
Intel® High Level Synthesis Compiler
Best Practices Guide

Updated for Intel® Quartus® Prime Design Suite: 19.1

Subscribe
Send Feedback

UG-20107 | 2019.04.01
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=nml1505158467345
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/hls/ug-hls-best-practices.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/nml1505158467345.html

Contents

1. Intel® HLS Compiler Best Practices Guide... 4

2. Best Practices for Coding and Compiling Your Component.. 5

3. Interface Best Practices..6
3.1. Choose the Right Interface for Your Component...7

3.1.1. Pointer Interfaces.. 8
3.1.2. Avalon Memory Mapped Master Interfaces...10
3.1.3. Avalon Memory Mapped Slave Interfaces...13
3.1.4. Avalon Streaming Interfaces..15
3.1.5. Pass-by-Value Interface.. 17

3.2. Avoid Pointer Aliasing... 19

4. Loop Best Practices...20
4.1. Reuse Hardware By Calling It In a Loop.. 21
4.2. Parallelize Loops.. 22

4.2.1. Pipeline Loops... 22
4.2.2. Unroll Loops..24
4.2.3. Example: Loop Pipelining and Unrolling...24

4.3. Construct Well-Formed Loops.. 27
4.4. Minimize Loop-Carried Dependencies..27
4.5. Avoid Complex Loop-Exit Conditions...28
4.6. Convert Nested Loops into a Single Loop...29
4.7. Declare Variables in the Deepest Scope Possible...29

5. Memory Architecture Best Practices..31
5.1. Example: Overriding a Coalesced Memory Architecture... 31
5.2. Example: Overriding a Banked Memory Architecture...33
5.3. Merge Memories to Reduce Area.. 34

5.3.1. Example: Merging Memories Depth-Wise...35
5.3.2. Example: Merging Memories Width-Wise... 37

5.4. Example: Specifying Bank-Selection Bits for Local Memory Addresses......................... 39

6. System of Tasks... 45

6.1. Executing Multiple Loops in Parallel..45

6.2. Sharing an Expensive Compute Block...46

6.3. Implementing a Hierarchical Design...46

6.4. Avoiding Potential Performance Pitfalls... 46

7. Datatype Best Practices.. 48
7.1. Avoid Implicit Data Type Conversions... 49
7.2. Avoid Negative Bit Shifts When Using the ac_int Datatype...................................... 49

8. Advanced Troubleshooting..50
8.1. Component Fails Only In Cosimulation ... 50
8.2. Component Gets Bad Quality of Results.. 51

Contents

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Document Revision History for Intel HLS Compiler Best Practices Guide...................... 58

Contents

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Intel® HLS Compiler Best Practices Guide
The Intel® HLS Compiler Best Practices Guide provides techniques and practices that
you can apply to improve the FPGA area utilization and performance of your HLS
component. Typically, you apply these best practices after you verify the functional
correctness of your component.

The features and devices supported by the Intel HLS Compiler depend on what edition
of Intel Quartus® Prime you have. The following icons indicate content in this
publication that applies only to the Intel HLS Compiler provided with a certain edition
of Intel Quartus Prime:

Indicates that a feature or content applies only to Intel HLS Compiler Pro
Edition.

Indicates that a feature or content applies only to Intel HLS Compiler
Standard Edition.

In this publication, <quartus_installdir> refers to the location where you
installed Intel Quartus Prime Design Suite. The Intel High Level Synthesis (HLS)
Compiler is installed as part of your Intel Quartus Prime Design Suite installation.

The default Intel Quartus Prime Design Suite installation location depends on your
operating system and your Intel Quartus Prime edition:

Windows C:\intelFPGA_pro\19.1

Linux /home/<username>/intelFPGA_pro/19.1

Windows C:\intelFPGA_standard\19.1

Linux /home/<username>/intelFPGA_standard/19.1

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2. Best Practices for Coding and Compiling Your
Component

After you verify the functional correctness of your component, you might want to
improve the performance and FPGA area utilization of your component. Learn about
the best practices for coding and compiling your component so that you can determine
which best practices can help you best optimize your component.

As you look at optimizing your component, apply the best practices techniques in the
following areas, roughly in the order listed. Also, review the examples designs and
tutorials provided with the Intel High Level Synthesis (HLS) Compiler to see examples
of how some of these techniques can be implemented.

• Interface Best Practices on page 6

With the Intel High Level Synthesis Compiler, your component can have a variety
of interfaces: from basic wires to the Avalon Streaming and Avalon Memory-
Mapped Master interfaces. Review the interface best practices to help you choose
and configure the right interface for your component.

• Loop Best Practices on page 20

The Intel High Level Synthesis Compiler pipelines your loops to enhance
throughput. Review the loop best practices to learn techniques to optimize your
loops to boost the performance of your component.

• Memory Architecture Best Practices on page 31

The Intel High Level Synthesis Compiler infers efficient memory architectures (like
memory width, number of banks and ports) in a component by adapting the
architecture to the memory access patterns of your component. Review the
memory architecture best practices to learn how you can get the best memory
architecture for your component from the compiler.

• Datatype Best Practices on page 48

The datatypes in your component and possible conversions or casting that they
might undergo can significantly affect the performance and FPGA area usage of
your component. Review the datatype best practices for tips and guidance how
best to control datatype sizes and conversions in your component.

• Alternative Algorithms

The Intel High Level Synthesis Compiler lets you compile a component quickly to
get initial insights into the performance and area utilization of your component.
Take advantage of this speed to try larger algorithm changes to see how those
changes affect your component performance.

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

3. Interface Best Practices
With the Intel High Level Synthesis Compiler, your component can have a variety of
interfaces: from basic wires to the Avalon Streaming and Avalon Memory-Mapped
Master interfaces. Review the interface best practices to help you choose and
configure the right interface for your component.

Each interface type supported by the Intel HLS Compiler has different benefits.
However, the system that surrounds your component might limit your choices. Keep
your requirements in mind when determining the optimal interface for your
component.

Demonstrating Interface Best Practices

The Intel HLS Compiler comes with a number of tutorials that give you working
examples to review and run so that you can see good coding practices as well as
demonstrating important concepts.

Review the following tutorials to learn about different interfaces as well as best
practices that might apply to your design:

Tutorial Description

You can find these tutorials in the following location on your Intel Quartus Prime system:

<quartus_installdir>/hls/examples/tutorials

interfaces/overview Demonstrates the effects on quality-of-results (QoR) of choosing different
component interfaces even when the component algorithm remains the same.

best_practices/
parameter_aliasing Demonstrates the use of the __restrict keyword on component

arguments

 Demonstrates the use of the restrict keyword on component
arguments.

interfaces/
explicit_streams_buffer

Demonstrates how to use explicit stream_in and stream_out interfaces in the
component and testbench.

 interfaces/
explicit_streams_packets_read
y_empty

Demonstrates how to use the usesPackets, usesEmpty, and
firstSymbolInHighOrderBits stream template parameters.

interfaces/
explicit_streams_packets_read
y_valid

Demonstrates how to use the usesPackets, usesValid, and usesReady
stream template parameters.

 interfaces/
explicit_streams_ready_latenc
y

Demonstrates how to achieve a better loop initiation interval (II) with stream
write using the readyLatency stream template parameter.

continued...

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Tutorial Description

interfaces/
mm_master_testbench_operators

Demonstrates how to invoke a component at different indicies of an Avalon
Memory Mapped (MM) Master (mm_master class) interface.

interfaces/mm_slaves Demonstrates how to create Avalon-MM Slave interfaces (slave registers and
slave memories).

interfaces/
multiple_stream_call_sites

Demonstrates the benefits of using multiple stream call sites.

interfaces/pointer_mm_master Demonstrates how to create Avalon-MM Master interfaces and control their
parameters.

interfaces/stable_arguments Demonstrates how to use the stable attribute for unchanging arguments to
improve resource utilization.

Related Information

• Avalon Memory-Mapped Interface Specifications

• Avalon Streaming Interface Specifications

3.1. Choose the Right Interface for Your Component

Different component interfaces can affect the quality of results (QoR) of your
component without changing your component algorithm. Consider the effects of
different interfaces before choosing the interface for your component.

The best interface for your component might not be immediately apparent, so you
might need to try different interfaces for your component to achieve the optimal QoR.
Take advantage of the rapid component compilation time provided by the Intel HLS
Compiler and the resulting High Level Design reports to determine which interface
gives you the optimal QoR for your component.

This section uses a vector addition example to illustrate the impact of changing the
component interface while keeping the component algorithm the same. The example
has two input vectors, vector a and vector b, and stores the result to vector c. The
vectors have a length of N (which could be very large).

The core algorithm is as follows:

 #pragma unroll 8
 for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i];
 }

The Intel HLS Compiler extracts the parallelism of this algorithm by pipelining the
loops if no loop dependency exists. In addition, by unrolling the loop (by a factor of 8),
more parallelism can be extracted.

Ideally, the generated component has a latency of N/8 cycles. In the examples in the
following section, a value of 1024 is used for N, so the ideal latency is 128 cycles
(1024/8).

The following sections present variations of this example that use different interfaces.
Review these sections to learn how different interfaces affect the QoR of this
component.

3. Interface Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

7

https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467936351
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html#nik1412467963376
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can work your way through the variations of these examples by reviewing the
tutorial available in <quartus_installdir>/hls/examples/tutorials/
interfaces/overview.

3.1.1. Pointer Interfaces

Software developers accustomed to writing code that targets a CPU might first try to
code this algorithm by declaring vectors a, b, and c as pointers to get the data in and
out of the component. Using pointers in this way results in a single Avalon Memory-
Mapped (MM) Master interface that the three input variables share.

Pointers in a component are implemented as Avalon® Memory Mapped (Avalon-MM)
master interfaces with default settings. For more details about pointer parameter
interfaces, see Intel HLS Compiler Default Interfaces in Intel High Level Synthesis
Compiler Reference Manual.

The vector addition component example with pointer interfaces can be coded as
follows:

component void vector_add(int* a,
 int* b,
 int* c,
 int N) {
 #pragma unroll 8
 for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i];
 }
}

The following diagram shows the Component Viewer report generated when you
compile this example. Because the loop is unrolled by a factor of 8, the diagram shows
that vector_add.B2 has 8 loads for vector a, 8 loads for vector b, and 8 stores for
vector c. In addition, all of the loads and stores are arbitrated on the same memory,
resulting in inefficient memory accesses.

3. Interface Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

8

https://www.intel.com/content/www/us/en/programmable/documentation/hje1496784997982.html#default_interfaces_quickref_table
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1. Component View of vector_add Component with Pointer Interfaces

The following Loop Analysis report shows that the component has an undesirably high
loop initiation interval (II). The II is high because vectors a, b, and c are all accessed
through the same Avalon-MM Master interface. The Intel HLS Compiler uses stallable
arbitration logic to schedule these accesses, which results in poor performance and
high FPGA area use.

In addition, the compiler cannot assume there are no data dependencies between loop
iterations because pointer aliasing might exist. The compiler cannot determine that
vectors a, b, and c do not overlap. If data dependencies exist, the Intel HLS Compiler
cannot pipeline the loop iterations effectively.

3. Interface Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compiling the component with an Intel Quartus Prime compilation flow targeting an
Intel Arria® 10 device results in the following QoR metrics, including high ALM usage,
high latency, high II, and low fMAX. All of which are undesirable properties in a
component.

Table 1. QoR Metrics for a Component with a Pointer Interface1

QoR Metric Value

ALMs 15593.5

DSPs 0

RAMs 30

fMAX (MHz)2 298.6

Latency (cycles) 24071

Initiation Interval (II) (cycles) ~508

1The compilation flow used to calculate the QoR metrics used Intel Quartus Prime Pro Edition Version 17.1.

2The fMAX measurement was calculated from a single seed.

3.1.2. Avalon Memory Mapped Master Interfaces

By default, pointers in a component are implemented as Avalon Memory Mapped
(Avalon-MM) master interfaces with default settings. You can mitigate poor
performance from the default settings by configuring the Avalon-MM master
interfaces.

You can configure the Avalon-MM master interface for the vector addition component
example using the ihc::mm_master class as follows:

component void vector_add(

ihc::mm_master<int, ihc::aspace<1>, ihc::dwidth<8*8*sizeof(int)>,
ihc::align<8*sizeof(int)> >& a,

3. Interface Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

ihc::mm_master<int, ihc::aspace<2>, ihc::dwidth<8*8*sizeof(int)>,
ihc::align<8*sizeof(int)> >& b,

ihc::mm_master<int, ihc::aspace<3>, ihc::dwidth<8*8*sizeof(int)>,
ihc::align<8*sizeof(int)> >& c,

 int N) {
 #pragma unroll 8
 for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i];
 }
 }

The memory interfaces for vector a, vector b, and vector c have the following
attributes specified:

• The vectors are each assigned to different address spaces with the ihc::aspace
attribute, and each vector receives a separate Avalon-MM master interface.

With the vectors assigned to different physical interfaces, the vectors can be
accessed concurrently without interfering with each other, so memory arbitration
is not needed.

• The width of the interfaces for the vectors is adjusted with the ihc::dwidth
attribute.

• The alignment of the interfaces for the vectors is adjusted with the ihc::align
attribute.

The following diagram shows the Component Viewer report generated when you
compile this example.

3. Interface Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 2. Component View of vector_add Component with Avalon-MM Master Interface

The diagram shows that vector_add.B2 has two loads and one store. The default
Avalon-MM Master settings used by the code example in Pointer Interfaces on page 8
had 16 loads and 8 stores.

By expanding the width and alignment of the vector interfaces, the original pointer
interface loads and stores were coalesced into one wide load each for vector a and
vector b, and one wide store for vector c.

Also, the memories are stall-free because the loads and stores in this example access
separate memories.

3. Interface Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

12

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Compiling this component with an Intel Quartus Prime compilation flow targeting an
Intel Arria 10 device results in the following QoR metrics:

Table 2. QoR Metrics Comparison for Avalon-MM Master Interface1

QoR Metric Pointer Avalon-MM Master

ALMs 15593.5 643

DSPs 0 0

RAMs 30 0

fMAX (MHz)2 298.6 472.37

Latency (cycles) 24071 142

Initiation Interval (II) (cycles) ~508 1

1The compilation flow used to calculate the QoR metrics used Intel Quartus Prime Pro Edition Version 17.1.

2The fMAX measurement was calculated from a single seed.

All QoR metrics improved by changing the component interface to a specialized
Avalon-MM Master interface from a pointer interface. The latency is close to the ideal
latency value of 128, and the loop initiation interval (II) is 1.

Important: This change to a specialized Avalon-MM Master interface from a pointer interface
requires the system to have three separate memories with the expected width. The
initial pointer implementation requires only one system memory with a 64-bit wide
data bus. If the system cannot provide the required memories, you cannot use this
optimization.

3.1.3. Avalon Memory Mapped Slave Interfaces

Depending on your component, you can sometimes optimize the memory structure of
your component by using Avalon Memory Mapped (Avalon-MM) slave interfaces.

When you allocate a slave memory, you must define its size. Defining the size puts a
limit on how large a value of N that the component can process. In this example, the
RAM size is 1024 words. This RAM size means that N can have a maximal size of 1024
words.

The vector addition component example can be coded with an Avalon-MM slave
interface as follows:

component void vector_add(
 hls_avalon_slave_memory_argument(1024*sizeof(int)) int* a,
 hls_avalon_slave_memory_argument(1024*sizeof(int)) int* b,
 hls_avalon_slave_memory_argument(1024*sizeof(int)) int* c,
 int N) {
 #pragma unroll 8
 for (int i = 0; i < N; ++i) {
 c[i] = a[i] + b[i];
 }
}

The following diagram shows the Component Viewer report generated when you
compile this example.

3. Interface Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 3. Component View of vector_add Component with Avalon-MM Slave Interface

Compiling this component with an Intel Quartus Prime compilation flow targeting an
Intel Arria 10 device results in the following QoR metrics:

Table 3. QoR Metrics Comparison for Avalon-MM Slave Interface1

QoR Metric Pointer Avalon-MM Master Avalon-MM Slave

ALMs 15593.5 643 490.5

DSPs 0 0 0

RAMs 30 0 48

fMAX (MHz)2 298.6 472.37 498.26

Latency (cycles) 24071 142 139

Initiation Interval (II) (cycles) ~508 1 1

3. Interface Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1The compilation flow used to calculate the QoR metrics used Intel Quartus Prime Pro Edition Version 17.1.

2The fMAX measurement was calculated from a single seed.

The QoR metrics show by changing the ownership of the memory from the system to
the component, the number of ALMs used by the component are reduced, as is the
component latency. The fMAX of the component is increased as well. The number of
RAM blocks used by the component is greater because the memory is implemented in
the component and not the system. The total system RAM usage (not shown) should
not increase because RAM usage shifted from the system to the FPGA RAM blocks.

3.1.4. Avalon Streaming Interfaces

Avalon Streaming (Avalon-ST) interfaces support a unidirectional flow of data, and are
typically used for components that drive high-bandwidth and low-latency data.

The vector addition example can be coded with an Avalon-ST interface as follows:

struct int_v8 {
 int data[8];
};
component void vector_add(
 ihc::stream_in<int_v8>& a,
 ihc::stream_in<int_v8>& b,
 ihc::stream_out<int_v8>& c,
 int N) {
 for (int j = 0; j < (N/8); ++j) {
 int_v8 av = a.read();
 int_v8 bv = b.read();
 int_v8 cv;
 #pragma unroll 8
 for (int i = 0; i < 8; ++i) {
 cv.data[i] = av.data[i] + bv.data[i];
 }
 c.write(cv);
 }
}

An Avalon-ST interface has a data bus, and ready and busy signals for handshaking.
The struct is created to pack eight integers so that eight operations at a time can
occur in parallel to provide a comparison with the examples for other interfaces.
Similarly, the loop count is divided by eight.

The following diagram shows the Component Viewer report generated when you
compile this example.

3. Interface Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 4. Component View of vector_add Component with Avalon-ST Interface

The main difference from other versions of the example component is the absence of
memory.

The streaming interfaces are stallable from the upstream sources and the downstream
output. Because the interfaces are stallable, the loop initiation interval (II) is
approximately 1 (instead of exactly 1). If the component does not receive any bubbles
(gaps in data flow) from upstream or stall signals from downstream, then the
component achieves the desired II of 1.

3. Interface Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If you know that the stream interfaces will never stall, you can further optimize this
component by taking advantage of the usesReady and usesValid stream
parameters.

Compiling this component with an Intel Quartus Prime compilation flow targeting an
Intel Arria 10 device results in the following QoR metrics:

Table 4. QoR Metrics Comparison for Avalon-ST Interface1

QoR Metric Pointer Avalon-MM Master Avalon-MM Slave Avalon-ST

ALMs 15593.5 643 490.5 314.5

DSPs 0 0 0 0

RAMs 30 0 48 0

fMAX (MHz)2 298.6 472.37 498.26 389.71

Latency (cycles) 24071 142 139 134

Initiation Interval (II) (cycles) ~508 1 1 1

1The compilation flow used to calculate the QoR metrics used Intel Quartus Prime Pro Edition Version 17.1.

2The fMAX measurement was calculated from a single seed.

Moving the vector_add component to an Avalon-ST interface, further improved ALM
usage, RAM usage, and component latency. The component II is optimal if there are
no stalls from the interfaces.

3.1.5. Pass-by-Value Interface

For software developers accustomed to writing code that targets a CPU, passing each
element in an array by value might be unintuitive because it typically results in many
function calls or large parameters. However, for code targeting an FPGA, passing array
elements by value can result in smaller and simpler hardware on the FPGA.

The vector addition example can be coded to pass the vector array elements by value
as follows. A struct is used because we want to pass the entire array (of 8 data
elements) by value.

struct int_v8 {
 int data[8];
};
component int_v8 vector_add(
 int_v8 a,
 int_v8 b) {
 int_v8 c;
 #pragma unroll 8
 for (int i = 0; i < 8; ++i) {
 c.data[i] = a.data[i]
 + b.data[i];
 }
 return c;
}

This component takes and processes only eight elements of vector a and vector b, and
returns eight elements of vector c. To compute 1024 elements for the example, the
component needs to be called 128 times (1024/8). While in previous examples the
component contained loops that were pipelined, here the component is invoked many
times, and each of the invocations are pipelined.

3. Interface Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following diagram shows the Component Viewer report generated when you
compile this example.

Figure 5. Component View of vector_add Component with Pass-By-Value Interface

The latency of this component is one, and it has a loop initiation interval (II) of one.

Compiling this component with an Intel Quartus Prime compilation flow targeting an
Intel Arria 10 device results in the following QoR metrics:

Table 5. QoR Metrics Comparison for Pass-by-Value Interface1

QoR Metric Pointer Avalon-MM Master Avalon-MM Slave Avalon-ST Pass-by-Value

ALMs 15593.5 643 490.5 314.5 130

DSPs 0 0 0 0 0

RAMs 30 0 48 0 0

fMAX (MHz)2 298.6 472.37 498.26 389.71 581.06

Latency (cycles) 24071 142 139 134 128

Initiation Interval (II) (cycles) ~508 1 1 1 1

3. Interface Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1The compilation flow used to calculate the QoR metrics used Intel Quartus Prime Pro Edition Version 17.1.

2The fMAX measurement was calculated from a single seed.

The QoR metrics for the vector_add component with a pass-by-value interface
shows fewer ALM used, a high component fMAX, and optimal values for latency and II.
In this case, the II is the same as the component invocation interval. A new invocation
of the component can be launched every clock cycle. With a initiation interval of 1,
128 component calls are processed in 128 cycles so the overall latency is 128.

3.2. Avoid Pointer Aliasing

Add a restrict type qualifier to pointer types whenever possible. By having restrict-
qualified pointers, you prevent the Intel HLS Compiler from creating unnecessary
memory dependencies between nonconflicting read and write operations.

The restrict type qualifier to use depends on your edition of Intel Quartus Prime:

•
 The restrict type qualifier is __restrict.

•
 The restrict type qualifier is restrict.

Consider a loop where each iteration reads data from one array, and then it writes
data to another array in the same physical memory. Without adding the restrict type
qualifier to these pointer arguments, the compiler must assume that the two arrays
overlap. Therefor, the compiler must keep the original order of memory accesses to
both arrays, resulting in poor loop optimization or even failure to pipeline the loop that
contains the memory accesses.

For more details, review the parameter aliasing tutorial in the following location:

<quartus_installdir>/hls/examples/tutorials/best_practices/parameter_aliasing

3. Interface Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Loop Best Practices
The Intel High Level Synthesis Compiler pipelines your loops to enhance throughput.
Review the loop best practices to learn techniques to optimize your loops to boost the
performance of your component.

The Intel HLS Compiler lets you know if there are any dependencies that prevent it
from optimizing your loops. Try to eliminate these dependencies in your code for
optimal component performance. You can also provide additional guidance to the
compiler by using the available loop pragmas.

As a start, try the following techniques:

• Manually fuse adjacent loop bodies when the instructions in those loop bodies can
be performed in parallel. These fused loops can be pipelined instead of being
executed sequentially. Pipelining reduces the latency of your component and can
reduce the FPGA area your component uses.

• Use the #pragma loop_coalesce directive to have the compiler attempt to
collapse nested loops. Coalescing loops reduces the latency of your component
and can reduce the FPGA area overhead needed for nested loops.

Tutorials Demonstrating Loop Best Practices

The Intel HLS Compiler comes with a number of tutorials that give you working
examples to review and run so that you can see good coding practices as well as
demonstrating important concepts.

Review the following tutorials to learn about loop best practices that might apply to
your design:

Tutorial Description

You can find these tutorials in the following location on your Intel Quartus Prime system:

<quartus_installdir>/hls/examples/tutorials

best_practices/
loop_coalesce

Demonstrates the performance and resource utilization improvements of using
loop_coalesce pragma on nested loops.

best_practices/
loop_memory_dependency

Demonstrates breaking loop-carried dependencies using the ivdep pragma.

best_practices/
resource_sharing_filter

Demonstrates the following versions of a 32-tap finite impulse response (FIR)
filter design:
• optimized-for-throughput variant
• optimized-for-area variant

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.1. Reuse Hardware By Calling It In a Loop

Loops are a useful way to reuse hardware. If your component function calls another
function, the called function will be the top-level component. Calling a function
multiple times results in hardware duplication.

For example, the following code example results in multiple hardware copies of the
function foo in the component myComponent because the function foo is inlined:

int foo(int a)
{
 return 4 + sqrt(a) /
}

component
void myComponent()
{
 ...
 int x =
 x += foo(0);
 x += foo(1);
 x += foo(2);
 ...
}

If you place the function foo in a loop, the hardware for foo can be reused for each
invocation. The function is still inlined, but it is inlined only once.

component
void myComponent()
{
 ...
 int x = 0;
#pragma unroll 1
 for (int i = 0; i < 3; i++)
 {
 x += foo(i);
 }
 ...
}

You could also use a switch/case block if you want to pass your reusable function
different values that are not related to the loop induction variable i:

component
void myComponent()
{
 ...
 int x = 0;
#pragma unroll 1
 for (int i = 0; i < 3; i++)
 {
 int val = 0;
 switch(i)
 {
 case 0:
 val = 3;
 break;
 case 1:
 val = 6;
 break;
 case 2:
 val = 1;
 break;
 }
 x += foo(val);

4. Loop Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 }
 ...
}
H

You can learn more about reusing hardware and minimizing inlining be reviewing the
resource sharing tutorial available in <quartus_installdir>/hls/examples/
tutorials/best_practices/resource_sharing_filter.

4.2. Parallelize Loops

One of the main benefits of using an FPGA instead of a microprocessor is that FPGAs
use a spatial compute structure. A design can use additional hardware resources in
exchange for lower latency.

You can take advantage of the spatial compute structure to accelerate the loops by
having multiple iterations of a loop executing concurrently. To have multiple iterations
of a loop execute concurrently, unroll loops when possible and structure your loops so
that dependencies between loop iterations are minimized and can be resolved within
one clock cycle.

4.2.1. Pipeline Loops

Pipelining is a form of parallelization where multiple iterations of a loop execute
concurrently, like an assembly line.

Consider the following basic loop with three stages and three iterations. A loop stage
is defined as the operations that occur in the loop within one clock cycle.

Figure 6. Basic loop with three stages and three iterations

If each stage of this loop takes one clock cycle to execute, then this loop has a latency
of nine cycles.

The following figure shows the pipelining of the loop from Figure 6 on page 22.

4. Loop Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 7. Pipelined loop with three stages and four iterations

The pipelined loop has a latency of five clock cycles for three iterations (and six cycles
for four iterations), but there is no area tradeoff. During the second clock cycle, Stage
1 of the pipeline loop is processing iteration 2, Stage 2 is processing iteration 1, and
Stage 3 is inactive.

This loop is pipelined with a loop initiation interval (II) of 1. An II of 1 means that
there is a delay of 1 clock cycle between starting each successive loop iteration.

The Intel HLS Compiler attempts to pipeline loops by default, and loop pipelining is not
subject to the same constant iteration count constraint that loop unrolling is.

Not all loops can be pipelined as well as the loop shown in Figure 7 on page 23,
particularly loops where each iteration depends on a value computed in a previous
iteration.

For example, consider if Stage 1 of the loop depended on a value computed during
Stage 3 of the previous loop iteration. In that case, the second (orange) iteration
could not start executing until the first (blue) iteration had reached Stage 3. This type
of dependency is called a loop-carried dependency.

In this example, the loop would be pipelined with II=3. Because the II is the same as
the latency of a loop iteration, the loop would not actually be pipelined at all. You can
estimate the overall latency of a loop with the following equation:

latencyloop = (iterations - 1) * II + latencybody

where latencyloop is the number of cycles the loop takes to execute and latencybody is the
number of cycles a single loop iteration takes to execute.

The Intel HLS Compiler supports pipelining nested loops without unrolling inner loops.
When calculating the latency of nested loops, apply this formula recursively. This
recursion means that having II>1 is more problematic for inner loops than for outer
loops. Therefore, algorithms that do most of their work on an inner loop with II=1 still
perform well, even if their outer loops have II>1.

4. Loop Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.2.2. Unroll Loops

When a loop is unrolled, each iteration of the loop is replicated in hardware and
executes simultaneously if the iterations are independent. Unrolling loops trades an
increase in FPGA area use for a reduction in the latency of your component.

Consider the following basic loop with three stages and three iterations. Each stage
represents the operations that occur in the loop within one clock cycle.

Figure 8. Basic loop with three stages and three iterations

If each stage of this loop takes one clock cycle to execute, then this loop has a latency
of nine cycles.

The following figure shows the loop from Figure 8 on page 24 unrolled three times.

Figure 9. Unrolled loop with three stages and three iterations

Three iterations of the loop can now be completed in only three clock cycles, but three
times as many hardware resources are required.

You can control how the compiler unrolls a loop with the #pragma unroll directive,
but this directive works only if the compiler knows the trip count for the loop in
advance or if you specify the unroll factor. In addition to replicating the hardware, the
compiler also reschedules the circuit such that each operation runs as soon as the
inputs for the operation are ready.

For an example of using the #pragma unroll directive, see the best_practices/
resource_sharing_filter tutorial.

4.2.3. Example: Loop Pipelining and Unrolling

Consider a design where you want to perform a dot-product of every column of a
matrix with each other column of a matrix, and store the six results in a different
upper-triangular matrix. The rest of the elements of the matrix should be set to zero.

4. Loop Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

i=1 i=2 i=3

0

0 0 0 0

0 0 0 0

0 0 0 0

0

0 0

0 0 0

0 0 0 0

0

0 0

0 0 0 0

0 0 0 0

Input
Matrix

Result
Matrix

Dot product Dot product Dot product

The code might look like the following code example:

1. #define ROWS 4
2. #define COLS 4
3.
4. component void dut(...) {
5. float a_matrix[COLS][ROWS]; // store in column-major format
6. float r_matrix[ROWS][COLS]; // store in row-major format
7.
8. // setup...
9.
10. for (int i = 0; i < COLS; i++) {
11. for (int j = i + 1; j < COLS; j++) {
12.
13. float dotProduct = 0;
14. for (int mRow = 0; mRow < ROWS; mRow++) {
15. dotProduct += a_matrix[i][mRow] * a_matrix[j][mRow];
16. }
17. r_matrix[i][j] = dotProduct;
18. }
19. }
20.
21. // continue...
22.
23. }

You can improve the performance of this component by unrolling the loops that iterate
across each entry of a particular column. If the loop operations are independent, then
the compiler executes them in parallel.

Floating-point operations typically must be carried out in the same order that they are
expressed in your source code to preserve numerical precision. However, you can use
the --fp-relaxed compiler flag to relax the ordering of floating-point operations.
With the order of floating-point operations relaxed, all of the multiplications in this
loop can occur in parallel. To learn more, review the tutorial:
<quartus_installdir>/hls/examples/ tutorials/best_practices/
floating_point_ops

4. Loop Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The compiler tries to unroll loops on its own when it thinks unrolling improves
performance. For example, the loop at line 14 is automatically unrolled because the
loop has a constant number of iterations, and does not consume much hardware
(ROWS is a constant defined at compile-time, ensuring that this loop has a fixed
number of iterations).

You can improve the throughput by unrolling the j-loop at line 11, but to allow the
compiler to unroll the loop, you must ensure that it has constant bounds. You can
ensure constant bounds by starting the j-loop at j = 0 instead of j = i + 1. You
must also add a predication statement to prevent r_matrix from being assigned with
invalid data during iterations 0,1,2,…i of the j-loop.

01: #define ROWS 4
02: #define COLS 4
03:
04: component void dut(...) {
05: float a_matrix[COLS][ROWS]; // store in column-major format
06: float r_matrix[ROWS][COLS]; // store in row-major format
07:
08: // setup...
09:
10: for (int i = 0; i < COLS; i++) {
11:
12: #pragma unroll
13: for (int j = 0; j < COLS; j++) {
14: float dotProduct = 0;
15:
16: #pragma unroll

17: for (int mRow = 0; mRow < ROWS; mRow++) {
18: dotProduct += a_matrix[i][mRow] * a_matrix[j][mRow];
19: }
20:
21: r_matrix[i][j] = (j > i) ? dotProduct : 0; // predication
22: }
23: }
24: }
25:
26: // continue...
27:
28: }

Now the j-loop is fully unrolled. Because they do not have any dependencies, all four
iterations run at the same time.

Refer to the resource_sharing_filter tutorial located at
<quartus_installdir>/hls/examples/tutorials/best_practices/
resource_sharing_filter for more details.

You could continue and also unroll the loop at line 10, but unrolling this loop would
result in the area increasing again. By allowing the compiler to pipeline this loop
instead of unrolling it, you can avoid increasing the area and pay about only four more
clock cycles assuming that the i-loop only has an II of 1. If the II is not 1, the Details
pane of the Loops Analysis page in the high level design report (report.html) gives
you tips on how to improve it.

The following factors are factors that can typically affect loop II:

4. Loop Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• loop-carried dependencies

See the tutorial at <quartus_installdir>/hls/examples/tutorials/
best_practices/loop_memory_dependency

• long critical loop path

• inner loops with a loop II > 1

4.3. Construct Well-Formed Loops

A well-formed loop has an exit condition that compares against an integer bound and
has a simple induction increment of one per iteration. The Intel HLS Compiler can
analyze well-formed loops efficiently, which can help improve the performance of your
component.

The following example is a well-formed loop:

for(int i=0; i < N; i++)
{
 //statements
}

Well-formed nested loops can also help maximize the performance of your component.

The following example is a well-formed nested loop structure:

for(int i=0; i < N; i++)
{
 //statements
 for(int j=0; j < M; j++)
 {
 //statements
 }
}

4.4. Minimize Loop-Carried Dependencies

Loop-carried dependencies occur when the code in a loop iteration depends on the
output of previous loop iterations. Loop-carried dependencies in your component
increase loop initiation interval (II), which reduces the performance of your
component.

The loop structure below has a loop-carried dependency because each loop iteration
reads data written by the previous iteration. As a result, each read operation cannot
proceed until the write operation from the previous iteration completes. The presence
of loop-carried dependencies reduces of pipeline parallelism that the Intel HLS
Compiler can achieve, which reduces component performance.

for(int i = 1; i < N; i++)
{
 A[i] = A[i - 1] + i;
}

The Intel HLS Compiler performs a static memory dependency analysis on loops to
determine the extent of parallelism that it can achieve. If the Intel HLS Compiler
cannot determine that there are no loop-carried dependencies, it assumes that loop-
dependencies exist. The ability of the compiler to test for loop-carried dependencies is
impeded by unknown variables at compilation time or if array accesses in your code
involve complex addressing.

4. Loop Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To avoid unnecessary loop-carried dependencies and help the compiler to better
analyze your loops, follow these guidelines:

Avoid Pointer Arithmetic

Compiler output is suboptimal when your component accesses arrays by dereferencing
pointer values derived from arithmetic operations. For example, avoid accessing an
array as follows:

for(int i = 0; i < N; i++)
{
 int t = *(A++);
 *A = t;
}

Introduce Simple Array Indexes
Some types of complex array indexes cannot be analyzed effectively, which might lead
to suboptimal compiler output. Avoid the following constructs as much as possible:

• Nonconstants in array indexes.

For example, A[K + i], where i is the loop index variable and K is an unknown
variable.

• Multiple index variables in the same subscript location.

For example, A[i + 2 × j], where i and j are loop index variables for a double
nested loop.

The array index A[i][j] can be analyzed effectively because the index variables
are in different subscripts.

• Nonlinear indexing.

For example, A[i & C], where i is a loop index variable and C is a nonconstant
variable.

Use Loops with Constant Bounds Whenever Possible

The compiler can perform range analysis effectively when loops have constant bounds.

4.5. Avoid Complex Loop-Exit Conditions

If a loop in your component has complex exit conditions, memory accesses or complex
operations might be required to evaluate the condition. Subsequent iterations of the
loop cannot launch in the loop pipeline until the evaluation completes, which can
decrease the overall performance of the loop.

 Use the speculated_iterations pragma to specify how many cycles the
loop exit condition can take to compute.

Related Information

Loop Iteration Speculation (speculated_iterations Pragma)

4. Loop Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

28

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#vth1551563774817
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4.6. Convert Nested Loops into a Single Loop

To maximize performance, combine nested loops into a single loop whenever possible.
The control flow for a loop adds overhead both in logic required and FPGA hardware
footprint. Combining nested loops into a single loop reduces these aspects, improving
the performance of your component.

The following code examples illustrate the conversion of a nested loop into a single
loop:

Nested Loop Converted Single Loop

for (i = 0; i < N; i++)
{
 //statements
 for (j = 0; j < M; j++)
 {
 //statements
 }
 //statements
}

for (i = 0; i < N*M; i++)
{
 //statements
}

You can also specify the loop_coalesce pragma to coalesce nested loops into a
single loop without affecting the loop functionality. The following simple example
shows how the compiler coalesces two loops into a single loop when you specify the
loop_coalesce pragma.

Consider a simple nested loop written as follows:

#pragma loop_coalesce
for (int i = 0; i < N; i++)
 for (int j = 0; j < M; j++)
 sum[i][j] += i+j;

The compiler coalesces the two loops together so that they run as if they were a single
loop written as follows:

int i = 0;
int j = 0;
while(i < N){

 sum[i][j] += i+j;
 j++;

 if (j == M){
 j = 0;
 i++;
 }
}

For more information about the loop_coalesce pragma, see "Loop Coalescing
(loop_coalesce Pragma)" in Intel High Level Synthesis Compiler Reference Manual.

4.7. Declare Variables in the Deepest Scope Possible

To reduce the FPGA hardware resources necessary for implementing a variable,
declare the variable just before you use it in a loop. Declaring variables in the deepest
scope possible minimizes data dependencies and FPGA hardware usage because the
Intel HLS Compiler does not need to preserve the variable data across loops that do
not use the variables.

4. Loop Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

29

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#yyy1489604310598
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#yyy1489604310598
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following example:

int a[N];
for (int i = 0; i < m; ++i)
{
 int b[N];
 for (int j = 0; j < n; ++j)
 {
 // statements
 }
}

The array a requires more resources to implement than the array b. To reduce
hardware usage, declare array a outside the inner loop unless it is necessary to
maintain the data through iterations of the outer loop.

Tip: Overwriting all values of a variable in the deepest scope possible also reduces the
resources necessary to represent the variable.

4. Loop Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Memory Architecture Best Practices
The Intel High Level Synthesis Compiler infers efficient memory architectures (like
memory width, number of banks and ports) in a component by adapting the
architecture to the memory access patterns of your component. Review the memory
architecture best practices to learn how you can get the best memory architecture for
your component from the compiler.

In most cases, you can optimize the memory architecture by modifying the access
pattern. However, the Intel HLS Compiler gives you some control over the memory
architecture.

Tutorials Demonstrating Memory Architecture Best Practices

The Intel HLS Compiler comes with a number of tutorials that give you working
examples to review and run so that you can see good coding practices as well as
demonstrating important concepts.

Review the following tutorials to learn about memory architecture best practices that
might apply to your design:

Tutorial Description

You can find these tutorials in the following location on your Intel Quartus Prime system:

<quartus_installdir>/hls/examples/tutorials

component_memories/bank_bits Demonstrates how to control component internal memory architecture for
parallel memory access by enforcing which address bits are used for banking.

component_memories/
depth_wise_merge

Demonstrates how to improve resource utilization by implementing two logical
memories as a single physical memory with a depth equal to the sum of the
depths of the two original memories.

component_memories/
width_wise_merge

Demonstrates how to improve resource utilization by implementing two logical
memories as a single physical memory with a width equal to the sum of the
widths of the two original memories.

5.1. Example: Overriding a Coalesced Memory Architecture

Using memory attributes in various combinations in your code allows you to override
the memory architecture that the Intel HLS Compiler infers for your component.

The following code examples demonstrate how you can use the following memory
attributes to override coalesced memory to conserve memory blocks on your FPGA:

• hls_bankwidth(n)

• hls_numbanks(n)

• hls_singlepump

• hls_numports_readonly_writeonly(m,n)

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The original code coalesces memory to 256 locations deep by 64 bits wide (256x64
bits), that is, two on-chip memory blocks:

component unsigned int mem_coalesce_default(unsigned int raddr,
 unsigned int waddr,
 unsigned int wdata){
 unsigned int data[512];
 data[2*waddr] = wdata;
 data[2*waddr + 1] = wdata + 1;
 unsigned int rdata = data[2*raddr] + data[2*raddr + 1];
 return rdata;
}

The following images show how the 256x64 bit memory for this code sample is
structured, as well how the component memory structure is shown in the high-level
design report (report.html)

Figure 10. Memory Structure Generated for mem_coalesce_default

Word
0

1

2

…

255

…

511

Bank 0 Bank 1

Empty

LSU LSU

256

Empty

32 bits 32 bits

The modified code implements a simple dual-port on-chip memory block that is 512
locations deep by 32 bits wide (512x32 bits) with stallable arbitration:

component unsigned int mem_coalesce_override(unsigned int raddr,
 unsigned int waddr,
 unsigned int wdata){
 //Attributes that stop memory coalescing
 hls_bankwidth(4) hls_numbanks(1)
 //Attributes that specify a simple dual port
 hls_singlepump hls_numports_readonly_writeonly(1,1)
 unsigned int data[512];
 data[2*waddr] = wdata;
 data[2*waddr + 1] = wdata + 1;
 unsigned int rdata = data[2*raddr] + data[2*raddr + 1];
 return rdata;
}

Tip: Instead of specifying the hls_singlepump and
hls_numports_readonly_writeonly(1,1) attributes, you can specify this
configuration with the hls_simple_dual_port_memory attribute.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The following images show how the 512x32 bit memory with stallable arbitration for
this code sample is structured, as well how the component memory structure is shown
in the high-level design report (report.html).

Figure 11. Memory Structure Generated for mem_coalesce_override

Word
0

1

2

…

256

…

511

Bank 0

LSU LSU

255

32 bits 32 bits

32 bits

While it might appear that you save hardware area by reducing the number of RAM
blocks needed for the component, the introduction of stallable arbitration causes the
amount of hardware needed to implement the component to increase. In the following
table, you can compare the number ALMs and FFs required by the components.

5.2. Example: Overriding a Banked Memory Architecture

Using memory attributes in various combinations in your code allows you to override
the memory architecture that the Intel HLS Compiler infers for your component.

The following code examples demonstrate how you can use the following memory
attributes to override banked memory to conserve memory blocks on your FPGA:

• hls_bankwidth(n)

• hls_numbanks(n)

• hls_singlepump

• hls_doublepump

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The original code creates two banks of single-pumped on-chip memory blocks that are
16 bits wide:

component unsigned short mem_banked(unsigned short raddr,
 unsigned short waddr,
 unsigned short wdata){
 unsigned short data[1024];

 data[2*waddr] = wdata;
 data[2*waddr + 9] = wdata +1;

 unsigned short rdata = data[2*raddr] + data[2*raddr + 9];

 return rdata;
}

To save banked memory, you can implement one bank of double-pumped 32-bit wide
on-chip memory block by adding the following attributes before the declaration of
data[1024]. These attributes fold the two half-used memory banks into one fully-
used memory bank that is double-pumped, so that it can be accessed as quickly as
the two half-used memory banks.

hls_bankwidth(2) hls_numbanks(1)
hls_doublepump
unsigned short data[1024];

Alternatively, you can avoid the double-clock requirement of the double-pumped
memory by implementing one bank of single-pumped on-chip memory block by
adding the following attributes before the declaration of data[1024]. However, in this
example, these attributes add stallable arbitration to your component memories,
which hurts your component performance.

hls_bankwidth(2) hls_numbanks(1)
hls_singlepump
unsigned short data[1024];

5.3. Merge Memories to Reduce Area

In some cases, you can save FPGA memory blocks by merging your component
memories so that they consume fewer memory blocks, reducing the FPGA area your
component uses. Use the hls_merge attribute to force the Intel HLS Compiler to
implement different variables in the same memory system.

When you merge memories, multiple component variables share the same memory
block. You can merge memories by width (width-wise merge) or depth (depth-wise
merge). You can merge memories where the data in the memories have different
datatypes.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Overview of width-wise merge and depth-wise merge

The following diagram shows how four memories can be merged width-wise and
depth-wise.

int a[64] hls_merge(”mem_name”,“depth”) ;
int b[64] hls_merge(”mem_name”,“depth”) ;
int c[64] hls_merge(”mem_name”,“depth”) ;
int d[64] hls_merge(”mem_name”,“depth”) ;

short a[128] hls_merge(”mem_name”,“width”) ;
short b[128] hls_merge(”mem_name”,“width”) ;
short c[128] hls_merge(”mem_name”,“width”) ;
short d[128] hls_merge(”mem_name”,“width”) ;

a

d

c

b

a

d

c

b

64 words

64 words

64 words

64 words

32b
32b

256 words

16b

128 words

16b16b16b

a b c d

a b c d128 words

64b

Depth-Wise Merge Width-Wise Merge

5.3.1. Example: Merging Memories Depth-Wise

Use the hls_merge("<mem_name>","depth") attribute to force the Intel HLS
Compiler to implement variables in the same memory system, merging their
memories by depth.

All variables with the same <mem_name> label set in their hls_merge attributes are
merged.

Consider the following component code:

component int depth_manual(bool use_a, int raddr, int waddr, int wdata) {
 int a[128];
 int b[128];

 int rdata;

 // mutually exclusive write
 if (use_a) {
 a[waddr] = wdata;
 } else {
 b[waddr] = wdata;
 }

 // mutually exclusive read
 if (use_a) {
 rdata = a[raddr];
 } else {
 rdata = b[raddr];
 }

 return rdata;
}

The code instructs the Intel HLS Compiler to implement local memories a and b as
two on-chip memory blocks, each with its own load and store instructions.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 13. Implementation of Local Memory for Component depth_manual

St

St

Ld

Ld

32b

32b

128 words

128 words

a

b

2 Store Units 2 Load Units 2 M20k

Because the load and store instructions for local memories a and b are mutually
exclusive, you can merge the accesses, as shown in the example code below. Merging
the memory accesses reduces the number of load and store instructions, and the
number of on-chip memory blocks, by half.

component int depth_manual(bool use_a, int raddr, int waddr, int wdata) {
 int a[128] hls_merge("mem","depth");
 int b[128] hls_merge("mem","depth");

 int rdata;

 // mutually exclusive write
 if (use_a) {
 a[waddr] = wdata;
 } else {
 b[waddr] = wdata;
 }

 // mutually exclusive read
 if (use_a) {
 rdata = a[raddr];
 } else {
 rdata = b[raddr];
 }

 return rdata;
}

Figure 14. Depth-Wise Merge of Local Memories for Component depth_manual

32b

256 words

a

b

St

Ld

1 Store Unit 1 Load Unit 1 M20k

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

There are cases where merging local memories with respect to depth might degrade
memory access efficiency. Before you decide whether to merge the local memories
with respect to depth, refer to the HLD report (<result>.prj/reports/
report.html) to ensure that they have produced the expected memory
configuration with the expected number of loads and stores instructions. In the
example below, the Intel HLS Compiler should not merge the accesses to local
memories a and b because the load and store instructions to each memory are not
mutually exclusive.

component int depth_manual(bool use_a, int raddr, int waddr, int wdata) {
 int a[128] hls_merge("mem","depth");
 int b[128] hls_merge("mem","depth");

 int rdata;

 // NOT mutually exclusive write

 a[waddr] = wdata;
 b[waddr] = wdata;

 // NOT mutually exclusive read

 rdata = a[raddr];
 rdata += b[raddr];

 return rdata;
}

In this case, the Intel HLS Compiler might double pump the memory system to
provide enough ports for all the accesses. Otherwise, the accesses must share ports,
which prevent stall-free accesses.

Figure 15. Local Memories for Component depth_manual with Non-Mutually Exclusive
Accesses

32b

256 words

a

b

St

Ld

Ld

St

2x clk
2 Store Units 2 Load Units 1 M20k

5.3.2. Example: Merging Memories Width-Wise

Use the hls_merge("<mem_name>","width") attribute to force the Intel HLS
Compiler to implement variables in the same memory system, merging their
memories by width.

All variables with the same <mem_name> label set in their hls_merge attributes are
merged.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Consider the following component code:

component short width_manual (int raddr, int waddr, short wdata) {

 short a[256];
 short b[256];

 short rdata = 0;

 // Lock step write
 a[waddr] = wdata;
 b[waddr] = wdata;

 // Lock step read
 rdata += a[raddr];
 rdata += b[raddr];

 return rdata;
}

Figure 16. Implementation of Local Memory for Component width_manual

St

St

Ld

Ld

16b

16b

256 words

256 words

a

b

2 Store Units 2 Load Units 2 M20k

In this case, the Intel HLS Compiler can coalesce the load and store instructions to
local memories a and b because their accesses are to the same address, as shown
below.

component short width_manual (int raddr, int waddr, short wdata) {

 short a[256] hls_merge("mem","width");
 short b[256] hls_merge("mem","width");

 short rdata = 0;

 // Lock step write
 a[waddr] = wdata;
 b[waddr] = wdata;

 // Lock step read
 rdata += a[raddr];
 rdata += b[raddr];

 return rdata;
}

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

38

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 17. Width-Wise Merge of Local Memories for Component width_manual

St

Ld

32b

256 wordsa b

1 Store Unit 1 Load Unit 1 M20k

5.4. Example: Specifying Bank-Selection Bits for Local Memory
Addresses

You have the option to tell the Intel HLS Compiler which bits in a local memory
address select a memory bank and which bits select a word in that bank. You can
specify the bank-selection bits with the hls_bankbits(b0, b1, ..., bn)
attribute.

The (b0, b1, ... ,bn) arguments refer to the local memory address bit positions that
the Intel HLS Compiler should use for the bank-selection bits. Specifying the
hls_bankbits(b0, b1, ..., bn) attribute implies that the number of banks
equals 2^(number of bank bits).

Table 6. Example of Local Memory Addresses Showing Word and Bank Selection Bits

This table of local memory addresses shows an example of how a local memory might be addressed. The
memory attribute is set as hls_bankbits(3,4). The memory bank selection bits (bits 3, 4) in the table bits
are in bold text and the word selection bits (bits 0-2) are in italic text.

Bank 0 Bank 1 Bank 2 Bank 3

Word 0 00000 01000 10000 11000

Word 1 00001 01001 10001 11001

Word 2 00010 01010 10010 11010

Word 3 00011 01011 10011 11011

Word 4 00100 01100 10100 11100

Word 5 00101 01101 10101 11101

Word 6 00110 01110 10110 11110

Word 7 00111 01111 10111 11111

Restriction: Currently, the hls_bankbits(b0, b1, ..., bn) attribute supports only
consecutive bank bits.

Example of Implementing the hls_bankbits Attribute

Consider the following example component code:

component int bank_arb_consecutive_multidim (int raddr,
 int waddr,
 int wdata,
 int upperdim) {

 int a[2][4][128] hls_numbanks(1);

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 a[upperdim][i][(waddr & 0x7f)] = wdata + i;
 }

 int rdata = 0;

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 rdata += a[upperdim][i][(raddr & 0x7f)];
 }

 return rdata;
}

As illustrated in the following figure, this code example generates multiple load and
store instructions, and therefore multiple load/store units (LSUs) in the hardware. If
the memory system is not split into multiple banks, there are fewer ports than
memory access instructions, leading to arbitrated accesses. This arbitration results in
a high loop initiation interval (II) value. Avoid arbitration blocks whenever possible
because they consume a lot of FPGA area and can hurt the performance of your
component.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

40

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 18. Accesses to Local Memory a for Component
bank_arb_consecutive_multidim

(1)

By default, the Intel HLS Compiler splits the memory into banks if it determines that
the split is beneficial to the performance of your component. When the compiler
generates a memory system, it uses the lower-order memory address bits to access
the different memory banks. This behavior means that if you define your component
memory structure so that the lowest order addresses are accessed in parallel, the
compiler automatically infers the bank-selection bits for you.

(1) For this example, the initial component was generated with the hls_numbanks attribute set to
1 (hls_numbanks(1)) to prevent the compiler from automatically splitting the memory into
banks.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

This access pattern prevents stallable arbitration on the memory. In this case,
preventing stallable arbitration reduced the II value to 1. In practice, this might mean
that you store a matrix in column-major format instead of row-major format, if you
intend to access multiple matrix rows concurrently.

Swapping the 128-element and 4-element dimension in the code example that follows
results in no stallable memory arbitration.

component int bank_arb_consecutive_multidim (int raddr,
 int waddr,
 int wdata,
 int upperdim) {

 int a[2][128][4];

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 a[upperdim][(waddr & 0x7f)][i] = wdata + i;
 }

 int rdata = 0;

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 rdata += a[upperdim][(raddr & 0x7f)][i];
 }

 return rdata;
 }

The dimension that is accessed in parallel is moved to be the lowest-order dimension
in the memory array. The load has a width of 128 bits, which is the same as four 32-
bit loads.

If you cannot change your memory structure, you can use the hls_bankbits
attribute to explicitly control how load and store instructions access local memory. As
shown in the following modified code example and figure, when you choose constant
bank-select bits for each access to the local memory a, each pair of load and store
instructions needs to connect to only one memory bank. In this example, there are
four 32-bit loads, which results in a memory system similar to the earlier example.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 19. Accesses to Local Memory a for Component
bank_arb_consecutive_multidim with the hls_bankbits Attribute

component int bank_arb_consecutive_multidim (int raddr,
 int waddr,
 int wdata,
 int upperdim) {

 int a[2][4][128] hls_bankbits(8,7);

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 a[upperdim][i][(waddr & 0x7f)] = wdata + i;
 }

 int rdata = 0;

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 rdata += a[upperdim][i][(raddr & 0x7f)];
 }

 return rdata;
 }

When specifying the word-address bits for the hls_bankbits attribute, ensure that
the resulting bank-select bits are constant for each access to local memory. As shown
in the following example, the local memory access pattern does not guarantee that
the chosen bank-select bits are constant for each access. As a result, each pair of load
and store instructions must connect to all the local memory banks, leading to stallable
accesses.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 20. Stallable Accesses to Local Memory a for Component
bank_arb_consecutive_multidim with the hls_bankbits Attribute

component int bank_arb_consecutive_multidim (int raddr,
 int waddr,
 int wdata,
 int upperdim){

 int a[2][4][128] hls_bankbits(5,4);

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 a[upperdim][i][(waddr & 0x7f)] = wdata + i;
 }

 int rdata = 0;

 #pragma unroll
 for (int i = 0; i < 4; i++) {
 rdata += a[upperdim][i][(raddr & 0x7f)];
 }

 return rdata;
}

In this case, the II is estimated to be approximately 64.

5. Memory Architecture Best Practices

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. System of Tasks
Using a system of HLS tasks in your component enables a variety of design structures
that you can implement.

Common uses for a system of tasks include the following cases:

• Executing multiple loops in parallel

• Sharing an expensive compute block

• Designing your HLS system hierarchically and test it in the Intel HLS Compiler
cosimulation environment.

6.1. Executing Multiple Loops in Parallel

By using HLS tasks, you can run sequential loops in a pipelined manner within the
context of the loop nest.

For example, in the following code sample, the first and second loops can be executing
different invocations of the component foo() if the invocations can be pipelined by
the Intel HLS Compiler:

component void foo() {
 // first loop
 for (int i = 0; i < n; i++) {
 // Do something
 }
 // second loop
 for (int i = 0; i < m; i++) {
 // Do something else
 }
}

However, the same invocation of the component foo() cannot execute the two loops
in parallel. System of tasks provides a way to achieve this by moving one of the loops
into an asynchronous task. With the first loop in an asynchronous task, the second
loop can run concurrently with the first loop.

void offloaded_work() {
 // first loop
 for (int i = 0; i < n; i++) {
 // Do something
 }
}

component void foo() {
 ihc::launch(offloaded_work);
 // second loop
 for (int i = 0; i < m; i++) {
 // Do something else
 }
 ihc::collect(offloaded_work);
}

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Review the tutorial <quartus_installdir>/hls/examples/tutorials/
system_of_tasks/parallel_loop to learn more about how to run multiple loops
in parallel.

6.2. Sharing an Expensive Compute Block

With a system of tasks, you can share hardware resources at a function level. A
component or another HLS task can invoke an HLS task multiple times.

To allow for calls from multiple places to a task, the Intel HLS Compiler generates
arbitration logic to the called task function. This arbitration logic can increase the area
utilization of the component. However, if the shared logic is large, the trade-off can
help you save FPGA resources. The savings can be especially noticed when your
component has a large compute block that is not always active.

Review the tutorial <quartus_installdir>/hls/examples/tutorials/
system_of_tasks/resource_sharing to see a simple example of how to share a
compute block in component.

6.3. Implementing a Hierarchical Design

When you use a system of tasks, you can implement your design hierarchically, which
allows for bottom-up design.

If you do not use a system of tasks,function calls in your HLS component are in-lined
and optimized together with the calling code, which can be detrimental in some
situations. Use a system of tasks to prevent smaller blocks of your design from being
affected by the rest of the system.

The hierarchical design pattern implemented by using a system of tasks can give you
the following benefits:

• Modularity similar to what a hardware description language (HDL) might provide

• Unpipelineable or poorly pipelined loops can be isolated so that they do not affect
an entire loop nest.

6.4. Avoiding Potential Performance Pitfalls

If your component contains parallel task paths with different latencies, you might
experience poor performance, and in some cases, deadlock.

Typically, these performance issues are caused by a lack of capacity in the datapath of
the functions calling task function using the ihc::launch and ihc::collect calls.
You can improve system throughput in these cases by adding a buffer to the explicit
streams to account for the latency of the task functions.

Review the following tutorials to learn more about avoiding potential performance
issues in a component that uses a system of tasks:

• <quartus_installdir>/hls/examples/tutorials/system_of_tasks/
balancing_pipeline_latency

• <quartus_installdir>/hls/examples/tutorials/system_of_tasks/
balancing_loop_dealy

6. System of Tasks

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The Intel HLS Compiler emulator models the size of the buffer attached to a stream.
However, the emulator does not fully account for hardware latencies, and it might
exhibit different behavior between simulation and emulation in these cases.

6. System of Tasks

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Datatype Best Practices
The datatypes in your component and possible conversions or casting that they might
undergo can significantly affect the performance and FPGA area usage of your
component. Review the datatype best practices for tips and guidance how best to
control datatype sizes and conversions in your component.

After you optimize the algorithm bottlenecks of your design, you can fine-tune some
datatypes in your component by using arbitrary precision datatypes to shrink data
widths, which reduces FPGA area utilization. The Intel HLS Compiler provides debug
functionality so that you can easily detect overflows in arbitrary precision datatypes.

 Because C++ automatically promotes smaller datatypes such as short or char
to 32 bits for operations such as addition or bit-shifting, you must use the arbitrary
precision datatypes if you want to create narrow datapaths in your component.

Tutorials Demonstrating Datatype Best Practices

The Intel HLS Compiler comes with a number of tutorials that give you working
examples to review and run so that you can see good coding practices as well as
demonstrating important concepts.

Review the following tutorials to learn about datatype best practices that might apply
to your design:

Tutorial Description

You can find these tutorials in the following location on your Intel Quartus Prime system:

<quartus_installdir>/hls/examples/tutorials

best_practices/ac_datatypes Demonstrates the effect of using ac_int datatype instead of int datatype.

ac_datatypes/
ac_fixed_constructor

Demonstrates the use of the ac_fixed constructor where you can get a better
QoR by using minor variations in coding style.

ac_datatypes/ac_int_basic_ops Demonstrates the operators available for the ac_int class.

ac_datatypes/ac_int_overflow Demonstrates the usage of the DEBUG_AC_INT_WARNING and
DEBUG_AC_INT_ERROR keywords to help detect overflow during emulation
runtime.

best_practices/
single_vs_double_precision_ma
th

Demonstrates the effect of using single precision literals and functions instead of
double precision literals and functions.

 best_practices/
integer_promotion

Demonstrates how integer promotion rules can influence the behavior of a C or C
++ program.

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

7.1. Avoid Implicit Data Type Conversions

Compile your component code with the -Wconversion compiler option, especially if
your component uses floating point variables.

Using this option helps you avoid inadvertently having conversions between double-
precision and single-precision values when double-precisions variables are not needed.
In FPGAs, using double-precision variables can negatively affect the data transfer rate,
the latency, and resource utilization of your component.

If you use the Algorithmic C (AC) arbitrary precision datatypes, pay attention to the
type propagation rules.

7.2. Avoid Negative Bit Shifts When Using the ac_int Datatype

The ac_int datatype differs from other languages, including C and Verilog, in bit
shifting. By default, if the shift amount is of a signed datatype ac_int allows negative
shifts.

In hardware, this negative shift results in the implementation of both a left shifter and
a right shifter. The following code example shows a shift amount that is a signed
datatype.

int14 shift_left(int14 a, int14 b) {
 return (a << b);
}

If you know that the shift is always in one direction, to implement an efficient shift
operator, declare the shift amount as an unsigned datatype as follows:

int14 efficient_left_only_shift(int14 a, uint14 b) {
 return (a << b);
}

7. Datatype Best Practices

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Advanced Troubleshooting
As you develop components with the Intel HLS Compiler, you might encounter issues
whose solution is unclear. The issues typically fall into the following categories:

• Your component behaves differently in cosimulation and emulation.

• Your component has unexpectedly poor performance, resource utilization, or both.

8.1. Component Fails Only In Cosimulation

Discrepancies between the results of compiling your component in emulation (-
march=x86-64) mode or cosimulation (-march=FPGA_name_or_part_no) mode
are typically caused by bugs in your component or testbench. However, there are
some common cases where the discrepancies are cause by something other than a
bug.

Comparing Floating Point Results

Use an epsilon when comparing floating point value results in the testbench. Floating
points results from the RTL hardware are different from the x86 emulation flow.

Using #pragma ivdep to Ignore Memory Dependencies

The #pragma ivdep compiler pragma can cause functional incorrectness in your
component if your component has a memory dependency that you attempted to
ignore with the pragma. You can try to use the safelen modifier to control how many
memory accesses that you can permit before a memory dependency occurs.

See Loop-Carried Dependencies (ivdep Pragma) in Intel High Level Synthesis
Compiler Reference Manual for a description of this pragma.

To see an example of using the ivdep pragma, review the tutorial in
<quartus_installdir>/hls/examples/tutorials/best_practices/
loop_memory_dependency.

 Unintentional Integer Promotion

The Intel HLS Compiler provided with Intel Quartus Prime Standard Edition does not
automatically promote small data types (such as unsigned char or short) to 32-bit
widths during cosimulation. Other compilers (like g++) might promote integers when
compiling your component for emulation. This difference in integer promotion behavior
means that a value in your component has preserved overflow bits during emulation
but is truncated during cosimulation.

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#clp1468865630147
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The Intel HLS Compiler provided with Intel Quartus Prime Pro Edition automatically
promotes small data types during cosimulation, so the behavior in emulation and
cosimulation should be consistent. To prevent promotion of small datatypes in the
Intel HLS Compiler provided with Intel Quartus Prime Pro Edition, use the ac_int
datatype.

For example, the operands in the following code example are of type unsigned
char, so by default the Intel HLS Compiler compiles the code to perform the
operation with 8-bit arithmetic. Compilers that apply integer promotion rules promote
the operation to use 32-bit arithmetic.

component
int add_width(unsigned char a, unsigned char b) {
 int sum = a + b;
 return sum;
}

This code example generates different overflow behavior in emulation and
cosimulation. The Intel HLS Compiler truncates the integers at 8 bit, while other C++
compilers preserve the overflow bits.

You can mimic the integer promotion behavior by using the --promote-integers
compiler option. See Compiler Options in Intel High Level Synthesis Compiler
Reference Manual for a description of this compiler option.

To see an example of using the --promote-integers compiler option, review the
tutorial in <quartus_installdir>/hls/examples/tutorials/
best_practices/integer_promotion.

Check for Uninitialized Variables

Many coding practices can result in behavior that is undefined by the C++
specification. Sometimes this undefined behavior works as expected in emulation, but
not in cosimulation.

A common example of this situation occurs when your design reads from uninitialized
variables, especially uninitialized struct variables.

Check your code for uninitialized values with the -Wuninitialized compiler flag, or
debug your emulation testbench with the valgrind debugging tool. The -
Wuninitialized compiler flag does not show uninitialized struct variables.

You can also check for misbehaving variables by using one or more stream interfaces
as debug streams. You can add one or more ihc::stream_out interfaces to your
component to have the component write out its internal state variables as it executes.
By comparing the output of the emulation flow and the cosimulation flow, you can see
where the RTL behavior diverges from the emulator behavior.

8.2. Component Gets Bad Quality of Results

While there are many reasons why your design achieves a poor quality of results
(QoR), bad memory configurations are often an important factor. Review the
Component Memory Viewer report in the High Level Design Reports, and look for
stallable arbitration nodes and unexpected RAM utilization.

8. Advanced Troubleshooting

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

51

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#ewa1462897780080
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The information in this section describes some common sources of stallable arbitration
nodes or excess RAM utilization.

Component Uses More FPGA Resource Than Expected

By default, the Intel HLS Compiler tries to optimize your component for the best
throughput by trying to maximize the maximum operating frequency (fMAX).

A way to reduce area consumption is to relax the fMAX requirements by setting a target
fMAX value with the --clock i++ command option or the
hls_scheduler_target_fmax_mhz component attribute. The HLS compiler can
often achieve a higher fMAX than you specify, so when you set a target fMAXr to a lower
value than you need, your design might still achieve an acceptable fMAX value, and a
design that consumes less area.

 The hls_scheduler_target_fmax_mhz component attribute is available only
In Intel HLS Compiler Pro Edition.

 To learn more about the behavior of fMAX target value control see the following
tutorial: <quartus_installdir>/hls/examples/tutorials/best_practices/
set_component_target_fmax

Incorrect Bank Bits

If you access parts of an array in parallel (either a single- or multidimensional array),
you might need to configure the memory bank selection bits.

See Memory Architecture Best Practices on page 31 for details about how to configure
efficient memory systems.

Conditional Operator Accessing Two Different Arrays of struct Variables

In some cases, if you try to access different arrays of struct variables with a
conditional operator, the Intel HLS Compiler merges the arrays into the same RAM
block. You might see stallable arbitration in the Component Memory Viewer because
there are not enough Load/Store site on the memory system.

For example, the following code examples show an array of struct variables, a
conditional operator that results in stallable arbitration, and a workaround that avoids
stallable arbitration.

struct MyStruct {
 float a;
 float b;
}

MyStruct array1[64];
MyStruct array2[64];

The following conditional operator that uses these arrays of struct variables causes
stallable arbitration:

MyStruct value = (shouldChooseArray1) ? array1[idx] : array2[idx];

8. Advanced Troubleshooting

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

You can avoid the stallable arbitration that the conditional operator causes here by
removing the operator and using an explicit if statement instead.

MyStruct value;
if (shouldChooseArray1)
{
 value = array1[idx];
} else
{
 value = array2[idx];
}

 File-Scoped Static Variables

The Intel HLS Compiler provided with Intel Quartus Prime Standard Edition supports
file-scoped static variables, but any memory attributes that you apply to static arrays
work only if the static array is declared within the component function. Memory
attributes applied to file-scope static variables are ignored. Memory attributes applied
to a variable are also ignored if you attempt to apply attributes to a array members in
a struct or class definition.

If you want to override the default memory settings for an array variable, ensure that
the array variable is declared in the scope of the component function where the array
variable is used. You can pass pointers to the static array to any subroutines that
might access the static array.

This code change is shown in the following example. The code samples and high-level
design report views that follow compare two implementations of a component that
reads data from a stream into a local memory, then processes the data that is in that
local memory.

In the first code example, the local memory is a file-scoped static variable. In the
second code example, the local memory is a function-scoped static variable.

The second code example gets better QoR because you can apply memory
optimization attributes to the static variable declaration. In this second example, the
hls_memory and hls_numbanks(1) attributes force the static array into a single
bank of on-chip RAM blocks.

8. Advanced Troubleshooting

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

53

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 21. Example 1: File-scoped Static Variable

hls_memory hls_numbbanks(1) static int myStaticArray[64];

void loadData(ihc::stream_in<int> &intStreamIn)
{
 for(int idx = 0; idx < 64; idx++)
 {
 myStaticArray[idx] = intStreamIn.read();
 }
}

int findMax()
{
 int maxVal = 0;
 for(int idx = 0; idx < 64; idx++)
 {
 int val = myStaticArray[idx];
 if (val > maxVal)
 {
 maxVal = val;
 }
 }

 return maxVal;
}

component
int dut(ihc::stream_in<int> &intStreamIn)
{
 loadData(intStreamIn);
 return findMax();
}

8. Advanced Troubleshooting

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 22. Example 2: Function-scoped Static Variable

void loadData(ihc::stream_in<int> &intStreamIn, int myStaticArray[64])
{
 for(int idx = 0; idx < 64; idx++)
 {
 myStaticArray[idx] = intStreamIn.read();
 }
}

int findMax(int myStaticArray[64])
{
 int maxVal = 0;
 for(int idx = 0; idx < 64; idx++)
 {
 int val = myStaticArray[idx];
 if (val > maxVal)
 {
 maxVal = val;
 }
 }

 return maxVal;
}

component
int dut(ihc::stream_in<int> &intStreamIn)
{
 hls_memory hls_numbbanks(1) static int myStaticArray[64];

 loadData(intStreamIn, myStaticArray);
 return findMax(myStaticArray);
}

Cluster Logic

Your design might consume more RAM blocks than you expect, especially if you store
many array variables in large registers. The Area Report view of the high-level design
report (report.html) can help find this issue.

8. Advanced Troubleshooting

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The three matrices are stored intentionally in RAM blocks, but the RAM blocks for the
matrices account for less than half of the RAM blocks consumed by the component.

If you look further down the report, you might see that many RAM blocks are
consumed by Cluster logic or State variable. You might also see that some of your
array values that you intended to be stored in registers were instead stored in large
numbers of RAM blocks.

Notice the number of RAM blocks that are consumed by Cluster Logic and State.

8. Advanced Troubleshooting

UG-20107 | 2019.04.01

Intel High Level Synthesis Compiler: Best Practices Guide Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

In some cases, you can reduce this RAM block usage by with the following techniques:

• Pipeline loops instead of unrolling them.

• Storing local variables in local RAM blocks (hls_memory memory attribute)
instead of large registers (hls_register memory attribute).

8. Advanced Troubleshooting

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

9. Document Revision History for Intel HLS Compiler Best
Practices Guide

Document Version Intel Quartus
Prime Version

Changes

2019.04.01 19.1 •
 Added new chapter to cover best practices when using HLS

tasks in System of Tasks on page 45.
• Moved some content from Loop Best Practices on page 20 into a new

section called Reuse Hardware By Calling It In a Loop on page 21.
•

 Revised Component Uses More FPGA Resource Than Expected
on page 52 to include information about the
hls_scheduler_target_fmax_mhz component attribute.

2018.12.24 18.1 • Updated to Loop Best Practices on page 20 to include information about
function inlining in components and using loops to minimize the
resulting hardware duplication.

2018.09.24 18.1 •
 The Intel HLS Compiler has a new front end. For a summary of

the changes introduced by this new front end, see Improved Intel HLS
Compiler Front End in the Intel High Level Synthesis Compiler Version
18.1 Release Notes.

•
 The --promote-integers flag and the best_practices/

integer_promotion tutorial are no longer supported in Pro Edition
because integer promotion is now done by default. References to these
items were adjusted to indicate that they apply to Standard Edition
only in the following topics:
— Component Fails Only In Cosimulation on page 50
— Datatype Best Practices on page 48

2018.07.02 18.0 • Added a new chapter, Advanced Troubleshooting on page 50, to help
you troubleshoot when your component behaves differently in
cosimulation and emulation, and when your component has
unexpectedly poor performance, resource utilization, or both.

continued...

UG-20107 | 2019.04.01

Send Feedback

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus
and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rn/archives/rn-hls-18-1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/rn/archives/rn-hls-18-1.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Document Version Intel Quartus
Prime Version

Changes

2018.05.07 18.0 • Starting with Intel Quartus Prime Version 18.0, the features and
devices supported by the Intel HLS Compiler depend on what edition of
Intel Quartus Prime you have. Intel HLS Compiler publications now use
icons to indicate content and features that apply only to a specific
edition as follows:

Indicates that a feature or content applies only to the Intel
HLS Compiler provided with Intel Quartus Prime Pro Edition.

Indicates that a feature or content applies only to the Intel
HLS Compiler provided with Intel Quartus Prime Standard
Edition.

• Added best_practices/loop_coalesce to the list of tutorials in
Loop Best Practices on page 20.

• Added interfaces/explicit_streams_packets_ready_empty to
list of tutorials in Interface Best Practices on page 6.

• Revised Example: Specifying Bank-Selection Bits for Local Memory
Addresses on page 39 with improved descriptions and new graphics
that reflect what you would see in the high-level design reports
(report.html) for the example component.

• Updated Example: Overriding a Coalesced Memory Architecture on
page 31 with new images to show the memory structures as well as
how the FPGA resource usage differs between the two components

2017.12.22 17.1.1 • Added Choose the Right Interface for Your Component on page 7
section to show how changing your component interface affects your
component QoR even when the algorithm stays the same.

• Added interface overview tutorial to the list of tutorials in Interface Best
Practices on page 6.

2017.11.06 17.1 Initial release.
Parts of this book consist of content previously found in the Intel High
Level Synthesis Compiler User Guide and the Intel High Level Synthesis
Compiler Reference Manual.

9. Document Revision History for Intel HLS Compiler Best Practices Guide

UG-20107 | 2019.04.01

Send Feedback Intel High Level Synthesis Compiler: Best Practices Guide

59

https://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html#ewa1457708982563
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html#ewa1457708982563
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#ewa1462824960255
https://www.intel.com/content/www/us/en/programmable/documentation/ewa1462824960255.html#ewa1462824960255
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Intel%20High%20Level%20Synthesis%20Compiler%20Best%20Practices%20Guide%20(UG-20107%202019.04.01)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Intel High Level Synthesis Compiler: Best Practices Guide
	Contents
	1. Intel® HLS Compiler Best Practices Guide
	2. Best Practices for Coding and Compiling Your Component
	3. Interface Best Practices
	3.1. Choose the Right Interface for Your Component
	3.1.1. Pointer Interfaces
	3.1.2. Avalon Memory Mapped Master Interfaces
	3.1.3. Avalon Memory Mapped Slave Interfaces
	3.1.4. Avalon Streaming Interfaces
	3.1.5. Pass-by-Value Interface

	3.2. Avoid Pointer Aliasing

	4. Loop Best Practices
	4.1. Reuse Hardware By Calling It In a Loop
	4.2. Parallelize Loops
	4.2.1. Pipeline Loops
	4.2.2. Unroll Loops
	4.2.3. Example: Loop Pipelining and Unrolling

	4.3. Construct Well-Formed Loops
	4.4. Minimize Loop-Carried Dependencies
	4.5. Avoid Complex Loop-Exit Conditions
	4.6. Convert Nested Loops into a Single Loop
	4.7. Declare Variables in the Deepest Scope Possible

	5. Memory Architecture Best Practices
	5.1. Example: Overriding a Coalesced Memory Architecture
	5.2. Example: Overriding a Banked Memory Architecture
	5.3. Merge Memories to Reduce Area
	5.3.1. Example: Merging Memories Depth-Wise
	5.3.2. Example: Merging Memories Width-Wise

	5.4. Example: Specifying Bank-Selection Bits for Local Memory Addresses

	6. System of Tasks
	6.1. Executing Multiple Loops in Parallel
	6.2. Sharing an Expensive Compute Block
	6.3. Implementing a Hierarchical Design
	6.4. Avoiding Potential Performance Pitfalls

	7. Datatype Best Practices
	7.1. Avoid Implicit Data Type Conversions
	7.2. Avoid Negative Bit Shifts When Using the ac_int Datatype

	8. Advanced Troubleshooting
	8.1. Component Fails Only In Cosimulation
	8.2. Component Gets Bad Quality of Results

	9. Document Revision History for Intel HLS Compiler Best Practices Guide

