 0.1 to 20 knots, that is 0.75 Hz to 150 Hz and the required accuracy is + or -0.1 knot. 

At the bottom of the range, the frequency is only 0.75 Hz. Measuring this frequency with suffi-
cient accuracy would mean taking one measurement every three seconds or more. This is
much too slow for practical use. Thus, instead of measuring the frequency directly, we shall
measure the period of the signal. This will allow us to perform at least one measurement every
1/0.75 = 1.33 s, for the lowest speed; this pace may increase at higher speeds.

The easiest way to perform this measurement is by using the input capture of a 16-bit timer.
On each capture, the contents of the free-running counter is copied into the capture register.
This generates an interrupt request, that is served by an appropriate service routine.

The difference between the current value and the previous value gives the period in the timer's
ticks units. If the new value is less than the old one, this means that the free-running counter
has overflowed, and the calculation formula must take this case into account. To achieve the
required accuracy, a clocking frequency of at least 30 kHz is required, so as to produce a
count of 200 points or more at the highest speed, meeting the required resolution of 0.1 knot.

10.2.1.2 Interfacing the wind gauge

The wind gauge works exactly the same way, but with different values: the frequency is 1.28
Hz per nautical knot. The range of speeds measured is within 1 to 80 knots, that is 1.28 Hz to
102.4 Hz, and the required accuracy is + or -5% knot. 
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To achieve the required accuracy, a clocking frequency of at least 2.048 kHz is required, so as
to produce a count of 20 points or more at the highest speed, meeting the required resolution
of 5%.

10.2.1.3 Using a common timer for both speed measurement devices

In order to save one of the two timers for other purposes, we need to use only one timer for
both measurement devices above. This is no problem, since each 16-bit timer has two capture
inputs: each one can serve one of the above instruments.

We found above that each instrument implies a minimum clock frequency to achieve the re-
quired resolution. Actually, both also have a maximum clock frequency, if we want to keep the
measurements within the range of a 16-bit word. These limits are as shown in the table below:

We can see that there is a common area within these ranges, so that any clock between 30
kHz and 51.2 kHz would fit. Unfortunately, the lowest clock frequency that can be applied to
the input of the timer is the CPU clock divided by 8, that is 500 kHz using a 8 MHz crystal.

The solution consists in expanding the range of the timer to more bits by software, using the
interrupt on overflow. At that frequency, the timer would overflow less than eight times per
second, so the interrupt service routine would not overload the processor. The captured value
would then represent the low-order word of a 32-bit value, and the overflow interrupt would in-
crement the high-order word by one.

With that frequency, the formula to calculate the speed in knots is:

where n is the difference between two successive counts captured.

The fine-tuning of each of the devices, necessary to take into account the variation from unit
to unit, is done by varying the constant used in the formula. For this purpose, two trimmers are
connected to two analog inputs, and the value read is scaled so that the coefficients above are

Rounded clock frequency 
(kHz)

Device Minimum Maximum

Speedometer 30.000 87.380

Wind gauge 2.048 51.199

Device Formula

Speedometer 66666 / n

Wind gauge 390625 / n
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unchanged when the trimmer is at the center; the values are decreased or increased by 20%
when the trimmer is at one end or the other, respectively.

The trimmers are only read once at power on.

10.2.2 Interfacing the weather vane

The weather vane can occupy any angular position in a full circle. Using a potentiometer with
no mechanical stop, this will translate into a voltage on the slider that ranges from 0 to 100%
of the supply voltage. This voltage can then be fed into the Analog to Digital Converter, pro-
ducing a reading from 0 to 255.

Actually, there are three problems.

■ The resolution needed is one degree, that is, 360 conversion points.

■ There is a small angle where the wiper makes no contact.

■ The potentiometer is set to a rough position when installed at the top of the mast; it is
necessary to recalibrate the reading by electronic means when tuning the system.

The first problem can be solved by providing a numeric-type low-pass filtering of the voltage
read. In any case, the various movements of the boat will add a rather high amount of noise to
the reading that must be filtered out. This filtering involves computing the mean of a certain
number of readings. The effect of doing so is twofold: it reduces the variation speed of the
reading, and it increases the resolution, since the converter’s smallest increment is divided by
a certain number. Here, we only need to increase the resolution by a factor of two; thus this is
very easy to perform.

The second problem is easily solved by adding a pull-down resistor from the wiper to the
ground. All readings when the shaft is within that dead angle will read zero.

The third problem is easily solved by adding a certain constant to the reading, then rolling over
any result greater than 360 (that is, taking the value modulo 360). This constant is read from
the Analog to Digital Converter, using a trimmer as above, but the range of the adjustment is
now + or - 45°.
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10.3 INTERFACING THE DISPLAY

The display used is made of three, three-digits-and-a-half, liquid-crystal display.

A pair of LEDs indicates the value currently being displayed in each LCD display. Toggling be-
tween the values is done by pressing a push-button next to the corresponding display.

1st option 2nd option

1st display Visible wind Real wind

2nd display Visible angle Real angle

3rd display Boat Speed V.M.G.
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10.3.1 Display circuit

10-schem
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The schematic above shows how the three LCD components are driven. Each segment and
the backplane of each component is connected to an output of a eight-bit, serial-in, parallel-
out, shift register. All shift registers are cascaded. Thus the whole display is driven using only
two wires: data and clock. At each clock pulse, the data bit is shifted by one place. After 96
clock pulses, the first bit is output at the farthest output of the shift register, and all following
bits appear at the successive outputs, supplying each segment with either a zero or a one.

Sending this data would consume a lot of core time, if it were to be performed entirely by soft-
ware. Luckily, the ST7 has a very useful peripheral, the Serial Peripheral Interface.

The SPI is able to send each of the eight bits of one byte serially, producing a clock pulse for
each bit sent. The process is started when the SPI Data Register is written to, and the data is
output at the MOSI pin if the SPI is set to Master mode. This way, the whole display is re-
freshed by sending only one byte for each digit of the display, that is twelve bytes altogether.

The clock frequency may be chosen from 1/2 to 1/64 of the core clock. Here, we shall use the
fastest clock, that means that sending eight bits will take 16 core cycles.

Each of the right-hand three digits is composed of seven segments, and a decimal point. The
left-hand digit is only capable of displaying +, -, plus a one, plus a symbol (an arrow).

The relationship between the byte sent and the pattern displayed depends on the actual wiring
of the display board. The coding of the various patterns for each case and for the board used
in this application is shown in the picture below.

The SPI must be configured in master mode. In this mode, the SS pin must be set to a high
level. This can be done either by connecting the corresponding pin (which is also PC7) to the
supply voltage and configuring that pin as an input, or by leaving that pin unconnected and
configuring it as an output, while the corresponding bit in the Data Register is set to one.
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10-code

" - "    0 x 0 8

" + "    0 x 0 A

" - 1 "   0 x 1 8

" + 1 "   0 x 1 A

" <  "   0 x 0 4

B a c k  p l a n e
o n  O u t p u t  0
o f  t h e  f i r s t
s h i f t  r e g i s t e r

" 0 "  0 x F 6      " . 0 "  0 x F E

" 1 "  0 x 9 0   " . 1 "  0 x 9 8

" 2 "  0 x 7 5   " . 2 "  0 x 7 D

" 3 "  0 x F 1   " . 3 "  0 x F 9

" 4 "  0 x 9 3   " . 4 "  0 x 9 B

" 5 "  0 x E 3   " . 5 "  0 x E B

" 6 "  0 x E 7   " . 6 "  0 x E F

" 7 "  0 x B 0   " . 7 "  0 x B 8

" 8 "  0 x F 7   " . 8 "  0 x F F

" 9 "  0 x F 3   " . 9 "  0 x F B

7  s e g m e n t  c o d e s  f o r  a l l  d i g i t s

B p  X  Z  Y  K  L  ( B p )  ( B p )

g 3  f 3  e 3  d p 3  b 3  a 3  d 3  c 3

g 2  f 2  e 2  d p 2  b 2  a 2  d 2  c 2

g 1  f 1  e 1  d p 1  b 1  a 1  d 1  c 1

X   "     "

Z   "  < -  "

Y   "     "

K   "  1  "

L   "   :  "

d 0 d 7
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Thus, displaying a number, say -1.234, consists of finding the corresponding pattern in the
table above and sending all four patterns in a row, starting with the right-most digit. In this ex-
ample, we would send the bytes (in hexadecimal):

The Liquid Crystal Display component used here is said to be static, meaning that there is a
separate pin for each segment or symbol, and no multiplexing is required. Applying a small
voltage between any segment and the backplane will show that segment. The voltage may be
chosen to be either positive or negative.

However, liquid crystal physics are such that a segment cannot be continuously supplied with
a DC voltage, or electrolysis would occur and severely degrade the component. To avoid this,
the voltage polarity must be reversed periodically. This does not alter the clarity of the display,
provided the frequency of the reversing is high enough. In practice, a frequency of 50 Hz is
sufficient, that is, 100 reversals per second.

Since the backplane is connected to one output of the shift register, reversing the polarity
merely involves the one’s complementing of all the bytes sent to the display, every other
frame. 

In the example above, the successive frames sent would be:

10.3.2 Push-button circuit

Each of the three push-buttons could have been connected directly to an input of a parallel
port. This is by far the simplest solution. However, there are cases where the number of avail-

Digit or symbol to show 4 3 .2 -1

Value sent 93 E7 7D 18

Digit or symbol to show 4 3 .2 -1 Time (ms)

Value sent 93 E7 7D 18 0

6C 18 82 E7 10

93 E7 7D 18 20

6C 18 82 E7 30

93 E7 7D 18 40

etc.
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able pins is not sufficient. This is not the case here, as far as parallel ports are concerned,
however a restriction lies in the fact that the display board is connected to the main board
using a 9-pin connector. To overcome this problem, a different approach has been chosen.

The push-buttons are connected to a voltage divisor made of four resistors; one node is con-
nected to pin PD0, which is configured as an analog input. When no button is pressed, the
voltage at PD0 is +5V. When the three buttons are pressed in sequence, the voltage falls to
the values 2.5 V, 2 V, or 1.25 V, depending on the button pressed. These voltages, once con-
verted, yield the values 255, 127, 101, and 63.

By comparing these values against three thresholds at, for example, 192, 114 and 82, it is
easy to determine whether a button is pressed, and which one. This principle can be extended
for more buttons if necessary. 

10.3.3 LED circuit

Each display has a pair of LEDs as an indication of whether the reading is absolute or relative.
The red LED of the pair is lit when the open-drain output that drives it is on. When off, the
green LED is lit as it is in parallel with the red one, but with a diode in series that provides an
additional threshold voltage. To provide enough current, the high-current open-drain outputs
PA4 to PA6 are used.

10.4 INTERFACING THE OPTIONAL PERSONAL COMPUTER

The definition of this project includes the capability to interface a portable personal computer
so that the diagrams above can be drawn on the screen in real time, or the data can be logged
for later analysis. In either case, the same data can be sent to the computer: the raw speed
and direction measurements, the corresponding absolute speeds and direction, and the VMG.

The data are sent on the computer’s request. Various commands allow the computer to select
the data it wants. These are:

Parameter Command
Format of 
data sent

Range Units

raw boat speed B XX.X 0.0 to 199.9 knots

raw wind speed W XX.X 0.0 to 199.9 knots

raw wind direction D XXX 0 to 360 degrees

relative wind speed w XX.X 0.0 to 199.9 knots

relative wind direction d XXX 0 to 360 degrees

VMG V XX.X 0.0 to 199.9 knots
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10.5 PROGRAM ARCHITECTURE

The program performs the following tasks:

■ Read the values of wind speed and direction and boat speed

■ Compute the absolute values and the VMG

■ Display these values

■ On request from the PC, send the appropriate data

The values based on frequency are read from the timer and converted in an interrupt service
routine each time a capture is performed.

The display, as explained above, must be refreshed at precise intervals. It is controlled by a
periodic interrupt service routine triggered by a timer. This routine also performs the reading of
the wind direction through the Analog to Digital Converter, and the low-pass filtering of the
value to both increase resolution and reduce instability.

The serial interface is entirely driven by an interrupt service routine triggered by the inputs and
outputs of characters to or from the PC.

10.5.1 Reading and conversion of the speeds

As explained earlier, the wind and boat speeds are both input as a square wave with a variable
frequency that is proportional to the speed. The frequencies are too low to be able to measure
them by counting the periods in a sufficiently short time. This is why in this application the
speeds will be calculated from the inverse of the period duration. Actually, this conversion will
be done in the calculation block, for an interrupt service routine must be fast and division is the
longest of all arithmetic operations.

The timer has a provision for triggering an interrupt request when either of its capture inputs
has received an active transition. The interrupt service routine will check the Status Register to
direct the reading to either the boat speed or the wind speed. If the interrupt cause is the over-
flow, the high words of both capture values are incremented.

Since in the 72311, only Timer B has two capture inputs, the boat speed will be connected to
ICAPT1_B and the wind speed to ICAPT2_B. The code is the following:

#pragma TRAP_PROC SAVE_REGS 
void TimerBInterrupt ( void )
    {
    tCapture Capture1, Capture2 ;
    static LWord LastCapture1, LastCapture2 ;
    
    if ( TBSR & ( 1 << ICF1 ) )     /* Is this is a capture 1 interrupt ? */
        {                      /* yes */
        asm
            {
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            ld a, TBIC1HR        /* Get new time */
            ld Capture1.W.Low, a
            ld a, TBIC1LR
            ld Capture1.W.Low:1, a
            }          
        BoatPeriod = Capture1.Long - LastCapture1 ;  /* calculate time 

difference */
        LastCapture1 = Capture1.Long ;    /* Remember this time for next 

capture */
        }

    if ( TBSR & ( 1 << ICF2 ) )     /* Is this is a capture 2 interrupt ? */
        {                       /* yes */
        asm
            {
            ld a, TBIC2HR        /* Get new time */
            ld Capture2.W.Low, a
            ld a, TBIC2LR
            ld Capture2.W.Low:1, a
            }          
        WindPeriod = Capture2.Long - LastCapture2 ;  /* calculate time 

difference */
        LastCapture2 = Capture2.Long ;    /* Remember this time for next 

capture */
        }
        
    if ( TBSR & ( 1 << TOF ) )     /* Is this is an overflow interrupt ? */
        {                       /* yes */
        asm
            {
            ld a, TBCLR        /* clear interrupt request */
            }
        Capture1.W.High++ ;       /* Increment high order word */
        Capture2.W.High++ ;       /* on both channels */
        }
    }

All timer events trigger the same interrupt request. At the beginning of the function, the TBSR
status register is tested for one of the following three events:

■ Capture 1 event

■ Capture 2 event

■ Timer overflow event

Once the origin of the interrupt has been determined, the flag must be cleared. This is done by
reading the capture low register of the corresponding channel, or by reading the free-running
counter low register, for an overflow event.

As said above, the captured value is written to the low-order word of the capture variable
which is of type unsigned long. The overflow of the timer produces the incrementation of the
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high-order word of both capture variables. To do so, the capture variable is declared as fol-
lows:

typedef union uCapture
            {
            LWord Long ;
            struct sCapture
                {
                Word High ;
                Word Low ;
                } W ;
            } tCapture ;

It consists of the union of an unsigned long and of a structure of two unsigned integers (word).
This allows the variable to be treated as a whole, as in the following line:

LastCapture2 = Capture2.Long ;    /* Remember this time for next capture 
*/

 or as a pair of words:

ld Capture2.W.Low, a

The capture registers are copied into the capture variable using assembler statements. You
might ask why a simple C assignment would not do. The problem is that the timer has a spe-
cial mechanism that locks off the capture mechanism when the high-order byte has been read,
until the low-order byte is read. Since the compiler does not guarantee the order of handling of
the two bytes of a word, it is necessary to do it in assembler.

10.5.2 Refreshing of the display

The display must be refreshed periodically with a bit pattern that changes from true to comple-
ment and back every time. It is important that the duty cycle be exactly 50% to guarantee that
no DC component is fed to the liquid crystal solution. The solution is to do the display refresh
by an interrupt service routine attached to a timer that provides periodic interrupts. This is
done 100 times per second.

The code is the following:

Each of the three four-digit displays is represented by an array such as:

Byte WindSpeedDisplay [ 4 ] ;  /* Contents of the three displays. The 
left-most digit */
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The contents of this array are copied to the SPI, one byte at a time, by the following function.
The last three bytes of the array contain the values to be displayed. The function uses the
SevenSegmentCode lookup table to find the pattern to be sent to the display shift registers. The
following conventions apply to the values to be displayed:

The figures 0 to 9 are displayed as is. If a digit is to be displayed with a decimal point to the left,
the value 16 is added to it. To blank the digit, the value must be 10. 

The first byte is not converted, as it already contains the pattern to display (1, -1, or an arrow).

void RefreshOneDisplay ( char * s ) 
    {
    signed char i ;
    
    for ( i = 3 ; i > 0 ; i-- )     /* Right 3 digits */
        {
        while ( ( SPISR & ( 1 << SPIF ) ) == 0 ) ;  /* Wait for end of 

transmission */
        SPIDR = SevenSegmentCode [ s[i] ] ^ Polarity ;     /* Send current 

byte with proper polarity */
        }        
    while ( ( SPISR & ( 1 << SPIF ) ) == 0 ) ;  /* Wait for end of 

transmission */
    SPIDR = s[0] ^ Polarity ;     /* Send leftmost digit with proper 

polarity */
    }

The pattern is sent to the display device after performing an exclusive 
or with the variable Polarity 
that is alternately 0 or 0xff, 
to provide the display with an 
AC drive voltage, as said 
above.

This function is called three times for each display refresh, with the 
a pointer to another array each 
time. This is done in the 
following function:

void RefreshAllDisplays ( void )
    {
    RefreshOneDisplay ( BoatSpeedDisplay ) ;   /* First bit string for 

farthest display (3) */
    RefreshOneDisplay ( WindAngleDisplay ) ;
    RefreshOneDisplay ( WindSpeedDisplay ) ;

    /* Toggle polarity */
    if ( Polarity == 0 )
        Polarity = 0xff ;
    else
        Polarity = 0 ;
    }
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The Polarity variable is also toggled here, so that the drive voltage will have a frequency of
50 Hz since the function is called 100 times per second.

10.5.3 Polling the push-buttons

The push-buttons are wired to a resistor arrangement that produces different voltages at one
of the inputs of the Analog to Digital Converter. A different voltage is also provided when no
button is pressed. The following function reads the voltage input, with the required de-
bouncing, both to avoid noise making it appear that a button is pressed, and also to be sure
the voltage is stable and not en route to a final value when we sampled it.

The result is written into a global variable ButtonState that is zero when no button is pressed,
otherwise 1, 2 or 3 depending on the button pressed. This variable is used by the main pro-
gram, which puts it back to zero. The debouncing mechanism is such that, to produce the
same value again, or another value, the user must first release the button, then press it again,
or press another. There is no auto repeat function, unlike on a computer keyboard.

void GetPushButtons ( void )
    {
    static Byte OldState, Count = 0 ;
    Byte NewState, a ;

        
    a = ADCDR ;                 /* Get last conversion */
    if ( a < 80 )               /* about 1.57 V */
        NewState = 1 ;          /* Key 1 is pressed */
    else
        if ( a < 120 )          /* about 2.35 V */
            NewState = 2 ;      /* Key 2 is pressed */
        else
            if ( a < 150 )      /* about 2.94 V */
                NewState = 3 ;  /* Key 3 is pressed */
            else
                NewState = 0 ;  /* No key */

    if ( NewState == OldState )
        {
        Count++ ;
        if ( Count == DEBOUNCE_TIME )
            {
            ButtonState = NewState ;    /* Signal that a key is pressed. */
            if ( Count > DEBOUNCE_TIME )
                Count = DEBOUNCE_TIME ;     /* As long as button pressed, 

do nothing */
            }
        }
    else    
        Count = 0 ;             /* Unstable state : wait. */
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    OldState = NewState ;       /* Remember for next time */
    }

The button number is determined by checking that the voltage is within a certain range. The
debouncing consists of checking that the voltage remains in the same range for a certain
number (here 3) of consecutive conversions. If the voltage falls within another range, the
Count variable is reset and the process restarts.

10.5.4 Reading and filtering the wind direction

The weather vane is attached to the shaft of a potentiometer that can turn indefinitely. It pro-
duces a DC voltage that is a fraction of the supply voltage, thus proportional to the angle. By
connecting the wiper to PD1, the Analog to Digital Converter will give a value between 0 and
255. This value corresponds to the wind direction but with the following differences:

■ The resolution is only 256 points, while the reading is expected to have a one-degree
resolution.

■ Because the potentiometer is installed without any precise alignment, the value represents
the angle shifted by a certain number of points.

To correct the shift, a simple addition of a constant, then a truncation modulo 256 is needed.
To increase the resolution, it is necessary to take the mean of a certain number of successive
readings. This also has the advantage of filtering the signal, thus damping the oscillations that
the weather vane undergoes because of the pitch and roll. This is performed by building an
array of the successive values of the direction, and shifting these values each time a new
value is read; the oldest value is lost, and replaced by the newest one. Then taking the mean
of all these values yields the required filtering as well as the resolution increase, if we divide
the sum of the value by half the number of values to be averaged: the result stands now be-
tween 0 and 511, which allows us to display the direction to the degree. This operation implies
periodic readings; they are performed once every two interrupts (i.e. 50 times per second) by
the display refresh routine, avoiding using a timer for this purpose.

The code is the following:

The Analog to Digital Converter is initialized with the proper channel number, starting the con-
version. A loop waits until the conversion is complete, and the value is read, with the addition
of the VaneAdjust variable that corrects the alignment error. Then the converter is configured
back for the channel that corresponds to the push-buttons.

void ReadDirection ( void )
    {
    Byte i, a ;
    int Angle ;
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    ADCSR = ( 1 << ADON ) | DIRECTION_CHANNEL ;
    while ( ( ADCSR & ( 1 << COCO ) ) == 0 ) ;       /* Wait for end of 

conversion */

    /* Correct mounting and take advantage of overflow to roll over. */
    a = ADCDR + VaneAdjust ;                       

    /* Configure A to D back to channel 0 (push-buttons) */
    ADCSR = ( 1 << ADON ) | PUSHBUTTON_CHANNEL ;

    Wiper[WiperIndex++] = a ;
    if ( WiperIndex >= FILTER_CELLS )
        WiperIndex = 0 ;                            /* Loop back to 

beginning of array */

    /* Compute sum of all readings */
    Angle = 0 ;    
    for ( i = 0 ; i < FILTER_CELLS ; i++ )
        Angle += Wiper[i] ;
    
    RawWindDirection = Angle >> ( LOG_FILTER_CELLS - 1 ) ;  /* Assign 

result = average * 2 */
    }

The new reading is written to a circular buffer made of an array which index is incremented
each time, returning to zero when it has reached the last element. A new average is computed
each time, by summing the values of all elements, and dividing the sum by the number of el-
ements. Actually, since we need to increase the resolution from eight to nine bits, we divide
the sum by only half the number of elements. Since the ST7 has no division instruction, and
the division takes a long time, the solution used here is to have a number of element that is an
exact power of two (32), and we divide by shifting the sum right by 5 bits. This result is written
to the global variable RawWindDirection.

10.5.5 The periodic interrupt service routine

This routine does the display refresh each time, and, every other time, the push-button polling
and the vane angle measurement.

#pragma TRAP_PROC SAVE_REGS
void TimerAInterrupt ( void )
    {
    static Bool Turn ;
    
    asm
        {
        ld a, TASR ;        /* Clear interrupt request */
        ld a, TACLR ;
        }
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    if ( Turn )
        {
        GetPushButtons() ;
        ReadDirection () ;
        }
    Turn = ! Turn ;
    RefreshAllDisplays () ;
    }

10.5.6 Computation of the results

The main program takes the raw values and applies to them the formulae given at the begin-
ning of this chapter. For each display, according to the current selection that is shown by either
a green or a red light, either the raw value or the corrected value is converted to a string and
sent to the display.

Since the raw values are produced by an interrupt service routine, it is important to read them
atomically. A function provides for this, by disabling the interrupts for the time the value is
read:

Word Atomic ( Word * p )
    {
    Word Result ;
    
    DisableInterrupts ;
    Result = * p ;
    EnableInterrupts ;
    return Result ;
    }

A similar function is also available for long values. Since they are involved in floating calcula-
tions, the function directly returns them converted to float.

float LongToFloatAtomic ( LWord * p )
    {
    float Result ;
    
    DisableInterrupts ; 
    Result = (float)(* p) ;
    EnableInterrupts ; 
    return Result ;
    }
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The results of the computation are word values that must be converted into a string of charac-
ters. This is done by the following function which is a very classical number-to-string conver-
sion. The leftmost digit is processed separately: if the result is between 1000 and 1999, the 1
is displayed; if it exceeds 1999, an arrow is displayed to show that the value overflows the dis-
play capacity. Finally, the minus sign is shown if the number is negative.

In the process of number-to-string conversion, please note the use of the div function that
takes two values and produces at once both the quotient and the remainder in a structure.
This is a very efficient way to do it.

One might question why the standard C function sprintf is not used here. There are two rea-
sons: the first one is that this function requires a large amount of code, that would not fit the
available ROM. The other reason is that this function yields an ASCII string, which is not what
our display needs anyway.

void NumberToString ( int Value, char * S )
    {
    Byte i ;
    div_t Step ;
    
    Step.quot = abs ( Value )  ;    /* convert absolute value */    

    for ( i = 3 ; i > 0 ; i-- )
        {
        Step = div ( Step.quot, 10 ) ;  /* determine next digit */
        S[i] = Step.rem ;           /* this is the digit */
        }
    if ( Step.quot == 0 )
        S[0] = 0 ;  
    else
        {           /* Case of an overflow */
        if ( Step.quot == 1 )
            S[0] = 0x10 ;       /* supplementary digit is 1 : use left-

hand 1 */
        else
            S[0] = 0x04 ;       /* greater than 1 : put overflow sign (<-) */
        }
    
    if ( Value < 0 )
        S[0] |= 0x08 ;  /* add minus sign if necessary */

    }

The execution of the computations is a mere translation in C language of the mathematical for-
mulae, thanks to the use of floating point arithmetic. This needs no further explanation.
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10.5.7 Handling of the serial interface

The serial interface is configured to both transmit and receive under interrupt control. The con-
figuration function is the following:

void InitSCI ( void )
    {
    SCICR1 = 0 ;    /* 8 bits, one stop */
    SCIBRR= ( 3 << 6 ) + ( 0 << 3 ) + 0 ;  /* Send & receive at 9600 bps */
    SCICR2 =   ( 0 << TIE )     /* Transmit interrupts disabled 

(temporarily) */
             | ( 1 << RIE )     /* Receive interrupts enabled */
             | ( 1 << TE )      /* Transmitter enabled */
             | ( 1 << RE ) ;    /* Receiver enabled */
    }

Both transmit and receive interrupts are used. However, the transmit interrupt request is
present as soon as the transmit register is empty, which is always the case when nothing is
being sent. Thus, the transmit interrupt is always masked out except when there is something
to send.

The bit rate is supplied by the normal rate generator, applying only a division by 13, which after
the wired divider by 32, gives a bit rate of 9600 from a 4 MHz internal clock. The pins corre-
sponding to the input and output of the SCI are configured as floating inputs.

The interrupt service function is the following:

#pragma TRAP_PROC SAVE_REGS 
void SCIInterrupt ( void )
    {
    char Ch ;
    
    if ( SCISR & ( 1 << RDRF ) )
        RemoteCommand = SCIDR ;     /* Receive interrupt: clear request, 

keep character */

    if ( SCICR2 & ( 1 << TIE ) )    /* If transmit interrupts enabled, */
        if ( SCISR & ( 1 << TDRE ) )
            {
            Ch = TransmitBuffer[TBIndex++] ;    /* Transmit interrupt: 

get next character */
            if ( Ch == ’\n’ )
                SCICR2 &= ~( 1 << TIE )  ;  /* End of line: disable 

transmit interrupt */
            SCIDR = Ch ;                    /* Send character */
            }
    }
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If the interrupt cause is the reception of a character, the interrupt request is cleared by reading
the Status Register (which is done when it is tested), then reading the Data Register. The
character received is copied to the global variable RemoteCommand that is used by the main
program.

If the interrupt cause is the transmit buffer being empty, the interrupt request is cleared by
reading the Status Register, and writing the next character from the buffer to the Data Register
of the SCI. The buffer index is incremented for next time. 

The value of the character is tested, and if it is a Line Feed character, meaning it is the last
character of the message, the transmit interrupt is masked out, so that no further interrupts will
be generated.

The main program tests the value of RemoteCommand and, if it belongs to the predefined vo-
cabulary (W, w, D, d, B, V), the requested value is calculated, converted to an ASCII string,
and put into the buffer. Then, the RemoteCommand variable is reset to zero, the Transmit Buffer
index is reset to zero (the beginning of the buffer) and the Transmit Buffer Empty interrupt is
enabled. This triggers interrupt servicing immediately, since the request is already pending,
and the first character is sent immediately.

This way of handling the SCI is both fast and memory-efficient: the interrupt service routine
just copies a character from one address to another. It is the main program that calculates the
string to be sent as the response to the request received, and this can be done when the core
has the time to do it. Thus serial communication occurs at exactly the speed the core can
handle and does not impede meeting the stringent requirements for interrupt latency required
by the frequency measurement. The display refresh, which must be done at regular intervals,
is also not affected whatever the number of requests received from the computer.

10.5.8 Initialization of the peripherals and the parameters

The initialization calls for few comments. Initialization of Timer A in PWM mode is done with
this function:

void InitTimerA ( void )
    {
    TACR1 = ( 1 << TOIE ) ;     /* Overflow interrupt enabled */
    TACR2 = ( 1 << PWM ) ;      /* PWM mode, clock divided by 4 */
    TAOC2HR = REFRESH_PERIOD >> 8 ;
    TAOC2LR = REFRESH_PERIOD & 0xff ;
    }

Please note that the order of the loading of the compare register is important. When the high-
order byte is written, the comparisons are inhibited until the low-order byte is also written. This
implies that the high byte must be written first, in order to have the PWM mode work.
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The three calibration parameters are read from the position of the three trimmers. The three
voltages are read and converted into the proper numeric values to work appropriately when
used in the calculations. These parameters are produced by the following function:

void InitCalibration ( void )
    {
    ADCSR = ( 1 << ADON ) | WIND_CALIB_CHANNEL ;
    while ( ( ADCSR & ( 1 << COCO ) ) == 0 ) ;       /* Wait for end of 

conversion */
    WindFactor = ( ( ( (float)ADCDR - 128.0 ) / 640.0 ) + 1 ) * 

NOMINAL_WIND_FACTOR ;

    ADCSR = ( 1 << ADON ) | BOAT_CALIB_CHANNEL ;
    while ( ( ADCSR & ( 1 << COCO ) ) == 0 ) ;       /* Wait for end of 

conversion */
    BoatFactor = ( ( ( (float)ADCDR - 128.0 ) / 640.0 ) + 1 ) * 

NOMINAL_BOAT_FACTOR ;

    ADCSR = ( 1 << ADON ) | VANE_CALIB_CHANNEL ;
    while ( ( ADCSR & ( 1 << COCO ) ) == 0 ) ;       /* Wait for end of 

conversion */
    VaneAdjust = ( (signed char)ADCDR - 128.0 ) / 4 ;
    }

The first two parameters vary from one end of the trimmer to the other end from 0.8 to 1.2
times the nominal calibration parameter. The second varies from -32 to +32 which represents
-45° to +45°.
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10.6 MEMORY ALLOCATION AND COMPILE AND LINK OPTIONS

The whole program make extensive use of floating point arithmetic. It is thus a memory eater.
The ROM section does not represent a problem, provided a device with a sufficient ROM size
is chosen. Here, a size of 16 Kbytes is necessary.

The RAM allocation is a little bit trickier. The ST7 has two direct addressing modes: short and
extended. The mode must be chosen at compile time, while the actual memory allocation is
done at link time. This means you have to proceed by trial and error, until the proper section
arrangement has been found.

The ST72311J4 used here has its addressable space divided into the following areas:

The position of the stack is fixed, with a start position (top) at 0x1FF. Since the stack does not
need the full 256-byte area, some of it may be allocated for variables. The arrangement used
here is to put the DEFAULT_RAM section from 0x100 to 0x18F, overstepping the stack area
a little bit. The _OVERLAP section is set at 0x200. The _ZEROPAGE section can only be set
below 0x100. This is fully detailed in the link parameter file below:

SECTIONS
APORTS   = READ_WRITE     0x00 TO   0x17;
    AMISC    = READ_WRITE     0x20 TO   0x20;
    ASPI     = READ_WRITE     0x21 TO   0x23;
    AWDG     = READ_WRITE     0x2A TO   0x2B;
    ATIMERA  = READ_WRITE     0x31 TO   0x3F; 
    ATIMERB  = READ_WRITE     0x41 TO   0x4F; 
    ASCI     = READ_WRITE     0x50 TO   0x57;
    AADC     = READ_WRITE     0x70 TO   0x71;
    AZRAM    = READ_WRITE     0x80 TO   0xFF;
    ARAM     = READ_WRITE    0x100 TO  0x19F;
    ASTACK   = READ_WRITE    0x1A0 TO  0x1FF;

Object From To Access

Hardware registers (peripherals) 0 0x7F Read-Write

Short addressing mode RAM 0x80 0xFF Read-Write

Stack area, some of which may be used as 
extended addressing RAM

0x100 0x1FF Read-Write

Extended addressing RAM 0x200 0x27F Read-Write

No addressable object in this area. 0x280 0xBFFF None

ROM 0xC000 0xFFDF Read only

Vectors 0xFFE0 0xFFFF Read only
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    ARAM2    = READ_WRITE    0x200 TO  0x27F;
    AROM     = READ_ONLY    0xC000 TO 0xFFE0;    
    
PLACEMENT
    DEFAULT_ROM, ROM_VAR, STRINGS          INTO  AROM;
    DEFAULT_RAM                            INTO  ARAM;
    _ZEROPAGE                              INTO  AZRAM;
    _OVERLAP                               INTO  ARAM2;
    SSTACK                                 INTO  ASTACK;
    PORTS                                  INTO  APORTS;
    MISC                                   INTO  AMISC;
    SPI                                    INTO  ASPI;
    WDG                                    INTO  AWDG;
    TIMERA                                 INTO  ATIMERA;
    TIMERB                                 INTO  ATIMERB;
    SCI                                    INTO  ASCI;
    ADC                                    INTO  AADC;
END

The compiler and the linker must be set to work accordingly.

The compiler must be aware that the _OVERLAP section is not in the zero page, so that it
cannot use short direct addressing. This is done using the -Mlx option, where x means that
the local data must be accessed using extended addressing mode. The compiler options, as
set in the DEFAULT.ENV file, are as follows:

COMPOPTIONS=-Or -Cni -Cc -Mlx

The -Cc option indicates that the constant data (the table of 7-segment patterns) is to be
placed only in ROM.

The linker must also be aware of these choices, by specifying the linking of the ANSIX.LIB li-
brary and the START07X.O startup file along with the project files, instead of ANSI.LIB and
START07.O.

Note: The README.TXT file in the main HICROSS directory summarizes the coordination of
these options.

Once these settings are placed, the project can be built. It is then time to fine-tune the memory
allocation. If all variables were defined without paying any special attention, they would all be
in the DEFAULT_RAM segment. This segment would then be too big and eat into the stack seg-
ment, while the _ZEROPAGE segment would not be full enough. To improve the balance, some
variables in the INTERRUPT.C file have been moved to page zero using the following pragma:

#pragma DATA_SEG SHORT _ZEROPAGE
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which both forces the linker to put any variables declared after this line into the _ZEROPAGE
segment. It also specifies that all accesses to the corresponding variables must be done using
direct short addressing. The fact that a variable is in the _ZEROPAGE section does not imply that
short addressing must be used, so it is necessary to specify SHORT as well.

This fine tuning can be done by studying the resulting map file, then calculating the free room
in the _ZEROPAGE segment, then moving those variables that are both freqently used and have
a total size that fits the available space.

10.7 CONCLUSION

This application demonstrates a system where two contradictory needs are combined to-
gether:

■ Data collection and display refresh that have real-time requirements. 

■ Data processing that requires a lot of computing power, but with no particular requirement
regarding speed.

Each of these requirements could be satisfied by means of a proper balance between the in-
terrupts and the main program. The interrupt service functions have been designed so that
they had as little computation as possible to perform, just moving data between memory and
peripherals. The main program then retrieves the data from memory, processes it, and puts
the results in yet another memory storage, so that it can be displayed or sent through the serial
line. The correct functioning relies on appropriate handshaking (for the serial transmission)
and the enforcement of the rules on atomicity (for data transfer from the sensors to the calcu-
lation block).

Although the ST7 is a medium-range 8-bit product, it benefits from the full use of the C lan-
guage, that allowed us to write both the byte-level actions and the floating-point calculations
with the same ease. The only points where building a microcontroller application is trickier
than a PC-based application are the peripheral initializations (for there is no DOS to take it
over) and the memory mapping with the associated compiling options that require some
thought and some trial and error before actually working on the emulator and then on the pro-
totype.
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11 SOME LAST REMARKS

The ST7 has been shown at work in two different applications, where two variants have been
used.

These can be considered as the most common variants. Actually, the ST7 range is very rich,
with a wide choice of memory sizes and peripherals. This allows you to select the exact model
that will fit a given application with the best value. The choice of packages allows you to re-
duce the printed circuit area both with surface mounting and also with conventional insertion
techniques, using shrink DIP packages that reduce the component size almost by half.

The very low consumption of the ST7 has been demonstrated in the first application, where
the carrier-current receiver was powered through a capacitor and a rectifier. This is also a
useful feature in battery-powered applications, like the sailing computer described in the
second application. When this is an important feature, care should be taken to use the lowest
possible crystal frequency, since the consumption is roughly proportional to the frequency.
The ST7 has three different power-reduction features: Slow mode, Wait mode and Halt mode.
These modes offer different means of optimizing power consumption.

Halt mode is the best choice if the chip has long periods of time where it has nothing to do,
such as in applications where the controller activity is started by a human interaction, on a
keypad for example, like in pocket calculators. Restarting takes some time, so may not be us-
able where the controller must be woken-up quickly. Also, the only way of waking it is through
a reset, which is not ideal when the context must be kept from one run to the next. However,
this mode is the most efficient, since it divides the power consumption by about 1000.

Wait mode only puts the core to sleep. The peripherals are still alive, and can still handle
timing tasks, receive characters from the serial line, etc. The amount of power reduction de-
pends on the internal clock rate selected. When used in conjunction with Slow mode, the in-
ternal clock can be divided by a programmable factor (on some models), which also reduces
the consumption of the peripherals. Of course, the slow internal clock must remain compatible
with the working mode of the peripherals. This way, the consumption may be reduced from a
modest 55% to a comfortable 82%, when the ratio of 1/16 is applied to the internal clock.

The applications of described in this book have also clearly shown how powerful the 16-bit
timer is; the tasks that they have performed could not be done with a rudimentary timer even
backed up by the core. The 16-bit timer has several neat features that relieve the core from a
lot of work, even allowing it to go to sleep while pulse generation and time-keeping are still per-
formed.

The Analog to Digital converter expands the ST7 by putting it in touch with the analog world,
without using external circuitry. This can also be used to perform digital expansion, like in the
application described in the introduction where a keypad is connected to the microcontroller
using only two wires. This is typically the way satellite controls are connected to the car radios.
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The analog loop is closed by means of the 16-bit timer which can produce accurate PWM sig-
nals, that can easily be converted to voltage using a low-pass filter.

In addition to being powerful for its size, the ST7 is also easy to use, using the available pro-
gramming tools. In particular, C language has been shown to be the language of choice, that
stands up well even when compared to C language running on much bigger machines. The
examples have shown that the best compromise is usually to write most of the program in C,
except for the very few functions that can benefit from being written in assembler. Doing so
makes the program easier to maintain, and also easier to port to a bigger model of microcon-
troller when the need arises while being able to keep most of the code. The second applica-
tion, the sailing computer, has also shown that complex calculations are not out of the reach
of the ST7. Many programmers would have struggled trying to write the same program entirely
in assembler.

STMicroelectronics offer a comprehensive range of tools to fit the needs of all users, from the
cheap, simple Starter Kit to the complete tool-set including a real-time emulator, with the inter-
mediary Development Kit that provides a remarkably good price/performance ratio.

The Starter Kit, the cheapest solution, includes the programming tools for assembly language
and an EPROM programmer. It allows to you familiarize yourself with the component, for ex-
ample to check whether it is suitable for the application you have in mind.

The Development Kit is a good value package that also provides assembly-language tools,
and a cheap but powerful emulating board. The only missing feature is real-time tracing, but it
is sufficient for simple applications. This tool really allows you to work in a professional way for
a very affordable investment.

When the additional power of real-time tracing is required, the full-fledged emulators give you
the total solution but at a higher cost.

Whatever the solution chosen, you are strongly advised to choose to program in C language,
as this book has attempted to convince you, in particular in Chapter 8 where the advantages
of high-level language programming have been highlighted.

Two C compilers are available on the market for the ST7. They come from Cosmic and Hi-
ware. The one described in this book is Hiware’s HICROSS for ST7. An evaluation version of
it is included in the ST7 CD-ROM. This version limits you to a very small program size, but this
is sufficient for a hands-on tutorial and to try building the files for the first application described
in Chapter 9 (the application in Chapter 10 is already too big for it). Buying a compiler repre-
sents a certain amount of investment, but as Chapter 8 explains, the net result of it is a profit
increase due to the ease of programming and maintaining programs written in C, not to men-
tion the advantages of portability that may prove of value in the future.
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In short, the range of tools offered for the ST7 spans all different needs from those of a small
lab to a large Engineering Department. The mid-range solution is also particularly valuable for
education purposes.
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