ENESANS APPLICATION NOTE

SH7268/SH7269 Group ROLANOGTLE 0101
SPI Multi I/O Bus Controller Feb. 16, 2012
Serial Flash Memory Connection Sample Program

Summary

SH7268/SH7269 SPI multi 1/0 bus controller (SPIBSC) has the function to directly fetch the program data on a serial
flash memory and execute them (external address space read mode) besides random serial flash memory reading
function(SPI operation mode) . This application note offers explanations about sample for using SPIBSC and the serial
flash memory connection.

Target Device

SH7268/SH7269 MCU (hereinafter called "SH7269" collectively.)

When using this application note with other Renesas MCUSs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Contents
I [01 (oo (U711 o] o PP PR PTTT TR 2
2. Explanation of AppliCatioN PrOgramcoooiiiiieiiiiiee ettt ettt nb e e 3
I T S = T] o] =3 md (o | r= Lo I USRS 22
O L= =] oo S T UUT T TUPTPUPPPRTT 51
RO1AN0671EJ0101 Rev. 1.01 Page 1 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

1. Introduction

1.1 Specifications

This application note describes about the application sample program of SPI multi I/O buss controller(SPIBSC) and its
references. As the explanation of application program, describes the connection sample to the serial flash memory and
two control methods: SPI operation mode, external address read mode.

1.2 Functions Used

e SPI multi 1/0 bus controller (SPIBSC)

o Renesas Serial Peripheral Interface (RSPI)
e Boot mode (serial flash memory boot)

e General input/output port

1.3 Applicable Conditions

MCU SH7268/SH7269

Operating Frequency Internal clock (1¢) : 266.67 MHz
Internal bus clock (B¢) : 133.33 MHz
Peripheral clock 1 (P1¢) : 66.67 MHz
Peripheral clock 0 (PO¢) : 33.33 MHz

Integrated Development Renesas Electronics Corporation
Environment High-performance Embedded Workshop Ver.4.07.00
C Compiler Renesas Electronics SuperH RISC engine Family
C/C++ compiler package Ver.9.03 Release 02
Compiler Options Default setting in the High-performance Embedded Workshop

(-cpu=sh2afpu -fpu=single -object="$(CONFIGDIR)\$(FILELEAF).obj" -
debug -gbr=auto -chgincpath -errorpath -global_volatile=0 -opt_range=all -
infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1 —nologo)

Serial Flash Memory S25FL032P (Spansion) x 1

1.4 Related Application Note
The application note relating to this application note is introduced below. Refer to it along with this application note.

e SH7268/SH7269 Group Boot from the Serial Flash Memory using the SP1 Multi I/O Bus Controller

15 About Active-low Pins (Signals)
The symbol "#" suffixed to the pin (or signal) names indicates that the pins (or signals) are active-low.

RO1ANO671EJ0101 Rev. 1.01 Page 2 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

2. Explanation of Application Program

In this application program one serial flash memory is connected to the SP1 multi I/O buss controller(SPIBSC), which
fetches any read/write accesses and programs. For read/write access, the SPI operation mode is used, and for program
fetching, the external address space read mode is used.

In this section, first explained pin connection of the serial flash memory, and later, operation overview in each mode
and their control method.

2.1 Features of SPIBSC
The features of SPIBSC are described below.

e Up to two serial flash memories can be connected
o Data bus width is selectable for one serial flash memory from 1-bit, 2-bit and 4-bit

e Possible to fetch the serial flash memory located in the SPI multi 1/0 bus space directly in external address space
read mode

o Possible for read/write operation for the serial flash memory in the SPI operation mode

2.2 Serial Flash Memory Pin Connection

Table 1 describes about the serial flash memory (Spanson’s S25FL032P) supporting the SPI multi 1/0 bus used in this
application program.

Table 1 Specification of Serial Flash Memory Used in this Application Program

Term Description

Bus input/output Serial input/output(duplex), dual input/output(half-duplex), quad
input/output(half-duplex)

SPI mode available for SPI mode 0 and 3

Clock frequency at serial input/output: 104MHz(maximum), dual/quad
input/output:80MHz(maximum)

Capacity 4MB

Sector size 64KB

Page size 256B

Erase size In all areas/64KB/8KB/4KB

Program size Page Program(1 to 256 bytes)

Protect mode Write enable command by the commands

Software/hardware protect mode by the blocks

RO1ANO671EJ0101 Rev. 1.01 Page 3 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

Figure 1shows the serial flash memory circuit. In this application program, one serial flash memory is connected to
access by 4-bit data bus width. SH7269 pin function should be set as described in Table 2 about multiplexed output pin.

Serial flash memory

SH7269 & S25FL032P (4MB)
3.3V§
PB17/QSPCLK_O/RSPCKO/SPBCLK Q . SCK
3.3V %
PB18/QSSL_0/SSLO0/SPBSSL ; L CS#
3.3V
PB19/QMO_0/QIO0_0/MOSI0/SPBMO_0/SPBIO0_0 - Q SI/100
3.3V
b
PB20/QMI_0/QIO1_0/MISO0/SPBMI_0/SPBIOL_0 +{sorno1
3.3V
PB15/QIO02_0/SPBIO2_0 ; j W#/ACC/102
PB16/QIO3_0/SPBIO3_0 - HOLD#/103
Boot mode 3
3.3v———| MD_BOOT2
MD_BOOT1
3.3V——| Mp_BOOTO

Figure 1 Example of Serial Flash memory Circuit
Note: Treating pull-up/down by the resister attached externally for the control signal pin.
Concerning pull-up/down, the signal line level is determined to avoid producing improper operating signals even
when the pin state is high impedance. Pull up the pin by the resister attached externally.

Table 2 Multiplexed Output Pins

. Control register on the SH7269 port
Periphera | .. g - & SH7269
: Pin for use . Setting value of . .
| function Register . multiplexed pin
MD bit
SPIBSC SPBCLK PBCR4 PB17MD[2:0]=B'110 PB17 / A17 | QSPCLK / RSPCKO / SPBCLK
SPBSSL PBCR4 PB18MD[2:0]=B'110 PB18/A18/QSSL_0/SSL0O0/ SPBSSL
SPBIOO_0 PBCR4 PB19MD[2:0]=B'110 PB19/A19/QMO_0/QIO0_0/MOSIO /
SPBMO_0/ SPBIO0_0
SPBIO1 0 PBCR5 PB20MD[2:0]=B'110 PB20/A20/QMI_0/QIO1_0/MISOO0 /
SPBMI_0/SPBIO1_0
SPBIO2_0 PBCR3 PB15MD[2:0]=B'110 PB15/A15/QI02_0/ SPBIO2_0
SPBIO3_0 PBCR4 PB16MD[2:0]=B'110 PB16 / A16 / QIO3_0/ SPBIO3_0

Note: SH7269 multiplex pins
The pins used for SPIBSC are multiplexed. Some are set for general input/output port by default. They should be

set to SPIBSC function by the general input/output port control register before accessing to the serial flash
memory. Pay attention that when using in boot mode 0 and boot mode 1(boot from the memory connected to the
CSO space), they cannot be set to SPIBSC function. Use boot mode 3(serial flash boot).

RO1ANO671EJ0101 Rev. 1.01 Page 4 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

2.3 Interface Timing

Figure 2, Table 3 and Table 4 show the interface timing and requirement in this application program. SPIBSC setting
value should comply to the requirements in the timings described herein.

Table 5 lists the SPIBSC interface setting values in this application program. The serial flash memory used in this
application program is set to operate in the SPI mode O(clock negate level is ‘L’, receive at rising, transmit at decaying).
Therefore the SPIBSC setting is according to the SP1 mode 0. Only the timing of reception is set to be delayed by 1/2
cycle to comply with the SH7269 data set up time.

SPBSSL X((« 77 \f
17 .
tieap tspeeye to
((t
1 2 | 3] N | =
38 tinc
SPBCLK l S l \
(CPOL = 0) | \] \ f (]_7 j{
tesH
too ton
] (
SPBIO[0:3]_0)
(output) (
—;
flash mfrsf)'f; H H [tsuonr | [
(input) f)
- ke[tho
Serial (
flash memory J
(output) (
tsu ty _S)
SPBIO[0:3]_0 I_i I_I I m
(o) i i | i
~— ¥ ~ v ~ ~—
Delays data reception timing of the SH 7269 by 1/2 so to take long for the set up time
Figure 2 Interface Timing in this Application Program
RO1ANO0671EJ0101 Rev. 1.01 Page 5 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

Table 3 Requirements for Serial Flash Memory Timing

Symbol Item Description
tcss Chip select 'L’ Necessary time from SSL asserting to data reception by the serial flash
Setup time memory. The following requirement should be met.
t.ean(=clock delay) = tcss (min)
tcs Chip select 'H’ Necessary as SSL negate period. The following requirement should be met.
trp(=next access delay) 2 tcs (min)
fc Serial clock frequency The maximum frequency that the serial flash memory can support.
The following requirement should be met.
fc(max) 2 1/ tspBeyc
tesH Chip select 'L’ Necessary time from SPBCLK rise to SSL negate.
hold time The following requirement should be met.
tLac(=SPBSSL negate delay) + tspgeyc X 1/2) 2 tcsy (min)
tsu.paT Data input Necessary set up time for data input.
set up time The following requirement should be met.
(tschycx 1/2) - tOD(max) ; tsu:pDAT (mln)
tHD:DAT Data input Necessary hold time for data input. The following requirement should be met.
hold time tOH(min) + (tSPchcx 1/2) g tHD:DAT (mln)

Note: tspgeyc is fixed to 2 tyc te,c represents 1 cycle period of bus clock (B ¢).

Table 4 Requirements for SPIBSC Timing

Symbol Item Description
tsu Data input Necessary set up time for data input.
set up time The following requirement should be met.
tspeeyc - tv(Maximum) 2 tsy(minimum)
th Data input Necessary hold time for data input.
hold time The following requirement should be met.
tho(min) 2 ty(min)

Note: tspaeyc is fixed t0 2 tyc. teyc represents 1 cycle period of bus clock (B ¢).

Table 5 Setting Value of Interface Timing in This Application Program

Register Bit Set value Function

Bit rate setting - H'0000 0100 | SPBCLK bit rate is set to half of B¢

register(SPBCR) (66.67Mbps)

Common CPOL hit B0 Set SPBCLK negate level to 'L

Control register CPAHT bit B'O Data transmission in even edge

(CMNCR) CPAHR bit B'1 Data reception in even edge

SSL delay register SPND[2:0] B'000 Set the next access delay setting to 1SPBCLK

(SSLDR) SLNDL][2:0] B'000 Set SPBSSL negate delay setting to 1.5SPBCLK

SCKDL[2:0] B'000 Set clock delay setting to 1SPBCLK

RO1ANO671EJ0101 Rev. 1.01 Page 6 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

2.4 Initial Setting Flow

Figure 3 shows the flow chart of initial setting of SPIBSC in this application program.

SPIBSC initial setting flow
io_spibsc_common_init function

v

Set standby control register 7
(STBCR7)

v

| Set port(PORT)

Is SPBSSL
negated?

Set common control register(CMNCR)

A

Set SSL delaying register(SSLDR)

Y

Set bit rate setting register(SPBCR)

v
(END)

- Release clock supply stop to SPIBSC

- Select multiplexed pins
Function: SPBIO1_0, SPBIO0_0, SPBSSL, SPBCLK
SPBIO3_0, SPBIO2_0

- Check SSLF bit in the common status register(CMNSR) to
confirm the SPBSSL is negated.

- Set CMNCR
(MOI103 to MOIIOO bit = B'11)
Function: The output value from SPBIO3 to SPBIOO is Hi-Z
during SPBSSL negated.
(IO3FV to IO2FV bit = B'11)
Function: The output value from SPBIO3 to SPBIO2 is Hi-Z
when 1 bit/2bits width.
(IOOFV bit = B'11)
Function: The output value from SPBIOO is Hi-Z when 1 bit
width.
(CPHAT bit = B'0)
Function: Transmit data at even number edge
(CPHAR bit = B'0)
Function: Receive data at even number edge
(SSLP bit = B'0)
Function: SPBSSL signal is Low active
(CPOL bit = B'0)
Function: 0 output from SPBCLK at SPBSSL negated
(BSZ bit = B'00)
Function: One serial flash memory to connect

- Set SSLDR(SSLDR = H'0000 0000)
Function: Set the next access dlay to 1 SPBCLK(fixed)

Set SPBSSL negate delay to 1.5 SPBCLK(fixed)
Set clock delay to 1 SPBCLK

- Set SPBCR(SPBCR = H'0000 0100)
Function: Set bit rate to double division of B ¢
(66.67Mbps)(fixed)

Figure 3 Flow Chart of SPIBSC Initial Setting in this Application Program

RO1ANO671EJO101 Rev. 1.01
Feb. 16, 2012

Page 7 of 52

RENESAS

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

2.5 SPI Operation Mode

25.1 Operation Overview
The SPI operation mode enables the random read/write operation from/to the serial flash memory. This mode is
necessary to write in the serial flash memory using SPIBSC.

For using the SPI operation mode, the settings shown in Table 6, Table 7 and Table 8 are necessary besides the setting
shown in Figure 3 Flow Chart of SPIBSC Initial Setting in this Application”.

25.2 Data Format and Related Registers

The commands are used for read/write operation from/to the serial flash memory. The command data format is set in
the SPIBSC register matching to the commands. Table 6 describes about data format in the SPI operation mode and the

related registers.

Table 6 Data Formant in the SPI Operation Mode and Related Registers

Item Command Optional Address Optional data Transfer data
command
Data SMCMR. SMCMR. 32 bit: SMOPR. For reading:
CMDJ[7:0] bit OCMD[7:0] SMADR.ADR[31:0] bit OPDn [7:0] bit 32 bit: SMRDRO0.RDATAOQ[31:0] bit
bit 24 bit: (n=0t03) 16 bit: SMRDRO.RDATAO[31:16] bit
SMADR.ADR][23:0] bit 8 bit: SMRDRO.RDATAO[31:24] bit
For writing:
32 bit: SMWDRO0.WDATAO[31:0] bit
16 bit: SMWDRO.WDATAOQ[31:16] bit
8 bit: SMWDRO0.WDATAO0[31:24] bit
Bit width setting SMENR. SMENR. SMENR.ADB[1:0] bit SMENR. SMENR.SPIDBJ1:0 bit
(Single/Dual/Quad) CDB[1:0] bit | OCDB[1:0] bit OPDBJ[1:0] bit
Enabling data Always outputting SMCR.SPIRE bit
input/output SMCR.SPIWE bit
Enabling transfer SMENR. SMENR. SMENR.ADE[3:0] bit SMENR. SMENR.SPIDE[3:0] bit
CDE bit OCDE bit (set bit length as well) OPDE[3:0] bit (set bit length as well)

RO1ANO671EJO101 Rev. 1.01

Feb. 16, 2012

RENESAS

Page 8 of 52

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

253 SPBSSL Pin Assert Retention

Figure 4 shows the SPBSSL assert retention function in the SPI operation mode. In this mode, when setting SSLKP bit
in the SPI mode control register(SMCR) to 1, SPBSSL signal is retained from the transfer ending to the next access

starting. This function enables continuous transfer except when the bit width of transfer data is set to more than 2 in
data read processing.

Note: Only the data for transferring are enabled here.

SSLKP bit=1 SSLKP bit=0
SPIE bit=1 SPBSSL keeps SPIE bit=1
asserting SPBSSL negates
SPBSSL _| I\
SPBCLK _nSrnSarSuLn MO
SPBMO_0/ : :
SPBIO0_0 ——(CommandX Addressx \(Asl,rl\l/tISvdE?éa)) { grl\lltlsvdDaI;e)‘ }—
SPBMI_O/ / Write data \ Write data
SPBIO1_0 _(SMWDR) / (SMWDR)
/ Write data \ Write data
SPBIO2_0 _(SMWDR) / (SMWDR)
/ Write data \ Write data
SPBIO3_0 _(SMWDR) [(SMWDR)

Figure 4 SPBSSL Assert Retention in the SPI Mode

RO1ANO671EJO101 Rev. 1.01

Feb. 16, 2012

RENESAS

Page 9 of 52

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

254

Data Read Procedure
(1) Read Command

Table 7 describes about S25FL032P read command used in the SP1 operation mode. Figure 5 shows its sequence.
Only the commands used in the sample program are applied here.

Table 7 S25FL032P Read Command Used in the SPI Operation Mode

Command name Command Number of | Number of | Number of | Function
code address dummy data byte
byte byte
Quad Output Read H'6B 3 1 One or Read data(Quad-SPlI)
bigger

Note: Read the area incremented from the specified address. Exceeding the final address returns to address 0.

sPBsSsL |
0123456 7 891011 26272829303132 37 3839404142 434445 46 47
SPBCLK ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ%ﬂﬂﬂﬂﬂﬂﬂjﬁ.ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ%
Command code Address A23to AO Dummy clock Data
SPBMO_0/ o |~ - |- g
speI00.0 —(SXEEEEEEEEEER N EEEERECE HRREEEEEEEEOY
SPBMI_0/ Hi-Z
SPB|01_O SXIX5XIX5X1IX5X 1 SS—
SPBIO2_0 Hi-2 X2 X 6X 2 X 6 X 2X 6 X 2 SS
SPBIO3_0 Hi-Z SS
TX3IX7TX3IX7TX3IX7X 3

Figure 5 Quad Output Read Command Sequence

Note: Quad Output Read command reads 4 bytes for one issue as the transfer data bit width is 4 bits.

RO1ANO671EJO101 Rev. 1.01

Feb. 16, 2012

RENESAS

Page 10 of 52

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

(2) SPI Operation Mode Setting Flow(Read)

Figure 6 and Figure 7 show the flow chart of read command transfer in the SPI mode in this application program.

Quad Output Read command transfer flow
sf_byte_read_spibsc function

Calculate transfer unit according to the| - 32-bit unit for data of multiple 32 bits, 16-bit unit for data of
data size multiple 16 bits, and 8-bit unit for data of multiple 8 bits.
‘I

No

Any data remained?

Y
¢ END)

Set data format in the structure for - Enable/disable output .
commands command ..enabled
optional command : disabled
address : enabled(24 bits)
optional data : enabled(1 byte: OPD3)
transferred data : disabled
- Bit width
command : 1-bit width(Single)
address : 1-bit width(Single)
optional data : 1-bit width(Single)
- Data value
command : H'6B(Quad Output Read)
address : flash memory address to read
optional data : indifenate
- Control read/write to the data for transferring
data read : disabled
Y data write : disabled

- SPBSSL retention setting : retention
Set SPBSSL retention in the structure

v

Execute register I/O processing - Execute functions with the structure the set value is stored as
io_spibsc_transfer function parameter. After transferring command, address and dummy data,
v returns as SPBSSL is asserted.

. - Enable/Disable output
Set data format in the structure for P

data t ¥ command : disabled
ata transter optional command : disabled
address : disabled
option : disabled
transfer data : enabled(set transfer unit)
- Bit width
transfer data : 4-bit width(Quad)
- Control read/write for transferring data
data read : enabled
\ J data write : disabled
Set SPBSSL non-retention in the - SPBSSL retention setting : non-retention

structure Note: SPBSSL retention setting is not permitted when reading

* data in bit width is set to 2 bit or 4 bit for data
transferring

Execute 1/O processing
io_spibsc_transfer function - Execute functions with the structure the set value is stored as
| parameter. Negate SPBSSL after reading the transferred data.

Figure 6 Read Command Low Chart in the SPI Operation Mode

RO1ANO671EJ0101 Rev. 1.01 Page 11 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

Register 1/O operation
io_spibsc_transfer function

—
Set in the SPI
eration mode?

No - Change to SPI operation mode with confirmation that the value of SSLF
bit in common status register(CMNSR) is negated when the value of MD

bit of common control register(CMNCR) is not SPI operation mode.

- Confirm that the transfer is completed. When the TEND bit of CMNSR

ERROR

Completed transferring?

register is B'0, the transfer is in progress.

- Set SMCMR register
Function: CMD[7:0] bit : set the command value
OCMD][7:0] bit : set the optional command value

- Set SMADR register
Function: ADR[31:0] bit : set the address value

Set SPI mode command setting
register(SMCMR)

L]

Set SPI mode address setting register
(SMADR)

v

Set SPI mode optional data setting
register (SMOPR)

v

Set SPI mode write data register 0
(SMWDRO)

- Set SMOPR egister
Function: OPD3[7:0] bit : Set the optional data value as the initial output
OPD2[7:0] bit : Set the optional data value as the second output
OPD1[7:0] bit : Set the optional data value as the third output
OPDO[7:0] bit : Set the optional data value as the fourth output

- Set SMWDRO register
Function: WDATAO[31:0] bit : set the transfer value for writing
8-bit transfer : WDATAOQ[31:24] is valid
16-bit transfer : WDATAO[31:16] is valid
32-bit transfer : WDATAO[31:0] is valid

- Set SMENR register

Set SPI mode enable setting register

i

- Data read and data write are not
enabled at one time when the
data bit width is Dual or Quad.

(SMENR) Function: CDB[1:0] bit : set the bit width of command
OCDBI[1:0] bit : set the bit width of optional command
ADB[1:0] bit : set the bit width of address
OPDBJ[1:0] bit : set the bit width of optional data
SPIDBJ[1:0] bit : set the bit width of transfer data
NG Semi-doble CDE bit : enable/disable command output
communication 'n> OCDE bit : enable/disable optional command output
al/Quad? ADE[3:0] bit : enable address output, set data length
Yes

OPDEJ3:0] bit
SPIDE[3:0] bit

: enable output of optional data, set data length
: enable transfer data output, set data length

- Set SMCR register
Function: SSLKP bit
SPIRE bit
SPIWE bit

Set SPI mode control register
(SMCR)

L]

’ Enable data transfer

v

’ Standby for transfer ‘

: set retention/non-retention of SPBSSL signal level
: enable/disable reading data
: enable/disable writing data

‘ - Set SPIE bit in SMCR register to B'1 and start transferring data.

- Repeat dummy reading in CMNSR register to stand by transfer
starting(TEND bit = B'0)

- Sand by till the TEND bit in CMNSR register becomes B'1

- Read SMRDRO register

Read SPI mode read data register 0 Function: RDATAO[31:0] bit : read the transfer value to have read

(SMRDRO) 8-bit transfer : RDATAO[31:24] is valid
* 16-bit transfer : RDATAO0[31:16] is valid
C END) 32-bit transfer : RDATAO[31:0] is valid

Figure 7 Register I/O Flow Chart in SPI Operation Mode

RO1ANO671EJO101 Rev. 1.01

Feb. 16, 2012

Page 12 of 52
RENESAS

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

255 Data Write Procedure
(1) Write Command

Table 8 describes about S25FL032P write command. Figure 8 shows its command sequence. Only the commands used

in the sample program are applied here.

Table 8 S25FL032P Write Command Used in the SPI Operation Mode

Command name Command Number Number of | Number of Function
code of dummy data byte
address | byte
byte
Quad Page Programming H'32 3 0 lor Write data(Quad-SPI)
bigger”
Note: Write in the area incremented on the same page as the specified address. Exceeding the final address returns to
address 0.
spPBssL | [
0123456 7 891011 2627 28 29 30 31 3233 34 3536 37 3839
sectk [T S UL
~ Command code | Address A23 to AO | _ Data
SPBMO_0/ - o >
S e CEEEEECE0000N00C00000000000)
SPBMI_0/ Hi-Z
SPBIOL_0 XXX XXX Sg
SPBIO2_0 Hi-Z 5 eeeeee ZSS
SPBIO3_0 Hi-Z
06,6066,

Figure 8 Quad Page Programming Command Sequence

RO1ANO671EJO101 Rev. 1.01
Feb. 16, 2012

RENESAS

Page 13 of 52

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

(2) SPI Operation Mode Setting Flow(Write)

Figure 9 shows the flow chart of write command transfer in the SP1 mode in this application program. For register 1/0

operation flow, refer to Figure 7.

sf_byte_program_spibsc function

@ad Page Programming command transfer fl

@

L]

Execute write enable command
write_enable function

L]

Set data format in the structure
(for command)

y

Set SPBSSL retention in the structure

L]

Execute register /O processing
io_spibsc_transfer function

Calculate data unit according to
data size

|

Set data format in the structure
(for data transfer)

No

- Enable/Disable output

command : enabled
optional command : disabled
address : enabled(24 bits)
optional data : disabled
data for transferring : disabled
- Bit width
command : 1-bit width(Single)
address : 1-bit width(Single)
- Data width
command 1 H'32(Quad Page Programming)
address : serial flash memory address to write
in
- Read/Write control of data for transferring
Data read : disabled
Data write : disabled
- Set SPBSSL retention : retain

- Execute function with the structure stored the setting value as a
parameter. Returns with SPBSSL asserted after transferring
comannd, adress.

- 32-bit unit for data of multiple 32 bits, 16-bit unit for data of
multiple 16 bits, and 8-bit unit for data of multiple 8 bits.

- Enable/Disable output

command : disabled
optional command : disabled
address : disabled
optional data : disabled

data for transferring
- Bit width

data for transferring : 4-bit width(Quad)
- Control transfer data read/write

: enabled(set transfer unit)

Set SPBSSL non-retention in the
structure

]

Execute register /O processing
io_spibsc_transfer function

J

data read : disabled

data write : enabled
END D

- Set SPBSSL retention : not retain

- Execute functions with the structure the set value is stored as a
parameter. Negate SPBSSL after reading the transferred data.

Figure 9 Flow Chart of Write Command Transfer in SPI Operation Mode

RO1ANO671EJO101 Rev. 1.01
Feb. 16, 2012

RENESAS

Page 14 of 52

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

2.6 External Address Space Read Mode

26.1 Operation Overview

The external address space read mode converts the read access to the SPI multi 1/O bus space to SPI communication
automatically. Using this function enables fetching the programs on the serial flash memory directly which is the same
as the NOR flash memory. Therefore deploying the programs on the RAM is not necessary, which results in saving
RAM capacity.

To use the external address space read mode, setting shown in Figure 14 is necessary besides Figure 3 “Flow Chart of
SPIBSC Initial Setting in this Application”.

2.6.2 Automatic Address Conversion

Figure 10 shows the address conversion image in the external address space read mode with the serial flash memory as
24-bit address. SPIBSC uses the lower 24 bits for accessing to the serial flash memory when detecting read access to
H’1800 0000 to address H’1BFF FFFF which are in the SPI multi 1/0 bus space, and so does in the cache invalid space
as address H’3800 0000 to address H’3BFF FFFF.

) Use lower 24 bits Address space in serial flash memory
CPU internal address space (S25FL032P)
R
H1800 0000 H00 0000
4MB
H'183F FFFF H'3F FFFF

SPI multi I/O bus spece
(cache valid)

H'1BFF FFFF

H'3800 0000

H'383F FFFF

SPI multi I/O bus spece
(cache invalid)

H'3BFF FFFF

Note: The upper address should be set by the data read expansion address setting register(DREAR) when
outputting address in 32 bits.

Figure 10 Address Conversion Image in External Address Space Read Mode

RO1ANO671EJ0101 Rev. 1.01 Page 15 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi I/O Buss Controller

Serial Flash Memory Connection Sample Program

2.6.3

Data Format and Related Registers

For accessing to the serial flash memory, access commands are necessary. The command data formats are set in
SPIBSC register. Table 9 describes about the data format and related registers in external address space read mode. Pay
attention that the registers used are different from those used in the SPI operation mode.

Table 9 Data Format in External Address Space Read Mode and Related Registers

Item Command Optional Address Optional data Data for transferring
command
Data DRCMR.CMD[7:0] DRCMR. With 24 bits DROPR.OPDnN[7:0]bit When normal reading
bit OCMDI7:0] bit The lower address which (n=0t03) Transfer number of bits
was read [23:0] bit according to access size
(8/16/32/64 bits)
When burst reading
DRCR.RBURST][3:0] bit
(RBURST X 64 bit)
Set bit width DRENR.CDB[1:0] DRENR.OCDB DRENR.ADBJ[1:0] bit DRENR.OPDBJ[1:0] bit DRENR.DRDBJ[1:0] bit
(Single/Dual/Quad) bit [1:0] bit
Enable data input Output always Input always
Enable transfer DRENR.CDE bit DRENR.OCDE DRENR.ADE[3:0] bit DRENR.OPDE[3:0] bit Enable always
bit (set bit length as well)

RO1ANO671EJO101 Rev. 1.01

Feb. 16, 2012

RENESAS

Page 16 of 52

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

264

Read Command
Table 10 describes about S25FL032P read command used in the external address space read mode. Figure 11 shows its

command sequence. Only the commands used in the sample program are applied here.

Table 10 S25FL0320 Read Command used in the External Address Space Read Mode

Command name Comman | Number Number Number Function Command name
d code of of dummy | of
address | byte data byte
byte
Quad I/0 High H'EB 3 19 2 More than | High speed data
Performance Read one® read
(Quad-SP)

Note: (1) Setting H’ A0 to H’AF leads to set continuous mode, and for asserting SPBSSL next time, the command code
is not necessary. This is not used in this application program.

(2) Read the area incremented from the specified address. Exceeding final address leads returning to the address 0.

Command sequence in normal time

spBSSL |

0123456 7 8 9101112 1314151617 18192021 2223 242526 27

|

SPBCLK |‘||'||'||'||'||'||'||'|nnnnnnnnnnnnnnnnnnnnB
—— | |
_ Command code _|Address A23to AO. Mode DummyJ‘ Data
SPBMO_0/
SPBIOO 0 XXX XXX X XA A A A A A DDDD4040404OSS_
PBMI i
SSPBIO]._O(; Hi-Z AXAX AX AX AX A DX DX DXDXSXIXS5X1IX5X1X5 lssm_
Hi-Z
SPBIO2_0 NOO OO0 DDDDGZGZSZBZSS_
SPBIO3_0 Hi-Z NOOOOO DDDD7373737355®@—

Command sequence in continuous mode (H'Ax)

sPBSSL |

01234567 8910111213141516171819
SPBCLK

Address A23 to A0 ‘Mode‘

Dummy
SPBMO_0/
SPBIOO_0

SPBMI_0/
SPBIO1_0

SPBIO2_0

SPBIO3_0

Figure 11 Quad I/O high Performance Read Command Sequence

RO1ANO671EJO101 Rev. 1.01
Feb. 16, 2012

Page 17 of 52
RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

2.6.5 Burst Read Operation

Burst read operation is enacted when RBE bit in the data read control register(DRCR) is set to 1. At the same time, read
cache is effective. The operation overview of burst read and read cache is described as follows.

(1) Burst Read and Read Cache
Figure 12 shows the operation of burst read and read cache.

Detecting read access to the SPI multi I/O bus space, SPIBSC first refers to data in read cache. When the read cache
contains data, SPIBSC does not access to the serial flash memory but read data from the read cache. When the reach
cache is without data, SPIBSC reads burst reads the serial flash memory to store the data in the read cache. The data
transfer length at this time is 64 bits x BRUST[3:0]. The read starts from 64-bit boundary.

To flash the read cache, RCF bit in DRCR register should be set.

Internal bus
SPIBSC

Cache hit Serial flash memory

—_— Read cache
> 0 Tag address Data
—
Read from read 1

cache
| Read data from the

<

Mis-hit serial flash memory ——
\ \\
4,__’
/ 15
“——r >
/ Address alley Data alley
Read from read 31 (1+30) bits 64 bits

cache

Figure 12 Operation of Burst Read and Read Cache

RO1ANO671EJ0101 Rev. 1.01 Page 18 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

(2) SPBSSL Automatic Negation

Figure 13 shows the SPBSSL automatic negation in burst read operation. Setting SSLE bit in DRCR register to 1 does
not lead negation SPBSSL pin after burst read transfer. At the next accessing, when the address is sequential to the
previous read address, burst read is carried without issuing command/optional command/address/optional data. When
the addresses are not sequential, SPBSSL pin should be negated once and later burst read is carried after issuing
command/optional command/address/optional data.

) Sequential Non-sequential
SPI multi I/O bus space access addresses access addresses access
SPBSSL _|
seectk | LSS MLLSSLr LSS ML, MLSSILT LSS MLLSS LSS
SSF;BBI\I/g)O_OO/ __(CommandXAddress Read data)—HCommanXAddress Read data)—
SSPP;’\C/)”].__OC; (Address Read data } _@ (Address Read data)—
SPBIO2_0 —4(Address Read data)——< Read data } (Address Read data)—
SPBIO3_0 —4(Address Read data)——‘ Read data > (Address Read data)—
D e D e <«
64xRBURST bit 64xRBURST bit 64xRBURST bit
Figure 13 SPBSSL Automatic Negation in Burst Read Operation
RO1ANO0671EJ0101 Rev. 1.01 Page 19 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

2.6.6 External Address Space Read Mode Setting Flow
Figure 14 shows the external address space read mode setting flow chart in this application program.

External address space read mode setting
io_spibsc_dr_init function

v

Is SPBSSL
negated?

- Confirm SPBSSL is not asserted by checking SSLF bit of
CMNSR.

- Set CMNCR
(MD bit = B'0)
Function: switch to external address space read mode

Set common control register(CMNCR)

v - Set DRCR
(RBURSTI[3:0] bit = B'0001)
Set data read control register(DRCR) Function: set burst length to 2-datum length(128 bits)

(RBE bit = B'1)
Function: enable read burst operation
(SSLE bit = B'1)
Function: SPBSSL is not negated with sequential addresses

No
Completed transfer?

- Confirm that transferring is not carried by checking the TEND bit

Yes of CMNSR.
- Set DRCMR
Set data read command setting register(DRCMR) (CMD[7:0] bit = H'EB)
+ Function: set Quad I/O High Performance Read command
- Set DRENR
Set data read enable setting register(DRENR) (CDE bit = B'1, OCDE bit = B'0

ADE[3:0] bit = B'0111, OPDE[3:0] bit = B'1110)
Function: enable command output
disable optional command output
enable address output(24 bits)
enable optional data output(OPD3, OPD2, OPD1
(CDBI[1:0] bit = B'00, OCDB[1:0] bit = B'00,
ADBI[1:0] bit = B'10, OPDB[1:0] bit = B'10,
DRDBJ1:0] bit = B'10)
Function: set command bit width to 1 bit
set address bit width to 4 bits
set optional data bit width to 4 bits
set data read bit width to 4 bits

A
Set data read optional data setting register - Set DROPR
(DROPR) (OPD3[7:0] bit = H'00)
Function: set Quad I/0 High Performance Read command mode
 J to H'00(insequential mode)
(END) (OPD2[7:0] bit = H'00, OPD1[7:0] bit = H'00)

Function: set Quad 1/0O High Performance Read command
dummy clock

Figure 14 External Address Space Read Mode Setting Flow Chart

RO1ANO671EJ0101 Rev. 1.01 Page 20 of 52
Feb. 16, 2012 RENESAS

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

SH7268/SH7269 Group

2.7 Sample Program Operation Overview

In this section, sample program operation overview is described. First, the sample program is started in external address
space read mode effective to execute the main function on the SPI multi 1/0 bus space. Then, read/write the serial flash
memory using the SPI operation mode. This is executed in the function on the large capacity internal RAM as the SPI
operation mode is not switched on the SPI multi 1/0 space. Finally, the external address space read mode is enacted to

return to the main functions.

27.1

Main Function Flow

Figure 15 shows the main function flow chart of the sample program.

Main functions operation flow
main functions

v

Execute on large capacity internal RAM
by func_on_ram function

L]

Display a message in a console

END

(_ func_on_ram function)

Negate SPBSSL
(1) clear SPBSSL automatic negation
(2) flash read cache
(3) dummy read

L]

Execute SPIBSC initialization
by sf_init_serial_flash_spibsc function

L]

Release the serial flash memory protection
by sf_protect_ctrl_spibsc function

L]

Delete write area
by sf_sector_ctrl_spibsc function

L]

Write
by sf_byte_program_spibsc function

L]

Read
by sf_byte_read_spibsc function

|
-

Verify check OK?

Yes

Enable serial flash memory protection
by sf_protect_ctrl_spibsc function

L]

Enable external address space read mode
by sf_allocate_exspace_spibsc function

END

- Access to the serial flash memory using the SPI operation mode.
The main function is carried on the SPI multi I/O bus space, so
the mode cannot be switched to SPI operation mode on the main
function. Transfer the processing to the function allocated on the
large capacity internal RAM.

- The serial flash memory accesses using the external address
space read mode by executing the instruction of the main
function allocated in the SPI multi I/O bus space.

(1) Set SSLE bit of the data read control register(DRCR) to 0 to
negate SPBSSL by each access.

(2) Set RCF bit in DRCR ergister to 1. The next dummy read is surely
mis-hit by cache flash.

(3) Generate access to the serial flash memory by reading the random
area in the SPI multi I/O bus space to negate SPBSSL.

- Initialize SPIBSC.

- Delete the area for one sector.

- Write data for one sector using the SPI operation mode.

- Read data for one sector using the SPI operation mode.

- Enable the external address space read mode to return to the main
function.

Figure 15 Main Function Operation Flow in Sample Program

RO1ANO671EJO101 Rev. 1.01
Feb. 16, 2012

Page 21 of 52
RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3. Sample Program List

3.1 Additional Description about Sample Program

For using boot mode 0 and boot mode 1(booting from the memory connected to CSO space), setting the pin to SPIBSC
function is not available. Therefore, the sample program is booted from the boot mode 3 as a serial flash boot.

For the procedure of using the serial flash boot and for the method to write the program in the serial flash memory, refer
to the section “SH7268/SH7269 Group Example for Booting from the Serial Flash Memory Using the SPI Multi 1/0
Bus Controller”.

RO1ANO671EJ0101 Rev. 1.01 Page 22 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

3.2 Sample Program List “main.c” (1)
1
2 DISCLAIMER
3
4 This software is supplied by Renesas Electronics Corporation and is only
5 intended for use with Renesas products. No other uses are authorized.
6
7 This software is owned by Renesas Electronics Corporation and is protected under
8 all applicable laws, including copyright laws.
9
10 THIS SOFTWARE IS PROVIDED "AS 1S™ AND RENESAS MAKES NO WARRANTIES
11 REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
12 INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
13 PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
14 DISCLAIMED.
15
16 TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17 ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18 FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19 FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS
20 AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21
22 Renesas reserves the right, without notice, to make changes to this
23 software and to discontinue the availability of this software.
24 By using this software, you agree to the additional terms and
25 conditions found by accessing the following link:
26 http://ww.renesas.com/disclaimer
27
28 Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.
29 Technical reference data
30 System Name : SH7268/SH7269 Sample Program
31 File Name : main.c
32 Abstract : Sample Program Main
33 Version : 1.00.00
34 Device = SH7268/SH7269
35 Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).
36 : C/C++ compiler package for the SuperH RISC engine family
37 : (Ver.9._.03Release02).
38 0S : None
39 H/W Platform: ROK57269(CPU board)
40 Description :
41
42 History : Jul.06,2011 Ver.1.00.00
43 /
44 #include <stdio.h>
45 #include <string.h>
46 #include <machine.h>
47 #include "serial_flash.h"
48 #include "iodefine.h"
49
RO1ANO671EJ0101 Rev.1.01 Page 23 of 52

Feb. 16, 2012

RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.3 Sample Program List “main.c” (2)

50 /* ==== prototype declaration ==== */
51 void main(void);
52 void func_on_ram(void);
53
54 /
55 * 1D
56 * Outline : main
57 * Include
58 * Declaration : void main(void);
59 * Description :
60 * Argument > void
61 * Return Value: void
62 * Note = None
63 /
64 void main(void)
65 {
66 func_on_ram(Q);
67
68 puts(*"\nSH7269 SPIBSC Sample Program. Ver.1.00.00");
69 puts('Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.™);
70 puts(''\n");
71
72 while(1){
73 /* loop */
74 }
75 }
76
77
78 #pragma section SPIBSC
79 /
80 * 1D :
81 * Qutline : SPI operating mode
82 * Include
83 * Declaration : void exe_spibsc_spi(void) ;
84 * Description :
85 * Argument : void
86 * Return Value: void
87 * Note : None
88 /
89 void func_on_ram(void)
90 {
91 volatile short dummy;
92 int w_size = SF_PAGE_SIZE;
93 int w_sctno = (SF_NUM_OF_SECTOR - 1);
94 int w_addr, bsz, i;
95 static char r_data[SF_PAGE_SIZE];
96 static char w_data[SF_PAGE_SIZE];
97
RO1ANO671EJ0101 Rev.1.01 Page 24 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

3.4 Sample Program List “main.c” (3)

98 * ==== Use SPI operating mode ==== *
99
100 /* Initialize data */
101 for(i=0; i<w_size; i++){
102 r_data[i] = "R";
103 w_data[i] = "W=;
104 3}
105 bsz = 1;
106 w_addr = (w_sctno * SF_SECTOR_SIZE * bsz);
107
108 /* Negate SPBSSL */
109 SPIBSC.DRCR.BIT.SSLE = O; /* No keep SSL */
110 SPIBSC.DRCR.BIT.RCF = 1; /* Chach flush */
111 dummy = *(short *)0x18000000; /* Dummy read */
112
113 /* Initializes the SPIBSC */
114 st_init_serial_flash_spibsc();
115
116 /* Disables the software protection in serial flash memory */
117 sf_protect_ctrl_spibsc(SF_REQ_UNPROTECT);
118
119 /* Erase */
120 sf_sector_erase_spibsc(w_sctno);
121
122 /* Write */
123 sf_byte program_spibsc(w_addr, w_data, w_size);
124
125 /* Read */
126 sf_byte read_spibsc(w_addr,r_data, w_size);
127
128 /* Verifies data */
129 for(i=0; i<w_size; i++){
130 if(r_data[i] '= w data[i]){
131 while(1){
132 /* error */
133 }
134 3}
135 }
136 /* Enables the software protection in serial flash memory */
137 sT_protect_ctrl_spibsc(SF_REQ_PROTECT);
138
139
140 /* ==== Enable external address space read mode ==== */
141 st_allocate_exspace_spibsc();
142
143 }
144
145 /* End of File */
RO1ANO0671EJ0101 Rev. 1.01 Page 25 of 52

Feb. 16, 2012

RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.5 Sample Program List “gserial_flash_spibsc.c” (1)

1 /
2 * DISCLAIMER
3 *
4 * This software is supplied by Renesas Electronics Corporation and is only
5 * intended for use with Renesas products. No other uses are authorized.
6 *
7 * This software is owned by Renesas Electronics Corporation and is protected under
8 * all applicable laws, including copyright laws.
9 *
10 * THIS SOFTWARE 1S PROVIDED "AS IS"™ AND RENESAS MAKES NO WARRANTIES
11 * REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
12 * INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
13 * PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
14 * DISCLAIMED.
15 *
16 * TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17 * ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19 * FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS
20 * AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21 *
22 * Renesas reserves the right, without notice, to make changes to this
23 * software and to discontinue the availability of this software.
24 * By using this software, you agree to the additional terms and
25 * conditions found by accessing the following link:
26 * http://www.renesas.com/disclaimer
27
28 * Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.
29 Technical reference data
30 * System Name : SH7268/SH7269 Firm Update Sample Program
31 * File Name : gserial_flash_spibsc.c
32 * Abstract
33 * Version : 1.00.00
34 * Device : SH7268/SH7269
35 * Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).
36 * : C/C++ compiler package for the SuperH RISC engine family
37 * : (Ver.9.03Release02).
38 * 0S : None
39 * H/W Platform: ROK57269(CPU board)
40 * Description :
41
42 * History : Jul.06,2011 Ver.1.00.00
43 /
44 #include "i1o_spibsc.h"
45 #include "serial_flash_h"
46 #include "qgserial_flash_spibsc.h™
47
RO1ANO671EJ0101 Rev.1.01 Page 26 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.6 Sample Program List “gserial_flash_spibsc.c” (2)

48 #pragma section SPIBSC

49

50 /* --—- serial flash command[S25FL032P(Spansion)] ---- */
51 #define SFLASHCMD_CHIP_ERASE 0xc7

52 #define SFLASHCMD_SECTOR_ERASE 0xd8

53 #define SFLASHCMD_BYTE_PROGRAMOx02

54 #define SFLASHCMD_BYTE_READ 0x0B /* fast read */
55 #define SFLASHCMD_DUAL_READ 0x3B
56 #define SFLASHCMD_QUAD_READ 0x6B

57 #define SFLASHCMD_DUAL_I10_READOxBB
58 #define SFLASHCMD_QUAD_I10_READOXEB
59 #define SFLASHCMD_WRITE_ENABLEOx06
60 #define SFLASHCMD_READ_STATUS 0x05
61 #define SFLASHCMD_READ_CONFIG 0x35
62 #define SFLASHCMD_WRITE_STATUSOxO01
63 #define SFLASHCMD_QUAD_PROGRAMOx32

64 /* --—- serial flash register definitions ---- */
65 #define CFREG_QUAD_BIT 0x02 /* Quad mode bit(Configuration Register) */
66 #define CFREG_FREEZE_BIT 0x01 /* freeze bit(Configuration Register) */
67 #define STREG_BPROTECT_BIT Oxlc /* protect bit(Status Register) */
68
69 /* ==== Prototype Declaration ==== */
70 static void read_status(unsigned char* statusl,unsigned char* status2);
71 static void read_config(unsigned char* configl,unsigned char* config2);
72 static void busy wait(void);
73 static void write_status(unsigned char status, unsigned char config);
74 static void sf_set_mode(enum sf_req req);
75 static void write_enable(void);
76 #if (SPI_QUAD != 0)
77 static void sf_byte read_spibsc_quad(unsigned long addr, unsigned char *buf, int unit);
78 #endif
79
80 /* ==== Global variable ==== */
81 ST_SPIBSC_SM SpibscSm;
82
83
84
85 (The rest is omitted)
86
RO1ANO671EJ0101 Rev.1.01 Page 27 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

3.7 Sample Program List “gserial_flash_spibsc.c” (3)
127 /
128 * 1D
129 * Qutline : External address space read mode
130 * Include
131 * Declaration : void sf_allocate_exspace_spibsc (void);
132 * Description : Set to the external address space read mode
133 * Argument > void
134 * Return Value : void
135 * Note = None
136 /
137 void sf_allocate_exspace_spibsc (void)
138 {
139 #if (SFLASH_DUAL == 0)
140 st_bsz_set_spibsc(1); /* s-flash x 1 */
141 #telse
142 st_bsz_set_spibsc(2); /* s-flash x 2 */
143 #endif
144
145 #if (SPI_QUAD == 0)
146 10_spibsc_dr_init(SFLASHCMD_BYTE_READ); /* Single-SPI */
147 #else
148 io_spibsc_dr_init(SFLASHCMD_QUAD_10_READ); /* Quad-SPI */
149 #endif
150 }
151
152 /
153 * 1D :
154 * Qutline : Initialize the serial flash memory
155 * Include
156 * Declaration : void sf_init_serial_flash_spibsc(void);
157 * Description : Initialize to access to the serial flash memory
158 * : Initialize the SPI multi bus 1/0 bus controller(SPIBSC)
159 * : to set the serial flash memory to Quad mode
160 * Argument : void
161 * Return Value : void
162 * Note - None
163 /
164 void sf_init_serial_flash_spibsc(void)
165 {
166 /* ==== Initialize SPIBSC ==== *
167 #if (SFLASH_DUAL == 0)
168 i0_spibsc_common_init(SPIBSC_CMNCR_BSZ_SINGLE); /* s-flash x 1 */
169 #else
170 10_spibsc_common_init(SPIBSC_CMNCR_BSZ_DUAL); /* s-flash x 2 */
171 #endif
172
173 #if (SPI_QUAD == 0)
174 sf_set_mode(SF_REQ_SERIALMODE);
175 #else
176 * ==== setting serial-flash quad mode ==== */
177 sf_set_mode(SF_REQ_QUADMODE);
178 #endif
179 3}
RO1ANO671EJ0101 Rev.1.01 Page 28 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

3.8 Sample Program List “gserial_flash_spibsc.c” (4)
180
181 /
182 1D H
183 Outline : Protection
184 Include
185 Declaration : void sf_protect_ctrl_spibsc(enum sf_req req);
186 Description : Serial flash memory protect setting/clearing the setting
187 : Specify the setting by the argument, reg. The initial value of
188 : protection/clearance differ to the specification of the serial
189 : flash memory.
190 Argument : enum st req req ; 1 : SF_REQ UNPROTECT -> clear all sector protection
191 : SF_REQ_PROTECT -> protect all sectors
192 Return Value : void
193 Note : None
194 /
195 void sf_protect_ctrl_spibsc(enum sf_req req)
196 {
197 unsigned char st_regl, st_reg2;
198 unsigned char cf_regl, cf_reg2;
199
200 read_status(&st_regl,&st _reg2);
201 read_config(&cf_regl,&cf reg2);
202
203 /* ==== Set value of Serial Flash(0) ==== *
204
205 /* --—- clear freeze bit in configuration register ---- */
206 write_status(st_regl , (unsigned char)(cf_regl & (~CFREG_FREEZE_BIT)));
207
208 if(req == SF_REQ UNPROTECT){
209 st_regl &= ~STREG_BPROTECT_BIT; /* un-protect in all area */
210 3}
211 else{
212 st_regl |= STREG_BPROTECT_BIT; /* protect in all area */
213 3}
214
215 /* ———- clear or set protect bit in status register ———- */
216 /* ———— with freeze bit in configuration register ---- */
217 write_status(st_regl , (unsigned char)(cf_regl | CFREG_FREEZE_BIT));
218}
(The rest is omitted)
RO1ANO0671EJ0101 Rev. 1.01 Page 29 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.9 Sample Program List “gserial_flash_spibsc.c” (5)

304 /
305 * 1D
306 * Outline : Sector erase
307 * Include
308 * Declaration : void sf_sector_erase_spibsc(int sector_no);
309 * Description : Erase the specified sector in the serial flash memory
310 * : A write enable command should be issued before erasing or programming.
311 * : After erasing or programming, check the serial flash memory status
312 * : with the busy state is cleared.
313 * Argument : int sector_no ; | :sector number
314 * Return Value : void
315 * Note = None
316 /
317 void sf_sector_erase_spibsc(int sector_no)
318 {
319 unsigned long addr = sector_no * SF_SECTOR_SIZE;
320
321 #if (SFLASH_DUAL == 1)
322 int bsz;
323
324 /* set BE in both of serial-flash */
325 bsz = sf bsz_get_spibsc();
326 st_bsz_set_spibsc(2); /* s-flash x 2 */
327 #endif
328
329 /* sector erase in Single-SPI */
330
331 write_enable(); /* WREN Command */
332
333 SpibscSm.cdb = SPIBSC_1BIT; /* Commmand bit-width = Single */
334 SpibscSm.adb = SPIBSC_1BIT; /* Address bit-width = Single */
335
336 SpibscSm.cde = SPIBSC_OUTPUT_ENABLE; /* Command Enable */
337 SpibscSm.ocde = SPIBSC_OUTPUT_DISABLE; /* Optional-Command Disable */
338 SpibscSm.ade = SPIBSC_OUTPUT_ADDR_24; /* Enable(Adr[23:0]) */
339 SpibscSm.opde = SPIBSC_OUTPUT_DISABLE; /* Option-Data Disable */
340 SpibscSm.spide = SPIBSC_OUTPUT_DISABLE; /* Disable */
341
342 SpibscSm.sslkp = SPIBSC_SPISSL_NEGATE; /* Negate after transfer */
343 SpibscSm.spire = SPIBSC_SPIDATA_DISABLE; /* Data Access (Read Disable) */
344 SpibscSm.spiwe = SPIBSC_SPIDATA_DISABLE; /* Data Access (Write Disable) */
345
346 SpibscSm.cmd = SFLASHCMD_SECTOR_ERASE; /* SE:Sector Erase */
347
348 SpibscSm.addr = addr; /* dont care in dual mode */
349 /* because address is calcurated with sector_no */
350
RO1ANO671EJ0101 Rev.1.01 Page 30 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.10 Sample Program List “gserial_flash_spibsc.c” (6)

351 i0_spibsc_transfer(&SpibscSm);
352
353 busy_wait();
354
355 #i1f (SFLASH_DUAL == 1)
356 st_bsz_set_spibsc(bsz);
357 #endif
358 }
359
360 /
361 * 1D o
362 * Qutline : Data program
363 * Include
364 *Declaration:void sf_byte program_spibsc(unsigned long addr,unsigned char *buf,int size);
365 * Description : Program the assigned program in the serial flash memory
366 * : Erase the specified sector in the serial flash memory
367 * : A write enable command should be issued before erasing or programming.
368 * : After erasing or programming, check the serial flash memory status
369 * : with the busy state is cleared.
370 * : The maximum write data size is limited by the device.
371 * Argument : unsigned long addr ; | : address in the serial flash memory to write to
372 * : unsigned char *buf ; 1 : address of the buffer to store write data
373 * : int size ; 1 : number of byte to write
374 * Return Value : void
375 * Note : None
376 /
377 void sf_byte program_spibsc(unsigned long addr, unsigned char *buf, int size)
378 {
379 int unit;
380
381 write_enable(); /* WREN Command */
382
383 /* ---- Command,Address ---- */
384 SpibscSm.cdb = SPIBSC_1BIT; /* Commmand bit-width = Single */
385 SpibscSm.adb = SPIBSC_1BIT; /* Address bit-width = Single */
386
387 SpibscSm.cde = SPIBSC_OUTPUT_ENABLE; /* Command Enable */
388 SpibscSm.ocde = SPIBSC_OUTPUT_DISABLE; /* Optional-Command Disable */
389 SpibscSm.ade = SPIBSC_OUTPUT_ADDR_24; /* Enable Adr[23:0] */
390 SpibscSm.opde = SPIBSC_OUTPUT_DISABLE; /* Option-Data Disable */
391 SpibscSm.spide = SPIBSC_OUTPUT_DISABLE; /* Disable */
392
393 SpibscSm.sslkp = SPIBSC_SPISSL_KEEP; /* Keep after transfer */
394 SpibscSm.spire = SPIBSC_SPIDATA_DISABLE; /* Data Access (Read Disable) */
395 SpibscSm.spiwe = SPIBSC_SPIDATA_DISABLE; /* Data Access (Write Disable) */
396
397 #if (SPI_QUAD == 0)
398 SpibscSm.cmd = SFLASHCMD_BYTE_PROGRAM; /* PP: Page Program */
399 #else
400 SpibscSm.cmd = SFLASHCMD_QUAD_PROGRAM; /* QPP: Quad Page Program */
401 #endif
402
RO1ANO671EJ0101 Rev.1.01 Page 31 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.11 Sample Program List “gserial_flash_spibsc.c” (7)

403 if(io_spibsc_bsz_get() == SPIBSC_CMNCR_BSZ_DUAL){
404 SpibscSm.addr = (unsigned long)(addr >> 1);
405 }
406 else{
407 SpibscSm.addr = addr;
408 }
409
410 i0_spibsc_transfer(&SpibscSm); /* Command,Address */
411
412 /* ———- Data ---- */
413 #if (SPI_QUAD == 0)
414 SpibscSm.spidb = SPIBSC_1BIT; /* Single */
415 #else
416 SpibscSm.spidb = SPIBSC_4BIT; /* Quad */
417 #endif
418
419 SpibscSm.cde = SPIBSC_OUTPUT_DISABLE; /* Command Disable */
420 SpibscSm.ocde = SPIBSC_OUTPUT_DISABLE; /* Optional-Command Disable */
421 SpibscSm.ade = SPIBSC_OUTPUT_DISABLE; /* Disable Adr */
422 SpibscSm.opde = SPIBSC_OUTPUT_DISABLE; /* Option-Data Disable */
423
424 SpibscSm.spire = SPIBSC_SPIDATA_DISABLE; /* Data Access (Read Disable) */
425 SpibscSm.spiwe = SPIBSC_SPIDATA_ENABLE; /* Data Access (Write Ensable) */
426
427 if(io_spibsc_bsz_get() == SPIBSC_CMNCR_BSZ_DUAL){
428 if((size % 8) == 0){
429 SpibscSm.spide = SPIBSC_OUTPUT_SPID_32; /* Enable(64bit) */
430 unit = 8;
431 }
432 else if((size % 4) == 0){
433 SpibscSm.spide = SPIBSC_OUTPUT_SPID_16; /* Enable(32bit) */
434 unit = 4;
435 }
436 else if((size % 2) == 0){
437 SpibscSm.spide = SPIBSC_OUTPUT_SPID_8; /* Enable(16bit) */
438 unit = 2;
439 }
440 else{
441 return;
442 }
443 }
RO1ANO671EJ0101 Rev.1.01 Page 32 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

3.12

Sample Program List “gserial_flash_spibsc.c” (8)

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

else{

}

if((size % 4) == 0){
SpibscSm.spide = SPIBSC_OUTPUT_SPID_32; /* Enable(32bit) */
unit = 4;

}

else if((size % 2) == 0){
SpibscSm.spide = SPIBSC_OUTPUT_SPID_16; /* Enable(16bit) */
unit = 2;

3

else{
SpibscSm.spide = SPIBSC_OUTPUT_SPID_8; /* Enable(8bit) */
unit = 1;

while(size > 0){

}

SpibscSm.smwdr[0] = (unsigned long)(((unsigned long)*buf++ << 24) & OxFFO00000ul);
/* Data[63:56] or Data[31:24] */
ifQunit >= 2){
SpibscSm.smwdr[0] |=(Cunsigned long)(((unsigned long)*buf++ << 16)& 0x00FF0000ul);
/* Data[55:48] or Data[23:16] */
}
ifQunit >= 4){
SpibscSm.smwdr[0] |= (unsigned long)(
(((unsigned long)*buf++ << 8) & Ox0000ffOOul) |
(((unsigned long)*buf++) & 0x000000fful));
/* Data[47:40] or Data[15:0] */
}
if(unit >= 8){
SpibscSm.smwdr[1] = (unsigned long)(
(((unsigned long)*buf++ << 24) & OxFFOO0000ul) |
(((unsigned long)*buf++ << 16) & Ox00FFOO0Oul) |
(((unsigned long)*buf++ << 8) & 0x0000FfOOul) |
(((unsigned long)*buf++) & O0x000000fful));
/*Data[31: 0] or nothing */
}

size -= unit;
if(size <= 0){

SpibscSm.sslkp = SPIBSC_SPISSL_NEGATE;
¥
i0_spibsc_transfer(&SpibscSm); /* Data */

busy_wait();

RO1ANO671EJO101 Rev. 1.01 Page 33 of 52
Feb. 16, 2012

RENESAS

SH7268/SH7269 Group

SPI Multi I/O Buss Controller

Serial Flash Memory Connection Sample Program

3.13 Sample Program List “gserial_flash_spibsc.c” (9)
492 /
493 * 1D H
494 * Qutline : Data read
495 * Include
496 *Declaration: void sf_byte read_spibsc(unsigned long addr, unsigned char *buf, int size);
497 * Description : Read the serial memory by the specified number of byte
498 * Argument : unsigned long addr ; I : address of the serial flash memory to read
499 * : unsigned char *buf ; I : address of the buffer to store the read data
500 * o int size ; 1 = number of byte to read
501 * Return Value : void
502 * Note > None
503 /
504 #if (SP1_QUAD == 0)
(Omitted)
606 #else
607
608 void sf_byte_read_spibsc(unsigned long addr, unsigned char *buf, int size)
609 {
610 int unit;
611
612 iT(io_spibsc_bsz_get() == SPIBSC_CMNCR_BSZ_DUAL){
613 if((size % 8) == 0){
614 unit = 8;
615 }
616 else if((size % 4) == 0){
617 unit = 4;
618 }
619 else if((size % 2) == 0){
620 unit = 2;
621 3}
622 else{
623 return;
624 T
625 }
626 else{
627 if((size % 4) == 0){
628 unit = 4;
629 }
630 else if((size % 2) == 0){
631 unit = 2;
632 }
633 else{
634 unit = 1;
635 }
636 }
637

RO1ANO671EJ0101 Rev. 1.01
Feb. 16, 2012 RENESAS

Page 34 of 52

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.14 Sample Program List “gserial_flash_spibsc.c” (10)

638 while(size > 0){
639 st_byte read_spibsc_quad(addr, buf, unit);
640
641 /* increment address and buf */
642 addr += unit;
643 buf += unit;
644
645 size -= unit;
646 }
647 }
648
649 static void sf_byte read_spibsc_quad(unsigned long addr, unsigned char *buf, int unit)
650 {
651 /* --—- Command,Address,Dummy ---- */
652 SpibscSm.cdb = SPIBSC_1BIT; /* Commmand bit-width = Single */
653 SpibscSm.adb = SPIBSC_1BIT; /* Address bit-width = Single */
654
655 SpibscSm.cde = SPIBSC_OUTPUT_ENABLE; /* Command Enable */
656 SpibscSm.ocde = SPIBSC_OUTPUT_DISABLE; /* Optional-Command Disable */
657 SpibscSm.ade = SPIBSC_OUTPUT_ADDR_24; /* Enable Adr[23:0] */
658 SpibscSm.opde = SPIBSC_OUTPUT_OPD_3; /* Option-Data OPD3 */
659 SpibscSm.spide = SPIBSC_OUTPUT_DISABLE; /* Disable */
660
661 SpibscSm.sslkp = SPIBSC_SPISSL_KEEP; /* Keep after transfer */
662 SpibscSm.spire = SPIBSC_SPIDATA_DISABLE; /* Data Access (Read Disable) */
663 SpibscSm.spiwe = SPIBSC_SPIDATA_DISABLE; /* Data Access (Write Disable) */
664
665 SpibscSm.cmd = SFLASHCMD_QUAD_READ; /* QOR: Quad Output Read */
666
667 if(io_spibsc_bsz_get() == SPIBSC_CMNCR_BSZ_DUAL){
668 SpibscSm.addr = (unsigned long)(addr >> 1);
669 }
670 else{
671 SpibscSm.addr = addr;
672 }
673
674 10_spibsc_transfer(&SpibscSm); /* Command,Address */
675
676
677 /* -———- Data ---- */
678 SpibscSm.spidb = SPIBSC_4BIT; /* Quad */
679
680 SpibscSm.cde = SPIBSC_OUTPUT_DISABLE; /* Command Disable */
681 SpibscSm.ocde = SPIBSC_OUTPUT_DISABLE; /* Optional-Command Disable */
682 SpibscSm.ade = SPIBSC_OUTPUT_DISABLE; /* Disable Adr */
683 SpibscSm.opde = SPIBSC_OUTPUT_DISABLE; /* Option-Data Disable */
684
685 SpibscSm.spire = SPIBSC_SPIDATA_ENABLE; /* Data Access (Read Enable) */
686 SpibscSm.spiwe = SPIBSC_SPIDATA_DISABLE; /* Data Access (Write Disable) */
687
RO1ANO671EJ0101 Rev.1.01 Page 35 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi I/O Buss Controller

Serial Flash Memory Connection Sample Program

3.15 Sample Program List “gserial_flash_spibsc.c” (11)
688 if(io_spibsc_bsz_get() == SPIBSC_CMNCR_BSZ_DUAL){
689 ifC unit == 8){
690 SpibscSm.spide = SPIBSC_OUTPUT_SPID_32; /* Enable(64bit) */
691 }
692 else ifC unit == 4){
693 SpibscSm.spide = SPIBSC_OUTPUT_SPID_16; /* Enable(32bit) */
694 }
695 else ifC unit == 2){
696 SpibscSm.spide = SPIBSC_OUTPUT_SPID_8; /* Enable(16bit) */
697 }
698 else{
699 return;
700 }
701 }
702 else{
703 ifC unit == 4){
704 SpibscSm.spide = SPIBSC_OUTPUT_SPID_32; /* Enable(32bit) */
705 }
706 else ifC unit == 2){
707 SpibscSm.spide = SPIBSC_OUTPUT_SPID_16; /* Enable(16bit) */
708 }
709 else{
710 SpibscSm.spide = SPIBSC_OUTPUT_SPID_8; /* Enable(8bit) */
711 3}
712 }
713
714 SpibscSm.sslkp = SPIBSC_SPISSL_NEGATE;
715 10_spibsc_transfer(&SpibscSm); /* Data input */
716
717 *pbuf++ = (unsigned char)((SpibscSm.smrdr[0] >> 24) & 0x000000fful);
718 /* Data[63:56],Data[31:24] */
719 if(unit >= 2){
720 *pbuf++ = (unsigned char)((SpibscSm.smrdr[0] >> 16) & 0x000000fful);
721 /* Data[55:48],Data[23:16] */
722 3}
723 if(unit >= 4){
724 *pbuf++ = (unsigned char)((SpibscSm.smrdr[0] >> 8) & 0x000000fful);
725 *buf++ = (unsigned char)((SpibscSm.smrdr[0]) & 0x000000fful);
726 /* Data[47:40],Data[15:0] */
727 3}
728 if(unit >= 8){
729 *buf++ = (unsigned char)((SpibscSm.smrdr[1] >> 24) & 0x000000fful);
730 *pbuf++ = (unsigned char)((SpibscSm.smrdr[1] >> 16) & 0x000000fful);
731 *pbuf++ = (unsigned char)((SpibscSm.smrdr[1] >> 8) & 0x000000fful);
732 *pbuf++ = (unsigned char)((SpibscSm.smrdr[1]) & 0x000000fful);
733 /*Data[31:0] */
734 3}
735 }
736 #endif
737
RO1ANO671EJ0101 Rev.1.01 Page 36 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi I/O Buss Controller

Serial Flash Memory Connection Sample Program

3.16 Sample Program List “gserial_flash_spibsc.c” (12)

(Omitted)

860 /
861 * 1D

862 * Outline
863 * Include

: Enable writing

Issuing the write enable command to permit to erase/program

864 * Declaration : static void write_enable(void);
865 * Description

866 * in the serial flash memory

867 * Argument > void

868 * Return Value : void

869 * Note = None

870

871 static void write_enable(void)

872 {

873 SpibscSm.cdb = SPIBSC_1BIT; /*
874

875 SpibscSm.cde = SPIBSC_OUTPUT_ENABLE; /*
876 SpibscSm.ocde = SPIBSC_OUTPUT_DISABLE; /*
877 SpibscSm.ade = SPIBSC_OUTPUT_DISABLE; /*
878 SpibscSm.opde = SPIBSC_OUTPUT_DISABLE; /*
879 SpibscSm.spide = SPIBSC_OUTPUT_DISABLE; /*
880

881 SpibscSm.sslkp = SPIBSC_SPISSL_NEGATE; /*
882 SpibscSm.spire = SPIBSC_SPIDATA_DISABLE; /*
883 SpibscSm.spiwe = SPIBSC_SPIDATA_DISABLE; /*
884

885 SpibscSm.cmd = SFLASHCMD_WRITE_ENABLE; /*
886

887 i0_spibsc_transfer(&SpibscSm);

888 }

(The rest is omitted)

Single */

Command Enable */
Optional-Command Disable */
Address Disable */
Option-Data Disable */
Disable */

Negate after transfer */
Data Access (Read Disable) */

Data Access (Write Disable) */

WREN:Write Enable */

RO1ANO671EJO101 Rev. 1.01

Feb. 16, 2012

RENESAS

Page 37 of 52

SH7268/SH7269 Group

SPI Multi I/O Buss Controller

Serial Flash Memory Connection Sample Program

3.17 Sample Program List “gserial_flash_spibsc.h” (1)
1 /
2 * DISCLAIMER
(Omitted)
27
28 * Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.
29 Technical reference data
30 * System Name : SH7268/SH7269 Firm Update Sample Program
31 * File Name : gserial_flash_spibsc.h
32 * Abstract
33 * Version : 1.00.00
34 * Device : SH7268/SH7269
35 * Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).
36 * : C/C++ compiler package for the SuperH RISC engine family
37 * : (Ver.9.03Release02).
38 * 0s = None
39 * H/W Platform: ROK57269(CPU board)
40 * Description :
41
42 * History : Jul.06,2011 Ver.1.00.00
43 /
44 #ifndef _QSERIAL_FLASH_SPIBSC H_
45 #define _QSERIAL_FLASH_SPIBSC_H_
46
47 /* ==== Function prototype declaration ==== */
48 int sf_bsz_get_spibsc(void);
49 void sf_bsz_set_spibsc(int bsz);
50 void sf_allocate_exspace_spibsc (void);
51 void sf_init_serial_flash_spibsc(void);
52 void sf_protect_ctrl_spibsc(enum sf _req req);
53 void sf_chip_erase_spibsc(void);
54 void sf_sector_erase_spibsc(int sector_no);
55 void sf_byte program_spibsc(unsigned long addr, unsigned char *buf, int size);
56 void sf_byte read_spibsc(unsigned long addr, unsigned char *buf, int size);
57
58 #endif /* _QSERIAL_FLASH_SPIBSC H_ */
59 /* End of File */
60
61
62

RO1ANO671EJO101 Rev. 1.01
Feb. 16, 2012

RENESAS

Page 38 of 52

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

3.18 Sample Program List “io_spibsc.c” (1)
1
2 DISCLAIMER
3
4 This software is supplied by Renesas Electronics Corporation and is only
5 intended for use with Renesas products. No other uses are authorized.
6
7 This software is owned by Renesas Electronics Corporation and is protected under
8 all applicable laws, including copyright laws.
9
10 THIS SOFTWARE IS PROVIDED "AS 1S™ AND RENESAS MAKES NO WARRANTIES
11 REGARDING THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY,
12 INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
13 PARTICULAR PURPOSE AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY
14 DISCLAIMED.
15
16 TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
17 ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
18 FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
19 FOR ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS
20 AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
21
22 Renesas reserves the right, without notice, to make changes to this
23 software and to discontinue the availability of this software.
24 By using this software, you agree to the additional terms and
25 conditions found by accessing the following link:
26 http://www.renesas.com/disclaimer
27
28 Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.
29 Technical reference data
30 System Name : SH7268/SH7269 Firm Update Sample Program
31 File Name : 10_spibsc.c
32 Abstract : loader program for spibsc
33 Version : 1.00.00
34 Device : SH7268/SH7269
35 Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).
36 : C/C++ compiler package for the SuperH RISC engine family
37 : (Ver.9.03Release02).
38 0s : None
39 H/W Platform: ROK57269(CPU board)
40 Description :
41
42 History : Jul.06,2011 Ver.1.00.00
43 /
44 #include "iodefine_h"
45 #include "io_spibsc.h"
46 #include "machine_h"
47
RO1ANO671EJ0101 Rev.1.01 Page 39 of 52

Feb. 16, 2012

RENESAS

SH7268/SH7269 Group

SPI Multi I/O Buss Controller

Serial Flash Memory Connection Sample Program

3.19 Sample Program List “io_spibsc.c” (2)
48 #pragma section SPIBSC
49
50 /* ==== define values ==== */
51
52 /* ==== Prototype Declaration ==== */
53
54 /* ==== Global variable ==== */
55
56 /
57 * 1D
58 * Outline
59 * Include : 1o_spibsc.h
60 * Declaration : int io_spibsc_bsz_set(unsigned long bsz);
61 * Description
62 * Argument : unsigned long bsz : BSZ bit
63 * Return Value :
64 * Note : None
65 /
66 int io_spibsc_bsz_set(unsigned long bsz)
67 {
68 iT(SPIBSC.CMNSR.BIT.SSLF != SPIBSC_SSL_NEGATE){
69 return -1;
70 }
71 iT(SPIBSC.CMNCR.BIT.BSZ = bsz){
72 if(bsz == SPIBSC_CMNCR_BSZ_DUAL){
73 /* s-flash x 2 (4bit x 2) */
74 PORT.PBCR3.BIT.PB14MD = 6; /* PB14:SPBI03_1 */
75 PORT.PBCR3.BIT.PB13MD = 6; /* PB13:SPBI102_1 */
76 PORT.PFCRO.BIT.PF3MD = 6; /* PF3:SPBMI_1/SPBIO1_1 */
77 PORT.PFCRO.BIT.PF2MD = 6; /* PF2:SPBMO_1/SPBI00_1 */
78 }
79 SPIBSC.CMNCR.BIT.BSZ = bsz;
80 SPIBSC.DRCR.BIT.RCF = SPIBSC_DRCR_RCF_EXE; /* flush read-cache */
81 }
82 return O;
83 }
84

RO1ANO671EJ0101 Rev. 1.01
Feb. 16, 2012 RENESAS

Page 40 of 52

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.20 Sample Program List “io_spibsc.c” (3)
85 /
86 * 1D
87 * Outline
88 * Include : 10_spibsc.h
89 * Declaration : unsigned long io_spibsc_bsz_get(void);
90 * Description
91 * Argument > void
92 * Return Value : BSZ bit
93 * Note = None
94 /
95 unsigned long io_spibsc_bsz_get(void)
96 {
97 return (unsigned long)SPIBSC.CMNCR.BIT.BSZ;
98 }
99
100 /
101 * 1D
102 * Outline
103 * Include : 10_spibsc.h
104 * Declaration : int i1o_spibsc_common_init(unsigned long bsz);
105 * Description
106 * Argument : unsigned long bsz : BSZ bit
107 * Return Value :
108 * Note : None
109 /
110 int io_spibsc_common_init(unsigned long bsz)
111 {
112 CPG.STBCR7.BIT.MSTP75 = 0;
113
114 PORT.PBCR5.BIT.PB20MD = 6; /* PB20:SPBMI_0/SPBIO1_0 */
115 PORT.PBCR4.BIT.PB19MD = 6; /* PB19:SPBMO_0/SPBIO0_O0 */
116 PORT.PBCR4.BIT.PB18MD = 6; /* PB18:SPBSSL */
117 PORT.PBCR4.BIT.PB17MD = 6; /* PB17:SPBCLK */
118 PORT.PBCR4.BIT.PB16MD = 6; /* PB16:SPBI03_0 */
119 PORT.PBCR3.BIT.PB15MD = 6; /* PB15:SPB102_0 */
120
121 if(bsz == SPIBSC_CMNCR_BSZ_DUAL){
122 /* s-flash x 2 (4bit x 2) */
123 PORT.PBCR3.BIT.PB14MD = 6; /* PB14:SPBI03_1 */
124 PORT.PBCR3.BIT.PB13MD = 6; /* PB13:SPB102_1 */
125 PORT.PFCRO.BIT.PF3MD = 6; /* PF3:SPBMI_1/SPBIO1_1 */
126 PORT.PFCRO.BIT.PF2MD = 6; /* PF2:SPBMO_1/SPBIO0_1 */
127 }
128
129 iT(SPIBSC.CMNSR.BIT.SSLF = SPIBSC_SSL_NEGATE){
130 return -1;
131 }
132

RO1ANO671EJ0101 Rev.1.01 Page 41 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.21 Sample Program List “io_spibsc.c” (4)

133 SPIBSC.CMNCR.BIT.MOI103 = SPIBSC_OUTPUT_HiZ;
134 SPIBSC.CMNCR.BIT.MOI102 = SPIBSC_OUTPUT_HiZ;
135 SPIBSC.CMNCR.BIT.MOI101 = SPIBSC_OUTPUT_HiZ;
136 SPIBSC.CMNCR.BIT.MOI100 = SPIBSC_OUTPUT_HiZ;
137
138 SPIBSC.CMNCR.BIT.I103FV = SPIBSC_OUTPUT_HiZ;
139 SPIBSC.CMNCR.BIT.102FV = SPIBSC_OUTPUT_HiZ;
140 SPIBSC.CMNCR.BIT.I00FV = SPIBSC_OUTPUT_HiZ;
141
142 /* S-flash mode O */
143 SPIBSC.CMNCR.BIT.CPHAT = SPIBSC_CMNCR_CPHAT_EVEN;
144 /* even edge : write */
145 SPIBSC.CMNCR.BIT.CPHAR = SPIBSC_CMNCR_CPHAR_EVEN;
146 /* even edge : read */
147 SPIBSC.CMNCR.BIT.SSLP = SPIBSC_CMNCR_SSLP_LOW;
148 /* SPBSSL : low active */
149 SPIBSC.CMNCR.BIT.CPOL = SPIBSC_CMNCR_CPOL_LOW;
150 /* SPBCLK : low at negate */
151
152 io_spibsc_bsz_set(bsz);
153
154 SPIBSC.SSLDR.BIT.SPNDL = SPIBSC_DELAY_1SPBCLK;
155 /* next access delay */
156 SPIBSC.SSLDR.BIT.SLNDL = SPIBSC_DELAY_1SPBCLK;
157 /* SPBSSL negate delay */
158 SPIBSC.SSLDR.BIT.SCKDL = SPIBSC_DELAY_1SPBCLK;
159 /* clock delay */
160
161 /* ---- Bit rate 66.67Mbps ---- */
162 SPIBSC.SPBCR.BIT.SPBR = 1; /* divide 2 base bit rate B clock(133.33MHz) */
163 SPIBSC.SPBCR.BIT.BRDV = 0;
164
165 return O;
166 }
167
RO1ANO671EJ0101 Rev.1.01 Page 42 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.22 Sample Program List “io_spibsc.c” (5)
168 /
169 * 1D
170 * Outline
171 * Include > 10_spibsc.h
172 * Declaration : int io_spibsc_dr_init(unsigned long cmd);
173 * Description
174 * Argument > void
175 * Return Value :
176 * Note : None
177 /
178 int io_spibsc_dr_init(unsigned long cmd)
179 {
180 iT(SPIBSC.CMNSR.BIT.SSLF != SPIBSC_SSL_NEGATE){
181 return -1;
182 }
183
184 SPIBSC.CMNCR.BIT.MD = SPIBSC_CMNCR_MD_EXTRD; /* SP1 1/0 mode*/
185
186 SPIBSC.DRCR.BIT.RBURST = SPIBSC_BURST_2;
187 SPIBSC.DRCR.BIT.RBE = SPIBSC_BURST_ENABLE;
188 SPIBSC.DRCR.BIT.SSLE = SPIBSC_SPISSL_KEEP; /* Keep SSL after read */
189 /* if not continuous address it negeted */
190
191 iT(SPIBSC.CMNSR.BIT.TEND != SPIBSC_TRANS_END){
192 return -1;
193 }
194
195 /* ———- Command ---- */
196 SPIBSC.DRCMR.BIT.CMD = cmd; /* Command */
197 SPIBSC.DRENR.BIT.CDB = SPIBSC_1BIT; /* Single */
198 SPIBSC.DRENR.BIT.CDE = SPIBSC_OUTPUT_ENABLE;
199 /* Enable */
200 /* ---- Option Command ---- */
201 SPIBSC.DRCMR.BIT.OCMD = 0x00;
202 SPIBSC.DRENR.BIT.OCDB = SPIBSC_1BIT; /* Single */
203 SPIBSC.DRENR.BIT.OCDE = SPIBSC_OUTPUT_DISABLE;
204 /* Disable */
205
206 /* -——- Address ---- */
207 if(cmd == 0xBB){
208 /* Dual 1/0 High Performance */
209 SPIBSC.DRENR.BIT.ADB = SPIBSC_2BIT; /* Dual */
210 SPIBSC.DRENR.BIT.ADE = SPIBSC_OUTPUT_ADDR_24;
211 /* S-flash x 1 Enable(ADDR[23:0]) */
212 /* S-flash x 2 Enable(ADDR[24:1]) */
213 }

RO1ANO671EJO101 Rev. 1.01
Feb. 16, 2012

Page 43 of 52
RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.23 Sample Program List “io_spibsc.c” (6)

214 else if(cmd == OxEB){
215 /* Quad 1/0 High Performance */
216 SPIBSC.DRENR.BIT.ADB = SPIBSC_4BIT; /* Quad */
217 SPIBSC.DRENR.BIT.ADE = SPIBSC_OUTPUT_ADDR_24;
218 /* S-flash x 1 Enable(ADDR[23:0]) */
219 /* S-flash x 2 Enable(ADDR[24:1]) */
220 }
221 else{
222 SPIBSC.DRENR.BIT.ADB = SPIBSC_1BIT; /* Single */
223 SPIBSC.DRENR.BIT.ADE = SPIBSC_OUTPUT_ADDR_24;
224 /* S-flash x 1 Enable(ADDR[23:0]) */
225 /* S-flash x 2 Enable(ADDR[24:1]) */
226 }
227
228 /* ---- Option Data ---- */
229 if(cmd == OxBB){
230 /* Dual 1/0 High Performance */
231 SPIBSC.DROPR.BIT.OPD3 = 0x00; /* Option Data(Mode bit) */
232 SPIBSC.DROPR.BIT.OPD2 = 0x00; /* Option Data */
233 SPIBSC.DROPR.BIT.OPD1 = 0x00; /* Option Data */
234 SPIBSC.DROPR.BIT.OPDO = 0x00; /* Option Data */
235 SPIBSC.DRENR.BIT.OPDB = SPIBSC_2BIT; /* Dual */
236 SPIBSC.DRENR.BIT.OPDE = SPIBSC_OUTPUT_OPD_3;
237 /* Enable(OPD3) */
238 }
239 else if(cmd == OxEB){
240 /* Quad 1/0 High Performance */
241 SPIBSC.DROPR.BIT.OPD3 = 0x00; /* Option Data(Mode bit) */
242 SPIBSC.DROPR.BIT.OPD2 = 0x00; /* Option Data(Dummy) */
243 SPIBSC.DROPR.BIT.OPD1 = 0x00; /* Option Data(Dummy) */
244 SPIBSC.DROPR.BIT.OPDO = 0x00; /* Option Data */
245 SPIBSC.DRENR.BIT.OPDB = SPIBSC_4BIT; /* Quad */
246 SPIBSC.DRENR.BIT.OPDE = SPIBSC_OUTPUT_OPD_321;
247 /* Enable(OPD3,0PD2,0PD1) */
248 }
249 else{
250 SPIBSC.DROPR.BIT.OPD3 = 0x00; /* Option Data(Dummy) */
251 SPIBSC.DROPR.BIT.OPD2 = 0x00; /* Option Data */
252 SPIBSC.DROPR.BIT.OPD1 = 0x00; /* Option Data */
253 SPIBSC.DROPR.BIT.OPDO = 0x00; /* Option Data */
254 SPIBSC.DRENR.BIT.OPDB = SPIBSC_1BIT; /* Single */
255 SPIBSC.DRENR.BIT.OPDE = SPIBSC_OUTPUT_OPD_3;
256 /* Enable(OPD3) */
257 }
RO1ANO671EJ0101 Rev.1.01 Page 44 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

3.24 Sample Program List “io_spibsc.c” (7)

258 /* -—-- Data ---- */
259 if(cmd == 0x6B){
260 SPIBSC.DRENR.BIT.DRDB = SPIBSC_4BIT; /* Quad */
261 }
262 else if(cmd == 0x3B){
263 SPIBSC.DRENR.BIT.DRDB = SPIBSC_2BIT; /* Dual */
264 }
265 else if(cmd == Ox0B){
266 SPIBSC.DRENR.BIT.DRDB = SPIBSC_1BIT; /* Single */
267 }
268 else if(cmd == OxBB){
269 SPIBSC.DRENR.BIT.DRDB = SPIBSC_2BIT; /* Dual 1/0 High Performance */
270 }
271 else if(cmd == OxEB){
272 SPIBSC.DRENR.BIT.DRDB = SPIBSC_4BIT; /* Quad 1/0 High Performance */
273 }
274 else{
275 return -1;
276 }
277 return O;
278 }
279
280 /
281 1D
282 Outline :
283 Include : 10_spibsc.h
284 Declaration : int io_spibsc_transfer(ST_SPIBSC_SM *SpibscSm);
285 Description
286 Argument : void
287 Return Value :
288 Note - None
289 /
290 int io_spibsc_transfer(ST_SPIBSC_SM *SpibscSm)
291 {
292 int i;
293 volatile unsigned long dummy;
294
295 iT(SPIBSC.CMNCR.BIT.MD != SPIBSC_CMNCR_MD_SPI1){
296 iT(SPIBSC.CMNSR.BIT.SSLF 1= SPIBSC_SSL_NEGATE){
297 return -1;
298 }
299 SPIBSC.CMNCR.BIT.MD = SPIBSC_CMNCR_MD_SPI;
300 /* SPI Mode */
301 }
302
303 iT(SPIBSC.CMNSR.BIT.TEND != SPIBSC_TRANS_END){
304 return -1;
305 }
306
RO1ANO671EJ0101 Rev.1.01 Page 45 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

3.25 Sample Program List “io_spibsc.c” (8)

307 /* ———- Command ---- */
308 SPIBSC.SMENR.BIT.CDE = SpibscSm->cde; /* Enable/Disable */
309 if(SpibscSm->cde != SPIBSC_OUTPUT_DISABLE){
310 SPIBSC.SMCMR.BIT.CMD = SpibscSm->cmd; /* Command */
311 SPIBSC.SMENR.BIT.CDB = SpibscSm->cdb; /* Single/Dual/Quad */
312 }
313
314 /* --—- Option Command ---- */
315 SPIBSC.SMENR.BIT.OCDE = SpibscSm->ocde; /* Enable/Disable */
316 iT(SpibscSm->ocde != SPIBSC_OUTPUT_DISABLE){
317 SPIBSC.SMCMR.BIT.OCMD = SpibscSm->ocmd; /* Option Command */
318 SPIBSC.SMENR.BIT.OCDB = SpibscSm->ocdb; /* Single/Dual/Quad */
319 }
320
321 /* ———— Address ---- */
322 SPIBSC.SMENR.BIT.ADE = SpibscSm->ade; /* Enable/Disable */
323 if(SpibscSm->ade !'= SPIBSC_OUTPUT_DISABLE){
324 SPIBSC.SMADR.BIT.ADR = SpibscSm->addr; /* Address */
325 SPIBSC.SMENR.BIT.ADB = SpibscSm->adb; /* Single/Dual/Quad */
326 }
327
328 /* --—- Option Data ---- */
329 SPIBSC.SMENR.BIT.OPDE = SpibscSm->opde; /* Enable/Disable */
330 iT(SpibscSm->opde != SPIBSC_OUTPUT_DISABLE){
331 SPIBSC.SMOPR.BIT.OPD3 = SpibscSm->opd[0]; /* Option Data */
332 SPIBSC.SMOPR.BIT.OPD2 = SpibscSm->opd[1]; /* Option Data */
333 SPIBSC.SMOPR.BIT.OPD1 = SpibscSm->opd[2]; /* Option Data */
334 SPIBSC.SMOPR.BIT.OPDO = SpibscSm->opd[3]; /* Option Data */
335 SPIBSC.SMENR.BIT.OPDB = SpibscSm->opdb; /* Single/Dual/Quad */
336 }
337
338 /* -———- Data ---—- */
339 SPIBSC.SMENR.BIT.SPIDE = SpibscSm->spide; /* Enable/Disable */
340 iT(SpibscSm->spide != SPIBSC_OUTPUT_DISABLE){
341 SPIBSC.SMWDRO.LONG = SpibscSm->smwdr[0];
342 SPIBSC.SMWDR1.LONG = SpibscSm->smwdr[1]; /* Valid in two serial-flash */
343 SPIBSC.SMENR.BIT.SPIDB = SpibscSm->spidb; /* Single/Dual/Quad */
344 }
345
346 SPIBSC.SMCR.BIT.SSLKP = SpibscSm->sslkp;
347
348 iT((SpibscSm->spidb != SPIBSC_1BIT) && (SpibscSm->spide != SPIBSC_OUTPUT_DISABLE)){
349 iT((SpibscSm->spire == SPIBSC_SPIDATA_ENABLE) &&
(SpibscSm->spiwe == SPIBSC_SPIDATA_ENABLE)){
350 /* not set in same time */
351 return -1;
352 }
353 }
RO1ANO671EJ0101 Rev.1.01 Page 46 of 52

Feb. 16, 2012

RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.26 Sample Program List “io_spibsc.c” (9)

354 SPIBSC.SMCR.BIT.SPIRE = SpibscSm->spire;
355 SPIBSC.SMCR.BIT.SPIWE = SpibscSm->spiwe;
356
357 SPIBSC.SMCR.BIT.SPIE = SPIBSC_SPI_ENABLE; /* execute after setting SPNDL bit */
358
359 /* wait for transfer-start */
360 dummy = SPIBSC.CMNSR.LONG;
361 dummy = SPIBSC.CMNSR.LONG;
362 dummy = SPIBSC.CMNSR.LONG;
363 dummy = SPIBSC.CMNSR.LONG;
364
365 while(SPIBSC.CMNSR.BIT.TEND != SPIBSC_TRANS_END){
366 /* wait for transfer-end */
367 }
368 SpibscSm->smrdr[0] = SPIBSC.SMRDRO.LONG;
369 SpibscSm->smrdr[1] = SPIBSC.SMRDR1.LONG; /* valid in two serial-flash */
370
371 return O;
372 }
373
374 /* End of File */
375
RO1ANO671EJ0101 Rev.1.01 Page 47 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi 1/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.27 Sample Program List “io_spibsc.h” (1)
1 /
2 * DISCLAIMER
(Omitted)
27
28 * Copyright (C) 2011 Renesas Electronics Corporation. All rights reserved.
29 Technical reference data
30 * System Name : SH7268/SH7269 Firm Update Sample Program
31 * File Name io_spibsc.h
32 * Abstract : spibsc structure
33 * Version - 1.00.00
34 * Device : SH7268/SH7269
35 * Tool-Chain : High-performance Embedded Workshop (Ver.4.07.00).
36 * : C/C++ compiler package for the SuperH RISC engine family
37 * (Ver.9.03Release02).
38 * 0s - None
39 * H/W Platform: ROK57269(CPU board)
40 * Description :
41
42 * History : Jul.06,2011 Ver.1.00.00
43 /
44 #ifndef _10_SPIBSC_H_
45 #define _10_SPIBSC_H_
46
47 * ==== define values ==== *
48 #define SPIBSC_CMNCR_MD_EXTRD 0
49 #define SPIBSC_CMNCR_MD_SPI 1
50
51 #define SPIBSC_OUTPUT_LOW 0
52 #define SPIBSC_OUTPUT_HIGH 1
53 #define SPIBSC_OUTPUT_LAST 2
54 #define SPIBSC_OUTPUT_HiZ 3
55
56 #define SPIBSC_CMNCR_CPHAT_EVEN 0
57 #define SPIBSC_CMNCR_CPHAT_ODD
58
59 #define SPIBSC_CMNCR_CPHAR_ODD 0
60 #define SPIBSC_CMNCR_CPHAR_EVEN 1
61
62 #define SPIBSC_CMNCR_SSLP_LOW 0
63 #define SPIBSC_CMNCR_SSLP_HIGH 1
64
65 #define SPIBSC_CMNCR_CPOL_LOW 0
66 #define SPIBSC_CMNCR_CPOL_HIGH 1
67
68 #define SPIBSC_CMNCR_BSZ_SINGLE 0
69 #define SPIBSC_CMNCR_BSZ_DUAL 1
70
RO1ANO671EJ0101 Rev.1.01 Page 48 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

3.28 Sample Program List “io_spibsc.h” (2)

71 #define SPIBSC_DELAY_1SPBCLK 0
72 #define SPIBSC_DELAY_2SPBCLK 1
73 #define SPIBSC_DELAY_3SPBCLK 2
74 #define SPIBSC_DELAY_4SPBCLK 3
75 #define SPIBSC_DELAY_5SPBCLK 4
76 #define SPIBSC_DELAY_6SPBCLK 5
77 #define SPIBSC_DELAY_7SPBCLK 6
78 #define SPIBSC_DELAY_8SPBCLK 7
79
80
81 #define SPIBSC_BURST_1 0x00
82 #define SPIBSC_BURST_2 0x01
83 #define SPIBSC_BURST_3 0x02
84 #define SPIBSC_BURST_4 0x03
85 #define SPIBSC_BURST_5 0x04
86 #define SPIBSC_BURST_6 0x05
87 #define SPIBSC_BURST_7 0x06
88 #define SPIBSC_BURST_8 0x07
89 #define SPIBSC_BURST_9 0x08
90 #define SPIBSC_BURST_10 0x09
91 #define SPIBSC_BURST_11 Ox0a
92 #define SPIBSC_BURST_12 0x0b
93 #define SPIBSC_BURST_13 0x0c
94 #define SPIBSC_BURST_14 0x0d
95 #define SPIBSC_BURST_15 0x0e
96 #define SPIBSC_BURST_16 Ox0f
97
98 #define SPIBSC_BURST_DISABLE 0
99 #define SPIBSC_BURST_ENABLE 1
100
101 #define SPIBSC_DRCR_RCF_EXE 1
102
103 #define SPIBSC_SSL_NEGATE 0
104 #define SPIBSC_TRANS_END 1
105
106 #define SPIBSC_1BIT 0
107 #define SPIBSC_2BIT 1
108 #define SPIBSC_4BIT
109
110 #define SPIBSC_OUTPUT_DISABLE 0
111 #define SPIBSC_OUTPUT_ENABLE 1
112 #define SPIBSC_OUTPUT_ADDR_24 0x07
113 #define SPIBSC_OUTPUT_ADDR_32 (0)°C0) i
114 #define SPIBSC_OUTPUT_OPD_3 0x08
115 #define SPIBSC_OUTPUT_OPD_ 32 0x0c
116 #define SPIBSC_OUTPUT_OPD_321 0x0e
117 #define SPIBSC_OUTPUT_OPD_3210 (0)0C0) §
118

RO1ANO0671EJ0101 Rev. 1.01 Page 49 of 52

Feb. 16, 2012 RENESAS

SH7268/SH7269 Group

SPI Multi I/O Buss Controller

Serial Flash Memory Connection Sample Program

3.29 Sample Program List “io_spibsc.h” (3)

119 #define SPIBSC_OUTPUT_SPID_8 0x08
120 #define SPIBSC_OUTPUT_SPID_16 0x0c
121 #define SPIBSC_OUTPUT_SPID_32 (0°C0) §
122

123 #define SPIBSC_SPISSL_NEGATE 0
124 #define SPIBSC_SPISSL_KEEP 1
125

126 #define SPIBSC_SPIDATA_DISABLE 0
127 #define SPIBSC_SPIDATA_ENABLE 1
128

129 #define SPIBSC_SPI_DISABLE 0
130 #define SPIBSC_SPI_ENABLE 1
131

132 typedef struct{

133 unsigned long cdb:2;

134 unsigned long ocdb:2;

135 unsigned long adb:2;

136 unsigned long opdb:2;

137 unsigned long spidb:2;

138 unsigned long cde:1;

139 unsigned long ocde:1;

140 unsigned long ade:4;

141 unsigned long opde:4;

142 unsigned long spide:4;

143 unsigned long sslkp:1;

144 unsigned long spire:1;

145 unsigned long spiwe:1;

146 unsigned long :5;

147

148 unsigned char cmd;

149 unsigned char ocmd;

150 unsigned long addr;

151 unsigned char opd[4];

152 unsigned long smrdr[2];

153 unsigned long smwdr[2];

154 }ST_SPIBSC_SM;

155

156 int io_spibsc_bsz_set(unsigned long bsz);

157 unsigned long i1o_spibsc_bsz _get(void);

158 int io_spibsc_common_init(unsigned long bsz);
159 int io_spibsc _dr_init(unsigned long cmd);

160 int io_spibsc_transfer(ST_SPIBSC_SM *SpibscSm);
161

162 #endif /* 10_SPIBSC_H */

163 /* End of File */

RO1ANO671EJO101 Rev. 1.01
Feb. 16, 2012

Page 50 of 52
RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller
Serial Flash Memory Connection Sample Program

4. References

e Software Manual
SH-2A/SH2A-FPU Software Manual Rev. 3.00
The latest version can be downloaded from the Renesas Electronics website.

e User's Manual for Hardware
SH7268 Group, SH7269 Group User's Manual: Hardware Rev. 1.00
The latest version can be downloaded from the Renesas Electronics website.

RO1ANO671EJ0101 Rev. 1.01 Page 51 of 52
Feb. 16, 2012 RENESAS

SH7268/SH7269 Group SPI Multi I/0O Buss Controller

Serial Flash Memory Connection Sample Program

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

RO1ANO671EJ0101 Rev. 1.01 Page 52 of 52
Feb. 16, 2012 RENESAS

http://www.renesas.com/
http://www.renesas.com/inquiry

Revision Record

Description
Rev. Date Page Summary
1.00 Jul 11.11 — First edition issued
1.01 Feb.16.12 — Added sample code of SH726B

A-1

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1.

Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSl is not guaranteed if they are accessed.

Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the

change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ
because of the differences in internal memory capacity and layout pattern. When changing to
products of different type numbers, implement a system-evaluation test for each of the products.

Notice

1. Allinformation included in this document is current asof the date this document isissued. Such information, howewver, is subject to change without any prior notice. Before purchasing or using any Renesas
Elecironics products listed herein, please confirm the latest product infermation with a Renesas Electrenics sales office. Also, please pay regular and careful attention to additional and different information to
be disslosed by Renesas Electronics such as that disclosed through our website
2. Renesas Electronics does not assume any labilty for infringement of patents, copyrights, or other intellectual property rights of thind parties by or arising fromthe use of Renesas Electronics produsts or
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Elestronics or
others.
3. You should not alter, modify, copy, orotherwise misappropriate any Rienesas Electronics prodluct whether in whale or in part,
4. Desoriptions of circuits, software and other related information in this document are provided only to lllustrate the operation of semiconductor procducts and applic ation examples. You are fully responsible for
the incorporation of these circuits, software, and information in the design of your equipment. Renesas E lectronics assumes no responsibility for any losses incurred by you or thid parties arising from the
use of these circuits, software, or information
5. When exporting the products or teshnokgy described in this docurment, you shouldd comply with the applicable export cortrol laws and requlations and folkw the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technelogy described in this document for any purpese relating to military applications or use by the military, including but not limited to
the development of weapons of massdestruction. Renesas Elestronics produsts and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited undler any applicable domestic or foreign laws or regulations.
6. Aenesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Elecironics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, "High Quality®, and "Spesific®. The recommended applications for each Renesas Electronics product
depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. ¥ou may not use any Henesas
Electronics product for any application categorized as "Specific” without the prior written consent of Renesas Electronics. Further, you may mot use any Renesas Electronics product for any application for
which ttis not intended without the prior written consent of Renesas Electronics. Renesas Electronic s shall not be in any way liable for any damages or losses incurred by you or third parties arising from the
use of any Renesas Electronics product for an application categorized as "Specific” or for which the product is not intended where you have failed to obtain the prior written consert of Renesas Electronics,
The quality grade of each Renesas Electronics product is "Standard” unless otherwise expressly specified in a Renesas Elestronicsdata sheets ordata books, elo
"Standard" Computers; offic e equipmert; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;
personal electronic equipment; and industrial robots.

“"High Quality™ Transportation equipment (automobiles, trains, ships, ets.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical squipment not specifically
designed for life support,

“Spesific™ Adrcraft, aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for Iife support (e q. artfficial ife support devices or systems), surgical
implantations, or healthcare intervention (e.q. excision, efe.), and ary other applications or purposes that pose adirect threat to human life.

8. You should use the Renesas Electronics products dessribed in this document within the range specified by Renesas Electronics, especially with respect to the maximurn rating, operating supply voltage
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liahility for malfunctions or damages arising out of the
use of Renesas Elestronics products beyond such specified ranges,

9. Although Renesas Electronics endeavors to improve the quality and reliabilty of its produsts, semiconductor products have specific characteristics such as the occurrence of failure at a cerain rate and
maffunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Flease be sure fo implement safety measures o guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation o any other appropriate measures. Because the evaluation of microcomputer software alone is very diffisult,
please evaluate the safety of the final products or system manutactured by you,

=

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in cormpliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without imiation, the EU RoHS Directive. Renesas Electronics assumes
no liability fordamages or losses occurting as a result of your noncompliance with applicable laws and regulations

11. This document may not be repreduced arduplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any guestions regarding the information contained in this doc ument or Renesas Electronic s products, or if you have any other inguiries.

(Mote 1) "Renesas Electronics* as used in this document means Renesas Electronics Corporation and also includes its majority owned subsidiaries

(Mote 2} "Renesas Electronics procuct(s)" means any productdeveloped or manufactured by or tor Renesas Electronios.

RENESAS

SALES OFFICES Renesas Electronics Corporation http:/Awww.renesas.com

Refer to "hitp:Moww renesas.com/ for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scolt Boulevard Santa Clara, CA 06050-2664 LS A
Tel: +1-408-688-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Mewmarket, Ontario L3Y 9G3, Ganada
Tel: +1-905-898-5441, Faoe +1-005-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Foad, Boume End, Buckinghamshire, SL8 6FH, U K
Tel: +44-1628-585-100, Fax: +44-1626-5856-000

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Disseldorf, Germany
Tel: +49-211-85030, Fax: +48-211-8503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, Mo.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +88-10-8235-1165, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Ad., Pudong District, Shanghai 200120, China,
Tel: +B6-21-6877-1818, Fax: +86-21-6887-7858 /-7090

Renesas Electronics Hong Kong Limited
Unit 1601-1813, 18/F ., Tower 2, Grand Gentury Place, 193 Prince Edward Foad West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-0318, Fax; +862 2886-9022/9044

Renesas Electronics Taiwan Co.,

13F, Mo. 363, Fu Shing North Hoad Talpel Taiwan

Tel: +B00-2-01 75~ 9600, Fax: +886 2-8175-0670

Renesas Electronics Singapore Pte. Lid.

1 harbourFront Avenue, #08-10, keppel Bay Tower, Singapore 008632

Tel: +55-6213-0200, Fax: +65-6278-5001

R Electronics Malaysia Sdn.Bhd.

Umt 906, Block B, Menara £m corp, Amcorp Trade Gentre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7065- 9390 Fax: +60-3-79566-0510

Renesas Electronics Korea Co., Lid.

11F , Samik Lavied' or Bldy., 720- ' ¥ aoksam- Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-556- 3737 Fax +B2-0-558-5141

@ 2012 Renesas Electrenics Corporation. All rights reserved.
Colophon 1.1

	1. Introduction
	1.1 Specifications
	1.2 Functions Used
	1.3 Applicable Conditions
	1.4 Related Application Note
	1.5 About Active-low Pins (Signals)

	2. Explanation of Application Program
	2.1 Features of SPIBSC
	2.2 Serial Flash Memory Pin Connection
	2.3 Interface Timing
	2.4 Initial Setting Flow
	2.5 SPI Operation Mode
	2.5.1 Operation Overview
	2.5.2 Data Format and Related Registers
	2.5.3 SPBSSL Pin Assert Retention
	2.5.4 Data Read Procedure
	(1) Read Command
	(2) SPI Operation Mode Setting Flow(Read)

	2.5.5 Data Write Procedure
	(1) Write Command
	(2) SPI Operation Mode Setting Flow(Write)

	2.6 External Address Space Read Mode
	2.6.1 Operation Overview
	2.6.2 Automatic Address Conversion
	2.6.3 Data Format and Related Registers
	2.6.4 Read Command
	2.6.5 Burst Read Operation
	(1) Burst Read and Read Cache
	(2) SPBSSL Automatic Negation

	2.6.6 External Address Space Read Mode Setting Flow

	2.7 Sample Program Operation Overview
	2.7.1 Main Function Flow

	3. Sample Program List
	3.1 Additional Description about Sample Program
	3.2 Sample Program List “main.c” (1)
	3.3 Sample Program List “main.c” (2)
	3.4 Sample Program List “main.c” (3)
	3.5 Sample Program List “qserial_flash_spibsc.c” (1)
	3.6 Sample Program List “qserial_flash_spibsc.c” (2)
	3.7 Sample Program List “qserial_flash_spibsc.c” (3)
	3.8 Sample Program List “qserial_flash_spibsc.c” (4)
	3.9 Sample Program List “qserial_flash_spibsc.c” (5)
	3.10 Sample Program List “qserial_flash_spibsc.c” (6)
	3.11 Sample Program List “qserial_flash_spibsc.c” (7)
	3.12 Sample Program List “qserial_flash_spibsc.c” (8)
	3.13 Sample Program List “qserial_flash_spibsc.c” (9)
	3.14 Sample Program List “qserial_flash_spibsc.c” (10)
	3.15 Sample Program List “qserial_flash_spibsc.c” (11)
	3.16 Sample Program List “qserial_flash_spibsc.c” (12)
	3.17 Sample Program List “qserial_flash_spibsc.h” (1)
	3.18 Sample Program List “io_spibsc.c” (1)
	3.19 Sample Program List “io_spibsc.c” (2)
	3.20 Sample Program List “io_spibsc.c” (3)
	3.21 Sample Program List “io_spibsc.c” (4)
	3.22 Sample Program List “io_spibsc.c” (5)
	3.23 Sample Program List “io_spibsc.c” (6)
	3.24 Sample Program List “io_spibsc.c” (7)
	3.25 Sample Program List “io_spibsc.c” (8)
	3.26 Sample Program List “io_spibsc.c” (9)
	3.27 Sample Program List “io_spibsc.h” (1)
	3.28 Sample Program List “io_spibsc.h” (2)　　
	3.29 Sample Program List “io_spibsc.h” (3)　

	4. References

