
dask Documentation
Release 2.6.0

Dask Development Team

Oct 29, 2019

Getting Started

1 Familiar user interface 3

2 Scales from laptops to clusters 5

3 Complex Algorithms 7

Bibliography 981

Index 987

i

ii

dask Documentation, Release 2.6.0

Dask is a flexible library for parallel computing in Python.

Dask is composed of two parts:

1. Dynamic task scheduling optimized for computation. This is similar to Airflow, Luigi, Celery, or Make, but
optimized for interactive computational workloads.

2. “Big Data” collections like parallel arrays, dataframes, and lists that extend common interfaces like NumPy,
Pandas, or Python iterators to larger-than-memory or distributed environments. These parallel collections run
on top of dynamic task schedulers.

Dask emphasizes the following virtues:

• Familiar: Provides parallelized NumPy array and Pandas DataFrame objects

• Flexible: Provides a task scheduling interface for more custom workloads and integration with other projects.

• Native: Enables distributed computing in pure Python with access to the PyData stack.

• Fast: Operates with low overhead, low latency, and minimal serialization necessary for fast numerical algo-
rithms

• Scales up: Runs resiliently on clusters with 1000s of cores

• Scales down: Trivial to set up and run on a laptop in a single process

• Responsive: Designed with interactive computing in mind, it provides rapid feedback and diagnostics to aid
humans

See the dask.distributed documentation (separate website) for more technical information on Dask’s distributed sched-
uler.

Getting Started 1

https://distributed.dask.org/en/latest/

dask Documentation, Release 2.6.0

2 Getting Started

CHAPTER 1

Familiar user interface

Dask DataFrame mimics Pandas - documentation

import pandas as pd import dask.dataframe as dd
df = pd.read_csv('2015-01-01.csv') df = dd.read_csv('2015-*-*.csv')
df.groupby(df.user_id).value.mean() df.groupby(df.user_id).value.mean().compute()

Dask Array mimics NumPy - documentation

import numpy as np import dask.array as da
f = h5py.File('myfile.hdf5') f = h5py.File('myfile.hdf5')
x = np.array(f['/small-data']) x = da.from_array(f['/big-data'],

chunks=(1000, 1000))
x - x.mean(axis=1) x - x.mean(axis=1).compute()

Dask Bag mimics iterators, Toolz, and PySpark - documentation

import dask.bag as db
b = db.read_text('2015-*-*.json.gz').map(json.loads)
b.pluck('name').frequencies().topk(10, lambda pair: pair[1]).compute()

Dask Delayed mimics for loops and wraps custom code - documentation

from dask import delayed
L = []
for fn in filenames: # Use for loops to build up computation

data = delayed(load)(fn) # Delay execution of function
L.append(delayed(process)(data)) # Build connections between variables

result = delayed(summarize)(L)
result.compute()

The concurrent.futures interface provides general submission of custom tasks: - documentation

3

dask Documentation, Release 2.6.0

from dask.distributed import Client
client = Client('scheduler:port')

futures = []
for fn in filenames:

future = client.submit(load, fn)
futures.append(future)

summary = client.submit(summarize, futures)
summary.result()

4 Chapter 1. Familiar user interface

CHAPTER 2

Scales from laptops to clusters

Dask is convenient on a laptop. It installs trivially with conda or pip and extends the size of convenient datasets
from “fits in memory” to “fits on disk”.

Dask can scale to a cluster of 100s of machines. It is resilient, elastic, data local, and low latency. For more information,
see the documentation about the distributed scheduler.

This ease of transition between single-machine to moderate cluster enables users to both start simple and grow when
necessary.

5

https://distributed.dask.org/en/latest/

dask Documentation, Release 2.6.0

6 Chapter 2. Scales from laptops to clusters

CHAPTER 3

Complex Algorithms

Dask represents parallel computations with task graphs. These directed acyclic graphs may have arbitrary structure,
which enables both developers and users the freedom to build sophisticated algorithms and to handle messy situations
not easily managed by the map/filter/groupby paradigm common in most data engineering frameworks.

We originally needed this complexity to build complex algorithms for n-dimensional arrays but have found it to be
equally valuable when dealing with messy situations in everyday problems.

3.1 Install Dask

You can install dask with conda, with pip, or by installing from source.

3.1.1 Conda

Dask is installed by default in Anaconda. You can update Dask using the conda command:

conda install dask

This installs Dask and all common dependencies, including Pandas and NumPy. Dask packages are maintained both
on the default channel and on conda-forge. Optionally, you can obtain a minimal Dask installation using the following
command:

conda install dask-core

This will install a minimal set of dependencies required to run Dask similar to (but not exactly the same as) pip
install dask below.

3.1.2 Pip

You can install everything required for most common uses of Dask (arrays, dataframes, . . .) This installs both Dask
and dependencies like NumPy, Pandas, and so on that are necessary for different workloads. This is often the right

7

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://conda-forge.github.io/

dask Documentation, Release 2.6.0

choice for Dask users:

pip install "dask[complete]" # Install everything

You can also install only the Dask library. Modules like dask.array, dask.dataframe, dask.delayed, or
dask.distributed won’t work until you also install NumPy, Pandas, Toolz, or Tornado, respectively. This is
common for downstream library maintainers:

pip install dask # Install only core parts of dask

We also maintain other dependency sets for different subsets of functionality:

pip install "dask[array]" # Install requirements for dask array
pip install "dask[bag]" # Install requirements for dask bag
pip install "dask[dataframe]" # Install requirements for dask dataframe
pip install "dask[delayed]" # Install requirements for dask delayed
pip install "dask[distributed]" # Install requirements for distributed dask

We have these options so that users of the lightweight core Dask scheduler aren’t required to download the more exotic
dependencies of the collections (Numpy, Pandas, Tornado, etc.).

3.1.3 Install from Source

To install Dask from source, clone the repository from github:

git clone https://github.com/dask/dask.git
cd dask
pip install .

You can also install all dependencies as well:

pip install ".[complete]"

You can view the list of all dependencies within the extras_require field of setup.py.

Or do a developer install by using the -e flag:

pip install -e .

3.1.4 Anaconda

Dask is included by default in the Anaconda distribution.

3.1.5 Optional dependencies

Specific functionality in Dask may require additional optional dependencies. For example, reading from Amazon S3
requires s3fs. These optional dependencies and their minimum supported versions are listed below.

8 Chapter 3. Complex Algorithms

https://github.com/dask/dask
https://www.anaconda.com/download

dask Documentation, Release 2.6.0

Dependency Version Description
bokeh >=1.0.0 Visualizing dask diagnostics
cloudpickle >=0.2.1 Pickling support for Python objects
cityhash Faster hashing of arrays
distributed >=2.0 Distributed computing in Python
fastparquet Storing and reading data from parquet files
fsspec >=0.5.1 Used for local, cluster and remote data IO
gcsfs File-system interface to Google Cloud Storage
murmurhash Faster hashing of arrays
numpy >=1.13.0 Required for dask.array
pandas >=0.21.0 Required for dask.dataframe
partd >=0.3.10 Concurrent appendable key-value storage
psutil Enables a more accurate CPU count
pyarrow >=0.9.0 Python library for Apache Arrow
s3fs Reading from Amazon S3
sqlalchemy Writing and reading from SQL databases
toolz >=0.7.3 Utility functions for iterators, functions, and dictionaries
xxhash Faster hashing of arrays

3.1.6 Test

Test Dask with py.test:

cd dask
py.test dask

Please be aware that installing Dask naively may not install all requirements by default. Please read the pip section
above which discusses requirements. You may choose to install the dask[complete] version which includes all
dependencies for all collections. Alternatively, you may choose to test only certain submodules depending on the
libraries within your environment. For example, to test only Dask core and Dask array we would run tests as follows:

py.test dask/tests dask/array/tests

3.2 Setup

This page describes various ways to set up Dask on different hardware, either locally on your own machine or on a
distributed cluster. If you are just getting started, then this page is unnecessary. Dask does not require any setup if you
only want to use it on a single computer.

Dask has two families of task schedulers:

1. Single machine scheduler: This scheduler provides basic features on a local process or thread pool. This
scheduler was made first and is the default. It is simple and cheap to use. It can only be used on a single
machine and does not scale.

2. Distributed scheduler: This scheduler is more sophisticated. It offers more features, but also requires a bit
more effort to set up. It can run locally or distributed across a cluster.

If you import Dask, set up a computation, and then call compute, then you will use the single-machine scheduler by
default. To use the dask.distributed scheduler you must set up a Client

3.2. Setup 9

dask Documentation, Release 2.6.0

import dask.dataframe as dd
df = dd.read_csv(...)
df.x.sum().compute() # This uses the single-machine scheduler by default

from dask.distributed import Client
client = Client(...) # Connect to distributed cluster and override default
df.x.sum().compute() # This now runs on the distributed system

Note that the newer dask.distributed scheduler is often preferable, even on single workstations. It contains
many diagnostics and features not found in the older single-machine scheduler. The following pages explain in more
detail how to set up Dask on a variety of local and distributed hardware.

• Single Machine:

– Default Scheduler: The no-setup default. Uses local threads or processes for larger-than-memory
processing

– dask.distributed: The sophistication of the newer system on a single machine. This provides more
advanced features while still requiring almost no setup.

• Distributed computing:

– Manual Setup: The command line interface to set up dask-scheduler and dask-worker pro-
cesses. Useful for IT or anyone building a deployment solution.

– SSH: Use SSH to set up Dask across an un-managed cluster.

– High Performance Computers: How to run Dask on traditional HPC environments using tools like
MPI, or job schedulers like SLURM, SGE, TORQUE, LSF, and so on.

– Kubernetes: Deploy Dask with the popular Kubernetes resource manager using either Helm or a native
deployment.

– YARN / Hadoop: Deploy Dask on YARN clusters, such as are found in traditional Hadoop installa-
tions.

– Python API (advanced): Create Scheduler and Worker objects from Python as part of a dis-
tributed Tornado TCP application. This page is useful for those building custom frameworks.

– Docker containers are available and may be useful in some of the solutions above.

– Cloud for current recommendations on how to deploy Dask and Jupyter on common cloud providers
like Amazon, Google, or Microsoft Azure.

3.2.1 Single-Machine Scheduler

The default Dask scheduler provides parallelism on a single machine by using either threads or processes. It is the
default choice used by Dask because it requires no setup. You don’t need to make any choices or set anything up to
use this scheduler. However, you do have a choice between threads and processes:

1. Threads: Use multiple threads in the same process. This option is good for numeric code that releases the GIL
(like NumPy, Pandas, Scikit-Learn, Numba, . . .) because data is free to share. This is the default scheduler for
dask.array, dask.dataframe, and dask.delayed

2. Processes: Send data to separate processes for processing. This option is good when operating on pure Python
objects like strings or JSON-like dictionary data that holds onto the GIL, but not very good when operating on
numeric data like Pandas DataFrames or NumPy arrays. Using processes avoids GIL issues, but can also result
in a lot of inter-process communication, which can be slow. This is the default scheduler for dask.bag, and it
is sometimes useful with dask.dataframe

10 Chapter 3. Complex Algorithms

https://yarn.dask.org/en/latest/
https://docs.python.org/3/glossary.html#term-gil
https://docs.python.org/3/glossary.html#term-gil

dask Documentation, Release 2.6.0

Note that the dask.distributed scheduler is often a better choice when working with GIL-bound code.
See dask.distributed on a single machine

3. Single-threaded: Execute computations in a single thread. This option provides no parallelism, but is useful
when debugging or profiling. Turning your parallel execution into a sequential one can be a convenient option
in many situations where you want to better understand what is going on

Selecting Threads, Processes, or Single Threaded

You can select between these options by specifying one of the following three values to the scheduler= keyword:

• "threads": Uses a ThreadPool in the local process

• "processes": Uses a ProcessPool to spread work between processes

• "single-threaded": Uses a for-loop in the current thread

You can specify these options in any of the following ways:

• When calling .compute()

x.compute(scheduler='threads')

• With a context manager

with dask.config.set(scheduler='threads'):
x.compute()
y.compute()

• As a global setting

dask.config.set(scheduler='threads')

Use the Distributed Scheduler

Dask’s newer distributed scheduler also works well on a single machine and offers more features and diagnostics. See
this page for more information.

3.2.2 Single Machine: dask.distributed

The dask.distributed scheduler works well on a single machine. It is sometimes preferred over the default
scheduler for the following reasons:

1. It provides access to asynchronous API, notably Futures

2. It provides a diagnostic dashboard that can provide valuable insight on performance and progress

3. It handles data locality with more sophistication, and so can be more efficient than the multiprocessing scheduler
on workloads that require multiple processes

You can create a dask.distributed scheduler by importing and creating a Client with no arguments. This
overrides whatever default was previously set.

from dask.distributed import Client
client = Client()

You can navigate to http://localhost:8787/status to see the diagnostic dashboard if you have Bokeh installed.

3.2. Setup 11

http://localhost:8787/status

dask Documentation, Release 2.6.0

Client

You can trivially set up a local cluster on your machine by instantiating a Dask Client with no arguments

from dask.distributed import Client
client = Client()

This sets up a scheduler in your local process and several processes running single-threaded Workers.

If you want to run workers in your same process, you can pass the processes=False keyword argument.

client = Client(processes=False)

This is sometimes preferable if you want to avoid inter-worker communication and your computations release the GIL.
This is common when primarily using NumPy or Dask Array.

LocalCluster

The Client() call described above is shorthand for creating a LocalCluster and then passing that to your client.

from dask.distributed import Client, LocalCluster
cluster = LocalCluster()
client = Client(cluster)

This is equivalent, but somewhat more explicit. You may want to look at the keyword arguments available on
LocalCluster to understand the options available to you on handling the mixture of threads and processes, like
specifying explicit ports, and so on.

class distributed.deploy.local.LocalCluster(n_workers=None,
threads_per_worker=None, pro-
cesses=True, loop=None, start=None,
host=None, ip=None, sched-
uler_port=0, silence_logs=30,
dashboard_address=’:8787’,
worker_dashboard_address=None,
diagnostics_port=None, ser-
vices=None, worker_services=None,
service_kwargs=None, asynchronous=False,
security=None, protocol=None,
blocked_handlers=None, interface=None,
worker_class=None, **worker_kwargs)

Create local Scheduler and Workers

This creates a “cluster” of a scheduler and workers running on the local machine.

Parameters

n_workers: int Number of workers to start

processes: bool Whether to use processes (True) or threads (False). Defaults to True

threads_per_worker: int Number of threads per each worker

scheduler_port: int Port of the scheduler. 8786 by default, use 0 to choose a random port

silence_logs: logging level Level of logs to print out to stdout. logging.WARN by default.
Use a falsey value like False or None for no change.

host: string Host address on which the scheduler will listen, defaults to only localhost

12 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

ip: string Deprecated. See host above.

dashboard_address: str Address on which to listen for the Bokeh diagnostics server like ‘lo-
calhost:8787’ or ‘0.0.0.0:8787’. Defaults to ‘:8787’. Set to None to disable the dashboard.
Use ‘:0’ for a random port.

diagnostics_port: int Deprecated. See dashboard_address.

asynchronous: bool (False by default) Set to True if using this cluster within async/await
functions or within Tornado gen.coroutines. This should remain False for normal use.

worker_kwargs: dict Extra worker arguments, will be passed to the Worker constructor.

blocked_handlers: List[str] A list of strings specifying a blacklist of handlers to disallow on
the Scheduler, like ['feed', 'run_function']

service_kwargs: Dict[str, Dict] Extra keywords to hand to the running services

security [Security]

protocol: str (optional) Protocol to use like tcp://, tls://, inproc:// This defaults to
sensible choice given other keyword arguments like processes and security

interface: str (optional) Network interface to use. Defaults to lo/localhost

worker_class: Worker Worker class used to instantiate workers from.

Examples

>>> cluster = LocalCluster() # Create a local cluster with as many workers as
→˓cores # doctest: +SKIP
>>> cluster # doctest: +SKIP
LocalCluster("127.0.0.1:8786", workers=8, threads=8)

>>> c = Client(cluster) # connect to local cluster # doctest: +SKIP

Scale the cluster to three workers

>>> cluster.scale(3) # doctest: +SKIP

Pass extra keyword arguments to Bokeh

>>> LocalCluster(service_kwargs={'dashboard': {'prefix': '/foo'}}) # doctest:
→˓+SKIP

3.2.3 Command Line

This is the most fundamental way to deploy Dask on multiple machines. In production environments, this process
is often automated by some other resource manager. Hence, it is rare that people need to follow these instructions
explicitly. Instead, these instructions are useful for IT professionals who may want to set up automated services to
deploy Dask within their institution.

A dask.distributed network consists of one dask-scheduler process and several dask-worker pro-
cesses that connect to that scheduler. These are normal Python processes that can be executed from the command
line. We launch the dask-scheduler executable in one process and the dask-worker executable in several
processes, possibly on different machines.

To accomplish this, launch dask-scheduler on one node:

3.2. Setup 13

dask Documentation, Release 2.6.0

$ dask-scheduler
Scheduler at: tcp://192.0.0.100:8786

Then, launch dask-worker on the rest of the nodes, providing the address to the node that hosts
dask-scheduler:

$ dask-worker tcp://192.0.0.100:8786
Start worker at: tcp://192.0.0.1:12345
Registered to: tcp://192.0.0.100:8786

$ dask-worker tcp://192.0.0.100:8786
Start worker at: tcp://192.0.0.2:40483
Registered to: tcp://192.0.0.100:8786

$ dask-worker tcp://192.0.0.100:8786
Start worker at: tcp://192.0.0.3:27372
Registered to: tcp://192.0.0.100:8786

The workers connect to the scheduler, which then sets up a long-running network connection back to the worker. The
workers will learn the location of other workers from the scheduler.

Handling Ports

The scheduler and workers both need to accept TCP connections on an open port. By default, the scheduler binds
to port 8786 and the worker binds to a random open port. If you are behind a firewall then you may have to open
particular ports or tell Dask to listen on particular ports with the --port and --worker-port keywords.:

dask-scheduler --port 8000
dask-worker --dashboard-address 8000 --nanny-port 8001

Nanny Processes

Dask workers are run within a nanny process that monitors the worker process and restarts it if necessary.

Diagnostic Web Servers

Additionally, Dask schedulers and workers host interactive diagnostic web servers using Bokeh. These are optional,
but generally useful to users. The diagnostic server on the scheduler is particularly valuable, and is served on port
8787 by default (configurable with the --dashboard-address keyword).

For more information about relevant ports, please take a look at the available command line options.

Automated Tools

There are various mechanisms to deploy these executables on a cluster, ranging from manually SSH-ing into all of the
machines to more automated systems like SGE/SLURM/Torque or Yarn/Mesos. Additionally, cluster SSH tools exist
to send the same commands to many machines. We recommend searching online for “cluster ssh” or “cssh”.

CLI Options

14 Chapter 3. Complex Algorithms

https://bokeh.pydata.org

dask Documentation, Release 2.6.0

Note: The command line documentation here may differ depending on your installed version. We recommend
referring to the output of dask-scheduler --help and dask-worker --help.

dask-scheduler

dask-scheduler [OPTIONS] [PRELOAD_ARGV]...

Options

--host <host>
URI, IP or hostname of this server

--port <port>
Serving port

--interface <interface>
Preferred network interface like ‘eth0’ or ‘ib0’

--protocol <protocol>
Protocol like tcp, tls, or ucx

--tls-ca-file <tls_ca_file>
CA cert(s) file for TLS (in PEM format)

--tls-cert <tls_cert>
certificate file for TLS (in PEM format)

--tls-key <tls_key>
private key file for TLS (in PEM format)

--bokeh-port <bokeh_port>
Deprecated. See –dashboard-address

--dashboard-address <dashboard_address>
Address on which to listen for diagnostics dashboard [default: :8787]

--dashboard, --no-dashboard
Launch the Dashboard [default: –dashboard]

--bokeh, --no-bokeh
Deprecated. See –dashboard/–no-dashboard.

--show, --no-show
Show web UI [default: –show]

--dashboard-prefix <dashboard_prefix>
Prefix for the dashboard app

--use-xheaders <use_xheaders>
User xheaders in dashboard app for ssl termination in header [default: False]

--pid-file <pid_file>
File to write the process PID

--scheduler-file <scheduler_file>
File to write connection information. This may be a good way to share connection information if your cluster is
on a shared network file system.

3.2. Setup 15

dask Documentation, Release 2.6.0

--local-directory <local_directory>
Directory to place scheduler files

--preload <preload>
Module that should be loaded by the scheduler process like “foo.bar” or “/path/to/foo.py”.

--idle-timeout <idle_timeout>
Time of inactivity after which to kill the scheduler

--version
Show the version and exit.

Arguments

PRELOAD_ARGV
Optional argument(s)

dask-worker

dask-worker [OPTIONS] [SCHEDULER] [PRELOAD_ARGV]...

Options

--tls-ca-file <tls_ca_file>
CA cert(s) file for TLS (in PEM format)

--tls-cert <tls_cert>
certificate file for TLS (in PEM format)

--tls-key <tls_key>
private key file for TLS (in PEM format)

--worker-port <worker_port>
Serving computation port, defaults to random

--nanny-port <nanny_port>
Serving nanny port, defaults to random

--bokeh-port <bokeh_port>
Deprecated. See –dashboard-address

--dashboard-address <dashboard_address>
Address on which to listen for diagnostics dashboard

--dashboard, --no-dashboard
Launch the Dashboard [default: –dashboard]

--bokeh, --no-bokeh
Deprecated. See –dashboard/–no-dashboard.

--listen-address <listen_address>
The address to which the worker binds. Example: tcp://0.0.0.0:9000

--contact-address <contact_address>
The address the worker advertises to the scheduler for communication with it and other workers. Example:
tcp://127.0.0.1:9000

16 Chapter 3. Complex Algorithms

tcp://0.0.0.0:9000
tcp://127.0.0.1:9000

dask Documentation, Release 2.6.0

--host <host>
Serving host. Should be an ip address that is visible to the scheduler and other workers. See –listen-address and
–contact-address if you need different listen and contact addresses. See –interface.

--interface <interface>
Network interface like ‘eth0’ or ‘ib0’

--protocol <protocol>
Protocol like tcp, tls, or ucx

--nthreads <nthreads>
Number of threads per process.

--nprocs <nprocs>
Number of worker processes to launch. [default: 1]

--name <name>
A unique name for this worker like ‘worker-1’. If used with –nprocs then the process number will be appended
like name-0, name-1, name-2, . . .

--memory-limit <memory_limit>
Bytes of memory per process that the worker can use. This can be an integer (bytes), float (fraction of total
system memory), string (like 5GB or 5000M), ‘auto’, or zero for no memory management [default: auto]

--reconnect, --no-reconnect
Reconnect to scheduler if disconnected [default: –reconnect]

--nanny, --no-nanny
Start workers in nanny process for management [default: –nanny]

--pid-file <pid_file>
File to write the process PID

--local-directory <local_directory>
Directory to place worker files

--resources <resources>
Resources for task constraints like “GPU=2 MEM=10e9”. Resources are applied separately to each worker
process (only relevant when starting multiple worker processes with ‘–nprocs’).

--scheduler-file <scheduler_file>
Filename to JSON encoded scheduler information. Use with dask-scheduler –scheduler-file

--death-timeout <death_timeout>
Seconds to wait for a scheduler before closing

--dashboard-prefix <dashboard_prefix>
Prefix for the dashboard

--lifetime <lifetime>
If provided, shut down the worker after this duration.

--lifetime-stagger <lifetime_stagger>
Random amount by which to stagger lifetime values [default: 0 seconds]

--lifetime-restart, --no-lifetime-restart
Whether or not to restart the worker after the lifetime lapses. This assumes that you are using the –lifetime and
–nanny keywords [default: False]

--preload <preload>
Module that should be loaded by each worker process like “foo.bar” or “/path/to/foo.py”

3.2. Setup 17

dask Documentation, Release 2.6.0

--version
Show the version and exit.

Arguments

SCHEDULER
Optional argument

PRELOAD_ARGV
Optional argument(s)

3.2.4 SSH

It is easy to set up Dask on informally managed networks of machines using SSH. This can be done manually using
SSH and the Dask command line interface, or automatically using either the SSHCluster Python command or the
dask-ssh command line tool. This document describes both of these options.

Python Interface

distributed.deploy.ssh.SSHCluster(hosts: List[str] = None, connect_options: dict = {},
worker_options: dict = {}, scheduler_options: dict =
{}, worker_module: str = ’distributed.cli.dask_worker’,
**kwargs)

Deploy a Dask cluster using SSH

The SSHCluster function deploys a Dask Scheduler and Workers for you on a set of machine addresses that you
provide. The first address will be used for the scheduler while the rest will be used for the workers (feel free to
repeat the first hostname if you want to have the scheudler and worker co-habitate one machine.)

You may configure the scheduler and workers by passing scheduler_options and worker_options
dictionary keywords. See the dask.distributed.Scheduler and dask.distributed.Worker
classes for details on the available options, but the defaults should work in most situations.

You may configure your use of SSH itself using the connect_options keyword, which passes values to
the asyncssh.connect function. For more information on these see the documentation for the asyncssh
library https://asyncssh.readthedocs.io .

Parameters

hosts: List[str] List of hostnames or addresses on which to launch our cluster The first will be
used for the scheduler and the rest for workers

connect_options: Keywords to pass through to asyncssh.connect known_hosts: List[str] or
None

The list of keys which will be used to validate the server host key presented during
the SSH handshake. If this is not specified, the keys will be looked up in the file
.ssh/known_hosts. If this is explicitly set to None, server host key validation will be
disabled.

worker_options: Keywords to pass on to dask-worker

scheduler_options: Keywords to pass on to dask-scheduler

worker_module: Python module to call to start the worker

18 Chapter 3. Complex Algorithms

https://asyncssh.readthedocs.io

dask Documentation, Release 2.6.0

See also:

dask.distributed.Scheduler, dask.distributed.Worker, asyncssh.connect

Examples

>>> from dask.distributed import Client, SSHCluster
>>> cluster = SSHCluster(
... ["localhost", "localhost", "localhost", "localhost"],
... connect_options={"known_hosts": None},
... worker_options={"nthreads": 2},
... scheduler_options={"port": 0, "dashboard_address": ":8797"}
...)
>>> client = Client(cluster)

An example using a different worker module, in particular the dask-cuda-worker command from the
dask-cuda project.

>>> from dask.distributed import Client, SSHCluster
>>> cluster = SSHCluster(
... ["localhost", "hostwithgpus", "anothergpuhost"],
... connect_options={"known_hosts": None},
... scheduler_options={"port": 0, "dashboard_address": ":8797"},
... worker_module='dask_cuda.dask_cuda_worker')
>>> client = Client(cluster)

Command Line

The convenience script dask-ssh opens several SSH connections to your target computers and initializes the network
accordingly. You can give it a list of hostnames or IP addresses:

$ dask-ssh 192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4

Or you can use normal UNIX grouping:

$ dask-ssh 192.168.0.{1,2,3,4}

Or you can specify a hostfile that includes a list of hosts:

$ cat hostfile.txt
192.168.0.1
192.168.0.2
192.168.0.3
192.168.0.4

$ dask-ssh --hostfile hostfile.txt

The dask-ssh utility depends on the paramiko:

pip install paramiko

Note: The command line documentation here may differ depending on your installed version. We recommend
referring to the output of dask-ssh --help.

3.2. Setup 19

dask Documentation, Release 2.6.0

dask-ssh

Launch a distributed cluster over SSH. A ‘dask-scheduler’ process will run on the first host specified in [HOST-
NAMES] or in the hostfile (unless –scheduler is specified explicitly). One or more ‘dask-worker’ processes will be
run each host in [HOSTNAMES] or in the hostfile. Use command line flags to adjust how many dask-worker process
are run on each host (–nprocs) and how many cpus are used by each dask-worker process (–nthreads).

dask-ssh [OPTIONS] [HOSTNAMES]...

Options

--scheduler <scheduler>
Specify scheduler node. Defaults to first address.

--scheduler-port <scheduler_port>
Specify scheduler port number. [default: 8786]

--nthreads <nthreads>
Number of threads per worker process. Defaults to number of cores divided by the number of processes per
host.

--nprocs <nprocs>
Number of worker processes per host. [default: 1]

--hostfile <hostfile>
Textfile with hostnames/IP addresses

--ssh-username <ssh_username>
Username to use when establishing SSH connections.

--ssh-port <ssh_port>
Port to use for SSH connections. [default: 22]

--ssh-private-key <ssh_private_key>
Private key file to use for SSH connections.

--nohost
Do not pass the hostname to the worker.

--log-directory <log_directory>
Directory to use on all cluster nodes for the output of dask-scheduler and dask-worker commands.

--remote-python <remote_python>
Path to Python on remote nodes.

--memory-limit <memory_limit>
Bytes of memory that the worker can use. This can be an integer (bytes), float (fraction of total system memory),
string (like 5GB or 5000M), ‘auto’, or zero for no memory management [default: auto]

--worker-port <worker_port>
Serving computation port, defaults to random

--nanny-port <nanny_port>
Serving nanny port, defaults to random

--remote-dask-worker <remote_dask_worker>
Worker to run. [default: distributed.cli.dask_worker]

--version
Show the version and exit.

20 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Arguments

HOSTNAMES
Optional argument(s)

3.2.5 High Performance Computers

Relevant Machines

This page includes instructions and guidelines when deploying Dask on high performance supercomputers commonly
found in scientific and industry research labs. These systems commonly have the following attributes:

1. Some mechanism to launch MPI applications or use job schedulers like SLURM, SGE, TORQUE, LSF, DR-
MAA, PBS, or others

2. A shared network file system visible to all machines in the cluster

3. A high performance network interconnect, such as Infiniband

4. Little or no node-local storage

Where to start

Most of this page documents various ways and best practices to use Dask on an HPC cluster. This is technical and
aimed both at users with some experience deploying Dask and also system administrators.

The preferred and simplest way to run Dask on HPC systems today both for new, experienced users or administrator
is to use dask-jobqueue.

However, dask-jobqueue is slightly oriented toward interactive analysis usage, and it might be better to use tools like
dask-mpi in some routine batch production workloads.

Dask-jobqueue and Dask-drmaa

The following projects provide easy high-level access to Dask using resource managers that are commonly deployed
on HPC systems:

1. dask-jobqueue for use with PBS, SLURM, LSF, SGE and other resource managers

2. dask-drmaa for use with any DRMAA compliant resource manager

They provide interfaces that look like the following:

from dask_jobqueue import PBSCluster

cluster = PBSCluster(cores=36,
memory="100GB",
project='P48500028',
queue='premium',
interface='ib0',
walltime='02:00:00')

cluster.scale(100) # Start 100 workers in 100 jobs that match the description above

from dask.distributed import Client
client = Client(cluster) # Connect to that cluster

3.2. Setup 21

https://jobqueue.dask.org
https://jobqueue.dask.org
https://github.com/dask/dask-drmaa

dask Documentation, Release 2.6.0

Dask-jobqueue provides a lot of possibilities like adaptive dynamic scaling of workers, we recommend reading the
dask-jobqueue documentation first to get a basic system running and then returning to this documentation for fine-
tuning if necessary.

Using MPI

Note: This section may not be necessary if you use a tool like dask-jobqueue.

You can launch a Dask network using mpirun or mpiexec and the dask-mpi command line executable.

mpirun --np 4 dask-mpi --scheduler-file /home/$USER/scheduler.json

from dask.distributed import Client
client = Client(scheduler_file='/path/to/scheduler.json')

This depends on the mpi4py library. It only uses MPI to start the Dask cluster and not for inter-node communication.
MPI implementations differ: the use of mpirun --np 4 is specific to the mpich or open-mpi MPI implementa-
tion installed through conda and linked to mpi4py.

conda install mpi4py

It is not necessary to use exactly this implementation, but you may want to verify that your mpi4py Python library is
linked against the proper mpirun/mpiexec executable and that the flags used (like --np 4) are correct for your
system. The system administrator of your cluster should be very familiar with these concerns and able to help.

In some setups, MPI processes are not allowed to fork other processes. In this case, we recommend using
--no-nanny option in order to prevent dask from using an additional nanny process to manage workers.

Run dask-mpi --help to see more options for the dask-mpi command.

Using a Shared Network File System and a Job Scheduler

Note: This section is not necessary if you use a tool like dask-jobqueue.

Some clusters benefit from a shared File System (NFS, GPFS, Lustre or alike), and can use this to communicate the
scheduler location to the workers:

dask-scheduler --scheduler-file /path/to/scheduler.json # writes address to file

dask-worker --scheduler-file /path/to/scheduler.json # reads file for address
dask-worker --scheduler-file /path/to/scheduler.json # reads file for address

>>> client = Client(scheduler_file='/path/to/scheduler.json')

This can be particularly useful when deploying dask-scheduler and dask-worker processes using a job sched-
uler like SGE/SLURM/Torque/etc. Here is an example using SGE’s qsub command:

Start a dask-scheduler somewhere and write the connection information to a file
qsub -b y /path/to/dask-scheduler --scheduler-file /home/$USER/scheduler.json

Start 100 dask-worker processes in an array job pointing to the same file
qsub -b y -t 1-100 /path/to/dask-worker --scheduler-file /home/$USER/scheduler.json

22 Chapter 3. Complex Algorithms

https://jobqueue.dask.org
https://mpi4py.readthedocs.io/

dask Documentation, Release 2.6.0

Note, the --scheduler-file option is only valuable if your scheduler and workers share a network file system.

High Performance Network

Many HPC systems have both standard Ethernet networks as well as high-performance networks capable of increased
bandwidth. You can instruct Dask to use the high-performance network interface by using the --interface key-
word with the dask-worker, dask-scheduler, or dask-mpi commands or the interface= keyword with
the dask-jobqueue Cluster objects:

mpirun --np 4 dask-mpi --scheduler-file /home/$USER/scheduler.json --interface ib0

In the code example above, we have assumed that your cluster has an Infiniband network interface called ib0. You
can check this by asking your system administrator or by inspecting the output of ifconfig

$ ifconfig
lo Link encap:Local Loopback # Localhost

inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host

eth0 Link encap:Ethernet HWaddr XX:XX:XX:XX:XX:XX # Ethernet
inet addr:192.168.0.101
...

ib0 Link encap:Infiniband # Fast InfiniBand
inet addr:172.42.0.101

https://stackoverflow.com/questions/43881157/how-do-i-use-an-infiniband-network-with-dask

Local Storage

Users often exceed memory limits available to a specific Dask deployment. In normal operation, Dask spills excess
data to disk, often to the default temporary directory.

However, in HPC systems this default temporary directory may point to an network file system (NFS) mount which
can cause problems as Dask tries to read and write many small files. Beware, reading and writing many tiny files from
many distributed processes is a good way to shut down a national supercomputer.

If available, it’s good practice to point Dask workers to local storage, or hard drives that are physically on each node.
Your IT administrators will be able to point you to these locations. You can do this with the --local-directory
or local_directory= keyword in the dask-worker command:

dask-mpi ... --local-directory /path/to/local/storage

or any of the other Dask Setup utilities, or by specifying the following configuration value:

temporary-directory: /path/to/local/storage

However, not all HPC systems have local storage. If this is the case then you may want to turn off Dask’s ability to spill
to disk altogether. See this page for more information on Dask’s memory policies. Consider changing the following
values in your ~/.config/dask/distributed.yaml file to disable spilling data to disk:

distributed:
worker:
memory:

target: false # don't spill to disk
spill: false # don't spill to disk
pause: 0.80 # pause execution at 80% memory use
terminate: 0.95 # restart the worker at 95% use

3.2. Setup 23

https://stackoverflow.com/questions/43881157/how-do-i-use-an-infiniband-network-with-dask
https://distributed.dask.org/en/latest/worker.html#memory-management

dask Documentation, Release 2.6.0

This stops Dask workers from spilling to disk, and instead relies entirely on mechanisms to stop them from processing
when they reach memory limits.

As a reminder, you can set the memory limit for a worker using the --memory-limit keyword:

dask-mpi ... --memory-limit 10GB

Launch Many Small Jobs

Note: This section is not necessary if you use a tool like dask-jobqueue.

HPC job schedulers are optimized for large monolithic jobs with many nodes that all need to run as a group at the
same time. Dask jobs can be quite a bit more flexible: workers can come and go without strongly affecting the job. If
we split our job into many smaller jobs, we can often get through the job scheduling queue much more quickly than a
typical job. This is particularly valuable when we want to get started right away and interact with a Jupyter notebook
session rather than waiting for hours for a suitable allocation block to become free.

So, to get a large cluster quickly, we recommend allocating a dask-scheduler process on one node with a modest wall
time (the intended time of your session) and then allocating many small single-node dask-worker jobs with shorter
wall times (perhaps 30 minutes) that can easily squeeze into extra space in the job scheduler. As you need more
computation, you can add more of these single-node jobs or let them expire.

Use Dask to co-launch a Jupyter server

Dask can help you by launching other services alongside it. For example, you can run a Jupyter notebook server on
the machine running the dask-scheduler process with the following commands

from dask.distributed import Client
client = Client(scheduler_file='scheduler.json')

import socket
host = client.run_on_scheduler(socket.gethostname)

def start_jlab(dask_scheduler):
import subprocess
proc = subprocess.Popen(['/path/to/jupyter', 'lab', '--ip', host, '--no-browser'])
dask_scheduler.jlab_proc = proc

client.run_on_scheduler(start_jlab)

3.2.6 Kubernetes

Kubernetes and Helm

It is easy to launch a Dask cluster and a Jupyter notebook server on cloud resources using Kubernetes and Helm.

This is particularly useful when you want to deploy a fresh Python environment on Cloud services like Amazon Web
Services, Google Compute Engine, or Microsoft Azure.

If you already have Python environments running in a pre-existing Kubernetes cluster, then you may prefer the Kuber-
netes native documentation, which is a bit lighter weight.

24 Chapter 3. Complex Algorithms

https://kubernetes.io/
https://helm.sh/

dask Documentation, Release 2.6.0

Launch Kubernetes Cluster

This document assumes that you have a Kubernetes cluster and Helm installed.

If this is not the case, then you might consider setting up a Kubernetes cluster on one of the common cloud providers
like Google, Amazon, or Microsoft. We recommend the first part of the documentation in the guide Zero to JupyterHub
that focuses on Kubernetes and Helm (you do not need to follow all of these instructions). Also, JupyterHub is not
necessary to deploy Dask:

• Creating a Kubernetes Cluster

• Setting up Helm

Alternatively, you may want to experiment with Kubernetes locally using Minikube.

Helm Install Dask

Dask maintains a Helm chart repository containing various charts for the Dask community https://helm.dask.org/ .
You will need to add this to your known channels and update your local charts:

helm repo add dask https://helm.dask.org/
helm repo update

Now, you can launch Dask on your Kubernetes cluster using the Dask Helm chart:

helm install dask/dask

This deploys a dask-scheduler, several dask-worker processes, and also an optional Jupyter server.

Verify Deployment

This might take a minute to deploy. You can check its status with kubectl:

kubectl get pods
kubectl get services

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
bald-eel-jupyter-924045334-twtxd 0/1 ContainerCreating 0 1m
bald-eel-scheduler-3074430035-cn1dt 1/1 Running 0 1m
bald-eel-worker-3032746726-202jt 1/1 Running 0 1m
bald-eel-worker-3032746726-b8nqq 1/1 Running 0 1m
bald-eel-worker-3032746726-d0chx 0/1 ContainerCreating 0 1m

$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
→˓ AGE
bald-eel-jupyter LoadBalancer 10.11.247.201 35.226.183.149 80:30173/TCP
→˓ 2m
bald-eel-scheduler LoadBalancer 10.11.245.241 35.202.201.129 8786:31166/TCP,
→˓80:31626/TCP 2m
kubernetes ClusterIP 10.11.240.1 <none> 443/TCP
48m

You can use the addresses under EXTERNAL-IP to connect to your now-running Jupyter and Dask systems.

3.2. Setup 25

https://zero-to-jupyterhub.readthedocs.io/en/latest/
https://zero-to-jupyterhub.readthedocs.io/en/latest/create-k8s-cluster.html
https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-helm.html
https://kubernetes.io/docs/getting-started-guides/minikube/
https://helm.dask.org/
https://helm.sh/

dask Documentation, Release 2.6.0

Notice the name bald-eel. This is the name that Helm has given to your particular deployment of Dask. You could,
for example, have multiple Dask-and-Jupyter clusters running at once, and each would be given a different name. Note
that you will need to use this name to refer to your deployment in the future. Additionally, you can list all active helm
deployments with:

helm list

NAME REVISION UPDATED STATUS CHART
→˓ NAMESPACE
bald-eel 1 Wed Dec 6 11:19:54 2017 DEPLOYED dask-0.1.
→˓0 default

Connect to Dask and Jupyter

When we ran kubectl get services, we saw some externally visible IPs:

mrocklin@pangeo-181919:~$ kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
→˓ AGE
bald-eel-jupyter LoadBalancer 10.11.247.201 35.226.183.149 80:30173/TCP
→˓ 2m
bald-eel-scheduler LoadBalancer 10.11.245.241 35.202.201.129 8786:31166/TCP,
→˓80:31626/TCP 2m
kubernetes ClusterIP 10.11.240.1 <none> 443/TCP
→˓ 48m

We can navigate to these services from any web browser. Here, one is the Dask diagnostic dashboard, and the other is
the Jupyter server. You can log into the Jupyter notebook server with the password, dask.

You can create a notebook and create a Dask client from there. The DASK_SCHEDULER_ADDRESS environment
variable has been populated with the address of the Dask scheduler. This is available in Python in the config
dictionary.

>>> from dask.distributed import Client, config
>>> config['scheduler-address']
'bald-eel-scheduler:8786'

Although you don’t need to use this address, the Dask client will find this variable automatically.

from dask.distributed import Client, config
client = Client()

Configure Environment

By default, the Helm deployment launches three workers using two cores each and a standard conda environment. We
can customize this environment by creating a small yaml file that implements a subset of the values in the dask helm
chart values.yaml file.

For example, we can increase the number of workers, and include extra conda and pip packages to install on the both
the workers and Jupyter server (these two environments should be matched).

config.yaml

worker:
(continues on next page)

26 Chapter 3. Complex Algorithms

https://github.com/dask/helm-chart/blob/master/dask/values.yaml
https://github.com/dask/helm-chart/blob/master/dask/values.yaml

dask Documentation, Release 2.6.0

(continued from previous page)

replicas: 8
resources:
limits:

cpu: 2
memory: 7.5G

requests:
cpu: 2
memory: 7.5G

env:
- name: EXTRA_CONDA_PACKAGES

value: numba xarray -c conda-forge
- name: EXTRA_PIP_PACKAGES

value: s3fs dask-ml --upgrade

We want to keep the same packages on the worker and jupyter environments
jupyter:

enabled: true
env:
- name: EXTRA_CONDA_PACKAGES

value: numba xarray matplotlib -c conda-forge
- name: EXTRA_PIP_PACKAGES

value: s3fs dask-ml --upgrade

This config file overrides the configuration for the number and size of workers and the conda and pip packages installed
on the worker and Jupyter containers. In general, we will want to make sure that these two software environments
match.

Update your deployment to use this configuration file. Note that you will not use helm install for this stage: that would
create a new deployment on the same Kubernetes cluster. Instead, you will upgrade your existing deployment by using
the current name:

helm upgrade bald-eel dask/dask -f config.yaml

This will update those containers that need to be updated. It may take a minute or so.

As a reminder, you can list the names of deployments you have using helm list

Check status and logs

For standard issues, you should be able to see the worker status and logs using the Dask dashboard (in particular, you
can see the worker links from the info/ page). However, if your workers aren’t starting, you can check the status of
pods and their logs with the following commands:

kubectl get pods
kubectl logs <PODNAME>

mrocklin@pangeo-181919:~$ kubectl get pods
NAME READY STATUS RESTARTS AGE
bald-eel-jupyter-3805078281-n1qk2 1/1 Running 0 18m
bald-eel-scheduler-3074430035-cn1dt 1/1 Running 0 58m
bald-eel-worker-1931881914-1q09p 1/1 Running 0 18m
bald-eel-worker-1931881914-856mm 1/1 Running 0 18m
bald-eel-worker-1931881914-9lgzb 1/1 Running 0 18m
bald-eel-worker-1931881914-bdn2c 1/1 Running 0 16m
bald-eel-worker-1931881914-jq70m 1/1 Running 0 17m

(continues on next page)

3.2. Setup 27

dask Documentation, Release 2.6.0

(continued from previous page)

bald-eel-worker-1931881914-qsgj7 1/1 Running 0 18m
bald-eel-worker-1931881914-s2phd 1/1 Running 0 17m
bald-eel-worker-1931881914-srmmg 1/1 Running 0 17m

mrocklin@pangeo-181919:~$ kubectl logs bald-eel-worker-1931881914-856mm
EXTRA_CONDA_PACKAGES environment variable found. Installing.
Fetching package metadata
Solving package specifications: .
Package plan for installation in environment /opt/conda/envs/dask:
The following NEW packages will be INSTALLED:

fasteners: 0.14.1-py36_2 conda-forge
monotonic: 1.3-py36_0 conda-forge
zarr: 2.1.4-py36_0 conda-forge

Proceed ([y]/n)?
monotonic-1.3- 100% |###############################| Time: 0:00:00 11.16 MB/s
fasteners-0.14 100% |###############################| Time: 0:00:00 576.56 kB/s
...

Delete a Helm deployment

You can always delete a helm deployment using its name:

helm delete bald-eel --purge

Note that this does not destroy any clusters that you may have allocated on a Cloud service (you will need to delete
those explicitly).

Avoid the Jupyter Server

Sometimes you do not need to run a Jupyter server alongside your Dask cluster.

jupyter:
enabled: false

Kubernetes Native

See external documentation on Dask-Kubernetes for more information.

Kubernetes is a popular system for deploying distributed applications on clusters, particularly in the cloud. You can
use Kubernetes to launch Dask workers in the following two ways:

1. Helm: You can launch a Dask scheduler, several workers, and an optional Jupyter Notebook server on a Kuber-
netes easily using Helm

helm repo add dask https://helm.dask.org/ # add the Dask Helm chart repository
helm repo update # get latest Helm charts
helm install dask/dask # deploy standard Dask chart

This is a good choice if you want to do the following:

1. Run a managed Dask cluster for a long period of time

2. Also deploy a Jupyter server from which to run code

28 Chapter 3. Complex Algorithms

https://kubernetes.dask.org
https://kubernetes.io/
https://helm.sh/

dask Documentation, Release 2.6.0

3. Share the same Dask cluster between many automated services

4. Try out Dask for the first time on a cloud-based system like Amazon, Google, or Microsoft Azure (see also
our Cloud documentation)

Note: For more information, see Dask and Helm documentation.

2. Native: You can quickly deploy Dask workers on Kubernetes from within a Python script or interactive session
using Dask-Kubernetes

from dask_kubernetes import KubeCluster
cluster = KubeCluster.from_yaml('worker-template.yaml')
cluster.scale(20) # add 20 workers
cluster.adapt() # or create and destroy workers dynamically based on workload

from dask.distributed import Client
client = Client(cluster)

This is a good choice if you want to do the following:

1. Dynamically create a personal and ephemeral deployment for interactive use

2. Allow many individuals the ability to launch their own custom dask deployments, rather than depend on a
centralized system

3. Quickly adapt Dask cluster size to the current workload

Note: For more information, see Dask-Kubernetes documentation.

You may also want to see the documentation on using Dask with Docker containers to help you manage your software
environments on Kubernetes.

3.2.7 Python API (advanced)

In some rare cases, experts may want to create Scheduler, Worker, and Nanny objects explicitly in Python. This
is often necessary when making tools to automatically deploy Dask in custom settings.

It is more common to create a Local cluster with Client() on a single machine or use the Command Line Interface
(CLI). New readers are recommended to start there.

If you do want to start Scheduler and Worker objects yourself you should be a little familiar with async/await style
Python syntax. These objects are awaitable and are commonly used within async with context managers. Here are
a few examples to show a few ways to start and finish things.

Full Example

Scheduler([loop, delete_interval, . . .]) Dynamic distributed task scheduler
Worker([scheduler_ip, scheduler_port, . . .]) Worker node in a Dask distributed cluster
Client([address, loop, timeout, . . .]) Connect to and submit computation to a Dask cluster

We first start with a comprehensive example of setting up a Scheduler, two Workers, and one Client in the same event
loop, running a simple computation, and then cleaning everything up.

3.2. Setup 29

https://kubernetes.dask.org/
https://kubernetes.dask.org/

dask Documentation, Release 2.6.0

import asyncio
from dask.distributed import Scheduler, Worker, Client

async def f():
async with Scheduler() as s:

async with Worker(s.address) as w1, Worker(s.address) as w2:
async with Client(s.address, asynchronous=True) as client:

future = client.submit(lambda x: x + 1, 10)
result = await future
print(result)

asyncio.get_event_loop().run_until_complete(f())

Now we look at simpler examples that build up to this case.

Scheduler

Scheduler([loop, delete_interval, . . .]) Dynamic distributed task scheduler

We create scheduler by creating a Scheduler() object, and then await that object to wait for it to start up. We can
then wait on the .finished method to wait until it closes. In the meantime the scheduler will be active managing
the cluster..

import asyncio
from dask.distributed import Scheduler, Worker

async def f():
s = Scheduler() # scheduler created, but not yet running
s = await s # the scheduler is running
await s.finished() # wait until the scheduler closes

asyncio.get_event_loop().run_until_complete(f())

This program will run forever, or until some external process connects to the scheduler and tells it to stop. If you want
to close things yourself you can close any Scheduler, Worker, Nanny, or Client class by awaiting the .close
method:

await s.close()

Worker

Worker([scheduler_ip, scheduler_port, . . .]) Worker node in a Dask distributed cluster

The worker follows the same API. The only difference is that the worker needs to know the address of the scheduler.

import asyncio
from dask.distributed import Scheduler, Worker

async def f(scheduler_address):
w = await Worker(scheduler_address)
await w.finished()

(continues on next page)

30 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

asyncio.get_event_loop().run_until_complete(f("tcp://127.0.0.1:8786"))

Start many in one event loop

Scheduler([loop, delete_interval, . . .]) Dynamic distributed task scheduler
Worker([scheduler_ip, scheduler_port, . . .]) Worker node in a Dask distributed cluster

We can run as many of these objects as we like in the same event loop.

import asyncio
from dask.distributed import Scheduler, Worker

async def f():
s = await Scheduler()
w = await Worker(s.address)
await w.finished()
await s.finished()

asyncio.get_event_loop().run_until_complete(f())

Use Context Managers

We can also use async with context managers to make sure that we clean up properly. Here is the same example
as from above:

import asyncio
from dask.distributed import Scheduler, Worker

async def f():
async with Scheduler() as s:

async with Worker(s.address) as w:
await w.finished()
await s.finished()

asyncio.get_event_loop().run_until_complete(f())

Alternatively, in the example below we also include a Client, run a small computation, and then allow things to
clean up after that computation..

import asyncio
from dask.distributed import Scheduler, Worker, Client

async def f():
async with Scheduler() as s:

async with Worker(s.address) as w1, Worker(s.address) as w2:
async with Client(s.address, asynchronous=True) as client:

future = client.submit(lambda x: x + 1, 10)
result = await future
print(result)

asyncio.get_event_loop().run_until_complete(f())

3.2. Setup 31

dask Documentation, Release 2.6.0

This is equivalent to creating and awaiting each server, and then calling .close on each as we leave the context.
In this example we don’t wait on s.finished(), so this will terminate relatively quickly. You could have called
await s.finished() though if you wanted this to run forever.

Nanny

Nanny([scheduler_ip, scheduler_port, . . .]) A process to manage worker processes

Alternatively, we can replace Worker with Nanny if we want your workers to be managed in a separate process.
The Nanny constructor follows the same API. This allows workers to restart themselves in case of failure. Also,
it provides some additional monitoring, and is useful when coordinating many workers that should live in different
processes in order to avoid the GIL.

w = await Worker(s.address)
w = await Nanny(s.address)

API

These classes have a variety of keyword arguments that you can use to control their behavior. See the API documen-
tation below for more information.

Scheduler

class distributed.Scheduler(loop=None, delete_interval=’500ms’, synchro-
nize_worker_interval=’60s’, services=None, service_kwargs=None,
allowed_failures=None, extensions=None, validate=False,
scheduler_file=None, security=None, worker_ttl=None,
idle_timeout=None, interface=None, host=None, port=0,
protocol=None, dashboard_address=None, preload=None,
preload_argv=(), **kwargs)

Dynamic distributed task scheduler

The scheduler tracks the current state of workers, data, and computations. The scheduler listens for events
and responds by controlling workers appropriately. It continuously tries to use the workers to execute an ever
growing dask graph.

All events are handled quickly, in linear time with respect to their input (which is often of constant size) and
generally within a millisecond. To accomplish this the scheduler tracks a lot of state. Every operation maintains
the consistency of this state.

The scheduler communicates with the outside world through Comm objects. It maintains a consistent and valid
view of the world even when listening to several clients at once.

A Scheduler is typically started either with the dask-scheduler executable:

$ dask-scheduler
Scheduler started at 127.0.0.1:8786

Or within a LocalCluster a Client starts up without connection information:

>>> c = Client()
>>> c.cluster.scheduler
Scheduler(...)

32 Chapter 3. Complex Algorithms

https://docs.python.org/3/glossary.html#term-gil

dask Documentation, Release 2.6.0

Users typically do not interact with the scheduler directly but rather with the client object Client.

State

The scheduler contains the following state variables. Each variable is listed along with what it stores and a brief
description.

• tasks: {task key: TaskState} Tasks currently known to the scheduler

• unrunnable: {TaskState} Tasks in the “no-worker” state

• workers: {worker key: WorkerState} Workers currently connected to the scheduler

• idle: {WorkerState}: Set of workers that are not fully utilized

• saturated: {WorkerState}: Set of workers that are not over-utilized

• host_info: {hostname: dict}: Information about each worker host

• clients: {client key: ClientState} Clients currently connected to the scheduler

• services: {str: port}: Other services running on this scheduler, like Bokeh

• loop: IOLoop: The running Tornado IOLoop

• client_comms: {client key: Comm} For each client, a Comm object used to receive task requests
and report task status updates.

• stream_comms: {worker key: Comm} For each worker, a Comm object from which we both ac-
cept stimuli and report results

• task_duration: {key-prefix: time} Time we expect certain functions to take, e.g. {'sum':
0.25}

adaptive_target(comm=None, target_duration=’5s’)
Desired number of workers based on the current workload

This looks at the current running tasks and memory use, and returns a number of desired workers. This is
often used by adaptive scheduling.

Parameters

target_duration: str A desired duration of time for computations to take. This affects how
rapidly the scheduler will ask to scale.

See also:

distributed.deploy.Adaptive

add_client(comm, client=None)
Add client to network

We listen to all future messages from this Comm.

add_keys(comm=None, worker=None, keys=())
Learn that a worker has certain keys

This should not be used in practice and is mostly here for legacy reasons. However, it is sent by workers
from time to time.

add_plugin(plugin=None, idempotent=False, **kwargs)
Add external plugin to scheduler

See https://distributed.readthedocs.io/en/latest/plugins.html

3.2. Setup 33

https://distributed.readthedocs.io/en/latest/plugins.html

dask Documentation, Release 2.6.0

add_worker(comm=None, address=None, keys=(), nthreads=None, name=None, re-
solve_address=True, nbytes=None, types=None, now=None, resources=None,
host_info=None, memory_limit=None, metrics=None, pid=0, services=None, lo-
cal_directory=None, nanny=None, extra=None)

Add a new worker to the cluster

broadcast(comm=None, msg=None, workers=None, hosts=None, nanny=False, serializers=None)
Broadcast message to workers, return all results

cancel_key(key, client, retries=5, force=False)
Cancel a particular key and all dependents

check_idle_saturated(ws, occ=None)
Update the status of the idle and saturated state

The scheduler keeps track of workers that are ..

• Saturated: have enough work to stay busy

• Idle: do not have enough work to stay busy

They are considered saturated if they both have enough tasks to occupy all of their threads, and if the
expected runtime of those tasks is large enough.

This is useful for load balancing and adaptivity.

client_heartbeat(client=None)
Handle heartbeats from Client

client_releases_keys(keys=None, client=None)
Remove keys from client desired list

close(comm=None, fast=False, close_workers=False)
Send cleanup signal to all coroutines then wait until finished

See also:

Scheduler.cleanup

close_worker(stream=None, worker=None, safe=None)
Remove a worker from the cluster

This both removes the worker from our local state and also sends a signal to the worker to shut down. This
works regardless of whether or not the worker has a nanny process restarting it

coerce_address(addr, resolve=True)
Coerce possible input addresses to canonical form. resolve can be disabled for testing with fake hostnames.

Handles strings, tuples, or aliases.

coerce_hostname(host)
Coerce the hostname of a worker.

decide_worker(ts)
Decide on a worker for task ts. Return a WorkerState.

feed(comm, function=None, setup=None, teardown=None, interval=’1s’, **kwargs)
Provides a data Comm to external requester

Caution: this runs arbitrary Python code on the scheduler. This should eventually be phased out. It is
mostly used by diagnostics.

gather(comm=None, keys=None, serializers=None)
Collect data in from workers

34 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

get_comm_cost(ts, ws)
Get the estimated communication cost (in s.) to compute the task on the given worker.

get_task_duration(ts, default=0.5)
Get the estimated computation cost of the given task (not including any communication cost).

get_worker_service_addr(worker, service_name, protocol=False)
Get the (host, port) address of the named service on the worker. Returns None if the service doesn’t exist.

Parameters

worker [address]

service_name [str] Common services include ‘bokeh’ and ‘nanny’

protocol [boolean] Whether or not to include a full address with protocol (True) or just a
(host, port) pair

handle_long_running(key=None, worker=None, compute_duration=None)
A task has seceded from the thread pool

We stop the task from being stolen in the future, and change task duration accounting as if the task has
stopped.

handle_worker(comm=None, worker=None)
Listen to responses from a single worker

This is the main loop for scheduler-worker interaction

See also:

Scheduler.handle_client Equivalent coroutine for clients

identity(comm=None)
Basic information about ourselves and our cluster

proxy(comm=None, msg=None, worker=None, serializers=None)
Proxy a communication through the scheduler to some other worker

rebalance(comm=None, keys=None, workers=None)
Rebalance keys so that each worker stores roughly equal bytes

Policy

This orders the workers by what fraction of bytes of the existing keys they have. It walks down this list
from most-to-least. At each worker it sends the largest results it can find and sends them to the least
occupied worker until either the sender or the recipient are at the average expected load.

reevaluate_occupancy(worker_index=0)
Periodically reassess task duration time

The expected duration of a task can change over time. Unfortunately we don’t have a good constant-time
way to propagate the effects of these changes out to the summaries that they affect, like the total expected
runtime of each of the workers, or what tasks are stealable.

In this coroutine we walk through all of the workers and re-align their estimates with the current state of
tasks. We do this periodically rather than at every transition, and we only do it if the scheduler process
isn’t under load (using psutil.Process.cpu_percent()). This lets us avoid this fringe optimization when we
have better things to think about.

register_worker_plugin(comm, plugin, name=None)
Registers a setup function, and call it on every worker

3.2. Setup 35

dask Documentation, Release 2.6.0

remove_client(client=None)
Remove client from network

remove_plugin(plugin)
Remove external plugin from scheduler

remove_worker(comm=None, address=None, safe=False, close=True)
Remove worker from cluster

We do this when a worker reports that it plans to leave or when it appears to be unresponsive. This may
send its tasks back to a released state.

replicate(comm=None, keys=None, n=None, workers=None, branching_factor=2, delete=True)
Replicate data throughout cluster

This performs a tree copy of the data throughout the network individually on each piece of data.

Parameters

keys: Iterable list of keys to replicate

n: int Number of replications we expect to see within the cluster

branching_factor: int, optional The number of workers that can copy data in each genera-
tion. The larger the branching factor, the more data we copy in a single step, but the more
a given worker risks being swamped by data requests.

See also:

Scheduler.rebalance

report(msg, ts=None, client=None)
Publish updates to all listening Queues and Comms

If the message contains a key then we only send the message to those comms that care about the key.

reschedule(key=None, worker=None)
Reschedule a task

Things may have shifted and this task may now be better suited to run elsewhere

restart(client=None, timeout=3)
Restart all workers. Reset local state.

retire_workers(comm=None, workers=None, remove=True, close_workers=False, names=None,
**kwargs)

Gracefully retire workers from cluster

Parameters

workers: list (optional) List of worker addresses to retire. If not provided we call
workers_to_close which finds a good set

workers_names: list (optional) List of worker names to retire.

remove: bool (defaults to True) Whether or not to remove the worker metadata immedi-
ately or else wait for the worker to contact us

close_workers: bool (defaults to False) Whether or not to actually close the worker explic-
itly from here. Otherwise we expect some external job scheduler to finish off the worker.

**kwargs: dict Extra options to pass to workers_to_close to determine which workers we
should drop

Returns

Dictionary mapping worker ID/address to dictionary of information about

36 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

that worker for each retired worker.

See also:

Scheduler.workers_to_close

run_function(stream, function, args=(), kwargs={}, wait=True)
Run a function within this process

See also:

Client.run_on_scheduler

scatter(comm=None, data=None, workers=None, client=None, broadcast=False, timeout=2)
Send data out to workers

See also:

Scheduler.broadcast

send_task_to_worker(worker, key)
Send a single computational task to a worker

start()
Clear out old state and restart all running coroutines

start_ipython(comm=None)
Start an IPython kernel

Returns Jupyter connection info dictionary.

stimulus_cancel(comm, keys=None, client=None, force=False)
Stop execution on a list of keys

stimulus_missing_data(cause=None, key=None, worker=None, ensure=True, **kwargs)
Mark that certain keys have gone missing. Recover.

stimulus_task_erred(key=None, worker=None, exception=None, traceback=None, **kwargs)
Mark that a task has erred on a particular worker

stimulus_task_finished(key=None, worker=None, **kwargs)
Mark that a task has finished execution on a particular worker

story(*keys)
Get all transitions that touch one of the input keys

transition(key, finish, *args, **kwargs)
Transition a key from its current state to the finish state

Returns

Dictionary of recommendations for future transitions

See also:

Scheduler.transitions transitive version of this function

Examples

>>> self.transition('x', 'waiting')
{'x': 'processing'}

transition_story(*keys)
Get all transitions that touch one of the input keys

3.2. Setup 37

dask Documentation, Release 2.6.0

transitions(recommendations)
Process transitions until none are left

This includes feedback from previous transitions and continues until we reach a steady state

update_data(comm=None, who_has=None, nbytes=None, client=None, serializers=None)
Learn that new data has entered the network from an external source

See also:

Scheduler.mark_key_in_memory

update_graph(client=None, tasks=None, keys=None, dependencies=None, restrictions=None, pri-
ority=None, loose_restrictions=None, resources=None, submitting_task=None, re-
tries=None, user_priority=0, actors=None, fifo_timeout=0)

Add new computations to the internal dask graph

This happens whenever the Client calls submit, map, get, or compute.

valid_workers(ts)
Return set of currently valid workers for key

If all workers are valid then this returns True. This checks tracks the following state:

• worker_restrictions

• host_restrictions

• resource_restrictions

worker_objective(ts, ws)
Objective function to determine which worker should get the task

Minimize expected start time. If a tie then break with data storage.

worker_send(worker, msg)
Send message to worker

This also handles connection failures by adding a callback to remove the worker on the next cycle.

workers_list(workers)
List of qualifying workers

Takes a list of worker addresses or hostnames. Returns a list of all worker addresses that match

workers_to_close(comm=None, memory_ratio=None, n=None, key=None, minimum=None, tar-
get=None, attribute=’address’)

Find workers that we can close with low cost

This returns a list of workers that are good candidates to retire. These workers are not running anything
and are storing relatively little data relative to their peers. If all workers are idle then we still maintain
enough workers to have enough RAM to store our data, with a comfortable buffer.

This is for use with systems like distributed.deploy.adaptive.

Parameters

memory_factor: Number Amount of extra space we want to have for our stored data. De-
faults two 2, or that we want to have twice as much memory as we currently have data.

n: int Number of workers to close

minimum: int Minimum number of workers to keep around

key: Callable(WorkerState) An optional callable mapping a WorkerState object to a group
affiliation. Groups will be closed together. This is useful when closing workers must be
done collectively, such as by hostname.

38 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

target: int Target number of workers to have after we close

attribute [str] The attribute of the WorkerState object to return, like “address” or “name”.
Defaults to “address”.

Returns

to_close: list of worker addresses that are OK to close

See also:

Scheduler.retire_workers

Examples

>>> scheduler.workers_to_close()
['tcp://192.168.0.1:1234', 'tcp://192.168.0.2:1234']

Group workers by hostname prior to closing

>>> scheduler.workers_to_close(key=lambda ws: ws.host)
['tcp://192.168.0.1:1234', 'tcp://192.168.0.1:4567']

Remove two workers

>>> scheduler.workers_to_close(n=2)

Keep enough workers to have twice as much memory as we we need.

>>> scheduler.workers_to_close(memory_ratio=2)

Worker

class distributed.Worker(scheduler_ip=None, scheduler_port=None, scheduler_file=None,
ncores=None, nthreads=None, loop=None, local_dir=None,
local_directory=None, services=None, service_ports=None,
service_kwargs=None, name=None, reconnect=True, mem-
ory_limit=’auto’, executor=None, resources=None, silence_logs=None,
death_timeout=None, preload=None, preload_argv=None, secu-
rity=None, contact_address=None, memory_monitor_interval=’200ms’,
extensions=None, metrics={}, startup_information={},
data=None, interface=None, host=None, port=None, proto-
col=None, dashboard_address=None, nanny=None, plugins=(),
low_level_profiler=False, validate=False, profile_cycle_interval=None,
lifetime=None, lifetime_stagger=None, lifetime_restart=None,
**kwargs)

Worker node in a Dask distributed cluster

Workers perform two functions:

1. Serve data from a local dictionary

2. Perform computation on that data and on data from peers

Workers keep the scheduler informed of their data and use that scheduler to gather data from other workers
when necessary to perform a computation.

You can start a worker with the dask-worker command line application:

3.2. Setup 39

dask Documentation, Release 2.6.0

$ dask-worker scheduler-ip:port

Use the --help flag to see more options:

$ dask-worker --help

The rest of this docstring is about the internal state the the worker uses to manage and track internal computa-
tions.

State

Informational State

These attributes don’t change significantly during execution.

• nthreads: int: Number of nthreads used by this worker process

• executor: concurrent.futures.ThreadPoolExecutor: Executor used to perform computa-
tion

• local_directory: path: Path on local machine to store temporary files

• scheduler: rpc: Location of scheduler. See .ip/.port attributes.

• name: string: Alias

• services: {str: Server}: Auxiliary web servers running on this worker

• service_ports: {str: port}:

• total_out_connections: int The maximum number of concurrent outgoing requests for data

• total_in_connections: int The maximum number of concurrent incoming requests for data

• total_comm_nbytes: int

• batched_stream: BatchedSend A batched stream along which we communicate to the scheduler

• log: [(message)] A structured and queryable log. See Worker.story

Volatile State

This attributes track the progress of tasks that this worker is trying to complete. In the descriptions below a key
is the name of a task that we want to compute and dep is the name of a piece of dependent data that we want to
collect from others.

• data: {key: object}: Prefer using the host attribute instead of this, unless memory_limit and at
least one of memory_target_fraction or memory_spill_fraction values are defined, in that case, this
attribute is a zict.Buffer, from which information on LRU cache can be queried.

• data.memory: {key: object}: Dictionary mapping keys to actual values stored in memory. Only
available if condition for data being a zict.Buffer is met.

• data.disk: {key: object}: Dictionary mapping keys to actual values stored on disk. Only available
if condition for data being a zict.Buffer is met.

• task_state: {key: string}: The state of all tasks that the scheduler has asked us to compute. Valid
states include waiting, constrained, executing, memory, erred

• tasks: {key: dict} The function, args, kwargs of a task. We run this when appropriate

• dependencies: {key: {deps}} The data needed by this key to run

• dependents: {dep: {keys}} The keys that use this dependency

• data_needed: deque(keys) The keys whose data we still lack, arranged in a deque

40 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• waiting_for_data: {kep: {deps}} A dynamic verion of dependencies. All dependencies that we
still don’t have for a particular key.

• ready: [keys] Keys that are ready to run. Stored in a LIFO stack

• constrained: [keys] Keys for which we have the data to run, but are waiting on abstract resources like
GPUs. Stored in a FIFO deque

• executing: {keys} Keys that are currently executing

• executed_count: int A number of tasks that this worker has run in its lifetime

• long_running: {keys} A set of keys of tasks that are running and have started their own long-running
clients.

• dep_state: {dep: string}: The state of all dependencies required by our tasks Valid states include
waiting, flight, and memory

• who_has: {dep: {worker}} Workers that we believe have this data

• has_what: {worker: {deps}} The data that we care about that we think a worker has

• pending_data_per_worker: {worker: [dep]} The data on each worker that we still want, priori-
tized as a deque

• in_flight_tasks: {task: worker} All dependencies that are coming to us in current peer-to-peer
connections and the workers from which they are coming.

• in_flight_workers: {worker: {task}} The workers from which we are currently gathering data
and the dependencies we expect from those connections

• comm_bytes: int The total number of bytes in flight

• suspicious_deps: {dep: int} The number of times a dependency has not been where we expected it

• nbytes: {key: int} The size of a particular piece of data

• types: {key: type} The type of a particular piece of data

• threads: {key: int} The ID of the thread on which the task ran

• active_threads: {int: key} The keys currently running on active threads

• exceptions: {key: exception} The exception caused by running a task if it erred

• tracebacks: {key: traceback} The exception caused by running a task if it erred

• startstops: {key: [(str, float, float)]} Log of transfer, load, and compute times for a
task

• priorities: {key: tuple} The priority of a key given by the scheduler. Determines run order.

• durations: {key: float} Expected duration of a task

• resource_restrictions: {key: {str: number}} Abstract resources required to run a task

Parameters

scheduler_ip: str

scheduler_port: int

ip: str, optional

data: MutableMapping, type, None The object to use for storage, builds a disk-backed LRU
dict by default

nthreads: int, optional

3.2. Setup 41

dask Documentation, Release 2.6.0

loop: tornado.ioloop.IOLoop

local_directory: str, optional Directory where we place local resources

name: str, optional

memory_limit: int, float, string Number of bytes of memory that this worker should use. Set
to zero for no limit. Set to ‘auto’ to calculate as system.MEMORY_LIMIT * min(1, nthreads
/ total_cores) Use strings or numbers like 5GB or 5e9

memory_target_fraction: float Fraction of memory to try to stay beneath

memory_spill_fraction: float Fraction of memory at which we start spilling to disk

memory_pause_fraction: float Fraction of memory at which we stop running new tasks

executor: concurrent.futures.Executor

resources: dict Resources that this worker has like {'GPU': 2}

nanny: str Address on which to contact nanny, if it exists

lifetime: str Amount of time like “1 hour” after which we gracefully shut down the worker.
This defaults to None, meaning no explicit shutdown time.

lifetime_stagger: str Amount of time like “5 minutes” to stagger the lifetime value The actual
lifetime will be selected uniformly at random between lifetime +/- lifetime_stagger

lifetime_restart: bool Whether or not to restart a worker after it has reached its lifetime Default
False

See also:

distributed.scheduler.Scheduler, distributed.nanny.Nanny

Examples

Use the command line to start a worker:

$ dask-scheduler
Start scheduler at 127.0.0.1:8786

$ dask-worker 127.0.0.1:8786
Start worker at: 127.0.0.1:1234
Registered with scheduler at: 127.0.0.1:8786

close_gracefully()
Gracefully shut down a worker

This first informs the scheduler that we’re shutting down, and asks it to move our data elsewhere. After-
wards, we close as normal

executor_submit(key, function, args=(), kwargs=None, executor=None)
Safely run function in thread pool executor

We’ve run into issues running concurrent.future futures within tornado. Apparently it’s advantageous to
use timeouts and periodic callbacks to ensure things run smoothly. This can get tricky, so we pull it off
into an separate method.

get_current_task()
Get the key of the task we are currently running

This only makes sense to run within a task

42 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

See also:

get_worker

Examples

>>> from dask.distributed import get_worker
>>> def f():
... return get_worker().get_current_task()

>>> future = client.submit(f) # doctest: +SKIP
>>> future.result() # doctest: +SKIP
'f-1234'

local_dir
For API compatibility with Nanny

memory_monitor()
Track this process’s memory usage and act accordingly

If we rise above 70% memory use, start dumping data to disk.

If we rise above 80% memory use, stop execution of new tasks

start_ipython(comm)
Start an IPython kernel

Returns Jupyter connection info dictionary.

trigger_profile()
Get a frame from all actively computing threads

Merge these frames into existing profile counts

worker_address
For API compatibility with Nanny

Nanny

class distributed.Nanny(scheduler_ip=None, scheduler_port=None, scheduler_file=None,
worker_port=0, nthreads=None, ncores=None, loop=None, lo-
cal_dir=None, local_directory=’dask-worker-space’, services=None,
name=None, memory_limit=’auto’, reconnect=True, validate=False,
quiet=False, resources=None, silence_logs=None, death_timeout=None,
preload=None, preload_argv=None, security=None, con-
tact_address=None, listen_address=None, worker_class=None,
env=None, interface=None, host=None, port=None, protocol=None,
config=None, **worker_kwargs)

A process to manage worker processes

The nanny spins up Worker processes, watches then, and kills or restarts them as necessary. It is necessary if
you want to use the Client.restart method, or to restart the worker automatically if it gets to the terminate
fractiom of its memory limit.

The parameters for the Nanny are mostly the same as those for the Worker.

See also:

Worker

3.2. Setup 43

dask Documentation, Release 2.6.0

close(comm=None, timeout=5, report=None)
Close the worker process, stop all comms.

close_gracefully(comm=None)
A signal that we shouldn’t try to restart workers if they go away

This is used as part of the cluster shutdown process.

instantiate(comm=None)
Start a local worker process

Blocks until the process is up and the scheduler is properly informed

kill(comm=None, timeout=2)
Kill the local worker process

Blocks until both the process is down and the scheduler is properly informed

local_dir
For API compatibility with Nanny

memory_monitor()
Track worker’s memory. Restart if it goes above terminate fraction

start()
Start nanny, start local process, start watching

3.2.8 Cloud Deployments

There are a variety of ways to deploy Dask on cloud providers. Cloud providers provide managed services, like
Kubernetes, Yarn, or custom APIs with which Dask can connect easily. You may want to consider the following
options:

1. A managed Kubernetes service and Dask’s Kubernetes and Helm integraation.

2. A managed Yarn service, like Amazon EMR or Google Cloud DataProc and Dask-Yarn.

Specific documentation for the popular Amazon EMR service can be found here

3. Vendor specific services, like Amazon ECS, and Dask Cloud Provider

Data Access

You may want to install additional libraries in your Jupyter and worker images to access the object stores of each
cloud:

• s3fs for Amazon’s S3

• gcsfs for Google’s GCS

• adlfs for Microsoft’s ADL

Historical Libraries

Dask previously maintained libraries for deploying Dask on Amazon’s EC2 and Google GKE. Due to sporadic inter-
est, and churn both within the Dask library and EC2 itself, these were not well maintained. They have since been
deprecated in favor of the Kubernetes and Helm solution.

44 Chapter 3. Complex Algorithms

https://aws.amazon.com/emr/
https://cloud.google.com/dataproc/
https://yarn.dask.org
https://yarn.dask.org/en/latest/aws-emr.html
https://cloudprovider.dask.org/en/latest/
https://s3fs.readthedocs.io/
https://gcsfs.readthedocs.io/
https://azure-datalake-store.readthedocs.io/

dask Documentation, Release 2.6.0

3.2.9 Adaptive Deployments

Motivation

Most Dask deployments are static with a single scheduler and a fixed number of workers. This results in predictable
behavior, but is wasteful of resources in two situations:

1. The user may not be using the cluster, or perhaps they are busy interpreting a recent result or plot, and so the
workers sit idly, taking up valuable shared resources from other potential users

2. The user may be very active, and is limited by their original allocation.

Particularly efficient users may learn to manually add and remove workers during their session, but this is rare. Instead,
we would like the size of a Dask cluster to match the computational needs at any given time. This is the goal of the
adaptive deployments discussed in this document. These are particularly helpful for interactive workloads, which
are characterized by long periods of inactivity interrupted with short bursts of heavy activity. Adaptive deployments
can result in both faster analyses that give users much more power, but with much less pressure on computational
resources.

Adaptive

To make setting up adaptive deployments easy, some Dask deployment solutions offer an .adapt() method. Here
is an example with dask_kubernetes.KubeCluster.

from dask_kubernetes import KubeCluster

cluster = KubeCluster()
cluster.adapt(minimum=0, maximum=100) # scale between 0 and 100 workers

For more keyword options, see the Adaptive class below:

Adaptive([cluster, interval, minimum, . . .]) Adaptively allocate workers based on scheduler load.

Dependence on a Resource Manager

The Dask scheduler does not know how to launch workers on its own. Instead, it relies on an external resource sched-
uler like Kubernetes above, or Yarn, SGE, SLURM, Mesos, or some other in-house system (see setup documentation
for options). In order to use adaptive deployments, you must provide some mechanism for the scheduler to launch
new workers. Typically, this is done by using one of the solutions listed in the setup documentation, or by subclassing
from the Cluster superclass and implementing that API.

Cluster(asynchronous) Superclass for cluster objects

Scaling Heuristics

The Dask scheduler tracks a variety of information that is useful to correctly allocate the number of workers:

1. The historical runtime of every function and task that it has seen, and all of the functions that it is currently able
to run for users

2. The amount of memory used and available on each worker

3. Which workers are idle or saturated for various reasons, like the presence of specialized hardware

3.2. Setup 45

https://kubernetes.dask.org/en/latest/api.html#dask_kubernetes.KubeCluster

dask Documentation, Release 2.6.0

From these, it is able to determine a target number of workers by dividing the cumulative expected runtime of all
pending tasks by the target_duration parameter (defaults to five seconds). This number of workers serves as a
baseline request for the resource manager. This number can be altered for a variety of reasons:

1. If the cluster needs more memory, then it will choose either the target number of workers or twice the current
number of workers (whichever is larger)

2. If the target is outside of the range of the minimum and maximum values, then it is clipped to fit within that
range

Additionally, when scaling down, Dask preferentially chooses those workers that are idle and have the least data in
memory. It moves that data to other machines before retiring the worker. To avoid rapid cycling of the cluster up and
down in size, we only retire a worker after a few cycles have gone by where it has consistently been a good idea to
retire it (controlled by the wait_count and interval parameters).

API

class distributed.deploy.Adaptive(cluster=None, interval=’1s’, minimum=0, maximum=inf,
wait_count=3, target_duration=’5s’, worker_key=None,
**kwargs)

Adaptively allocate workers based on scheduler load. A superclass.

Contains logic to dynamically resize a Dask cluster based on current use. This class needs to be paired with
a system that can create and destroy Dask workers using a cluster resource manager. Typically it is built into
already existing solutions, rather than used directly by users. It is most commonly used from the .adapt(..
.) method of various Dask cluster classes.

Parameters

cluster: object Must have scale and scale_down methods/coroutines

interval [timedelta or str, default “1000 ms”] Milliseconds between checks

wait_count: int, default 3 Number of consecutive times that a worker should be suggested for
removal before we remove it.

target_duration: timedelta or str, default “5s” Amount of time we want a computation to
take. This affects how aggressively we scale up.

worker_key: Callable[WorkerState] Function to group workers together when scaling down
See Scheduler.workers_to_close for more information

minimum: int Minimum number of workers to keep around

maximum: int Maximum number of workers to keep around

**kwargs: Extra parameters to pass to Scheduler.workers_to_close

Notes

Subclasses can override Adaptive.should_scale_up() and Adaptive.workers_to_close()
to control when the cluster should be resized. The default implementation checks if there are too
many tasks per worker or too little memory available (see Adaptive.needs_cpu() and Adaptive.
needs_memory()).

Examples

This is commonly used from existing Dask classes, like KubeCluster

46 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> from dask_kubernetes import KubeCluster
>>> cluster = KubeCluster()
>>> cluster.adapt(minimum=10, maximum=100)

Alternatively you can use it from your own Cluster class by subclassing from Dask’s Cluster superclass

>>> from distributed.deploy import Cluster
>>> class MyCluster(Cluster):
... def scale_up(self, n):
... """ Bring worker count up to n """
... def scale_down(self, workers):
... """ Remove worker addresses from cluster """

>>> cluster = MyCluster()
>>> cluster.adapt(minimum=10, maximum=100)

class distributed.deploy.Cluster(asynchronous)
Superclass for cluster objects

This class contains common functionality for Dask Cluster manager classes.

To implement this class, you must provide

1. A scheduler_comm attribute, which is a connection to the scheduler following the distributed.
core.rpc API.

2. Implement scale, which takes an integer and scales the cluster to that many workers, or else set
_supports_scaling to False

For that, should should get the following:

1. A standard __repr__

2. A live IPython widget

3. Adaptive scaling

4. Integration with dask-labextension

5. A scheduler_info attribute which contains an up-to-date copy of Scheduler.identity(),
which is used for much of the above

6. Methods to gather logs

3.2.10 Docker Images

Example docker images are maintained at https://github.com/dask/dask-docker and https://hub.docker.com/r/daskdev/
.

Each image installs the full Dask conda package (including the distributed scheduler), Numpy, and Pandas on top of a
Miniconda installation on top of a Debian image.

These images are large, around 1GB.

• daskdev/dask: This a normal debian + miniconda image with the full Dask conda package (including the
distributed scheduler), Numpy, and Pandas. This image is about 1GB in size.

• daskdev/dask-notebook: This is based on the Jupyter base-notebook image and so it is suitable for use
both normally as a Jupyter server, and also as part of a JupyterHub deployment. It also includes a matching
Dask software environment described above. This image is about 2GB in size.

3.2. Setup 47

https://github.com/dask/dask-docker
https://hub.docker.com/r/daskdev/
https://hub.docker.com/r/jupyter/base-notebook/

dask Documentation, Release 2.6.0

Example

Here is a simple example on the local host network

docker run -it --network host daskdev/dask dask-scheduler # start scheduler

docker run -it --network host daskdev/dask dask-worker localhost:8786 # start worker
docker run -it --network host daskdev/dask dask-worker localhost:8786 # start worker
docker run -it --network host daskdev/dask dask-worker localhost:8786 # start worker

docker run -it --network host daskdev/dask-notebook # start Jupyter server

Extensibility

Users can mildly customize the software environment by populating the environment variables
EXTRA_APT_PACKAGES, EXTRA_CONDA_PACKAGES, and EXTRA_PIP_PACKAGES. If these environment
variables are set in the container, they will trigger calls to the following respectively:

apt-get install $EXTRA_APT_PACKAGES
conda install $EXTRA_CONDA_PACKAGES
pip install $EXTRA_PIP_PACKAGES

For example, the following conda installs the joblib package into the Dask worker software environment:

docker run -it -e EXTRA_CONDA_PACKAGES="joblib" daskdev/dask dask-worker
→˓localhost:8786

Note that using these can significantly delay the container from starting, especially when using apt, or conda (pip
is relatively fast).

Remember that it is important for software versions to match between Dask workers and Dask clients. As a result, it
is often useful to include the same extra packages in both Jupyter and Worker images.

Source

Docker files are maintained at https://github.com/dask/dask-docker. This repository also includes a docker-compose
configuration.

3.2.11 Custom Initialization

Often we want to run custom code when we start up or tear down a scheduler or worker. We might do this manu-
ally with functions like Client.run or Client.run_on_scheduler, but this is error prone and difficult to
automate.

To resolve this, Dask includes a few mechanisms to run arbitrary code around the lifecycle of a Scheduler or Worker.

Preload Scripts

Both dask-scheduler and dask-worker support a --preload option that allows custom initialization of each
scheduler/worker respectively. A module or Python file passed as a --preload value is guaranteed to be imported
before establishing any connection. A dask_setup(service) function is called if found, with a Scheduler or
Worker instance as the argument. As the service stops, dask_teardown(service) is called if present.

48 Chapter 3. Complex Algorithms

https://github.com/dask/dask-docker

dask Documentation, Release 2.6.0

To support additional configuration, a single --preload module may register additional command-line arguments
by exposing dask_setup as a Click command. This command will be used to parse additional arguments provided
to dask-worker or dask-scheduler and will be called before service initialization.

As an example, consider the following file that creates a scheduler plugin and registers it with the scheduler

scheduler-setup.py
import click

from distributed.diagnostics.plugin import SchedulerPlugin

class MyPlugin(SchedulerPlugin):
def __init__(self, print_count):

self.print_count = print_count
SchedulerPlugin.__init__(self)

def add_worker(self, scheduler=None, worker=None, **kwargs):
print("Added a new worker at:", worker)
if self.print_count and scheduler is not None:

print("Total workers:", len(scheduler.workers))

@click.command()
@click.option("--print-count/--no-print-count", default=False)
def dask_setup(scheduler, print_count):

plugin = MyPlugin(print_count)
scheduler.add_plugin(plugin)

We can then run this preload script by referring to its filename (or module name if it is on the path) when we start the
scheduler:

dask-scheduler --preload scheduler-setup.py --print-count

Worker Lifecycle Plugins

You can also create a class with setup and teardown methods, and register that class with the scheduler to give to every
worker.

Client.register_worker_plugin([plugin,
name])

Registers a lifecycle worker plugin for all current and
future workers.

Client.register_worker_plugin(plugin=None, name=None)
Registers a lifecycle worker plugin for all current and future workers.

This registers a new object to handle setup, task state transitions and teardown for workers in this cluster. The
plugin will instantiate itself on all currently connected workers. It will also be run on any worker that connects
in the future.

The plugin may include methods setup, teardown, and transition. See the dask.distributed.
WorkerPlugin class or the examples below for the interface and docstrings. It must be serializable with the
pickle or cloudpickle modules.

If the plugin has a name attribute, or if the name= keyword is used then that will control idempotency. A a
plugin with that name has already registered then any future plugins will not run.

For alternatives to plugins, you may also wish to look into preload scripts.

Parameters

3.2. Setup 49

http://click.pocoo.org/

dask Documentation, Release 2.6.0

plugin: WorkerPlugin The plugin object to pass to the workers

name: str, optional A name for the plugin. Registering a plugin with the same name will have
no effect.

See also:

distributed.WorkerPlugin

Examples

>>> class MyPlugin(WorkerPlugin):
... def __init__(self, *args, **kwargs):
... pass # the constructor is up to you
... def setup(self, worker: dask.distributed.Worker):
... pass
... def teardown(self, worker: dask.distributed.Worker):
... pass
... def transition(self, key: str, start: str, finish: str, **kwargs):
... pass

>>> plugin = MyPlugin(1, 2, 3)
>>> client.register_worker_plugin(plugin)

You can get access to the plugin with the get_worker function

>>> client.register_worker_plugin(other_plugin, name='my-plugin')
>>> def f():
... worker = get_worker()
... plugin = worker.plugins['my-plugin']
... return plugin.my_state

>>> future = client.run(f)

3.3 Community

Dask is used and developed by individuals at a variety of institutions. It sits within the broader Python numeric
ecosystem commonly referred to as PyData or SciPy.

3.3.1 Discussion

Conversation happens in the following places:

1. Usage questions are directed to Stack Overflow with the #dask tag. Dask developers monitor this tag and get
e-mails whenever a question is asked

2. Bug reports and feature requests are managed on the GitHub issue tracker

3. Chat occurs on at gitter.im/dask/dask for general conversation and gitter.im/dask/dev for developer conversation.
Note that because gitter chat is not searchable by future users we discourage usage questions and bug reports on
gitter and instead ask people to use Stack Overflow or GitHub.

50 Chapter 3. Complex Algorithms

https://stackoverflow.com/questions/tagged/dask
https://github.com/dask/dask/issues/
https://gitter.im/dask/dask
https://gitter.im/dask/dev

dask Documentation, Release 2.6.0

4. Monthly developer meeting happens the first Thursday of the month at 11:00 US Central Time in this
video meeting. Subscribe to this Google Calendar invite to be notified of changes to the meeting sched-
ule. Meeting notes are available at https://docs.google.com/document/d/1UqNAP87a56ERH_xkQsS5Q_
0PKYybd5Lj2WANy_hRzI0/edit

3.3.2 Asking for help

We welcome usage questions and bug reports from all users, even those who are new to using the project. There are a
few things you can do to improve the likelihood of quickly getting a good answer.

1. Ask questions in the right place: We strongly prefer the use of Stack Overflow or GitHub issues over Gitter
chat. GitHub and Stack Overflow are more easily searchable by future users, and therefore is more efficient for
everyone’s time. Gitter chat is strictly reserved for developer and community discussion.

If you have a general question about how something should work or want best practices then use Stack Overflow.
If you think you have found a bug then use GitHub

2. Ask only in one place: Please restrict yourself to posting your question in only one place (likely Stack Overflow
or GitHub) and don’t post in both

3. Create a minimal example: It is ideal to create minimal, complete, verifiable examples. This significantly
reduces the time that answerers spend understanding your situation, resulting in higher quality answers more
quickly.

See also this blogpost about crafting minimal bug reports. These have a much higher likelihood of being an-
swered

3.3.3 Paid support

In addition to the previous options, paid support is available from

• Anaconda: https://www.anaconda.com/support

• Quansight: https://www.quansight.com/open-source-support

3.4 Why Dask?

This document gives high-level motivation on why people choose to adopt Dask.

• Python’s role in Data Science

• Dask has a Familiar API

• Dask Scales out to Clusters

• Dask Scales Down to Single Computers

• Dask Integrates Natively with Python Code

• Dask Supports Complex Applications

• Dask Delivers Responsive Feedback

• Links and More Information

3.4. Why Dask? 51

https://zoom.us/j/802251830
https://zoom.us/j/802251830
https://calendar.google.com/event?action=TEMPLATE&tmeid=NmxnamVvcGtjY3E2NGI5bTZzcW1hYjlrYzhybTZiYjFjY29qOGI5ZzY0cWoyYzFrNjFpMzhwaGlja18yMDE5MDYwNlQxNjAwMDBaIDRsMHZ0czBjMWNnZGJxNWpoY29najU1c2ZzQGc&tmsrc=4l0vts0c1cgdbq5jhcogj55sfs%40group.calendar.google.com&scp=ALL
https://docs.google.com/document/d/1UqNAP87a56ERH_xkQsS5Q_0PKYybd5Lj2WANy_hRzI0/edit
https://docs.google.com/document/d/1UqNAP87a56ERH_xkQsS5Q_0PKYybd5Lj2WANy_hRzI0/edit
https://stackoverflow.com/help/mcve
http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports
https://www.anaconda.com/support
https://www.quansight.com/open-source-support

dask Documentation, Release 2.6.0

3.4.1 Python’s role in Data Science

Python has grown to become the dominant language both in data analytics and general programming:

This is fueled both by computational libraries like Numpy, Pandas, and Scikit-Learn and by a wealth of libraries for
visualization, interactive notebooks, collaboration, and so forth.

52 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

However, these packages were not designed to scale beyond a single machine. Dask was developed to scale these pack-
ages and the surrounding ecosystem. It works with the existing Python ecosystem to scale it to multi-core machines
and distributed clusters.

Image credit to Stack Overflow blogposts #1 and #2.

3.4.2 Dask has a Familiar API

Analysts often use tools like Pandas, Scikit-Learn, Numpy, and the rest of the Python ecosystem to analyze data on
their personal computer. They like these tools because they are efficient, intuitive, and widely trusted. However, when
they choose to apply their analyses to larger datasets, they find that these tools were not designed to scale beyond a
single machine. And so, the analyst rewrites their computation using a more scalable tool, often in another language
altogether. This rewrite process slows down discovery and causes frustration.

Dask provides ways to scale Pandas, Scikit-Learn, and Numpy workflows more natively, with minimal rewriting. It
integrates well with these tools so that it copies most of their API and uses their data structures internally. More-
over, Dask is co-developed with these libraries to ensure that they evolve consistently, minimizing friction when
transitioning from a local laptop, to a multi-core workstation, and then to a distributed cluster. Analysts familiar with
Pandas/Scikit-Learn/Numpy will be immediately familiar with their Dask equivalents, and have much of their intuition
carry over to a scalable context.

3.4. Why Dask? 53

https://stackoverflow.blog/2017/09/06/incredible-growth-python
https://stackoverflow.blog/2017/09/14/python-growing-quickly/

dask Documentation, Release 2.6.0

3.4.3 Dask Scales out to Clusters

As datasets and computations scale faster than CPUs and RAM, we need to find ways to scale our computations across
multiple machines. This introduces many new concerns:

• How to have computers talk to each other over the network?

• How and when to move data between machines?

• How to recover from machine failures?

• How to deploy on an in-house cluster?

• How to deploy on the cloud?

• How to deploy on an HPC super-computer?

• How to provide an API to this system that users find intuitive?

• . . .

While it is possible to build these systems in-house (and indeed, many exist), many organizations increasingly depend
on solutions developed within the open source community. These tend to be more robust, secure, and fully featured
without being tended by in-house staff.

Dask solves the problems above. It figures out how to break up large computations and route parts of them efficiently
onto distributed hardware. Dask is routinely run on thousand-machine clusters to process hundreds of terabytes of
data efficiently within secure environments.

Dask has utilities and documentation on how to deploy in-house, on the cloud, or on HPC super-computers. It supports
encryption and authentication using TLS/SSL certificates. It is resilient and can handle the failure of worker nodes
gracefully and is elastic, and so can take advantage of new nodes added on-the-fly. Dask includes several user APIs
that are used and smoothed over by thousands of researchers across the globe working in different domains.

3.4.4 Dask Scales Down to Single Computers

But a massive cluster is not always the right choice

Today’s laptops and workstations are surprisingly powerful and, if used correctly, can handle datasets and computations
for which we previously depended on clusters. A modern laptop has a multi-core CPU, 32GB of RAM, and flash-based
hard drives that can stream through data several times faster than HDDs or SSDs of even a year or two ago.

As a result, Dask can empower analysts to manipulate 100GB+ datasets on their laptop or 1TB+ datasets on a work-
station without bothering with the cluster at all. This can be preferable for the following reasons:

1. They can use their local software environment, rather than being constrained by what is available on the cluster
or having to manage Docker images.

2. They can more easily work while in transit, at a coffee shop, or at home away from the corporate network

3. Debugging errors and analyzing performance is simpler and more pleasant on a single machine

4. Their iteration cycles can be faster

5. Their computations may be more efficient because all of the data is local and doesn’t need to flow through the
network or between separate processes

Dask can enable efficient parallel computations on single machines by leveraging their multi-core CPUs and streaming
data efficiently from disk. It can run on a distributed cluster, but it doesn’t have to. Dask allows you to swap out the
cluster for single-machine schedulers which are surprisingly lightweight, require no setup, and can run entirely within
the same process as the user’s session.

54 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

To avoid excess memory use, Dask is good at finding ways to evaluate computations in a low-memory footprint when
possible by pulling in chunks of data from disk, doing the necessary processing, and throwing away intermediate
values as quickly as possible. This lets analysts perform computations on moderately large datasets (100GB+) even
on relatively low-power laptops. This requires no configuration and no setup, meaning that adding Dask to a single-
machine computation adds very little cognitive overhead.

Dask is installed by default with Anaconda and so is already deployed on most data science machines.

3.4.5 Dask Integrates Natively with Python Code

Python includes computational libraries like Numpy, Pandas, and Scikit-Learn, and many others for data access,
plotting, statistics, image and signal processing, and more. These libraries work together seamlessly to produce a
cohesive ecosystem of packages that co-evolve to meet the needs of analysts in most domains today.

This ecosystem is tied together by common standards and protocols to which everyone adheres, which allows these
packages to benefit each other in surprising and delightful ways.

Dask evolved from within this ecosystem. It abides by these standards and protocols and actively engages in commu-
nity efforts to push forward new ones. This enables the rest of the ecosystem to benefit from parallel and distributed
computing with minimal coordination. Dask does not seek to disrupt or displace the existing ecosystem, but rather to
complement and benefit it from within.

As a result, Dask development is pushed forward by developer communities from Pandas, Numpy, Scikit-Learn, Scikit-
Image, Jupyter, and others. This engagement from the broader community growth helps users to trust the project and
helps to ensure that the Python ecosystem will continue to evolve in a smooth and sustainable manner.

3.4.6 Dask Supports Complex Applications

Some parallel computations are simple and just apply the same routine onto many inputs without any kind of coordi-
nation. These are simple to parallelize with any system.

Somewhat more complex computations can be expressed with the map-shuffle-reduce pattern popularized by Hadoop
and Spark. This is often sufficient to do most data cleaning tasks, database-style queries, and some lightweight machine
learning algorithms.

However, more complex parallel computations exist which do not fit into these paradigms, and so are difficult to
perform with traditional big-data technologies. These include more advanced algorithms for statistics or machine
learning, time series or local operations, or bespoke parallelism often found within the systems of large enterprises.

Many companies and institutions today have problems which are clearly parallelizable, but not clearly transformable
into a big DataFrame computation. Today these companies tend to solve their problems either by writing custom code
with low-level systems like MPI, ZeroMQ, or sockets and complex queuing systems, or by shoving their problem into
a standard big-data technology like MapReduce or Spark, and hoping for the best.

Dask helps to resolve these situations by exposing low-level APIs to its internal task scheduler which is capable of
executing very advanced computations. This gives engineers within the institution the ability to build their own parallel
computing system using the same engine that powers Dask’s arrays, DataFrames, and machine learning algorithms,
but now with the institution’s own custom logic. This allows engineers to keep complex business logic in-house while
still relying on Dask to handle network communication, load balancing, resilience, diagnostics, etc..

3.4.7 Dask Delivers Responsive Feedback

Because everything happens remotely, interactive parallel computing can be frustrating for users. They don’t have
a good sense of how computations are progressing, what might be going wrong, or what parts of their code should
they focus on for performance. The added distance between a user and their computation can drastically affect how

3.4. Why Dask? 55

https://anaconda.com

dask Documentation, Release 2.6.0

quickly they are able to identify and resolve bugs and performance problems, which can drastically increase their time
to solution.

Dask keeps users informed and content with a suite of helpful diagnostic and investigative tools including the follow-
ing:

1. A real-time and responsive dashboard that shows current progress, communication costs, memory use, and
more, updated every 100ms

2. A statistical profiler installed on every worker that polls each thread every 10ms to determine which lines in
your code are taking up the most time across your entire computation

3. An embedded IPython kernel in every worker and the scheduler, allowing users to directly investigate the state
of their computation with a pop-up terminal

4. The ability to reraise errors locally, so that they can use the traditional debugging tools to which they are
accustomed, even when the error happens remotely

3.4.8 Links and More Information

From here you may want to read about some of our more common introductory content:

• User Interfaces

• Scheduling

• Comparison to Spark

• Slides

3.5 Institutional FAQ

Question: Is appropriate for adoption within a larger institutional context?

Answer: Yes. Dask is used within the world’s largest banks, national labs, retailers, technology companies, and
government agencies. It is used in highly secure environments. It is used in conservative institutions as well as fast
moving ones.

This page contains Frequently Asked Questions and concerns from institutions when they first investigate Dask.

• For Management

– Briefly, what problem does Dask solve for us?

– Is Dask mature? Why should we trust it?

– Who else uses Dask?

– How does Dask compare with Apache Spark?

• For IT

– How would I set up Dask on institutional hardware?

– Is Dask secure?

– Do I need to purchase a new cluster?

– How do I manage users?

56 Chapter 3. Complex Algorithms

https://dask.org/slides.html

dask Documentation, Release 2.6.0

– How do I manage software environments?

– How does Dask communicate data between machines?

– Are deployments long running, or ephemeral?

• For Technical Leads

– Will Dask “just work” on our existing code?

– How well does Dask scale? What are Dask’s limitations?

– Is Dask resilient? What happens when a machine goes down?

– Is the API exactly the same as NumPy/Pandas/Scikit-Learn?

– How much performance tuning does Dask require?

– What Data formats does Dask support?

– Does Dask have a SQL interface?

3.5.1 For Management

Briefly, what problem does Dask solve for us?

Dask is a general purpose parallel programming solution. As such it is used in many different ways.

However, the most common problem that Dask solves is connecting Python analysts to distributed hardware, partic-
ularly for data science and machine learning workloads. The institutions for whom Dask has the greatest impact are
those who have a large body of Python users who are accustomed to libraries like NumPy, Pandas, Jupyter, Scikit-
Learn and others, but want to scale those workloads across a cluster. Often they also have distributed computing
resources that are going underused.

Dask removes both technological and cultural barriers to connect Python users to computing resources in a way that
is native to both the users and IT.

“Help me scale my notebook onto the cluster” is a common pain point for institutions today, and it is a common entry
point for Dask usage.

Is Dask mature? Why should we trust it?

Yes. While Dask itself is relatively new (it began in 2015) it is built by the NumPy, Pandas, Jupyter, Scikit-Learn
developer community, which is well trusted. Dask is a relatively thin wrapper on top of these libraries and, as a result,
the project can be relatively small and simple. It doesn’t reinvent a whole new system.

Additionally, this tight integration with the broader technology stack gives substantial benefits long term. For example:

• Because Pandas maintainers also maintain Dask, when Pandas issues a new releases Dask issues a release at the
same time to ensure continuity and compatibility.

• Because Scikit-Learn maintainers maintain and use Dask when they train on large clusters, you can be assured
that Dask-ML focuses on pragmatic and important solutions like XGBoost integration, and hyper-parameter
selection, and that the integration between the two feels natural for novice and expert users alike.

• Because Jupyter maintainers also maintain Dask, powerful Jupyter technologies like JupyterHub and JupyterLab
are designed with Dask’s needs in mind, and new features are pushed quickly to provide a first class and modern
user experience.

3.5. Institutional FAQ 57

dask Documentation, Release 2.6.0

Additionally, Dask is maintained both by a broad community of maintainers, as well as substantial institutional support
(several full-time employees each) by both Anaconda, the company behind the leading data science distribution, and
NVIDIA, the leading hardware manufacturer of GPUs. Despite large corporate support, Dask remains a community
governed project, and is fiscally sponsored by NumFOCUS, the same 501c3 that fiscally sponsors NumPy, Pandas,
Jupyter, and many others.

Who else uses Dask?

Dask is used by individual researchers in practically every field today. It has millions of downloads per month, and is
integrated into many PyData software packages today.

On an institutional level Dask is used by analytics and research groups in a similarly broad set of domains across
both energetic startups as well as large conservative household names. A web search shows articles by Capital One,
Barclays, Walmart, NASA, Los Alamos National Laboratories, and hundreds of other similar institutions.

How does Dask compare with Apache Spark?

This question has longer and more technical coverage here

Dask and Apache Spark are similar in that they both . . .

• Promise easy parallelism for data science Python users

• Provide Dataframe and ML APIs for ETL, data science, and machine learning

• Scale out to similar scales, around 1-1000 machines

Dask differs from Apache Spark in a few ways:

• Dask is more Python native, Spark is Scala/JVM native with Python bindings.

Python users may find Dask more comfortable, but Dask is only useful for Python users, while Spark can also
be used from JVM languages.

• Dask is one component in the broader Python ecosystem alongside libraries like Numpy, Pandas, and Scikit-
Learn, while Spark is an all-in-one system that re-invents much of the Python world in a single package.

This means that it’s often easier to compose Dask with new problem domains, but also that you need to install
multiple things (like Dask and Pandas or Dask and Numpy) rather than just having everything in an all-in-one
solution.

• Apache Spark focuses strongly on traditional business intelligence workloads, like ETL, SQL queries, and then
some lightweight machine learning, while Dask is more general purpose.

This means that Dask is much more flexible and can handle other problem domains like multi-dimensional
arrays, GIS, advanced machine learning, and custom systems, but that it is less focused and less tuned on typical
SQL style computations.

If you mostly want to focus on SQL queries then Spark is probably a better bet. If you want to support a wide
variety of custom workloads then Dask might be more natural.

3.5.2 For IT

How would I set up Dask on institutional hardware?

You already have cluster resources. Dask can run on them today without significant change.

58 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Most institutional clusters today have a resource manager. This is typically managed by IT, with some mild permissions
given to users to launch jobs. Dask works with all major resource managers today, including those on Hadoop, HPC,
Kubernetes, and Cloud clusters.

1. Hadoop/Spark: If you have a Hadoop/Spark cluster, such as one purchased through Cloud-
era/Hortonworks/MapR then you will likely want to deploy Dask with YARN, the resource manager that deploys
services like Hadoop, Spark, Hive, and others.

To help with this, you’ll likely want to use Dask-Yarn.

2. HPC: If you have an HPC machine that runs resource managers like SGE, SLLURM, PBS, LSF, Torque, Con-
dor, or other job batch queuing systems, then users can launch Dask on these systems today using either:

• Dask Jobqueue , which uses typical

qsub, sbatch, bsub or other submission tools in interactive settings.

• Dask MPI which uses MPI for deployment in

batch settings

For more information see High Performance Computers

3. Kubernetes/Cloud: Newer clusters may employ Kubernetes for deployment. This is particularly commonly
used today on major cloud providers, all of which provide hosted Kubernetes as a service. People today use
Dask on Kubernetes using either of the following:

• Helm: an easy way to stand up a long-running Dask cluster and

Jupyter notebook

• Dask-Kubernetes: for native Kubernetes integration for fast moving

or ephemeral deployments.

For more information see Kubernetes

Is Dask secure?

Dask is deployed today within highly secure institutions, including major financial, healthcare, and government agen-
cies.

That being said it’s worth noting that, by it’s very nature, Dask enables the execution of arbitrary user code on a large
set of machines. Care should be taken to isolate, authenticate, and govern access to these machines. Fortunately, your
institution likely already does this and uses standard technologies like SSL/TLS, Kerberos, and other systems with
which Dask can integrate.

Do I need to purchase a new cluster?

No. It is easy to run Dask today on most clusters. If you have a pre-existing HPC or Spark/Hadoop cluster then that
will be fine to start running Dask.

You can start using Dask without any capital expenditure.

How do I manage users?

Dask doesn’t manage users, you likely have existing systems that do this well. In a large institutional setting we
assume that you already have a resource manager like Yarn (Hadoop), Kubernetes, or PBS/SLURM/SGE/LSF/. . . ,
each of which have excellent user management capabilities, which are likely preferred by your IT department anyway.

3.5. Institutional FAQ 59

https://yarn.dask.org
https://jobqueue.dask.org
https://mpi.dask.org

dask Documentation, Release 2.6.0

Dask is designed to operate with user-level permissions, which means that your data science users should be able to
ask those systems mentioned above for resources, and have their processes tracked accordingly.

However, there are institutions where analyst-level users aren’t given direct access to the cluster. This is particularly
common in Cloudera/Hortonworks Hadoop/Spark deployments. In these cases some level of explicit indirection may
be required. For this, we recommend the Dask Gateway project, which uses IT-level permissions to properly route
authenticated users into secure resources.

How do I manage software environments?

This depends on your cluster resource manager:

• Most HPC users use their network file system

• Hadoop/Spark/Yarn users package their environment into a tarball and ship it around with HDFS (Dask-Yarn
integrates with Conda Pack for this capability)

• Kubernetes or Cloud users use Docker images

In each case Dask integrates with existing processes and technologies that are well understood and familiar to the
institution.

How does Dask communicate data between machines?

Dask usually communicates over TCP, using msgpack for small administrative messages, and its own protocol for
efficiently passing around large data. The scheduler and each worker host their own TCP server, making Dask a
distributed peer-to-peer network that uses point-to-point communication. We do not use Spark-style shuffle systems.
We do not use MPI-style collectives. Everything is direct point-to-point.

For high performance networks you can use either TCP-over-Infiniband for about 1 GB/s bandwidth, or UCX (exper-
imental) for full speed communication.

Are deployments long running, or ephemeral?

We see both, but ephemeral deployments are more common.

Most Dask use today is about enabling data science or data engineering users to scale their interactive workloads
across the cluster. These are typically either interactive sessions with Jupyter, or batch scripts that run at a pre-defined
time. In both cases, the user asks the resource manager for a bunch of machines, does some work, and then gives up
those machines.

Some institutions also use Dask in an always-on fashion, either handling real-time traffic in a scalable way, or respond-
ing to a broad set of interactive users with large datasets that it keeps resident in memory.

3.5.3 For Technical Leads

Will Dask “just work” on our existing code?

No, you will need to make modifications, but these modifications are usually small.

The vast majority of lines of business logic within your institution will not have to change, assuming that they are in
Python and use tooling like Numpy, Pandas and Scikit-Learn.

60 Chapter 3. Complex Algorithms

https://gateway.dask.org
https://conda.github.io/conda-pack/

dask Documentation, Release 2.6.0

How well does Dask scale? What are Dask’s limitations?

The largest Dask deployments that we see today are on around 1000 multi-core machines, perhaps 20,000 cores in
total, but these are rare. Most institutional-level problems (1-100 TB) are well solved by deployments of 10-50 nodes.

Technically, the back-of-the-envelope number to keep in mind is that each task (an individual Python function call)
in Dask has an overhead of around 200 microseconds. So if these tasks take 1 second each, then Dask can saturate
around 5000 cores before scheduling overhead dominates costs. As workloads reach this limit they are encouraged to
use larger chunk sizes to compensate. The vast majority of institutional users though do not reach this limit. For more
information you may want to peruse our best practices

Is Dask resilient? What happens when a machine goes down?

Yes, Dask is resilient to the failure of worker nodes. It knows how it came to any result, and can replay the necessary
work on other machines if one goes down.

If Dask’s centralized scheduler goes down then you would need to resubmit the computation. This is a fairly standard
level of resiliency today, shared with other tooling like Apache Spark, Flink, and others.

The resource managers that host Dask, like Yarn or Kubernetes, typically provide long-term 24/7 resilience for always-
on operation.

Is the API exactly the same as NumPy/Pandas/Scikit-Learn?

No, but it’s very close. That being said your data scientists will still have to learn some things.

What we find is that the Numpy/Pandas/Scikit-Learn APIs aren’t the challenge when institutions adopt Dask. When
API inconsistencies do exist, even modestly skilled programmers are able to understand why and work around them
without much pain.

Instead, the challenge is building intuition around parallel performance. We’ve all built up a mental model for what
is fast and slow on a single machine. This model changes when we factor in network communication and parallel
algorithms, and the performance that we get for familiar operations can be surprising.

Our main solution to build this intuition, other than accumulated experience, is Dask’s Diagnostic Dashboard. The
dashboard delivers a ton of visual feedback to users as they are running their computation to help them understand
what is going on. This both helps them to identify and resolve immediate bottlenecks, and also builds up that parallel
performance intuition surprisingly quickly.

How much performance tuning does Dask require?

Some other systems are notoriously hard to tune for optimal performance. What is Dask’s story here? How many
knobs are there that we need to be aware of?

Like the rest of the Python software tools, Dask puts a lot of effort into having sane defaults. Dask workers auto-
matically detect available memory and cores, and choose sensible defaults that are decent in most situations. Dask
algorithms similarly provide decent choices by default, and informative warnings when tricky situations arise, so that,
in common cases, things should be fine.

The most common knobs to tune include the following:

• The thread/process mixture to deal with GIL-holding computations (which are rare in Numpy/Pandas/Scikit-
Learn workflows)

• Partition size, like if should you have 100 MB chunks or 1 GB chunks

3.5. Institutional FAQ 61

dask Documentation, Release 2.6.0

That being said, almost no institution’s needs are met entirely by the common case, and given the variety of problems
that people throw at Dask, exceptional problems are commonplace. In these cases we recommend watching the
dashboard during execution to see what is going on. It can commonly inform you what’s going wrong, so that you can
make changes to your system.

What Data formats does Dask support?

Because Dask builds on NumPy and Pandas, it supports most formats that they support, which is most formats. That
being said, not all formats are well suited for parallel access. In general people using the following formats are usually
pretty happy:

• Tabular: Parquet, ORC, CSV, Line Delimited JSON, Avro, text

• Arrays: HDF5, NetCDF, Zarr, GRIB

More generally, if you have a Python function that turns a chunk of your stored data into a Pandas dataframe or Numpy
array then Dask can probably call that function many times without much effort.

For groups looking for advice on which formats to use, we recommend Parquet for tables and Zarr or HDF5 for arrays.

Does Dask have a SQL interface?

No. Dask provides no SQL support. Dask dataframe looks like and uses Pandas for these sorts of operations. It would
be great to see someone build a SQL interface on top of Pandas, which Dask could then use, but this is out of scope
for the core Dask project itself.

As with Pandas though, we do support a dask.dataframe.from_sql command for efficiently pulling data out
of SQL databases for Pandas computations.

3.6 User Interfaces

Dask supports several user interfaces:

• High-Level

– Arrays: Parallel NumPy

– Bags: Parallel lists

– DataFrames: Parallel Pandas

– Machine Learning : Parallel Scikit-Learn

– Others from external projects, like XArray

• Low-Level

– Delayed: Parallel function evaluation

– Futures: Real-time parallel function evaluation

Each of these user interfaces employs the same underlying parallel computing machinery, and so has the same scaling,
diagnostics, resilience, and so on, but each provides a different set of parallel algorithms and programming style.

This document helps you to decide which user interface best suits your needs, and gives some general information that
applies to all interfaces. The pages linked above give more information about each interface in greater depth.

62 Chapter 3. Complex Algorithms

https://ml.dask.org
https://xarray.pydata.org

dask Documentation, Release 2.6.0

3.6.1 High-Level Collections

Many people who start using Dask are explicitly looking for a scalable version of NumPy, Pandas, or Scikit-Learn.
For these situations, the starting point within Dask is usually fairly clear. If you want scalable NumPy arrays, then
start with Dask array; if you want scalable Pandas DataFrames, then start with Dask DataFrame, and so on.

These high-level interfaces copy the standard interface with slight variations. These interfaces automatically parallelize
over larger datasets for you for a large subset of the API from the original project.

Arrays
import dask.array as da
x = da.random.uniform(low=0, high=10, size=(10000, 10000), # normal numpy code

chunks=(1000, 1000)) # break into chunks of size 1000x1000

y = x + x.T - x.mean(axis=0) # Use normal syntax for high level algorithms

DataFrames
import dask.dataframe as dd
df = dd.read_csv('2018-*-*.csv', parse_dates='timestamp', # normal Pandas code

blocksize=64000000) # break text into 64MB chunks

s = df.groupby('name').balance.mean() # Use normal syntax for high level algorithms

Bags / lists
import dask.bag as db
b = db.read_text('*.json').map(json.loads)
total = (b.filter(lambda d: d['name'] == 'Alice')

.map(lambda d: d['balance'])

.sum())

It is important to remember that, while APIs may be similar, some differences do exist. Additionally, the performance
of some algorithms may differ from their in-memory counterparts due to the advantages and disadvantages of parallel
programming. Some thought and attention is still required when using Dask.

3.6.2 Low-Level Interfaces

Often when parallelizing existing code bases or building custom algorithms, you run into code that is parallelizable,
but isn’t just a big DataFrame or array. Consider the for-loopy code below:

results = []
for a in A:

for b in B:
if a < b:

c = f(a, b)
else:

c = g(a, b)
results.append(c)

There is potential parallelism in this code (the many calls to f and g can be done in parallel), but it’s not clear how to
rewrite it into a big array or DataFrame so that it can use a higher-level API. Even if you could rewrite it into one of
these paradigms, it’s not clear that this would be a good idea. Much of the meaning would likely be lost in translation,
and this process would become much more difficult for more complex systems.

Instead, Dask’s lower-level APIs let you write parallel code one function call at a time within the context of your
existing for loops. A common solution here is to use Dask delayed to wrap individual function calls into a lazily
constructed task graph:

3.6. User Interfaces 63

dask Documentation, Release 2.6.0

import dask

lazy_results = []
for a in A:

for b in B:
if a < b:

c = dask.delayed(f)(a, b) # add lazy task
else:

c = dask.delayed(g)(a, b) # add lazy task
lazy_results.append(c)

results = dask.compute(*lazy_results) # compute all in parallel

3.6.3 Combining High- and Low-Level Interfaces

It is common to combine high- and low-level interfaces. For example, you might use Dask array/bag/dataframe to
load in data and do initial pre-processing, then switch to Dask delayed for a custom algorithm that is specific to your
domain, then switch back to Dask array/dataframe to clean up and store results. Understanding both sets of user
interfaces, and how to switch between them, can be a productive combination.

Convert to a list of delayed Pandas dataframes
delayed_values = df.to_delayed()

Manipulate delayed values arbitrarily as you like

Convert many delayed Pandas DataFrames back to a single Dask DataFrame
df = dd.from_delayed(delayed_values)

3.6.4 Laziness and Computing

Most Dask user interfaces are lazy, meaning that they do not evaluate until you explicitly ask for a result using the
compute method:

This array syntax doesn't cause computation
y = x + x.T - x.mean(axis=0)

Trigger computation by explicitly calling the compute method
y = y.compute()

If you have multiple results that you want to compute at the same time, use the dask.compute function. This can
share intermediate results and so be more efficient:

compute multiple results at the same time with the compute function
min, max = dask.compute(y.min(), y.max())

Note that the compute() function returns in-memory results. It converts Dask DataFrames to Pandas DataFrames,
Dask arrays to NumPy arrays, and Dask bags to lists. You should only call compute on results that will fit comfortably
in memory. If your result does not fit in memory, then you might consider writing it to disk instead.

Write larger results out to disk rather than store them in memory
my_dask_dataframe.to_parquet('myfile.parquet')
my_dask_array.to_hdf5('myfile.hdf5')
my_dask_bag.to_textfiles('myfile.*.txt')

64 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

3.6.5 Persist into Distributed Memory

Alternatively, if you are on a cluster, then you may want to trigger a computation and store the results in distributed
memory. In this case you do not want to call compute, which would create a single Pandas, NumPy, or list result.
Instead, you want to call persist, which returns a new Dask object that points to actively computing, or already
computed results spread around your cluster’s memory.

Compute returns an in-memory non-Dask object
y = y.compute()

Persist returns an in-memory Dask object that uses distributed storage if available
y = y.persist()

This is common to see after data loading an preprocessing steps, but before rapid iteration, exploration, or complex
algorithms. For example, we might read in a lot of data, filter down to a more manageable subset, and then persist data
into memory so that we can iterate quickly.

import dask.dataframe as dd
df = dd.read_parquet('...')
df = df[df.name == 'Alice'] # select important subset of data
df = df.persist() # trigger computation in the background

These are all relatively fast now that the relevant data is in memory
df.groupby(df.id).balance.sum().compute() # explore data quickly
df.groupby(df.id).balance.mean().compute() # explore data quickly
df.id.nunique() # explore data quickly

3.6.6 Lazy vs Immediate

As mentioned above, most Dask workloads are lazy, that is, they don’t start any work until you explicitly trigger them
with a call to compute(). However, sometimes you do want to submit work as quickly as possible, track it over
time, submit new work or cancel work depending on partial results, and so on. This can be useful when tracking or
responding to real-time events, handling streaming data, or when building complex and adaptive algorithms.

For these situations, people typically turn to the futures interface which is a low-level interface like Dask delayed, but
operates immediately rather than lazily.

Here is the same example with Dask delayed and Dask futures to illustrate the difference.

Delayed: Lazy

@dask.delayed
def inc(x):

return x + 1

@dask.delayed
def add(x, y):

return x + y

a = inc(1) # no work has happened yet
b = inc(2) # no work has happened yet
c = add(a, b) # no work has happened yet

c = c.compute() # This triggers all of the above computations

3.6. User Interfaces 65

dask Documentation, Release 2.6.0

Futures: Immediate

from dask.distributed import Client
client = Client()

def inc(x):
return x + 1

def add(x, y):
return x + y

a = client.submit(inc, 1) # work starts immediately
b = client.submit(inc, 2) # work starts immediately
c = client.submit(add, a, b) # work starts immediately

c = c.result() # block until work finishes, then gather result

You can also trigger work with the high-level collections using the persist function. This will cause work to happen
in the background when using the distributed scheduler.

3.6.7 Combining Interfaces

There are established ways to combine the interfaces above:

1. The high-level interfaces (array, bag, dataframe) have a to_delayed method that can convert to a sequence
(or grid) of Dask delayed objects

delayeds = df.to_delayed()

2. The high-level interfaces (array, bag, dataframe) have a from_delayed method that can convert from either
Delayed or Future objects

df = dd.from_delayed(delayeds)
df = dd.from_delayed(futures)

3. The Client.compute method converts Delayed objects into Futures

futures = client.compute(delayeds)

4. The dask.distributed.futures_of function gathers futures from persisted collections

from dask.distributed import futures_of

df = df.persist() # start computation in the background
futures = futures_of(df)

5. The Dask.delayed object converts Futures into delayed objects

delayed_value = dask.delayed(future)

The approaches above should suffice to convert any interface into any other. We often see some anti-patterns that do
not work as well:

1. Calling low-level APIs (delayed or futures) on high-level objects (like Dask arrays or DataFrames). This down-
grades those objects to their NumPy or Pandas equivalents, which may not be desired. Often people are looking
for APIs like dask.array.map_blocks or dask.dataframe.map_partitions instead.

66 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

2. Calling compute() on Future objects. Often people want the .result() method instead.

3. Calling NumPy/Pandas functions on high-level Dask objects or high-level Dask functions on NumPy/Pandas
objects

3.6.8 Conclusion

Most people who use Dask start with only one of the interfaces above but eventually learn how to use a few interfaces
together. This helps them leverage the sophisticated algorithms in the high-level interfaces while also working around
tricky problems with the low-level interfaces.

For more information, see the documentation for the particular user interfaces below:

• High Level

– Arrays: Parallel NumPy

– Bags: Parallel lists

– DataFrames: Parallel Pandas

– Machine Learning : Parallel Scikit-Learn

– Others from external projects, like XArray

• Low Level

– Delayed: Parallel function evaluation

– Futures: Real-time parallel function evaluation

3.7 Array

3.7.1 API

Top level user functions:

all(a[, axis, out, keepdims]) Test whether all array elements along a given axis eval-
uate to True.

allclose(arr1, arr2[, rtol, atol, equal_nan]) Returns True if two arrays are element-wise equal
within a tolerance.

angle(x[, deg]) Return the angle of the complex argument.
any(a[, axis, out, keepdims]) Test whether any array element along a given axis eval-

uates to True.
apply_along_axis(func1d, axis, arr, *args[, . . .]) Apply a function to 1-D slices along the given axis.
apply_over_axes(func, a, axes) Apply a function repeatedly over multiple axes.
arange(*args, **kwargs) Return evenly spaced values from start to stop with step

size step.
arccos(x, /[, out, where, casting, order, . . .]) Trigonometric inverse cosine, element-wise.
arccosh(x, /[, out, where, casting, order, . . .]) Inverse hyperbolic cosine, element-wise.
arcsin(x, /[, out, where, casting, order, . . .]) Inverse sine, element-wise.
arcsinh(x, /[, out, where, casting, order, . . .]) Inverse hyperbolic sine element-wise.
arctan(x, /[, out, where, casting, order, . . .]) Trigonometric inverse tangent, element-wise.
arctan2(x1, x2, /[, out, where, casting, . . .]) Element-wise arc tangent of x1/x2 choosing the quad-

rant correctly.
Continued on next page

3.7. Array 67

https://ml.dask.org
https://xarray.pydata.org

dask Documentation, Release 2.6.0

Table 9 – continued from previous page
arctanh(x, /[, out, where, casting, order, . . .]) Inverse hyperbolic tangent element-wise.
argmax(a[, axis, out]) Returns the indices of the maximum values along an

axis.
argmin(a[, axis, out]) Returns the indices of the minimum values along an

axis.
argtopk(a, k[, axis, split_every]) Extract the indices of the k largest elements from a on

the given axis, and return them sorted from largest to
smallest.

argwhere(a) Find the indices of array elements that are non-zero,
grouped by element.

around(x[, decimals]) Evenly round to the given number of decimals.
array(object[, dtype, copy, order, subok, ndmin]) This docstring was copied from numpy.array.
asanyarray(a) Convert the input to a dask array.
asarray(a, **kwargs) Convert the input to a dask array.
atleast_1d(*arys) Convert inputs to arrays with at least one dimension.
atleast_2d(*arys) View inputs as arrays with at least two dimensions.
atleast_3d(*arys) View inputs as arrays with at least three dimensions.
average(a[, axis, weights, returned]) Compute the weighted average along the specified axis.
bincount(x[, weights, minlength]) This docstring was copied from numpy.bincount.
bitwise_and(x1, x2, /[, out, where, . . .]) Compute the bit-wise AND of two arrays element-wise.
bitwise_not(x, /[, out, where, casting, . . .]) Compute bit-wise inversion, or bit-wise NOT, element-

wise.
bitwise_or(x1, x2, /[, out, where, casting, . . .]) Compute the bit-wise OR of two arrays element-wise.
bitwise_xor(x1, x2, /[, out, where, . . .]) Compute the bit-wise XOR of two arrays element-wise.
block(arrays[, allow_unknown_chunksizes]) Assemble an nd-array from nested lists of blocks.
blockwise(func, out_ind, *args[, name, . . .]) Tensor operation: Generalized inner and outer products
broadcast_arrays(*args, **kwargs) Broadcast any number of arrays against each other.
broadcast_to(x, shape[, chunks]) Broadcast an array to a new shape.
coarsen(reduction, x, axes[, trim_excess]) Coarsen array by applying reduction to fixed size neigh-

borhoods
ceil(x, /[, out, where, casting, order, . . .]) Return the ceiling of the input, element-wise.
choose(a, choices) Construct an array from an index array and a set of ar-

rays to choose from.
clip(*args, **kwargs) Clip (limit) the values in an array.
compress(condition, a[, axis]) Return selected slices of an array along given axis.
concatenate(seq[, axis, . . .]) Concatenate arrays along an existing axis
conj(x, /[, out, where, casting, order, . . .]) Return the complex conjugate, element-wise.
copysign(x1, x2, /[, out, where, casting, . . .]) Change the sign of x1 to that of x2, element-wise.
corrcoef(x[, y, rowvar]) Return Pearson product-moment correlation coeffi-

cients.
cos(x, /[, out, where, casting, order, . . .]) Cosine element-wise.
cosh(x, /[, out, where, casting, order, . . .]) Hyperbolic cosine, element-wise.
count_nonzero(a[, axis]) Counts the number of non-zero values in the array a.
cov(m[, y, rowvar, bias, ddof]) Estimate a covariance matrix, given data and weights.
cumprod(a[, axis, dtype, out]) Return the cumulative product of elements along a given

axis.
cumsum(a[, axis, dtype, out]) Return the cumulative sum of the elements along a given

axis.
deg2rad(x, /[, out, where, casting, order, . . .]) Convert angles from degrees to radians.
degrees(x, /[, out, where, casting, order, . . .]) Convert angles from radians to degrees.
diag(v) Extract a diagonal or construct a diagonal array.

Continued on next page

68 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Table 9 – continued from previous page
diagonal(a[, offset, axis1, axis2]) Return specified diagonals.
diff(a[, n, axis]) Calculate the n-th discrete difference along the given

axis.
divmod(x1, x2[, out1, out2], / [[, out, . . .]) Return element-wise quotient and remainder simultane-

ously.
digitize(a, bins[, right]) Return the indices of the bins to which each value in

input array belongs.
dot(a, b[, out]) This docstring was copied from numpy.dot.
dstack(tup[, allow_unknown_chunksizes]) Stack arrays in sequence depth wise (along third axis).
ediff1d(ary[, to_end, to_begin]) The differences between consecutive elements of an ar-

ray.
einsum(subscripts, *operands[, out, dtype, . . .]) This docstring was copied from numpy.einsum.
empty(*args, **kwargs) Blocked variant of empty
empty_like(a[, dtype, chunks]) Return a new array with the same shape and type as a

given array.
exp(x, /[, out, where, casting, order, . . .]) Calculate the exponential of all elements in the input

array.
expm1(x, /[, out, where, casting, order, . . .]) Calculate exp(x) - 1 for all elements in the array.
eye(N[, chunks, M, k, dtype]) Return a 2-D Array with ones on the diagonal and zeros

elsewhere.
fabs(x, /[, out, where, casting, order, . . .]) Compute the absolute values element-wise.
fix(*args, **kwargs) Round to nearest integer towards zero.
flatnonzero(a) Return indices that are non-zero in the flattened version

of a.
flip(m, axis) Reverse element order along axis.
flipud(m) Flip array in the up/down direction.
fliplr(m) Flip array in the left/right direction.
floor(x, /[, out, where, casting, order, . . .]) Return the floor of the input, element-wise.
fmax(x1, x2, /[, out, where, casting, . . .]) Element-wise maximum of array elements.
fmin(x1, x2, /[, out, where, casting, . . .]) Element-wise minimum of array elements.
fmod(x1, x2, /[, out, where, casting, . . .]) Return the element-wise remainder of division.
frexp(x[, out1, out2], / [[, out, where, . . .]) Decompose the elements of x into mantissa and twos

exponent.
fromfunction(func[, chunks, shape, dtype]) Construct an array by executing a function over each

coordinate.
frompyfunc(func, nin, nout) This docstring was copied from numpy.frompyfunc.
full(*args, **kwargs) Blocked variant of full
full_like(a, fill_value[, dtype, chunks]) Return a full array with the same shape and type as a

given array.
gradient(f, *varargs, **kwargs) Return the gradient of an N-dimensional array.
histogram(a[, bins, range, normed, weights, . . .]) Blocked variant of numpy.histogram().
hstack(tup[, allow_unknown_chunksizes]) Stack arrays in sequence horizontally (column wise).
hypot(x1, x2, /[, out, where, casting, . . .]) Given the “legs” of a right triangle, return its hy-

potenuse.
imag(*args, **kwargs) Return the imaginary part of the complex argument.
indices(dimensions[, dtype, chunks]) Implements NumPy’s indices for Dask Arrays.
insert(arr, obj, values, axis) Insert values along the given axis before the given in-

dices.
invert(x, /[, out, where, casting, order, . . .]) Compute bit-wise inversion, or bit-wise NOT, element-

wise.
Continued on next page

3.7. Array 69

https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html#numpy.histogram

dask Documentation, Release 2.6.0

Table 9 – continued from previous page
isclose(arr1, arr2[, rtol, atol, equal_nan]) Returns a boolean array where two arrays are element-

wise equal within a tolerance.
iscomplex(*args, **kwargs) Returns a bool array, where True if input element is

complex.
isfinite(x, /[, out, where, casting, order, . . .]) Test element-wise for finiteness (not infinity or not Not

a Number).
isin(element, test_elements[, . . .]) Calculates element in test_elements, broadcasting over

element only.
isinf(x, /[, out, where, casting, order, . . .]) Test element-wise for positive or negative infinity.
isneginf Return (x1 == x2) element-wise.
isnan(x, /[, out, where, casting, order, . . .]) Test element-wise for NaN and return result as a

boolean array.
isnull(values) pandas.isnull for dask arrays
isposinf Return (x1 == x2) element-wise.
isreal(*args, **kwargs) Returns a bool array, where True if input element is real.
ldexp(x1, x2, /[, out, where, casting, . . .]) Returns x1 * 2**x2, element-wise.
linspace(start, stop[, num, endpoint, . . .]) Return num evenly spaced values over the closed inter-

val [start, stop].
log(x, /[, out, where, casting, order, . . .]) Natural logarithm, element-wise.
log10(x, /[, out, where, casting, order, . . .]) Return the base 10 logarithm of the input array, element-

wise.
log1p(x, /[, out, where, casting, order, . . .]) Return the natural logarithm of one plus the input array,

element-wise.
log2(x, /[, out, where, casting, order, . . .]) Base-2 logarithm of x.
logaddexp(x1, x2, /[, out, where, casting, . . .]) Logarithm of the sum of exponentiations of the inputs.
logaddexp2(x1, x2, /[, out, where, casting, . . .]) Logarithm of the sum of exponentiations of the inputs

in base-2.
logical_and(x1, x2, /[, out, where, . . .]) Compute the truth value of x1 AND x2 element-wise.
logical_not(x, /[, out, where, casting, . . .]) Compute the truth value of NOT x element-wise.
logical_or(x1, x2, /[, out, where, casting, . . .]) Compute the truth value of x1 OR x2 element-wise.
logical_xor(x1, x2, /[, out, where, . . .]) Compute the truth value of x1 XOR x2, element-wise.
map_overlap(x, func, depth[, boundary, trim]) Map a function over blocks of the array with some over-

lap
map_blocks(func, *args[, name, token, . . .]) Map a function across all blocks of a dask array.
matmul(x1, x2, /[, out, casting, order, . . .]) This docstring was copied from numpy.matmul.
max(a[, axis, out, keepdims, initial]) Return the maximum of an array or maximum along an

axis.
maximum(x1, x2, /[, out, where, casting, . . .]) Element-wise maximum of array elements.
mean(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis.
meshgrid(*xi, **kwargs) Return coordinate matrices from coordinate vectors.
min(a[, axis, out, keepdims, initial]) Return the minimum of an array or minimum along an

axis.
minimum(x1, x2, /[, out, where, casting, . . .]) Element-wise minimum of array elements.
modf(x[, out1, out2], / [[, out, where, . . .]) Return the fractional and integral parts of an array,

element-wise.
moment(a, order[, axis, dtype, keepdims, . . .])
moveaxis(a, source, destination) Move axes of an array to new positions.
nanargmax(x, axis, **kwargs)
nanargmin(x, axis, **kwargs)
nancumprod(a[, axis, dtype, out]) Return the cumulative product of array elements over a

given axis treating Not a Numbers (NaNs) as one.
Continued on next page

70 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Table 9 – continued from previous page
nancumsum(a[, axis, dtype, out]) Return the cumulative sum of array elements over a

given axis treating Not a Numbers (NaNs) as zero.
nanmax(a[, axis, out, keepdims]) Return the maximum of an array or maximum along an

axis, ignoring any NaNs.
nanmean(a[, axis, dtype, out, keepdims]) Compute the arithmetic mean along the specified axis,

ignoring NaNs.
nanmin(a[, axis, out, keepdims]) Return minimum of an array or minimum along an axis,

ignoring any NaNs.
nanprod(a[, axis, dtype, out, keepdims]) Return the product of array elements over a given axis

treating Not a Numbers (NaNs) as ones.
nanstd(a[, axis, dtype, out, ddof, keepdims]) Compute the standard deviation along the specified axis,

while ignoring NaNs.
nansum(a[, axis, dtype, out, keepdims]) Return the sum of array elements over a given axis treat-

ing Not a Numbers (NaNs) as zero.
nanvar(a[, axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis, while ig-

noring NaNs.
nan_to_num(*args, **kwargs) Replace NaN with zero and infinity with large finite

numbers.
nextafter(x1, x2, /[, out, where, casting, . . .]) Return the next floating-point value after x1 towards x2,

element-wise.
nonzero(a) Return the indices of the elements that are non-zero.
notnull(values) pandas.notnull for dask arrays
ones(*args, **kwargs) Blocked variant of ones
ones_like(a[, dtype, chunks]) Return an array of ones with the same shape and type as

a given array.
outer(a, b) Compute the outer product of two vectors.
pad(array, pad_width, mode, **kwargs) Pads an array.
percentile(a, q[, interpolation, method]) Approximate percentile of 1-D array
PerformanceWarning A warning given when bad chunking may cause poor

performance
piecewise(x, condlist, funclist, *args, **kw) Evaluate a piecewise-defined function.
prod(a[, axis, dtype, out, keepdims, initial]) Return the product of array elements over a given axis.
ptp(a[, axis]) Range of values (maximum - minimum) along an axis.
rad2deg(x, /[, out, where, casting, order, . . .]) Convert angles from radians to degrees.
radians(x, /[, out, where, casting, order, . . .]) Convert angles from degrees to radians.
ravel(array) Return a contiguous flattened array.
real(*args, **kwargs) Return the real part of the complex argument.
rechunk(x, chunks[, threshold, block_size_limit]) Convert blocks in dask array x for new chunks.
reduction(x, chunk, aggregate[, axis, . . .]) General version of reductions
repeat(a, repeats[, axis]) Repeat elements of an array.
reshape(x, shape) Reshape array to new shape
result_type(*arrays_and_dtypes) This docstring was copied from numpy.result_type.
rint(x, /[, out, where, casting, order, . . .]) Round elements of the array to the nearest integer.
roll(array, shift[, axis]) Roll array elements along a given axis.
rollaxis(a, axis[, start])
round(a[, decimals]) Round an array to the given number of decimals.
sign(x, /[, out, where, casting, order, . . .]) Returns an element-wise indication of the sign of a num-

ber.
signbit(x, /[, out, where, casting, order, . . .]) Returns element-wise True where signbit is set (less

than zero).
sin(x, /[, out, where, casting, order, . . .]) Trigonometric sine, element-wise.

Continued on next page

3.7. Array 71

dask Documentation, Release 2.6.0

Table 9 – continued from previous page
sinh(x, /[, out, where, casting, order, . . .]) Hyperbolic sine, element-wise.
sqrt(x, /[, out, where, casting, order, . . .]) Return the non-negative square-root of an array,

element-wise.
square(x, /[, out, where, casting, order, . . .]) Return the element-wise square of the input.
squeeze(a[, axis]) Remove single-dimensional entries from the shape of an

array.
stack(seq[, axis]) Stack arrays along a new axis
std(a[, axis, dtype, out, ddof, keepdims]) Compute the standard deviation along the specified axis.
sum(a[, axis, dtype, out, keepdims, initial]) Sum of array elements over a given axis.
take(a, indices[, axis]) Take elements from an array along an axis.
tan(x, /[, out, where, casting, order, . . .]) Compute tangent element-wise.
tanh(x, /[, out, where, casting, order, . . .]) Compute hyperbolic tangent element-wise.
tensordot(lhs, rhs[, axes]) Compute tensor dot product along specified axes for ar-

rays >= 1-D.
tile(A, reps) Construct an array by repeating A the number of times

given by reps.
topk(a, k[, axis, split_every]) Extract the k largest elements from a on the given axis,

and return them sorted from largest to smallest.
trace(a[, offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(a[, axes]) Permute the dimensions of an array.
tril(m[, k]) Lower triangle of an array with elements above the k-th

diagonal zeroed.
triu(m[, k]) Upper triangle of an array with elements above the k-th

diagonal zeroed.
trunc(x, /[, out, where, casting, order, . . .]) Return the truncated value of the input, element-wise.
unify_chunks(*args, **kwargs) Unify chunks across a sequence of arrays
unique(ar[, return_index, return_inverse, . . .]) Find the unique elements of an array.
unravel_index(indices, shape[, order]) This docstring was copied from numpy.unravel_index.
var(a[, axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis.
vdot(a, b) This docstring was copied from numpy.vdot.
vstack(tup[, allow_unknown_chunksizes]) Stack arrays in sequence vertically (row wise).
where(condition, [x, y]) This docstring was copied from numpy.where.
zeros(*args, **kwargs) Blocked variant of zeros
zeros_like(a[, dtype, chunks]) Return an array of zeros with the same shape and type

as a given array.

Fast Fourier Transforms

fft.fft_wrap(fft_func[, kind, dtype]) Wrap 1D, 2D, and ND real and complex FFT functions
fft.fft(a[, n, axis]) Wrapping of numpy.fft.fft
fft.fft2(a[, s, axes]) Wrapping of numpy.fft.fft2
fft.fftn(a[, s, axes]) Wrapping of numpy.fft.fftn
fft.ifft(a[, n, axis]) Wrapping of numpy.fft.ifft
fft.ifft2(a[, s, axes]) Wrapping of numpy.fft.ifft2
fft.ifftn(a[, s, axes]) Wrapping of numpy.fft.ifftn
fft.rfft(a[, n, axis]) Wrapping of numpy.fft.rfft
fft.rfft2(a[, s, axes]) Wrapping of numpy.fft.rfft2
fft.rfftn(a[, s, axes]) Wrapping of numpy.fft.rfftn
fft.irfft(a[, n, axis]) Wrapping of numpy.fft.irfft

Continued on next page

72 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Table 10 – continued from previous page
fft.irfft2(a[, s, axes]) Wrapping of numpy.fft.irfft2
fft.irfftn(a[, s, axes]) Wrapping of numpy.fft.irfftn
fft.hfft(a[, n, axis]) Wrapping of numpy.fft.hfft
fft.ihfft(a[, n, axis]) Wrapping of numpy.fft.ihfft
fft.fftfreq(n[, d, chunks]) Return the Discrete Fourier Transform sample frequen-

cies.
fft.rfftfreq(n[, d, chunks]) Return the Discrete Fourier Transform sample frequen-

cies (for usage with rfft, irfft).
fft.fftshift(x[, axes]) Shift the zero-frequency component to the center of the

spectrum.
fft.ifftshift(x[, axes]) The inverse of fftshift.

Linear Algebra

linalg.cholesky(a[, lower]) Returns the Cholesky decomposition, 𝐴 = 𝐿𝐿* or 𝐴 =
𝑈*𝑈 of a Hermitian positive-definite matrix A.

linalg.inv(a) Compute the inverse of a matrix with LU decomposition
and forward / backward substitutions.

linalg.lstsq(a, b) Return the least-squares solution to a linear matrix equa-
tion using QR decomposition.

linalg.lu(a) Compute the lu decomposition of a matrix.
linalg.norm(x[, ord, axis, keepdims]) Matrix or vector norm.
linalg.qr(a) Compute the qr factorization of a matrix.
linalg.solve(a, b[, sym_pos]) Solve the equation a x = b for x.
linalg.solve_triangular(a, b[, lower]) Solve the equation a x = b for x, assuming a is a trian-

gular matrix.
linalg.svd(a) Compute the singular value decomposition of a matrix.
linalg.svd_compressed(a, k[, n_power_iter,
. . .])

Randomly compressed rank-k thin Singular Value De-
composition.

linalg.sfqr(data[, name]) Direct Short-and-Fat QR
linalg.tsqr(data[, compute_svd, . . .]) Direct Tall-and-Skinny QR algorithm

Masked Arrays

ma.average(a[, axis, weights, returned]) Return the weighted average of array over the given
axis.

ma.filled(a[, fill_value]) Return input as an array with masked data replaced by a
fill value.

ma.fix_invalid(a[, fill_value]) Return input with invalid data masked and replaced by
a fill value.

ma.getdata(a) Return the data of a masked array as an ndarray.
ma.getmaskarray(a) Return the mask of a masked array, or full boolean array

of False.
ma.masked_array(data[, mask, fill_value]) An array class with possibly masked values.
ma.masked_equal(a, value) Mask an array where equal to a given value.
ma.masked_greater(x, value[, copy]) Mask an array where greater than a given value.
ma.masked_greater_equal(x, value[, copy]) Mask an array where greater than or equal to a given

value.
ma.masked_inside(x, v1, v2) Mask an array inside a given interval.

Continued on next page

3.7. Array 73

dask Documentation, Release 2.6.0

Table 12 – continued from previous page
ma.masked_invalid(a) Mask an array where invalid values occur (NaNs or

infs).
ma.masked_less(x, value[, copy]) Mask an array where less than a given value.
ma.masked_less_equal(x, value[, copy]) Mask an array where less than or equal to a given value.
ma.masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.
ma.masked_outside(x, v1, v2) Mask an array outside a given interval.
ma.masked_values(x, value[, rtol, atol, shrink]) Mask using floating point equality.
ma.masked_where(condition, a) Mask an array where a condition is met.
ma.set_fill_value(a, fill_value) Set the filling value of a, if a is a masked array.

Random

random.beta(a, b[, size]) Draw samples from a Beta distribution.
random.binomial(n, p[, size]) Draw samples from a binomial distribution.
random.chisquare(df[, size]) Draw samples from a chi-square distribution.
random.choice(a[, size, replace, p]) Generates a random sample from a given 1-D array
random.exponential([scale, size]) Draw samples from an exponential distribution.
random.f(dfnum, dfden[, size]) Draw samples from an F distribution.
random.gamma(shape[, scale, size]) Draw samples from a Gamma distribution.
random.geometric(p[, size]) Draw samples from the geometric distribution.
random.gumbel([loc, scale, size]) Draw samples from a Gumbel distribution.
random.hypergeometric(ngood, nbad, nsample) Draw samples from a Hypergeometric distribution.
random.laplace([loc, scale, size]) Draw samples from the Laplace or double exponential

distribution with specified location (or mean) and scale
(decay).

random.logistic([loc, scale, size]) Draw samples from a logistic distribution.
random.lognormal([mean, sigma, size]) Draw samples from a log-normal distribution.
random.logseries(p[, size]) Draw samples from a logarithmic series distribution.
random.negative_binomial(n, p[, size]) Draw samples from a negative binomial distribution.
random.noncentral_chisquare(df, nonc[,
size])

Draw samples from a noncentral chi-square distribution.

random.noncentral_f(dfnum, dfden, nonc[,
size])

Draw samples from the noncentral F distribution.

random.normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distri-
bution.

random.pareto(a[, size]) Draw samples from a Pareto II or Lomax distribution
with specified shape.

random.permutation(x) Randomly permute a sequence, or return a permuted
range.

random.poisson([lam, size]) Draw samples from a Poisson distribution.
random.power(a[, size]) Draws samples in [0, 1] from a power distribution with

positive exponent a - 1.
random.randint(low[, high, size, dtype]) Return random integers from low (inclusive) to high (ex-

clusive).
random.random([size]) Return random floats in the half-open interval [0.0, 1.0).
random.random_sample([size]) Return random floats in the half-open interval [0.0, 1.0).
random.rayleigh([scale, size]) Draw samples from a Rayleigh distribution.
random.standard_cauchy([size]) Draw samples from a standard Cauchy distribution with

mode = 0.
Continued on next page

74 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Table 13 – continued from previous page
random.standard_exponential([size]) Draw samples from the standard exponential distribu-

tion.
random.standard_gamma(shape[, size]) Draw samples from a standard Gamma distribution.
random.standard_normal([size]) Draw samples from a standard Normal distribution

(mean=0, stdev=1).
random.standard_t(df[, size]) Draw samples from a standard Student’s t distribution

with df degrees of freedom.
random.triangular(left, mode, right[, size]) Draw samples from the triangular distribution over the

interval [left, right].
random.uniform([low, high, size]) Draw samples from a uniform distribution.
random.vonmises(mu, kappa[, size]) Draw samples from a von Mises distribution.
random.wald(mean, scale[, size]) Draw samples from a Wald, or inverse Gaussian, distri-

bution.
random.weibull(a[, size]) Draw samples from a Weibull distribution.
random.zipf(a[, size]) Standard distributions

Stats

stats.ttest_ind(a, b[, axis, equal_var]) Calculate the T-test for the means of two independent
samples of scores.

stats.ttest_1samp(a, popmean[, axis,
nan_policy])

Calculate the T-test for the mean of ONE group of
scores.

stats.ttest_rel(a, b[, axis, nan_policy]) Calculate the T-test on TWO RELATED samples of
scores, a and b.

stats.chisquare(f_obs[, f_exp, ddof, axis]) Calculate a one-way chi square test.
stats.power_divergence(f_obs[, f_exp, ddof,
. . .])

Cressie-Read power divergence statistic and goodness
of fit test.

stats.skew(a[, axis, bias, nan_policy]) Compute the skewness of a data set.
stats.skewtest(a[, axis, nan_policy]) Test whether the skew is different from the normal dis-

tribution.
stats.kurtosis(a[, axis, fisher, bias, . . .]) Compute the kurtosis (Fisher or Pearson) of a dataset.
stats.kurtosistest(a[, axis, nan_policy]) Test whether a dataset has normal kurtosis.
stats.normaltest(a[, axis, nan_policy]) Test whether a sample differs from a normal distribu-

tion.
stats.f_oneway(*args) Performs a 1-way ANOVA.
stats.moment(a[, moment, axis, nan_policy]) Calculate the nth moment about the mean for a sample.

Image Support

image.imread(filename[, imread, preprocess]) Read a stack of images into a dask array

Slightly Overlapping Computations

overlap.overlap(x, depth, boundary) Share boundaries between neighboring blocks
overlap.map_overlap(x, func, depth[, . . .]) Map a function over blocks of the array with some over-

lap
overlap.trim_internal(x, axes[, boundary]) Trim sides from each block
overlap.trim_overlap(x, depth[, boundary]) Trim sides from each block.

3.7. Array 75

dask Documentation, Release 2.6.0

Create and Store Arrays

from_array(x[, chunks, name, lock, asarray, . . .]) Create dask array from something that looks like an ar-
ray

from_delayed(value, shape[, dtype, meta, name]) Create a dask array from a dask delayed value
from_npy_stack(dirname[, mmap_mode]) Load dask array from stack of npy files
from_zarr(url[, component, storage_options, . . .]) Load array from the zarr storage format
from_tiledb(uri[, attribute, chunks, . . .]) Load array from the TileDB storage format
store(sources, targets[, lock, regions, . . .]) Store dask arrays in array-like objects, overwrite data in

target
to_hdf5(filename, *args, **kwargs) Store arrays in HDF5 file
to_zarr(arr, url[, component, . . .]) Save array to the zarr storage format
to_npy_stack(dirname, x[, axis]) Write dask array to a stack of .npy files
to_tiledb(darray, uri[, compute, . . .]) Save array to the TileDB storage format

Generalized Ufuncs

apply_gufunc(func, signature, *args, **kwargs) Apply a generalized ufunc or similar python function to
arrays.

as_gufunc([signature]) Decorator for dask.array.gufunc.
gufunc(pyfunc, **kwargs) Binds pyfunc into dask.array.apply_gufunc

when called.

Internal functions

blockwise(func, out_ind, *args[, name, . . .]) Tensor operation: Generalized inner and outer products
normalize_chunks(chunks[, shape, limit, . . .]) Normalize chunks to tuple of tuples

Other functions

dask.array.from_array(x, chunks=’auto’, name=None, lock=False, asarray=None, fancy=True,
getitem=None, meta=None)

Create dask array from something that looks like an array

Input must have a .shape, .ndim, .dtype and support numpy-style slicing.

Parameters

x [array_like]

chunks [int, tuple] How to chunk the array. Must be one of the following forms: - A block-
size like 1000. - A blockshape like (1000, 1000). - Explicit sizes of all blocks along all
dimensions like

((1000, 1000, 500), (400, 400)).

• A size in bytes, like “100 MiB” which will choose a uniform block-like shape

• The word “auto” which acts like the above, but uses a configuration value array.
chunk-size for the chunk size

-1 or None as a blocksize indicate the size of the corresponding dimension.

76 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

name [str, optional] The key name to use for the array. Defaults to a hash of x. By default, hash
uses python’s standard sha1. This behaviour can be changed by installing cityhash, xxhash
or murmurhash. If installed, a large-factor speedup can be obtained in the tokenisation step.
Use name=False to generate a random name instead of hashing (fast)

lock [bool or Lock, optional] If x doesn’t support concurrent reads then provide a lock here, or
pass in True to have dask.array create one for you.

asarray [bool, optional] If True then call np.asarray on chunks to convert them to numpy arrays.
If False then chunks are passed through unchanged. If None (default) then we use True if
the __array_function__ method is undefined.

fancy [bool, optional] If x doesn’t support fancy indexing (e.g. indexing with lists or arrays)
then set to False. Default is True.

meta [Array-like, optional] The metadata for the resulting dask array. This is the kind of array
that will result from slicing the input array. Defaults to the input array.

Examples

>>> x = h5py.File('...')['/data/path'] # doctest: +SKIP
>>> a = da.from_array(x, chunks=(1000, 1000)) # doctest: +SKIP

If your underlying datastore does not support concurrent reads then include the lock=True keyword argument
or lock=mylock if you want multiple arrays to coordinate around the same lock.

>>> a = da.from_array(x, chunks=(1000, 1000), lock=True) # doctest: +SKIP

If your underlying datastore has a .chunks attribute (as h5py and zarr datasets do) then a multiple of that
chunk shape will be used if you do not provide a chunk shape.

>>> a = da.from_array(x, chunks='auto') # doctest: +SKIP
>>> a = da.from_array(x, chunks='100 MiB') # doctest: +SKIP
>>> a = da.from_array(x) # doctest: +SKIP

dask.array.from_delayed(value, shape, dtype=None, meta=None, name=None)
Create a dask array from a dask delayed value

This routine is useful for constructing dask arrays in an ad-hoc fashion using dask delayed, particularly when
combined with stack and concatenate.

The dask array will consist of a single chunk.

Examples

>>> import dask
>>> import dask.array as da
>>> value = dask.delayed(np.ones)(5)
>>> array = da.from_delayed(value, (5,), dtype=float)
>>> array
dask.array<from-value, shape=(5,), dtype=float64, chunksize=(5,), chunktype=numpy.
→˓ndarray>
>>> array.compute()
array([1., 1., 1., 1., 1.])

3.7. Array 77

dask Documentation, Release 2.6.0

dask.array.store(sources, targets, lock=True, regions=None, compute=True, return_stored=False,
**kwargs)

Store dask arrays in array-like objects, overwrite data in target

This stores dask arrays into object that supports numpy-style setitem indexing. It stores values chunk by chunk
so that it does not have to fill up memory. For best performance you can align the block size of the storage target
with the block size of your array.

If your data fits in memory then you may prefer calling np.array(myarray) instead.

Parameters

sources: Array or iterable of Arrays

targets: array-like or Delayed or iterable of array-likes and/or Delayeds These should
support setitem syntax target[10:20] = ...

lock: boolean or threading.Lock, optional Whether or not to lock the data stores while stor-
ing. Pass True (lock each file individually), False (don’t lock) or a particular threading.
Lock object to be shared among all writes.

regions: tuple of slices or list of tuples of slices Each region tuple in regions should be
such that target[region].shape = source.shape for the corresponding source
and target in sources and targets, respectively. If this is a tuple, the contents will be assumed
to be slices, so do not provide a tuple of tuples.

compute: boolean, optional If true compute immediately, return dask.delayed.
Delayed otherwise

return_stored: boolean, optional Optionally return the stored result (default False).

Examples

>>> x = ... # doctest: +SKIP

>>> import h5py # doctest: +SKIP
>>> f = h5py.File('myfile.hdf5', mode='a') # doctest: +SKIP
>>> dset = f.create_dataset('/data', shape=x.shape,
... chunks=x.chunks,
... dtype='f8') # doctest: +SKIP

>>> store(x, dset) # doctest: +SKIP

Alternatively store many arrays at the same time

>>> store([x, y, z], [dset1, dset2, dset3]) # doctest: +SKIP

dask.array.coarsen(reduction, x, axes, trim_excess=False)
Coarsen array by applying reduction to fixed size neighborhoods

Parameters

reduction: function Function like np.sum, np.mean, etc. . .

x: np.ndarray Array to be coarsened

axes: dict Mapping of axis to coarsening factor

78 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> x = np.array([1, 2, 3, 4, 5, 6])
>>> coarsen(np.sum, x, {0: 2})
array([3, 7, 11])
>>> coarsen(np.max, x, {0: 3})
array([3, 6])

Provide dictionary of scale per dimension

>>> x = np.arange(24).reshape((4, 6))
>>> x
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])

>>> coarsen(np.min, x, {0: 2, 1: 3})
array([[0, 3],

[12, 15]])

You must avoid excess elements explicitly

>>> x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> coarsen(np.min, x, {0: 3}, trim_excess=True)
array([1, 4])

dask.array.stack(seq, axis=0)
Stack arrays along a new axis

Given a sequence of dask arrays, form a new dask array by stacking them along a new dimension (axis=0 by
default)

See also:

concatenate

Examples

Create slices

>>> import dask.array as da
>>> import numpy as np

>>> data = [from_array(np.ones((4, 4)), chunks=(2, 2))
... for i in range(3)]

>>> x = da.stack(data, axis=0)
>>> x.shape
(3, 4, 4)

>>> da.stack(data, axis=1).shape
(4, 3, 4)

>>> da.stack(data, axis=-1).shape
(4, 4, 3)

3.7. Array 79

dask Documentation, Release 2.6.0

Result is a new dask Array

dask.array.concatenate(seq, axis=0, allow_unknown_chunksizes=False)
Concatenate arrays along an existing axis

Given a sequence of dask Arrays form a new dask Array by stacking them along an existing dimension (axis=0
by default)

Parameters

seq: list of dask.arrays

axis: int Dimension along which to align all of the arrays

allow_unknown_chunksizes: bool Allow unknown chunksizes, such as come from converting
from dask dataframes. Dask.array is unable to verify that chunks line up. If data comes
from differently aligned sources then this can cause unexpected results.

See also:

stack

Examples

Create slices

>>> import dask.array as da
>>> import numpy as np

>>> data = [from_array(np.ones((4, 4)), chunks=(2, 2))
... for i in range(3)]

>>> x = da.concatenate(data, axis=0)
>>> x.shape
(12, 4)

>>> da.concatenate(data, axis=1).shape
(4, 12)

Result is a new dask Array

dask.array.all(a, axis=None, out=None, keepdims=<no value>)
Test whether all array elements along a given axis evaluate to True.

Parameters

a [array_like] Input array or object that can be converted to an array.

axis [None or int or tuple of ints, optional] Axis or axes along which a logical AND reduction
is performed. The default (axis = None) is to perform a logical AND over all the dimensions
of the input array. axis may be negative, in which case it counts from the last to the first
axis.

New in version 1.7.0.

If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis
or all the axes as before.

out [ndarray, optional] Alternate output array in which to place the result. It must have the
same shape as the expected output and its type is preserved (e.g., if dtype(out) is float,

80 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

the result will consist of 0.0’s and 1.0’s). See doc.ufuncs (Section “Output arguments”) for
more details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the all method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

all [ndarray, bool] A new boolean or array is returned unless out is specified, in which case a
reference to out is returned.

See also:

ndarray.all equivalent method

any Test whether any element along a given axis evaluates to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.

Examples

>>> np.all([[True,False],[True,True]])
False

>>> np.all([[True,False],[True,True]], axis=0)
array([True, False])

>>> np.all([-1, 4, 5])
True

>>> np.all([1.0, np.nan])
True

>>> o=np.array([False])
>>> z=np.all([-1, 4, 5], out=o)
>>> id(z), id(o), z # doctest: +SKIP
(28293632, 28293632, array([True]))

dask.array.allclose(arr1, arr2, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns True if two arrays are element-wise equal within a tolerance.

This docstring was copied from numpy.allclose.

Some inconsistencies with the Dask version may exist.

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the
absolute difference atol are added together to compare against the absolute difference between a and b.

If either array contains one or more NaNs, False is returned. Infs are treated as equal if they are in the same
place and of the same sign in both arrays.

3.7. Array 81

dask Documentation, Release 2.6.0

Parameters

a, b [array_like] Input arrays to compare.

rtol [float] The relative tolerance parameter (see Notes).

atol [float] The absolute tolerance parameter (see Notes).

equal_nan [bool] Whether to compare NaN’s as equal. If True, NaN’s in a will be considered
equal to NaN’s in b in the output array.

New in version 1.10.0.

Returns

allclose [bool] Returns True if the two arrays are equal within the given tolerance; False other-
wise.

See also:

isclose, all, any , equal

Notes

If the following equation is element-wise True, then allclose returns True.

absolute(a - b) <= (atol + rtol * absolute(b))

The above equation is not symmetric in a and b, so that allclose(a, b) might be different from
allclose(b, a) in some rare cases.

The comparison of a and b uses standard broadcasting, which means that a and b need not have the same shape
in order for allclose(a, b) to evaluate to True. The same is true for equal but not array_equal.

Examples

>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8]) # doctest: +SKIP
False
>>> np.allclose([1e10,1e-8], [1.00001e10,1e-9]) # doctest: +SKIP
True
>>> np.allclose([1e10,1e-8], [1.0001e10,1e-9]) # doctest: +SKIP
False
>>> np.allclose([1.0, np.nan], [1.0, np.nan]) # doctest: +SKIP
False
>>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) # doctest: +SKIP
True

dask.array.angle(x, deg=0)
Return the angle of the complex argument.

Parameters

z [array_like] A complex number or sequence of complex numbers.

deg [bool, optional] Return angle in degrees if True, radians if False (default).

Returns

angle [ndarray or scalar] The counterclockwise angle from the positive real axis on the complex
plane, with dtype as numpy.float64.

..versionchanged:: 1.16.0 This function works on subclasses of ndarray like ma.array.

82 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

See also:

arctan2, absolute

Examples

>>> np.angle([1.0, 1.0j, 1+1j]) # in radians # doctest: +SKIP
array([0. , 1.57079633, 0.78539816])
>>> np.angle(1+1j, deg=True) # in degrees # doctest: +SKIP
45.0

dask.array.any(a, axis=None, out=None, keepdims=<no value>)
Test whether any array element along a given axis evaluates to True.

Returns single boolean unless axis is not None

Parameters

a [array_like] Input array or object that can be converted to an array.

axis [None or int or tuple of ints, optional] Axis or axes along which a logical OR reduction is
performed. The default (axis = None) is to perform a logical OR over all the dimensions of
the input array. axis may be negative, in which case it counts from the last to the first axis.

New in version 1.7.0.

If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis
or all the axes as before.

out [ndarray, optional] Alternate output array in which to place the result. It must have the
same shape as the expected output and its type is preserved (e.g., if it is of type float, then
it will remain so, returning 1.0 for True and 0.0 for False, regardless of the type of a). See
doc.ufuncs (Section “Output arguments”) for details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the any method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

any [bool or ndarray] A new boolean or ndarray is returned unless out is specified, in which
case a reference to out is returned.

See also:

ndarray.any equivalent method

all Test whether all elements along a given axis evaluate to True.

Notes

Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero.

3.7. Array 83

dask Documentation, Release 2.6.0

Examples

>>> np.any([[True, False], [True, True]])
True

>>> np.any([[True, False], [False, False]], axis=0)
array([True, False])

>>> np.any([-1, 0, 5])
True

>>> np.any(np.nan)
True

>>> o=np.array([False])
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
(array([True]), array([True]))
>>> # Check now that z is a reference to o
>>> z is o
True
>>> id(z), id(o) # identity of z and o # doctest: +SKIP
(191614240, 191614240)

dask.array.apply_along_axis(func1d, axis, arr, *args, dtype=None, shape=None, **kwargs)
Apply a function to 1-D slices along the given axis.

This docstring was copied from numpy.apply_along_axis.

Some inconsistencies with the Dask version may exist.

Apply a function to 1-D slices along the given axis. This is a blocked variant of numpy.
apply_along_axis() implemented via dask.array.map_blocks()

func1d [callable] Function to apply to 1-D slices of the array along the given axis

axis [int] Axis along which func1d will be applied

arr [dask array] Dask array to which func1d will be applied

args [any] Additional arguments to func1d.

dtype [str or dtype, optional] The dtype of the output of func1d.

shape [tuple, optional] The shape of the output of func1d.

kwargs [any] Additional keyword arguments for func1d.

Parameters

func1d [function (M,) -> (Nj. . .)] This function should accept 1-D arrays. It is applied to 1-D
slices of arr along the specified axis.

axis [integer] Axis along which arr is sliced.

arr [ndarray (Ni. . . , M, Nk. . .)] Input array.

args [any] Additional arguments to func1d.

kwargs [any] Additional named arguments to func1d.

New in version 1.9.0.

84 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.apply_along_axis.html#numpy.apply_along_axis
https://docs.scipy.org/doc/numpy/reference/generated/numpy.apply_along_axis.html#numpy.apply_along_axis

dask Documentation, Release 2.6.0

Returns

out [ndarray (Ni. . . , Nj. . . , Nk. . .)] The output array. The shape of out is identical to the
shape of arr, except along the axis dimension. This axis is removed, and replaced with new
dimensions equal to the shape of the return value of func1d. So if func1d returns a scalar
out will have one fewer dimensions than arr.

See also:

apply_over_axes Apply a function repeatedly over multiple axes.

Notes

If either of dtype or shape are not provided, Dask attempts to determine them by calling func1d on a dummy
array. This may produce incorrect values for dtype or shape, so we recommend providing them.

Execute func1d(a, *args) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis.

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii, jj, and kk to
a tuple of indices:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
f = func1d(arr[ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex(Nj):

out[ii + jj + kk] = f[jj]

Equivalently, eliminating the inner loop, this can be expressed as:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nk):
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])

Examples

>>> def my_func(a): # doctest: +SKIP
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) # doctest: +SKIP
>>> np.apply_along_axis(my_func, 0, b) # doctest: +SKIP
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b) # doctest: +SKIP
array([2., 5., 8.])

For a function that returns a 1D array, the number of dimensions in outarr is the same as arr.

>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]]) # doctest: +SKIP
>>> np.apply_along_axis(sorted, 1, b) # doctest: +SKIP
array([[1, 7, 8],

[3, 4, 9],
[2, 5, 6]])

3.7. Array 85

dask Documentation, Release 2.6.0

For a function that returns a higher dimensional array, those dimensions are inserted in place of the axis dimen-
sion.

>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) # doctest: +SKIP
>>> np.apply_along_axis(np.diag, -1, b) # doctest: +SKIP
array([[[1, 0, 0],

[0, 2, 0],
[0, 0, 3]],

[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],

[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])

dask.array.apply_over_axes(func, a, axes)
Apply a function repeatedly over multiple axes.

This docstring was copied from numpy.apply_over_axes.

Some inconsistencies with the Dask version may exist.

func is called as res = func(a, axis), where axis is the first element of axes. The result res of the function call must
have either the same dimensions as a or one less dimension. If res has one less dimension than a, a dimension
is inserted before axis. The call to func is then repeated for each axis in axes, with res as the first argument.

Parameters

func [function] This function must take two arguments, func(a, axis).

a [array_like] Input array.

axes [array_like] Axes over which func is applied; the elements must be integers.

Returns

apply_over_axis [ndarray] The output array. The number of dimensions is the same as a, but
the shape can be different. This depends on whether func changes the shape of its output
with respect to its input.

See also:

apply_along_axis Apply a function to 1-D slices of an array along the given axis.

Notes

This function is equivalent to tuple axis arguments to reorderable ufuncs with keepdims=True. Tuple axis
arguments to ufuncs have been available since version 1.7.0.

Examples

>>> a = np.arange(24).reshape(2,3,4) # doctest: +SKIP
>>> a # doctest: +SKIP
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],

[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

86 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Sum over axes 0 and 2. The result has same number of dimensions as the original array:

>>> np.apply_over_axes(np.sum, a, [0,2]) # doctest: +SKIP
array([[[60],

[92],
[124]]])

Tuple axis arguments to ufuncs are equivalent:

>>> np.sum(a, axis=(0,2), keepdims=True) # doctest: +SKIP
array([[[60],

[92],
[124]]])

dask.array.arange(*args, **kwargs)
Return evenly spaced values from start to stop with step size step.

The values are half-open [start, stop), so including start and excluding stop. This is basically the same as
python’s range function but for dask arrays.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use linspace
for these cases.

Parameters

start [int, optional] The starting value of the sequence. The default is 0.

stop [int] The end of the interval, this value is excluded from the interval.

step [int, optional] The spacing between the values. The default is 1 when not specified. The
last value of the sequence.

chunks [int] The number of samples on each block. Note that the last block will have fewer
samples if len(array) % chunks != 0.

dtype [numpy.dtype] Output dtype. Omit to infer it from start, stop, step

Returns

samples [dask array]

See also:

dask.array.linspace

dask.array.arccos(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Trigonometric inverse cosine, element-wise.

The inverse of cos so that, if y = cos(x), then x = arccos(y).

Parameters

x [array_like] x-coordinate on the unit circle. For real arguments, the domain is [-1, 1].

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

3.7. Array 87

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Returns

angle [ndarray] The angle of the ray intersecting the unit circle at the given x-coordinate in
radians [0, pi]. This is a scalar if x is a scalar.

See also:

cos, arctan, arcsin, emath.arccos

Notes

arccos is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x. The
convention is to return the angle z whose real part lies in [0, pi].

For real-valued input data types, arccos always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccos is a complex analytic function that has branch cuts [-inf, -1] and [1, inf] and
is continuous from above on the former and from below on the latter.

The inverse cos is also known as acos or cos^-1.

References

M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 79. http:
//www.math.sfu.ca/~cbm/aands/

Examples

We expect the arccos of 1 to be 0, and of -1 to be pi:

>>> np.arccos([1, -1]) # doctest: +SKIP
array([0. , 3.14159265])

Plot arccos:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> x = np.linspace(-1, 1, num=100) # doctest: +SKIP
>>> plt.plot(x, np.arccos(x)) # doctest: +SKIP
>>> plt.axis('tight') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.arccosh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Inverse hyperbolic cosine, element-wise.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

88 Chapter 3. Complex Algorithms

http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/

dask Documentation, Release 2.6.0

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

arccosh [ndarray] Array of the same shape as x. This is a scalar if x is a scalar.

See also:

cosh, arcsinh, sinh, arctanh, tanh

Notes

arccosh is a multivalued function: for each x there are infinitely many numbers z such that cosh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi] and the real part in [0, inf].

For real-valued input data types, arccosh always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arccosh is a complex analytical function that has a branch cut [-inf, 1] and is contin-
uous from above on it.

References

[1], [2]

Examples

>>> np.arccosh([np.e, 10.0]) # doctest: +SKIP
array([1.65745445, 2.99322285])
>>> np.arccosh(1) # doctest: +SKIP
0.0

dask.array.arcsin(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Inverse sine, element-wise.

Parameters

x [array_like] y-coordinate on the unit circle.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

angle [ndarray] The inverse sine of each element in x, in radians and in the closed interval
[-pi/2, pi/2]. This is a scalar if x is a scalar.

See also:

sin, cos, arccos, tan, arctan, arctan2, emath.arcsin

3.7. Array 89

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Notes

arcsin is a multivalued function: for each x there are infinitely many numbers z such that 𝑠𝑖𝑛(𝑧) = 𝑥. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arcsin always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arcsin is a complex analytic function that has, by convention, the branch cuts [-inf,
-1] and [1, inf] and is continuous from above on the former and from below on the latter.

The inverse sine is also known as asin or sin^{-1}.

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/

Examples

>>> np.arcsin(1) # pi/2 # doctest: +SKIP
1.5707963267948966
>>> np.arcsin(-1) # -pi/2 # doctest: +SKIP
-1.5707963267948966
>>> np.arcsin(0) # doctest: +SKIP
0.0

dask.array.arcsinh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Inverse hyperbolic sine element-wise.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Array of the same shape as x. This is a scalar if x is a scalar.

Notes

arcsinh is a multivalued function: for each x there are infinitely many numbers z such that sinh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arcsinh always returns real output. For each value that cannot be expressed as
a real number or infinity, it returns nan and sets the invalid floating point error flag.

90 Chapter 3. Complex Algorithms

http://www.math.sfu.ca/~cbm/aands/
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

For complex-valued input, arccos is a complex analytical function that has branch cuts [1j, infj] and [-1j, -infj]
and is continuous from the right on the former and from the left on the latter.

The inverse hyperbolic sine is also known as asinh or sinh^-1.

References

[1], [2]

Examples

>>> np.arcsinh(np.array([np.e, 10.0])) # doctest: +SKIP
array([1.72538256, 2.99822295])

dask.array.arctan(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Trigonometric inverse tangent, element-wise.

The inverse of tan, so that if y = tan(x) then x = arctan(y).

Parameters

x [array_like]

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Out has the same shape as x. Its real part is in [-pi/2, pi/2]
(arctan(+/-inf) returns +/-pi/2). This is a scalar if x is a scalar.

See also:

arctan2 The “four quadrant” arctan of the angle formed by (x, y) and the positive x-axis.

angle Argument of complex values.

Notes

arctan is a multi-valued function: for each x there are infinitely many numbers z such that tan(z) = x. The
convention is to return the angle z whose real part lies in [-pi/2, pi/2].

For real-valued input data types, arctan always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctan is a complex analytic function that has [1j, infj] and [-1j, -infj] as branch cuts,
and is continuous from the left on the former and from the right on the latter.

The inverse tangent is also known as atan or tan^{-1}.

3.7. Array 91

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

References

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, 10th printing, New York: Dover,
1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/

Examples

We expect the arctan of 0 to be 0, and of 1 to be pi/4:

>>> np.arctan([0, 1]) # doctest: +SKIP
array([0. , 0.78539816])

>>> np.pi/4 # doctest: +SKIP
0.78539816339744828

Plot arctan:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> x = np.linspace(-10, 10) # doctest: +SKIP
>>> plt.plot(x, np.arctan(x)) # doctest: +SKIP
>>> plt.axis('tight') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.arctan2(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Element-wise arc tangent of x1/x2 choosing the quadrant correctly.

The quadrant (i.e., branch) is chosen so that arctan2(x1, x2) is the signed angle in radians between the
ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through
the point (x2, x1). (Note the role reversal: the “y-coordinate” is the first function parameter, the “x-coordinate”
is the second.) By IEEE convention, this function is defined for x2 = +/-0 and for either or both of x1 and x2 =
+/-inf (see Notes for specific values).

This function is not defined for complex-valued arguments; for the so-called argument of complex values, use
angle.

Parameters

x1 [array_like, real-valued] y-coordinates.

x2 [array_like, real-valued] x-coordinates. x2 must be broadcastable to match the shape of x1
or vice versa.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

angle [ndarray] Array of angles in radians, in the range [-pi, pi]. This is a scalar if both
x1 and x2 are scalars.

92 Chapter 3. Complex Algorithms

http://www.math.sfu.ca/~cbm/aands/
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

See also:

arctan, tan, angle

Notes

arctan2 is identical to the atan2 function of the underlying C library. The following special values are defined
in the C standard: [1]

x1 x2 arctan2(x1,x2)
+/- 0 +0 +/- 0
+/- 0 -0 +/- pi
> 0 +/-inf +0 / +pi
< 0 +/-inf -0 / -pi
+/-inf +inf +/- (pi/4)
+/-inf -inf +/- (3*pi/4)

Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf.

References

[1]

Examples

Consider four points in different quadrants:

>>> x = np.array([-1, +1, +1, -1]) # doctest: +SKIP
>>> y = np.array([-1, -1, +1, +1]) # doctest: +SKIP
>>> np.arctan2(y, x) * 180 / np.pi # doctest: +SKIP
array([-135., -45., 45., 135.])

Note the order of the parameters. arctan2 is defined also when x2 = 0 and at several other special points,
obtaining values in the range [-pi, pi]:

>>> np.arctan2([1., -1.], [0., 0.]) # doctest: +SKIP
array([1.57079633, -1.57079633])
>>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf]) # doctest: +SKIP
array([0. , 3.14159265, 0.78539816])

dask.array.arctanh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Inverse hyperbolic tangent element-wise.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

3.7. Array 93

dask Documentation, Release 2.6.0

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Array of the same shape as x. This is a scalar if x is a scalar.

See also:

emath.arctanh

Notes

arctanh is a multivalued function: for each x there are infinitely many numbers z such that tanh(z) = x. The
convention is to return the z whose imaginary part lies in [-pi/2, pi/2].

For real-valued input data types, arctanh always returns real output. For each value that cannot be expressed as
a real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, arctanh is a complex analytical function that has branch cuts [-1, -inf] and [1, inf]
and is continuous from above on the former and from below on the latter.

The inverse hyperbolic tangent is also known as atanh or tanh^-1.

References

[1], [2]

Examples

>>> np.arctanh([0, -0.5]) # doctest: +SKIP
array([0. , -0.54930614])

dask.array.argmax(a, axis=None, out=None)
Returns the indices of the maximum values along an axis.

Parameters

a [array_like] Input array.

axis [int, optional] By default, the index is into the flattened array, otherwise along the specified
axis.

out [array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

Returns

index_array [ndarray of ints] Array of indices into the array. It has the same shape as a.shape
with the dimension along axis removed.

See also:

ndarray.argmax, argmin

amax The maximum value along a given axis.

unravel_index Convert a flat index into an index tuple.

94 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Notes

In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are
returned.

Examples

>>> a = np.arange(6).reshape(2,3) + 10
>>> a
array([[10, 11, 12],

[13, 14, 15]])
>>> np.argmax(a)
5
>>> np.argmax(a, axis=0)
array([1, 1, 1])
>>> np.argmax(a, axis=1)
array([2, 2])

Indexes of the maximal elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape)
>>> ind
(1, 2)
>>> a[ind]
15

>>> b = np.arange(6)
>>> b[1] = 5
>>> b
array([0, 5, 2, 3, 4, 5])
>>> np.argmax(b) # Only the first occurrence is returned.
1

dask.array.argmin(a, axis=None, out=None)
Returns the indices of the minimum values along an axis.

Parameters

a [array_like] Input array.

axis [int, optional] By default, the index is into the flattened array, otherwise along the specified
axis.

out [array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

Returns

index_array [ndarray of ints] Array of indices into the array. It has the same shape as a.shape
with the dimension along axis removed.

See also:

ndarray.argmin, argmax

amin The minimum value along a given axis.

unravel_index Convert a flat index into an index tuple.

3.7. Array 95

dask Documentation, Release 2.6.0

Notes

In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are
returned.

Examples

>>> a = np.arange(6).reshape(2,3) + 10
>>> a
array([[10, 11, 12],

[13, 14, 15]])
>>> np.argmin(a)
0
>>> np.argmin(a, axis=0)
array([0, 0, 0])
>>> np.argmin(a, axis=1)
array([0, 0])

Indices of the minimum elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape)
>>> ind
(0, 0)
>>> a[ind]
10

>>> b = np.arange(6) + 10
>>> b[4] = 10
>>> b
array([10, 11, 12, 13, 10, 15])
>>> np.argmin(b) # Only the first occurrence is returned.
0

dask.array.argtopk(a, k, axis=-1, split_every=None)
Extract the indices of the k largest elements from a on the given axis, and return them sorted from largest to
smallest. If k is negative, extract the indices of the -k smallest elements instead, and return them sorted from
smallest to largest.

This performs best when k is much smaller than the chunk size. All results will be returned in a single chunk
along the given axis.

Parameters

x: Array Data being sorted

k: int

axis: int, optional

split_every: int >=2, optional See topk(). The performance considerations for topk also
apply here.

Returns

Selection of np.intp indices of x with size abs(k) along the given axis.

96 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> import dask.array as da
>>> x = np.array([5, 1, 3, 6])
>>> d = da.from_array(x, chunks=2)
>>> d.argtopk(2).compute()
array([3, 0])
>>> d.argtopk(-2).compute()
array([1, 2])

dask.array.argwhere(a)
Find the indices of array elements that are non-zero, grouped by element.

This docstring was copied from numpy.argwhere.

Some inconsistencies with the Dask version may exist.

Parameters

a [array_like] Input data.

Returns

index_array [ndarray] Indices of elements that are non-zero. Indices are grouped by element.

See also:

where, nonzero

Notes

np.argwhere(a) is the same as np.transpose(np.nonzero(a)).

The output of argwhere is not suitable for indexing arrays. For this purpose use nonzero(a) instead.

Examples

>>> x = np.arange(6).reshape(2,3) # doctest: +SKIP
>>> x # doctest: +SKIP
array([[0, 1, 2],

[3, 4, 5]])
>>> np.argwhere(x>1) # doctest: +SKIP
array([[0, 2],

[1, 0],
[1, 1],
[1, 2]])

dask.array.around(x, decimals=0)
Evenly round to the given number of decimals.

This docstring was copied from numpy.around.

Some inconsistencies with the Dask version may exist.

Parameters

a [array_like (Not supported in Dask)] Input data.

decimals [int, optional] Number of decimal places to round to (default: 0). If decimals is
negative, it specifies the number of positions to the left of the decimal point.

3.7. Array 97

dask Documentation, Release 2.6.0

out [ndarray, optional (Not supported in Dask)] Alternative output array in which to place the
result. It must have the same shape as the expected output, but the type of the output values
will be cast if necessary. See doc.ufuncs (Section “Output arguments”) for details.

Returns

rounded_array [ndarray] An array of the same type as a, containing the rounded values. Unless
out was specified, a new array is created. A reference to the result is returned.

The real and imaginary parts of complex numbers are rounded separately. The result of
rounding a float is a float.

See also:

ndarray.round equivalent method

ceil, fix, floor, rint, trunc

Notes

For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus
1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. Results may also be surprising due to the inexact
representation of decimal fractions in the IEEE floating point standard [1] and errors introduced when scaling
by powers of ten.

References

[1], [2]

Examples

>>> np.around([0.37, 1.64]) # doctest: +SKIP
array([0., 2.])
>>> np.around([0.37, 1.64], decimals=1) # doctest: +SKIP
array([0.4, 1.6])
>>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value #
→˓doctest: +SKIP
array([0., 2., 2., 4., 4.])
>>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned # doctest:
→˓+SKIP
array([1, 2, 3, 11])
>>> np.around([1,2,3,11], decimals=-1) # doctest: +SKIP
array([0, 0, 0, 10])

dask.array.array(object, dtype=None, copy=True, order=’K’, subok=False, ndmin=0)
This docstring was copied from numpy.array.

Some inconsistencies with the Dask version may exist.

Create an array.

Parameters

object [array_like] An array, any object exposing the array interface, an object whose __array__
method returns an array, or any (nested) sequence.

98 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dtype [data-type, optional] The desired data-type for the array. If not given, then the type will be
determined as the minimum type required to hold the objects in the sequence. This argument
can only be used to ‘upcast’ the array. For downcasting, use the .astype(t) method.

copy [bool, optional] If true (default), then the object is copied. Otherwise, a copy will only
be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to
satisfy any of the other requirements (dtype, order, etc.).

order [{‘K’, ‘A’, ‘C’, ‘F’}, optional] Specify the memory layout of the array. If object is not
an array, the newly created array will be in C order (row major) unless ‘F’ is specified, in
which case it will be in Fortran order (column major). If object is an array the following
holds.

order no copy copy=True
‘K’ unchanged F & C order preserved, otherwise most similar order
‘A’ unchanged F order if input is F and not C, otherwise C order
‘C’ C order C order
‘F’ F order F order

When copy=False and a copy is made for other reasons, the result is the same as if
copy=True, with some exceptions for A, see the Notes section. The default order is ‘K’.

subok [bool, optional] If True, then sub-classes will be passed-through, otherwise the returned
array will be forced to be a base-class array (default).

ndmin [int, optional] Specifies the minimum number of dimensions that the resulting array
should have. Ones will be pre-pended to the shape as needed to meet this requirement.

Returns

out [ndarray] An array object satisfying the specified requirements.

See also:

empty_like Return an empty array with shape and type of input.

ones_like Return an array of ones with shape and type of input.

zeros_like Return an array of zeros with shape and type of input.

full_like Return a new array with shape of input filled with value.

empty Return a new uninitialized array.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

Notes

When order is ‘A’ and object is an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in dtype,
then the order of the result is not necessarily ‘C’ as expected. This is likely a bug.

Examples

3.7. Array 99

dask Documentation, Release 2.6.0

>>> np.array([1, 2, 3]) # doctest: +SKIP
array([1, 2, 3])

Upcasting:

>>> np.array([1, 2, 3.0]) # doctest: +SKIP
array([1., 2., 3.])

More than one dimension:

>>> np.array([[1, 2], [3, 4]]) # doctest: +SKIP
array([[1, 2],

[3, 4]])

Minimum dimensions 2:

>>> np.array([1, 2, 3], ndmin=2) # doctest: +SKIP
array([[1, 2, 3]])

Type provided:

>>> np.array([1, 2, 3], dtype=complex) # doctest: +SKIP
array([1.+0.j, 2.+0.j, 3.+0.j])

Data-type consisting of more than one element:

>>> x = np.array([(1,2),(3,4)],dtype=[('a','<i4'),('b','<i4')]) # doctest: +SKIP
>>> x['a'] # doctest: +SKIP
array([1, 3])

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4')) # doctest: +SKIP
array([[1, 2],

[3, 4]])

>>> np.array(np.mat('1 2; 3 4'), subok=True) # doctest: +SKIP
matrix([[1, 2],

[3, 4]])

dask.array.asanyarray(a)
Convert the input to a dask array.

Subclasses of np.ndarray will be passed through as chunks unchanged.

Parameters

a [array-like] Input data, in any form that can be converted to a dask array.

Returns

out [dask array] Dask array interpretation of a.

Examples

100 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> import dask.array as da
>>> import numpy as np
>>> x = np.arange(3)
>>> da.asanyarray(x)
dask.array<array, shape=(3,), dtype=int64, chunksize=(3,), chunktype=numpy.
→˓ndarray>

>>> y = [[1, 2, 3], [4, 5, 6]]
>>> da.asanyarray(y)
dask.array<array, shape=(2, 3), dtype=int64, chunksize=(2, 3), chunktype=numpy.
→˓ndarray>

dask.array.asarray(a, **kwargs)
Convert the input to a dask array.

Parameters

a [array-like] Input data, in any form that can be converted to a dask array.

Returns

out [dask array] Dask array interpretation of a.

Examples

>>> import dask.array as da
>>> import numpy as np
>>> x = np.arange(3)
>>> da.asarray(x)
dask.array<array, shape=(3,), dtype=int64, chunksize=(3,), chunktype=numpy.
→˓ndarray>

>>> y = [[1, 2, 3], [4, 5, 6]]
>>> da.asarray(y)
dask.array<array, shape=(2, 3), dtype=int64, chunksize=(2, 3), chunktype=numpy.
→˓ndarray>

dask.array.atleast_1d(*arys)
Convert inputs to arrays with at least one dimension.

This docstring was copied from numpy.atleast_1d.

Some inconsistencies with the Dask version may exist.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters

arys1, arys2, . . . [array_like] One or more input arrays.

Returns

ret [ndarray] An array, or list of arrays, each with a.ndim >= 1. Copies are made only if
necessary.

See also:

atleast_2d, atleast_3d

3.7. Array 101

dask Documentation, Release 2.6.0

Examples

>>> np.atleast_1d(1.0) # doctest: +SKIP
array([1.])

>>> x = np.arange(9.0).reshape(3,3) # doctest: +SKIP
>>> np.atleast_1d(x) # doctest: +SKIP
array([[0., 1., 2.],

[3., 4., 5.],
[6., 7., 8.]])

>>> np.atleast_1d(x) is x # doctest: +SKIP
True

>>> np.atleast_1d(1, [3, 4]) # doctest: +SKIP
[array([1]), array([3, 4])]

dask.array.atleast_2d(*arys)
View inputs as arrays with at least two dimensions.

This docstring was copied from numpy.atleast_2d.

Some inconsistencies with the Dask version may exist.

Parameters

arys1, arys2, . . . [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have two or more dimensions are preserved.

Returns

res, res2, . . . [ndarray] An array, or list of arrays, each with a.ndim >= 2. Copies are
avoided where possible, and views with two or more dimensions are returned.

See also:

atleast_1d, atleast_3d

Examples

>>> np.atleast_2d(3.0) # doctest: +SKIP
array([[3.]])

>>> x = np.arange(3.0) # doctest: +SKIP
>>> np.atleast_2d(x) # doctest: +SKIP
array([[0., 1., 2.]])
>>> np.atleast_2d(x).base is x # doctest: +SKIP
True

>>> np.atleast_2d(1, [1, 2], [[1, 2]]) # doctest: +SKIP
[array([[1]]), array([[1, 2]]), array([[1, 2]])]

dask.array.atleast_3d(*arys)
View inputs as arrays with at least three dimensions.

This docstring was copied from numpy.atleast_3d.

Some inconsistencies with the Dask version may exist.

Parameters

102 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

arys1, arys2, . . . [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have three or more dimensions are preserved.

Returns

res1, res2, . . . [ndarray] An array, or list of arrays, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are returned. For example,
a 1-D array of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape
(M, N) becomes a view of shape (M, N, 1).

See also:

atleast_1d, atleast_2d

Examples

>>> np.atleast_3d(3.0) # doctest: +SKIP
array([[[3.]]])

>>> x = np.arange(3.0) # doctest: +SKIP
>>> np.atleast_3d(x).shape # doctest: +SKIP
(1, 3, 1)

>>> x = np.arange(12.0).reshape(4,3) # doctest: +SKIP
>>> np.atleast_3d(x).shape # doctest: +SKIP
(4, 3, 1)
>>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself #
→˓doctest: +SKIP
True

>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]): # doctest: +SKIP
... print(arr, arr.shape)
...
[[[1]
[2]]] (1, 2, 1)

[[[1]
[2]]] (1, 2, 1)

[[[1 2]]] (1, 1, 2)

dask.array.average(a, axis=None, weights=None, returned=False)
Compute the weighted average along the specified axis.

This docstring was copied from numpy.average.

Some inconsistencies with the Dask version may exist.

Parameters

a [array_like] Array containing data to be averaged. If a is not an array, a conversion is at-
tempted.

axis [None or int or tuple of ints, optional] Axis or axes along which to average a. The default,
axis=None, will average over all of the elements of the input array. If axis is negative it
counts from the last to the first axis.

New in version 1.7.0.

If axis is a tuple of ints, averaging is performed on all of the axes specified in the tuple
instead of a single axis or all the axes as before.

3.7. Array 103

dask Documentation, Release 2.6.0

weights [array_like, optional] An array of weights associated with the values in a. Each value
in a contributes to the average according to its associated weight. The weights array can
either be 1-D (in which case its length must be the size of a along the given axis) or of the
same shape as a. If weights=None, then all data in a are assumed to have a weight equal to
one.

returned [bool, optional] Default is False. If True, the tuple (average, sum_of_weights) is re-
turned, otherwise only the average is returned. If weights=None, sum_of_weights is equiv-
alent to the number of elements over which the average is taken.

Returns

retval, [sum_of_weights] [array_type or double] Return the average along the specified axis.
When returned is True, return a tuple with the average as the first element and the sum of
the weights as the second element. sum_of_weights is of the same type as retval. The result
dtype follows a genereal pattern. If weights is None, the result dtype will be that of a ,
or float64 if a is integral. Otherwise, if weights is not None and a is non- integral, the
result type will be the type of lowest precision capable of representing values of both a and
weights. If a happens to be integral, the previous rules still applies but the result dtype will
at least be float64.

Raises

ZeroDivisionError When all weights along axis are zero. See numpy.ma.average for a version
robust to this type of error.

TypeError When the length of 1D weights is not the same as the shape of a along axis.

See also:

mean

ma.average average for masked arrays – useful if your data contains “missing” values

numpy.result_type Returns the type that results from applying the numpy type promotion rules to the
arguments.

Examples

>>> data = range(1,5) # doctest: +SKIP
>>> data # doctest: +SKIP
[1, 2, 3, 4]
>>> np.average(data) # doctest: +SKIP
2.5
>>> np.average(range(1,11), weights=range(10,0,-1)) # doctest: +SKIP
4.0

>>> data = np.arange(6).reshape((3,2)) # doctest: +SKIP
>>> data # doctest: +SKIP
array([[0, 1],

[2, 3],
[4, 5]])

>>> np.average(data, axis=1, weights=[1./4, 3./4]) # doctest: +SKIP
array([0.75, 2.75, 4.75])
>>> np.average(data, weights=[1./4, 3./4]) # doctest: +SKIP

Traceback (most recent call last): . . . TypeError: Axis must be specified when shapes of a and weights differ.

104 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.result_type.html#numpy.result_type

dask Documentation, Release 2.6.0

>>> a = np.ones(5, dtype=np.float128) # doctest: +SKIP
>>> w = np.ones(5, dtype=np.complex64) # doctest: +SKIP
>>> avg = np.average(a, weights=w) # doctest: +SKIP
>>> print(avg.dtype) # doctest: +SKIP
complex256

dask.array.bincount(x, weights=None, minlength=0)
This docstring was copied from numpy.bincount.

Some inconsistencies with the Dask version may exist.

Count number of occurrences of each value in array of non-negative ints.

The number of bins (of size 1) is one larger than the largest value in x. If minlength is specified, there will be
at least this number of bins in the output array (though it will be longer if necessary, depending on the contents
of x). Each bin gives the number of occurrences of its index value in x. If weights is specified the input array is
weighted by it, i.e. if a value n is found at position i, out[n] += weight[i] instead of out[n] += 1.

Parameters

x [array_like, 1 dimension, nonnegative ints] Input array.

weights [array_like, optional] Weights, array of the same shape as x.

minlength [int, optional] A minimum number of bins for the output array.

New in version 1.6.0.

Returns

out [ndarray of ints] The result of binning the input array. The length of out is equal to np.
amax(x)+1.

Raises

ValueError If the input is not 1-dimensional, or contains elements with negative values, or if
minlength is negative.

TypeError If the type of the input is float or complex.

See also:

histogram, digitize, unique

Examples

>>> np.bincount(np.arange(5)) # doctest: +SKIP
array([1, 1, 1, 1, 1])
>>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) # doctest: +SKIP
array([1, 3, 1, 1, 0, 0, 0, 1])

>>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) # doctest: +SKIP
>>> np.bincount(x).size == np.amax(x)+1 # doctest: +SKIP
True

The input array needs to be of integer dtype, otherwise a TypeError is raised:

>>> np.bincount(np.arange(5, dtype=float)) # doctest: +SKIP
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: array cannot be safely cast to required type

3.7. Array 105

dask Documentation, Release 2.6.0

A possible use of bincount is to perform sums over variable-size chunks of an array, using the weights
keyword.

>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights # doctest: +SKIP
>>> x = np.array([0, 1, 1, 2, 2, 2]) # doctest: +SKIP
>>> np.bincount(x, weights=w) # doctest: +SKIP
array([0.3, 0.7, 1.1])

dask.array.bitwise_and(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Compute the bit-wise AND of two arrays element-wise.

Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator &.

Parameters

x1, x2 [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.

See also:

logical_and, bitwise_or, bitwise_xor

binary_repr Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise AND
of 13 and 17 is therefore 000000001, or 1:

>>> np.bitwise_and(13, 17) # doctest: +SKIP
1

>>> np.bitwise_and(14, 13) # doctest: +SKIP
12
>>> np.binary_repr(12) # doctest: +SKIP
'1100'
>>> np.bitwise_and([14,3], 13) # doctest: +SKIP
array([12, 1])

>>> np.bitwise_and([11,7], [4,25]) # doctest: +SKIP
array([0, 1])
>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16])) # doctest: +SKIP
array([2, 4, 16])
>>> np.bitwise_and([True, True], [False, True]) # doctest: +SKIP
array([False, True])

106 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

dask.array.bitwise_not(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator ~.

For signed integer inputs, the two’s complement is returned. In a two’s-complement system negative numbers
are represented by the two’s complement of the absolute value. This is the most common method of representing
signed integers on computers [1]. A N-bit two’s-complement system can represent every integer in the range
−2𝑁−1 to +2𝑁−1 − 1.

Parameters

x [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Result. This is a scalar if x is a scalar.

See also:

bitwise_and, bitwise_or, bitwise_xor, logical_not

binary_repr Return the binary representation of the input number as a string.

Notes

bitwise_not is an alias for invert:

>>> np.bitwise_not is np.invert # doctest: +SKIP
True

References

[1]

Examples

We’ve seen that 13 is represented by 00001101. The invert or bit-wise NOT of 13 is then:

>>> np.invert(np.array([13], dtype=uint8)) # doctest: +SKIP
array([242], dtype=uint8)
>>> np.binary_repr(x, width=8) # doctest: +SKIP
'00001101'
>>> np.binary_repr(242, width=8) # doctest: +SKIP
'11110010'

The result depends on the bit-width:

3.7. Array 107

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

>>> np.invert(np.array([13], dtype=uint16)) # doctest: +SKIP
array([65522], dtype=uint16)
>>> np.binary_repr(x, width=16) # doctest: +SKIP
'0000000000001101'
>>> np.binary_repr(65522, width=16) # doctest: +SKIP
'1111111111110010'

When using signed integer types the result is the two’s complement of the result for the unsigned type:

>>> np.invert(np.array([13], dtype=int8)) # doctest: +SKIP
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8) # doctest: +SKIP
'11110010'

Booleans are accepted as well:

>>> np.invert(array([True, False])) # doctest: +SKIP
array([False, True])

dask.array.bitwise_or(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator |.

Parameters

x1, x2 [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.

See also:

logical_or, bitwise_and, bitwise_xor

binary_repr Return the binary representation of the input number as a string.

Examples

The number 13 has the binaray representation 00001101. Likewise, 16 is represented by 00010000. The
bit-wise OR of 13 and 16 is then 000111011, or 29:

>>> np.bitwise_or(13, 16) # doctest: +SKIP
29
>>> np.binary_repr(29) # doctest: +SKIP
'11101'

108 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

>>> np.bitwise_or(32, 2) # doctest: +SKIP
34
>>> np.bitwise_or([33, 4], 1) # doctest: +SKIP
array([33, 5])
>>> np.bitwise_or([33, 4], [1, 2]) # doctest: +SKIP
array([33, 6])

>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) # doctest: +SKIP
array([6, 5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4]) # doctest: +SKIP
array([6, 5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647L], dtype=np.int32), # doctest:
→˓+SKIP
... np.array([4, 4, 4, 2147483647L], dtype=np.int32))
array([6, 5, 255, 2147483647])
>>> np.bitwise_or([True, True], [False, True]) # doctest: +SKIP
array([True, True])

dask.array.bitwise_xor(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator ^.

Parameters

x1, x2 [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Result. This is a scalar if both x1 and x2 are scalars.

See also:

logical_xor, bitwise_and, bitwise_or

binary_repr Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise XOR
of 13 and 17 is therefore 00011100, or 28:

>>> np.bitwise_xor(13, 17) # doctest: +SKIP
28
>>> np.binary_repr(28) # doctest: +SKIP
'11100'

3.7. Array 109

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

>>> np.bitwise_xor(31, 5) # doctest: +SKIP
26
>>> np.bitwise_xor([31,3], 5) # doctest: +SKIP
array([26, 6])

>>> np.bitwise_xor([31,3], [5,6]) # doctest: +SKIP
array([26, 5])
>>> np.bitwise_xor([True, True], [False, True]) # doctest: +SKIP
array([True, False])

dask.array.block(arrays, allow_unknown_chunksizes=False)
Assemble an nd-array from nested lists of blocks.

Blocks in the innermost lists are concatenated along the last dimension (-1), then these are concatenated along
the second-last dimension (-2), and so on until the outermost list is reached

Blocks can be of any dimension, but will not be broadcasted using the normal rules. Instead, leading axes of
size 1 are inserted, to make block.ndim the same for all blocks. This is primarily useful for working with
scalars, and means that code like block([v, 1]) is valid, where v.ndim == 1.

When the nested list is two levels deep, this allows block matrices to be constructed from their components.

Parameters

arrays [nested list of array_like or scalars (but not tuples)] If passed a single ndarray or scalar
(a nested list of depth 0), this is returned unmodified (and not copied).

Elements shapes must match along the appropriate axes (without broadcasting), but leading
1s will be prepended to the shape as necessary to make the dimensions match.

allow_unknown_chunksizes: bool Allow unknown chunksizes, such as come from converting
from dask dataframes. Dask.array is unable to verify that chunks line up. If data comes
from differently aligned sources then this can cause unexpected results.

Returns

block_array [ndarray] The array assembled from the given blocks.

The dimensionality of the output is equal to the greatest of: * the dimensionality of all the
inputs * the depth to which the input list is nested

Raises

ValueError

• If list depths are mismatched - for instance, [[a, b], c] is illegal, and should be spelt
[[a, b], [c]]

• If lists are empty - for instance, [[a, b], []]

See also:

concatenate Join a sequence of arrays together.

stack Stack arrays in sequence along a new dimension.

hstack Stack arrays in sequence horizontally (column wise).

vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third dimension).

vsplit Split array into a list of multiple sub-arrays vertically.

110 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

When called with only scalars, block is equivalent to an ndarray call. So block([[1, 2], [3, 4]]) is
equivalent to array([[1, 2], [3, 4]]).

This function does not enforce that the blocks lie on a fixed grid. block([[a, b], [c, d]]) is not
restricted to arrays of the form:

AAAbb
AAAbb
cccDD

But is also allowed to produce, for some a, b, c, d:

AAAbb
AAAbb
cDDDD

Since concatenation happens along the last axis first, block is _not_ capable of producing the following directly:

AAAbb
cccbb
cccDD

Matlab’s “square bracket stacking”, [A, B, ...; p, q, ...], is equivalent to block([[A, B, ..
.], [p, q, ...]]).

dask.array.blockwise(func, out_ind, *args, name=None, token=None, dtype=None, ad-
just_chunks=None, new_axes=None, align_arrays=True, concatenate=None,
meta=None, **kwargs)

Tensor operation: Generalized inner and outer products

A broad class of blocked algorithms and patterns can be specified with a concise multi-index notation. The
blockwise function applies an in-memory function across multiple blocks of multiple inputs in a variety of
ways. Many dask.array operations are special cases of blockwise including elementwise, broadcasting, reduc-
tions, tensordot, and transpose.

Parameters

func [callable] Function to apply to individual tuples of blocks

out_ind [iterable] Block pattern of the output, something like ‘ijk’ or (1, 2, 3)

*args [sequence of Array, index pairs] Sequence like (x, ‘ij’, y, ‘jk’, z, ‘i’)

**kwargs [dict] Extra keyword arguments to pass to function

dtype [np.dtype] Datatype of resulting array.

concatenate [bool, keyword only] If true concatenate arrays along dummy indices, else provide
lists

adjust_chunks [dict] Dictionary mapping index to function to be applied to chunk sizes

new_axes [dict, keyword only] New indexes and their dimension lengths

Examples

2D embarrassingly parallel operation from two arrays, x, and y.

3.7. Array 111

dask Documentation, Release 2.6.0

>>> z = blockwise(operator.add, 'ij', x, 'ij', y, 'ij', dtype='f8') # z = x + y
→˓# doctest: +SKIP

Outer product multiplying x by y, two 1-d vectors

>>> z = blockwise(operator.mul, 'ij', x, 'i', y, 'j', dtype='f8') # doctest:
→˓+SKIP

z = x.T

>>> z = blockwise(np.transpose, 'ji', x, 'ij', dtype=x.dtype) # doctest: +SKIP

The transpose case above is illustrative because it does same transposition both on each in-memory block by
calling np.transpose and on the order of the blocks themselves, by switching the order of the index ij ->
ji.

We can compose these same patterns with more variables and more complex in-memory functions

z = X + Y.T

>>> z = blockwise(lambda x, y: x + y.T, 'ij', x, 'ij', y, 'ji', dtype='f8') #
→˓doctest: +SKIP

Any index, like i missing from the output index is interpreted as a contraction (note that this differs from
Einstein convention; repeated indices do not imply contraction.) In the case of a contraction the passed function
should expect an iterable of blocks on any array that holds that index. To receive arrays concatenated along
contracted dimensions instead pass concatenate=True.

Inner product multiplying x by y, two 1-d vectors

>>> def sequence_dot(x_blocks, y_blocks):
... result = 0
... for x, y in zip(x_blocks, y_blocks):
... result += x.dot(y)
... return result

>>> z = blockwise(sequence_dot, '', x, 'i', y, 'i', dtype='f8') # doctest: +SKIP

Add new single-chunk dimensions with the new_axes= keyword, including the length of the new dimension.
New dimensions will always be in a single chunk.

>>> def f(x):
... return x[:, None] * np.ones((1, 5))

>>> z = blockwise(f, 'az', x, 'a', new_axes={'z': 5}, dtype=x.dtype) # doctest:
→˓+SKIP

New dimensions can also be multi-chunk by specifying a tuple of chunk sizes. This has limited utility as is
(because the chunks are all the same), but the resulting graph can be modified to achieve more useful results
(see da.map_blocks).

>>> z = blockwise(f, 'az', x, 'a', new_axes={'z': (5, 5)}, dtype=x.dtype) #
→˓doctest: +SKIP

If the applied function changes the size of each chunk you can specify this with a adjust_chunks={...}
dictionary holding a function for each index that modifies the dimension size in that index.

112 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> def double(x):
... return np.concatenate([x, x])

>>> y = blockwise(double, 'ij', x, 'ij',
... adjust_chunks={'i': lambda n: 2 * n}, dtype=x.dtype) #
→˓doctest: +SKIP

Include literals by indexing with None

>>> y = blockwise(add, 'ij', x, 'ij', 1234, None, dtype=x.dtype) # doctest: +SKIP

dask.array.broadcast_arrays(*args, **kwargs)
Broadcast any number of arrays against each other.

This docstring was copied from numpy.broadcast_arrays.

Some inconsistencies with the Dask version may exist.

Parameters

‘*args‘ [array_likes] The arrays to broadcast.

subok [bool, optional] If True, then sub-classes will be passed-through, otherwise the returned
arrays will be forced to be a base-class array (default).

Returns

broadcasted [list of arrays] These arrays are views on the original arrays. They are typically
not contiguous. Furthermore, more than one element of a broadcasted array may refer to a
single memory location. If you need to write to the arrays, make copies first.

Examples

>>> x = np.array([[1,2,3]]) # doctest: +SKIP
>>> y = np.array([[4],[5]]) # doctest: +SKIP
>>> np.broadcast_arrays(x, y) # doctest: +SKIP
[array([[1, 2, 3],

[1, 2, 3]]), array([[4, 4, 4],
[5, 5, 5]])]

Here is a useful idiom for getting contiguous copies instead of non-contiguous views.

>>> [np.array(a) for a in np.broadcast_arrays(x, y)] # doctest: +SKIP
[array([[1, 2, 3],

[1, 2, 3]]), array([[4, 4, 4],
[5, 5, 5]])]

dask.array.broadcast_to(x, shape, chunks=None)
Broadcast an array to a new shape.

Parameters

x [array_like] The array to broadcast.

shape [tuple] The shape of the desired array.

chunks [tuple, optional] If provided, then the result will use these chunks instead of the same
chunks as the source array. Setting chunks explicitly as part of broadcast_to is more efficient
than rechunking afterwards. Chunks are only allowed to differ from the original shape along
dimensions that are new on the result or have size 1 the input array.

3.7. Array 113

dask Documentation, Release 2.6.0

Returns

broadcast [dask array]

See also:

numpy.broadcast_to()

dask.array.coarsen(reduction, x, axes, trim_excess=False)
Coarsen array by applying reduction to fixed size neighborhoods

Parameters

reduction: function Function like np.sum, np.mean, etc. . .

x: np.ndarray Array to be coarsened

axes: dict Mapping of axis to coarsening factor

Examples

>>> x = np.array([1, 2, 3, 4, 5, 6])
>>> coarsen(np.sum, x, {0: 2})
array([3, 7, 11])
>>> coarsen(np.max, x, {0: 3})
array([3, 6])

Provide dictionary of scale per dimension

>>> x = np.arange(24).reshape((4, 6))
>>> x
array([[0, 1, 2, 3, 4, 5],

[6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 21, 22, 23]])

>>> coarsen(np.min, x, {0: 2, 1: 3})
array([[0, 3],

[12, 15]])

You must avoid excess elements explicitly

>>> x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
>>> coarsen(np.min, x, {0: 3}, trim_excess=True)
array([1, 4])

dask.array.ceil(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the ceiling of the input, element-wise.

The ceil of the scalar x is the smallest integer i, such that i >= x. It is often denoted as ⌈𝑥⌉.

Parameters

x [array_like] Input data.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

114 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast_to.html#numpy.broadcast_to

dask Documentation, Release 2.6.0

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The ceiling of each element in x, with float dtype. This is a scalar if x is a
scalar.

See also:

floor, trunc, rint

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) # doctest: +SKIP
>>> np.ceil(a) # doctest: +SKIP
array([-1., -1., -0., 1., 2., 2., 2.])

dask.array.choose(a, choices)
Construct an array from an index array and a set of arrays to choose from.

This docstring was copied from numpy.choose.

Some inconsistencies with the Dask version may exist.

First of all, if confused or uncertain, definitely look at the Examples - in its full generality, this function is less
simple than it might seem from the following code description (below ndi = numpy.lib.index_tricks):

np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)]).

But this omits some subtleties. Here is a fully general summary:

Given an “index” array (a) of integers and a sequence of n arrays (choices), a and each choice array are first
broadcast, as necessary, to arrays of a common shape; calling these Ba and Bchoices[i], i = 0,. . . ,n-1 we have
that, necessarily, Ba.shape == Bchoices[i].shape for each i. Then, a new array with shape Ba.
shape is created as follows:

• if mode=raise (the default), then, first of all, each element of a (and thus Ba) must be in the range [0,
n-1]; now, suppose that i (in that range) is the value at the (j0, j1, . . . , jm) position in Ba - then the value at
the same position in the new array is the value in Bchoices[i] at that same position;

• if mode=wrap, values in a (and thus Ba) may be any (signed) integer; modular arithmetic is used to map
integers outside the range [0, n-1] back into that range; and then the new array is constructed as above;

• if mode=clip, values in a (and thus Ba) may be any (signed) integer; negative integers are mapped to 0;
values greater than n-1 are mapped to n-1; and then the new array is constructed as above.

Parameters

a [int array] This array must contain integers in [0, n-1], where n is the number of choices,
unless mode=wrap or mode=clip, in which cases any integers are permissible.

choices [sequence of arrays] Choice arrays. a and all of the choices must be broadcastable to the
same shape. If choices is itself an array (not recommended), then its outermost dimension
(i.e., the one corresponding to choices.shape[0]) is taken as defining the “sequence”.

out [array, optional (Not supported in Dask)] If provided, the result will be inserted into this
array. It should be of the appropriate shape and dtype.

3.7. Array 115

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

mode [{‘raise’ (default), ‘wrap’, ‘clip’}, optional (Not supported in Dask)] Specifies how in-
dices outside [0, n-1] will be treated:

• ‘raise’ : an exception is raised

• ‘wrap’ : value becomes value mod n

• ‘clip’ : values < 0 are mapped to 0, values > n-1 are mapped to n-1

Returns

merged_array [array] The merged result.

Raises

ValueError: shape mismatch If a and each choice array are not all broadcastable to the same
shape.

See also:

ndarray.choose equivalent method

Notes

To reduce the chance of misinterpretation, even though the following “abuse” is nominally supported, choices
should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container should be
either a list or a tuple.

Examples

>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], # doctest: +SKIP
... [20, 21, 22, 23], [30, 31, 32, 33]]
>>> np.choose([2, 3, 1, 0], choices # doctest: +SKIP
... # the first element of the result will be the first element of the
... # third (2+1) "array" in choices, namely, 20; the second element
... # will be the second element of the fourth (3+1) choice array, i.e.,
... # 31, etc.
...)
array([20, 31, 12, 3])
>>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1) # doctest:
→˓+SKIP
array([20, 31, 12, 3])
>>> # because there are 4 choice arrays
>>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4) #
→˓doctest: +SKIP
array([20, 1, 12, 3])
>>> # i.e., 0

A couple examples illustrating how choose broadcasts:

>>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]] # doctest: +SKIP
>>> choices = [-10, 10] # doctest: +SKIP
>>> np.choose(a, choices) # doctest: +SKIP
array([[10, -10, 10],

[-10, 10, -10],
[10, -10, 10]])

116 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> # With thanks to Anne Archibald
>>> a = np.array([0, 1]).reshape((2,1,1)) # doctest: +SKIP
>>> c1 = np.array([1, 2, 3]).reshape((1,3,1)) # doctest: +SKIP
>>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5)) # doctest: +SKIP
>>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2 #
→˓doctest: +SKIP
array([[[1, 1, 1, 1, 1],

[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3]],

[[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5],
[-1, -2, -3, -4, -5]]])

dask.array.clip(*args, **kwargs)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Parameters

a [array_like] Array containing elements to clip.

a_min [scalar or array_like or None] Minimum value. If None, clipping is not performed on
lower interval edge. Not more than one of a_min and a_max may be None.

a_max [scalar or array_like or None] Maximum value. If None, clipping is not performed on
upper interval edge. Not more than one of a_min and a_max may be None. If a_min or
a_max are array_like, then the three arrays will be broadcasted to match their shapes.

out [ndarray, optional] The results will be placed in this array. It may be the input array for
in-place clipping. out must be of the right shape to hold the output. Its type is preserved.

Returns

clipped_array [ndarray] An array with the elements of a, but where values < a_min are re-
placed with a_min, and those > a_max with a_max.

See also:

numpy.doc.ufuncs Section “Output arguments”

Examples

>>> a = np.arange(10) # doctest: +SKIP
>>> np.clip(a, 1, 8) # doctest: +SKIP
array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
>>> a # doctest: +SKIP
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, 3, 6, out=a) # doctest: +SKIP
array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
>>> a = np.arange(10) # doctest: +SKIP
>>> a # doctest: +SKIP
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) # doctest: +SKIP
array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])

dask.array.compress(condition, a, axis=None)
Return selected slices of an array along given axis.

3.7. Array 117

dask Documentation, Release 2.6.0

This docstring was copied from numpy.compress.

Some inconsistencies with the Dask version may exist.

When working along a given axis, a slice along that axis is returned in output for each index where condition
evaluates to True. When working on a 1-D array, compress is equivalent to extract.

Parameters

condition [1-D array of bools] Array that selects which entries to return. If len(condition) is
less than the size of a along the given axis, then output is truncated to the length of the
condition array.

a [array_like] Array from which to extract a part.

axis [int, optional] Axis along which to take slices. If None (default), work on the flattened
array.

out [ndarray, optional (Not supported in Dask)] Output array. Its type is preserved and it must
be of the right shape to hold the output.

Returns

compressed_array [ndarray] A copy of a without the slices along axis for which condition is
false.

See also:

take, choose, diag, diagonal, select

ndarray.compress Equivalent method in ndarray

np.extract Equivalent method when working on 1-D arrays

numpy.doc.ufuncs Section “Output arguments”

Examples

>>> a = np.array([[1, 2], [3, 4], [5, 6]]) # doctest: +SKIP
>>> a # doctest: +SKIP
array([[1, 2],

[3, 4],
[5, 6]])

>>> np.compress([0, 1], a, axis=0) # doctest: +SKIP
array([[3, 4]])
>>> np.compress([False, True, True], a, axis=0) # doctest: +SKIP
array([[3, 4],

[5, 6]])
>>> np.compress([False, True], a, axis=1) # doctest: +SKIP
array([[2],

[4],
[6]])

Working on the flattened array does not return slices along an axis but selects elements.

>>> np.compress([False, True], a) # doctest: +SKIP
array([2])

dask.array.concatenate(seq, axis=0, allow_unknown_chunksizes=False)
Concatenate arrays along an existing axis

118 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Given a sequence of dask Arrays form a new dask Array by stacking them along an existing dimension (axis=0
by default)

Parameters

seq: list of dask.arrays

axis: int Dimension along which to align all of the arrays

allow_unknown_chunksizes: bool Allow unknown chunksizes, such as come from converting
from dask dataframes. Dask.array is unable to verify that chunks line up. If data comes
from differently aligned sources then this can cause unexpected results.

See also:

stack

Examples

Create slices

>>> import dask.array as da
>>> import numpy as np

>>> data = [from_array(np.ones((4, 4)), chunks=(2, 2))
... for i in range(3)]

>>> x = da.concatenate(data, axis=0)
>>> x.shape
(12, 4)

>>> da.concatenate(data, axis=1).shape
(4, 12)

Result is a new dask Array

dask.array.conj(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.

Parameters

x [array_like] Input value.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The complex conjugate of x, with same dtype as y. This is a scalar if x is a scalar.

3.7. Array 119

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.conjugate(1+2j) # doctest: +SKIP
(1-2j)

>>> x = np.eye(2) + 1j * np.eye(2) # doctest: +SKIP
>>> np.conjugate(x) # doctest: +SKIP
array([[1.-1.j, 0.-0.j],

[0.-0.j, 1.-1.j]])

dask.array.copysign(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Change the sign of x1 to that of x2, element-wise.

If both arguments are arrays or sequences, they have to be of the same length. If x2 is a scalar, its sign will be
copied to all elements of x1.

Parameters

x1 [array_like] Values to change the sign of.

x2 [array_like] The sign of x2 is copied to x1.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] The values of x1 with the sign of x2. This is a scalar if both x1 and x2
are scalars.

Examples

>>> np.copysign(1.3, -1) # doctest: +SKIP
-1.3
>>> 1/np.copysign(0, 1) # doctest: +SKIP
inf
>>> 1/np.copysign(0, -1) # doctest: +SKIP
-inf

>>> np.copysign([-1, 0, 1], -1.1) # doctest: +SKIP
array([-1., -0., -1.])
>>> np.copysign([-1, 0, 1], np.arange(3)-1) # doctest: +SKIP
array([-1., 0., 1.])

dask.array.corrcoef(x, y=None, rowvar=1)
Return Pearson product-moment correlation coefficients.

This docstring was copied from numpy.corrcoef.

Some inconsistencies with the Dask version may exist.

120 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Please refer to the documentation for cov for more detail. The relationship between the correlation coefficient
matrix, R, and the covariance matrix, C, is

𝑅𝑖𝑗 =
𝐶𝑖𝑗√︀

𝐶𝑖𝑖 * 𝐶𝑗𝑗

The values of R are between -1 and 1, inclusive.

Parameters

x [array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
x represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y [array_like, optional] An additional set of variables and observations. y has the same shape as
x.

rowvar [bool, optional] If rowvar is True (default), then each row represents a variable, with
observations in the columns. Otherwise, the relationship is transposed: each column repre-
sents a variable, while the rows contain observations.

bias [_NoValue, optional (Not supported in Dask)] Has no effect, do not use.

Deprecated since version 1.10.0.

ddof [_NoValue, optional (Not supported in Dask)] Has no effect, do not use.

Deprecated since version 1.10.0.

Returns

R [ndarray] The correlation coefficient matrix of the variables.

See also:

cov Covariance matrix

Notes

Due to floating point rounding the resulting array may not be Hermitian, the diagonal elements may not be 1,
and the elements may not satisfy the inequality abs(a) <= 1. The real and imaginary parts are clipped to the
interval [-1, 1] in an attempt to improve on that situation but is not much help in the complex case.

This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous
versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

dask.array.cos(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Cosine element-wise.

Parameters

x [array_like] Input array in radians.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

3.7. Array 121

dask Documentation, Release 2.6.0

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding cosine values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> np.cos(np.array([0, np.pi/2, np.pi])) # doctest: +SKIP
array([1.00000000e+00, 6.12303177e-17, -1.00000000e+00])
>>>
>>> # Example of providing the optional output parameter
>>> out2 = np.cos([0.1], out1) # doctest: +SKIP
>>> out2 is out1 # doctest: +SKIP
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2))) # doctest: +SKIP
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

dask.array.cosh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Hyperbolic cosine, element-wise.

Equivalent to 1/2 * (np.exp(x) + np.exp(-x)) and np.cos(1j*x).

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array of same shape as x. This is a scalar if x is a scalar.

122 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.cosh(0) # doctest: +SKIP
1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> x = np.linspace(-4, 4, 1000) # doctest: +SKIP
>>> plt.plot(x, np.cosh(x)) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.count_nonzero(a, axis=None)
Counts the number of non-zero values in the array a.

This docstring was copied from numpy.count_nonzero.

Some inconsistencies with the Dask version may exist.

The word “non-zero” is in reference to the Python 2.x built-in method __nonzero__() (renamed
__bool__() in Python 3.x) of Python objects that tests an object’s “truthfulness”. For example, any num-
ber is considered truthful if it is nonzero, whereas any string is considered truthful if it is not the empty
string. Thus, this function (recursively) counts how many elements in a (and in sub-arrays thereof) have their
__nonzero__() or __bool__() method evaluated to True.

Parameters

a [array_like] The array for which to count non-zeros.

axis [int or tuple, optional] Axis or tuple of axes along which to count non-zeros. Default is
None, meaning that non-zeros will be counted along a flattened version of a.

New in version 1.12.0.

Returns

count [int or array of int] Number of non-zero values in the array along a given axis. Otherwise,
the total number of non-zero values in the array is returned.

See also:

nonzero Return the coordinates of all the non-zero values.

Examples

>>> np.count_nonzero(np.eye(4)) # doctest: +SKIP
4
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]]) # doctest: +SKIP
5
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=0) # doctest: +SKIP
array([1, 1, 1, 1, 1])
>>> np.count_nonzero([[0,1,7,0,0],[3,0,0,2,19]], axis=1) # doctest: +SKIP
array([2, 3])

dask.array.cov(m, y=None, rowvar=1, bias=0, ddof=None)
Estimate a covariance matrix, given data and weights.

This docstring was copied from numpy.cov.

Some inconsistencies with the Dask version may exist.

3.7. Array 123

dask Documentation, Release 2.6.0

Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples,
𝑋 = [𝑥1, 𝑥2, ...𝑥𝑁]𝑇 , then the covariance matrix element 𝐶𝑖𝑗 is the covariance of 𝑥𝑖 and 𝑥𝑗 . The element 𝐶𝑖𝑖

is the variance of 𝑥𝑖.

See the notes for an outline of the algorithm.

Parameters

m [array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
m represents a variable, and each column a single observation of all those variables. Also
see rowvar below.

y [array_like, optional] An additional set of variables and observations. y has the same form as
that of m.

rowvar [bool, optional] If rowvar is True (default), then each row represents a variable, with
observations in the columns. Otherwise, the relationship is transposed: each column repre-
sents a variable, while the rows contain observations.

bias [bool, optional] Default normalization (False) is by (N - 1), where N is the number of
observations given (unbiased estimate). If bias is True, then normalization is by N. These
values can be overridden by using the keyword ddof in numpy versions >= 1.5.

ddof [int, optional] If not None the default value implied by bias is overridden. Note that
ddof=1 will return the unbiased estimate, even if both fweights and aweights are specified,
and ddof=0 will return the simple average. See the notes for the details. The default value
is None.

New in version 1.5.

fweights [array_like, int, optional (Not supported in Dask)] 1-D array of integer frequency
weights; the number of times each observation vector should be repeated.

New in version 1.10.

aweights [array_like, optional (Not supported in Dask)] 1-D array of observation vector
weights. These relative weights are typically large for observations considered “important”
and smaller for observations considered less “important”. If ddof=0 the array of weights
can be used to assign probabilities to observation vectors.

New in version 1.10.

Returns

out [ndarray] The covariance matrix of the variables.

See also:

corrcoef Normalized covariance matrix

Notes

Assume that the observations are in the columns of the observation array m and let f = fweights and a =
aweights for brevity. The steps to compute the weighted covariance are as follows:

>>> w = f * a
>>> v1 = np.sum(w)
>>> v2 = np.sum(w * a)
>>> m -= np.sum(m * w, axis=1, keepdims=True) / v1
>>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

124 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Note that when a == 1, the normalization factor v1 / (v1**2 - ddof * v2) goes over to 1 / (np.
sum(f) - ddof) as it should.

Examples

Consider two variables, 𝑥0 and 𝑥1, which correlate perfectly, but in opposite directions:

>>> x = np.array([[0, 2], [1, 1], [2, 0]]).T # doctest: +SKIP
>>> x # doctest: +SKIP
array([[0, 1, 2],

[2, 1, 0]])

Note how 𝑥0 increases while 𝑥1 decreases. The covariance matrix shows this clearly:

>>> np.cov(x) # doctest: +SKIP
array([[1., -1.],

[-1., 1.]])

Note that element 𝐶0,1, which shows the correlation between 𝑥0 and 𝑥1, is negative.

Further, note how x and y are combined:

>>> x = [-2.1, -1, 4.3] # doctest: +SKIP
>>> y = [3, 1.1, 0.12] # doctest: +SKIP
>>> X = np.stack((x, y), axis=0) # doctest: +SKIP
>>> print(np.cov(X)) # doctest: +SKIP
[[11.71 -4.286]
[-4.286 2.14413333]]

>>> print(np.cov(x, y)) # doctest: +SKIP
[[11.71 -4.286]
[-4.286 2.14413333]]

>>> print(np.cov(x)) # doctest: +SKIP
11.71

dask.array.cumprod(a, axis=None, dtype=None, out=None)
Return the cumulative product of elements along a given axis.

Parameters

a [array_like] Input array.

axis [int, optional] Axis along which the cumulative product is computed. By default the input
is flattened.

dtype [dtype, optional] Type of the returned array, as well as of the accumulator in which the
elements are multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has
an integer dtype with a precision less than that of the default platform integer. In that case,
the default platform integer is used instead.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type of the resulting values will
be cast if necessary.

Returns

cumprod [ndarray] A new array holding the result is returned unless out is specified, in which
case a reference to out is returned.

See also:

3.7. Array 125

dask Documentation, Release 2.6.0

numpy.doc.ufuncs Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([1,2,3])
>>> np.cumprod(a) # intermediate results 1, 1*2
... # total product 1*2*3 = 6
array([1, 2, 6])
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> np.cumprod(a, dtype=float) # specify type of output
array([1., 2., 6., 24., 120., 720.])

The cumulative product for each column (i.e., over the rows) of a:

>>> np.cumprod(a, axis=0)
array([[1, 2, 3],

[4, 10, 18]])

The cumulative product for each row (i.e. over the columns) of a:

>>> np.cumprod(a,axis=1)
array([[1, 2, 6],

[4, 20, 120]])

dask.array.cumsum(a, axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along a given axis.

Parameters

a [array_like] Input array.

axis [int, optional] Axis along which the cumulative sum is computed. The default (None) is to
compute the cumsum over the flattened array.

dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements
are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type will be cast if necessary.
See doc.ufuncs (Section “Output arguments”) for more details.

Returns

cumsum_along_axis [ndarray.] A new array holding the result is returned unless out is speci-
fied, in which case a reference to out is returned. The result has the same size as a, and the
same shape as a if axis is not None or a is a 1-d array.

See also:

sum Sum array elements.

trapz Integration of array values using the composite trapezoidal rule.

126 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

diff Calculate the n-th discrete difference along given axis.

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> a = np.array([[1,2,3], [4,5,6]])
>>> a
array([[1, 2, 3],

[4, 5, 6]])
>>> np.cumsum(a)
array([1, 3, 6, 10, 15, 21])
>>> np.cumsum(a, dtype=float) # specifies type of output value(s)
array([1., 3., 6., 10., 15., 21.])

>>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns
array([[1, 2, 3],

[5, 7, 9]])
>>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows
array([[1, 3, 6],

[4, 9, 15]])

dask.array.deg2rad(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Convert angles from degrees to radians.

Parameters

x [array_like] Angles in degrees.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding angle in radians. This is a scalar if x is a scalar.

See also:

rad2deg Convert angles from radians to degrees.

unwrap Remove large jumps in angle by wrapping.

Notes

New in version 1.3.0.

deg2rad(x) is x * pi / 180.

3.7. Array 127

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.deg2rad(180) # doctest: +SKIP
3.1415926535897931

dask.array.degrees(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Convert angles from radians to degrees.

Parameters

x [array_like] Input array in radians.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray of floats] The corresponding degree values; if out was supplied this is a reference to
it. This is a scalar if x is a scalar.

See also:

rad2deg equivalent function

Examples

Convert a radian array to degrees

>>> rad = np.arange(12.)*np.pi/6 # doctest: +SKIP
>>> np.degrees(rad) # doctest: +SKIP
array([0., 30., 60., 90., 120., 150., 180., 210., 240.,

270., 300., 330.])

>>> out = np.zeros((rad.shape)) # doctest: +SKIP
>>> r = degrees(rad, out) # doctest: +SKIP
>>> np.all(r == out) # doctest: +SKIP
True

dask.array.diag(v)
Extract a diagonal or construct a diagonal array.

This docstring was copied from numpy.diag.

Some inconsistencies with the Dask version may exist.

See the more detailed documentation for numpy.diagonal if you use this function to extract a diagonal and
wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you
are using.

Parameters

128 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

v [array_like] If v is a 2-D array, return a copy of its k-th diagonal. If v is a 1-D array, return a
2-D array with v on the k-th diagonal.

k [int, optional (Not supported in Dask)] Diagonal in question. The default is 0. Use k>0 for
diagonals above the main diagonal, and k<0 for diagonals below the main diagonal.

Returns

out [ndarray] The extracted diagonal or constructed diagonal array.

See also:

diagonal Return specified diagonals.

diagflat Create a 2-D array with the flattened input as a diagonal.

trace Sum along diagonals.

triu Upper triangle of an array.

tril Lower triangle of an array.

Examples

>>> x = np.arange(9).reshape((3,3)) # doctest: +SKIP
>>> x # doctest: +SKIP
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> np.diag(x) # doctest: +SKIP
array([0, 4, 8])
>>> np.diag(x, k=1) # doctest: +SKIP
array([1, 5])
>>> np.diag(x, k=-1) # doctest: +SKIP
array([3, 7])

>>> np.diag(np.diag(x)) # doctest: +SKIP
array([[0, 0, 0],

[0, 4, 0],
[0, 0, 8]])

dask.array.diagonal(a, offset=0, axis1=0, axis2=1)
Return specified diagonals.

This docstring was copied from numpy.diagonal.

Some inconsistencies with the Dask version may exist.

If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i,
i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to
determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by
removing axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals.

In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of
the values in the diagonal.

In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated.
Writing to the resulting array continues to work as it used to, but a FutureWarning is issued.

3.7. Array 129

dask Documentation, Release 2.6.0

Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting
array will produce an error.

In some future release, it will return a read/write view and writing to the returned array will alter your original
array. The returned array will have the same type as the input array.

If you don’t write to the array returned by this function, then you can just ignore all of the above.

If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use np.
diagonal(a).copy() instead of just np.diagonal(a). This will work with both past and future ver-
sions of NumPy.

Parameters

a [array_like] Array from which the diagonals are taken.

offset [int, optional] Offset of the diagonal from the main diagonal. Can be positive or negative.
Defaults to main diagonal (0).

axis1 [int, optional] Axis to be used as the first axis of the 2-D sub-arrays from which the
diagonals should be taken. Defaults to first axis (0).

axis2 [int, optional] Axis to be used as the second axis of the 2-D sub-arrays from which the
diagonals should be taken. Defaults to second axis (1).

Returns

array_of_diagonals [ndarray] If a is 2-D, then a 1-D array containing the diagonal and of the
same type as a is returned unless a is a matrix, in which case a 1-D array rather than a (2-D)
matrix is returned in order to maintain backward compatibility.

If a.ndim > 2, then the dimensions specified by axis1 and axis2 are removed, and a new
axis inserted at the end corresponding to the diagonal.

Raises

ValueError If the dimension of a is less than 2.

See also:

diag MATLAB work-a-like for 1-D and 2-D arrays.

diagflat Create diagonal arrays.

trace Sum along diagonals.

Examples

>>> a = np.arange(4).reshape(2,2) # doctest: +SKIP
>>> a # doctest: +SKIP
array([[0, 1],

[2, 3]])
>>> a.diagonal() # doctest: +SKIP
array([0, 3])
>>> a.diagonal(1) # doctest: +SKIP
array([1])

A 3-D example:

130 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> a = np.arange(8).reshape(2,2,2); a # doctest: +SKIP
array([[[0, 1],

[2, 3]],
[[4, 5],
[6, 7]]])

>>> a.diagonal(0, # Main diagonals of two arrays created by skipping # doctest:
→˓+SKIP
... 0, # across the outer(left)-most axis last and
... 1) # the "middle" (row) axis first.
array([[0, 6],

[1, 7]])

The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most
(column) axis, and that the diagonals are “packed” in rows.

>>> a[:,:,0] # main diagonal is [0 6] # doctest: +SKIP
array([[0, 2],

[4, 6]])
>>> a[:,:,1] # main diagonal is [1 7] # doctest: +SKIP
array([[1, 3],

[5, 7]])

dask.array.diff(a, n=1, axis=-1)
Calculate the n-th discrete difference along the given axis.

This docstring was copied from numpy.diff.

Some inconsistencies with the Dask version may exist.

The first difference is given by out[n] = a[n+1] - a[n] along the given axis, higher differences are
calculated by using diff recursively.

Parameters

a [array_like] Input array

n [int, optional] The number of times values are differenced. If zero, the input is returned as-is.

axis [int, optional] The axis along which the difference is taken, default is the last axis.

prepend, append [array_like, optional] Values to prepend or append to “a” along axis prior to
performing the difference. Scalar values are expanded to arrays with length 1 in the direction
of axis and the shape of the input array in along all other axes. Otherwise the dimension and
shape must match “a” except along axis.

Returns

diff [ndarray] The n-th differences. The shape of the output is the same as a except along axis
where the dimension is smaller by n. The type of the output is the same as the type of the
difference between any two elements of a. This is the same as the type of a in most cases.
A notable exception is datetime64, which results in a timedelta64 output array.

See also:

gradient, ediff1d, cumsum

Notes

Type is preserved for boolean arrays, so the result will contain False when consecutive elements are the same
and True when they differ.

3.7. Array 131

dask Documentation, Release 2.6.0

For unsigned integer arrays, the results will also be unsigned. This should not be surprising, as the result is
consistent with calculating the difference directly:

>>> u8_arr = np.array([1, 0], dtype=np.uint8) # doctest: +SKIP
>>> np.diff(u8_arr) # doctest: +SKIP
array([255], dtype=uint8)
>>> u8_arr[1,...] - u8_arr[0,...] # doctest: +SKIP
array(255, np.uint8)

If this is not desirable, then the array should be cast to a larger integer type first:

>>> i16_arr = u8_arr.astype(np.int16) # doctest: +SKIP
>>> np.diff(i16_arr) # doctest: +SKIP
array([-1], dtype=int16)

Examples

>>> x = np.array([1, 2, 4, 7, 0]) # doctest: +SKIP
>>> np.diff(x) # doctest: +SKIP
array([1, 2, 3, -7])
>>> np.diff(x, n=2) # doctest: +SKIP
array([1, 1, -10])

>>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) # doctest: +SKIP
>>> np.diff(x) # doctest: +SKIP
array([[2, 3, 4],

[5, 1, 2]])
>>> np.diff(x, axis=0) # doctest: +SKIP
array([[-1, 2, 0, -2]])

>>> x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64) # doctest:
→˓+SKIP
>>> np.diff(x) # doctest: +SKIP
array([1, 1], dtype='timedelta64[D]')

dask.array.digitize(a, bins, right=False)
Return the indices of the bins to which each value in input array belongs.

This docstring was copied from numpy.digitize.

Some inconsistencies with the Dask version may exist.

right order of bins returned index i satisfies
False increasing bins[i-1] <= x < bins[i]
True increasing bins[i-1] < x <= bins[i]
False decreasing bins[i-1] > x >= bins[i]
True decreasing bins[i-1] >= x > bins[i]

If values in x are beyond the bounds of bins, 0 or len(bins) is returned as appropriate.

Parameters

x [array_like (Not supported in Dask)] Input array to be binned. Prior to NumPy 1.10.0, this
array had to be 1-dimensional, but can now have any shape.

bins [array_like] Array of bins. It has to be 1-dimensional and monotonic.

132 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

right [bool, optional] Indicating whether the intervals include the right or the left bin edge.
Default behavior is (right==False) indicating that the interval does not include the right edge.
The left bin end is open in this case, i.e., bins[i-1] <= x < bins[i] is the default behavior for
monotonically increasing bins.

Returns

indices [ndarray of ints] Output array of indices, of same shape as x.

Raises

ValueError If bins is not monotonic.

TypeError If the type of the input is complex.

See also:

bincount, histogram, unique, searchsorted

Notes

If values in x are such that they fall outside the bin range, attempting to index bins with the indices that digitize
returns will result in an IndexError.

New in version 1.10.0.

np.digitize is implemented in terms of np.searchsorted. This means that a binary search is used to bin the
values, which scales much better for larger number of bins than the previous linear search. It also removes the
requirement for the input array to be 1-dimensional.

For monotonically _increasing_ bins, the following are equivalent:

np.digitize(x, bins, right=True)
np.searchsorted(bins, x, side='left')

Note that as the order of the arguments are reversed, the side must be too. The searchsorted call is marginally
faster, as it does not do any monotonicity checks. Perhaps more importantly, it supports all dtypes.

Examples

>>> x = np.array([0.2, 6.4, 3.0, 1.6]) # doctest: +SKIP
>>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) # doctest: +SKIP
>>> inds = np.digitize(x, bins) # doctest: +SKIP
>>> inds # doctest: +SKIP
array([1, 4, 3, 2])
>>> for n in range(x.size): # doctest: +SKIP
... print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]])
...
0.0 <= 0.2 < 1.0
4.0 <= 6.4 < 10.0
2.5 <= 3.0 < 4.0
1.0 <= 1.6 < 2.5

>>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.]) # doctest: +SKIP
>>> bins = np.array([0, 5, 10, 15, 20]) # doctest: +SKIP
>>> np.digitize(x,bins,right=True) # doctest: +SKIP
array([1, 2, 3, 4, 4])

(continues on next page)

3.7. Array 133

dask Documentation, Release 2.6.0

(continued from previous page)

>>> np.digitize(x,bins,right=False) # doctest: +SKIP
array([1, 3, 3, 4, 5])

dask.array.dot(a, b, out=None)
This docstring was copied from numpy.dot.

Some inconsistencies with the Dask version may exist.

Dot product of two arrays. Specifically,

• If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation).

• If both a and b are 2-D arrays, it is matrix multiplication, but using matmul() or a @ b is preferred.

• If either a or b is 0-D (scalar), it is equivalent to multiply() and using numpy.multiply(a, b)
or a * b is preferred.

• If a is an N-D array and b is a 1-D array, it is a sum product over the last axis of a and b.

• If a is an N-D array and b is an M-D array (where M>=2), it is a sum product over the last axis of a and
the second-to-last axis of b:

dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m])

Parameters

a [array_like] First argument.

b [array_like] Second argument.

out [ndarray, optional] Output argument. This must have the exact kind that would be returned
if it was not used. In particular, it must have the right type, must be C-contiguous, and its
dtype must be the dtype that would be returned for dot(a,b). This is a performance feature.
Therefore, if these conditions are not met, an exception is raised, instead of attempting to be
flexible.

Returns

output [ndarray] Returns the dot product of a and b. If a and b are both scalars or both 1-D
arrays then a scalar is returned; otherwise an array is returned. If out is given, then it is
returned.

Raises

ValueError If the last dimension of a is not the same size as the second-to-last dimension of b.

See also:

vdot Complex-conjugating dot product.

tensordot Sum products over arbitrary axes.

einsum Einstein summation convention.

matmul ‘@’ operator as method with out parameter.

Examples

>>> np.dot(3, 4) # doctest: +SKIP
12

134 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Neither argument is complex-conjugated:

>>> np.dot([2j, 3j], [2j, 3j]) # doctest: +SKIP
(-13+0j)

For 2-D arrays it is the matrix product:

>>> a = [[1, 0], [0, 1]] # doctest: +SKIP
>>> b = [[4, 1], [2, 2]] # doctest: +SKIP
>>> np.dot(a, b) # doctest: +SKIP
array([[4, 1],

[2, 2]])

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) # doctest: +SKIP
>>> b = np.arange(3*4*5*6)[::-1].reshape((5,4,6,3)) # doctest: +SKIP
>>> np.dot(a, b)[2,3,2,1,2,2] # doctest: +SKIP
499128
>>> sum(a[2,3,2,:] * b[1,2,:,2]) # doctest: +SKIP
499128

dask.array.dstack(tup, allow_unknown_chunksizes=False)
Stack arrays in sequence depth wise (along third axis).

This docstring was copied from numpy.dstack.

Some inconsistencies with the Dask version may exist.

This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been reshaped to
(M,N,1) and 1-D arrays of shape (N,) have been reshaped to (1,N,1). Rebuilds arrays divided by dsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters

tup [sequence of arrays] The arrays must have the same shape along all but the third axis. 1-D
or 2-D arrays must have the same shape.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 3-D.

See also:

stack Join a sequence of arrays along a new axis.

vstack Stack along first axis.

hstack Stack along second axis.

concatenate Join a sequence of arrays along an existing axis.

dsplit Split array along third axis.

Examples

>>> a = np.array((1,2,3)) # doctest: +SKIP
>>> b = np.array((2,3,4)) # doctest: +SKIP
>>> np.dstack((a,b)) # doctest: +SKIP

(continues on next page)

3.7. Array 135

dask Documentation, Release 2.6.0

(continued from previous page)

array([[[1, 2],
[2, 3],
[3, 4]]])

>>> a = np.array([[1],[2],[3]]) # doctest: +SKIP
>>> b = np.array([[2],[3],[4]]) # doctest: +SKIP
>>> np.dstack((a,b)) # doctest: +SKIP
array([[[1, 2]],

[[2, 3]],
[[3, 4]]])

dask.array.ediff1d(ary, to_end=None, to_begin=None)
The differences between consecutive elements of an array.

This docstring was copied from numpy.ediff1d.

Some inconsistencies with the Dask version may exist.

Parameters

ary [array_like] If necessary, will be flattened before the differences are taken.

to_end [array_like, optional] Number(s) to append at the end of the returned differences.

to_begin [array_like, optional] Number(s) to prepend at the beginning of the returned differ-
ences.

Returns

ediff1d [ndarray] The differences. Loosely, this is ary.flat[1:] - ary.flat[:-1].

See also:

diff, gradient

Notes

When applied to masked arrays, this function drops the mask information if the to_begin and/or to_end param-
eters are used.

Examples

>>> x = np.array([1, 2, 4, 7, 0]) # doctest: +SKIP
>>> np.ediff1d(x) # doctest: +SKIP
array([1, 2, 3, -7])

>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) # doctest: +SKIP
array([-99, 1, 2, 3, -7, 88, 99])

The returned array is always 1D.

>>> y = [[1, 2, 4], [1, 6, 24]] # doctest: +SKIP
>>> np.ediff1d(y) # doctest: +SKIP
array([1, 2, -3, 5, 18])

136 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.array.empty(*args, **kwargs)
Blocked variant of empty

Follows the signature of empty exactly except that it also requires a keyword argument chunks=(. . .)

Original signature follows below. empty(shape, dtype=float, order=’C’)

Return a new array of given shape and type, without initializing entries.

Parameters

shape [int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.

dtype [data-type, optional] Desired output data-type for the array, e.g, numpy.int8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object
arrays will be initialized to None.

See also:

empty_like Return an empty array with shape and type of input.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the other
hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty([2, 2])
array([[-9.74499359e+001, 6.69583040e-309],

[2.13182611e-314, 3.06959433e-309]]) #random

>>> np.empty([2, 2], dtype=int)
array([[-1073741821, -1067949133],

[496041986, 19249760]]) #random

dask.array.empty_like(a, dtype=None, chunks=None)
Return a new array with the same shape and type as a given array.

Parameters

a [array_like] The shape and data-type of a define these same attributes of the returned array.

dtype [data-type, optional] Overrides the data type of the result.

chunks [sequence of ints] The number of samples on each block. Note that the last block will
have fewer samples if len(array) % chunks != 0.

3.7. Array 137

dask Documentation, Release 2.6.0

Returns

out [ndarray] Array of uninitialized (arbitrary) data with the same shape and type as a.

See also:

ones_like Return an array of ones with shape and type of input.

zeros_like Return an array of zeros with shape and type of input.

empty Return a new uninitialized array.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

Notes

This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It may be
marginally faster than the functions that do set the array values.

dask.array.einsum(subscripts, *operands, out=None, dtype=None, order=’K’, casting=’safe’, opti-
mize=False)

This docstring was copied from numpy.einsum.

Some inconsistencies with the Dask version may exist.

Evaluates the Einstein summation convention on the operands.

Using the Einstein summation convention, many common multi-dimensional, linear algebraic array operations
can be represented in a simple fashion. In implicit mode einsum computes these values.

In explicit mode, einsum provides further flexibility to compute other array operations that might not be con-
sidered classical Einstein summation operations, by disabling, or forcing summation over specified subscript
labels.

See the notes and examples for clarification.

Parameters

subscripts [str] Specifies the subscripts for summation as comma separated list of subscript la-
bels. An implicit (classical Einstein summation) calculation is performed unless the explicit
indicator ‘->’ is included as well as subscript labels of the precise output form.

operands [list of array_like] These are the arrays for the operation.

out [ndarray, optional] If provided, the calculation is done into this array.

dtype [{data-type, None}, optional] If provided, forces the calculation to use the data type
specified. Note that you may have to also give a more liberal casting parameter to allow the
conversions. Default is None.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the output. ‘C’ means it
should be C contiguous. ‘F’ means it should be Fortran contiguous, ‘A’ means it should be
‘F’ if the inputs are all ‘F’, ‘C’ otherwise. ‘K’ means it should be as close to the layout as
the inputs as is possible, including arbitrarily permuted axes. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Setting this to ‘unsafe’ is not recommended, as it can adversely affect
accumulations.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

138 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

Default is ‘safe’.

optimize [{False, True, ‘greedy’, ‘optimal’}, optional] Controls if intermediate optimization
should occur. No optimization will occur if False and True will default to the ‘greedy’
algorithm. Also accepts an explicit contraction list from the np.einsum_path function.
See np.einsum_path for more details. Defaults to False.

Returns

output [ndarray] The calculation based on the Einstein summation convention.

See also:

einsum_path, dot, inner, outer, tensordot, linalg.multi_dot

Notes

New in version 1.6.0.

The Einstein summation convention can be used to compute many multi-dimensional, linear algebraic array
operations. einsum provides a succinct way of representing these.

A non-exhaustive list of these operations, which can be computed by einsum, is shown below along with exam-
ples:

• Trace of an array, numpy.trace().

• Return a diagonal, numpy.diag().

• Array axis summations, numpy.sum().

• Transpositions and permutations, numpy.transpose().

• Matrix multiplication and dot product, numpy.matmul() numpy.dot().

• Vector inner and outer products, numpy.inner() numpy.outer().

• Broadcasting, element-wise and scalar multiplication, numpy.multiply().

• Tensor contractions, numpy.tensordot().

• Chained array operations, in efficient calculation order, numpy.einsum_path().

The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of
the corresponding operand. Whenever a label is repeated it is summed, so np.einsum('i,i', a, b)
is equivalent to np.inner(a,b). If a label appears only once, it is not summed, so np.einsum('i',
a) produces a view of a with no changes. A further example np.einsum('ij,jk', a, b) describes
traditional matrix multiplication and is equivalent to np.matmul(a,b). Repeated subscript labels in one
operand take the diagonal. For example, np.einsum('ii', a) is equivalent to np.trace(a).

In implicit mode, the chosen subscripts are important since the axes of the output are reordered alphabetically.
This means that np.einsum('ij', a) doesn’t affect a 2D array, while np.einsum('ji', a) takes
its transpose. Additionally, np.einsum('ij,jk', a, b) returns a matrix multiplication, while, np.
einsum('ij,jh', a, b) returns the transpose of the multiplication since subscript ‘h’ precedes subscript
‘i’.

3.7. Array 139

https://docs.scipy.org/doc/numpy/reference/generated/numpy.trace.html#numpy.trace
https://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html#numpy.sum
https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot
https://docs.scipy.org/doc/numpy/reference/generated/numpy.inner.html#numpy.inner
https://docs.scipy.org/doc/numpy/reference/generated/numpy.outer.html#numpy.outer
https://docs.scipy.org/doc/numpy/reference/generated/numpy.tensordot.html#numpy.tensordot
https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum_path.html#numpy.einsum_path
https://docs.scipy.org/doc/numpy/reference/generated/numpy.inner.html#numpy.inner
https://docs.scipy.org/doc/numpy/reference/generated/numpy.trace.html#numpy.trace

dask Documentation, Release 2.6.0

In explicit mode the output can be directly controlled by specifying output subscript labels. This requires the
identifier ‘->’ as well as the list of output subscript labels. This feature increases the flexibility of the func-
tion since summing can be disabled or forced when required. The call np.einsum('i->', a) is like
np.sum(a, axis=-1), and np.einsum('ii->i', a) is like np.diag(a). The difference is that
einsum does not allow broadcasting by default. Additionally np.einsum('ij,jh->ih', a, b) directly
specifies the order of the output subscript labels and therefore returns matrix multiplication, unlike the example
above in implicit mode.

To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an
ellipsis to the left of each term, like np.einsum('...ii->...i', a). To take the trace along the first
and last axes, you can do np.einsum('i...i', a), or to do a matrix-matrix product with the left-most
indices instead of rightmost, one can do np.einsum('ij...,jk...->ik...', a, b).

When there is only one operand, no axes are summed, and no output parameter is provided, a view into the
operand is returned instead of a new array. Thus, taking the diagonal as np.einsum('ii->i', a) produces
a view (changed in version 1.10.0).

einsum also provides an alternative way to provide the subscripts and operands as einsum(op0,
sublist0, op1, sublist1, ..., [sublistout]). If the output shape is not provided in this for-
mat einsum will be calculated in implicit mode, otherwise it will be performed explicitly. The examples below
have corresponding einsum calls with the two parameter methods.

New in version 1.10.0.

Views returned from einsum are now writeable whenever the input array is writeable. For example, np.
einsum('ijk...->kji...', a) will now have the same effect as np.swapaxes(a, 0, 2) and
np.einsum('ii->i', a) will return a writeable view of the diagonal of a 2D array.

New in version 1.12.0.

Added the optimize argument which will optimize the contraction order of an einsum expression. For a
contraction with three or more operands this can greatly increase the computational efficiency at the cost of a
larger memory footprint during computation.

Typically a ‘greedy’ algorithm is applied which empirical tests have shown returns the optimal path in the
majority of cases. In some cases ‘optimal’ will return the superlative path through a more expensive, exhaustive
search. For iterative calculations it may be advisable to calculate the optimal path once and reuse that path by
supplying it as an argument. An example is given below.

See numpy.einsum_path() for more details.

Examples

>>> a = np.arange(25).reshape(5,5) # doctest: +SKIP
>>> b = np.arange(5) # doctest: +SKIP
>>> c = np.arange(6).reshape(2,3) # doctest: +SKIP

Trace of a matrix:

>>> np.einsum('ii', a) # doctest: +SKIP
60
>>> np.einsum(a, [0,0]) # doctest: +SKIP
60
>>> np.trace(a) # doctest: +SKIP
60

Extract the diagonal (requires explicit form):

140 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html#numpy.sum
https://docs.scipy.org/doc/numpy/reference/generated/numpy.diag.html#numpy.diag
https://docs.scipy.org/doc/numpy/reference/generated/numpy.swapaxes.html#numpy.swapaxes
https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum_path.html#numpy.einsum_path

dask Documentation, Release 2.6.0

>>> np.einsum('ii->i', a) # doctest: +SKIP
array([0, 6, 12, 18, 24])
>>> np.einsum(a, [0,0], [0]) # doctest: +SKIP
array([0, 6, 12, 18, 24])
>>> np.diag(a) # doctest: +SKIP
array([0, 6, 12, 18, 24])

Sum over an axis (requires explicit form):

>>> np.einsum('ij->i', a) # doctest: +SKIP
array([10, 35, 60, 85, 110])
>>> np.einsum(a, [0,1], [0]) # doctest: +SKIP
array([10, 35, 60, 85, 110])
>>> np.sum(a, axis=1) # doctest: +SKIP
array([10, 35, 60, 85, 110])

For higher dimensional arrays summing a single axis can be done with ellipsis:

>>> np.einsum('...j->...', a) # doctest: +SKIP
array([10, 35, 60, 85, 110])
>>> np.einsum(a, [Ellipsis,1], [Ellipsis]) # doctest: +SKIP
array([10, 35, 60, 85, 110])

Compute a matrix transpose, or reorder any number of axes:

>>> np.einsum('ji', c) # doctest: +SKIP
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.einsum('ij->ji', c) # doctest: +SKIP
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.einsum(c, [1,0]) # doctest: +SKIP
array([[0, 3],

[1, 4],
[2, 5]])

>>> np.transpose(c) # doctest: +SKIP
array([[0, 3],

[1, 4],
[2, 5]])

Vector inner products:

>>> np.einsum('i,i', b, b) # doctest: +SKIP
30
>>> np.einsum(b, [0], b, [0]) # doctest: +SKIP
30
>>> np.inner(b,b) # doctest: +SKIP
30

Matrix vector multiplication:

>>> np.einsum('ij,j', a, b) # doctest: +SKIP
array([30, 80, 130, 180, 230])
>>> np.einsum(a, [0,1], b, [1]) # doctest: +SKIP
array([30, 80, 130, 180, 230])

(continues on next page)

3.7. Array 141

dask Documentation, Release 2.6.0

(continued from previous page)

>>> np.dot(a, b) # doctest: +SKIP
array([30, 80, 130, 180, 230])
>>> np.einsum('...j,j', a, b) # doctest: +SKIP
array([30, 80, 130, 180, 230])

Broadcasting and scalar multiplication:

>>> np.einsum('..., ...', 3, c) # doctest: +SKIP
array([[0, 3, 6],

[9, 12, 15]])
>>> np.einsum(',ij', 3, c) # doctest: +SKIP
array([[0, 3, 6],

[9, 12, 15]])
>>> np.einsum(3, [Ellipsis], c, [Ellipsis]) # doctest: +SKIP
array([[0, 3, 6],

[9, 12, 15]])
>>> np.multiply(3, c) # doctest: +SKIP
array([[0, 3, 6],

[9, 12, 15]])

Vector outer product:

>>> np.einsum('i,j', np.arange(2)+1, b) # doctest: +SKIP
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])
>>> np.einsum(np.arange(2)+1, [0], b, [1]) # doctest: +SKIP
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])
>>> np.outer(np.arange(2)+1, b) # doctest: +SKIP
array([[0, 1, 2, 3, 4],

[0, 2, 4, 6, 8]])

Tensor contraction:

>>> a = np.arange(60.).reshape(3,4,5) # doctest: +SKIP
>>> b = np.arange(24.).reshape(4,3,2) # doctest: +SKIP
>>> np.einsum('ijk,jil->kl', a, b) # doctest: +SKIP
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3]) # doctest: +SKIP
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> np.tensordot(a,b, axes=([1,0],[0,1])) # doctest: +SKIP
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

Writeable returned arrays (since version 1.10.0):

142 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> a = np.zeros((3, 3)) # doctest: +SKIP
>>> np.einsum('ii->i', a)[:] = 1 # doctest: +SKIP
>>> a # doctest: +SKIP
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

Example of ellipsis use:

>>> a = np.arange(6).reshape((3,2)) # doctest: +SKIP
>>> b = np.arange(12).reshape((4,3)) # doctest: +SKIP
>>> np.einsum('ki,jk->ij', a, b) # doctest: +SKIP
array([[10, 28, 46, 64],

[13, 40, 67, 94]])
>>> np.einsum('ki,...k->i...', a, b) # doctest: +SKIP
array([[10, 28, 46, 64],

[13, 40, 67, 94]])
>>> np.einsum('k...,jk', a, b) # doctest: +SKIP
array([[10, 28, 46, 64],

[13, 40, 67, 94]])

Chained array operations. For more complicated contractions, speed ups might be achieved by repeatedly
computing a ‘greedy’ path or pre-computing the ‘optimal’ path and repeatedly applying it, using an einsum_path
insertion (since version 1.12.0). Performance improvements can be particularly significant with larger arrays:

>>> a = np.ones(64).reshape(2,4,8) # doctest: +SKIP
Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
>>> for iteration in range(500): # doctest: +SKIP
... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
>>> for iteration in range(500): # doctest: +SKIP
... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
Greedy `einsum` (faster optimal path approximation): ~160ms
>>> for iteration in range(500): # doctest: +SKIP
... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
Optimal `einsum` (best usage pattern in some use cases): ~110ms
>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal
→˓')[0] # doctest: +SKIP
>>> for iteration in range(500): # doctest: +SKIP
... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)

dask.array.exp(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Calculate the exponential of all elements in the input array.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

3.7. Array 143

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

out [ndarray or scalar] Output array, element-wise exponential of x. This is a scalar if x is a
scalar.

See also:

expm1 Calculate exp(x) - 1 for all elements in the array.

exp2 Calculate 2**x for all elements in the array.

Notes

The irrational number e is also known as Euler’s number. It is approximately 2.718281, and is the base of the
natural logarithm, ln (this means that, if 𝑥 = ln 𝑦 = log𝑒 𝑦, then 𝑒𝑥 = 𝑦. For real input, exp(x) is always
positive.

For complex arguments, x = a + ib, we can write 𝑒𝑥 = 𝑒𝑎𝑒𝑖𝑏. The first term, 𝑒𝑎, is already known (it is
the real argument, described above). The second term, 𝑒𝑖𝑏, is cos 𝑏 + 𝑖 sin 𝑏, a function with magnitude 1 and a
periodic phase.

References

[1], [2]

Examples

Plot the magnitude and phase of exp(x) in the complex plane:

>>> import matplotlib.pyplot as plt # doctest: +SKIP

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100) # doctest: +SKIP
>>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane # doctest: +SKIP
>>> out = np.exp(xx) # doctest: +SKIP

>>> plt.subplot(121) # doctest: +SKIP
>>> plt.imshow(np.abs(out), # doctest: +SKIP
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray')
>>> plt.title('Magnitude of exp(x)') # doctest: +SKIP

>>> plt.subplot(122) # doctest: +SKIP
>>> plt.imshow(np.angle(out), # doctest: +SKIP
... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv')
>>> plt.title('Phase (angle) of exp(x)') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.expm1(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Calculate exp(x) - 1 for all elements in the array.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

144 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Element-wise exponential minus one: out = exp(x) - 1. This is
a scalar if x is a scalar.

See also:

log1p log(1 + x), the inverse of expm1.

Notes

This function provides greater precision than exp(x) - 1 for small values of x.

Examples

The true value of exp(1e-10) - 1 is 1.00000000005e-10 to about 32 significant digits. This example
shows the superiority of expm1 in this case.

>>> np.expm1(1e-10) # doctest: +SKIP
1.00000000005e-10
>>> np.exp(1e-10) - 1 # doctest: +SKIP
1.000000082740371e-10

dask.array.eye(N, chunks=’auto’, M=None, k=0, dtype=<class ’float’>)
Return a 2-D Array with ones on the diagonal and zeros elsewhere.

Parameters

N [int] Number of rows in the output.

chunks [int, str] How to chunk the array. Must be one of the following forms:

• A blocksize like 1000.

• A size in bytes, like “100 MiB” which will choose a uniform block-like shape

• The word “auto” which acts like the above, but uses a configuration value array.
chunk-size for the chunk size

M [int, optional] Number of columns in the output. If None, defaults to N.

k [int, optional] Index of the diagonal: 0 (the default) refers to the main diagonal, a positive
value refers to an upper diagonal, and a negative value to a lower diagonal.

dtype [data-type, optional] Data-type of the returned array.

Returns

I [Array of shape (N,M)] An array where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.

dask.array.fabs(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Compute the absolute values element-wise.

This function returns the absolute values (positive magnitude) of the data in x. Complex values are not handled,
use absolute to find the absolute values of complex data.

3.7. Array 145

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Parameters

x [array_like] The array of numbers for which the absolute values are required. If x is a scalar,
the result y will also be a scalar.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The absolute values of x, the returned values are always floats. This is a
scalar if x is a scalar.

See also:

absolute Absolute values including complex types.

Examples

>>> np.fabs(-1) # doctest: +SKIP
1.0
>>> np.fabs([-1.2, 1.2]) # doctest: +SKIP
array([1.2, 1.2])

dask.array.fix(*args, **kwargs)
Round to nearest integer towards zero.

Round an array of floats element-wise to nearest integer towards zero. The rounded values are returned as floats.

Parameters

x [array_like] An array of floats to be rounded

y [ndarray, optional] Output array

Returns

out [ndarray of floats] The array of rounded numbers

See also:

trunc, floor, ceil

around Round to given number of decimals

Examples

>>> np.fix(3.14) # doctest: +SKIP
3.0
>>> np.fix(3) # doctest: +SKIP
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9]) # doctest: +SKIP
array([2., 2., -2., -2.])

146 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

dask.array.flatnonzero(a)
Return indices that are non-zero in the flattened version of a.

This docstring was copied from numpy.flatnonzero.

Some inconsistencies with the Dask version may exist.

This is equivalent to np.nonzero(np.ravel(a))[0].

Parameters

a [array_like] Input data.

Returns

res [ndarray] Output array, containing the indices of the elements of a.ravel() that are non-zero.

See also:

nonzero Return the indices of the non-zero elements of the input array.

ravel Return a 1-D array containing the elements of the input array.

Examples

>>> x = np.arange(-2, 3) # doctest: +SKIP
>>> x # doctest: +SKIP
array([-2, -1, 0, 1, 2])
>>> np.flatnonzero(x) # doctest: +SKIP
array([0, 1, 3, 4])

Use the indices of the non-zero elements as an index array to extract these elements:

>>> x.ravel()[np.flatnonzero(x)] # doctest: +SKIP
array([-2, -1, 1, 2])

dask.array.flip(m, axis)
Reverse element order along axis.

Parameters

axis [int] Axis to reverse element order of.

Returns

reversed array [ndarray]

dask.array.flipud(m)
Flip array in the up/down direction.

This docstring was copied from numpy.flipud.

Some inconsistencies with the Dask version may exist.

Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order
than before.

Parameters

m [array_like] Input array.

Returns

3.7. Array 147

dask Documentation, Release 2.6.0

out [array_like] A view of m with the rows reversed. Since a view is returned, this operation is
𝒪(1).

See also:

fliplr Flip array in the left/right direction.

rot90 Rotate array counterclockwise.

Notes

Equivalent to m[::-1,...]. Does not require the array to be two-dimensional.

Examples

>>> A = np.diag([1.0, 2, 3]) # doctest: +SKIP
>>> A # doctest: +SKIP
array([[1., 0., 0.],

[0., 2., 0.],
[0., 0., 3.]])

>>> np.flipud(A) # doctest: +SKIP
array([[0., 0., 3.],

[0., 2., 0.],
[1., 0., 0.]])

>>> A = np.random.randn(2,3,5) # doctest: +SKIP
>>> np.all(np.flipud(A) == A[::-1,...]) # doctest: +SKIP
True

>>> np.flipud([1,2]) # doctest: +SKIP
array([2, 1])

dask.array.fliplr(m)
Flip array in the left/right direction.

This docstring was copied from numpy.fliplr.

Some inconsistencies with the Dask version may exist.

Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order
than before.

Parameters

m [array_like] Input array, must be at least 2-D.

Returns

f [ndarray] A view of m with the columns reversed. Since a view is returned, this operation is
𝒪(1).

See also:

flipud Flip array in the up/down direction.

rot90 Rotate array counterclockwise.

148 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

Equivalent to m[:,::-1]. Requires the array to be at least 2-D.

Examples

>>> A = np.diag([1.,2.,3.]) # doctest: +SKIP
>>> A # doctest: +SKIP
array([[1., 0., 0.],

[0., 2., 0.],
[0., 0., 3.]])

>>> np.fliplr(A) # doctest: +SKIP
array([[0., 0., 1.],

[0., 2., 0.],
[3., 0., 0.]])

>>> A = np.random.randn(2,3,5) # doctest: +SKIP
>>> np.all(np.fliplr(A) == A[:,::-1,...]) # doctest: +SKIP
True

dask.array.floor(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the floor of the input, element-wise.

The floor of the scalar x is the largest integer i, such that i <= x. It is often denoted as ⌊𝑥⌋.

Parameters

x [array_like] Input data.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The floor of each element in x. This is a scalar if x is a scalar.

See also:

ceil, trunc, rint

Notes

Some spreadsheet programs calculate the “floor-towards-zero”, in other words floor(-2.5) == -2.
NumPy instead uses the definition of floor where floor(-2.5) == -3.

Examples

3.7. Array 149

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) # doctest: +SKIP
>>> np.floor(a) # doctest: +SKIP
array([-2., -2., -1., 0., 1., 1., 2.])

dask.array.fmax(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Element-wise maximum of array elements.

Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being
compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned.
The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary
parts being a NaN. The net effect is that NaNs are ignored when possible.

Parameters

x1, x2 [array_like] The arrays holding the elements to be compared. They must have the same
shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The maximum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

fmin Element-wise minimum of two arrays, ignores NaNs.

maximum Element-wise maximum of two arrays, propagates NaNs.

amax The maximum value of an array along a given axis, propagates NaNs.

nanmax The maximum value of an array along a given axis, ignores NaNs.

minimum, amin, nanmin

Notes

New in version 1.3.0.

The fmax is equivalent to np.where(x1 >= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is
faster and does proper broadcasting.

Examples

>>> np.fmax([2, 3, 4], [1, 5, 2]) # doctest: +SKIP
array([2., 5., 4.])

150 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

>>> np.fmax(np.eye(2), [0.5, 2]) # doctest: +SKIP
array([[1. , 2.],

[0.5, 2.]])

>>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan]) # doctest: +SKIP
array([0., 0., NaN])

dask.array.fmin(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Element-wise minimum of array elements.

Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being
compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned.
The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary
parts being a NaN. The net effect is that NaNs are ignored when possible.

Parameters

x1, x2 [array_like] The arrays holding the elements to be compared. They must have the same
shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The minimum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

fmax Element-wise maximum of two arrays, ignores NaNs.

minimum Element-wise minimum of two arrays, propagates NaNs.

amin The minimum value of an array along a given axis, propagates NaNs.

nanmin The minimum value of an array along a given axis, ignores NaNs.

maximum, amax, nanmax

Notes

New in version 1.3.0.

The fmin is equivalent to np.where(x1 <= x2, x1, x2) when neither x1 nor x2 are NaNs, but it is
faster and does proper broadcasting.

3.7. Array 151

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.fmin([2, 3, 4], [1, 5, 2]) # doctest: +SKIP
array([1, 3, 2])

>>> np.fmin(np.eye(2), [0.5, 2]) # doctest: +SKIP
array([[0.5, 0.],

[0. , 1.]])

>>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan]) # doctest: +SKIP
array([0., 0., NaN])

dask.array.fmod(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the element-wise remainder of division.

This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the
dividend x1. It is equivalent to the Matlab(TM) rem function and should not be confused with the Python
modulus operator x1 % x2.

Parameters

x1 [array_like] Dividend.

x2 [array_like] Divisor.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [array_like] The remainder of the division of x1 by x2. This is a scalar if both x1 and x2 are
scalars.

See also:

remainder Equivalent to the Python % operator.

divide

Notes

The result of the modulo operation for negative dividend and divisors is bound by conventions. For fmod, the
sign of result is the sign of the dividend, while for remainder the sign of the result is the sign of the divisor. The
fmod function is equivalent to the Matlab(TM) rem function.

Examples

152 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

>>> np.fmod([-3, -2, -1, 1, 2, 3], 2) # doctest: +SKIP
array([-1, 0, -1, 1, 0, 1])
>>> np.remainder([-3, -2, -1, 1, 2, 3], 2) # doctest: +SKIP
array([1, 0, 1, 1, 0, 1])

>>> np.fmod([5, 3], [2, 2.]) # doctest: +SKIP
array([1., 1.])
>>> a = np.arange(-3, 3).reshape(3, 2) # doctest: +SKIP
>>> a # doctest: +SKIP
array([[-3, -2],

[-1, 0],
[1, 2]])

>>> np.fmod(a, [2,2]) # doctest: +SKIP
array([[-1, 0],

[-1, 0],
[1, 0]])

dask.array.frexp(x[, out1, out2], /[, out=(None, None)], *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Decompose the elements of x into mantissa and twos exponent.

Returns (mantissa, exponent), where x = mantissa * 2**exponent‘. The mantissa is lies in the open interval(-1,
1), while the twos exponent is a signed integer.

Parameters

x [array_like] Array of numbers to be decomposed.

out1 [ndarray, optional] Output array for the mantissa. Must have the same shape as x.

out2 [ndarray, optional] Output array for the exponent. Must have the same shape as x.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

mantissa [ndarray] Floating values between -1 and 1. This is a scalar if x is a scalar.

exponent [ndarray] Integer exponents of 2. This is a scalar if x is a scalar.

See also:

ldexp Compute y = x1 * 2**x2, the inverse of frexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

3.7. Array 153

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> x = np.arange(9) # doctest: +SKIP
>>> y1, y2 = np.frexp(x) # doctest: +SKIP
>>> y1 # doctest: +SKIP
array([0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875,

0.5])
>>> y2 # doctest: +SKIP
array([0, 1, 2, 2, 3, 3, 3, 3, 4])
>>> y1 * 2**y2 # doctest: +SKIP
array([0., 1., 2., 3., 4., 5., 6., 7., 8.])

dask.array.fromfunction(func, chunks=’auto’, shape=None, dtype=None, **kwargs)
Construct an array by executing a function over each coordinate.

This docstring was copied from numpy.fromfunction.

Some inconsistencies with the Dask version may exist.

The resulting array therefore has a value fn(x, y, z) at coordinate (x, y, z).

Parameters

function [callable (Not supported in Dask)] The function is called with N parameters, where
N is the rank of shape. Each parameter represents the coordinates of the array varying
along a specific axis. For example, if shape were (2, 2), then the parameters would be
array([[0, 0], [1, 1]]) and array([[0, 1], [0, 1]])

shape [(N,) tuple of ints] Shape of the output array, which also determines the shape of the
coordinate arrays passed to function.

dtype [data-type, optional] Data-type of the coordinate arrays passed to function. By default,
dtype is float.

Returns

fromfunction [any] The result of the call to function is passed back directly. Therefore the
shape of fromfunction is completely determined by function. If function returns a scalar
value, the shape of fromfunction would not match the shape parameter.

See also:

indices, meshgrid

Notes

Keywords other than dtype are passed to function.

Examples

>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) # doctest: +SKIP
array([[True, False, False],

[False, True, False],
[False, False, True]])

154 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) # doctest: +SKIP
array([[0, 1, 2],

[1, 2, 3],
[2, 3, 4]])

dask.array.frompyfunc(func, nin, nout)
This docstring was copied from numpy.frompyfunc.

Some inconsistencies with the Dask version may exist.

Takes an arbitrary Python function and returns a NumPy ufunc.

Can be used, for example, to add broadcasting to a built-in Python function (see Examples section).

Parameters

func [Python function object] An arbitrary Python function.

nin [int] The number of input arguments.

nout [int] The number of objects returned by func.

Returns

out [ufunc] Returns a NumPy universal function (ufunc) object.

See also:

vectorize evaluates pyfunc over input arrays using broadcasting rules of numpy

Notes

The returned ufunc always returns PyObject arrays.

Examples

Use frompyfunc to add broadcasting to the Python function oct:

>>> oct_array = np.frompyfunc(oct, 1, 1) # doctest: +SKIP
>>> oct_array(np.array((10, 30, 100))) # doctest: +SKIP
array([012, 036, 0144], dtype=object)
>>> np.array((oct(10), oct(30), oct(100))) # for comparison # doctest: +SKIP
array(['012', '036', '0144'],

dtype='|S4')

dask.array.full(*args, **kwargs)
Blocked variant of full

Follows the signature of full exactly except that it also requires a keyword argument chunks=(. . .)

Original signature follows below.

Return a new array of given shape and type, filled with fill_value.

Parameters

shape [int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

fill_value [scalar] Fill value.

dtype [data-type, optional]

3.7. Array 155

dask Documentation, Release 2.6.0

The desired data-type for the array The default, None, means
np.array(fill_value).dtype.

order [{‘C’, ‘F’}, optional] Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

Returns

out [ndarray] Array of fill_value with the given shape, dtype, and order.

See also:

full_like Return a new array with shape of input filled with value.

empty Return a new uninitialized array.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

Examples

>>> np.full((2, 2), np.inf)
array([[inf, inf],

[inf, inf]])
>>> np.full((2, 2), 10)
array([[10, 10],

[10, 10]])

dask.array.full_like(a, fill_value, dtype=None, chunks=None)
Return a full array with the same shape and type as a given array.

Parameters

a [array_like] The shape and data-type of a define these same attributes of the returned array.

fill_value [scalar] Fill value.

dtype [data-type, optional] Overrides the data type of the result.

chunks [sequence of ints] The number of samples on each block. Note that the last block will
have fewer samples if len(array) % chunks != 0.

Returns

out [ndarray] Array of fill_value with the same shape and type as a.

See also:

zeros_like Return an array of zeros with shape and type of input.

ones_like Return an array of ones with shape and type of input.

empty_like Return an empty array with shape and type of input.

zeros Return a new array setting values to zero.

ones Return a new array setting values to one.

empty Return a new uninitialized array.

full Fill a new array.

156 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.array.gradient(f, *varargs, **kwargs)
Return the gradient of an N-dimensional array.

This docstring was copied from numpy.gradient.

Some inconsistencies with the Dask version may exist.

The gradient is computed using second order accurate central differences in the interior points and either first
or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient
hence has the same shape as the input array.

Parameters

f [array_like] An N-dimensional array containing samples of a scalar function.

varargs [list of scalar or array, optional] Spacing between f values. Default unitary spacing for
all dimensions. Spacing can be specified using:

1. single scalar to specify a sample distance for all dimensions.

2. N scalars to specify a constant sample distance for each dimension. i.e. dx, dy, dz, . . .

3. N arrays to specify the coordinates of the values along each dimension of F. The length
of the array must match the size of the corresponding dimension

4. Any combination of N scalars/arrays with the meaning of 2. and 3.

If axis is given, the number of varargs must equal the number of axes. Default: 1.

edge_order [{1, 2}, optional] Gradient is calculated using N-th order accurate differences at
the boundaries. Default: 1.

New in version 1.9.1.

axis [None or int or tuple of ints, optional] Gradient is calculated only along the given axis or
axes The default (axis = None) is to calculate the gradient for all the axes of the input array.
axis may be negative, in which case it counts from the last to the first axis.

New in version 1.11.0.

Returns

gradient [ndarray or list of ndarray] A set of ndarrays (or a single ndarray if there is only
one dimension) corresponding to the derivatives of f with respect to each dimension. Each
derivative has the same shape as f.

Notes

Assuming that 𝑓 ∈ 𝐶3 (i.e., 𝑓 has at least 3 continuous derivatives) and let ℎ* be a non-homogeneous stepsize,
we minimize the “consistency error” 𝜂𝑖 between the true gradient and its estimate from a linear combination of
the neighboring grid-points:

𝜂𝑖 = 𝑓
(1)
𝑖 − [𝛼𝑓 (𝑥𝑖) + 𝛽𝑓 (𝑥𝑖 + ℎ𝑑) + 𝛾𝑓 (𝑥𝑖 − ℎ𝑠)]

By substituting 𝑓(𝑥𝑖 + ℎ𝑑) and 𝑓(𝑥𝑖 − ℎ𝑠) with their Taylor series expansion, this translates into solving the
following the linear system: ⎧⎨⎩ 𝛼 + 𝛽 + 𝛾 = 0

𝛽ℎ𝑑 − 𝛾ℎ𝑠 = 1
𝛽ℎ2

𝑑 + 𝛾ℎ2
𝑠 = 0

3.7. Array 157

dask Documentation, Release 2.6.0

The resulting approximation of 𝑓 (1)
𝑖 is the following:

𝑓
(1)
𝑖 =

ℎ2
𝑠𝑓 (𝑥𝑖 + ℎ𝑑) +

(︀
ℎ2
𝑑 − ℎ2

𝑠

)︀
𝑓 (𝑥𝑖) − ℎ2

𝑑𝑓 (𝑥𝑖 − ℎ𝑠)

ℎ𝑠ℎ𝑑 (ℎ𝑑 + ℎ𝑠)
+ 𝒪

(︂
ℎ𝑑ℎ

2
𝑠 + ℎ𝑠ℎ

2
𝑑

ℎ𝑑 + ℎ𝑠

)︂
It is worth noting that if ℎ𝑠 = ℎ𝑑 (i.e., data are evenly spaced) we find the standard second order approximation:

𝑓
(1)
𝑖 =

𝑓 (𝑥𝑖+1) − 𝑓 (𝑥𝑖−1)

2ℎ
+ 𝒪

(︀
ℎ2

)︀
With a similar procedure the forward/backward approximations used for boundaries can be derived.

References

[1], [2], [3]

Examples

>>> f = np.array([1, 2, 4, 7, 11, 16], dtype=float) # doctest: +SKIP
>>> np.gradient(f) # doctest: +SKIP
array([1. , 1.5, 2.5, 3.5, 4.5, 5.])
>>> np.gradient(f, 2) # doctest: +SKIP
array([0.5 , 0.75, 1.25, 1.75, 2.25, 2.5])

Spacing can be also specified with an array that represents the coordinates of the values F along the dimensions.
For instance a uniform spacing:

>>> x = np.arange(f.size) # doctest: +SKIP
>>> np.gradient(f, x) # doctest: +SKIP
array([1. , 1.5, 2.5, 3.5, 4.5, 5.])

Or a non uniform one:

>>> x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype=float) # doctest: +SKIP
>>> np.gradient(f, x) # doctest: +SKIP
array([1. , 3. , 3.5, 6.7, 6.9, 2.5])

For two dimensional arrays, the return will be two arrays ordered by axis. In this example the first array stands
for the gradient in rows and the second one in columns direction:

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float)) # doctest: +SKIP
[array([[2., 2., -1.],

[2., 2., -1.]]), array([[1. , 2.5, 4.],
[1. , 1. , 1.]])]

In this example the spacing is also specified: uniform for axis=0 and non uniform for axis=1

>>> dx = 2. # doctest: +SKIP
>>> y = [1., 1.5, 3.5] # doctest: +SKIP
>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), dx, y) # doctest:
→˓+SKIP
[array([[1. , 1. , -0.5],

[1. , 1. , -0.5]]), array([[2. , 2. , 2.],
[2. , 1.7, 0.5]])]

It is possible to specify how boundaries are treated using edge_order

158 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> x = np.array([0, 1, 2, 3, 4]) # doctest: +SKIP
>>> f = x**2 # doctest: +SKIP
>>> np.gradient(f, edge_order=1) # doctest: +SKIP
array([1., 2., 4., 6., 7.])
>>> np.gradient(f, edge_order=2) # doctest: +SKIP
array([-0., 2., 4., 6., 8.])

The axis keyword can be used to specify a subset of axes of which the gradient is calculated

>>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), axis=0) #
→˓doctest: +SKIP
array([[2., 2., -1.],

[2., 2., -1.]])

dask.array.histogram(a, bins=None, range=None, normed=False, weights=None, density=None)
Blocked variant of numpy.histogram().

Follows the signature of numpy.histogram() exactly with the following exceptions:

• Either an iterable specifying the bins or the number of bins and a range argument is required as
computing min and max over blocked arrays is an expensive operation that must be performed explicitly.

• weights must be a dask.array.Array with the same block structure as a.

Examples

Using number of bins and range:

>>> import dask.array as da
>>> import numpy as np
>>> x = da.from_array(np.arange(10000), chunks=10)
>>> h, bins = da.histogram(x, bins=10, range=[0, 10000])
>>> bins
array([0., 1000., 2000., 3000., 4000., 5000., 6000., 7000.,

8000., 9000., 10000.])
>>> h.compute()
array([1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000])

Explicitly specifying the bins:

>>> h, bins = da.histogram(x, bins=np.array([0, 5000, 10000]))
>>> bins
array([0, 5000, 10000])
>>> h.compute()
array([5000, 5000])

dask.array.hstack(tup, allow_unknown_chunksizes=False)
Stack arrays in sequence horizontally (column wise).

This docstring was copied from numpy.hstack.

Some inconsistencies with the Dask version may exist.

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the
first axis. Rebuilds arrays divided by hsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

3.7. Array 159

https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html#numpy.histogram
https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html#numpy.histogram

dask Documentation, Release 2.6.0

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the second axis,
except 1-D arrays which can be any length.

Returns

stacked [ndarray] The array formed by stacking the given arrays.

See also:

stack Join a sequence of arrays along a new axis.

vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third axis).

concatenate Join a sequence of arrays along an existing axis.

hsplit Split array along second axis.

block Assemble arrays from blocks.

Examples

>>> a = np.array((1,2,3)) # doctest: +SKIP
>>> b = np.array((2,3,4)) # doctest: +SKIP
>>> np.hstack((a,b)) # doctest: +SKIP
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]]) # doctest: +SKIP
>>> b = np.array([[2],[3],[4]]) # doctest: +SKIP
>>> np.hstack((a,b)) # doctest: +SKIP
array([[1, 2],

[2, 3],
[3, 4]])

dask.array.hypot(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Given the “legs” of a right triangle, return its hypotenuse.

Equivalent to sqrt(x1**2 + x2**2), element-wise. If x1 or x2 is scalar_like (i.e., unambiguously cast-
able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples)

Parameters

x1, x2 [array_like] Leg of the triangle(s).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

z [ndarray] The hypotenuse of the triangle(s). This is a scalar if both x1 and x2 are scalars.

160 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) # doctest: +SKIP
array([[5., 5., 5.],

[5., 5., 5.],
[5., 5., 5.]])

Example showing broadcast of scalar_like argument:

>>> np.hypot(3*np.ones((3, 3)), [4]) # doctest: +SKIP
array([[5., 5., 5.],

[5., 5., 5.],
[5., 5., 5.]])

dask.array.imag(*args, **kwargs)
Return the imaginary part of the complex argument.

Parameters

val [array_like] Input array.

Returns

out [ndarray or scalar] The imaginary component of the complex argument. If val is real, the
type of val is used for the output. If val has complex elements, the returned type is float.

See also:

real, angle, real_if_close

Examples

>>> a = np.array([1+2j, 3+4j, 5+6j]) # doctest: +SKIP
>>> a.imag # doctest: +SKIP
array([2., 4., 6.])
>>> a.imag = np.array([8, 10, 12]) # doctest: +SKIP
>>> a # doctest: +SKIP
array([1. +8.j, 3.+10.j, 5.+12.j])
>>> np.imag(1 + 1j) # doctest: +SKIP
1.0

dask.array.indices(dimensions, dtype=<class ’int’>, chunks=’auto’)
Implements NumPy’s indices for Dask Arrays.

Generates a grid of indices covering the dimensions provided.

The final array has the shape (len(dimensions), *dimensions). The chunks are used to specify the
chunking for axis 1 up to len(dimensions). The 0th axis always has chunks of length 1.

Parameters

dimensions [sequence of ints] The shape of the index grid.

dtype [dtype, optional] Type to use for the array. Default is int.

chunks [sequence of ints, str] The size of each block. Must be one of the following forms:

• A blocksize like (500, 1000)

• A size in bytes, like “100 MiB” which will choose a uniform block-like shape

3.7. Array 161

dask Documentation, Release 2.6.0

• The word “auto” which acts like the above, but uses a configuration value array.
chunk-size for the chunk size

Note that the last block will have fewer samples if len(array) % chunks != 0.

Returns

grid [dask array]

dask.array.insert(arr, obj, values, axis)
Insert values along the given axis before the given indices.

This docstring was copied from numpy.insert.

Some inconsistencies with the Dask version may exist.

Parameters

arr [array_like] Input array.

obj [int, slice or sequence of ints] Object that defines the index or indices before which values
is inserted.

New in version 1.8.0.

Support for multiple insertions when obj is a single scalar or a sequence with one element
(similar to calling insert multiple times).

values [array_like] Values to insert into arr. If the type of values is different from that of arr,
values is converted to the type of arr. values should be shaped so that arr[...,obj,..
.] = values is legal.

axis [int, optional] Axis along which to insert values. If axis is None then arr is flattened first.

Returns

out [ndarray] A copy of arr with values inserted. Note that insert does not occur in-place: a
new array is returned. If axis is None, out is a flattened array.

See also:

append Append elements at the end of an array.

concatenate Join a sequence of arrays along an existing axis.

delete Delete elements from an array.

Notes

Note that for higher dimensional inserts obj=0 behaves very different from obj=[0] just like arr[:,0,:] = values
is different from arr[:,[0],:] = values.

Examples

>>> a = np.array([[1, 1], [2, 2], [3, 3]]) # doctest: +SKIP
>>> a # doctest: +SKIP
array([[1, 1],

[2, 2],
[3, 3]])

>>> np.insert(a, 1, 5) # doctest: +SKIP
array([1, 5, 1, 2, 2, 3, 3])

(continues on next page)

162 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> np.insert(a, 1, 5, axis=1) # doctest: +SKIP
array([[1, 5, 1],

[2, 5, 2],
[3, 5, 3]])

Difference between sequence and scalars:

>>> np.insert(a, [1], [[1],[2],[3]], axis=1) # doctest: +SKIP
array([[1, 1, 1],

[2, 2, 2],
[3, 3, 3]])

>>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1), # doctest: +SKIP
... np.insert(a, [1], [[1],[2],[3]], axis=1))
True

>>> b = a.flatten() # doctest: +SKIP
>>> b # doctest: +SKIP
array([1, 1, 2, 2, 3, 3])
>>> np.insert(b, [2, 2], [5, 6]) # doctest: +SKIP
array([1, 1, 5, 6, 2, 2, 3, 3])

>>> np.insert(b, slice(2, 4), [5, 6]) # doctest: +SKIP
array([1, 1, 5, 2, 6, 2, 3, 3])

>>> np.insert(b, [2, 2], [7.13, False]) # type casting # doctest: +SKIP
array([1, 1, 7, 0, 2, 2, 3, 3])

>>> x = np.arange(8).reshape(2, 4) # doctest: +SKIP
>>> idx = (1, 3) # doctest: +SKIP
>>> np.insert(x, idx, 999, axis=1) # doctest: +SKIP
array([[0, 999, 1, 2, 999, 3],

[4, 999, 5, 6, 999, 7]])

dask.array.invert(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator ~.

For signed integer inputs, the two’s complement is returned. In a two’s-complement system negative numbers
are represented by the two’s complement of the absolute value. This is the most common method of representing
signed integers on computers [1]. A N-bit two’s-complement system can represent every integer in the range
−2𝑁−1 to +2𝑁−1 − 1.

Parameters

x [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

3.7. Array 163

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Returns

out [ndarray or scalar] Result. This is a scalar if x is a scalar.

See also:

bitwise_and, bitwise_or, bitwise_xor, logical_not

binary_repr Return the binary representation of the input number as a string.

Notes

bitwise_not is an alias for invert:

>>> np.bitwise_not is np.invert # doctest: +SKIP
True

References

[1]

Examples

We’ve seen that 13 is represented by 00001101. The invert or bit-wise NOT of 13 is then:

>>> np.invert(np.array([13], dtype=uint8)) # doctest: +SKIP
array([242], dtype=uint8)
>>> np.binary_repr(x, width=8) # doctest: +SKIP
'00001101'
>>> np.binary_repr(242, width=8) # doctest: +SKIP
'11110010'

The result depends on the bit-width:

>>> np.invert(np.array([13], dtype=uint16)) # doctest: +SKIP
array([65522], dtype=uint16)
>>> np.binary_repr(x, width=16) # doctest: +SKIP
'0000000000001101'
>>> np.binary_repr(65522, width=16) # doctest: +SKIP
'1111111111110010'

When using signed integer types the result is the two’s complement of the result for the unsigned type:

>>> np.invert(np.array([13], dtype=int8)) # doctest: +SKIP
array([-14], dtype=int8)
>>> np.binary_repr(-14, width=8) # doctest: +SKIP
'11110010'

Booleans are accepted as well:

>>> np.invert(array([True, False])) # doctest: +SKIP
array([False, True])

dask.array.isclose(arr1, arr2, rtol=1e-05, atol=1e-08, equal_nan=False)
Returns a boolean array where two arrays are element-wise equal within a tolerance.

This docstring was copied from numpy.isclose.

164 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Some inconsistencies with the Dask version may exist.

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the
absolute difference atol are added together to compare against the absolute difference between a and b.

Warning: The default atol is not appropriate for comparing numbers that are much smaller than one (see
Notes).

Parameters

a, b [array_like] Input arrays to compare.

rtol [float] The relative tolerance parameter (see Notes).

atol [float] The absolute tolerance parameter (see Notes).

equal_nan [bool] Whether to compare NaN’s as equal. If True, NaN’s in a will be considered
equal to NaN’s in b in the output array.

Returns

y [array_like] Returns a boolean array of where a and b are equal within the given tolerance. If
both a and b are scalars, returns a single boolean value.

See also:

allclose

Notes

New in version 1.7.0.

For finite values, isclose uses the following equation to test whether two floating point values are equivalent.

absolute(a - b) <= (atol + rtol * absolute(b))

Unlike the built-in math.isclose, the above equation is not symmetric in a and b – it assumes b is the reference
value – so that isclose(a, b) might be different from isclose(b, a). Furthermore, the default value of atol is
not zero, and is used to determine what small values should be considered close to zero. The default value is
appropriate for expected values of order unity: if the expected values are significantly smaller than one, it can
result in false positives. atol should be carefully selected for the use case at hand. A zero value for atol will
result in False if either a or b is zero.

Examples

>>> np.isclose([1e10,1e-7], [1.00001e10,1e-8]) # doctest: +SKIP
array([True, False])
>>> np.isclose([1e10,1e-8], [1.00001e10,1e-9]) # doctest: +SKIP
array([True, True])
>>> np.isclose([1e10,1e-8], [1.0001e10,1e-9]) # doctest: +SKIP
array([False, True])
>>> np.isclose([1.0, np.nan], [1.0, np.nan]) # doctest: +SKIP
array([True, False])
>>> np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) # doctest: +SKIP
array([True, True])
>>> np.isclose([1e-8, 1e-7], [0.0, 0.0]) # doctest: +SKIP

(continues on next page)

3.7. Array 165

dask Documentation, Release 2.6.0

(continued from previous page)

array([True, False], dtype=bool)
>>> np.isclose([1e-100, 1e-7], [0.0, 0.0], atol=0.0) # doctest: +SKIP
array([False, False], dtype=bool)
>>> np.isclose([1e-10, 1e-10], [1e-20, 0.0]) # doctest: +SKIP
array([True, True], dtype=bool)
>>> np.isclose([1e-10, 1e-10], [1e-20, 0.999999e-10], atol=0.0) # doctest: +SKIP
array([False, True], dtype=bool)

dask.array.iscomplex(*args, **kwargs)
Returns a bool array, where True if input element is complex.

What is tested is whether the input has a non-zero imaginary part, not if the input type is complex.

Parameters

x [array_like] Input array.

Returns

out [ndarray of bools] Output array.

See also:

isreal

iscomplexobj Return True if x is a complex type or an array of complex numbers.

Examples

>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j]) # doctest: +SKIP
array([True, False, False, False, False, True])

dask.array.isfinite(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Test element-wise for finiteness (not infinity or not Not a Number).

The result is returned as a boolean array.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray, bool] True where x is not positive infinity, negative infinity, or NaN; false otherwise.
This is a scalar if x is a scalar.

See also:

isinf, isneginf, isposinf, isnan

166 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Notes

Not a Number, positive infinity and negative infinity are considered to be non-finite.

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity
is equivalent to positive infinity. Errors result if the second argument is also supplied when x is a scalar input,
or if first and second arguments have different shapes.

Examples

>>> np.isfinite(1) # doctest: +SKIP
True
>>> np.isfinite(0) # doctest: +SKIP
True
>>> np.isfinite(np.nan) # doctest: +SKIP
False
>>> np.isfinite(np.inf) # doctest: +SKIP
False
>>> np.isfinite(np.NINF) # doctest: +SKIP
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)]) # doctest: +SKIP
array([False, True, False])

>>> x = np.array([-np.inf, 0., np.inf]) # doctest: +SKIP
>>> y = np.array([2, 2, 2]) # doctest: +SKIP
>>> np.isfinite(x, y) # doctest: +SKIP
array([0, 1, 0])
>>> y # doctest: +SKIP
array([0, 1, 0])

dask.array.isin(element, test_elements, assume_unique=False, invert=False)
Calculates element in test_elements, broadcasting over element only. Returns a boolean array of the same shape
as element that is True where an element of element is in test_elements and False otherwise.

Parameters

element [array_like] Input array.

test_elements [array_like] The values against which to test each value of element. This argu-
ment is flattened if it is an array or array_like. See notes for behavior with non-array-like
parameters.

assume_unique [bool, optional] If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.

invert [bool, optional] If True, the values in the returned array are inverted, as if calculating
element not in test_elements. Default is False. np.isin(a, b, invert=True) is
equivalent to (but faster than) np.invert(np.isin(a, b)).

Returns

isin [ndarray, bool] Has the same shape as element. The values element[isin] are in
test_elements.

See also:

in1d Flattened version of this function.

3.7. Array 167

dask Documentation, Release 2.6.0

numpy.lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Notes

isin is an element-wise function version of the python keyword in. isin(a, b) is roughly equivalent to
np.array([item in b for item in a]) if a and b are 1-D sequences.

element and test_elements are converted to arrays if they are not already. If test_elements is a set (or other non-
sequence collection) it will be converted to an object array with one element, rather than an array of the values
contained in test_elements. This is a consequence of the array constructor’s way of handling non-sequence
collections. Converting the set to a list usually gives the desired behavior.

New in version 1.13.0.

Examples

>>> element = 2*np.arange(4).reshape((2, 2))
>>> element
array([[0, 2],

[4, 6]])
>>> test_elements = [1, 2, 4, 8]
>>> mask = np.isin(element, test_elements)
>>> mask
array([[False, True],

[True, False]])
>>> element[mask]
array([2, 4])

The indices of the matched values can be obtained with nonzero:

>>> np.nonzero(mask)
(array([0, 1]), array([1, 0]))

The test can also be inverted:

>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[True, False],

[False, True]])
>>> element[mask]
array([0, 6])

Because of how array handles sets, the following does not work as expected:

>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[False, False],

[False, False]])

Casting the set to a list gives the expected result:

>>> np.isin(element, list(test_set))
array([[False, True],

[True, False]])

168 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.array.isinf(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Test element-wise for positive or negative infinity.

Returns a boolean array of the same shape as x, True where x == +/-inf, otherwise False.

Parameters

x [array_like] Input values

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [bool (scalar) or boolean ndarray] True where x is positive or negative infinity, false otherwise.
This is a scalar if x is a scalar.

See also:

isneginf, isposinf, isnan, isfinite

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).

Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second
arguments have different shapes.

Examples

>>> np.isinf(np.inf) # doctest: +SKIP
True
>>> np.isinf(np.nan) # doctest: +SKIP
False
>>> np.isinf(np.NINF) # doctest: +SKIP
True
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan]) # doctest: +SKIP
array([True, True, False, False])

>>> x = np.array([-np.inf, 0., np.inf]) # doctest: +SKIP
>>> y = np.array([2, 2, 2]) # doctest: +SKIP
>>> np.isinf(x, y) # doctest: +SKIP
array([1, 0, 1])
>>> y # doctest: +SKIP
array([1, 0, 1])

dask.array.isneginf(*args, **kwargs)
Return (x1 == x2) element-wise.

Parameters

x1, x2 [array_like] Input arrays of the same shape.

3.7. Array 169

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

not_equal, greater_equal, less_equal, greater, less

Examples

>>> np.equal([0, 1, 3], np.arange(3)) # doctest: +SKIP
array([True, True, False])

What is compared are values, not types. So an int (1) and an array of length one can evaluate as True:

>>> np.equal(1, np.ones(1)) # doctest: +SKIP
array([True])

dask.array.isnan(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Test element-wise for NaN and return result as a boolean array.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or bool] True where x is NaN, false otherwise. This is a scalar if x is a scalar.

See also:

isinf, isneginf, isposinf, isfinite, isnat

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

170 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.isnan(np.nan) # doctest: +SKIP
True
>>> np.isnan(np.inf) # doctest: +SKIP
False
>>> np.isnan([np.log(-1.),1.,np.log(0)]) # doctest: +SKIP
array([True, False, False])

dask.array.isnull(values)
pandas.isnull for dask arrays

dask.array.isposinf(*args, **kwargs)
Return (x1 == x2) element-wise.

Parameters

x1, x2 [array_like] Input arrays of the same shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array, element-wise comparison of x1 and x2. Typically of type
bool, unless dtype=object is passed. This is a scalar if both x1 and x2 are scalars.

See also:

not_equal, greater_equal, less_equal, greater, less

Examples

>>> np.equal([0, 1, 3], np.arange(3)) # doctest: +SKIP
array([True, True, False])

What is compared are values, not types. So an int (1) and an array of length one can evaluate as True:

>>> np.equal(1, np.ones(1)) # doctest: +SKIP
array([True])

dask.array.isreal(*args, **kwargs)
Returns a bool array, where True if input element is real.

If element has complex type with zero complex part, the return value for that element is True.

Parameters

x [array_like] Input array.

Returns

out [ndarray, bool] Boolean array of same shape as x.

3.7. Array 171

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

See also:

iscomplex

isrealobj Return True if x is not a complex type.

Examples

>>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j]) # doctest: +SKIP
array([False, True, True, True, True, False])

dask.array.ldexp(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Returns x1 * 2**x2, element-wise.

The mantissas x1 and twos exponents x2 are used to construct floating point numbers x1 * 2**x2.

Parameters

x1 [array_like] Array of multipliers.

x2 [array_like, int] Array of twos exponents.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The result of x1 * 2**x2. This is a scalar if both x1 and x2 are scalars.

See also:

frexp Return (y1, y2) from x = y1 * 2**y2, inverse to ldexp.

Notes

Complex dtypes are not supported, they will raise a TypeError.

ldexp is useful as the inverse of frexp, if used by itself it is more clear to simply use the expression x1 *
2**x2.

Examples

>>> np.ldexp(5, np.arange(4)) # doctest: +SKIP
array([5., 10., 20., 40.], dtype=float32)

>>> x = np.arange(6) # doctest: +SKIP
>>> np.ldexp(*np.frexp(x)) # doctest: +SKIP
array([0., 1., 2., 3., 4., 5.])

172 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

dask.array.linspace(start, stop, num=50, endpoint=True, retstep=False, chunks=’auto’,
dtype=None)

Return num evenly spaced values over the closed interval [start, stop].

Parameters

start [scalar] The starting value of the sequence.

stop [scalar] The last value of the sequence.

num [int, optional] Number of samples to include in the returned dask array, including the
endpoints. Default is 50.

endpoint [bool, optional] If True, stop is the last sample. Otherwise, it is not included. De-
fault is True.

retstep [bool, optional] If True, return (samples, step), where step is the spacing between sam-
ples. Default is False.

chunks [int] The number of samples on each block. Note that the last block will have fewer
samples if num % blocksize != 0

dtype [dtype, optional] The type of the output array.

Returns

samples [dask array]

step [float, optional] Only returned if retstep is True. Size of spacing between samples.

See also:

dask.array.arange

dask.array.log(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Natural logarithm, element-wise.

The natural logarithm log is the inverse of the exponential function, so that log(exp(x)) = x. The natural logarithm
is logarithm in base e.

Parameters

x [array_like] Input value.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The natural logarithm of x, element-wise. This is a scalar if x is a scalar.

See also:

log10, log2, log1p, emath.log

3.7. Array 173

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.

References

[1], [2]

Examples

>>> np.log([1, np.e, np.e**2, 0]) # doctest: +SKIP
array([0., 1., 2., -Inf])

dask.array.log10(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the base 10 logarithm of the input array, element-wise.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The logarithm to the base 10 of x, element-wise. NaNs are returned where x is
negative. This is a scalar if x is a scalar.

See also:

emath.log10

Notes

Logarithm is a multivalued function: for each x there is an infinite number of z such that 10**z = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log10 always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log10 is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log10 handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.

174 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

References

[1], [2]

Examples

>>> np.log10([1e-15, -3.]) # doctest: +SKIP
array([-15., NaN])

dask.array.log1p(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the natural logarithm of one plus the input array, element-wise.

Calculates log(1 + x).

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] Natural logarithm of 1 + x, element-wise. This is a scalar if x is a scalar.

See also:

expm1 exp(x) - 1, the inverse of log1p.

Notes

For real-valued input, log1p is accurate also for x so small that 1 + x == 1 in floating-point accuracy.

Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = 1 + x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log1p always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log1p is a complex analytical function that has a branch cut [-inf, -1] and is con-
tinuous from above on it. log1p handles the floating-point negative zero as an infinitesimal negative number,
conforming to the C99 standard.

References

[1], [2]

3.7. Array 175

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.log1p(1e-99) # doctest: +SKIP
1e-99
>>> np.log(1 + 1e-99) # doctest: +SKIP
0.0

dask.array.log2(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Base-2 logarithm of x.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] Base-2 logarithm of x. This is a scalar if x is a scalar.

See also:

log, log10, log1p, emath.log2

Notes

New in version 1.3.0.

Logarithm is a multivalued function: for each x there is an infinite number of z such that 2**z = x. The
convention is to return the z whose imaginary part lies in [-pi, pi].

For real-valued input data types, log2 always returns real output. For each value that cannot be expressed as a
real number or infinity, it yields nan and sets the invalid floating point error flag.

For complex-valued input, log2 is a complex analytical function that has a branch cut [-inf, 0] and is continuous
from above on it. log2 handles the floating-point negative zero as an infinitesimal negative number, conforming
to the C99 standard.

Examples

>>> x = np.array([0, 1, 2, 2**4]) # doctest: +SKIP
>>> np.log2(x) # doctest: +SKIP
array([-Inf, 0., 1., 4.])

>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) # doctest: +SKIP
>>> np.log2(xi) # doctest: +SKIP
array([0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])

176 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

dask.array.logaddexp(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Logarithm of the sum of exponentiations of the inputs.

Calculates log(exp(x1) + exp(x2)). This function is useful in statistics where the calculated proba-
bilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the
logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a
fashion.

Parameters

x1, x2 [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

result [ndarray] Logarithm of exp(x1) + exp(x2). This is a scalar if both x1 and x2 are
scalars.

See also:

logaddexp2 Logarithm of the sum of exponentiations of inputs in base 2.

Notes

New in version 1.3.0.

Examples

>>> prob1 = np.log(1e-50) # doctest: +SKIP
>>> prob2 = np.log(2.5e-50) # doctest: +SKIP
>>> prob12 = np.logaddexp(prob1, prob2) # doctest: +SKIP
>>> prob12 # doctest: +SKIP
-113.87649168120691
>>> np.exp(prob12) # doctest: +SKIP
3.5000000000000057e-50

dask.array.logaddexp2(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Logarithm of the sum of exponentiations of the inputs in base-2.

Calculates log2(2**x1 + 2**x2). This function is useful in machine learning when the calculated prob-
abilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the
base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities
stored in such a fashion.

Parameters

x1, x2 [array_like] Input values.

3.7. Array 177

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

result [ndarray] Base-2 logarithm of 2**x1 + 2**x2. This is a scalar if both x1 and x2 are
scalars.

See also:

logaddexp Logarithm of the sum of exponentiations of the inputs.

Notes

New in version 1.3.0.

Examples

>>> prob1 = np.log2(1e-50) # doctest: +SKIP
>>> prob2 = np.log2(2.5e-50) # doctest: +SKIP
>>> prob12 = np.logaddexp2(prob1, prob2) # doctest: +SKIP
>>> prob1, prob2, prob12 # doctest: +SKIP
(-166.09640474436813, -164.77447664948076, -164.28904982231052)
>>> 2**prob12 # doctest: +SKIP
3.4999999999999914e-50

dask.array.logical_and(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Compute the truth value of x1 AND x2 element-wise.

Parameters

x1, x2 [array_like] Input arrays. x1 and x2 must be of the same shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or bool] Boolean result with the same shape as x1 and x2 of the logical AND opera-
tion on corresponding elements of x1 and x2. This is a scalar if both x1 and x2 are scalars.

See also:

logical_or, logical_not, logical_xor, bitwise_and

178 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.logical_and(True, False) # doctest: +SKIP
False
>>> np.logical_and([True, False], [False, False]) # doctest: +SKIP
array([False, False])

>>> x = np.arange(5) # doctest: +SKIP
>>> np.logical_and(x>1, x<4) # doctest: +SKIP
array([False, False, True, True, False])

dask.array.logical_not(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Compute the truth value of NOT x element-wise.

Parameters

x [array_like] Logical NOT is applied to the elements of x.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [bool or ndarray of bool] Boolean result with the same shape as x of the NOT operation on
elements of x. This is a scalar if x is a scalar.

See also:

logical_and, logical_or, logical_xor

Examples

>>> np.logical_not(3) # doctest: +SKIP
False
>>> np.logical_not([True, False, 0, 1]) # doctest: +SKIP
array([False, True, True, False])

>>> x = np.arange(5) # doctest: +SKIP
>>> np.logical_not(x<3) # doctest: +SKIP
array([False, False, False, True, True])

dask.array.logical_or(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Compute the truth value of x1 OR x2 element-wise.

Parameters

x1, x2 [array_like] Logical OR is applied to the elements of x1 and x2. They have to be of the
same shape.

3.7. Array 179

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or bool] Boolean result with the same shape as x1 and x2 of the logical OR operation
on elements of x1 and x2. This is a scalar if both x1 and x2 are scalars.

See also:

logical_and, logical_not, logical_xor, bitwise_or

Examples

>>> np.logical_or(True, False) # doctest: +SKIP
True
>>> np.logical_or([True, False], [False, False]) # doctest: +SKIP
array([True, False])

>>> x = np.arange(5) # doctest: +SKIP
>>> np.logical_or(x < 1, x > 3) # doctest: +SKIP
array([True, False, False, False, True])

dask.array.logical_xor(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Compute the truth value of x1 XOR x2, element-wise.

Parameters

x1, x2 [array_like] Logical XOR is applied to the elements of x1 and x2. They must be broad-
castable to the same shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [bool or ndarray of bool] Boolean result of the logical XOR operation applied to the elements
of x1 and x2; the shape is determined by whether or not broadcasting of one or both arrays
was required. This is a scalar if both x1 and x2 are scalars.

See also:

logical_and, logical_or, logical_not, bitwise_xor

180 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.logical_xor(True, False) # doctest: +SKIP
True
>>> np.logical_xor([True, True, False, False], [True, False, True, False]) #
→˓doctest: +SKIP
array([False, True, True, False])

>>> x = np.arange(5) # doctest: +SKIP
>>> np.logical_xor(x < 1, x > 3) # doctest: +SKIP
array([True, False, False, False, True])

Simple example showing support of broadcasting

>>> np.logical_xor(0, np.eye(2)) # doctest: +SKIP
array([[True, False],

[False, True]])

dask.array.map_blocks(func, *args, name=None, token=None, dtype=None, chunks=None,
drop_axis=[], new_axis=None, meta=None, **kwargs)

Map a function across all blocks of a dask array.

Parameters

func [callable] Function to apply to every block in the array.

args [dask arrays or other objects]

dtype [np.dtype, optional] The dtype of the output array. It is recommended to provide this.
If not provided, will be inferred by applying the function to a small set of fake data.

chunks [tuple, optional] Chunk shape of resulting blocks if the function does not preserve
shape. If not provided, the resulting array is assumed to have the same block structure
as the first input array.

drop_axis [number or iterable, optional] Dimensions lost by the function.

new_axis [number or iterable, optional] New dimensions created by the function. Note that
these are applied after drop_axis (if present).

token [string, optional] The key prefix to use for the output array. If not provided, will be
determined from the function name.

name [string, optional] The key name to use for the output array. Note that this fully specifies
the output key name, and must be unique. If not provided, will be determined by a hash of
the arguments.

**kwargs : Other keyword arguments to pass to function. Values must be constants (not
dask.arrays)

Examples

>>> import dask.array as da
>>> x = da.arange(6, chunks=3)

>>> x.map_blocks(lambda x: x * 2).compute()
array([0, 2, 4, 6, 8, 10])

The da.map_blocks function can also accept multiple arrays.

3.7. Array 181

dask Documentation, Release 2.6.0

>>> d = da.arange(5, chunks=2)
>>> e = da.arange(5, chunks=2)

>>> f = map_blocks(lambda a, b: a + b**2, d, e)
>>> f.compute()
array([0, 2, 6, 12, 20])

If the function changes shape of the blocks then you must provide chunks explicitly.

>>> y = x.map_blocks(lambda x: x[::2], chunks=((2, 2),))

You have a bit of freedom in specifying chunks. If all of the output chunk sizes are the same, you can provide
just that chunk size as a single tuple.

>>> a = da.arange(18, chunks=(6,))
>>> b = a.map_blocks(lambda x: x[:3], chunks=(3,))

If the function changes the dimension of the blocks you must specify the created or destroyed dimensions.

>>> b = a.map_blocks(lambda x: x[None, :, None], chunks=(1, 6, 1),
... new_axis=[0, 2])

If chunks is specified but new_axis is not, then it is inferred to add the necessary number of axes on the left.

Map_blocks aligns blocks by block positions without regard to shape. In the following example we have two
arrays with the same number of blocks but with different shape and chunk sizes.

>>> x = da.arange(1000, chunks=(100,))
>>> y = da.arange(100, chunks=(10,))

The relevant attribute to match is numblocks.

>>> x.numblocks
(10,)
>>> y.numblocks
(10,)

If these match (up to broadcasting rules) then we can map arbitrary functions across blocks

>>> def func(a, b):
... return np.array([a.max(), b.max()])

>>> da.map_blocks(func, x, y, chunks=(2,), dtype='i8')
dask.array<func, shape=(20,), dtype=int64, chunksize=(2,), chunktype=numpy.
→˓ndarray>

>>> _.compute()
array([99, 9, 199, 19, 299, 29, 399, 39, 499, 49, 599, 59, 699,

69, 799, 79, 899, 89, 999, 99])

Your block function get information about where it is in the array by accepting a special block_info keyword
argument.

>>> def func(block, block_info=None):
... pass

This will receive the following information:

182 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> block_info # doctest: +SKIP
{0: {'shape': (1000,),

'num-chunks': (10,),
'chunk-location': (4,),
'array-location': [(400, 500)]},

None: {'shape': (1000,),
'num-chunks': (10,),
'chunk-location': (4,),
'array-location': [(400, 500)],
'chunk-shape': (100,),
'dtype': dtype('float64')}}

For each argument and keyword arguments that are dask arrays (the positions of which are the first index), you
will receive the shape of the full array, the number of chunks of the full array in each dimension, the chunk
location (for example the fourth chunk over in the first dimension), and the array location (for example the slice
corresponding to 40:50). The same information is provided for the output, with the key None, plus the shape
and dtype that should be returned.

These features can be combined to synthesize an array from scratch, for example:

>>> def func(block_info=None):
... loc = block_info[None]['array-location'][0]
... return np.arange(loc[0], loc[1])

>>> da.map_blocks(func, chunks=((4, 4),), dtype=np.float_)
dask.array<func, shape=(8,), dtype=float64, chunksize=(4,), chunktype=numpy.
→˓ndarray>

>>> _.compute()
array([0, 1, 2, 3, 4, 5, 6, 7])

You may specify the key name prefix of the resulting task in the graph with the optional token keyword
argument.

>>> x.map_blocks(lambda x: x + 1, name='increment') # doctest: +SKIP
dask.array<increment, shape=(100,), dtype=int64, chunksize=(10,), chunktype=numpy.
→˓ndarray>

dask.array.matmul(x1, x2, /, out=None, *, casting=’same_kind’, order=’K’, dtype=None, subok=True[,
signature, extobj])

This docstring was copied from numpy.matmul.

Some inconsistencies with the Dask version may exist.

Matrix product of two arrays.

Parameters

x1, x2 [array_like] Input arrays, scalars not allowed.

out [ndarray, optional] A location into which the result is stored. If provided, it must have a
shape that matches the signature (n,k),(k,m)->(n,m). If not provided or None, a freshly-
allocated array is returned.

**kwargs For other keyword-only arguments, see the ufunc docs.

..versionadded:: 1.16 Now handles ufunc kwargs

Returns

3.7. Array 183

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

y [ndarray] The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d
vectors.

Raises

ValueError If the last dimension of a is not the same size as the second-to-last dimension of b.

If a scalar value is passed in.

See also:

vdot Complex-conjugating dot product.

tensordot Sum products over arbitrary axes.

einsum Einstein summation convention.

dot alternative matrix product with different broadcasting rules.

Notes

The behavior depends on the arguments in the following way.

• If both arguments are 2-D they are multiplied like conventional matrices.

• If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and
broadcast accordingly.

• If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix
multiplication the prepended 1 is removed.

• If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix
multiplication the appended 1 is removed.

matmul differs from dot in two important ways:

• Multiplication by scalars is not allowed, use * instead.

• Stacks of matrices are broadcast together as if the matrices were elements, respecting the signature (n,
k),(k,m)->(n,m):

>>> a = np.ones([9, 5, 7, 4]) # doctest: +SKIP
>>> c = np.ones([9, 5, 4, 3]) # doctest: +SKIP
>>> np.dot(a, c).shape # doctest: +SKIP
(9, 5, 7, 9, 5, 3)
>>> np.matmul(a, c).shape # doctest: +SKIP
(9, 5, 7, 3)
>>> # n is 7, k is 4, m is 3

The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP465.

Examples

For 2-D arrays it is the matrix product:

>>> a = np.array([[1, 0], # doctest: +SKIP
... [0, 1]])
>>> b = np.array([[4, 1], # doctest: +SKIP
... [2, 2]]
>>> np.matmul(a, b) # doctest: +SKIP

(continues on next page)

184 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

array([[4, 1],
[2, 2]])

For 2-D mixed with 1-D, the result is the usual.

>>> a = np.array([[1, 0], # doctest: +SKIP
... [0, 1]]
>>> b = np.array([1, 2]) # doctest: +SKIP
>>> np.matmul(a, b) # doctest: +SKIP
array([1, 2])
>>> np.matmul(b, a) # doctest: +SKIP
array([1, 2])

Broadcasting is conventional for stacks of arrays

>>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4)) # doctest: +SKIP
>>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2)) # doctest: +SKIP
>>> np.matmul(a,b).shape # doctest: +SKIP
(2, 2, 2)
>>> np.matmul(a, b)[0, 1, 1] # doctest: +SKIP
98
>>> sum(a[0, 1, :] * b[0 , :, 1]) # doctest: +SKIP
98

Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:

>>> np.matmul([2j, 3j], [2j, 3j]) # doctest: +SKIP
(-13+0j)

Scalar multiplication raises an error.

>>> np.matmul([1,2], 3) # doctest: +SKIP
Traceback (most recent call last):
...
ValueError: matmul: Input operand 1 does not have enough dimensions ...

New in version 1.10.0.

dask.array.max(a, axis=None, out=None, keepdims=<no value>, initial=<no value>)
Return the maximum of an array or maximum along an axis.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] Axis or axes along which to operate. By default,
flattened input is used.

New in version 1.7.0.

If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis
or all the axes as before.

out [ndarray, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output. See doc.ufuncs (Section “Output
arguments”) for more details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

3.7. Array 185

dask Documentation, Release 2.6.0

If the default value is passed, then keepdims will not be passed through to the amax method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial [scalar, optional] The minimum value of an output element. Must be present to allow
computation on empty slice. See ~numpy.ufunc.reduce for details.

New in version 1.15.0.

Returns

amax [ndarray or scalar] Maximum of a. If axis is None, the result is a scalar value. If axis is
given, the result is an array of dimension a.ndim - 1.

See also:

amin The minimum value of an array along a given axis, propagating any NaNs.

nanmax The maximum value of an array along a given axis, ignoring any NaNs.

maximum Element-wise maximum of two arrays, propagating any NaNs.

fmax Element-wise maximum of two arrays, ignoring any NaNs.

argmax Return the indices of the maximum values.

nanmin, minimum, fmin

Notes

NaN values are propagated, that is if at least one item is NaN, the corresponding max value will be NaN as well.
To ignore NaN values (MATLAB behavior), please use nanmax.

Don’t use amax for element-wise comparison of 2 arrays; when a.shape[0] is 2, maximum(a[0],
a[1]) is faster than amax(a, axis=0).

Examples

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.amax(a) # Maximum of the flattened array
3
>>> np.amax(a, axis=0) # Maxima along the first axis
array([2, 3])
>>> np.amax(a, axis=1) # Maxima along the second axis
array([1, 3])

>>> b = np.arange(5, dtype=float)
>>> b[2] = np.NaN
>>> np.amax(b)
nan
>>> np.nanmax(b)
4.0

You can use an initial value to compute the maximum of an empty slice, or to initialize it to a different value:

186 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> np.max([[-50], [10]], axis=-1, initial=0)
array([0, 10])

Notice that the initial value is used as one of the elements for which the maximum is determined, unlike for the
default argument Python’s max function, which is only used for empty iterables.

>>> np.max([5], initial=6)
6
>>> max([5], default=6)
5

dask.array.maximum(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Element-wise maximum of array elements.

Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being
compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter
distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are propagated.

Parameters

x1, x2 [array_like] The arrays holding the elements to be compared. They must have the same
shape, or shapes that can be broadcast to a single shape.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The maximum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

minimum Element-wise minimum of two arrays, propagates NaNs.

fmax Element-wise maximum of two arrays, ignores NaNs.

amax The maximum value of an array along a given axis, propagates NaNs.

nanmax The maximum value of an array along a given axis, ignores NaNs.

fmin, amin, nanmin

Notes

The maximum is equivalent to np.where(x1 >= x2, x1, x2) when neither x1 nor x2 are nans, but it is
faster and does proper broadcasting.

3.7. Array 187

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.maximum([2, 3, 4], [1, 5, 2]) # doctest: +SKIP
array([2, 5, 4])

>>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting # doctest: +SKIP
array([[1. , 2.],

[0.5, 2.]])

>>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan]) # doctest: +SKIP
array([NaN, NaN, NaN])
>>> np.maximum(np.Inf, 1) # doctest: +SKIP
inf

dask.array.mean(a, axis=None, dtype=None, out=None, keepdims=<no value>)
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise
over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters

a [array_like] Array containing numbers whose mean is desired. If a is not an array, a conver-
sion is attempted.

axis [None or int or tuple of ints, optional] Axis or axes along which the means are computed.
The default is to compute the mean of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or
all the axes as before.

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for floating point inputs, it is the same as the input dtype.

out [ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the mean method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

m [ndarray, see dtype parameter above] If out=None, returns a new array containing the mean
values, otherwise a reference to the output array is returned.

See also:

average Weighted average

std, var, nanmean, nanstd, nanvar

188 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

The arithmetic mean is the sum of the elements along the axis divided by the number of elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending on
the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying
a higher-precision accumulator using the dtype keyword can alleviate this issue.

By default, float16 results are computed using float32 intermediates for extra precision.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([2., 3.])
>>> np.mean(a, axis=1)
array([1.5, 3.5])

In single precision, mean can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.54999924

Computing the mean in float64 is more accurate:

>>> np.mean(a, dtype=np.float64)
0.55000000074505806

dask.array.meshgrid(*xi, **kwargs)
Return coordinate matrices from coordinate vectors.

This docstring was copied from numpy.meshgrid.

Some inconsistencies with the Dask version may exist.

Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-
dimensional coordinate arrays x1, x2,. . . , xn.

Changed in version 1.9: 1-D and 0-D cases are allowed.

Parameters

x1, x2,. . . , xn [array_like] 1-D arrays representing the coordinates of a grid.

indexing [{‘xy’, ‘ij’}, optional] Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. See
Notes for more details.

New in version 1.7.0.

sparse [bool, optional] If True a sparse grid is returned in order to conserve memory. Default
is False.

New in version 1.7.0.

3.7. Array 189

dask Documentation, Release 2.6.0

copy [bool, optional] If False, a view into the original arrays are returned in order to conserve
memory. Default is True. Please note that sparse=False, copy=False will likely
return non-contiguous arrays. Furthermore, more than one element of a broadcast array may
refer to a single memory location. If you need to write to the arrays, make copies first.

New in version 1.7.0.

Returns

X1, X2,. . . , XN [ndarray] For vectors x1, x2,. . . , ‘xn’ with lengths Ni=len(xi) , return (N1,
N2, N3,...Nn) shaped arrays if indexing=’ij’ or (N2, N1, N3,...Nn) shaped ar-
rays if indexing=’xy’ with the elements of xi repeated to fill the matrix along the first di-
mension for x1, the second for x2 and so on.

See also:

index_tricks.mgrid Construct a multi-dimensional “meshgrid” using indexing notation.

index_tricks.ogrid Construct an open multi-dimensional “meshgrid” using indexing notation.

Notes

This function supports both indexing conventions through the indexing keyword argument. Giving the string ‘ij’
returns a meshgrid with matrix indexing, while ‘xy’ returns a meshgrid with Cartesian indexing. In the 2-D case
with inputs of length M and N, the outputs are of shape (N, M) for ‘xy’ indexing and (M, N) for ‘ij’ indexing.
In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for ‘xy’ indexing and (M, N, P)
for ‘ij’ indexing. The difference is illustrated by the following code snippet:

xv, yv = np.meshgrid(x, y, sparse=False, indexing='ij')
for i in range(nx):

for j in range(ny):
treat xv[i,j], yv[i,j]

xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
for i in range(nx):

for j in range(ny):
treat xv[j,i], yv[j,i]

In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

Examples

>>> nx, ny = (3, 2) # doctest: +SKIP
>>> x = np.linspace(0, 1, nx) # doctest: +SKIP
>>> y = np.linspace(0, 1, ny) # doctest: +SKIP
>>> xv, yv = np.meshgrid(x, y) # doctest: +SKIP
>>> xv # doctest: +SKIP
array([[0. , 0.5, 1.],

[0. , 0.5, 1.]])
>>> yv # doctest: +SKIP
array([[0., 0., 0.],

[1., 1., 1.]])
>>> xv, yv = np.meshgrid(x, y, sparse=True) # make sparse output arrays #
→˓doctest: +SKIP
>>> xv # doctest: +SKIP
array([[0. , 0.5, 1.]])

(continues on next page)

190 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> yv # doctest: +SKIP
array([[0.],

[1.]])

meshgrid is very useful to evaluate functions on a grid.

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> x = np.arange(-5, 5, 0.1) # doctest: +SKIP
>>> y = np.arange(-5, 5, 0.1) # doctest: +SKIP
>>> xx, yy = np.meshgrid(x, y, sparse=True) # doctest: +SKIP
>>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2) # doctest: +SKIP
>>> h = plt.contourf(x,y,z) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.min(a, axis=None, out=None, keepdims=<no value>, initial=<no value>)
Return the minimum of an array or minimum along an axis.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] Axis or axes along which to operate. By default,
flattened input is used.

New in version 1.7.0.

If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis
or all the axes as before.

out [ndarray, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output. See doc.ufuncs (Section “Output
arguments”) for more details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the amin method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial [scalar, optional] The maximum value of an output element. Must be present to allow
computation on empty slice. See ~numpy.ufunc.reduce for details.

New in version 1.15.0.

Returns

amin [ndarray or scalar] Minimum of a. If axis is None, the result is a scalar value. If axis is
given, the result is an array of dimension a.ndim - 1.

See also:

amax The maximum value of an array along a given axis, propagating any NaNs.

nanmin The minimum value of an array along a given axis, ignoring any NaNs.

minimum Element-wise minimum of two arrays, propagating any NaNs.

fmin Element-wise minimum of two arrays, ignoring any NaNs.

argmin Return the indices of the minimum values.

3.7. Array 191

dask Documentation, Release 2.6.0

nanmax, maximum, fmax

Notes

NaN values are propagated, that is if at least one item is NaN, the corresponding min value will be NaN as well.
To ignore NaN values (MATLAB behavior), please use nanmin.

Don’t use amin for element-wise comparison of 2 arrays; when a.shape[0] is 2, minimum(a[0], a[1])
is faster than amin(a, axis=0).

Examples

>>> a = np.arange(4).reshape((2,2))
>>> a
array([[0, 1],

[2, 3]])
>>> np.amin(a) # Minimum of the flattened array
0
>>> np.amin(a, axis=0) # Minima along the first axis
array([0, 1])
>>> np.amin(a, axis=1) # Minima along the second axis
array([0, 2])

>>> b = np.arange(5, dtype=float)
>>> b[2] = np.NaN
>>> np.amin(b)
nan
>>> np.nanmin(b)
0.0

>>> np.min([[-50], [10]], axis=-1, initial=0)
array([-50, 0])

Notice that the initial value is used as one of the elements for which the minimum is determined, unlike for the
default argument Python’s max function, which is only used for empty iterables.

Notice that this isn’t the same as Python’s default argument.

>>> np.min([6], initial=5)
5
>>> min([6], default=5)
6

dask.array.minimum(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Element-wise minimum of array elements.

Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being
compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter
distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being
a NaN. The net effect is that NaNs are propagated.

Parameters

x1, x2 [array_like] The arrays holding the elements to be compared. They must have the same
shape, or shapes that can be broadcast to a single shape.

192 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The minimum of x1 and x2, element-wise. This is a scalar if both x1 and
x2 are scalars.

See also:

maximum Element-wise maximum of two arrays, propagates NaNs.

fmin Element-wise minimum of two arrays, ignores NaNs.

amin The minimum value of an array along a given axis, propagates NaNs.

nanmin The minimum value of an array along a given axis, ignores NaNs.

fmax, amax, nanmax

Notes

The minimum is equivalent to np.where(x1 <= x2, x1, x2) when neither x1 nor x2 are NaNs, but it
is faster and does proper broadcasting.

Examples

>>> np.minimum([2, 3, 4], [1, 5, 2]) # doctest: +SKIP
array([1, 3, 2])

>>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting # doctest: +SKIP
array([[0.5, 0.],

[0. , 1.]])

>>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan]) # doctest: +SKIP
array([NaN, NaN, NaN])
>>> np.minimum(-np.Inf, 1) # doctest: +SKIP
-inf

dask.array.modf(x[, out1, out2], /[, out=(None, None)], *, where=True, casting=’same_kind’, or-
der=’K’, dtype=None, subok=True[, signature, extobj])

Return the fractional and integral parts of an array, element-wise.

The fractional and integral parts are negative if the given number is negative.

Parameters

x [array_like] Input array.

3.7. Array 193

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y1 [ndarray] Fractional part of x. This is a scalar if x is a scalar.

y2 [ndarray] Integral part of x. This is a scalar if x is a scalar.

See also:

divmod divmod(x, 1) is equivalent to modf with the return values switched, except it always has a posi-
tive remainder.

Notes

For integer input the return values are floats.

Examples

>>> np.modf([0, 3.5]) # doctest: +SKIP
(array([0. , 0.5]), array([0., 3.]))
>>> np.modf(-0.5) # doctest: +SKIP
(-0.5, -0)

dask.array.moment(a, order, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None,
out=None)

dask.array.moveaxis(a, source, destination)
Move axes of an array to new positions.

This docstring was copied from numpy.moveaxis.

Some inconsistencies with the Dask version may exist.

Other axes remain in their original order.

New in version 1.11.0.

Parameters

a [np.ndarray] The array whose axes should be reordered.

source [int or sequence of int] Original positions of the axes to move. These must be unique.

destination [int or sequence of int] Destination positions for each of the original axes. These
must also be unique.

Returns

result [np.ndarray] Array with moved axes. This array is a view of the input array.

See also:

transpose Permute the dimensions of an array.

194 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

swapaxes Interchange two axes of an array.

Examples

>>> x = np.zeros((3, 4, 5)) # doctest: +SKIP
>>> np.moveaxis(x, 0, -1).shape # doctest: +SKIP
(4, 5, 3)
>>> np.moveaxis(x, -1, 0).shape # doctest: +SKIP
(5, 3, 4)

These all achieve the same result:

>>> np.transpose(x).shape # doctest: +SKIP
(5, 4, 3)
>>> np.swapaxes(x, 0, -1).shape # doctest: +SKIP
(5, 4, 3)
>>> np.moveaxis(x, [0, 1], [-1, -2]).shape # doctest: +SKIP
(5, 4, 3)
>>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape # doctest: +SKIP
(5, 4, 3)

dask.array.nanargmax(x, axis, **kwargs)

dask.array.nanargmin(x, axis, **kwargs)

dask.array.nancumprod(a, axis=None, dtype=None, out=None)
Return the cumulative product of array elements over a given axis treating Not a Numbers (NaNs) as one. The
cumulative product does not change when NaNs are encountered and leading NaNs are replaced by ones.

Ones are returned for slices that are all-NaN or empty.

New in version 1.12.0.

Parameters

a [array_like] Input array.

axis [int, optional] Axis along which the cumulative product is computed. By default the input
is flattened.

dtype [dtype, optional] Type of the returned array, as well as of the accumulator in which the
elements are multiplied. If dtype is not specified, it defaults to the dtype of a, unless a has
an integer dtype with a precision less than that of the default platform integer. In that case,
the default platform integer is used instead.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type of the resulting values will
be cast if necessary.

Returns

nancumprod [ndarray] A new array holding the result is returned unless out is specified, in
which case it is returned.

See also:

numpy.cumprod Cumulative product across array propagating NaNs.

isnan Show which elements are NaN.

3.7. Array 195

https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumprod.html#numpy.cumprod

dask Documentation, Release 2.6.0

Examples

>>> np.nancumprod(1)
array([1])
>>> np.nancumprod([1])
array([1])
>>> np.nancumprod([1, np.nan])
array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumprod(a)
array([1., 2., 6., 6.])
>>> np.nancumprod(a, axis=0)
array([[1., 2.],

[3., 2.]])
>>> np.nancumprod(a, axis=1)
array([[1., 2.],

[3., 3.]])

dask.array.nancumsum(a, axis=None, dtype=None, out=None)
Return the cumulative sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. The
cumulative sum does not change when NaNs are encountered and leading NaNs are replaced by zeros.

Zeros are returned for slices that are all-NaN or empty.

New in version 1.12.0.

Parameters

a [array_like] Input array.

axis [int, optional] Axis along which the cumulative sum is computed. The default (None) is to
compute the cumsum over the flattened array.

dtype [dtype, optional] Type of the returned array and of the accumulator in which the elements
are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer
dtype with a precision less than that of the default platform integer. In that case, the default
platform integer is used.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type will be cast if necessary.
See doc.ufuncs (Section “Output arguments”) for more details.

Returns

nancumsum [ndarray.] A new array holding the result is returned unless out is specified, in
which it is returned. The result has the same size as a, and the same shape as a if axis is not
None or a is a 1-d array.

See also:

numpy.cumsum Cumulative sum across array propagating NaNs.

isnan Show which elements are NaN.

Examples

>>> np.nancumsum(1)
array([1])
>>> np.nancumsum([1])

(continues on next page)

196 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html#numpy.cumsum

dask Documentation, Release 2.6.0

(continued from previous page)

array([1])
>>> np.nancumsum([1, np.nan])
array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumsum(a)
array([1., 3., 6., 6.])
>>> np.nancumsum(a, axis=0)
array([[1., 2.],

[4., 2.]])
>>> np.nancumsum(a, axis=1)
array([[1., 3.],

[3., 3.]])

dask.array.nanmax(a, axis=None, out=None, keepdims=<no value>)
Return the maximum of an array or maximum along an axis, ignoring any NaNs. When all-NaN slices are
encountered a RuntimeWarning is raised and NaN is returned for that slice.

Parameters

a [array_like] Array containing numbers whose maximum is desired. If a is not an array, a
conversion is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the maximum is computed.
The default is to compute the maximum of the flattened array.

out [ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details.

New in version 1.8.0.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If the value is anything but the default, then keepdims will be passed through to the max
method of sub-classes of ndarray. If the sub-classes methods does not implement keepdims
any exceptions will be raised.

New in version 1.8.0.

Returns

nanmax [ndarray] An array with the same shape as a, with the specified axis removed. If a is a
0-d array, or if axis is None, an ndarray scalar is returned. The same dtype as a is returned.

See also:

nanmin The minimum value of an array along a given axis, ignoring any NaNs.

amax The maximum value of an array along a given axis, propagating any NaNs.

fmax Element-wise maximum of two arrays, ignoring any NaNs.

maximum Element-wise maximum of two arrays, propagating any NaNs.

isnan Shows which elements are Not a Number (NaN).

isfinite Shows which elements are neither NaN nor infinity.

amin, fmin, minimum

3.7. Array 197

dask Documentation, Release 2.6.0

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is
treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.max.

Examples

>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmax(a)
3.0
>>> np.nanmax(a, axis=0)
array([3., 2.])
>>> np.nanmax(a, axis=1)
array([2., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmax([1, 2, np.nan, np.NINF])
2.0
>>> np.nanmax([1, 2, np.nan, np.inf])
inf

dask.array.nanmean(a, axis=None, dtype=None, out=None, keepdims=<no value>)
Compute the arithmetic mean along the specified axis, ignoring NaNs.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise
over the specified axis. float64 intermediate and return values are used for integer inputs.

For all-NaN slices, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters

a [array_like] Array containing numbers whose mean is desired. If a is not an array, a conver-
sion is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the means are computed. The
default is to compute the mean of the flattened array.

dtype [data-type, optional] Type to use in computing the mean. For integer inputs, the default
is float64; for inexact inputs, it is the same as the input dtype.

out [ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If the value is anything but the default, then keepdims will be passed through to the mean
or sum methods of sub-classes of ndarray. If the sub-classes methods does not implement
keepdims any exceptions will be raised.

Returns

198 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

m [ndarray, see dtype parameter above] If out=None, returns a new array containing the mean
values, otherwise a reference to the output array is returned. Nan is returned for slices that
contain only NaNs.

See also:

average Weighted average

mean Arithmetic mean taken while not ignoring NaNs

var, nanvar

Notes

The arithmetic mean is the sum of the non-NaN elements along the axis divided by the number of non-NaN
elements.

Note that for floating-point input, the mean is computed using the same precision the input has. Depending on
the input data, this can cause the results to be inaccurate, especially for float32. Specifying a higher-precision
accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanmean(a)
2.6666666666666665
>>> np.nanmean(a, axis=0)
array([2., 4.])
>>> np.nanmean(a, axis=1)
array([1., 3.5])

dask.array.nanmin(a, axis=None, out=None, keepdims=<no value>)
Return minimum of an array or minimum along an axis, ignoring any NaNs. When all-NaN slices are encoun-
tered a RuntimeWarning is raised and Nan is returned for that slice.

Parameters

a [array_like] Array containing numbers whose minimum is desired. If a is not an array, a
conversion is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the minimum is computed.
The default is to compute the minimum of the flattened array.

out [ndarray, optional] Alternate output array in which to place the result. The default is None;
if provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details.

New in version 1.8.0.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If the value is anything but the default, then keepdims will be passed through to the min
method of sub-classes of ndarray. If the sub-classes methods does not implement keepdims
any exceptions will be raised.

New in version 1.8.0.

3.7. Array 199

dask Documentation, Release 2.6.0

Returns

nanmin [ndarray] An array with the same shape as a, with the specified axis removed. If a is a
0-d array, or if axis is None, an ndarray scalar is returned. The same dtype as a is returned.

See also:

nanmax The maximum value of an array along a given axis, ignoring any NaNs.

amin The minimum value of an array along a given axis, propagating any NaNs.

fmin Element-wise minimum of two arrays, ignoring any NaNs.

minimum Element-wise minimum of two arrays, propagating any NaNs.

isnan Shows which elements are Not a Number (NaN).

isfinite Shows which elements are neither NaN nor infinity.

amax, fmax, maximum

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is
treated as a very small (i.e. negative) number.

If the input has a integer type the function is equivalent to np.min.

Examples

>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmin(a)
1.0
>>> np.nanmin(a, axis=0)
array([1., 2.])
>>> np.nanmin(a, axis=1)
array([1., 3.])

When positive infinity and negative infinity are present:

>>> np.nanmin([1, 2, np.nan, np.inf])
1.0
>>> np.nanmin([1, 2, np.nan, np.NINF])
-inf

dask.array.nanprod(a, axis=None, dtype=None, out=None, keepdims=<no value>)
Return the product of array elements over a given axis treating Not a Numbers (NaNs) as ones.

One is returned for slices that are all-NaN or empty.

New in version 1.10.0.

Parameters

a [array_like] Array containing numbers whose product is desired. If a is not an array, a con-
version is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the product is computed. The
default is to compute the product of the flattened array.

200 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dtype [data-type, optional] The type of the returned array and of the accumulator in which the
elements are summed. By default, the dtype of a is used. An exception is when a has an
integer type with less precision than the platform (u)intp. In that case, the default will be
either (u)int32 or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact
inputs, dtype must be inexact.

out [ndarray, optional] Alternate output array in which to place the result. The default is None.
If provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details. The casting of NaN to integer can yield unexpected
results.

keepdims [bool, optional] If True, the axes which are reduced are left in the result as dimensions
with size one. With this option, the result will broadcast correctly against the original arr.

Returns

nanprod [ndarray] A new array holding the result is returned unless out is specified, in which
case it is returned.

See also:

numpy.prod Product across array propagating NaNs.

isnan Show which elements are NaN.

Examples

>>> np.nanprod(1)
1
>>> np.nanprod([1])
1
>>> np.nanprod([1, np.nan])
1.0
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanprod(a)
6.0
>>> np.nanprod(a, axis=0)
array([3., 2.])

dask.array.nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the standard deviation along the specified axis, while ignoring NaNs.

Returns the standard deviation, a measure of the spread of a distribution, of the non-NaN array elements. The
standard deviation is computed for the flattened array by default, otherwise over the specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters

a [array_like] Calculate the standard deviation of the non-NaN values.

axis [{int, tuple of int, None}, optional] Axis or axes along which the standard deviation is
computed. The default is to compute the standard deviation of the flattened array.

dtype [dtype, optional] Type to use in computing the standard deviation. For arrays of integer
type the default is float64, for arrays of float types it is the same as the array type.

3.7. Array 201

https://docs.scipy.org/doc/numpy/reference/generated/numpy.prod.html#numpy.prod

dask Documentation, Release 2.6.0

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output but the type (of the calculated values) will be cast if
necessary.

ddof [int, optional] Means Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of non-NaN elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If this value is anything but the default it is passed through as-is to the relevant functions of
the sub-classes. If these functions do not have a keepdims kwarg, a RuntimeError will be
raised.

Returns

standard_deviation [ndarray, see dtype parameter above.] If out is None, return a new array
containing the standard deviation, otherwise return a reference to the output array. If ddof
is >= the number of non-NaN elements in a slice or the slice contains only NaNs, then the
result for that slice is NaN.

See also:

var, mean, std, nanvar, nanmean

numpy.doc.ufuncs Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean: std =
sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the
square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanstd(a)
1.247219128924647
>>> np.nanstd(a, axis=0)
array([1., 0.])
>>> np.nanstd(a, axis=1)
array([0., 0.5])

202 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.array.nansum(a, axis=None, dtype=None, out=None, keepdims=<no value>)
Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero.

In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or empty. In later versions zero is
returned.

Parameters

a [array_like] Array containing numbers whose sum is desired. If a is not an array, a conversion
is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the sum is computed. The
default is to compute the sum of the flattened array.

dtype [data-type, optional] The type of the returned array and of the accumulator in which the
elements are summed. By default, the dtype of a is used. An exception is when a has an
integer type with less precision than the platform (u)intp. In that case, the default will be
either (u)int32 or (u)int64 depending on whether the platform is 32 or 64 bits. For inexact
inputs, dtype must be inexact.

New in version 1.8.0.

out [ndarray, optional] Alternate output array in which to place the result. The default is None.
If provided, it must have the same shape as the expected output, but the type will be cast if
necessary. See doc.ufuncs for details. The casting of NaN to integer can yield unexpected
results.

New in version 1.8.0.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

If the value is anything but the default, then keepdims will be passed through to the mean
or sum methods of sub-classes of ndarray. If the sub-classes methods does not implement
keepdims any exceptions will be raised.

New in version 1.8.0.

Returns

nansum [ndarray.] A new array holding the result is returned unless out is specified, in which
it is returned. The result has the same size as a, and the same shape as a if axis is not None
or a is a 1-d array.

See also:

numpy.sum Sum across array propagating NaNs.

isnan Show which elements are NaN.

isfinite Show which elements are not NaN or +/-inf.

Notes

If both positive and negative infinity are present, the sum will be Not A Number (NaN).

3.7. Array 203

https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html#numpy.sum

dask Documentation, Release 2.6.0

Examples

>>> np.nansum(1)
1
>>> np.nansum([1])
1
>>> np.nansum([1, np.nan])
1.0
>>> a = np.array([[1, 1], [1, np.nan]])
>>> np.nansum(a)
3.0
>>> np.nansum(a, axis=0)
array([2., 1.])
>>> np.nansum([1, np.nan, np.inf])
inf
>>> np.nansum([1, np.nan, np.NINF])
-inf
>>> np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
nan

dask.array.nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the variance along the specified axis, while ignoring NaNs.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

For all-NaN slices or slices with zero degrees of freedom, NaN is returned and a RuntimeWarning is raised.

New in version 1.8.0.

Parameters

a [array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis [{int, tuple of int, None}, optional] Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array.

dtype [data-type, optional] Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of non-NaN elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original a.

Returns

variance [ndarray, see dtype parameter above] If out is None, return a new array containing
the variance, otherwise return a reference to the output array. If ddof is >= the number of
non-NaN elements in a slice or the slice contains only NaNs, then the result for that slice is
NaN.

See also:

std Standard deviation

204 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

mean Average

var Variance while not ignoring NaNs

nanstd, nanmean

numpy.doc.ufuncs Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x - x.
mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

For this function to work on sub-classes of ndarray, they must define sum with the kwarg keepdims

Examples

>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.var(a)
1.5555555555555554
>>> np.nanvar(a, axis=0)
array([1., 0.])
>>> np.nanvar(a, axis=1)
array([0., 0.25])

dask.array.nan_to_num(*args, **kwargs)
Replace NaN with zero and infinity with large finite numbers.

If x is inexact, NaN is replaced by zero, and infinity and -infinity replaced by the respectively largest and most
negative finite floating point values representable by x.dtype.

For complex dtypes, the above is applied to each of the real and imaginary components of x separately.

If x is not inexact, then no replacements are made.

Parameters

x [scalar or array_like] Input data.

copy [bool, optional] Whether to create a copy of x (True) or to replace values in-place (False).
The in-place operation only occurs if casting to an array does not require a copy. Default is
True.

New in version 1.13.

Returns

out [ndarray] x, with the non-finite values replaced. If copy is False, this may be x itself.

3.7. Array 205

dask Documentation, Release 2.6.0

See also:

isinf Shows which elements are positive or negative infinity.

isneginf Shows which elements are negative infinity.

isposinf Shows which elements are positive infinity.

isnan Shows which elements are Not a Number (NaN).

isfinite Shows which elements are finite (not NaN, not infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

Examples

>>> np.nan_to_num(np.inf) # doctest: +SKIP
1.7976931348623157e+308
>>> np.nan_to_num(-np.inf) # doctest: +SKIP
-1.7976931348623157e+308
>>> np.nan_to_num(np.nan) # doctest: +SKIP
0.0
>>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) # doctest: +SKIP
>>> np.nan_to_num(x) # doctest: +SKIP
array([1.79769313e+308, -1.79769313e+308, 0.00000000e+000,

-1.28000000e+002, 1.28000000e+002])
>>> y = np.array([complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)]) #
→˓doctest: +SKIP
>>> np.nan_to_num(y) # doctest: +SKIP
array([1.79769313e+308 +0.00000000e+000j,

0.00000000e+000 +0.00000000e+000j,
0.00000000e+000 +1.79769313e+308j])

dask.array.nextafter(x1, x2, /, out=None, *, where=True, casting=’same_kind’, order=’K’,
dtype=None, subok=True[, signature, extobj])

Return the next floating-point value after x1 towards x2, element-wise.

Parameters

x1 [array_like] Values to find the next representable value of.

x2 [array_like] The direction where to look for the next representable value of x1.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] The next representable values of x1 in the direction of x2. This is a scalar
if both x1 and x2 are scalars.

206 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> eps = np.finfo(np.float64).eps # doctest: +SKIP
>>> np.nextafter(1, 2) == eps + 1 # doctest: +SKIP
True
>>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps] # doctest: +SKIP
array([True, True])

dask.array.nonzero(a)
Return the indices of the elements that are non-zero.

This docstring was copied from numpy.nonzero.

Some inconsistencies with the Dask version may exist.

Returns a tuple of arrays, one for each dimension of a, containing the indices of the non-zero elements in that
dimension. The values in a are always tested and returned in row-major, C-style order. The corresponding
non-zero values can be obtained with:

a[nonzero(a)]

To group the indices by element, rather than dimension, use:

transpose(nonzero(a))

The result of this is always a 2-D array, with a row for each non-zero element.

Parameters

a [array_like] Input array.

Returns

tuple_of_arrays [tuple] Indices of elements that are non-zero.

See also:

flatnonzero Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero Equivalent ndarray method.

count_nonzero Counts the number of non-zero elements in the input array.

Examples

>>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]]) # doctest: +SKIP
>>> x # doctest: +SKIP
array([[3, 0, 0],

[0, 4, 0],
[5, 6, 0]])

>>> np.nonzero(x) # doctest: +SKIP
(array([0, 1, 2, 2]), array([0, 1, 0, 1]))

>>> x[np.nonzero(x)] # doctest: +SKIP
array([3, 4, 5, 6])
>>> np.transpose(np.nonzero(x)) # doctest: +SKIP
array([[0, 0],

[1, 1],

(continues on next page)

3.7. Array 207

dask Documentation, Release 2.6.0

(continued from previous page)

[2, 0],
[2, 1])

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) # doctest: +SKIP
>>> a > 3 # doctest: +SKIP
array([[False, False, False],

[True, True, True],
[True, True, True]])

>>> np.nonzero(a > 3) # doctest: +SKIP
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

Using this result to index a is equivalent to using the mask directly:

>>> a[np.nonzero(a > 3)] # doctest: +SKIP
array([4, 5, 6, 7, 8, 9])
>>> a[a > 3] # prefer this spelling # doctest: +SKIP
array([4, 5, 6, 7, 8, 9])

nonzero can also be called as a method of the array.

>>> (a > 3).nonzero() # doctest: +SKIP
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))

dask.array.notnull(values)
pandas.notnull for dask arrays

dask.array.ones(*args, **kwargs)
Blocked variant of ones

Follows the signature of ones exactly except that it also requires a keyword argument chunks=(. . .)

Original signature follows below.

Return a new array of given shape and type, filled with ones.

Parameters

shape [int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: C] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of ones with the given shape, dtype, and order.

See also:

ones_like Return an array of ones with shape and type of input.

empty Return a new uninitialized array.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

208 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> np.ones(5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1])

>>> np.ones((2, 1))
array([[1.],

[1.]])

>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],

[1., 1.]])

dask.array.ones_like(a, dtype=None, chunks=None)
Return an array of ones with the same shape and type as a given array.

Parameters

a [array_like] The shape and data-type of a define these same attributes of the returned array.

dtype [data-type, optional] Overrides the data type of the result.

chunks [sequence of ints] The number of samples on each block. Note that the last block will
have fewer samples if len(array) % chunks != 0.

Returns

out [ndarray] Array of ones with the same shape and type as a.

See also:

zeros_like Return an array of zeros with shape and type of input.

empty_like Return an empty array with shape and type of input.

zeros Return a new array setting values to zero.

ones Return a new array setting values to one.

empty Return a new uninitialized array.

dask.array.outer(a, b)
Compute the outer product of two vectors.

This docstring was copied from numpy.outer.

Some inconsistencies with the Dask version may exist.

Given two vectors, a = [a0, a1, ..., aM] and b = [b0, b1, ..., bN], the outer product [1]
is:

[[a0*b0 a0*b1 ... a0*bN]
[a1*b0 .
[... .
[aM*b0 aM*bN]]

Parameters

3.7. Array 209

dask Documentation, Release 2.6.0

a [(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

b [(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.

out [(M, N) ndarray, optional] A location where the result is stored

New in version 1.9.0.

Returns

out [(M, N) ndarray] out[i, j] = a[i] * b[j]

See also:

inner

einsum einsum('i,j->ij', a.ravel(), b.ravel()) is the equivalent.

ufunc.outer A generalization to N dimensions and other operations. np.multiply.outer(a.
ravel(), b.ravel()) is the equivalent.

References

[1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5)) # doctest: +SKIP
>>> rl # doctest: +SKIP
array([[-2., -1., 0., 1., 2.],

[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.],
[-2., -1., 0., 1., 2.]])

>>> im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,))) # doctest: +SKIP
>>> im # doctest: +SKIP
array([[0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j, 0.+2.j],

[0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j, 0.+1.j],
[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
[0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j, 0.-1.j],
[0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j, 0.-2.j]])

>>> grid = rl + im # doctest: +SKIP
>>> grid # doctest: +SKIP
array([[-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j],

[-2.+1.j, -1.+1.j, 0.+1.j, 1.+1.j, 2.+1.j],
[-2.+0.j, -1.+0.j, 0.+0.j, 1.+0.j, 2.+0.j],
[-2.-1.j, -1.-1.j, 0.-1.j, 1.-1.j, 2.-1.j],
[-2.-2.j, -1.-2.j, 0.-2.j, 1.-2.j, 2.-2.j]])

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object) # doctest: +SKIP
>>> np.outer(x, [1, 2, 3]) # doctest: +SKIP
array([[a, aa, aaa],

[b, bb, bbb],
[c, cc, ccc]], dtype=object)

210 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.array.pad(array, pad_width, mode, **kwargs)
Pads an array.

This docstring was copied from numpy.pad.

Some inconsistencies with the Dask version may exist.

Parameters

array [array_like of rank N] Input array

pad_width [{sequence, array_like, int}] Number of values padded to the edges of each axis.
((before_1, after_1), . . . (before_N, after_N)) unique pad widths for each axis. ((before,
after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before =
after = pad width for all axes.

mode [str or function] One of the following string values or a user supplied function.

‘constant’ Pads with a constant value.

‘edge’ Pads with the edge values of array.

‘linear_ramp’ Pads with the linear ramp between end_value and the array edge value.

‘maximum’ Pads with the maximum value of all or part of the vector along each axis.

‘mean’ Pads with the mean value of all or part of the vector along each axis.

‘median’ Pads with the median value of all or part of the vector along each axis.

‘minimum’ Pads with the minimum value of all or part of the vector along each axis.

‘reflect’ Pads with the reflection of the vector mirrored on the first and last values of the
vector along each axis.

‘symmetric’ Pads with the reflection of the vector mirrored along the edge of the array.

‘wrap’ Pads with the wrap of the vector along the axis. The first values are used to pad the
end and the end values are used to pad the beginning.

<function> Padding function, see Notes.

stat_length [sequence or int, optional] Used in ‘maximum’, ‘mean’, ‘median’, and ‘minimum’.
Number of values at edge of each axis used to calculate the statistic value.

((before_1, after_1), . . . (before_N, after_N)) unique statistic lengths for each axis.

((before, after),) yields same before and after statistic lengths for each axis.

(stat_length,) or int is a shortcut for before = after = statistic length for all axes.

Default is None, to use the entire axis.

constant_values [sequence or int, optional] Used in ‘constant’. The values to set the padded
values for each axis.

((before_1, after_1), . . . (before_N, after_N)) unique pad constants for each axis.

((before, after),) yields same before and after constants for each axis.

(constant,) or int is a shortcut for before = after = constant for all axes.

Default is 0.

end_values [sequence or int, optional] Used in ‘linear_ramp’. The values used for the ending
value of the linear_ramp and that will form the edge of the padded array.

((before_1, after_1), . . . (before_N, after_N)) unique end values for each axis.

3.7. Array 211

dask Documentation, Release 2.6.0

((before, after),) yields same before and after end values for each axis.

(constant,) or int is a shortcut for before = after = end value for all axes.

Default is 0.

reflect_type [{‘even’, ‘odd’}, optional] Used in ‘reflect’, and ‘symmetric’. The ‘even’ style
is the default with an unaltered reflection around the edge value. For the ‘odd’ style, the
extended part of the array is created by subtracting the reflected values from two times the
edge value.

Returns

pad [ndarray] Padded array of rank equal to array with shape increased according to pad_width.

Notes

New in version 1.7.0.

For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous
axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by
using padded values from the first axis.

The padding function, if used, should return a rank 1 array equal in length to the vector argument with padded
values replaced. It has the following signature:

padding_func(vector, iaxis_pad_width, iaxis, kwargs)

where

vector [ndarray] A rank 1 array already padded with zeros. Padded values are vector[:pad_tuple[0]]
and vector[-pad_tuple[1]:].

iaxis_pad_width [tuple] A 2-tuple of ints, iaxis_pad_width[0] represents the number of values
padded at the beginning of vector where iaxis_pad_width[1] represents the number of values
padded at the end of vector.

iaxis [int] The axis currently being calculated.

kwargs [dict] Any keyword arguments the function requires.

Examples

>>> a = [1, 2, 3, 4, 5] # doctest: +SKIP
>>> np.pad(a, (2,3), 'constant', constant_values=(4, 6)) # doctest: +SKIP
array([4, 4, 1, 2, 3, 4, 5, 6, 6, 6])

>>> np.pad(a, (2, 3), 'edge') # doctest: +SKIP
array([1, 1, 1, 2, 3, 4, 5, 5, 5, 5])

>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4)) # doctest: +SKIP
array([5, 3, 1, 2, 3, 4, 5, 2, -1, -4])

>>> np.pad(a, (2,), 'maximum') # doctest: +SKIP
array([5, 5, 1, 2, 3, 4, 5, 5, 5])

212 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> np.pad(a, (2,), 'mean') # doctest: +SKIP
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> np.pad(a, (2,), 'median') # doctest: +SKIP
array([3, 3, 1, 2, 3, 4, 5, 3, 3])

>>> a = [[1, 2], [3, 4]] # doctest: +SKIP
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum') # doctest: +SKIP
array([[1, 1, 1, 2, 1, 1, 1],

[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1],
[3, 3, 3, 4, 3, 3, 3],
[1, 1, 1, 2, 1, 1, 1],
[1, 1, 1, 2, 1, 1, 1]])

>>> a = [1, 2, 3, 4, 5] # doctest: +SKIP
>>> np.pad(a, (2, 3), 'reflect') # doctest: +SKIP
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])

>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd') # doctest: +SKIP
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])

>>> np.pad(a, (2, 3), 'symmetric') # doctest: +SKIP
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])

>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd') # doctest: +SKIP
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])

>>> np.pad(a, (2, 3), 'wrap') # doctest: +SKIP
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])

>>> def pad_with(vector, pad_width, iaxis, kwargs): # doctest: +SKIP
... pad_value = kwargs.get('padder', 10)
... vector[:pad_width[0]] = pad_value
... vector[-pad_width[1]:] = pad_value
... return vector
>>> a = np.arange(6) # doctest: +SKIP
>>> a = a.reshape((2, 3)) # doctest: +SKIP
>>> np.pad(a, 2, pad_with) # doctest: +SKIP
array([[10, 10, 10, 10, 10, 10, 10],

[10, 10, 10, 10, 10, 10, 10],
[10, 10, 0, 1, 2, 10, 10],
[10, 10, 3, 4, 5, 10, 10],
[10, 10, 10, 10, 10, 10, 10],
[10, 10, 10, 10, 10, 10, 10]])

>>> np.pad(a, 2, pad_with, padder=100) # doctest: +SKIP
array([[100, 100, 100, 100, 100, 100, 100],

[100, 100, 100, 100, 100, 100, 100],
[100, 100, 0, 1, 2, 100, 100],
[100, 100, 3, 4, 5, 100, 100],
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])

dask.array.percentile(a, q, interpolation=’linear’, method=’default’)

3.7. Array 213

dask Documentation, Release 2.6.0

Approximate percentile of 1-D array

Parameters

a [Array]

q [array_like of float] Percentile or sequence of percentiles to compute, which must be between
0 and 100 inclusive.

interpolation [{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}, optional] The interpolation
method to use when the desired percentile lies between two data points i < j. Only valid
for method='dask'.

• ‘linear’: i + (j - i) * fraction, where fraction

is the fractional part of the index surrounded by i and j. * ‘lower’: i. * ‘higher’: j. *
‘nearest’: i or j, whichever is nearest. * ‘midpoint’: (i + j) / 2.

method [{‘default’, ‘dask’, ‘tdigest’}, optional] What method to use. By default will use dask’s
internal custom algorithm ('dask'). If set to 'tdigest' will use tdigest for floats and
ints and fallback to the 'dask' otherwise.

See also:

numpy.percentile Numpy’s equivalent Percentile function

dask.array.piecewise(x, condlist, funclist, *args, **kw)
Evaluate a piecewise-defined function.

This docstring was copied from numpy.piecewise.

Some inconsistencies with the Dask version may exist.

Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its
condition is true.

Parameters

x [ndarray or scalar] The input domain.

condlist [list of bool arrays or bool scalars] Each boolean array corresponds to a function in
funclist. Wherever condlist[i] is True, funclist[i](x) is used as the output value.

Each boolean array in condlist selects a piece of x, and should therefore be of the same shape
as x.

The length of condlist must correspond to that of funclist. If one extra function is given, i.e.
if len(funclist) == len(condlist) + 1, then that extra function is the default
value, used wherever all conditions are false.

funclist [list of callables, f(x,*args,**kw), or scalars] Each function is evaluated over x wher-
ever its corresponding condition is True. It should take a 1d array as input and give an 1d
array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant
function (lambda x: scalar) is assumed.

args [tuple, optional] Any further arguments given to piecewise are passed to the functions
upon execution, i.e., if called piecewise(..., ..., 1, 'a'), then each function
is called as f(x, 1, 'a').

kw [dict, optional] Keyword arguments used in calling piecewise are passed to the functions
upon execution, i.e., if called piecewise(..., ..., alpha=1), then each function
is called as f(x, alpha=1).

Returns

214 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile

dask Documentation, Release 2.6.0

out [ndarray] The output is the same shape and type as x and is found by calling the functions
in funclist on the appropriate portions of x, as defined by the boolean arrays in condlist.
Portions not covered by any condition have a default value of 0.

See also:

choose, select, where

Notes

This is similar to choose or select, except that functions are evaluated on elements of x that satisfy the corre-
sponding condition from condlist.

The result is:

|--
|funclist[0](x[condlist[0]])

out = |funclist[1](x[condlist[1]])
|...
funclist[n2](x[condlist[n2]])

Examples

Define the sigma function, which is -1 for x < 0 and +1 for x >= 0.

>>> x = np.linspace(-2.5, 2.5, 6) # doctest: +SKIP
>>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) # doctest: +SKIP
array([-1., -1., -1., 1., 1., 1.])

Define the absolute value, which is -x for x <0 and x for x >= 0.

>>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) # doctest:
→˓+SKIP
array([2.5, 1.5, 0.5, 0.5, 1.5, 2.5])

Apply the same function to a scalar value.

>>> y = -2 # doctest: +SKIP
>>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x]) # doctest:
→˓+SKIP
array(2)

dask.array.prod(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>)
Return the product of array elements over a given axis.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] Axis or axes along which a product is performed.
The default, axis=None, will calculate the product of all the elements in the input array. If
axis is negative it counts from the last to the first axis.

New in version 1.7.0.

If axis is a tuple of ints, a product is performed on all of the axes specified in the tuple
instead of a single axis or all the axes as before.

3.7. Array 215

dask Documentation, Release 2.6.0

dtype [dtype, optional] The type of the returned array, as well as of the accumulator in which
the elements are multiplied. The dtype of a is used by default unless a has an integer dtype of
less precision than the default platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer of the same precision as the
platform integer is used.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output, but the type of the output values will be cast if necessary.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the prod method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial [scalar, optional] The starting value for this product. See ~numpy.ufunc.reduce for de-
tails.

New in version 1.15.0.

Returns

product_along_axis [ndarray, see dtype parameter above.] An array shaped as a but with the
specified axis removed. Returns a reference to out if specified.

See also:

ndarray.prod equivalent method

numpy.doc.ufuncs Section “Output arguments”

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a 32-bit
platform:

>>> x = np.array([536870910, 536870910, 536870910, 536870910])
>>> np.prod(x) # random
16

The product of an empty array is the neutral element 1:

>>> np.prod([])
1.0

Examples

By default, calculate the product of all elements:

>>> np.prod([1.,2.])
2.0

Even when the input array is two-dimensional:

>>> np.prod([[1.,2.],[3.,4.]])
24.0

216 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

But we can also specify the axis over which to multiply:

>>> np.prod([[1.,2.],[3.,4.]], axis=1)
array([2., 12.])

If the type of x is unsigned, then the output type is the unsigned platform integer:

>>> x = np.array([1, 2, 3], dtype=np.uint8)
>>> np.prod(x).dtype == np.uint
True

If x is of a signed integer type, then the output type is the default platform integer:

>>> x = np.array([1, 2, 3], dtype=np.int8)
>>> np.prod(x).dtype == int
True

You can also start the product with a value other than one:

>>> np.prod([1, 2], initial=5)
10

dask.array.ptp(a, axis=None)
Range of values (maximum - minimum) along an axis.

This docstring was copied from numpy.ptp.

Some inconsistencies with the Dask version may exist.

The name of the function comes from the acronym for ‘peak to peak’.

Parameters

a [array_like] Input values.

axis [None or int or tuple of ints, optional] Axis along which to find the peaks. By default,
flatten the array. axis may be negative, in which case it counts from the last to the first axis.

New in version 1.15.0.

If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis
or all the axes as before.

out [array_like (Not supported in Dask)] Alternative output array in which to place the result.
It must have the same shape and buffer length as the expected output, but the type of the
output values will be cast if necessary.

keepdims [bool, optional (Not supported in Dask)] If this is set to True, the axes which are
reduced are left in the result as dimensions with size one. With this option, the result will
broadcast correctly against the input array.

If the default value is passed, then keepdims will not be passed through to the ptp method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

ptp [ndarray] A new array holding the result, unless out was specified, in which case a reference
to out is returned.

3.7. Array 217

dask Documentation, Release 2.6.0

Examples

>>> x = np.arange(4).reshape((2,2)) # doctest: +SKIP
>>> x # doctest: +SKIP
array([[0, 1],

[2, 3]])

>>> np.ptp(x, axis=0) # doctest: +SKIP
array([2, 2])

>>> np.ptp(x, axis=1) # doctest: +SKIP
array([1, 1])

dask.array.rad2deg(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Convert angles from radians to degrees.

Parameters

x [array_like] Angle in radians.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding angle in degrees. This is a scalar if x is a scalar.

See also:

deg2rad Convert angles from degrees to radians.

unwrap Remove large jumps in angle by wrapping.

Notes

New in version 1.3.0.

rad2deg(x) is 180 * x / pi.

Examples

>>> np.rad2deg(np.pi/2) # doctest: +SKIP
90.0

dask.array.radians(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Convert angles from degrees to radians.

Parameters

218 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

x [array_like] Input array in degrees.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding radian values. This is a scalar if x is a scalar.

See also:

deg2rad equivalent function

Examples

Convert a degree array to radians

>>> deg = np.arange(12.) * 30. # doctest: +SKIP
>>> np.radians(deg) # doctest: +SKIP
array([0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 ,

2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898,
5.23598776, 5.75958653])

>>> out = np.zeros((deg.shape)) # doctest: +SKIP
>>> ret = np.radians(deg, out) # doctest: +SKIP
>>> ret is out # doctest: +SKIP
True

dask.array.ravel(array)
Return a contiguous flattened array.

This docstring was copied from numpy.ravel.

Some inconsistencies with the Dask version may exist.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array
will be returned for a masked array input)

Parameters

a [array_like (Not supported in Dask)] Input array. The elements in a are read in the order
specified by order, and packed as a 1-D array.

order [{‘C’,’F’, ‘A’, ‘K’}, optional (Not supported in Dask)] The elements of a are read using
this index order. ‘C’ means to index the elements in row-major, C-style order, with the last
axis index changing fastest, back to the first axis index changing slowest. ‘F’ means to index
the elements in column-major, Fortran-style order, with the first index changing fastest, and
the last index changing slowest. Note that the ‘C’ and ‘F’ options take no account of the
memory layout of the underlying array, and only refer to the order of axis indexing. ‘A’
means to read the elements in Fortran-like index order if a is Fortran contiguous in memory,

3.7. Array 219

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

C-like order otherwise. ‘K’ means to read the elements in the order they occur in memory,
except for reversing the data when strides are negative. By default, ‘C’ index order is used.

Returns

y [array_like] y is an array of the same subtype as a, with shape (a.size,). Note that
matrices are special cased for backward compatibility, if a is a matrix, then y is a 1-D
ndarray.

See also:

ndarray.flat 1-D iterator over an array.

ndarray.flatten 1-D array copy of the elements of an array in row-major order.

ndarray.reshape Change the shape of an array without changing its data.

Notes

In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the
quickest. This can be generalized to multiple dimensions, where row-major order implies that the index along
the first axis varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-
style index ordering.

When a view is desired in as many cases as possible, arr.reshape(-1) may be preferable.

Examples

It is equivalent to reshape(-1, order=order).

>>> x = np.array([[1, 2, 3], [4, 5, 6]]) # doctest: +SKIP
>>> print(np.ravel(x)) # doctest: +SKIP
[1 2 3 4 5 6]

>>> print(x.reshape(-1)) # doctest: +SKIP
[1 2 3 4 5 6]

>>> print(np.ravel(x, order='F')) # doctest: +SKIP
[1 4 2 5 3 6]

When order is ‘A’, it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> print(np.ravel(x.T)) # doctest: +SKIP
[1 4 2 5 3 6]
>>> print(np.ravel(x.T, order='A')) # doctest: +SKIP
[1 2 3 4 5 6]

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a # doctest: +SKIP
array([2, 1, 0])
>>> a.ravel(order='C') # doctest: +SKIP
array([2, 1, 0])
>>> a.ravel(order='K') # doctest: +SKIP
array([2, 1, 0])

220 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a # doctest: +SKIP
array([[[0, 2, 4],

[1, 3, 5]],
[[6, 8, 10],
[7, 9, 11]]])

>>> a.ravel(order='C') # doctest: +SKIP
array([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11])
>>> a.ravel(order='K') # doctest: +SKIP
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

dask.array.real(*args, **kwargs)
Return the real part of the complex argument.

Parameters

val [array_like] Input array.

Returns

out [ndarray or scalar] The real component of the complex argument. If val is real, the type of
val is used for the output. If val has complex elements, the returned type is float.

See also:

real_if_close, imag, angle

Examples

>>> a = np.array([1+2j, 3+4j, 5+6j]) # doctest: +SKIP
>>> a.real # doctest: +SKIP
array([1., 3., 5.])
>>> a.real = 9 # doctest: +SKIP
>>> a # doctest: +SKIP
array([9.+2.j, 9.+4.j, 9.+6.j])
>>> a.real = np.array([9, 8, 7]) # doctest: +SKIP
>>> a # doctest: +SKIP
array([9.+2.j, 8.+4.j, 7.+6.j])
>>> np.real(1 + 1j) # doctest: +SKIP
1.0

dask.array.rechunk(x, chunks, threshold=None, block_size_limit=None)
Convert blocks in dask array x for new chunks.

Parameters

x: dask array Array to be rechunked.

chunks: int, tuple or dict The new block dimensions to create. -1 indicates the full size of the
corresponding dimension.

threshold: int The graph growth factor under which we don’t bother introducing an intermedi-
ate step.

block_size_limit: int The maximum block size (in bytes) we want to produce Defaults to the
configuration value array.chunk-size

3.7. Array 221

dask Documentation, Release 2.6.0

Examples

>>> import dask.array as da
>>> x = da.ones((1000, 1000), chunks=(100, 100))

Specify uniform chunk sizes with a tuple

>>> y = x.rechunk((1000, 10))

Or chunk only specific dimensions with a dictionary

>>> y = x.rechunk({0: 1000})

Use the value -1 to specify that you want a single chunk along a dimension or the value "auto" to specify
that dask can freely rechunk a dimension to attain blocks of a uniform block size

>>> y = x.rechunk({0: -1, 1: 'auto'}, block_size_limit=1e8)

dask.array.reduction(x, chunk, aggregate, axis=None, keepdims=False, dtype=None,
split_every=None, combine=None, name=None, out=None, concatenate=True,
output_size=1, meta=None)

General version of reductions

Parameters

x: Array Data being reduced along one or more axes

chunk: callable(x_chunk, axis, keepdims) First function to be executed when resolving the
dask graph. This function is applied in parallel to all original chunks of x. See below for
function parameters.

combine: callable(x_chunk, axis, keepdims), optional Function used for intermediate recur-
sive aggregation (see split_every below). If omitted, it defaults to aggregate. If the reduction
can be performed in less than 3 steps, it will not be invoked at all.

aggregate: callable(x_chunk, axis, keepdims) Last function to be executed when resolving
the dask graph, producing the final output. It is always invoked, even when the reduced
Array counts a single chunk along the reduced axes.

axis: int or sequence of ints, optional Axis or axes to aggregate upon. If omitted, aggregate
along all axes.

keepdims: boolean, optional Whether the reduction function should preserve the reduced
axes, leaving them at size output_size, or remove them.

dtype: np.dtype, optional Force output dtype. Defaults to x.dtype if omitted.

split_every: int >= 2 or dict(axis: int), optional Determines the depth of the recursive aggre-
gation. If set to or more than the number of input chunks, the aggregation will be performed
in two steps, one chunk function per input chunk and a single aggregate function at the
end. If set to less than that, an intermediate combine function will be used, so that any one
combine or aggregate function has no more than split_every inputs. The depth of
the aggregation graph will be 𝑙𝑜𝑔𝑠𝑝𝑙𝑖𝑡𝑒𝑣𝑒𝑟𝑦(𝑖𝑛𝑝𝑢𝑡𝑐ℎ𝑢𝑛𝑘𝑠𝑎𝑙𝑜𝑛𝑔𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝑎𝑥𝑒𝑠). Setting to a
low value can reduce cache size and network transfers, at the cost of more CPU and a larger
dask graph.

Omit to let dask heuristically decide a good default. A default can also be set globally with
the split_every key in dask.config.

222 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

name: str, optional Prefix of the keys of the intermediate and output nodes. If omitted it de-
faults to the function names.

out: Array, optional Another dask array whose contents will be replaced. Omit to create a new
one. Note that, unlike in numpy, this setting gives no performance benefits whatsoever, but
can still be useful if one needs to preserve the references to a previously existing Array.

concatenate: bool, optional If True (the default), the outputs of the chunk/combine
functions are concatenated into a single np.array before being passed to the
combine/aggregate functions. If False, the input of combine and aggregate will
be either a list of the raw outputs of the previous step or a single output, and the function
will have to concatenate it itself. It can be useful to set this to False if the chunk and/or
combine steps do not produce np.arrays.

output_size: int >= 1, optional Size of the output of the aggregate function along the re-
duced axes. Ignored if keepdims is False.

Returns

dask array

Function Parameters

x_chunk: numpy.ndarray Individual input chunk. For chunk functions, it is one of the orig-
inal chunks of x. For combine and aggregate functions, it’s the concatenation of the
outputs produced by the previous chunk or combine functions. If concatenate=False, it’s
a list of the raw outputs from the previous functions.

axis: tuple Normalized list of axes to reduce upon, e.g. (0,) Scalar, negative, and None axes
have been normalized away. Note that some numpy reduction functions cannot reduce along
multiple axes at once and strictly require an int in input. Such functions have to be wrapped
to cope.

keepdims: bool Whether the reduction function should preserve the reduced axes or remove
them.

dask.array.repeat(a, repeats, axis=None)
Repeat elements of an array.

This docstring was copied from numpy.repeat.

Some inconsistencies with the Dask version may exist.

Parameters

a [array_like] Input array.

repeats [int or array of ints] The number of repetitions for each element. repeats is broadcasted
to fit the shape of the given axis.

axis [int, optional] The axis along which to repeat values. By default, use the flattened input
array, and return a flat output array.

Returns

repeated_array [ndarray] Output array which has the same shape as a, except along the given
axis.

See also:

tile Tile an array.

3.7. Array 223

dask Documentation, Release 2.6.0

Examples

>>> np.repeat(3, 4) # doctest: +SKIP
array([3, 3, 3, 3])
>>> x = np.array([[1,2],[3,4]]) # doctest: +SKIP
>>> np.repeat(x, 2) # doctest: +SKIP
array([1, 1, 2, 2, 3, 3, 4, 4])
>>> np.repeat(x, 3, axis=1) # doctest: +SKIP
array([[1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 4]])
>>> np.repeat(x, [1, 2], axis=0) # doctest: +SKIP
array([[1, 2],

[3, 4],
[3, 4]])

dask.array.reshape(x, shape)
Reshape array to new shape

This is a parallelized version of the np.reshape function with the following limitations:

1. It assumes that the array is stored in row-major order

2. It only allows for reshapings that collapse or merge dimensions like (1, 2, 3, 4) -> (1, 6, 4)
or (64,) -> (4, 4, 4)

When communication is necessary this algorithm depends on the logic within rechunk. It endeavors to keep
chunk sizes roughly the same when possible.

See also:

dask.array.rechunk, numpy.reshape

dask.array.result_type(*arrays_and_dtypes)
This docstring was copied from numpy.result_type.

Some inconsistencies with the Dask version may exist.

Returns the type that results from applying the NumPy type promotion rules to the arguments.

Type promotion in NumPy works similarly to the rules in languages like C++, with some slight differences.
When both scalars and arrays are used, the array’s type takes precedence and the actual value of the scalar is
taken into account.

For example, calculating 3*a, where a is an array of 32-bit floats, intuitively should result in a 32-bit float output.
If the 3 is a 32-bit integer, the NumPy rules indicate it can’t convert losslessly into a 32-bit float, so a 64-bit
float should be the result type. By examining the value of the constant, ‘3’, we see that it fits in an 8-bit integer,
which can be cast losslessly into the 32-bit float.

Parameters

arrays_and_dtypes [list of arrays and dtypes] The operands of some operation whose result
type is needed.

Returns

out [dtype] The result type.

See also:

dtype, promote_types, min_scalar_type, can_cast

224 Chapter 3. Complex Algorithms

https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape

dask Documentation, Release 2.6.0

Notes

New in version 1.6.0.

The specific algorithm used is as follows.

Categories are determined by first checking which of boolean, integer (int/uint), or floating point (float/complex)
the maximum kind of all the arrays and the scalars are.

If there are only scalars or the maximum category of the scalars is higher than the maximum category of the
arrays, the data types are combined with promote_types() to produce the return value.

Otherwise, min_scalar_type is called on each array, and the resulting data types are all combined with
promote_types() to produce the return value.

The set of int values is not a subset of the uint values for types with the same number of bits, something not
reflected in min_scalar_type(), but handled as a special case in result_type.

Examples

>>> np.result_type(3, np.arange(7, dtype='i1')) # doctest: +SKIP
dtype('int8')

>>> np.result_type('i4', 'c8') # doctest: +SKIP
dtype('complex128')

>>> np.result_type(3.0, -2) # doctest: +SKIP
dtype('float64')

dask.array.rint(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Round elements of the array to the nearest integer.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Output array is same shape and type as x. This is a scalar if x is a scalar.

See also:

ceil, floor, trunc

Examples

3.7. Array 225

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) # doctest: +SKIP
>>> np.rint(a) # doctest: +SKIP
array([-2., -2., -0., 0., 2., 2., 2.])

dask.array.roll(array, shift, axis=None)
Roll array elements along a given axis.

This docstring was copied from numpy.roll.

Some inconsistencies with the Dask version may exist.

Elements that roll beyond the last position are re-introduced at the first.

Parameters

a [array_like (Not supported in Dask)] Input array.

shift [int or tuple of ints] The number of places by which elements are shifted. If a tuple,
then axis must be a tuple of the same size, and each of the given axes is shifted by the
corresponding number. If an int while axis is a tuple of ints, then the same value is used for
all given axes.

axis [int or tuple of ints, optional] Axis or axes along which elements are shifted. By default,
the array is flattened before shifting, after which the original shape is restored.

Returns

res [ndarray] Output array, with the same shape as a.

See also:

rollaxis Roll the specified axis backwards, until it lies in a given position.

Notes

New in version 1.12.0.

Supports rolling over multiple dimensions simultaneously.

Examples

>>> x = np.arange(10) # doctest: +SKIP
>>> np.roll(x, 2) # doctest: +SKIP
array([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])

>>> x2 = np.reshape(x, (2,5)) # doctest: +SKIP
>>> x2 # doctest: +SKIP
array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])
>>> np.roll(x2, 1) # doctest: +SKIP
array([[9, 0, 1, 2, 3],

[4, 5, 6, 7, 8]])
>>> np.roll(x2, 1, axis=0) # doctest: +SKIP
array([[5, 6, 7, 8, 9],

[0, 1, 2, 3, 4]])
>>> np.roll(x2, 1, axis=1) # doctest: +SKIP
array([[4, 0, 1, 2, 3],

[9, 5, 6, 7, 8]])

226 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.array.rollaxis(a, axis, start=0)

dask.array.round(a, decimals=0)
Round an array to the given number of decimals.

This docstring was copied from numpy.round.

Some inconsistencies with the Dask version may exist.

See also:

around equivalent function; see for details.

dask.array.sign(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Returns an element-wise indication of the sign of a number.

The sign function returns -1 if x < 0, 0 if x==0, 1 if x > 0. nan is returned for nan inputs.

For complex inputs, the sign function returns sign(x.real) + 0j if x.real != 0 else
sign(x.imag) + 0j.

complex(nan, 0) is returned for complex nan inputs.

Parameters

x [array_like] Input values.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The sign of x. This is a scalar if x is a scalar.

Notes

There is more than one definition of sign in common use for complex numbers. The definition used here is
equivalent to 𝑥/

√
𝑥 * 𝑥 which is different from a common alternative, 𝑥/|𝑥|.

Examples

>>> np.sign([-5., 4.5]) # doctest: +SKIP
array([-1., 1.])
>>> np.sign(0) # doctest: +SKIP
0
>>> np.sign(5-2j) # doctest: +SKIP
(1+0j)

dask.array.signbit(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Returns element-wise True where signbit is set (less than zero).

Parameters

3.7. Array 227

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

x [array_like] The input value(s).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

result [ndarray of bool] Output array, or reference to out if that was supplied. This is a scalar if
x is a scalar.

Examples

>>> np.signbit(-1.2) # doctest: +SKIP
True
>>> np.signbit(np.array([1, -2.3, 2.1])) # doctest: +SKIP
array([False, True, False])

dask.array.sin(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Trigonometric sine, element-wise.

Parameters

x [array_like] Angle, in radians (2𝜋 rad equals 360 degrees).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [array_like] The sine of each element of x. This is a scalar if x is a scalar.

See also:

arcsin, sinh, cos

Notes

The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider
a circle of radius 1 centered on the origin. A ray comes in from the +𝑥 axis, makes an angle at the origin
(measured counter-clockwise from that axis), and departs from the origin. The 𝑦 coordinate of the outgoing
ray’s intersection with the unit circle is the sine of that angle. It ranges from -1 for 𝑥 = 3𝜋/2 to +1 for 𝜋/2.
The function has zeroes where the angle is a multiple of 𝜋. Sines of angles between 𝜋 and 2𝜋 are negative. The
numerous properties of the sine and related functions are included in any standard trigonometry text.

228 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

Print sine of one angle:

>>> np.sin(np.pi/2.) # doctest: +SKIP
1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.) # doctest: +SKIP
array([0. , 0.5 , 0.70710678, 0.8660254 , 1.])

Plot the sine function:

>>> import matplotlib.pylab as plt # doctest: +SKIP
>>> x = np.linspace(-np.pi, np.pi, 201) # doctest: +SKIP
>>> plt.plot(x, np.sin(x)) # doctest: +SKIP
>>> plt.xlabel('Angle [rad]') # doctest: +SKIP
>>> plt.ylabel('sin(x)') # doctest: +SKIP
>>> plt.axis('tight') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.sinh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Hyperbolic sine, element-wise.

Equivalent to 1/2 * (np.exp(x) - np.exp(-x)) or -1j * np.sin(1j*x).

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding hyperbolic sine values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

3.7. Array 229

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.sinh(0) # doctest: +SKIP
0.0
>>> np.sinh(np.pi*1j/2) # doctest: +SKIP
1j
>>> np.sinh(np.pi*1j) # (exact value is 0) # doctest: +SKIP
1.2246063538223773e-016j
>>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter
>>> out2 = np.sinh([0.1], out1) # doctest: +SKIP
>>> out2 is out1 # doctest: +SKIP
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.sinh(np.zeros((3,3)),np.zeros((2,2))) # doctest: +SKIP
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

dask.array.sqrt(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the non-negative square-root of an array, element-wise.

Parameters

x [array_like] The values whose square-roots are required.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] An array of the same shape as x, containing the positive square-root of each element
in x. If any element in x is complex, a complex array is returned (and the square-roots of
negative reals are calculated). If all of the elements in x are real, so is y, with negative
elements returning nan. If out was provided, y is a reference to it. This is a scalar if x is a
scalar.

See also:

lib.scimath.sqrt A version which returns complex numbers when given negative reals.

Notes

sqrt has–consistent with common convention–as its branch cut the real “interval” [-inf, 0), and is continuous
from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to
be continuous.

230 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> np.sqrt([1,4,9]) # doctest: +SKIP
array([1., 2., 3.])

>>> np.sqrt([4, -1, -3+4J]) # doctest: +SKIP
array([2.+0.j, 0.+1.j, 1.+2.j])

>>> np.sqrt([4, -1, numpy.inf]) # doctest: +SKIP
array([2., NaN, Inf])

dask.array.square(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the element-wise square of the input.

Parameters

x [array_like] Input data.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

out [ndarray or scalar] Element-wise x*x, of the same shape and dtype as x. This is a scalar if x
is a scalar.

See also:

numpy.linalg.matrix_power, sqrt, power

Examples

>>> np.square([-1j, 1]) # doctest: +SKIP
array([-1.-0.j, 1.+0.j])

dask.array.squeeze(a, axis=None)
Remove single-dimensional entries from the shape of an array.

This docstring was copied from numpy.squeeze.

Some inconsistencies with the Dask version may exist.

Parameters

a [array_like] Input data.

axis [None or int or tuple of ints, optional] New in version 1.7.0.

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with
shape entry greater than one, an error is raised.

Returns

3.7. Array 231

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power

dask Documentation, Release 2.6.0

squeezed [ndarray] The input array, but with all or a subset of the dimensions of length 1 re-
moved. This is always a itself or a view into a.

Raises

ValueError If axis is not None, and an axis being squeezed is not of length 1

See also:

expand_dims The inverse operation, adding singleton dimensions

reshape Insert, remove, and combine dimensions, and resize existing ones

Examples

>>> x = np.array([[[0], [1], [2]]]) # doctest: +SKIP
>>> x.shape # doctest: +SKIP
(1, 3, 1)
>>> np.squeeze(x).shape # doctest: +SKIP
(3,)
>>> np.squeeze(x, axis=0).shape # doctest: +SKIP
(3, 1)
>>> np.squeeze(x, axis=1).shape # doctest: +SKIP
Traceback (most recent call last):
...
ValueError: cannot select an axis to squeeze out which has size not equal to one
>>> np.squeeze(x, axis=2).shape # doctest: +SKIP
(1, 3)

dask.array.stack(seq, axis=0)
Stack arrays along a new axis

Given a sequence of dask arrays, form a new dask array by stacking them along a new dimension (axis=0 by
default)

See also:

concatenate

Examples

Create slices

>>> import dask.array as da
>>> import numpy as np

>>> data = [from_array(np.ones((4, 4)), chunks=(2, 2))
... for i in range(3)]

>>> x = da.stack(data, axis=0)
>>> x.shape
(3, 4, 4)

>>> da.stack(data, axis=1).shape
(4, 3, 4)

232 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> da.stack(data, axis=-1).shape
(4, 4, 3)

Result is a new dask Array

dask.array.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the standard deviation along the specified axis.

Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard
deviation is computed for the flattened array by default, otherwise over the specified axis.

Parameters

a [array_like] Calculate the standard deviation of these values.

axis [None or int or tuple of ints, optional] Axis or axes along which the standard deviation is
computed. The default is to compute the standard deviation of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of a
single axis or all the axes as before.

dtype [dtype, optional] Type to use in computing the standard deviation. For arrays of integer
type the default is float64, for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output but the type (of the calculated values) will be cast if
necessary.

ddof [int, optional] Means Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the std method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

standard_deviation [ndarray, see dtype parameter above.] If out is None, return a new array
containing the standard deviation, otherwise return a reference to the output array.

See also:

var, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs Section “Output arguments”

Notes

The standard deviation is the square root of the average of the squared deviations from the mean, i.e., std =
sqrt(mean(abs(x - x.mean())**2)).

The average squared deviation is normally calculated as x.sum() / N, where N = len(x). If, however,
ddof is specified, the divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an
unbiased estimator of the variance of the infinite population. ddof=0 provides a maximum likelihood estimate
of the variance for normally distributed variables. The standard deviation computed in this function is the

3.7. Array 233

dask Documentation, Release 2.6.0

square root of the estimated variance, so even with ddof=1, it will not be an unbiased estimate of the standard
deviation per se.

Note that, for complex numbers, std takes the absolute value before squaring, so that the result is always real
and nonnegative.

For floating-point input, the std is computed using the same precision the input has. Depending on the input
data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-
accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([1., 1.])
>>> np.std(a, axis=1)
array([0.5, 0.5])

In single precision, std() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.std(a)
0.45000005

Computing the standard deviation in float64 is more accurate:

>>> np.std(a, dtype=np.float64)
0.44999999925494177

dask.array.sum(a, axis=None, dtype=None, out=None, keepdims=<no value>, initial=<no value>)
Sum of array elements over a given axis.

Parameters

a [array_like] Elements to sum.

axis [None or int or tuple of ints, optional] Axis or axes along which a sum is performed. The
default, axis=None, will sum all of the elements of the input array. If axis is negative it
counts from the last to the first axis.

New in version 1.7.0.

If axis is a tuple of ints, a sum is performed on all of the axes specified in the tuple instead
of a single axis or all the axes as before.

dtype [dtype, optional] The type of the returned array and of the accumulator in which the
elements are summed. The dtype of a is used by default unless a has an integer dtype of
less precision than the default platform integer. In that case, if a is signed then the platform
integer is used while if a is unsigned then an unsigned integer of the same precision as the
platform integer is used.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape as the expected output, but the type of the output values will be cast if necessary.

234 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the sum method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

initial [scalar, optional] Starting value for the sum. See ~numpy.ufunc.reduce for details.

New in version 1.15.0.

Returns

sum_along_axis [ndarray] An array with the same shape as a, with the specified axis removed.
If a is a 0-d array, or if axis is None, a scalar is returned. If an output array is specified, a
reference to out is returned.

See also:

ndarray.sum Equivalent method.

cumsum Cumulative sum of array elements.

trapz Integration of array values using the composite trapezoidal rule.

mean, average

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

The sum of an empty array is the neutral element 0:

>>> np.sum([])
0.0

Examples

>>> np.sum([0.5, 1.5])
2.0
>>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
1
>>> np.sum([[0, 1], [0, 5]])
6
>>> np.sum([[0, 1], [0, 5]], axis=0)
array([0, 6])
>>> np.sum([[0, 1], [0, 5]], axis=1)
array([1, 5])

If the accumulator is too small, overflow occurs:

>>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)
-128

You can also start the sum with a value other than zero:

3.7. Array 235

dask Documentation, Release 2.6.0

>>> np.sum([10], initial=5)
15

dask.array.take(a, indices, axis=0)
Take elements from an array along an axis.

This docstring was copied from numpy.take.

Some inconsistencies with the Dask version may exist.

When axis is not None, this function does the same thing as “fancy” indexing (indexing arrays using arrays);
however, it can be easier to use if you need elements along a given axis. A call such as np.take(arr,
indices, axis=3) is equivalent to arr[:,:,:,indices,...].

Explained without fancy indexing, this is equivalent to the following use of ndindex, which sets each of ii, jj,
and kk to a tuple of indices:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
Nj = indices.shape
for ii in ndindex(Ni):

for jj in ndindex(Nj):
for kk in ndindex(Nk):

out[ii + jj + kk] = a[ii + (indices[jj],) + kk]

Parameters

a [array_like (Ni. . . , M, Nk. . .)] The source array.

indices [array_like (Nj. . .)] The indices of the values to extract.

New in version 1.8.0.

Also allow scalars for indices.

axis [int, optional] The axis over which to select values. By default, the flattened input array is
used.

out [ndarray, optional (Ni. . . , Nj. . . , Nk. . .)] If provided, the result will be placed in this array.
It should be of the appropriate shape and dtype.

mode [{‘raise’, ‘wrap’, ‘clip’}, optional (Not supported in Dask)] Specifies how out-of-bounds
indices will behave.

• ‘raise’ – raise an error (default)

• ‘wrap’ – wrap around

• ‘clip’ – clip to the range

‘clip’ mode means that all indices that are too large are replaced by the index that addresses
the last element along that axis. Note that this disables indexing with negative numbers.

Returns

out [ndarray (Ni. . . , Nj. . . , Nk. . .)] The returned array has the same type as a.

See also:

compress Take elements using a boolean mask

ndarray.take equivalent method

take_along_axis Take elements by matching the array and the index arrays

236 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

By eliminating the inner loop in the description above, and using s_ to build simple slice objects, take can be
expressed in terms of applying fancy indexing to each 1-d slice:

Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):

for kk in ndindex(Nj):
out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices]

For this reason, it is equivalent to (but faster than) the following use of apply_along_axis:

out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a)

Examples

>>> a = [4, 3, 5, 7, 6, 8] # doctest: +SKIP
>>> indices = [0, 1, 4] # doctest: +SKIP
>>> np.take(a, indices) # doctest: +SKIP
array([4, 3, 6])

In this example if a is an ndarray, “fancy” indexing can be used.

>>> a = np.array(a) # doctest: +SKIP
>>> a[indices] # doctest: +SKIP
array([4, 3, 6])

If indices is not one dimensional, the output also has these dimensions.

>>> np.take(a, [[0, 1], [2, 3]]) # doctest: +SKIP
array([[4, 3],

[5, 7]])

dask.array.tan(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Compute tangent element-wise.

Equivalent to np.sin(x)/np.cos(x) element-wise.

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding tangent values. This is a scalar if x is a scalar.

3.7. Array 237

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

References

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples

>>> from math import pi # doctest: +SKIP
>>> np.tan(np.array([-pi,pi/2,pi])) # doctest: +SKIP
array([1.22460635e-16, 1.63317787e+16, -1.22460635e-16])
>>>
>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.cos([0.1], out1) # doctest: +SKIP
>>> out2 is out1 # doctest: +SKIP
True
>>>
>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.cos(np.zeros((3,3)),np.zeros((2,2))) # doctest: +SKIP
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

dask.array.tanh(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Compute hyperbolic tangent element-wise.

Equivalent to np.sinh(x)/np.cosh(x) or -1j * np.tan(1j*x).

Parameters

x [array_like] Input array.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray] The corresponding hyperbolic tangent values. This is a scalar if x is a scalar.

Notes

If out is provided, the function writes the result into it, and returns a reference to out. (See Examples)

238 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

References

[1], [2]

Examples

>>> np.tanh((0, np.pi*1j, np.pi*1j/2)) # doctest: +SKIP
array([0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j])

>>> # Example of providing the optional output parameter illustrating
>>> # that what is returned is a reference to said parameter
>>> out2 = np.tanh([0.1], out1) # doctest: +SKIP
>>> out2 is out1 # doctest: +SKIP
True

>>> # Example of ValueError due to provision of shape mis-matched `out`
>>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) # doctest: +SKIP
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

dask.array.tensordot(lhs, rhs, axes=2)
Compute tensor dot product along specified axes for arrays >= 1-D.

This docstring was copied from numpy.tensordot.

Some inconsistencies with the Dask version may exist.

Given two tensors (arrays of dimension greater than or equal to one), a and b, and an array_like object containing
two array_like objects, (a_axes, b_axes), sum the products of a’s and b’s elements (components) over the
axes specified by a_axes and b_axes. The third argument can be a single non-negative integer_like scalar,
N; if it is such, then the last N dimensions of a and the first N dimensions of b are summed over.

Parameters

a, b [array_like, len(shape) >= 1] Tensors to “dot”.

axes [int or (2,) array_like]

• integer_like If an int N, sum over the last N axes of a and the first N axes of b in order.
The sizes of the corresponding axes must match.

• (2,) array_like Or, a list of axes to be summed over, first sequence applying to a, second
to b. Both elements array_like must be of the same length.

See also:

dot, einsum

Notes

Three common use cases are:

• axes = 0 : tensor product 𝑎⊗ 𝑏

• axes = 1 : tensor dot product 𝑎 · 𝑏

• axes = 2 : (default) tensor double contraction 𝑎 : 𝑏

3.7. Array 239

dask Documentation, Release 2.6.0

When axes is integer_like, the sequence for evaluation will be: first the -Nth axis in a and 0th axis in b, and the
-1th axis in a and Nth axis in b last.

When there is more than one axis to sum over - and they are not the last (first) axes of a (b) - the argument axes
should consist of two sequences of the same length, with the first axis to sum over given first in both sequences,
the second axis second, and so forth.

Examples

A “traditional” example:

>>> a = np.arange(60.).reshape(3,4,5) # doctest: +SKIP
>>> b = np.arange(24.).reshape(4,3,2) # doctest: +SKIP
>>> c = np.tensordot(a,b, axes=([1,0],[0,1])) # doctest: +SKIP
>>> c.shape # doctest: +SKIP
(5, 2)
>>> c # doctest: +SKIP
array([[4400., 4730.],

[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])

>>> # A slower but equivalent way of computing the same...
>>> d = np.zeros((5,2)) # doctest: +SKIP
>>> for i in range(5): # doctest: +SKIP
... for j in range(2):
... for k in range(3):
... for n in range(4):
... d[i,j] += a[k,n,i] * b[n,k,j]
>>> c == d # doctest: +SKIP
array([[True, True],

[True, True],
[True, True],
[True, True],
[True, True]])

An extended example taking advantage of the overloading of + and *:

>>> a = np.array(range(1, 9)) # doctest: +SKIP
>>> a.shape = (2, 2, 2) # doctest: +SKIP
>>> A = np.array(('a', 'b', 'c', 'd'), dtype=object) # doctest: +SKIP
>>> A.shape = (2, 2) # doctest: +SKIP
>>> a; A # doctest: +SKIP
array([[[1, 2],

[3, 4]],
[[5, 6],
[7, 8]]])

array([[a, b],
[c, d]], dtype=object)

>>> np.tensordot(a, A) # third argument default is 2 for double-contraction #
→˓doctest: +SKIP
array([abbcccdddd, aaaaabbbbbbcccccccdddddddd], dtype=object)

>>> np.tensordot(a, A, 1) # doctest: +SKIP
array([[[acc, bdd],

(continues on next page)

240 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

[aaacccc, bbbdddd]],
[[aaaaacccccc, bbbbbdddddd],
[aaaaaaacccccccc, bbbbbbbdddddddd]]], dtype=object)

>>> np.tensordot(a, A, 0) # tensor product (result too long to incl.) # doctest:
→˓+SKIP
array([[[[[a, b],

[c, d]],
...

>>> np.tensordot(a, A, (0, 1)) # doctest: +SKIP
array([[[abbbbb, cddddd],

[aabbbbbb, ccdddddd]],
[[aaabbbbbbb, cccddddddd],
[aaaabbbbbbbb, ccccdddddddd]]], dtype=object)

>>> np.tensordot(a, A, (2, 1)) # doctest: +SKIP
array([[[abb, cdd],

[aaabbbb, cccdddd]],
[[aaaaabbbbbb, cccccdddddd],
[aaaaaaabbbbbbbb, cccccccdddddddd]]], dtype=object)

>>> np.tensordot(a, A, ((0, 1), (0, 1))) # doctest: +SKIP
array([abbbcccccddddddd, aabbbbccccccdddddddd], dtype=object)

>>> np.tensordot(a, A, ((2, 1), (1, 0))) # doctest: +SKIP
array([acccbbdddd, aaaaacccccccbbbbbbdddddddd], dtype=object)

dask.array.tile(A, reps)
Construct an array by repeating A the number of times given by reps.

This docstring was copied from numpy.tile.

Some inconsistencies with the Dask version may exist.

If reps has length d, the result will have dimension of max(d, A.ndim).

If A.ndim < d, A is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted
to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A
to d-dimensions manually before calling this function.

If A.ndim > d, reps is promoted to A.ndim by pre-pending 1’s to it. Thus for an A of shape (2, 3, 4, 5), a reps
of (2, 2) is treated as (1, 1, 2, 2).

Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting
operations and functions.

Parameters

A [array_like] The input array.

reps [array_like] The number of repetitions of A along each axis.

Returns

c [ndarray] The tiled output array.

See also:

3.7. Array 241

dask Documentation, Release 2.6.0

repeat Repeat elements of an array.

broadcast_to Broadcast an array to a new shape

Examples

>>> a = np.array([0, 1, 2]) # doctest: +SKIP
>>> np.tile(a, 2) # doctest: +SKIP
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2)) # doctest: +SKIP
array([[0, 1, 2, 0, 1, 2],

[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2)) # doctest: +SKIP
array([[[0, 1, 2, 0, 1, 2]],

[[0, 1, 2, 0, 1, 2]]])

>>> b = np.array([[1, 2], [3, 4]]) # doctest: +SKIP
>>> np.tile(b, 2) # doctest: +SKIP
array([[1, 2, 1, 2],

[3, 4, 3, 4]])
>>> np.tile(b, (2, 1)) # doctest: +SKIP
array([[1, 2],

[3, 4],
[1, 2],
[3, 4]])

>>> c = np.array([1,2,3,4]) # doctest: +SKIP
>>> np.tile(c,(4,1)) # doctest: +SKIP
array([[1, 2, 3, 4],

[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])

dask.array.topk(a, k, axis=-1, split_every=None)
Extract the k largest elements from a on the given axis, and return them sorted from largest to smallest. If k is
negative, extract the -k smallest elements instead, and return them sorted from smallest to largest.

This performs best when k is much smaller than the chunk size. All results will be returned in a single chunk
along the given axis.

Parameters

x: Array Data being sorted

k: int

axis: int, optional

split_every: int >=2, optional See reduce(). This parameter becomes very important when
k is on the same order of magnitude of the chunk size or more, as it prevents getting the
whole or a significant portion of the input array in memory all at once, with a negative
impact on network transfer too when running on distributed.

Returns

Selection of x with size abs(k) along the given axis.

242 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> import dask.array as da
>>> x = np.array([5, 1, 3, 6])
>>> d = da.from_array(x, chunks=2)
>>> d.topk(2).compute()
array([6, 5])
>>> d.topk(-2).compute()
array([1, 3])

dask.array.transpose(a, axes=None)
Permute the dimensions of an array.

This docstring was copied from numpy.transpose.

Some inconsistencies with the Dask version may exist.

Parameters

a [array_like] Input array.

axes [list of ints, optional] By default, reverse the dimensions, otherwise permute the axes ac-
cording to the values given.

Returns

p [ndarray] a with its axes permuted. A view is returned whenever possible.

See also:

moveaxis, argsort

Notes

Use transpose(a, argsort(axes)) to invert the transposition of tensors when using the axes keyword argument.

Transposing a 1-D array returns an unchanged view of the original array.

Examples

>>> x = np.arange(4).reshape((2,2)) # doctest: +SKIP
>>> x # doctest: +SKIP
array([[0, 1],

[2, 3]])

>>> np.transpose(x) # doctest: +SKIP
array([[0, 2],

[1, 3]])

>>> x = np.ones((1, 2, 3)) # doctest: +SKIP
>>> np.transpose(x, (1, 0, 2)).shape # doctest: +SKIP
(2, 1, 3)

dask.array.tril(m, k=0)
Lower triangle of an array with elements above the k-th diagonal zeroed.

Parameters

m [array_like, shape (M, M)] Input array.

3.7. Array 243

dask Documentation, Release 2.6.0

k [int, optional] Diagonal above which to zero elements. k = 0 (the default) is the main diagonal,
k < 0 is below it and k > 0 is above.

Returns

tril [ndarray, shape (M, M)] Lower triangle of m, of same shape and data-type as m.

See also:

triu upper triangle of an array

dask.array.triu(m, k=0)
Upper triangle of an array with elements above the k-th diagonal zeroed.

Parameters

m [array_like, shape (M, N)] Input array.

k [int, optional] Diagonal above which to zero elements. k = 0 (the default) is the main diagonal,
k < 0 is below it and k > 0 is above.

Returns

triu [ndarray, shape (M, N)] Upper triangle of m, of same shape and data-type as m.

See also:

tril lower triangle of an array

dask.array.trunc(x, /, out=None, *, where=True, casting=’same_kind’, order=’K’, dtype=None,
subok=True[, signature, extobj])

Return the truncated value of the input, element-wise.

The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. In short, the fractional
part of the signed number x is discarded.

Parameters

x [array_like] Input data.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] Values of True indicate to calculate the ufunc at that position,
values of False indicate to leave the value in the output alone.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

y [ndarray or scalar] The truncated value of each element in x. This is a scalar if x is a scalar.

See also:

ceil, floor, rint

Notes

New in version 1.3.0.

244 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufuncs-kwargs

dask Documentation, Release 2.6.0

Examples

>>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) # doctest: +SKIP
>>> np.trunc(a) # doctest: +SKIP
array([-1., -1., -0., 0., 1., 1., 2.])

dask.array.unique(ar, return_index=False, return_inverse=False, return_counts=False)
Find the unique elements of an array.

This docstring was copied from numpy.unique.

Some inconsistencies with the Dask version may exist.

Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique
elements:

• the indices of the input array that give the unique values

• the indices of the unique array that reconstruct the input array

• the number of times each unique value comes up in the input array

Parameters

ar [array_like] Input array. Unless axis is specified, this will be flattened if it is not already 1-D.

return_index [bool, optional] If True, also return the indices of ar (along the specified axis, if
provided, or in the flattened array) that result in the unique array.

return_inverse [bool, optional] If True, also return the indices of the unique array (for the
specified axis, if provided) that can be used to reconstruct ar.

return_counts [bool, optional] If True, also return the number of times each unique item ap-
pears in ar.

New in version 1.9.0.

axis [int or None, optional (Not supported in Dask)] The axis to operate on. If None, ar will be
flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated
as the elements of a 1-D array with the dimension of the given axis, see the notes for more
details. Object arrays or structured arrays that contain objects are not supported if the axis
kwarg is used. The default is None.

New in version 1.13.0.

Returns

unique [ndarray] The sorted unique values.

unique_indices [ndarray, optional] The indices of the first occurrences of the unique values in
the original array. Only provided if return_index is True.

unique_inverse [ndarray, optional] The indices to reconstruct the original array from the unique
array. Only provided if return_inverse is True.

unique_counts [ndarray, optional] The number of times each of the unique values comes up in
the original array. Only provided if return_counts is True.

New in version 1.9.0.

See also:

3.7. Array 245

dask Documentation, Release 2.6.0

numpy.lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Notes

When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified
axis the first dimension of the array and then flattening the subarrays in C order. The flattened subarrays are
then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array
of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened
subarrays are sorted in lexicographic order starting with the first element.

Examples

>>> np.unique([1, 1, 2, 2, 3, 3]) # doctest: +SKIP
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]]) # doctest: +SKIP
>>> np.unique(a) # doctest: +SKIP
array([1, 2, 3])

Return the unique rows of a 2D array

>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) # doctest: +SKIP
>>> np.unique(a, axis=0) # doctest: +SKIP
array([[1, 0, 0], [2, 3, 4]])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a']) # doctest: +SKIP
>>> u, indices = np.unique(a, return_index=True) # doctest: +SKIP
>>> u # doctest: +SKIP
array(['a', 'b', 'c'],

dtype='|S1')
>>> indices # doctest: +SKIP
array([0, 1, 3])
>>> a[indices] # doctest: +SKIP
array(['a', 'b', 'c'],

dtype='|S1')

Reconstruct the input array from the unique values:

>>> a = np.array([1, 2, 6, 4, 2, 3, 2]) # doctest: +SKIP
>>> u, indices = np.unique(a, return_inverse=True) # doctest: +SKIP
>>> u # doctest: +SKIP
array([1, 2, 3, 4, 6])
>>> indices # doctest: +SKIP
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices] # doctest: +SKIP
array([1, 2, 6, 4, 2, 3, 2])

dask.array.unravel_index(indices, shape, order=’C’)
This docstring was copied from numpy.unravel_index.

Some inconsistencies with the Dask version may exist.

Converts a flat index or array of flat indices into a tuple of coordinate arrays.

Parameters

246 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

indices [array_like] An integer array whose elements are indices into the flattened version of
an array of dimensions shape. Before version 1.6.0, this function accepted just one index
value.

shape [tuple of ints] The shape of the array to use for unraveling indices.

Changed in version 1.16.0: Renamed from dims to shape.

order [{‘C’, ‘F’}, optional] Determines whether the indices should be viewed as indexing in
row-major (C-style) or column-major (Fortran-style) order.

New in version 1.6.0.

Returns

unraveled_coords [tuple of ndarray] Each array in the tuple has the same shape as the
indices array.

See also:

ravel_multi_index

Examples

>>> np.unravel_index([22, 41, 37], (7,6)) # doctest: +SKIP
(array([3, 6, 6]), array([4, 5, 1]))
>>> np.unravel_index([31, 41, 13], (7,6), order='F') # doctest: +SKIP
(array([3, 6, 6]), array([4, 5, 1]))

>>> np.unravel_index(1621, (6,7,8,9)) # doctest: +SKIP
(3, 1, 4, 1)

dask.array.var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters

a [array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis [None or int or tuple of ints, optional] Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype [data-type, optional] Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is zero.

3.7. Array 247

dask Documentation, Release 2.6.0

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

variance [ndarray, see dtype parameter above] If out=None, returns a new array containing
the variance; otherwise, a reference to the output array is returned.

See also:

std, mean, nanmean, nanstd, nanvar

numpy.doc.ufuncs Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean(abs(x - x.
mean())**2).

The mean is normally calculated as x.sum() / N, where N = len(x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dtype keyword can alleviate this issue.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> np.var(a)
1.25
>>> np.var(a, axis=0)
array([1., 1.])
>>> np.var(a, axis=1)
array([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.var(a)
0.20250003

Computing the variance in float64 is more accurate:

248 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> np.var(a, dtype=np.float64)
0.20249999932944759
>>> ((1-0.55)**2 + (0.1-0.55)**2)/2
0.2025

dask.array.vdot(a, b)
This docstring was copied from numpy.vdot.

Some inconsistencies with the Dask version may exist.

Return the dot product of two vectors.

The vdot(a, b) function handles complex numbers differently than dot(a, b). If the first argument is complex the
complex conjugate of the first argument is used for the calculation of the dot product.

Note that vdot handles multidimensional arrays differently than dot: it does not perform a matrix product, but
flattens input arguments to 1-D vectors first. Consequently, it should only be used for vectors.

Parameters

a [array_like] If a is complex the complex conjugate is taken before calculation of the dot
product.

b [array_like] Second argument to the dot product.

Returns

output [ndarray] Dot product of a and b. Can be an int, float, or complex depending on the
types of a and b.

See also:

dot Return the dot product without using the complex conjugate of the first argument.

Examples

>>> a = np.array([1+2j,3+4j]) # doctest: +SKIP
>>> b = np.array([5+6j,7+8j]) # doctest: +SKIP
>>> np.vdot(a, b) # doctest: +SKIP
(70-8j)
>>> np.vdot(b, a) # doctest: +SKIP
(70+8j)

Note that higher-dimensional arrays are flattened!

>>> a = np.array([[1, 4], [5, 6]]) # doctest: +SKIP
>>> b = np.array([[4, 1], [2, 2]]) # doctest: +SKIP
>>> np.vdot(a, b) # doctest: +SKIP
30
>>> np.vdot(b, a) # doctest: +SKIP
30
>>> 1*4 + 4*1 + 5*2 + 6*2 # doctest: +SKIP
30

dask.array.vstack(tup, allow_unknown_chunksizes=False)
Stack arrays in sequence vertically (row wise).

This docstring was copied from numpy.vstack.

Some inconsistencies with the Dask version may exist.

3.7. Array 249

dask Documentation, Release 2.6.0

This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N).
Rebuilds arrays divided by vsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block
provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 2-D.

See also:

stack Join a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise).

dstack Stack arrays in sequence depth wise (along third dimension).

concatenate Join a sequence of arrays along an existing axis.

vsplit Split array into a list of multiple sub-arrays vertically.

block Assemble arrays from blocks.

Examples

>>> a = np.array([1, 2, 3]) # doctest: +SKIP
>>> b = np.array([2, 3, 4]) # doctest: +SKIP
>>> np.vstack((a,b)) # doctest: +SKIP
array([[1, 2, 3],

[2, 3, 4]])

>>> a = np.array([[1], [2], [3]]) # doctest: +SKIP
>>> b = np.array([[2], [3], [4]]) # doctest: +SKIP
>>> np.vstack((a,b)) # doctest: +SKIP
array([[1],

[2],
[3],
[2],
[3],
[4]])

dask.array.where(condition[, x, y])
This docstring was copied from numpy.where.

Some inconsistencies with the Dask version may exist.

Return elements chosen from x or y depending on condition.

Note: When only condition is provided, this function is a shorthand for np.asarray(condition).
nonzero(). Using nonzero directly should be preferred, as it behaves correctly for subclasses. The rest of
this documentation covers only the case where all three arguments are provided.

250 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

condition [array_like, bool] Where True, yield x, otherwise yield y.

x, y [array_like] Values from which to choose. x, y and condition need to be broadcastable to
some shape.

Returns

out [ndarray] An array with elements from x where condition is True, and elements from y
elsewhere.

See also:

choose

nonzero The function that is called when x and y are omitted

Notes

If all the arrays are 1-D, where is equivalent to:

[xv if c else yv
for c, xv, yv in zip(condition, x, y)]

Examples

>>> a = np.arange(10) # doctest: +SKIP
>>> a # doctest: +SKIP
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.where(a < 5, a, 10*a) # doctest: +SKIP
array([0, 1, 2, 3, 4, 50, 60, 70, 80, 90])

This can be used on multidimensional arrays too:

>>> np.where([[True, False], [True, True]], # doctest: +SKIP
... [[1, 2], [3, 4]],
... [[9, 8], [7, 6]])
array([[1, 8],

[3, 4]])

The shapes of x, y, and the condition are broadcast together:

>>> x, y = np.ogrid[:3, :4] # doctest: +SKIP
>>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast # doctest: +SKIP
array([[10, 0, 0, 0],

[10, 11, 1, 1],
[10, 11, 12, 2]])

>>> a = np.array([[0, 1, 2], # doctest: +SKIP
... [0, 2, 4],
... [0, 3, 6]])
>>> np.where(a < 4, a, -1) # -1 is broadcast # doctest: +SKIP
array([[0, 1, 2],

[0, 2, -1],
[0, 3, -1]])

3.7. Array 251

dask Documentation, Release 2.6.0

dask.array.zeros(*args, **kwargs)
Blocked variant of zeros

Follows the signature of zeros exactly except that it also requires a keyword argument chunks=(. . .)

Original signature follows below. zeros(shape, dtype=float, order=’C’)

Return a new array of given shape and type, filled with zeros.

Parameters

shape [int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy.int8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of zeros with the given shape, dtype, and order.

See also:

zeros_like Return an array of zeros with shape and type of input.

empty Return a new uninitialized array.

ones Return a new array setting values to one.

full Return a new array of given shape filled with value.

Examples

>>> np.zeros(5)
array([0., 0., 0., 0., 0.])

>>> np.zeros((5,), dtype=int)
array([0, 0, 0, 0, 0])

>>> np.zeros((2, 1))
array([[0.],

[0.]])

>>> s = (2,2)
>>> np.zeros(s)
array([[0., 0.],

[0., 0.]])

>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],

dtype=[('x', '<i4'), ('y', '<i4')])

dask.array.zeros_like(a, dtype=None, chunks=None)
Return an array of zeros with the same shape and type as a given array.

Parameters

a [array_like] The shape and data-type of a define these same attributes of the returned array.

252 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dtype [data-type, optional] Overrides the data type of the result.

chunks [sequence of ints] The number of samples on each block. Note that the last block will
have fewer samples if len(array) % chunks != 0.

Returns

out [ndarray] Array of zeros with the same shape and type as a.

See also:

ones_like Return an array of ones with shape and type of input.

empty_like Return an empty array with shape and type of input.

zeros Return a new array setting values to zero.

ones Return a new array setting values to one.

empty Return a new uninitialized array.

dask.array.linalg.cholesky(a, lower=False)
Returns the Cholesky decomposition, 𝐴 = 𝐿𝐿* or 𝐴 = 𝑈*𝑈 of a Hermitian positive-definite matrix A.

Parameters

a [(M, M) array_like] Matrix to be decomposed

lower [bool, optional] Whether to compute the upper or lower triangular Cholesky factorization.
Default is upper-triangular.

Returns

c [(M, M) Array] Upper- or lower-triangular Cholesky factor of a.

dask.array.linalg.inv(a)
Compute the inverse of a matrix with LU decomposition and forward / backward substitutions.

Parameters

a [array_like] Square matrix to be inverted.

Returns

ainv [Array] Inverse of the matrix a.

dask.array.linalg.lstsq(a, b)
Return the least-squares solution to a linear matrix equation using QR decomposition.

Solves the equation a x = b by computing a vector x that minimizes the Euclidean 2-norm || b - a x ||^2. The
equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of a can be
less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank,
then x (but for round-off error) is the “exact” solution of the equation.

Parameters

a [(M, N) array_like] “Coefficient” matrix.

b [(M,) array_like] Ordinate or “dependent variable” values.

Returns

x [(N,) Array] Least-squares solution. If b is two-dimensional, the solutions are in the K
columns of x.

residuals [(1,) Array] Sums of residuals; squared Euclidean 2-norm for each column in b -
a*x.

3.7. Array 253

dask Documentation, Release 2.6.0

rank [Array] Rank of matrix a.

s [(min(M, N),) Array] Singular values of a.

dask.array.linalg.lu(a)
Compute the lu decomposition of a matrix.

Returns

p: Array, permutation matrix

l: Array, lower triangular matrix with unit diagonal.

u: Array, upper triangular matrix

Examples

>>> p, l, u = da.linalg.lu(x) # doctest: +SKIP

dask.array.linalg.norm(x, ord=None, axis=None, keepdims=False)
Matrix or vector norm.

This docstring was copied from numpy.linalg.norm.

Some inconsistencies with the Dask version may exist.

This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms
(described below), depending on the value of the ord parameter.

Parameters

x [array_like] Input array. If axis is None, x must be 1-D or 2-D.

ord [{non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional] Order of the norm (see table under Notes).
inf means numpy’s inf object.

axis [{int, 2-tuple of ints, None}, optional] If axis is an integer, it specifies the axis of x along
which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D
matrices, and the matrix norms of these matrices are computed. If axis is None then either a
vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned.

New in version 1.8.0.

keepdims [bool, optional] If this is set to True, the axes which are normed over are left in
the result as dimensions with size one. With this option the result will broadcast correctly
against the original x.

New in version 1.10.0.

Returns

n [float or ndarray] Norm of the matrix or vector(s).

Notes

For values of ord <= 0, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful
for various numerical purposes.

The following norms can be calculated:

254 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

ord norm for matrices norm for vectors
None Frobenius norm 2-norm
‘fro’ Frobenius norm –
‘nuc’ nuclear norm –
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 – sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other – sum(abs(x)**ord)**(1./ord)

The Frobenius norm is given by [1]:

||𝐴||𝐹 = [
∑︀

𝑖,𝑗 𝑎𝑏𝑠(𝑎𝑖,𝑗)
2]1/2

The nuclear norm is the sum of the singular values.

References

[1]

Examples

>>> from numpy import linalg as LA # doctest: +SKIP
>>> a = np.arange(9) - 4 # doctest: +SKIP
>>> a # doctest: +SKIP
array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
>>> b = a.reshape((3, 3)) # doctest: +SKIP
>>> b # doctest: +SKIP
array([[-4, -3, -2],

[-1, 0, 1],
[2, 3, 4]])

>>> LA.norm(a) # doctest: +SKIP
7.745966692414834
>>> LA.norm(b) # doctest: +SKIP
7.745966692414834
>>> LA.norm(b, 'fro') # doctest: +SKIP
7.745966692414834
>>> LA.norm(a, np.inf) # doctest: +SKIP
4.0
>>> LA.norm(b, np.inf) # doctest: +SKIP
9.0
>>> LA.norm(a, -np.inf) # doctest: +SKIP
0.0
>>> LA.norm(b, -np.inf) # doctest: +SKIP
2.0

>>> LA.norm(a, 1) # doctest: +SKIP
20.0
>>> LA.norm(b, 1) # doctest: +SKIP

(continues on next page)

3.7. Array 255

dask Documentation, Release 2.6.0

(continued from previous page)

7.0
>>> LA.norm(a, -1) # doctest: +SKIP
-4.6566128774142013e-010
>>> LA.norm(b, -1) # doctest: +SKIP
6.0
>>> LA.norm(a, 2) # doctest: +SKIP
7.745966692414834
>>> LA.norm(b, 2) # doctest: +SKIP
7.3484692283495345

>>> LA.norm(a, -2) # doctest: +SKIP
nan
>>> LA.norm(b, -2) # doctest: +SKIP
1.8570331885190563e-016
>>> LA.norm(a, 3) # doctest: +SKIP
5.8480354764257312
>>> LA.norm(a, -3) # doctest: +SKIP
nan

Using the axis argument to compute vector norms:

>>> c = np.array([[1, 2, 3], # doctest: +SKIP
... [-1, 1, 4]])
>>> LA.norm(c, axis=0) # doctest: +SKIP
array([1.41421356, 2.23606798, 5.])
>>> LA.norm(c, axis=1) # doctest: +SKIP
array([3.74165739, 4.24264069])
>>> LA.norm(c, ord=1, axis=1) # doctest: +SKIP
array([6., 6.])

Using the axis argument to compute matrix norms:

>>> m = np.arange(8).reshape(2,2,2) # doctest: +SKIP
>>> LA.norm(m, axis=(1,2)) # doctest: +SKIP
array([3.74165739, 11.22497216])
>>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) # doctest: +SKIP
(3.7416573867739413, 11.224972160321824)

dask.array.linalg.qr(a)
Compute the qr factorization of a matrix.

Returns

q: Array, orthonormal

r: Array, upper-triangular

See also:

np.linalg.qr Equivalent NumPy Operation

dask.array.linalg.tsqr Implementation for tall-and-skinny arrays

dask.array.linalg.sfqr Implementation for short-and-fat arrays

256 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> q, r = da.linalg.qr(x) # doctest: +SKIP

dask.array.linalg.solve(a, b, sym_pos=False)
Solve the equation a x = b for x. By default, use LU decomposition and forward / backward substitutions.
When sym_pos is True, use Cholesky decomposition.

Parameters

a [(M, M) array_like] A square matrix.

b [(M,) or (M, N) array_like] Right-hand side matrix in a x = b.

sym_pos [bool] Assume a is symmetric and positive definite. If True, use Cholesky decom-
position.

Returns

x [(M,) or (M, N) Array] Solution to the system a x = b. Shape of the return matches the
shape of b.

dask.array.linalg.solve_triangular(a, b, lower=False)
Solve the equation a x = b for x, assuming a is a triangular matrix.

Parameters

a [(M, M) array_like] A triangular matrix

b [(M,) or (M, N) array_like] Right-hand side matrix in a x = b

lower [bool, optional] Use only data contained in the lower triangle of a. Default is to use upper
triangle.

Returns

x [(M,) or (M, N) array] Solution to the system a x = b. Shape of return matches b.

dask.array.linalg.svd(a)
Compute the singular value decomposition of a matrix.

Returns

u: Array, unitary / orthogonal

s: Array, singular values in decreasing order (largest first)

v: Array, unitary / orthogonal

See also:

np.linalg.svd Equivalent NumPy Operation

dask.array.linalg.tsqr Implementation for tall-and-skinny arrays

Examples

>>> u, s, v = da.linalg.svd(x) # doctest: +SKIP

dask.array.linalg.svd_compressed(a, k, n_power_iter=0, seed=None, compute=False)
Randomly compressed rank-k thin Singular Value Decomposition.

3.7. Array 257

dask Documentation, Release 2.6.0

This computes the approximate singular value decomposition of a large array. This algorithm is generally
faster than the normal algorithm but does not provide exact results. One can balance between performance and
accuracy with input parameters (see below).

Parameters

a: Array Input array

k: int Rank of the desired thin SVD decomposition.

n_power_iter: int Number of power iterations, useful when the singular values decay slowly.
Error decreases exponentially as n_power_iter increases. In practice, set n_power_iter <=
4.

compute [bool] Whether or not to compute data at each use. Recomputing the input while
performing several passes reduces memory pressure, but means that we have to compute the
input multiple times. This is a good choice if the data is larger than memory and cheap to
recreate.

Returns

u: Array, unitary / orthogonal

s: Array, singular values in decreasing order (largest first)

v: Array, unitary / orthogonal

References

N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM Rev., Survey and Review section, Vol. 53, num. 2, pp.
217-288, June 2011 https://arxiv.org/abs/0909.4061

Examples

>>> u, s, vt = svd_compressed(x, 20) # doctest: +SKIP

dask.array.linalg.sfqr(data, name=None)
Direct Short-and-Fat QR

Currently, this is a quick hack for non-tall-and-skinny matrices which are one chunk tall and (unless they are
one chunk wide) have chunks that are wider than they are tall

Q [R_1 R_2 . . .] = [A_1 A_2 . . .]

it computes the factorization Q R_1 = A_1, then computes the other R_k’s in parallel.

Parameters

data: Array

See also:

dask.array.linalg.qr, dask.array.linalg.tsqr

dask.array.linalg.tsqr(data, compute_svd=False, _max_vchunk_size=None)
Direct Tall-and-Skinny QR algorithm

As presented in:

258 Chapter 3. Complex Algorithms

https://arxiv.org/abs/0909.4061

dask Documentation, Release 2.6.0

A. Benson, D. Gleich, and J. Demmel. Direct QR factorizations for tall-and-skinny matrices in
MapReduce architectures. IEEE International Conference on Big Data, 2013. https://arxiv.org/abs/
1301.1071

This algorithm is used to compute both the QR decomposition and the Singular Value Decomposition. It requires
that the input array have a single column of blocks, each of which fit in memory.

Parameters

data: Array

compute_svd: bool Whether to compute the SVD rather than the QR decomposition

_max_vchunk_size: Integer Used internally in recursion to set the maximum row dimension
of chunks in subsequent recursive calls.

See also:

dask.array.linalg.qr, dask.array.linalg.svd, dask.array.linalg.sfqr

Notes

With k blocks of size (m, n), this algorithm has memory use that scales as k * n * n.

The implementation here is the recursive variant due to the ultimate need for one “single core” QR decompo-
sition. In the non-recursive version of the algorithm, given k blocks, after k m * n QR decompositions, there
will be a “single core” QR decomposition that will have to work with a (k * n, n) matrix.

Here, recursion is applied as necessary to ensure that k * n is not larger than m (if m / n >= 2). In par-
ticular, this is done to ensure that single core computations do not have to work on blocks larger than (m,
n).

Where blocks are irregular, the above logic is applied with the “height” of the “tallest” block used in place of m.

Consider use of the rechunk method to control this behavior. Taller blocks will reduce overall memory use
(assuming that many of them still fit in memory at once).

dask.array.ma.average(a, axis=None, weights=None, returned=False)
Return the weighted average of array over the given axis.

This docstring was copied from numpy.ma.average.

Some inconsistencies with the Dask version may exist.

Parameters

a [array_like] Data to be averaged. Masked entries are not taken into account in the computa-
tion.

axis [int, optional] Axis along which to average a. If None, averaging is done over the flattened
array.

weights [array_like, optional] The importance that each element has in the computation of the
average. The weights array can either be 1-D (in which case its length must be the size of
a along the given axis) or of the same shape as a. If weights=None, then all data in a
are assumed to have a weight equal to one. If weights is complex, the imaginary parts are
ignored.

returned [bool, optional] Flag indicating whether a tuple (result, sum of weights)
should be returned as output (True), or just the result (False). Default is False.

Returns

3.7. Array 259

https://arxiv.org/abs/1301.1071
https://arxiv.org/abs/1301.1071

dask Documentation, Release 2.6.0

average, [sum_of_weights] [(tuple of) scalar or MaskedArray] The average along the specified
axis. When returned is True, return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is np.float64 if a is of integer type and
floats smaller than float64, or the input data-type, otherwise. If returned, sum_of_weights is
always float64.

Examples

>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True]) #
→˓doctest: +SKIP
>>> np.ma.average(a, weights=[3, 1, 0, 0]) # doctest: +SKIP
1.25

>>> x = np.ma.arange(6.).reshape(3, 2) # doctest: +SKIP
>>> print(x) # doctest: +SKIP
[[0. 1.]
[2. 3.]
[4. 5.]]
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3], # doctest:
→˓+SKIP
... returned=True)
>>> print(avg) # doctest: +SKIP
[2.66666666667 3.66666666667]

dask.array.ma.filled(a, fill_value=None)
Return input as an array with masked data replaced by a fill value.

This docstring was copied from numpy.ma.filled.

Some inconsistencies with the Dask version may exist.

If a is not a MaskedArray, a itself is returned. If a is a MaskedArray and fill_value is None, fill_value is set to
a.fill_value.

Parameters

a [MaskedArray or array_like] An input object.

fill_value [scalar, optional] Filling value. Default is None.

Returns

a [ndarray] The filled array.

See also:

compressed

Examples

>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], # doctest: +SKIP
... [1, 0, 0],
... [0, 0, 0]])
>>> x.filled() # doctest: +SKIP
array([[999999, 1, 2],

[999999, 4, 5],
[6, 7, 8]])

260 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.array.ma.fix_invalid(a, fill_value=None)
Return input with invalid data masked and replaced by a fill value.

This docstring was copied from numpy.ma.fix_invalid.

Some inconsistencies with the Dask version may exist.

Invalid data means values of nan, inf, etc.

Parameters

a [array_like] Input array, a (subclass of) ndarray.

mask [sequence, optional (Not supported in Dask)] Mask. Must be convertible to an array of
booleans with the same shape as data. True indicates a masked (i.e. invalid) data.

copy [bool, optional (Not supported in Dask)] Whether to use a copy of a (True) or to fix a in
place (False). Default is True.

fill_value [scalar, optional] Value used for fixing invalid data. Default is None, in which case
the a.fill_value is used.

Returns

b [MaskedArray] The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([1., -1, np.nan, np.inf], mask=[1] + [0]*3) # doctest: +SKIP
>>> x # doctest: +SKIP
masked_array(data = [-- -1.0 nan inf],

mask = [True False False False],
fill_value = 1e+20)

>>> np.ma.fix_invalid(x) # doctest: +SKIP
masked_array(data = [-- -1.0 -- --],

mask = [True False True True],
fill_value = 1e+20)

>>> fixed = np.ma.fix_invalid(x) # doctest: +SKIP
>>> fixed.data # doctest: +SKIP
array([1.00000000e+00, -1.00000000e+00, 1.00000000e+20,

1.00000000e+20])
>>> x.data # doctest: +SKIP
array([1., -1., NaN, Inf])

dask.array.ma.getdata(a)
Return the data of a masked array as an ndarray.

This docstring was copied from numpy.ma.getdata.

Some inconsistencies with the Dask version may exist.

Return the data of a (if any) as an ndarray if a is a MaskedArray, else return a as a ndarray or subclass
(depending on subok) if not.

Parameters

3.7. Array 261

dask Documentation, Release 2.6.0

a [array_like] Input MaskedArray, alternatively a ndarray or a subclass thereof.

subok [bool (Not supported in Dask)] Whether to force the output to be a pure ndarray (False)
or to return a subclass of ndarray if appropriate (True, default).

See also:

getmask Return the mask of a masked array, or nomask.

getmaskarray Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma # doctest: +SKIP
>>> a = ma.masked_equal([[1,2],[3,4]], 2) # doctest: +SKIP
>>> a # doctest: +SKIP
masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value=999999)
>>> ma.getdata(a) # doctest: +SKIP
array([[1, 2],

[3, 4]])

Equivalently use the MaskedArray data attribute.

>>> a.data # doctest: +SKIP
array([[1, 2],

[3, 4]])

dask.array.ma.getmaskarray(a)
Return the mask of a masked array, or full boolean array of False.

This docstring was copied from numpy.ma.getmaskarray.

Some inconsistencies with the Dask version may exist.

Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not nomask, else return a full
boolean array of False of the same shape as arr.

Parameters

arr [array_like (Not supported in Dask)] Input MaskedArray for which the mask is required.

See also:

getmask Return the mask of a masked array, or nomask.

getdata Return the data of a masked array as an ndarray.

Examples

>>> import numpy.ma as ma # doctest: +SKIP
>>> a = ma.masked_equal([[1,2],[3,4]], 2) # doctest: +SKIP
>>> a # doctest: +SKIP

(continues on next page)

262 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

masked_array(data =
[[1 --]
[3 4]],

mask =
[[False True]
[False False]],

fill_value=999999)
>>> ma.getmaskarray(a) # doctest: +SKIP
array([[False, True],

[False, False]])

Result when mask == nomask

>>> b = ma.masked_array([[1,2],[3,4]]) # doctest: +SKIP
>>> b # doctest: +SKIP
masked_array(data =
[[1 2]
[3 4]],

mask =
False,

fill_value=999999)
>>> >ma.getmaskarray(b) # doctest: +SKIP
array([[False, False],

[False, False]])

dask.array.ma.masked_array(data, mask=False, fill_value=None, **kwargs)
An array class with possibly masked values.

This docstring was copied from numpy.ma.masked_array.

Some inconsistencies with the Dask version may exist.

Masked values of True exclude the corresponding element from any computation.

Construction:

x = MaskedArray(data, mask=nomask, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,
shrink=True, order=None)

Parameters

data [array_like] Input data.

mask [sequence, optional] Mask. Must be convertible to an array of booleans with the same
shape as data. True indicates a masked (i.e. invalid) data.

dtype [dtype, optional (Not supported in Dask)] Data type of the output. If dtype is None, the
type of the data argument (data.dtype) is used. If dtype is not None and different from
data.dtype, a copy is performed.

copy [bool, optional (Not supported in Dask)] Whether to copy the input data (True), or to use
a reference instead. Default is False.

subok [bool, optional (Not supported in Dask)] Whether to return a subclass of MaskedArray
if possible (True) or a plain MaskedArray. Default is True.

ndmin [int, optional (Not supported in Dask)] Minimum number of dimensions. Default is 0.

3.7. Array 263

dask Documentation, Release 2.6.0

fill_value [scalar, optional] Value used to fill in the masked values when necessary. If None, a
default based on the data-type is used.

keep_mask [bool, optional (Not supported in Dask)] Whether to combine mask with the mask
of the input data, if any (True), or to use only mask for the output (False). Default is True.

hard_mask [bool, optional (Not supported in Dask)] Whether to use a hard mask or not. With
a hard mask, masked values cannot be unmasked. Default is False.

shrink [bool, optional (Not supported in Dask)] Whether to force compression of an empty
mask. Default is True.

order [{‘C’, ‘F’, ‘A’}, optional (Not supported in Dask)] Specify the order of the array. If
order is ‘C’, then the array will be in C-contiguous order (last-index varies the fastest). If
order is ‘F’, then the returned array will be in Fortran-contiguous order (first-index varies
the fastest). If order is ‘A’ (default), then the returned array may be in any order (either C-,
Fortran-contiguous, or even discontiguous), unless a copy is required, in which case it will
be C-contiguous.

dask.array.ma.masked_equal(a, value)
Mask an array where equal to a given value.

This docstring was copied from numpy.ma.masked_equal.

Some inconsistencies with the Dask version may exist.

This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays, consider
using masked_values(x, value).

See also:

masked_where Mask where a condition is met.

masked_values Mask using floating point equality.

Examples

>>> import numpy.ma as ma # doctest: +SKIP
>>> a = np.arange(4) # doctest: +SKIP
>>> a # doctest: +SKIP
array([0, 1, 2, 3])
>>> ma.masked_equal(a, 2) # doctest: +SKIP
masked_array(data = [0 1 -- 3],

mask = [False False True False],
fill_value=999999)

dask.array.ma.masked_greater(x, value, copy=True)
Mask an array where greater than a given value.

This function is a shortcut to masked_where, with condition = (x > value).

See also:

masked_where Mask where a condition is met.

264 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater(a, 2)
masked_array(data = [0 1 2 --],

mask = [False False False True],
fill_value=999999)

dask.array.ma.masked_greater_equal(x, value, copy=True)
Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x >= value).

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_greater_equal(a, 2)
masked_array(data = [0 1 -- --],

mask = [False False True True],
fill_value=999999)

dask.array.ma.masked_inside(x, v1, v2)
Mask an array inside a given interval.

This docstring was copied from numpy.ma.masked_inside.

Some inconsistencies with the Dask version may exist.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1 <= x <= v2). The
boundaries v1 and v2 can be given in either order.

See also:

masked_where Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma # doctest: +SKIP
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] # doctest: +SKIP
>>> ma.masked_inside(x, -0.3, 0.3) # doctest: +SKIP
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],

(continues on next page)

3.7. Array 265

dask Documentation, Release 2.6.0

(continued from previous page)

mask = [False False True True False False],
fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3) # doctest: +SKIP
masked_array(data = [0.31 1.2 -- -- -0.4 -1.1],

mask = [False False True True False False],
fill_value=1e+20)

dask.array.ma.masked_invalid(a)
Mask an array where invalid values occur (NaNs or infs).

This docstring was copied from numpy.ma.masked_invalid.

Some inconsistencies with the Dask version may exist.

This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask is
conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but
accepts any array_like object.

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma # doctest: +SKIP
>>> a = np.arange(5, dtype=float) # doctest: +SKIP
>>> a[2] = np.NaN # doctest: +SKIP
>>> a[3] = np.PINF # doctest: +SKIP
>>> a # doctest: +SKIP
array([0., 1., NaN, Inf, 4.])
>>> ma.masked_invalid(a) # doctest: +SKIP
masked_array(data = [0.0 1.0 -- -- 4.0],

mask = [False False True True False],
fill_value=1e+20)

dask.array.ma.masked_less(x, value, copy=True)
Mask an array where less than a given value.

This function is a shortcut to masked_where, with condition = (x < value).

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less(a, 2)
masked_array(data = [-- -- 2 3],

(continues on next page)

266 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

mask = [True True False False],
fill_value=999999)

dask.array.ma.masked_less_equal(x, value, copy=True)
Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x <= value).

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_less_equal(a, 2)
masked_array(data = [-- -- -- 3],

mask = [True True True False],
fill_value=999999)

dask.array.ma.masked_not_equal(x, value, copy=True)
Mask an array where not equal to a given value.

This function is a shortcut to masked_where, with condition = (x != value).

See also:

masked_where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> ma.masked_not_equal(a, 2)
masked_array(data = [-- -- 2 --],

mask = [True True False True],
fill_value=999999)

dask.array.ma.masked_outside(x, v1, v2)
Mask an array outside a given interval.

This docstring was copied from numpy.ma.masked_outside.

Some inconsistencies with the Dask version may exist.

Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v1)|(x > v2). The
boundaries v1 and v2 can be given in either order.

See also:

masked_where Mask where a condition is met.

3.7. Array 267

dask Documentation, Release 2.6.0

Notes

The array x is prefilled with its filling value.

Examples

>>> import numpy.ma as ma # doctest: +SKIP
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1] # doctest: +SKIP
>>> ma.masked_outside(x, -0.3, 0.3) # doctest: +SKIP
masked_array(data = [-- -- 0.01 0.2 -- --],

mask = [True True False False True True],
fill_value=1e+20)

The order of v1 and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3) # doctest: +SKIP
masked_array(data = [-- -- 0.01 0.2 -- --],

mask = [True True False False True True],
fill_value=1e+20)

dask.array.ma.masked_values(x, value, rtol=1e-05, atol=1e-08, shrink=True)
Mask using floating point equality.

This docstring was copied from numpy.ma.masked_values.

Some inconsistencies with the Dask version may exist.

Return a MaskedArray, masked where the data in array x are approximately equal to value, determined using
isclose. The default tolerances for masked_values are the same as those for isclose.

For integer types, exact equality is used, in the same way as masked_equal.

The fill_value is set to value and the mask is set to nomask if possible.

Parameters

x [array_like] Array to mask.

value [float] Masking value.

rtol, atol [float, optional] Tolerance parameters passed on to isclose

copy [bool, optional (Not supported in Dask)] Whether to return a copy of x.

shrink [bool, optional] Whether to collapse a mask full of False to nomask.

Returns

result [MaskedArray] The result of masking x where approximately equal to value.

See also:

masked_where Mask where a condition is met.

masked_equal Mask where equal to a given value (integers).

Examples

268 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> import numpy.ma as ma # doctest: +SKIP
>>> x = np.array([1, 1.1, 2, 1.1, 3]) # doctest: +SKIP
>>> ma.masked_values(x, 1.1) # doctest: +SKIP
masked_array(data = [1.0 -- 2.0 -- 3.0],

mask = [False True False True False],
fill_value=1.1)

Note that mask is set to nomask if possible.

>>> ma.masked_values(x, 1.5) # doctest: +SKIP
masked_array(data = [1. 1.1 2. 1.1 3.],

mask = False,
fill_value=1.5)

For integers, the fill value will be different in general to the result of masked_equal.

>>> x = np.arange(5) # doctest: +SKIP
>>> x # doctest: +SKIP
array([0, 1, 2, 3, 4])
>>> ma.masked_values(x, 2) # doctest: +SKIP
masked_array(data = [0 1 -- 3 4],

mask = [False False True False False],
fill_value=2)

>>> ma.masked_equal(x, 2) # doctest: +SKIP
masked_array(data = [0 1 -- 3 4],

mask = [False False True False False],
fill_value=999999)

dask.array.ma.masked_where(condition, a)
Mask an array where a condition is met.

This docstring was copied from numpy.ma.masked_where.

Some inconsistencies with the Dask version may exist.

Return a as an array masked where condition is True. Any masked values of a or condition are also masked in
the output.

Parameters

condition [array_like] Masking condition. When condition tests floating point values for equal-
ity, consider using masked_values instead.

a [array_like] Array to mask.

copy [bool (Not supported in Dask)] If True (default) make a copy of a in the result. If False
modify a in place and return a view.

Returns

result [MaskedArray] The result of masking a where condition is True.

See also:

masked_values Mask using floating point equality.

masked_equal Mask where equal to a given value.

masked_not_equal Mask where not equal to a given value.

masked_less_equal Mask where less than or equal to a given value.

3.7. Array 269

dask Documentation, Release 2.6.0

masked_greater_equal Mask where greater than or equal to a given value.

masked_less Mask where less than a given value.

masked_greater Mask where greater than a given value.

masked_inside Mask inside a given interval.

masked_outside Mask outside a given interval.

masked_invalid Mask invalid values (NaNs or infs).

Examples

>>> import numpy.ma as ma # doctest: +SKIP
>>> a = np.arange(4) # doctest: +SKIP
>>> a # doctest: +SKIP
array([0, 1, 2, 3])
>>> ma.masked_where(a <= 2, a) # doctest: +SKIP
masked_array(data = [-- -- -- 3],

mask = [True True True False],
fill_value=999999)

Mask array b conditional on a.

>>> b = ['a', 'b', 'c', 'd'] # doctest: +SKIP
>>> ma.masked_where(a == 2, b) # doctest: +SKIP
masked_array(data = [a b -- d],

mask = [False False True False],
fill_value=N/A)

Effect of the copy argument.

>>> c = ma.masked_where(a <= 2, a) # doctest: +SKIP
>>> c # doctest: +SKIP
masked_array(data = [-- -- -- 3],

mask = [True True True False],
fill_value=999999)

>>> c[0] = 99 # doctest: +SKIP
>>> c # doctest: +SKIP
masked_array(data = [99 -- -- 3],

mask = [False True True False],
fill_value=999999)

>>> a # doctest: +SKIP
array([0, 1, 2, 3])
>>> c = ma.masked_where(a <= 2, a, copy=False) # doctest: +SKIP
>>> c[0] = 99 # doctest: +SKIP
>>> c # doctest: +SKIP
masked_array(data = [99 -- -- 3],

mask = [False True True False],
fill_value=999999)

>>> a # doctest: +SKIP
array([99, 1, 2, 3])

When condition or a contain masked values.

>>> a = np.arange(4) # doctest: +SKIP
>>> a = ma.masked_where(a == 2, a) # doctest: +SKIP

(continues on next page)

270 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> a # doctest: +SKIP
masked_array(data = [0 1 -- 3],

mask = [False False True False],
fill_value=999999)

>>> b = np.arange(4) # doctest: +SKIP
>>> b = ma.masked_where(b == 0, b) # doctest: +SKIP
>>> b # doctest: +SKIP
masked_array(data = [-- 1 2 3],

mask = [True False False False],
fill_value=999999)

>>> ma.masked_where(a == 3, b) # doctest: +SKIP
masked_array(data = [-- 1 -- --],

mask = [True False True True],
fill_value=999999)

dask.array.ma.set_fill_value(a, fill_value)
Set the filling value of a, if a is a masked array.

This docstring was copied from numpy.ma.set_fill_value.

Some inconsistencies with the Dask version may exist.

This function changes the fill value of the masked array a in place. If a is not a masked array, the function
returns silently, without doing anything.

Parameters

a [array_like] Input array.

fill_value [dtype] Filling value. A consistency test is performed to make sure the value is com-
patible with the dtype of a.

Returns

None Nothing returned by this function.

See also:

maximum_fill_value Return the default fill value for a dtype.

MaskedArray.fill_value Return current fill value.

MaskedArray.set_fill_value Equivalent method.

Examples

>>> import numpy.ma as ma # doctest: +SKIP
>>> a = np.arange(5) # doctest: +SKIP
>>> a # doctest: +SKIP
array([0, 1, 2, 3, 4])
>>> a = ma.masked_where(a < 3, a) # doctest: +SKIP
>>> a # doctest: +SKIP
masked_array(data = [-- -- -- 3 4],

mask = [True True True False False],
fill_value=999999)

>>> ma.set_fill_value(a, -999) # doctest: +SKIP
>>> a # doctest: +SKIP
masked_array(data = [-- -- -- 3 4],

(continues on next page)

3.7. Array 271

dask Documentation, Release 2.6.0

(continued from previous page)

mask = [True True True False False],
fill_value=-999)

Nothing happens if a is not a masked array.

>>> a = range(5) # doctest: +SKIP
>>> a # doctest: +SKIP
[0, 1, 2, 3, 4]
>>> ma.set_fill_value(a, 100) # doctest: +SKIP
>>> a # doctest: +SKIP
[0, 1, 2, 3, 4]
>>> a = np.arange(5) # doctest: +SKIP
>>> a # doctest: +SKIP
array([0, 1, 2, 3, 4])
>>> ma.set_fill_value(a, 100) # doctest: +SKIP
>>> a # doctest: +SKIP
array([0, 1, 2, 3, 4])

dask.array.overlap.overlap(x, depth, boundary)
Share boundaries between neighboring blocks

Parameters

x: da.Array A dask array

depth: dict The size of the shared boundary per axis

boundary: dict The boundary condition on each axis. Options are ‘reflect’, ‘periodic’, ‘near-
est’, ‘none’, or an array value. Such a value will fill the boundary with that value.

The depth input informs how many cells to overlap between neighboring

blocks ‘‘{0: 2, 2: 5}‘‘ means share two cells in 0 axis, 5 cells in 2 axis.

Axes missing from this input will not be overlapped.

Examples

>>> import numpy as np
>>> import dask.array as da

>>> x = np.arange(64).reshape((8, 8))
>>> d = da.from_array(x, chunks=(4, 4))
>>> d.chunks
((4, 4), (4, 4))

>>> g = da.overlap.overlap(d, depth={0: 2, 1: 1},
... boundary={0: 100, 1: 'reflect'})
>>> g.chunks
((8, 8), (6, 6))

>>> np.array(g)
array([[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],

[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
[0, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 7],
[8, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 15],

(continues on next page)

272 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

[16, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 23],
[24, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 31],
[32, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 39],
[40, 40, 41, 42, 43, 44, 43, 44, 45, 46, 47, 47],
[16, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 23],
[24, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 31],
[32, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 39],
[40, 40, 41, 42, 43, 44, 43, 44, 45, 46, 47, 47],
[48, 48, 49, 50, 51, 52, 51, 52, 53, 54, 55, 55],
[56, 56, 57, 58, 59, 60, 59, 60, 61, 62, 63, 63],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]])

dask.array.overlap.map_overlap(x, func, depth, boundary=None, trim=True, **kwargs)
Map a function over blocks of the array with some overlap

We share neighboring zones between blocks of the array, then map a function, then trim away the neighboring
strips.

Parameters

func: function The function to apply to each extended block

depth: int, tuple, or dict The number of elements that each block should share with its neigh-
bors If a tuple or dict then this can be different per axis. Asymmetric depths may be specified
using a dict value of (-/+) tuples. Note that asymmetric depths are currently only supported
when boundary is ‘none’.

boundary: str, tuple, dict How to handle the boundaries. Values include ‘reflect’, ‘periodic’,
‘nearest’, ‘none’, or any constant value like 0 or np.nan

trim: bool Whether or not to trim depth elements from each block after calling the map func-
tion. Set this to False if your mapping function already does this for you

**kwargs: Other keyword arguments valid in map_blocks

Examples

>>> import numpy as np
>>> import dask.array as da

>>> x = np.array([1, 1, 2, 3, 3, 3, 2, 1, 1])
>>> x = da.from_array(x, chunks=5)
>>> def derivative(x):
... return x - np.roll(x, 1)

>>> y = x.map_overlap(derivative, depth=1, boundary=0)
>>> y.compute()
array([1, 0, 1, 1, 0, 0, -1, -1, 0])

>>> x = np.arange(16).reshape((4, 4))
>>> d = da.from_array(x, chunks=(2, 2))
>>> d.map_overlap(lambda x: x + x.size, depth=1).compute()
array([[16, 17, 18, 19],

[20, 21, 22, 23],

(continues on next page)

3.7. Array 273

dask Documentation, Release 2.6.0

(continued from previous page)

[24, 25, 26, 27],
[28, 29, 30, 31]])

>>> func = lambda x: x + x.size
>>> depth = {0: 1, 1: 1}
>>> boundary = {0: 'reflect', 1: 'none'}
>>> d.map_overlap(func, depth, boundary).compute() # doctest: +NORMALIZE_
→˓WHITESPACE
array([[12, 13, 14, 15],

[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27]])

dask.array.overlap.trim_internal(x, axes, boundary=None)
Trim sides from each block

This couples well with the overlap operation, which may leave excess data on each block

See also:

dask.array.chunk.trim, dask.array.map_blocks

dask.array.overlap.trim_overlap(x, depth, boundary=None)
Trim sides from each block.

This couples well with the map_overlap operation which may leave excess data on each block.

See also:

dask.array.overlap.map_overlap

dask.array.from_array(x, chunks=’auto’, name=None, lock=False, asarray=None, fancy=True,
getitem=None, meta=None)

Create dask array from something that looks like an array

Input must have a .shape, .ndim, .dtype and support numpy-style slicing.

Parameters

x [array_like]

chunks [int, tuple] How to chunk the array. Must be one of the following forms: - A block-
size like 1000. - A blockshape like (1000, 1000). - Explicit sizes of all blocks along all
dimensions like

((1000, 1000, 500), (400, 400)).

• A size in bytes, like “100 MiB” which will choose a uniform block-like shape

• The word “auto” which acts like the above, but uses a configuration value array.
chunk-size for the chunk size

-1 or None as a blocksize indicate the size of the corresponding dimension.

name [str, optional] The key name to use for the array. Defaults to a hash of x. By default, hash
uses python’s standard sha1. This behaviour can be changed by installing cityhash, xxhash
or murmurhash. If installed, a large-factor speedup can be obtained in the tokenisation step.
Use name=False to generate a random name instead of hashing (fast)

lock [bool or Lock, optional] If x doesn’t support concurrent reads then provide a lock here, or
pass in True to have dask.array create one for you.

274 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

asarray [bool, optional] If True then call np.asarray on chunks to convert them to numpy arrays.
If False then chunks are passed through unchanged. If None (default) then we use True if
the __array_function__ method is undefined.

fancy [bool, optional] If x doesn’t support fancy indexing (e.g. indexing with lists or arrays)
then set to False. Default is True.

meta [Array-like, optional] The metadata for the resulting dask array. This is the kind of array
that will result from slicing the input array. Defaults to the input array.

Examples

>>> x = h5py.File('...')['/data/path'] # doctest: +SKIP
>>> a = da.from_array(x, chunks=(1000, 1000)) # doctest: +SKIP

If your underlying datastore does not support concurrent reads then include the lock=True keyword argument
or lock=mylock if you want multiple arrays to coordinate around the same lock.

>>> a = da.from_array(x, chunks=(1000, 1000), lock=True) # doctest: +SKIP

If your underlying datastore has a .chunks attribute (as h5py and zarr datasets do) then a multiple of that
chunk shape will be used if you do not provide a chunk shape.

>>> a = da.from_array(x, chunks='auto') # doctest: +SKIP
>>> a = da.from_array(x, chunks='100 MiB') # doctest: +SKIP
>>> a = da.from_array(x) # doctest: +SKIP

dask.array.from_delayed(value, shape, dtype=None, meta=None, name=None)
Create a dask array from a dask delayed value

This routine is useful for constructing dask arrays in an ad-hoc fashion using dask delayed, particularly when
combined with stack and concatenate.

The dask array will consist of a single chunk.

Examples

>>> import dask
>>> import dask.array as da
>>> value = dask.delayed(np.ones)(5)
>>> array = da.from_delayed(value, (5,), dtype=float)
>>> array
dask.array<from-value, shape=(5,), dtype=float64, chunksize=(5,), chunktype=numpy.
→˓ndarray>
>>> array.compute()
array([1., 1., 1., 1., 1.])

dask.array.from_npy_stack(dirname, mmap_mode=’r’)
Load dask array from stack of npy files

See da.to_npy_stack for docstring

Parameters

dirname: string Directory of .npy files

mmap_mode: (None or ‘r’) Read data in memory map mode

3.7. Array 275

dask Documentation, Release 2.6.0

dask.array.from_zarr(url, component=None, storage_options=None, chunks=None, name=None,
**kwargs)

Load array from the zarr storage format

See https://zarr.readthedocs.io for details about the format.

Parameters

url: Zarr Array or str or MutableMapping Location of the data. A URL can include a pro-
tocol specifier like s3:// for remote data. Can also be any MutableMapping instance, which
should be serializable if used in multiple processes.

component: str or None If the location is a zarr group rather than an array, this is the subcom-
ponent that should be loaded, something like 'foo/bar'.

storage_options: dict Any additional parameters for the storage backend (ignored for local
paths)

chunks: tuple of ints or tuples of ints Passed to da.from_array, allows setting the chunks
on initialisation, if the chunking scheme in the on-disc dataset is not optimal for the calcu-
lations to follow.

name [str, optional] An optional keyname for the array. Defaults to hashing the input

kwargs: passed to ‘‘zarr.Array‘‘.

dask.array.from_tiledb(uri, attribute=None, chunks=None, storage_options=None, **kwargs)
Load array from the TileDB storage format

See https://docs.tiledb.io for more information about TileDB.

Parameters

uri: TileDB array or str Location to save the data

attribute: str or None Attribute selection (single-attribute view on multi-attribute array)

Returns

A Dask Array

Examples

>>> # create a tiledb array
>>> import tiledb, numpy as np, tempfile # doctest: +SKIP
>>> uri = tempfile.NamedTemporaryFile().name # doctest: +SKIP
>>> tiledb.from_numpy(uri, np.arange(0,9).reshape(3,3)) # doctest: +SKIP
<tiledb.libtiledb.DenseArray object at 0x...>
>>> # read back the array
>>> import dask.array as da # doctest: +SKIP
>>> tdb_ar = da.from_tiledb(uri) # doctest: +SKIP
>>> tdb_ar.shape # doctest: +SKIP
(3, 3)
>>> tdb_ar.mean().compute() # doctest: +SKIP
4.0

dask.array.store(sources, targets, lock=True, regions=None, compute=True, return_stored=False,
**kwargs)

Store dask arrays in array-like objects, overwrite data in target

276 Chapter 3. Complex Algorithms

https://zarr.readthedocs.io
https://docs.tiledb.io

dask Documentation, Release 2.6.0

This stores dask arrays into object that supports numpy-style setitem indexing. It stores values chunk by chunk
so that it does not have to fill up memory. For best performance you can align the block size of the storage target
with the block size of your array.

If your data fits in memory then you may prefer calling np.array(myarray) instead.

Parameters

sources: Array or iterable of Arrays

targets: array-like or Delayed or iterable of array-likes and/or Delayeds These should
support setitem syntax target[10:20] = ...

lock: boolean or threading.Lock, optional Whether or not to lock the data stores while stor-
ing. Pass True (lock each file individually), False (don’t lock) or a particular threading.
Lock object to be shared among all writes.

regions: tuple of slices or list of tuples of slices Each region tuple in regions should be
such that target[region].shape = source.shape for the corresponding source
and target in sources and targets, respectively. If this is a tuple, the contents will be assumed
to be slices, so do not provide a tuple of tuples.

compute: boolean, optional If true compute immediately, return dask.delayed.
Delayed otherwise

return_stored: boolean, optional Optionally return the stored result (default False).

Examples

>>> x = ... # doctest: +SKIP

>>> import h5py # doctest: +SKIP
>>> f = h5py.File('myfile.hdf5', mode='a') # doctest: +SKIP
>>> dset = f.create_dataset('/data', shape=x.shape,
... chunks=x.chunks,
... dtype='f8') # doctest: +SKIP

>>> store(x, dset) # doctest: +SKIP

Alternatively store many arrays at the same time

>>> store([x, y, z], [dset1, dset2, dset3]) # doctest: +SKIP

dask.array.to_hdf5(filename, *args, **kwargs)
Store arrays in HDF5 file

This saves several dask arrays into several datapaths in an HDF5 file. It creates the necessary datasets and
handles clean file opening/closing.

>>> da.to_hdf5('myfile.hdf5', '/x', x) # doctest: +SKIP

or

>>> da.to_hdf5('myfile.hdf5', {'/x': x, '/y': y}) # doctest: +SKIP

Optionally provide arguments as though to h5py.File.create_dataset

3.7. Array 277

dask Documentation, Release 2.6.0

>>> da.to_hdf5('myfile.hdf5', '/x', x, compression='lzf', shuffle=True) #
→˓doctest: +SKIP

This can also be used as a method on a single Array

>>> x.to_hdf5('myfile.hdf5', '/x') # doctest: +SKIP

See also:

da.store, h5py.File.create_dataset

dask.array.to_zarr(arr, url, component=None, storage_options=None, overwrite=False, com-
pute=True, return_stored=False, **kwargs)

Save array to the zarr storage format

See https://zarr.readthedocs.io for details about the format.

Parameters

arr: dask.array Data to store

url: Zarr Array or str or MutableMapping Location of the data. A URL can include a pro-
tocol specifier like s3:// for remote data. Can also be any MutableMapping instance, which
should be serializable if used in multiple processes.

component: str or None If the location is a zarr group rather than an array, this is the subcom-
ponent that should be created/over-written.

storage_options: dict Any additional parameters for the storage backend (ignored for local
paths)

overwrite: bool If given array already exists, overwrite=False will cause an error, where over-
write=True will replace the existing data.

compute, return_stored: see ‘‘store()‘‘

kwargs: passed to the ‘‘zarr.create()‘‘ function, e.g., compression options

Raises

ValueError If arr has unknown chunk sizes, which is not supported by Zarr.

See also:

dask.array.Array.compute_chunk_sizes

dask.array.to_npy_stack(dirname, x, axis=0)
Write dask array to a stack of .npy files

This partitions the dask.array along one axis and stores each block along that axis as a single .npy file in the
specified directory

See also:

from_npy_stack

Examples

>>> x = da.ones((5, 10, 10), chunks=(2, 4, 4)) # doctest: +SKIP
>>> da.to_npy_stack('data/', x, axis=0) # doctest: +SKIP

$ tree data/ data/ |– 0.npy |– 1.npy |– 2.npy |– info

278 Chapter 3. Complex Algorithms

https://zarr.readthedocs.io

dask Documentation, Release 2.6.0

The .npy files store numpy arrays for x[0:2], x[2:4], and x[4:5] respectively, as is specified by
the chunk size along the zeroth axis. The info file stores the dtype, chunks, and axis information of the array.

You can load these stacks with the da.from_npy_stack function.

>>> y = da.from_npy_stack('data/') # doctest: +SKIP

dask.array.to_tiledb(darray, uri, compute=True, return_stored=False, storage_options=None,
**kwargs)

Save array to the TileDB storage format

Save ‘array’ using the TileDB storage manager, to any TileDB-supported URI, including local disk, S3, or
HDFS.

See https://docs.tiledb.io for more information about TileDB.

Parameters

darray: dask.array A dask array to write.

uri: Any supported TileDB storage location.

storage_options: dict Dict containing any configuration options for the TileDB backend. see
https://docs.tiledb.io/en/stable/tutorials/config.html

compute, return_stored: see ‘‘store()‘‘

Returns

None Unless return_stored is set to True (False by default)

Notes

TileDB only supports regularly-chunked arrays. TileDB tile extents correspond to form 2 of the dask chunk
specification, and the conversion is done automatically for supported arrays.

Examples

>>> import dask.array as da, tempfile # doctest: +SKIP
>>> uri = tempfile.NamedTemporaryFile().name # doctest: +SKIP
>>> data = da.random.random(5,5) # doctest: +SKIP
>>> da.to_tiledb(data, uri) # doctest: +SKIP
>>> import tiledb # doctest: +SKIP
>>> tdb_ar = tiledb.open(uri) # doctest: +SKIP
>>> all(tdb_ar == data) # doctest: +SKIP
True

dask.array.fft.fft_wrap(fft_func, kind=None, dtype=None)
Wrap 1D, 2D, and ND real and complex FFT functions

Takes a function that behaves like numpy.fft functions and a specified kind to match it to that are named
after the functions in the numpy.fft API.

Supported kinds include:

• fft

• fft2

• fftn

3.7. Array 279

https://docs.tiledb.io
https://docs.tiledb.io/en/stable/tutorials/config.html
http://docs.dask.org/en/latest/array-chunks.html
https://docs.tiledb.io/en/stable/tutorials/tiling-dense.html
https://docs.tiledb.io/en/stable/tutorials/tiling-dense.html

dask Documentation, Release 2.6.0

• ifft

• ifft2

• ifftn

• rfft

• rfft2

• rfftn

• irfft

• irfft2

• irfftn

• hfft

• ihfft

Examples

>>> parallel_fft = fft_wrap(np.fft.fft)
>>> parallel_ifft = fft_wrap(np.fft.ifft)

dask.array.fft.fft(a, n=None, axis=None)
Wrapping of numpy.fft.fft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.fft docstring follows below:

Compute the one-dimensional discrete Fourier Transform.

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast
Fourier Transform (FFT) algorithm [CT].

Parameters

a [array_like] Input array, can be complex.

n [int, optional] Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used.

axis [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.

Raises

IndexError if axes is larger than the last axis of a.

See also:

numpy.fft for definition of the DFT and conventions used.

280 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

dask Documentation, Release 2.6.0

ifft The inverse of fft.

fft2 The two-dimensional FFT.

fftn The n-dimensional FFT.

rfftn The n-dimensional FFT of real input.

fftfreq Frequency bins for given FFT parameters.

Notes

FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently,
by using symmetries in the calculated terms. The symmetry is highest when n is a power of 2, and the transform
is therefore most efficient for these sizes.

The DFT is defined, with the conventions used in this implementation, in the documentation for the numpy.fft
module.

References

[CT]

Examples

>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([-3.44505240e-16 +1.14383329e-17j,

8.00000000e+00 -5.71092652e-15j,
2.33482938e-16 +1.22460635e-16j,
1.64863782e-15 +1.77635684e-15j,
9.95839695e-17 +2.33482938e-16j,
0.00000000e+00 +1.66837030e-15j,
1.14383329e-17 +1.22460635e-16j,
-1.64863782e-15 +1.77635684e-15j])

In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and anti-symmetric in
the imaginary part, as described in the numpy.fft documentation:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x.
→˓..>]
>>> plt.show()

dask.array.fft.fft2(a, s=None, axes=None)
Wrapping of numpy.fft.fft2

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.fft2 docstring follows below:

Compute the 2-dimensional discrete Fourier Transform

3.7. Array 281

dask Documentation, Release 2.6.0

This function computes the n-dimensional discrete Fourier Transform over any axes in an M-dimensional array
by means of the Fast Fourier Transform (FFT). By default, the transform is computed over the last two axes of
the input array, i.e., a 2-dimensional FFT.

Parameters

a [array_like] Input array, can be complex

s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along each axis,
if the given shape is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros. if s is not given, the shape of the input along the axes specified
by axes is used.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two
axes are used. A repeated index in axes means the transform over that axis is performed
multiple times. A one-element sequence means that a one-dimensional FFT is performed.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.

Raises

ValueError If s and axes have different length, or axes not given and len(s) != 2.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used.

ifft2 The inverse two-dimensional FFT.

fft The one-dimensional FFT.

fftn The n-dimensional FFT.

fftshift Shifts zero-frequency terms to the center of the array. For two-dimensional input, swaps first and
third quadrants, and second and fourth quadrants.

Notes

fft2 is just fftn with a different default for axes.

The output, analogously to fft, contains the term for zero frequency in the low-order corner of the transformed
axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle
of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly negative
frequency.

See fftn for details and a plotting example, and numpy.fft for definitions and conventions used.

Examples

282 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

dask Documentation, Release 2.6.0

>>> a = np.mgrid[:5, :5][0]
>>> np.fft.fft2(a)
array([[50.0 +0.j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j],
[-12.5+17.20477401j, 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j],
[-12.5 +4.0614962j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j],
[-12.5 -4.0614962j , 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j],
[-12.5-17.20477401j, 0.0 +0.j , 0.0 +0.j ,

0.0 +0.j , 0.0 +0.j]])

dask.array.fft.fftn(a, s=None, axes=None)
Wrapping of numpy.fft.fftn

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.fftn docstring follows below:

Compute the N-dimensional discrete Fourier Transform.

This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional array by means of the Fast Fourier Transform (FFT).

Parameters

a [array_like] Input array, can be complex.

s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for fft(x, n). Along any axis,
if the given shape is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros. if s is not given, the shape of the input along the axes specified
by axes is used.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means
that the transform over that axis is performed multiple times.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and a, as explained in the parameters section above.

Raises

ValueError If s and axes have different length.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used.

ifftn The inverse of fftn, the inverse n-dimensional FFT.

fft The one-dimensional FFT, with definitions and conventions used.

rfftn The n-dimensional FFT of real input.

3.7. Array 283

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

dask Documentation, Release 2.6.0

fft2 The two-dimensional FFT.

fftshift Shifts zero-frequency terms to centre of array

Notes

The output, analogously to fft, contains the term for zero frequency in the low-order corner of all axes, the
positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes
and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.

See numpy.fft for details, definitions and conventions used.

Examples

>>> a = np.mgrid[:3, :3, :3][0]
>>> np.fft.fftn(a, axes=(1, 2))
array([[[0.+0.j, 0.+0.j, 0.+0.j],

[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]],

[[9.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]],

[[18.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]]])

>>> np.fft.fftn(a, (2, 2), axes=(0, 1))
array([[[2.+0.j, 2.+0.j, 2.+0.j],

[0.+0.j, 0.+0.j, 0.+0.j]],
[[-2.+0.j, -2.+0.j, -2.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j]]])

>>> import matplotlib.pyplot as plt
>>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
... 2 * np.pi * np.arange(200) / 34)
>>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
>>> FS = np.fft.fftn(S)
>>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

dask.array.fft.ifft(a, n=None, axis=None)
Wrapping of numpy.fft.ifft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.ifft docstring follows below:

Compute the one-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the one-dimensional n-point discrete Fourier transform computed by fft. In
other words, ifft(fft(a)) == a to within numerical accuracy. For a general description of the algorithm
and definitions, see numpy.fft.

The input should be ordered in the same way as is returned by fft, i.e.,

• a[0] should contain the zero frequency term,

284 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• a[1:n//2] should contain the positive-frequency terms,

• a[n//2 + 1:] should contain the negative-frequency terms, in increasing order starting from the most
negative frequency.

For an even number of input points, A[n//2] represents the sum of the values at the positive and negative
Nyquist frequencies, as the two are aliased together. See numpy.fft for details.

Parameters

a [array_like] Input array, can be complex.

n [int, optional] Length of the transformed axis of the output. If n is smaller than the length of
the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given,
the length of the input along the axis specified by axis is used. See notes about padding
issues.

axis [int, optional] Axis over which to compute the inverse DFT. If not given, the last axis is
used.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified.

Raises

IndexError If axes is larger than the last axis of a.

See also:

numpy.fft An introduction, with definitions and general explanations.

fft The one-dimensional (forward) FFT, of which ifft is the inverse

ifft2 The two-dimensional inverse FFT.

ifftn The n-dimensional inverse FFT.

Notes

If the input parameter n is larger than the size of the input, the input is padded by appending zeros at the end.
Even though this is the common approach, it might lead to surprising results. If a different padding is desired, it
must be performed before calling ifft.

Examples

>>> np.fft.ifft([0, 4, 0, 0])
array([1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j])

Create and plot a band-limited signal with random phases:

>>> import matplotlib.pyplot as plt
>>> t = np.arange(400)
>>> n = np.zeros((400,), dtype=complex)
>>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))

(continues on next page)

3.7. Array 285

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

dask Documentation, Release 2.6.0

(continued from previous page)

>>> s = np.fft.ifft(n)
>>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
...
>>> plt.legend(('real', 'imaginary'))
...
>>> plt.show()

dask.array.fft.ifft2(a, s=None, axes=None)
Wrapping of numpy.fft.ifft2

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.ifft2 docstring follows below:

Compute the 2-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes
in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifft2(fft2(a))
== a to within numerical accuracy. By default, the inverse transform is computed over the last two axes of the
input array.

The input, analogously to ifft, should be ordered in the same way as is returned by fft2, i.e. it should have the
term for zero frequency in the low-order corner of the two axes, the positive frequency terms in the first half of
these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the
second half of both axes, in order of decreasingly negative frequency.

Parameters

a [array_like] Input array, can be complex.

s [sequence of ints, optional] Shape (length of each axis) of the output (s[0] refers to axis 0,
s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along each axis, if the
given shape is smaller than that of the input, the input is cropped. If it is larger, the input is
padded with zeros. if s is not given, the shape of the input along the axes specified by axes
is used. See notes for issue on ifft zero padding.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last two
axes are used. A repeated index in axes means the transform over that axis is performed
multiple times. A one-element sequence means that a one-dimensional FFT is performed.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or the last two axes if axes is not given.

Raises

ValueError If s and axes have different length, or axes not given and len(s) != 2.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used.

fft2 The forward 2-dimensional FFT, of which ifft2 is the inverse.

ifftn The inverse of the n-dimensional FFT.

286 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

dask Documentation, Release 2.6.0

fft The one-dimensional FFT.

ifft The one-dimensional inverse FFT.

Notes

ifft2 is just ifftn with a different default for axes.

See ifftn for details and a plotting example, and numpy.fft for definition and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimension.
Although this is the common approach, it might lead to surprising results. If another form of zero padding is
desired, it must be performed before ifft2 is called.

Examples

>>> a = 4 * np.eye(4)
>>> np.fft.ifft2(a)
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],

[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])

dask.array.fft.ifftn(a, s=None, axes=None)
Wrapping of numpy.fft.ifftn

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.ifftn docstring follows below:

Compute the N-dimensional inverse discrete Fourier Transform.

This function computes the inverse of the N-dimensional discrete Fourier Transform over any number of axes
in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words, ifftn(fftn(a))
== a to within numerical accuracy. For a description of the definitions and conventions used, see numpy.fft.

The input, analogously to ifft, should be ordered in the same way as is returned by fftn, i.e. it should have the
term for zero frequency in all axes in the low-order corner, the positive frequency terms in the first half of all
axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second
half of all axes, in order of decreasingly negative frequency.

Parameters

a [array_like] Input array, can be complex.

s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). This corresponds to n for ifft(x, n). Along any axis,
if the given shape is smaller than that of the input, the input is cropped. If it is larger, the
input is padded with zeros. if s is not given, the shape of the input along the axes specified
by axes is used. See notes for issue on ifft zero padding.

axes [sequence of ints, optional] Axes over which to compute the IFFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means
that the inverse transform over that axis is performed multiple times.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

3.7. Array 287

dask Documentation, Release 2.6.0

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s or a, as explained in the parameters section above.

Raises

ValueError If s and axes have different length.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

numpy.fft Overall view of discrete Fourier transforms, with definitions and conventions used.

fftn The forward n-dimensional FFT, of which ifftn is the inverse.

ifft The one-dimensional inverse FFT.

ifft2 The two-dimensional inverse FFT.

ifftshift Undoes fftshift, shifts zero-frequency terms to beginning of array.

Notes

See numpy.fft for definitions and conventions used.

Zero-padding, analogously with ifft, is performed by appending zeros to the input along the specified dimension.
Although this is the common approach, it might lead to surprising results. If another form of zero padding is
desired, it must be performed before ifftn is called.

Examples

>>> a = np.eye(4)
>>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],

[0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])

Create and plot an image with band-limited frequency content:

>>> import matplotlib.pyplot as plt
>>> n = np.zeros((200,200), dtype=complex)
>>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
>>> im = np.fft.ifftn(n).real
>>> plt.imshow(im)
<matplotlib.image.AxesImage object at 0x...>
>>> plt.show()

dask.array.fft.rfft(a, n=None, axis=None)
Wrapping of numpy.fft.rfft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.rfft docstring follows below:

Compute the one-dimensional discrete Fourier Transform for real input.

288 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

dask Documentation, Release 2.6.0

This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by
means of an efficient algorithm called the Fast Fourier Transform (FFT).

Parameters

a [array_like] Input array

n [int, optional] Number of points along transformation axis in the input to use. If n is smaller
than the length of the input, the input is cropped. If it is larger, the input is padded with
zeros. If n is not given, the length of the input along the axis specified by axis is used.

axis [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. If n is even, the length of the transformed axis
is (n/2)+1. If n is odd, the length is (n+1)/2.

Raises

IndexError If axis is larger than the last axis of a.

See also:

numpy.fft For definition of the DFT and conventions used.

irfft The inverse of rfft.

fft The one-dimensional FFT of general (complex) input.

fftn The n-dimensional FFT.

rfftn The n-dimensional FFT of real input.

Notes

When the DFT is computed for purely real input, the output is Hermitian-symmetric, i.e. the negative frequency
terms are just the complex conjugates of the corresponding positive-frequency terms, and the negative-frequency
terms are therefore redundant. This function does not compute the negative frequency terms, and the length of
the transformed axis of the output is therefore n//2 + 1.

When A = rfft(a) and fs is the sampling frequency, A[0] contains the zero-frequency term 0*fs, which is
real due to Hermitian symmetry.

If n is even, A[-1] contains the term representing both positive and negative Nyquist frequency (+fs/2 and
-fs/2), and must also be purely real. If n is odd, there is no term at fs/2; A[-1] contains the largest positive
frequency (fs/2*(n-1)/n), and is complex in the general case.

If the input a contains an imaginary part, it is silently discarded.

Examples

>>> np.fft.fft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j])
>>> np.fft.rfft([0, 1, 0, 0])
array([1.+0.j, 0.-1.j, -1.+0.j])

3.7. Array 289

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

dask Documentation, Release 2.6.0

Notice how the final element of the fft output is the complex conjugate of the second element, for real input. For
rfft, this symmetry is exploited to compute only the non-negative frequency terms.

dask.array.fft.rfft2(a, s=None, axes=None)
Wrapping of numpy.fft.rfft2

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.rfft2 docstring follows below:

Compute the 2-dimensional FFT of a real array.

Parameters

a [array] Input array, taken to be real.

s [sequence of ints, optional] Shape of the FFT.

axes [sequence of ints, optional] Axes over which to compute the FFT.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [ndarray] The result of the real 2-D FFT.

See also:

rfftn Compute the N-dimensional discrete Fourier Transform for real input.

Notes

This is really just rfftn with different default behavior. For more details see rfftn.

dask.array.fft.rfftn(a, s=None, axes=None)
Wrapping of numpy.fft.rfftn

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.rfftn docstring follows below:

Compute the N-dimensional discrete Fourier Transform for real input.

This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-
dimensional real array by means of the Fast Fourier Transform (FFT). By default, all axes are transformed,
with the real transform performed over the last axis, while the remaining transforms are complex.

Parameters

a [array_like] Input array, taken to be real.

s [sequence of ints, optional] Shape (length along each transformed axis) to use from the input.
(s[0] refers to axis 0, s[1] to axis 1, etc.). The final element of s corresponds to n for
rfft(x, n), while for the remaining axes, it corresponds to n for fft(x, n). Along
any axis, if the given shape is smaller than that of the input, the input is cropped. If it is
larger, the input is padded with zeros. if s is not given, the shape of the input along the axes
specified by axes is used.

axes [sequence of ints, optional] Axes over which to compute the FFT. If not given, the last
len(s) axes are used, or all axes if s is also not specified.

290 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axes indicated
by axes, or by a combination of s and a, as explained in the parameters section above. The
length of the last axis transformed will be s[-1]//2+1, while the remaining transformed
axes will have lengths according to s, or unchanged from the input.

Raises

ValueError If s and axes have different length.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

irfftn The inverse of rfftn, i.e. the inverse of the n-dimensional FFT of real input.

fft The one-dimensional FFT, with definitions and conventions used.

rfft The one-dimensional FFT of real input.

fftn The n-dimensional FFT.

rfft2 The two-dimensional FFT of real input.

Notes

The transform for real input is performed over the last transformation axis, as by rfft, then the transform over
the remaining axes is performed as by fftn. The order of the output is as for rfft for the final transformation axis,
and as for fftn for the remaining transformation axes.

See fft for details, definitions and conventions used.

Examples

>>> a = np.ones((2, 2, 2))
>>> np.fft.rfftn(a)
array([[[8.+0.j, 0.+0.j],

[0.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]]])

>>> np.fft.rfftn(a, axes=(2, 0))
array([[[4.+0.j, 0.+0.j],

[4.+0.j, 0.+0.j]],
[[0.+0.j, 0.+0.j],
[0.+0.j, 0.+0.j]]])

dask.array.fft.irfft(a, n=None, axis=None)
Wrapping of numpy.fft.irfft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.irfft docstring follows below:

3.7. Array 291

dask Documentation, Release 2.6.0

Compute the inverse of the n-point DFT for real input.

This function computes the inverse of the one-dimensional n-point discrete Fourier Transform of real input
computed by rfft. In other words, irfft(rfft(a), len(a)) == a to within numerical accuracy. (See
Notes below for why len(a) is necessary here.)

The input is expected to be in the form returned by rfft, i.e. the real zero-frequency term followed by the complex
positive frequency terms in order of increasing frequency. Since the discrete Fourier Transform of real input is
Hermitian-symmetric, the negative frequency terms are taken to be the complex conjugates of the corresponding
positive frequency terms.

Parameters

a [array_like] The input array.

n [int, optional] Length of the transformed axis of the output. For n output points, n//2+1
input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If n is not given, it is determined from the length of the input
along the axis specified by axis.

axis [int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is
used.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis,
or the last one if axis is not specified. The length of the transformed axis is n, or, if n is not
given, 2*(m-1) where m is the length of the transformed axis of the input. To get an odd
number of output points, n must be specified.

Raises

IndexError If axis is larger than the last axis of a.

See also:

numpy.fft For definition of the DFT and conventions used.

rfft The one-dimensional FFT of real input, of which irfft is inverse.

fft The one-dimensional FFT.

irfft2 The inverse of the two-dimensional FFT of real input.

irfftn The inverse of the n-dimensional FFT of real input.

Notes

Returns the real valued n-point inverse discrete Fourier transform of a, where a contains the non-negative fre-
quency terms of a Hermitian-symmetric sequence. n is the length of the result, not the input.

If you specify an n such that a must be zero-padded or truncated, the extra/removed values will be
added/removed at high frequencies. One can thus resample a series to m points via Fourier interpolation by:
a_resamp = irfft(rfft(a), m).

292 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/routines.fft.html#module-numpy.fft

dask Documentation, Release 2.6.0

Examples

>>> np.fft.ifft([1, -1j, -1, 1j])
array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j])
>>> np.fft.irfft([1, -1j, -1])
array([0., 1., 0., 0.])

Notice how the last term in the input to the ordinary ifft is the complex conjugate of the second term, and the
output has zero imaginary part everywhere. When calling irfft, the negative frequencies are not specified, and
the output array is purely real.

dask.array.fft.irfft2(a, s=None, axes=None)
Wrapping of numpy.fft.irfft2

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.irfft2 docstring follows below:

Compute the 2-dimensional inverse FFT of a real array.

Parameters

a [array_like] The input array

s [sequence of ints, optional] Shape of the inverse FFT.

axes [sequence of ints, optional] The axes over which to compute the inverse fft. Default is the
last two axes.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [ndarray] The result of the inverse real 2-D FFT.

See also:

irfftn Compute the inverse of the N-dimensional FFT of real input.

Notes

This is really irfftn with different defaults. For more details see irfftn.

dask.array.fft.irfftn(a, s=None, axes=None)
Wrapping of numpy.fft.irfftn

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.irfftn docstring follows below:

Compute the inverse of the N-dimensional FFT of real input.

This function computes the inverse of the N-dimensional discrete Fourier Transform for real input over any
number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT). In other words,
irfftn(rfftn(a), a.shape) == a to within numerical accuracy. (The a.shape is necessary like
len(a) is for irfft, and for the same reason.)

The input should be ordered in the same way as is returned by rfftn, i.e. as for irfft for the final transformation
axis, and as for ifftn along all the other axes.

3.7. Array 293

dask Documentation, Release 2.6.0

Parameters

a [array_like] Input array.

s [sequence of ints, optional] Shape (length of each transformed axis) of the output (s[0] refers
to axis 0, s[1] to axis 1, etc.). s is also the number of input points used along this axis,
except for the last axis, where s[-1]//2+1 points of the input are used. Along any axis,
if the shape indicated by s is smaller than that of the input, the input is cropped. If it is
larger, the input is padded with zeros. If s is not given, the shape of the input along the axes
specified by axes is used.

axes [sequence of ints, optional] Axes over which to compute the inverse FFT. If not given, the
last len(s) axes are used, or all axes if s is also not specified. Repeated indices in axes means
that the inverse transform over that axis is performed multiple times.

norm [{None, “ortho”}, optional] New in version 1.10.0.

Normalization mode (see numpy.fft). Default is None.

Returns

out [ndarray] The truncated or zero-padded input, transformed along the axes indicated by axes,
or by a combination of s or a, as explained in the parameters section above. The length of
each transformed axis is as given by the corresponding element of s, or the length of the
input in every axis except for the last one if s is not given. In the final transformed axis
the length of the output when s is not given is 2*(m-1) where m is the length of the final
transformed axis of the input. To get an odd number of output points in the final axis, s must
be specified.

Raises

ValueError If s and axes have different length.

IndexError If an element of axes is larger than than the number of axes of a.

See also:

rfftn The forward n-dimensional FFT of real input, of which ifftn is the inverse.

fft The one-dimensional FFT, with definitions and conventions used.

irfft The inverse of the one-dimensional FFT of real input.

irfft2 The inverse of the two-dimensional FFT of real input.

Notes

See fft for definitions and conventions used.

See rfft for definitions and conventions used for real input.

Examples

>>> a = np.zeros((3, 2, 2))
>>> a[0, 0, 0] = 3 * 2 * 2
>>> np.fft.irfftn(a)
array([[[1., 1.],

[1., 1.]],
[[1., 1.],

(continues on next page)

294 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

[1., 1.]],
[[1., 1.],
[1., 1.]]])

dask.array.fft.hfft(a, n=None, axis=None)
Wrapping of numpy.fft.hfft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.hfft docstring follows below:

Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.

Parameters

a [array_like] The input array.

n [int, optional] Length of the transformed axis of the output. For n output points, n//2 + 1
input points are necessary. If the input is longer than this, it is cropped. If it is shorter than
this, it is padded with zeros. If n is not given, it is determined from the length of the input
along the axis specified by axis.

axis [int, optional] Axis over which to compute the FFT. If not given, the last axis is used.

norm [{None, “ortho”}, optional] Normalization mode (see numpy.fft). Default is None.

New in version 1.10.0.

Returns

out [ndarray] The truncated or zero-padded input, transformed along the axis indicated by axis,
or the last one if axis is not specified. The length of the transformed axis is n, or, if n is not
given, 2*m - 2 where m is the length of the transformed axis of the input. To get an odd
number of output points, n must be specified, for instance as 2*m - 1 in the typical case,

Raises

IndexError If axis is larger than the last axis of a.

See also:

rfft Compute the one-dimensional FFT for real input.

ihfft The inverse of hfft.

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian symmetry in
the time domain and is real in the frequency domain. So here it’s hfft for which you must supply the length of
the result if it is to be odd.

• even: ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error,

• odd: ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.

Examples

3.7. Array 295

dask Documentation, Release 2.6.0

>>> signal = np.array([1, 2, 3, 4, 3, 2])
>>> np.fft.fft(signal)
array([15.+0.j, -4.+0.j, 0.+0.j, -1.-0.j, 0.+0.j, -4.+0.j])
>>> np.fft.hfft(signal[:4]) # Input first half of signal
array([15., -4., 0., -1., 0., -4.])
>>> np.fft.hfft(signal, 6) # Input entire signal and truncate
array([15., -4., 0., -1., 0., -4.])

>>> signal = np.array([[1, 1.j], [-1.j, 2]])
>>> np.conj(signal.T) - signal # check Hermitian symmetry
array([[0.-0.j, 0.+0.j],

[0.+0.j, 0.-0.j]])
>>> freq_spectrum = np.fft.hfft(signal)
>>> freq_spectrum
array([[1., 1.],

[2., -2.]])

dask.array.fft.ihfft(a, n=None, axis=None)
Wrapping of numpy.fft.ihfft

The axis along which the FFT is applied must have a one chunk. To change the array’s chunking use
dask.Array.rechunk.

The numpy.fft.ihfft docstring follows below:

Compute the inverse FFT of a signal that has Hermitian symmetry.

Parameters

a [array_like] Input array.

n [int, optional] Length of the inverse FFT, the number of points along transformation axis in
the input to use. If n is smaller than the length of the input, the input is cropped. If it is
larger, the input is padded with zeros. If n is not given, the length of the input along the axis
specified by axis is used.

axis [int, optional] Axis over which to compute the inverse FFT. If not given, the last axis is
used.

norm [{None, “ortho”}, optional] Normalization mode (see numpy.fft). Default is None.

New in version 1.10.0.

Returns

out [complex ndarray] The truncated or zero-padded input, transformed along the axis indicated
by axis, or the last one if axis is not specified. The length of the transformed axis is n//2
+ 1.

See also:

hfft, irfft

Notes

hfft/ihfft are a pair analogous to rfft/irfft, but for the opposite case: here the signal has Hermitian symmetry in
the time domain and is real in the frequency domain. So here it’s hfft for which you must supply the length of
the result if it is to be odd:

• even: ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error,

296 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• odd: ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.

Examples

>>> spectrum = np.array([15, -4, 0, -1, 0, -4])
>>> np.fft.ifft(spectrum)
array([1.+0.j, 2.-0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.-0.j])
>>> np.fft.ihfft(spectrum)
array([1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j])

dask.array.fft.fftfreq(n, d=1.0, chunks=’auto’)
Return the Discrete Fourier Transform sample frequencies.

This docstring was copied from numpy.fft.fftfreq.

Some inconsistencies with the Dask version may exist.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd

Parameters

n [int] Window length.

d [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

Returns

f [ndarray] Array of length n containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float) # doctest: +SKIP
>>> fourier = np.fft.fft(signal) # doctest: +SKIP
>>> n = signal.size # doctest: +SKIP
>>> timestep = 0.1 # doctest: +SKIP
>>> freq = np.fft.fftfreq(n, d=timestep) # doctest: +SKIP
>>> freq # doctest: +SKIP
array([0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])

dask.array.fft.rfftfreq(n, d=1.0, chunks=’auto’)
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).

This docstring was copied from numpy.fft.rfftfreq.

Some inconsistencies with the Dask version may exist.

The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero
at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.

Given a window length n and a sample spacing d:

f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd

3.7. Array 297

dask Documentation, Release 2.6.0

Unlike fftfreq (but like scipy.fftpack.rfftfreq) the Nyquist frequency component is considered to be positive.

Parameters

n [int] Window length.

d [scalar, optional] Sample spacing (inverse of the sampling rate). Defaults to 1.

Returns

f [ndarray] Array of length n//2 + 1 containing the sample frequencies.

Examples

>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) # doctest:
→˓+SKIP
>>> fourier = np.fft.rfft(signal) # doctest: +SKIP
>>> n = signal.size # doctest: +SKIP
>>> sample_rate = 100 # doctest: +SKIP
>>> freq = np.fft.fftfreq(n, d=1./sample_rate) # doctest: +SKIP
>>> freq # doctest: +SKIP
array([0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate) # doctest: +SKIP
>>> freq # doctest: +SKIP
array([0., 10., 20., 30., 40., 50.])

dask.array.fft.fftshift(x, axes=None)
Shift the zero-frequency component to the center of the spectrum.

This docstring was copied from numpy.fft.fftshift.

Some inconsistencies with the Dask version may exist.

This function swaps half-spaces for all axes listed (defaults to all). Note that y[0] is the Nyquist component
only if len(x) is even.

Parameters

x [array_like] Input array.

axes [int or shape tuple, optional] Axes over which to shift. Default is None, which shifts all
axes.

Returns

y [ndarray] The shifted array.

See also:

ifftshift The inverse of fftshift.

Examples

>>> freqs = np.fft.fftfreq(10, 0.1) # doctest: +SKIP
>>> freqs # doctest: +SKIP
array([0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs) # doctest: +SKIP
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

Shift the zero-frequency component only along the second axis:

298 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) # doctest: +SKIP
>>> freqs # doctest: +SKIP
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.fftshift(freqs, axes=(1,)) # doctest: +SKIP
array([[2., 0., 1.],

[-4., 3., 4.],
[-1., -3., -2.]])

dask.array.fft.ifftshift(x, axes=None)
The inverse of fftshift. Although identical for even-length x, the functions differ by one sample for odd-length x.

This docstring was copied from numpy.fft.ifftshift.

Some inconsistencies with the Dask version may exist.

Parameters

x [array_like] Input array.

axes [int or shape tuple, optional] Axes over which to calculate. Defaults to None, which shifts
all axes.

Returns

y [ndarray] The shifted array.

See also:

fftshift Shift zero-frequency component to the center of the spectrum.

Examples

>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3) # doctest: +SKIP
>>> freqs # doctest: +SKIP
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

>>> np.fft.ifftshift(np.fft.fftshift(freqs)) # doctest: +SKIP
array([[0., 1., 2.],

[3., 4., -4.],
[-3., -2., -1.]])

dask.array.random.beta(a, b, size=None)
Draw samples from a Beta distribution.

The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It
has the probability distribution function

𝑓(𝑥; 𝑎, 𝑏) =
1

𝐵(𝛼, 𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1,

where the normalisation, B, is the beta function,

𝐵(𝛼, 𝛽) =

∫︁ 1

0

𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡.

It is often seen in Bayesian inference and order statistics.

3.7. Array 299

dask Documentation, Release 2.6.0

Parameters

a [float or array_like of floats] Alpha, positive (>0).

b [float or array_like of floats] Beta, positive (>0).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a
and b are both scalars. Otherwise, np.broadcast(a, b).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized beta distribution.

dask.array.random.binomial(n, p, size=None)
Draw samples from a binomial distribution.

Samples are drawn from a binomial distribution with specified parameters, n trials and p probability of success
where n an integer >= 0 and p is in the interval [0,1]. (n may be input as a float, but it is truncated to an integer
in use)

Parameters

n [int or array_like of ints] Parameter of the distribution, >= 0. Floats are also accepted, but
they will be truncated to integers.

p [float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if n
and p are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized binomial distribution, where
each sample is equal to the number of successes over the n trials.

See also:

scipy.stats.binom probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the binomial distribution is

𝑃 (𝑁) =

(︂
𝑛

𝑁

)︂
𝑝𝑁 (1 − 𝑝)𝑛−𝑁 ,

where 𝑛 is the number of trials, 𝑝 is the probability of success, and 𝑁 is the number of successes.

When estimating the standard error of a proportion in a population by using a random sample, the normal
distribution works well unless the product p*n <=5, where p = population proportion estimate, and n = number
of samples, in which case the binomial distribution is used instead. For example, a sample of 15 people shows
4 who are left handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4, so the binomial
distribution should be used in this case.

References

[1], [2], [3], [4], [5]

300 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

Draw samples from the distribution:

>>> n, p = 10, .5 # number of trials, probability of each trial # doctest: +SKIP
>>> s = np.random.binomial(n, p, 1000) # doctest: +SKIP
result of flipping a coin 10 times, tested 1000 times.

A real world example. A company drills 9 wild-cat oil exploration wells, each with an estimated probability of
success of 0.1. All nine wells fail. What is the probability of that happening?

Let’s do 20,000 trials of the model, and count the number that generate zero positive results.

>>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000. # doctest: +SKIP
answer = 0.38885, or 38%.

dask.array.random.chisquare(df, size=None)
Draw samples from a chi-square distribution.

When df independent random variables, each with standard normal distributions (mean 0, variance 1), are
squared and summed, the resulting distribution is chi-square (see Notes). This distribution is often used in
hypothesis testing.

Parameters

df [float or array_like of floats] Number of degrees of freedom, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
is a scalar. Otherwise, np.array(df).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized chi-square distribution.

Raises

ValueError When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

Notes

The variable obtained by summing the squares of df independent, standard normally distributed random vari-
ables:

𝑄 =

df∑︁
𝑖=0

𝑋2
𝑖

is chi-square distributed, denoted

𝑄 ∼ 𝜒2
𝑘.

The probability density function of the chi-squared distribution is

𝑝(𝑥) =
(1/2)𝑘/2

Γ(𝑘/2)
𝑥𝑘/2−1𝑒−𝑥/2,

where Γ is the gamma function,

Γ(𝑥) =

∫︁ −∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡.

3.7. Array 301

dask Documentation, Release 2.6.0

References

[1]

Examples

>>> np.random.chisquare(2,4) # doctest: +SKIP
array([1.89920014, 9.00867716, 3.13710533, 5.62318272])

dask.array.random.choice(a, size=None, replace=True, p=None)
Generates a random sample from a given 1-D array

New in version 1.7.0.

Parameters

a [1-D array-like or int] If an ndarray, a random sample is generated from its elements. If an
int, the random sample is generated as if a were np.arange(a)

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

replace [boolean, optional] Whether the sample is with or without replacement

p [1-D array-like, optional] The probabilities associated with each entry in a. If not given the
sample assumes a uniform distribution over all entries in a.

Returns

samples [single item or ndarray] The generated random samples

Raises

ValueError If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-
like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if
replace=False and the sample size is greater than the population size

See also:

randint, shuffle, permutation

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3) # doctest: +SKIP
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) # doctest: +SKIP
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

302 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> np.random.choice(5, 3, replace=False) # doctest: +SKIP
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) # doctest:
→˓+SKIP
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] # doctest: +SKIP
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) # doctest: +SKIP
array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],

dtype='|S11')

dask.array.random.exponential(scale=1.0, size=None)
Draw samples from an exponential distribution.

Its probability density function is

𝑓(𝑥;
1

𝛽
) =

1

𝛽
exp(−𝑥

𝛽
),

for x > 0 and 0 elsewhere. 𝛽 is the scale parameter, which is the inverse of the rate parameter 𝜆 = 1/𝛽. The
rate parameter is an alternative, widely used parameterization of the exponential distribution [3].

The exponential distribution is a continuous analogue of the geometric distribution. It describes many common
situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests
to Wikipedia [2].

Parameters

scale [float or array_like of floats] The scale parameter, 𝛽 = 1/𝜆.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized exponential distribution.

References

[1], [2], [3]

dask.array.random.f(dfnum, dfden, size=None)
Draw samples from an F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator)
and dfden (degrees of freedom in denominator), where both parameters should be greater than zero.

The random variate of the F distribution (also known as the Fisher distribution) is a continuous probability
distribution that arises in ANOVA tests, and is the ratio of two chi-square variates.

Parameters

dfnum [float or array_like of floats] Degrees of freedom in numerator, should be > 0.

3.7. Array 303

dask Documentation, Release 2.6.0

dfden [float or array_like of float] Degrees of freedom in denominator, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
dfnum and dfden are both scalars. Otherwise, np.broadcast(dfnum, dfden).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Fisher distribution.

See also:

scipy.stats.f probability density function, distribution or cumulative density function, etc.

Notes

The F statistic is used to compare in-group variances to between-group variances. Calculating the distribution
depends on the sampling, and so it is a function of the respective degrees of freedom in the problem. The
variable dfnum is the number of samples minus one, the between-groups degrees of freedom, while dfden is the
within-groups degrees of freedom, the sum of the number of samples in each group minus the number of groups.

References

[1], [2]

Examples

An example from Glantz[1], pp 47-40:

Two groups, children of diabetics (25 people) and children from people without diabetes (25 controls). Fasting
blood glucose was measured, case group had a mean value of 86.1, controls had a mean value of 82.2. Standard
deviations were 2.09 and 2.49 respectively. Are these data consistent with the null hypothesis that the parents
diabetic status does not affect their children’s blood glucose levels? Calculating the F statistic from the data
gives a value of 36.01.

Draw samples from the distribution:

>>> dfnum = 1. # between group degrees of freedom # doctest: +SKIP
>>> dfden = 48. # within groups degrees of freedom # doctest: +SKIP
>>> s = np.random.f(dfnum, dfden, 1000) # doctest: +SKIP

The lower bound for the top 1% of the samples is :

>>> sort(s)[-10] # doctest: +SKIP
7.61988120985

So there is about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so the null hypothesis
is rejected at the 1% level.

dask.array.random.gamma(shape, scale=1.0, size=None)
Draw samples from a Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”)
and scale (sometimes designated “theta”), where both parameters are > 0.

Parameters

304 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

shape [float or array_like of floats] The shape of the gamma distribution. Should be greater
than zero.

scale [float or array_like of floats, optional] The scale of the gamma distribution. Should be
greater than zero. Default is equal to 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
shape and scale are both scalars. Otherwise, np.broadcast(shape, scale).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized gamma distribution.

See also:

scipy.stats.gamma probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 2. # mean=4, std=2*sqrt(2) # doctest: +SKIP
>>> s = np.random.gamma(shape, scale, 1000) # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import scipy.special as sps # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 50, density=True) # doctest: +SKIP
>>> y = bins**(shape-1)*(np.exp(-bins/scale) / # doctest: +SKIP
... (sps.gamma(shape)*scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.geometric(p, size=None)
Draw samples from the geometric distribution.

3.7. Array 305

dask Documentation, Release 2.6.0

Bernoulli trials are experiments with one of two outcomes: success or failure (an example of such an experiment
is flipping a coin). The geometric distribution models the number of trials that must be run in order to achieve
success. It is therefore supported on the positive integers, k = 1, 2,

The probability mass function of the geometric distribution is

𝑓(𝑘) = (1 − 𝑝)𝑘−1𝑝

where p is the probability of success of an individual trial.

Parameters

p [float or array_like of floats] The probability of success of an individual trial.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if p is
a scalar. Otherwise, np.array(p).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized geometric distribution.

Examples

Draw ten thousand values from the geometric distribution, with the probability of an individual success equal to
0.35:

>>> z = np.random.geometric(p=0.35, size=10000) # doctest: +SKIP

How many trials succeeded after a single run?

>>> (z == 1).sum() / 10000. # doctest: +SKIP
0.34889999999999999 #random

dask.array.random.gumbel(loc=0.0, scale=1.0, size=None)
Draw samples from a Gumbel distribution.

Draw samples from a Gumbel distribution with specified location and scale. For more information on the
Gumbel distribution, see Notes and References below.

Parameters

loc [float or array_like of floats, optional] The location of the mode of the distribution. Default
is 0.

scale [float or array_like of floats, optional] The scale parameter of the distribution. Default is
1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Gumbel distribution.

See also:

scipy.stats.gumbel_l, scipy.stats.gumbel_r, scipy.stats.genextreme, weibull

306 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution is one of a
class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. The Gumbel
is a special case of the Extreme Value Type I distribution for maximums from distributions with “exponential-
like” tails.

The probability density for the Gumbel distribution is

𝑝(𝑥) =
𝑒−(𝑥−𝜇)/𝛽

𝛽
𝑒−𝑒−(𝑥−𝜇)/𝛽

,

where 𝜇 is the mode, a location parameter, and 𝛽 is the scale parameter.

The Gumbel (named for German mathematician Emil Julius Gumbel) was used very early in the hydrology
literature, for modeling the occurrence of flood events. It is also used for modeling maximum wind speed and
rainfall rates. It is a “fat-tailed” distribution - the probability of an event in the tail of the distribution is larger
than if one used a Gaussian, hence the surprisingly frequent occurrence of 100-year floods. Floods were initially
modeled as a Gaussian process, which underestimated the frequency of extreme events.

It is one of a class of extreme value distributions, the Generalized Extreme Value (GEV) distributions, which
also includes the Weibull and Frechet.

The function has a mean of 𝜇 + 0.57721𝛽 and a variance of 𝜋2

6 𝛽2.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, beta = 0, 0.1 # location and scale # doctest: +SKIP
>>> s = np.random.gumbel(mu, beta, 1000) # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 30, density=True) # doctest: +SKIP
>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) # doctest: +SKIP
... * np.exp(-np.exp(-(bins - mu) /beta)),
... linewidth=2, color='r')
>>> plt.show() # doctest: +SKIP

Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

>>> means = [] # doctest: +SKIP
>>> maxima = [] # doctest: +SKIP
>>> for i in range(0,1000) : # doctest: +SKIP
... a = np.random.normal(mu, beta, 1000)
... means.append(a.mean())
... maxima.append(a.max())
>>> count, bins, ignored = plt.hist(maxima, 30, density=True) # doctest: +SKIP
>>> beta = np.std(maxima) * np.sqrt(6) / np.pi # doctest: +SKIP
>>> mu = np.mean(maxima) - 0.57721*beta # doctest: +SKIP

(continues on next page)

3.7. Array 307

dask Documentation, Release 2.6.0

(continued from previous page)

>>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta) # doctest: +SKIP
... * np.exp(-np.exp(-(bins - mu)/beta)),
... linewidth=2, color='r')
>>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi)) # doctest: +SKIP
... * np.exp(-(bins - mu)**2 / (2 * beta**2)),
... linewidth=2, color='g')
>>> plt.show() # doctest: +SKIP

dask.array.random.hypergeometric(ngood, nbad, nsample, size=None)
Draw samples from a Hypergeometric distribution.

Samples are drawn from a hypergeometric distribution with specified parameters, ngood (ways to make a good
selection), nbad (ways to make a bad selection), and nsample = number of items sampled, which is less than or
equal to the sum ngood + nbad.

Parameters

ngood [int or array_like of ints] Number of ways to make a good selection. Must be nonnega-
tive.

nbad [int or array_like of ints] Number of ways to make a bad selection. Must be nonnegative.

nsample [int or array_like of ints] Number of items sampled. Must be at least 1 and at most
ngood + nbad.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if ngood, nbad, and nsample are all scalars. Otherwise, np.broadcast(ngood,
nbad, nsample).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized hypergeometric distribution.

See also:

scipy.stats.hypergeom probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Hypergeometric distribution is

𝑃 (𝑥) =

(︀
𝑔
𝑥

)︀(︀
𝑏

𝑛−𝑥

)︀(︀
𝑔+𝑏
𝑛

)︀ ,

where 0 ≤ 𝑥 ≤ 𝑛 and 𝑛− 𝑏 ≤ 𝑥 ≤ 𝑔

for P(x) the probability of x successes, g = ngood, b = nbad, and n = number of samples.

Consider an urn with black and white marbles in it, ngood of them black and nbad are white. If you draw nsample
balls without replacement, then the hypergeometric distribution describes the distribution of black balls in the
drawn sample.

Note that this distribution is very similar to the binomial distribution, except that in this case, samples are drawn
without replacement, whereas in the Binomial case samples are drawn with replacement (or the sample space is
infinite). As the sample space becomes large, this distribution approaches the binomial.

308 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> ngood, nbad, nsamp = 100, 2, 10 # doctest: +SKIP
number of good, number of bad, and number of samples
>>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000) # doctest: +SKIP
>>> from matplotlib.pyplot import hist # doctest: +SKIP
>>> hist(s) # doctest: +SKIP
note that it is very unlikely to grab both bad items

Suppose you have an urn with 15 white and 15 black marbles. If you pull 15 marbles at random, how likely is
it that 12 or more of them are one color?

>>> s = np.random.hypergeometric(15, 15, 15, 100000) # doctest: +SKIP
>>> sum(s>=12)/100000. + sum(s<=3)/100000. # doctest: +SKIP
answer = 0.003 ... pretty unlikely!

dask.array.random.laplace(loc=0.0, scale=1.0, size=None)
Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale
(decay).

The Laplace distribution is similar to the Gaussian/normal distribution, but is sharper at the peak and has fatter
tails. It represents the difference between two independent, identically distributed exponential random variables.

Parameters

loc [float or array_like of floats, optional] The position, 𝜇, of the distribution peak. Default is 0.

scale [float or array_like of floats, optional] 𝜆, the exponential decay. Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Laplace distribution.

Notes

It has the probability density function

𝑓(𝑥;𝜇, 𝜆) =
1

2𝜆
exp

(︂
−|𝑥− 𝜇|

𝜆

)︂
.

The first law of Laplace, from 1774, states that the frequency of an error can be expressed as an exponential
function of the absolute magnitude of the error, which leads to the Laplace distribution. For many problems
in economics and health sciences, this distribution seems to model the data better than the standard Gaussian
distribution.

3.7. Array 309

dask Documentation, Release 2.6.0

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution

>>> loc, scale = 0., 1. # doctest: +SKIP
>>> s = np.random.laplace(loc, scale, 1000) # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 30, density=True) # doctest: +SKIP
>>> x = np.arange(-8., 8., .01) # doctest: +SKIP
>>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale) # doctest: +SKIP
>>> plt.plot(x, pdf) # doctest: +SKIP

Plot Gaussian for comparison:

>>> g = (1/(scale * np.sqrt(2 * np.pi)) * # doctest: +SKIP
... np.exp(-(x - loc)**2 / (2 * scale**2)))
>>> plt.plot(x,g) # doctest: +SKIP

dask.array.random.logistic(loc=0.0, scale=1.0, size=None)
Draw samples from a logistic distribution.

Samples are drawn from a logistic distribution with specified parameters, loc (location or mean, also median),
and scale (>0).

Parameters

loc [float or array_like of floats, optional] Parameter of the distribution. Default is 0.

scale [float or array_like of floats, optional] Parameter of the distribution. Should be greater
than zero. Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized logistic distribution.

See also:

scipy.stats.logistic probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Logistic distribution is

𝑃 (𝑥) = 𝑃 (𝑥) =
𝑒−(𝑥−𝜇)/𝑠

𝑠(1 + 𝑒−(𝑥−𝜇)/𝑠)2
,

where 𝜇 = location and 𝑠 = scale.

310 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

The Logistic distribution is used in Extreme Value problems where it can act as a mixture of Gumbel distribu-
tions, in Epidemiology, and by the World Chess Federation (FIDE) where it is used in the Elo ranking system,
assuming the performance of each player is a logistically distributed random variable.

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> loc, scale = 10, 1 # doctest: +SKIP
>>> s = np.random.logistic(loc, scale, 10000) # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, bins=50) # doctest: +SKIP

plot against distribution

>>> def logist(x, loc, scale): # doctest: +SKIP
... return exp((loc-x)/scale)/(scale*(1+exp((loc-x)/scale))**2)
>>> plt.plot(bins, logist(bins, loc, scale)*count.max()/\ # doctest: +SKIP
... logist(bins, loc, scale).max())
>>> plt.show() # doctest: +SKIP

dask.array.random.lognormal(mean=0.0, sigma=1.0, size=None)
Draw samples from a log-normal distribution.

Draw samples from a log-normal distribution with specified mean, standard deviation, and array shape. Note
that the mean and standard deviation are not the values for the distribution itself, but of the underlying normal
distribution it is derived from.

Parameters

mean [float or array_like of floats, optional] Mean value of the underlying normal distribution.
Default is 0.

sigma [float or array_like of floats, optional] Standard deviation of the underlying normal dis-
tribution. Should be greater than zero. Default is 1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if mean and sigma are both scalars. Otherwise, np.broadcast(mean, sigma).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized log-normal distribution.

See also:

scipy.stats.lognorm probability density function, distribution, cumulative density function, etc.

3.7. Array 311

dask Documentation, Release 2.6.0

Notes

A variable x has a log-normal distribution if log(x) is normally distributed. The probability density function for
the log-normal distribution is:

𝑝(𝑥) =
1

𝜎𝑥
√

2𝜋
𝑒(−

(𝑙𝑛(𝑥)−𝜇)2

2𝜎2)

where 𝜇 is the mean and 𝜎 is the standard deviation of the normally distributed logarithm of the variable. A
log-normal distribution results if a random variable is the product of a large number of independent, identically-
distributed variables in the same way that a normal distribution results if the variable is the sum of a large number
of independent, identically-distributed variables.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 3., 1. # mean and standard deviation # doctest: +SKIP
>>> s = np.random.lognormal(mu, sigma, 1000) # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid') #
→˓doctest: +SKIP

>>> x = np.linspace(min(bins), max(bins), 10000) # doctest: +SKIP
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) # doctest: +SKIP
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, linewidth=2, color='r') # doctest: +SKIP
>>> plt.axis('tight') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Demonstrate that taking the products of random samples from a uniform distribution can be fit well by a log-
normal probability density function.

>>> # Generate a thousand samples: each is the product of 100 random
>>> # values, drawn from a normal distribution.
>>> b = [] # doctest: +SKIP
>>> for i in range(1000): # doctest: +SKIP
... a = 10. + np.random.random(100)
... b.append(np.product(a))

>>> b = np.array(b) / np.min(b) # scale values to be positive # doctest: +SKIP
>>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid') #
→˓doctest: +SKIP
>>> sigma = np.std(np.log(b)) # doctest: +SKIP
>>> mu = np.mean(np.log(b)) # doctest: +SKIP

312 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> x = np.linspace(min(bins), max(bins), 10000) # doctest: +SKIP
>>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2)) # doctest: +SKIP
... / (x * sigma * np.sqrt(2 * np.pi)))

>>> plt.plot(x, pdf, color='r', linewidth=2) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.logseries(p, size=None)
Draw samples from a logarithmic series distribution.

Samples are drawn from a log series distribution with specified shape parameter, 0 < p < 1.

Parameters

p [float or array_like of floats] Shape parameter for the distribution. Must be in the range (0, 1).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if p is
a scalar. Otherwise, np.array(p).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized logarithmic series distribution.

See also:

scipy.stats.logser probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Log Series distribution is

𝑃 (𝑘) =
−𝑝𝑘

𝑘 ln(1 − 𝑝)
,

where p = probability.

The log series distribution is frequently used to represent species richness and occurrence, first proposed by
Fisher, Corbet, and Williams in 1943 [2]. It may also be used to model the numbers of occupants seen in cars
[3].

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a = .6 # doctest: +SKIP
>>> s = np.random.logseries(a, 10000) # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s) # doctest: +SKIP

plot against distribution

3.7. Array 313

dask Documentation, Release 2.6.0

>>> def logseries(k, p): # doctest: +SKIP
... return -p**k/(k*log(1-p))
>>> plt.plot(bins, logseries(bins, a)*count.max()/ # doctest: +SKIP

logseries(bins, a).max(), 'r')
>>> plt.show() # doctest: +SKIP

dask.array.random.negative_binomial(n, p, size=None)
Draw samples from a negative binomial distribution.

Samples are drawn from a negative binomial distribution with specified parameters, n successes and p probability
of success where n is an integer > 0 and p is in the interval [0, 1].

Parameters

n [int or array_like of ints] Parameter of the distribution, > 0. Floats are also accepted, but they
will be truncated to integers.

p [float or array_like of floats] Parameter of the distribution, >= 0 and <=1.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if n
and p are both scalars. Otherwise, np.broadcast(n, p).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized negative binomial distribution,
where each sample is equal to N, the number of failures that occurred before a total of n
successes was reached.

Notes

The probability density for the negative binomial distribution is

𝑃 (𝑁 ;𝑛, 𝑝) =

(︂
𝑁 + 𝑛− 1

𝑁

)︂
𝑝𝑛(1 − 𝑝)𝑁 ,

where 𝑛 is the number of successes, 𝑝 is the probability of success, and 𝑁 + 𝑛 is the number of trials. The
negative binomial distribution gives the probability of N failures given n successes, with a success on the last
trial.

If one throws a die repeatedly until the third time a “1” appears, then the probability distribution of the number
of non-“1”s that appear before the third “1” is a negative binomial distribution.

References

[1], [2]

Examples

Draw samples from the distribution:

A real world example. A company drills wild-cat oil exploration wells, each with an estimated probability
of success of 0.1. What is the probability of having one success for each successive well, that is what is the
probability of a single success after drilling 5 wells, after 6 wells, etc.?

314 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> s = np.random.negative_binomial(1, 0.1, 100000) # doctest: +SKIP
>>> for i in range(1, 11): # doctest: +SKIP
... probability = sum(s<i) / 100000.
... print i, "wells drilled, probability of one success =", probability

dask.array.random.noncentral_chisquare(df, nonc, size=None)
Draw samples from a noncentral chi-square distribution.

The noncentral 𝜒2 distribution is a generalisation of the 𝜒2 distribution.

Parameters

df [float or array_like of floats] Degrees of freedom, should be > 0.

Changed in version 1.10.0: Earlier NumPy versions required dfnum > 1.

nonc [float or array_like of floats] Non-centrality, should be non-negative.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
and nonc are both scalars. Otherwise, np.broadcast(df, nonc).size samples
are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized noncentral chi-square distribu-
tion.

Notes

The probability density function for the noncentral Chi-square distribution is

𝑃 (𝑥; 𝑑𝑓, 𝑛𝑜𝑛𝑐) =

∞∑︁
𝑖=0

𝑒−𝑛𝑜𝑛𝑐/2(𝑛𝑜𝑛𝑐/2)𝑖

𝑖!
¶𝑌𝑑𝑓+2𝑖

(𝑥),

where 𝑌𝑞 is the Chi-square with q degrees of freedom.

In Delhi (2007), it is noted that the noncentral chi-square is useful in bombing and coverage problems, the
probability of killing the point target given by the noncentral chi-squared distribution.

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), # doctest:
→˓+SKIP
... bins=200, density=True)
>>> plt.show() # doctest: +SKIP

Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

3.7. Array 315

dask Documentation, Release 2.6.0

>>> plt.figure() # doctest: +SKIP
>>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), #
→˓doctest: +SKIP
... bins=np.arange(0., 25, .1), density=True)
>>> values2 = plt.hist(np.random.chisquare(3, 100000), # doctest: +SKIP
... bins=np.arange(0., 25, .1), density=True)
>>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Demonstrate how large values of non-centrality lead to a more symmetric distribution.

>>> plt.figure() # doctest: +SKIP
>>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), # doctest:
→˓+SKIP
... bins=200, density=True)
>>> plt.show() # doctest: +SKIP

dask.array.random.noncentral_f(dfnum, dfden, nonc, size=None)
Draw samples from the noncentral F distribution.

Samples are drawn from an F distribution with specified parameters, dfnum (degrees of freedom in numerator)
and dfden (degrees of freedom in denominator), where both parameters > 1. nonc is the non-centrality parameter.

Parameters

dfnum [float or array_like of floats] Numerator degrees of freedom, should be > 0.

Changed in version 1.14.0: Earlier NumPy versions required dfnum > 1.

dfden [float or array_like of floats] Denominator degrees of freedom, should be > 0.

nonc [float or array_like of floats] Non-centrality parameter, the sum of the squares of the nu-
merator means, should be >= 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is re-
turned if dfnum, dfden, and nonc are all scalars. Otherwise, np.broadcast(dfnum,
dfden, nonc).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized noncentral Fisher distribution.

Notes

When calculating the power of an experiment (power = probability of rejecting the null hypothesis when a
specific alternative is true) the non-central F statistic becomes important. When the null hypothesis is true, the
F statistic follows a central F distribution. When the null hypothesis is not true, then it follows a non-central F
statistic.

References

[1], [2]

316 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral F distribution.
We need to calculate the area in the tail of the distribution that exceeds the value of the F distribution for the null
hypothesis. We’ll plot the two probability distributions for comparison.

>>> dfnum = 3 # between group deg of freedom # doctest: +SKIP
>>> dfden = 20 # within groups degrees of freedom # doctest: +SKIP
>>> nonc = 3.0 # doctest: +SKIP
>>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000) # doctest:
→˓+SKIP
>>> NF = np.histogram(nc_vals, bins=50, density=True) # doctest: +SKIP
>>> c_vals = np.random.f(dfnum, dfden, 1000000) # doctest: +SKIP
>>> F = np.histogram(c_vals, bins=50, density=True) # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> plt.plot(F[1][1:], F[0]) # doctest: +SKIP
>>> plt.plot(NF[1][1:], NF[0]) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.normal(loc=0.0, scale=1.0, size=None)
Draw random samples from a normal (Gaussian) distribution.

The probability density function of the normal distribution, first derived by De Moivre and 200 years later by
both Gauss and Laplace independently [2], is often called the bell curve because of its characteristic shape (see
the example below).

The normal distributions occurs often in nature. For example, it describes the commonly occurring distribution
of samples influenced by a large number of tiny, random disturbances, each with its own unique distribution [2].

Parameters

loc [float or array_like of floats] Mean (“centre”) of the distribution.

scale [float or array_like of floats] Standard deviation (spread or “width”) of the distribution.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
loc and scale are both scalars. Otherwise, np.broadcast(loc, scale).size
samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized normal distribution.

See also:

scipy.stats.norm probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gaussian distribution is

𝑝(𝑥) =
1√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 ,

where 𝜇 is the mean and 𝜎 the standard deviation. The square of the standard deviation, 𝜎2, is called the
variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function
reaches 0.607 times its maximum at 𝑥 + 𝜎 and 𝑥 − 𝜎 [2]). This implies that numpy.random.normal is more
likely to return samples lying close to the mean, rather than those far away.

3.7. Array 317

dask Documentation, Release 2.6.0

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation # doctest: +SKIP
>>> s = np.random.normal(mu, sigma, 1000) # doctest: +SKIP

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01 # doctest: +SKIP
True

>>> abs(sigma - np.std(s, ddof=1)) < 0.01 # doctest: +SKIP
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 30, density=True) # doctest: +SKIP
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * # doctest: +SKIP
... np.exp(- (bins - mu)**2 / (2 * sigma**2)),
... linewidth=2, color='r')
>>> plt.show() # doctest: +SKIP

dask.array.random.pareto(a, size=None)
Draw samples from a Pareto II or Lomax distribution with specified shape.

The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be
obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes). The
smallest value of the Lomax distribution is zero while for the classical Pareto distribution it is mu, where the
standard Pareto distribution has location mu = 1. Lomax can also be considered as a simplified version of the
Generalized Pareto distribution (available in SciPy), with the scale set to one and the location set to zero.

The Pareto distribution must be greater than zero, and is unbounded above. It is also known as the “80-20 rule”.
In this distribution, 80 percent of the weights are in the lowest 20 percent of the range, while the other 20 percent
fill the remaining 80 percent of the range.

Parameters

a [float or array_like of floats] Shape of the distribution. Should be greater than zero.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a is
a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Pareto distribution.

See also:

scipy.stats.lomax probability density function, distribution or cumulative density function, etc.

scipy.stats.genpareto probability density function, distribution or cumulative density function, etc.

318 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

The probability density for the Pareto distribution is

𝑝(𝑥) =
𝑎𝑚𝑎

𝑥𝑎+1

where 𝑎 is the shape and 𝑚 the scale.

The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law probability distribution
useful in many real world problems. Outside the field of economics it is generally referred to as the Bradford
distribution. Pareto developed the distribution to describe the distribution of wealth in an economy. It has
also found use in insurance, web page access statistics, oil field sizes, and many other problems, including the
download frequency for projects in Sourceforge [1]. It is one of the so-called “fat-tailed” distributions.

References

[1], [2], [3], [4]

Examples

Draw samples from the distribution:

>>> a, m = 3., 2. # shape and mode # doctest: +SKIP
>>> s = (np.random.pareto(a, 1000) + 1) * m # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, _ = plt.hist(s, 100, density=True) # doctest: +SKIP
>>> fit = a*m**a / bins**(a+1) # doctest: +SKIP
>>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r') # doctest:
→˓+SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.poisson(lam=1.0, size=None)
Draw samples from a Poisson distribution.

The Poisson distribution is the limit of the binomial distribution for large N.

Parameters

lam [float or array_like of floats] Expectation of interval, should be >= 0. A sequence of expec-
tation intervals must be broadcastable over the requested size.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if lam
is a scalar. Otherwise, np.array(lam).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Poisson distribution.

Notes

The Poisson distribution

𝑓(𝑘;𝜆) =
𝜆𝑘𝑒−𝜆

𝑘!

3.7. Array 319

dask Documentation, Release 2.6.0

For events with an expected separation 𝜆 the Poisson distribution 𝑓(𝑘;𝜆) describes the probability of 𝑘 events
occurring within the observed interval 𝜆.

Because the output is limited to the range of the C long type, a ValueError is raised when lam is within 10 sigma
of the maximum representable value.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> import numpy as np # doctest: +SKIP
>>> s = np.random.poisson(5, 10000) # doctest: +SKIP

Display histogram of the sample:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 14, density=True) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Draw each 100 values for lambda 100 and 500:

>>> s = np.random.poisson(lam=(100., 500.), size=(100, 2)) # doctest: +SKIP

dask.array.random.power(a, size=None)
Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

Also known as the power function distribution.

Parameters

a [float or array_like of floats] Parameter of the distribution. Should be greater than zero.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a is
a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized power distribution.

Raises

ValueError If a < 1.

Notes

The probability density function is

𝑃 (𝑥; 𝑎) = 𝑎𝑥𝑎−1, 0 ≤ 𝑥 ≤ 1, 𝑎 > 0.

The power function distribution is just the inverse of the Pareto distribution. It may also be seen as a special
case of the Beta distribution.

It is used, for example, in modeling the over-reporting of insurance claims.

320 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

References

[1], [2]

Examples

Draw samples from the distribution:

>>> a = 5. # shape # doctest: +SKIP
>>> samples = 1000 # doctest: +SKIP
>>> s = np.random.power(a, samples) # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, bins=30) # doctest: +SKIP
>>> x = np.linspace(0, 1, 100) # doctest: +SKIP
>>> y = a*x**(a-1.) # doctest: +SKIP
>>> normed_y = samples*np.diff(bins)[0]*y # doctest: +SKIP
>>> plt.plot(x, normed_y) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Compare the power function distribution to the inverse of the Pareto.

>>> from scipy import stats # doctest: +SKIP
>>> rvs = np.random.power(5, 1000000) # doctest: +SKIP
>>> rvsp = np.random.pareto(5, 1000000) # doctest: +SKIP
>>> xx = np.linspace(0,1,100) # doctest: +SKIP
>>> powpdf = stats.powerlaw.pdf(xx,5) # doctest: +SKIP

>>> plt.figure() # doctest: +SKIP
>>> plt.hist(rvs, bins=50, density=True) # doctest: +SKIP
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('np.random.power(5)') # doctest: +SKIP

>>> plt.figure() # doctest: +SKIP
>>> plt.hist(1./(1.+rvsp), bins=50, density=True) # doctest: +SKIP
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('inverse of 1 + np.random.pareto(5)') # doctest: +SKIP

>>> plt.figure() # doctest: +SKIP
>>> plt.hist(1./(1.+rvsp), bins=50, density=True) # doctest: +SKIP
>>> plt.plot(xx,powpdf,'r-') # doctest: +SKIP
>>> plt.title('inverse of stats.pareto(5)') # doctest: +SKIP

dask.array.random.randint(low, high=None, size=None, dtype=’l’)
Return random integers from low (inclusive) to high (exclusive).

Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval
[low, high). If high is None (the default), then results are from [0, low).

Parameters

low [int] Lowest (signed) integer to be drawn from the distribution (unless high=None, in
which case this parameter is one above the highest such integer).

3.7. Array 321

dask Documentation, Release 2.6.0

high [int, optional] If provided, one above the largest (signed) integer to be drawn from the
distribution (see above for behavior if high=None).

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

dtype [dtype, optional] Desired dtype of the result. All dtypes are determined by their name,
i.e., ‘int64’, ‘int’, etc, so byteorder is not available and a specific precision may have differ-
ent C types depending on the platform. The default value is ‘np.int’.

New in version 1.11.0.

Returns

out [int or ndarray of ints] size-shaped array of random integers from the appropriate distribu-
tion, or a single such random int if size not provided.

See also:

random.random_integers similar to randint, only for the closed interval [low, high], and 1 is the lowest
value if high is omitted. In particular, this other one is the one to use to generate uniformly distributed
discrete non-integers.

Examples

>>> np.random.randint(2, size=10) # doctest: +SKIP
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10) # doctest: +SKIP
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4)) # doctest: +SKIP
array([[4, 0, 2, 1],

[3, 2, 2, 0]])

dask.array.random.random(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

Examples

322 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> np.random.random_sample() # doctest: +SKIP
0.47108547995356098
>>> type(np.random.random_sample()) # doctest: +SKIP
<type 'float'>
>>> np.random.random_sample((5,)) # doctest: +SKIP
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5 # doctest: +SKIP
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

dask.array.random.random_sample(size=None)
Return random floats in the half-open interval [0.0, 1.0).

Results are from the “continuous uniform” distribution over the stated interval. To sample 𝑈𝑛𝑖𝑓 [𝑎, 𝑏), 𝑏 > 𝑎
multiply the output of random_sample by (b-a) and add a:

(b - a) * random_sample() + a

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [float or ndarray of floats] Array of random floats of shape size (unless size=None, in
which case a single float is returned).

Examples

>>> np.random.random_sample() # doctest: +SKIP
0.47108547995356098
>>> type(np.random.random_sample()) # doctest: +SKIP
<type 'float'>
>>> np.random.random_sample((5,)) # doctest: +SKIP
array([0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5 # doctest: +SKIP
array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],
[-1.23204345, -1.75224494]])

dask.array.random.rayleigh(scale=1.0, size=None)
Draw samples from a Rayleigh distribution.

The 𝜒 and Weibull distributions are generalizations of the Rayleigh.

Parameters

scale [float or array_like of floats, optional] Scale, also equals the mode. Should be >= 0.
Default is 1.

3.7. Array 323

dask Documentation, Release 2.6.0

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if scale
is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Rayleigh distribution.

Notes

The probability density function for the Rayleigh distribution is

𝑃 (𝑥; 𝑠𝑐𝑎𝑙𝑒) =
𝑥

𝑠𝑐𝑎𝑙𝑒2
𝑒

−𝑥2

2·𝑠𝑐𝑎𝑙𝑒2

The Rayleigh distribution would arise, for example, if the East and North components of the wind velocity had
identical zero-mean Gaussian distributions. Then the wind speed would have a Rayleigh distribution.

References

[1], [2]

Examples

Draw values from the distribution and plot the histogram

>>> from matplotlib.pyplot import hist # doctest: +SKIP
>>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True) #
→˓doctest: +SKIP

Wave heights tend to follow a Rayleigh distribution. If the mean wave height is 1 meter, what fraction of waves
are likely to be larger than 3 meters?

>>> meanvalue = 1 # doctest: +SKIP
>>> modevalue = np.sqrt(2 / np.pi) * meanvalue # doctest: +SKIP
>>> s = np.random.rayleigh(modevalue, 1000000) # doctest: +SKIP

The percentage of waves larger than 3 meters is:

>>> 100.*sum(s>3)/1000000. # doctest: +SKIP
0.087300000000000003

dask.array.random.standard_cauchy(size=None)
Draw samples from a standard Cauchy distribution with mode = 0.

Also known as the Lorentz distribution.

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

samples [ndarray or scalar] The drawn samples.

324 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

The probability density function for the full Cauchy distribution is

𝑃 (𝑥;𝑥0, 𝛾) =
1

𝜋𝛾
[︀
1 + (𝑥−𝑥0

𝛾)2
]︀

and the Standard Cauchy distribution just sets 𝑥0 = 0 and 𝛾 = 1

The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also describes
spectral line broadening. It also describes the distribution of values at which a line tilted at a random angle will
cut the x axis.

When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy
distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since the Cauchy looks very
much like a Gaussian distribution, but with heavier tails.

References

[1], [2], [3]

Examples

Draw samples and plot the distribution:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> s = np.random.standard_cauchy(1000000) # doctest: +SKIP
>>> s = s[(s>-25) & (s<25)] # truncate distribution so it plots well # doctest:
→˓+SKIP
>>> plt.hist(s, bins=100) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.standard_exponential(size=None)
Draw samples from the standard exponential distribution.

standard_exponential is identical to the exponential distribution with a scale parameter of 1.

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

out [float or ndarray] Drawn samples.

Examples

Output a 3x8000 array:

>>> n = np.random.standard_exponential((3, 8000)) # doctest: +SKIP

dask.array.random.standard_gamma(shape, size=None)
Draw samples from a standard Gamma distribution.

Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated “k”)
and scale=1.

3.7. Array 325

dask Documentation, Release 2.6.0

Parameters

shape [float or array_like of floats] Parameter, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then m
* n * k samples are drawn. If size is None (default), a single value is returned if shape
is a scalar. Otherwise, np.array(shape).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized standard gamma distribution.

See also:

scipy.stats.gamma probability density function, distribution or cumulative density function, etc.

Notes

The probability density for the Gamma distribution is

𝑝(𝑥) = 𝑥𝑘−1 𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
,

where 𝑘 is the shape and 𝜃 the scale, and Γ is the Gamma function.

The Gamma distribution is often used to model the times to failure of electronic components, and arises naturally
in processes for which the waiting times between Poisson distributed events are relevant.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> shape, scale = 2., 1. # mean and width # doctest: +SKIP
>>> s = np.random.standard_gamma(shape, 1000000) # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import scipy.special as sps # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 50, density=True) # doctest: +SKIP
>>> y = bins**(shape-1) * ((np.exp(-bins/scale))/ \ # doctest: +SKIP
... (sps.gamma(shape) * scale**shape))
>>> plt.plot(bins, y, linewidth=2, color='r') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.standard_normal(size=None)
Draw samples from a standard Normal distribution (mean=0, stdev=1).

Parameters

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. Default is None, in which case a single value is returned.

Returns

326 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

out [float or ndarray] Drawn samples.

Examples

>>> s = np.random.standard_normal(8000) # doctest: +SKIP
>>> s # doctest: +SKIP
array([0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, #random

-0.38672696, -0.4685006]) #random
>>> s.shape # doctest: +SKIP
(8000,)
>>> s = np.random.standard_normal(size=(3, 4, 2)) # doctest: +SKIP
>>> s.shape # doctest: +SKIP
(3, 4, 2)

dask.array.random.standard_t(df, size=None)
Draw samples from a standard Student’s t distribution with df degrees of freedom.

A special case of the hyperbolic distribution. As df gets large, the result resembles that of the standard normal
distribution (standard_normal).

Parameters

df [float or array_like of floats] Degrees of freedom, should be > 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if df
is a scalar. Otherwise, np.array(df).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized standard Student’s t distribution.

Notes

The probability density function for the t distribution is

𝑃 (𝑥, 𝑑𝑓) =
Γ(𝑑𝑓+1

2)
√
𝜋𝑑𝑓Γ(𝑑𝑓

2)

(︁
1 +

𝑥2

𝑑𝑓

)︁−(𝑑𝑓+1)/2

The t test is based on an assumption that the data come from a Normal distribution. The t test provides a way to
test whether the sample mean (that is the mean calculated from the data) is a good estimate of the true mean.

The derivation of the t-distribution was first published in 1908 by William Gosset while working for the Guinness
Brewery in Dublin. Due to proprietary issues, he had to publish under a pseudonym, and so he used the name
Student.

References

[1], [2]

Examples

From Dalgaard page 83 [1], suppose the daily energy intake for 11 women in kilojoules (kJ) is:

3.7. Array 327

dask Documentation, Release 2.6.0

>>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \ #
→˓doctest: +SKIP
... 7515, 8230, 8770])

Does their energy intake deviate systematically from the recommended value of 7725 kJ?

We have 10 degrees of freedom, so is the sample mean within 95% of the recommended value?

>>> s = np.random.standard_t(10, size=100000) # doctest: +SKIP
>>> np.mean(intake) # doctest: +SKIP
6753.636363636364
>>> intake.std(ddof=1) # doctest: +SKIP
1142.1232221373727

Calculate the t statistic, setting the ddof parameter to the unbiased value so the divisor in the standard deviation
will be degrees of freedom, N-1.

>>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake))) #
→˓doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> h = plt.hist(s, bins=100, density=True) # doctest: +SKIP

For a one-sided t-test, how far out in the distribution does the t statistic appear?

>>> np.sum(s<t) / float(len(s)) # doctest: +SKIP
0.0090699999999999999 #random

So the p-value is about 0.009, which says the null hypothesis has a probability of about 99% of being true.

dask.array.random.triangular(left, mode, right, size=None)
Draw samples from the triangular distribution over the interval [left, right].

The triangular distribution is a continuous probability distribution with lower limit left, peak at mode, and upper
limit right. Unlike the other distributions, these parameters directly define the shape of the pdf.

Parameters

left [float or array_like of floats] Lower limit.

mode [float or array_like of floats] The value where the peak of the distribution occurs. The
value should fulfill the condition left <= mode <= right.

right [float or array_like of floats] Upper limit, should be larger than left.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if
left, mode, and right are all scalars. Otherwise, np.broadcast(left, mode,
right).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized triangular distribution.

Notes

The probability density function for the triangular distribution is

𝑃 (𝑥; 𝑙,𝑚, 𝑟) =

⎧⎪⎨⎪⎩
2(𝑥−𝑙)

(𝑟−𝑙)(𝑚−𝑙) for 𝑙 ≤ 𝑥 ≤ 𝑚,
2(𝑟−𝑥)

(𝑟−𝑙)(𝑟−𝑚) for 𝑚 ≤ 𝑥 ≤ 𝑟,

0 otherwise.

328 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

The triangular distribution is often used in ill-defined problems where the underlying distribution is not known,
but some knowledge of the limits and mode exists. Often it is used in simulations.

References

[1]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200, # doctest:
→˓+SKIP
... density=True)
>>> plt.show() # doctest: +SKIP

dask.array.random.uniform(low=0.0, high=1.0, size=None)
Draw samples from a uniform distribution.

Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high).
In other words, any value within the given interval is equally likely to be drawn by uniform.

Parameters

low [float or array_like of floats, optional] Lower boundary of the output interval. All values
generated will be greater than or equal to low. The default value is 0.

high [float or array_like of floats] Upper boundary of the output interval. All values generated
will be less than high. The default value is 1.0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if low
and high are both scalars. Otherwise, np.broadcast(low, high).size samples
are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized uniform distribution.

See also:

randint Discrete uniform distribution, yielding integers.

random_integers Discrete uniform distribution over the closed interval [low, high].

random_sample Floats uniformly distributed over [0, 1).

random Alias for random_sample.

rand Convenience function that accepts dimensions as input, e.g., rand(2,2) would generate a 2-by-2 array
of floats, uniformly distributed over [0, 1).

Notes

The probability density function of the uniform distribution is

𝑝(𝑥) =
1

𝑏− 𝑎

3.7. Array 329

dask Documentation, Release 2.6.0

anywhere within the interval [a, b), and zero elsewhere.

When high == low, values of low will be returned. If high < low, the results are officially undefined and
may eventually raise an error, i.e. do not rely on this function to behave when passed arguments satisfying that
inequality condition.

Examples

Draw samples from the distribution:

>>> s = np.random.uniform(-1,0,1000) # doctest: +SKIP

All values are within the given interval:

>>> np.all(s >= -1) # doctest: +SKIP
True
>>> np.all(s < 0) # doctest: +SKIP
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> count, bins, ignored = plt.hist(s, 15, density=True) # doctest: +SKIP
>>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.vonmises(mu, kappa, size=None)
Draw samples from a von Mises distribution.

Samples are drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa), on the
interval [-pi, pi].

The von Mises distribution (also known as the circular normal distribution) is a continuous probability distribu-
tion on the unit circle. It may be thought of as the circular analogue of the normal distribution.

Parameters

mu [float or array_like of floats] Mode (“center”) of the distribution.

kappa [float or array_like of floats] Dispersion of the distribution, has to be >=0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if mu
and kappa are both scalars. Otherwise, np.broadcast(mu, kappa).size samples
are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized von Mises distribution.

See also:

scipy.stats.vonmises probability density function, distribution, or cumulative density function, etc.

Notes

The probability density for the von Mises distribution is

𝑝(𝑥) =
𝑒𝜅𝑐𝑜𝑠(𝑥−𝜇)

2𝜋𝐼0(𝜅)
,

330 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

where 𝜇 is the mode and 𝜅 the dispersion, and 𝐼0(𝜅) is the modified Bessel function of order 0.

The von Mises is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is now the
Ukraine. He fled to the United States in 1939 and became a professor at Harvard. He worked in probability
theory, aerodynamics, fluid mechanics, and philosophy of science.

References

[1], [2]

Examples

Draw samples from the distribution:

>>> mu, kappa = 0.0, 4.0 # mean and dispersion # doctest: +SKIP
>>> s = np.random.vonmises(mu, kappa, 1000) # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> from scipy.special import i0 # doctest: +SKIP
>>> plt.hist(s, 50, density=True) # doctest: +SKIP
>>> x = np.linspace(-np.pi, np.pi, num=51) # doctest: +SKIP
>>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa)) # doctest: +SKIP
>>> plt.plot(x, y, linewidth=2, color='r') # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.wald(mean, scale, size=None)
Draw samples from a Wald, or inverse Gaussian, distribution.

As the scale approaches infinity, the distribution becomes more like a Gaussian. Some references claim that the
Wald is an inverse Gaussian with mean equal to 1, but this is by no means universal.

The inverse Gaussian distribution was first studied in relationship to Brownian motion. In 1956 M.C.K. Tweedie
used the name inverse Gaussian because there is an inverse relationship between the time to cover a unit distance
and distance covered in unit time.

Parameters

mean [float or array_like of floats] Distribution mean, should be > 0.

scale [float or array_like of floats] Scale parameter, should be >= 0.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k),
then m * n * k samples are drawn. If size is None (default), a single value is returned
if mean and scale are both scalars. Otherwise, np.broadcast(mean, scale).
size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Wald distribution.

Notes

The probability density function for the Wald distribution is

𝑃 (𝑥;𝑚𝑒𝑎𝑛, 𝑠𝑐𝑎𝑙𝑒) =

√︂
𝑠𝑐𝑎𝑙𝑒

2𝜋𝑥3
𝑒

−𝑠𝑐𝑎𝑙𝑒(𝑥−𝑚𝑒𝑎𝑛)2

2·𝑚𝑒𝑎𝑛2𝑥

3.7. Array 331

dask Documentation, Release 2.6.0

As noted above the inverse Gaussian distribution first arise from attempts to model Brownian motion. It is also a
competitor to the Weibull for use in reliability modeling and modeling stock returns and interest rate processes.

References

[1], [2], [3]

Examples

Draw values from the distribution and plot the histogram:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True) #
→˓doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.weibull(a, size=None)
Draw samples from a Weibull distribution.

Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

𝑋 = (−𝑙𝑛(𝑈))1/𝑎

Here, U is drawn from the uniform distribution over (0,1].

The more common 2-parameter Weibull, including a scale parameter 𝜆 is just 𝑋 = 𝜆(−𝑙𝑛(𝑈))1/𝑎.

Parameters

a [float or array_like of floats] Shape parameter of the distribution. Must be nonnegative.

size [int or tuple of ints, optional] Output shape. If the given shape is, e.g., (m, n, k), then
m * n * k samples are drawn. If size is None (default), a single value is returned if a is
a scalar. Otherwise, np.array(a).size samples are drawn.

Returns

out [ndarray or scalar] Drawn samples from the parameterized Weibull distribution.

See also:

scipy.stats.weibull_max, scipy.stats.weibull_min, scipy.stats.genextreme,
gumbel

Notes

The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-
Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling
extreme value problems. This class includes the Gumbel and Frechet distributions.

The probability density for the Weibull distribution is

𝑝(𝑥) =
𝑎

𝜆
(
𝑥

𝜆
)𝑎−1𝑒−(𝑥/𝜆)𝑎 ,

where 𝑎 is the shape and 𝜆 the scale.

The function has its peak (the mode) at 𝜆(𝑎−1
𝑎)1/𝑎.

When a = 1, the Weibull distribution reduces to the exponential distribution.

332 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

References

[1], [2], [3]

Examples

Draw samples from the distribution:

>>> a = 5. # shape # doctest: +SKIP
>>> s = np.random.weibull(a, 1000) # doctest: +SKIP

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> x = np.arange(1,100.)/50. # doctest: +SKIP
>>> def weib(x,n,a): # doctest: +SKIP
... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

>>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000)) # doctest: +SKIP
>>> x = np.arange(1,100.)/50. # doctest: +SKIP
>>> scale = count.max()/weib(x, 1., 5.).max() # doctest: +SKIP
>>> plt.plot(x, weib(x, 1., 5.)*scale) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dask.array.random.zipf(a, size=None)
Standard distributions

dask.array.stats.ttest_ind(a, b, axis=0, equal_var=True)
Calculate the T-test for the means of two independent samples of scores.

This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected)
values. This test assumes that the populations have identical variances by default.

Parameters

a, b [array_like] The arrays must have the same shape, except in the dimension corresponding
to axis (the first, by default).

axis [int or None, optional] Axis along which to compute test. If None, compute over the whole
arrays, a, and b.

equal_var [bool, optional] If True (default), perform a standard independent 2 sample test that
assumes equal population variances [1]. If False, perform Welch’s t-test, which does not
assume equal population variance [2].

New in version 0.11.0.

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

statistic [float or array] The calculated t-statistic.

pvalue [float or array] The two-tailed p-value.

3.7. Array 333

dask Documentation, Release 2.6.0

Notes

We can use this test, if we observe two independent samples from the same or different population, e.g. exam
scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs
significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot
reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5%
or 10%, then we reject the null hypothesis of equal averages.

References

[1], [2]

Examples

>>> from scipy import stats # doctest: +SKIP
>>> np.random.seed(12345678) # doctest: +SKIP

Test with sample with identical means:

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) # doctest: +SKIP
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) # doctest: +SKIP
>>> stats.ttest_ind(rvs1,rvs2) # doctest: +SKIP
(0.26833823296239279, 0.78849443369564776)
>>> stats.ttest_ind(rvs1,rvs2, equal_var = False) # doctest: +SKIP
(0.26833823296239279, 0.78849452749500748)

ttest_ind underestimates p for unequal variances:

>>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500) # doctest: +SKIP
>>> stats.ttest_ind(rvs1, rvs3) # doctest: +SKIP
(-0.46580283298287162, 0.64145827413436174)
>>> stats.ttest_ind(rvs1, rvs3, equal_var = False) # doctest: +SKIP
(-0.46580283298287162, 0.64149646246569292)

When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic:

>>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100) # doctest: +SKIP
>>> stats.ttest_ind(rvs1, rvs4) # doctest: +SKIP
(-0.99882539442782481, 0.3182832709103896)
>>> stats.ttest_ind(rvs1, rvs4, equal_var = False) # doctest: +SKIP
(-0.69712570584654099, 0.48716927725402048)

T-test with different means, variance, and n:

>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100) # doctest: +SKIP
>>> stats.ttest_ind(rvs1, rvs5) # doctest: +SKIP
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False) # doctest: +SKIP
(-0.94365973617132992, 0.34744170334794122)

dask.array.stats.ttest_1samp(a, popmean, axis=0, nan_policy=’propagate’)
Calculate the T-test for the mean of ONE group of scores.

This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent
observations a is equal to the given population mean, popmean.

334 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

a [array_like] sample observation

popmean [float or array_like] expected value in null hypothesis. If array_like, then it must have
the same shape as a excluding the axis dimension

axis [int or None, optional] Axis along which to compute test. If None, compute over the whole
array a.

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

statistic [float or array] t-statistic

pvalue [float or array] two-tailed p-value

Examples

>>> from scipy import stats # doctest: +SKIP

>>> np.random.seed(7654567) # fix seed to get the same result # doctest: +SKIP
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2)) # doctest: +SKIP

Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the
second case and don’t reject it in the first case.

>>> stats.ttest_1samp(rvs,5.0) # doctest: +SKIP
(array([-0.68014479, -0.04323899]), array([0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0) # doctest: +SKIP
(array([2.77025808, 4.11038784]), array([0.00789095, 0.00014999]))

Examples using axis and non-scalar dimension for population mean.

>>> stats.ttest_1samp(rvs,[5.0,0.0]) # doctest: +SKIP
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1) # doctest: +SKIP
(array([-0.68014479, 4.11038784]), array([4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]]) # doctest: +SKIP
(array([[-0.68014479, -0.04323899],

[2.77025808, 4.11038784]]), array([[4.99613833e-01, 9.65686743e-01],
[7.89094663e-03, 1.49986458e-04]]))

dask.array.stats.ttest_rel(a, b, axis=0, nan_policy=’propagate’)
Calculate the T-test on TWO RELATED samples of scores, a and b.

This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (ex-
pected) values.

Parameters

a, b [array_like] The arrays must have the same shape.

axis [int or None, optional] Axis along which to compute test. If None, compute over the whole
arrays, a, and b.

3.7. Array 335

dask Documentation, Release 2.6.0

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

statistic [float or array] t-statistic

pvalue [float or array] two-tailed p-value

Notes

Examples for the use are scores of the same set of student in different exams, or repeated sampling from the
same units. The test measures whether the average score differs significantly across samples (e.g. exams). If
we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of
identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the
null hypothesis of equal averages. Small p-values are associated with large t-statistics.

References

https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples

Examples

>>> from scipy import stats # doctest: +SKIP
>>> np.random.seed(12345678) # fix random seed to get same numbers # doctest:
→˓+SKIP

>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) # doctest: +SKIP
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) + # doctest: +SKIP
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2) # doctest: +SKIP
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) + # doctest: +SKIP
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3) # doctest: +SKIP
(-3.9995108708727933, 7.3082402191726459e-005)

dask.array.stats.chisquare(f_obs, f_exp=None, ddof=0, axis=0)
Calculate a one-way chi square test.

The chi square test tests the null hypothesis that the categorical data has the given frequencies.

Parameters

f_obs [array_like] Observed frequencies in each category.

f_exp [array_like, optional] Expected frequencies in each category. By default the categories
are assumed to be equally likely.

ddof [int, optional] “Delta degrees of freedom”: adjustment to the degrees of freedom for the
p-value. The p-value is computed using a chi-squared distribution with k - 1 - ddof
degrees of freedom, where k is the number of observed frequencies. The default value of
ddof is 0.

336 Chapter 3. Complex Algorithms

https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples

dask Documentation, Release 2.6.0

axis [int or None, optional] The axis of the broadcast result of f_obs and f_exp along which to
apply the test. If axis is None, all values in f_obs are treated as a single data set. Default is
0.

Returns

chisq [float or ndarray] The chi-squared test statistic. The value is a float if axis is None or
f_obs and f_exp are 1-D.

p [float or ndarray] The p-value of the test. The value is a float if ddof and the return value chisq
are scalars.

See also:

power_divergence, mstats.chisquare

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is
that all of the observed and expected frequencies should be at least 5.

The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If
p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If
the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also
possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

References

[1], [2]

Examples

When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies.

>>> from scipy.stats import chisquare # doctest: +SKIP
>>> chisquare([16, 18, 16, 14, 12, 12]) # doctest: +SKIP
(2.0, 0.84914503608460956)

With f_exp the expected frequencies can be given.

>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8]) #
→˓doctest: +SKIP
(3.5, 0.62338762774958223)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T #
→˓doctest: +SKIP
>>> obs.shape # doctest: +SKIP
(6, 2)
>>> chisquare(obs) # doctest: +SKIP
(array([2. , 6.66666667]), array([0.84914504, 0.24663415]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.

3.7. Array 337

dask Documentation, Release 2.6.0

>>> chisquare(obs, axis=None) # doctest: +SKIP
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel()) # doctest: +SKIP
(23.31034482758621, 0.015975692534127565)

ddof is the change to make to the default degrees of freedom.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1) # doctest: +SKIP
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the chi-squared statistic with ddof.

>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) # doctest: +SKIP
(2.0, array([0.84914504, 0.73575888, 0.5724067]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the
result of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we use
axis=1:

>>> chisquare([16, 18, 16, 14, 12, 12], # doctest: +SKIP
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([3.5 , 9.25]), array([0.62338763, 0.09949846]))

dask.array.stats.power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None)
Cressie-Read power divergence statistic and goodness of fit test.

This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read
power divergence statistic.

Parameters

f_obs [array_like] Observed frequencies in each category.

f_exp [array_like, optional] Expected frequencies in each category. By default the categories
are assumed to be equally likely.

ddof [int, optional] “Delta degrees of freedom”: adjustment to the degrees of freedom for the
p-value. The p-value is computed using a chi-squared distribution with k - 1 - ddof
degrees of freedom, where k is the number of observed frequencies. The default value of
ddof is 0.

axis [int or None, optional] The axis of the broadcast result of f_obs and f_exp along which to
apply the test. If axis is None, all values in f_obs are treated as a single data set. Default is
0.

lambda_ [float or str, optional] lambda_ gives the power in the Cressie-Read power divergence
statistic. The default is 1. For convenience, lambda_ may be assigned one of the following
strings, in which case the corresponding numerical value is used:

String Value Description
"pearson" 1 Pearson's chi-squared statistic.

In this case, the function is
equivalent to `stats.chisquare`.

"log-likelihood" 0 Log-likelihood ratio. Also known as
the G-test [R5ed189a69e5c-3]_.

"freeman-tukey" -1/2 Freeman-Tukey statistic.
"mod-log-likelihood" -1 Modified log-likelihood ratio.

(continues on next page)

338 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

"neyman" -2 Neyman's statistic.
"cressie-read" 2/3 The power recommended in
→˓[R5ed189a69e5c-5]_.

Returns

statistic [float or ndarray] The Cressie-Read power divergence test statistic. The value is a float
if axis is None or if‘ f_obs and f_exp are 1-D.

pvalue [float or ndarray] The p-value of the test. The value is a float if ddof and the return value
stat are scalars.

See also:

chisquare

Notes

This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is
that all of the observed and expected frequencies should be at least 5.

When lambda_ is less than zero, the formula for the statistic involves dividing by f_obs, so a warning or error
may be generated if any value in f_obs is 0.

Similarly, a warning or error may be generated if any value in f_exp is zero when lambda_ >= 0.

The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If
p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If
the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also
possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate.

This function handles masked arrays. If an element of f_obs or f_exp is masked, then data at that position is
ignored, and does not count towards the size of the data set.

New in version 0.13.0.

References

[1], [2], [3], [4], [5]

Examples

(See chisquare for more examples.)

When just f_obs is given, it is assumed that the expected frequencies are uniform and given by the mean of the
observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic):

>>> from scipy.stats import power_divergence # doctest: +SKIP
>>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood') #
→˓doctest: +SKIP
(2.006573162632538, 0.84823476779463769)

The expected frequencies can be given with the f_exp argument:

3.7. Array 339

dask Documentation, Release 2.6.0

>>> power_divergence([16, 18, 16, 14, 12, 12], # doctest: +SKIP
... f_exp=[16, 16, 16, 16, 16, 8],
... lambda_='log-likelihood')
(3.3281031458963746, 0.6495419288047497)

When f_obs is 2-D, by default the test is applied to each column.

>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T #
→˓doctest: +SKIP
>>> obs.shape # doctest: +SKIP
(6, 2)
>>> power_divergence(obs, lambda_="log-likelihood") # doctest: +SKIP
(array([2.00657316, 6.77634498]), array([0.84823477, 0.23781225]))

By setting axis=None, the test is applied to all data in the array, which is equivalent to applying the test to the
flattened array.

>>> power_divergence(obs, axis=None) # doctest: +SKIP
(23.31034482758621, 0.015975692534127565)
>>> power_divergence(obs.ravel()) # doctest: +SKIP
(23.31034482758621, 0.015975692534127565)

ddof is the change to make to the default degrees of freedom.

>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1) # doctest: +SKIP
(2.0, 0.73575888234288467)

The calculation of the p-values is done by broadcasting the test statistic with ddof.

>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) # doctest: +SKIP
(2.0, array([0.84914504, 0.73575888, 0.5724067]))

f_obs and f_exp are also broadcast. In the following, f_obs has shape (6,) and f_exp has shape (2, 6), so the result
of broadcasting f_obs and f_exp has shape (2, 6). To compute the desired chi-squared statistics, we must use
axis=1:

>>> power_divergence([16, 18, 16, 14, 12, 12], # doctest: +SKIP
... f_exp=[[16, 16, 16, 16, 16, 8],
... [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([3.5 , 9.25]), array([0.62338763, 0.09949846]))

dask.array.stats.skew(a, axis=0, bias=True, nan_policy=’propagate’)
Compute the skewness of a data set.

For normally distributed data, the skewness should be about 0. For unimodal continuous distributions, a skew-
ness value > 0 means that there is more weight in the right tail of the distribution. The function skewtest can be
used to determine if the skewness value is close enough to 0, statistically speaking.

Parameters

a [ndarray] data

axis [int or None, optional] Axis along which skewness is calculated. Default is 0. If None,
compute over the whole array a.

bias [bool, optional] If False, then the calculations are corrected for statistical bias.

340 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

skewness [ndarray] The skewness of values along an axis, returning 0 where all values are
equal.

References

[1]

Examples

>>> from scipy.stats import skew # doctest: +SKIP
>>> skew([1, 2, 3, 4, 5]) # doctest: +SKIP
0.0
>>> skew([2, 8, 0, 4, 1, 9, 9, 0]) # doctest: +SKIP
0.2650554122698573

dask.array.stats.skewtest(a, axis=0, nan_policy=’propagate’)
Test whether the skew is different from the normal distribution.

This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the
same as that of a corresponding normal distribution.

Parameters

a [array] The data to be tested

axis [int or None, optional] Axis along which statistics are calculated. Default is 0. If None,
compute over the whole array a.

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

statistic [float] The computed z-score for this test.

pvalue [float] a 2-sided p-value for the hypothesis test

Notes

The sample size must be at least 8.

References

[1]

3.7. Array 341

dask Documentation, Release 2.6.0

Examples

>>> from scipy.stats import skewtest # doctest: +SKIP
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8]) # doctest: +SKIP
SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897)
>>> skewtest([2, 8, 0, 4, 1, 9, 9, 0]) # doctest: +SKIP
SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459)
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000]) # doctest: +SKIP
SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133)
>>> skewtest([100, 100, 100, 100, 100, 100, 100, 101]) # doctest: +SKIP
SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634)

dask.array.stats.kurtosis(a, axis=0, fisher=True, bias=True, nan_policy=’propagate’)
Compute the kurtosis (Fisher or Pearson) of a dataset.

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then
3.0 is subtracted from the result to give 0.0 for a normal distribution.

If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment
estimators

Use kurtosistest to see if result is close enough to normal.

Parameters

a [array] data for which the kurtosis is calculated

axis [int or None, optional] Axis along which the kurtosis is calculated. Default is 0. If None,
compute over the whole array a.

fisher [bool, optional] If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s
definition is used (normal ==> 3.0).

bias [bool, optional] If False, then the calculations are corrected for statistical bias.

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

kurtosis [array] The kurtosis of values along an axis. If all values are equal, return -3 for
Fisher’s definition and 0 for Pearson’s definition.

References

[1]

Examples

>>> from scipy.stats import kurtosis # doctest: +SKIP
>>> kurtosis([1, 2, 3, 4, 5]) # doctest: +SKIP
-1.3

dask.array.stats.kurtosistest(a, axis=0, nan_policy=’propagate’)
Test whether a dataset has normal kurtosis.

This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is
that of the normal distribution: kurtosis = 3(n-1)/(n+1).

342 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

a [array] array of the sample data

axis [int or None, optional] Axis along which to compute test. Default is 0. If None, compute
over the whole array a.

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

statistic [float] The computed z-score for this test.

pvalue [float] The 2-sided p-value for the hypothesis test

Notes

Valid only for n>20. This function uses the method described in [1].

References

[1]

Examples

>>> from scipy.stats import kurtosistest # doctest: +SKIP
>>> kurtosistest(list(range(20))) # doctest: +SKIP
KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.08804338332528348)

>>> np.random.seed(28041990) # doctest: +SKIP
>>> s = np.random.normal(0, 1, 1000) # doctest: +SKIP
>>> kurtosistest(s) # doctest: +SKIP
KurtosistestResult(statistic=1.2317590987707365, pvalue=0.21803908613450895)

dask.array.stats.normaltest(a, axis=0, nan_policy=’propagate’)
Test whether a sample differs from a normal distribution.

This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D’Agostino
and Pearson’s [1], [2] test that combines skew and kurtosis to produce an omnibus test of normality.

Parameters

a [array_like] The array containing the sample to be tested.

axis [int or None, optional] Axis along which to compute test. Default is 0. If None, compute
over the whole array a.

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

statistic [float or array] s^2 + k^2, where s is the z-score returned by skewtest and k is the
z-score returned by kurtosistest.

pvalue [float or array] A 2-sided chi squared probability for the hypothesis test.

3.7. Array 343

dask Documentation, Release 2.6.0

References

[1], [2]

Examples

>>> from scipy import stats # doctest: +SKIP
>>> pts = 1000 # doctest: +SKIP
>>> np.random.seed(28041990) # doctest: +SKIP
>>> a = np.random.normal(0, 1, size=pts) # doctest: +SKIP
>>> b = np.random.normal(2, 1, size=pts) # doctest: +SKIP
>>> x = np.concatenate((a, b)) # doctest: +SKIP
>>> k2, p = stats.normaltest(x) # doctest: +SKIP
>>> alpha = 1e-3 # doctest: +SKIP
>>> print("p = {:g}".format(p)) # doctest: +SKIP
p = 3.27207e-11
>>> if p < alpha: # null hypothesis: x comes from a normal distribution #
→˓doctest: +SKIP
... print("The null hypothesis can be rejected")
... else:
... print("The null hypothesis cannot be rejected")
The null hypothesis can be rejected

dask.array.stats.f_oneway(*args)
Performs a 1-way ANOVA.

The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The
test is applied to samples from two or more groups, possibly with differing sizes.

Parameters

sample1, sample2, . . . [array_like] The sample measurements for each group.

Returns

statistic [float] The computed F-value of the test.

pvalue [float] The associated p-value from the F-distribution.

Notes

The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid.

1. The samples are independent.

2. Each sample is from a normally distributed population.

3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity.

If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test
(scipy.stats.kruskal) although with some loss of power.

The algorithm is from Heiman[2], pp.394-7.

References

[1], [2], [3]

344 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> import scipy.stats as stats # doctest: +SKIP

[3] Here are some data on a shell measurement (the length of the anterior adductor muscle scar, standardized by
dividing by length) in the mussel Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a much larger data set used in
McDonald et al. (1991).

>>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735, #
→˓doctest: +SKIP
... 0.0659, 0.0923, 0.0836]
>>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835, #
→˓doctest: +SKIP
... 0.0725]
>>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105] #
→˓doctest: +SKIP
>>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764, #
→˓doctest: +SKIP
... 0.0689]
>>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045] # doctest: +SKIP
>>> stats.f_oneway(tillamook, newport, petersburg, magadan, tvarminne) #
→˓doctest: +SKIP
(7.1210194716424473, 0.00028122423145345439)

dask.array.stats.moment(a, moment=1, axis=0, nan_policy=’propagate’)
Calculate the nth moment about the mean for a sample.

A moment is a specific quantitative measure of the shape of a set of points. It is often used to calculate coeffi-
cients of skewness and kurtosis due to its close relationship with them.

Parameters

a [array_like] data

moment [int or array_like of ints, optional] order of central moment that is returned. Default is
1.

axis [int or None, optional] Axis along which the central moment is computed. Default is 0. If
None, compute over the whole array a.

nan_policy [{‘propagate’, ‘raise’, ‘omit’}, optional] Defines how to handle when input con-
tains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations
ignoring nan values. Default is ‘propagate’.

Returns

n-th central moment [ndarray or float] The appropriate moment along the given axis or over
all values if axis is None. The denominator for the moment calculation is the number of
observations, no degrees of freedom correction is done.

See also:

kurtosis, skew , describe

3.7. Array 345

dask Documentation, Release 2.6.0

Notes

The k-th central moment of a data sample is:

𝑚𝑘 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − �̄�)𝑘

Where n is the number of samples and x-bar is the mean. This function uses exponentiation by squares [1] for
efficiency.

References

[1]

Examples

>>> from scipy.stats import moment # doctest: +SKIP
>>> moment([1, 2, 3, 4, 5], moment=1) # doctest: +SKIP
0.0
>>> moment([1, 2, 3, 4, 5], moment=2) # doctest: +SKIP
2.0

dask.array.image.imread(filename, imread=None, preprocess=None)
Read a stack of images into a dask array

Parameters

filename: string A globstring like ‘myfile.*.png’

imread: function (optional) Optionally provide custom imread function. Function should ex-
pect a filename and produce a numpy array. Defaults to skimage.io.imread.

preprocess: function (optional) Optionally provide custom function to preprocess the image.
Function should expect a numpy array for a single image.

Returns

Dask array of all images stacked along the first dimension. All images

will be treated as individual chunks

Examples

>>> from dask.array.image import imread
>>> im = imread('2015-*-*.png') # doctest: +SKIP
>>> im.shape # doctest: +SKIP
(365, 1000, 1000, 3)

dask.array.gufunc.apply_gufunc(func, signature, *args, **kwargs)
Apply a generalized ufunc or similar python function to arrays.

signature determines if the function consumes or produces core dimensions. The remaining dimensions in
given input arrays (*args) are considered loop dimensions and are required to broadcast naturally against each
other.

In other terms, this function is like np.vectorize, but for the blocks of dask arrays. If the function itself shall also
be vectorized use vectorize=True for convenience.

346 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

func [callable] Function to call like func(*args, **kwargs) on input arrays (*args)
that returns an array or tuple of arrays. If multiple arguments with non-matching dimen-
sions are supplied, this function is expected to vectorize (broadcast) over axes of posi-
tional arguments in the style of NumPy universal functions [1] (if this is not the case, set
vectorize=True). If this function returns multiple outputs, output_core_dims has
to be set as well.

signature: string Specifies what core dimensions are consumed and produced by func. Ac-
cording to the specification of numpy.gufunc signature [2]

*args [numeric] Input arrays or scalars to the callable function.

axes: List of tuples, optional, keyword only A list of tuples with indices of axes a general-
ized ufunc should operate on. For instance, for a signature of "(i,j),(j,k)->(i,k)"
appropriate for matrix multiplication, the base elements are two-dimensional matrices and
these are taken to be stored in the two last axes of each argument. The corresponding axes
keyword would be [(-2, -1), (-2, -1), (-2, -1)]. For simplicity, for gener-
alized ufuncs that operate on 1-dimensional arrays (vectors), a single integer is accepted in-
stead of a single-element tuple, and for generalized ufuncs for which all outputs are scalars,
the output tuples can be omitted.

axis: int, optional, keyword only A single axis over which a generalized ufunc should operate.
This is a short-cut for ufuncs that operate over a single, shared core dimension, equivalent
to passing in axes with entries of (axis,) for each single-core-dimension argument and ()
for all others. For instance, for a signature "(i),(i)->()", it is equivalent to passing in
axes=[(axis,), (axis,), ()].

keepdims: bool, optional, keyword only If this is set to True, axes which are reduced over will
be left in the result as a dimension with size one, so that the result will broadcast correctly
against the inputs. This option can only be used for generalized ufuncs that operate on
inputs that all have the same number of core dimensions and with outputs that have no core
dimensions , i.e., with signatures like "(i),(i)->()" or "(m,m)->()". If used, the
location of the dimensions in the output can be controlled with axes and axis.

output_dtypes [Optional, dtype or list of dtypes, keyword only] Valid numpy dtype specifica-
tion or list thereof. If not given, a call of func with a small set of data is performed in order
to try to automatically determine the output dtypes.

output_sizes [dict, optional, keyword only] Optional mapping from dimension names to sizes
for outputs. Only used if new core dimensions (not found on inputs) appear on outputs.

vectorize: bool, keyword only If set to True, np.vectorize is applied to func for con-
venience. Defaults to False.

allow_rechunk: Optional, bool, keyword only Allows rechunking, otherwise chunk sizes
need to match and core dimensions are to consist only of one chunk. Warning: enabling
this can increase memory usage significantly. Defaults to False.

**kwargs [dict] Extra keyword arguments to pass to func

Returns

Single dask.array.Array or tuple of dask.array.Array

References

[1], [2]

3.7. Array 347

dask Documentation, Release 2.6.0

Examples

>>> import dask.array as da
>>> import numpy as np
>>> def stats(x):
... return np.mean(x, axis=-1), np.std(x, axis=-1)
>>> a = da.random.normal(size=(10,20,30), chunks=(5, 10, 30))
>>> mean, std = da.apply_gufunc(stats, "(i)->(),()", a)
>>> mean.compute().shape
(10, 20)

>>> def outer_product(x, y):
... return np.einsum("i,j->ij", x, y)
>>> a = da.random.normal(size=(20,30), chunks=(10, 30))
>>> b = da.random.normal(size=(10, 1,40), chunks=(5, 1, 40))
>>> c = da.apply_gufunc(outer_product, "(i),(j)->(i,j)", a, b, vectorize=True)
>>> c.compute().shape
(10, 20, 30, 40)

dask.array.gufunc.as_gufunc(signature=None, **kwargs)
Decorator for dask.array.gufunc.

Parameters

signature [String] Specifies what core dimensions are consumed and produced by func. Ac-
cording to the specification of numpy.gufunc signature [2]

axes: List of tuples, optional, keyword only A list of tuples with indices of axes a general-
ized ufunc should operate on. For instance, for a signature of "(i,j),(j,k)->(i,k)"
appropriate for matrix multiplication, the base elements are two-dimensional matrices and
these are taken to be stored in the two last axes of each argument. The corresponding axes
keyword would be [(-2, -1), (-2, -1), (-2, -1)]. For simplicity, for gener-
alized ufuncs that operate on 1-dimensional arrays (vectors), a single integer is accepted in-
stead of a single-element tuple, and for generalized ufuncs for which all outputs are scalars,
the output tuples can be omitted.

axis: int, optional, keyword only A single axis over which a generalized ufunc should operate.
This is a short-cut for ufuncs that operate over a single, shared core dimension, equivalent
to passing in axes with entries of (axis,) for each single-core-dimension argument and ()
for all others. For instance, for a signature "(i),(i)->()", it is equivalent to passing in
axes=[(axis,), (axis,), ()].

keepdims: bool, optional, keyword only If this is set to True, axes which are reduced over will
be left in the result as a dimension with size one, so that the result will broadcast correctly
against the inputs. This option can only be used for generalized ufuncs that operate on
inputs that all have the same number of core dimensions and with outputs that have no core
dimensions , i.e., with signatures like "(i),(i)->()" or "(m,m)->()". If used, the
location of the dimensions in the output can be controlled with axes and axis.

output_dtypes [Optional, dtype or list of dtypes, keyword only] Valid numpy dtype specifica-
tion or list thereof. If not given, a call of func with a small set of data is performed in order
to try to automatically determine the output dtypes.

output_sizes [dict, optional, keyword only] Optional mapping from dimension names to sizes
for outputs. Only used if new core dimensions (not found on inputs) appear on outputs.

vectorize: bool, keyword only If set to True, np.vectorize is applied to func for con-
venience. Defaults to False.

348 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

allow_rechunk: Optional, bool, keyword only Allows rechunking, otherwise chunk sizes
need to match and core dimensions are to consist only of one chunk. Warning: enabling
this can increase memory usage significantly. Defaults to False.

Returns

Decorator for ‘pyfunc‘ that itself returns a ‘gufunc‘.

References

[1], [2]

Examples

>>> import dask.array as da
>>> import numpy as np
>>> a = da.random.normal(size=(10,20,30), chunks=(5, 10, 30))
>>> @da.as_gufunc("(i)->(),()", output_dtypes=(float, float))
... def stats(x):
... return np.mean(x, axis=-1), np.std(x, axis=-1)
>>> mean, std = stats(a)
>>> mean.compute().shape
(10, 20)

>>> a = da.random.normal(size=(20,30), chunks=(10, 30))
>>> b = da.random.normal(size=(10, 1,40), chunks=(5, 1, 40))
>>> @da.as_gufunc("(i),(j)->(i,j)", output_dtypes=float, vectorize=True)
... def outer_product(x, y):
... return np.einsum("i,j->ij", x, y)
>>> c = outer_product(a, b)
>>> c.compute().shape
(10, 20, 30, 40)

dask.array.gufunc.gufunc(pyfunc, **kwargs)
Binds pyfunc into dask.array.apply_gufunc when called.

Parameters

pyfunc [callable] Function to call like func(*args, **kwargs) on input arrays (*args)
that returns an array or tuple of arrays. If multiple arguments with non-matching dimen-
sions are supplied, this function is expected to vectorize (broadcast) over axes of posi-
tional arguments in the style of NumPy universal functions [1] (if this is not the case, set
vectorize=True). If this function returns multiple outputs, output_core_dims has
to be set as well.

signature [String, keyword only] Specifies what core dimensions are consumed and produced
by func. According to the specification of numpy.gufunc signature [2]

axes: List of tuples, optional, keyword only A list of tuples with indices of axes a general-
ized ufunc should operate on. For instance, for a signature of "(i,j),(j,k)->(i,k)"
appropriate for matrix multiplication, the base elements are two-dimensional matrices and
these are taken to be stored in the two last axes of each argument. The corresponding axes
keyword would be [(-2, -1), (-2, -1), (-2, -1)]. For simplicity, for gener-
alized ufuncs that operate on 1-dimensional arrays (vectors), a single integer is accepted in-
stead of a single-element tuple, and for generalized ufuncs for which all outputs are scalars,
the output tuples can be omitted.

3.7. Array 349

dask Documentation, Release 2.6.0

axis: int, optional, keyword only A single axis over which a generalized ufunc should operate.
This is a short-cut for ufuncs that operate over a single, shared core dimension, equivalent
to passing in axes with entries of (axis,) for each single-core-dimension argument and ()
for all others. For instance, for a signature "(i),(i)->()", it is equivalent to passing in
axes=[(axis,), (axis,), ()].

keepdims: bool, optional, keyword only If this is set to True, axes which are reduced over will
be left in the result as a dimension with size one, so that the result will broadcast correctly
against the inputs. This option can only be used for generalized ufuncs that operate on
inputs that all have the same number of core dimensions and with outputs that have no core
dimensions , i.e., with signatures like "(i),(i)->()" or "(m,m)->()". If used, the
location of the dimensions in the output can be controlled with axes and axis.

output_dtypes [Optional, dtype or list of dtypes, keyword only] Valid numpy dtype specifica-
tion or list thereof. If not given, a call of func with a small set of data is performed in order
to try to automatically determine the output dtypes.

output_sizes [dict, optional, keyword only] Optional mapping from dimension names to sizes
for outputs. Only used if new core dimensions (not found on inputs) appear on outputs.

vectorize: bool, keyword only If set to True, np.vectorize is applied to func for con-
venience. Defaults to False.

allow_rechunk: Optional, bool, keyword only Allows rechunking, otherwise chunk sizes
need to match and core dimensions are to consist only of one chunk. Warning: enabling
this can increase memory usage significantly. Defaults to False.

Returns

Wrapped function

References

[1], [2]

Examples

>>> import dask.array as da
>>> import numpy as np
>>> a = da.random.normal(size=(10,20,30), chunks=(5, 10, 30))
>>> def stats(x):
... return np.mean(x, axis=-1), np.std(x, axis=-1)
>>> gustats = da.gufunc(stats, signature="(i)->(),()", output_dtypes=(float,
→˓float))
>>> mean, std = gustats(a)
>>> mean.compute().shape
(10, 20)

>>> a = da.random.normal(size=(20,30), chunks=(10, 30))
>>> b = da.random.normal(size=(10, 1,40), chunks=(5, 1, 40))
>>> def outer_product(x, y):
... return np.einsum("i,j->ij", x, y)
>>> guouter_product = da.gufunc(outer_product, signature="(i),(j)->(i,j)", output_
→˓dtypes=float, vectorize=True)
>>> c = guouter_product(a, b)
>>> c.compute().shape
(10, 20, 30, 40)

350 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.array.core.map_blocks(func, *args, name=None, token=None, dtype=None, chunks=None,
drop_axis=[], new_axis=None, meta=None, **kwargs)

Map a function across all blocks of a dask array.

Parameters

func [callable] Function to apply to every block in the array.

args [dask arrays or other objects]

dtype [np.dtype, optional] The dtype of the output array. It is recommended to provide this.
If not provided, will be inferred by applying the function to a small set of fake data.

chunks [tuple, optional] Chunk shape of resulting blocks if the function does not preserve
shape. If not provided, the resulting array is assumed to have the same block structure
as the first input array.

drop_axis [number or iterable, optional] Dimensions lost by the function.

new_axis [number or iterable, optional] New dimensions created by the function. Note that
these are applied after drop_axis (if present).

token [string, optional] The key prefix to use for the output array. If not provided, will be
determined from the function name.

name [string, optional] The key name to use for the output array. Note that this fully specifies
the output key name, and must be unique. If not provided, will be determined by a hash of
the arguments.

**kwargs : Other keyword arguments to pass to function. Values must be constants (not
dask.arrays)

Examples

>>> import dask.array as da
>>> x = da.arange(6, chunks=3)

>>> x.map_blocks(lambda x: x * 2).compute()
array([0, 2, 4, 6, 8, 10])

The da.map_blocks function can also accept multiple arrays.

>>> d = da.arange(5, chunks=2)
>>> e = da.arange(5, chunks=2)

>>> f = map_blocks(lambda a, b: a + b**2, d, e)
>>> f.compute()
array([0, 2, 6, 12, 20])

If the function changes shape of the blocks then you must provide chunks explicitly.

>>> y = x.map_blocks(lambda x: x[::2], chunks=((2, 2),))

You have a bit of freedom in specifying chunks. If all of the output chunk sizes are the same, you can provide
just that chunk size as a single tuple.

>>> a = da.arange(18, chunks=(6,))
>>> b = a.map_blocks(lambda x: x[:3], chunks=(3,))

3.7. Array 351

dask Documentation, Release 2.6.0

If the function changes the dimension of the blocks you must specify the created or destroyed dimensions.

>>> b = a.map_blocks(lambda x: x[None, :, None], chunks=(1, 6, 1),
... new_axis=[0, 2])

If chunks is specified but new_axis is not, then it is inferred to add the necessary number of axes on the left.

Map_blocks aligns blocks by block positions without regard to shape. In the following example we have two
arrays with the same number of blocks but with different shape and chunk sizes.

>>> x = da.arange(1000, chunks=(100,))
>>> y = da.arange(100, chunks=(10,))

The relevant attribute to match is numblocks.

>>> x.numblocks
(10,)
>>> y.numblocks
(10,)

If these match (up to broadcasting rules) then we can map arbitrary functions across blocks

>>> def func(a, b):
... return np.array([a.max(), b.max()])

>>> da.map_blocks(func, x, y, chunks=(2,), dtype='i8')
dask.array<func, shape=(20,), dtype=int64, chunksize=(2,), chunktype=numpy.
→˓ndarray>

>>> _.compute()
array([99, 9, 199, 19, 299, 29, 399, 39, 499, 49, 599, 59, 699,

69, 799, 79, 899, 89, 999, 99])

Your block function get information about where it is in the array by accepting a special block_info keyword
argument.

>>> def func(block, block_info=None):
... pass

This will receive the following information:

>>> block_info # doctest: +SKIP
{0: {'shape': (1000,),

'num-chunks': (10,),
'chunk-location': (4,),
'array-location': [(400, 500)]},

None: {'shape': (1000,),
'num-chunks': (10,),
'chunk-location': (4,),
'array-location': [(400, 500)],
'chunk-shape': (100,),
'dtype': dtype('float64')}}

For each argument and keyword arguments that are dask arrays (the positions of which are the first index), you
will receive the shape of the full array, the number of chunks of the full array in each dimension, the chunk
location (for example the fourth chunk over in the first dimension), and the array location (for example the slice
corresponding to 40:50). The same information is provided for the output, with the key None, plus the shape
and dtype that should be returned.

352 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

These features can be combined to synthesize an array from scratch, for example:

>>> def func(block_info=None):
... loc = block_info[None]['array-location'][0]
... return np.arange(loc[0], loc[1])

>>> da.map_blocks(func, chunks=((4, 4),), dtype=np.float_)
dask.array<func, shape=(8,), dtype=float64, chunksize=(4,), chunktype=numpy.
→˓ndarray>

>>> _.compute()
array([0, 1, 2, 3, 4, 5, 6, 7])

You may specify the key name prefix of the resulting task in the graph with the optional token keyword
argument.

>>> x.map_blocks(lambda x: x + 1, name='increment') # doctest: +SKIP
dask.array<increment, shape=(100,), dtype=int64, chunksize=(10,), chunktype=numpy.
→˓ndarray>

dask.array.core.blockwise(func, out_ind, *args, name=None, token=None, dtype=None, ad-
just_chunks=None, new_axes=None, align_arrays=True, concate-
nate=None, meta=None, **kwargs)

Tensor operation: Generalized inner and outer products

A broad class of blocked algorithms and patterns can be specified with a concise multi-index notation. The
blockwise function applies an in-memory function across multiple blocks of multiple inputs in a variety of
ways. Many dask.array operations are special cases of blockwise including elementwise, broadcasting, reduc-
tions, tensordot, and transpose.

Parameters

func [callable] Function to apply to individual tuples of blocks

out_ind [iterable] Block pattern of the output, something like ‘ijk’ or (1, 2, 3)

*args [sequence of Array, index pairs] Sequence like (x, ‘ij’, y, ‘jk’, z, ‘i’)

**kwargs [dict] Extra keyword arguments to pass to function

dtype [np.dtype] Datatype of resulting array.

concatenate [bool, keyword only] If true concatenate arrays along dummy indices, else provide
lists

adjust_chunks [dict] Dictionary mapping index to function to be applied to chunk sizes

new_axes [dict, keyword only] New indexes and their dimension lengths

Examples

2D embarrassingly parallel operation from two arrays, x, and y.

>>> z = blockwise(operator.add, 'ij', x, 'ij', y, 'ij', dtype='f8') # z = x + y
→˓# doctest: +SKIP

Outer product multiplying x by y, two 1-d vectors

>>> z = blockwise(operator.mul, 'ij', x, 'i', y, 'j', dtype='f8') # doctest:
→˓+SKIP

3.7. Array 353

dask Documentation, Release 2.6.0

z = x.T

>>> z = blockwise(np.transpose, 'ji', x, 'ij', dtype=x.dtype) # doctest: +SKIP

The transpose case above is illustrative because it does same transposition both on each in-memory block by
calling np.transpose and on the order of the blocks themselves, by switching the order of the index ij ->
ji.

We can compose these same patterns with more variables and more complex in-memory functions

z = X + Y.T

>>> z = blockwise(lambda x, y: x + y.T, 'ij', x, 'ij', y, 'ji', dtype='f8') #
→˓doctest: +SKIP

Any index, like i missing from the output index is interpreted as a contraction (note that this differs from
Einstein convention; repeated indices do not imply contraction.) In the case of a contraction the passed function
should expect an iterable of blocks on any array that holds that index. To receive arrays concatenated along
contracted dimensions instead pass concatenate=True.

Inner product multiplying x by y, two 1-d vectors

>>> def sequence_dot(x_blocks, y_blocks):
... result = 0
... for x, y in zip(x_blocks, y_blocks):
... result += x.dot(y)
... return result

>>> z = blockwise(sequence_dot, '', x, 'i', y, 'i', dtype='f8') # doctest: +SKIP

Add new single-chunk dimensions with the new_axes= keyword, including the length of the new dimension.
New dimensions will always be in a single chunk.

>>> def f(x):
... return x[:, None] * np.ones((1, 5))

>>> z = blockwise(f, 'az', x, 'a', new_axes={'z': 5}, dtype=x.dtype) # doctest:
→˓+SKIP

New dimensions can also be multi-chunk by specifying a tuple of chunk sizes. This has limited utility as is
(because the chunks are all the same), but the resulting graph can be modified to achieve more useful results
(see da.map_blocks).

>>> z = blockwise(f, 'az', x, 'a', new_axes={'z': (5, 5)}, dtype=x.dtype) #
→˓doctest: +SKIP

If the applied function changes the size of each chunk you can specify this with a adjust_chunks={...}
dictionary holding a function for each index that modifies the dimension size in that index.

>>> def double(x):
... return np.concatenate([x, x])

>>> y = blockwise(double, 'ij', x, 'ij',
... adjust_chunks={'i': lambda n: 2 * n}, dtype=x.dtype) #
→˓doctest: +SKIP

Include literals by indexing with None

354 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> y = blockwise(add, 'ij', x, 'ij', 1234, None, dtype=x.dtype) # doctest: +SKIP

dask.array.core.normalize_chunks(chunks, shape=None, limit=None, dtype=None, previ-
ous_chunks=None)

Normalize chunks to tuple of tuples

This takes in a variety of input types and information and produces a full tuple-of-tuples result for chunks,
suitable to be passed to Array or rechunk or any other operation that creates a Dask array.

Parameters

chunks: tuple, int, dict, or string The chunks to be normalized. See examples below for more
details

shape: Tuple[int] The shape of the array

limit: int (optional) The maximum block size to target in bytes, if freedom is given to choose

dtype: np.dtype

previous_chunks: Tuple[Tuple[int]] optional Chunks from a previous array that we should
use for inspiration when rechunking auto dimensions. If not provided but auto-chunking
exists then auto-dimensions will prefer square-like chunk shapes.

Examples

Specify uniform chunk sizes

>>> normalize_chunks((2, 2), shape=(5, 6))
((2, 2, 1), (2, 2, 2))

Also passes through fully explicit tuple-of-tuples

>>> normalize_chunks(((2, 2, 1), (2, 2, 2)), shape=(5, 6))
((2, 2, 1), (2, 2, 2))

Cleans up lists to tuples

>>> normalize_chunks([[2, 2], [3, 3]])
((2, 2), (3, 3))

Expands integer inputs 10 -> (10, 10)

>>> normalize_chunks(10, shape=(30, 5))
((10, 10, 10), (5,))

Expands dict inputs

>>> normalize_chunks({0: 2, 1: 3}, shape=(6, 6))
((2, 2, 2), (3, 3))

The values -1 and None get mapped to full size

>>> normalize_chunks((5, -1), shape=(10, 10))
((5, 5), (10,))

Use the value “auto” to automatically determine chunk sizes along certain dimensions. This uses the limit=
and dtype= keywords to determine how large to make the chunks. The term “auto” can be used anywhere an
integer can be used. See array chunking documentation for more information.

3.7. Array 355

dask Documentation, Release 2.6.0

>>> normalize_chunks(("auto",), shape=(20,), limit=5, dtype='uint8')
((5, 5, 5, 5),)

You can also use byte sizes (see dask.utils.parse_bytes) in place of “auto” to ask for a particular size

>>> normalize_chunks("1kiB", shape=(2000,), dtype='float32')
((250, 250, 250, 250, 250, 250, 250, 250),)

Respects null dimensions

>>> normalize_chunks((), shape=(0, 0))
((0,), (0,))

Array Methods

class dask.array.Array
Parallel Dask Array

A parallel nd-array comprised of many numpy arrays arranged in a grid.

This constructor is for advanced uses only. For normal use see the da.from_array function.

Parameters

dask [dict] Task dependency graph

name [string] Name of array in dask

shape [tuple of ints] Shape of the entire array

chunks: iterable of tuples block sizes along each dimension

dtype [str or dtype] Typecode or data-type for the new Dask Array

meta [empty ndarray] empty ndarray created with same NumPy backend, ndim and dtype as
the Dask Array being created (overrides dtype)

See also:

dask.array.from_array

all(axis=None, out=None, keepdims=False)
This docstring was copied from numpy.ndarray.all.

Some inconsistencies with the Dask version may exist.

Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all equivalent function

any(axis=None, out=None, keepdims=False)
This docstring was copied from numpy.ndarray.any.

Some inconsistencies with the Dask version may exist.

Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

356 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.all.html#numpy.all

dask Documentation, Release 2.6.0

See also:

numpy.any equivalent function

argmax(axis=None, out=None)
This docstring was copied from numpy.ndarray.argmax.

Some inconsistencies with the Dask version may exist.

Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also:

numpy.argmax equivalent function

argmin(axis=None, out=None)
This docstring was copied from numpy.ndarray.argmin.

Some inconsistencies with the Dask version may exist.

Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also:

numpy.argmin equivalent function

argtopk(k, axis=-1, split_every=None)
The indices of the top k elements of an array.

See da.argtopk for docstring

astype(dtype, **kwargs)
Copy of the array, cast to a specified type.

Parameters

dtype [str or dtype] Typecode or data-type to which the array is cast.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set
to False and the dtype requirement is satisfied, the input array is returned instead of a copy.

blocks
Slice an array by blocks

3.7. Array 357

https://docs.scipy.org/doc/numpy/reference/generated/numpy.any.html#numpy.any
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html#numpy.argmax
https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html#numpy.argmin

dask Documentation, Release 2.6.0

This allows blockwise slicing of a Dask array. You can perform normal Numpy-style slicing but now
rather than slice elements of the array you slice along blocks so, for example, x.blocks[0, ::2]
produces a new dask array with every other block in the first row of blocks.

You can index blocks in any way that could index a numpy array of shape equal to the number of blocks
in each dimension, (available as array.numblocks). The dimension of the output array will be the same
as the dimension of this array, even if integer indices are passed. This does not support slicing with
np.newaxis or multiple lists.

Returns

A Dask array

Examples

>>> import dask.array as da
>>> x = da.arange(10, chunks=2)
>>> x.blocks[0].compute()
array([0, 1])
>>> x.blocks[:3].compute()
array([0, 1, 2, 3, 4, 5])
>>> x.blocks[::2].compute()
array([0, 1, 4, 5, 8, 9])
>>> x.blocks[[-1, 0]].compute()
array([8, 9, 0, 1])

choose(choices, out=None, mode=’raise’)
This docstring was copied from numpy.ndarray.choose.

Some inconsistencies with the Dask version may exist.

Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose equivalent function

clip(min=None, max=None, out=None)
This docstring was copied from numpy.ndarray.clip.

Some inconsistencies with the Dask version may exist.

Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip equivalent function

compute_chunk_sizes()
Compute the chunk sizes for a Dask array. This is especially useful when the chunk sizes are unknown
(e.g., when indexing one Dask array with another).

Notes

This function modifies the Dask array in-place.

358 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.choose.html#numpy.choose
https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip

dask Documentation, Release 2.6.0

Examples

>>> import dask.array as da
>>> import numpy as np
>>> x = da.from_array([-2, -1, 0, 1, 2], chunks=2)
>>> x.chunks
((2, 2, 1),)
>>> y = x[x <= 0]
>>> y.chunks
((nan, nan, nan),)
>>> y.compute_chunk_sizes() # in-place computation
dask.array<getitem, shape=(3,), dtype=int64, chunksize=(2,), chunktype=numpy.
→˓ndarray>
>>> y.chunks
((2, 1, 0),)

copy()
Copy array. This is a no-op for dask.arrays, which are immutable

cumprod(axis, dtype=None, out=None)
See da.cumprod for docstring

cumsum(axis, dtype=None, out=None)
See da.cumsum for docstring

dot(b, out=None)
This docstring was copied from numpy.ndarray.dot.

Some inconsistencies with the Dask version may exist.

Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot equivalent function

Examples

>>> a = np.eye(2) # doctest: +SKIP
>>> b = np.ones((2, 2)) * 2 # doctest: +SKIP
>>> a.dot(b) # doctest: +SKIP
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b) # doctest: +SKIP
array([[8., 8.],

[8., 8.]])

flatten([order])
This docstring was copied from numpy.ndarray.ravel.

Some inconsistencies with the Dask version may exist.

Return a flattened array.

Refer to numpy.ravel for full documentation.

3.7. Array 359

https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot

dask Documentation, Release 2.6.0

See also:

numpy.ravel equivalent function

ndarray.flat a flat iterator on the array.

itemsize
Length of one array element in bytes

map_blocks(*args, name=None, token=None, dtype=None, chunks=None, drop_axis=[],
new_axis=None, meta=None, **kwargs)

Map a function across all blocks of a dask array.

Parameters

func [callable] Function to apply to every block in the array.

args [dask arrays or other objects]

dtype [np.dtype, optional] The dtype of the output array. It is recommended to provide
this. If not provided, will be inferred by applying the function to a small set of fake
data.

chunks [tuple, optional] Chunk shape of resulting blocks if the function does not preserve
shape. If not provided, the resulting array is assumed to have the same block structure
as the first input array.

drop_axis [number or iterable, optional] Dimensions lost by the function.

new_axis [number or iterable, optional] New dimensions created by the function. Note
that these are applied after drop_axis (if present).

token [string, optional] The key prefix to use for the output array. If not provided, will be
determined from the function name.

name [string, optional] The key name to use for the output array. Note that this fully
specifies the output key name, and must be unique. If not provided, will be determined
by a hash of the arguments.

**kwargs : Other keyword arguments to pass to function. Values must be constants (not
dask.arrays)

Examples

>>> import dask.array as da
>>> x = da.arange(6, chunks=3)

>>> x.map_blocks(lambda x: x * 2).compute()
array([0, 2, 4, 6, 8, 10])

The da.map_blocks function can also accept multiple arrays.

>>> d = da.arange(5, chunks=2)
>>> e = da.arange(5, chunks=2)

>>> f = map_blocks(lambda a, b: a + b**2, d, e)
>>> f.compute()
array([0, 2, 6, 12, 20])

360 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html#numpy.ravel

dask Documentation, Release 2.6.0

If the function changes shape of the blocks then you must provide chunks explicitly.

>>> y = x.map_blocks(lambda x: x[::2], chunks=((2, 2),))

You have a bit of freedom in specifying chunks. If all of the output chunk sizes are the same, you can
provide just that chunk size as a single tuple.

>>> a = da.arange(18, chunks=(6,))
>>> b = a.map_blocks(lambda x: x[:3], chunks=(3,))

If the function changes the dimension of the blocks you must specify the created or destroyed dimensions.

>>> b = a.map_blocks(lambda x: x[None, :, None], chunks=(1, 6, 1),
... new_axis=[0, 2])

If chunks is specified but new_axis is not, then it is inferred to add the necessary number of axes on
the left.

Map_blocks aligns blocks by block positions without regard to shape. In the following example we have
two arrays with the same number of blocks but with different shape and chunk sizes.

>>> x = da.arange(1000, chunks=(100,))
>>> y = da.arange(100, chunks=(10,))

The relevant attribute to match is numblocks.

>>> x.numblocks
(10,)
>>> y.numblocks
(10,)

If these match (up to broadcasting rules) then we can map arbitrary functions across blocks

>>> def func(a, b):
... return np.array([a.max(), b.max()])

>>> da.map_blocks(func, x, y, chunks=(2,), dtype='i8')
dask.array<func, shape=(20,), dtype=int64, chunksize=(2,), chunktype=numpy.
→˓ndarray>

>>> _.compute()
array([99, 9, 199, 19, 299, 29, 399, 39, 499, 49, 599, 59, 699,

69, 799, 79, 899, 89, 999, 99])

Your block function get information about where it is in the array by accepting a special block_info
keyword argument.

>>> def func(block, block_info=None):
... pass

This will receive the following information:

>>> block_info # doctest: +SKIP
{0: {'shape': (1000,),

'num-chunks': (10,),
'chunk-location': (4,),
'array-location': [(400, 500)]},

(continues on next page)

3.7. Array 361

dask Documentation, Release 2.6.0

(continued from previous page)

None: {'shape': (1000,),
'num-chunks': (10,),
'chunk-location': (4,),
'array-location': [(400, 500)],
'chunk-shape': (100,),
'dtype': dtype('float64')}}

For each argument and keyword arguments that are dask arrays (the positions of which are the first index),
you will receive the shape of the full array, the number of chunks of the full array in each dimension, the
chunk location (for example the fourth chunk over in the first dimension), and the array location (for
example the slice corresponding to 40:50). The same information is provided for the output, with the
key None, plus the shape and dtype that should be returned.

These features can be combined to synthesize an array from scratch, for example:

>>> def func(block_info=None):
... loc = block_info[None]['array-location'][0]
... return np.arange(loc[0], loc[1])

>>> da.map_blocks(func, chunks=((4, 4),), dtype=np.float_)
dask.array<func, shape=(8,), dtype=float64, chunksize=(4,), chunktype=numpy.
→˓ndarray>

>>> _.compute()
array([0, 1, 2, 3, 4, 5, 6, 7])

You may specify the key name prefix of the resulting task in the graph with the optional token keyword
argument.

>>> x.map_blocks(lambda x: x + 1, name='increment') # doctest: +SKIP
dask.array<increment, shape=(100,), dtype=int64, chunksize=(10,),
→˓chunktype=numpy.ndarray>

map_overlap(func, depth, boundary=None, trim=True, **kwargs)
Map a function over blocks of the array with some overlap

We share neighboring zones between blocks of the array, then map a function, then trim away the neigh-
boring strips.

Parameters

func: function The function to apply to each extended block

depth: int, tuple, or dict The number of elements that each block should share with its
neighbors If a tuple or dict then this can be different per axis

boundary: str, tuple, dict How to handle the boundaries. Values include ‘reflect’, ‘peri-
odic’, ‘nearest’, ‘none’, or any constant value like 0 or np.nan

trim: bool Whether or not to trim depth elements from each block after calling the map
function. Set this to False if your mapping function already does this for you

**kwargs: Other keyword arguments valid in map_blocks

362 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> x = np.array([1, 1, 2, 3, 3, 3, 2, 1, 1])
>>> x = from_array(x, chunks=5)
>>> def derivative(x):
... return x - np.roll(x, 1)

>>> y = x.map_overlap(derivative, depth=1, boundary=0)
>>> y.compute()
array([1, 0, 1, 1, 0, 0, -1, -1, 0])

>>> import dask.array as da
>>> x = np.arange(16).reshape((4, 4))
>>> d = da.from_array(x, chunks=(2, 2))
>>> d.map_overlap(lambda x: x + x.size, depth=1).compute()
array([[16, 17, 18, 19],

[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])

>>> func = lambda x: x + x.size
>>> depth = {0: 1, 1: 1}
>>> boundary = {0: 'reflect', 1: 'none'}
>>> d.map_overlap(func, depth, boundary).compute() # doctest: +NORMALIZE_
→˓WHITESPACE
array([[12, 13, 14, 15],

[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27]])

max(axis=None, out=None, keepdims=False)
This docstring was copied from numpy.ndarray.max.

Some inconsistencies with the Dask version may exist.

Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax equivalent function

mean(axis=None, dtype=None, out=None, keepdims=False)
This docstring was copied from numpy.ndarray.mean.

Some inconsistencies with the Dask version may exist.

Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean equivalent function

min(axis=None, out=None, keepdims=False)
This docstring was copied from numpy.ndarray.min.

3.7. Array 363

https://docs.scipy.org/doc/numpy/reference/generated/numpy.amax.html#numpy.amax
https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean

dask Documentation, Release 2.6.0

Some inconsistencies with the Dask version may exist.

Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

numpy.amin equivalent function

moment(order, axis=None, dtype=None, keepdims=False, ddof=0, split_every=None, out=None)
Calculate the nth centralized moment.

Parameters

order [int] Order of the moment that is returned, must be >= 2.

axis [int, optional] Axis along which the central moment is computed. The default is to
compute the moment of the flattened array.

dtype [data-type, optional] Type to use in computing the moment. For arrays of integer
type the default is float64; for arrays of float types it is the same as the array type.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the
result as dimensions with size one. With this option, the result will broadcast correctly
against the original array.

ddof [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N
- ddof, where N represents the number of elements. By default ddof is zero.

Returns

moment [ndarray]

References

Computation of Covariances and Arbitrary-Order Statistical Moments” (PDF), Technical Report
SAND2008-6212, Sandia National Laboratories

[1]

nbytes
Number of bytes in array

nonzero()
This docstring was copied from numpy.ndarray.nonzero.

Some inconsistencies with the Dask version may exist.

Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero equivalent function

partitions
Slice an array by partitions. Alias of dask array .blocks attribute.

This alias allows you to write agnostic code that works with both dask arrays and dask dataframes.

364 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.amin.html#numpy.amin
https://docs.scipy.org/doc/numpy/reference/generated/numpy.nonzero.html#numpy.nonzero

dask Documentation, Release 2.6.0

This allows blockwise slicing of a Dask array. You can perform normal Numpy-style slicing but now
rather than slice elements of the array you slice along blocks so, for example, x.blocks[0, ::2]
produces a new dask array with every other block in the first row of blocks.

You can index blocks in any way that could index a numpy array of shape equal to the number of blocks
in each dimension, (available as array.numblocks). The dimension of the output array will be the same
as the dimension of this array, even if integer indices are passed. This does not support slicing with
np.newaxis or multiple lists.

Returns

A Dask array

Examples

>>> import dask.array as da
>>> x = da.arange(10, chunks=2)
>>> x.partitions[0].compute()
array([0, 1])
>>> x.partitions[:3].compute()
array([0, 1, 2, 3, 4, 5])
>>> x.partitions[::2].compute()
array([0, 1, 4, 5, 8, 9])
>>> x.partitions[[-1, 0]].compute()
array([8, 9, 0, 1])
>>> all(x.partitions[:].compute() == x.blocks[:].compute())
True

prod(axis=None, dtype=None, out=None, keepdims=False)
This docstring was copied from numpy.ndarray.prod.

Some inconsistencies with the Dask version may exist.

Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also:

numpy.prod equivalent function

ravel([order])
This docstring was copied from numpy.ndarray.ravel.

Some inconsistencies with the Dask version may exist.

Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel equivalent function

ndarray.flat a flat iterator on the array.

rechunk(chunks, threshold=None, block_size_limit=None)
See da.rechunk for docstring

3.7. Array 365

https://docs.scipy.org/doc/numpy/reference/generated/numpy.prod.html#numpy.prod
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ravel.html#numpy.ravel

dask Documentation, Release 2.6.0

repeat(repeats, axis=None)
This docstring was copied from numpy.ndarray.repeat.

Some inconsistencies with the Dask version may exist.

Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

reshape(shape, order=’C’)
This docstring was copied from numpy.ndarray.reshape.

Some inconsistencies with the Dask version may exist.

Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape pa-
rameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

round(decimals=0, out=None)
This docstring was copied from numpy.ndarray.round.

Some inconsistencies with the Dask version may exist.

Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also:

numpy.around equivalent function

size
Number of elements in array

squeeze(axis=None)
This docstring was copied from numpy.ndarray.squeeze.

Some inconsistencies with the Dask version may exist.

Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze equivalent function

366 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html#numpy.repeat
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html#numpy.reshape
https://docs.scipy.org/doc/numpy/reference/generated/numpy.around.html#numpy.around
https://docs.scipy.org/doc/numpy/reference/generated/numpy.squeeze.html#numpy.squeeze

dask Documentation, Release 2.6.0

std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
This docstring was copied from numpy.ndarray.std.

Some inconsistencies with the Dask version may exist.

Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std equivalent function

store(targets, lock=True, regions=None, compute=True, return_stored=False, **kwargs)
Store dask arrays in array-like objects, overwrite data in target

This stores dask arrays into object that supports numpy-style setitem indexing. It stores values chunk by
chunk so that it does not have to fill up memory. For best performance you can align the block size of the
storage target with the block size of your array.

If your data fits in memory then you may prefer calling np.array(myarray) instead.

Parameters

sources: Array or iterable of Arrays

targets: array-like or Delayed or iterable of array-likes and/or Delayeds These
should support setitem syntax target[10:20] = ...

lock: boolean or threading.Lock, optional Whether or not to lock the data stores while
storing. Pass True (lock each file individually), False (don’t lock) or a particular
threading.Lock object to be shared among all writes.

regions: tuple of slices or list of tuples of slices Each region tuple in regions
should be such that target[region].shape = source.shape for the cor-
responding source and target in sources and targets, respectively. If this is a tuple, the
contents will be assumed to be slices, so do not provide a tuple of tuples.

compute: boolean, optional If true compute immediately, return dask.delayed.
Delayed otherwise

return_stored: boolean, optional Optionally return the stored result (default False).

Examples

>>> x = ... # doctest: +SKIP

>>> import h5py # doctest: +SKIP
>>> f = h5py.File('myfile.hdf5', mode='a') # doctest: +SKIP
>>> dset = f.create_dataset('/data', shape=x.shape,
... chunks=x.chunks,
... dtype='f8') # doctest: +SKIP

>>> store(x, dset) # doctest: +SKIP

Alternatively store many arrays at the same time

>>> store([x, y, z], [dset1, dset2, dset3]) # doctest: +SKIP

3.7. Array 367

https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std

dask Documentation, Release 2.6.0

sum(axis=None, dtype=None, out=None, keepdims=False)
This docstring was copied from numpy.ndarray.sum.

Some inconsistencies with the Dask version may exist.

Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum equivalent function

swapaxes(axis1, axis2)
This docstring was copied from numpy.ndarray.swapaxes.

Some inconsistencies with the Dask version may exist.

Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

numpy.swapaxes equivalent function

to_dask_dataframe(columns=None, index=None)
Convert dask Array to dask Dataframe

Parameters

columns: list or string list of column names if DataFrame, single string if Series

index [dask.dataframe.Index, optional] An optional dask Index to use for the output Se-
ries or DataFrame.

The default output index depends on whether the array has any unknown chunks. If
there are any unknown chunks, the output has None for all the divisions (one per
chunk). If all the chunks are known, a default index with known divsions is created.

Specifying index can be useful if you’re conforming a Dask Array to an existing
dask Series or DataFrame, and you would like the indices to match.

See also:

dask.dataframe.from_dask_array

to_delayed(optimize_graph=True)
Convert into an array of dask.delayed objects, one per chunk.

Parameters

optimize_graph [bool, optional] If True [default], the graph is optimized before convert-
ing into dask.delayed objects.

See also:

dask.array.from_delayed

to_hdf5(filename, datapath, **kwargs)
Store array in HDF5 file

>>> x.to_hdf5('myfile.hdf5', '/x') # doctest: +SKIP

Optionally provide arguments as though to h5py.File.create_dataset

368 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html#numpy.sum
https://docs.scipy.org/doc/numpy/reference/generated/numpy.swapaxes.html#numpy.swapaxes

dask Documentation, Release 2.6.0

>>> x.to_hdf5('myfile.hdf5', '/x', compression='lzf', shuffle=True) #
→˓doctest: +SKIP

See also:

da.store, h5py.File.create_dataset

to_svg(size=500)
Convert chunks from Dask Array into an SVG Image

Parameters

chunks: tuple

size: int Rough size of the image

Returns

text: An svg string depicting the array as a grid of chunks

Examples

>>> x.to_svg(size=500) # doctest: +SKIP

to_tiledb(uri, *args, **kwargs)
Save array to the TileDB storage manager

See function to_tiledb() for argument documentation.

See https://docs.tiledb.io for details about the format and engine.

to_zarr(*args, **kwargs)
Save array to the zarr storage format

See https://zarr.readthedocs.io for details about the format.

See function to_zarr() for parameters.

topk(k, axis=-1, split_every=None)
The top k elements of an array.

See da.topk for docstring

trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
This docstring was copied from numpy.ndarray.trace.

Some inconsistencies with the Dask version may exist.

Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace equivalent function

transpose(*axes)
This docstring was copied from numpy.ndarray.transpose.

Some inconsistencies with the Dask version may exist.

Returns a view of the array with axes transposed.

3.7. Array 369

https://docs.tiledb.io
https://zarr.readthedocs.io
https://docs.scipy.org/doc/numpy/reference/generated/numpy.trace.html#numpy.trace

dask Documentation, Release 2.6.0

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array
into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes
are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape =
(i[n-1], i[n-2], ... i[1], i[0]).

Parameters

axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes
a.transpose()’s j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “con-
venience” alternative to the tuple form)

Returns

out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]]) # doctest: +SKIP
>>> a # doctest: +SKIP
array([[1, 2],

[3, 4]])
>>> a.transpose() # doctest: +SKIP
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0)) # doctest: +SKIP
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0) # doctest: +SKIP
array([[1, 3],

[2, 4]])

var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
This docstring was copied from numpy.ndarray.var.

Some inconsistencies with the Dask version may exist.

Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var equivalent function

view(dtype, order=’C’)
Get a view of the array as a new data type

Parameters

dtype: The dtype by which to view the array

370 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.var.html#numpy.var

dask Documentation, Release 2.6.0

order: string ‘C’ or ‘F’ (Fortran) ordering

This reinterprets the bytes of the array under a new dtype. If that

dtype does not have the same size as the original array then the shape

will change.

Beware that both numpy and dask.array can behave oddly when taking

shape-changing views of arrays under Fortran ordering. Under some

versions of NumPy this function will fail when taking shape-changing

views of Fortran ordered arrays if the first dimension has chunks of

size one.

vindex
Vectorized indexing with broadcasting.

This is equivalent to numpy’s advanced indexing, using arrays that are broadcast against each other. This
allows for pointwise indexing:

>>> x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> x = from_array(x, chunks=2)
>>> x.vindex[[0, 1, 2], [0, 1, 2]].compute()
array([1, 5, 9])

Mixed basic/advanced indexing with slices/arrays is also supported. The order of dimensions in the result
follows those proposed for ndarray.vindex [1]_: the subspace spanned by arrays is followed by all slices.

Note: vindex provides more general functionality than standard indexing, but it also has fewer opti-
mizations and can be significantly slower.

_[1]: https://github.com/numpy/numpy/pull/6256

3.7.2 Best Practices

It is easy to get started with Dask arrays, but using them well does require some experience. This page contains
suggestions for best practices, and includes solutions to common problems.

Use NumPy

If your data fits comfortably in RAM and you are not performance bound, then using NumPy might be the right choice.
Dask adds another layer of complexity which may get in the way.

If you are just looking for speedups rather than scalability then you may want to consider a project like Numba

Select a good chunk size

A common performance problem among Dask Array users is that they have chosen a chunk size that is either too small
(leading to lots of overhead) or poorly aligned with their data (leading to inefficient reading).

While optimal sizes and shapes are highly problem specific, it is rare to see chunk sizes below 100 MB in size. If you
are dealing with float64 data then this is around (4000, 4000) in size for a 2D array or (100, 400, 400) for
a 3D array.

3.7. Array 371

https://github.com/numpy/numpy/pull/6256
https://numba.pydata.org

dask Documentation, Release 2.6.0

You want to choose a chunk size that is large in order to reduce the number of chunks that Dask has to think about
(which affects overhead) but also small enough so that many of them can fit in memory at once. Dask will often have
as many chunks in memory as twice the number of active threads.

Orient your chunks

When reading data you should align your chunks with your storage format. Most array storage formats store data
in chunks themselves. If your Dask array chunks aren’t multiples of these chunk shapes then you will have to read
the same data repeatedly, which can be expensive. Note though that often storage formats choose chunk sizes that
are much smaller than is ideal for Dask, closer to 1MB than 100MB. In these cases you should choose a Dask chunk
size that aligns with the storage chunk size and that every Dask chunk dimension is a multiple of the storage chunk
dimension.

So for example if we have an HDF file that has chunks of size (128, 64), we might choose a chunk shape of
(1280, 6400).

>>> import h5py
>>> storage = h5py.File('myfile.hdf5')['x']
>>> storage.chunks
(128, 64)

>>> import dask.array as da
>>> x = da.from_array(storage, chunks=(1280, 6400))

Note that if you provide chunks='auto' then Dask Array will look for a .chunks attribute and use that to provide
a good chunking.

Avoid Oversubscribing Threads

By default Dask will run as many concurrent tasks as you have logical cores. It assumes that each task will consume
about one core. However, many array-computing libraries are themselves multi-threaded, which can cause contention
and low performance. In particular the BLAS/LAPACK libraries that back most of NumPy’s linear algebra routines
are often multi-threaded, and need to be told to use only one thread explicitly. You can do this with the following
environment variables (using bash export command below, but this may vary depending on your operating system).

export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
export OPENBLAS_NUM_THREADS=1

You need to run this before you start your Python process for it to take effect.

Consider Xarray

The Xarray package wraps around Dask Array, and so offers the same scalability, but also adds convenience when
dealing with complex datasets. In particular Xarray can help with the following:

1. Manage multiple arrays together as a consistent dataset

2. Read from a stack of HDF or NetCDF files at once

3. Switch between Dask Array and NumPy with a consistent API

Xarray is used in wide range of fields, including physics, astronomy, geoscience, microscopy, bioinformatics, engi-
neering, finance, and deep learning. Xarray also has a thriving user community that is good at providing support.

372 Chapter 3. Complex Algorithms

http://xarray.pydata.org/en/stable/

dask Documentation, Release 2.6.0

Build your own Operations

Often we want to perform computations for which there is no exact function in Dask Array. In these cases we may be
able to use some of the more generic functions to build our own. These include:

blockwise(func, out_ind, *args[, name, . . .]) Tensor operation: Generalized inner and outer products
map_blocks(func, *args[, name, token, . . .]) Map a function across all blocks of a dask array.
map_overlap(x, func, depth[, boundary, trim]) Map a function over blocks of the array with some over-

lap
reduction(x, chunk, aggregate[, axis, . . .]) General version of reductions

These functions may help you to apply a function that you write for NumPy functions onto larger Dask arrays.

3.7.3 Chunks

Dask arrays are composed of many NumPy arrays. How these arrays are arranged can significantly affect performance.
For example, for a square array you might arrange your chunks along rows, along columns, or in a more square-like
fashion. Different arrangements of NumPy arrays will be faster or slower for different algorithms.

Thinking about and controlling chunking is important to optimize advanced algorithms.

Specifying Chunk shapes

We always specify a chunks argument to tell dask.array how to break up the underlying array into chunks. We can
specify chunks in a variety of ways:

1. A uniform dimension size like 1000, meaning chunks of size 1000 in each dimension

2. A uniform chunk shape like (1000, 2000, 3000), meaning chunks of size 1000 in the first axis, 2000
in the second axis, and 3000 in the third

3. Fully explicit sizes of all blocks along all dimensions, like ((1000, 1000, 500), (400, 400), (5,
5, 5, 5, 5))

4. A dictionary specifying chunk size per dimension like {0: 1000, 1: 2000, 2: 3000}. This is just
another way of writing the forms 2 and 3 above

Your chunks input will be normalized and stored in the third and most explicit form. Note that chunks stands for
“chunk shape” rather than “number of chunks”, so specifying chunks=1 means that you will have many chunks,
each with exactly one element.

For performance, a good choice of chunks follows the following rules:

1. A chunk should be small enough to fit comfortably in memory. We’ll have many chunks in memory at once

2. A chunk must be large enough so that computations on that chunk take significantly longer than the 1ms over-
head per task that Dask scheduling incurs. A task should take longer than 100ms

3. Chunk sizes between 10MB-1GB are common, depending on the availability of RAM and the duration of
computations

4. Chunks should align with the computation that you want to do.

For example, if you plan to frequently slice along a particular dimension, then it’s more efficient if your chunks
are aligned so that you have to touch fewer chunks. If you want to add two arrays, then its convenient if those
arrays have matching chunks patterns

3.7. Array 373

dask Documentation, Release 2.6.0

5. Chunks should align with your storage, if applicable.

Array data formats are often chunked as well. When loading or saving data, if is useful to have Dask array
chunks that are aligned with the chunking of your storage, often an even multiple times larger in each direction

Unknown Chunks

Some arrays have unknown chunk sizes. This arises whenever the size of an array depends on lazy computations that
we haven’t yet performed like the following:

>>> x = da.from_array(np.random.randn(100), chunks=20)
>>> x += 0.1
>>> y = x[x > 0] # don't know how many values are greater than 0 ahead of time

Operations like the above result in arrays with unknown shapes and unknown chunk sizes. Unknown values within
shape or chunks are designated using np.nan rather than an integer. These arrays support many (but not all) opera-
tions. In particular, operations like slicing are not possible and will result in an error.

>>> y.shape
(np.nan,)
>>> y[4]
...
ValueError: Array chunk sizes unknown

A possible solution: https://docs.dask.org/en/latest/array-chunks.html#unknown-chunks.
Summary: to compute chunks sizes, use

x.compute_chunk_sizes() # for Dask Array
ddf.to_dask_array(lengths=True) # for Dask DataFrame ddf

Using compute_chunk_sizes() allows this example run:

>>> y.compute_chunk_sizes()
dask.array<..., chunksize=(19,), ...>
>>> y.shape
(44,)
>>> y[4].compute()
0.78621774046566

Note that compute_chunk_sizes() immediately performs computation and modifies the array in-place.

Unknown chunksizes also occur when using a Dask DataFrame to create a Dask array:

>>> ddf = dask.dataframe.from_pandas(...)
>>> ddf.to_dask_array()
dask.array<..., shape=(nan, 2), ..., chunksize=(nan, 2)>

Using to_dask_array() resolves this issue:

>>> ddf.to_dask_array(lengths=True)
dask.array<..., shape=(100, 2), ..., chunksize=(20, 2)>

More details on to_dask_array() are in mentioned in how to create a Dask array from a Dask DataFrame in the
documentation on Dask array creation.

374 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Chunks Examples

In this example we show how different inputs for chunks= cut up the following array:

1 2 3 4 5 6
7 8 9 0 1 2
3 4 5 6 7 8
9 0 1 2 3 4
5 6 7 8 9 0
1 2 3 4 5 6

Here, we show how different chunks= arguments split the array into different blocks

chunks=3: Symmetric blocks of size 3:

1 2 3 4 5 6
7 8 9 0 1 2
3 4 5 6 7 8

9 0 1 2 3 4
5 6 7 8 9 0
1 2 3 4 5 6

chunks=2: Symmetric blocks of size 2:

1 2 3 4 5 6
7 8 9 0 1 2

3 4 5 6 7 8
9 0 1 2 3 4

5 6 7 8 9 0
1 2 3 4 5 6

chunks=(3, 2): Asymmetric but repeated blocks of size (3, 2):

1 2 3 4 5 6
7 8 9 0 1 2
3 4 5 6 7 8

9 0 1 2 3 4
5 6 7 8 9 0
1 2 3 4 5 6

chunks=(1, 6): Asymmetric but repeated blocks of size (1, 6):

1 2 3 4 5 6

7 8 9 0 1 2

3 4 5 6 7 8

9 0 1 2 3 4

5 6 7 8 9 0

1 2 3 4 5 6

chunks=((2, 4), (3, 3)): Asymmetric and non-repeated blocks:

3.7. Array 375

dask Documentation, Release 2.6.0

1 2 3 4 5 6
7 8 9 0 1 2

3 4 5 6 7 8
9 0 1 2 3 4
5 6 7 8 9 0
1 2 3 4 5 6

chunks=((2, 2, 1, 1), (3, 2, 1)): Asymmetric and non-repeated blocks:

1 2 3 4 5 6
7 8 9 0 1 2

3 4 5 6 7 8
9 0 1 2 3 4

5 6 7 8 9 0

1 2 3 4 5 6

Discussion

The latter examples are rarely provided by users on original data but arise from complex slicing and broadcasting
operations. Generally people use the simplest form until they need more complex forms. The choice of chunks should
align with the computations you want to do.

For example, if you plan to take out thin slices along the first dimension, then you might want to make that dimension
skinnier than the others. If you plan to do linear algebra, then you might want more symmetric blocks.

Loading Chunked Data

Modern NDArray storage formats like HDF5, NetCDF, TIFF, and Zarr, allow arrays to be stored in chunks or tiles so
that blocks of data can be pulled out efficiently without having to seek through a linear data stream. It is best to align
the chunks of your Dask array with the chunks of your underlying data store.

However, data stores often chunk more finely than is ideal for Dask array, so it is common to choose a chunking that
is a multiple of your storage chunk size, otherwise you might incur high overhead.

For example, if you are loading a data store that is chunked in blocks of (100, 100), then you might choose a
chunking more like (1000, 2000) that is larger, but still evenly divisible by (100, 100). Data storage tech-
nologies will be able to tell you how their data is chunked.

Rechunking

rechunk(x, chunks[, threshold, block_size_limit]) Convert blocks in dask array x for new chunks.

Sometimes you need to change the chunking layout of your data. For example, perhaps it comes to you chunked
row-wise, but you need to do an operation that is much faster if done across columns. You can change the chunking
with the rechunk method.

x = x.rechunk((50, 1000))

Rechunking across axes can be expensive and incur a lot of communication, but Dask array has fairly efficient algo-
rithms to accomplish this.

376 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

You can pass rechunk any valid chunking form:

x = x.rechunk(1000)
x = x.rechunk((50, 1000))
x = x.rechunk({0: 50, 1: 1000})

Automatic Chunking

Chunks also includes three special values:

1. -1: no chunking along this dimension

2. None: no change to the chunking along this dimension (useful for rechunk)

3. "auto": allow the chunking in this dimension to accommodate ideal chunk sizes

So, for example, one could rechunk a 3D array to have no chunking along the zeroth dimension, but still have sensible
chunk sizes as follows:

x = x.rechunk({0: -1, 1: 'auto', 2: 'auto'})

Or one can allow all dimensions to be auto-scaled to get to a good chunk size:

x = x.rechunk('auto')

Automatic chunking expands or contracts all dimensions marked with "auto" to try to reach chunk sizes with a
number of bytes equal to the config value array.chunk-size, which is set to 128MiB by default, but which you
can change in your configuration.

>>> dask.config.get('array.chunk-size')
'128MiB'

Automatic rechunking tries to respect the median chunk shape of the auto-rescaled dimensions, but will modify this to
accommodate the shape of the full array (can’t have larger chunks than the array itself) and to find chunk shapes that
nicely divide the shape.

These values can also be used when creating arrays with operations like dask.array.ones or dask.array.
from_array

>>> dask.array.ones((10000, 10000), chunks=(-1, 'auto'))
dask.array<wrapped, shape=(10000, 10000), dtype=float64, chunksize=(10000, 1250),
→˓chunktype=numpy.ndarray>

3.7.4 Create Dask Arrays

You can load or store Dask arrays from a variety of common sources like HDF5, NetCDF, Zarr, or any format that
supports NumPy-style slicing.

from_array(x[, chunks, name, lock, asarray, . . .]) Create dask array from something that looks like an ar-
ray

from_delayed(value, shape[, dtype, meta, name]) Create a dask array from a dask delayed value
from_npy_stack(dirname[, mmap_mode]) Load dask array from stack of npy files
from_zarr(url[, component, storage_options, . . .]) Load array from the zarr storage format
stack(seq[, axis]) Stack arrays along a new axis
concatenate(seq[, axis, . . .]) Concatenate arrays along an existing axis

3.7. Array 377

https://zarr.readthedocs.io/en/stable/

dask Documentation, Release 2.6.0

NumPy Slicing

from_array(x[, chunks, name, lock, asarray, . . .]) Create dask array from something that looks like an ar-
ray

Many storage formats have Python projects that expose storage using NumPy slicing syntax. These include HDF5,
NetCDF, BColz, Zarr, GRIB, etc. For example, we can load a Dask array from an HDF5 file using h5py:

>>> import h5py
>>> f = h5py.File('myfile.hdf5') # HDF5 file
>>> d = f['/data/path'] # Pointer on on-disk array
>>> d.shape # d can be very large
(1000000, 1000000)

>>> x = d[:5, :5] # We slice to get numpy arrays

Given an object like d above that has dtype and shape properties and that supports NumPy style slicing, we can
construct a lazy Dask array:

>>> import dask.array as da
>>> x = da.from_array(d, chunks=(1000, 1000))

This process is entirely lazy. Neither creating the h5py object nor wrapping it with da.from_array have loaded
any data.

Random Data

For experimentation or benchmarking it is common to create arrays of random data. The dask.array.random
module implements most of the functions in the numpy.random module. We list some common functions below
but for a full list see the Array API:

random.binomial(n, p[, size]) Draw samples from a binomial distribution.
random.normal([loc, scale, size]) Draw random samples from a normal (Gaussian) distri-

bution.
random.poisson([lam, size]) Draw samples from a Poisson distribution.
random.random([size]) Return random floats in the half-open interval [0.0, 1.0).

>>> import dask.array as da
>>> x = da.random.random((10000, 10000), chunks=(1000, 1000))

Concatenation and Stacking

stack(seq[, axis]) Stack arrays along a new axis
concatenate(seq[, axis, . . .]) Concatenate arrays along an existing axis

Often we store data in several different locations and want to stitch them together:

dask_arrays = []
for fn in filenames:

f = h5py.File(fn)

(continues on next page)

378 Chapter 3. Complex Algorithms

https://www.h5py.org/

dask Documentation, Release 2.6.0

(continued from previous page)

d = f['/data']
array = da.from_array(d, chunks=(1000, 1000))
dask_arrays.append(array)

x = da.concatenate(dask_arrays, axis=0) # concatenate arrays along first axis

For more information, see concatenation and stacking docs.

Using dask.delayed

from_delayed(value, shape[, dtype, meta, name]) Create a dask array from a dask delayed value
stack(seq[, axis]) Stack arrays along a new axis
concatenate(seq[, axis, . . .]) Concatenate arrays along an existing axis

Sometimes NumPy-style data resides in formats that do not support NumPy-style slicing. We can still construct Dask
arrays around this data if we have a Python function that can generate pieces of the full array if we use dask.delayed.
Dask delayed lets us delay a single function call that would create a NumPy array. We can then wrap this delayed
object with da.from_delayed, providing a dtype and shape to produce a single-chunked Dask array. Furthermore,
we can use stack or concatenate from before to construct a larger lazy array.

As an example, consider loading a stack of images using skimage.io.imread:

import skimage.io
import dask.array as da
import dask

imread = dask.delayed(skimage.io.imread, pure=True) # Lazy version of imread

filenames = sorted(glob.glob('*.jpg'))

lazy_images = [imread(path) for path in filenames] # Lazily evaluate imread on each
→˓path
sample = lazy_images[0].compute() # load the first image (assume rest are same shape/
→˓dtype)

arrays = [da.from_delayed(lazy_image, # Construct a small Dask array
dtype=sample.dtype, # for every lazy value
shape=sample.shape)

for lazy_image in lazy_images]

stack = da.stack(arrays, axis=0) # Stack all small Dask arrays into one

See documentation on using dask.delayed with collections.

From Dask DataFrame

There are several ways to create a Dask array from a Dask DataFrame. Dask DataFrames have a to_dask_array
method:

>>> df = dask.dataframes.from_pandas(...)
>>> df.to_dask_array()
dask.array<values, shape=(nan, 3), dtype=float64, chunksize=(nan, 3), chunktype=numpy.
→˓ndarray>

3.7. Array 379

dask Documentation, Release 2.6.0

This mirrors the to_numpy function in Pandas. The values attribute is also supported:

>>> df.values
dask.array<values, shape=(nan, 3), dtype=float64, chunksize=(nan, 3), chunktype=numpy.
→˓ndarray>

However, these arrays do not have known chunk sizes because dask.dataframe does not track the number of rows in
each partition. This means that some operations like slicing will not operate correctly.

The chunk sizes can be computed:

>>> df.to_dask_array(lengths=True)
dask.array<array, shape=(100, 3), dtype=float64, chunksize=(50, 3), chunktype=numpy.
→˓ndarray>

Specifying lengths=True triggers immediate computation of the chunk sizes. This enables downstream computa-
tions that rely on having known chunk sizes (e.g., slicing).

The Dask DataFrame to_records method also returns a Dask Array, but does not compute the shape information:

>>> df.to_records()
dask.array<to_records, shape=(nan,), dtype=(numpy.record, [('index', '<i8'), ('x', '
→˓<f8'), ('y', '<f8'), ('z', '<f8')]), chunksize=(nan,), chunktype=numpy.ndarray>

If you have a function that converts a Pandas DataFrame into a NumPy array, then calling map_partitions with
that function on a Dask DataFrame will produce a Dask array:

>>> df.map_partitions(np.asarray)
dask.array<asarray, shape=(nan, 3), dtype=float64, chunksize=(nan, 3),
→˓chunktype=numpy.ndarray>

Interactions with NumPy arrays

Dask array operations will automatically convert NumPy arrays into single-chunk dask arrays:

>>> x = da.sum(np.ones(5))
>>> x.compute()
5

When NumPy and Dask arrays interact, the result will be a Dask array. Automatic rechunking rules will generally
slice the NumPy array into the appropriate Dask chunk shape:

>>> x = da.ones(10, chunks=(5,))
>>> y = np.ones(10)
>>> z = x + y
>>> z
dask.array<add, shape=(10,), dtype=float64, chunksize=(5,), chunktype=numpy.ndarray>

These interactions work not just for NumPy arrays but for any object that has shape and dtype attributes and imple-
ments NumPy slicing syntax.

Chunks

See documentation on Array Chunks for more information.

380 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_numpy.html

dask Documentation, Release 2.6.0

3.7.5 Store Dask Arrays

store(sources, targets[, lock, regions, . . .]) Store dask arrays in array-like objects, overwrite data in
target

to_hdf5(filename, *args, **kwargs) Store arrays in HDF5 file
to_npy_stack(dirname, x[, axis]) Write dask array to a stack of .npy files
to_zarr(arr, url[, component, . . .]) Save array to the zarr storage format
compute(*args, **kwargs) Compute several dask collections at once.

In Memory

compute(*args, **kwargs) Compute several dask collections at once.

If you have a small amount of data, you can call np.array or .compute() on your Dask array to turn in to a
normal NumPy array:

>>> x = da.arange(6, chunks=3)
>>> y = x**2
>>> np.array(y)
array([0, 1, 4, 9, 16, 25])

>>> y.compute()
array([0, 1, 4, 9, 16, 25])

NumPy style slicing

store(sources, targets[, lock, regions, . . .]) Store dask arrays in array-like objects, overwrite data in
target

You can store Dask arrays in any object that supports NumPy-style slice assignment like h5py.Dataset:

>>> import h5py
>>> f = h5py.File('myfile.hdf5')
>>> d = f.require_dataset('/data', shape=x.shape, dtype=x.dtype)
>>> da.store(x, d)

Also, you can store several arrays in one computation by passing lists of sources and destinations:

>>> da.store([array1, array2], [output1, output2]) # doctest: +SKIP

HDF5

to_hdf5(filename, *args, **kwargs) Store arrays in HDF5 file

HDF5 is sufficiently common that there is a special function to_hdf5 to store data into HDF5 files using h5py:

>>> da.to_hdf5('myfile.hdf5', '/y', y) # doctest: +SKIP

You can store several arrays in one computation with the function da.to_hdf5 by passing in a dictionary:

3.7. Array 381

dask Documentation, Release 2.6.0

>>> da.to_hdf5('myfile.hdf5', {'/x': x, '/y': y}) # doctest: +SKIP

Zarr

The Zarr format is a chunk-wise binary array storage file format with a good selection of encoding and compression
options. Due to each chunk being stored in a separate file, it is ideal for parallel access in both reading and writing
(for the latter, if the Dask array chunks are aligned with the target). Furthermore, storage in remote data services such
as S3 and GCS is supported.

For example, to save data to a local zarr dataset you would do:

>>> arr.to_zarr('output.zarr')

or to save to a particular bucket on S3:

>>> arr.to_zarr('s3://mybucket/output.zarr', storage_option={'key': 'mykey',
'secret': 'mysecret'})

or your own custom zarr Array:

>>> z = zarr.create((10,), dtype=float, store=zarr.ZipStore("output.zarr"))
>>> arr.to_zarr(z)

To retrieve those data, you would do da.from_zarrwith exactly the same arguments. The chunking of the resultant
Dask array is defined by how the files were saved, unless otherwise specified.

TileDB

TileDB is a binary array format and storage manager with tunable chunking, layout, and compression options. The
TileDB storage manager library includes support for scalable storage backends such as S3 API compatible object
stores and HDFS, with automatic scaling, and supports multi-threaded and multi-process reads (consistent) and writes
(eventually-consistent).

To save data to a local TileDB array:

>>> arr.to_tiledb('output.tdb')

or to save to a bucket on S3:

>>> arr.to_tiledb('s3://mybucket/output.tdb',
storage_options={'vfs.s3.aws_access_key_id': 'mykey',

'vfs.s3.aws_secret_access_key': 'mysecret'})

Files may be retrieved by running da.from_tiledb with the same URI, and any necessary arguments.

Intermediate storage

store(sources, targets[, lock, regions, . . .]) Store dask arrays in array-like objects, overwrite data in
target

In some cases, one may wish to store an intermediate result in long term storage. This differs from persist, which
is mainly used to manage intermediate results within Dask that don’t necessarily have longevity. Also it differs from

382 Chapter 3. Complex Algorithms

https://zarr.readthedocs.io
https://docs.tiledb.io

dask Documentation, Release 2.6.0

storing final results as these mark the end of the Dask graph. Thus intermediate results are easier to reuse without
reloading data. Intermediate storage is mainly useful in cases where the data is needed outside of Dask (e.g. on disk,
in a database, in the cloud, etc.). It can be useful as a checkpoint for long running or error-prone computations.

The intermediate storage use case differs from the typical storage use case as a Dask Array is returned to the
user that represents the result of that storage operation. This is typically done by setting the store function’s
return_stored flag to True.

x.store() # stores data, returns nothing
x = x.store(return_stored=True) # stores data, returns new dask array backed by that
→˓data

The user can then decide whether the storage operation happens immediately (by setting the compute flag to True)
or later (by setting the compute flag to False). In all other ways, this behaves the same as a normal call to store.
Some examples are shown below.

>>> import dask.array as da
>>> import zarr as zr
>>> c = (2, 2)
>>> d = da.ones((10, 11), chunks=c)
>>> z1 = zr.open_array('lazy.zarr', shape=d.shape, dtype=d.dtype, chunks=c)
>>> z2 = zr.open_array('eager.zarr', shape=d.shape, dtype=d.dtype, chunks=c)
>>> d1 = d.store(z1, compute=False, return_stored=True)
>>> d2 = d.store(z2, compute=True, return_stored=True)

This can be combined with any other storage strategies either noted above, in the docs or for any specialized storage
types.

3.7.6 Plugins

We can run arbitrary user-defined functions on Dask arrays whenever they are constructed. This allows us to build a
variety of custom behaviors that improve debugging, user warning, etc. You can register a list of functions to run on
all Dask arrays to the global array_plugins= value:

>>> def f(x):
... print(x.nbytes)

>>> with dask.config.set(array_plugins=[f]):
... x = da.ones((10, 1), chunks=(5, 1))
... y = x.dot(x.T)
80
80
800
800

If the plugin function returns None, then the input Dask array will be returned without change. If the plugin function
returns something else, then that value will be the result of the constructor.

Examples

Automatically compute

We may wish to turn some Dask array code into normal NumPy code. This is useful, for example, to track down errors
immediately that would otherwise be hidden by Dask’s lazy semantics:

3.7. Array 383

dask Documentation, Release 2.6.0

>>> with dask.config.set(array_plugins=[lambda x: x.compute()]):
... x = da.arange(5, chunks=2)

>>> x # this was automatically converted into a numpy array
array([0, 1, 2, 3, 4])

Warn on large chunks

We may wish to warn users if they are creating chunks that are too large:

def warn_on_large_chunks(x):
shapes = list(itertools.product(*x.chunks))
nbytes = [x.dtype.itemsize * np.prod(shape) for shape in shapes]
if any(nb > 1e9 for nb in nbytes):

warnings.warn("Array contains very large chunks")

with dask.config.set(array_plugins=[warn_on_large_chunks]):
...

Combine

You can also combine these plugins into a list. They will run one after the other, chaining results through them:

with dask.config.set(array_plugins=[warn_on_large_chunks, lambda x: x.compute()]):
...

3.7.7 Overlapping Computations

Some array operations require communication of borders between neighboring blocks. Example operations include
the following:

• Convolve a filter across an image

• Sliding sum/mean/max, . . .

• Search for image motifs like a Gaussian blob that might span the border of a block

• Evaluate a partial derivative

• Play the game of Life

Dask Array supports these operations by creating a new array where each block is slightly expanded by the borders of
its neighbors. This costs an excess copy and the communication of many small chunks, but allows localized functions
to evaluate in an embarrassingly parallel manner.

The main API for these computations is the map_overlap method defined below:

map_overlap(x, func, depth[, boundary, trim]) Map a function over blocks of the array with some over-
lap

dask.array.map_overlap(x, func, depth, boundary=None, trim=True, **kwargs)
Map a function over blocks of the array with some overlap

We share neighboring zones between blocks of the array, then map a function, then trim away the neighboring

384 Chapter 3. Complex Algorithms

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

dask Documentation, Release 2.6.0

strips.

Parameters

func: function The function to apply to each extended block

depth: int, tuple, or dict The number of elements that each block should share with its
neighbors If a tuple or dict then this can be different per axis. Asymmetric depths may
be specified using a dict value of (-/+) tuples. Note that asymmetric depths are currently
only supported when boundary is ‘none’.

boundary: str, tuple, dict How to handle the boundaries. Values include ‘reflect’, ‘periodic’,
‘nearest’, ‘none’, or any constant value like 0 or np.nan

trim: bool Whether or not to trim depth elements from each block after calling the map
function. Set this to False if your mapping function already does this for you

**kwargs: Other keyword arguments valid in map_blocks

Examples

>>> import numpy as np
>>> import dask.array as da

>>> x = np.array([1, 1, 2, 3, 3, 3, 2, 1, 1])
>>> x = da.from_array(x, chunks=5)
>>> def derivative(x):
... return x - np.roll(x, 1)

>>> y = x.map_overlap(derivative, depth=1, boundary=0)
>>> y.compute()
array([1, 0, 1, 1, 0, 0, -1, -1, 0])

>>> x = np.arange(16).reshape((4, 4))
>>> d = da.from_array(x, chunks=(2, 2))
>>> d.map_overlap(lambda x: x + x.size, depth=1).compute()
array([[16, 17, 18, 19],

[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])

>>> func = lambda x: x + x.size
>>> depth = {0: 1, 1: 1}
>>> boundary = {0: 'reflect', 1: 'none'}
>>> d.map_overlap(func, depth, boundary).compute() # doctest: +NORMALIZE_
→˓WHITESPACE
array([[12, 13, 14, 15],

[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27]])

Explanation

Consider two neighboring blocks in a Dask array:

3.7. Array 385

dask Documentation, Release 2.6.0

We extend each block by trading thin nearby slices between arrays:

We do this in all directions, including also diagonal interactions with the overlap function:

>>> import dask.array as da
>>> import numpy as np

>>> x = np.arange(64).reshape((8, 8))
>>> d = da.from_array(x, chunks=(4, 4))
>>> d.chunks
((4, 4), (4, 4))

>>> g = da.overlap.overlap(d, depth={0: 2, 1: 1},
... boundary={0: 100, 1: 'reflect'})
>>> g.chunks
((8, 8), (6, 6))

>>> np.array(g)
array([[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],

[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
[0, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 7],
[8, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 15],
[16, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 23],
[24, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 31],
[32, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 39],
[40, 40, 41, 42, 43, 44, 43, 44, 45, 46, 47, 47],
[16, 16, 17, 18, 19, 20, 19, 20, 21, 22, 23, 23],
[24, 24, 25, 26, 27, 28, 27, 28, 29, 30, 31, 31],
[32, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 39],
[40, 40, 41, 42, 43, 44, 43, 44, 45, 46, 47, 47],
[48, 48, 49, 50, 51, 52, 51, 52, 53, 54, 55, 55],
[56, 56, 57, 58, 59, 60, 59, 60, 61, 62, 63, 63],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]])

Boundaries

With respect to overlaping, you can specify how to handle the boundaries. Current policies include the following:

386 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• periodic - wrap borders around to the other side

• reflect - reflect each border outwards

• any-constant - pad the border with this value

An example boundary kind argument might look like the following:

{0: 'periodic',
1: 'reflect',
2: np.nan}

Alternatively, you can use dask.array.pad() for other types of paddings.

Map a function across blocks

Overlapping goes hand-in-hand with mapping a function across blocks. This function can now use the additional
information copied over from the neighbors that is not stored locally in each block:

>>> from scipy.ndimage.filters import gaussian_filter
>>> def func(block):
... return gaussian_filter(block, sigma=1)

>>> filt = g.map_blocks(func)

While in this case we used a SciPy function, any arbitrary function could have been used instead. This is a good
interaction point with Numba.

If your function does not preserve the shape of the block, then you will need to provide a chunks keyword argument.
If your block size is regular, then this argument can take a block shape of, for example, (1000, 1000). In case of
irregular block sizes, it must be a tuple with the full chunks shape like ((1000, 700, 1000), (200, 300)).

>>> g.map_blocks(myfunc, chunks=(5, 5))

If your function needs to know the location of the block on which it operates, you can give your function a keyword
argument block_id:

def func(block, block_id=None):
...

This extra keyword argument will be given a tuple that provides the block location like (0, 0) for the upper-left
block or (0, 1) for the block just to the right of that block.

Trim Excess

After mapping a blocked function, you may want to trim off the borders from each block by the same amount by which
they were expanded. The function trim_internal is useful here and takes the same depth argument given to
overlap:

>>> x.chunks
((10, 10, 10, 10), (10, 10, 10, 10))

>>> y = da.overlap.trim_internal(x, {0: 2, 1: 1})
>>> y.chunks
((6, 6, 6, 6), (8, 8, 8, 8))

3.7. Array 387

https://numba.pydata.org/

dask Documentation, Release 2.6.0

Full Workflow

And so, a pretty typical overlaping workflow includes overlap, map_blocks and trim_internal:

>>> x = ...
>>> g = da.overlap.overlap(x, depth={0: 2, 1: 2},
... boundary={0: 'periodic', 1: 'periodic'})
>>> g2 = g.map_blocks(myfunc)
>>> result = da.overlap.trim_internal(g2, {0: 2, 1: 2})

3.7.8 Internal Design

Overview

Dask arrays define a large array with a grid of blocks of smaller arrays. These arrays may be actual arrays or functions
that produce arrays. We define a Dask array with the following components:

• A Dask graph with a special set of keys designating blocks such as ('x', 0, 0), ('x', 0, 1), ...
(See Dask graph documentation for more details)

• A sequence of chunk sizes along each dimension called chunks, for example ((5, 5, 5, 5), (8, 8,
8))

• A name to identify which keys in the Dask graph refer to this array, like 'x'

• A NumPy dtype

Example

>>> import dask.array as da
>>> x = da.arange(0, 15, chunks=(5,))

>>> x.name
'arange-539766a'

>>> x.dask # somewhat simplified
{('arange-539766a', 0): (np.arange, 0, 5),
('arange-539766a', 1): (np.arange, 5, 10),
('arange-539766a', 2): (np.arange, 10, 15)}

(continues on next page)

388 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> x.chunks
((5, 5, 5),)

>>> x.dtype
dtype('int64')

Keys of the Dask graph

By special convention, we refer to each block of the array with a tuple of the form (name, i, j, k), with i,
j, k being the indices of the block ranging from 0 to the number of blocks in that dimension. The Dask graph must
hold key-value pairs referring to these keys. Moreover, it likely also holds other key-value pairs required to eventually
compute the desired values:

{
('x', 0, 0): (add, 1, ('y', 0, 0)),
('x', 0, 1): (add, 1, ('y', 0, 1)),
...
('y', 0, 0): (getitem, dataset, (slice(0, 1000), slice(0, 1000))),
('y', 0, 1): (getitem, dataset, (slice(0, 1000), slice(1000, 2000)))
...

}

The name of an Array object can be found in the name attribute. One can get a nested list of keys with the .
__dask_keys__() method. Additionally, one can flatten down this list with dask.array.core.flatten().
This is sometimes useful when building new dictionaries.

Chunks

We also store the size of each block along each axis. This is composed of a tuple of tuples such that the length of
the outer tuple is equal to the number of dimensions of the array, and the lengths of the inner tuples are equal to the
number of blocks along each dimension. In the example illustrated above this value is as follows:

chunks = ((5, 5, 5, 5), (8, 8, 8))

Note that these numbers do not necessarily need to be regular. We often create regularly sized grids but blocks change
shape after complex slicing. Beware that some operations do expect certain symmetries in the block-shapes. For
example, matrix multiplication requires that blocks on each side have anti-symmetric shapes.

Some ways in which chunks reflects properties of our array:

1. len(x.chunks) == x.ndim: the length of chunks is the number of dimensions

2. tuple(map(sum, x.chunks)) == x.shape: the sum of each internal chunk is the length of that di-
mension

3. The length of each internal chunk is the number of keys in that dimension. For instance, for chunks ==
((a, b), (d, e, f)) and name == 'x' our array has tasks with the following keys:

('x', 0, 0), ('x', 0, 1), ('x', 0, 2)
('x', 1, 0), ('x', 1, 1), ('x', 1, 2)

3.7. Array 389

dask Documentation, Release 2.6.0

Create an Array Object

In order to create an da.Array object we need a dictionary with these special keys:

dsk = {('x', 0, 0): ...}

a name specifying which keys this array refers to:

name = 'x'

and a chunks tuple:

chunks = ((5, 5, 5, 5), (8, 8, 8))

Then, using these elements, one can construct an array:

x = da.Array(dsk, name, chunks)

In short, dask.array operations update Dask graphs, update dtypes, and track chunk shapes.

Example - eye function

As an example, lets build the np.eye function for dask.array to make the identity matrix:

def eye(n, blocksize):
chunks = ((blocksize,) * (n // blocksize),

(blocksize,) * (n // blocksize))

name = 'eye' + next(tokens) # unique identifier

dsk = {(name, i, j): (np.eye, blocksize)
if i == j else
(np.zeros, (blocksize, blocksize))

for i in range(n // blocksize)
for j in range(n // blocksize)}

dtype = np.eye(0).dtype # take dtype default from numpy

return dask.array.Array(dsk, name, chunks, dtype)

3.7.9 Sparse Arrays

By swapping out in-memory NumPy arrays with in-memory sparse arrays, we can reuse the blocked algorithms of
Dask’s Array to achieve parallel and distributed sparse arrays.

The blocked algorithms in Dask Array normally parallelize around in-memory NumPy arrays. However, if another in-
memory array library supports the NumPy interface, then it too can take advantage of Dask Array’s parallel algorithms.
In particular the sparse array library satisfies a subset of the NumPy API and works well with (and is tested against)
Dask Array.

Example

Say we have a Dask array with mostly zeros:

390 Chapter 3. Complex Algorithms

https://github.com/pydata/sparse/

dask Documentation, Release 2.6.0

x = da.random.random((100000, 100000), chunks=(1000, 1000))
x[x < 0.95] = 0

We can convert each of these chunks of NumPy arrays into a sparse.COO array:

import sparse
s = x.map_blocks(sparse.COO)

Now, our array is not composed of many NumPy arrays, but rather of many sparse arrays. Semantically, this does not
change anything. Operations that work will continue to work identically (assuming that the behavior of numpy and
sparse are identical), but performance characteristics and storage costs may change significantly:

>>> s.sum(axis=0)[:100].compute()
<COO: shape=(100,), dtype=float64, nnz=100>

>>> _.todense()
array([4803.06859272, 4913.94964525, 4877.13266438, 4860.7470773 ,

4938.94446802, 4849.51326473, 4858.83977856, 4847.81468485,
...])

Requirements

Any in-memory library that copies the NumPy ndarray interface should work here. The sparse library is a minimal
example. In particular, an in-memory library should implement at least the following operations:

1. Simple slicing with slices, lists, and elements (for slicing, rechunking, reshaping, etc)

2. A concatenate function matching the interface of np.concatenate. This must be registered in dask.
array.core.concatenate_lookup

3. All ufuncs must support the full ufunc interface, including dtype= and out= parameters (even if they don’t
function properly)

4. All reductions must support the full axis= and keepdims= keywords and behave like NumPy in this respect

5. The array class should follow the __array_priority__ protocol and be prepared to respond to other arrays
of lower priority

6. If dot support is desired, a tensordot function matching the interface of np.tensordot should be regis-
tered in dask.array.core.tensordot_lookup

The implementation of other operations like reshape, transpose, etc., should follow standard NumPy conventions
regarding shape and dtype. Not implementing these is fine; the parallel dask.array will err at runtime if these
operations are attempted.

Mixed Arrays

Dask’s Array supports mixing different kinds of in-memory arrays. This relies on the in-memory arrays knowing how
to interact with each other when necessary. When two arrays interact, the functions from the array with the highest
__array_priority__ will take precedence (for example, for concatenate, tensordot, etc.).

3.7.10 Stats

Dask Array implements a subset of the scipy.stats package.

3.7. Array 391

https://github.com/pydata/sparse/
https://docs.scipy.org/doc/scipy-0.19.0/reference/stats.html

dask Documentation, Release 2.6.0

Statistical Functions

You can calculate various measures of an array including skewness, kurtosis, and arbitrary moments.

>>> from dask.array import stats
>>> x = da.random.beta(1, 1, size=(1000,), chunks=10)
>>> k, s, m = [stats.kurtosis(x), stats.skew(x), stats.moment(x, 5)]
>>> dask.compute(k, s, m)
(1.7612340817172787, -0.064073498030693302, -0.00054523780628304799)

Statistical Tests

You can perform basic statistical tests on Dask arrays. Each of these tests return a dask.delayed wrapping one of
the scipy namedtuple results.

>>> a = da.random.uniform(size=(50,), chunks=(25,))
>>> b = a + da.random.uniform(low=-0.15, high=0.15, size=(50,), chunks=(25,))
>>> result = stats.ttest_rel(a, b)
>>> result.compute()
Ttest_relResult(statistic=-1.5102104380013242, pvalue=0.13741197274874514)

3.7.11 LinearOperator

Dask Array implements the SciPy LinearOperator interface and it can be used with any SciPy algorithm depending on
that interface.

Example

import dask.array as da
x = da.random.random(size=(10000, 10000), chunks=(1000, 1000))

from scipy.sparse.linalg.interface import MatrixLinearOperator
A = MatrixLinearOperator(x)

import numpy as np
b = np.random.random(10000)

from scipy.sparse.linalg import gmres
x = gmres(A, b)

Disclaimer: This is just a toy example and not necessarily the best way to solve this problem for this data.

3.7.12 Slicing

Dask Array supports most of the NumPy slicing syntax. In particular, it supports the following:

• Slicing by integers and slices: x[0, :5]

• Slicing by lists/arrays of integers: x[[1, 2, 4]]

• Slicing by lists/arrays of booleans: x[[False, True, True, False, True]]

• Slicing one Array with an Array of bools: x[x > 0]

392 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html

dask Documentation, Release 2.6.0

• Slicing one Array with a zero or one-dimensional Array of ints: a[b.argtopk(5)]

However, it does not currently support the following:

• Slicing with lists in multiple axes: x[[1, 2, 3], [3, 2, 1]]

This is straightforward to add though. If you have a use case then raise an issue. Also, users interested in this
should take a look at vindex.

• Slicing one Array with a multi-dimensional Array of ints

Efficiency

The normal Dask schedulers are smart enough to compute only those blocks that are necessary to achieve the desired
slicing. Hence, large operations may be cheap if only a small output is desired.

In the example below, we create a Dask array with a trillion elements with million element sized blocks. We then
operate on the entire array and finally slice out only a portion of the output:

>>> # Trillion element array of ones, in 1000 by 1000 blocks
>>> x = da.ones((1000000, 1000000), chunks=(1000, 1000))

>>> da.exp(x)[:1500, :1500]
...

This only needs to compute the top-left four blocks to achieve the result. We are slightly wasteful on those blocks
where we need only partial results. Moreover, we are also a bit wasteful in that we still need to manipulate the Dask
graph with a million or so tasks in it. This can cause an interactive overhead of a second or two.

But generally, slicing works well.

3.7.13 Stack, Concatenate, and Block

Often we have many arrays stored on disk that we want to stack together and think of as one large array. This is
common with geospatial data in which we might have many HDF5/NetCDF files on disk, one for every day, but we
want to do operations that span multiple days.

To solve this problem, we use the functions da.stack, da.concatenate, and da.block.

Stack

We stack many existing Dask arrays into a new array, creating a new dimension as we go.

>>> import dask.array as da

>>> arr0 = da.from_array(np.zeros((3, 4)), chunks=(1, 2))
>>> arr1 = da.from_array(np.ones((3, 4)), chunks=(1, 2))

>>> data = [arr0, arr1]

>>> x = da.stack(data, axis=0)
>>> x.shape
(2, 3, 4)

>>> da.stack(data, axis=1).shape
(3, 2, 4)

(continues on next page)

3.7. Array 393

dask Documentation, Release 2.6.0

(continued from previous page)

>>> da.stack(data, axis=-1).shape
(3, 4, 2)

This creates a new dimension with length equal to the number of slices

Concatenate

We concatenate existing arrays into a new array, extending them along an existing dimension

>>> import dask.array as da
>>> import numpy as np

>>> arr0 = da.from_array(np.zeros((3, 4)), chunks=(1, 2))
>>> arr1 = da.from_array(np.ones((3, 4)), chunks=(1, 2))

>>> data = [arr0, arr1]

>>> x = da.concatenate(data, axis=0)
>>> x.shape
(6, 4)

>>> da.concatenate(data, axis=1).shape
(3, 8)

Block

We can handle a larger variety of cases with da.block as it allows concatenation to be applied over multiple dimen-
sions at once. This is useful if your chunks tile a space, for example if small squares tile a larger 2-D plane.

>>> import dask.array as da
>>> import numpy as np

>>> arr0 = da.from_array(np.zeros((3, 4)), chunks=(1, 2))
>>> arr1 = da.from_array(np.ones((3, 4)), chunks=(1, 2))

>>> data = [
... [arr0, arr1],
... [arr1, arr0]
...]

>>> x = da.block(data)
>>> x.shape
(6, 8)

3.7.14 Generalized Ufuncs

NumPy provides the concept of generalized ufuncs. Generalized ufuncs are functions that distinguish the various
dimensions of passed arrays in the two classes loop dimensions and core dimensions. To accomplish this, a signature
is specified for NumPy generalized ufuncs.

Dask integrates interoperability with NumPy’s generalized ufuncs by adhering to respective ufunc protocol, and pro-
vides a wrapper to make a Python function a generalized ufunc.

394 Chapter 3. Complex Algorithms

https://www.numpy.org
https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html
https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html#details-of-signature
https://dask.org/
https://docs.scipy.org/doc/numpy/reference/arrays.classes.html#numpy.class.__array_ufunc__

dask Documentation, Release 2.6.0

Usage

NumPy Generalized UFuncs

Note: NumPy generalized ufuncs are currently (v1.14.3 and below) stored in inside np.linalg.
_umath_linalg and might change in the future.

import dask.array as da
import numpy as np

x = da.random.normal(size=(3, 10, 10), chunks=(2, 10, 10))

w, v = np.linalg._umath_linalg.eig(x, output_dtypes=(float, float))

Create Generalized UFuncs

It can be difficult to create your own GUFuncs without going into the CPython API. However, the Numba project does
provide a nice implementation with their numba.guvectorize decorator. See Numba’s documentation for more
information.

Wrap your own Python function

gufunc can be used to make a Python function behave like a generalized ufunc:

x = da.random.normal(size=(10, 5), chunks=(2, 5))

def foo(x):
return np.mean(x, axis=-1)

gufoo = da.gufunc(foo, signature="(i)->()", output_dtypes=float, vectorize=True)

y = gufoo(x)

Instead of gufunc, also the as_gufunc decorator can be used for convenience:

x = da.random.normal(size=(10, 5), chunks=(2, 5))

@da.as_gufunc(signature="(i)->()", output_dtypes=float, vectorize=True)
def gufoo(x):

return np.mean(x, axis=-1)

y = gufoo(x)

Disclaimer

This experimental generalized ufunc integration is not complete:

• gufunc does not create a true generalized ufunc to be used with other input arrays besides Dask. I.e., at the
moment, gufunc casts all input arguments to dask.array.Array

• Inferring output_dtypes automatically is not implemented yet

3.7. Array 395

https://www.numpy.org
https://numba.pydata.org
https://numba.pydata.org/numba-doc/dev/user/vectorize.html#the-guvectorize-decorator

dask Documentation, Release 2.6.0

API

apply_gufunc(func, signature, *args, **kwargs) Apply a generalized ufunc or similar python function to
arrays.

as_gufunc([signature]) Decorator for dask.array.gufunc.
gufunc(pyfunc, **kwargs) Binds pyfunc into dask.array.apply_gufunc

when called.

Dask Array implements a subset of the NumPy ndarray interface using blocked algorithms, cutting up the large array
into many small arrays. This lets us compute on arrays larger than memory using all of our cores. We coordinate these
blocked algorithms using Dask graphs.

3.7.15 Design

Dask arrays coordinate many NumPy arrays arranged into a grid. These NumPy arrays may live on disk or on other
machines.

3.7.16 Common Uses

Dask Array is used in fields like atmospheric and oceanographic science, large scale imaging, genomics, numerical
algorithms for optimization or statistics, and more.

3.7.17 Scope

Dask arrays support most of the NumPy interface like the following:

• Arithmetic and scalar mathematics: +, *, exp, log, ...

• Reductions along axes: sum(), mean(), std(), sum(axis=0), ...

• Tensor contractions / dot products / matrix multiply: tensordot

• Axis reordering / transpose: transpose

• Slicing: x[:100, 500:100:-2]

• Fancy indexing along single axes with lists or NumPy arrays: x[:, [10, 1, 5]]

• Array protocols like __array__ and __array_ufunc__

• Some linear algebra: svd, qr, solve, solve_triangular, lstsq

• . . .

However, Dask Array does not implement the entire NumPy interface. Users expecting this will be disappointed.
Notably, Dask Array lacks the following features:

• Much of np.linalg has not been implemented. This has been done by a number of excellent BLAS/LAPACK
implementations, and is the focus of numerous ongoing academic research projects

• Arrays with unknown shapes do not support all operations

• Operations like sort which are notoriously difficult to do in parallel, and are of somewhat diminished value on
very large data (you rarely actually need a full sort). Often we include parallel-friendly alternatives like topk

396 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• Dask Array doesn’t implement operations like tolist that would be very inefficient for larger datasets. Like-
wise, it is very inefficient to iterate over a Dask array with for loops

• Dask development is driven by immediate need, hence many lesser used functions have not been implemented.
Community contributions are encouraged

See the dask.array API for a more extensive list of functionality.

3.7.18 Execution

By default, Dask Array uses the threaded scheduler in order to avoid data transfer costs, and because NumPy releases
the GIL well. It is also quite effective on a cluster using the dask.distributed scheduler.

3.8 Bag

3.8.1 Create Dask Bags

There are several ways to create Dask bags around your data:

db.from_sequence

You can create a bag from an existing Python iterable:

>>> import dask.bag as db
>>> b = db.from_sequence([1, 2, 3, 4, 5, 6])

You can control the number of partitions into which this data is binned:

>>> b = db.from_sequence([1, 2, 3, 4, 5, 6], npartitions=2)

This controls the granularity of the parallelism that you expose. By default, Dask will try to partition your data into
about 100 partitions.

IMPORTANT: do not load your data into Python and then load that data into a Dask bag. Instead, use Dask Bag to
load your data. This parallelizes the loading step and reduces inter-worker communication:

>>> b = db.from_sequence(['1.dat', '2.dat', ...]).map(load_from_filename)

db.read_text

Dask Bag can load data directly from text files. You can pass either a single file name, a list of file names, or a
globstring. The resulting bag will have one item per line and one file per partition:

>>> b = db.read_text('myfile.txt')
>>> b = db.read_text(['myfile.1.txt', 'myfile.2.txt', ...])
>>> b = db.read_text('myfile.*.txt')

This handles standard compression libraries like gzip, bz2, xz, or any easily installed compression library that has
a file-like object. Compression will be inferred by the file name extension, or by using the compression='gzip'
keyword:

3.8. Bag 397

https://distributed.dask.org/en/latest/

dask Documentation, Release 2.6.0

>>> b = db.read_text('myfile.*.txt.gz')

The resulting items in the bag are strings. If you have encoded data like line-delimited JSON, then you may want to
map a decoding or load function across the bag:

>>> import json
>>> b = db.read_text('myfile.*.json').map(json.loads)

Or do string munging tasks. For convenience, there is a string namespace attached directly to bags with .str.
methodname:

>>> b = db.read_text('myfile.*.csv').str.strip().str.split(',')

db.read_avro

Dask Bag can read binary files in the Avro format if fastavro is installed. A bag can be made from one or more files,
with optional chunking within files. The resulting bag will have one item per Avro record, which will be a dictionary
of the form given by the Avro schema. There will be at least one partition per input file:

>>> b = db.read_avro('datafile.avro')
>>> b = db.read_avro('data.*.avro')

By default, Dask will split data files into chunks of approximately blocksize bytes in size. The actual blocks you
would get depend on the internal blocking of the file.

For files that are compressed after creation (this is not the same as the internal “codec” used by Avro), no chunking
should be used, and there will be exactly one partition per file:

> b = bd.read_avro('compressed.*.avro.gz', blocksize=None, compression='gzip')

db.from_delayed

You can construct a Dask bag from dask.delayed values using the db.from_delayed function. For more informa-
tion, see documentation on using dask.delayed with collections.

3.8.2 Store Dask Bags

In Memory

You can convert a Dask bag to a list or Python iterable by calling compute() or by converting the object into a list:

>>> result = b.compute()
or
>>> result = list(b)

To Text Files

You can convert a Dask bag into a sequence of files on disk by calling the .to_textfiles() method:

398 Chapter 3. Complex Algorithms

https://avro.apache.org/docs/1.8.2/
https://fastavro.readthedocs.io

dask Documentation, Release 2.6.0

dask.bag.core.to_textfiles(b, path, name_function=None, compression=’infer’, encoding=’utf-
8’, compute=True, storage_options=None, last_endline=False,
**kwargs)

Write dask Bag to disk, one filename per partition, one line per element.

Paths: This will create one file for each partition in your bag. You can specify the filenames in a variety of
ways.

Use a globstring

>>> b.to_textfiles('/path/to/data/*.json.gz') # doctest: +SKIP

The * will be replaced by the increasing sequence 1, 2, . . .

/path/to/data/0.json.gz
/path/to/data/1.json.gz

Use a globstring and a name_function= keyword argument. The name_function function should expect an
integer and produce a string. Strings produced by name_function must preserve the order of their respective
partition indices.

>>> from datetime import date, timedelta
>>> def name(i):
... return str(date(2015, 1, 1) + i * timedelta(days=1))

>>> name(0)
'2015-01-01'
>>> name(15)
'2015-01-16'

>>> b.to_textfiles('/path/to/data/*.json.gz', name_function=name) # doctest:
→˓+SKIP

/path/to/data/2015-01-01.json.gz
/path/to/data/2015-01-02.json.gz
...

You can also provide an explicit list of paths.

>>> paths = ['/path/to/data/alice.json.gz', '/path/to/data/bob.json.gz', ...] #
→˓doctest: +SKIP
>>> b.to_textfiles(paths) # doctest: +SKIP

Compression: Filenames with extensions corresponding to known compression algorithms (gz, bz2) will be
compressed accordingly.

Bag Contents: The bag calling to_textfiles must be a bag of text strings. For example, a bag of dic-
tionaries could be written to JSON text files by mapping json.dumps on to the bag first, and then calling
to_textfiles :

>>> b_dict.map(json.dumps).to_textfiles("/path/to/data/*.json") # doctest: +SKIP

Last endline: By default the last line does not end with a newline character. Pass last_endline=True to
invert the default.

3.8. Bag 399

dask Documentation, Release 2.6.0

To Avro

Dask bags can be written directly to Avro binary format using fastavro. One file will be written per bag partition. This
requires the user to provide a fully-specified schema dictionary (see the docstring of the .to_avro() method).

dask.bag.avro.to_avro(b, filename, schema, name_function=None, storage_options=None,
codec=’null’, sync_interval=16000, metadata=None, compute=True,
**kwargs)

Write bag to set of avro files

The schema is a complex dictionary describing the data, see https://avro.apache.org/docs/1.8.2/
gettingstartedpython.html#Defining+a+schema and https://fastavro.readthedocs.io/en/latest/writer.html . It’s
structure is as follows:

{'name': 'Test',
'namespace': 'Test',
'doc': 'Descriptive text',
'type': 'record',
'fields': [

{'name': 'a', 'type': 'int'},
]}

where the “name” field is required, but “namespace” and “doc” are optional descriptors; “type” must always be
“record”. The list of fields should have an entry for every key of the input records, and the types are like the
primitive, complex or logical types of the Avro spec (https://avro.apache.org/docs/1.8.2/spec.html).

Results in one avro file per input partition.

Parameters

b: dask.bag.Bag

filename: list of str or str Filenames to write to. If a list, number must match the number of
partitions. If a string, must include a glob character “*”, which will be expanded using
name_function

schema: dict Avro schema dictionary, see above

name_function: None or callable Expands integers into strings, see dask.bytes.
utils.build_name_function

storage_options: None or dict Extra key/value options to pass to the backend file-system

codec: ‘null’, ‘deflate’, or ‘snappy’ Compression algorithm

sync_interval: int Number of records to include in each block within a file

metadata: None or dict Included in the file header

compute: bool If True, files are written immediately, and function blocks. If False, returns
delayed objects, which can be computed by the user where convenient.

kwargs: passed to compute(), if compute=True

Examples

>>> import dask.bag as db
>>> b = db.from_sequence([{'name': 'Alice', 'value': 100},
... {'name': 'Bob', 'value': 200}])
>>> schema = {'name': 'People', 'doc': "Set of people's scores",

(continues on next page)

400 Chapter 3. Complex Algorithms

https://fastavro.readthedocs.io
https://avro.apache.org/docs/1.8.2/gettingstartedpython.html#Defining+a+schema
https://avro.apache.org/docs/1.8.2/gettingstartedpython.html#Defining+a+schema
https://fastavro.readthedocs.io/en/latest/writer.html
https://avro.apache.org/docs/1.8.2/spec.html

dask Documentation, Release 2.6.0

(continued from previous page)

... 'type': 'record',

... 'fields': [

... {'name': 'name', 'type': 'string'},

... {'name': 'value', 'type': 'int'}]}
>>> b.to_avro('my-data.*.avro', schema) # doctest: +SKIP
['my-data.0.avro', 'my-data.1.avro']

To DataFrames

You can convert a Dask bag into a Dask DataFrame and use those storage solutions.

Bag.to_dataframe(meta=None, columns=None)
Create Dask Dataframe from a Dask Bag.

Bag should contain tuples, dict records, or scalars.

Index will not be particularly meaningful. Use reindex afterwards if necessary.

Parameters

meta [pd.DataFrame, dict, iterable, optional] An empty pd.DataFrame that matches the
dtypes and column names of the output. This metadata is necessary for many algo-
rithms in dask dataframe to work. For ease of use, some alternative inputs are also avail-
able. Instead of a DataFrame, a dict of {name: dtype} or iterable of (name,
dtype) can be provided. If not provided or a list, a single element from the first par-
tition will be computed, triggering a potentially expensive call to compute. This may
lead to unexpected results, so providing meta is recommended. For more information,
see dask.dataframe.utils.make_meta.

columns [sequence, optional] Column names to use. If the passed data do not have names
associated with them, this argument provides names for the columns. Otherwise this
argument indicates the order of the columns in the result (any names not found in the
data will become all-NA columns). Note that if meta is provided, column names will be
taken from there and this parameter is invalid.

Examples

>>> import dask.bag as db
>>> b = db.from_sequence([{'name': 'Alice', 'balance': 100},
... {'name': 'Bob', 'balance': 200},
... {'name': 'Charlie', 'balance': 300}],
... npartitions=2)
>>> df = b.to_dataframe()

>>> df.compute()
balance name

0 100 Alice
1 200 Bob
0 300 Charlie

To Delayed Values

You can convert a Dask bag into a list of Dask delayed values and custom storage solutions from there.

3.8. Bag 401

dask Documentation, Release 2.6.0

Bag.to_delayed(optimize_graph=True)
Convert into a list of dask.delayed objects, one per partition.

Parameters

optimize_graph [bool, optional] If True [default], the graph is optimized before converting
into dask.delayed objects.

See also:

dask.bag.from_delayed

3.8.3 API

Top level user functions:

Bag(dsk, name, npartitions) Parallel collection of Python objects
Bag.all([split_every]) Are all elements truthy?
Bag.any([split_every]) Are any of the elements truthy?
Bag.compute(**kwargs) Compute this dask collection
Bag.count([split_every]) Count the number of elements.
Bag.distinct([key]) Distinct elements of collection
Bag.filter(predicate) Filter elements in collection by a predicate function.
Bag.flatten() Concatenate nested lists into one long list.
Bag.fold(binop[, combine, initial, . . .]) Parallelizable reduction
Bag.foldby(key, binop[, initial, combine, . . .]) Combined reduction and groupby.
Bag.frequencies([split_every, sort]) Count number of occurrences of each distinct element.
Bag.groupby(grouper[, method, npartitions, . . .]) Group collection by key function
Bag.join(other, on_self[, on_other]) Joins collection with another collection.
Bag.map(func, *args, **kwargs) Apply a function elementwise across one or more bags.
Bag.map_partitions(func, *args, **kwargs) Apply a function to every partition across one or more

bags.
Bag.max([split_every]) Maximum element
Bag.mean() Arithmetic mean
Bag.min([split_every]) Minimum element
Bag.pluck(key[, default]) Select item from all tuples/dicts in collection.
Bag.product(other) Cartesian product between two bags.
Bag.reduction(perpartition, aggregate[, . . .]) Reduce collection with reduction operators.
Bag.random_sample(prob[, random_state]) Return elements from bag with probability of prob.
Bag.remove(predicate) Remove elements in collection that match predicate.
Bag.repartition(npartitions) Coalesce bag into fewer partitions.
Bag.starmap(func, **kwargs) Apply a function using argument tuples from the given

bag.
Bag.std([ddof]) Standard deviation
Bag.sum([split_every]) Sum all elements
Bag.take(k[, npartitions, compute, warn]) Take the first k elements.
Bag.to_dataframe([meta, columns]) Create Dask Dataframe from a Dask Bag.
Bag.to_delayed([optimize_graph]) Convert into a list of dask.delayed objects, one per

partition.
Bag.to_textfiles(path[, name_function, . . .]) Write dask Bag to disk, one filename per partition, one

line per element.
Bag.to_avro(filename, schema[, . . .]) Write bag to set of avro files
Bag.topk(k[, key, split_every]) K largest elements in collection

Continued on next page

402 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Table 34 – continued from previous page
Bag.var([ddof]) Variance
Bag.visualize([filename, format, opti-
mize_graph])

Render the computation of this object’s task graph using
graphviz.

Create Bags

from_sequence(seq[, partition_size, npartitions]) Create a dask Bag from Python sequence.
from_delayed(values) Create bag from many dask Delayed objects.
read_text(urlpath[, blocksize, compression, . . .]) Read lines from text files
from_url(urls) Create a dask Bag from a url.
read_avro(urlpath[, blocksize, . . .]) Read set of avro files
range(n, npartitions) Numbers from zero to n

Top-level functions

concat(bags) Concatenate many bags together, unioning all elements.
map(func, *args, **kwargs) Apply a function elementwise across one or more bags.
map_partitions(func, *args, **kwargs) Apply a function to every partition across one or more

bags.
zip(*bags) Partition-wise bag zip

Turn Bags into other things

Bag.to_textfiles(path[, name_function, . . .]) Write dask Bag to disk, one filename per partition, one
line per element.

Bag.to_dataframe([meta, columns]) Create Dask Dataframe from a Dask Bag.
Bag.to_delayed([optimize_graph]) Convert into a list of dask.delayed objects, one per

partition.
Bag.to_avro(filename, schema[, . . .]) Write bag to set of avro files

Bag methods

class dask.bag.Bag(dsk, name, npartitions)
Parallel collection of Python objects

Examples

Create Bag from sequence

>>> import dask.bag as db
>>> b = db.from_sequence(range(5))
>>> list(b.filter(lambda x: x % 2 == 0).map(lambda x: x * 10)) # doctest: +SKIP
[0, 20, 40]

Create Bag from filename or globstring of filenames

>>> b = db.read_text('/path/to/mydata.*.json.gz').map(json.loads) # doctest:
→˓+SKIP

3.8. Bag 403

dask Documentation, Release 2.6.0

Create manually (expert use)

>>> dsk = {('x', 0): (range, 5),
... ('x', 1): (range, 5),
... ('x', 2): (range, 5)}
>>> b = Bag(dsk, 'x', npartitions=3)

>>> sorted(b.map(lambda x: x * 10)) # doctest: +SKIP
[0, 0, 0, 10, 10, 10, 20, 20, 20, 30, 30, 30, 40, 40, 40]

>>> int(b.fold(lambda x, y: x + y)) # doctest: +SKIP
30

accumulate(binop, initial=’__no__default__’)
Repeatedly apply binary function to a sequence, accumulating results.

This assumes that the bag is ordered. While this is typically the case not all Dask.bag functions preserve
this property.

Examples

>>> from operator import add
>>> b = from_sequence([1, 2, 3, 4, 5], npartitions=2)
>>> b.accumulate(add).compute() # doctest: +SKIP
[1, 3, 6, 10, 15]

Accumulate also takes an optional argument that will be used as the first value.

>>> b.accumulate(add, initial=-1) # doctest: +SKIP
[-1, 0, 2, 5, 9, 14]

all(split_every=None)
Are all elements truthy?

any(split_every=None)
Are any of the elements truthy?

count(split_every=None)
Count the number of elements.

distinct(key=None)
Distinct elements of collection

Unordered without repeats.

Parameters

key: {callable,str} Defines uniqueness of items in bag by calling key on each item. If a
string is passed key is considered to be lambda x: x[key].

Examples

>>> b = from_sequence(['Alice', 'Bob', 'Alice'])
>>> sorted(b.distinct())
['Alice', 'Bob']
>>> b = from_sequence([{'name': 'Alice'}, {'name': 'Bob'}, {'name': 'Alice'}
→˓])

(continues on next page)

404 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> b.distinct(key=lambda x: x['name']).compute()
[{'name': 'Alice'}, {'name': 'Bob'}]
>>> b.distinct(key='name').compute()
[{'name': 'Alice'}, {'name': 'Bob'}]

filter(predicate)
Filter elements in collection by a predicate function.

>>> def iseven(x):
... return x % 2 == 0

>>> import dask.bag as db
>>> b = db.from_sequence(range(5))
>>> list(b.filter(iseven)) # doctest: +SKIP
[0, 2, 4]

flatten()
Concatenate nested lists into one long list.

>>> b = from_sequence([[1], [2, 3]])
>>> list(b)
[[1], [2, 3]]

>>> list(b.flatten())
[1, 2, 3]

fold(binop, combine=None, initial=’__no__default__’, split_every=None, out_type=<class
’dask.bag.core.Item’>)

Parallelizable reduction

Fold is like the builtin function reduce except that it works in parallel. Fold takes two binary operator
functions, one to reduce each partition of our dataset and another to combine results between partitions

1. binop: Binary operator to reduce within each partition

2. combine: Binary operator to combine results from binop

Sequentially this would look like the following:

>>> intermediates = [reduce(binop, part) for part in partitions] # doctest:
→˓+SKIP
>>> final = reduce(combine, intermediates) # doctest: +SKIP

If only one function is given then it is used for both functions binop and combine as in the following
example to compute the sum:

>>> def add(x, y):
... return x + y

>>> b = from_sequence(range(5))
>>> b.fold(add).compute() # doctest: +SKIP
10

In full form we provide both binary operators as well as their default arguments

>>> b.fold(binop=add, combine=add, initial=0).compute() # doctest: +SKIP
10

3.8. Bag 405

dask Documentation, Release 2.6.0

More complex binary operators are also doable

>>> def add_to_set(acc, x):
... ''' Add new element x to set acc '''
... return acc | set([x])
>>> b.fold(add_to_set, set.union, initial=set()).compute() # doctest: +SKIP
{1, 2, 3, 4, 5}

See also:

Bag.foldby

foldby(key, binop, initial=’__no__default__’, combine=None, combine_initial=’__no__default__’,
split_every=None)

Combined reduction and groupby.

Foldby provides a combined groupby and reduce for efficient parallel split-apply-combine tasks.

The computation

>>> b.foldby(key, binop, init) # doctest: +SKIP

is equivalent to the following:

>>> def reduction(group): # doctest: +SKIP
... return reduce(binop, group, init) # doctest: +SKIP

>>> b.groupby(key).map(lambda (k, v): (k, reduction(v)))# doctest: +SKIP

But uses minimal communication and so is much faster.

>>> b = from_sequence(range(10))
>>> iseven = lambda x: x % 2 == 0
>>> add = lambda x, y: x + y
>>> dict(b.foldby(iseven, add)) # doctest: +SKIP
{True: 20, False: 25}

Key Function

The key function determines how to group the elements in your bag. In the common case where your bag
holds dictionaries then the key function often gets out one of those elements.

>>> def key(x):
... return x['name']

This case is so common that it is special cased, and if you provide a key that is not a callable function then
dask.bag will turn it into one automatically. The following are equivalent:

>>> b.foldby(lambda x: x['name'], ...) # doctest: +SKIP
>>> b.foldby('name', ...) # doctest: +SKIP

Binops

It can be tricky to construct the right binary operators to perform analytic queries. The foldby method
accepts two binary operators, binop and combine. Binary operators two inputs and output must have
the same type.

Binop takes a running total and a new element and produces a new total:

406 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> def binop(total, x):
... return total + x['amount']

Combine takes two totals and combines them:

>>> def combine(total1, total2):
... return total1 + total2

Each of these binary operators may have a default first value for total, before any other value is seen. For
addition binary operators like above this is often 0 or the identity element for your operation.

split_every

Group partitions into groups of this size while performing reduction. Defaults to 8.

>>> b.foldby('name', binop, 0, combine, 0) # doctest: +SKIP

See also:

toolz.reduceby, pyspark.combineByKey

Examples

We can compute the maximum of some (key, value) pairs, grouped by the key. (You might be
better off converting the Bag to a dask.dataframe and using its groupby).

>>> import random
>>> import dask.bag as db

>>> tokens = list('abcdefg')
>>> values = range(10000)
>>> a = [(random.choice(tokens), random.choice(values))
... for _ in range(100)]
>>> a[:2] # doctest: +SKIP
[('g', 676), ('a', 871)]

>>> a = db.from_sequence(a)

>>> def binop(t, x):
... return max((t, x), key=lambda x: x[1])

>>> a.foldby(lambda x: x[0], binop).compute() # doctest: +SKIP
[('g', ('g', 984)),
('a', ('a', 871)),
('b', ('b', 999)),
('c', ('c', 765)),
('f', ('f', 955)),
('e', ('e', 991)),
('d', ('d', 854))]

frequencies(split_every=None, sort=False)
Count number of occurrences of each distinct element.

>>> b = from_sequence(['Alice', 'Bob', 'Alice'])
>>> dict(b.frequencies()) # doctest: +SKIP
{'Alice': 2, 'Bob', 1}

3.8. Bag 407

dask Documentation, Release 2.6.0

groupby(grouper, method=None, npartitions=None, blocksize=1048576, max_branch=None, shuf-
fle=None)

Group collection by key function

This requires a full dataset read, serialization and shuffle. This is expensive. If possible you should use
foldby.

Parameters

grouper: function Function on which to group elements

shuffle: str Either ‘disk’ for an on-disk shuffle or ‘tasks’ to use the task scheduling frame-
work. Use ‘disk’ if you are on a single machine and ‘tasks’ if you are on a distributed
cluster.

npartitions: int If using the disk-based shuffle, the number of output partitions

blocksize: int If using the disk-based shuffle, the size of shuffle blocks (bytes)

max_branch: int If using the task-based shuffle, the amount of splitting each partition
undergoes. Increase this for fewer copies but more scheduler overhead.

See also:

Bag.foldby

Examples

>>> b = from_sequence(range(10))
>>> iseven = lambda x: x % 2 == 0
>>> dict(b.groupby(iseven)) # doctest: +SKIP
{True: [0, 2, 4, 6, 8], False: [1, 3, 5, 7, 9]}

join(other, on_self, on_other=None)
Joins collection with another collection.

Other collection must be one of the following:

1. An iterable. We recommend tuples over lists for internal performance reasons.

2. A delayed object, pointing to a tuple. This is recommended if the other collection is sizable and
you’re using the distributed scheduler. Dask is able to pass around data wrapped in delayed objects
with greater sophistication.

3. A Bag with a single partition

You might also consider Dask Dataframe, whose join operations are much more heavily optimized.

Parameters

other: Iterable, Delayed, Bag Other collection on which to join

on_self: callable Function to call on elements in this collection to determine a match

on_other: callable (defaults to on_self) Function to call on elements in the other collec-
tion to determine a match

Examples

408 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> people = from_sequence(['Alice', 'Bob', 'Charlie'])
>>> fruit = ['Apple', 'Apricot', 'Banana']
>>> list(people.join(fruit, lambda x: x[0])) # doctest: +SKIP
[('Apple', 'Alice'), ('Apricot', 'Alice'), ('Banana', 'Bob')]

map(func, *args, **kwargs)
Apply a function elementwise across one or more bags.

Note that all Bag arguments must be partitioned identically.

Parameters

func [callable]

*args, **kwargs [Bag, Item, or object] Extra arguments and keyword arguments to pass
to func after the calling bag instance. Non-Bag args/kwargs are broadcasted across
all calls to func.

Notes

For calls with multiple Bag arguments, corresponding partitions should have the same length; if they do
not, the call will error at compute time.

Examples

>>> import dask.bag as db
>>> b = db.from_sequence(range(5), npartitions=2)
>>> b2 = db.from_sequence(range(5, 10), npartitions=2)

Apply a function to all elements in a bag:

>>> b.map(lambda x: x + 1).compute()
[1, 2, 3, 4, 5]

Apply a function with arguments from multiple bags:

>>> from operator import add
>>> b.map(add, b2).compute()
[5, 7, 9, 11, 13]

Non-bag arguments are broadcast across all calls to the mapped function:

>>> b.map(add, 1).compute()
[1, 2, 3, 4, 5]

Keyword arguments are also supported, and have the same semantics as regular arguments:

>>> def myadd(x, y=0):
... return x + y
>>> b.map(myadd, y=b2).compute()
[5, 7, 9, 11, 13]
>>> b.map(myadd, y=1).compute()
[1, 2, 3, 4, 5]

Both arguments and keyword arguments can also be instances of dask.bag.Item. Here we’ll add the
max value in the bag to each element:

3.8. Bag 409

dask Documentation, Release 2.6.0

>>> b.map(myadd, b.max()).compute()
[4, 5, 6, 7, 8]

map_partitions(func, *args, **kwargs)
Apply a function to every partition across one or more bags.

Note that all Bag arguments must be partitioned identically.

Parameters

func [callable] The function to be called on every partition. This function should expect
an Iterator or Iterable for every partition and should return an Iterator or
Iterable in return.

*args, **kwargs [Bag, Item, Delayed, or object] Arguments and keyword arguments to
pass to func. Partitions from this bag will be the first argument, and these will be
passed after.

Examples

>>> import dask.bag as db
>>> b = db.from_sequence(range(1, 101), npartitions=10)
>>> def div(nums, den=1):
... return [num / den for num in nums]

Using a python object:

>>> hi = b.max().compute()
>>> hi
100
>>> b.map_partitions(div, den=hi).take(5)
(0.01, 0.02, 0.03, 0.04, 0.05)

Using an Item:

>>> b.map_partitions(div, den=b.max()).take(5)
(0.01, 0.02, 0.03, 0.04, 0.05)

Note that while both versions give the same output, the second forms a single graph, and then computes
everything at once, and in some cases may be more efficient.

max(split_every=None)
Maximum element

mean()
Arithmetic mean

min(split_every=None)
Minimum element

pluck(key, default=’__no__default__’)
Select item from all tuples/dicts in collection.

>>> b = from_sequence([{'name': 'Alice', 'credits': [1, 2, 3]},
... {'name': 'Bob', 'credits': [10, 20]}])
>>> list(b.pluck('name')) # doctest: +SKIP
['Alice', 'Bob']

(continues on next page)

410 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> list(b.pluck('credits').pluck(0)) # doctest: +SKIP
[1, 10]

product(other)
Cartesian product between two bags.

random_sample(prob, random_state=None)
Return elements from bag with probability of prob.

Parameters

prob [float] A float between 0 and 1, representing the probability that each element will
be returned.

random_state [int or random.Random, optional] If an integer, will be used to seed a new
random.Random object. If provided, results in deterministic sampling.

Examples

>>> import dask.bag as db
>>> b = db.from_sequence(range(5))
>>> list(b.random_sample(0.5, 42))
[1, 3]
>>> list(b.random_sample(0.5, 42))
[1, 3]

reduction(perpartition, aggregate, split_every=None, out_type=<class ’dask.bag.core.Item’>,
name=None)

Reduce collection with reduction operators.

Parameters

perpartition: function reduction to apply to each partition

aggregate: function reduction to apply to the results of all partitions

split_every: int (optional) Group partitions into groups of this size while performing
reduction Defaults to 8

out_type: {Bag, Item} The out type of the result, Item if a single element, Bag if a list
of elements. Defaults to Item.

Examples

>>> b = from_sequence(range(10))
>>> b.reduction(sum, sum).compute()
45

remove(predicate)
Remove elements in collection that match predicate.

>>> def iseven(x):
... return x % 2 == 0

3.8. Bag 411

dask Documentation, Release 2.6.0

>>> import dask.bag as db
>>> b = db.from_sequence(range(5))
>>> list(b.remove(iseven)) # doctest: +SKIP
[1, 3]

repartition(npartitions)
Coalesce bag into fewer partitions.

Examples

>>> b.repartition(5) # set to have 5 partitions # doctest: +SKIP

starmap(func, **kwargs)
Apply a function using argument tuples from the given bag.

This is similar to itertools.starmap, except it also accepts keyword arguments. In pseudocode,
this is could be written as:

>>> def starmap(func, bag, **kwargs):
... return (func(*args, **kwargs) for args in bag)

Parameters

func [callable]

**kwargs [Item, Delayed, or object, optional] Extra keyword arguments to pass to func.
These can either be normal objects, dask.bag.Item, or dask.delayed.
Delayed.

Examples

>>> import dask.bag as db
>>> data = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)]
>>> b = db.from_sequence(data, npartitions=2)

Apply a function to each argument tuple:

>>> from operator import add
>>> b.starmap(add).compute()
[3, 7, 11, 15, 19]

Apply a function to each argument tuple, with additional keyword arguments:

>>> def myadd(x, y, z=0):
... return x + y + z
>>> b.starmap(myadd, z=10).compute()
[13, 17, 21, 25, 29]

Keyword arguments can also be instances of dask.bag.Item or dask.delayed.Delayed:

>>> max_second = b.pluck(1).max()
>>> max_second.compute()
10
>>> b.starmap(myadd, z=max_second).compute()
[13, 17, 21, 25, 29]

412 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

std(ddof=0)
Standard deviation

str
String processing functions

Examples

>>> import dask.bag as db
>>> b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith'])
>>> list(b.str.lower())
['alice smith', 'bob jones', 'charlie smith']

>>> list(b.str.match('*Smith'))
['Alice Smith', 'Charlie Smith']

>>> list(b.str.split(' '))
[['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']]

sum(split_every=None)
Sum all elements

take(k, npartitions=1, compute=True, warn=True)
Take the first k elements.

Parameters

k [int] The number of elements to return

npartitions [int, optional] Elements are only taken from the first npartitions, with a
default of 1. If there are fewer than k rows in the first npartitions a warning will
be raised and any found rows returned. Pass -1 to use all partitions.

compute [bool, optional] Whether to compute the result, default is True.

warn [bool, optional] Whether to warn if the number of elements returned is less than
requested, default is True.

>>> b = from_sequence(range(10))

>>> b.take(3) # doctest: +SKIP

(0, 1, 2)

to_avro(filename, schema, name_function=None, storage_options=None, codec=’null’,
sync_interval=16000, metadata=None, compute=True, **kwargs)

Write bag to set of avro files

The schema is a complex dictionary describing the data, see https://avro.apache.org/docs/1.8.2/
gettingstartedpython.html#Defining+a+schema and https://fastavro.readthedocs.io/en/latest/writer.html .
It’s structure is as follows:

{'name': 'Test',
'namespace': 'Test',
'doc': 'Descriptive text',
'type': 'record',
'fields': [

{'name': 'a', 'type': 'int'},
]}

3.8. Bag 413

https://avro.apache.org/docs/1.8.2/gettingstartedpython.html#Defining+a+schema
https://avro.apache.org/docs/1.8.2/gettingstartedpython.html#Defining+a+schema
https://fastavro.readthedocs.io/en/latest/writer.html

dask Documentation, Release 2.6.0

where the “name” field is required, but “namespace” and “doc” are optional descriptors; “type” must
always be “record”. The list of fields should have an entry for every key of the input records, and the
types are like the primitive, complex or logical types of the Avro spec (https://avro.apache.org/docs/1.8.
2/spec.html).

Results in one avro file per input partition.

Parameters

b: dask.bag.Bag

filename: list of str or str Filenames to write to. If a list, number must match the number
of partitions. If a string, must include a glob character “*”, which will be expanded
using name_function

schema: dict Avro schema dictionary, see above

name_function: None or callable Expands integers into strings, see dask.bytes.
utils.build_name_function

storage_options: None or dict Extra key/value options to pass to the backend file-
system

codec: ‘null’, ‘deflate’, or ‘snappy’ Compression algorithm

sync_interval: int Number of records to include in each block within a file

metadata: None or dict Included in the file header

compute: bool If True, files are written immediately, and function blocks. If False, re-
turns delayed objects, which can be computed by the user where convenient.

kwargs: passed to compute(), if compute=True

Examples

>>> import dask.bag as db
>>> b = db.from_sequence([{'name': 'Alice', 'value': 100},
... {'name': 'Bob', 'value': 200}])
>>> schema = {'name': 'People', 'doc': "Set of people's scores",
... 'type': 'record',
... 'fields': [
... {'name': 'name', 'type': 'string'},
... {'name': 'value', 'type': 'int'}]}
>>> b.to_avro('my-data.*.avro', schema) # doctest: +SKIP
['my-data.0.avro', 'my-data.1.avro']

to_dataframe(meta=None, columns=None)
Create Dask Dataframe from a Dask Bag.

Bag should contain tuples, dict records, or scalars.

Index will not be particularly meaningful. Use reindex afterwards if necessary.

Parameters

meta [pd.DataFrame, dict, iterable, optional] An empty pd.DataFrame that matches
the dtypes and column names of the output. This metadata is necessary for many
algorithms in dask dataframe to work. For ease of use, some alternative inputs are
also available. Instead of a DataFrame, a dict of {name: dtype} or iterable
of (name, dtype) can be provided. If not provided or a list, a single element
from the first partition will be computed, triggering a potentially expensive call to

414 Chapter 3. Complex Algorithms

https://avro.apache.org/docs/1.8.2/spec.html
https://avro.apache.org/docs/1.8.2/spec.html

dask Documentation, Release 2.6.0

compute. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

columns [sequence, optional] Column names to use. If the passed data do not have names
associated with them, this argument provides names for the columns. Otherwise this
argument indicates the order of the columns in the result (any names not found in the
data will become all-NA columns). Note that if meta is provided, column names will
be taken from there and this parameter is invalid.

Examples

>>> import dask.bag as db
>>> b = db.from_sequence([{'name': 'Alice', 'balance': 100},
... {'name': 'Bob', 'balance': 200},
... {'name': 'Charlie', 'balance': 300}],
... npartitions=2)
>>> df = b.to_dataframe()

>>> df.compute()
balance name

0 100 Alice
1 200 Bob
0 300 Charlie

to_delayed(optimize_graph=True)
Convert into a list of dask.delayed objects, one per partition.

Parameters

optimize_graph [bool, optional] If True [default], the graph is optimized before convert-
ing into dask.delayed objects.

See also:

dask.bag.from_delayed

to_textfiles(path, name_function=None, compression=’infer’, encoding=’utf-8’, compute=True,
storage_options=None, last_endline=False, **kwargs)

Write dask Bag to disk, one filename per partition, one line per element.

Paths: This will create one file for each partition in your bag. You can specify the filenames in a variety
of ways.

Use a globstring

>>> b.to_textfiles('/path/to/data/*.json.gz') # doctest: +SKIP

The * will be replaced by the increasing sequence 1, 2, . . .

/path/to/data/0.json.gz
/path/to/data/1.json.gz

Use a globstring and a name_function= keyword argument. The name_function function should
expect an integer and produce a string. Strings produced by name_function must preserve the order of
their respective partition indices.

>>> from datetime import date, timedelta
>>> def name(i):
... return str(date(2015, 1, 1) + i * timedelta(days=1))

3.8. Bag 415

dask Documentation, Release 2.6.0

>>> name(0)
'2015-01-01'
>>> name(15)
'2015-01-16'

>>> b.to_textfiles('/path/to/data/*.json.gz', name_function=name) #
→˓doctest: +SKIP

/path/to/data/2015-01-01.json.gz
/path/to/data/2015-01-02.json.gz
...

You can also provide an explicit list of paths.

>>> paths = ['/path/to/data/alice.json.gz', '/path/to/data/bob.json.gz', ...
→˓] # doctest: +SKIP
>>> b.to_textfiles(paths) # doctest: +SKIP

Compression: Filenames with extensions corresponding to known compression algorithms (gz, bz2) will
be compressed accordingly.

Bag Contents: The bag calling to_textfiles must be a bag of text strings. For example, a bag of
dictionaries could be written to JSON text files by mapping json.dumps on to the bag first, and then
calling to_textfiles :

>>> b_dict.map(json.dumps).to_textfiles("/path/to/data/*.json") # doctest:
→˓+SKIP

Last endline: By default the last line does not end with a newline character. Pass
last_endline=True to invert the default.

topk(k, key=None, split_every=None)
K largest elements in collection

Optionally ordered by some key function

>>> b = from_sequence([10, 3, 5, 7, 11, 4])
>>> list(b.topk(2)) # doctest: +SKIP
[11, 10]

>>> list(b.topk(2, lambda x: -x)) # doctest: +SKIP
[3, 4]

unzip(n)
Transform a bag of tuples to n bags of their elements.

Examples

>>> b = from_sequence([(i, i + 1, i + 2) for i in range(10)])
>>> first, second, third = b.unzip(3)
>>> isinstance(first, Bag)
True
>>> first.compute()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Note that this is equivalent to:

416 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> first, second, third = (b.pluck(i) for i in range(3))

var(ddof=0)
Variance

Other functions

dask.bag.from_sequence(seq, partition_size=None, npartitions=None)
Create a dask Bag from Python sequence.

This sequence should be relatively small in memory. Dask Bag works best when it handles loading your data
itself. Commonly we load a sequence of filenames into a Bag and then use .map to open them.

Parameters

seq: Iterable A sequence of elements to put into the dask

partition_size: int (optional) The length of each partition

npartitions: int (optional) The number of desired partitions

It is best to provide either ‘‘partition_size‘‘ or ‘‘npartitions‘‘

(though not both.)

See also:

read_text Create bag from text files

Examples

>>> b = from_sequence(['Alice', 'Bob', 'Chuck'], partition_size=2)

dask.bag.from_delayed(values)
Create bag from many dask Delayed objects.

These objects will become the partitions of the resulting Bag. They should evaluate to a list or some other
concrete sequence.

Parameters

values: list of delayed values An iterable of dask Delayed objects. Each evaluating to a list.

Returns

Bag

See also:

dask.delayed

Examples

>>> x, y, z = [delayed(load_sequence_from_file)(fn)
... for fn in filenames] # doctest: +SKIP
>>> b = from_delayed([x, y, z]) # doctest: +SKIP

3.8. Bag 417

dask Documentation, Release 2.6.0

dask.bag.read_text(urlpath, blocksize=None, compression=’infer’, encoding=’utf-8’, er-
rors=’strict’, linedelimiter=’\n’, collection=True, storage_options=None,
files_per_partition=None)

Read lines from text files

Parameters

urlpath [string or list] Absolute or relative filepath(s). Prefix with a protocol like s3:// to
read from alternative filesystems. To read from multiple files you can pass a globstring
or a list of paths, with the caveat that they must all have the same protocol.

blocksize: None, int, or str Size (in bytes) to cut up larger files. Streams by default. Can be
None for streaming, an integer number of bytes, or a string like “128MiB”

compression: string Compression format like ‘gzip’ or ‘xz’. Defaults to ‘infer’

encoding: string

errors: string

linedelimiter: string

collection: bool, optional Return dask.bag if True, or list of delayed values if false

storage_options: dict Extra options that make sense to a particular storage connection, e.g.
host, port, username, password, etc.

files_per_partition: None or int If set, group input files into partitions of the requested size,
instead of one partition per file. Mutually exclusive with blocksize.

Returns

dask.bag.Bag if collection is True or list of Delayed lists otherwise

See also:

from_sequence Build bag from Python sequence

Examples

>>> b = read_text('myfiles.1.txt') # doctest: +SKIP
>>> b = read_text('myfiles.*.txt') # doctest: +SKIP
>>> b = read_text('myfiles.*.txt.gz') # doctest: +SKIP
>>> b = read_text('s3://bucket/myfiles.*.txt') # doctest: +SKIP
>>> b = read_text('s3://key:secret@bucket/myfiles.*.txt') # doctest: +SKIP
>>> b = read_text('hdfs://namenode.example.com/myfiles.*.txt') # doctest: +SKIP

Parallelize a large file by providing the number of uncompressed bytes to load into each partition.

>>> b = read_text('largefile.txt', blocksize='10MB') # doctest: +SKIP

dask.bag.from_url(urls)
Create a dask Bag from a url.

Examples

418 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> a = from_url('http://raw.githubusercontent.com/dask/dask/master/README.rst')
→˓# doctest: +SKIP
>>> a.npartitions # doctest: +SKIP
1

>>> a.take(8) # doctest: +SKIP
(b'Dask\n',
b'====\n',
b'\n',
b'|Build Status| |Coverage| |Doc Status| |Gitter| |Version Status|\n',
b'\n',
b'Dask is a flexible parallel computing library for analytics. See\n',
b'documentation_ for more information.\n',
b'\n')

>>> b = from_url(['http://github.com', 'http://google.com']) # doctest: +SKIP
>>> b.npartitions # doctest: +SKIP
2

dask.bag.read_avro(urlpath, blocksize=100000000, storage_options=None, compression=None)
Read set of avro files

Use this with arbitrary nested avro schemas. Please refer to the fastavro documentation for its capabilities:
https://github.com/fastavro/fastavro

Parameters

urlpath: string or list Absolute or relative filepath, URL (may include protocols like s3:/
/), or globstring pointing to data.

blocksize: int or None Size of chunks in bytes. If None, there will be no chunking and each
file will become one partition.

storage_options: dict or None passed to backend file-system

compression: str or None Compression format of the targe(s), like ‘gzip’. Should only be
used with blocksize=None.

dask.bag.range(n, npartitions)
Numbers from zero to n

Examples

>>> import dask.bag as db
>>> b = db.range(5, npartitions=2)
>>> list(b)
[0, 1, 2, 3, 4]

dask.bag.concat(bags)
Concatenate many bags together, unioning all elements.

>>> import dask.bag as db
>>> a = db.from_sequence([1, 2, 3])
>>> b = db.from_sequence([4, 5, 6])
>>> c = db.concat([a, b])

3.8. Bag 419

https://github.com/fastavro/fastavro

dask Documentation, Release 2.6.0

>>> list(c)
[1, 2, 3, 4, 5, 6]

dask.bag.map_partitions(func, *args, **kwargs)
Apply a function to every partition across one or more bags.

Note that all Bag arguments must be partitioned identically.

Parameters

func [callable]

*args, **kwargs [Bag, Item, Delayed, or object] Arguments and keyword arguments to pass
to func.

Examples

>>> import dask.bag as db
>>> b = db.from_sequence(range(1, 101), npartitions=10)
>>> def div(nums, den=1):
... return [num / den for num in nums]

Using a python object:

>>> hi = b.max().compute()
>>> hi
100
>>> b.map_partitions(div, den=hi).take(5)
(0.01, 0.02, 0.03, 0.04, 0.05)

Using an Item:

>>> b.map_partitions(div, den=b.max()).take(5)
(0.01, 0.02, 0.03, 0.04, 0.05)

Note that while both versions give the same output, the second forms a single graph, and then computes every-
thing at once, and in some cases may be more efficient.

dask.bag.map(func, *args, **kwargs)
Apply a function elementwise across one or more bags.

Note that all Bag arguments must be partitioned identically.

Parameters

func [callable]

*args, **kwargs [Bag, Item, Delayed, or object] Arguments and keyword arguments to pass
to func. Non-Bag args/kwargs are broadcasted across all calls to func.

Notes

For calls with multiple Bag arguments, corresponding partitions should have the same length; if they do not, the
call will error at compute time.

420 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> import dask.bag as db
>>> b = db.from_sequence(range(5), npartitions=2)
>>> b2 = db.from_sequence(range(5, 10), npartitions=2)

Apply a function to all elements in a bag:

>>> db.map(lambda x: x + 1, b).compute()
[1, 2, 3, 4, 5]

Apply a function with arguments from multiple bags:

>>> from operator import add
>>> db.map(add, b, b2).compute()
[5, 7, 9, 11, 13]

Non-bag arguments are broadcast across all calls to the mapped function:

>>> db.map(add, b, 1).compute()
[1, 2, 3, 4, 5]

Keyword arguments are also supported, and have the same semantics as regular arguments:

>>> def myadd(x, y=0):
... return x + y
>>> db.map(myadd, b, y=b2).compute()
[5, 7, 9, 11, 13]
>>> db.map(myadd, b, y=1).compute()
[1, 2, 3, 4, 5]

Both arguments and keyword arguments can also be instances of dask.bag.Item or dask.delayed.
Delayed. Here we’ll add the max value in the bag to each element:

>>> db.map(myadd, b, b.max()).compute()
[4, 5, 6, 7, 8]

dask.bag.zip(*bags)
Partition-wise bag zip

All passed bags must have the same number of partitions.

NOTE: corresponding partitions should have the same length; if they do not, the “extra” elements from the
longer partition(s) will be dropped. If you have this case chances are that what you really need is a data alignment
mechanism like pandas’s, and not a missing value filler like zip_longest.

Examples

Correct usage:

>>> import dask.bag as db
>>> evens = db.from_sequence(range(0, 10, 2), partition_size=4)
>>> odds = db.from_sequence(range(1, 10, 2), partition_size=4)
>>> pairs = db.zip(evens, odds)
>>> list(pairs)
[(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)]

3.8. Bag 421

dask Documentation, Release 2.6.0

Incorrect usage:

>>> numbers = db.range(20) # doctest: +SKIP
>>> fizz = numbers.filter(lambda n: n % 3 == 0) # doctest: +SKIP
>>> buzz = numbers.filter(lambda n: n % 5 == 0) # doctest: +SKIP
>>> fizzbuzz = db.zip(fizz, buzz) # doctest: +SKIP
>>> list(fizzbuzzz) # doctest: +SKIP
[(0, 0), (3, 5), (6, 10), (9, 15), (12, 20), (15, 25), (18, 30)]

When what you really wanted was more along the lines of the following:

>>> list(fizzbuzzz) # doctest: +SKIP
[(0, 0), (3, None), (None, 5), (6, None), (None 10), (9, None),
(12, None), (15, 15), (18, None), (None, 20), (None, 25), (None, 30)]

Dask Bag implements operations like map, filter, fold, and groupby on collections of generic Python objects.
It does this in parallel with a small memory footprint using Python iterators. It is similar to a parallel version of
PyToolz or a Pythonic version of the PySpark RDD.

3.8.4 Design

Dask bags coordinate many Python lists or Iterators, each of which forms a partition of a larger collection.

3.8.5 Common Uses

Dask bags are often used to parallelize simple computations on unstructured or semi-structured data like text data, log
files, JSON records, or user defined Python objects.

3.8.6 Execution

Execution on bags provide two benefits:

1. Parallel: data is split up, allowing multiple cores or machines to execute in parallel

2. Iterating: data processes lazily, allowing smooth execution of larger-than-memory data, even on a single machine
within a single partition

Default scheduler

By default, dask.bag uses dask.multiprocessing for computation. As a benefit, Dask bypasses the GIL and
uses multiple cores on pure Python objects. As a drawback, Dask Bag doesn’t perform well on computations that
include a great deal of inter-worker communication. For common operations this is rarely an issue as most Dask Bag
workflows are embarrassingly parallel or result in reductions with little data moving between workers.

Shuffle

Some operations, like groupby, require substantial inter-worker communication. On a single machine, Dask uses
partd to perform efficient, parallel, spill-to-disk shuffles. When working in a cluster, Dask uses a task based shuffle.

These shuffle operations are expensive and better handled by projects like dask.dataframe. It is best to use
dask.bag to clean and process data, then transform it into an array or DataFrame before embarking on the more
complex operations that require shuffle steps.

422 Chapter 3. Complex Algorithms

https://toolz.readthedocs.io/en/latest/
https://spark.apache.org/docs/latest/api/python/pyspark.html
https://docs.python.org/3/glossary.html#term-gil
https://github.com/mrocklin/partd

dask Documentation, Release 2.6.0

3.8.7 Known Limitations

Bags provide very general computation (any Python function). This generality comes at cost. Bags have the following
known limitations:

1. By default, they rely on the multiprocessing scheduler, which has its own set of known limitations (see shared)

2. Bags are immutable and so you can not change individual elements

3. Bag operations tend to be slower than array/DataFrame computations in the same way that standard Python
containers tend to be slower than NumPy arrays and Pandas DataFrames

4. Bag’s groupby is slow. You should try to use Bag’s foldby if possible. Using foldby requires more
thought tough

3.8.8 Name

Bag is the mathematical name for an unordered collection allowing repeats. It is a friendly synonym to multiset. A
bag, or a multiset, is a generalization of the concept of a set that, unlike a set, allows multiple instances of the multiset’s
elements:

• list: ordered collection with repeats, [1, 2, 3, 2]

• set: unordered collection without repeats, {1, 2, 3}

• bag: unordered collection with repeats, {1, 2, 2, 3}

So, a bag is like a list, but it doesn’t guarantee an ordering among elements. There can be repeated elements but you
can’t ask for the ith element.

3.9 DataFrame

3.9.1 API

Dataframe

DataFrame(dsk, name, meta, divisions) Parallel Pandas DataFrame
DataFrame.add(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary

operator add).
DataFrame.append(other[, interleave_partitions]) Append rows of other to the end of caller, returning a

new object.
DataFrame.apply(func[, axis, broadcast, . . .]) Parallel version of pandas.DataFrame.apply
DataFrame.assign(**kwargs) Assign new columns to a DataFrame.
DataFrame.astype(dtype) Cast a pandas object to a specified dtype dtype.
DataFrame.categorize([columns, index, . . .]) Convert columns of the DataFrame to category dtype.
DataFrame.columns
DataFrame.compute(**kwargs) Compute this dask collection
DataFrame.corr([method, min_periods, . . .]) Compute pairwise correlation of columns, excluding

NA/null values.
DataFrame.count([axis, split_every]) Count non-NA cells for each column or row.
DataFrame.cov([min_periods, split_every]) Compute pairwise covariance of columns, excluding

NA/null values.
Continued on next page

3.9. DataFrame 423

https://en.wikipedia.org/wiki/Bag_(mathematics)

dask Documentation, Release 2.6.0

Table 38 – continued from previous page
DataFrame.cummax([axis, skipna, out]) Return cumulative maximum over a DataFrame or Se-

ries axis.
DataFrame.cummin([axis, skipna, out]) Return cumulative minimum over a DataFrame or Se-

ries axis.
DataFrame.cumprod([axis, skipna, dtype, out]) Return cumulative product over a DataFrame or Series

axis.
DataFrame.cumsum([axis, skipna, dtype, out]) Return cumulative sum over a DataFrame or Series axis.
DataFrame.describe([split_every, . . .]) Generate descriptive statistics that summarize the cen-

tral tendency, dispersion and shape of a dataset’s distri-
bution, excluding NaN values.

DataFrame.div(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise
(binary operator truediv).

DataFrame.drop([labels, axis, columns, errors]) Drop specified labels from rows or columns.
DataFrame.drop_duplicates([subset, . . .]) Return DataFrame with duplicate rows removed, op-

tionally only considering certain columns.
DataFrame.dropna([how, subset, thresh]) Remove missing values.
DataFrame.dtypes Return data types
DataFrame.explode(column)
DataFrame.fillna([value, method, limit, axis]) Fill NA/NaN values using the specified method.
DataFrame.floordiv(other[, axis, level, . . .]) Integer division of dataframe and other, element-wise

(binary operator floordiv).
DataFrame.get_partition(n) Get a dask DataFrame/Series representing the nth parti-

tion.
DataFrame.groupby([by]) Group DataFrame or Series using a mapper or by a Se-

ries of columns.
DataFrame.head([n, npartitions, compute]) First n rows of the dataset
DataFrame.iloc Purely integer-location based indexing for selection by

position.
DataFrame.index Return dask Index instance
DataFrame.isna() Detect missing values.
DataFrame.isnull() Detect missing values.
DataFrame.iterrows() Iterate over DataFrame rows as (index, Series) pairs.
DataFrame.itertuples([index, name]) Iterate over DataFrame rows as namedtuples.
DataFrame.join(other[, on, how, lsuffix, . . .]) Join columns of another DataFrame.
DataFrame.known_divisions Whether divisions are already known
DataFrame.loc Purely label-location based indexer for selection by la-

bel.
DataFrame.map_partitions(func, *args,
**kwargs)

Apply Python function on each DataFrame partition.

DataFrame.mask(cond[, other]) Replace values where the condition is True.
DataFrame.max([axis, skipna, split_every, out]) Return the maximum of the values for the requested

axis.
DataFrame.mean([axis, skipna, split_every, . . .]) Return the mean of the values for the requested axis.
DataFrame.merge(right[, how, on, left_on, . . .]) Merge the DataFrame with another DataFrame
DataFrame.min([axis, skipna, split_every, out]) Return the minimum of the values for the requested axis.
DataFrame.mod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary

operator mod).
DataFrame.mul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (bi-

nary operator mul).
DataFrame.ndim Return dimensionality

Continued on next page

424 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Table 38 – continued from previous page
DataFrame.nlargest([n, columns, split_every]) Return the first n rows ordered by columns in descend-

ing order.
DataFrame.npartitions Return number of partitions
DataFrame.partitions Slice dataframe by partitions
DataFrame.pop(item) Return item and drop from frame.
DataFrame.pow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-

wise (binary operator pow).
DataFrame.prod([axis, skipna, split_every, . . .]) Return the product of the values for the requested axis.
DataFrame.quantile([q, axis, method]) Approximate row-wise and precise column-wise quan-

tiles of DataFrame
DataFrame.query(expr, **kwargs) Filter dataframe with complex expression
DataFrame.radd(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary

operator radd).
DataFrame.random_split(frac[, random_state]) Pseudorandomly split dataframe into different pieces

row-wise
DataFrame.rdiv(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise

(binary operator rtruediv).
DataFrame.rename([index, columns]) Alter axes labels.
DataFrame.repartition([divisions, . . .]) Repartition dataframe along new divisions
DataFrame.replace([to_replace, value, regex]) Replace values given in to_replace with value.
DataFrame.reset_index([drop]) Reset the index to the default index.
DataFrame.rfloordiv(other[, axis, level, . . .]) Integer division of dataframe and other, element-wise

(binary operator rfloordiv).
DataFrame.rmod(other[, axis, level, fill_value]) Modulo of dataframe and other, element-wise (binary

operator rmod).
DataFrame.rmul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (bi-

nary operator rmul).
DataFrame.rpow(other[, axis, level, fill_value]) Exponential power of dataframe and other, element-

wise (binary operator rpow).
DataFrame.rsub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (bi-

nary operator rsub).
DataFrame.rtruediv(other[, axis, level, . . .]) Floating division of dataframe and other, element-wise

(binary operator rtruediv).
DataFrame.sample([n, frac, replace, . . .]) Random sample of items
DataFrame.set_index(other[, drop, sorted, . . .]) Set the DataFrame index (row labels) using an existing

column.
DataFrame.shape Return a tuple representing the dimensionality of the

DataFrame.
DataFrame.std([axis, skipna, ddof, . . .]) Return sample standard deviation over requested axis.
DataFrame.sub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (bi-

nary operator sub).
DataFrame.sum([axis, skipna, split_every, . . .]) Return the sum of the values for the requested axis.
DataFrame.tail([n, compute]) Last n rows of the dataset
DataFrame.to_bag([index]) Create Dask Bag from a Dask DataFrame
DataFrame.to_csv(filename, **kwargs) Store Dask DataFrame to CSV files
DataFrame.to_dask_array([lengths]) Convert a dask DataFrame to a dask array.
DataFrame.to_delayed([optimize_graph]) Convert into a list of dask.delayed objects, one per

partition.
DataFrame.to_hdf(path_or_buf, key[, mode, . . .]) Store Dask Dataframe to Hierarchical Data Format

(HDF) files
DataFrame.to_json(filename, *args, **kwargs) See dd.to_json docstring for more information

Continued on next page

3.9. DataFrame 425

dask Documentation, Release 2.6.0

Table 38 – continued from previous page
DataFrame.to_parquet(path, *args, **kwargs) Store Dask.dataframe to Parquet files
DataFrame.to_records([index, lengths]) Create Dask Array from a Dask Dataframe
DataFrame.truediv(other[, axis, level, . . .]) Floating division of dataframe and other, element-wise

(binary operator truediv).
DataFrame.values Return a dask.array of the values of this dataframe
DataFrame.var([axis, skipna, ddof, . . .]) Return unbiased variance over requested axis.
DataFrame.visualize([filename, format, . . .]) Render the computation of this object’s task graph using

graphviz.
DataFrame.where(cond[, other]) Replace values where the condition is False.

Series

Series(dsk, name, meta, divisions) Parallel Pandas Series
Series.add(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary oper-

ator add).
Series.align(other[, join, axis, fill_value]) Align two objects on their axes with the specified join

method for each axis Index.
Series.all([axis, skipna, split_every, out]) Return whether all elements are True, potentially over

an axis.
Series.any([axis, skipna, split_every, out]) Return whether any element is True, potentially over an

axis.
Series.append(other[, interleave_partitions]) Concatenate two or more Series.
Series.apply(func[, convert_dtype, meta, args]) Parallel version of pandas.Series.apply
Series.astype(dtype) Cast a pandas object to a specified dtype dtype.
Series.autocorr([lag, split_every]) Compute the lag-N autocorrelation.
Series.between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <=

right.
Series.bfill([axis, limit]) Synonym for DataFrame.fillna() with

method='bfill'.
Series.cat
Series.clear_divisions() Forget division information
Series.clip([lower, upper, out]) Trim values at input threshold(s).
Series.clip_lower(threshold) Trim values below a given threshold.
Series.clip_upper(threshold) Trim values above a given threshold.
Series.compute(**kwargs) Compute this dask collection
Series.copy() Make a copy of the dataframe
Series.corr(other[, method, min_periods, . . .]) Compute correlation with other Series, excluding miss-

ing values.
Series.count([split_every]) Return number of non-NA/null observations in the Se-

ries.
Series.cov(other[, min_periods, split_every]) Compute covariance with Series, excluding missing val-

ues.
Series.cummax([axis, skipna, out]) Return cumulative maximum over a DataFrame or Se-

ries axis.
Series.cummin([axis, skipna, out]) Return cumulative minimum over a DataFrame or Se-

ries axis.
Series.cumprod([axis, skipna, dtype, out]) Return cumulative product over a DataFrame or Series

axis.
Series.cumsum([axis, skipna, dtype, out]) Return cumulative sum over a DataFrame or Series axis.

Continued on next page

426 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Table 39 – continued from previous page
Series.describe([split_every, percentiles, . . .]) Generate descriptive statistics that summarize the cen-

tral tendency, dispersion and shape of a dataset’s distri-
bution, excluding NaN values.

Series.diff([periods, axis]) First discrete difference of element.
Series.div(other[, level, fill_value, axis]) Floating division of series and other, element-wise (bi-

nary operator truediv).
Series.drop_duplicates([subset, . . .]) Return DataFrame with duplicate rows removed, op-

tionally only considering certain columns.
Series.dropna() Return a new Series with missing values removed.
Series.dt Namespace of datetime methods
Series.dtype Return data type
Series.eq(other[, level, fill_value, axis]) Equal to of series and other, element-wise (binary oper-

ator eq).
Series.explode()
Series.ffill([axis, limit]) Synonym for DataFrame.fillna() with

method='ffill'.
Series.fillna([value, method, limit, axis]) Fill NA/NaN values using the specified method.
Series.first(offset) Convenience method for subsetting initial periods of

time series data based on a date offset.
Series.floordiv(other[, level, fill_value, axis]) Integer division of series and other, element-wise (bi-

nary operator floordiv).
Series.ge(other[, level, fill_value, axis]) Greater than or equal to of series and other, element-

wise (binary operator ge).
Series.get_partition(n) Get a dask DataFrame/Series representing the nth parti-

tion.
Series.groupby([by]) Group DataFrame or Series using a mapper or by a Se-

ries of columns.
Series.gt(other[, level, fill_value, axis]) Greater than of series and other, element-wise (binary

operator gt).
Series.head([n, npartitions, compute]) First n rows of the dataset
Series.idxmax([axis, skipna, split_every]) Return index of first occurrence of maximum over re-

quested axis.
Series.idxmin([axis, skipna, split_every]) Return index of first occurrence of minimum over re-

quested axis.
Series.isin(values) Check whether values are contained in Series.
Series.isna() Detect missing values.
Series.isnull() Detect missing values.
Series.iteritems() Lazily iterate over (index, value) tuples.
Series.known_divisions Whether divisions are already known
Series.last(offset) Convenience method for subsetting final periods of time

series data based on a date offset.
Series.le(other[, level, fill_value, axis]) Less than or equal to of series and other, element-wise

(binary operator le).
Series.loc Purely label-location based indexer for selection by la-

bel.
Series.lt(other[, level, fill_value, axis]) Less than of series and other, element-wise (binary op-

erator lt).
Series.map(arg[, na_action, meta]) Map values of Series according to input correspon-

dence.
Series.map_overlap(func, before, after, . . .) Apply a function to each partition, sharing rows with

adjacent partitions.
Continued on next page

3.9. DataFrame 427

dask Documentation, Release 2.6.0

Table 39 – continued from previous page
Series.map_partitions(func, *args, **kwargs) Apply Python function on each DataFrame partition.
Series.mask(cond[, other]) Replace values where the condition is True.
Series.max([axis, skipna, split_every, out]) Return the maximum of the values for the requested

axis.
Series.mean([axis, skipna, split_every, . . .]) Return the mean of the values for the requested axis.
Series.memory_usage([index, deep]) Return the memory usage of the Series.
Series.min([axis, skipna, split_every, out]) Return the minimum of the values for the requested axis.
Series.mod(other[, level, fill_value, axis]) Modulo of series and other, element-wise (binary oper-

ator mod).
Series.mul(other[, level, fill_value, axis]) Multiplication of series and other, element-wise (binary

operator mul).
Series.nbytes Number of bytes
Series.ndim Return dimensionality
Series.ne(other[, level, fill_value, axis]) Not equal to of series and other, element-wise (binary

operator ne).
Series.nlargest([n, split_every]) Return the largest n elements.
Series.notnull() Detect existing (non-missing) values.
Series.nsmallest([n, split_every]) Return the smallest n elements.
Series.nunique([split_every]) Return number of unique elements in the object.
Series.nunique_approx([split_every]) Approximate number of unique rows.
Series.persist(**kwargs) Persist this dask collection into memory
Series.pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs).
Series.pow(other[, level, fill_value, axis]) Exponential power of series and other, element-wise

(binary operator pow).
Series.prod([axis, skipna, split_every, . . .]) Return the product of the values for the requested axis.
Series.quantile([q, method]) Approximate quantiles of Series
Series.radd(other[, level, fill_value, axis]) Addition of series and other, element-wise (binary oper-

ator radd).
Series.random_split(frac[, random_state]) Pseudorandomly split dataframe into different pieces

row-wise
Series.rdiv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (bi-

nary operator rtruediv).
Series.reduction(chunk[, aggregate, . . .]) Generic row-wise reductions.
Series.repartition([divisions, npartitions, . . .]) Repartition dataframe along new divisions
Series.replace([to_replace, value, regex]) Replace values given in to_replace with value.
Series.rename([index, inplace, sorted_index]) Alter Series index labels or name
Series.resample(rule[, closed, label]) Resample time-series data.
Series.reset_index([drop]) Reset the index to the default index.
Series.rolling(window[, min_periods, . . .]) Provides rolling transformations.
Series.round([decimals]) Round each value in a Series to the given number of

decimals.
Series.sample([n, frac, replace, random_state]) Random sample of items
Series.sem([axis, skipna, ddof, split_every]) Return unbiased standard error of the mean over re-

quested axis.
Series.shape Return a tuple representing the dimensionality of a Se-

ries.
Series.shift([periods, freq, axis]) Shift index by desired number of periods with an op-

tional time freq.
Series.size Size of the Series or DataFrame as a Delayed object.
Series.std([axis, skipna, ddof, . . .]) Return sample standard deviation over requested axis.
Series.str Namespace for string methods

Continued on next page

428 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Table 39 – continued from previous page
Series.sub(other[, level, fill_value, axis]) Subtraction of series and other, element-wise (binary

operator sub).
Series.sum([axis, skipna, split_every, . . .]) Return the sum of the values for the requested axis.
Series.to_bag([index]) Create a Dask Bag from a Series
Series.to_csv(filename, **kwargs) Store Dask DataFrame to CSV files
Series.to_dask_array([lengths]) Convert a dask DataFrame to a dask array.
Series.to_delayed([optimize_graph]) Convert into a list of dask.delayed objects, one per

partition.
Series.to_frame([name]) Convert Series to DataFrame.
Series.to_hdf(path_or_buf, key[, mode, append]) Store Dask Dataframe to Hierarchical Data Format

(HDF) files
Series.to_string([max_rows]) Render a string representation of the Series.
Series.to_timestamp([freq, how, axis]) Cast to DatetimeIndex of timestamps, at beginning of

period.
Series.truediv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (bi-

nary operator truediv).
Series.unique([split_every, split_out]) Return Series of unique values in the object.
Series.value_counts([split_every, split_out]) Return a Series containing counts of unique values.
Series.values Return a dask.array of the values of this dataframe
Series.var([axis, skipna, ddof, . . .]) Return unbiased variance over requested axis.
Series.visualize([filename, format, . . .]) Render the computation of this object’s task graph using

graphviz.
Series.where(cond[, other]) Replace values where the condition is False.

Groupby Operations

DataFrameGroupBy.aggregate(arg[, . . .]) Aggregate using one or more operations over the speci-
fied axis.

DataFrameGroupBy.apply(func, *args,
**kwargs)

Parallel version of pandas GroupBy.apply

DataFrameGroupBy.count([split_every,
split_out])

Compute count of group, excluding missing values.

DataFrameGroupBy.cumcount([axis]) Number each item in each group from 0 to the length of
that group - 1.

DataFrameGroupBy.cumprod([axis]) Cumulative product for each group.
DataFrameGroupBy.cumsum([axis]) Cumulative sum for each group.
DataFrameGroupBy.get_group(key) Constructs NDFrame from group with provided name.
DataFrameGroupBy.max([split_every, split_out]) Compute max of group values See Also ——– pan-

das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

DataFrameGroupBy.mean([split_every, split_out]) Compute mean of groups, excluding missing values.
DataFrameGroupBy.min([split_every, split_out]) Compute min of group values See Also ——– pan-

das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

DataFrameGroupBy.size([split_every, split_out]) Compute group sizes.
DataFrameGroupBy.std([ddof, split_every, . . .]) Compute standard deviation of groups, excluding miss-

ing values.
DataFrameGroupBy.sum([split_every, . . .]) Compute sum of group values See Also ——– pan-

das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

Continued on next page

3.9. DataFrame 429

dask Documentation, Release 2.6.0

Table 40 – continued from previous page
DataFrameGroupBy.var([ddof, split_every, . . .]) Compute variance of groups, excluding missing values.
DataFrameGroupBy.cov([ddof, split_every, . . .]) Compute pairwise covariance of columns, excluding

NA/null values.
DataFrameGroupBy.corr([ddof, split_every,
. . .])

Compute pairwise correlation of columns, excluding
NA/null values.

DataFrameGroupBy.first([split_every,
split_out])

Compute first of group values See Also ——– pan-
das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

DataFrameGroupBy.last([split_every, split_out]) Compute last of group values See Also ——– pan-
das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

DataFrameGroupBy.idxmin([split_every, . . .]) Return index of first occurrence of minimum over re-
quested axis.

DataFrameGroupBy.idxmax([split_every, . . .]) Return index of first occurrence of maximum over re-
quested axis.

SeriesGroupBy.aggregate(arg[, split_every,
. . .])

Aggregate using one or more operations over the speci-
fied axis.

SeriesGroupBy.apply(func, *args, **kwargs) Parallel version of pandas GroupBy.apply
SeriesGroupBy.count([split_every, split_out]) Compute count of group, excluding missing values.
SeriesGroupBy.cumcount([axis]) Number each item in each group from 0 to the length of

that group - 1.
SeriesGroupBy.cumprod([axis]) Cumulative product for each group.
SeriesGroupBy.cumsum([axis]) Cumulative sum for each group.
SeriesGroupBy.get_group(key) Constructs NDFrame from group with provided name.
SeriesGroupBy.max([split_every, split_out]) Compute max of group values See Also ——– pan-

das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

SeriesGroupBy.mean([split_every, split_out]) Compute mean of groups, excluding missing values.
SeriesGroupBy.min([split_every, split_out]) Compute min of group values See Also ——– pan-

das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

SeriesGroupBy.nunique([split_every, split_out])
SeriesGroupBy.size([split_every, split_out]) Compute group sizes.
SeriesGroupBy.std([ddof, split_every, split_out]) Compute standard deviation of groups, excluding miss-

ing values.
SeriesGroupBy.sum([split_every, split_out, . . .]) Compute sum of group values See Also ——– pan-

das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

SeriesGroupBy.var([ddof, split_every, split_out]) Compute variance of groups, excluding missing values.
SeriesGroupBy.first([split_every, split_out]) Compute first of group values See Also ——– pan-

das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

SeriesGroupBy.last([split_every, split_out]) Compute last of group values See Also ——– pan-
das.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

SeriesGroupBy.idxmin([split_every, . . .]) Return index of first occurrence of minimum over re-
quested axis.

SeriesGroupBy.idxmax([split_every, . . .]) Return index of first occurrence of maximum over re-
quested axis.

430 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Aggregation(name, chunk, agg[, finalize]) User defined groupby-aggregation.

Rolling Operations

rolling.map_overlap(func, df, before, after, . . .) Apply a function to each partition, sharing rows with
adjacent partitions.

Series.rolling(window[, min_periods, . . .]) Provides rolling transformations.
DataFrame.rolling(window[, min_periods, . . .]) Provides rolling transformations.

Rolling.apply(func[, args, kwargs]) The rolling function’s apply function.
Rolling.count() The rolling count of any non-NaN observations inside

the window.
Rolling.kurt() Calculate unbiased rolling kurtosis.
Rolling.max() Calculate the rolling maximum.
Rolling.mean() Calculate the rolling mean of the values.
Rolling.median() Calculate the rolling median.
Rolling.min() Calculate the rolling minimum.
Rolling.quantile(quantile) Calculate the rolling quantile.
Rolling.skew() Unbiased rolling skewness.
Rolling.std([ddof]) Calculate rolling standard deviation.
Rolling.sum() Calculate rolling sum of given DataFrame or Series.
Rolling.var([ddof]) Calculate unbiased rolling variance.

Create DataFrames

read_csv(urlpath[, blocksize, collection, . . .]) Read CSV files into a Dask.DataFrame
read_table(urlpath[, blocksize, collection, . . .]) Read delimited files into a Dask.DataFrame
read_fwf(urlpath[, blocksize, collection, . . .]) Read fixed-width files into a Dask.DataFrame
read_parquet(path[, columns, filters, . . .]) Read a Parquet file into a Dask DataFrame
read_hdf(pattern, key[, start, stop, . . .]) Read HDF files into a Dask DataFrame
read_json(url_path[, orient, lines, . . .]) Create a dataframe from a set of JSON files
read_orc(path[, columns, storage_options]) Read dataframe from ORC file(s)
read_sql_table(table, uri, index_col[, . . .]) Create dataframe from an SQL table.
from_array(x[, chunksize, columns]) Read any slicable array into a Dask Dataframe
from_bcolz(x[, chunksize, categorize, . . .]) Read BColz CTable into a Dask Dataframe
from_dask_array(x[, columns, index]) Create a Dask DataFrame from a Dask Array.
from_delayed(dfs[, meta, divisions, prefix, . . .]) Create Dask DataFrame from many Dask Delayed ob-

jects
from_pandas(data[, npartitions, chunksize, . . .]) Construct a Dask DataFrame from a Pandas DataFrame
dask.bag.core.Bag.to_dataframe([meta,
columns])

Create Dask Dataframe from a Dask Bag.

Store DataFrames

to_csv(df, filename[, single_file, . . .]) Store Dask DataFrame to CSV files
to_parquet(df, path[, engine, compression, . . .]) Store Dask.dataframe to Parquet files

Continued on next page

3.9. DataFrame 431

dask Documentation, Release 2.6.0

Table 46 – continued from previous page
to_hdf(df, path, key[, mode, append, . . .]) Store Dask Dataframe to Hierarchical Data Format

(HDF) files
to_records(df) Create Dask Array from a Dask Dataframe
to_bag(df[, index]) Create Dask Bag from a Dask DataFrame
to_json(df, url_path[, orient, lines, . . .]) Write dataframe into JSON text files

Convert DataFrames

to_dask_array
to_delayed

Reshape DataFrames

get_dummies(data[, prefix, prefix_sep, . . .]) Convert categorical variable into dummy/indicator vari-
ables.

pivot_table(df[, index, columns, values, . . .]) Create a spreadsheet-style pivot table as a DataFrame.
melt(frame[, id_vars, value_vars, var_name, . . .]) Unpivots a DataFrame from wide format to long format,

optionally leaving identifier variables set.

DataFrame Methods

class dask.dataframe.DataFrame(dsk, name, meta, divisions)
Parallel Pandas DataFrame

Do not use this class directly. Instead use functions like dd.read_csv, dd.read_parquet, or dd.
from_pandas.

Parameters

dsk: dict The dask graph to compute this DataFrame

name: str The key prefix that specifies which keys in the dask comprise this particular
DataFrame

meta: pandas.DataFrame An empty pandas.DataFramewith names, dtypes, and index
matching the expected output.

divisions: tuple of index values Values along which we partition our blocks on the index

abs()
Return a Series/DataFrame with absolute numeric value of each element.

This docstring was copied from pandas.core.frame.DataFrame.abs.

Some inconsistencies with the Dask version may exist.

This function only applies to elements that are all numeric.

Returns

abs Series/DataFrame containing the absolute value of each element.

See also:

numpy.absolute Calculate the absolute value element-wise.

432 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute

dask Documentation, Release 2.6.0

Notes

For complex inputs, 1.2 + 1j, the absolute value is
√
𝑎2 + 𝑏2.

Examples

Absolute numeric values in a Series.

>>> s = pd.Series([-1.10, 2, -3.33, 4]) # doctest: +SKIP
>>> s.abs() # doctest: +SKIP
0 1.10
1 2.00
2 3.33
3 4.00
dtype: float64

Absolute numeric values in a Series with complex numbers.

>>> s = pd.Series([1.2 + 1j]) # doctest: +SKIP
>>> s.abs() # doctest: +SKIP
0 1.56205
dtype: float64

Absolute numeric values in a Series with a Timedelta element.

>>> s = pd.Series([pd.Timedelta('1 days')]) # doctest: +SKIP
>>> s.abs() # doctest: +SKIP
0 1 days
dtype: timedelta64[ns]

Select rows with data closest to certain value using argsort (from StackOverflow).

>>> df = pd.DataFrame({ # doctest: +SKIP
... 'a': [4, 5, 6, 7],
... 'b': [10, 20, 30, 40],
... 'c': [100, 50, -30, -50]
... })
>>> df # doctest: +SKIP

a b c
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
>>> df.loc[(df.c - 43).abs().argsort()] # doctest: +SKIP

a b c
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50

add(other, axis=’columns’, level=None, fill_value=None)
Addition of dataframe and other, element-wise (binary operator add).

Equivalent to dataframe + other, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, radd.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

3.9. DataFrame 433

https://stackoverflow.com/a/17758115

dask Documentation, Release 2.6.0

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

434 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN

(continues on next page)

3.9. DataFrame 435

dask Documentation, Release 2.6.0

(continued from previous page)

triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

align(other, join=’outer’, axis=None, fill_value=None)
Align two objects on their axes with the specified join method for each axis Index.

This docstring was copied from pandas.core.frame.DataFrame.align.

Some inconsistencies with the Dask version may exist.

Parameters

other [DataFrame or Series]

join [{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’]

axis [allowed axis of the other object, default None] Align on index (0), columns (1), or
both (None)

level [int or level name, default None (Not supported in Dask)] Broadcast across a level,
matching Index values on the passed MultiIndex level

copy [boolean, default True (Not supported in Dask)] Always returns new objects. If
copy=False and no reindexing is required then original objects are returned.

fill_value [scalar, default np.NaN] Value to use for missing values. Defaults to NaN, but
can be any “compatible” value

436 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

method [{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None (Not supported in Dask)]
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to fill
gap

limit [int, default None (Not supported in Dask)] If method is specified, this is the maxi-
mum number of consecutive NaN values to forward/backward fill. In other words, if
there is a gap with more than this number of consecutive NaNs, it will only be par-
tially filled. If method is not specified, this is the maximum number of entries along
the entire axis where NaNs will be filled. Must be greater than 0 if not None.

fill_axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Filling axis,
method and limit

broadcast_axis [{0 or ‘index’, 1 or ‘columns’}, default None (Not supported in Dask)]
Broadcast values along this axis, if aligning two objects of different dimensions

Returns

(left, right) [(DataFrame, type of other)] Aligned objects

all(axis=None, skipna=True, split_every=False, out=None)
Return whether all elements are True, potentially over an axis.

This docstring was copied from pandas.core.frame.DataFrame.all.

Some inconsistencies with the Dask version may exist.

Returns True unless there at least one element within a series or along a Dataframe axis that is False or
equivalent (e.g. zero or empty).

Parameters

axis [{0 or ‘index’, 1 or ‘columns’, None}, default 0] Indicate which axis or axes should
be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original
index.

• None : reduce all axes, return a scalar.

bool_only [bool, default None (Not supported in Dask)] Include only boolean columns.
If None, will attempt to use everything, then use only boolean data. Not implemented
for Series.

skipna [bool, default True] Exclude NA/null values. If the entire row/column is NA and
skipna is True, then the result will be True, as for an empty row/column. If skipna is
False, then NA are treated as True, because these are not equal to zero.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

**kwargs [any, default None] Additional keywords have no effect but might be accepted
for compatibility with NumPy.

Returns

Series or DataFrame If level is specified, then, DataFrame is returned; otherwise, Series
is returned.

See also:

3.9. DataFrame 437

dask Documentation, Release 2.6.0

Series.all Return True if all elements are True.

DataFrame.any Return True if one (or more) elements are True.

Examples

Series

>>> pd.Series([True, True]).all() # doctest: +SKIP
True
>>> pd.Series([True, False]).all() # doctest: +SKIP
False
>>> pd.Series([]).all() # doctest: +SKIP
True
>>> pd.Series([np.nan]).all() # doctest: +SKIP
True
>>> pd.Series([np.nan]).all(skipna=False) # doctest: +SKIP
True

DataFrames

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) #
→˓doctest: +SKIP
>>> df # doctest: +SKIP

col1 col2
0 True True
1 True False

Default behaviour checks if column-wise values all return True.

>>> df.all() # doctest: +SKIP
col1 True
col2 False
dtype: bool

Specify axis='columns' to check if row-wise values all return True.

>>> df.all(axis='columns') # doctest: +SKIP
0 True
1 False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None) # doctest: +SKIP
False

any(axis=None, skipna=True, split_every=False, out=None)
Return whether any element is True, potentially over an axis.

This docstring was copied from pandas.core.frame.DataFrame.any.

Some inconsistencies with the Dask version may exist.

Returns False unless there at least one element within a series or along a Dataframe axis that is True or
equivalent (e.g. non-zero or non-empty).

438 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

axis [{0 or ‘index’, 1 or ‘columns’, None}, default 0] Indicate which axis or axes should
be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original
index.

• None : reduce all axes, return a scalar.

bool_only [bool, default None (Not supported in Dask)] Include only boolean columns.
If None, will attempt to use everything, then use only boolean data. Not implemented
for Series.

skipna [bool, default True] Exclude NA/null values. If the entire row/column is NA and
skipna is True, then the result will be False, as for an empty row/column. If skipna is
False, then NA are treated as True, because these are not equal to zero.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

**kwargs [any, default None] Additional keywords have no effect but might be accepted
for compatibility with NumPy.

Returns

Series or DataFrame If level is specified, then, DataFrame is returned; otherwise, Series
is returned.

See also:

numpy.any Numpy version of this method.

Series.any Return whether any element is True.

Series.all Return whether all elements are True.

DataFrame.any Return whether any element is True over requested axis.

DataFrame.all Return whether all elements are True over requested axis.

Examples

Series

For Series input, the output is a scalar indicating whether any element is True.

>>> pd.Series([False, False]).any() # doctest: +SKIP
False
>>> pd.Series([True, False]).any() # doctest: +SKIP
True
>>> pd.Series([]).any() # doctest: +SKIP
False
>>> pd.Series([np.nan]).any() # doctest: +SKIP
False
>>> pd.Series([np.nan]).any(skipna=False) # doctest: +SKIP
True

3.9. DataFrame 439

https://docs.scipy.org/doc/numpy/reference/generated/numpy.any.html#numpy.any

dask Documentation, Release 2.6.0

DataFrame

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) # doctest:
→˓+SKIP
>>> df # doctest: +SKIP

A B C
0 1 0 0
1 2 2 0

>>> df.any() # doctest: +SKIP
A True
B True
C False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) # doctest: +SKIP
>>> df # doctest: +SKIP

A B
0 True 1
1 False 2

>>> df.any(axis='columns') # doctest: +SKIP
0 True
1 True
dtype: bool

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) # doctest: +SKIP
>>> df # doctest: +SKIP

A B
0 True 1
1 False 0

>>> df.any(axis='columns') # doctest: +SKIP
0 True
1 False
dtype: bool

Aggregating over the entire DataFrame with axis=None.

>>> df.any(axis=None) # doctest: +SKIP
True

any for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any() # doctest: +SKIP
Series([], dtype: bool)

append(other, interleave_partitions=False)
Append rows of other to the end of caller, returning a new object.

This docstring was copied from pandas.core.frame.DataFrame.append.

Some inconsistencies with the Dask version may exist.

Columns in other that are not in the caller are added as new columns.

440 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

other [DataFrame or Series/dict-like object, or list of these] The data to append.

ignore_index [boolean, default False (Not supported in Dask)] If True, do not use the
index labels.

verify_integrity [boolean, default False (Not supported in Dask)] If True, raise ValueEr-
ror on creating index with duplicates.

sort [boolean, default None (Not supported in Dask)] Sort columns if the columns of
self and other are not aligned. The default sorting is deprecated and will change to
not-sorting in a future version of pandas. Explicitly pass sort=True to silence the
warning and sort. Explicitly pass sort=False to silence the warning and not sort.

New in version 0.23.0.

Returns

appended [DataFrame]

See also:

pandas.concat General function to concatenate DataFrame, Series or Panel objects.

Notes

If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the
columns in the resulting DataFrame will be unchanged.

Iteratively appending rows to a DataFrame can be more computationally intensive than a single concate-
nate. A better solution is to append those rows to a list and then concatenate the list with the original
DataFrame all at once.

Examples

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) # doctest: +SKIP
>>> df # doctest: +SKIP

A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) # doctest:
→˓+SKIP
>>> df.append(df2) # doctest: +SKIP

A B
0 1 2
1 3 4
0 5 6
1 7 8

With ignore_index set to True:

>>> df.append(df2, ignore_index=True) # doctest: +SKIP
A B

0 1 2
1 3 4
2 5 6
3 7 8

3.9. DataFrame 441

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html#pandas.concat

dask Documentation, Release 2.6.0

The following, while not recommended methods for generating DataFrames, show two ways to generate
a DataFrame from multiple data sources.

Less efficient:

>>> df = pd.DataFrame(columns=['A']) # doctest: +SKIP
>>> for i in range(5): # doctest: +SKIP
... df = df.append({'A': i}, ignore_index=True)
>>> df # doctest: +SKIP

A
0 0
1 1
2 2
3 3
4 4

More efficient:

>>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], #
→˓doctest: +SKIP
... ignore_index=True)

A
0 0
1 1
2 2
3 3
4 4

apply(func, axis=0, broadcast=None, raw=False, reduce=None, args=(), meta=’__no_default__’,
**kwds)

Parallel version of pandas.DataFrame.apply

This mimics the pandas version except for the following:

1. Only axis=1 is supported (and must be specified explicitly).

2. The user should provide output metadata via the meta keyword.

Parameters

func [function] Function to apply to each column/row

axis [{0 or ‘index’, 1 or ‘columns’}, default 0]

• 0 or ‘index’: apply function to each column (NOT SUPPORTED)

• 1 or ‘columns’: apply function to each row

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

args [tuple] Positional arguments to pass to function in addition to the array/series

Additional keyword arguments will be passed as keywords to the function

442 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Returns

applied [Series or DataFrame]

See also:

dask.DataFrame.map_partitions

Examples

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5],
... 'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

Apply a function to row-wise passing in extra arguments in args and kwargs:

>>> def myadd(row, a, b=1):
... return row.sum() + a + b
>>> res = ddf.apply(myadd, axis=1, args=(2,), b=1.5) # doctest: +SKIP

By default, dask tries to infer the output metadata by running your provided function on some fake data.
This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can
manually specify the output metadata with the meta keyword. This can be specified in many forms, for
more information see dask.dataframe.utils.make_meta.

Here we specify the output is a Series with name 'x', and dtype float64:

>>> res = ddf.apply(myadd, axis=1, args=(2,), b=1.5, meta=('x', 'f8'))

In the case where the metadata doesn’t change, you can also pass in the object itself directly:

>>> res = ddf.apply(lambda row: row + 1, axis=1, meta=ddf)

applymap(func, meta=’__no_default__’)
Apply a function to a Dataframe elementwise.

This docstring was copied from pandas.core.frame.DataFrame.applymap.

Some inconsistencies with the Dask version may exist.

This method applies a function that accepts and returns a scalar to every element of a DataFrame.

Parameters

func [callable] Python function, returns a single value from a single value.

Returns

DataFrame Transformed DataFrame.

See also:

DataFrame.apply Apply a function along input axis of DataFrame.

3.9. DataFrame 443

dask Documentation, Release 2.6.0

Notes

In the current implementation applymap calls func twice on the first column/row to decide whether it can
take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will
take effect twice for the first column/row.

Examples

>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) # doctest: +SKIP
>>> df # doctest: +SKIP

0 1
0 1.000 2.120
1 3.356 4.567

>>> df.applymap(lambda x: len(str(x))) # doctest: +SKIP
0 1

0 3 4
1 5 5

Note that a vectorized version of func often exists, which will be much faster. You could square each
number elementwise.

>>> df.applymap(lambda x: x**2) # doctest: +SKIP
0 1

0 1.000000 4.494400
1 11.262736 20.857489

But it’s better to avoid applymap in that case.

>>> df ** 2 # doctest: +SKIP
0 1

0 1.000000 4.494400
1 11.262736 20.857489

assign(**kwargs)
Assign new columns to a DataFrame.

This docstring was copied from pandas.core.frame.DataFrame.assign.

Some inconsistencies with the Dask version may exist.

Returns a new object with all original columns in addition to new ones. Existing columns that are re-
assigned will be overwritten.

Parameters

**kwargs [dict of {str: callable or Series}] The column names are keywords. If the
values are callable, they are computed on the DataFrame and assigned to the new
columns. The callable must not change input DataFrame (though pandas doesn’t
check it). If the values are not callable, (e.g. a Series, scalar, or array), they are
simply assigned.

Returns

DataFrame A new DataFrame with the new columns in addition to all the existing
columns.

444 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

Assigning multiple columns within the same assign is possible. For Python 3.6 and above, later items
in ‘**kwargs’ may refer to newly created or modified columns in ‘df’; items are computed and assigned
into ‘df’ in order. For Python 3.5 and below, the order of keyword arguments is not specified, you cannot
refer to newly created or modified columns. All items are computed first, and then assigned in alphabetical
order.

Changed in version 0.23.0: Keyword argument order is maintained for Python 3.6 and later.

Examples

>>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, # doctest: +SKIP
... index=['Portland', 'Berkeley'])
>>> df # doctest: +SKIP

temp_c
Portland 17.0
Berkeley 25.0

Where the value is a callable, evaluated on df :

>>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) # doctest: +SKIP
temp_c temp_f

Portland 17.0 62.6
Berkeley 25.0 77.0

Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence:

>>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) # doctest: +SKIP
temp_c temp_f

Portland 17.0 62.6
Berkeley 25.0 77.0

In Python 3.6+, you can create multiple columns within the same assign where one of the columns depends
on another one defined within the same assign:

>>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, # doctest: +SKIP
... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9)

temp_c temp_f temp_k
Portland 17.0 62.6 290.15
Berkeley 25.0 77.0 298.15

astype(dtype)
Cast a pandas object to a specified dtype dtype.

This docstring was copied from pandas.core.frame.DataFrame.astype.

Some inconsistencies with the Dask version may exist.

Parameters

dtype [data type, or dict of column name -> data type] Use a numpy.dtype or Python type
to cast entire pandas object to the same type. Alternatively, use {col: dtype, . . . },
where col is a column label and dtype is a numpy.dtype or Python type to cast one or
more of the DataFrame’s columns to column-specific types.

3.9. DataFrame 445

dask Documentation, Release 2.6.0

copy [bool, default True (Not supported in Dask)] Return a copy when copy=True (be
very careful setting copy=False as changes to values then may propagate to other
pandas objects).

errors [{‘raise’, ‘ignore’}, default ‘raise’ (Not supported in Dask)] Control raising of
exceptions on invalid data for provided dtype.

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

New in version 0.20.0.

kwargs [keyword arguments to pass on to the constructor]

Returns

casted [same type as caller]

See also:

to_datetime Convert argument to datetime.

to_timedelta Convert argument to timedelta.

to_numeric Convert argument to a numeric type.

numpy.ndarray.astype Cast a numpy array to a specified type.

Examples

>>> ser = pd.Series([1, 2], dtype='int32') # doctest: +SKIP
>>> ser # doctest: +SKIP
0 1
1 2
dtype: int32
>>> ser.astype('int64') # doctest: +SKIP
0 1
1 2
dtype: int64

Convert to categorical type:

>>> ser.astype('category') # doctest: +SKIP
0 1
1 2
dtype: category
Categories (2, int64): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> cat_dtype = pd.api.types.CategoricalDtype(# doctest: +SKIP
... categories=[2, 1], ordered=True)
>>> ser.astype(cat_dtype) # doctest: +SKIP
0 1
1 2
dtype: category
Categories (2, int64): [2 < 1]

Note that using copy=False and changing data on a new pandas object may propagate changes:

446 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype

dask Documentation, Release 2.6.0

>>> s1 = pd.Series([1,2]) # doctest: +SKIP
>>> s2 = s1.astype('int64', copy=False) # doctest: +SKIP
>>> s2[0] = 10 # doctest: +SKIP
>>> s1 # note that s1[0] has changed too # doctest: +SKIP
0 10
1 2
dtype: int64

bfill(axis=None, limit=None)
Synonym for DataFrame.fillna() with method='bfill'.

categorize(columns=None, index=None, split_every=None, **kwargs)
Convert columns of the DataFrame to category dtype.

Parameters

columns [list, optional] A list of column names to convert to categoricals. By default
any column with an object dtype is converted to a categorical, and any unknown
categoricals are made known.

index [bool, optional] Whether to categorize the index. By default, object indices are
converted to categorical, and unknown categorical indices are made known. Set True
to always categorize the index, False to never.

split_every [int, optional] Group partitions into groups of this size while performing a
tree-reduction. If set to False, no tree-reduction will be used. Default is 16.

kwargs Keyword arguments are passed on to compute.

clear_divisions()
Forget division information

clip(lower=None, upper=None, out=None)
Trim values at input threshold(s).

This docstring was copied from pandas.core.frame.DataFrame.clip.

Some inconsistencies with the Dask version may exist.

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and
in the latter case the clipping is performed element-wise in the specified axis.

Parameters

lower [float or array_like, default None] Minimum threshold value. All values below this
threshold will be set to it.

upper [float or array_like, default None] Maximum threshold value. All values above
this threshold will be set to it.

axis [int or string axis name, optional (Not supported in Dask)] Align object with lower
and upper along the given axis.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

New in version 0.21.0.

*args, **kwargs Additional keywords have no effect but might be accepted for compat-
ibility with numpy.

Returns

3.9. DataFrame 447

dask Documentation, Release 2.6.0

Series or DataFrame Same type as calling object with the values outside the clip bound-
aries replaced

Examples

>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} #
→˓doctest: +SKIP
>>> df = pd.DataFrame(data) # doctest: +SKIP
>>> df # doctest: +SKIP

col_0 col_1
0 9 -2
1 -3 -7
2 0 6
3 -1 8
4 5 -5

Clips per column using lower and upper thresholds:

>>> df.clip(-4, 6) # doctest: +SKIP
col_0 col_1

0 6 -2
1 -3 -4
2 0 6
3 -1 6
4 5 -4

Clips using specific lower and upper thresholds per column element:

>>> t = pd.Series([2, -4, -1, 6, 3]) # doctest: +SKIP
>>> t # doctest: +SKIP
0 2
1 -4
2 -1
3 6
4 3
dtype: int64

>>> df.clip(t, t + 4, axis=0) # doctest: +SKIP
col_0 col_1

0 6 2
1 -3 -4
2 0 3
3 6 8
4 5 3

clip_lower(threshold)
Trim values below a given threshold.

This docstring was copied from pandas.core.frame.DataFrame.clip_lower.

Some inconsistencies with the Dask version may exist.

Deprecated since version 0.24.0: Use clip(lower=threshold) instead.

Elements below the threshold will be changed to match the threshold value(s). Threshold can be a single
value or an array, in the latter case it performs the truncation element-wise.

Parameters

448 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

threshold [numeric or array-like] Minimum value allowed. All values below threshold
will be set to this value.

• float : every value is compared to threshold.

• array-like : The shape of threshold should match the object it’s compared to. When
self is a Series, threshold should be the length. When self is a DataFrame, threshold
should 2-D and the same shape as self for axis=None, or 1-D and the same length
as the axis being compared.

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Align self with
threshold along the given axis.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

New in version 0.21.0.

Returns

Series or DataFrame Original data with values trimmed.

See also:

Series.clip General purpose method to trim Series values to given threshold(s).

DataFrame.clip General purpose method to trim DataFrame values to given threshold(s).

Examples

Series single threshold clipping:

>>> s = pd.Series([5, 6, 7, 8, 9]) # doctest: +SKIP
>>> s.clip(lower=8) # doctest: +SKIP
0 8
1 8
2 8
3 8
4 9
dtype: int64

Series clipping element-wise using an array of thresholds. threshold should be the same length as the
Series.

>>> elemwise_thresholds = [4, 8, 7, 2, 5] # doctest: +SKIP
>>> s.clip(lower=elemwise_thresholds) # doctest: +SKIP
0 5
1 8
2 7
3 8
4 9
dtype: int64

DataFrames can be compared to a scalar.

>>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]}) # doctest: +SKIP
>>> df # doctest: +SKIP

A B
0 1 2

(continues on next page)

3.9. DataFrame 449

dask Documentation, Release 2.6.0

(continued from previous page)

1 3 4
2 5 6

>>> df.clip(lower=3) # doctest: +SKIP
A B

0 3 3
1 3 4
2 5 6

Or to an array of values. By default, threshold should be the same shape as the DataFrame.

>>> df.clip(lower=np.array([[3, 4], [2, 2], [6, 2]])) # doctest: +SKIP
A B

0 3 4
1 3 4
2 6 6

Control how threshold is broadcast with axis. In this case threshold should be the same length as the axis
specified by axis.

>>> df.clip(lower=[3, 3, 5], axis='index') # doctest: +SKIP
A B

0 3 3
1 3 4
2 5 6

>>> df.clip(lower=[4, 5], axis='columns') # doctest: +SKIP
A B

0 4 5
1 4 5
2 5 6

clip_upper(threshold)
Trim values above a given threshold.

This docstring was copied from pandas.core.frame.DataFrame.clip_upper.

Some inconsistencies with the Dask version may exist.

Deprecated since version 0.24.0: Use clip(upper=threshold) instead.

Elements above the threshold will be changed to match the threshold value(s). Threshold can be a single
value or an array, in the latter case it performs the truncation element-wise.

Parameters

threshold [numeric or array-like] Maximum value allowed. All values above threshold
will be set to this value.

• float : every value is compared to threshold.

• array-like : The shape of threshold should match the object it’s compared to. When
self is a Series, threshold should be the length. When self is a DataFrame, threshold
should 2-D and the same shape as self for axis=None, or 1-D and the same length
as the axis being compared.

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Align object with
threshold along the given axis.

450 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

New in version 0.21.0.

Returns

Series or DataFrame Original data with values trimmed.

See also:

Series.clip General purpose method to trim Series values to given threshold(s).

DataFrame.clip General purpose method to trim DataFrame values to given threshold(s).

Examples

>>> s = pd.Series([1, 2, 3, 4, 5]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 1
1 2
2 3
3 4
4 5
dtype: int64

>>> s.clip(upper=3) # doctest: +SKIP
0 1
1 2
2 3
3 3
4 3
dtype: int64

>>> elemwise_thresholds = [5, 4, 3, 2, 1] # doctest: +SKIP
>>> elemwise_thresholds # doctest: +SKIP
[5, 4, 3, 2, 1]

>>> s.clip(upper=elemwise_thresholds) # doctest: +SKIP
0 1
1 2
2 3
3 2
4 1
dtype: int64

combine(other, func, fill_value=None, overwrite=True)
Perform column-wise combine with another DataFrame based on a passed function.

This docstring was copied from pandas.core.frame.DataFrame.combine.

Some inconsistencies with the Dask version may exist.

Combines a DataFrame with other DataFrame using func to element-wise combine columns. The row
and column indexes of the resulting DataFrame will be the union of the two.

Parameters

other [DataFrame] The DataFrame to merge column-wise.

3.9. DataFrame 451

dask Documentation, Release 2.6.0

func [function] Function that takes two series as inputs and return a Series or a scalar.
Used to merge the two dataframes column by columns.

fill_value [scalar value, default None] The value to fill NaNs with prior to passing any
column to the merge func.

overwrite [boolean, default True] If True, columns in self that do not exist in other will
be overwritten with NaNs.

Returns

result [DataFrame]

See also:

DataFrame.combine_first Combine two DataFrame objects and default to non-null values in
frame calling the method.

Examples

Combine using a simple function that chooses the smaller column.

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) # doctest: +SKIP
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) # doctest: +SKIP
>>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 #
→˓doctest: +SKIP
>>> df1.combine(df2, take_smaller) # doctest: +SKIP

A B
0 0 3
1 0 3

Example using a true element-wise combine function.

>>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) # doctest: +SKIP
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) # doctest: +SKIP
>>> df1.combine(df2, np.minimum) # doctest: +SKIP

A B
0 1 2
1 0 3

Using fill_value fills Nones prior to passing the column to the merge function.

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) # doctest: +SKIP
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) # doctest: +SKIP
>>> df1.combine(df2, take_smaller, fill_value=-5) # doctest: +SKIP

A B
0 0 -5.0
1 0 4.0

However, if the same element in both dataframes is None, that None is preserved

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) # doctest: +SKIP
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) # doctest: +SKIP
>>> df1.combine(df2, take_smaller, fill_value=-5) # doctest: +SKIP

A B
0 0 NaN
1 0 3.0

Example that demonstrates the use of overwrite and behavior when the axis differ between the dataframes.

452 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) # doctest: +SKIP
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1],}, index=[1, 2]) #
→˓doctest: +SKIP
>>> df1.combine(df2, take_smaller) # doctest: +SKIP

A B C
0 NaN NaN NaN
1 NaN 3.0 -10.0
2 NaN 3.0 1.0

>>> df1.combine(df2, take_smaller, overwrite=False) # doctest: +SKIP
A B C

0 0.0 NaN NaN
1 0.0 3.0 -10.0
2 NaN 3.0 1.0

Demonstrating the preference of the passed in dataframe.

>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1],}, index=[1, 2]) #
→˓doctest: +SKIP
>>> df2.combine(df1, take_smaller) # doctest: +SKIP

A B C
0 0.0 NaN NaN
1 0.0 3.0 NaN
2 NaN 3.0 NaN

>>> df2.combine(df1, take_smaller, overwrite=False) # doctest: +SKIP
A B C

0 0.0 NaN NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0

combine_first(other)
Update null elements with value in the same location in other.

This docstring was copied from pandas.core.frame.DataFrame.combine_first.

Some inconsistencies with the Dask version may exist.

Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other
DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two.

Parameters

other [DataFrame] Provided DataFrame to use to fill null values.

Returns

combined [DataFrame]

See also:

DataFrame.combine Perform series-wise operation on two DataFrames using a given function.

Examples

>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) # doctest: +SKIP
>>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) # doctest: +SKIP

(continues on next page)

3.9. DataFrame 453

dask Documentation, Release 2.6.0

(continued from previous page)

>>> df1.combine_first(df2) # doctest: +SKIP
A B

0 1.0 3.0
1 0.0 4.0

Null values still persist if the location of that null value does not exist in other

>>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) # doctest: +SKIP
>>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) # doctest:
→˓+SKIP
>>> df1.combine_first(df2) # doctest: +SKIP

A B C
0 NaN 4.0 NaN
1 0.0 3.0 1.0
2 NaN 3.0 1.0

compute(**kwargs)
Compute this dask collection

This turns a lazy Dask collection into its in-memory equivalent. For example a Dask.array turns into a
numpy.array() and a Dask.dataframe turns into a Pandas dataframe. The entire dataset must fit into
memory before calling this operation.

Parameters

scheduler [string, optional] Which scheduler to use like “threads”, “synchronous” or
“processes”. If not provided, the default is to check the global settings first, and
then fall back to the collection defaults.

optimize_graph [bool, optional] If True [default], the graph is optimized before compu-
tation. Otherwise the graph is run as is. This can be useful for debugging.

kwargs Extra keywords to forward to the scheduler function.

See also:

dask.base.compute

copy()
Make a copy of the dataframe

This is strictly a shallow copy of the underlying computational graph. It does not affect the underlying
data

corr(method=’pearson’, min_periods=None, split_every=False)
Compute pairwise correlation of columns, excluding NA/null values.

This docstring was copied from pandas.core.frame.DataFrame.corr.

Some inconsistencies with the Dask version may exist.

Parameters

method [{‘pearson’, ‘kendall’, ‘spearman’} or callable]

• pearson : standard correlation coefficient

• kendall : Kendall Tau correlation coefficient

• spearman : Spearman rank correlation

• callable: callable with input two 1d ndarrays and returning a float .. version-
added:: 0.24.0

454 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array

dask Documentation, Release 2.6.0

min_periods [int, optional] Minimum number of observations required per pair of
columns to have a valid result. Currently only available for pearson and spearman
correlation

Returns

y [DataFrame]

See also:

DataFrame.corrwith, Series.corr

Examples

>>> histogram_intersection = lambda a, b: np.minimum(a, b # doctest: +SKIP
...).sum().round(decimals=1)
>>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], # doctest:
→˓+SKIP
... columns=['dogs', 'cats'])
>>> df.corr(method=histogram_intersection) # doctest: +SKIP

dogs cats
dogs 1.0 0.3
cats 0.3 1.0

count(axis=None, split_every=False)
Count non-NA cells for each column or row.

This docstring was copied from pandas.core.frame.DataFrame.count.

Some inconsistencies with the Dask version may exist.

The values None, NaN, NaT, and optionally numpy.inf (depending on pan-
das.options.mode.use_inf_as_na) are considered NA.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] If 0 or ‘index’ counts are generated for
each column. If 1 or ‘columns’ counts are generated for each row.

level [int or str, optional (Not supported in Dask)] If the axis is a MultiIndex (hierarchical),
count along a particular level, collapsing into a DataFrame. A str specifies the level
name.

numeric_only [boolean, default False (Not supported in Dask)] Include only float, int or
boolean data.

Returns

Series or DataFrame For each column/row the number of non-NA/null entries. If level
is specified returns a DataFrame.

See also:

Series.count Number of non-NA elements in a Series.

DataFrame.shape Number of DataFrame rows and columns (including NA elements).

DataFrame.isna Boolean same-sized DataFrame showing places of NA elements.

3.9. DataFrame 455

dask Documentation, Release 2.6.0

Examples

Constructing DataFrame from a dictionary:

>>> df = pd.DataFrame({"Person": # doctest: +SKIP
... ["John", "Myla", "Lewis", "John", "Myla"],
... "Age": [24., np.nan, 21., 33, 26],
... "Single": [False, True, True, True, False]})
>>> df # doctest: +SKIP

Person Age Single
0 John 24.0 False
1 Myla NaN True
2 Lewis 21.0 True
3 John 33.0 True
4 Myla 26.0 False

Notice the uncounted NA values:

>>> df.count() # doctest: +SKIP
Person 5
Age 4
Single 5
dtype: int64

Counts for each row:

>>> df.count(axis='columns') # doctest: +SKIP
0 3
1 2
2 3
3 3
4 3
dtype: int64

Counts for one level of a MultiIndex:

>>> df.set_index(["Person", "Single"]).count(level="Person") # doctest:
→˓+SKIP

Age
Person
John 2
Lewis 1
Myla 1

cov(min_periods=None, split_every=False)
Compute pairwise covariance of columns, excluding NA/null values.

This docstring was copied from pandas.core.frame.DataFrame.cov.

Some inconsistencies with the Dask version may exist.

Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the co-
variance matrix of the columns of the DataFrame.

Both NA and null values are automatically excluded from the calculation. (See the note below about bias
from missing values.) A threshold can be set for the minimum number of observations for each value
created. Comparisons with observations below this threshold will be returned as NaN.

This method is generally used for the analysis of time series data to understand the relationship between
different measures across time.

456 Chapter 3. Complex Algorithms

https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Covariance_matrix

dask Documentation, Release 2.6.0

Parameters

min_periods [int, optional] Minimum number of observations required per pair of
columns to have a valid result.

Returns

DataFrame The covariance matrix of the series of the DataFrame.

See also:

pandas.Series.cov Compute covariance with another Series.

pandas.core.window.EWM.cov Exponential weighted sample covariance.

pandas.core.window.Expanding.cov Expanding sample covariance.

pandas.core.window.Rolling.cov Rolling sample covariance.

Notes

Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1.

For DataFrames that have Series that are missing data (assuming that data is missing at random) the re-
turned covariance matrix will be an unbiased estimate of the variance and covariance between the member
Series.

However, for many applications this estimate may not be acceptable because the estimate covariance
matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having
absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of
covariance matrices for more details.

Examples

>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], # doctest: +SKIP
... columns=['dogs', 'cats'])
>>> df.cov() # doctest: +SKIP

dogs cats
dogs 0.666667 -1.000000
cats -1.000000 1.666667

>>> np.random.seed(42) # doctest: +SKIP
>>> df = pd.DataFrame(np.random.randn(1000, 5), # doctest: +SKIP
... columns=['a', 'b', 'c', 'd', 'e'])
>>> df.cov() # doctest: +SKIP

a b c d e
a 0.998438 -0.020161 0.059277 -0.008943 0.014144
b -0.020161 1.059352 -0.008543 -0.024738 0.009826
c 0.059277 -0.008543 1.010670 -0.001486 -0.000271
d -0.008943 -0.024738 -0.001486 0.921297 -0.013692
e 0.014144 0.009826 -0.000271 -0.013692 0.977795

Minimum number of periods

This method also supports an optional min_periods keyword that specifies the required minimum
number of non-NA observations for each column pair in order to have a valid result:

3.9. DataFrame 457

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.cov.html#pandas.Series.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.EWM.cov.html#pandas.core.window.EWM.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.Expanding.cov.html#pandas.core.window.Expanding.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.Rolling.cov.html#pandas.core.window.Rolling.cov
https://en.wikipedia.org/wiki/Missing_data#Missing_at_random
http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices
http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices

dask Documentation, Release 2.6.0

>>> np.random.seed(42) # doctest: +SKIP
>>> df = pd.DataFrame(np.random.randn(20, 3), # doctest: +SKIP
... columns=['a', 'b', 'c'])
>>> df.loc[df.index[:5], 'a'] = np.nan # doctest: +SKIP
>>> df.loc[df.index[5:10], 'b'] = np.nan # doctest: +SKIP
>>> df.cov(min_periods=12) # doctest: +SKIP

a b c
a 0.316741 NaN -0.150812
b NaN 1.248003 0.191417
c -0.150812 0.191417 0.895202

cummax(axis=None, skipna=True, out=None)
Return cumulative maximum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cummax.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The index or the name of the axis. 0 is
equivalent to None or ‘index’.

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

*args, **kwargs : Additional keywords have no effect but might be accepted for com-
patibility with NumPy.

Returns

cummax [Series or DataFrame]

See also:

core.window.Expanding.max Similar functionality but ignores NaN values.

DataFrame.max Return the maximum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

458 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

By default, NA values are ignored.

>>> s.cummax() # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 5.0
4 5.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummax(skipna=False) # doctest: +SKIP
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0], # doctest: +SKIP
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df # doctest: +SKIP

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummax() # doctest: +SKIP
A B

0 2.0 1.0
1 3.0 NaN
2 3.0 1.0

To iterate over columns and find the maximum in each row, use axis=1

>>> df.cummax(axis=1) # doctest: +SKIP
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 1.0

cummin(axis=None, skipna=True, out=None)
Return cumulative minimum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cummin.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters

3.9. DataFrame 459

dask Documentation, Release 2.6.0

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The index or the name of the axis. 0 is
equivalent to None or ‘index’.

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

*args, **kwargs : Additional keywords have no effect but might be accepted for com-
patibility with NumPy.

Returns

cummin [Series or DataFrame]

See also:

core.window.Expanding.min Similar functionality but ignores NaN values.

DataFrame.min Return the minimum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin() # doctest: +SKIP
0 2.0
1 NaN
2 2.0
3 -1.0
4 -1.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummin(skipna=False) # doctest: +SKIP
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

460 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df = pd.DataFrame([[2.0, 1.0], # doctest: +SKIP
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df # doctest: +SKIP

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummin() # doctest: +SKIP
A B

0 2.0 1.0
1 2.0 NaN
2 1.0 0.0

To iterate over columns and find the minimum in each row, use axis=1

>>> df.cummin(axis=1) # doctest: +SKIP
A B

0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

cumprod(axis=None, skipna=True, dtype=None, out=None)
Return cumulative product over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cumprod.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative product.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The index or the name of the axis. 0 is
equivalent to None or ‘index’.

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

*args, **kwargs : Additional keywords have no effect but might be accepted for com-
patibility with NumPy.

Returns

cumprod [Series or DataFrame]

See also:

core.window.Expanding.prod Similar functionality but ignores NaN values.

DataFrame.prod Return the product over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

3.9. DataFrame 461

dask Documentation, Release 2.6.0

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod() # doctest: +SKIP
0 2.0
1 NaN
2 10.0
3 -10.0
4 -0.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumprod(skipna=False) # doctest: +SKIP
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0], # doctest: +SKIP
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df # doctest: +SKIP

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumprod() # doctest: +SKIP
A B

0 2.0 1.0
1 6.0 NaN
2 6.0 0.0

To iterate over columns and find the product in each row, use axis=1

462 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.cumprod(axis=1) # doctest: +SKIP
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 0.0

cumsum(axis=None, skipna=True, dtype=None, out=None)
Return cumulative sum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cumsum.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The index or the name of the axis. 0 is
equivalent to None or ‘index’.

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

*args, **kwargs : Additional keywords have no effect but might be accepted for com-
patibility with NumPy.

Returns

cumsum [Series or DataFrame]

See also:

core.window.Expanding.sum Similar functionality but ignores NaN values.

DataFrame.sum Return the sum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

3.9. DataFrame 463

dask Documentation, Release 2.6.0

>>> s.cumsum() # doctest: +SKIP
0 2.0
1 NaN
2 7.0
3 6.0
4 6.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumsum(skipna=False) # doctest: +SKIP
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0], # doctest: +SKIP
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df # doctest: +SKIP

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumsum() # doctest: +SKIP
A B

0 2.0 1.0
1 5.0 NaN
2 6.0 1.0

To iterate over columns and find the sum in each row, use axis=1

>>> df.cumsum(axis=1) # doctest: +SKIP
A B

0 2.0 3.0
1 3.0 NaN
2 1.0 1.0

describe(split_every=False, percentiles=None, percentiles_method=’default’, include=None, ex-
clude=None)

Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

This docstring was copied from pandas.core.frame.DataFrame.describe.

Some inconsistencies with the Dask version may exist.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The
output will vary depending on what is provided. Refer to the notes below for more detail.

464 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

percentiles [list-like of numbers, optional] The percentiles to include in the output. All
should fall between 0 and 1. The default is [.25, .5, .75], which returns the
25th, 50th, and 75th percentiles.

include [‘all’, list-like of dtypes or None (default), optional] A white list of data types to
include in the result. Ignored for Series. Here are the options:

• ‘all’ : All columns of the input will be included in the output.

• A list-like of dtypes : Limits the results to the provided data types. To limit the
result to numeric types submit numpy.number. To limit it instead to object
columns submit the numpy.object data type. Strings can also be used in the
style of select_dtypes (e.g. df.describe(include=['O'])). To se-
lect pandas categorical columns, use 'category'

• None (default) : The result will include all numeric columns.

exclude [list-like of dtypes or None (default), optional,] A black list of data types to omit
from the result. Ignored for Series. Here are the options:

• A list-like of dtypes : Excludes the provided data types from the result. To ex-
clude numeric types submit numpy.number. To exclude object columns sub-
mit the data type numpy.object. Strings can also be used in the style of
select_dtypes (e.g. df.describe(include=['O'])). To exclude pan-
das categorical columns, use 'category'

• None (default) : The result will exclude nothing.

Returns

Series or DataFrame Summary statistics of the Series or Dataframe provided.

See also:

DataFrame.count Count number of non-NA/null observations.

DataFrame.max Maximum of the values in the object.

DataFrame.min Minimum of the values in the object.

DataFrame.mean Mean of the values.

DataFrame.std Standard deviation of the obersvations.

DataFrame.select_dtypes Subset of a DataFrame including/excluding columns based on their
dtype.

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and
upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile
is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and
freq. The top is the most common value. The freq is the most common value’s frequency. Times-
tamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen
from among those with the highest count.

3.9. DataFrame 465

dask Documentation, Release 2.6.0

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric
columns. If the dataframe consists only of object and categorical data without any numeric columns,
the default is to return an analysis of both the object and categorical columns. If include='all' is
provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed
for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3]) # doctest: +SKIP
>>> s.describe() # doctest: +SKIP
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
dtype: float64

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c']) # doctest: +SKIP
>>> s.describe() # doctest: +SKIP
count 4
unique 3
top a
freq 2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([# doctest: +SKIP
... np.datetime64("2000-01-01"),
... np.datetime64("2010-01-01"),
... np.datetime64("2010-01-01")
...])
>>> s.describe() # doctest: +SKIP
count 3
unique 2
top 2010-01-01 00:00:00
freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), #
→˓doctest: +SKIP
... 'numeric': [1, 2, 3],
... 'object': ['a', 'b', 'c']
... })

(continues on next page)

466 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> df.describe() # doctest: +SKIP
numeric

count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all') # doctest: +SKIP
categorical numeric object

count 3 3.0 3
unique 3 NaN 3
top f NaN c
freq 1 NaN 1
mean NaN 2.0 NaN
std NaN 1.0 NaN
min NaN 1.0 NaN
25% NaN 1.5 NaN
50% NaN 2.0 NaN
75% NaN 2.5 NaN
max NaN 3.0 NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe() # doctest: +SKIP
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number]) # doctest: +SKIP
numeric

count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Including only string columns in a DataFrame description.

>>> df.describe(include=[np.object]) # doctest: +SKIP
object

(continues on next page)

3.9. DataFrame 467

dask Documentation, Release 2.6.0

(continued from previous page)

count 3
unique 3
top c
freq 1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category']) # doctest: +SKIP
categorical

count 3
unique 3
top f
freq 1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number]) # doctest: +SKIP
categorical object

count 3 3
unique 3 3
top f c
freq 1 1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[np.object]) # doctest: +SKIP
categorical numeric

count 3 3.0
unique 3 NaN
top f NaN
freq 1 NaN
mean NaN 2.0
std NaN 1.0
min NaN 1.0
25% NaN 1.5
50% NaN 2.0
75% NaN 2.5
max NaN 3.0

diff(periods=1, axis=0)
First discrete difference of element.

This docstring was copied from pandas.core.frame.DataFrame.diff.

Some inconsistencies with the Dask version may exist.

Note: Pandas currently uses an object-dtype column to represent boolean data with missing values.
This can cause issues for boolean-specific operations, like |. To enable boolean- specific operations, at
the cost of metadata that doesn’t match pandas, use .astype(bool) after the shift.

Calculates the difference of a DataFrame element compared with another element in the DataFrame (de-
fault is the element in the same column of the previous row).

Parameters

periods [int, default 1] Periods to shift for calculating difference, accepts negative values.

468 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] Take difference over rows (0) or columns
(1).

New in version 0.16.1..

Returns

diffed [DataFrame]

See also:

Series.diff First discrete difference for a Series.

DataFrame.pct_change Percent change over given number of periods.

DataFrame.shift Shift index by desired number of periods with an optional time freq.

Examples

Difference with previous row

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], # doctest: +SKIP
... 'b': [1, 1, 2, 3, 5, 8],
... 'c': [1, 4, 9, 16, 25, 36]})
>>> df # doctest: +SKIP

a b c
0 1 1 1
1 2 1 4
2 3 2 9
3 4 3 16
4 5 5 25
5 6 8 36

>>> df.diff() # doctest: +SKIP
a b c

0 NaN NaN NaN
1 1.0 0.0 3.0
2 1.0 1.0 5.0
3 1.0 1.0 7.0
4 1.0 2.0 9.0
5 1.0 3.0 11.0

Difference with previous column

>>> df.diff(axis=1) # doctest: +SKIP
a b c

0 NaN 0.0 0.0
1 NaN -1.0 3.0
2 NaN -1.0 7.0
3 NaN -1.0 13.0
4 NaN 0.0 20.0
5 NaN 2.0 28.0

Difference with 3rd previous row

>>> df.diff(periods=3) # doctest: +SKIP
a b c

0 NaN NaN NaN

(continues on next page)

3.9. DataFrame 469

dask Documentation, Release 2.6.0

(continued from previous page)

1 NaN NaN NaN
2 NaN NaN NaN
3 3.0 2.0 15.0
4 3.0 4.0 21.0
5 3.0 6.0 27.0

Difference with following row

>>> df.diff(periods=-1) # doctest: +SKIP
a b c

0 -1.0 0.0 -3.0
1 -1.0 -1.0 -5.0
2 -1.0 -1.0 -7.0
3 -1.0 -2.0 -9.0
4 -1.0 -3.0 -11.0
5 NaN NaN NaN

div(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, rtruediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

470 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

3.9. DataFrame 471

dask Documentation, Release 2.6.0

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

divide(other, axis=’columns’, level=None, fill_value=None)

472 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, rtruediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

3.9. DataFrame 473

dask Documentation, Release 2.6.0

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0

(continues on next page)

474 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

drop(labels=None, axis=0, columns=None, errors=’raise’)
Drop specified labels from rows or columns.

This docstring was copied from pandas.core.frame.DataFrame.drop.

Some inconsistencies with the Dask version may exist.

Remove rows or columns by specifying label names and corresponding axis, or by specifying directly
index or column names. When using a multi-index, labels on different levels can be removed by specifying
the level.

Parameters

labels [single label or list-like] Index or column labels to drop.

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] Whether to drop labels from the index (0
or ‘index’) or columns (1 or ‘columns’).

3.9. DataFrame 475

dask Documentation, Release 2.6.0

index, columns [single label or list-like] Alternative to specifying axis (labels,
axis=1 is equivalent to columns=labels).

New in version 0.21.0.

level [int or level name, optional (Not supported in Dask)] For MultiIndex, level from
which the labels will be removed.

inplace [bool, default False (Not supported in Dask)] If True, do operation inplace and
return None.

errors [{‘ignore’, ‘raise’}, default ‘raise’] If ‘ignore’, suppress error and only existing
labels are dropped.

Returns

dropped [pandas.DataFrame]

Raises

KeyError If none of the labels are found in the selected axis

See also:

DataFrame.loc Label-location based indexer for selection by label.

DataFrame.dropna Return DataFrame with labels on given axis omitted where (all or any) data are
missing.

DataFrame.drop_duplicates Return DataFrame with duplicate rows removed, optionally only
considering certain columns.

Series.drop Return Series with specified index labels removed.

Examples

>>> df = pd.DataFrame(np.arange(12).reshape(3,4), # doctest: +SKIP
... columns=['A', 'B', 'C', 'D'])
>>> df # doctest: +SKIP

A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11

Drop columns

>>> df.drop(['B', 'C'], axis=1) # doctest: +SKIP
A D

0 0 3
1 4 7
2 8 11

>>> df.drop(columns=['B', 'C']) # doctest: +SKIP
A D

0 0 3
1 4 7
2 8 11

Drop a row by index

476 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.drop([0, 1]) # doctest: +SKIP
A B C D

2 8 9 10 11

Drop columns and/or rows of MultiIndex DataFrame

>>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], # doctest: +SKIP
... ['speed', 'weight', 'length']],
... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 1, 2, 0, 1, 2, 0, 1, 2]])
>>> df = pd.DataFrame(index=midx, columns=['big', 'small'], # doctest: +SKIP
... data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
... [250, 150], [1.5, 0.8], [320, 250],
... [1, 0.8], [0.3,0.2]])
>>> df # doctest: +SKIP

big small
lama speed 45.0 30.0

weight 200.0 100.0
length 1.5 1.0

cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8

falcon speed 320.0 250.0
weight 1.0 0.8
length 0.3 0.2

>>> df.drop(index='cow', columns='small') # doctest: +SKIP
big

lama speed 45.0
weight 200.0
length 1.5

falcon speed 320.0
weight 1.0
length 0.3

>>> df.drop(index='length', level=1) # doctest: +SKIP
big small

lama speed 45.0 30.0
weight 200.0 100.0

cow speed 30.0 20.0
weight 250.0 150.0

falcon speed 320.0 250.0
weight 1.0 0.8

drop_duplicates(subset=None, split_every=None, split_out=1, **kwargs)
Return DataFrame with duplicate rows removed, optionally only considering certain columns.

This docstring was copied from pandas.core.frame.DataFrame.drop_duplicates.

Some inconsistencies with the Dask version may exist.

Parameters

subset [column label or sequence of labels, optional] Only consider certain columns for
identifying duplicates, by default use all of the columns

keep [{‘first’, ‘last’, False}, default ‘first’ (Not supported in Dask)]

• first : Drop duplicates except for the first occurrence.

3.9. DataFrame 477

dask Documentation, Release 2.6.0

• last : Drop duplicates except for the last occurrence.

• False : Drop all duplicates.

inplace [boolean, default False (Not supported in Dask)] Whether to drop duplicates in
place or to return a copy

Returns

deduplicated [DataFrame]

dropna(how=’any’, subset=None, thresh=None)
Remove missing values.

This docstring was copied from pandas.core.frame.DataFrame.dropna.

Some inconsistencies with the Dask version may exist.

See the User Guide for more on which values are considered missing, and how to work with missing data.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Determine if
rows or columns which contain missing values are removed.

• 0, or ‘index’ : Drop rows which contain missing values.

• 1, or ‘columns’ : Drop columns which contain missing value.

Deprecated since version 0.23.0: Pass tuple or list to drop on multiple axes. Only a
single axis is allowed.

how [{‘any’, ‘all’}, default ‘any’] Determine if row or column is removed from
DataFrame, when we have at least one NA or all NA.

• ‘any’ : If any NA values are present, drop that row or column.

• ‘all’ : If all values are NA, drop that row or column.

thresh [int, optional] Require that many non-NA values.

subset [array-like, optional] Labels along other axis to consider, e.g. if you are dropping
rows these would be a list of columns to include.

inplace [bool, default False (Not supported in Dask)] If True, do operation inplace and
return None.

Returns

DataFrame DataFrame with NA entries dropped from it.

See also:

DataFrame.isna Indicate missing values.

DataFrame.notna Indicate existing (non-missing) values.

DataFrame.fillna Replace missing values.

Series.dropna Drop missing values.

Index.dropna Drop missing indices.

478 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data

dask Documentation, Release 2.6.0

Examples

>>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], # doctest:
→˓+SKIP
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df # doctest: +SKIP

name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT

Drop the rows where at least one element is missing.

>>> df.dropna() # doctest: +SKIP
name toy born

1 Batman Batmobile 1940-04-25

Drop the columns where at least one element is missing.

>>> df.dropna(axis='columns') # doctest: +SKIP
name

0 Alfred
1 Batman
2 Catwoman

Drop the rows where all elements are missing.

>>> df.dropna(how='all') # doctest: +SKIP
name toy born

0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT

Keep only the rows with at least 2 non-NA values.

>>> df.dropna(thresh=2) # doctest: +SKIP
name toy born

1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT

Define in which columns to look for missing values.

>>> df.dropna(subset=['name', 'born']) # doctest: +SKIP
name toy born

1 Batman Batmobile 1940-04-25

Keep the DataFrame with valid entries in the same variable.

>>> df.dropna(inplace=True) # doctest: +SKIP
>>> df # doctest: +SKIP

name toy born
1 Batman Batmobile 1940-04-25

dtypes
Return data types

3.9. DataFrame 479

dask Documentation, Release 2.6.0

eq(other, axis=’columns’, level=None)
Equal to of dataframe and other, element-wise (binary operator eq).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for compar-
ison.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}, default ‘columns’] Whether to compare by the index
(0 or ‘index’) or columns (1 or ‘columns’).

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

Returns

DataFrame of bool Result of the comparison.

See also:

DataFrame.eq Compare DataFrames for equality elementwise.

DataFrame.ne Compare DataFrames for inequality elementwise.

DataFrame.le Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100], # doctest: +SKIP
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df # doctest: +SKIP

cost revenue
A 250 100
B 150 250
C 100 300

Comparison with a scalar, using either the operator or method:

>>> df == 100 # doctest: +SKIP
cost revenue

A False True
B False False
C True False

480 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.eq(100) # doctest: +SKIP
cost revenue

A False True
B False False
C True False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"]) # doctest: +SKIP
cost revenue

A True True
B True False
C False True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') # doctest:
→˓+SKIP

cost revenue
A True False
B True True
C True True
D True True

When comparing to an arbitrary sequence, the number of columns must match the number elements in
other:

>>> df == [250, 100] # doctest: +SKIP
cost revenue

A True True
B False False
C False False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index') # doctest: +SKIP
cost revenue

A True False
B False True
C True False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, # doctest: +SKIP
... index=['A', 'B', 'C', 'D'])
>>> other # doctest: +SKIP

revenue
A 300
B 250
C 100
D 150

>>> df.gt(other) # doctest: +SKIP
cost revenue

A False False
B False False

(continues on next page)

3.9. DataFrame 481

dask Documentation, Release 2.6.0

(continued from previous page)

C False True
D False False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], #
→˓doctest: +SKIP
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex # doctest: +SKIP

cost revenue
Q1 A 250 100

B 150 250
C 100 300

Q2 A 150 200
B 300 175
C 220 225

>>> df.le(df_multindex, level=1) # doctest: +SKIP
cost revenue

Q1 A True True
B True True
C True True

Q2 A False True
B True False
C True False

eval(expr, inplace=None, **kwargs)
Evaluate a string describing operations on DataFrame columns.

This docstring was copied from pandas.core.frame.DataFrame.eval.

Some inconsistencies with the Dask version may exist.

Operates on columns only, not specific rows or elements. This allows eval to run arbitrary code, which
can make you vulnerable to code injection if you pass user input to this function.

Parameters

expr [str] The expression string to evaluate.

inplace [bool, default False] If the expression contains an assignment, whether to per-
form the operation inplace and mutate the existing DataFrame. Otherwise, a new
DataFrame is returned.

New in version 0.18.0..

kwargs [dict] See the documentation for eval() for complete details on the keyword
arguments accepted by query().

Returns

ndarray, scalar, or pandas object The result of the evaluation.

See also:

DataFrame.query Evaluates a boolean expression to query the columns of a frame.

DataFrame.assign Can evaluate an expression or function to create new values for a column.

482 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.eval.html#pandas.eval
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query

dask Documentation, Release 2.6.0

pandas.eval Evaluate a Python expression as a string using various backends.

Notes

For more details see the API documentation for eval(). For detailed examples see enhancing perfor-
mance with eval.

Examples

>>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) # doctest:
→˓+SKIP
>>> df # doctest: +SKIP

A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2
>>> df.eval('A + B') # doctest: +SKIP
0 11
1 10
2 9
3 8
4 7
dtype: int64

Assignment is allowed though by default the original DataFrame is not modified.

>>> df.eval('C = A + B') # doctest: +SKIP
A B C

0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7
>>> df # doctest: +SKIP

A B
0 1 10
1 2 8
2 3 6
3 4 4
4 5 2

Use inplace=True to modify the original DataFrame.

>>> df.eval('C = A + B', inplace=True) # doctest: +SKIP
>>> df # doctest: +SKIP

A B C
0 1 10 11
1 2 8 10
2 3 6 9
3 4 4 8
4 5 2 7

ffill(axis=None, limit=None)
Synonym for DataFrame.fillna() with method='ffill'.

3.9. DataFrame 483

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.eval.html#pandas.eval
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.eval.html#pandas.eval
https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html#enhancingperf-eval
https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html#enhancingperf-eval

dask Documentation, Release 2.6.0

fillna(value=None, method=None, limit=None, axis=None)
Fill NA/NaN values using the specified method.

This docstring was copied from pandas.core.frame.DataFrame.fillna.

Some inconsistencies with the Dask version may exist.

Parameters

value [scalar, dict, Series, or DataFrame] Value to use to fill holes (e.g. 0), alternately a
dict/Series/DataFrame of values specifying which value to use for each index (for a
Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will
not be filled). This value cannot be a list.

method [{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None] Method to use for filling
holes in reindexed Series pad / ffill: propagate last valid observation forward to next
valid backfill / bfill: use NEXT valid observation to fill gap

axis [{0 or ‘index’, 1 or ‘columns’}]

inplace [boolean, default False (Not supported in Dask)] If True, fill in place. Note: this
will modify any other views on this object, (e.g. a no-copy slice for a column in a
DataFrame).

limit [int, default None] If method is specified, this is the maximum number of consecu-
tive NaN values to forward/backward fill. In other words, if there is a gap with more
than this number of consecutive NaNs, it will only be partially filled. If method is not
specified, this is the maximum number of entries along the entire axis where NaNs
will be filled. Must be greater than 0 if not None.

downcast [dict, default is None (Not supported in Dask)] a dict of item->dtype of what to
downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate
equal type (e.g. float64 to int64 if possible)

Returns

filled [DataFrame]

See also:

interpolate Fill NaN values using interpolation.

reindex, asfreq

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], # doctest: +SKIP
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df # doctest: +SKIP

A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4

Replace all NaN elements with 0s.

484 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.fillna(0) # doctest: +SKIP
A B C D

0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill') # doctest: +SKIP
A B C D

0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} # doctest: +SKIP
>>> df.fillna(value=values) # doctest: +SKIP

A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1) # doctest: +SKIP
A B C D

0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4

first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset.

This docstring was copied from pandas.core.frame.DataFrame.first.

Some inconsistencies with the Dask version may exist.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

subset [same type as caller]

Raises

TypeError If the index is not a DatetimeIndex

See also:

last Select final periods of time series based on a date offset.

at_time Select values at a particular time of the day.

between_time Select values between particular times of the day.

3.9. DataFrame 485

dask Documentation, Release 2.6.0

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D') # doctest: +SKIP
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) # doctest: +SKIP
>>> ts # doctest: +SKIP

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the first 3 days:

>>> ts.first('3D') # doctest: +SKIP
A

2018-04-09 1
2018-04-11 2

Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and
therefore data for 2018-04-13 was not returned.

floordiv(other, axis=’columns’, level=None, fill_value=None)
Integer division of dataframe and other, element-wise (binary operator floordiv).

Equivalent to dataframe // other, but with support to substitute a fill_value for missing data in
one of the inputs. With reverse version, rfloordiv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

486 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

3.9. DataFrame 487

dask Documentation, Release 2.6.0

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0

(continues on next page)

488 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

ge(other, axis=’columns’, level=None)
Greater than or equal to of dataframe and other, element-wise (binary operator ge).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for compar-
ison.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}, default ‘columns’] Whether to compare by the index
(0 or ‘index’) or columns (1 or ‘columns’).

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

Returns

DataFrame of bool Result of the comparison.

See also:

DataFrame.eq Compare DataFrames for equality elementwise.

DataFrame.ne Compare DataFrames for inequality elementwise.

DataFrame.le Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100], # doctest: +SKIP
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df # doctest: +SKIP

cost revenue
A 250 100
B 150 250
C 100 300

Comparison with a scalar, using either the operator or method:

3.9. DataFrame 489

dask Documentation, Release 2.6.0

>>> df == 100 # doctest: +SKIP
cost revenue

A False True
B False False
C True False

>>> df.eq(100) # doctest: +SKIP
cost revenue

A False True
B False False
C True False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"]) # doctest: +SKIP
cost revenue

A True True
B True False
C False True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') # doctest:
→˓+SKIP

cost revenue
A True False
B True True
C True True
D True True

When comparing to an arbitrary sequence, the number of columns must match the number elements in
other:

>>> df == [250, 100] # doctest: +SKIP
cost revenue

A True True
B False False
C False False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index') # doctest: +SKIP
cost revenue

A True False
B False True
C True False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, # doctest: +SKIP
... index=['A', 'B', 'C', 'D'])
>>> other # doctest: +SKIP

revenue
A 300
B 250
C 100
D 150

490 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.gt(other) # doctest: +SKIP
cost revenue

A False False
B False False
C False True
D False False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], #
→˓doctest: +SKIP
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex # doctest: +SKIP

cost revenue
Q1 A 250 100

B 150 250
C 100 300

Q2 A 150 200
B 300 175
C 220 225

>>> df.le(df_multindex, level=1) # doctest: +SKIP
cost revenue

Q1 A True True
B True True
C True True

Q2 A False True
B True False
C True False

get_dtype_counts()
Return counts of unique dtypes in this object.

This docstring was copied from pandas.core.frame.DataFrame.get_dtype_counts.

Some inconsistencies with the Dask version may exist.

Returns

dtype [Series] Series with the count of columns with each dtype.

See also:

dtypes Return the dtypes in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]] # doctest: +SKIP
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float']) # doctest: +SKIP
>>> df # doctest: +SKIP

str int float
0 a 1 1.0
1 b 2 2.0
2 c 3 3.0

3.9. DataFrame 491

dask Documentation, Release 2.6.0

>>> df.get_dtype_counts() # doctest: +SKIP
float64 1
int64 1
object 1
dtype: int64

get_ftype_counts()
Return counts of unique ftypes in this object.

This docstring was copied from pandas.core.frame.DataFrame.get_ftype_counts.

Some inconsistencies with the Dask version may exist.

Deprecated since version 0.23.0.

This is useful for SparseDataFrame or for DataFrames containing sparse arrays.

Returns

dtype [Series] Series with the count of columns with each type and sparsity
(dense/sparse)

See also:

ftypes Return ftypes (indication of sparse/dense and dtype) in this object.

Examples

>>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]] # doctest: +SKIP
>>> df = pd.DataFrame(a, columns=['str', 'int', 'float']) # doctest: +SKIP
>>> df # doctest: +SKIP

str int float
0 a 1 1.0
1 b 2 2.0
2 c 3 3.0

>>> df.get_ftype_counts() # doctest: +SKIP
float64:dense 1
int64:dense 1
object:dense 1
dtype: int64

get_partition(n)
Get a dask DataFrame/Series representing the nth partition.

groupby(by=None, **kwargs)
Group DataFrame or Series using a mapper or by a Series of columns.

This docstring was copied from pandas.core.frame.DataFrame.groupby.

Some inconsistencies with the Dask version may exist.

A groupby operation involves some combination of splitting the object, applying a function, and com-
bining the results. This can be used to group large amounts of data and compute operations on these
groups.

Parameters

by [mapping, function, label, or list of labels] Used to determine the groups for the
groupby. If by is a function, it’s called on each value of the object’s index. If a

492 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dict or Series is passed, the Series or dict VALUES will be used to determine the
groups (the Series’ values are first aligned; see .align() method). If an ndarray is
passed, the values are used as-is determine the groups. A label or list of labels may be
passed to group by the columns in self. Notice that a tuple is interpreted a (single)
key.

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Split along rows
(0) or columns (1).

level [int, level name, or sequence of such, default None (Not supported in Dask)] If the
axis is a MultiIndex (hierarchical), group by a particular level or levels.

as_index [bool, default True (Not supported in Dask)] For aggregated output, re-
turn object with group labels as the index. Only relevant for DataFrame input.
as_index=False is effectively “SQL-style” grouped output.

sort [bool, default True (Not supported in Dask)] Sort group keys. Get better performance
by turning this off. Note this does not influence the order of observations within each
group. Groupby preserves the order of rows within each group.

group_keys [bool, default True (Not supported in Dask)] When calling apply, add group
keys to index to identify pieces.

squeeze [bool, default False (Not supported in Dask)] Reduce the dimensionality of the
return type if possible, otherwise return a consistent type.

observed [bool, default False (Not supported in Dask)] This only applies if any of
the groupers are Categoricals. If True: only show observed values for categorical
groupers. If False: show all values for categorical groupers.

New in version 0.23.0.

**kwargs Optional, only accepts keyword argument ‘mutated’ and is passed to groupby.

Returns

DataFrameGroupBy or SeriesGroupBy Depends on the calling object and returns
groupby object that contains information about the groups.

See also:

resample Convenience method for frequency conversion and resampling of time series.

Notes

See the user guide for more.

Examples

>>> df = pd.DataFrame({'Animal' : ['Falcon', 'Falcon', # doctest: +SKIP
... 'Parrot', 'Parrot'],
... 'Max Speed' : [380., 370., 24., 26.]})
>>> df # doctest: +SKIP

Animal Max Speed
0 Falcon 380.0
1 Falcon 370.0
2 Parrot 24.0
3 Parrot 26.0

(continues on next page)

3.9. DataFrame 493

http://pandas.pydata.org/pandas-docs/stable/groupby.html

dask Documentation, Release 2.6.0

(continued from previous page)

>>> df.groupby(['Animal']).mean() # doctest: +SKIP
Max Speed

Animal
Falcon 375.0
Parrot 25.0

Hierarchical Indexes

We can groupby different levels of a hierarchical index using the level parameter:

>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], # doctest: +SKIP
... ['Capitve', 'Wild', 'Capitve', 'Wild']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) #
→˓doctest: +SKIP
>>> df = pd.DataFrame({'Max Speed' : [390., 350., 30., 20.]}, # doctest:
→˓+SKIP
... index=index)
>>> df # doctest: +SKIP

Max Speed
Animal Type
Falcon Capitve 390.0

Wild 350.0
Parrot Capitve 30.0

Wild 20.0
>>> df.groupby(level=0).mean() # doctest: +SKIP

Max Speed
Animal
Falcon 370.0
Parrot 25.0
>>> df.groupby(level=1).mean() # doctest: +SKIP

Max Speed
Type
Capitve 210.0
Wild 185.0

gt(other, axis=’columns’, level=None)
Greater than of dataframe and other, element-wise (binary operator gt).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for compar-
ison.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}, default ‘columns’] Whether to compare by the index
(0 or ‘index’) or columns (1 or ‘columns’).

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

Returns

DataFrame of bool Result of the comparison.

See also:

494 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

DataFrame.eq Compare DataFrames for equality elementwise.

DataFrame.ne Compare DataFrames for inequality elementwise.

DataFrame.le Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100], # doctest: +SKIP
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df # doctest: +SKIP

cost revenue
A 250 100
B 150 250
C 100 300

Comparison with a scalar, using either the operator or method:

>>> df == 100 # doctest: +SKIP
cost revenue

A False True
B False False
C True False

>>> df.eq(100) # doctest: +SKIP
cost revenue

A False True
B False False
C True False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"]) # doctest: +SKIP
cost revenue

A True True
B True False
C False True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') # doctest:
→˓+SKIP

cost revenue
A True False
B True True

(continues on next page)

3.9. DataFrame 495

dask Documentation, Release 2.6.0

(continued from previous page)

C True True
D True True

When comparing to an arbitrary sequence, the number of columns must match the number elements in
other:

>>> df == [250, 100] # doctest: +SKIP
cost revenue

A True True
B False False
C False False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index') # doctest: +SKIP
cost revenue

A True False
B False True
C True False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, # doctest: +SKIP
... index=['A', 'B', 'C', 'D'])
>>> other # doctest: +SKIP

revenue
A 300
B 250
C 100
D 150

>>> df.gt(other) # doctest: +SKIP
cost revenue

A False False
B False False
C False True
D False False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], #
→˓doctest: +SKIP
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex # doctest: +SKIP

cost revenue
Q1 A 250 100

B 150 250
C 100 300

Q2 A 150 200
B 300 175
C 220 225

>>> df.le(df_multindex, level=1) # doctest: +SKIP
cost revenue

(continues on next page)

496 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

Q1 A True True
B True True
C True True

Q2 A False True
B True False
C True False

head(n=5, npartitions=1, compute=True)
First n rows of the dataset

Parameters

n [int, optional] The number of rows to return. Default is 5.

npartitions [int, optional] Elements are only taken from the first npartitions, with a
default of 1. If there are fewer than n rows in the first npartitions a warning will
be raised and any found rows returned. Pass -1 to use all partitions.

compute [bool, optional] Whether to compute the result, default is True.

idxmax(axis=None, skipna=True, split_every=False)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmax.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] 0 or ‘index’ for row-wise, 1 or ‘columns’
for column-wise

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

Returns

idxmax [Series]

Raises

ValueError

• If the row/column is empty

See also:

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

idxmin(axis=None, skipna=True, split_every=False)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmin.

Some inconsistencies with the Dask version may exist.

Parameters

3.9. DataFrame 497

dask Documentation, Release 2.6.0

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] 0 or ‘index’ for row-wise, 1 or ‘columns’
for column-wise

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

Returns

idxmin [Series]

Raises

ValueError

• If the row/column is empty

See also:

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

iloc
Purely integer-location based indexing for selection by position.

Only indexing the column positions is supported. Trying to select row positions will raise a ValueError.

See Indexing into Dask DataFrames for more.

Examples

>>> df.iloc[:, [2, 0, 1]] # doctest: +SKIP

index
Return dask Index instance

info(buf=None, verbose=False, memory_usage=False)
Concise summary of a Dask DataFrame.

isin(values)
Whether each element in the DataFrame is contained in values.

This docstring was copied from pandas.core.frame.DataFrame.isin.

Some inconsistencies with the Dask version may exist.

Parameters

values [iterable, Series, DataFrame or dict] The result will only be true at a location if all
the labels match. If values is a Series, that’s the index. If values is a dict, the keys
must be the column names, which must match. If values is a DataFrame, then both
the index and column labels must match.

Returns

DataFrame DataFrame of booleans showing whether each element in the DataFrame is
contained in values.

See also:

498 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

DataFrame.eq Equality test for DataFrame.

Series.isin Equivalent method on Series.

Series.str.contains Test if pattern or regex is contained within a string of a Series or Index.

Examples

>>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, # doctest:
→˓+SKIP
... index=['falcon', 'dog'])
>>> df # doctest: +SKIP

num_legs num_wings
falcon 2 2
dog 4 0

When values is a list check whether every value in the DataFrame is present in the list (which animals
have 0 or 2 legs or wings)

>>> df.isin([0, 2]) # doctest: +SKIP
num_legs num_wings

falcon True True
dog False True

When values is a dict, we can pass values to check for each column separately:

>>> df.isin({'num_wings': [0, 3]}) # doctest: +SKIP
num_legs num_wings

falcon False False
dog False True

When values is a Series or DataFrame the index and column must match. Note that ‘falcon’ does not
match based on the number of legs in df2.

>>> other = pd.DataFrame({'num_legs': [8, 2],'num_wings': [0, 2]}, #
→˓doctest: +SKIP
... index=['spider', 'falcon'])
>>> df.isin(other) # doctest: +SKIP

num_legs num_wings
falcon True True
dog False False

isna()
Detect missing values.

This docstring was copied from pandas.core.frame.DataFrame.isna.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns

DataFrame Mask of bool values for each element in DataFrame that indicates whether
an element is not an NA value.

3.9. DataFrame 499

dask Documentation, Release 2.6.0

See also:

DataFrame.isnull Alias of isna.

DataFrame.notna Boolean inverse of isna.

DataFrame.dropna Omit axes labels with missing values.

isna Top-level isna.

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN], # doctest: +SKIP
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df # doctest: +SKIP

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna() # doctest: +SKIP
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN]) # doctest: +SKIP
>>> ser # doctest: +SKIP
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna() # doctest: +SKIP
0 False
1 False
2 True
dtype: bool

isnull()
Detect missing values.

This docstring was copied from pandas.core.frame.DataFrame.isnull.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns

500 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

DataFrame Mask of bool values for each element in DataFrame that indicates whether
an element is not an NA value.

See also:

DataFrame.isnull Alias of isna.

DataFrame.notna Boolean inverse of isna.

DataFrame.dropna Omit axes labels with missing values.

isna Top-level isna.

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN], # doctest: +SKIP
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df # doctest: +SKIP

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna() # doctest: +SKIP
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN]) # doctest: +SKIP
>>> ser # doctest: +SKIP
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna() # doctest: +SKIP
0 False
1 False
2 True
dtype: bool

iterrows()
Iterate over DataFrame rows as (index, Series) pairs.

This docstring was copied from pandas.core.frame.DataFrame.iterrows.

Some inconsistencies with the Dask version may exist.

Yields

index [label or tuple of label] The index of the row. A tuple for a MultiIndex.

3.9. DataFrame 501

dask Documentation, Release 2.6.0

data [Series] The data of the row as a Series.

it [generator] A generator that iterates over the rows of the frame.

See also:

itertuples Iterate over DataFrame rows as namedtuples of the values.

iteritems Iterate over (column name, Series) pairs.

Notes

1. Because iterrows returns a Series for each row, it does not preserve dtypes across the rows
(dtypes are preserved across columns for DataFrames). For example,

>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) # doctest:
→˓+SKIP
>>> row = next(df.iterrows())[1] # doctest: +SKIP
>>> row # doctest: +SKIP
int 1.0
float 1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype) # doctest: +SKIP
float64
>>> print(df['int'].dtype) # doctest: +SKIP
int64

To preserve dtypes while iterating over the rows, it is better to use itertuples() which returns
namedtuples of the values and which is generally faster than iterrows.

2. You should never modify something you are iterating over. This is not guaranteed to work in all
cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will
have no effect.

itertuples(index=True, name=’Pandas’)
Iterate over DataFrame rows as namedtuples.

This docstring was copied from pandas.core.frame.DataFrame.itertuples.

Some inconsistencies with the Dask version may exist.

Parameters

index [bool, default True] If True, return the index as the first element of the tuple.

name [str or None, default “Pandas”] The name of the returned namedtuples or None to
return regular tuples.

Yields

collections.namedtuple Yields a namedtuple for each row in the DataFrame with the first
field possibly being the index and following fields being the column values.

See also:

DataFrame.iterrows Iterate over DataFrame rows as (index, Series) pairs.

DataFrame.iteritems Iterate over (column name, Series) pairs.

502 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or
start with an underscore. With a large number of columns (>255), regular tuples are returned.

Examples

>>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, # doctest:
→˓+SKIP
... index=['dog', 'hawk'])
>>> df # doctest: +SKIP

num_legs num_wings
dog 4 0
hawk 2 2
>>> for row in df.itertuples(): # doctest: +SKIP
... print(row)
...
Pandas(Index='dog', num_legs=4, num_wings=0)
Pandas(Index='hawk', num_legs=2, num_wings=2)

By setting the index parameter to False we can remove the index as the first element of the tuple:

>>> for row in df.itertuples(index=False): # doctest: +SKIP
... print(row)
...
Pandas(num_legs=4, num_wings=0)
Pandas(num_legs=2, num_wings=2)

With the name parameter set we set a custom name for the yielded namedtuples:

>>> for row in df.itertuples(name='Animal'): # doctest: +SKIP
... print(row)
...
Animal(Index='dog', num_legs=4, num_wings=0)
Animal(Index='hawk', num_legs=2, num_wings=2)

join(other, on=None, how=’left’, lsuffix=”, rsuffix=”, npartitions=None, shuffle=None)
Join columns of another DataFrame.

This docstring was copied from pandas.core.frame.DataFrame.join.

Some inconsistencies with the Dask version may exist.

Join columns with other DataFrame either on index or on a key column. Efficiently join multiple
DataFrame objects by index at once by passing a list.

Parameters

other [DataFrame, Series, or list of DataFrame] Index should be similar to one of the
columns in this one. If a Series is passed, its name attribute must be set, and that will
be used as the column name in the resulting joined DataFrame.

on [str, list of str, or array-like, optional] Column or index level name(s) in the caller to
join on the index in other, otherwise joins index-on-index. If multiple values given,
the other DataFrame must have a MultiIndex. Can pass an array as the join key if it is
not already contained in the calling DataFrame. Like an Excel VLOOKUP operation.

how [{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’] How to handle the operation of the
two objects.

3.9. DataFrame 503

dask Documentation, Release 2.6.0

• left: use calling frame’s index (or column if on is specified)

• right: use other’s index.

• outer: form union of calling frame’s index (or column if on is specified) with other’s
index, and sort it. lexicographically.

• inner: form intersection of calling frame’s index (or column if on is specified) with
other’s index, preserving the order of the calling’s one.

lsuffix [str, default ‘’] Suffix to use from left frame’s overlapping columns.

rsuffix [str, default ‘’] Suffix to use from right frame’s overlapping columns.

sort [bool, default False (Not supported in Dask)] Order result DataFrame lexicographi-
cally by the join key. If False, the order of the join key depends on the join type (how
keyword).

Returns

DataFrame A dataframe containing columns from both the caller and other.

See also:

DataFrame.merge For column(s)-on-columns(s) operations.

Notes

Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects.

Support for specifying index levels as the on parameter was added in version 0.23.0.

Examples

>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], #
→˓doctest: +SKIP
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})

>>> df # doctest: +SKIP
key A

0 K0 A0
1 K1 A1
2 K2 A2
3 K3 A3
4 K4 A4
5 K5 A5

>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], # doctest: +SKIP
... 'B': ['B0', 'B1', 'B2']})

>>> other # doctest: +SKIP
key B

0 K0 B0
1 K1 B1
2 K2 B2

Join DataFrames using their indexes.

504 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.join(other, lsuffix='_caller', rsuffix='_other') # doctest: +SKIP
key_caller A key_other B

0 K0 A0 K0 B0
1 K1 A1 K1 B1
2 K2 A2 K2 B2
3 K3 A3 NaN NaN
4 K4 A4 NaN NaN
5 K5 A5 NaN NaN

If we want to join using the key columns, we need to set key to be the index in both df and other. The
joined DataFrame will have key as its index.

>>> df.set_index('key').join(other.set_index('key')) # doctest: +SKIP
A B

key
K0 A0 B0
K1 A1 B1
K2 A2 B2
K3 A3 NaN
K4 A4 NaN
K5 A5 NaN

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses
other’s index but we can use any column in df. This method preserves the original DataFrame’s index in
the result.

>>> df.join(other.set_index('key'), on='key') # doctest: +SKIP
key A B

0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 NaN
4 K4 A4 NaN
5 K5 A5 NaN

known_divisions
Whether divisions are already known

last(offset)
Convenience method for subsetting final periods of time series data based on a date offset.

This docstring was copied from pandas.core.frame.DataFrame.last.

Some inconsistencies with the Dask version may exist.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

subset [same type as caller]

Raises

TypeError If the index is not a DatetimeIndex

See also:

first Select initial periods of time series based on a date offset.

3.9. DataFrame 505

dask Documentation, Release 2.6.0

at_time Select values at a particular time of the day.

between_time Select values between particular times of the day.

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D') # doctest: +SKIP
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) # doctest: +SKIP
>>> ts # doctest: +SKIP

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the last 3 days:

>>> ts.last('3D') # doctest: +SKIP
A

2018-04-13 3
2018-04-15 4

Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and
therefore data for 2018-04-11 was not returned.

le(other, axis=’columns’, level=None)
Less than or equal to of dataframe and other, element-wise (binary operator le).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for compar-
ison.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}, default ‘columns’] Whether to compare by the index
(0 or ‘index’) or columns (1 or ‘columns’).

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

Returns

DataFrame of bool Result of the comparison.

See also:

DataFrame.eq Compare DataFrames for equality elementwise.

DataFrame.ne Compare DataFrames for inequality elementwise.

DataFrame.le Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt Compare DataFrames for strictly greater than inequality elementwise.

506 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100], # doctest: +SKIP
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df # doctest: +SKIP

cost revenue
A 250 100
B 150 250
C 100 300

Comparison with a scalar, using either the operator or method:

>>> df == 100 # doctest: +SKIP
cost revenue

A False True
B False False
C True False

>>> df.eq(100) # doctest: +SKIP
cost revenue

A False True
B False False
C True False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"]) # doctest: +SKIP
cost revenue

A True True
B True False
C False True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') # doctest:
→˓+SKIP

cost revenue
A True False
B True True
C True True
D True True

When comparing to an arbitrary sequence, the number of columns must match the number elements in
other:

>>> df == [250, 100] # doctest: +SKIP
cost revenue

A True True
B False False
C False False

3.9. DataFrame 507

dask Documentation, Release 2.6.0

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index') # doctest: +SKIP
cost revenue

A True False
B False True
C True False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, # doctest: +SKIP
... index=['A', 'B', 'C', 'D'])
>>> other # doctest: +SKIP

revenue
A 300
B 250
C 100
D 150

>>> df.gt(other) # doctest: +SKIP
cost revenue

A False False
B False False
C False True
D False False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], #
→˓doctest: +SKIP
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex # doctest: +SKIP

cost revenue
Q1 A 250 100

B 150 250
C 100 300

Q2 A 150 200
B 300 175
C 220 225

>>> df.le(df_multindex, level=1) # doctest: +SKIP
cost revenue

Q1 A True True
B True True
C True True

Q2 A False True
B True False
C True False

loc
Purely label-location based indexer for selection by label.

>>> df.loc["b"] # doctest: +SKIP
>>> df.loc["b":"d"] # doctest: +SKIP

508 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

lt(other, axis=’columns’, level=None)
Less than of dataframe and other, element-wise (binary operator lt).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for compar-
ison.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}, default ‘columns’] Whether to compare by the index
(0 or ‘index’) or columns (1 or ‘columns’).

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

Returns

DataFrame of bool Result of the comparison.

See also:

DataFrame.eq Compare DataFrames for equality elementwise.

DataFrame.ne Compare DataFrames for inequality elementwise.

DataFrame.le Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt Compare DataFrames for strictly greater than inequality elementwise.

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100], # doctest: +SKIP
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df # doctest: +SKIP

cost revenue
A 250 100
B 150 250
C 100 300

Comparison with a scalar, using either the operator or method:

>>> df == 100 # doctest: +SKIP
cost revenue

A False True
B False False
C True False

3.9. DataFrame 509

dask Documentation, Release 2.6.0

>>> df.eq(100) # doctest: +SKIP
cost revenue

A False True
B False False
C True False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"]) # doctest: +SKIP
cost revenue

A True True
B True False
C False True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') # doctest:
→˓+SKIP

cost revenue
A True False
B True True
C True True
D True True

When comparing to an arbitrary sequence, the number of columns must match the number elements in
other:

>>> df == [250, 100] # doctest: +SKIP
cost revenue

A True True
B False False
C False False

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index') # doctest: +SKIP
cost revenue

A True False
B False True
C True False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, # doctest: +SKIP
... index=['A', 'B', 'C', 'D'])
>>> other # doctest: +SKIP

revenue
A 300
B 250
C 100
D 150

>>> df.gt(other) # doctest: +SKIP
cost revenue

A False False
B False False

(continues on next page)

510 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

C False True
D False False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], #
→˓doctest: +SKIP
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex # doctest: +SKIP

cost revenue
Q1 A 250 100

B 150 250
C 100 300

Q2 A 150 200
B 300 175
C 220 225

>>> df.le(df_multindex, level=1) # doctest: +SKIP
cost revenue

Q1 A True True
B True True
C True True

Q2 A False True
B True False
C True False

map_overlap(func, before, after, *args, **kwargs)
Apply a function to each partition, sharing rows with adjacent partitions.

This can be useful for implementing windowing functions such as df.rolling(...).mean() or
df.diff().

Parameters

func [function] Function applied to each partition.

before [int] The number of rows to prepend to partition i from the end of partition i -
1.

after [int] The number of rows to append to partition i from the beginning of partition i
+ 1.

args, kwargs : Arguments and keywords to pass to the function. The partition will be the
first argument, and these will be passed after.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

3.9. DataFrame 511

dask Documentation, Release 2.6.0

Notes

Given positive integers before and after, and a function func, map_overlap does the following:

1. Prepend before rows to each partition i from the end of partition i - 1. The first partition has
no rows prepended.

2. Append after rows to each partition i from the beginning of partition i + 1. The last partition
has no rows appended.

3. Apply func to each partition, passing in any extra args and kwargs if provided.

4. Trim before rows from the beginning of all but the first partition.

5. Trim after rows from the end of all but the last partition.

Note that the index and divisions are assumed to remain unchanged.

Examples

Given a DataFrame, Series, or Index, such as:

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 4, 7, 11],
... 'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

A rolling sum with a trailing moving window of size 2 can be computed by overlapping 2 rows before
each partition, and then mapping calls to df.rolling(2).sum():

>>> ddf.compute()
x y

0 1 1.0
1 2 2.0
2 4 3.0
3 7 4.0
4 11 5.0
>>> ddf.map_overlap(lambda df: df.rolling(2).sum(), 2, 0).compute()

x y
0 NaN NaN
1 3.0 3.0
2 6.0 5.0
3 11.0 7.0
4 18.0 9.0

The pandas diff method computes a discrete difference shifted by a number of periods (can be positive
or negative). This can be implemented by mapping calls to df.diff to each partition after prepend-
ing/appending that many rows, depending on sign:

>>> def diff(df, periods=1):
... before, after = (periods, 0) if periods > 0 else (0, -periods)
... return df.map_overlap(lambda df, periods=1: df.diff(periods),
... periods, 0, periods=periods)
>>> diff(ddf, 1).compute()

x y
0 NaN NaN
1 1.0 1.0
2 2.0 1.0

(continues on next page)

512 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

3 3.0 1.0
4 4.0 1.0

If you have a DatetimeIndex, you can use a pd.Timedelta for time- based windows.

>>> ts = pd.Series(range(10), index=pd.date_range('2017', periods=10))
>>> dts = dd.from_pandas(ts, npartitions=2)
>>> dts.map_overlap(lambda df: df.rolling('2D').sum(),
... pd.Timedelta('2D'), 0).compute()
2017-01-01 0.0
2017-01-02 1.0
2017-01-03 3.0
2017-01-04 5.0
2017-01-05 7.0
2017-01-06 9.0
2017-01-07 11.0
2017-01-08 13.0
2017-01-09 15.0
2017-01-10 17.0
dtype: float64

map_partitions(func, *args, **kwargs)
Apply Python function on each DataFrame partition.

Note that the index and divisions are assumed to remain unchanged.

Parameters

func [function] Function applied to each partition.

args, kwargs : Arguments and keywords to pass to the function. The partition will be the
first argument, and these will be passed after. Arguments and keywords may contain
Scalar, Delayed or regular python objects. DataFrame-like args (both dask and
pandas) will be repartitioned to align (if necessary) before applying the function.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

Examples

Given a DataFrame, Series, or Index, such as:

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5],
... 'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

One can use map_partitions to apply a function on each partition. Extra arguments and keywords
can optionally be provided, and will be passed to the function after the partition.

3.9. DataFrame 513

dask Documentation, Release 2.6.0

Here we apply a function with arguments and keywords to a DataFrame, resulting in a Series:

>>> def myadd(df, a, b=1):
... return df.x + df.y + a + b
>>> res = ddf.map_partitions(myadd, 1, b=2)
>>> res.dtype
dtype('float64')

By default, dask tries to infer the output metadata by running your provided function on some fake data.
This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can
manually specify the output metadata with the meta keyword. This can be specified in many forms, for
more information see dask.dataframe.utils.make_meta.

Here we specify the output is a Series with no name, and dtype float64:

>>> res = ddf.map_partitions(myadd, 1, b=2, meta=(None, 'f8'))

Here we map a function that takes in a DataFrame, and returns a DataFrame with a new column:

>>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y))
>>> res.dtypes
x int64
y float64
z float64
dtype: object

As before, the output metadata can also be specified manually. This time we pass in a dict, as the output
is a DataFrame:

>>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y),
... meta={'x': 'i8', 'y': 'f8', 'z': 'f8'})

In the case where the metadata doesn’t change, you can also pass in the object itself directly:

>>> res = ddf.map_partitions(lambda df: df.head(), meta=df)

Also note that the index and divisions are assumed to remain unchanged. If the function you’re mapping
changes the index/divisions, you’ll need to clear them afterwards:

>>> ddf.map_partitions(func).clear_divisions() # doctest: +SKIP

mask(cond, other=nan)
Replace values where the condition is True.

This docstring was copied from pandas.core.frame.DataFrame.mask.

Some inconsistencies with the Dask version may exist.

Parameters

cond [boolean NDFrame, array-like, or callable] Where cond is False, keep the original
value. Where True, replace with corresponding value from other. If cond is callable,
it is computed on the NDFrame and should return boolean NDFrame or array. The
callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other [scalar, NDFrame, or callable] Entries where cond is True are replaced with cor-
responding value from other. If other is callable, it is computed on the NDFrame

514 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

and should return scalar or NDFrame. The callable must not change input NDFrame
(though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

axis [int, default None (Not supported in Dask)] Alignment axis if needed.

level [int, default None (Not supported in Dask)] Alignment level if needed.

errors [str, {‘raise’, ‘ignore’}, default raise (Not supported in Dask)] Note that currently
this parameter won’t affect the results and will always coerce to a suitable dtype.

• raise : allow exceptions to be raised.

• ignore : suppress exceptions. On error return original object.

try_cast [boolean, default False (Not supported in Dask)] Try to cast the result back to
the input type (if possible).

raise_on_error [boolean, default True (Not supported in Dask)] Whether to raise on in-
valid data types (e.g. trying to where on strings).

Deprecated since version 0.21.0: Use errors.

Returns

wh [same type as caller]

See also:

DataFrame.where() Return an object of same shape as self.

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is False the element is used; otherwise the corresponding element from the DataFrame other
is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the mask documentation in indexing.

Examples

>>> s = pd.Series(range(5)) # doctest: +SKIP
>>> s.where(s > 0) # doctest: +SKIP
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
dtype: float64

3.9. DataFrame 515

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-where-mask

dask Documentation, Release 2.6.0

>>> s.mask(s > 0) # doctest: +SKIP
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

>>> s.where(s > 1, 10) # doctest: +SKIP
0 10
1 10
2 2
3 3
4 4
dtype: int64

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) #
→˓doctest: +SKIP
>>> m = df % 3 == 0 # doctest: +SKIP
>>> df.where(m, -df) # doctest: +SKIP

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df) # doctest: +SKIP

A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df) # doctest: +SKIP

A B
0 True True
1 True True
2 True True
3 True True
4 True True

max(axis=None, skipna=True, split_every=False, out=None)
Return the maximum of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.max.

Some inconsistencies with the Dask version may exist.

If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.
ndarray method argmax.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

516 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

**kwargs Additional keyword arguments to be passed to the function.

Returns

max [Series or DataFrame (if level specified)]

See also:

Series.sum Return the sum.

Series.min Return the minimum.

Series.max Return the maximum.

Series.idxmin Return the index of the minimum.

Series.idxmax Return the index of the maximum.

DataFrame.min Return the sum over the requested axis.

DataFrame.min Return the minimum over the requested axis.

DataFrame.max Return the maximum over the requested axis.

DataFrame.idxmin Return the index of the minimum over the requested axis.

DataFrame.idxmax Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([# doctest: +SKIP
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) # doctest: +SKIP
>>> s # doctest: +SKIP
blooded animal
warm dog 4

falcon 2
cold fish 0

spider 8
Name: legs, dtype: int64

>>> s.max() # doctest: +SKIP
8

Max using level names, as well as indices.

>>> s.max(level='blooded') # doctest: +SKIP
blooded
warm 4
cold 8
Name: legs, dtype: int64

3.9. DataFrame 517

dask Documentation, Release 2.6.0

>>> s.max(level=0) # doctest: +SKIP
blooded
warm 4
cold 8
Name: legs, dtype: int64

mean(axis=None, skipna=True, split_every=False, dtype=None, out=None)
Return the mean of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.mean.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

**kwargs Additional keyword arguments to be passed to the function.

Returns

mean [Series or DataFrame (if level specified)]

melt(id_vars=None, value_vars=None, var_name=None, value_name=’value’, col_level=None)
Unpivots a DataFrame from wide format to long format, optionally leaving identifier variables set.

This function is useful to massage a DataFrame into a format where one or more columns are identi-
fier variables (id_vars), while all other columns, considered measured variables (value_vars), are
“unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Parameters

frame [DataFrame]

id_vars [tuple, list, or ndarray, optional] Column(s) to use as identifier variables.

value_vars [tuple, list, or ndarray, optional] Column(s) to unpivot. If not specified, uses
all columns that are not set as id_vars.

var_name [scalar] Name to use for the ‘variable’ column. If None it uses frame.
columns.name or ‘variable’.

value_name [scalar, default ‘value’] Name to use for the ‘value’ column.

col_level [int or string, optional] If columns are a MultiIndex then use this level to melt.

Returns

DataFrame Unpivoted DataFrame.

See also:

pandas.DataFrame.melt

memory_usage(index=True, deep=False)
Return the memory usage of each column in bytes.

518 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.melt.html#pandas.DataFrame.melt

dask Documentation, Release 2.6.0

This docstring was copied from pandas.core.frame.DataFrame.memory_usage.

Some inconsistencies with the Dask version may exist.

The memory usage can optionally include the contribution of the index and elements of object dtype.

This value is displayed in DataFrame.info by default. This can be suppressed by setting pandas.
options.display.memory_usage to False.

Parameters

index [bool, default True] Specifies whether to include the memory usage of the
DataFrame’s index in returned Series. If index=True the memory usage of the
index the first item in the output.

deep [bool, default False] If True, introspect the data deeply by interrogating object
dtypes for system-level memory consumption, and include it in the returned values.

Returns

sizes [Series] A Series whose index is the original column names and whose values is the
memory usage of each column in bytes.

See also:

numpy.ndarray.nbytes Total bytes consumed by the elements of an ndarray.

Series.memory_usage Bytes consumed by a Series.

pandas.Categorical Memory-efficient array for string values with many repeated values.

DataFrame.info Concise summary of a DataFrame.

Examples

>>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] #
→˓doctest: +SKIP
>>> data = dict([(t, np.ones(shape=5000).astype(t)) # doctest: +SKIP
... for t in dtypes])
>>> df = pd.DataFrame(data) # doctest: +SKIP
>>> df.head() # doctest: +SKIP

int64 float64 complex128 object bool
0 1 1.0 (1+0j) 1 True
1 1 1.0 (1+0j) 1 True
2 1 1.0 (1+0j) 1 True
3 1 1.0 (1+0j) 1 True
4 1 1.0 (1+0j) 1 True

>>> df.memory_usage() # doctest: +SKIP
Index 80
int64 40000
float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64

>>> df.memory_usage(index=False) # doctest: +SKIP
int64 40000

(continues on next page)

3.9. DataFrame 519

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Categorical.html#pandas.Categorical

dask Documentation, Release 2.6.0

(continued from previous page)

float64 40000
complex128 80000
object 40000
bool 5000
dtype: int64

The memory footprint of object dtype columns is ignored by default:

>>> df.memory_usage(deep=True) # doctest: +SKIP
Index 80
int64 40000
float64 40000
complex128 80000
object 160000
bool 5000
dtype: int64

Use a Categorical for efficient storage of an object-dtype column with many repeated values.

>>> df['object'].astype('category').memory_usage(deep=True) # doctest: +SKIP
5168

merge(right, how=’inner’, on=None, left_on=None, right_on=None, left_index=False,
right_index=False, suffixes=(’_x’, ’_y’), indicator=False, npartitions=None, shuffle=None)

Merge the DataFrame with another DataFrame

This will merge the two datasets, either on the indices, a certain column in each dataset or the index in
one dataset and the column in another.

Parameters

right: dask.dataframe.DataFrame

how [{‘left’, ‘right’, ‘outer’, ‘inner’}, default: ‘inner’] How to handle the operation of
the two objects: - left: use calling frame’s index (or column if on is specified) - right:
use other frame’s index - outer: form union of calling frame’s index (or column if on
is

specified) with other frame’s index, and sort it lexicographically

• inner: form intersection of calling frame’s index (or column if on is specified) with
other frame’s index, preserving the order of the calling’s one

on [label or list] Column or index level names to join on. These must be found in both
DataFrames. If on is None and not merging on indexes then this defaults to the inter-
section of the columns in both DataFrames.

left_on [label or list, or array-like] Column to join on in the left DataFrame. Other than
in pandas arrays and lists are only support if their length is 1.

right_on [label or list, or array-like] Column to join on in the right DataFrame. Other
than in pandas arrays and lists are only support if their length is 1.

left_index [boolean, default False] Use the index from the left DataFrame as the join key.

right_index [boolean, default False] Use the index from the right DataFrame as the join
key.

suffixes [2-length sequence (tuple, list, . . .)] Suffix to apply to overlapping column names
in the left and right side, respectively

520 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

indicator [boolean or string, default False] If True, adds a column to output DataFrame
called “_merge” with information on the source of each row. If string, column with
information on source of each row will be added to output DataFrame, and column
will be named value of string. Information column is Categorical-type and takes on a
value of “left_only” for observations whose merge key only appears in left DataFrame,
“right_only” for observations whose merge key only appears in right DataFrame, and
“both” if the observation’s merge key is found in both.

npartitions: int, None, or ‘auto’ The ideal number of output partitions. This is only
utilised when performing a hash_join (merging on columns only). If None npartitions
= max(lhs.npartitions, rhs.npartitions)

shuffle: {‘disk’, ‘tasks’}, optional Either 'disk' for single-node operation or
'tasks' for distributed operation. Will be inferred by your current scheduler.

Notes

There are three ways to join dataframes:

1. Joining on indices. In this case the divisions are aligned using the function dask.dataframe.
multi.align_partitions. Afterwards, each partition is merged with the pandas merge func-
tion.

2. Joining one on index and one on column. In this case the divisions of dataframe merged by index
(𝑑𝑖) are used to divide the column merged dataframe (𝑑𝑐) one using dask.dataframe.multi.
rearrange_by_divisions. In this case the merged dataframe (𝑑𝑚) has the exact same divi-
sions as (𝑑𝑖). This can lead to issues if you merge multiple rows from (𝑑𝑐) to one row in (𝑑𝑖).

3. Joining both on columns. In this case a hash join is performed using dask.dataframe.multi.
hash_join.

min(axis=None, skipna=True, split_every=False, out=None)
Return the minimum of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.min.

Some inconsistencies with the Dask version may exist.

If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.
ndarray method argmin.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

**kwargs Additional keyword arguments to be passed to the function.

Returns

min [Series or DataFrame (if level specified)]

See also:

3.9. DataFrame 521

dask Documentation, Release 2.6.0

Series.sum Return the sum.

Series.min Return the minimum.

Series.max Return the maximum.

Series.idxmin Return the index of the minimum.

Series.idxmax Return the index of the maximum.

DataFrame.min Return the sum over the requested axis.

DataFrame.min Return the minimum over the requested axis.

DataFrame.max Return the maximum over the requested axis.

DataFrame.idxmin Return the index of the minimum over the requested axis.

DataFrame.idxmax Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([# doctest: +SKIP
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) # doctest: +SKIP
>>> s # doctest: +SKIP
blooded animal
warm dog 4

falcon 2
cold fish 0

spider 8
Name: legs, dtype: int64

>>> s.min() # doctest: +SKIP
0

Min using level names, as well as indices.

>>> s.min(level='blooded') # doctest: +SKIP
blooded
warm 2
cold 0
Name: legs, dtype: int64

>>> s.min(level=0) # doctest: +SKIP
blooded
warm 2
cold 0
Name: legs, dtype: int64

mod(other, axis=’columns’, level=None, fill_value=None)
Modulo of dataframe and other, element-wise (binary operator mod).

Equivalent to dataframe % other, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, rmod.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

522 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

3.9. DataFrame 523

dask Documentation, Release 2.6.0

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN

(continues on next page)

524 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

mul(other, axis=’columns’, level=None, fill_value=None)
Multiplication of dataframe and other, element-wise (binary operator mul).

Equivalent to dataframe * other, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, rmul.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

3.9. DataFrame 525

dask Documentation, Release 2.6.0

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

526 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],

(continues on next page)

3.9. DataFrame 527

dask Documentation, Release 2.6.0

(continued from previous page)

... ['circle', 'triangle', 'rectangle',

... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

ndim
Return dimensionality

ne(other, axis=’columns’, level=None)
Not equal to of dataframe and other, element-wise (binary operator ne).

Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.

Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for compar-
ison.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}, default ‘columns’] Whether to compare by the index
(0 or ‘index’) or columns (1 or ‘columns’).

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

Returns

DataFrame of bool Result of the comparison.

See also:

DataFrame.eq Compare DataFrames for equality elementwise.

DataFrame.ne Compare DataFrames for inequality elementwise.

DataFrame.le Compare DataFrames for less than inequality or equality elementwise.

DataFrame.lt Compare DataFrames for strictly less than inequality elementwise.

DataFrame.ge Compare DataFrames for greater than inequality or equality elementwise.

DataFrame.gt Compare DataFrames for strictly greater than inequality elementwise.

528 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).

Examples

>>> df = pd.DataFrame({'cost': [250, 150, 100], # doctest: +SKIP
... 'revenue': [100, 250, 300]},
... index=['A', 'B', 'C'])
>>> df # doctest: +SKIP

cost revenue
A 250 100
B 150 250
C 100 300

Comparison with a scalar, using either the operator or method:

>>> df == 100 # doctest: +SKIP
cost revenue

A False True
B False False
C True False

>>> df.eq(100) # doctest: +SKIP
cost revenue

A False True
B False False
C True False

When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:

>>> df != pd.Series([100, 250], index=["cost", "revenue"]) # doctest: +SKIP
cost revenue

A True True
B True False
C False True

Use the method to control the broadcast axis:

>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') # doctest:
→˓+SKIP

cost revenue
A True False
B True True
C True True
D True True

When comparing to an arbitrary sequence, the number of columns must match the number elements in
other:

>>> df == [250, 100] # doctest: +SKIP
cost revenue

A True True
B False False
C False False

3.9. DataFrame 529

dask Documentation, Release 2.6.0

Use the method to control the axis:

>>> df.eq([250, 250, 100], axis='index') # doctest: +SKIP
cost revenue

A True False
B False True
C True False

Compare to a DataFrame of different shape.

>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, # doctest: +SKIP
... index=['A', 'B', 'C', 'D'])
>>> other # doctest: +SKIP

revenue
A 300
B 250
C 100
D 150

>>> df.gt(other) # doctest: +SKIP
cost revenue

A False False
B False False
C False True
D False False

Compare to a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], #
→˓doctest: +SKIP
... 'revenue': [100, 250, 300, 200, 175, 225]},
... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'],
... ['A', 'B', 'C', 'A', 'B', 'C']])
>>> df_multindex # doctest: +SKIP

cost revenue
Q1 A 250 100

B 150 250
C 100 300

Q2 A 150 200
B 300 175
C 220 225

>>> df.le(df_multindex, level=1) # doctest: +SKIP
cost revenue

Q1 A True True
B True True
C True True

Q2 A False True
B True False
C True False

nlargest(n=5, columns=None, split_every=None)
Return the first n rows ordered by columns in descending order.

This docstring was copied from pandas.core.frame.DataFrame.nlargest.

Some inconsistencies with the Dask version may exist.

530 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Return the first n rows with the largest values in columns, in descending order. The columns that are not
specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=False).head(n), but
more performant.

Parameters

n [int] Number of rows to return.

columns [label or list of labels] Column label(s) to order by.

keep [{‘first’, ‘last’, ‘all’}, default ‘first’ (Not supported in Dask)] Where there are du-
plicate values:

• first : prioritize the first occurrence(s)

• last : prioritize the last occurrence(s)

• all [do not drop any duplicates, even it means] selecting more than n items.

New in version 0.24.0.

Returns

DataFrame The first n rows ordered by the given columns in descending order.

See also:

DataFrame.nsmallest Return the first n rows ordered by columns in ascending order.

DataFrame.sort_values Sort DataFrame by the values.

DataFrame.head Return the first n rows without re-ordering.

Notes

This function cannot be used with all column types. For example, when specifying columns with object
or category dtypes, TypeError is raised.

Examples

>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, #
→˓doctest: +SKIP
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df # doctest: +SKIP

population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN

(continues on next page)

3.9. DataFrame 531

dask Documentation, Release 2.6.0

(continued from previous page)

Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI

In the following example, we will use nlargest to select the three rows having the largest values in
column “population”.

>>> df.nlargest(3, 'population') # doctest: +SKIP
population GDP alpha-2

France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT

When using keep='last', ties are resolved in reverse order:

>>> df.nlargest(3, 'population', keep='last') # doctest: +SKIP
population GDP alpha-2

France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN

When using keep='all', all duplicate items are maintained:

>>> df.nlargest(3, 'population', keep='all') # doctest: +SKIP
population GDP alpha-2

France 65000000 2583560 FR
Italy 59000000 1937894 IT
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN

To order by the largest values in column “population” and then “GDP”, we can specify multiple columns
like in the next example.

>>> df.nlargest(3, ['population', 'GDP']) # doctest: +SKIP
population GDP alpha-2

France 65000000 2583560 FR
Italy 59000000 1937894 IT
Brunei 434000 12128 BN

notnull()
Detect existing (non-missing) values.

This docstring was copied from pandas.core.frame.DataFrame.notnull.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

Returns

DataFrame Mask of bool values for each element in DataFrame that indicates whether
an element is not an NA value.

See also:

532 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

DataFrame.notnull Alias of notna.

DataFrame.isna Boolean inverse of notna.

DataFrame.dropna Omit axes labels with missing values.

notna Top-level notna.

Examples

Show which entries in a DataFrame are not NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN], # doctest: +SKIP
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df # doctest: +SKIP

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.notna() # doctest: +SKIP
age born name toy

0 True False True False
1 True True True True
2 False True True True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN]) # doctest: +SKIP
>>> ser # doctest: +SKIP
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.notna() # doctest: +SKIP
0 True
1 True
2 False
dtype: bool

npartitions
Return number of partitions

nsmallest(n=5, columns=None, split_every=None)
Return the first n rows ordered by columns in ascending order.

This docstring was copied from pandas.core.frame.DataFrame.nsmallest.

Some inconsistencies with the Dask version may exist.

Return the first n rows with the smallest values in columns, in ascending order. The columns that are not
specified are returned as well, but not used for ordering.

This method is equivalent to df.sort_values(columns, ascending=True).head(n), but
more performant.

3.9. DataFrame 533

dask Documentation, Release 2.6.0

Parameters

n [int] Number of items to retrieve.

columns [list or str] Column name or names to order by.

keep [{‘first’, ‘last’, ‘all’}, default ‘first’ (Not supported in Dask)] Where there are du-
plicate values:

• first : take the first occurrence.

• last : take the last occurrence.

• all : do not drop any duplicates, even it means selecting more than n items.

New in version 0.24.0.

Returns

DataFrame

See also:

DataFrame.nlargest Return the first n rows ordered by columns in descending order.

DataFrame.sort_values Sort DataFrame by the values.

DataFrame.head Return the first n rows without re-ordering.

Examples

>>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, #
→˓doctest: +SKIP
... 434000, 434000, 337000, 11300,
... 11300, 11300],
... 'GDP': [1937894, 2583560 , 12011, 4520, 12128,
... 17036, 182, 38, 311],
... 'alpha-2': ["IT", "FR", "MT", "MV", "BN",
... "IS", "NR", "TV", "AI"]},
... index=["Italy", "France", "Malta",
... "Maldives", "Brunei", "Iceland",
... "Nauru", "Tuvalu", "Anguilla"])
>>> df # doctest: +SKIP

population GDP alpha-2
Italy 59000000 1937894 IT
France 65000000 2583560 FR
Malta 434000 12011 MT
Maldives 434000 4520 MV
Brunei 434000 12128 BN
Iceland 337000 17036 IS
Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI

In the following example, we will use nsmallest to select the three rows having the smallest values in
column “a”.

>>> df.nsmallest(3, 'population') # doctest: +SKIP
population GDP alpha-2

Nauru 11300 182 NR

(continues on next page)

534 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

Tuvalu 11300 38 TV
Anguilla 11300 311 AI

When using keep='last', ties are resolved in reverse order:

>>> df.nsmallest(3, 'population', keep='last') # doctest: +SKIP
population GDP alpha-2

Anguilla 11300 311 AI
Tuvalu 11300 38 TV
Nauru 11300 182 NR

When using keep='all', all duplicate items are maintained:

>>> df.nsmallest(3, 'population', keep='all') # doctest: +SKIP
population GDP alpha-2

Nauru 11300 182 NR
Tuvalu 11300 38 TV
Anguilla 11300 311 AI

To order by the largest values in column “a” and then “c”, we can specify multiple columns like in the
next example.

>>> df.nsmallest(3, ['population', 'GDP']) # doctest: +SKIP
population GDP alpha-2

Tuvalu 11300 38 TV
Nauru 11300 182 NR
Anguilla 11300 311 AI

nunique_approx(split_every=None)
Approximate number of unique rows.

This method uses the HyperLogLog algorithm for cardinality estimation to compute the approximate
number of unique rows. The approximate error is 0.406%.

Parameters

split_every [int, optional] Group partitions into groups of this size while performing a
tree-reduction. If set to False, no tree-reduction will be used. Default is 8.

Returns

a float representing the approximate number of elements

partitions
Slice dataframe by partitions

This allows partitionwise slicing of a Dask Dataframe. You can perform normal Numpy-style slic-
ing but now rather than slice elements of the array you slice along partitions so, for example, df.
partitions[:5] produces a new Dask Dataframe of the first five partitions.

Returns

A Dask DataFrame

Examples

3.9. DataFrame 535

dask Documentation, Release 2.6.0

>>> df.partitions[0] # doctest: +SKIP
>>> df.partitions[:3] # doctest: +SKIP
>>> df.partitions[::10] # doctest: +SKIP

persist(**kwargs)
Persist this dask collection into memory

This turns a lazy Dask collection into a Dask collection with the same metadata, but now with the results
fully computed or actively computing in the background.

The action of function differs significantly depending on the active task scheduler. If the task scheduler
supports asynchronous computing, such as is the case of the dask.distributed scheduler, then persist will
return immediately and the return value’s task graph will contain Dask Future objects. However if the task
scheduler only supports blocking computation then the call to persist will block and the return value’s task
graph will contain concrete Python results.

This function is particularly useful when using distributed systems, because the results will be kept in
distributed memory, rather than returned to the local process as with compute.

Parameters

scheduler [string, optional] Which scheduler to use like “threads”, “synchronous” or
“processes”. If not provided, the default is to check the global settings first, and
then fall back to the collection defaults.

optimize_graph [bool, optional] If True [default], the graph is optimized before compu-
tation. Otherwise the graph is run as is. This can be useful for debugging.

**kwargs Extra keywords to forward to the scheduler function.

Returns

New dask collections backed by in-memory data

See also:

dask.base.persist

pipe(func, *args, **kwargs)
Apply func(self, *args, **kwargs).

This docstring was copied from pandas.core.frame.DataFrame.pipe.

Some inconsistencies with the Dask version may exist.

Parameters

func [function] function to apply to the NDFrame. args, and kwargs are
passed into func. Alternatively a (callable, data_keyword) tuple where
data_keyword is a string indicating the keyword of callable that expects the
NDFrame.

args [iterable, optional] positional arguments passed into func.

kwargs [mapping, optional] a dictionary of keyword arguments passed into func.

Returns

object [the return type of func.]

See also:

DataFrame.apply , DataFrame.applymap, Series.map

536 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Notes

Use .pipewhen chaining together functions that expect Series, DataFrames or GroupBy objects. Instead
of writing

>>> f(g(h(df), arg1=a), arg2=b, arg3=c) # doctest: +SKIP

You can write

>>> (df.pipe(h) # doctest: +SKIP
... .pipe(g, arg1=a)
... .pipe(f, arg2=b, arg3=c)
...)

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which
keyword expects the data. For example, suppose f takes its data as arg2:

>>> (df.pipe(h) # doctest: +SKIP
... .pipe(g, arg1=a)
... .pipe((f, 'arg2'), arg1=a, arg3=c)
...)

pivot_table(index=None, columns=None, values=None, aggfunc=’mean’)
Create a spreadsheet-style pivot table as a DataFrame. Target columns must have category dtype to infer
result’s columns. index, columns, values and aggfunc must be all scalar.

Parameters

values [scalar] column to aggregate

index [scalar] column to be index

columns [scalar] column to be columns

aggfunc [{‘mean’, ‘sum’, ‘count’}, default ‘mean’]

Returns

table [DataFrame]

pop(item)
Return item and drop from frame. Raise KeyError if not found.

This docstring was copied from pandas.core.frame.DataFrame.pop.

Some inconsistencies with the Dask version may exist.

Parameters

item [str] Column label to be popped

Returns

popped [Series]

Examples

>>> df = pd.DataFrame([('falcon', 'bird', 389.0), # doctest: +SKIP
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],

(continues on next page)

3.9. DataFrame 537

dask Documentation, Release 2.6.0

(continued from previous page)

... columns=('name', 'class', 'max_speed'))
>>> df # doctest: +SKIP

name class max_speed
0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal NaN

>>> df.pop('class') # doctest: +SKIP
0 bird
1 bird
2 mammal
3 mammal
Name: class, dtype: object

>>> df # doctest: +SKIP
name max_speed

0 falcon 389.0
1 parrot 24.0
2 lion 80.5
3 monkey NaN

pow(other, axis=’columns’, level=None, fill_value=None)
Exponential power of dataframe and other, element-wise (binary operator pow).

Equivalent to dataframe ** other, but with support to substitute a fill_value for missing data in
one of the inputs. With reverse version, rpow.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

538 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

3.9. DataFrame 539

dask Documentation, Release 2.6.0

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0

(continues on next page)

540 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

prod(axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None)
Return the product of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.prod.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

min_count [int, default 0] The required number of valid values to perform the operation.
If fewer than min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of an
all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

**kwargs Additional keyword arguments to be passed to the function.

Returns

prod [Series or DataFrame (if level specified)]

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([]).prod() # doctest: +SKIP
1.0

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1) # doctest: +SKIP
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod() # doctest: +SKIP
1.0

>>> pd.Series([np.nan]).prod(min_count=1) # doctest: +SKIP
nan

3.9. DataFrame 541

dask Documentation, Release 2.6.0

quantile(q=0.5, axis=0, method=’default’)
Approximate row-wise and precise column-wise quantiles of DataFrame

Parameters

q [list/array of floats, default 0.5 (50%)] Iterable of numbers ranging from 0 to 1 for the
desired quantiles

axis [{0, 1, ‘index’, ‘columns’} (default 0)] 0 or ‘index’ for row-wise, 1 or ‘columns’ for
column-wise

method [{‘default’, ‘tdigest’, ‘dask’}, optional] What method to use. By default will use
dask’s internal custom algorithm ('dask'). If set to 'tdigest' will use tdigest
for floats and ints and fallback to the 'dask' otherwise.

query(expr, **kwargs)
Filter dataframe with complex expression

Blocked version of pd.DataFrame.query

This is like the sequential version except that this will also happen in many threads. This may conflict with
numexpr which will use multiple threads itself. We recommend that you set numexpr to use a single
thread

import numexpr numexpr.set_num_threads(1)

See also:

pandas.DataFrame.query

radd(other, axis=’columns’, level=None, fill_value=None)
Addition of dataframe and other, element-wise (binary operator radd).

Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, add.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

542 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html#pandas.DataFrame.query

dask Documentation, Release 2.6.0

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

3.9. DataFrame 543

dask Documentation, Release 2.6.0

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360

(continues on next page)

544 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

random_split(frac, random_state=None)
Pseudorandomly split dataframe into different pieces row-wise

Parameters

frac [list] List of floats that should sum to one.

random_state: int or np.random.RandomState If int create a new RandomState with
this as the seed

Otherwise draw from the passed RandomState

See also:

dask.DataFrame.sample

Examples

50/50 split

>>> a, b = df.random_split([0.5, 0.5]) # doctest: +SKIP

80/10/10 split, consistent random_state

>>> a, b, c = df.random_split([0.8, 0.1, 0.1], random_state=123) # doctest:
→˓+SKIP

rdiv(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, truediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

3.9. DataFrame 545

dask Documentation, Release 2.6.0

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

546 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

3.9. DataFrame 547

dask Documentation, Release 2.6.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

reduction(chunk, aggregate=None, combine=None, meta=’__no_default__’, token=None,
split_every=None, chunk_kwargs=None, aggregate_kwargs=None, com-
bine_kwargs=None, **kwargs)

Generic row-wise reductions.

Parameters

chunk [callable] Function to operate on each partition. Should return a pandas.
DataFrame, pandas.Series, or a scalar.

aggregate [callable, optional] Function to operate on the concatenated result of chunk.
If not specified, defaults to chunk. Used to do the final aggregation in a tree reduc-
tion.

The input to aggregate depends on the output of chunk. If the output of chunk
is a:

• scalar: Input is a Series, with one row per partition.

• Series: Input is a DataFrame, with one row per partition. Columns are the rows in
the output series.

• DataFrame: Input is a DataFrame, with one row per partition. Columns are the
columns in the output dataframes.

Should return a pandas.DataFrame, pandas.Series, or a scalar.

combine [callable, optional] Function to operate on intermediate concatenated results
of chunk in a tree-reduction. If not provided, defaults to aggregate. The in-
put/output requirements should match that of aggregate described above.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a

548 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

token [str, optional] The name to use for the output keys.

split_every [int, optional] Group partitions into groups of this size while performing a
tree-reduction. If set to False, no tree-reduction will be used, and all intermediates
will be concatenated and passed to aggregate. Default is 8.

chunk_kwargs [dict, optional] Keyword arguments to pass on to chunk only.

aggregate_kwargs [dict, optional] Keyword arguments to pass on to aggregate only.

combine_kwargs [dict, optional] Keyword arguments to pass on to combine only.

kwargs : All remaining keywords will be passed to chunk, combine, and
aggregate.

Examples

>>> import pandas as pd
>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': range(50), 'y': range(50, 100)})
>>> ddf = dd.from_pandas(df, npartitions=4)

Count the number of rows in a DataFrame. To do this, count the number of rows in each partition, then
sum the results:

>>> res = ddf.reduction(lambda x: x.count(),
... aggregate=lambda x: x.sum())
>>> res.compute()
x 50
y 50
dtype: int64

Count the number of rows in a Series with elements greater than or equal to a value (provided via a
keyword).

>>> def count_greater(x, value=0):
... return (x >= value).sum()
>>> res = ddf.x.reduction(count_greater, aggregate=lambda x: x.sum(),
... chunk_kwargs={'value': 25})
>>> res.compute()
25

Aggregate both the sum and count of a Series at the same time:

>>> def sum_and_count(x):
... return pd.Series({'count': x.count(), 'sum': x.sum()},
... index=['count', 'sum'])
>>> res = ddf.x.reduction(sum_and_count, aggregate=lambda x: x.sum())
>>> res.compute()
count 50
sum 1225
dtype: int64

3.9. DataFrame 549

dask Documentation, Release 2.6.0

Doing the same, but for a DataFrame. Here chunk returns a DataFrame, meaning the input to
aggregate is a DataFrame with an index with non-unique entries for both ‘x’ and ‘y’. We groupby
the index, and sum each group to get the final result.

>>> def sum_and_count(x):
... return pd.DataFrame({'count': x.count(), 'sum': x.sum()},
... columns=['count', 'sum'])
>>> res = ddf.reduction(sum_and_count,
... aggregate=lambda x: x.groupby(level=0).sum())
>>> res.compute()

count sum
x 50 1225
y 50 3725

rename(index=None, columns=None)
Alter axes labels.

This docstring was copied from pandas.core.frame.DataFrame.rename.

Some inconsistencies with the Dask version may exist.

Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.
Extra labels listed don’t throw an error.

See the user guide for more.

Parameters

mapper, index, columns [dict-like or function, optional] dict-like or functions transfor-
mations to apply to that axis’ values. Use either mapper and axis to specify the
axis to target with mapper, or index and columns.

axis [int or str, optional (Not supported in Dask)] Axis to target with mapper. Can be
either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’.

copy [boolean, default True (Not supported in Dask)] Also copy underlying data

inplace [boolean, default False (Not supported in Dask)] Whether to return a new
DataFrame. If True then value of copy is ignored.

level [int or level name, default None (Not supported in Dask)] In case of a MultiIndex,
only rename labels in the specified level.

Returns

renamed [DataFrame]

See also:

pandas.DataFrame.rename_axis

Examples

DataFrame.rename supports two calling conventions

• (index=index_mapper, columns=columns_mapper, ...)

• (mapper, axis={'index', 'columns'}, ...)

We highly recommend using keyword arguments to clarify your intent.

550 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-rename
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.rename_axis.html#pandas.DataFrame.rename_axis

dask Documentation, Release 2.6.0

>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) # doctest: +SKIP
>>> df.rename(index=str, columns={"A": "a", "B": "c"}) # doctest: +SKIP

a c
0 1 4
1 2 5
2 3 6

>>> df.rename(index=str, columns={"A": "a", "C": "c"}) # doctest: +SKIP
a B

0 1 4
1 2 5
2 3 6

Using axis-style parameters

>>> df.rename(str.lower, axis='columns') # doctest: +SKIP
a b

0 1 4
1 2 5
2 3 6

>>> df.rename({1: 2, 2: 4}, axis='index') # doctest: +SKIP
A B

0 1 4
2 2 5
4 3 6

repartition(divisions=None, npartitions=None, partition_size=None, freq=None, force=False)
Repartition dataframe along new divisions

Parameters

divisions [list, optional] List of partitions to be used. Only used if npartitions and parti-
tion_size isn’t specified.

npartitions [int, optional] Number of partitions of output. Only used if partition_size
isn’t specified.

partition_size: int or string, optional Max number of bytes of memory for each parti-
tion. Use numbers or strings like 5MB. If specified npartitions and divisions will be
ignored.

Warning: This keyword argument triggers computation to determine the memory
size of each partition, which may be expensive.

freq [str, pd.Timedelta] A period on which to partition timeseries data like '7D' or
'12h' or pd.Timedelta(hours=12). Assumes a datetime index.

force [bool, default False] Allows the expansion of the existing divisions. If False then
the new divisions lower and upper bounds must be the same as the old divisions.

Notes

Exactly one of divisions, npartitions, partition_size, or freq should be specified. A ValueError will be
raised when that is not the case.

3.9. DataFrame 551

dask Documentation, Release 2.6.0

Examples

>>> df = df.repartition(npartitions=10) # doctest: +SKIP
>>> df = df.repartition(divisions=[0, 5, 10, 20]) # doctest: +SKIP
>>> df = df.repartition(freq='7d') # doctest: +SKIP

replace(to_replace=None, value=None, regex=False)
Replace values given in to_replace with value.

This docstring was copied from pandas.core.frame.DataFrame.replace.

Some inconsistencies with the Dask version may exist.

Values of the DataFrame are replaced with other values dynamically. This differs from updating with
.loc or .iloc, which require you to specify a location to update with some value.

Parameters

to_replace [str, regex, list, dict, Series, int, float, or None] How to find the values that
will be replaced.

• numeric, str or regex:

– numeric: numeric values equal to to_replace will be replaced with value

– str: string exactly matching to_replace will be replaced with value

– regex: regexs matching to_replace will be replaced with value

• list of str, regex, or numeric:

– First, if to_replace and value are both lists, they must be the same length.

– Second, if regex=True then all of the strings in both lists will be interpreted
as regexs otherwise they will match directly. This doesn’t matter much for value
since there are only a few possible substitution regexes you can use.

– str, regex and numeric rules apply as above.

• dict:

– Dicts can be used to specify different replacement values for different exist-
ing values. For example, {'a': 'b', 'y': 'z'} replaces the value
‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way the value parameter should
be None.

– For a DataFrame a dict can specify that different values should be replaced in dif-
ferent columns. For example, {'a': 1, 'b': 'z'} looks for the value
1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with
whatever is specified in value. The value parameter should not be None in this
case. You can treat this as a special case of passing two lists except that you are
specifying the column to search in.

– For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are
read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The
value parameter should be None to use a nested dict in this way. You can nest
regular expressions as well. Note that column names (the top-level dictionary
keys in a nested dictionary) cannot be regular expressions.

• None:

552 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

– This means that the regex argument must be a string, compiled regular expres-
sion, or list, dict, ndarray or Series of such elements. If value is also None then
this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value [scalar, dict, list, str, regex, default None] Value to replace any values matching
to_replace with. For a DataFrame a dict of values can be used to specify which
value to use for each column (columns not in the dict will not be filled). Regular
expressions, strings and lists or dicts of such objects are also allowed.

inplace [bool, default False (Not supported in Dask)] If True, in place. Note: this will
modify any other views on this object (e.g. a column from a DataFrame). Returns the
caller if this is True.

limit [int, default None (Not supported in Dask)] Maximum size gap to forward or back-
ward fill.

regex [bool or same types as to_replace, default False] Whether to interpret to_replace
and/or value as regular expressions. If this is True then to_replace must be a string.
Alternatively, this could be a regular expression or a list, dict, or array of regular
expressions in which case to_replace must be None.

method [{‘pad’, ‘ffill’, ‘bfill’, None} (Not supported in Dask)] The method to use when
for replacement, when to_replace is a scalar, list or tuple and value is None.

Changed in version 0.23.0: Added to DataFrame.

Returns

DataFrame Object after replacement.

Raises

AssertionError

• If regex is not a bool and to_replace is not None.

TypeError

• If to_replace is a dict and value is not a list, dict, ndarray, or Series

• If to_replace is None and regex is not compilable into a regular expression or is a
list, dict, ndarray, or Series.

• When replacing multiple bool or datetime64 objects and the arguments to
to_replace does not match the type of the value being replaced

ValueError

• If a list or an ndarray is passed to to_replace and value but they are not the
same length.

See also:

DataFrame.fillna Fill NA values.

DataFrame.where Replace values based on boolean condition.

Series.str.replace Simple string replacement.

3.9. DataFrame 553

dask Documentation, Release 2.6.0

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.
sub are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a
regular expression matching floating point numbers and expect the columns in your frame that have
a numeric dtype to be matched. However, if those floating point numbers are strings, then you can
do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to
gain intuition about how it works.

• When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and
value(s) in the dict are the value parameter.

Examples

Scalar ‘to_replace‘ and ‘value‘

>>> s = pd.Series([0, 1, 2, 3, 4]) # doctest: +SKIP
>>> s.replace(0, 5) # doctest: +SKIP
0 5
1 1
2 2
3 3
4 4
dtype: int64

>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], # doctest: +SKIP
... 'B': [5, 6, 7, 8, 9],
... 'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5) # doctest: +SKIP

A B C
0 5 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

List-like ‘to_replace‘

>>> df.replace([0, 1, 2, 3], 4) # doctest: +SKIP
A B C

0 4 5 a
1 4 6 b
2 4 7 c
3 4 8 d
4 4 9 e

>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) # doctest: +SKIP
A B C

0 4 5 a
1 3 6 b
2 2 7 c
3 1 8 d
4 4 9 e

554 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> s.replace([1, 2], method='bfill') # doctest: +SKIP
0 0
1 3
2 3
3 3
4 4
dtype: int64

dict-like ‘to_replace‘

>>> df.replace({0: 10, 1: 100}) # doctest: +SKIP
A B C

0 10 5 a
1 100 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': 0, 'B': 5}, 100) # doctest: +SKIP
A B C

0 100 100 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': {0: 100, 4: 400}}) # doctest: +SKIP
A B C

0 100 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 400 9 e

Regular expression ‘to_replace‘

>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], # doctest: +SKIP
... 'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True) # doctest:
→˓+SKIP

A B
0 new abc
1 foo new
2 bait xyz

>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) # doctest: +SKIP
A B

0 new abc
1 foo bar
2 bait xyz

>>> df.replace(regex=r'^ba.$', value='new') # doctest: +SKIP
A B

0 new abc
1 foo new
2 bait xyz

3.9. DataFrame 555

dask Documentation, Release 2.6.0

>>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'}) # doctest: +SKIP
A B

0 new abc
1 xyz new
2 bait xyz

>>> df.replace(regex=[r'^ba.$', 'foo'], value='new') # doctest: +SKIP
A B

0 new abc
1 new new
2 bait xyz

Note that when replacing multiple bool or datetime64 objects, the data types in the to_replace pa-
rameter must match the data type of the value being replaced:

>>> df = pd.DataFrame({'A': [True, False, True], # doctest: +SKIP
... 'B': [False, True, False]})
>>> df.replace({'a string': 'new value', True: False}) # raises # doctest:
→˓+SKIP
Traceback (most recent call last):

...
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

This raises a TypeError because one of the dict keys is not of the correct type for replacement.

Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to under-
stand the peculiarities of the to_replace parameter:

>>> s = pd.Series([10, 'a', 'a', 'b', 'a']) # doctest: +SKIP

When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value
parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a':
None}, value=None, method=None):

>>> s.replace({'a': None}) # doctest: +SKIP
0 10
1 None
2 None
3 b
4 None
dtype: object

When value=None and to_replace is a scalar, list or tuple, replace uses the method parameter (default
‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2
and ‘b’ in row 4 in this case. The command s.replace('a', None) is actually equivalent to s.
replace(to_replace='a', value=None, method='pad'):

>>> s.replace('a', None) # doctest: +SKIP
0 10
1 10
2 10
3 b
4 b
dtype: object

resample(rule, closed=None, label=None)
Resample time-series data.

556 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

This docstring was copied from pandas.core.frame.DataFrame.resample.

Some inconsistencies with the Dask version may exist.

Convenience method for frequency conversion and resampling of time series. Object must have a
datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the
on or level keyword.

Parameters

rule [str] The offset string or object representing target conversion.

how [str (Not supported in Dask)] Method for down/re-sampling, default to ‘mean’ for
downsampling.

Deprecated since version 0.18.0: The new syntax is .resample(...).mean(),
or .resample(...).apply(<func>)

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Which axis to
use for up- or down-sampling. For Series this will default to 0, i.e. along the rows.
Must be DatetimeIndex, TimedeltaIndex or PeriodIndex.

fill_method [str, default None (Not supported in Dask)] Filling method for upsampling.

Deprecated since version 0.18.0: The new syntax is .resample(...).
<func>(), e.g. .resample(...).pad()

closed [{‘right’, ‘left’}, default None] Which side of bin interval is closed. The default
is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’
which all have a default of ‘right’.

label [{‘right’, ‘left’}, default None] Which bin edge label to label bucket with. The
default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’,
and ‘W’ which all have a default of ‘right’.

convention [{‘start’, ‘end’, ‘s’, ‘e’}, default ‘start’ (Not supported in Dask)] For Peri-
odIndex only, controls whether to use the start or end of rule.

kind [{‘timestamp’, ‘period’}, optional, default None (Not supported in Dask)] Pass
‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘period’ to convert
it to a PeriodIndex. By default the input representation is retained.

loffset [timedelta, default None (Not supported in Dask)] Adjust the resampled time la-
bels.

limit [int, default None (Not supported in Dask)] Maximum size gap when reindexing
with fill_method.

Deprecated since version 0.18.0.

base [int, default 0 (Not supported in Dask)] For frequencies that evenly subdivide 1 day,
the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base
could range from 0 through 4. Defaults to 0.

on [str, optional (Not supported in Dask)] For a DataFrame, column to use instead of
index for resampling. Column must be datetime-like.

New in version 0.19.0.

level [str or int, optional (Not supported in Dask)] For a MultiIndex, level (name or num-
ber) to use for resampling. level must be datetime-like.

New in version 0.19.0.

Returns

3.9. DataFrame 557

dask Documentation, Release 2.6.0

Resampler object

See also:

groupby Group by mapping, function, label, or list of labels.

Series.resample Resample a Series.

DataFrame.resample Resample a DataFrame.

Notes

See the user guide for more.

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=9, freq='T') # doctest: +SKIP
>>> series = pd.Series(range(9), index=index) # doctest: +SKIP
>>> series # doctest: +SKIP
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

>>> series.resample('3T').sum() # doctest: +SKIP
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the
left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels.
For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the
summed value in the resampled bucket with the label 2000-01-01 00:03:00 does not include 3 (if
it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval
as illustrated in the example below this one.

>>> series.resample('3T', label='right').sum() # doctest: +SKIP
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

558 Chapter 3. Complex Algorithms

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

dask Documentation, Release 2.6.0

>>> series.resample('3T', label='right', closed='right').sum() # doctest:
→˓+SKIP
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64

Upsample the series into 30 second bins.

>>> series.resample('30S').asfreq()[0:5] # Select first 5 rows # doctest:
→˓+SKIP
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64

Upsample the series into 30 second bins and fill the NaN values using the pad method.

>>> series.resample('30S').pad()[0:5] # doctest: +SKIP
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

>>> series.resample('30S').bfill()[0:5] # doctest: +SKIP
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Pass a custom function via apply

>>> def custom_resampler(array_like): # doctest: +SKIP
... return np.sum(array_like) + 5
...
>>> series.resample('3T').apply(custom_resampler) # doctest: +SKIP
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64

For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or
end of rule.

Resample a year by quarter using ‘start’ convention. Values are assigned to the first quarter of the period.

>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', # doctest:
→˓+SKIP
... freq='A',

(continues on next page)

3.9. DataFrame 559

dask Documentation, Release 2.6.0

(continued from previous page)

... periods=2))
>>> s # doctest: +SKIP
2012 1
2013 2
Freq: A-DEC, dtype: int64
>>> s.resample('Q', convention='start').asfreq() # doctest: +SKIP
2012Q1 1.0
2012Q2 NaN
2012Q3 NaN
2012Q4 NaN
2013Q1 2.0
2013Q2 NaN
2013Q3 NaN
2013Q4 NaN
Freq: Q-DEC, dtype: float64

Resample quarters by month using ‘end’ convention. Values are assigned to the last month of the period.

>>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01', #
→˓doctest: +SKIP
... freq='Q',
... periods=4))
>>> q # doctest: +SKIP
2018Q1 1
2018Q2 2
2018Q3 3
2018Q4 4
Freq: Q-DEC, dtype: int64
>>> q.resample('M', convention='end').asfreq() # doctest: +SKIP
2018-03 1.0
2018-04 NaN
2018-05 NaN
2018-06 2.0
2018-07 NaN
2018-08 NaN
2018-09 3.0
2018-10 NaN
2018-11 NaN
2018-12 4.0
Freq: M, dtype: float64

For DataFrame objects, the keyword on can be used to specify the column instead of the index for resam-
pling.

>>> d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], # doctest: +SKIP
... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]})
>>> df = pd.DataFrame(d) # doctest: +SKIP
>>> df['week_starting'] = pd.date_range('01/01/2018', # doctest: +SKIP
... periods=8,
... freq='W')
>>> df # doctest: +SKIP

price volume week_starting
0 10 50 2018-01-07
1 11 60 2018-01-14
2 9 40 2018-01-21
3 13 100 2018-01-28

(continues on next page)

560 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

4 14 50 2018-02-04
5 18 100 2018-02-11
6 17 40 2018-02-18
7 19 50 2018-02-25
>>> df.resample('M', on='week_starting').mean() # doctest: +SKIP

price volume
week_starting
2018-01-31 10.75 62.5
2018-02-28 17.00 60.0

For a DataFrame with MultiIndex, the keyword level can be used to specify on which level the resampling
needs to take place.

>>> days = pd.date_range('1/1/2000', periods=4, freq='D') # doctest: +SKIP
>>> d2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], # doctest: +SKIP
... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]})
>>> df2 = pd.DataFrame(d2, # doctest: +SKIP
... index=pd.MultiIndex.from_product([days,
... ['morning',
... 'afternoon']]
...))
>>> df2 # doctest: +SKIP

price volume
2000-01-01 morning 10 50

afternoon 11 60
2000-01-02 morning 9 40

afternoon 13 100
2000-01-03 morning 14 50

afternoon 18 100
2000-01-04 morning 17 40

afternoon 19 50
>>> df2.resample('D', level=0).sum() # doctest: +SKIP

price volume
2000-01-01 21 110
2000-01-02 22 140
2000-01-03 32 150
2000-01-04 36 90

reset_index(drop=False)
Reset the index to the default index.

Note that unlike in pandas, the reset dask.dataframe index will not be monotonically increasing
from 0. Instead, it will restart at 0 for each partition (e.g. index1 = [0, ..., 10], index2 =
[0, ...]). This is due to the inability to statically know the full length of the index.

For DataFrame with multi-level index, returns a new DataFrame with labeling information in the columns
under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the
index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will
be used.

Parameters

drop [boolean, default False] Do not try to insert index into dataframe columns.

rfloordiv(other, axis=’columns’, level=None, fill_value=None)
Integer division of dataframe and other, element-wise (binary operator rfloordiv).

Equivalent to other // dataframe, but with support to substitute a fill_value for missing data in
one of the inputs. With reverse version, floordiv.

3.9. DataFrame 561

dask Documentation, Release 2.6.0

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

562 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0

(continues on next page)

3.9. DataFrame 563

dask Documentation, Release 2.6.0

(continued from previous page)

triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

rmod(other, axis=’columns’, level=None, fill_value=None)
Modulo of dataframe and other, element-wise (binary operator rmod).

Equivalent to other % dataframe, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, mod.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

564 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

3.9. DataFrame 565

dask Documentation, Release 2.6.0

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

566 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

rmul(other, axis=’columns’, level=None, fill_value=None)
Multiplication of dataframe and other, element-wise (binary operator rmul).

Equivalent to other * dataframe, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, mul.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

3.9. DataFrame 567

dask Documentation, Release 2.6.0

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

568 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360

(continues on next page)

3.9. DataFrame 569

dask Documentation, Release 2.6.0

(continued from previous page)

pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

rolling(window, min_periods=None, center=False, win_type=None, axis=0)
Provides rolling transformations.

Parameters

window [int, str, offset] Size of the moving window. This is the number of observations
used for calculating the statistic. When not using a DatetimeIndex, the window
size must not be so large as to span more than one adjacent partition. If using an offset
or offset alias like ‘5D’, the data must have a DatetimeIndex

Changed in version 0.15.0: Now accepts offsets and string offset aliases

min_periods [int, default None] Minimum number of observations in window required
to have a value (otherwise result is NA).

center [boolean, default False] Set the labels at the center of the window.

win_type [string, default None] Provide a window type. The recognized window types
are identical to pandas.

axis [int, default 0]

Returns

a Rolling object on which to call a method to compute a statistic

round(decimals=0)
Round a DataFrame to a variable number of decimal places.

This docstring was copied from pandas.core.frame.DataFrame.round.

Some inconsistencies with the Dask version may exist.

Parameters

decimals [int, dict, Series] Number of decimal places to round each column to. If an int
is given, round each column to the same number of places. Otherwise dict and Series
round to variable numbers of places. Column names should be in the keys if decimals
is a dict-like, or in the index if decimals is a Series. Any columns not included in
decimals will be left as is. Elements of decimals which are not columns of the input
will be ignored.

Returns

DataFrame

See also:

numpy.around, Series.round

570 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.around.html#numpy.around

dask Documentation, Release 2.6.0

Examples

>>> df = pd.DataFrame(np.random.random([3, 3]), # doctest: +SKIP
... columns=['A', 'B', 'C'], index=['first', 'second', 'third'])
>>> df # doctest: +SKIP

A B C
first 0.028208 0.992815 0.173891
second 0.038683 0.645646 0.577595
third 0.877076 0.149370 0.491027
>>> df.round(2) # doctest: +SKIP

A B C
first 0.03 0.99 0.17
second 0.04 0.65 0.58
third 0.88 0.15 0.49
>>> df.round({'A': 1, 'C': 2}) # doctest: +SKIP

A B C
first 0.0 0.992815 0.17
second 0.0 0.645646 0.58
third 0.9 0.149370 0.49
>>> decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C']) # doctest: +SKIP
>>> df.round(decimals) # doctest: +SKIP

A B C
first 0.0 1 0.17
second 0.0 1 0.58
third 0.9 0 0.49

rpow(other, axis=’columns’, level=None, fill_value=None)
Exponential power of dataframe and other, element-wise (binary operator rpow).

Equivalent to other ** dataframe, but with support to substitute a fill_value for missing data in
one of the inputs. With reverse version, pow.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

3.9. DataFrame 571

dask Documentation, Release 2.6.0

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

572 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360

(continues on next page)

3.9. DataFrame 573

dask Documentation, Release 2.6.0

(continued from previous page)

pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

rsub(other, axis=’columns’, level=None, fill_value=None)
Subtraction of dataframe and other, element-wise (binary operator rsub).

Equivalent to other - dataframe, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, sub.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

574 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

(continues on next page)

3.9. DataFrame 575

dask Documentation, Release 2.6.0

(continued from previous page)

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

rtruediv(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator rtruediv).

576 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, truediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

3.9. DataFrame 577

dask Documentation, Release 2.6.0

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0

(continues on next page)

578 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

sample(n=None, frac=None, replace=False, random_state=None)
Random sample of items

Parameters

n [int, optional] Number of items to return is not supported by dask. Use frac instead.

frac [float, optional] Fraction of axis items to return.

replace [boolean, optional] Sample with or without replacement. Default = False.

random_state [int or np.random.RandomState] If int we create a new Random-
State with this as the seed Otherwise we draw from the passed RandomState

See also:

DataFrame.random_split, pandas.DataFrame.sample

3.9. DataFrame 579

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html#pandas.DataFrame.sample

dask Documentation, Release 2.6.0

select_dtypes(include=None, exclude=None)
Return a subset of the DataFrame’s columns based on the column dtypes.

This docstring was copied from pandas.core.frame.DataFrame.select_dtypes.

Some inconsistencies with the Dask version may exist.

Parameters

include, exclude [scalar or list-like] A selection of dtypes or strings to be in-
cluded/excluded. At least one of these parameters must be supplied.

Returns

subset [DataFrame] The subset of the frame including the dtypes in include and ex-
cluding the dtypes in exclude.

Raises

ValueError

• If both of include and exclude are empty

• If include and exclude have overlapping elements

• If any kind of string dtype is passed in.

Notes

• To select all numeric types, use np.number or 'number'

• To select strings you must use the object dtype, but note that this will return all object dtype
columns

• See the numpy dtype hierarchy

• To select datetimes, use np.datetime64, 'datetime' or 'datetime64'

• To select timedeltas, use np.timedelta64, 'timedelta' or 'timedelta64'

• To select Pandas categorical dtypes, use 'category'

• To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0) or 'datetime64[ns,
tz]'

Examples

>>> df = pd.DataFrame({'a': [1, 2] * 3, # doctest: +SKIP
... 'b': [True, False] * 3,
... 'c': [1.0, 2.0] * 3})
>>> df # doctest: +SKIP

a b c
0 1 True 1.0
1 2 False 2.0
2 1 True 1.0
3 2 False 2.0
4 1 True 1.0
5 2 False 2.0

580 Chapter 3. Complex Algorithms

http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html

dask Documentation, Release 2.6.0

>>> df.select_dtypes(include='bool') # doctest: +SKIP
b

0 True
1 False
2 True
3 False
4 True
5 False

>>> df.select_dtypes(include=['float64']) # doctest: +SKIP
c

0 1.0
1 2.0
2 1.0
3 2.0
4 1.0
5 2.0

>>> df.select_dtypes(exclude=['int']) # doctest: +SKIP
b c

0 True 1.0
1 False 2.0
2 True 1.0
3 False 2.0
4 True 1.0
5 False 2.0

sem(axis=None, skipna=None, ddof=1, split_every=False)
Return unbiased standard error of the mean over requested axis.

This docstring was copied from pandas.core.frame.DataFrame.sem.

Some inconsistencies with the Dask version may exist.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series

ddof [int, default 1] Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of elements.

numeric_only [boolean, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric data.
Not implemented for Series.

Returns

sem [Series or DataFrame (if level specified)]

set_index(other, drop=True, sorted=False, npartitions=None, divisions=None, inplace=False,
**kwargs)

Set the DataFrame index (row labels) using an existing column.

3.9. DataFrame 581

dask Documentation, Release 2.6.0

This realigns the dataset to be sorted by a new column. This can have a significant impact on performance,
because joins, groupbys, lookups, etc. are all much faster on that column. However, this performance
increase comes with a cost, sorting a parallel dataset requires expensive shuffles. Often we set_index
once directly after data ingest and filtering and then perform many cheap computations off of the sorted
dataset.

This function operates exactly like pandas.set_index except with different performance costs (dask
dataframe set_index is much more expensive). Under normal operation this function does an initial
pass over the index column to compute approximate qunatiles to serve as future divisions. It then passes
over the data a second time, splitting up each input partition into several pieces and sharing those pieces
to all of the output partitions now in sorted order.

In some cases we can alleviate those costs, for example if your dataset is sorted already then we can avoid
making many small pieces or if you know good values to split the new index column then we can avoid
the initial pass over the data. For example if your new index is a datetime index and your data is already
sorted by day then this entire operation can be done for free. You can control these options with the
following parameters.

Parameters

df: Dask DataFrame

index: string or Dask Series

npartitions: int, None, or ‘auto’ The ideal number of output partitions. If None use the
same as the input. If ‘auto’ then decide by memory use.

shuffle: string, optional Either 'disk' for single-node operation or 'tasks' for dis-
tributed operation. Will be inferred by your current scheduler.

sorted: bool, optional If the index column is already sorted in increasing order. Defaults
to False

divisions: list, optional Known values on which to separate index values of the parti-
tions. See https://docs.dask.org/en/latest/dataframe-design.html#partitions Defaults
to computing this with a single pass over the data. Note that if sorted=True,
specified divisions are assumed to match the existing partitions in the data. If
sorted=False, you should leave divisions empty and call repartition after
set_index.

inplace [bool, optional] Modifying the DataFrame in place is not supported by Dask.
Defaults to False.

compute: bool Whether or not to trigger an immediate computation. Defaults to False.
Note, that even if you set compute=False, an immediate computation will still be
triggered if divisions is None.

Examples

>>> df2 = df.set_index('x') # doctest: +SKIP
>>> df2 = df.set_index(d.x) # doctest: +SKIP
>>> df2 = df.set_index(d.timestamp, sorted=True) # doctest: +SKIP

A common case is when we have a datetime column that we know to be sorted and is cleanly divided
by day. We can set this index for free by specifying both that the column is pre-sorted and the particular
divisions along which is is separated

582 Chapter 3. Complex Algorithms

https://docs.dask.org/en/latest/dataframe-design.html#partitions

dask Documentation, Release 2.6.0

>>> import pandas as pd
>>> divisions = pd.date_range('2000', '2010', freq='1D')
>>> df2 = df.set_index('timestamp', sorted=True, divisions=divisions) #
→˓doctest: +SKIP

shape
Return a tuple representing the dimensionality of the DataFrame.

The number of rows is a Delayed result. The number of columns is a concrete integer.

Examples

>>> df.size # doctest: +SKIP
(Delayed('int-07f06075-5ecc-4d77-817e-63c69a9188a8'), 2)

shift(periods=1, freq=None, axis=0)
Shift index by desired number of periods with an optional time freq.

This docstring was copied from pandas.core.frame.DataFrame.shift.

Some inconsistencies with the Dask version may exist.

When freq is not passed, shift the index without realigning the data. If freq is passed (in this case, the
index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using
the periods and the freq.

Parameters

periods [int] Number of periods to shift. Can be positive or negative.

freq [DateOffset, tseries.offsets, timedelta, or str, optional] Offset to use from the tseries
module or time rule (e.g. ‘EOM’). If freq is specified then the index values are shifted
but the data is not realigned. That is, use freq if you would like to extend the index
when shifting and preserve the original data.

axis [{0 or ‘index’, 1 or ‘columns’, None}, default None] Shift direction.

fill_value [object, optional (Not supported in Dask)] The scalar value to use for newly
introduced missing values. the default depends on the dtype of self. For numeric
data, np.nan is used. For datetime, timedelta, or period data, etc. NaT is used. For
extension dtypes, self.dtype.na_value is used.

Changed in version 0.24.0.

Returns

DataFrame Copy of input object, shifted.

See also:

Index.shift Shift values of Index.

DatetimeIndex.shift Shift values of DatetimeIndex.

PeriodIndex.shift Shift values of PeriodIndex.

tshift Shift the time index, using the index’s frequency if available.

3.9. DataFrame 583

dask Documentation, Release 2.6.0

Examples

>>> df = pd.DataFrame({'Col1': [10, 20, 15, 30, 45], # doctest: +SKIP
... 'Col2': [13, 23, 18, 33, 48],
... 'Col3': [17, 27, 22, 37, 52]})

>>> df.shift(periods=3) # doctest: +SKIP
Col1 Col2 Col3

0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 10.0 13.0 17.0
4 20.0 23.0 27.0

>>> df.shift(periods=1, axis='columns') # doctest: +SKIP
Col1 Col2 Col3

0 NaN 10.0 13.0
1 NaN 20.0 23.0
2 NaN 15.0 18.0
3 NaN 30.0 33.0
4 NaN 45.0 48.0

>>> df.shift(periods=3, fill_value=0) # doctest: +SKIP
Col1 Col2 Col3

0 0 0 0
1 0 0 0
2 0 0 0
3 10 13 17
4 20 23 27

size
Size of the Series or DataFrame as a Delayed object.

Examples

>>> series.size # doctest: +SKIP
dd.Scalar<size-ag..., dtype=int64>

squeeze(axis=None)
Squeeze 1 dimensional axis objects into scalars.

This docstring was copied from pandas.core.frame.DataFrame.squeeze.

Some inconsistencies with the Dask version may exist.

Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or
a single row are squeezed to a Series. Otherwise the object is unchanged.

This method is most useful when you don’t know if your object is a Series or DataFrame, but you do
know it has just a single column. In that case you can safely call squeeze to ensure you have a Series.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’, None}, default None] A specific axis to squeeze. By
default, all length-1 axes are squeezed.

New in version 0.20.0.

584 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Returns

DataFrame, Series, or scalar The projection after squeezing axis or all the axes.

See also:

Series.iloc Integer-location based indexing for selecting scalars.

DataFrame.iloc Integer-location based indexing for selecting Series.

Series.to_frame Inverse of DataFrame.squeeze for a single-column DataFrame.

Examples

>>> primes = pd.Series([2, 3, 5, 7]) # doctest: +SKIP

Slicing might produce a Series with a single value:

>>> even_primes = primes[primes % 2 == 0] # doctest: +SKIP
>>> even_primes # doctest: +SKIP
0 2
dtype: int64

>>> even_primes.squeeze() # doctest: +SKIP
2

Squeezing objects with more than one value in every axis does nothing:

>>> odd_primes = primes[primes % 2 == 1] # doctest: +SKIP
>>> odd_primes # doctest: +SKIP
1 3
2 5
3 7
dtype: int64

>>> odd_primes.squeeze() # doctest: +SKIP
1 3
2 5
3 7
dtype: int64

Squeezing is even more effective when used with DataFrames.

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) # doctest: +SKIP
>>> df # doctest: +SKIP

a b
0 1 2
1 3 4

Slicing a single column will produce a DataFrame with the columns having only one value:

>>> df_a = df[['a']] # doctest: +SKIP
>>> df_a # doctest: +SKIP

a
0 1
1 3

So the columns can be squeezed down, resulting in a Series:

3.9. DataFrame 585

dask Documentation, Release 2.6.0

>>> df_a.squeeze('columns') # doctest: +SKIP
0 1
1 3
Name: a, dtype: int64

Slicing a single row from a single column will produce a single scalar DataFrame:

>>> df_0a = df.loc[df.index < 1, ['a']] # doctest: +SKIP
>>> df_0a # doctest: +SKIP

a
0 1

Squeezing the rows produces a single scalar Series:

>>> df_0a.squeeze('rows') # doctest: +SKIP
a 1
Name: 0, dtype: int64

Squeezing all axes wil project directly into a scalar:

>>> df_0a.squeeze() # doctest: +SKIP
1

std(axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None)
Return sample standard deviation over requested axis.

This docstring was copied from pandas.core.frame.DataFrame.std.

Some inconsistencies with the Dask version may exist.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series

ddof [int, default 1] Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of elements.

numeric_only [boolean, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric data.
Not implemented for Series.

Returns

std [Series or DataFrame (if level specified)]

sub(other, axis=’columns’, level=None, fill_value=None)
Subtraction of dataframe and other, element-wise (binary operator sub).

Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, rsub.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

586 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

3.9. DataFrame 587

dask Documentation, Release 2.6.0

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN

(continues on next page)

588 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],
... ['circle', 'triangle', 'rectangle',
... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

sum(axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None)
Return the sum of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.sum.

Some inconsistencies with the Dask version may exist.

This is equivalent to the method numpy.sum.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

min_count [int, default 0] The required number of valid values to perform the operation.
If fewer than min_count non-NA values are present the result will be NA.

3.9. DataFrame 589

dask Documentation, Release 2.6.0

New in version 0.22.0: Added with the default being 0. This means the sum of an
all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

**kwargs Additional keyword arguments to be passed to the function.

Returns

sum [Series or DataFrame (if level specified)]

See also:

Series.sum Return the sum.

Series.min Return the minimum.

Series.max Return the maximum.

Series.idxmin Return the index of the minimum.

Series.idxmax Return the index of the maximum.

DataFrame.min Return the sum over the requested axis.

DataFrame.min Return the minimum over the requested axis.

DataFrame.max Return the maximum over the requested axis.

DataFrame.idxmin Return the index of the minimum over the requested axis.

DataFrame.idxmax Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([# doctest: +SKIP
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) # doctest: +SKIP
>>> s # doctest: +SKIP
blooded animal
warm dog 4

falcon 2
cold fish 0

spider 8
Name: legs, dtype: int64

>>> s.sum() # doctest: +SKIP
14

Sum using level names, as well as indices.

>>> s.sum(level='blooded') # doctest: +SKIP
blooded
warm 6
cold 8
Name: legs, dtype: int64

590 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> s.sum(level=0) # doctest: +SKIP
blooded
warm 6
cold 8
Name: legs, dtype: int64

By default, the sum of an empty or all-NA Series is 0.

>>> pd.Series([]).sum() # min_count=0 is the default # doctest: +SKIP
0.0

This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty
series to be NaN, pass min_count=1.

>>> pd.Series([]).sum(min_count=1) # doctest: +SKIP
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).sum() # doctest: +SKIP
0.0

>>> pd.Series([np.nan]).sum(min_count=1) # doctest: +SKIP
nan

tail(n=5, compute=True)
Last n rows of the dataset

Caveat, the only checks the last n rows of the last partition.

to_bag(index=False)
Create Dask Bag from a Dask DataFrame

Parameters

index [bool, optional] If True, the elements are tuples of (index, value), otherwise
they’re just the value. Default is False.

Examples

>>> bag = df.to_bag() # doctest: +SKIP

to_csv(filename, **kwargs)
Store Dask DataFrame to CSV files

One filename per partition will be created. You can specify the filenames in a variety of ways.

Use a globstring:

>>> df.to_csv('/path/to/data/export-*.csv')

The * will be replaced by the increasing sequence 0, 1, 2, . . .

/path/to/data/export-0.csv
/path/to/data/export-1.csv

3.9. DataFrame 591

dask Documentation, Release 2.6.0

Use a globstring and a name_function= keyword argument. The name_function function should
expect an integer and produce a string. Strings produced by name_function must preserve the order of
their respective partition indices.

>>> from datetime import date, timedelta
>>> def name(i):
... return str(date(2015, 1, 1) + i * timedelta(days=1))

>>> name(0)
'2015-01-01'
>>> name(15)
'2015-01-16'

>>> df.to_csv('/path/to/data/export-*.csv', name_function=name) # doctest:
→˓+SKIP

/path/to/data/export-2015-01-01.csv
/path/to/data/export-2015-01-02.csv
...

You can also provide an explicit list of paths:

>>> paths = ['/path/to/data/alice.csv', '/path/to/data/bob.csv', ...]
>>> df.to_csv(paths)

Parameters

filename [string] Path glob indicating the naming scheme for the output files

name_function [callable, default None] Function accepting an integer (partition index)
and producing a string to replace the asterisk in the given filename globstring. Should
preserve the lexicographic order of partitions. Not supported when single_file is True.

single_file [bool, default False] Whether to save everything into a single CSV file. Under
the single file mode, each partition is appended at the end of the specified CSV file.
Note that not all filesystems support the append mode and thus the single file mode,
especially on cloud storage systems such as S3 or GCS. A warning will be issued
when writing to a file that is not backed by a local filesystem.

compression [string or None] String like ‘gzip’ or ‘xz’. Must support efficient random
access. Filenames with extensions corresponding to known compression algorithms
(gz, bz2) will be compressed accordingly automatically

sep [character, default ‘,’] Field delimiter for the output file

na_rep [string, default ‘’] Missing data representation

float_format [string, default None] Format string for floating point numbers

columns [sequence, optional] Columns to write

header [boolean or list of string, default True] Write out column names. If a list of string
is given it is assumed to be aliases for the column names

header_first_partition_only [boolean, default None] If set to True, only write the header
row in the first output file. By default, headers are written to all partitions under the
multiple file mode (single_file is False) and written only once under the single file
mode (single_file is True). It must not be False under the single file mode.

index [boolean, default True] Write row names (index)

592 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

index_label [string or sequence, or False, default None] Column label for index col-
umn(s) if desired. If None is given, and header and index are True, then the index
names are used. A sequence should be given if the DataFrame uses MultiIndex. If
False do not print fields for index names. Use index_label=False for easier importing
in R

nanRep [None] deprecated, use na_rep

mode [str] Python write mode, default ‘w’

encoding [string, optional] A string representing the encoding to use in the output file,
defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.

compression [string, optional] a string representing the compression to use in the output
file, allowed values are ‘gzip’, ‘bz2’, ‘xz’, only used when the first argument is a
filename

line_terminator [string, default ‘\n’] The newline character or character sequence to use
in the output file

quoting [optional constant from csv module] defaults to csv.QUOTE_MINIMAL

quotechar [string (length 1), default ‘”’] character used to quote fields

doublequote [boolean, default True] Control quoting of quotechar inside a field

escapechar [string (length 1), default None] character used to escape sep and quotechar
when appropriate

chunksize [int or None] rows to write at a time

tupleize_cols [boolean, default False] write multi_index columns as a list of tuples (if
True) or new (expanded format) if False)

date_format [string, default None] Format string for datetime objects

decimal: string, default ‘.’ Character recognized as decimal separator. E.g. use ‘,’ for
European data

storage_options: dict Parameters passed on to the backend filesystem class.

Returns

The names of the file written if they were computed right away

If not, the delayed tasks associated to the writing of the files

Raises

ValueError If header_first_partition_only is set to False or name_function is specified
when single_file is True.

to_dask_array(lengths=None)
Convert a dask DataFrame to a dask array.

Parameters

lengths [bool or Sequence of ints, optional] How to determine the chunks sizes for the
output array. By default, the output array will have unknown chunk lengths along the
first axis, which can cause some later operations to fail.

• True : immediately compute the length of each partition

3.9. DataFrame 593

dask Documentation, Release 2.6.0

• Sequence : a sequence of integers to use for the chunk sizes on the first axis. These
values are not validated for correctness, beyond ensuring that the number of items
matches the number of partitions.

to_delayed(optimize_graph=True)
Convert into a list of dask.delayed objects, one per partition.

Parameters

optimize_graph [bool, optional] If True [default], the graph is optimized before convert-
ing into dask.delayed objects.

See also:

dask.dataframe.from_delayed

Examples

>>> partitions = df.to_delayed() # doctest: +SKIP

to_hdf(path_or_buf, key, mode=’a’, append=False, **kwargs)
Store Dask Dataframe to Hierarchical Data Format (HDF) files

This is a parallel version of the Pandas function of the same name. Please see the Pandas docstring for
more detailed information about shared keyword arguments.

This function differs from the Pandas version by saving the many partitions of a Dask DataFrame in paral-
lel, either to many files, or to many datasets within the same file. You may specify this parallelism with an
asterix *within the filename or datapath, and an optional name_function. The asterix will be replaced
with an increasing sequence of integers starting from 0 or with the result of calling name_function
on each of those integers.

This function only supports the Pandas 'table' format, not the more specialized 'fixed' format.

Parameters

path [string, pathlib.Path] Path to a target filename. Supports strings, pathlib.Path,
or any object implementing the __fspath__ protocol. May contain a * to denote
many filenames.

key [string] Datapath within the files. May contain a * to denote many locations

name_function [function] A function to convert the * in the above options to a string.
Should take in a number from 0 to the number of partitions and return a string. (see
examples below)

compute [bool] Whether or not to execute immediately. If False then this returns a
dask.Delayed value.

lock [Lock, optional] Lock to use to prevent concurrency issues. By default
a threading.Lock, multiprocessing.Lock or SerializableLock
will be used depending on your scheduler if a lock is required. See
dask.utils.get_scheduler_lock for more information about lock selection.

scheduler [string] The scheduler to use, like “threads” or “processes”

**other: See pandas.to_hdf for more information

Returns

filenames [list] Returned if compute is True. List of file names that each partition is
saved to.

594 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

delayed [dask.Delayed] Returned if compute is False. Delayed object to execute
to_hdf when computed.

See also:

read_hdf, to_parquet

Examples

Save Data to a single file

>>> df.to_hdf('output.hdf', '/data') # doctest: +SKIP

Save data to multiple datapaths within the same file:

>>> df.to_hdf('output.hdf', '/data-*') # doctest: +SKIP

Save data to multiple files:

>>> df.to_hdf('output-*.hdf', '/data') # doctest: +SKIP

Save data to multiple files, using the multiprocessing scheduler:

>>> df.to_hdf('output-*.hdf', '/data', scheduler='processes') # doctest:
→˓+SKIP

Specify custom naming scheme. This writes files as ‘2000-01-01.hdf’, ‘2000-01-02.hdf’, ‘2000-01-
03.hdf’, etc..

>>> from datetime import date, timedelta
>>> base = date(year=2000, month=1, day=1)
>>> def name_function(i):
... ''' Convert integer 0 to n to a string '''
... return base + timedelta(days=i)

>>> df.to_hdf('*.hdf', '/data', name_function=name_function) # doctest: +SKIP

to_html(max_rows=5)
Render a DataFrame as an HTML table.

Parameters

buf [StringIO-like, optional (Not supported in Dask)] Buffer to write to.

columns [sequence, optional, default None (Not supported in Dask)] The subset of
columns to write. Writes all columns by default.

col_space [int, optional (Not supported in Dask)] The minimum width of each column.

header [bool, optional (Not supported in Dask)] Whether to print column labels, default
True.

index [bool, optional, default True (Not supported in Dask)] Whether to print index (row)
labels.

na_rep [str, optional, default ‘NaN’ (Not supported in Dask)] String representation of
NAN to use.

3.9. DataFrame 595

dask Documentation, Release 2.6.0

formatters [list or dict of one-param. functions, optional (Not supported in Dask)] For-
matter functions to apply to columns’ elements by position or name. The result of
each function must be a unicode string. List must be of length equal to the number of
columns.

float_format [one-parameter function, optional, default None (Not supported in Dask)]
Formatter function to apply to columns’ elements if they are floats. The result of this
function must be a unicode string.

sparsify [bool, optional, default True (Not supported in Dask)] Set to False for a
DataFrame with a hierarchical index to print every multiindex key at each row.

index_names [bool, optional, default True (Not supported in Dask)] Prints the names of
the indexes.

justify [str, default None (Not supported in Dask)] How to justify the column labels. If
None uses the option from the print configuration (controlled by set_option), ‘right’
out of the box. Valid values are

This docstring was copied from pandas.core.frame.DataFrame.to_html.

Some inconsistencies with the Dask version may exist.

• left

• right

• center

• justify

• justify-all

• start

• end

• inherit

• match-parent

• initial

• unset.

max_rows [int, optional] Maximum number of rows to display in the console.

max_cols [int, optional (Not supported in Dask)] Maximum number of columns to dis-
play in the console.

show_dimensions [bool, default False (Not supported in Dask)] Display DataFrame di-
mensions (number of rows by number of columns).

decimal [str, default ‘.’ (Not supported in Dask)] Character recognized as decimal sepa-
rator, e.g. ‘,’ in Europe.

New in version 0.18.0.

bold_rows [bool, default True (Not supported in Dask)] Make the row labels bold in the
output.

classes [str or list or tuple, default None (Not supported in Dask)] CSS class(es) to apply
to the resulting html table.

escape [bool, default True (Not supported in Dask)] Convert the characters <, >, and &
to HTML-safe sequences.

596 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

notebook [{True, False}, default False (Not supported in Dask)] Whether the generated
HTML is for IPython Notebook.

border [int (Not supported in Dask)] A border=border attribute is included in the
opening <table> tag. Default pd.options.html.border.

New in version 0.19.0.

table_id [str, optional (Not supported in Dask)] A css id is included in the opening <ta-
ble> tag if specified.

New in version 0.23.0.

render_links [bool, default False (Not supported in Dask)] Convert URLs to HTML
links.

New in version 0.24.0.

Returns

str (or unicode, depending on data and options) String representation of the
dataframe.

See also:

to_string Convert DataFrame to a string.

to_json(filename, *args, **kwargs)
See dd.to_json docstring for more information

to_parquet(path, *args, **kwargs)
Store Dask.dataframe to Parquet files

Parameters

df [dask.dataframe.DataFrame]

path [string or pathlib.Path] Destination directory for data. Prepend with protocol like
s3:// or hdfs:// for remote data.

engine [{‘auto’, ‘fastparquet’, ‘pyarrow’}, default ‘auto’] Parquet library to use. If only
one library is installed, it will use that one; if both, it will use ‘fastparquet’.

compression [string or dict, optional] Either a string like "snappy" or a dictionary
mapping column names to compressors like {"name": "gzip", "values":
"snappy"}. The default is "default", which uses the default compression for
whichever engine is selected.

write_index [boolean, optional] Whether or not to write the index. Defaults to True.

append [bool, optional] If False (default), construct data-set from scratch. If True, add
new row-group(s) to an existing data-set. In the latter case, the data-set must exist,
and the schema must match the input data.

ignore_divisions [bool, optional] If False (default) raises error when previous divisions
overlap with the new appended divisions. Ignored if append=False.

partition_on [list, optional] Construct directory-based partitioning by splitting on these
fields’ values. Each dask partition will result in one or more datafiles, there will be no
global groupby.

storage_options [dict, optional] Key/value pairs to be passed on to the file-system back-
end, if any.

3.9. DataFrame 597

dask Documentation, Release 2.6.0

write_metadata_file [bool, optional] Whether to write the special “_metadata” file.

compute [bool, optional] If True (default) then the result is computed immediately. If
False then a dask.delayed object is returned for future computation.

**kwargs : Extra options to be passed on to the specific backend.

See also:

read_parquet Read parquet data to dask.dataframe

Notes

Each partition will be written to a separate file.

Examples

>>> df = dd.read_csv(...) # doctest: +SKIP
>>> dd.to_parquet(df, '/path/to/output/',...) # doctest: +SKIP

to_records(index=False, lengths=None)
Create Dask Array from a Dask Dataframe

Warning: This creates a dask.array without precise shape information. Operations that depend on shape
information, like slicing or reshaping, will not work.

See also:

dask.dataframe._Frame.values, dask.dataframe.from_dask_array

Examples

>>> df.to_records() # doctest: +SKIP
dask.array<to_records, shape=(nan,), dtype=(numpy.record, [('ind', '<f8'), (
→˓'x', 'O'), ('y', '<i8')]), chunksize=(nan,), chunktype=numpy.ndarray> #
→˓noqa: E501

to_string(max_rows=5)
Render a DataFrame to a console-friendly tabular output.

Parameters

buf [StringIO-like, optional (Not supported in Dask)] Buffer to write to.

columns [sequence, optional, default None (Not supported in Dask)] The subset of
columns to write. Writes all columns by default.

col_space [int, optional (Not supported in Dask)] The minimum width of each column.

header [bool, optional (Not supported in Dask)] Write out the column names. If a list of
strings is given, it is assumed to be aliases for the column names.

index [bool, optional, default True (Not supported in Dask)] Whether to print index (row)
labels.

na_rep [str, optional, default ‘NaN’ (Not supported in Dask)] String representation of
NAN to use.

598 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

formatters [list or dict of one-param. functions, optional (Not supported in Dask)] For-
matter functions to apply to columns’ elements by position or name. The result of
each function must be a unicode string. List must be of length equal to the number of
columns.

float_format [one-parameter function, optional, default None (Not supported in Dask)]
Formatter function to apply to columns’ elements if they are floats. The result of this
function must be a unicode string.

sparsify [bool, optional, default True (Not supported in Dask)] Set to False for a
DataFrame with a hierarchical index to print every multiindex key at each row.

index_names [bool, optional, default True (Not supported in Dask)] Prints the names of
the indexes.

justify [str, default None (Not supported in Dask)] How to justify the column labels. If
None uses the option from the print configuration (controlled by set_option), ‘right’
out of the box. Valid values are

This docstring was copied from pandas.core.frame.DataFrame.to_string.

Some inconsistencies with the Dask version may exist.

• left

• right

• center

• justify

• justify-all

• start

• end

• inherit

• match-parent

• initial

• unset.

max_rows [int, optional] Maximum number of rows to display in the console.

max_cols [int, optional (Not supported in Dask)] Maximum number of columns to dis-
play in the console.

show_dimensions [bool, default False (Not supported in Dask)] Display DataFrame di-
mensions (number of rows by number of columns).

decimal [str, default ‘.’ (Not supported in Dask)] Character recognized as decimal sepa-
rator, e.g. ‘,’ in Europe.

New in version 0.18.0.

line_width [int, optional (Not supported in Dask)] Width to wrap a line in characters.

Returns

str (or unicode, depending on data and options) String representation of the
dataframe.

See also:

3.9. DataFrame 599

dask Documentation, Release 2.6.0

to_html Convert DataFrame to HTML.

Examples

>>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} # doctest: +SKIP
>>> df = pd.DataFrame(d) # doctest: +SKIP
>>> print(df.to_string()) # doctest: +SKIP

col1 col2
0 1 4
1 2 5
2 3 6

to_timestamp(freq=None, how=’start’, axis=0)
Cast to DatetimeIndex of timestamps, at beginning of period.

This docstring was copied from pandas.core.frame.DataFrame.to_timestamp.

Some inconsistencies with the Dask version may exist.

Parameters

freq [string, default frequency of PeriodIndex] Desired frequency

how [{‘s’, ‘e’, ‘start’, ‘end’}] Convention for converting period to timestamp; start of
period vs. end

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The axis to convert (the index by default)

copy [boolean, default True (Not supported in Dask)] If false then underlying input data
is not copied

Returns

df [DataFrame with DatetimeIndex]

truediv(other, axis=’columns’, level=None, fill_value=None)
Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one
of the inputs. With reverse version, rtruediv.

Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.

Parameters

other [scalar, sequence, Series, or DataFrame] Any single or multiple element data struc-
ture, or list-like object.

axis [{0 or ‘index’, 1 or ‘columns’}] Whether to compare by the index (0 or ‘index’) or
columns (1 or ‘columns’). For Series input, axis to match Series index on.

level [int or label] Broadcast across a level, matching Index values on the passed Multi-
Index level.

fill_value [float or None, default None] Fill existing missing (NaN) values, and any new
element needed for successful DataFrame alignment, with this value before computa-
tion. If data in both corresponding DataFrame locations is missing the result will be
missing.

Returns

DataFrame Result of the arithmetic operation.

600 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

See also:

DataFrame.add Add DataFrames.

DataFrame.sub Subtract DataFrames.

DataFrame.mul Multiply DataFrames.

DataFrame.div Divide DataFrames (float division).

DataFrame.truediv Divide DataFrames (float division).

DataFrame.floordiv Divide DataFrames (integer division).

DataFrame.mod Calculate modulo (remainder after division).

DataFrame.pow Calculate exponential power.

Notes

Mismatched indices will be unioned together.

Examples

>>> df = pd.DataFrame({'angles': [0, 3, 4], # doctest: +SKIP
... 'degrees': [360, 180, 360]},
... index=['circle', 'triangle', 'rectangle'])
>>> df # doctest: +SKIP

angles degrees
circle 0 360
triangle 3 180
rectangle 4 360

Add a scalar with operator version which return the same results.

>>> df + 1 # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

>>> df.add(1) # doctest: +SKIP
angles degrees

circle 1 361
triangle 4 181
rectangle 5 361

Divide by constant with reverse version.

>>> df.div(10) # doctest: +SKIP
angles degrees

circle 0.0 36.0
triangle 0.3 18.0
rectangle 0.4 36.0

3.9. DataFrame 601

dask Documentation, Release 2.6.0

>>> df.rdiv(10) # doctest: +SKIP
angles degrees

circle inf 0.027778
triangle 3.333333 0.055556
rectangle 2.500000 0.027778

Subtract a list and Series by axis with operator version.

>>> df - [1, 2] # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub([1, 2], axis='columns') # doctest: +SKIP
angles degrees

circle -1 358
triangle 2 178
rectangle 3 358

>>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']),
→˓# doctest: +SKIP
... axis='index')

angles degrees
circle -1 359
triangle 2 179
rectangle 3 359

Multiply a DataFrame of different shape with operator version.

>>> other = pd.DataFrame({'angles': [0, 3, 4]}, # doctest: +SKIP
... index=['circle', 'triangle', 'rectangle'])
>>> other # doctest: +SKIP

angles
circle 0
triangle 3
rectangle 4

>>> df * other # doctest: +SKIP
angles degrees

circle 0 NaN
triangle 9 NaN
rectangle 16 NaN

>>> df.mul(other, fill_value=0) # doctest: +SKIP
angles degrees

circle 0 0.0
triangle 9 0.0
rectangle 16 0.0

Divide by a MultiIndex by level.

>>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], # doctest:
→˓+SKIP
... 'degrees': [360, 180, 360, 360, 540, 720]},
... index=[['A', 'A', 'A', 'B', 'B', 'B'],

(continues on next page)

602 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

... ['circle', 'triangle', 'rectangle',

... 'square', 'pentagon', 'hexagon']])
>>> df_multindex # doctest: +SKIP

angles degrees
A circle 0 360
triangle 3 180
rectangle 4 360

B square 4 360
pentagon 5 540
hexagon 6 720

>>> df.div(df_multindex, level=1, fill_value=0) # doctest: +SKIP
angles degrees

A circle NaN 1.0
triangle 1.0 1.0
rectangle 1.0 1.0

B square 0.0 0.0
pentagon 0.0 0.0
hexagon 0.0 0.0

values
Return a dask.array of the values of this dataframe

Warning: This creates a dask.array without precise shape information. Operations that depend on shape
information, like slicing or reshaping, will not work.

var(axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None)
Return unbiased variance over requested axis.

This docstring was copied from pandas.core.frame.DataFrame.var.

Some inconsistencies with the Dask version may exist.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series

ddof [int, default 1] Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of elements.

numeric_only [boolean, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric data.
Not implemented for Series.

Returns

var [Series or DataFrame (if level specified)]

visualize(filename=’mydask’, format=None, optimize_graph=False, **kwargs)
Render the computation of this object’s task graph using graphviz.

Requires graphviz to be installed.

Parameters

3.9. DataFrame 603

dask Documentation, Release 2.6.0

filename [str or None, optional] The name (without an extension) of the file to write to
disk. If filename is None, no file will be written, and we communicate with dot using
only pipes.

format [{‘png’, ‘pdf’, ‘dot’, ‘svg’, ‘jpeg’, ‘jpg’}, optional] Format in which to write
output file. Default is ‘png’.

optimize_graph [bool, optional] If True, the graph is optimized before rendering. Oth-
erwise, the graph is displayed as is. Default is False.

color: {None, ‘order’}, optional Options to color nodes. Provide cmap= keyword for
additional colormap

**kwargs Additional keyword arguments to forward to to_graphviz.

Returns

result [IPython.diplay.Image, IPython.display.SVG, or None] See dask.dot.dot_graph for
more information.

See also:

dask.base.visualize, dask.dot.dot_graph

Notes

For more information on optimization see here:

https://docs.dask.org/en/latest/optimize.html

Examples

>>> x.visualize(filename='dask.pdf') # doctest: +SKIP
>>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP

where(cond, other=nan)
Replace values where the condition is False.

This docstring was copied from pandas.core.frame.DataFrame.where.

Some inconsistencies with the Dask version may exist.

Parameters

cond [boolean NDFrame, array-like, or callable] Where cond is True, keep the original
value. Where False, replace with corresponding value from other. If cond is callable,
it is computed on the NDFrame and should return boolean NDFrame or array. The
callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other [scalar, NDFrame, or callable] Entries where cond is False are replaced with cor-
responding value from other. If other is callable, it is computed on the NDFrame
and should return scalar or NDFrame. The callable must not change input NDFrame
(though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

604 Chapter 3. Complex Algorithms

https://docs.dask.org/en/latest/optimize.html

dask Documentation, Release 2.6.0

axis [int, default None (Not supported in Dask)] Alignment axis if needed.

level [int, default None (Not supported in Dask)] Alignment level if needed.

errors [str, {‘raise’, ‘ignore’}, default raise (Not supported in Dask)] Note that currently
this parameter won’t affect the results and will always coerce to a suitable dtype.

• raise : allow exceptions to be raised.

• ignore : suppress exceptions. On error return original object.

try_cast [boolean, default False (Not supported in Dask)] Try to cast the result back to
the input type (if possible).

raise_on_error [boolean, default True (Not supported in Dask)] Whether to raise on in-
valid data types (e.g. trying to where on strings).

Deprecated since version 0.21.0: Use errors.

Returns

wh [same type as caller]

See also:

DataFrame.mask() Return an object of same shape as self.

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is True the element is used; otherwise the corresponding element from the DataFrame other is
used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

>>> s = pd.Series(range(5)) # doctest: +SKIP
>>> s.where(s > 0) # doctest: +SKIP
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
dtype: float64

>>> s.mask(s > 0) # doctest: +SKIP
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

3.9. DataFrame 605

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-where-mask

dask Documentation, Release 2.6.0

>>> s.where(s > 1, 10) # doctest: +SKIP
0 10
1 10
2 2
3 3
4 4
dtype: int64

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) #
→˓doctest: +SKIP
>>> m = df % 3 == 0 # doctest: +SKIP
>>> df.where(m, -df) # doctest: +SKIP

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df) # doctest: +SKIP

A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df) # doctest: +SKIP

A B
0 True True
1 True True
2 True True
3 True True
4 True True

Series Methods

class dask.dataframe.Series(dsk, name, meta, divisions)
Parallel Pandas Series

Do not use this class directly. Instead use functions like dd.read_csv, dd.read_parquet, or dd.
from_pandas.

Parameters

dsk: dict The dask graph to compute this Series

_name: str The key prefix that specifies which keys in the dask comprise this particular Se-
ries

meta: pandas.Series An empty pandas.Series with names, dtypes, and index matching
the expected output.

divisions: tuple of index values Values along which we partition our blocks on the index

See also:

dask.dataframe.DataFrame

abs()
Return a Series/DataFrame with absolute numeric value of each element.

606 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

This docstring was copied from pandas.core.frame.DataFrame.abs.

Some inconsistencies with the Dask version may exist.

This function only applies to elements that are all numeric.

Returns

abs Series/DataFrame containing the absolute value of each element.

See also:

numpy.absolute Calculate the absolute value element-wise.

Notes

For complex inputs, 1.2 + 1j, the absolute value is
√
𝑎2 + 𝑏2.

Examples

Absolute numeric values in a Series.

>>> s = pd.Series([-1.10, 2, -3.33, 4]) # doctest: +SKIP
>>> s.abs() # doctest: +SKIP
0 1.10
1 2.00
2 3.33
3 4.00
dtype: float64

Absolute numeric values in a Series with complex numbers.

>>> s = pd.Series([1.2 + 1j]) # doctest: +SKIP
>>> s.abs() # doctest: +SKIP
0 1.56205
dtype: float64

Absolute numeric values in a Series with a Timedelta element.

>>> s = pd.Series([pd.Timedelta('1 days')]) # doctest: +SKIP
>>> s.abs() # doctest: +SKIP
0 1 days
dtype: timedelta64[ns]

Select rows with data closest to certain value using argsort (from StackOverflow).

>>> df = pd.DataFrame({ # doctest: +SKIP
... 'a': [4, 5, 6, 7],
... 'b': [10, 20, 30, 40],
... 'c': [100, 50, -30, -50]
... })
>>> df # doctest: +SKIP

a b c
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

(continues on next page)

3.9. DataFrame 607

https://docs.scipy.org/doc/numpy/reference/generated/numpy.absolute.html#numpy.absolute
https://stackoverflow.com/a/17758115

dask Documentation, Release 2.6.0

(continued from previous page)

>>> df.loc[(df.c - 43).abs().argsort()] # doctest: +SKIP
a b c

1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50

add(other, level=None, fill_value=None, axis=0)
Addition of series and other, element-wise (binary operator add).

Equivalent to series + other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.radd

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

608 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

align(other, join=’outer’, axis=None, fill_value=None)
Align two objects on their axes with the specified join method for each axis Index.

This docstring was copied from pandas.core.series.Series.align.

Some inconsistencies with the Dask version may exist.

Parameters

other [DataFrame or Series]

join [{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’]

axis [allowed axis of the other object, default None] Align on index (0), columns (1), or
both (None)

level [int or level name, default None (Not supported in Dask)] Broadcast across a level,
matching Index values on the passed MultiIndex level

copy [boolean, default True (Not supported in Dask)] Always returns new objects. If
copy=False and no reindexing is required then original objects are returned.

fill_value [scalar, default np.NaN] Value to use for missing values. Defaults to NaN, but
can be any “compatible” value

method [{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None (Not supported in Dask)]
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to fill
gap

limit [int, default None (Not supported in Dask)] If method is specified, this is the maxi-
mum number of consecutive NaN values to forward/backward fill. In other words, if
there is a gap with more than this number of consecutive NaNs, it will only be par-
tially filled. If method is not specified, this is the maximum number of entries along
the entire axis where NaNs will be filled. Must be greater than 0 if not None.

fill_axis [{0 or ‘index’}, default 0 (Not supported in Dask)] Filling axis, method and limit

broadcast_axis [{0 or ‘index’}, default None (Not supported in Dask)] Broadcast values
along this axis, if aligning two objects of different dimensions

Returns

(left, right) [(Series, type of other)] Aligned objects

all(axis=None, skipna=True, split_every=False, out=None)
Return whether all elements are True, potentially over an axis.

This docstring was copied from pandas.core.frame.DataFrame.all.

Some inconsistencies with the Dask version may exist.

Returns True unless there at least one element within a series or along a Dataframe axis that is False or
equivalent (e.g. zero or empty).

Parameters

axis [{0 or ‘index’, 1 or ‘columns’, None}, default 0] Indicate which axis or axes should
be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original
index.

3.9. DataFrame 609

dask Documentation, Release 2.6.0

• None : reduce all axes, return a scalar.

bool_only [bool, default None (Not supported in Dask)] Include only boolean columns.
If None, will attempt to use everything, then use only boolean data. Not implemented
for Series.

skipna [bool, default True] Exclude NA/null values. If the entire row/column is NA and
skipna is True, then the result will be True, as for an empty row/column. If skipna is
False, then NA are treated as True, because these are not equal to zero.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

**kwargs [any, default None] Additional keywords have no effect but might be accepted
for compatibility with NumPy.

Returns

Series or DataFrame If level is specified, then, DataFrame is returned; otherwise, Series
is returned.

See also:

Series.all Return True if all elements are True.

DataFrame.any Return True if one (or more) elements are True.

Examples

Series

>>> pd.Series([True, True]).all() # doctest: +SKIP
True
>>> pd.Series([True, False]).all() # doctest: +SKIP
False
>>> pd.Series([]).all() # doctest: +SKIP
True
>>> pd.Series([np.nan]).all() # doctest: +SKIP
True
>>> pd.Series([np.nan]).all(skipna=False) # doctest: +SKIP
True

DataFrames

Create a dataframe from a dictionary.

>>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) #
→˓doctest: +SKIP
>>> df # doctest: +SKIP

col1 col2
0 True True
1 True False

Default behaviour checks if column-wise values all return True.

>>> df.all() # doctest: +SKIP
col1 True
col2 False
dtype: bool

610 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Specify axis='columns' to check if row-wise values all return True.

>>> df.all(axis='columns') # doctest: +SKIP
0 True
1 False
dtype: bool

Or axis=None for whether every value is True.

>>> df.all(axis=None) # doctest: +SKIP
False

any(axis=None, skipna=True, split_every=False, out=None)
Return whether any element is True, potentially over an axis.

This docstring was copied from pandas.core.frame.DataFrame.any.

Some inconsistencies with the Dask version may exist.

Returns False unless there at least one element within a series or along a Dataframe axis that is True or
equivalent (e.g. non-zero or non-empty).

Parameters

axis [{0 or ‘index’, 1 or ‘columns’, None}, default 0] Indicate which axis or axes should
be reduced.

• 0 / ‘index’ : reduce the index, return a Series whose index is the original column
labels.

• 1 / ‘columns’ : reduce the columns, return a Series whose index is the original
index.

• None : reduce all axes, return a scalar.

bool_only [bool, default None (Not supported in Dask)] Include only boolean columns.
If None, will attempt to use everything, then use only boolean data. Not implemented
for Series.

skipna [bool, default True] Exclude NA/null values. If the entire row/column is NA and
skipna is True, then the result will be False, as for an empty row/column. If skipna is
False, then NA are treated as True, because these are not equal to zero.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

**kwargs [any, default None] Additional keywords have no effect but might be accepted
for compatibility with NumPy.

Returns

Series or DataFrame If level is specified, then, DataFrame is returned; otherwise, Series
is returned.

See also:

numpy.any Numpy version of this method.

Series.any Return whether any element is True.

Series.all Return whether all elements are True.

DataFrame.any Return whether any element is True over requested axis.

3.9. DataFrame 611

https://docs.scipy.org/doc/numpy/reference/generated/numpy.any.html#numpy.any

dask Documentation, Release 2.6.0

DataFrame.all Return whether all elements are True over requested axis.

Examples

Series

For Series input, the output is a scalar indicating whether any element is True.

>>> pd.Series([False, False]).any() # doctest: +SKIP
False
>>> pd.Series([True, False]).any() # doctest: +SKIP
True
>>> pd.Series([]).any() # doctest: +SKIP
False
>>> pd.Series([np.nan]).any() # doctest: +SKIP
False
>>> pd.Series([np.nan]).any(skipna=False) # doctest: +SKIP
True

DataFrame

Whether each column contains at least one True element (the default).

>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) # doctest:
→˓+SKIP
>>> df # doctest: +SKIP

A B C
0 1 0 0
1 2 2 0

>>> df.any() # doctest: +SKIP
A True
B True
C False
dtype: bool

Aggregating over the columns.

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) # doctest: +SKIP
>>> df # doctest: +SKIP

A B
0 True 1
1 False 2

>>> df.any(axis='columns') # doctest: +SKIP
0 True
1 True
dtype: bool

>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) # doctest: +SKIP
>>> df # doctest: +SKIP

A B
0 True 1
1 False 0

612 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.any(axis='columns') # doctest: +SKIP
0 True
1 False
dtype: bool

Aggregating over the entire DataFrame with axis=None.

>>> df.any(axis=None) # doctest: +SKIP
True

any for an empty DataFrame is an empty Series.

>>> pd.DataFrame([]).any() # doctest: +SKIP
Series([], dtype: bool)

append(other, interleave_partitions=False)
Concatenate two or more Series.

This docstring was copied from pandas.core.series.Series.append.

Some inconsistencies with the Dask version may exist.

Parameters

to_append [Series or list/tuple of Series (Not supported in Dask)]

ignore_index [boolean, default False (Not supported in Dask)] If True, do not use the
index labels.

New in version 0.19.0.

verify_integrity [boolean, default False (Not supported in Dask)] If True, raise Exception
on creating index with duplicates

Returns

appended [Series]

See also:

concat General function to concatenate DataFrame, Series or Panel objects.

Notes

Iteratively appending to a Series can be more computationally intensive than a single concatenate. A
better solution is to append values to a list and then concatenate the list with the original Series all at once.

Examples

>>> s1 = pd.Series([1, 2, 3]) # doctest: +SKIP
>>> s2 = pd.Series([4, 5, 6]) # doctest: +SKIP
>>> s3 = pd.Series([4, 5, 6], index=[3,4,5]) # doctest: +SKIP
>>> s1.append(s2) # doctest: +SKIP
0 1
1 2
2 3
0 4
1 5

(continues on next page)

3.9. DataFrame 613

dask Documentation, Release 2.6.0

(continued from previous page)

2 6
dtype: int64

>>> s1.append(s3) # doctest: +SKIP
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64

With ignore_index set to True:

>>> s1.append(s2, ignore_index=True) # doctest: +SKIP
0 1
1 2
2 3
3 4
4 5
5 6
dtype: int64

With verify_integrity set to True:

>>> s1.append(s2, verify_integrity=True) # doctest: +SKIP
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: [0, 1, 2]

apply(func, convert_dtype=True, meta=’__no_default__’, args=(), **kwds)
Parallel version of pandas.Series.apply

Parameters

func [function] Function to apply

convert_dtype [boolean, default True] Try to find better dtype for elementwise function
results. If False, leave as dtype=object.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

args [tuple] Positional arguments to pass to function in addition to the value.

Additional keyword arguments will be passed as keywords to the function.

Returns

applied [Series or DataFrame if func returns a Series.]

See also:

614 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.Series.map_partitions

Examples

>>> import dask.dataframe as dd
>>> s = pd.Series(range(5), name='x')
>>> ds = dd.from_pandas(s, npartitions=2)

Apply a function elementwise across the Series, passing in extra arguments in args and kwargs:

>>> def myadd(x, a, b=1):
... return x + a + b
>>> res = ds.apply(myadd, args=(2,), b=1.5) # doctest: +SKIP

By default, dask tries to infer the output metadata by running your provided function on some fake data.
This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can
manually specify the output metadata with the meta keyword. This can be specified in many forms, for
more information see dask.dataframe.utils.make_meta.

Here we specify the output is a Series with name 'x', and dtype float64:

>>> res = ds.apply(myadd, args=(2,), b=1.5, meta=('x', 'f8'))

In the case where the metadata doesn’t change, you can also pass in the object itself directly:

>>> res = ds.apply(lambda x: x + 1, meta=ds)

astype(dtype)
Cast a pandas object to a specified dtype dtype.

This docstring was copied from pandas.core.frame.DataFrame.astype.

Some inconsistencies with the Dask version may exist.

Parameters

dtype [data type, or dict of column name -> data type] Use a numpy.dtype or Python type
to cast entire pandas object to the same type. Alternatively, use {col: dtype, . . . },
where col is a column label and dtype is a numpy.dtype or Python type to cast one or
more of the DataFrame’s columns to column-specific types.

copy [bool, default True (Not supported in Dask)] Return a copy when copy=True (be
very careful setting copy=False as changes to values then may propagate to other
pandas objects).

errors [{‘raise’, ‘ignore’}, default ‘raise’ (Not supported in Dask)] Control raising of
exceptions on invalid data for provided dtype.

• raise : allow exceptions to be raised

• ignore : suppress exceptions. On error return original object

New in version 0.20.0.

kwargs [keyword arguments to pass on to the constructor]

Returns

casted [same type as caller]

See also:

3.9. DataFrame 615

dask Documentation, Release 2.6.0

to_datetime Convert argument to datetime.

to_timedelta Convert argument to timedelta.

to_numeric Convert argument to a numeric type.

numpy.ndarray.astype Cast a numpy array to a specified type.

Examples

>>> ser = pd.Series([1, 2], dtype='int32') # doctest: +SKIP
>>> ser # doctest: +SKIP
0 1
1 2
dtype: int32
>>> ser.astype('int64') # doctest: +SKIP
0 1
1 2
dtype: int64

Convert to categorical type:

>>> ser.astype('category') # doctest: +SKIP
0 1
1 2
dtype: category
Categories (2, int64): [1, 2]

Convert to ordered categorical type with custom ordering:

>>> cat_dtype = pd.api.types.CategoricalDtype(# doctest: +SKIP
... categories=[2, 1], ordered=True)
>>> ser.astype(cat_dtype) # doctest: +SKIP
0 1
1 2
dtype: category
Categories (2, int64): [2 < 1]

Note that using copy=False and changing data on a new pandas object may propagate changes:

>>> s1 = pd.Series([1,2]) # doctest: +SKIP
>>> s2 = s1.astype('int64', copy=False) # doctest: +SKIP
>>> s2[0] = 10 # doctest: +SKIP
>>> s1 # note that s1[0] has changed too # doctest: +SKIP
0 10
1 2
dtype: int64

autocorr(lag=1, split_every=False)
Compute the lag-N autocorrelation.

This docstring was copied from pandas.core.series.Series.autocorr.

Some inconsistencies with the Dask version may exist.

This method computes the Pearson correlation between the Series and its shifted self.

Parameters

lag [int, default 1] Number of lags to apply before performing autocorrelation.

616 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype

dask Documentation, Release 2.6.0

Returns

float The Pearson correlation between self and self.shift(lag).

See also:

Series.corr Compute the correlation between two Series.

Series.shift Shift index by desired number of periods.

DataFrame.corr Compute pairwise correlation of columns.

DataFrame.corrwith Compute pairwise correlation between rows or columns of two DataFrame
objects.

Notes

If the Pearson correlation is not well defined return ‘NaN’.

Examples

>>> s = pd.Series([0.25, 0.5, 0.2, -0.05]) # doctest: +SKIP
>>> s.autocorr() # doctest: +ELLIPSIS, +SKIP
0.10355...
>>> s.autocorr(lag=2) # doctest: +ELLIPSIS, +SKIP
-0.99999...

If the Pearson correlation is not well defined, then ‘NaN’ is returned.

>>> s = pd.Series([1, 0, 0, 0]) # doctest: +SKIP
>>> s.autocorr() # doctest: +SKIP
nan

between(left, right, inclusive=True)
Return boolean Series equivalent to left <= series <= right.

This docstring was copied from pandas.core.series.Series.between.

Some inconsistencies with the Dask version may exist.

This function returns a boolean vector containing True wherever the corresponding Series element is
between the boundary values left and right. NA values are treated as False.

Parameters

left [scalar] Left boundary.

right [scalar] Right boundary.

inclusive [bool, default True] Include boundaries.

Returns

Series Each element will be a boolean.

See also:

Series.gt Greater than of series and other.

Series.lt Less than of series and other.

3.9. DataFrame 617

dask Documentation, Release 2.6.0

Notes

This function is equivalent to (left <= ser) & (ser <= right)

Examples

>>> s = pd.Series([2, 0, 4, 8, np.nan]) # doctest: +SKIP

Boundary values are included by default:

>>> s.between(1, 4) # doctest: +SKIP
0 True
1 False
2 True
3 False
4 False
dtype: bool

With inclusive set to False boundary values are excluded:

>>> s.between(1, 4, inclusive=False) # doctest: +SKIP
0 True
1 False
2 False
3 False
4 False
dtype: bool

left and right can be any scalar value:

>>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) # doctest: +SKIP
>>> s.between('Anna', 'Daniel') # doctest: +SKIP
0 False
1 True
2 True
3 False
dtype: bool

bfill(axis=None, limit=None)
Synonym for DataFrame.fillna() with method='bfill'.

clear_divisions()
Forget division information

clip(lower=None, upper=None, out=None)
Trim values at input threshold(s).

This docstring was copied from pandas.core.series.Series.clip.

Some inconsistencies with the Dask version may exist.

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and
in the latter case the clipping is performed element-wise in the specified axis.

Parameters

lower [float or array_like, default None] Minimum threshold value. All values below this
threshold will be set to it.

618 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

upper [float or array_like, default None] Maximum threshold value. All values above
this threshold will be set to it.

axis [int or string axis name, optional (Not supported in Dask)] Align object with lower
and upper along the given axis.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

New in version 0.21.0.

*args, **kwargs Additional keywords have no effect but might be accepted for compat-
ibility with numpy.

Returns

Series or DataFrame Same type as calling object with the values outside the clip bound-
aries replaced

Examples

>>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} #
→˓doctest: +SKIP
>>> df = pd.DataFrame(data) # doctest: +SKIP
>>> df # doctest: +SKIP

col_0 col_1
0 9 -2
1 -3 -7
2 0 6
3 -1 8
4 5 -5

Clips per column using lower and upper thresholds:

>>> df.clip(-4, 6) # doctest: +SKIP
col_0 col_1

0 6 -2
1 -3 -4
2 0 6
3 -1 6
4 5 -4

Clips using specific lower and upper thresholds per column element:

>>> t = pd.Series([2, -4, -1, 6, 3]) # doctest: +SKIP
>>> t # doctest: +SKIP
0 2
1 -4
2 -1
3 6
4 3
dtype: int64

>>> df.clip(t, t + 4, axis=0) # doctest: +SKIP
col_0 col_1

0 6 2
1 -3 -4
2 0 3

(continues on next page)

3.9. DataFrame 619

dask Documentation, Release 2.6.0

(continued from previous page)

3 6 8
4 5 3

clip_lower(threshold)
Trim values below a given threshold.

This docstring was copied from pandas.core.series.Series.clip_lower.

Some inconsistencies with the Dask version may exist.

Deprecated since version 0.24.0: Use clip(lower=threshold) instead.

Elements below the threshold will be changed to match the threshold value(s). Threshold can be a single
value or an array, in the latter case it performs the truncation element-wise.

Parameters

threshold [numeric or array-like] Minimum value allowed. All values below threshold
will be set to this value.

• float : every value is compared to threshold.

• array-like : The shape of threshold should match the object it’s compared to. When
self is a Series, threshold should be the length. When self is a DataFrame, threshold
should 2-D and the same shape as self for axis=None, or 1-D and the same length
as the axis being compared.

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Align self with
threshold along the given axis.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

New in version 0.21.0.

Returns

Series or DataFrame Original data with values trimmed.

See also:

Series.clip General purpose method to trim Series values to given threshold(s).

DataFrame.clip General purpose method to trim DataFrame values to given threshold(s).

Examples

Series single threshold clipping:

>>> s = pd.Series([5, 6, 7, 8, 9]) # doctest: +SKIP
>>> s.clip(lower=8) # doctest: +SKIP
0 8
1 8
2 8
3 8
4 9
dtype: int64

Series clipping element-wise using an array of thresholds. threshold should be the same length as the
Series.

620 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> elemwise_thresholds = [4, 8, 7, 2, 5] # doctest: +SKIP
>>> s.clip(lower=elemwise_thresholds) # doctest: +SKIP
0 5
1 8
2 7
3 8
4 9
dtype: int64

DataFrames can be compared to a scalar.

>>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]}) # doctest: +SKIP
>>> df # doctest: +SKIP

A B
0 1 2
1 3 4
2 5 6

>>> df.clip(lower=3) # doctest: +SKIP
A B

0 3 3
1 3 4
2 5 6

Or to an array of values. By default, threshold should be the same shape as the DataFrame.

>>> df.clip(lower=np.array([[3, 4], [2, 2], [6, 2]])) # doctest: +SKIP
A B

0 3 4
1 3 4
2 6 6

Control how threshold is broadcast with axis. In this case threshold should be the same length as the axis
specified by axis.

>>> df.clip(lower=[3, 3, 5], axis='index') # doctest: +SKIP
A B

0 3 3
1 3 4
2 5 6

>>> df.clip(lower=[4, 5], axis='columns') # doctest: +SKIP
A B

0 4 5
1 4 5
2 5 6

clip_upper(threshold)
Trim values above a given threshold.

This docstring was copied from pandas.core.series.Series.clip_upper.

Some inconsistencies with the Dask version may exist.

Deprecated since version 0.24.0: Use clip(upper=threshold) instead.

Elements above the threshold will be changed to match the threshold value(s). Threshold can be a single
value or an array, in the latter case it performs the truncation element-wise.

3.9. DataFrame 621

dask Documentation, Release 2.6.0

Parameters

threshold [numeric or array-like] Maximum value allowed. All values above threshold
will be set to this value.

• float : every value is compared to threshold.

• array-like : The shape of threshold should match the object it’s compared to. When
self is a Series, threshold should be the length. When self is a DataFrame, threshold
should 2-D and the same shape as self for axis=None, or 1-D and the same length
as the axis being compared.

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Align object with
threshold along the given axis.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

New in version 0.21.0.

Returns

Series or DataFrame Original data with values trimmed.

See also:

Series.clip General purpose method to trim Series values to given threshold(s).

DataFrame.clip General purpose method to trim DataFrame values to given threshold(s).

Examples

>>> s = pd.Series([1, 2, 3, 4, 5]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 1
1 2
2 3
3 4
4 5
dtype: int64

>>> s.clip(upper=3) # doctest: +SKIP
0 1
1 2
2 3
3 3
4 3
dtype: int64

>>> elemwise_thresholds = [5, 4, 3, 2, 1] # doctest: +SKIP
>>> elemwise_thresholds # doctest: +SKIP
[5, 4, 3, 2, 1]

>>> s.clip(upper=elemwise_thresholds) # doctest: +SKIP
0 1
1 2
2 3
3 2

(continues on next page)

622 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

4 1
dtype: int64

combine(other, func, fill_value=None)
Combine the Series with a Series or scalar according to func.

This docstring was copied from pandas.core.series.Series.combine.

Some inconsistencies with the Dask version may exist.

Combine the Series and other using func to perform elementwise selection for combined Series. fill_value
is assumed when value is missing at some index from one of the two objects being combined.

Parameters

other [Series or scalar] The value(s) to be combined with the Series.

func [function] Function that takes two scalars as inputs and returns an element.

fill_value [scalar, optional] The value to assume when an index is missing from one Series
or the other. The default specifies to use the appropriate NaN value for the underlying
dtype of the Series.

Returns

Series The result of combining the Series with the other object.

See also:

Series.combine_first Combine Series values, choosing the calling Series’ values first.

Examples

Consider 2 Datasets s1 and s2 containing highest clocked speeds of different birds.

>>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0}) # doctest: +SKIP
>>> s1 # doctest: +SKIP
falcon 330.0
eagle 160.0
dtype: float64
>>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0}) #
→˓doctest: +SKIP
>>> s2 # doctest: +SKIP
falcon 345.0
eagle 200.0
duck 30.0
dtype: float64

Now, to combine the two datasets and view the highest speeds of the birds across the two datasets

>>> s1.combine(s2, max) # doctest: +SKIP
duck NaN
eagle 200.0
falcon 345.0
dtype: float64

In the previous example, the resulting value for duck is missing, because the maximum of a NaN and a
float is a NaN. So, in the example, we set fill_value=0, so the maximum value returned will be the
value from some dataset.

3.9. DataFrame 623

dask Documentation, Release 2.6.0

>>> s1.combine(s2, max, fill_value=0) # doctest: +SKIP
duck 30.0
eagle 200.0
falcon 345.0
dtype: float64

combine_first(other)
Combine Series values, choosing the calling Series’s values first.

This docstring was copied from pandas.core.series.Series.combine_first.

Some inconsistencies with the Dask version may exist.

Parameters

other [Series] The value(s) to be combined with the Series.

Returns

Series The result of combining the Series with the other object.

See also:

Series.combine Perform elementwise operation on two Series using a given function.

Notes

Result index will be the union of the two indexes.

Examples

>>> s1 = pd.Series([1, np.nan]) # doctest: +SKIP
>>> s2 = pd.Series([3, 4]) # doctest: +SKIP
>>> s1.combine_first(s2) # doctest: +SKIP
0 1.0
1 4.0
dtype: float64

compute(**kwargs)
Compute this dask collection

This turns a lazy Dask collection into its in-memory equivalent. For example a Dask.array turns into a
numpy.array() and a Dask.dataframe turns into a Pandas dataframe. The entire dataset must fit into
memory before calling this operation.

Parameters

scheduler [string, optional] Which scheduler to use like “threads”, “synchronous” or
“processes”. If not provided, the default is to check the global settings first, and
then fall back to the collection defaults.

optimize_graph [bool, optional] If True [default], the graph is optimized before compu-
tation. Otherwise the graph is run as is. This can be useful for debugging.

kwargs Extra keywords to forward to the scheduler function.

See also:

dask.base.compute

624 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array

dask Documentation, Release 2.6.0

copy()
Make a copy of the dataframe

This is strictly a shallow copy of the underlying computational graph. It does not affect the underlying
data

corr(other, method=’pearson’, min_periods=None, split_every=False)
Compute correlation with other Series, excluding missing values.

This docstring was copied from pandas.core.series.Series.corr.

Some inconsistencies with the Dask version may exist.

Parameters

other [Series]

method [{‘pearson’, ‘kendall’, ‘spearman’} or callable]

• pearson : standard correlation coefficient

• kendall : Kendall Tau correlation coefficient

• spearman : Spearman rank correlation

• callable: callable with input two 1d ndarray and returning a float .. version-
added:: 0.24.0

min_periods [int, optional] Minimum number of observations needed to have a valid
result

Returns

correlation [float]

Examples

>>> histogram_intersection = lambda a, b: np.minimum(a, b # doctest: +SKIP
...).sum().round(decimals=1)
>>> s1 = pd.Series([.2, .0, .6, .2]) # doctest: +SKIP
>>> s2 = pd.Series([.3, .6, .0, .1]) # doctest: +SKIP
>>> s1.corr(s2, method=histogram_intersection) # doctest: +SKIP
0.3

count(split_every=False)
Return number of non-NA/null observations in the Series.

This docstring was copied from pandas.core.series.Series.count.

Some inconsistencies with the Dask version may exist.

Parameters

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a smaller Series

Returns

nobs [int or Series (if level specified)]

cov(other, min_periods=None, split_every=False)
Compute covariance with Series, excluding missing values.

This docstring was copied from pandas.core.series.Series.cov.

3.9. DataFrame 625

dask Documentation, Release 2.6.0

Some inconsistencies with the Dask version may exist.

Parameters

other [Series]

min_periods [int, optional] Minimum number of observations needed to have a valid
result

Returns

covariance [float]

Normalized by N-1 (unbiased estimator).

cummax(axis=None, skipna=True, out=None)
Return cumulative maximum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cummax.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The index or the name of the axis. 0 is
equivalent to None or ‘index’.

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

*args, **kwargs : Additional keywords have no effect but might be accepted for com-
patibility with NumPy.

Returns

cummax [Series or DataFrame]

See also:

core.window.Expanding.max Similar functionality but ignores NaN values.

DataFrame.max Return the maximum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

626 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

By default, NA values are ignored.

>>> s.cummax() # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 5.0
4 5.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummax(skipna=False) # doctest: +SKIP
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0], # doctest: +SKIP
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df # doctest: +SKIP

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the maximum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummax() # doctest: +SKIP
A B

0 2.0 1.0
1 3.0 NaN
2 3.0 1.0

To iterate over columns and find the maximum in each row, use axis=1

>>> df.cummax(axis=1) # doctest: +SKIP
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 1.0

cummin(axis=None, skipna=True, out=None)
Return cumulative minimum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cummin.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters

3.9. DataFrame 627

dask Documentation, Release 2.6.0

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The index or the name of the axis. 0 is
equivalent to None or ‘index’.

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

*args, **kwargs : Additional keywords have no effect but might be accepted for com-
patibility with NumPy.

Returns

cummin [Series or DataFrame]

See also:

core.window.Expanding.min Similar functionality but ignores NaN values.

DataFrame.min Return the minimum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cummin() # doctest: +SKIP
0 2.0
1 NaN
2 2.0
3 -1.0
4 -1.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cummin(skipna=False) # doctest: +SKIP
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

628 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df = pd.DataFrame([[2.0, 1.0], # doctest: +SKIP
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df # doctest: +SKIP

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None
or axis='index'.

>>> df.cummin() # doctest: +SKIP
A B

0 2.0 1.0
1 2.0 NaN
2 1.0 0.0

To iterate over columns and find the minimum in each row, use axis=1

>>> df.cummin(axis=1) # doctest: +SKIP
A B

0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

cumprod(axis=None, skipna=True, dtype=None, out=None)
Return cumulative product over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cumprod.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative product.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The index or the name of the axis. 0 is
equivalent to None or ‘index’.

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

*args, **kwargs : Additional keywords have no effect but might be accepted for com-
patibility with NumPy.

Returns

cumprod [Series or DataFrame]

See also:

core.window.Expanding.prod Similar functionality but ignores NaN values.

DataFrame.prod Return the product over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

3.9. DataFrame 629

dask Documentation, Release 2.6.0

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

>>> s.cumprod() # doctest: +SKIP
0 2.0
1 NaN
2 10.0
3 -10.0
4 -0.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumprod(skipna=False) # doctest: +SKIP
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0], # doctest: +SKIP
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df # doctest: +SKIP

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the product in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumprod() # doctest: +SKIP
A B

0 2.0 1.0
1 6.0 NaN
2 6.0 0.0

To iterate over columns and find the product in each row, use axis=1

630 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.cumprod(axis=1) # doctest: +SKIP
A B

0 2.0 2.0
1 3.0 NaN
2 1.0 0.0

cumsum(axis=None, skipna=True, dtype=None, out=None)
Return cumulative sum over a DataFrame or Series axis.

This docstring was copied from pandas.core.frame.DataFrame.cumsum.

Some inconsistencies with the Dask version may exist.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The index or the name of the axis. 0 is
equivalent to None or ‘index’.

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

*args, **kwargs : Additional keywords have no effect but might be accepted for com-
patibility with NumPy.

Returns

cumsum [Series or DataFrame]

See also:

core.window.Expanding.sum Similar functionality but ignores NaN values.

DataFrame.sum Return the sum over DataFrame axis.

DataFrame.cummax Return cumulative maximum over DataFrame axis.

DataFrame.cummin Return cumulative minimum over DataFrame axis.

DataFrame.cumsum Return cumulative sum over DataFrame axis.

DataFrame.cumprod Return cumulative product over DataFrame axis.

Examples

Series

>>> s = pd.Series([2, np.nan, 5, -1, 0]) # doctest: +SKIP
>>> s # doctest: +SKIP
0 2.0
1 NaN
2 5.0
3 -1.0
4 0.0
dtype: float64

By default, NA values are ignored.

3.9. DataFrame 631

dask Documentation, Release 2.6.0

>>> s.cumsum() # doctest: +SKIP
0 2.0
1 NaN
2 7.0
3 6.0
4 6.0
dtype: float64

To include NA values in the operation, use skipna=False

>>> s.cumsum(skipna=False) # doctest: +SKIP
0 2.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

DataFrame

>>> df = pd.DataFrame([[2.0, 1.0], # doctest: +SKIP
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df # doctest: +SKIP

A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0

By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or
axis='index'.

>>> df.cumsum() # doctest: +SKIP
A B

0 2.0 1.0
1 5.0 NaN
2 6.0 1.0

To iterate over columns and find the sum in each row, use axis=1

>>> df.cumsum(axis=1) # doctest: +SKIP
A B

0 2.0 3.0
1 3.0 NaN
2 1.0 1.0

describe(split_every=False, percentiles=None, percentiles_method=’default’, include=None, ex-
clude=None)

Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s
distribution, excluding NaN values.

This docstring was copied from pandas.core.frame.DataFrame.describe.

Some inconsistencies with the Dask version may exist.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The
output will vary depending on what is provided. Refer to the notes below for more detail.

632 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

percentiles [list-like of numbers, optional] The percentiles to include in the output. All
should fall between 0 and 1. The default is [.25, .5, .75], which returns the
25th, 50th, and 75th percentiles.

include [‘all’, list-like of dtypes or None (default), optional] A white list of data types to
include in the result. Ignored for Series. Here are the options:

• ‘all’ : All columns of the input will be included in the output.

• A list-like of dtypes : Limits the results to the provided data types. To limit the
result to numeric types submit numpy.number. To limit it instead to object
columns submit the numpy.object data type. Strings can also be used in the
style of select_dtypes (e.g. df.describe(include=['O'])). To se-
lect pandas categorical columns, use 'category'

• None (default) : The result will include all numeric columns.

exclude [list-like of dtypes or None (default), optional,] A black list of data types to omit
from the result. Ignored for Series. Here are the options:

• A list-like of dtypes : Excludes the provided data types from the result. To ex-
clude numeric types submit numpy.number. To exclude object columns sub-
mit the data type numpy.object. Strings can also be used in the style of
select_dtypes (e.g. df.describe(include=['O'])). To exclude pan-
das categorical columns, use 'category'

• None (default) : The result will exclude nothing.

Returns

Series or DataFrame Summary statistics of the Series or Dataframe provided.

See also:

DataFrame.count Count number of non-NA/null observations.

DataFrame.max Maximum of the values in the object.

DataFrame.min Minimum of the values in the object.

DataFrame.mean Mean of the values.

DataFrame.std Standard deviation of the obersvations.

DataFrame.select_dtypes Subset of a DataFrame including/excluding columns based on their
dtype.

Notes

For numeric data, the result’s index will include count, mean, std, min, max as well as lower, 50 and
upper percentiles. By default the lower percentile is 25 and the upper percentile is 75. The 50 percentile
is the same as the median.

For object data (e.g. strings or timestamps), the result’s index will include count, unique, top, and
freq. The top is the most common value. The freq is the most common value’s frequency. Times-
tamps also include the first and last items.

If multiple object values have the highest count, then the count and top results will be arbitrarily chosen
from among those with the highest count.

3.9. DataFrame 633

dask Documentation, Release 2.6.0

For mixed data types provided via a DataFrame, the default is to return only an analysis of numeric
columns. If the dataframe consists only of object and categorical data without any numeric columns,
the default is to return an analysis of both the object and categorical columns. If include='all' is
provided as an option, the result will include a union of attributes of each type.

The include and exclude parameters can be used to limit which columns in a DataFrame are analyzed
for the output. The parameters are ignored when analyzing a Series.

Examples

Describing a numeric Series.

>>> s = pd.Series([1, 2, 3]) # doctest: +SKIP
>>> s.describe() # doctest: +SKIP
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
dtype: float64

Describing a categorical Series.

>>> s = pd.Series(['a', 'a', 'b', 'c']) # doctest: +SKIP
>>> s.describe() # doctest: +SKIP
count 4
unique 3
top a
freq 2
dtype: object

Describing a timestamp Series.

>>> s = pd.Series([# doctest: +SKIP
... np.datetime64("2000-01-01"),
... np.datetime64("2010-01-01"),
... np.datetime64("2010-01-01")
...])
>>> s.describe() # doctest: +SKIP
count 3
unique 2
top 2010-01-01 00:00:00
freq 2
first 2000-01-01 00:00:00
last 2010-01-01 00:00:00
dtype: object

Describing a DataFrame. By default only numeric fields are returned.

>>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), #
→˓doctest: +SKIP
... 'numeric': [1, 2, 3],
... 'object': ['a', 'b', 'c']
... })

(continues on next page)

634 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> df.describe() # doctest: +SKIP
numeric

count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Describing all columns of a DataFrame regardless of data type.

>>> df.describe(include='all') # doctest: +SKIP
categorical numeric object

count 3 3.0 3
unique 3 NaN 3
top f NaN c
freq 1 NaN 1
mean NaN 2.0 NaN
std NaN 1.0 NaN
min NaN 1.0 NaN
25% NaN 1.5 NaN
50% NaN 2.0 NaN
75% NaN 2.5 NaN
max NaN 3.0 NaN

Describing a column from a DataFrame by accessing it as an attribute.

>>> df.numeric.describe() # doctest: +SKIP
count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0
Name: numeric, dtype: float64

Including only numeric columns in a DataFrame description.

>>> df.describe(include=[np.number]) # doctest: +SKIP
numeric

count 3.0
mean 2.0
std 1.0
min 1.0
25% 1.5
50% 2.0
75% 2.5
max 3.0

Including only string columns in a DataFrame description.

>>> df.describe(include=[np.object]) # doctest: +SKIP
object

(continues on next page)

3.9. DataFrame 635

dask Documentation, Release 2.6.0

(continued from previous page)

count 3
unique 3
top c
freq 1

Including only categorical columns from a DataFrame description.

>>> df.describe(include=['category']) # doctest: +SKIP
categorical

count 3
unique 3
top f
freq 1

Excluding numeric columns from a DataFrame description.

>>> df.describe(exclude=[np.number]) # doctest: +SKIP
categorical object

count 3 3
unique 3 3
top f c
freq 1 1

Excluding object columns from a DataFrame description.

>>> df.describe(exclude=[np.object]) # doctest: +SKIP
categorical numeric

count 3 3.0
unique 3 NaN
top f NaN
freq 1 NaN
mean NaN 2.0
std NaN 1.0
min NaN 1.0
25% NaN 1.5
50% NaN 2.0
75% NaN 2.5
max NaN 3.0

diff(periods=1, axis=0)
First discrete difference of element.

This docstring was copied from pandas.core.frame.DataFrame.diff.

Some inconsistencies with the Dask version may exist.

Note: Pandas currently uses an object-dtype column to represent boolean data with missing values.
This can cause issues for boolean-specific operations, like |. To enable boolean- specific operations, at
the cost of metadata that doesn’t match pandas, use .astype(bool) after the shift.

Calculates the difference of a DataFrame element compared with another element in the DataFrame (de-
fault is the element in the same column of the previous row).

Parameters

periods [int, default 1] Periods to shift for calculating difference, accepts negative values.

636 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] Take difference over rows (0) or columns
(1).

New in version 0.16.1..

Returns

diffed [DataFrame]

See also:

Series.diff First discrete difference for a Series.

DataFrame.pct_change Percent change over given number of periods.

DataFrame.shift Shift index by desired number of periods with an optional time freq.

Examples

Difference with previous row

>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], # doctest: +SKIP
... 'b': [1, 1, 2, 3, 5, 8],
... 'c': [1, 4, 9, 16, 25, 36]})
>>> df # doctest: +SKIP

a b c
0 1 1 1
1 2 1 4
2 3 2 9
3 4 3 16
4 5 5 25
5 6 8 36

>>> df.diff() # doctest: +SKIP
a b c

0 NaN NaN NaN
1 1.0 0.0 3.0
2 1.0 1.0 5.0
3 1.0 1.0 7.0
4 1.0 2.0 9.0
5 1.0 3.0 11.0

Difference with previous column

>>> df.diff(axis=1) # doctest: +SKIP
a b c

0 NaN 0.0 0.0
1 NaN -1.0 3.0
2 NaN -1.0 7.0
3 NaN -1.0 13.0
4 NaN 0.0 20.0
5 NaN 2.0 28.0

Difference with 3rd previous row

>>> df.diff(periods=3) # doctest: +SKIP
a b c

0 NaN NaN NaN

(continues on next page)

3.9. DataFrame 637

dask Documentation, Release 2.6.0

(continued from previous page)

1 NaN NaN NaN
2 NaN NaN NaN
3 3.0 2.0 15.0
4 3.0 4.0 21.0
5 3.0 6.0 27.0

Difference with following row

>>> df.diff(periods=-1) # doctest: +SKIP
a b c

0 -1.0 0.0 -3.0
1 -1.0 -1.0 -5.0
2 -1.0 -1.0 -7.0
3 -1.0 -2.0 -9.0
4 -1.0 -3.0 -11.0
5 NaN NaN NaN

div(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.rtruediv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN

(continues on next page)

638 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

divide(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.rtruediv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0

(continues on next page)

3.9. DataFrame 639

dask Documentation, Release 2.6.0

(continued from previous page)

c 1.0
d 1.0
e NaN
dtype: float64

drop_duplicates(subset=None, split_every=None, split_out=1, **kwargs)
Return DataFrame with duplicate rows removed, optionally only considering certain columns.

This docstring was copied from pandas.core.frame.DataFrame.drop_duplicates.

Some inconsistencies with the Dask version may exist.

Parameters

subset [column label or sequence of labels, optional] Only consider certain columns for
identifying duplicates, by default use all of the columns

keep [{‘first’, ‘last’, False}, default ‘first’ (Not supported in Dask)]

• first : Drop duplicates except for the first occurrence.

• last : Drop duplicates except for the last occurrence.

• False : Drop all duplicates.

inplace [boolean, default False (Not supported in Dask)] Whether to drop duplicates in
place or to return a copy

Returns

deduplicated [DataFrame]

dropna()
Return a new Series with missing values removed.

This docstring was copied from pandas.core.series.Series.dropna.

Some inconsistencies with the Dask version may exist.

See the User Guide for more on which values are considered missing, and how to work with missing data.

Parameters

axis [{0 or ‘index’}, default 0 (Not supported in Dask)] There is only one axis to drop
values from.

inplace [bool, default False (Not supported in Dask)] If True, do operation inplace and
return None.

**kwargs Not in use.

Returns

Series Series with NA entries dropped from it.

See also:

Series.isna Indicate missing values.

Series.notna Indicate existing (non-missing) values.

Series.fillna Replace missing values.

DataFrame.dropna Drop rows or columns which contain NA values.

Index.dropna Drop missing indices.

640 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data

dask Documentation, Release 2.6.0

Examples

>>> ser = pd.Series([1., 2., np.nan]) # doctest: +SKIP
>>> ser # doctest: +SKIP
0 1.0
1 2.0
2 NaN
dtype: float64

Drop NA values from a Series.

>>> ser.dropna() # doctest: +SKIP
0 1.0
1 2.0
dtype: float64

Keep the Series with valid entries in the same variable.

>>> ser.dropna(inplace=True) # doctest: +SKIP
>>> ser # doctest: +SKIP
0 1.0
1 2.0
dtype: float64

Empty strings are not considered NA values. None is considered an NA value.

>>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) # doctest:
→˓+SKIP
>>> ser # doctest: +SKIP
0 NaN
1 2
2 NaT
3
4 None
5 I stay
dtype: object
>>> ser.dropna() # doctest: +SKIP
1 2
3
5 I stay
dtype: object

dt
Namespace of datetime methods

dtype
Return data type

eq(other, level=None, fill_value=None, axis=0)
Equal to of series and other, element-wise (binary operator eq).

Equivalent to series == other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before

3.9. DataFrame 641

dask Documentation, Release 2.6.0

computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

ffill(axis=None, limit=None)
Synonym for DataFrame.fillna() with method='ffill'.

fillna(value=None, method=None, limit=None, axis=None)
Fill NA/NaN values using the specified method.

This docstring was copied from pandas.core.frame.DataFrame.fillna.

Some inconsistencies with the Dask version may exist.

Parameters

value [scalar, dict, Series, or DataFrame] Value to use to fill holes (e.g. 0), alternately a
dict/Series/DataFrame of values specifying which value to use for each index (for a
Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will
not be filled). This value cannot be a list.

method [{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None] Method to use for filling
holes in reindexed Series pad / ffill: propagate last valid observation forward to next
valid backfill / bfill: use NEXT valid observation to fill gap

642 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

axis [{0 or ‘index’, 1 or ‘columns’}]

inplace [boolean, default False (Not supported in Dask)] If True, fill in place. Note: this
will modify any other views on this object, (e.g. a no-copy slice for a column in a
DataFrame).

limit [int, default None] If method is specified, this is the maximum number of consecu-
tive NaN values to forward/backward fill. In other words, if there is a gap with more
than this number of consecutive NaNs, it will only be partially filled. If method is not
specified, this is the maximum number of entries along the entire axis where NaNs
will be filled. Must be greater than 0 if not None.

downcast [dict, default is None (Not supported in Dask)] a dict of item->dtype of what to
downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate
equal type (e.g. float64 to int64 if possible)

Returns

filled [DataFrame]

See also:

interpolate Fill NaN values using interpolation.

reindex, asfreq

Examples

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], # doctest: +SKIP
... [3, 4, np.nan, 1],
... [np.nan, np.nan, np.nan, 5],
... [np.nan, 3, np.nan, 4]],
... columns=list('ABCD'))
>>> df # doctest: +SKIP

A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4

Replace all NaN elements with 0s.

>>> df.fillna(0) # doctest: +SKIP
A B C D

0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4

We can also propagate non-null values forward or backward.

>>> df.fillna(method='ffill') # doctest: +SKIP
A B C D

0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4

3.9. DataFrame 643

dask Documentation, Release 2.6.0

Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.

>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3} # doctest: +SKIP
>>> df.fillna(value=values) # doctest: +SKIP

A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4

Only replace the first NaN element.

>>> df.fillna(value=values, limit=1) # doctest: +SKIP
A B C D

0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4

first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset.

This docstring was copied from pandas.core.frame.DataFrame.first.

Some inconsistencies with the Dask version may exist.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

subset [same type as caller]

Raises

TypeError If the index is not a DatetimeIndex

See also:

last Select final periods of time series based on a date offset.

at_time Select values at a particular time of the day.

between_time Select values between particular times of the day.

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D') # doctest: +SKIP
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) # doctest: +SKIP
>>> ts # doctest: +SKIP

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the first 3 days:

644 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> ts.first('3D') # doctest: +SKIP
A

2018-04-09 1
2018-04-11 2

Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and
therefore data for 2018-04-13 was not returned.

floordiv(other, level=None, fill_value=None, axis=0)
Integer division of series and other, element-wise (binary operator floordiv).

Equivalent to series // other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.rfloordiv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

3.9. DataFrame 645

dask Documentation, Release 2.6.0

ge(other, level=None, fill_value=None, axis=0)
Greater than or equal to of series and other, element-wise (binary operator ge).

Equivalent to series >= other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

get_partition(n)
Get a dask DataFrame/Series representing the nth partition.

groupby(by=None, **kwargs)
Group DataFrame or Series using a mapper or by a Series of columns.

This docstring was copied from pandas.core.series.Series.groupby.

Some inconsistencies with the Dask version may exist.

646 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

A groupby operation involves some combination of splitting the object, applying a function, and com-
bining the results. This can be used to group large amounts of data and compute operations on these
groups.

Parameters

by [mapping, function, label, or list of labels] Used to determine the groups for the
groupby. If by is a function, it’s called on each value of the object’s index. If a
dict or Series is passed, the Series or dict VALUES will be used to determine the
groups (the Series’ values are first aligned; see .align() method). If an ndarray is
passed, the values are used as-is determine the groups. A label or list of labels may be
passed to group by the columns in self. Notice that a tuple is interpreted a (single)
key.

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Split along rows
(0) or columns (1).

level [int, level name, or sequence of such, default None (Not supported in Dask)] If the
axis is a MultiIndex (hierarchical), group by a particular level or levels.

as_index [bool, default True (Not supported in Dask)] For aggregated output, re-
turn object with group labels as the index. Only relevant for DataFrame input.
as_index=False is effectively “SQL-style” grouped output.

sort [bool, default True (Not supported in Dask)] Sort group keys. Get better performance
by turning this off. Note this does not influence the order of observations within each
group. Groupby preserves the order of rows within each group.

group_keys [bool, default True (Not supported in Dask)] When calling apply, add group
keys to index to identify pieces.

squeeze [bool, default False (Not supported in Dask)] Reduce the dimensionality of the
return type if possible, otherwise return a consistent type.

observed [bool, default False (Not supported in Dask)] This only applies if any of
the groupers are Categoricals. If True: only show observed values for categorical
groupers. If False: show all values for categorical groupers.

New in version 0.23.0.

**kwargs Optional, only accepts keyword argument ‘mutated’ and is passed to groupby.

Returns

DataFrameGroupBy or SeriesGroupBy Depends on the calling object and returns
groupby object that contains information about the groups.

See also:

resample Convenience method for frequency conversion and resampling of time series.

Notes

See the user guide for more.

Examples

3.9. DataFrame 647

http://pandas.pydata.org/pandas-docs/stable/groupby.html

dask Documentation, Release 2.6.0

>>> df = pd.DataFrame({'Animal' : ['Falcon', 'Falcon', # doctest: +SKIP
... 'Parrot', 'Parrot'],
... 'Max Speed' : [380., 370., 24., 26.]})
>>> df # doctest: +SKIP

Animal Max Speed
0 Falcon 380.0
1 Falcon 370.0
2 Parrot 24.0
3 Parrot 26.0
>>> df.groupby(['Animal']).mean() # doctest: +SKIP

Max Speed
Animal
Falcon 375.0
Parrot 25.0

Hierarchical Indexes

We can groupby different levels of a hierarchical index using the level parameter:

>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], # doctest: +SKIP
... ['Capitve', 'Wild', 'Capitve', 'Wild']]
>>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) #
→˓doctest: +SKIP
>>> df = pd.DataFrame({'Max Speed' : [390., 350., 30., 20.]}, # doctest:
→˓+SKIP
... index=index)
>>> df # doctest: +SKIP

Max Speed
Animal Type
Falcon Capitve 390.0

Wild 350.0
Parrot Capitve 30.0

Wild 20.0
>>> df.groupby(level=0).mean() # doctest: +SKIP

Max Speed
Animal
Falcon 370.0
Parrot 25.0
>>> df.groupby(level=1).mean() # doctest: +SKIP

Max Speed
Type
Capitve 210.0
Wild 185.0

gt(other, level=None, fill_value=None, axis=0)
Greater than of series and other, element-wise (binary operator gt).

Equivalent to series > other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

648 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

head(n=5, npartitions=1, compute=True)
First n rows of the dataset

Parameters

n [int, optional] The number of rows to return. Default is 5.

npartitions [int, optional] Elements are only taken from the first npartitions, with a
default of 1. If there are fewer than n rows in the first npartitions a warning will
be raised and any found rows returned. Pass -1 to use all partitions.

compute [bool, optional] Whether to compute the result, default is True.

idxmax(axis=None, skipna=True, split_every=False)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmax.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] 0 or ‘index’ for row-wise, 1 or ‘columns’
for column-wise

3.9. DataFrame 649

dask Documentation, Release 2.6.0

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

Returns

idxmax [Series]

Raises

ValueError

• If the row/column is empty

See also:

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

idxmin(axis=None, skipna=True, split_every=False)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmin.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] 0 or ‘index’ for row-wise, 1 or ‘columns’
for column-wise

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

Returns

idxmin [Series]

Raises

ValueError

• If the row/column is empty

See also:

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

index
Return dask Index instance

isin(values)
Check whether values are contained in Series.

This docstring was copied from pandas.core.series.Series.isin.

Some inconsistencies with the Dask version may exist.

650 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Return a boolean Series showing whether each element in the Series matches an element in the passed
sequence of values exactly.

Parameters

values [set or list-like] The sequence of values to test. Passing in a single string will raise
a TypeError. Instead, turn a single string into a list of one element.

New in version 0.18.1: Support for values as a set.

Returns

isin [Series (bool dtype)]

Raises

TypeError

• If values is a string

See also:

DataFrame.isin Equivalent method on DataFrame.

Examples

>>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', # doctest: +SKIP
... 'hippo'], name='animal')
>>> s.isin(['cow', 'lama']) # doctest: +SKIP
0 True
1 True
2 True
3 False
4 True
5 False
Name: animal, dtype: bool

Passing a single string as s.isin('lama') will raise an error. Use a list of one element instead:

>>> s.isin(['lama']) # doctest: +SKIP
0 True
1 False
2 True
3 False
4 True
5 False
Name: animal, dtype: bool

isna()
Detect missing values.

This docstring was copied from pandas.core.frame.DataFrame.isna.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty
strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns

3.9. DataFrame 651

dask Documentation, Release 2.6.0

DataFrame Mask of bool values for each element in DataFrame that indicates whether
an element is not an NA value.

See also:

DataFrame.isnull Alias of isna.

DataFrame.notna Boolean inverse of isna.

DataFrame.dropna Omit axes labels with missing values.

isna Top-level isna.

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN], # doctest: +SKIP
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df # doctest: +SKIP

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna() # doctest: +SKIP
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN]) # doctest: +SKIP
>>> ser # doctest: +SKIP
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna() # doctest: +SKIP
0 False
1 False
2 True
dtype: bool

isnull()
Detect missing values.

This docstring was copied from pandas.core.frame.DataFrame.isnull.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.
NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty

652 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.
use_inf_as_na = True).

Returns

DataFrame Mask of bool values for each element in DataFrame that indicates whether
an element is not an NA value.

See also:

DataFrame.isnull Alias of isna.

DataFrame.notna Boolean inverse of isna.

DataFrame.dropna Omit axes labels with missing values.

isna Top-level isna.

Examples

Show which entries in a DataFrame are NA.

>>> df = pd.DataFrame({'age': [5, 6, np.NaN], # doctest: +SKIP
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df # doctest: +SKIP

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.isna() # doctest: +SKIP
age born name toy

0 False True False True
1 False False False False
2 True False False False

Show which entries in a Series are NA.

>>> ser = pd.Series([5, 6, np.NaN]) # doctest: +SKIP
>>> ser # doctest: +SKIP
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.isna() # doctest: +SKIP
0 False
1 False
2 True
dtype: bool

iteritems()
Lazily iterate over (index, value) tuples.

known_divisions
Whether divisions are already known

3.9. DataFrame 653

dask Documentation, Release 2.6.0

last(offset)
Convenience method for subsetting final periods of time series data based on a date offset.

This docstring was copied from pandas.core.frame.DataFrame.last.

Some inconsistencies with the Dask version may exist.

Parameters

offset [string, DateOffset, dateutil.relativedelta]

Returns

subset [same type as caller]

Raises

TypeError If the index is not a DatetimeIndex

See also:

first Select initial periods of time series based on a date offset.

at_time Select values at a particular time of the day.

between_time Select values between particular times of the day.

Examples

>>> i = pd.date_range('2018-04-09', periods=4, freq='2D') # doctest: +SKIP
>>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) # doctest: +SKIP
>>> ts # doctest: +SKIP

A
2018-04-09 1
2018-04-11 2
2018-04-13 3
2018-04-15 4

Get the rows for the last 3 days:

>>> ts.last('3D') # doctest: +SKIP
A

2018-04-13 3
2018-04-15 4

Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and
therefore data for 2018-04-11 was not returned.

le(other, level=None, fill_value=None, axis=0)
Less than or equal to of series and other, element-wise (binary operator le).

Equivalent to series <= other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

654 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

loc
Purely label-location based indexer for selection by label.

>>> df.loc["b"] # doctest: +SKIP
>>> df.loc["b":"d"] # doctest: +SKIP

lt(other, level=None, fill_value=None, axis=0)
Less than of series and other, element-wise (binary operator lt).

Equivalent to series < other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

3.9. DataFrame 655

dask Documentation, Release 2.6.0

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

map(arg, na_action=None, meta=’__no_default__’)
Map values of Series according to input correspondence.

This docstring was copied from pandas.core.series.Series.map.

Some inconsistencies with the Dask version may exist.

Used for substituting each value in a Series with another value, that may be derived from a function, a
dict or a Series.

Parameters

arg [function, dict, or Series] Mapping correspondence.

na_action [{None, ‘ignore’}, default None] If ‘ignore’, propagate NaN values, without
passing them to the mapping correspondence.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

656 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Returns

Series Same index as caller.

See also:

Series.apply For applying more complex functions on a Series.

DataFrame.apply Apply a function row-/column-wise.

DataFrame.applymap Apply a function elementwise on a whole DataFrame.

Notes

When arg is a dictionary, values in Series that are not in the dictionary (as keys) are converted to NaN.
However, if the dictionary is a dict subclass that defines __missing__ (i.e. provides a method for
default values), then this default is used rather than NaN.

Examples

>>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) # doctest: +SKIP
>>> s # doctest: +SKIP
0 cat
1 dog
2 NaN
3 rabbit
dtype: object

map accepts a dict or a Series. Values that are not found in the dict are converted to NaN, unless
the dict has a default value (e.g. defaultdict):

>>> s.map({'cat': 'kitten', 'dog': 'puppy'}) # doctest: +SKIP
0 kitten
1 puppy
2 NaN
3 NaN
dtype: object

It also accepts a function:

>>> s.map('I am a {}'.format) # doctest: +SKIP
0 I am a cat
1 I am a dog
2 I am a nan
3 I am a rabbit
dtype: object

To avoid applying the function to missing values (and keep them as NaN) na_action='ignore' can
be used:

>>> s.map('I am a {}'.format, na_action='ignore') # doctest: +SKIP
0 I am a cat
1 I am a dog
2 NaN
3 I am a rabbit
dtype: object

3.9. DataFrame 657

dask Documentation, Release 2.6.0

map_overlap(func, before, after, *args, **kwargs)
Apply a function to each partition, sharing rows with adjacent partitions.

This can be useful for implementing windowing functions such as df.rolling(...).mean() or
df.diff().

Parameters

func [function] Function applied to each partition.

before [int] The number of rows to prepend to partition i from the end of partition i -
1.

after [int] The number of rows to append to partition i from the beginning of partition i
+ 1.

args, kwargs : Arguments and keywords to pass to the function. The partition will be the
first argument, and these will be passed after.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

Notes

Given positive integers before and after, and a function func, map_overlap does the following:

1. Prepend before rows to each partition i from the end of partition i - 1. The first partition has
no rows prepended.

2. Append after rows to each partition i from the beginning of partition i + 1. The last partition
has no rows appended.

3. Apply func to each partition, passing in any extra args and kwargs if provided.

4. Trim before rows from the beginning of all but the first partition.

5. Trim after rows from the end of all but the last partition.

Note that the index and divisions are assumed to remain unchanged.

Examples

Given a DataFrame, Series, or Index, such as:

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 4, 7, 11],
... 'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

A rolling sum with a trailing moving window of size 2 can be computed by overlapping 2 rows before
each partition, and then mapping calls to df.rolling(2).sum():

658 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> ddf.compute()
x y

0 1 1.0
1 2 2.0
2 4 3.0
3 7 4.0
4 11 5.0
>>> ddf.map_overlap(lambda df: df.rolling(2).sum(), 2, 0).compute()

x y
0 NaN NaN
1 3.0 3.0
2 6.0 5.0
3 11.0 7.0
4 18.0 9.0

The pandas diff method computes a discrete difference shifted by a number of periods (can be positive
or negative). This can be implemented by mapping calls to df.diff to each partition after prepend-
ing/appending that many rows, depending on sign:

>>> def diff(df, periods=1):
... before, after = (periods, 0) if periods > 0 else (0, -periods)
... return df.map_overlap(lambda df, periods=1: df.diff(periods),
... periods, 0, periods=periods)
>>> diff(ddf, 1).compute()

x y
0 NaN NaN
1 1.0 1.0
2 2.0 1.0
3 3.0 1.0
4 4.0 1.0

If you have a DatetimeIndex, you can use a pd.Timedelta for time- based windows.

>>> ts = pd.Series(range(10), index=pd.date_range('2017', periods=10))
>>> dts = dd.from_pandas(ts, npartitions=2)
>>> dts.map_overlap(lambda df: df.rolling('2D').sum(),
... pd.Timedelta('2D'), 0).compute()
2017-01-01 0.0
2017-01-02 1.0
2017-01-03 3.0
2017-01-04 5.0
2017-01-05 7.0
2017-01-06 9.0
2017-01-07 11.0
2017-01-08 13.0
2017-01-09 15.0
2017-01-10 17.0
dtype: float64

map_partitions(func, *args, **kwargs)
Apply Python function on each DataFrame partition.

Note that the index and divisions are assumed to remain unchanged.

Parameters

func [function] Function applied to each partition.

args, kwargs : Arguments and keywords to pass to the function. The partition will be the

3.9. DataFrame 659

dask Documentation, Release 2.6.0

first argument, and these will be passed after. Arguments and keywords may contain
Scalar, Delayed or regular python objects. DataFrame-like args (both dask and
pandas) will be repartitioned to align (if necessary) before applying the function.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

Examples

Given a DataFrame, Series, or Index, such as:

>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': [1, 2, 3, 4, 5],
... 'y': [1., 2., 3., 4., 5.]})
>>> ddf = dd.from_pandas(df, npartitions=2)

One can use map_partitions to apply a function on each partition. Extra arguments and keywords
can optionally be provided, and will be passed to the function after the partition.

Here we apply a function with arguments and keywords to a DataFrame, resulting in a Series:

>>> def myadd(df, a, b=1):
... return df.x + df.y + a + b
>>> res = ddf.map_partitions(myadd, 1, b=2)
>>> res.dtype
dtype('float64')

By default, dask tries to infer the output metadata by running your provided function on some fake data.
This works well in many cases, but can sometimes be expensive, or even fail. To avoid this, you can
manually specify the output metadata with the meta keyword. This can be specified in many forms, for
more information see dask.dataframe.utils.make_meta.

Here we specify the output is a Series with no name, and dtype float64:

>>> res = ddf.map_partitions(myadd, 1, b=2, meta=(None, 'f8'))

Here we map a function that takes in a DataFrame, and returns a DataFrame with a new column:

>>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y))
>>> res.dtypes
x int64
y float64
z float64
dtype: object

As before, the output metadata can also be specified manually. This time we pass in a dict, as the output
is a DataFrame:

>>> res = ddf.map_partitions(lambda df: df.assign(z=df.x * df.y),
... meta={'x': 'i8', 'y': 'f8', 'z': 'f8'})

660 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

In the case where the metadata doesn’t change, you can also pass in the object itself directly:

>>> res = ddf.map_partitions(lambda df: df.head(), meta=df)

Also note that the index and divisions are assumed to remain unchanged. If the function you’re mapping
changes the index/divisions, you’ll need to clear them afterwards:

>>> ddf.map_partitions(func).clear_divisions() # doctest: +SKIP

mask(cond, other=nan)
Replace values where the condition is True.

This docstring was copied from pandas.core.frame.DataFrame.mask.

Some inconsistencies with the Dask version may exist.

Parameters

cond [boolean NDFrame, array-like, or callable] Where cond is False, keep the original
value. Where True, replace with corresponding value from other. If cond is callable,
it is computed on the NDFrame and should return boolean NDFrame or array. The
callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other [scalar, NDFrame, or callable] Entries where cond is True are replaced with cor-
responding value from other. If other is callable, it is computed on the NDFrame
and should return scalar or NDFrame. The callable must not change input NDFrame
(though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

axis [int, default None (Not supported in Dask)] Alignment axis if needed.

level [int, default None (Not supported in Dask)] Alignment level if needed.

errors [str, {‘raise’, ‘ignore’}, default raise (Not supported in Dask)] Note that currently
this parameter won’t affect the results and will always coerce to a suitable dtype.

• raise : allow exceptions to be raised.

• ignore : suppress exceptions. On error return original object.

try_cast [boolean, default False (Not supported in Dask)] Try to cast the result back to
the input type (if possible).

raise_on_error [boolean, default True (Not supported in Dask)] Whether to raise on in-
valid data types (e.g. trying to where on strings).

Deprecated since version 0.21.0: Use errors.

Returns

wh [same type as caller]

See also:

DataFrame.where() Return an object of same shape as self.

3.9. DataFrame 661

dask Documentation, Release 2.6.0

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is False the element is used; otherwise the corresponding element from the DataFrame other
is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the mask documentation in indexing.

Examples

>>> s = pd.Series(range(5)) # doctest: +SKIP
>>> s.where(s > 0) # doctest: +SKIP
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
dtype: float64

>>> s.mask(s > 0) # doctest: +SKIP
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

>>> s.where(s > 1, 10) # doctest: +SKIP
0 10
1 10
2 2
3 3
4 4
dtype: int64

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) #
→˓doctest: +SKIP
>>> m = df % 3 == 0 # doctest: +SKIP
>>> df.where(m, -df) # doctest: +SKIP

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df) # doctest: +SKIP

A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df) # doctest: +SKIP

(continues on next page)

662 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-where-mask

dask Documentation, Release 2.6.0

(continued from previous page)

A B
0 True True
1 True True
2 True True
3 True True
4 True True

max(axis=None, skipna=True, split_every=False, out=None)
Return the maximum of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.max.

Some inconsistencies with the Dask version may exist.

If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.
ndarray method argmax.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

**kwargs Additional keyword arguments to be passed to the function.

Returns

max [Series or DataFrame (if level specified)]

See also:

Series.sum Return the sum.

Series.min Return the minimum.

Series.max Return the maximum.

Series.idxmin Return the index of the minimum.

Series.idxmax Return the index of the maximum.

DataFrame.min Return the sum over the requested axis.

DataFrame.min Return the minimum over the requested axis.

DataFrame.max Return the maximum over the requested axis.

DataFrame.idxmin Return the index of the minimum over the requested axis.

DataFrame.idxmax Return the index of the maximum over the requested axis.

3.9. DataFrame 663

dask Documentation, Release 2.6.0

Examples

>>> idx = pd.MultiIndex.from_arrays([# doctest: +SKIP
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) # doctest: +SKIP
>>> s # doctest: +SKIP
blooded animal
warm dog 4

falcon 2
cold fish 0

spider 8
Name: legs, dtype: int64

>>> s.max() # doctest: +SKIP
8

Max using level names, as well as indices.

>>> s.max(level='blooded') # doctest: +SKIP
blooded
warm 4
cold 8
Name: legs, dtype: int64

>>> s.max(level=0) # doctest: +SKIP
blooded
warm 4
cold 8
Name: legs, dtype: int64

mean(axis=None, skipna=True, split_every=False, dtype=None, out=None)
Return the mean of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.mean.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

**kwargs Additional keyword arguments to be passed to the function.

Returns

mean [Series or DataFrame (if level specified)]

memory_usage(index=True, deep=False)
Return the memory usage of the Series.

664 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

This docstring was copied from pandas.core.series.Series.memory_usage.

Some inconsistencies with the Dask version may exist.

The memory usage can optionally include the contribution of the index and of elements of object dtype.

Parameters

index [bool, default True] Specifies whether to include the memory usage of the Series
index.

deep [bool, default False] If True, introspect the data deeply by interrogating object
dtypes for system-level memory consumption, and include it in the returned value.

Returns

int Bytes of memory consumed.

See also:

numpy.ndarray.nbytes Total bytes consumed by the elements of the array.

DataFrame.memory_usage Bytes consumed by a DataFrame.

Examples

>>> s = pd.Series(range(3)) # doctest: +SKIP
>>> s.memory_usage() # doctest: +SKIP
104

Not including the index gives the size of the rest of the data, which is necessarily smaller:

>>> s.memory_usage(index=False) # doctest: +SKIP
24

The memory footprint of object values is ignored by default:

>>> s = pd.Series(["a", "b"]) # doctest: +SKIP
>>> s.values # doctest: +SKIP
array(['a', 'b'], dtype=object)
>>> s.memory_usage() # doctest: +SKIP
96
>>> s.memory_usage(deep=True) # doctest: +SKIP
212

min(axis=None, skipna=True, split_every=False, out=None)
Return the minimum of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.min.

Some inconsistencies with the Dask version may exist.

If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.
ndarray method argmin.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

3.9. DataFrame 665

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.nbytes.html#numpy.ndarray.nbytes

dask Documentation, Release 2.6.0

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

**kwargs Additional keyword arguments to be passed to the function.

Returns

min [Series or DataFrame (if level specified)]

See also:

Series.sum Return the sum.

Series.min Return the minimum.

Series.max Return the maximum.

Series.idxmin Return the index of the minimum.

Series.idxmax Return the index of the maximum.

DataFrame.min Return the sum over the requested axis.

DataFrame.min Return the minimum over the requested axis.

DataFrame.max Return the maximum over the requested axis.

DataFrame.idxmin Return the index of the minimum over the requested axis.

DataFrame.idxmax Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([# doctest: +SKIP
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) # doctest: +SKIP
>>> s # doctest: +SKIP
blooded animal
warm dog 4

falcon 2
cold fish 0

spider 8
Name: legs, dtype: int64

>>> s.min() # doctest: +SKIP
0

Min using level names, as well as indices.

>>> s.min(level='blooded') # doctest: +SKIP
blooded
warm 2
cold 0
Name: legs, dtype: int64

666 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> s.min(level=0) # doctest: +SKIP
blooded
warm 2
cold 0
Name: legs, dtype: int64

mod(other, level=None, fill_value=None, axis=0)
Modulo of series and other, element-wise (binary operator mod).

Equivalent to series % other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.rmod

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

3.9. DataFrame 667

dask Documentation, Release 2.6.0

mul(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator mul).

Equivalent to series * other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.rmul

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

nbytes
Number of bytes

ndim
Return dimensionality

ne(other, level=None, fill_value=None, axis=0)
Not equal to of series and other, element-wise (binary operator ne).

668 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Equivalent to series != other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.None

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

nlargest(n=5, split_every=None)
Return the largest n elements.

This docstring was copied from pandas.core.series.Series.nlargest.

Some inconsistencies with the Dask version may exist.

Parameters

n [int, default 5] Return this many descending sorted values.

3.9. DataFrame 669

dask Documentation, Release 2.6.0

keep [{‘first’, ‘last’, ‘all’}, default ‘first’ (Not supported in Dask)] When there are dupli-
cate values that cannot all fit in a Series of n elements:

• first : take the first occurrences based on the index order

• last : take the last occurrences based on the index order

• all [keep all occurrences. This can result in a Series of] size larger than n.

Returns

Series The n largest values in the Series, sorted in decreasing order.

See also:

Series.nsmallest Get the n smallest elements.

Series.sort_values Sort Series by values.

Series.head Return the first n rows.

Notes

Faster than .sort_values(ascending=False).head(n) for small n relative to the size of the
Series object.

Examples

>>> countries_population = {"Italy": 59000000, "France": 65000000, #
→˓doctest: +SKIP
... "Malta": 434000, "Maldives": 434000,
... "Brunei": 434000, "Iceland": 337000,
... "Nauru": 11300, "Tuvalu": 11300,
... "Anguilla": 11300, "Monserat": 5200}
>>> s = pd.Series(countries_population) # doctest: +SKIP
>>> s # doctest: +SKIP
Italy 59000000
France 65000000
Malta 434000
Maldives 434000
Brunei 434000
Iceland 337000
Nauru 11300
Tuvalu 11300
Anguilla 11300
Monserat 5200
dtype: int64

The n largest elements where n=5 by default.

>>> s.nlargest() # doctest: +SKIP
France 65000000
Italy 59000000
Malta 434000
Maldives 434000
Brunei 434000
dtype: int64

The n largest elements where n=3. Default keep value is ‘first’ so Malta will be kept.

670 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> s.nlargest(3) # doctest: +SKIP
France 65000000
Italy 59000000
Malta 434000
dtype: int64

The n largest elements where n=3 and keeping the last duplicates. Brunei will be kept since it is the last
with value 434000 based on the index order.

>>> s.nlargest(3, keep='last') # doctest: +SKIP
France 65000000
Italy 59000000
Brunei 434000
dtype: int64

The n largest elements where n=3 with all duplicates kept. Note that the returned Series has five elements
due to the three duplicates.

>>> s.nlargest(3, keep='all') # doctest: +SKIP
France 65000000
Italy 59000000
Malta 434000
Maldives 434000
Brunei 434000
dtype: int64

notnull()
Detect existing (non-missing) values.

This docstring was copied from pandas.core.frame.DataFrame.notnull.

Some inconsistencies with the Dask version may exist.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to
True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set
pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN,
get mapped to False values.

Returns

DataFrame Mask of bool values for each element in DataFrame that indicates whether
an element is not an NA value.

See also:

DataFrame.notnull Alias of notna.

DataFrame.isna Boolean inverse of notna.

DataFrame.dropna Omit axes labels with missing values.

notna Top-level notna.

Examples

Show which entries in a DataFrame are not NA.

3.9. DataFrame 671

dask Documentation, Release 2.6.0

>>> df = pd.DataFrame({'age': [5, 6, np.NaN], # doctest: +SKIP
... 'born': [pd.NaT, pd.Timestamp('1939-05-27'),
... pd.Timestamp('1940-04-25')],
... 'name': ['Alfred', 'Batman', ''],
... 'toy': [None, 'Batmobile', 'Joker']})
>>> df # doctest: +SKIP

age born name toy
0 5.0 NaT Alfred None
1 6.0 1939-05-27 Batman Batmobile
2 NaN 1940-04-25 Joker

>>> df.notna() # doctest: +SKIP
age born name toy

0 True False True False
1 True True True True
2 False True True True

Show which entries in a Series are not NA.

>>> ser = pd.Series([5, 6, np.NaN]) # doctest: +SKIP
>>> ser # doctest: +SKIP
0 5.0
1 6.0
2 NaN
dtype: float64

>>> ser.notna() # doctest: +SKIP
0 True
1 True
2 False
dtype: bool

npartitions
Return number of partitions

nsmallest(n=5, split_every=None)
Return the smallest n elements.

This docstring was copied from pandas.core.series.Series.nsmallest.

Some inconsistencies with the Dask version may exist.

Parameters

n [int, default 5] Return this many ascending sorted values.

keep [{‘first’, ‘last’, ‘all’}, default ‘first’ (Not supported in Dask)] When there are dupli-
cate values that cannot all fit in a Series of n elements:

• first : take the first occurrences based on the index order

• last : take the last occurrences based on the index order

• all [keep all occurrences. This can result in a Series of] size larger than n.

Returns

Series The n smallest values in the Series, sorted in increasing order.

See also:

672 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Series.nlargest Get the n largest elements.

Series.sort_values Sort Series by values.

Series.head Return the first n rows.

Notes

Faster than .sort_values().head(n) for small n relative to the size of the Series object.

Examples

>>> countries_population = {"Italy": 59000000, "France": 65000000, #
→˓doctest: +SKIP
... "Brunei": 434000, "Malta": 434000,
... "Maldives": 434000, "Iceland": 337000,
... "Nauru": 11300, "Tuvalu": 11300,
... "Anguilla": 11300, "Monserat": 5200}
>>> s = pd.Series(countries_population) # doctest: +SKIP
>>> s # doctest: +SKIP
Italy 59000000
France 65000000
Brunei 434000
Malta 434000
Maldives 434000
Iceland 337000
Nauru 11300
Tuvalu 11300
Anguilla 11300
Monserat 5200
dtype: int64

The n largest elements where n=5 by default.

>>> s.nsmallest() # doctest: +SKIP
Monserat 5200
Nauru 11300
Tuvalu 11300
Anguilla 11300
Iceland 337000
dtype: int64

The n smallest elements where n=3. Default keep value is ‘first’ so Nauru and Tuvalu will be kept.

>>> s.nsmallest(3) # doctest: +SKIP
Monserat 5200
Nauru 11300
Tuvalu 11300
dtype: int64

The n smallest elements where n=3 and keeping the last duplicates. Anguilla and Tuvalu will be kept
since they are the last with value 11300 based on the index order.

>>> s.nsmallest(3, keep='last') # doctest: +SKIP
Monserat 5200
Anguilla 11300

(continues on next page)

3.9. DataFrame 673

dask Documentation, Release 2.6.0

(continued from previous page)

Tuvalu 11300
dtype: int64

The n smallest elements where n=3 with all duplicates kept. Note that the returned Series has four
elements due to the three duplicates.

>>> s.nsmallest(3, keep='all') # doctest: +SKIP
Monserat 5200
Nauru 11300
Tuvalu 11300
Anguilla 11300
dtype: int64

nunique(split_every=None)
Return number of unique elements in the object.

This docstring was copied from pandas.core.series.Series.nunique.

Some inconsistencies with the Dask version may exist.

Excludes NA values by default.

Parameters

dropna [boolean, default True (Not supported in Dask)] Don’t include NaN in the count.

Returns

nunique [int]

nunique_approx(split_every=None)
Approximate number of unique rows.

This method uses the HyperLogLog algorithm for cardinality estimation to compute the approximate
number of unique rows. The approximate error is 0.406%.

Parameters

split_every [int, optional] Group partitions into groups of this size while performing a
tree-reduction. If set to False, no tree-reduction will be used. Default is 8.

Returns

a float representing the approximate number of elements

partitions
Slice dataframe by partitions

This allows partitionwise slicing of a Dask Dataframe. You can perform normal Numpy-style slic-
ing but now rather than slice elements of the array you slice along partitions so, for example, df.
partitions[:5] produces a new Dask Dataframe of the first five partitions.

Returns

A Dask DataFrame

Examples

>>> df.partitions[0] # doctest: +SKIP
>>> df.partitions[:3] # doctest: +SKIP
>>> df.partitions[::10] # doctest: +SKIP

674 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

persist(**kwargs)
Persist this dask collection into memory

This turns a lazy Dask collection into a Dask collection with the same metadata, but now with the results
fully computed or actively computing in the background.

The action of function differs significantly depending on the active task scheduler. If the task scheduler
supports asynchronous computing, such as is the case of the dask.distributed scheduler, then persist will
return immediately and the return value’s task graph will contain Dask Future objects. However if the task
scheduler only supports blocking computation then the call to persist will block and the return value’s task
graph will contain concrete Python results.

This function is particularly useful when using distributed systems, because the results will be kept in
distributed memory, rather than returned to the local process as with compute.

Parameters

scheduler [string, optional] Which scheduler to use like “threads”, “synchronous” or
“processes”. If not provided, the default is to check the global settings first, and
then fall back to the collection defaults.

optimize_graph [bool, optional] If True [default], the graph is optimized before compu-
tation. Otherwise the graph is run as is. This can be useful for debugging.

**kwargs Extra keywords to forward to the scheduler function.

Returns

New dask collections backed by in-memory data

See also:

dask.base.persist

pipe(func, *args, **kwargs)
Apply func(self, *args, **kwargs).

This docstring was copied from pandas.core.frame.DataFrame.pipe.

Some inconsistencies with the Dask version may exist.

Parameters

func [function] function to apply to the NDFrame. args, and kwargs are
passed into func. Alternatively a (callable, data_keyword) tuple where
data_keyword is a string indicating the keyword of callable that expects the
NDFrame.

args [iterable, optional] positional arguments passed into func.

kwargs [mapping, optional] a dictionary of keyword arguments passed into func.

Returns

object [the return type of func.]

See also:

DataFrame.apply , DataFrame.applymap, Series.map

Notes

Use .pipewhen chaining together functions that expect Series, DataFrames or GroupBy objects. Instead
of writing

3.9. DataFrame 675

dask Documentation, Release 2.6.0

>>> f(g(h(df), arg1=a), arg2=b, arg3=c) # doctest: +SKIP

You can write

>>> (df.pipe(h) # doctest: +SKIP
... .pipe(g, arg1=a)
... .pipe(f, arg2=b, arg3=c)
...)

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which
keyword expects the data. For example, suppose f takes its data as arg2:

>>> (df.pipe(h) # doctest: +SKIP
... .pipe(g, arg1=a)
... .pipe((f, 'arg2'), arg1=a, arg3=c)
...)

pow(other, level=None, fill_value=None, axis=0)
Exponential power of series and other, element-wise (binary operator pow).

Equivalent to series ** other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.rpow

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN

(continues on next page)

676 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

prod(axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None)
Return the product of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.prod.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

min_count [int, default 0] The required number of valid values to perform the operation.
If fewer than min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of an
all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

**kwargs Additional keyword arguments to be passed to the function.

Returns

prod [Series or DataFrame (if level specified)]

Examples

By default, the product of an empty or all-NA Series is 1

>>> pd.Series([]).prod() # doctest: +SKIP
1.0

This can be controlled with the min_count parameter

>>> pd.Series([]).prod(min_count=1) # doctest: +SKIP
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).prod() # doctest: +SKIP
1.0

3.9. DataFrame 677

dask Documentation, Release 2.6.0

>>> pd.Series([np.nan]).prod(min_count=1) # doctest: +SKIP
nan

quantile(q=0.5, method=’default’)
Approximate quantiles of Series

Parameters

q [list/array of floats, default 0.5 (50%)] Iterable of numbers ranging from 0 to 1 for the
desired quantiles

method [{‘default’, ‘tdigest’, ‘dask’}, optional] What method to use. By default will use
dask’s internal custom algorithm ('dask'). If set to 'tdigest' will use tdigest
for floats and ints and fallback to the 'dask' otherwise.

radd(other, level=None, fill_value=None, axis=0)
Addition of series and other, element-wise (binary operator radd).

Equivalent to other + series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.add

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP

(continues on next page)

678 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

random_split(frac, random_state=None)
Pseudorandomly split dataframe into different pieces row-wise

Parameters

frac [list] List of floats that should sum to one.

random_state: int or np.random.RandomState If int create a new RandomState with
this as the seed

Otherwise draw from the passed RandomState

See also:

dask.DataFrame.sample

Examples

50/50 split

>>> a, b = df.random_split([0.5, 0.5]) # doctest: +SKIP

80/10/10 split, consistent random_state

>>> a, b, c = df.random_split([0.8, 0.1, 0.1], random_state=123) # doctest:
→˓+SKIP

rdiv(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv).

Equivalent to other / series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.truediv

3.9. DataFrame 679

dask Documentation, Release 2.6.0

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

reduction(chunk, aggregate=None, combine=None, meta=’__no_default__’, token=None,
split_every=None, chunk_kwargs=None, aggregate_kwargs=None, com-
bine_kwargs=None, **kwargs)

Generic row-wise reductions.

Parameters

chunk [callable] Function to operate on each partition. Should return a pandas.
DataFrame, pandas.Series, or a scalar.

aggregate [callable, optional] Function to operate on the concatenated result of chunk.
If not specified, defaults to chunk. Used to do the final aggregation in a tree reduc-
tion.

The input to aggregate depends on the output of chunk. If the output of chunk
is a:

• scalar: Input is a Series, with one row per partition.

• Series: Input is a DataFrame, with one row per partition. Columns are the rows in
the output series.

• DataFrame: Input is a DataFrame, with one row per partition. Columns are the
columns in the output dataframes.

Should return a pandas.DataFrame, pandas.Series, or a scalar.

combine [callable, optional] Function to operate on intermediate concatenated results
of chunk in a tree-reduction. If not provided, defaults to aggregate. The in-
put/output requirements should match that of aggregate described above.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a

680 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

token [str, optional] The name to use for the output keys.

split_every [int, optional] Group partitions into groups of this size while performing a
tree-reduction. If set to False, no tree-reduction will be used, and all intermediates
will be concatenated and passed to aggregate. Default is 8.

chunk_kwargs [dict, optional] Keyword arguments to pass on to chunk only.

aggregate_kwargs [dict, optional] Keyword arguments to pass on to aggregate only.

combine_kwargs [dict, optional] Keyword arguments to pass on to combine only.

kwargs : All remaining keywords will be passed to chunk, combine, and
aggregate.

Examples

>>> import pandas as pd
>>> import dask.dataframe as dd
>>> df = pd.DataFrame({'x': range(50), 'y': range(50, 100)})
>>> ddf = dd.from_pandas(df, npartitions=4)

Count the number of rows in a DataFrame. To do this, count the number of rows in each partition, then
sum the results:

>>> res = ddf.reduction(lambda x: x.count(),
... aggregate=lambda x: x.sum())
>>> res.compute()
x 50
y 50
dtype: int64

Count the number of rows in a Series with elements greater than or equal to a value (provided via a
keyword).

>>> def count_greater(x, value=0):
... return (x >= value).sum()
>>> res = ddf.x.reduction(count_greater, aggregate=lambda x: x.sum(),
... chunk_kwargs={'value': 25})
>>> res.compute()
25

Aggregate both the sum and count of a Series at the same time:

>>> def sum_and_count(x):
... return pd.Series({'count': x.count(), 'sum': x.sum()},
... index=['count', 'sum'])
>>> res = ddf.x.reduction(sum_and_count, aggregate=lambda x: x.sum())
>>> res.compute()
count 50
sum 1225
dtype: int64

3.9. DataFrame 681

dask Documentation, Release 2.6.0

Doing the same, but for a DataFrame. Here chunk returns a DataFrame, meaning the input to
aggregate is a DataFrame with an index with non-unique entries for both ‘x’ and ‘y’. We groupby
the index, and sum each group to get the final result.

>>> def sum_and_count(x):
... return pd.DataFrame({'count': x.count(), 'sum': x.sum()},
... columns=['count', 'sum'])
>>> res = ddf.reduction(sum_and_count,
... aggregate=lambda x: x.groupby(level=0).sum())
>>> res.compute()

count sum
x 50 1225
y 50 3725

rename(index=None, inplace=False, sorted_index=False)
Alter Series index labels or name

Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.
Extra labels listed don’t throw an error.

Alternatively, change Series.name with a scalar value.

Parameters

index [scalar, hashable sequence, dict-like or callable, optional] If dict-like or callable,
the transformation is applied to the index. Scalar or hashable sequence-like will alter
the Series.name attribute.

inplace [boolean, default False] Whether to return a new Series or modify this one in-
place.

sorted_index [bool, default False] If true, the output Series will have known divisions
inferred from the input series and the transformation. Ignored for non-callable/dict-
like index or when the input series has unknown divisions. Note that this may only
be set to True if you know that the transformed index is monotonicly increasing.
Dask will check that transformed divisions are monotonic, but cannot check all the
values between divisions, so incorrectly setting this can result in bugs.

Returns

renamed [Series]

See also:

pandas.Series.rename

repartition(divisions=None, npartitions=None, partition_size=None, freq=None, force=False)
Repartition dataframe along new divisions

Parameters

divisions [list, optional] List of partitions to be used. Only used if npartitions and parti-
tion_size isn’t specified.

npartitions [int, optional] Number of partitions of output. Only used if partition_size
isn’t specified.

partition_size: int or string, optional Max number of bytes of memory for each parti-
tion. Use numbers or strings like 5MB. If specified npartitions and divisions will be
ignored.

682 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.rename.html#pandas.Series.rename

dask Documentation, Release 2.6.0

Warning: This keyword argument triggers computation to determine the memory
size of each partition, which may be expensive.

freq [str, pd.Timedelta] A period on which to partition timeseries data like '7D' or
'12h' or pd.Timedelta(hours=12). Assumes a datetime index.

force [bool, default False] Allows the expansion of the existing divisions. If False then
the new divisions lower and upper bounds must be the same as the old divisions.

Notes

Exactly one of divisions, npartitions, partition_size, or freq should be specified. A ValueError will be
raised when that is not the case.

Examples

>>> df = df.repartition(npartitions=10) # doctest: +SKIP
>>> df = df.repartition(divisions=[0, 5, 10, 20]) # doctest: +SKIP
>>> df = df.repartition(freq='7d') # doctest: +SKIP

replace(to_replace=None, value=None, regex=False)
Replace values given in to_replace with value.

This docstring was copied from pandas.core.frame.DataFrame.replace.

Some inconsistencies with the Dask version may exist.

Values of the DataFrame are replaced with other values dynamically. This differs from updating with
.loc or .iloc, which require you to specify a location to update with some value.

Parameters

to_replace [str, regex, list, dict, Series, int, float, or None] How to find the values that
will be replaced.

• numeric, str or regex:

– numeric: numeric values equal to to_replace will be replaced with value

– str: string exactly matching to_replace will be replaced with value

– regex: regexs matching to_replace will be replaced with value

• list of str, regex, or numeric:

– First, if to_replace and value are both lists, they must be the same length.

– Second, if regex=True then all of the strings in both lists will be interpreted
as regexs otherwise they will match directly. This doesn’t matter much for value
since there are only a few possible substitution regexes you can use.

– str, regex and numeric rules apply as above.

• dict:

– Dicts can be used to specify different replacement values for different exist-
ing values. For example, {'a': 'b', 'y': 'z'} replaces the value
‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way the value parameter should
be None.

3.9. DataFrame 683

dask Documentation, Release 2.6.0

– For a DataFrame a dict can specify that different values should be replaced in dif-
ferent columns. For example, {'a': 1, 'b': 'z'} looks for the value
1 in column ‘a’ and the value ‘z’ in column ‘b’ and replaces these values with
whatever is specified in value. The value parameter should not be None in this
case. You can treat this as a special case of passing two lists except that you are
specifying the column to search in.

– For a DataFrame nested dictionaries, e.g., {'a': {'b': np.nan}}, are
read as follows: look in column ‘a’ for the value ‘b’ and replace it with NaN. The
value parameter should be None to use a nested dict in this way. You can nest
regular expressions as well. Note that column names (the top-level dictionary
keys in a nested dictionary) cannot be regular expressions.

• None:

– This means that the regex argument must be a string, compiled regular expres-
sion, or list, dict, ndarray or Series of such elements. If value is also None then
this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value [scalar, dict, list, str, regex, default None] Value to replace any values matching
to_replace with. For a DataFrame a dict of values can be used to specify which
value to use for each column (columns not in the dict will not be filled). Regular
expressions, strings and lists or dicts of such objects are also allowed.

inplace [bool, default False (Not supported in Dask)] If True, in place. Note: this will
modify any other views on this object (e.g. a column from a DataFrame). Returns the
caller if this is True.

limit [int, default None (Not supported in Dask)] Maximum size gap to forward or back-
ward fill.

regex [bool or same types as to_replace, default False] Whether to interpret to_replace
and/or value as regular expressions. If this is True then to_replace must be a string.
Alternatively, this could be a regular expression or a list, dict, or array of regular
expressions in which case to_replace must be None.

method [{‘pad’, ‘ffill’, ‘bfill’, None} (Not supported in Dask)] The method to use when
for replacement, when to_replace is a scalar, list or tuple and value is None.

Changed in version 0.23.0: Added to DataFrame.

Returns

DataFrame Object after replacement.

Raises

AssertionError

• If regex is not a bool and to_replace is not None.

TypeError

• If to_replace is a dict and value is not a list, dict, ndarray, or Series

• If to_replace is None and regex is not compilable into a regular expression or is a
list, dict, ndarray, or Series.

• When replacing multiple bool or datetime64 objects and the arguments to
to_replace does not match the type of the value being replaced

ValueError

684 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• If a list or an ndarray is passed to to_replace and value but they are not the
same length.

See also:

DataFrame.fillna Fill NA values.

DataFrame.where Replace values based on boolean condition.

Series.str.replace Simple string replacement.

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.
sub are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a
regular expression matching floating point numbers and expect the columns in your frame that have
a numeric dtype to be matched. However, if those floating point numbers are strings, then you can
do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to
gain intuition about how it works.

• When dict is used as the to_replace value, it is like key(s) in the dict are the to_replace part and
value(s) in the dict are the value parameter.

Examples

Scalar ‘to_replace‘ and ‘value‘

>>> s = pd.Series([0, 1, 2, 3, 4]) # doctest: +SKIP
>>> s.replace(0, 5) # doctest: +SKIP
0 5
1 1
2 2
3 3
4 4
dtype: int64

>>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], # doctest: +SKIP
... 'B': [5, 6, 7, 8, 9],
... 'C': ['a', 'b', 'c', 'd', 'e']})
>>> df.replace(0, 5) # doctest: +SKIP

A B C
0 5 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

List-like ‘to_replace‘

>>> df.replace([0, 1, 2, 3], 4) # doctest: +SKIP
A B C

0 4 5 a
1 4 6 b

(continues on next page)

3.9. DataFrame 685

dask Documentation, Release 2.6.0

(continued from previous page)

2 4 7 c
3 4 8 d
4 4 9 e

>>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) # doctest: +SKIP
A B C

0 4 5 a
1 3 6 b
2 2 7 c
3 1 8 d
4 4 9 e

>>> s.replace([1, 2], method='bfill') # doctest: +SKIP
0 0
1 3
2 3
3 3
4 4
dtype: int64

dict-like ‘to_replace‘

>>> df.replace({0: 10, 1: 100}) # doctest: +SKIP
A B C

0 10 5 a
1 100 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': 0, 'B': 5}, 100) # doctest: +SKIP
A B C

0 100 100 a
1 1 6 b
2 2 7 c
3 3 8 d
4 4 9 e

>>> df.replace({'A': {0: 100, 4: 400}}) # doctest: +SKIP
A B C

0 100 5 a
1 1 6 b
2 2 7 c
3 3 8 d
4 400 9 e

Regular expression ‘to_replace‘

>>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], # doctest: +SKIP
... 'B': ['abc', 'bar', 'xyz']})
>>> df.replace(to_replace=r'^ba.$', value='new', regex=True) # doctest:
→˓+SKIP

A B
0 new abc
1 foo new

(continues on next page)

686 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

2 bait xyz

>>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) # doctest: +SKIP
A B

0 new abc
1 foo bar
2 bait xyz

>>> df.replace(regex=r'^ba.$', value='new') # doctest: +SKIP
A B

0 new abc
1 foo new
2 bait xyz

>>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'}) # doctest: +SKIP
A B

0 new abc
1 xyz new
2 bait xyz

>>> df.replace(regex=[r'^ba.$', 'foo'], value='new') # doctest: +SKIP
A B

0 new abc
1 new new
2 bait xyz

Note that when replacing multiple bool or datetime64 objects, the data types in the to_replace pa-
rameter must match the data type of the value being replaced:

>>> df = pd.DataFrame({'A': [True, False, True], # doctest: +SKIP
... 'B': [False, True, False]})
>>> df.replace({'a string': 'new value', True: False}) # raises # doctest:
→˓+SKIP
Traceback (most recent call last):

...
TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

This raises a TypeError because one of the dict keys is not of the correct type for replacement.

Compare the behavior of s.replace({'a': None}) and s.replace('a', None) to under-
stand the peculiarities of the to_replace parameter:

>>> s = pd.Series([10, 'a', 'a', 'b', 'a']) # doctest: +SKIP

When one uses a dict as the to_replace value, it is like the value(s) in the dict are equal to the value
parameter. s.replace({'a': None}) is equivalent to s.replace(to_replace={'a':
None}, value=None, method=None):

>>> s.replace({'a': None}) # doctest: +SKIP
0 10
1 None
2 None
3 b
4 None
dtype: object

3.9. DataFrame 687

dask Documentation, Release 2.6.0

When value=None and to_replace is a scalar, list or tuple, replace uses the method parameter (default
‘pad’) to do the replacement. So this is why the ‘a’ values are being replaced by 10 in rows 1 and 2
and ‘b’ in row 4 in this case. The command s.replace('a', None) is actually equivalent to s.
replace(to_replace='a', value=None, method='pad'):

>>> s.replace('a', None) # doctest: +SKIP
0 10
1 10
2 10
3 b
4 b
dtype: object

resample(rule, closed=None, label=None)
Resample time-series data.

This docstring was copied from pandas.core.frame.DataFrame.resample.

Some inconsistencies with the Dask version may exist.

Convenience method for frequency conversion and resampling of time series. Object must have a
datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the
on or level keyword.

Parameters

rule [str] The offset string or object representing target conversion.

how [str (Not supported in Dask)] Method for down/re-sampling, default to ‘mean’ for
downsampling.

Deprecated since version 0.18.0: The new syntax is .resample(...).mean(),
or .resample(...).apply(<func>)

axis [{0 or ‘index’, 1 or ‘columns’}, default 0 (Not supported in Dask)] Which axis to
use for up- or down-sampling. For Series this will default to 0, i.e. along the rows.
Must be DatetimeIndex, TimedeltaIndex or PeriodIndex.

fill_method [str, default None (Not supported in Dask)] Filling method for upsampling.

Deprecated since version 0.18.0: The new syntax is .resample(...).
<func>(), e.g. .resample(...).pad()

closed [{‘right’, ‘left’}, default None] Which side of bin interval is closed. The default
is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’, and ‘W’
which all have a default of ‘right’.

label [{‘right’, ‘left’}, default None] Which bin edge label to label bucket with. The
default is ‘left’ for all frequency offsets except for ‘M’, ‘A’, ‘Q’, ‘BM’, ‘BA’, ‘BQ’,
and ‘W’ which all have a default of ‘right’.

convention [{‘start’, ‘end’, ‘s’, ‘e’}, default ‘start’ (Not supported in Dask)] For Peri-
odIndex only, controls whether to use the start or end of rule.

kind [{‘timestamp’, ‘period’}, optional, default None (Not supported in Dask)] Pass
‘timestamp’ to convert the resulting index to a DateTimeIndex or ‘period’ to convert
it to a PeriodIndex. By default the input representation is retained.

loffset [timedelta, default None (Not supported in Dask)] Adjust the resampled time la-
bels.

limit [int, default None (Not supported in Dask)] Maximum size gap when reindexing
with fill_method.

688 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Deprecated since version 0.18.0.

base [int, default 0 (Not supported in Dask)] For frequencies that evenly subdivide 1 day,
the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base
could range from 0 through 4. Defaults to 0.

on [str, optional (Not supported in Dask)] For a DataFrame, column to use instead of
index for resampling. Column must be datetime-like.

New in version 0.19.0.

level [str or int, optional (Not supported in Dask)] For a MultiIndex, level (name or num-
ber) to use for resampling. level must be datetime-like.

New in version 0.19.0.

Returns

Resampler object

See also:

groupby Group by mapping, function, label, or list of labels.

Series.resample Resample a Series.

DataFrame.resample Resample a DataFrame.

Notes

See the user guide for more.

To learn more about the offset strings, please see this link.

Examples

Start by creating a series with 9 one minute timestamps.

>>> index = pd.date_range('1/1/2000', periods=9, freq='T') # doctest: +SKIP
>>> series = pd.Series(range(9), index=index) # doctest: +SKIP
>>> series # doctest: +SKIP
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

>>> series.resample('3T').sum() # doctest: +SKIP
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64

3.9. DataFrame 689

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling
http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases

dask Documentation, Release 2.6.0

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the
left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels.
For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the
summed value in the resampled bucket with the label 2000-01-01 00:03:00 does not include 3 (if
it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval
as illustrated in the example below this one.

>>> series.resample('3T', label='right').sum() # doctest: +SKIP
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

>>> series.resample('3T', label='right', closed='right').sum() # doctest:
→˓+SKIP
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64

Upsample the series into 30 second bins.

>>> series.resample('30S').asfreq()[0:5] # Select first 5 rows # doctest:
→˓+SKIP
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64

Upsample the series into 30 second bins and fill the NaN values using the pad method.

>>> series.resample('30S').pad()[0:5] # doctest: +SKIP
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

>>> series.resample('30S').bfill()[0:5] # doctest: +SKIP
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64

Pass a custom function via apply

690 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> def custom_resampler(array_like): # doctest: +SKIP
... return np.sum(array_like) + 5
...
>>> series.resample('3T').apply(custom_resampler) # doctest: +SKIP
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64

For a Series with a PeriodIndex, the keyword convention can be used to control whether to use the start or
end of rule.

Resample a year by quarter using ‘start’ convention. Values are assigned to the first quarter of the period.

>>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', # doctest:
→˓+SKIP
... freq='A',
... periods=2))
>>> s # doctest: +SKIP
2012 1
2013 2
Freq: A-DEC, dtype: int64
>>> s.resample('Q', convention='start').asfreq() # doctest: +SKIP
2012Q1 1.0
2012Q2 NaN
2012Q3 NaN
2012Q4 NaN
2013Q1 2.0
2013Q2 NaN
2013Q3 NaN
2013Q4 NaN
Freq: Q-DEC, dtype: float64

Resample quarters by month using ‘end’ convention. Values are assigned to the last month of the period.

>>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01', #
→˓doctest: +SKIP
... freq='Q',
... periods=4))
>>> q # doctest: +SKIP
2018Q1 1
2018Q2 2
2018Q3 3
2018Q4 4
Freq: Q-DEC, dtype: int64
>>> q.resample('M', convention='end').asfreq() # doctest: +SKIP
2018-03 1.0
2018-04 NaN
2018-05 NaN
2018-06 2.0
2018-07 NaN
2018-08 NaN
2018-09 3.0
2018-10 NaN
2018-11 NaN
2018-12 4.0
Freq: M, dtype: float64

3.9. DataFrame 691

dask Documentation, Release 2.6.0

For DataFrame objects, the keyword on can be used to specify the column instead of the index for resam-
pling.

>>> d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], # doctest: +SKIP
... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]})
>>> df = pd.DataFrame(d) # doctest: +SKIP
>>> df['week_starting'] = pd.date_range('01/01/2018', # doctest: +SKIP
... periods=8,
... freq='W')
>>> df # doctest: +SKIP

price volume week_starting
0 10 50 2018-01-07
1 11 60 2018-01-14
2 9 40 2018-01-21
3 13 100 2018-01-28
4 14 50 2018-02-04
5 18 100 2018-02-11
6 17 40 2018-02-18
7 19 50 2018-02-25
>>> df.resample('M', on='week_starting').mean() # doctest: +SKIP

price volume
week_starting
2018-01-31 10.75 62.5
2018-02-28 17.00 60.0

For a DataFrame with MultiIndex, the keyword level can be used to specify on which level the resampling
needs to take place.

>>> days = pd.date_range('1/1/2000', periods=4, freq='D') # doctest: +SKIP
>>> d2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], # doctest: +SKIP
... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]})
>>> df2 = pd.DataFrame(d2, # doctest: +SKIP
... index=pd.MultiIndex.from_product([days,
... ['morning',
... 'afternoon']]
...))
>>> df2 # doctest: +SKIP

price volume
2000-01-01 morning 10 50

afternoon 11 60
2000-01-02 morning 9 40

afternoon 13 100
2000-01-03 morning 14 50

afternoon 18 100
2000-01-04 morning 17 40

afternoon 19 50
>>> df2.resample('D', level=0).sum() # doctest: +SKIP

price volume
2000-01-01 21 110
2000-01-02 22 140
2000-01-03 32 150
2000-01-04 36 90

reset_index(drop=False)
Reset the index to the default index.

Note that unlike in pandas, the reset dask.dataframe index will not be monotonically increasing
from 0. Instead, it will restart at 0 for each partition (e.g. index1 = [0, ..., 10], index2 =
[0, ...]). This is due to the inability to statically know the full length of the index.

692 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

For DataFrame with multi-level index, returns a new DataFrame with labeling information in the columns
under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the
index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will
be used.

Parameters

drop [boolean, default False] Do not try to insert index into dataframe columns.

rfloordiv(other, level=None, fill_value=None, axis=0)
Integer division of series and other, element-wise (binary operator rfloordiv).

Equivalent to other // series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.floordiv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

3.9. DataFrame 693

dask Documentation, Release 2.6.0

rmod(other, level=None, fill_value=None, axis=0)
Modulo of series and other, element-wise (binary operator rmod).

Equivalent to other % series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.mod

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

rmul(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator rmul).

Equivalent to other * series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

694 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.mul

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

rolling(window, min_periods=None, center=False, win_type=None, axis=0)
Provides rolling transformations.

Parameters

window [int, str, offset] Size of the moving window. This is the number of observations
used for calculating the statistic. When not using a DatetimeIndex, the window
size must not be so large as to span more than one adjacent partition. If using an offset
or offset alias like ‘5D’, the data must have a DatetimeIndex

Changed in version 0.15.0: Now accepts offsets and string offset aliases

min_periods [int, default None] Minimum number of observations in window required
to have a value (otherwise result is NA).

center [boolean, default False] Set the labels at the center of the window.

3.9. DataFrame 695

dask Documentation, Release 2.6.0

win_type [string, default None] Provide a window type. The recognized window types
are identical to pandas.

axis [int, default 0]

Returns

a Rolling object on which to call a method to compute a statistic

round(decimals=0)
Round each value in a Series to the given number of decimals.

This docstring was copied from pandas.core.series.Series.round.

Some inconsistencies with the Dask version may exist.

Parameters

decimals [int] Number of decimal places to round to (default: 0). If decimals is negative,
it specifies the number of positions to the left of the decimal point.

Returns

Series object

See also:

numpy.around, DataFrame.round

rpow(other, level=None, fill_value=None, axis=0)
Exponential power of series and other, element-wise (binary operator rpow).

Equivalent to other ** series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.pow

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN

(continues on next page)

696 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.around.html#numpy.around

dask Documentation, Release 2.6.0

(continued from previous page)

dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

rsub(other, level=None, fill_value=None, axis=0)
Subtraction of series and other, element-wise (binary operator rsub).

Equivalent to other - series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.sub

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN

(continues on next page)

3.9. DataFrame 697

dask Documentation, Release 2.6.0

(continued from previous page)

d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

rtruediv(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv).

Equivalent to other / series, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.truediv

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0

(continues on next page)

698 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

c 1.0
d 1.0
e NaN
dtype: float64

sample(n=None, frac=None, replace=False, random_state=None)
Random sample of items

Parameters

n [int, optional] Number of items to return is not supported by dask. Use frac instead.

frac [float, optional] Fraction of axis items to return.

replace [boolean, optional] Sample with or without replacement. Default = False.

random_state [int or np.random.RandomState] If int we create a new Random-
State with this as the seed Otherwise we draw from the passed RandomState

See also:

DataFrame.random_split, pandas.DataFrame.sample

sem(axis=None, skipna=None, ddof=1, split_every=False)
Return unbiased standard error of the mean over requested axis.

This docstring was copied from pandas.core.frame.DataFrame.sem.

Some inconsistencies with the Dask version may exist.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series

ddof [int, default 1] Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of elements.

numeric_only [boolean, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric data.
Not implemented for Series.

Returns

sem [Series or DataFrame (if level specified)]

shape
Return a tuple representing the dimensionality of a Series.

The single element of the tuple is a Delayed result.

Examples

>>> series.shape # doctest: +SKIP
(dd.Scalar<size-ag..., dtype=int64>,)

3.9. DataFrame 699

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html#pandas.DataFrame.sample

dask Documentation, Release 2.6.0

shift(periods=1, freq=None, axis=0)
Shift index by desired number of periods with an optional time freq.

This docstring was copied from pandas.core.frame.DataFrame.shift.

Some inconsistencies with the Dask version may exist.

When freq is not passed, shift the index without realigning the data. If freq is passed (in this case, the
index must be date or datetime, or it will raise a NotImplementedError), the index will be increased using
the periods and the freq.

Parameters

periods [int] Number of periods to shift. Can be positive or negative.

freq [DateOffset, tseries.offsets, timedelta, or str, optional] Offset to use from the tseries
module or time rule (e.g. ‘EOM’). If freq is specified then the index values are shifted
but the data is not realigned. That is, use freq if you would like to extend the index
when shifting and preserve the original data.

axis [{0 or ‘index’, 1 or ‘columns’, None}, default None] Shift direction.

fill_value [object, optional (Not supported in Dask)] The scalar value to use for newly
introduced missing values. the default depends on the dtype of self. For numeric
data, np.nan is used. For datetime, timedelta, or period data, etc. NaT is used. For
extension dtypes, self.dtype.na_value is used.

Changed in version 0.24.0.

Returns

DataFrame Copy of input object, shifted.

See also:

Index.shift Shift values of Index.

DatetimeIndex.shift Shift values of DatetimeIndex.

PeriodIndex.shift Shift values of PeriodIndex.

tshift Shift the time index, using the index’s frequency if available.

Examples

>>> df = pd.DataFrame({'Col1': [10, 20, 15, 30, 45], # doctest: +SKIP
... 'Col2': [13, 23, 18, 33, 48],
... 'Col3': [17, 27, 22, 37, 52]})

>>> df.shift(periods=3) # doctest: +SKIP
Col1 Col2 Col3

0 NaN NaN NaN
1 NaN NaN NaN
2 NaN NaN NaN
3 10.0 13.0 17.0
4 20.0 23.0 27.0

>>> df.shift(periods=1, axis='columns') # doctest: +SKIP
Col1 Col2 Col3

0 NaN 10.0 13.0

(continues on next page)

700 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

1 NaN 20.0 23.0
2 NaN 15.0 18.0
3 NaN 30.0 33.0
4 NaN 45.0 48.0

>>> df.shift(periods=3, fill_value=0) # doctest: +SKIP
Col1 Col2 Col3

0 0 0 0
1 0 0 0
2 0 0 0
3 10 13 17
4 20 23 27

size
Size of the Series or DataFrame as a Delayed object.

Examples

>>> series.size # doctest: +SKIP
dd.Scalar<size-ag..., dtype=int64>

squeeze()
Squeeze 1 dimensional axis objects into scalars.

This docstring was copied from pandas.core.series.Series.squeeze.

Some inconsistencies with the Dask version may exist.

Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or
a single row are squeezed to a Series. Otherwise the object is unchanged.

This method is most useful when you don’t know if your object is a Series or DataFrame, but you do
know it has just a single column. In that case you can safely call squeeze to ensure you have a Series.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’, None}, default None (Not supported in Dask)] A
specific axis to squeeze. By default, all length-1 axes are squeezed.

New in version 0.20.0.

Returns

DataFrame, Series, or scalar The projection after squeezing axis or all the axes.

See also:

Series.iloc Integer-location based indexing for selecting scalars.

DataFrame.iloc Integer-location based indexing for selecting Series.

Series.to_frame Inverse of DataFrame.squeeze for a single-column DataFrame.

Examples

>>> primes = pd.Series([2, 3, 5, 7]) # doctest: +SKIP

Slicing might produce a Series with a single value:

3.9. DataFrame 701

dask Documentation, Release 2.6.0

>>> even_primes = primes[primes % 2 == 0] # doctest: +SKIP
>>> even_primes # doctest: +SKIP
0 2
dtype: int64

>>> even_primes.squeeze() # doctest: +SKIP
2

Squeezing objects with more than one value in every axis does nothing:

>>> odd_primes = primes[primes % 2 == 1] # doctest: +SKIP
>>> odd_primes # doctest: +SKIP
1 3
2 5
3 7
dtype: int64

>>> odd_primes.squeeze() # doctest: +SKIP
1 3
2 5
3 7
dtype: int64

Squeezing is even more effective when used with DataFrames.

>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) # doctest: +SKIP
>>> df # doctest: +SKIP

a b
0 1 2
1 3 4

Slicing a single column will produce a DataFrame with the columns having only one value:

>>> df_a = df[['a']] # doctest: +SKIP
>>> df_a # doctest: +SKIP

a
0 1
1 3

So the columns can be squeezed down, resulting in a Series:

>>> df_a.squeeze('columns') # doctest: +SKIP
0 1
1 3
Name: a, dtype: int64

Slicing a single row from a single column will produce a single scalar DataFrame:

>>> df_0a = df.loc[df.index < 1, ['a']] # doctest: +SKIP
>>> df_0a # doctest: +SKIP

a
0 1

Squeezing the rows produces a single scalar Series:

702 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df_0a.squeeze('rows') # doctest: +SKIP
a 1
Name: 0, dtype: int64

Squeezing all axes wil project directly into a scalar:

>>> df_0a.squeeze() # doctest: +SKIP
1

std(axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None)
Return sample standard deviation over requested axis.

This docstring was copied from pandas.core.frame.DataFrame.std.

Some inconsistencies with the Dask version may exist.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series

ddof [int, default 1] Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of elements.

numeric_only [boolean, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric data.
Not implemented for Series.

Returns

std [Series or DataFrame (if level specified)]

str
Namespace for string methods

sub(other, level=None, fill_value=None, axis=0)
Subtraction of series and other, element-wise (binary operator sub).

Equivalent to series - other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

3.9. DataFrame 703

dask Documentation, Release 2.6.0

See also:

Series.rsub

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

sum(axis=None, skipna=True, split_every=False, dtype=None, out=None, min_count=None)
Return the sum of the values for the requested axis.

This docstring was copied from pandas.core.frame.DataFrame.sum.

Some inconsistencies with the Dask version may exist.

This is equivalent to the method numpy.sum.

Parameters

axis [{index (0), columns (1)}] Axis for the function to be applied on.

skipna [bool, default True] Exclude NA/null values when computing the result.

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series.

numeric_only [bool, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric
data. Not implemented for Series.

min_count [int, default 0] The required number of valid values to perform the operation.
If fewer than min_count non-NA values are present the result will be NA.

New in version 0.22.0: Added with the default being 0. This means the sum of an
all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.

**kwargs Additional keyword arguments to be passed to the function.

Returns

704 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

sum [Series or DataFrame (if level specified)]

See also:

Series.sum Return the sum.

Series.min Return the minimum.

Series.max Return the maximum.

Series.idxmin Return the index of the minimum.

Series.idxmax Return the index of the maximum.

DataFrame.min Return the sum over the requested axis.

DataFrame.min Return the minimum over the requested axis.

DataFrame.max Return the maximum over the requested axis.

DataFrame.idxmin Return the index of the minimum over the requested axis.

DataFrame.idxmax Return the index of the maximum over the requested axis.

Examples

>>> idx = pd.MultiIndex.from_arrays([# doctest: +SKIP
... ['warm', 'warm', 'cold', 'cold'],
... ['dog', 'falcon', 'fish', 'spider']],
... names=['blooded', 'animal'])
>>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) # doctest: +SKIP
>>> s # doctest: +SKIP
blooded animal
warm dog 4

falcon 2
cold fish 0

spider 8
Name: legs, dtype: int64

>>> s.sum() # doctest: +SKIP
14

Sum using level names, as well as indices.

>>> s.sum(level='blooded') # doctest: +SKIP
blooded
warm 6
cold 8
Name: legs, dtype: int64

>>> s.sum(level=0) # doctest: +SKIP
blooded
warm 6
cold 8
Name: legs, dtype: int64

By default, the sum of an empty or all-NA Series is 0.

3.9. DataFrame 705

dask Documentation, Release 2.6.0

>>> pd.Series([]).sum() # min_count=0 is the default # doctest: +SKIP
0.0

This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty
series to be NaN, pass min_count=1.

>>> pd.Series([]).sum(min_count=1) # doctest: +SKIP
nan

Thanks to the skipna parameter, min_count handles all-NA and empty series identically.

>>> pd.Series([np.nan]).sum() # doctest: +SKIP
0.0

>>> pd.Series([np.nan]).sum(min_count=1) # doctest: +SKIP
nan

tail(n=5, compute=True)
Last n rows of the dataset

Caveat, the only checks the last n rows of the last partition.

to_bag(index=False)
Create a Dask Bag from a Series

to_csv(filename, **kwargs)
Store Dask DataFrame to CSV files

One filename per partition will be created. You can specify the filenames in a variety of ways.

Use a globstring:

>>> df.to_csv('/path/to/data/export-*.csv')

The * will be replaced by the increasing sequence 0, 1, 2, . . .

/path/to/data/export-0.csv
/path/to/data/export-1.csv

Use a globstring and a name_function= keyword argument. The name_function function should
expect an integer and produce a string. Strings produced by name_function must preserve the order of
their respective partition indices.

>>> from datetime import date, timedelta
>>> def name(i):
... return str(date(2015, 1, 1) + i * timedelta(days=1))

>>> name(0)
'2015-01-01'
>>> name(15)
'2015-01-16'

>>> df.to_csv('/path/to/data/export-*.csv', name_function=name) # doctest:
→˓+SKIP

706 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

/path/to/data/export-2015-01-01.csv
/path/to/data/export-2015-01-02.csv
...

You can also provide an explicit list of paths:

>>> paths = ['/path/to/data/alice.csv', '/path/to/data/bob.csv', ...]
>>> df.to_csv(paths)

Parameters

filename [string] Path glob indicating the naming scheme for the output files

name_function [callable, default None] Function accepting an integer (partition index)
and producing a string to replace the asterisk in the given filename globstring. Should
preserve the lexicographic order of partitions. Not supported when single_file is True.

single_file [bool, default False] Whether to save everything into a single CSV file. Under
the single file mode, each partition is appended at the end of the specified CSV file.
Note that not all filesystems support the append mode and thus the single file mode,
especially on cloud storage systems such as S3 or GCS. A warning will be issued
when writing to a file that is not backed by a local filesystem.

compression [string or None] String like ‘gzip’ or ‘xz’. Must support efficient random
access. Filenames with extensions corresponding to known compression algorithms
(gz, bz2) will be compressed accordingly automatically

sep [character, default ‘,’] Field delimiter for the output file

na_rep [string, default ‘’] Missing data representation

float_format [string, default None] Format string for floating point numbers

columns [sequence, optional] Columns to write

header [boolean or list of string, default True] Write out column names. If a list of string
is given it is assumed to be aliases for the column names

header_first_partition_only [boolean, default None] If set to True, only write the header
row in the first output file. By default, headers are written to all partitions under the
multiple file mode (single_file is False) and written only once under the single file
mode (single_file is True). It must not be False under the single file mode.

index [boolean, default True] Write row names (index)

index_label [string or sequence, or False, default None] Column label for index col-
umn(s) if desired. If None is given, and header and index are True, then the index
names are used. A sequence should be given if the DataFrame uses MultiIndex. If
False do not print fields for index names. Use index_label=False for easier importing
in R

nanRep [None] deprecated, use na_rep

mode [str] Python write mode, default ‘w’

encoding [string, optional] A string representing the encoding to use in the output file,
defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.

compression [string, optional] a string representing the compression to use in the output
file, allowed values are ‘gzip’, ‘bz2’, ‘xz’, only used when the first argument is a
filename

3.9. DataFrame 707

dask Documentation, Release 2.6.0

line_terminator [string, default ‘\n’] The newline character or character sequence to use
in the output file

quoting [optional constant from csv module] defaults to csv.QUOTE_MINIMAL

quotechar [string (length 1), default ‘”’] character used to quote fields

doublequote [boolean, default True] Control quoting of quotechar inside a field

escapechar [string (length 1), default None] character used to escape sep and quotechar
when appropriate

chunksize [int or None] rows to write at a time

tupleize_cols [boolean, default False] write multi_index columns as a list of tuples (if
True) or new (expanded format) if False)

date_format [string, default None] Format string for datetime objects

decimal: string, default ‘.’ Character recognized as decimal separator. E.g. use ‘,’ for
European data

storage_options: dict Parameters passed on to the backend filesystem class.

Returns

The names of the file written if they were computed right away

If not, the delayed tasks associated to the writing of the files

Raises

ValueError If header_first_partition_only is set to False or name_function is specified
when single_file is True.

to_dask_array(lengths=None)
Convert a dask DataFrame to a dask array.

Parameters

lengths [bool or Sequence of ints, optional] How to determine the chunks sizes for the
output array. By default, the output array will have unknown chunk lengths along the
first axis, which can cause some later operations to fail.

• True : immediately compute the length of each partition

• Sequence : a sequence of integers to use for the chunk sizes on the first axis. These
values are not validated for correctness, beyond ensuring that the number of items
matches the number of partitions.

to_delayed(optimize_graph=True)
Convert into a list of dask.delayed objects, one per partition.

Parameters

optimize_graph [bool, optional] If True [default], the graph is optimized before convert-
ing into dask.delayed objects.

See also:

dask.dataframe.from_delayed

708 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> partitions = df.to_delayed() # doctest: +SKIP

to_frame(name=None)
Convert Series to DataFrame.

This docstring was copied from pandas.core.series.Series.to_frame.

Some inconsistencies with the Dask version may exist.

Parameters

name [object, default None] The passed name should substitute for the series name (if it
has one).

Returns

data_frame [DataFrame]

to_hdf(path_or_buf, key, mode=’a’, append=False, **kwargs)
Store Dask Dataframe to Hierarchical Data Format (HDF) files

This is a parallel version of the Pandas function of the same name. Please see the Pandas docstring for
more detailed information about shared keyword arguments.

This function differs from the Pandas version by saving the many partitions of a Dask DataFrame in paral-
lel, either to many files, or to many datasets within the same file. You may specify this parallelism with an
asterix *within the filename or datapath, and an optional name_function. The asterix will be replaced
with an increasing sequence of integers starting from 0 or with the result of calling name_function
on each of those integers.

This function only supports the Pandas 'table' format, not the more specialized 'fixed' format.

Parameters

path [string, pathlib.Path] Path to a target filename. Supports strings, pathlib.Path,
or any object implementing the __fspath__ protocol. May contain a * to denote
many filenames.

key [string] Datapath within the files. May contain a * to denote many locations

name_function [function] A function to convert the * in the above options to a string.
Should take in a number from 0 to the number of partitions and return a string. (see
examples below)

compute [bool] Whether or not to execute immediately. If False then this returns a
dask.Delayed value.

lock [Lock, optional] Lock to use to prevent concurrency issues. By default
a threading.Lock, multiprocessing.Lock or SerializableLock
will be used depending on your scheduler if a lock is required. See
dask.utils.get_scheduler_lock for more information about lock selection.

scheduler [string] The scheduler to use, like “threads” or “processes”

**other: See pandas.to_hdf for more information

Returns

filenames [list] Returned if compute is True. List of file names that each partition is
saved to.

3.9. DataFrame 709

dask Documentation, Release 2.6.0

delayed [dask.Delayed] Returned if compute is False. Delayed object to execute
to_hdf when computed.

See also:

read_hdf, to_parquet

Examples

Save Data to a single file

>>> df.to_hdf('output.hdf', '/data') # doctest: +SKIP

Save data to multiple datapaths within the same file:

>>> df.to_hdf('output.hdf', '/data-*') # doctest: +SKIP

Save data to multiple files:

>>> df.to_hdf('output-*.hdf', '/data') # doctest: +SKIP

Save data to multiple files, using the multiprocessing scheduler:

>>> df.to_hdf('output-*.hdf', '/data', scheduler='processes') # doctest:
→˓+SKIP

Specify custom naming scheme. This writes files as ‘2000-01-01.hdf’, ‘2000-01-02.hdf’, ‘2000-01-
03.hdf’, etc..

>>> from datetime import date, timedelta
>>> base = date(year=2000, month=1, day=1)
>>> def name_function(i):
... ''' Convert integer 0 to n to a string '''
... return base + timedelta(days=i)

>>> df.to_hdf('*.hdf', '/data', name_function=name_function) # doctest: +SKIP

to_json(filename, *args, **kwargs)
See dd.to_json docstring for more information

to_string(max_rows=5)
Render a string representation of the Series.

This docstring was copied from pandas.core.series.Series.to_string.

Some inconsistencies with the Dask version may exist.

Parameters

buf [StringIO-like, optional (Not supported in Dask)] buffer to write to

na_rep [string, optional (Not supported in Dask)] string representation of NAN to use,
default ‘NaN’

float_format [one-parameter function, optional (Not supported in Dask)] formatter func-
tion to apply to columns’ elements if they are floats default None

header [boolean, default True (Not supported in Dask)] Add the Series header (index
name)

710 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

index [bool, optional (Not supported in Dask)] Add index (row) labels, default True

length [boolean, default False (Not supported in Dask)] Add the Series length

dtype [boolean, default False (Not supported in Dask)] Add the Series dtype

name [boolean, default False (Not supported in Dask)] Add the Series name if not None

max_rows [int, optional] Maximum number of rows to show before truncating. If None,
show all.

Returns

formatted [string (if not buffer passed)]

to_timestamp(freq=None, how=’start’, axis=0)
Cast to DatetimeIndex of timestamps, at beginning of period.

This docstring was copied from pandas.core.frame.DataFrame.to_timestamp.

Some inconsistencies with the Dask version may exist.

Parameters

freq [string, default frequency of PeriodIndex] Desired frequency

how [{‘s’, ‘e’, ‘start’, ‘end’}] Convention for converting period to timestamp; start of
period vs. end

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] The axis to convert (the index by default)

copy [boolean, default True (Not supported in Dask)] If false then underlying input data
is not copied

Returns

df [DataFrame with DatetimeIndex]

truediv(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters

other [Series or scalar value]

fill_value [None or float value, default None (NaN)] Fill existing missing (NaN) values,
and any new element needed for successful Series alignment, with this value before
computation. If data in both corresponding Series locations is missing the result will
be missing

level [int or name] Broadcast across a level, matching Index values on the passed Multi-
Index level

Returns

result [Series]

See also:

Series.rtruediv

3.9. DataFrame 711

dask Documentation, Release 2.6.0

Examples

>>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) # doctest:
→˓+SKIP
>>> a # doctest: +SKIP
a 1.0
b 1.0
c 1.0
d NaN
dtype: float64
>>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) #
→˓doctest: +SKIP
>>> b # doctest: +SKIP
a 1.0
b NaN
d 1.0
e NaN
dtype: float64
>>> a.add(b, fill_value=0) # doctest: +SKIP
a 2.0
b 1.0
c 1.0
d 1.0
e NaN
dtype: float64

unique(split_every=None, split_out=1)
Return Series of unique values in the object. Includes NA values.

Returns

uniques [Series]

value_counts(split_every=None, split_out=1)
Return a Series containing counts of unique values.

This docstring was copied from pandas.core.series.Series.value_counts.

Some inconsistencies with the Dask version may exist.

The resulting object will be in descending order so that the first element is the most frequently-occurring
element. Excludes NA values by default.

Parameters

normalize [boolean, default False (Not supported in Dask)] If True then the object re-
turned will contain the relative frequencies of the unique values.

sort [boolean, default True (Not supported in Dask)] Sort by values.

ascending [boolean, default False (Not supported in Dask)] Sort in ascending order.

bins [integer, optional (Not supported in Dask)] Rather than count values, group them
into half-open bins, a convenience for pd.cut, only works with numeric data.

dropna [boolean, default True (Not supported in Dask)] Don’t include counts of NaN.

Returns

counts [Series]

See also:

712 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Series.count Number of non-NA elements in a Series.

DataFrame.count Number of non-NA elements in a DataFrame.

Examples

>>> index = pd.Index([3, 1, 2, 3, 4, np.nan]) # doctest: +SKIP
>>> index.value_counts() # doctest: +SKIP
3.0 2
4.0 1
2.0 1
1.0 1
dtype: int64

With normalize set to True, returns the relative frequency by dividing all values by the sum of values.

>>> s = pd.Series([3, 1, 2, 3, 4, np.nan]) # doctest: +SKIP
>>> s.value_counts(normalize=True) # doctest: +SKIP
3.0 0.4
4.0 0.2
2.0 0.2
1.0 0.2
dtype: float64

bins

Bins can be useful for going from a continuous variable to a categorical variable; instead of counting
unique apparitions of values, divide the index in the specified number of half-open bins.

>>> s.value_counts(bins=3) # doctest: +SKIP
(2.0, 3.0] 2
(0.996, 2.0] 2
(3.0, 4.0] 1
dtype: int64

dropna

With dropna set to False we can also see NaN index values.

>>> s.value_counts(dropna=False) # doctest: +SKIP
3.0 2
NaN 1
4.0 1
2.0 1
1.0 1
dtype: int64

values
Return a dask.array of the values of this dataframe

Warning: This creates a dask.array without precise shape information. Operations that depend on shape
information, like slicing or reshaping, will not work.

var(axis=None, skipna=True, ddof=1, split_every=False, dtype=None, out=None)
Return unbiased variance over requested axis.

This docstring was copied from pandas.core.frame.DataFrame.var.

Some inconsistencies with the Dask version may exist.

3.9. DataFrame 713

dask Documentation, Release 2.6.0

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis [{index (0), columns (1)}]

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA

level [int or level name, default None (Not supported in Dask)] If the axis is a MultiIndex
(hierarchical), count along a particular level, collapsing into a Series

ddof [int, default 1] Delta Degrees of Freedom. The divisor used in calculations is N -
ddof, where N represents the number of elements.

numeric_only [boolean, default None (Not supported in Dask)] Include only float, int,
boolean columns. If None, will attempt to use everything, then use only numeric data.
Not implemented for Series.

Returns

var [Series or DataFrame (if level specified)]

visualize(filename=’mydask’, format=None, optimize_graph=False, **kwargs)
Render the computation of this object’s task graph using graphviz.

Requires graphviz to be installed.

Parameters

filename [str or None, optional] The name (without an extension) of the file to write to
disk. If filename is None, no file will be written, and we communicate with dot using
only pipes.

format [{‘png’, ‘pdf’, ‘dot’, ‘svg’, ‘jpeg’, ‘jpg’}, optional] Format in which to write
output file. Default is ‘png’.

optimize_graph [bool, optional] If True, the graph is optimized before rendering. Oth-
erwise, the graph is displayed as is. Default is False.

color: {None, ‘order’}, optional Options to color nodes. Provide cmap= keyword for
additional colormap

**kwargs Additional keyword arguments to forward to to_graphviz.

Returns

result [IPython.diplay.Image, IPython.display.SVG, or None] See dask.dot.dot_graph for
more information.

See also:

dask.base.visualize, dask.dot.dot_graph

Notes

For more information on optimization see here:

https://docs.dask.org/en/latest/optimize.html

714 Chapter 3. Complex Algorithms

https://docs.dask.org/en/latest/optimize.html

dask Documentation, Release 2.6.0

Examples

>>> x.visualize(filename='dask.pdf') # doctest: +SKIP
>>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP

where(cond, other=nan)
Replace values where the condition is False.

This docstring was copied from pandas.core.frame.DataFrame.where.

Some inconsistencies with the Dask version may exist.

Parameters

cond [boolean NDFrame, array-like, or callable] Where cond is True, keep the original
value. Where False, replace with corresponding value from other. If cond is callable,
it is computed on the NDFrame and should return boolean NDFrame or array. The
callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as cond.

other [scalar, NDFrame, or callable] Entries where cond is False are replaced with cor-
responding value from other. If other is callable, it is computed on the NDFrame
and should return scalar or NDFrame. The callable must not change input NDFrame
(though pandas doesn’t check it).

New in version 0.18.1: A callable can be used as other.

inplace [boolean, default False (Not supported in Dask)] Whether to perform the opera-
tion in place on the data.

axis [int, default None (Not supported in Dask)] Alignment axis if needed.

level [int, default None (Not supported in Dask)] Alignment level if needed.

errors [str, {‘raise’, ‘ignore’}, default raise (Not supported in Dask)] Note that currently
this parameter won’t affect the results and will always coerce to a suitable dtype.

• raise : allow exceptions to be raised.

• ignore : suppress exceptions. On error return original object.

try_cast [boolean, default False (Not supported in Dask)] Try to cast the result back to
the input type (if possible).

raise_on_error [boolean, default True (Not supported in Dask)] Whether to raise on in-
valid data types (e.g. trying to where on strings).

Deprecated since version 0.21.0: Use errors.

Returns

wh [same type as caller]

See also:

DataFrame.mask() Return an object of same shape as self.

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is True the element is used; otherwise the corresponding element from the DataFrame other is
used.

3.9. DataFrame 715

dask Documentation, Release 2.6.0

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,
df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.

Examples

>>> s = pd.Series(range(5)) # doctest: +SKIP
>>> s.where(s > 0) # doctest: +SKIP
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
dtype: float64

>>> s.mask(s > 0) # doctest: +SKIP
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

>>> s.where(s > 1, 10) # doctest: +SKIP
0 10
1 10
2 2
3 3
4 4
dtype: int64

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) #
→˓doctest: +SKIP
>>> m = df % 3 == 0 # doctest: +SKIP
>>> df.where(m, -df) # doctest: +SKIP

A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df) # doctest: +SKIP

A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df) # doctest: +SKIP

A B
0 True True
1 True True
2 True True
3 True True
4 True True

716 Chapter 3. Complex Algorithms

https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#indexing-where-mask

dask Documentation, Release 2.6.0

DataFrameGroupBy

class dask.dataframe.groupby.DataFrameGroupBy(df, by=None, slice=None,
group_keys=True)

agg(arg, split_every=None, split_out=1)
Aggregate using one or more operations over the specified axis.

This docstring was copied from pandas.core.groupby.generic.DataFrameGroupBy.agg.

Some inconsistencies with the Dask version may exist.

Parameters

func [function, str, list or dict] Function to use for aggregating the data. If a function,
must either work when passed a DataFrame or when passed to DataFrame.apply.

Accepted combinations are:

• function

• string function name

• list of functions and/or function names, e.g. [np.sum, 'mean']

• dict of axis labels -> functions, function names or list of such.

*args Positional arguments to pass to func.

**kwargs Keyword arguments to pass to func.

Returns

DataFrame, Series or scalar if DataFrame.agg is called with a single function, returns
a Series if DataFrame.agg is called with several functions, returns a DataFrame if
Series.agg is called with single function, returns a scalar if Series.agg is called with
several functions, returns a Series

See also:

pandas.DataFrame.groupby.apply, pandas.DataFrame.groupby.transform,
pandas.DataFrame.aggregate

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> df = pd.DataFrame({'A': [1, 1, 2, 2], # doctest: +SKIP
... 'B': [1, 2, 3, 4],
... 'C': np.random.randn(4)})

>>> df # doctest: +SKIP
A B C

0 1 1 0.362838
1 1 2 0.227877
2 2 3 1.267767
3 2 4 -0.562860

3.9. DataFrame 717

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html#pandas.DataFrame.aggregate

dask Documentation, Release 2.6.0

The aggregation is for each column.

>>> df.groupby('A').agg('min') # doctest: +SKIP
B C

A
1 1 0.227877
2 3 -0.562860

Multiple aggregations

>>> df.groupby('A').agg(['min', 'max']) # doctest: +SKIP
B C

min max min max
A
1 1 2 0.227877 0.362838
2 3 4 -0.562860 1.267767

Select a column for aggregation

>>> df.groupby('A').B.agg(['min', 'max']) # doctest: +SKIP
min max

A
1 1 2
2 3 4

Different aggregations per column

>>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) # doctest: +SKIP
B C

min max sum
A
1 1 2 0.590716
2 3 4 0.704907

aggregate(arg, split_every=None, split_out=1)
Aggregate using one or more operations over the specified axis.

This docstring was copied from pandas.core.groupby.generic.DataFrameGroupBy.aggregate.

Some inconsistencies with the Dask version may exist.

Parameters

func [function, str, list or dict] Function to use for aggregating the data. If a function,
must either work when passed a DataFrame or when passed to DataFrame.apply.

Accepted combinations are:

• function

• string function name

• list of functions and/or function names, e.g. [np.sum, 'mean']

• dict of axis labels -> functions, function names or list of such.

*args Positional arguments to pass to func.

**kwargs Keyword arguments to pass to func.

Returns

718 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

DataFrame, Series or scalar if DataFrame.agg is called with a single function, returns
a Series if DataFrame.agg is called with several functions, returns a DataFrame if
Series.agg is called with single function, returns a scalar if Series.agg is called with
several functions, returns a Series

See also:

pandas.DataFrame.groupby.apply, pandas.DataFrame.groupby.transform,
pandas.DataFrame.aggregate

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> df = pd.DataFrame({'A': [1, 1, 2, 2], # doctest: +SKIP
... 'B': [1, 2, 3, 4],
... 'C': np.random.randn(4)})

>>> df # doctest: +SKIP
A B C

0 1 1 0.362838
1 1 2 0.227877
2 2 3 1.267767
3 2 4 -0.562860

The aggregation is for each column.

>>> df.groupby('A').agg('min') # doctest: +SKIP
B C

A
1 1 0.227877
2 3 -0.562860

Multiple aggregations

>>> df.groupby('A').agg(['min', 'max']) # doctest: +SKIP
B C

min max min max
A
1 1 2 0.227877 0.362838
2 3 4 -0.562860 1.267767

Select a column for aggregation

>>> df.groupby('A').B.agg(['min', 'max']) # doctest: +SKIP
min max

A
1 1 2
2 3 4

Different aggregations per column

3.9. DataFrame 719

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.aggregate.html#pandas.DataFrame.aggregate

dask Documentation, Release 2.6.0

>>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) # doctest: +SKIP
B C

min max sum
A
1 1 2 0.590716
2 3 4 0.704907

apply(func, *args, **kwargs)
Parallel version of pandas GroupBy.apply

This mimics the pandas version except for the following:

1. If the grouper does not align with the index then this causes a full shuffle. The order of rows within
each group may not be preserved.

2. Dask’s GroupBy.apply is not appropriate for aggregations. For custom aggregations, use dask.
dataframe.groupby.Aggregation.

Warning: Pandas’ groupby-apply can be used to to apply arbitrary functions, including aggregations
that result in one row per group. Dask’s groupby-apply will apply func once to each partition-group
pair, so when func is a reduction you’ll end up with one row per partition-group pair. To apply a
custom aggregation with Dask, use dask.dataframe.groupby.Aggregation.

Parameters

func: function Function to apply

args, kwargs [Scalar, Delayed or object] Arguments and keywords to pass to the func-
tion.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

Returns

applied [Series or DataFrame depending on columns keyword]

corr(ddof=1, split_every=None, split_out=1)
Compute pairwise correlation of columns, excluding NA/null values.

This docstring was copied from pandas.core.frame.DataFrame.corr.

Some inconsistencies with the Dask version may exist.

Groupby correlation: corr(X, Y) = cov(X, Y) / (std_x * std_y)

Parameters

method [{‘pearson’, ‘kendall’, ‘spearman’} or callable (Not supported in Dask)]

• pearson : standard correlation coefficient

• kendall : Kendall Tau correlation coefficient

720 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• spearman : Spearman rank correlation

• callable: callable with input two 1d ndarrays and returning a float .. version-
added:: 0.24.0

min_periods [int, optional (Not supported in Dask)] Minimum number of observations
required per pair of columns to have a valid result. Currently only available for pear-
son and spearman correlation

Returns

y [DataFrame]

See also:

DataFrame.corrwith, Series.corr

Examples

>>> histogram_intersection = lambda a, b: np.minimum(a, b # doctest: +SKIP
...).sum().round(decimals=1)
>>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], # doctest:
→˓+SKIP
... columns=['dogs', 'cats'])
>>> df.corr(method=histogram_intersection) # doctest: +SKIP

dogs cats
dogs 1.0 0.3
cats 0.3 1.0

count(split_every=None, split_out=1)
Compute count of group, excluding missing values.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.count.

Some inconsistencies with the Dask version may exist.

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

cov(ddof=1, split_every=None, split_out=1, std=False)
Compute pairwise covariance of columns, excluding NA/null values.

This docstring was copied from pandas.core.frame.DataFrame.cov.

Some inconsistencies with the Dask version may exist.

Groupby covariance is accomplished by

1. Computing intermediate values for sum, count, and the product of all columns: a b c -> a*a, a*b,
b*b, b*c, c*c.

2. The values are then aggregated and the final covariance value is calculated: cov(X, Y) = X*Y - Xbar
* Ybar

When std is True calculate Correlation

Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the co-
variance matrix of the columns of the DataFrame.

Both NA and null values are automatically excluded from the calculation. (See the note below about bias
from missing values.) A threshold can be set for the minimum number of observations for each value
created. Comparisons with observations below this threshold will be returned as NaN.

3.9. DataFrame 721

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Covariance_matrix

dask Documentation, Release 2.6.0

This method is generally used for the analysis of time series data to understand the relationship between
different measures across time.

Parameters

min_periods [int, optional (Not supported in Dask)] Minimum number of observations
required per pair of columns to have a valid result.

Returns

DataFrame The covariance matrix of the series of the DataFrame.

See also:

pandas.Series.cov Compute covariance with another Series.

pandas.core.window.EWM.cov Exponential weighted sample covariance.

pandas.core.window.Expanding.cov Expanding sample covariance.

pandas.core.window.Rolling.cov Rolling sample covariance.

Notes

Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1.

For DataFrames that have Series that are missing data (assuming that data is missing at random) the re-
turned covariance matrix will be an unbiased estimate of the variance and covariance between the member
Series.

However, for many applications this estimate may not be acceptable because the estimate covariance
matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having
absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of
covariance matrices for more details.

Examples

>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], # doctest: +SKIP
... columns=['dogs', 'cats'])
>>> df.cov() # doctest: +SKIP

dogs cats
dogs 0.666667 -1.000000
cats -1.000000 1.666667

>>> np.random.seed(42) # doctest: +SKIP
>>> df = pd.DataFrame(np.random.randn(1000, 5), # doctest: +SKIP
... columns=['a', 'b', 'c', 'd', 'e'])
>>> df.cov() # doctest: +SKIP

a b c d e
a 0.998438 -0.020161 0.059277 -0.008943 0.014144
b -0.020161 1.059352 -0.008543 -0.024738 0.009826
c 0.059277 -0.008543 1.010670 -0.001486 -0.000271
d -0.008943 -0.024738 -0.001486 0.921297 -0.013692
e 0.014144 0.009826 -0.000271 -0.013692 0.977795

Minimum number of periods

This method also supports an optional min_periods keyword that specifies the required minimum
number of non-NA observations for each column pair in order to have a valid result:

722 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.cov.html#pandas.Series.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.EWM.cov.html#pandas.core.window.EWM.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.Expanding.cov.html#pandas.core.window.Expanding.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.Rolling.cov.html#pandas.core.window.Rolling.cov
https://en.wikipedia.org/wiki/Missing_data#Missing_at_random
http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices
http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices

dask Documentation, Release 2.6.0

>>> np.random.seed(42) # doctest: +SKIP
>>> df = pd.DataFrame(np.random.randn(20, 3), # doctest: +SKIP
... columns=['a', 'b', 'c'])
>>> df.loc[df.index[:5], 'a'] = np.nan # doctest: +SKIP
>>> df.loc[df.index[5:10], 'b'] = np.nan # doctest: +SKIP
>>> df.cov(min_periods=12) # doctest: +SKIP

a b c
a 0.316741 NaN -0.150812
b NaN 1.248003 0.191417
c -0.150812 0.191417 0.895202

cumcount(axis=None)
Number each item in each group from 0 to the length of that group - 1.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.cumcount.

Some inconsistencies with the Dask version may exist.

Essentially this is equivalent to

>>> self.apply(lambda x: pd.Series(np.arange(len(x)), x.index)) # doctest:
→˓+SKIP

Parameters

ascending [bool, default True (Not supported in Dask)] If False, number in reverse, from
length of group - 1 to 0.

See also:

ngroup Number the groups themselves.

Examples

>>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], #
→˓doctest: +SKIP
... columns=['A'])
>>> df # doctest: +SKIP

A
0 a
1 a
2 a
3 b
4 b
5 a
>>> df.groupby('A').cumcount() # doctest: +SKIP
0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64
>>> df.groupby('A').cumcount(ascending=False) # doctest: +SKIP
0 3
1 2

(continues on next page)

3.9. DataFrame 723

dask Documentation, Release 2.6.0

(continued from previous page)

2 1
3 1
4 0
5 0
dtype: int64

cumprod(axis=0)
Cumulative product for each group.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.cumprod.

Some inconsistencies with the Dask version may exist.

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

cumsum(axis=0)
Cumulative sum for each group.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.cumsum.

Some inconsistencies with the Dask version may exist.

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

first(split_every=None, split_out=1)
Compute first of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

get_group(key)
Constructs NDFrame from group with provided name.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.get_group.

Some inconsistencies with the Dask version may exist.

Parameters

name [object (Not supported in Dask)] the name of the group to get as a DataFrame

obj [NDFrame, default None (Not supported in Dask)] the NDFrame to take the
DataFrame out of. If it is None, the object groupby was called on will be used

Returns

group [same type as obj]

idxmax(split_every=None, split_out=1, axis=None, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmax.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] 0 or ‘index’ for row-wise, 1 or ‘columns’
for column-wise

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

Returns

724 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

dask Documentation, Release 2.6.0

idxmax [Series]

Raises

ValueError

• If the row/column is empty

See also:

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

idxmin(split_every=None, split_out=1, axis=None, skipna=True)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmin.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] 0 or ‘index’ for row-wise, 1 or ‘columns’
for column-wise

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

Returns

idxmin [Series]

Raises

ValueError

• If the row/column is empty

See also:

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

last(split_every=None, split_out=1)
Compute last of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

max(split_every=None, split_out=1)
Compute max of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

mean(split_every=None, split_out=1)
Compute mean of groups, excluding missing values.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.mean.

Some inconsistencies with the Dask version may exist.

Returns

3.9. DataFrame 725

dask Documentation, Release 2.6.0

pandas.Series or pandas.DataFrame

See also:

pandas.Series., pandas.DataFrame., pandas.Panel.

Examples

>>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], # doctest: +SKIP
... 'B': [np.nan, 2, 3, 4, 5],
... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C'])

Groupby one column and return the mean of the remaining columns in each group.

>>> df.groupby('A').mean() # doctest: +SKIP
>>>

B C
A
1 3.0 1.333333
2 4.0 1.500000

Groupby two columns and return the mean of the remaining column.

>>> df.groupby(['A', 'B']).mean() # doctest: +SKIP
>>>

C
A B
1 2.0 2
4.0 1

2 3.0 1
5.0 2

Groupby one column and return the mean of only particular column in the group.

>>> df.groupby('A')['B'].mean() # doctest: +SKIP
>>>
A
1 3.0
2 4.0
Name: B, dtype: float64

min(split_every=None, split_out=1)
Compute min of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

prod(split_every=None, split_out=1, min_count=None)
Compute prod of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

size(split_every=None, split_out=1)
Compute group sizes.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.size.

Some inconsistencies with the Dask version may exist.

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

726 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

dask Documentation, Release 2.6.0

std(ddof=1, split_every=None, split_out=1)
Compute standard deviation of groups, excluding missing values.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.std.

Some inconsistencies with the Dask version may exist.

For multiple groupings, the result index will be a MultiIndex.

Parameters

ddof [integer, default 1] degrees of freedom

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

sum(split_every=None, split_out=1, min_count=None)
Compute sum of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

transform(func, *args, **kwargs)
Parallel version of pandas GroupBy.transform

This mimics the pandas version except for the following:

1. If the grouper does not align with the index then this causes a full shuffle. The order of rows within
each group may not be preserved.

2. Dask’s GroupBy.transform is not appropriate for aggregations. For custom aggregations, use dask.
dataframe.groupby.Aggregation.

Warning: Pandas’ groupby-transform can be used to to apply arbitrary functions, including aggre-
gations that result in one row per group. Dask’s groupby-transform will apply func once to each
partition-group pair, so when func is a reduction you’ll end up with one row per partition-group pair.
To apply a custom aggregation with Dask, use dask.dataframe.groupby.Aggregation.

Parameters

func: function Function to apply

args, kwargs [Scalar, Delayed or object] Arguments and keywords to pass to the func-
tion.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

Returns

applied [Series or DataFrame depending on columns keyword]

var(ddof=1, split_every=None, split_out=1)
Compute variance of groups, excluding missing values.

3.9. DataFrame 727

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

dask Documentation, Release 2.6.0

This docstring was copied from pandas.core.groupby.groupby.GroupBy.var.

Some inconsistencies with the Dask version may exist.

For multiple groupings, the result index will be a MultiIndex.

Parameters

ddof [integer, default 1] degrees of freedom

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

SeriesGroupBy

class dask.dataframe.groupby.SeriesGroupBy(df, by=None, slice=None, **kwargs)

agg(arg, split_every=None, split_out=1)
Aggregate using one or more operations over the specified axis.

This docstring was copied from pandas.core.groupby.generic.SeriesGroupBy.agg.

Some inconsistencies with the Dask version may exist.

Parameters

func [function, str, list or dict] Function to use for aggregating the data. If a function,
must either work when passed a Series or when passed to Series.apply.

Accepted combinations are:

• function

• string function name

• list of functions and/or function names, e.g. [np.sum, 'mean']

• dict of axis labels -> functions, function names or list of such.

*args Positional arguments to pass to func.

**kwargs Keyword arguments to pass to func.

Returns

DataFrame, Series or scalar if DataFrame.agg is called with a single function, returns
a Series if DataFrame.agg is called with several functions, returns a DataFrame if
Series.agg is called with single function, returns a scalar if Series.agg is called with
several functions, returns a Series

See also:

pandas.Series.groupby.apply, pandas.Series.groupby.transform, pandas.
Series.aggregate

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

728 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.aggregate.html#pandas.Series.aggregate
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.aggregate.html#pandas.Series.aggregate

dask Documentation, Release 2.6.0

Examples

>>> s = pd.Series([1, 2, 3, 4]) # doctest: +SKIP

>>> s # doctest: +SKIP
0 1
1 2
2 3
3 4
dtype: int64

>>> s.groupby([1, 1, 2, 2]).min() # doctest: +SKIP
1 1
2 3
dtype: int64

>>> s.groupby([1, 1, 2, 2]).agg('min') # doctest: +SKIP
1 1
2 3
dtype: int64

>>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) # doctest: +SKIP
min max

1 1 2
2 3 4

aggregate(arg, split_every=None, split_out=1)
Aggregate using one or more operations over the specified axis.

This docstring was copied from pandas.core.groupby.generic.SeriesGroupBy.aggregate.

Some inconsistencies with the Dask version may exist.

Parameters

func [function, str, list or dict] Function to use for aggregating the data. If a function,
must either work when passed a Series or when passed to Series.apply.

Accepted combinations are:

• function

• string function name

• list of functions and/or function names, e.g. [np.sum, 'mean']

• dict of axis labels -> functions, function names or list of such.

*args Positional arguments to pass to func.

**kwargs Keyword arguments to pass to func.

Returns

DataFrame, Series or scalar if DataFrame.agg is called with a single function, returns
a Series if DataFrame.agg is called with several functions, returns a DataFrame if
Series.agg is called with single function, returns a scalar if Series.agg is called with
several functions, returns a Series

See also:

3.9. DataFrame 729

dask Documentation, Release 2.6.0

pandas.Series.groupby.apply, pandas.Series.groupby.transform, pandas.
Series.aggregate

Notes

agg is an alias for aggregate. Use the alias.

A passed user-defined-function will be passed a Series for evaluation.

Examples

>>> s = pd.Series([1, 2, 3, 4]) # doctest: +SKIP

>>> s # doctest: +SKIP
0 1
1 2
2 3
3 4
dtype: int64

>>> s.groupby([1, 1, 2, 2]).min() # doctest: +SKIP
1 1
2 3
dtype: int64

>>> s.groupby([1, 1, 2, 2]).agg('min') # doctest: +SKIP
1 1
2 3
dtype: int64

>>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) # doctest: +SKIP
min max

1 1 2
2 3 4

apply(func, *args, **kwargs)
Parallel version of pandas GroupBy.apply

This mimics the pandas version except for the following:

1. If the grouper does not align with the index then this causes a full shuffle. The order of rows within
each group may not be preserved.

2. Dask’s GroupBy.apply is not appropriate for aggregations. For custom aggregations, use dask.
dataframe.groupby.Aggregation.

Warning: Pandas’ groupby-apply can be used to to apply arbitrary functions, including aggregations
that result in one row per group. Dask’s groupby-apply will apply func once to each partition-group
pair, so when func is a reduction you’ll end up with one row per partition-group pair. To apply a
custom aggregation with Dask, use dask.dataframe.groupby.Aggregation.

Parameters

func: function Function to apply

730 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.aggregate.html#pandas.Series.aggregate
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.aggregate.html#pandas.Series.aggregate

dask Documentation, Release 2.6.0

args, kwargs [Scalar, Delayed or object] Arguments and keywords to pass to the func-
tion.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

Returns

applied [Series or DataFrame depending on columns keyword]

corr(ddof=1, split_every=None, split_out=1)
Compute pairwise correlation of columns, excluding NA/null values.

This docstring was copied from pandas.core.frame.DataFrame.corr.

Some inconsistencies with the Dask version may exist.

Groupby correlation: corr(X, Y) = cov(X, Y) / (std_x * std_y)

Parameters

method [{‘pearson’, ‘kendall’, ‘spearman’} or callable (Not supported in Dask)]

• pearson : standard correlation coefficient

• kendall : Kendall Tau correlation coefficient

• spearman : Spearman rank correlation

• callable: callable with input two 1d ndarrays and returning a float .. version-
added:: 0.24.0

min_periods [int, optional (Not supported in Dask)] Minimum number of observations
required per pair of columns to have a valid result. Currently only available for pear-
son and spearman correlation

Returns

y [DataFrame]

See also:

DataFrame.corrwith, Series.corr

Examples

>>> histogram_intersection = lambda a, b: np.minimum(a, b # doctest: +SKIP
...).sum().round(decimals=1)
>>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], # doctest:
→˓+SKIP
... columns=['dogs', 'cats'])
>>> df.corr(method=histogram_intersection) # doctest: +SKIP

dogs cats
dogs 1.0 0.3
cats 0.3 1.0

3.9. DataFrame 731

dask Documentation, Release 2.6.0

count(split_every=None, split_out=1)
Compute count of group, excluding missing values.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.count.

Some inconsistencies with the Dask version may exist.

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

cov(ddof=1, split_every=None, split_out=1, std=False)
Compute pairwise covariance of columns, excluding NA/null values.

This docstring was copied from pandas.core.frame.DataFrame.cov.

Some inconsistencies with the Dask version may exist.

Groupby covariance is accomplished by

1. Computing intermediate values for sum, count, and the product of all columns: a b c -> a*a, a*b,
b*b, b*c, c*c.

2. The values are then aggregated and the final covariance value is calculated: cov(X, Y) = X*Y - Xbar
* Ybar

When std is True calculate Correlation

Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the co-
variance matrix of the columns of the DataFrame.

Both NA and null values are automatically excluded from the calculation. (See the note below about bias
from missing values.) A threshold can be set for the minimum number of observations for each value
created. Comparisons with observations below this threshold will be returned as NaN.

This method is generally used for the analysis of time series data to understand the relationship between
different measures across time.

Parameters

min_periods [int, optional (Not supported in Dask)] Minimum number of observations
required per pair of columns to have a valid result.

Returns

DataFrame The covariance matrix of the series of the DataFrame.

See also:

pandas.Series.cov Compute covariance with another Series.

pandas.core.window.EWM.cov Exponential weighted sample covariance.

pandas.core.window.Expanding.cov Expanding sample covariance.

pandas.core.window.Rolling.cov Rolling sample covariance.

Notes

Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1.

For DataFrames that have Series that are missing data (assuming that data is missing at random) the re-
turned covariance matrix will be an unbiased estimate of the variance and covariance between the member
Series.

732 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Covariance_matrix
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.cov.html#pandas.Series.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.EWM.cov.html#pandas.core.window.EWM.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.Expanding.cov.html#pandas.core.window.Expanding.cov
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.window.Rolling.cov.html#pandas.core.window.Rolling.cov
https://en.wikipedia.org/wiki/Missing_data#Missing_at_random

dask Documentation, Release 2.6.0

However, for many applications this estimate may not be acceptable because the estimate covariance
matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having
absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of
covariance matrices for more details.

Examples

>>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], # doctest: +SKIP
... columns=['dogs', 'cats'])
>>> df.cov() # doctest: +SKIP

dogs cats
dogs 0.666667 -1.000000
cats -1.000000 1.666667

>>> np.random.seed(42) # doctest: +SKIP
>>> df = pd.DataFrame(np.random.randn(1000, 5), # doctest: +SKIP
... columns=['a', 'b', 'c', 'd', 'e'])
>>> df.cov() # doctest: +SKIP

a b c d e
a 0.998438 -0.020161 0.059277 -0.008943 0.014144
b -0.020161 1.059352 -0.008543 -0.024738 0.009826
c 0.059277 -0.008543 1.010670 -0.001486 -0.000271
d -0.008943 -0.024738 -0.001486 0.921297 -0.013692
e 0.014144 0.009826 -0.000271 -0.013692 0.977795

Minimum number of periods

This method also supports an optional min_periods keyword that specifies the required minimum
number of non-NA observations for each column pair in order to have a valid result:

>>> np.random.seed(42) # doctest: +SKIP
>>> df = pd.DataFrame(np.random.randn(20, 3), # doctest: +SKIP
... columns=['a', 'b', 'c'])
>>> df.loc[df.index[:5], 'a'] = np.nan # doctest: +SKIP
>>> df.loc[df.index[5:10], 'b'] = np.nan # doctest: +SKIP
>>> df.cov(min_periods=12) # doctest: +SKIP

a b c
a 0.316741 NaN -0.150812
b NaN 1.248003 0.191417
c -0.150812 0.191417 0.895202

cumcount(axis=None)
Number each item in each group from 0 to the length of that group - 1.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.cumcount.

Some inconsistencies with the Dask version may exist.

Essentially this is equivalent to

>>> self.apply(lambda x: pd.Series(np.arange(len(x)), x.index)) # doctest:
→˓+SKIP

Parameters

ascending [bool, default True (Not supported in Dask)] If False, number in reverse, from
length of group - 1 to 0.

3.9. DataFrame 733

http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices
http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_matrices

dask Documentation, Release 2.6.0

See also:

ngroup Number the groups themselves.

Examples

>>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], #
→˓doctest: +SKIP
... columns=['A'])
>>> df # doctest: +SKIP

A
0 a
1 a
2 a
3 b
4 b
5 a
>>> df.groupby('A').cumcount() # doctest: +SKIP
0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64
>>> df.groupby('A').cumcount(ascending=False) # doctest: +SKIP
0 3
1 2
2 1
3 1
4 0
5 0
dtype: int64

cumprod(axis=0)
Cumulative product for each group.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.cumprod.

Some inconsistencies with the Dask version may exist.

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

cumsum(axis=0)
Cumulative sum for each group.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.cumsum.

Some inconsistencies with the Dask version may exist.

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

first(split_every=None, split_out=1)
Compute first of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

734 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

dask Documentation, Release 2.6.0

get_group(key)
Constructs NDFrame from group with provided name.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.get_group.

Some inconsistencies with the Dask version may exist.

Parameters

name [object (Not supported in Dask)] the name of the group to get as a DataFrame

obj [NDFrame, default None (Not supported in Dask)] the NDFrame to take the
DataFrame out of. If it is None, the object groupby was called on will be used

Returns

group [same type as obj]

idxmax(split_every=None, split_out=1, axis=None, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmax.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] 0 or ‘index’ for row-wise, 1 or ‘columns’
for column-wise

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

Returns

idxmax [Series]

Raises

ValueError

• If the row/column is empty

See also:

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

idxmin(split_every=None, split_out=1, axis=None, skipna=True)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

This docstring was copied from pandas.core.frame.DataFrame.idxmin.

Some inconsistencies with the Dask version may exist.

Parameters

axis [{0 or ‘index’, 1 or ‘columns’}, default 0] 0 or ‘index’ for row-wise, 1 or ‘columns’
for column-wise

skipna [boolean, default True] Exclude NA/null values. If an entire row/column is NA,
the result will be NA.

Returns

3.9. DataFrame 735

dask Documentation, Release 2.6.0

idxmin [Series]

Raises

ValueError

• If the row/column is empty

See also:

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

last(split_every=None, split_out=1)
Compute last of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

max(split_every=None, split_out=1)
Compute max of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

mean(split_every=None, split_out=1)
Compute mean of groups, excluding missing values.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.mean.

Some inconsistencies with the Dask version may exist.

Returns

pandas.Series or pandas.DataFrame

See also:

pandas.Series., pandas.DataFrame., pandas.Panel.

Examples

>>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], # doctest: +SKIP
... 'B': [np.nan, 2, 3, 4, 5],
... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C'])

Groupby one column and return the mean of the remaining columns in each group.

>>> df.groupby('A').mean() # doctest: +SKIP
>>>

B C
A
1 3.0 1.333333
2 4.0 1.500000

Groupby two columns and return the mean of the remaining column.

>>> df.groupby(['A', 'B']).mean() # doctest: +SKIP
>>>

C
A B

(continues on next page)

736 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

1 2.0 2
4.0 1

2 3.0 1
5.0 2

Groupby one column and return the mean of only particular column in the group.

>>> df.groupby('A')['B'].mean() # doctest: +SKIP
>>>
A
1 3.0
2 4.0
Name: B, dtype: float64

min(split_every=None, split_out=1)
Compute min of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

prod(split_every=None, split_out=1, min_count=None)
Compute prod of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

size(split_every=None, split_out=1)
Compute group sizes.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.size.

Some inconsistencies with the Dask version may exist.

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

std(ddof=1, split_every=None, split_out=1)
Compute standard deviation of groups, excluding missing values.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.std.

Some inconsistencies with the Dask version may exist.

For multiple groupings, the result index will be a MultiIndex.

Parameters

ddof [integer, default 1] degrees of freedom

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

sum(split_every=None, split_out=1, min_count=None)
Compute sum of group values See Also ——– pandas.Series.groupby pandas.DataFrame.groupby pan-
das.Panel.groupby

transform(func, *args, **kwargs)
Parallel version of pandas GroupBy.transform

This mimics the pandas version except for the following:

1. If the grouper does not align with the index then this causes a full shuffle. The order of rows within
each group may not be preserved.

3.9. DataFrame 737

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

dask Documentation, Release 2.6.0

2. Dask’s GroupBy.transform is not appropriate for aggregations. For custom aggregations, use dask.
dataframe.groupby.Aggregation.

Warning: Pandas’ groupby-transform can be used to to apply arbitrary functions, including aggre-
gations that result in one row per group. Dask’s groupby-transform will apply func once to each
partition-group pair, so when func is a reduction you’ll end up with one row per partition-group pair.
To apply a custom aggregation with Dask, use dask.dataframe.groupby.Aggregation.

Parameters

func: function Function to apply

args, kwargs [Scalar, Delayed or object] Arguments and keywords to pass to the func-
tion.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.
DataFrame or pd.Series that matches the dtypes and column names of the out-
put. This metadata is necessary for many algorithms in dask dataframe to work. For
ease of use, some alternative inputs are also available. Instead of a DataFrame, a
dict of {name: dtype} or iterable of (name, dtype) can be provided (note
that the order of the names should match the order of the columns). Instead of a series,
a tuple of (name, dtype) can be used. If not provided, dask will try to infer the
metadata. This may lead to unexpected results, so providing meta is recommended.
For more information, see dask.dataframe.utils.make_meta.

Returns

applied [Series or DataFrame depending on columns keyword]

var(ddof=1, split_every=None, split_out=1)
Compute variance of groups, excluding missing values.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.var.

Some inconsistencies with the Dask version may exist.

For multiple groupings, the result index will be a MultiIndex.

Parameters

ddof [integer, default 1] degrees of freedom

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

Custom Aggregation

class dask.dataframe.groupby.Aggregation(name, chunk, agg, finalize=None)
User defined groupby-aggregation.

This class allows users to define their own custom aggregation in terms of operations on Pandas dataframes in
a map-reduce style. You need to specify what operation to do on each chunk of data, how to combine those
chunks of data together, and then how to finalize the result.

See Aggregate for more.

Parameters

738 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.groupby.html#pandas.Series.groupby
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

dask Documentation, Release 2.6.0

name [str] the name of the aggregation. It should be unique, since intermediate result will be
identified by this name.

chunk [callable] a function that will be called with the grouped column of each partition. It
can either return a single series or a tuple of series. The index has to be equal to the
groups.

agg [callable] a function that will be called to aggregate the results of each chunk. Again the
argument(s) will be grouped series. If chunk returned a tuple, agg will be called with
all of them as individual positional arguments.

finalize [callable] an optional finalizer that will be called with the results from the aggrega-
tion.

Examples

We could implement sum as follows:

>>> custom_sum = dd.Aggregation(
... name='custom_sum',
... chunk=lambda s: s.sum(),
... agg=lambda s0: s0.sum()
...) # doctest: +SKIP
>>> df.groupby('g').agg(custom_sum) # doctest: +SKIP

We can implement mean as follows:

>>> custom_mean = dd.Aggregation(
... name='custom_mean',
... chunk=lambda s: (s.count(), s.sum()),
... agg=lambda count, sum: (count.sum(), sum.sum()),
... finalize=lambda count, sum: sum / count,
...) # doctest: +SKIP
>>> df.groupby('g').agg(custom_mean) # doctest: +SKIP

Though of course, both of these are built-in and so you don’t need to implement them yourself.

Storage and Conversion

dask.dataframe.read_csv(urlpath, blocksize=64000000, collection=True, lineter-
minator=None, compression=None, sample=256000, en-
force=False, assume_missing=False, storage_options=None, in-
clude_path_column=False, **kwargs)

Read CSV files into a Dask.DataFrame

This parallelizes the pandas.read_csv() function in the following ways:

• It supports loading many files at once using globstrings:

>>> df = dd.read_csv('myfiles.*.csv') # doctest: +SKIP

• In some cases it can break up large files:

>>> df = dd.read_csv('largefile.csv', blocksize=25e6) # 25MB chunks #
→˓doctest: +SKIP

• It can read CSV files from external resources (e.g. S3, HDFS) by providing a URL:

3.9. DataFrame 739

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv

dask Documentation, Release 2.6.0

>>> df = dd.read_csv('s3://bucket/myfiles.*.csv') # doctest: +SKIP
>>> df = dd.read_csv('hdfs:///myfiles.*.csv') # doctest: +SKIP
>>> df = dd.read_csv('hdfs://namenode.example.com/myfiles.*.csv') #
→˓doctest: +SKIP

Internally dd.read_csv uses pandas.read_csv() and supports many of the same keyword arguments
with the same performance guarantees. See the docstring for pandas.read_csv() for more information on
available keyword arguments.

Parameters

urlpath [string or list] Absolute or relative filepath(s). Prefix with a protocol like s3:// to
read from alternative filesystems. To read from multiple files you can pass a globstring
or a list of paths, with the caveat that they must all have the same protocol.

blocksize [str, int or None, optional] Number of bytes by which to cut up larger files. Default
value is computed based on available physical memory and the number of cores. If None,
use a single block for each file. Can be a number like 64000000 or a string like “64MB”

collection [boolean, optional] Return a dask.dataframe if True or list of dask.delayed objects
if False

sample [int, optional] Number of bytes to use when determining dtypes

assume_missing [bool, optional] If True, all integer columns that aren’t specified in dtype
are assumed to contain missing values, and are converted to floats. Default is False.

storage_options [dict, optional] Extra options that make sense for a particular storage con-
nection, e.g. host, port, username, password, etc.

include_path_column [bool or str, optional] Whether or not to include the path to each par-
ticular file. If True a new column is added to the dataframe called path. If str, sets new
column name. Default is False.

**kwargs Extra keyword arguments to forward to pandas.read_csv().

Notes

Dask dataframe tries to infer the dtype of each column by reading a sample from the start of the file (or of the
first file if it’s a glob). Usually this works fine, but if the dtype is different later in the file (or in other files) this
can cause issues. For example, if all the rows in the sample had integer dtypes, but later on there was a NaN,
then this would error at compute time. To fix this, you have a few options:

• Provide explicit dtypes for the offending columns using the dtype keyword. This is the recommended
solution.

• Use the assume_missing keyword to assume that all columns inferred as integers contain missing
values, and convert them to floats.

• Increase the size of the sample using the sample keyword.

It should also be noted that this function may fail if a CSV file includes quoted strings that contain the line
terminator. To get around this you can specify blocksize=None to not split files into multiple partitions, at
the cost of reduced parallelism.

dask.dataframe.read_table(urlpath, blocksize=64000000, collection=True, lineter-
minator=None, compression=None, sample=256000, en-
force=False, assume_missing=False, storage_options=None, in-
clude_path_column=False, **kwargs)

Read delimited files into a Dask.DataFrame

740 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv

dask Documentation, Release 2.6.0

This parallelizes the pandas.read_table() function in the following ways:

• It supports loading many files at once using globstrings:

>>> df = dd.read_table('myfiles.*.csv') # doctest: +SKIP

• In some cases it can break up large files:

>>> df = dd.read_table('largefile.csv', blocksize=25e6) # 25MB chunks #
→˓doctest: +SKIP

• It can read CSV files from external resources (e.g. S3, HDFS) by providing a URL:

>>> df = dd.read_table('s3://bucket/myfiles.*.csv') # doctest: +SKIP
>>> df = dd.read_table('hdfs:///myfiles.*.csv') # doctest: +SKIP
>>> df = dd.read_table('hdfs://namenode.example.com/myfiles.*.csv') #
→˓doctest: +SKIP

Internally dd.read_table uses pandas.read_table() and supports many of the same keyword ar-
guments with the same performance guarantees. See the docstring for pandas.read_table() for more
information on available keyword arguments.

Parameters

urlpath [string or list] Absolute or relative filepath(s). Prefix with a protocol like s3:// to
read from alternative filesystems. To read from multiple files you can pass a globstring
or a list of paths, with the caveat that they must all have the same protocol.

blocksize [str, int or None, optional] Number of bytes by which to cut up larger files. Default
value is computed based on available physical memory and the number of cores. If None,
use a single block for each file. Can be a number like 64000000 or a string like “64MB”

collection [boolean, optional] Return a dask.dataframe if True or list of dask.delayed objects
if False

sample [int, optional] Number of bytes to use when determining dtypes

assume_missing [bool, optional] If True, all integer columns that aren’t specified in dtype
are assumed to contain missing values, and are converted to floats. Default is False.

storage_options [dict, optional] Extra options that make sense for a particular storage con-
nection, e.g. host, port, username, password, etc.

include_path_column [bool or str, optional] Whether or not to include the path to each par-
ticular file. If True a new column is added to the dataframe called path. If str, sets new
column name. Default is False.

**kwargs Extra keyword arguments to forward to pandas.read_table().

Notes

Dask dataframe tries to infer the dtype of each column by reading a sample from the start of the file (or of the
first file if it’s a glob). Usually this works fine, but if the dtype is different later in the file (or in other files) this
can cause issues. For example, if all the rows in the sample had integer dtypes, but later on there was a NaN,
then this would error at compute time. To fix this, you have a few options:

• Provide explicit dtypes for the offending columns using the dtype keyword. This is the recommended
solution.

• Use the assume_missing keyword to assume that all columns inferred as integers contain missing
values, and convert them to floats.

3.9. DataFrame 741

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_table.html#pandas.read_table
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_table.html#pandas.read_table
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_table.html#pandas.read_table
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_table.html#pandas.read_table

dask Documentation, Release 2.6.0

• Increase the size of the sample using the sample keyword.

It should also be noted that this function may fail if a delimited file includes quoted strings that contain the line
terminator. To get around this you can specify blocksize=None to not split files into multiple partitions, at
the cost of reduced parallelism.

dask.dataframe.read_fwf(urlpath, blocksize=64000000, collection=True, lineter-
minator=None, compression=None, sample=256000, en-
force=False, assume_missing=False, storage_options=None, in-
clude_path_column=False, **kwargs)

Read fixed-width files into a Dask.DataFrame

This parallelizes the pandas.read_fwf() function in the following ways:

• It supports loading many files at once using globstrings:

>>> df = dd.read_fwf('myfiles.*.csv') # doctest: +SKIP

• In some cases it can break up large files:

>>> df = dd.read_fwf('largefile.csv', blocksize=25e6) # 25MB chunks #
→˓doctest: +SKIP

• It can read CSV files from external resources (e.g. S3, HDFS) by providing a URL:

>>> df = dd.read_fwf('s3://bucket/myfiles.*.csv') # doctest: +SKIP
>>> df = dd.read_fwf('hdfs:///myfiles.*.csv') # doctest: +SKIP
>>> df = dd.read_fwf('hdfs://namenode.example.com/myfiles.*.csv') #
→˓doctest: +SKIP

Internally dd.read_fwf uses pandas.read_fwf() and supports many of the same keyword arguments
with the same performance guarantees. See the docstring for pandas.read_fwf() for more information on
available keyword arguments.

Parameters

urlpath [string or list] Absolute or relative filepath(s). Prefix with a protocol like s3:// to
read from alternative filesystems. To read from multiple files you can pass a globstring
or a list of paths, with the caveat that they must all have the same protocol.

blocksize [str, int or None, optional] Number of bytes by which to cut up larger files. Default
value is computed based on available physical memory and the number of cores. If None,
use a single block for each file. Can be a number like 64000000 or a string like “64MB”

collection [boolean, optional] Return a dask.dataframe if True or list of dask.delayed objects
if False

sample [int, optional] Number of bytes to use when determining dtypes

assume_missing [bool, optional] If True, all integer columns that aren’t specified in dtype
are assumed to contain missing values, and are converted to floats. Default is False.

storage_options [dict, optional] Extra options that make sense for a particular storage con-
nection, e.g. host, port, username, password, etc.

include_path_column [bool or str, optional] Whether or not to include the path to each par-
ticular file. If True a new column is added to the dataframe called path. If str, sets new
column name. Default is False.

**kwargs Extra keyword arguments to forward to pandas.read_fwf().

742 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html#pandas.read_fwf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html#pandas.read_fwf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html#pandas.read_fwf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_fwf.html#pandas.read_fwf

dask Documentation, Release 2.6.0

Notes

Dask dataframe tries to infer the dtype of each column by reading a sample from the start of the file (or of the
first file if it’s a glob). Usually this works fine, but if the dtype is different later in the file (or in other files) this
can cause issues. For example, if all the rows in the sample had integer dtypes, but later on there was a NaN,
then this would error at compute time. To fix this, you have a few options:

• Provide explicit dtypes for the offending columns using the dtype keyword. This is the recommended
solution.

• Use the assume_missing keyword to assume that all columns inferred as integers contain missing
values, and convert them to floats.

• Increase the size of the sample using the sample keyword.

It should also be noted that this function may fail if a fixed-width file includes quoted strings that contain the
line terminator. To get around this you can specify blocksize=None to not split files into multiple partitions,
at the cost of reduced parallelism.

dask.dataframe.read_parquet(path, columns=None, filters=None, categories=None, index=None,
storage_options=None, engine=’auto’, gather_statistics=None,
**kwargs)

Read a Parquet file into a Dask DataFrame

This reads a directory of Parquet data into a Dask.dataframe, one file per partition. It selects the index among
the sorted columns if any exist.

Parameters

path [string or list] Source directory for data, or path(s) to individual parquet files. Prefix
with a protocol like s3:// to read from alternative filesystems. To read from multiple
files you can pass a globstring or a list of paths, with the caveat that they must all have
the same protocol.

columns [string, list or None (default)] Field name(s) to read in as columns in the output. By
default all non-index fields will be read (as determined by the pandas parquet metadata,
if present). Provide a single field name instead of a list to read in the data as a Series.

filters [list]

List of filters to apply, like [('x', '>', 0), ...]. This implements row-
group (partition) -level filtering only, i.e., to

prevent the loading of some chunks of the data, and only if relevant statistics have been
included in the metadata.

index [string, list, False or None (default)] Field name(s) to use as the output frame index.
By default will be inferred from the pandas parquet file metadata (if present). Use False
to read all fields as columns.

categories [list, dict or None] For any fields listed here, if the parquet encoding is Dictionary,
the column will be created with dtype category. Use only if it is guaranteed that the
column is encoded as dictionary in all row-groups. If a list, assumes up to 2**16-1
labels; if a dict, specify the number of labels expected; if None, will load categories
automatically for data written by dask/fastparquet, not otherwise.

storage_options [dict] Key/value pairs to be passed on to the file-system backend, if any.

engine [{‘auto’, ‘fastparquet’, ‘pyarrow’}, default ‘auto’] Parquet reader library to use. If
only one library is installed, it will use that one; if both, it will use ‘fastparquet’

gather_statistics [bool or None (default).] Gather the statistics for each dataset partition. By
default, this will only be done if the _metadata file is available. Otherwise, statistics will

3.9. DataFrame 743

dask Documentation, Release 2.6.0

only be gathered if True, because the footer of every file will be parsed (which is very
slow on some systems).

**kwargs: dict (of dicts) Passthrough key-word arguments for read backend. The top-level
keys correspond to the appropriate operation type, and the second level corresponds to
the kwargs that will be passed on to the underlying pyarrow or fastparquet function.
Supported top-level keys: ‘dataset’ (for opening a pyarrow dataset), ‘file’ (for opening a
fastparquet ParquetFile), and ‘read’ (for the backend read function)

See also:

to_parquet

Examples

>>> df = dd.read_parquet('s3://bucket/my-parquet-data') # doctest: +SKIP

dask.dataframe.read_orc(path, columns=None, storage_options=None)
Read dataframe from ORC file(s)

Parameters

path: str or list(str) Location of file(s), which can be a full URL with protocol specifier, and
may include glob character if a single string.

columns: None or list(str) Columns to load. If None, loads all.

storage_options: None or dict Further parameters to pass to the bytes backend.

Returns

Dask.DataFrame (even if there is only one column)

Examples

>>> df = dd.read_orc('https://github.com/apache/orc/raw/'
... 'master/examples/demo-11-zlib.orc') # doctest: +SKIP

dask.dataframe.read_hdf(pattern, key, start=0, stop=None, columns=None, chunksize=1000000,
sorted_index=False, lock=True, mode=’a’)

Read HDF files into a Dask DataFrame

Read hdf files into a dask dataframe. This function is like pandas.read_hdf, except it can read from a
single large file, or from multiple files, or from multiple keys from the same file.

Parameters

pattern [string, pathlib.Path, list] File pattern (string), pathlib.Path, buffer to read from, or
list of file paths. Can contain wildcards.

key [group identifier in the store. Can contain wildcards]

start [optional, integer (defaults to 0), row number to start at]

stop [optional, integer (defaults to None, the last row), row number to] stop at

columns [list of columns, optional] A list of columns that if not None, will limit the return
columns (default is None)

chunksize [positive integer, optional] Maximal number of rows per partition (default is
1000000).

744 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

sorted_index [boolean, optional] Option to specify whether or not the input hdf files have a
sorted index (default is False).

lock [boolean, optional] Option to use a lock to prevent concurrency issues (default is True).

mode [{‘a’, ‘r’, ‘r+’}, default ‘a’. Mode to use when opening file(s).]

‘r’ Read-only; no data can be modified.

‘a’ Append; an existing file is opened for reading and writing, and if the file does not
exist it is created.

‘r+’ It is similar to ‘a’, but the file must already exist.

Returns

dask.DataFrame

Examples

Load single file

>>> dd.read_hdf('myfile.1.hdf5', '/x') # doctest: +SKIP

Load multiple files

>>> dd.read_hdf('myfile.*.hdf5', '/x') # doctest: +SKIP

>>> dd.read_hdf(['myfile.1.hdf5', 'myfile.2.hdf5'], '/x') # doctest: +SKIP

Load multiple datasets

>>> dd.read_hdf('myfile.1.hdf5', '/*') # doctest: +SKIP

dask.dataframe.read_json(url_path, orient=’records’, lines=None, storage_options=None, block-
size=None, sample=1048576, encoding=’utf-8’, errors=’strict’, com-
pression=’infer’, meta=None, engine=<function read_json>, **kwargs)

Create a dataframe from a set of JSON files

This utilises pandas.read_json(), and most parameters are passed through - see its docstring.

Differences: orient is ‘records’ by default, with lines=True; this is appropriate for line-delimited “JSON-lines”
data, the kind of JSON output that is most common in big-data scenarios, and which can be chunked when
reading (see read_json()). All other options require blocksize=None, i.e., one partition per input file.

Parameters

url_path: str, list of str Location to read from. If a string, can include a glob character to
find a set of file names. Supports protocol specifications such as "s3://".

encoding, errors: The text encoding to implement, e.g., “utf-8” and how to respond to errors
in the conversion (see str.encode()).

orient, lines, kwargs passed to pandas; if not specified, lines=True when orient=’records’,
False otherwise.

storage_options: dict Passed to backend file-system implementation

blocksize: None or int If None, files are not blocked, and you get one partition per input
file. If int, which can only be used for line-delimited JSON files, each partition will be
approximately this size in bytes, to the nearest newline character.

3.9. DataFrame 745

dask Documentation, Release 2.6.0

sample: int Number of bytes to pre-load, to provide an empty dataframe structure to any
blocks wihout data. Only relevant is using blocksize.

encoding, errors: Text conversion, see bytes.decode()

compression [string or None] String like ‘gzip’ or ‘xz’.

engine [function object, default pd.read_json] The underlying function that dask will
use to read JSON files. By default, this will be the pandas JSON reader (pd.
read_json).

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.DataFrame
or pd.Series that matches the dtypes and column names of the output. This metadata
is necessary for many algorithms in dask dataframe to work. For ease of use, some
alternative inputs are also available. Instead of a DataFrame, a dict of {name:
dtype} or iterable of (name, dtype) can be provided (note that the order of the
names should match the order of the columns). Instead of a series, a tuple of (name,
dtype) can be used. If not provided, dask will try to infer the metadata. This may lead
to unexpected results, so providing meta is recommended. For more information, see
dask.dataframe.utils.make_meta.

Returns

dask.DataFrame

Examples

Load single file

>>> dd.read_json('myfile.1.json') # doctest: +SKIP

Load multiple files

>>> dd.read_json('myfile.*.json') # doctest: +SKIP

>>> dd.read_json(['myfile.1.json', 'myfile.2.json']) # doctest: +SKIP

Load large line-delimited JSON files using partitions of approx 256MB size

>> dd.read_json(‘data/file*.csv’, blocksize=2**28)

dask.dataframe.read_sql_table(table, uri, index_col, divisions=None, npartitions=None,
limits=None, columns=None, bytes_per_chunk=268435456,
head_rows=5, schema=None, meta=None, engine_kwargs=None,
**kwargs)

Create dataframe from an SQL table.

If neither divisions or npartitions is given, the memory footprint of the first few rows will be determined, and
partitions of size ~256MB will be used.

Parameters

table [string or sqlalchemy expression] Select columns from here.

uri [string] Full sqlalchemy URI for the database connection

index_col [string] Column which becomes the index, and defines the partitioning. Should
be a indexed column in the SQL server, and any orderable type. If the type
is number or time, then partition boundaries can be inferred from npartitions or
bytes_per_chunk; otherwide must supply explicit divisions=. index_col could

746 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

be a function to return a value, e.g., sql.func.abs(sql.column('value')).
label('abs(value)'). Labeling columns created by functions or arithmetic oper-
ations is required.

divisions: sequence Values of the index column to split the table by. If given,
this will override npartitions and bytes_per_chunk. The divisions are the value
boundaries of the index column used to define the partitions. For example,
divisions=list('acegikmoqsuwz') could be used to partition a string column
lexographically into 12 partitions, with the implicit assumption that each partition con-
tains similar numbers of records.

npartitions [int] Number of partitions, if divisions is not given. Will split the values of the
index column linearly between limits, if given, or the column max/min. The index column
must be numeric or time for this to work

limits: 2-tuple or None Manually give upper and lower range of values for use with nparti-
tions; if None, first fetches max/min from the DB. Upper limit, if given, is inclusive.

columns [list of strings or None] Which columns to select; if None, gets all; can
include sqlalchemy functions, e.g., sql.func.abs(sql.column('value')).
label('abs(value)'). Labeling columns created by functions or arithmetic op-
erations is recommended.

bytes_per_chunk [int] If both divisions and npartitions is None, this is the target size of each
partition, in bytes

head_rows [int] How many rows to load for inferring the data-types, unless passing meta

meta [empty DataFrame or None] If provided, do not attempt to infer dtypes, but use these,
coercing all chunks on load

schema [str or None] If using a table name, pass this to sqlalchemy to select which DB
schema to use within the URI connection

engine_kwargs [dict or None] Specific db engine parameters for sqlalchemy

kwargs [dict] Additional parameters to pass to pd.read_sql()

Returns

dask.dataframe

Examples

>>> df = dd.read_sql_table('accounts', 'sqlite:///path/to/bank.db',
... npartitions=10, index_col='id') # doctest: +SKIP

dask.dataframe.from_array(x, chunksize=50000, columns=None)
Read any slicable array into a Dask Dataframe

Uses getitem syntax to pull slices out of the array. The array need not be a NumPy array but must support slicing
syntax

x[50000:100000]

and have 2 dimensions:

x.ndim == 2

or have a record dtype:

x.dtype == [(‘name’, ‘O’), (‘balance’, ‘i8’)]

3.9. DataFrame 747

dask Documentation, Release 2.6.0

dask.dataframe.from_pandas(data, npartitions=None, chunksize=None, sort=True, name=None)
Construct a Dask DataFrame from a Pandas DataFrame

This splits an in-memory Pandas dataframe into several parts and constructs a dask.dataframe from those parts
on which Dask.dataframe can operate in parallel.

Note that, despite parallelism, Dask.dataframe may not always be faster than Pandas. We recommend that you
stay with Pandas for as long as possible before switching to Dask.dataframe.

Parameters

data [pandas.DataFrame or pandas.Series] The DataFrame/Series with which to construct a
Dask DataFrame/Series

npartitions [int, optional] The number of partitions of the index to create. Note that depend-
ing on the size and index of the dataframe, the output may have fewer partitions than
requested.

chunksize [int, optional] The number of rows per index partition to use.

sort: bool Sort input first to obtain cleanly divided partitions or don’t sort and don’t get
cleanly divided partitions

name: string, optional An optional keyname for the dataframe. Defaults to hashing the input

Returns

dask.DataFrame or dask.Series A dask DataFrame/Series partitioned along the index

Raises

TypeError If something other than a pandas.DataFrame or pandas.Series is
passed in.

See also:

from_array Construct a dask.DataFrame from an array that has record dtype

read_csv Construct a dask.DataFrame from a CSV file

Examples

>>> df = pd.DataFrame(dict(a=list('aabbcc'), b=list(range(6))),
... index=pd.date_range(start='20100101', periods=6))
>>> ddf = from_pandas(df, npartitions=3)
>>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE
(Timestamp('2010-01-01 00:00:00', freq='D'),
Timestamp('2010-01-03 00:00:00', freq='D'),
Timestamp('2010-01-05 00:00:00', freq='D'),
Timestamp('2010-01-06 00:00:00', freq='D'))

>>> ddf = from_pandas(df.a, npartitions=3) # Works with Series too!
>>> ddf.divisions # doctest: +NORMALIZE_WHITESPACE
(Timestamp('2010-01-01 00:00:00', freq='D'),
Timestamp('2010-01-03 00:00:00', freq='D'),
Timestamp('2010-01-05 00:00:00', freq='D'),
Timestamp('2010-01-06 00:00:00', freq='D'))

dask.dataframe.from_bcolz(x, chunksize=None, categorize=True, index=None, lock=<unlocked
_thread.lock object>, **kwargs)

Read BColz CTable into a Dask Dataframe

748 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

BColz is a fast on-disk compressed column store with careful attention given to compression. https://bcolz.
readthedocs.io/en/latest/

Parameters

x [bcolz.ctable]

chunksize [int, optional] The size(rows) of blocks to pull out from ctable.

categorize [bool, defaults to True] Automatically categorize all string dtypes

index [string, optional] Column to make the index

lock: bool or Lock Lock to use when reading or False for no lock (not-thread-safe)

See also:

from_array more generic function not optimized for bcolz

dask.dataframe.from_dask_array(x, columns=None, index=None)
Create a Dask DataFrame from a Dask Array.

Converts a 2d array into a DataFrame and a 1d array into a Series.

Parameters

x [da.Array]

columns [list or string] list of column names if DataFrame, single string if Series

index [dask.dataframe.Index, optional] An optional dask Index to use for the output Series or
DataFrame.

The default output index depends on whether x has any unknown chunks. If there are any
unknown chunks, the output has None for all the divisions (one per chunk). If all the
chunks are known, a default index with known divsions is created.

Specifying index can be useful if you’re conforming a Dask Array to an existing dask
Series or DataFrame, and you would like the indices to match.

See also:

dask.bag.to_dataframe from dask.bag

dask.dataframe._Frame.values Reverse conversion

dask.dataframe._Frame.to_records Reverse conversion

Examples

>>> import dask.array as da
>>> import dask.dataframe as dd
>>> x = da.ones((4, 2), chunks=(2, 2))
>>> df = dd.io.from_dask_array(x, columns=['a', 'b'])
>>> df.compute()

a b
0 1.0 1.0
1 1.0 1.0
2 1.0 1.0
3 1.0 1.0

3.9. DataFrame 749

https://bcolz.readthedocs.io/en/latest/
https://bcolz.readthedocs.io/en/latest/

dask Documentation, Release 2.6.0

dask.dataframe.from_delayed(dfs, meta=None, divisions=None, prefix=’from-delayed’, ver-
ify_meta=True)

Create Dask DataFrame from many Dask Delayed objects

Parameters

dfs [list of Delayed] An iterable of dask.delayed.Delayed objects, such as come from
dask.delayed These comprise the individual partitions of the resulting dataframe.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.DataFrame
or pd.Series that matches the dtypes and column names of the output. This metadata
is necessary for many algorithms in dask dataframe to work. For ease of use, some
alternative inputs are also available. Instead of a DataFrame, a dict of {name:
dtype} or iterable of (name, dtype) can be provided (note that the order of the
names should match the order of the columns). Instead of a series, a tuple of (name,
dtype) can be used. If not provided, dask will try to infer the metadata. This may lead
to unexpected results, so providing meta is recommended. For more information, see
dask.dataframe.utils.make_meta.

divisions [tuple, str, optional] Partition boundaries along the index. For tuple, see https:
//docs.dask.org/en/latest/dataframe-design.html#partitions For string ‘sorted’ will com-
pute the delayed values to find index values. Assumes that the indexes are mutually
sorted. If None, then won’t use index information

prefix [str, optional] Prefix to prepend to the keys.

verify_meta [bool, optional] If True check that the partitions have consistent metadata, de-
faults to True.

dask.dataframe.to_records(df)
Create Dask Array from a Dask Dataframe

Warning: This creates a dask.array without precise shape information. Operations that depend on shape infor-
mation, like slicing or reshaping, will not work.

See also:

dask.dataframe._Frame.values, dask.dataframe.from_dask_array

Examples

>>> df.to_records() # doctest: +SKIP
dask.array<to_records, shape=(nan,), dtype=(numpy.record, [('ind', '<f8'), ('x',
→˓'O'), ('y', '<i8')]), chunksize=(nan,), chunktype=numpy.ndarray> # noqa: E501

dask.dataframe.to_csv(df, filename, single_file=False, encoding=’utf-8’, mode=’wt’,
name_function=None, compression=None, compute=True, scheduler=None,
storage_options=None, header_first_partition_only=None, **kwargs)

Store Dask DataFrame to CSV files

One filename per partition will be created. You can specify the filenames in a variety of ways.

Use a globstring:

>>> df.to_csv('/path/to/data/export-*.csv')

The * will be replaced by the increasing sequence 0, 1, 2, . . .

/path/to/data/export-0.csv
/path/to/data/export-1.csv

750 Chapter 3. Complex Algorithms

https://docs.dask.org/en/latest/dataframe-design.html#partitions
https://docs.dask.org/en/latest/dataframe-design.html#partitions

dask Documentation, Release 2.6.0

Use a globstring and a name_function= keyword argument. The name_function function should expect an
integer and produce a string. Strings produced by name_function must preserve the order of their respective
partition indices.

>>> from datetime import date, timedelta
>>> def name(i):
... return str(date(2015, 1, 1) + i * timedelta(days=1))

>>> name(0)
'2015-01-01'
>>> name(15)
'2015-01-16'

>>> df.to_csv('/path/to/data/export-*.csv', name_function=name) # doctest: +SKIP

/path/to/data/export-2015-01-01.csv
/path/to/data/export-2015-01-02.csv
...

You can also provide an explicit list of paths:

>>> paths = ['/path/to/data/alice.csv', '/path/to/data/bob.csv', ...]
>>> df.to_csv(paths)

Parameters

filename [string] Path glob indicating the naming scheme for the output files

name_function [callable, default None] Function accepting an integer (partition index) and
producing a string to replace the asterisk in the given filename globstring. Should pre-
serve the lexicographic order of partitions. Not supported when single_file is True.

single_file [bool, default False] Whether to save everything into a single CSV file. Under the
single file mode, each partition is appended at the end of the specified CSV file. Note
that not all filesystems support the append mode and thus the single file mode, especially
on cloud storage systems such as S3 or GCS. A warning will be issued when writing to a
file that is not backed by a local filesystem.

compression [string or None] String like ‘gzip’ or ‘xz’. Must support efficient random ac-
cess. Filenames with extensions corresponding to known compression algorithms (gz,
bz2) will be compressed accordingly automatically

sep [character, default ‘,’] Field delimiter for the output file

na_rep [string, default ‘’] Missing data representation

float_format [string, default None] Format string for floating point numbers

columns [sequence, optional] Columns to write

header [boolean or list of string, default True] Write out column names. If a list of string is
given it is assumed to be aliases for the column names

header_first_partition_only [boolean, default None] If set to True, only write the header
row in the first output file. By default, headers are written to all partitions under the
multiple file mode (single_file is False) and written only once under the single file mode
(single_file is True). It must not be False under the single file mode.

index [boolean, default True] Write row names (index)

3.9. DataFrame 751

dask Documentation, Release 2.6.0

index_label [string or sequence, or False, default None] Column label for index column(s) if
desired. If None is given, and header and index are True, then the index names are used.
A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields
for index names. Use index_label=False for easier importing in R

nanRep [None] deprecated, use na_rep

mode [str] Python write mode, default ‘w’

encoding [string, optional] A string representing the encoding to use in the output file, de-
faults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.

compression [string, optional] a string representing the compression to use in the output file,
allowed values are ‘gzip’, ‘bz2’, ‘xz’, only used when the first argument is a filename

line_terminator [string, default ‘\n’] The newline character or character sequence to use in
the output file

quoting [optional constant from csv module] defaults to csv.QUOTE_MINIMAL

quotechar [string (length 1), default ‘”’] character used to quote fields

doublequote [boolean, default True] Control quoting of quotechar inside a field

escapechar [string (length 1), default None] character used to escape sep and quotechar when
appropriate

chunksize [int or None] rows to write at a time

tupleize_cols [boolean, default False] write multi_index columns as a list of tuples (if True)
or new (expanded format) if False)

date_format [string, default None] Format string for datetime objects

decimal: string, default ‘.’ Character recognized as decimal separator. E.g. use ‘,’ for Euro-
pean data

storage_options: dict Parameters passed on to the backend filesystem class.

Returns

The names of the file written if they were computed right away

If not, the delayed tasks associated to the writing of the files

Raises

ValueError If header_first_partition_only is set to False or name_function is specified when
single_file is True.

dask.dataframe.to_bag(df, index=False)
Create Dask Bag from a Dask DataFrame

Parameters

index [bool, optional] If True, the elements are tuples of (index, value), otherwise
they’re just the value. Default is False.

Examples

>>> bag = df.to_bag() # doctest: +SKIP

752 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask.dataframe.to_hdf(df, path, key, mode=’a’, append=False, scheduler=None,
name_function=None, compute=True, lock=None, dask_kwargs={},
**kwargs)

Store Dask Dataframe to Hierarchical Data Format (HDF) files

This is a parallel version of the Pandas function of the same name. Please see the Pandas docstring for more
detailed information about shared keyword arguments.

This function differs from the Pandas version by saving the many partitions of a Dask DataFrame in parallel,
either to many files, or to many datasets within the same file. You may specify this parallelism with an asterix
* within the filename or datapath, and an optional name_function. The asterix will be replaced with an
increasing sequence of integers starting from 0 or with the result of calling name_function on each of those
integers.

This function only supports the Pandas 'table' format, not the more specialized 'fixed' format.

Parameters

path [string, pathlib.Path] Path to a target filename. Supports strings, pathlib.Path, or
any object implementing the __fspath__ protocol. May contain a * to denote many
filenames.

key [string] Datapath within the files. May contain a * to denote many locations

name_function [function] A function to convert the * in the above options to a string. Should
take in a number from 0 to the number of partitions and return a string. (see examples
below)

compute [bool] Whether or not to execute immediately. If False then this returns a dask.
Delayed value.

lock [Lock, optional] Lock to use to prevent concurrency issues. By default a threading.
Lock, multiprocessing.Lock or SerializableLock will be used depending
on your scheduler if a lock is required. See dask.utils.get_scheduler_lock for more infor-
mation about lock selection.

scheduler [string] The scheduler to use, like “threads” or “processes”

**other: See pandas.to_hdf for more information

Returns

filenames [list] Returned if compute is True. List of file names that each partition is saved
to.

delayed [dask.Delayed] Returned if compute is False. Delayed object to execute to_hdf
when computed.

See also:

read_hdf, to_parquet

Examples

Save Data to a single file

>>> df.to_hdf('output.hdf', '/data') # doctest: +SKIP

Save data to multiple datapaths within the same file:

>>> df.to_hdf('output.hdf', '/data-*') # doctest: +SKIP

3.9. DataFrame 753

dask Documentation, Release 2.6.0

Save data to multiple files:

>>> df.to_hdf('output-*.hdf', '/data') # doctest: +SKIP

Save data to multiple files, using the multiprocessing scheduler:

>>> df.to_hdf('output-*.hdf', '/data', scheduler='processes') # doctest: +SKIP

Specify custom naming scheme. This writes files as ‘2000-01-01.hdf’, ‘2000-01-02.hdf’, ‘2000-01-03.hdf’,
etc..

>>> from datetime import date, timedelta
>>> base = date(year=2000, month=1, day=1)
>>> def name_function(i):
... ''' Convert integer 0 to n to a string '''
... return base + timedelta(days=i)

>>> df.to_hdf('*.hdf', '/data', name_function=name_function) # doctest: +SKIP

dask.dataframe.to_parquet(df, path, engine=’auto’, compression=’default’, write_index=True,
append=False, ignore_divisions=False, partition_on=None, stor-
age_options=None, write_metadata_file=True, compute=True,
**kwargs)

Store Dask.dataframe to Parquet files

Parameters

df [dask.dataframe.DataFrame]

path [string or pathlib.Path] Destination directory for data. Prepend with protocol like s3:/
/ or hdfs:// for remote data.

engine [{‘auto’, ‘fastparquet’, ‘pyarrow’}, default ‘auto’] Parquet library to use. If only one
library is installed, it will use that one; if both, it will use ‘fastparquet’.

compression [string or dict, optional] Either a string like "snappy" or a dictionary
mapping column names to compressors like {"name": "gzip", "values":
"snappy"}. The default is "default", which uses the default compression for
whichever engine is selected.

write_index [boolean, optional] Whether or not to write the index. Defaults to True.

append [bool, optional] If False (default), construct data-set from scratch. If True, add new
row-group(s) to an existing data-set. In the latter case, the data-set must exist, and the
schema must match the input data.

ignore_divisions [bool, optional] If False (default) raises error when previous divisions over-
lap with the new appended divisions. Ignored if append=False.

partition_on [list, optional] Construct directory-based partitioning by splitting on these
fields’ values. Each dask partition will result in one or more datafiles, there will be no
global groupby.

storage_options [dict, optional] Key/value pairs to be passed on to the file-system backend,
if any.

write_metadata_file [bool, optional] Whether to write the special “_metadata” file.

compute [bool, optional] If True (default) then the result is computed immediately. If False
then a dask.delayed object is returned for future computation.

**kwargs : Extra options to be passed on to the specific backend.

754 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

See also:

read_parquet Read parquet data to dask.dataframe

Notes

Each partition will be written to a separate file.

Examples

>>> df = dd.read_csv(...) # doctest: +SKIP
>>> dd.to_parquet(df, '/path/to/output/',...) # doctest: +SKIP

dask.dataframe.to_json(df, url_path, orient=’records’, lines=None, storage_options=None,
compute=True, encoding=’utf-8’, errors=’strict’, compression=None,
**kwargs)

Write dataframe into JSON text files

This utilises pandas.DataFrame.to_json(), and most parameters are passed through - see its docstring.

Differences: orient is ‘records’ by default, with lines=True; this produces the kind of JSON output that is most
common in big-data applications, and which can be chunked when reading (see read_json()).

Parameters

df: dask.DataFrame Data to save

url_path: str, list of str Location to write to. If a string, and there are more than one parti-
tions in df, should include a glob character to expand into a set of file names, or provide
a name_function= parameter. Supports protocol specifications such as "s3://".

encoding, errors: The text encoding to implement, e.g., “utf-8” and how to respond to errors
in the conversion (see str.encode()).

orient, lines, kwargs passed to pandas; if not specified, lines=True when orient=’records’,
False otherwise.

storage_options: dict Passed to backend file-system implementation

compute: bool If true, immediately executes. If False, returns a set of delayed objects, which
can be computed at a later time.

encoding, errors: Text conversion, see str.encode()

compression [string or None] String like ‘gzip’ or ‘xz’.

Rolling

dask.dataframe.rolling.map_overlap(func, df, before, after, *args, **kwargs)
Apply a function to each partition, sharing rows with adjacent partitions.

Parameters

func [function] Function applied to each partition.

df [dd.DataFrame, dd.Series]

before [int or timedelta] The rows to prepend to partition i from the end of partition i - 1.

3.9. DataFrame 755

dask Documentation, Release 2.6.0

after [int or timedelta] The rows to append to partition i from the beginning of partition i
+ 1.

args, kwargs : Arguments and keywords to pass to the function. The partition will be the
first argument, and these will be passed after.

See also:

dd.DataFrame.map_overlap

Dask Metadata

Other functions

dask.dataframe.compute(*args, **kwargs)
Compute several dask collections at once.

Parameters

args [object] Any number of objects. If it is a dask object, it’s computed and the result is
returned. By default, python builtin collections are also traversed to look for dask objects
(for more information see the traverse keyword). Non-dask arguments are passed
through unchanged.

traverse [bool, optional] By default dask traverses builtin python collections looking for dask
objects passed to compute. For large collections this can be expensive. If none of the
arguments contain any dask objects, set traverse=False to avoid doing this traversal.

scheduler [string, optional] Which scheduler to use like “threads”, “synchronous” or “pro-
cesses”. If not provided, the default is to check the global settings first, and then fall back
to the collection defaults.

optimize_graph [bool, optional] If True [default], the optimizations for each collection are
applied before computation. Otherwise the graph is run as is. This can be useful for
debugging.

kwargs Extra keywords to forward to the scheduler function.

Examples

>>> import dask.array as da
>>> a = da.arange(10, chunks=2).sum()
>>> b = da.arange(10, chunks=2).mean()
>>> compute(a, b)
(45, 4.5)

By default, dask objects inside python collections will also be computed:

>>> compute({'a': a, 'b': b, 'c': 1}) # doctest: +SKIP
({'a': 45, 'b': 4.5, 'c': 1},)

dask.dataframe.map_partitions(func, *args, **kwargs)
Apply Python function on each DataFrame partition.

Parameters

func [function] Function applied to each partition.

756 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

args, kwargs : Arguments and keywords to pass to the function. At least one of the args
should be a Dask.dataframe. Arguments and keywords may contain Scalar, Delayed
or regular python objects. DataFrame-like args (both dask and pandas) will be reparti-
tioned to align (if necessary) before applying the function.

meta [pd.DataFrame, pd.Series, dict, iterable, tuple, optional] An empty pd.DataFrame
or pd.Series that matches the dtypes and column names of the output. This metadata
is necessary for many algorithms in dask dataframe to work. For ease of use, some
alternative inputs are also available. Instead of a DataFrame, a dict of {name:
dtype} or iterable of (name, dtype) can be provided (note that the order of the
names should match the order of the columns). Instead of a series, a tuple of (name,
dtype) can be used. If not provided, dask will try to infer the metadata. This may lead
to unexpected results, so providing meta is recommended. For more information, see
dask.dataframe.utils.make_meta.

dask.dataframe.to_datetime(arg, errors=’raise’, dayfirst=False, yearfirst=False, utc=None,
box=True, format=None, exact=True, unit=None, in-
fer_datetime_format=False, origin=’unix’, cache=False)

Convert argument to datetime.

Parameters

arg [integer, float, string, datetime, list, tuple, 1-d array, Series] New in version 0.18.1: or
DataFrame/dict-like

errors [{‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’]

• If ‘raise’, then invalid parsing will raise an exception

• If ‘coerce’, then invalid parsing will be set as NaT

• If ‘ignore’, then invalid parsing will return the input

dayfirst [boolean, default False] Specify a date parse order if arg is str or its list-likes. If
True, parses dates with the day first, eg 10/11/12 is parsed as 2012-11-10. Warning:
dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug,
based on dateutil behavior).

yearfirst [boolean, default False] Specify a date parse order if arg is str or its list-likes.

• If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12.

• If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil).

Warning: yearfirst=True is not strict, but will prefer to parse with year first (this is a
known bug, based on dateutil behavior).

New in version 0.16.1.

utc [boolean, default None] Return UTC DatetimeIndex if True (converting any tz-aware
datetime.datetime objects as well).

box [boolean, default True]

• If True returns a DatetimeIndex or Index-like object

• If False returns ndarray of values.

format [string, default None] strftime to parse time, eg “%d/%m/%Y”, note that “%f” will
parse all the way up to nanoseconds.

exact [boolean, True by default]

• If True, require an exact format match.

3.9. DataFrame 757

dask Documentation, Release 2.6.0

• If False, allow the format to match anywhere in the target string.

unit [string, default ‘ns’] unit of the arg (D,s,ms,us,ns) denote the unit, which is an inte-
ger or float number. This will be based off the origin. Example, with unit=’ms’ and
origin=’unix’ (the default), this would calculate the number of milliseconds to the unix
epoch start.

infer_datetime_format [boolean, default False] If True and no format is given, attempt to
infer the format of the datetime strings, and if it can be inferred, switch to a faster method
of parsing them. In some cases this can increase the parsing speed by ~5-10x.

origin [scalar, default is ‘unix’] Define the reference date. The numeric values would be
parsed as number of units (defined by unit) since this reference date.

• If ‘unix’ (or POSIX) time; origin is set to 1970-01-01.

• If ‘julian’, unit must be ‘D’, and origin is set to beginning of Julian Calendar. Julian
day number 0 is assigned to the day starting at noon on January 1, 4713 BC.

• If Timestamp convertible, origin is set to Timestamp identified by origin.

New in version 0.20.0.

cache [boolean, default False] If True, use a cache of unique, converted dates to apply the
datetime conversion. May produce significant speed-up when parsing duplicate date
strings, especially ones with timezone offsets.

New in version 0.23.0.

Returns

ret [datetime if parsing succeeded.] Return type depends on input:

• list-like: DatetimeIndex

• Series: Series of datetime64 dtype

• scalar: Timestamp

In case when it is not possible to return designated types (e.g. when any element of input
is before Timestamp.min or after Timestamp.max) return will have datetime.datetime
type (or corresponding array/Series).

See also:

pandas.DataFrame.astype Cast argument to a specified dtype.

pandas.to_timedelta Convert argument to timedelta.

Examples

Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like
[‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same

>>> df = pd.DataFrame({'year': [2015, 2016],
'month': [2, 3],
'day': [4, 5]})

>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]

758 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.astype.html#pandas.DataFrame.astype
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_timedelta.html#pandas.to_timedelta

dask Documentation, Release 2.6.0

If a date does not meet the timestamp limitations, passing errors=’ignore’ will return the original input instead
of raising any exception.

Passing errors=’coerce’ will force an out-of-bounds date to NaT, in addition to forcing non-dates (or non-
parseable dates) to NaT.

>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT

Passing infer_datetime_format=True can often-times speedup a parsing if its not an ISO8601 format exactly,
but in a regular format.

>>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000']*1000)

>>> s.head()
0 3/11/2000
1 3/12/2000
2 3/13/2000
3 3/11/2000
4 3/12/2000
dtype: object

>>> %timeit pd.to_datetime(s,infer_datetime_format=True)
100 loops, best of 3: 10.4 ms per loop

>>> %timeit pd.to_datetime(s,infer_datetime_format=False)
1 loop, best of 3: 471 ms per loop

Using a unix epoch time

>>> pd.to_datetime(1490195805, unit='s')
Timestamp('2017-03-22 15:16:45')
>>> pd.to_datetime(1490195805433502912, unit='ns')
Timestamp('2017-03-22 15:16:45.433502912')

Warning: For float arg, precision rounding might happen. To prevent unexpected behavior use a fixed-
width exact type.

Using a non-unix epoch origin

>>> pd.to_datetime([1, 2, 3], unit='D',
origin=pd.Timestamp('1960-01-01'))

0 1960-01-02
1 1960-01-03
2 1960-01-04

dask.dataframe.multi.concat(dfs, axis=0, join=’outer’, interleave_partitions=False)
Concatenate DataFrames along rows.

• When axis=0 (default), concatenate DataFrames row-wise:

– If all divisions are known and ordered, concatenate DataFrames keeping divisions. When divisions
are not ordered, specifying interleave_partition=True allows concatenate divisions each by each.

3.9. DataFrame 759

http://pandas.pydata.org/pandas-docs/stable/timeseries.html#timeseries-timestamp-limits

dask Documentation, Release 2.6.0

– If any of division is unknown, concatenate DataFrames resetting its division to unknown (None)

• When axis=1, concatenate DataFrames column-wise:

– Allowed if all divisions are known.

– If any of division is unknown, it raises ValueError.

Parameters

dfs [list] List of dask.DataFrames to be concatenated

axis [{0, 1, ‘index’, ‘columns’}, default 0] The axis to concatenate along

join [{‘inner’, ‘outer’}, default ‘outer’] How to handle indexes on other axis

interleave_partitions [bool, default False] Whether to concatenate DataFrames ignoring its
order. If True, every divisions are concatenated each by each.

Notes

This differs in from pd.concat in the when concatenating Categoricals with different categories. Pandas
currently coerces those to objects before concatenating. Coercing to objects is very expensive for large arrays,
so dask preserves the Categoricals by taking the union of the categories.

Examples

If all divisions are known and ordered, divisions are kept.

>>> a # doctest: +SKIP
dd.DataFrame<x, divisions=(1, 3, 5)>
>>> b # doctest: +SKIP
dd.DataFrame<y, divisions=(6, 8, 10)>
>>> dd.concat([a, b]) # doctest: +SKIP
dd.DataFrame<concat-..., divisions=(1, 3, 6, 8, 10)>

Unable to concatenate if divisions are not ordered.

>>> a # doctest: +SKIP
dd.DataFrame<x, divisions=(1, 3, 5)>
>>> b # doctest: +SKIP
dd.DataFrame<y, divisions=(2, 3, 6)>
>>> dd.concat([a, b]) # doctest: +SKIP
ValueError: All inputs have known divisions which cannot be concatenated
in order. Specify interleave_partitions=True to ignore order

Specify interleave_partitions=True to ignore the division order.

>>> dd.concat([a, b], interleave_partitions=True) # doctest: +SKIP
dd.DataFrame<concat-..., divisions=(1, 2, 3, 5, 6)>

If any of division is unknown, the result division will be unknown

>>> a # doctest: +SKIP
dd.DataFrame<x, divisions=(None, None)>
>>> b # doctest: +SKIP
dd.DataFrame<y, divisions=(1, 4, 10)>

(continues on next page)

760 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

>>> dd.concat([a, b]) # doctest: +SKIP
dd.DataFrame<concat-..., divisions=(None, None, None, None)>

Different categoricals are unioned

>> dd.concat([# doctest: +SKIP . . . dd.from_pandas(pd.Series([‘a’, ‘b’], dtype=’category’), 1), . . .
dd.from_pandas(pd.Series([‘a’, ‘c’], dtype=’category’), 1), . . .], interleave_partitions=True).dtype Categori-
calDtype(categories=[‘a’, ‘b’, ‘c’], ordered=False)

dask.dataframe.multi.merge(left, right, how=’inner’, on=None, left_on=None, right_on=None,
left_index=False, right_index=False, sort=False, suffixes=(’_x’, ’_y’),
copy=True, indicator=False, validate=None)

Merge DataFrame or named Series objects with a database-style join.

The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes will be ignored.
Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters

left [DataFrame]

right [DataFrame or named Series] Object to merge with.

how [{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’] Type of merge to be performed.

• left: use only keys from left frame, similar to a SQL left outer join; preserve key
order.

• right: use only keys from right frame, similar to a SQL right outer join; preserve key
order.

• outer: use union of keys from both frames, similar to a SQL full outer join; sort keys
lexicographically.

• inner: use intersection of keys from both frames, similar to a SQL inner join; preserve
the order of the left keys.

on [label or list] Column or index level names to join on. These must be found in both
DataFrames. If on is None and not merging on indexes then this defaults to the intersec-
tion of the columns in both DataFrames.

left_on [label or list, or array-like] Column or index level names to join on in the left
DataFrame. Can also be an array or list of arrays of the length of the left DataFrame.
These arrays are treated as if they are columns.

right_on [label or list, or array-like] Column or index level names to join on in the right
DataFrame. Can also be an array or list of arrays of the length of the right DataFrame.
These arrays are treated as if they are columns.

left_index [bool, default False] Use the index from the left DataFrame as the join key(s). If it
is a MultiIndex, the number of keys in the other DataFrame (either the index or a number
of columns) must match the number of levels.

right_index [bool, default False] Use the index from the right DataFrame as the join key.
Same caveats as left_index.

sort [bool, default False] Sort the join keys lexicographically in the result DataFrame. If
False, the order of the join keys depends on the join type (how keyword).

suffixes [tuple of (str, str), default (‘_x’, ‘_y’)] Suffix to apply to overlapping column names
in the left and right side, respectively. To raise an exception on overlapping columns use
(False, False).

3.9. DataFrame 761

dask Documentation, Release 2.6.0

copy [bool, default True] If False, avoid copy if possible.

indicator [bool or str, default False] If True, adds a column to output DataFrame called
“_merge” with information on the source of each row. If string, column with infor-
mation on source of each row will be added to output DataFrame, and column will be
named value of string. Information column is Categorical-type and takes on a value
of “left_only” for observations whose merge key only appears in ‘left’ DataFrame,
“right_only” for observations whose merge key only appears in ‘right’ DataFrame, and
“both” if the observation’s merge key is found in both.

validate [str, optional] If specified, checks if merge is of specified type.

• “one_to_one” or “1:1”: check if merge keys are unique in both left and right datasets.

• “one_to_many” or “1:m”: check if merge keys are unique in left dataset.

• “many_to_one” or “m:1”: check if merge keys are unique in right dataset.

• “many_to_many” or “m:m”: allowed, but does not result in checks.

New in version 0.21.0.

Returns

DataFrame A DataFrame of the two merged objects.

See also:

merge_ordered Merge with optional filling/interpolation.

merge_asof Merge on nearest keys.

DataFrame.join Similar method using indices.

Notes

Support for specifying index levels as the on, left_on, and right_on parameters was added in version 0.23.0
Support for merging named Series objects was added in version 0.24.0

Examples

>>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
... 'value': [1, 2, 3, 5]})
>>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
... 'value': [5, 6, 7, 8]})
>>> df1

lkey value
0 foo 1
1 bar 2
2 baz 3
3 foo 5
>>> df2

rkey value
0 foo 5
1 bar 6
2 baz 7
3 foo 8

Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y,
appended.

762 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df1.merge(df2, left_on='lkey', right_on='rkey')
lkey value_x rkey value_y

0 foo 1 foo 5
1 foo 1 foo 8
2 foo 5 foo 5
3 foo 5 foo 8
4 bar 2 bar 6
5 baz 3 baz 7

Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns.

>>> df1.merge(df2, left_on='lkey', right_on='rkey',
... suffixes=('_left', '_right'))
lkey value_left rkey value_right

0 foo 1 foo 5
1 foo 1 foo 8
2 foo 5 foo 5
3 foo 5 foo 8
4 bar 2 bar 6
5 baz 3 baz 7

Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns.

>>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False))
Traceback (most recent call last):
...
ValueError: columns overlap but no suffix specified:

Index(['value'], dtype='object')

dask.dataframe.multi.merge_asof(left, right, on=None, left_on=None, right_on=None,
left_index=False, right_index=False, by=None, left_by=None,
right_by=None, suffixes=(’_x’, ’_y’), tolerance=None, al-
low_exact_matches=True, direction=’backward’)

Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys.

Both DataFrames must be sorted by the key.

For each row in the left DataFrame:

• A “backward” search selects the last row in the right DataFrame whose ‘on’ key is less than or equal to
the left’s key.

• A “forward” search selects the first row in the right DataFrame whose ‘on’ key is greater than or equal to
the left’s key.

• A “nearest” search selects the row in the right DataFrame whose ‘on’ key is closest in absolute distance
to the left’s key.

The default is “backward” and is compatible in versions below 0.20.0. The direction parameter was added in
version 0.20.0 and introduces “forward” and “nearest”.

Optionally match on equivalent keys with ‘by’ before searching with ‘on’.

New in version 0.19.0.

Parameters

left [DataFrame]

right [DataFrame]

3.9. DataFrame 763

dask Documentation, Release 2.6.0

on [label] Field name to join on. Must be found in both DataFrames. The data MUST be
ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or
float. On or left_on/right_on must be given.

left_on [label] Field name to join on in left DataFrame.

right_on [label] Field name to join on in right DataFrame.

left_index [boolean] Use the index of the left DataFrame as the join key.

New in version 0.19.2.

right_index [boolean] Use the index of the right DataFrame as the join key.

New in version 0.19.2.

by [column name or list of column names] Match on these columns before performing merge
operation.

left_by [column name] Field names to match on in the left DataFrame.

New in version 0.19.2.

right_by [column name] Field names to match on in the right DataFrame.

New in version 0.19.2.

suffixes [2-length sequence (tuple, list, . . .)] Suffix to apply to overlapping column names in
the left and right side, respectively.

tolerance [integer or Timedelta, optional, default None] Select asof tolerance within this
range; must be compatible with the merge index.

allow_exact_matches [boolean, default True]

• If True, allow matching with the same ‘on’ value (i.e. less-than-or-equal-to / greater-
than-or-equal-to)

• If False, don’t match the same ‘on’ value (i.e., strictly less-than / strictly greater-than)

direction [‘backward’ (default), ‘forward’, or ‘nearest’] Whether to search for prior, subse-
quent, or closest matches.

New in version 0.20.0.

Returns

merged [DataFrame]

See also:

merge, merge_ordered

Examples

>>> left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']})
>>> left

a left_val
0 1 a
1 5 b
2 10 c

764 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
... 'right_val': [1, 2, 3, 6, 7]})
>>> right

a right_val
0 1 1
1 2 2
2 3 3
3 6 6
4 7 7

>>> pd.merge_asof(left, right, on='a')
a left_val right_val

0 1 a 1
1 5 b 3
2 10 c 7

>>> pd.merge_asof(left, right, on='a', allow_exact_matches=False)
a left_val right_val

0 1 a NaN
1 5 b 3.0
2 10 c 7.0

>>> pd.merge_asof(left, right, on='a', direction='forward')
a left_val right_val

0 1 a 1.0
1 5 b 6.0
2 10 c NaN

>>> pd.merge_asof(left, right, on='a', direction='nearest')
a left_val right_val

0 1 a 1
1 5 b 6
2 10 c 7

We can use indexed DataFrames as well.

>>> left = pd.DataFrame({'left_val': ['a', 'b', 'c']}, index=[1, 5, 10])
>>> left

left_val
1 a
5 b
10 c

>>> right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7]},
... index=[1, 2, 3, 6, 7])
>>> right

right_val
1 1
2 2
3 3
6 6
7 7

>>> pd.merge_asof(left, right, left_index=True, right_index=True)
left_val right_val

(continues on next page)

3.9. DataFrame 765

dask Documentation, Release 2.6.0

(continued from previous page)

1 a 1
5 b 3
10 c 7

Here is a real-world times-series example

>>> quotes
time ticker bid ask

0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03

>>> trades
time ticker price quantity

0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100

By default we are taking the asof of the quotes

>>> pd.merge_asof(trades, quotes,
... on='time',
... by='ticker')

time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

We only asof within 2ms between the quote time and the trade time

>>> pd.merge_asof(trades, quotes,
... on='time',
... by='ticker',
... tolerance=pd.Timedelta('2ms'))

time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time.
However prior data will propagate forward

>>> pd.merge_asof(trades, quotes,
... on='time',
... by='ticker',

(continues on next page)

766 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

... tolerance=pd.Timedelta('10ms'),

... allow_exact_matches=False)
time ticker price quantity bid ask

0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN
3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN

dask.dataframe.reshape.get_dummies(data, prefix=None, prefix_sep=’_’, dummy_na=False,
columns=None, sparse=False, drop_first=False,
dtype=<class ’numpy.uint8’>, **kwargs)

Convert categorical variable into dummy/indicator variables.

Data must have category dtype to infer result’s columns.

Parameters

data [Series, or DataFrame] For Series, the dtype must be categorical. For DataFrame, at
least one column must be categorical.

prefix [string, list of strings, or dict of strings, default None] String to append DataFrame
column names. Pass a list with length equal to the number of columns when calling
get_dummies on a DataFrame. Alternatively, prefix can be a dictionary mapping column
names to prefixes.

prefix_sep [string, default ‘_’] If appending prefix, separator/delimiter to use. Or pass a list
or dictionary as with prefix.

dummy_na [bool, default False] Add a column to indicate NaNs, if False NaNs are ignored.

columns [list-like, default None] Column names in the DataFrame to be encoded. If columns
is None then all the columns with category dtype will be converted.

sparse [bool, default False] Whether the dummy columns should be sparse or not. Returns
SparseDataFrame if data is a Series or if all columns are included. Otherwise returns a
DataFrame with some SparseBlocks.

New in version 0.18.2.

drop_first [bool, default False] Whether to get k-1 dummies out of k categorical levels by
removing the first level.

dtype [dtype, default np.uint8] Data type for new columns. Only a single dtype is allowed.
Only valid if pandas is 0.23.0 or newer.

New in version 0.18.2.

Returns

dummies [DataFrame]

See also:

pandas.get_dummies

Examples

Dask’s version only works with Categorical data, as this is the only way to know the output shape without
computing all the data.

3.9. DataFrame 767

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html#pandas.get_dummies

dask Documentation, Release 2.6.0

>>> import pandas as pd
>>> import dask.dataframe as dd
>>> s = dd.from_pandas(pd.Series(list('abca')), npartitions=2)
>>> dd.get_dummies(s)
Traceback (most recent call last):

...
NotImplementedError: `get_dummies` with non-categorical dtypes is not supported...

With categorical data:

>>> s = dd.from_pandas(pd.Series(list('abca'), dtype='category'), npartitions=2)
>>> dd.get_dummies(s) # doctest: +NORMALIZE_WHITESPACE
Dask DataFrame Structure:

a b c
npartitions=2
0 uint8 uint8 uint8
2
3
Dask Name: get_dummies, 4 tasks
>>> dd.get_dummies(s).compute() # doctest: +ELLIPSIS

a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0

dask.dataframe.reshape.pivot_table(df, index=None, columns=None, values=None, agg-
func=’mean’)

Create a spreadsheet-style pivot table as a DataFrame. Target columns must have category dtype to infer
result’s columns. index, columns, values and aggfunc must be all scalar.

Parameters

df [DataFrame]

index [scalar] column to be index

columns [scalar] column to be columns

values [scalar] column to aggregate

aggfunc [{‘mean’, ‘sum’, ‘count’}, default ‘mean’]

Returns

table [DataFrame]

See also:

pandas.DataFrame.pivot_table

dask.dataframe.reshape.melt(frame, id_vars=None, value_vars=None, var_name=None,
value_name=’value’, col_level=None)

Unpivots a DataFrame from wide format to long format, optionally leaving identifier variables set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables
(id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the
row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Parameters

frame [DataFrame]

768 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.pivot_table.html#pandas.DataFrame.pivot_table

dask Documentation, Release 2.6.0

id_vars [tuple, list, or ndarray, optional] Column(s) to use as identifier variables.

value_vars [tuple, list, or ndarray, optional] Column(s) to unpivot. If not specified, uses all
columns that are not set as id_vars.

var_name [scalar] Name to use for the ‘variable’ column. If None it uses frame.
columns.name or ‘variable’.

value_name [scalar, default ‘value’] Name to use for the ‘value’ column.

col_level [int or string, optional] If columns are a MultiIndex then use this level to melt.

Returns

DataFrame Unpivoted DataFrame.

See also:

pandas.DataFrame.melt

3.9.2 Create and Store Dask DataFrames

Dask can create DataFrames from various data storage formats like CSV, HDF, Apache Parquet, and others. For most
formats, this data can live on various storage systems including local disk, network file systems (NFS), the Hadoop
File System (HDFS), and Amazon’s S3 (excepting HDF, which is only available on POSIX like file systems).

See the Overview section for an in depth discussion of dask.dataframe scope, use, and limitations.

API

The following functions provide access to convert between Dask DataFrames, file formats, and other Dask or Python
collections.

File Formats:

read_csv(urlpath[, blocksize, collection, . . .]) Read CSV files into a Dask.DataFrame
read_parquet(path[, columns, filters, . . .]) Read a Parquet file into a Dask DataFrame
read_hdf(pattern, key[, start, stop, . . .]) Read HDF files into a Dask DataFrame
read_orc(path[, columns, storage_options]) Read dataframe from ORC file(s)
read_json(url_path[, orient, lines, . . .]) Create a dataframe from a set of JSON files
read_sql_table(table, uri, index_col[, . . .]) Create dataframe from an SQL table.
read_table(urlpath[, blocksize, collection, . . .]) Read delimited files into a Dask.DataFrame
read_fwf(urlpath[, blocksize, collection, . . .]) Read fixed-width files into a Dask.DataFrame
from_bcolz(x[, chunksize, categorize, . . .]) Read BColz CTable into a Dask Dataframe
from_array(x[, chunksize, columns]) Read any slicable array into a Dask Dataframe
to_csv(df, filename[, single_file, . . .]) Store Dask DataFrame to CSV files
to_parquet(df, path[, engine, compression, . . .]) Store Dask.dataframe to Parquet files
to_hdf(df, path, key[, mode, append, . . .]) Store Dask Dataframe to Hierarchical Data Format

(HDF) files

Dask Collections:

from_delayed(dfs[, meta, divisions, prefix, . . .]) Create Dask DataFrame from many Dask Delayed ob-
jects

from_dask_array(x[, columns, index]) Create a Dask DataFrame from a Dask Array.
Continued on next page

3.9. DataFrame 769

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.melt.html#pandas.DataFrame.melt

dask Documentation, Release 2.6.0

Table 50 – continued from previous page
dask.bag.core.Bag.to_dataframe([meta,
columns])

Create Dask Dataframe from a Dask Bag.

DataFrame.to_delayed([optimize_graph]) Convert into a list of dask.delayed objects, one per
partition.

to_records(df) Create Dask Array from a Dask Dataframe
to_bag(df[, index]) Create Dask Bag from a Dask DataFrame

Pandas:

from_pandas(data[, npartitions, chunksize, . . .]) Construct a Dask DataFrame from a Pandas DataFrame

Locations

For text, CSV, and Apache Parquet formats, data can come from local disk, the Hadoop File System, S3FS, or other
sources, by prepending the filenames with a protocol:

>>> df = dd.read_csv('my-data-*.csv')
>>> df = dd.read_csv('hdfs:///path/to/my-data-*.csv')
>>> df = dd.read_csv('s3://bucket-name/my-data-*.csv')

For remote systems like HDFS or S3, credentials may be an issue. Usually, these are handled by configuration files
on disk (such as a .boto file for S3), but in some cases you may want to pass storage-specific options through to the
storage backend. You can do this with the storage_options= keyword:

>>> df = dd.read_csv('s3://bucket-name/my-data-*.csv',
... storage_options={'anon': True})

Dask Delayed

For more complex situations not covered by the functions above, you may want to use dask.delayed, which lets you
construct Dask DataFrames out of arbitrary Python function calls that load DataFrames. This can allow you to handle
new formats easily or bake in particular logic around loading data if, for example, your data is stored with some special
format.

See documentation on using dask.delayed with collections or an example notebook showing how to create a Dask
DataFrame from a nested directory structure of Feather files (as a stand in for any custom file format).

Dask delayed is particularly useful when simple map operations aren’t sufficient to capture the complexity of your
data layout.

From Raw Dask Graphs

This section is mainly for developers wishing to extend dask.dataframe. It discusses internal API not normally
needed by users. Everything below can be done just as effectively with dask.delayed described just above. You should
never need to create a DataFrame object by hand.

To construct a DataFrame manually from a dask graph you need the following information:

1. Dask: a Dask graph with keys like {(name, 0): ..., (name, 1): ...} as well as any other
tasks on which those tasks depend. The tasks corresponding to (name, i) should produce pandas.
DataFrame objects that correspond to the columns and divisions information discussed below

2. Name: the special name used above

770 Chapter 3. Complex Algorithms

https://gist.github.com/mrocklin/e7b7b3a65f2835cda813096332ec73ca

dask Documentation, Release 2.6.0

3. Columns: a list of column names

4. Divisions: a list of index values that separate the different partitions. Alternatively, if you don’t know the
divisions (this is common), you can provide a list of [None, None, None, ...] with as many partitions
as you have plus one. For more information, see the Partitions section in the DataFrame documentation

As an example, we build a DataFrame manually that reads several CSV files that have a datetime index separated by
day. Note that you should never do this. The dd.read_csv function does this for you:

dsk = {('mydf', 0): (pd.read_csv, 'data/2000-01-01.csv'),
('mydf', 1): (pd.read_csv, 'data/2000-01-02.csv'),
('mydf', 2): (pd.read_csv, 'data/2000-01-03.csv')}

name = 'mydf'
columns = ['price', 'name', 'id']
divisions = [Timestamp('2000-01-01 00:00:00'),

Timestamp('2000-01-02 00:00:00'),
Timestamp('2000-01-03 00:00:00'),
Timestamp('2000-01-03 23:59:59')]

df = dd.DataFrame(dsk, name, columns, divisions)

3.9.3 Best Practices

It is easy to get started with Dask DataFrame, but using it well does require some experience. This page contains
suggestions for best practices, and includes solutions to common problems.

Use Pandas

For data that fits into RAM, Pandas can often be faster and easier to use than Dask DataFrame. While “Big Data” tools
can be exciting, they are almost always worse than normal data tools while those remain appropriate.

Reduce, and then use Pandas

Similar to above, even if you have a large dataset there may be a point in your computation where you’ve reduced
things to a more manageable level. You may want to switch to Pandas at this point.

df = dd.read_parquet('my-giant-file.parquet')
df = df[df.name == 'Alice'] # Select a subsection
result = df.groupby('id').value.mean() # Reduce to a smaller size
result = result.compute() # Convert to Pandas dataframe
result... # Continue working with Pandas

Pandas Performance Tips Apply to Dask DataFrame

Usual Pandas performance tips like avoiding apply, using vectorized operations, using categoricals, etc., all apply
equally to Dask DataFrame. See Modern Pandas by Tom Augspurger for a good read on this topic.

Use the Index

Dask DataFrame can be optionally sorted along a single index column. Some operations against this column can be
very fast. For example, if your dataset is sorted by time, you can quickly select data for a particular day, perform time
series joins, etc. You can check if your data is sorted by looking at the df.known_divisions attribute. You can

3.9. DataFrame 771

https://tomaugspurger.github.io/modern-1-intro
https://github.com/TomAugspurger

dask Documentation, Release 2.6.0

set an index column using the .set_index(column_name) method. This operation is expensive though, so use
it sparingly (see below):

df = df.set_index('timestamp') # set the index to make some operations fast

df.loc['2001-01-05':'2001-01-12'] # this is very fast if you have an index
df.merge(df2, left_index=True, right_index=True) # this is also very fast

For more information, see documentation on dataframe partitions.

Avoid Full-Data Shuffling

Setting an index is an important but expensive operation (see above). You should do it infrequently and you should
persist afterwards (see below).

Some operations like set_index and merge/join are harder to do in a parallel or distributed setting than if
they are in-memory on a single machine. In particular, shuffling operations that rearrange data become much more
communication intensive. For example, if your data is arranged by customer ID but now you want to arrange it by
time, all of your partitions will have to talk to each other to exchange shards of data. This can be an intensive process,
particularly on a cluster.

So, definitely set the index but try do so infrequently. After you set the index, you may want to persist your data if
you are on a cluster:

df = df.set_index('column_name') # do this infrequently

Additionally, set_index has a few options that can accelerate it in some situations. For example, if you know that
your dataset is sorted or you already know the values by which it is divided, you can provide these to accelerate the
set_index operation. For more information, see the set_index docstring.

df2 = df.set_index(d.timestamp, sorted=True)

Persist Intelligently

Note: This section is only relevant to users on distributed systems.

Often DataFrame workloads look like the following:

1. Load data from files

2. Filter data to a particular subset

3. Shuffle data to set an intelligent index

4. Several complex queries on top of this indexed data

It is often ideal to load, filter, and shuffle data once and keep this result in memory. Afterwards, each of the several
complex queries can be based off of this in-memory data rather than have to repeat the full load-filter-shuffle process
each time. To do this, use the client.persist method:

df = dd.read_csv('s3://bucket/path/to/*.csv')
df = df[df.balance < 0]
df = client.persist(df)

df = df.set_index('timestamp')

(continues on next page)

772 Chapter 3. Complex Algorithms

https://docs.dask.org/en/latest/dataframe-api.html#dask.dataframe.DataFrame.set_index
https://distributed.dask.org/en/latest/api.html#distributed.client.Client.persist

dask Documentation, Release 2.6.0

(continued from previous page)

df = client.persist(df)

>>> df.customer_id.nunique().compute()
18452844

>>> df.groupby(df.city).size().compute()
...

Persist is important because Dask DataFrame is lazy by default. It is a way of telling the cluster that it should start
executing the computations that you have defined so far, and that it should try to keep those results in memory. You
will get back a new DataFrame that is semantically equivalent to your old DataFrame, but now points to running data.
Your old DataFrame still points to lazy computations:

Don't do this
client.persist(df) # persist doesn't change the input in-place

Do this instead
df = client.persist(df) # replace your old lazy DataFrame

Repartition to Reduce Overhead

Your Dask DataFrame is split up into many Pandas DataFrames. We sometimes call these “partitions”, and often the
number of partitions is decided for you. For example, it might be the number of CSV files from which you are reading.
However, over time, as you reduce or increase the size of your pandas DataFrames by filtering or joining, it may be
wise to reconsider how many partitions you need. There is a cost to having too many or having too few.

Partitions should fit comfortably in memory (smaller than a gigabyte) but also not be too many. Every operation on
every partition takes the central scheduler a few hundred microseconds to process. If you have a few thousand tasks
this is barely noticeable, but it is nice to reduce the number if possible.

A common situation is that you load lots of data into reasonably sized partitions (Dask’s defaults make decent choices),
but then you filter down your dataset to only a small fraction of the original. At this point, it is wise to regroup your
many small partitions into a few larger ones. You can do this by using the repartition method:

df = dd.read_csv('s3://bucket/path/to/*.csv')
df = df[df.name == 'Alice'] # only 1/100th of the data
df = df.repartition(npartitions=df.npartitions // 100)

df = df.persist() # if on a distributed system

This helps to reduce overhead and increase the effectiveness of vectorized Pandas operations. You should aim for
partitions that have around 100MB of data each.

Additionally, reducing partitions is very helpful just before shuffling, which creates n log(n) tasks relative to the
number of partitions. DataFrames with less than 100 partitions are much easier to shuffle than DataFrames with tens
of thousands.

Joins

Joining two DataFrames can be either very expensive or very cheap depending on the situation. It is cheap in the
following cases:

1. Joining a Dask DataFrame with a Pandas DataFrame

2. Joining a Dask DataFrame with another Dask DataFrame of a single partition

3.9. DataFrame 773

dask Documentation, Release 2.6.0

3. Joining Dask DataFrames along their indexes

Also, it is expensive in the following case:

1. Joining Dask DataFrames along columns that are not their index

The expensive case requires a shuffle. This is fine, and Dask DataFrame will complete the job well, but it will be more
expensive than a typical linear-time operation:

dd.merge(a, pandas_df) # fast
dd.merge(a, b, left_index=True, right_index=True) # fast
dd.merge(a, b, left_index=True, right_on='id') # half-fast, half-slow
dd.merge(a, b, left_on='id', right_on='id') # slow

For more information see Joins.

Store Data in Apache Parquet Format

HDF5 is a popular choice for Pandas users with high performance needs. We encourage Dask DataFrame users to store
and load data using Parquet instead. Apache Parquet is a columnar binary format that is easy to split into multiple files
(easier for parallel loading) and is generally much simpler to deal with than HDF5 (from the library’s perspective). It
is also a common format used by other big data systems like Apache Spark and Apache Impala, and so it is useful to
interchange with other systems:

df.to_parquet('path/to/my-results/')
df = dd.read_parquet('path/to/my-results/')

Dask supports reading parquet files with different engine implementations of the Apache Parquet format for Python:

df1 = dd.read_parquet('path/to/my-results/', engine='fastparquet')
df2 = dd.read_parquet('path/to/my-results/', engine='pyarrow')

These libraries can be installed using:

conda install fastparquet pyarrow -c conda-forge

fastparquet is a Python-based implementation that uses the Numba Python-to-LLVM compiler. PyArrow is part of the
Apache Arrow project and uses the C++ implementation of Apache Parquet.

3.9.4 Internal Design

Dask DataFrames coordinate many Pandas DataFrames/Series arranged along an index. We define a Dask DataFrame
object with the following components:

• A Dask graph with a special set of keys designating partitions, such as ('x', 0), ('x', 1), ...

• A name to identify which keys in the Dask graph refer to this DataFrame, such as 'x'

• An empty Pandas object containing appropriate metadata (e.g. column names, dtypes, etc.)

• A sequence of partition boundaries along the index called divisions

Metadata

Many DataFrame operations rely on knowing the name and dtype of columns. To keep track of this information, all
Dask DataFrame objects have a _meta attribute which contains an empty Pandas object with the same dtypes and
names. For example:

774 Chapter 3. Complex Algorithms

https://parquet.apache.org/
https://spark.apache.org/
https://impala.apache.org/
https://github.com/dask/fastparquet/
https://numba.pydata.org/
https://arrow.apache.org/
https://github.com/apache/parquet-cpp

dask Documentation, Release 2.6.0

>>> df = pd.DataFrame({'a': [1, 2, 3], 'b': ['x', 'y', 'z']})
>>> ddf = dd.from_pandas(df, npartitions=2)
>>> ddf._meta
Empty DataFrame
Columns: [a, b]
Index: []
>>> ddf._meta.dtypes
a int64
b object
dtype: object

Internally, Dask DataFrame does its best to propagate this information through all operations, so most of the time a
user shouldn’t have to worry about this. Usually this is done by evaluating the operation on a small sample of fake
data, which can be found on the _meta_nonempty attribute:

>>> ddf._meta_nonempty
a b

0 1 foo
1 1 foo

Sometimes this operation may fail in user defined functions (e.g. when using DataFrame.apply), or may be
prohibitively expensive. For these cases, many functions support an optional meta keyword, which allows specifying
the metadata directly, avoiding the inference step. For convenience, this supports several options:

1. A Pandas object with appropriate dtypes and names. If not empty, an empty slice will be taken:

>>> ddf.map_partitions(foo, meta=pd.DataFrame({'a': [1], 'b': [2]}))

2. A description of the appropriate names and dtypes. This can take several forms:

• A dict of {name: dtype} or an iterable of (name, dtype) specifies a DataFrame. Note that
order is important: the order of the names in meta should match the order of the columns

• A tuple of (name, dtype) specifies a series

• A dtype object or string (e.g. 'f8') specifies a scalar

This keyword is available on all functions/methods that take user provided callables (e.g. DataFrame.
map_partitions, DataFrame.apply, etc. . .), as well as many creation functions (e.g. dd.from_delayed).

Partitions

Internally, a Dask DataFrame is split into many partitions, where each partition is one Pandas DataFrame. These
DataFrames are split vertically along the index. When our index is sorted and we know the values of the divisions of
our partitions, then we can be clever and efficient with expensive algorithms (e.g. groupby’s, joins, etc. . .).

For example, if we have a time-series index, then our partitions might be divided by month: all of January will live in
one partition while all of February will live in the next. In these cases, operations like loc, groupby, and join/
merge along the index can be much more efficient than would otherwise be possible in parallel. You can view the
number of partitions and divisions of your DataFrame with the following fields:

>>> df.npartitions
4
>>> df.divisions
['2015-01-01', '2015-02-01', '2015-03-01', '2015-04-01', '2015-04-31']

3.9. DataFrame 775

dask Documentation, Release 2.6.0

Divisions includes the minimum value of every partition’s index and the maximum value of the last partition’s index.
In the example above, if the user searches for a specific datetime range, then we know which partitions we need to
inspect and which we can drop:

>>> df.loc['2015-01-20': '2015-02-10'] # Must inspect first two partitions

Often we do not have such information about our partitions. When reading CSV files, for example, we do not know,
without extra user input, how the data is divided. In this case .divisions will be all None:

>>> df.divisions
[None, None, None, None, None]

In these cases, any operation that requires a cleanly partitioned DataFrame with known divisions will have to perform
a sort. This can generally achieved by calling df.set_index(...).

3.9.5 Shuffling for GroupBy and Join

Operations like groupby, join, and set_index have special performance considerations that are different from
normal Pandas due to the parallel, larger-than-memory, and distributed nature of Dask DataFrame.

Easy Case

To start off, common groupby operations like df.groupby(columns).reduction() for known reductions like
mean, sum, std, var, count, nunique are all quite fast and efficient, even if partitions are not cleanly
divided with known divisions. This is the common case.

Additionally, if divisions are known, then applying an arbitrary function to groups is efficient when the grouping
columns include the index.

Joins are also quite fast when joining a Dask DataFrame to a Pandas DataFrame or when joining two Dask DataFrames
along their index. No special considerations need to be made when operating in these common cases.

So, if you’re doing common groupby and join operations, then you can stop reading this. Everything will scale nicely.
Fortunately, this is true most of the time:

>>> df.groupby(columns).known_reduction() # Fast and common case
>>> df.groupby(columns_with_index).apply(user_fn) # Fast and common case
>>> dask_df.join(pandas_df, on=column) # Fast and common case
>>> lhs.join(rhs) # Fast and common case
>>> lhs.merge(rhs, on=columns_with_index) # Fast and common case

Difficult Cases

In some cases, such as when applying an arbitrary function to groups (when not grouping on index with known
divisions), when joining along non-index columns, or when explicitly setting an unsorted column to be the index, we
may need to trigger a full dataset shuffle:

>>> df.groupby(columns_no_index).apply(user_fn) # Requires shuffle
>>> lhs.join(rhs, on=columns_no_index) # Requires shuffle
>>> df.set_index(column) # Requires shuffle

A shuffle is necessary when we need to re-sort our data along a new index. For example, if we have banking records
that are organized by time and we now want to organize them by user ID, then we’ll need to move a lot of data around.
In Pandas all of this data fits in memory, so this operation was easy. Now that we don’t assume that all data fits in
memory, we must be a bit more careful.

776 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Re-sorting the data can be avoided by restricting yourself to the easy cases mentioned above.

Shuffle Methods

There are currently two strategies to shuffle data depending on whether you are on a single machine or on a distributed
cluster: shuffle on disk and shuffle over the network.

Shuffle on Disk

When operating on larger-than-memory data on a single machine, we shuffle by dumping intermediate results to disk.
This is done using the partd project for on-disk shuffles.

Shuffle over the Network

When operating on a distributed cluster, the Dask workers may not have access to a shared hard drive. In this case, we
shuffle data by breaking input partitions into many pieces based on where they will end up and moving these pieces
throughout the network. This prolific expansion of intermediate partitions can stress the task scheduler. To manage
for many-partitioned datasets we sometimes shuffle in stages, causing undue copies but reducing the n**2 effect of
shuffling to something closer to n log(n) with log(n) copies.

Selecting methods

Dask will use on-disk shuffling by default, but will switch to task-based distributed shuffling if the default scheduler
is set to use a dask.distributed.Client, such as would be the case if the user sets the Client as default:

client = Client('scheduler:8786', set_as_default=True)

Alternatively, if you prefer to avoid defaults, you can configure the global shuffling method by using the dask.
config.set(shuffle=...) command. This can be done globally:

dask.config.set(shuffle='tasks')

df.groupby(...).apply(...)

or as a context manager:

with dask.config.set(shuffle='tasks'):
df.groupby(...).apply(...)

In addition, set_index also accepts a shuffle keyword argument that can be used to select either on-disk or
task-based shuffling:

df.set_index(column, shuffle='disk')
df.set_index(column, shuffle='tasks')

3.9.6 Aggregate

Dask supports Pandas’ aggregate syntax to run multiple reductions on the same groups. Common reductions such
as max, sum, and mean are directly supported:

3.9. DataFrame 777

https://github.com/dask/partd

dask Documentation, Release 2.6.0

>>> df.groupby(columns).aggregate(['sum', 'mean', 'max', 'min'])

Dask also supports user defined reductions. To ensure proper performance, the reduction has to be formulated in terms
of three independent steps. The chunk step is applied to each partition independently and reduces the data within a
partition. The aggregate combines the within partition results. The optional finalize step combines the results
returned from the aggregate step and should return a single final column. For Dask to recognize the reduction, it
has to be passed as an instance of dask.dataframe.Aggregation.

For example, sum could be implemented as:

custom_sum = dd.Aggregation('custom_sum', lambda s: s.sum(), lambda s0: s0.sum())
df.groupby('g').agg(custom_sum)

The name argument should be different from existing reductions to avoid data corruption. The arguments to each
function are pre-grouped series objects, similar to df.groupby('g')['value'].

Many reductions can only be implemented with multiple temporaries. To implement these reductions, the steps should
return tuples and expect multiple arguments. A mean function can be implemented as:

custom_mean = dd.Aggregation(
'custom_mean',
lambda s: (s.count(), s.sum()),
lambda count, sum: (count.sum(), sum.sum()),
lambda count, sum: sum / count,

)
df.groupby('g').agg(custom_mean)

For example, let’s compute the group-wise extent (maximum - minimum) for a DataFrame.

>>> df = pd.DataFrame({
... 'a': ['a', 'b', 'a', 'a', 'b'],
... 'b': [0, 1, 0, 2, 5],
>>> })
>>> ddf = dd.from_pandas(df, 2)

We define the building blocks to find the maximum and minimum of each chunk, and then the maximum and minimum
over all the chunks. We finalize by taking the difference between the Series with the maxima and minima

>>> def chunk(grouped):
... return grouped.max(), grouped.min()

>>> def agg(chunk_maxes, chunk_mins):
... return chunk_maxes.max(), chunk_mins.min()

>>> def finalize(maxima, minima):
... return maxima - minima

Finally, we create and use the aggregation

>>> extent = dd.Aggregation('extent', chunk, agg, finalize=finalize)
>>> ddf.groupby('a').agg(extent).compute()

b
a
a 2
b 4

778 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

3.9.7 Joins

DataFrame joins are a common and expensive computation that benefit from a variety of optimizations in different
situations. Understanding how your data is laid out and what you’re trying to accomplish can have a large impact on
performance. This documentation page goes through the various different options and their performance impacts.

Large to Large Unsorted Joins

In the worst case scenario you have two large tables with many partitions each and you want to join them both along
a column that may not be sorted.

This can be slow. In this case Dask DataFrame will need to move all of your data around so that rows with matching
values in the joining columns are in the same partition. This large-scale movement can create communication costs,
and can require a large amount of memory. If enough memory can not be found then Dask will have to read and write
data to disk, which may cause other performance costs.

These problems are solvable, but will be significantly slower than many other operations. They are best avoided if
possible.

Large to Small Joins

Many join or merge computations combine a large table with one small one. If the small table is either a single partition
Dask DataFrame or even just a normal Pandas DataFrame then the computation can proceed in an embarrassingly
parallel way, where each partition of the large DataFrame is joined against the single small table. This incurs almost
no overhead relative to Pandas joins.

If your smaller table can easily fit in memory, then you might want to ensure that it is a single partition with the
following

small = small.repartition(npartitions=1)
result = big.merge(small)

Sorted Joins

The Pandas merge API supports the left_index= and right_index= options to perform joins on the index.
For Dask DataFrames these keyword options hold special significance if the index has known divisions (see Parti-
tions). In this case the DataFrame partitions are aligned along these divisions (which is generally fast) and then an
embarrassingly parallel Pandas join happens across partition pairs. This is generally relatively fast.

Sorted or indexed joins are a good solution to the large-large join problem. If you plan to join against a dataset
repeatedly then it may be worthwhile to set the index ahead of time, and possibly store the data in a format that
maintains that index, like Parquet.

left = left.set_index('id').persist()

left.merge(right_one, left_index=True, ...)
left.merge(right_two, left_index=True, ...)
...

3.9.8 Indexing into Dask DataFrames

Dask DataFrame supports some of Pandas’ indexing behavior.

3.9. DataFrame 779

dask Documentation, Release 2.6.0

DataFrame.iloc Purely integer-location based indexing for selection by
position.

DataFrame.loc Purely label-location based indexer for selection by la-
bel.

Label-based Indexing

Just like Pandas, Dask DataFrame supports label-based indexing with the .loc accessor for selecting rows or
columns, and __getitem__ (square brackets) for selecting just columns.

Note: To select rows, the DataFrame’s divisions must be known (see Internal Design and Best Practices for more
information.)

>>> import dask.dataframe as dd
>>> import pandas as pd
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [3, 4, 5]},
... index=['a', 'b', 'c'])
>>> ddf = dd.from_pandas(df, npartitions=2)
>>> ddf
Dask DataFrame Structure:

A B
npartitions=1
a int64 int64
c
Dask Name: from_pandas, 1 tasks

Selecting columns:

>>> ddf[['B', 'A']]
Dask DataFrame Structure:

B A
npartitions=1
a int64 int64
c
Dask Name: getitem, 2 tasks

Selecting a single column reduces to a Dask Series:

>>> ddf['A']
Dask Series Structure:
npartitions=1
a int64
c ...
Name: A, dtype: int64
Dask Name: getitem, 2 tasks

Slicing rows and (optionally) columns with .loc:

>>> ddf.loc[['b', 'c'], ['A']]
Dask DataFrame Structure:

A
npartitions=1
b int64

(continues on next page)

780 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

c ...
Dask Name: loc, 2 tasks

Dask DataFrame supports Pandas’ partial-string indexing:

>>> ts = dd.demo.make_timeseries()
>>> ts
Dask DataFrame Structure:

id name x y
npartitions=11
2000-01-31 int64 object float64 float64
2000-02-29
...
2000-11-30
2000-12-31
Dask Name: make-timeseries, 11 tasks

>>> ts.loc['2000-02-12']
Dask DataFrame Structure:

id name x y
npartitions=1
2000-02-12 00:00:00.000000000 int64 object float64 float64
2000-02-12 23:59:59.999999999
Dask Name: loc, 12 tasks

Positional Indexing

Dask DataFrame does not track the length of partitions, making positional indexing with .iloc inefficient for se-
lecting rows. DataFrame.iloc() only supports indexers where the row indexer is slice(None) (which : is a
shorthand for.)

>>> ddf.iloc[:, [1, 0]]
Dask DataFrame Structure:

B A
npartitions=1
a int64 int64
c
Dask Name: iloc, 2 tasks

Trying to select specific rows with iloc will raise an exception:

>>> ddf.iloc[[0, 2], [1]]
Traceback (most recent call last)

File "<stdin>", line 1, in <module>
ValueError: 'DataFrame.iloc' does not support slicing rows. The indexer must be a 2-
→˓tuple whose first item is 'slice(None)'.

3.9.9 Categoricals

Dask DataFrame divides categorical data into two types:

• Known categoricals have the categories known statically (on the _meta attribute). Each partition must
have the same categories as found on the _meta attribute

3.9. DataFrame 781

https://pandas.pydata.org/pandas-docs/stable/timeseries.html#partial-string-indexing
https://pandas.pydata.org/pandas-docs/stable/categorical.html

dask Documentation, Release 2.6.0

• Unknown categoricals don’t know the categories statically, and may have different categories in each parti-
tion. Internally, unknown categoricals are indicated by the presence of dd.utils.UNKNOWN_CATEGORIES
in the categories on the _meta attribute. Since most DataFrame operations propagate the categories, the
known/unknown status should propagate through operations (similar to how NaN propagates)

For metadata specified as a description (option 2 above), unknown categoricals are created.

Certain operations are only available for known categoricals. For example, df.col.cat.categories would
only work if df.col has known categories, since the categorical mapping is only known statically on the metadata
of known categoricals.

The known/unknown status for a categorical column can be found using the known property on the categorical acces-
sor:

>>> ddf.col.cat.known
False

Additionally, an unknown categorical can be converted to known using .cat.as_known(). If you have multiple
categorical columns in a DataFrame, you may instead want to use df.categorize(columns=...), which will
convert all specified columns to known categoricals. Since getting the categories requires a full scan of the data, using
df.categorize() is more efficient than calling .cat.as_known() for each column (which would result in
multiple scans):

>>> col_known = ddf.col.cat.as_known() # use for single column
>>> col_known.cat.known
True
>>> ddf_known = ddf.categorize() # use for multiple columns
>>> ddf_known.col.cat.known
True

To convert a known categorical to an unknown categorical, there is also the .cat.as_unknown() method. This
requires no computation as it’s just a change in the metadata.

Non-categorical columns can be converted to categoricals in a few different ways:

astype operates lazily, and results in unknown categoricals
ddf = ddf.astype({'mycol': 'category', ...})
or
ddf['mycol'] = ddf.mycol.astype('category')

categorize requires computation, and results in known categoricals
ddf = ddf.categorize(columns=['mycol', ...])

Additionally, with Pandas 0.19.2 and up, dd.read_csv and dd.read_table can read data directly into unknown
categorical columns by specifying a column dtype as 'category':

>>> ddf = dd.read_csv(..., dtype={col_name: 'category'})

Moreover, with Pandas 0.21.0 and up, dd.read_csv and dd.read_table can read data directly into known
categoricals by specifying instances of pd.api.types.CategoricalDtype:

>>> dtype = {'col': pd.api.types.CategoricalDtype(['a', 'b', 'c'])}
>>> ddf = dd.read_csv(..., dtype=dtype)

3.9.10 Subclass DataFrames

There are a few projects that subclass or replicate the functionality of Pandas objects:

782 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• GeoPandas: for Geospatial analytics

• PyGDF: for data analysis on GPUs

• . . .

These projects may also want to produce parallel variants of themselves with Dask, and may want to reuse some of
the code in Dask DataFrame. This document describes how to do this. It is intended for maintainers of these libraries
and not for general users.

Implement dask, name, meta, and divisions

You will need to implement ._meta, .dask, .divisions, and ._name as defined in the DataFrame design docs.

Extend Dispatched Methods

If you are going to pass around Pandas-like objects that are not normal Pandas objects, then we ask you to extend a
few dispatched methods.

make_meta

This function returns an empty version of one of your non-Dask objects, given a non-empty non-Dask object:

from dask.dataframe import make_meta

@make_meta.register(MyDataFrame)
def make_meta_dataframe(df):

return df.head(0)

@make_meta.register(MySeries)
def make_meta_series(s):

return s.head(0)

@make_meta.register(MyIndex)
def make_meta_index(ind):

return ind[:0]

Additionally, you should create a similar function that returns a non-empty version of your non-Dask DataFrame
objects filled with a few rows of representative or random data. This is used to guess types when they are not provided.
It should expect an empty version of your object with columns, dtypes, index name, and it should return a non-empty
version:

from dask.dataframe.utils import meta_nonempty

@meta_nonempty.register(MyDataFrame)
def meta_nonempty_dataframe(df):

...
return MyDataFrame(..., columns=df.columns,

index=MyIndex(..., name=df.index.name)

@meta_nonempty.register(MySeries)
def meta_nonempty_series(s):

(continues on next page)

3.9. DataFrame 783

dask Documentation, Release 2.6.0

(continued from previous page)

...

@meta_nonempty.register(MyIndex)
def meta_nonempty_index(ind):

...

get_parallel_type

Given a non-Dask DataFrame object, return the Dask equivalent:

from dask.dataframe.core import get_parallel_type

@get_parallel_type.register(MyDataFrame)
def get_parallel_type_dataframe(df):

return MyDaskDataFrame

@get_parallel_type.register(MySeries)
def get_parallel_type_series(s):

return MyDaskSeries

@get_parallel_type.register(MyIndex)
def get_parallel_type_index(ind):

return MyDaskIndex

concat

Concatenate many of your non-Dask DataFrame objects together. It should expect a list of your objects (homoge-
neously typed):

from dask.dataframe.methods import concat_dispatch

@concat_dispatch.register((MyDataFrame, MySeries, MyIndex))
def concat_pandas(dfs, axis=0, join='outer', uniform=False, filter_warning=True):

...

Extension Arrays

Rather than subclassing Pandas DataFrames, you may be interested in extending Pandas with Extension Arrays.

All of the first-party extension arrays (those implemented in pandas itself) are supported directly by dask.

Developers implementing third-party extension arrays (outside of pandas) will need to do register their
ExtensionDtype with Dask so that it works correctly in dask.dataframe.

For example, we’ll register the test-only DecimalDtype from pandas test suite.

from decimal import Decimal
from dask.dataframe.extensions import make_array_nonempty, make_scalar
from pandas.tests.extension.decimal import DecimalArray, DecimalDtype

(continues on next page)

784 Chapter 3. Complex Algorithms

https://pandas.pydata.org/pandas-docs/stable/extending.html

dask Documentation, Release 2.6.0

(continued from previous page)

@make_array_nonempty.register(DecimalDtype)
def _(dtype):

return DecimalArray._from_sequence([Decimal('0'), Decimal('NaN')],
dtype=dtype)

@make_scalar.register(Decimal)
def _(x):

return Decimal('1')

Internally, Dask will use this to create a small dummy Series for tracking metadata through operations.

>>> make_array_nonempty(DecimalDtype())
<DecimalArray>
[Decimal('0'), Decimal('NaN')]
Length: 2, dtype: decimal

So you (or your users) can now create and store a dask DataFrame or Series with your extension array contained
within.

>>> from decimal import Decimal
>>> import dask.dataframe as dd
>>> import pandas as pd
>>> from pandas.tests.extension.decimal import DecimalArray
>>> ser = pd.Series(DecimalArray([Decimal('0.0')] * 10))
>>> dser = dd.from_pandas(ser, 3)
>>> dser
Dask Series Structure:
npartitions=3
0 decimal
4 ...
8 ...
9 ...
dtype: decimal
Dask Name: from_pandas, 3 tasks

Notice the decimal dtype.

Accessors

Many extension arrays expose their functionality on Series or DataFrame objects using accessors. Dask provides
decorators to register accessors similar to pandas. See the pandas documentation on accessors for more.

dask.dataframe.extensions.register_dataframe_accessor(name)
Register a custom accessor on dask.dataframe.DataFrame.

See pandas.api.extensions.register_dataframe_accessor() for more.

dask.dataframe.extensions.register_series_accessor(name)
Register a custom accessor on dask.dataframe.Series.

See pandas.api.extensions.register_series_accessor() for more.

dask.dataframe.extensions.register_index_accessor(name)
Register a custom accessor on dask.dataframe.Index.

See pandas.api.extensions.register_index_accessor() for more.

3.9. DataFrame 785

http://pandas.pydata.org/pandas-docs/stable/development/extending.html#registering-custom-accessors
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_dataframe_accessor.html#pandas.api.extensions.register_dataframe_accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_series_accessor.html#pandas.api.extensions.register_series_accessor
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.register_index_accessor.html#pandas.api.extensions.register_index_accessor

dask Documentation, Release 2.6.0

A Dask DataFrame is a large parallel DataFrame composed of many smaller Pandas DataFrames, split along the
index. These Pandas DataFrames may live on disk for larger-than-memory computing on a single machine, or on
many different machines in a cluster. One Dask DataFrame operation triggers many operations on the constituent
Pandas DataFrames.

3.9.11 Design

Dask DataFrames coordinate many Pandas DataFrames/Series arranged along the index. A Dask DataFrame is par-
titioned row-wise, grouping rows by index value for efficiency. These Pandas objects may live on disk or on other
machines.

3.9.12 Dask DataFrame copies the Pandas API

Because the dask.dataframe application programming interface (API) is a subset of the Pandas API, it should be
familiar to Pandas users. There are some slight alterations due to the parallel nature of Dask:

>>> import dask.dataframe as dd
>>> df = dd.read_csv('2014-*.csv')
>>> df.head()

x y
0 1 a
1 2 b
2 3 c
3 4 a
4 5 b
5 6 c

>>> df2 = df[df.y == 'a'].x + 1

As with all Dask collections, one triggers computation by calling the .compute() method:

>>> df2.compute()
0 2
3 5
Name: x, dtype: int64

3.9.13 Common Uses and Anti-Uses

Dask DataFrame is used in situations where Pandas is commonly needed, usually when Pandas fails due to data size
or computation speed:

• Manipulating large datasets, even when those datasets don’t fit in memory

• Accelerating long computations by using many cores

• Distributed computing on large datasets with standard Pandas operations like groupby, join, and time series
computations

Dask DataFrame may not be the best choice in the following situations:

• If your dataset fits comfortably into RAM on your laptop, then you may be better off just using Pandas. There
may be simpler ways to improve performance than through parallelism

786 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

• If your dataset doesn’t fit neatly into the Pandas tabular model, then you might find more use in dask.bag or
dask.array

• If you need functions that are not implemented in Dask DataFrame, then you might want to look at dask.delayed
which offers more flexibility

• If you need a proper database with all that databases offer you might prefer something like Postgres

3.9.14 Scope

Dask DataFrame covers a well-used portion of the Pandas API. The following class of computations works well:

• Trivially parallelizable operations (fast):

– Element-wise operations: df.x + df.y, df * df

– Row-wise selections: df[df.x > 0]

– Loc: df.loc[4.0:10.5]

– Common aggregations: df.x.max(), df.max()

– Is in: df[df.x.isin([1, 2, 3])]

– Date time/string accessors: df.timestamp.month

• Cleverly parallelizable operations (fast):

– groupby-aggregate (with common aggregations): df.groupby(df.x).y.max(), df.
groupby('x').max()

– groupby-apply on index: df.groupby(['idx', 'x']).apply(myfunc), where idx is
the index level name

– value_counts: df.x.value_counts()

– Drop duplicates: df.x.drop_duplicates()

– Join on index: dd.merge(df1, df2, left_index=True, right_index=True) or
dd.merge(df1, df2, on=['idx', 'x']) where idx is the index name for both df1
and df2

– Join with Pandas DataFrames: dd.merge(df1, df2, on='id')

– Element-wise operations with different partitions / divisions: df1.x + df2.y

– Date time resampling: df.resample(...)

– Rolling averages: df.rolling(...)

– Pearson’s correlation: df[['col1', 'col2']].corr()

• Operations requiring a shuffle (slow-ish, unless on index)

– Set index: df.set_index(df.x)

– groupby-apply not on index (with anything): df.groupby(df.x).apply(myfunc)

– Join not on the index: dd.merge(df1, df2, on='name')

However, Dask DataFrame does not implement the entire Pandas interface. Users expecting this will be disappointed.
Notably, Dask DataFrame has the following limitations:

1. Setting a new index from an unsorted column is expensive

2. Many operations like groupby-apply and join on unsorted columns require setting the index, which as mentioned
above, is expensive

3.9. DataFrame 787

https://www.postgresql.org/

dask Documentation, Release 2.6.0

3. The Pandas API is very large. Dask DataFrame does not attempt to implement many Pandas features or any of
the more exotic data structures like NDFrames

4. Operations that were slow on Pandas, like iterating through row-by-row, remain slow on Dask DataFrame

See DataFrame API documentation for a more extensive list.

3.9.15 Execution

By default, Dask DataFrame uses the multi-threaded scheduler. This exposes some parallelism when Pandas or the
underlying NumPy operations release the global interpreter lock (GIL). Generally, Pandas is more GIL bound than
NumPy, so multi-core speed-ups are not as pronounced for Dask DataFrame as they are for Dask Array. This is
changing, and the Pandas development team is actively working on releasing the GIL.

When dealing with text data, you may see speedups by switching to the newer distributed scheduler either on a cluster
or single machine.

3.10 Delayed

3.10.1 API

The dask.delayed interface consists of one function, delayed:

• delayed wraps functions

Wraps functions. Can be used as a decorator, or around function calls directly (i.e.
delayed(foo)(a, b, c)). Outputs from functions wrapped in delayed are proxy objects
of type Delayed that contain a graph of all operations done to get to this result.

• delayed wraps objects

Wraps objects. Used to create Delayed proxies directly.

Delayed objects can be thought of as representing a key in the dask task graph. A Delayed supports most python
operations, each of which creates another Delayed representing the result:

• Most operators (*, -, and so on)

• Item access and slicing (a[0])

• Attribute access (a.size)

• Method calls (a.index(0))

Operations that aren’t supported include:

• Mutating operators (a += 1)

• Mutating magics such as __setitem__/__setattr__ (a[0] = 1, a.foo = 1)

• Iteration. (for i in a: ...)

• Use as a predicate (if a: ...)

The last two points in particular mean that Delayed objects cannot be used for control flow, meaning that no
Delayed can appear in a loop or if statement. In other words you can’t iterate over a Delayed object, or use it
as part of a condition in an if statement, but Delayed object can be used in a body of a loop or if statement (i.e. the
example above is fine, but if data was a Delayed object it wouldn’t be). Even with this limitation, many workflows
can easily be parallelized.

788 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

delayed Wraps a function or object to produce a Delayed.

dask.delayed.delayed()
Wraps a function or object to produce a Delayed.

Delayed objects act as proxies for the object they wrap, but all operations on them are done lazily by building
up a dask graph internally.

Parameters

obj [object] The function or object to wrap

name [string or hashable, optional] The key to use in the underlying graph for the wrapped
object. Defaults to hashing content. Note that this only affects the name of the object
wrapped by this call to delayed, and not the output of delayed function calls - for that use
dask_key_name= as described below.

pure [bool, optional] Indicates whether calling the resulting Delayed object is a pure op-
eration. If True, arguments to the call are hashed to produce deterministic keys. If not
provided, the default is to check the global delayed_pure setting, and fallback to
False if unset.

nout [int, optional] The number of outputs returned from calling the resulting Delayed
object. If provided, the Delayed output of the call can be iterated into nout objects,
allowing for unpacking of results. By default iteration over Delayed objects will error.
Note, that nout=1 expects obj, to return a tuple of length 1, and consequently for
nout=0, obj should return an empty tuple.

traverse [bool, optional] By default dask traverses builtin python collections looking for dask
objects passed to delayed. For large collections this can be expensive. If obj doesn’t
contain any dask objects, set traverse=False to avoid doing this traversal.

Examples

Apply to functions to delay execution:

>>> def inc(x):
... return x + 1

>>> inc(10)
11

>>> x = delayed(inc, pure=True)(10)
>>> type(x) == Delayed
True
>>> x.compute()
11

Can be used as a decorator:

>>> @delayed(pure=True)
... def add(a, b):
... return a + b
>>> add(1, 2).compute()
3

3.10. Delayed 789

dask Documentation, Release 2.6.0

delayed also accepts an optional keyword pure. If False, then subsequent calls will always produce a
different Delayed. This is useful for non-pure functions (such as time or random).

>>> from random import random
>>> out1 = delayed(random, pure=False)()
>>> out2 = delayed(random, pure=False)()
>>> out1.key == out2.key
False

If you know a function is pure (output only depends on the input, with no global state), then you can set
pure=True. This will attempt to apply a consistent name to the output, but will fallback on the same behavior
of pure=False if this fails.

>>> @delayed(pure=True)
... def add(a, b):
... return a + b
>>> out1 = add(1, 2)
>>> out2 = add(1, 2)
>>> out1.key == out2.key
True

Instead of setting pure as a property of the callable, you can also set it contextually using the delayed_pure
setting. Note that this influences the call and not the creation of the callable:

>>> import dask
>>> @delayed
... def mul(a, b):
... return a * b
>>> with dask.config.set(delayed_pure=True):
... print(mul(1, 2).key == mul(1, 2).key)
True
>>> with dask.config.set(delayed_pure=False):
... print(mul(1, 2).key == mul(1, 2).key)
False

The key name of the result of calling a delayed object is determined by hashing the arguments by default. To
explicitly set the name, you can use the dask_key_name keyword when calling the function:

>>> add(1, 2) # doctest: +SKIP
Delayed('add-3dce7c56edd1ac2614add714086e950f')
>>> add(1, 2, dask_key_name='three')
Delayed('three')

Note that objects with the same key name are assumed to have the same result. If you set the names explicitly
you should make sure your key names are different for different results.

>>> add(1, 2, dask_key_name='three') # doctest: +SKIP
>>> add(2, 1, dask_key_name='three') # doctest: +SKIP
>>> add(2, 2, dask_key_name='four') # doctest: +SKIP

delayed can also be applied to objects to make operations on them lazy:

>>> a = delayed([1, 2, 3])
>>> isinstance(a, Delayed)
True
>>> a.compute()
[1, 2, 3]

790 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

The key name of a delayed object is hashed by default if pure=True or is generated randomly if pure=False
(default). To explicitly set the name, you can use the name keyword:

>>> a = delayed([1, 2, 3], name='mylist')
>>> a
Delayed('mylist')

Delayed results act as a proxy to the underlying object. Many operators are supported:

>>> (a + [1, 2]).compute()
[1, 2, 3, 1, 2]
>>> a[1].compute()
2

Method and attribute access also works:

>>> a.count(2).compute()
1

Note that if a method doesn’t exist, no error will be thrown until runtime:

>>> res = a.not_a_real_method()
>>> res.compute() # doctest: +SKIP
AttributeError("'list' object has no attribute 'not_a_real_method'")

“Magic” methods (e.g. operators and attribute access) are assumed to be pure, meaning that subsequent calls
must return the same results. This behavior is not overrideable through the delayed call, but can be modified
using other ways as described below.

To invoke an impure attribute or operator, you’d need to use it in a delayed function with pure=False:

>>> class Incrementer(object):
... def __init__(self):
... self._n = 0
... @property
... def n(self):
... self._n += 1
... return self._n
...
>>> x = delayed(Incrementer())
>>> x.n.key == x.n.key
True
>>> get_n = delayed(lambda x: x.n, pure=False)
>>> get_n(x).key == get_n(x).key
False

In contrast, methods are assumed to be impure by default, meaning that subsequent calls may return different
results. To assume purity, set pure=True. This allows sharing of any intermediate values.

>>> a.count(2, pure=True).key == a.count(2, pure=True).key
True

As with function calls, method calls also respect the global delayed_pure setting and support the
dask_key_name keyword:

>>> a.count(2, dask_key_name="count_2")
Delayed('count_2')
>>> with dask.config.set(delayed_pure=True):

(continues on next page)

3.10. Delayed 791

dask Documentation, Release 2.6.0

(continued from previous page)

... print(a.count(2).key == a.count(2).key)
True

3.10.2 Working with Collections

Often we want to do a bit of custom work with dask.delayed (for example, for complex data ingest), then leverage
the algorithms in dask.array or dask.dataframe, and then switch back to custom work. To this end, all
collections support from_delayed functions and to_delayed methods.

As an example, consider the case where we store tabular data in a custom format not known by Dask DataFrame. This
format is naturally broken apart into pieces and we have a function that reads one piece into a Pandas DataFrame.
We use dask.delayed to lazily read these files into Pandas DataFrames, use dd.from_delayed to wrap these
pieces up into a single Dask DataFrame, use the complex algorithms within the DataFrame (groupby, join, etc.), and
then switch back to dask.delayed to save our results back to the custom format:

import dask.dataframe as dd
from dask.delayed import delayed

from my_custom_library import load, save

filenames = ...
dfs = [delayed(load)(fn) for fn in filenames]

df = dd.from_delayed(dfs)
df = ... # do work with dask.dataframe

dfs = df.to_delayed()
writes = [delayed(save)(df, fn) for df, fn in zip(dfs, filenames)]

dd.compute(*writes)

Data science is often complex, and dask.delayed provides a release valve for users to manage this complexity on
their own, and solve the last mile problem for custom formats and complex situations.

3.10.3 Best Practices

It is easy to get started with Dask delayed, but using it well does require some experience. This page contains sugges-
tions for best practices, and includes solutions to common problems.

Call delayed on the function, not the result

Dask delayed operates on functions like dask.delayed(f)(x, y), not on their results like dask.
delayed(f(x, y)). When you do the latter, Python first calculates f(x, y) before Dask has a chance to
step in.

Don’t Do

This executes immediately

dask.delayed(f(x, y))

This makes a delayed function, acting
→˓lazily

dask.delayed(f)(x, y)

792 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Compute on lots of computation at once

To improve parallelism, you want to include lots of computation in each compute call. Ideally, you want to make
many dask.delayed calls to define your computation and then call dask.compute only at the end. It is ok to
call dask.compute in the middle of your computation as well, but everything will stop there as Dask computes
those results before moving forward with your code.

Don’t Do

Avoid calling compute repeatedly

results = []
for x in L:

y = dask.delayed(f)(x)
results.append(y.compute())

results

Collect many calls for one compute

results = []
for x in L:

y = dask.delayed(f)(x)
results.append(y)

results = dask.compute(*results)

Calling y.compute() within the loop would await the result of the computation every time, and so inhibit parallelism.

Don’t mutate inputs

Your functions should not change the inputs directly.

Don’t Do

Mutate inputs in functions

@dask.delayed
def f(x):

x += 1
return x

Return new values or copies

@dask.delayed
def f(x):

x = x + 1
return x

If you need to use a mutable operation, then make a copy within your function first:

@dask.delayed
def f(x):

x = copy(x)
x += 1
return x

Avoid global state

Ideally, your operations shouldn’t rely on global state. Using global state might work if you only use threads, but when
you move to multiprocessing or distributed computing then you will likely encounter confusing errors.

3.10. Delayed 793

dask Documentation, Release 2.6.0

Don’t

L = []

This references global variable L

@dask.delayed
def f(x):

L.append(x)

Don’t rely on side effects

Delayed functions only do something if they are computed. You will always need to pass the output to something that
eventually calls compute.

Don’t Do

Forget to call compute

dask.delayed(f)(1, 2, 3)

...

Ensure delayed tasks are computed

x = dask.delayed(f)(1, 2, 3)
...
dask.compute(x, ...)

In the first case here, nothing happens, because compute() is never called.

Break up computations into many pieces

Every dask.delayed function call is a single operation from Dask’s perspective. You achieve parallelism by having
many delayed calls, not by using only a single one: Dask will not look inside a function decorated with @dask.
delayed and parallelize that code internally. To accomplish that, it needs your help to find good places to break up
a computation.

794 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Don’t Do

One giant task

def load(filename):
...

def process(filename):
...

def save(filename):
...

@dask.delayed
def f(filenames):

results = []
for filename in filenames:

data = load(filename)
data = process(data)
result = save(data)

return results

dask.compute(f(filenames))

Break up into many tasks

@dask.delayed
def load(filename):

...

@dask.delayed
def process(filename):

...

@dask.delayed
def save(filename):

...

def f(filenames):
results = []
for filename in filenames:

data = load(filename)
data = process(data)
result = save(data)

return results

dask.compute(f(filenames))

The first version only has one delayed task, and so cannot parallelize.

Avoid too many tasks

Every delayed task has an overhead of a few hundred microseconds. Usually this is ok, but it can become a problem
if you apply dask.delayed too finely. In this case, it’s often best to break up your many tasks into batches or use
one of the Dask collections to help you.

Don’t Do

Too mamy tasks

results = []
for x in range(10000000):

y = dask.delayed(f)(x)
results.append(y)

Use collections

import dask.bag as db
b = db.from_sequence(range(10000000),
→˓npartitions=1000)
b = b.map(f)
...

Here we use dask.bag to automatically batch applying our function. We could also have constructed our own
batching as follows

def batch(seq):
sub_results = []
for x in seq:

(continues on next page)

3.10. Delayed 795

dask Documentation, Release 2.6.0

(continued from previous page)

sub_results.append(f(x))
return sub_results

batches = []
for i in range(0, 10000000, 10000):

result_batch = dask.delayed(batch)(range(i, i + 10000))
batches.append(result_batch)

Here we construct batches where each delayed function call computes for many data points from the original input.

Avoid calling delayed within delayed functions

Often, if you are new to using Dask delayed, you place dask.delayed calls everywhere and hope for the best.
While this may actually work, it’s usually slow and results in hard-to-understand solutions.

Usually you never call dask.delayed within dask.delayed functions.

Don’t Do

Delayed function calls delayed

@dask.delayed
def process_all(L):

result = []
for x in L:

y = dask.delayed(f)(x)
result.append(y)

return result

Normal function calls delayed

def process_all(L):
result = []
for x in L:

y = dask.delayed(f)(x)
result.append(y)

return result

Because the normal function only does delayed work it is very fast and so there is no reason to delay it.

Don’t call dask.delayed on other Dask collections

When you place a Dask array or Dask DataFrame into a delayed call, that function will receive the NumPy or Pandas
equivalent. Beware that if your array is large, then this might crash your workers.

Instead, it’s more common to use methods like da.map_blocks

Don’t Do

Call delayed functions on Dask
→˓collections

import dask.dataframe as dd
df = dd.read_csv('/path/to/*.csv')

dask.delayed(train)(df)

Use mapping methods if applicable

import dask.dataframe as dd
df = dd.read_csv('/path/to/*.csv')

df.map_partitions(train)

Alternatively, if the procedure doesn’t fit into a mapping, you can always turn your arrays or dataframes into many
delayed objects, for example

796 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

partitions = df.to_delayed()
delayed_values = [dask.delayed(train)(part)

for part in partitions]

However, if you don’t mind turning your Dask array/DataFrame into a single chunk, then this is ok.

dask.delayed(train)(..., y=df.sum())

Avoid repeatedly putting large inputs into delayed calls

Every time you pass a concrete result (anything that isn’t delayed) Dask will hash it by default to give it a name. This
is fairly fast (around 500 MB/s) but can be slow if you do it over and over again. Instead, it is better to delay your data
as well.

This is especially important when using a distributed cluster to avoid sending your data separately for each function
call.

Don’t Do

x = np.array(...) # some large array

results = [dask.delayed(train)(x, i)
for i in range(1000)]

x = np.array(...) # some large array
x = dask.delayed(x) # delay the data
→˓once
results = [dask.delayed(train)(x, i)

for i in range(1000)]

Every call to dask.delayed(train)(x, ...) has to hash the NumPy array x, which slows things down.

Do

x = np.array(...) # some large array
x = dask.delayed(x) # delay the data, hashing once

results = [dask.delayed(train)(x, i) for i in range(1000)]

Sometimes problems don’t fit into one of the collections like dask.array or dask.dataframe. In these cases,
users can parallelize custom algorithms using the simpler dask.delayed interface. This allows one to create graphs
directly with a light annotation of normal python code:

>>> x = dask.delayed(inc)(1)
>>> y = dask.delayed(inc)(2)
>>> z = dask.delayed(add)(x, y)
>>> z.compute()
5
>>> z.visualize()

3.10.4 Example

Sometimes we face problems that are parallelizable, but don’t fit into high-level abstractions like Dask Array or Dask
DataFrame. Consider the following example:

3.10. Delayed 797

dask Documentation, Release 2.6.0

def inc(x):
return x + 1

def double(x):
return x + 2

def add(x, y):
return x + y

data = [1, 2, 3, 4, 5]

output = []
for x in data:

a = inc(x)
b = double(x)
c = add(a, b)
output.append(c)

total = sum(output)

There is clearly parallelism in this problem (many of the inc, double, and add functions can evaluate indepen-
dently), but it’s not clear how to convert this to a big array or big DataFrame computation.

As written, this code runs sequentially in a single thread. However, we see that a lot of this could be executed in
parallel.

The Dask delayed function decorates your functions so that they operate lazily. Rather than executing your function
immediately, it will defer execution, placing the function and its arguments into a task graph.

delayed Wraps a function or object to produce a Delayed.

We slightly modify our code by wrapping functions in delayed. This delays the execution of the function and
generates a Dask graph instead:

import dask

output = []
for x in data:

a = dask.delayed(inc)(x)
b = dask.delayed(double)(x)
c = dask.delayed(add)(a, b)
output.append(c)

total = dask.delayed(sum)(output)

We used the dask.delayed function to wrap the function calls that we want to turn into tasks. None of the inc,
double, add, or sum calls have happened yet. Instead, the object total is a Delayed result that contains a task
graph of the entire computation. Looking at the graph we see clear opportunities for parallel execution. The Dask
schedulers will exploit this parallelism, generally improving performance (although not in this example, because these
functions are already very small and fast.)

total.visualize() # see image to the right

We can now compute this lazy result to execute the graph in parallel:

798 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> total.compute()
45

3.10.5 Decorator

It is also common to see the delayed function used as a decorator. Here is a reproduction of our original problem as a
parallel code:

import dask

@dask.delayed
def inc(x):

return x + 1

@dask.delayed
def double(x):

return x + 2

@dask.delayed
def add(x, y):

return x + y

data = [1, 2, 3, 4, 5]

output = []
for x in data:

a = inc(x)
b = double(x)
c = add(a, b)
output.append(c)

total = dask.delayed(sum)(output)

3.10.6 Real time

Sometimes you want to create and destroy work during execution, launch tasks from other tasks, etc. For this, see the
Futures interface.

3.10.7 Best Practices

For a list of common problems and recommendations see Delayed Best Practices.

3.11 Futures

Dask supports a real-time task framework that extends Python’s concurrent.futures interface. This interface is good for
arbitrary task scheduling like dask.delayed, but is immediate rather than lazy, which provides some more flexibility in
situations where the computations may evolve over time.

These features depend on the second generation task scheduler found in dask.distributed (which, despite its name, runs
very well on a single machine).

3.11. Futures 799

https://docs.python.org/3/library/concurrent.futures.html
https://distributed.dask.org/en/latest

dask Documentation, Release 2.6.0

3.11.1 Start Dask Client

You must start a Client to use the futures interface. This tracks state among the various worker processes or threads:

from dask.distributed import Client

client = Client() # start local workers as processes
or
client = Client(processes=False) # start local workers as threads

If you have Bokeh installed, then this starts up a diagnostic dashboard at http://localhost:8787 .

3.11.2 Submit Tasks

Client.submit(func, *args[, key, workers, . . .]) Submit a function application to the scheduler
Client.map(func, *iterables[, key, workers, . . .]) Map a function on a sequence of arguments
Future.result([timeout]) Wait until computation completes, gather result to local

process.

You can submit individual tasks using the submit method:

def inc(x):
return x + 1

def add(x, y):
return x + y

a = client.submit(inc, 10) # calls inc(10) in background thread or process
b = client.submit(inc, 20) # calls inc(20) in background thread or process

The submit function returns a Future, which refers to a remote result. This result may not yet be completed:

>>> a
<Future: status: pending, key: inc-b8aaf26b99466a7a1980efa1ade6701d>

Eventually it will complete. The result stays in the remote thread/process/worker until you ask for it back explicitly:

>>> a
<Future: status: finished, type: int, key: inc-b8aaf26b99466a7a1980efa1ade6701d>

>>> a.result() # blocks until task completes and data arrives
11

You can pass futures as inputs to submit. Dask automatically handles dependency tracking; once all input futures
have completed, they will be moved onto a single worker (if necessary), and then the computation that depends on
them will be started. You do not need to wait for inputs to finish before submitting a new task; Dask will handle this
automatically:

c = client.submit(add, a, b) # calls add on the results of a and b

Similar to Python’s map, you can use Client.map to call the same function and many inputs:

futures = client.map(inc, range(1000))

800 Chapter 3. Complex Algorithms

https://bokeh.pydata.org
http://localhost:8787

dask Documentation, Release 2.6.0

However, note that each task comes with about 1ms of overhead. If you want to map a function over a large number
of inputs, then you might consider dask.bag or dask.dataframe instead.

3.11.3 Move Data

Future.result([timeout]) Wait until computation completes, gather result to local
process.

Client.gather(futures[, errors, direct, . . .]) Gather futures from distributed memory
Client.scatter(data[, workers, broadcast, . . .]) Scatter data into distributed memory

Given any future, you can call the .result method to gather the result. This will block until the future is done
computing and then transfer the result back to your local process if necessary:

>>> c.result()
32

You can gather many results concurrently using the Client.gathermethod. This can be more efficient than calling
.result() on each future sequentially:

>>> # results = [future.result() for future in futures]
>>> results = client.gather(futures) # this can be faster

If you have important local data that you want to include in your computation, you can either include it as a normal
input to a submit or map call:

>>> df = pd.read_csv('training-data.csv')
>>> future = client.submit(my_function, df)

Or you can scatter it explicitly. Scattering moves your data to a worker and returns a future pointing to that data:

>>> remote_df = client.scatter(df)
>>> remote_df
<Future: status: finished, type: DataFrame, key: bbd0ca93589c56ea14af49cba470006e>

>>> future = client.submit(my_function, remote_df)

Both of these accomplish the same result, but using scatter can sometimes be faster. This is especially true if you use
processes or distributed workers (where data transfer is necessary) and you want to use df in many computations.
Scattering the data beforehand avoids excessive data movement.

Calling scatter on a list scatters all elements individually. Dask will spread these elements evenly throughout workers
in a round-robin fashion:

>>> client.scatter([1, 2, 3])
[<Future: status: finished, type: int, key: c0a8a20f903a4915b94db8de3ea63195>,
<Future: status: finished, type: int, key: 58e78e1b34eb49a68c65b54815d1b158>,
<Future: status: finished, type: int, key: d3395e15f605bc35ab1bac6341a285e2>]

3.11.4 References, Cancellation, and Exceptions

Future.cancel(**kwargs) Cancel request to run this future
Future.exception([timeout]) Return the exception of a failed task

Continued on next page

3.11. Futures 801

dask Documentation, Release 2.6.0

Table 57 – continued from previous page
Future.traceback([timeout]) Return the traceback of a failed task
Client.cancel(futures[, asynchronous, force]) Cancel running futures

Dask will only compute and hold onto results for which there are active futures. In this way, your local variables define
what is active in Dask. When a future is garbage collected by your local Python session, Dask will feel free to delete
that data or stop ongoing computations that were trying to produce it:

>>> del future # deletes remote data once future is garbage collected

You can also explicitly cancel a task using the Future.cancel or Client.cancel methods:

>>> future.cancel() # deletes data even if other futures point to it

If a future fails, then Dask will raise the remote exceptions and tracebacks if you try to get the result:

def div(x, y):
return x / y

>>> a = client.submit(div, 1, 0) # 1 / 0 raises a ZeroDivisionError
>>> a
<Future: status: error, key: div-3601743182196fb56339e584a2bf1039>

>>> a.result()
1 def div(x, y):

----> 2 return x / y

ZeroDivisionError: division by zero

All futures that depend on an erred future also err with the same exception:

>>> b = client.submit(inc, a)
>>> b
<Future: status: error, key: inc-15e2e4450a0227fa38ede4d6b1a952db>

You can collect the exception or traceback explicitly with the Future.exception or Future.traceback
methods.

3.11.5 Waiting on Futures

as_completed([futures, loop, with_results, . . .]) Return futures in the order in which they complete
wait(fs[, timeout, return_when]) Wait until all/any futures are finished

You can wait on a future or collection of futures using the wait function:

from dask.distributed import wait

>>> wait(futures)

This blocks until all futures are finished or have erred.

You can also iterate over the futures as they complete using the as_completed function:

from dask.distributed import as_completed

(continues on next page)

802 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

futures = client.map(score, x_values)

best = -1
for future in as_completed(futures):

y = future.result()
if y > best:

best = y

For greater efficiency, you can also ask as_completed to gather the results in the background:

for future, result in as_completed(futures, with_results=True):
y = future.result() # don't need this

...

Or collect all futures in batches that had arrived since the last iteration:

for batch in as_completed(futures, with_results=True).batches():
for future, result in batch:

...

Additionally, for iterative algorithms, you can add more futures into the as_completed iterator during iteration:

seq = as_completed(futures)

for future in seq:
y = future.result()
if condition(y):

new_future = client.submit(...)
seq.add(new_future) # add back into the loop

3.11.6 Fire and Forget

fire_and_forget(obj) Run tasks at least once, even if we release the futures

Sometimes we don’t care about gathering the result of a task, and only care about side effects that it might have like
writing a result to a file:

>>> a = client.submit(load, filename)
>>> b = client.submit(process, a)
>>> c = client.submit(write, b, out_filename)

As noted above, Dask will stop work that doesn’t have any active futures. It thinks that because no one has a pointer
to this data that no one cares. You can tell Dask to compute a task anyway, even if there are no active futures, using
the fire_and_forget function:

from dask.distributed import fire_and_forget

>>> fire_and_forget(c)

This is particularly useful when a future may go out of scope, for example, as part of a function:

def process(filename):
out_filename = 'out-' + filename

(continues on next page)

3.11. Futures 803

dask Documentation, Release 2.6.0

(continued from previous page)

a = client.submit(load, filename)
b = client.submit(process, a)
c = client.submit(write, b, out_filename)
fire_and_forget(c)
return # here we lose the reference to c, but that's now ok

for filename in filenames:
process(filename)

3.11.7 Submit Tasks from Tasks

get_client([address, timeout, resolve_address]) Get a client while within a task.
rejoin() Have this thread rejoin the ThreadPoolExecutor
secede() Have this task secede from the worker’s thread pool

This is an advanced feature and is rarely necessary in the common case.

Tasks can launch other tasks by getting their own client. This enables complex and highly dynamic workloads:

from dask.distributed import get_client

def my_function(x):
...

Get locally created client
client = get_client()

Do normal client operations, asking cluster for computation
a = client.submit(...)
b = client.submit(...)
a, b = client.gather([a, b])

return a + b

It also allows you to set up long running tasks that watch other resources like sockets or physical sensors:

def monitor(device):
client = get_client()
while True:

data = device.read_data()
future = client.submit(process, data)
fire_and_forget(future)

for device in devices:
fire_and_forget(client.submit(monitor))

However, each running task takes up a single thread, and so if you launch many tasks that launch other tasks, then it is
possible to deadlock the system if you are not careful. You can call the secede function from within a task to have it
remove itself from the dedicated thread pool into an administrative thread that does not take up a slot within the Dask
worker:

from dask.distributed import get_client, secede

(continues on next page)

804 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

def monitor(device):
client = get_client()
secede() # remove this task from the thread pool
while True:

data = device.read_data()
future = client.submit(process, data)
fire_and_forget(future)

If you intend to do more work in the same thread after waiting on client work, you may want to explicitly block until
the thread is able to rejoin the thread pool. This allows some control over the number of threads that are created and
stops too many threads from being active at once, over-saturating your hardware:

def f(n): # assume that this runs as a task
client = get_client()

secede() # secede while we wait for results to come back
futures = client.map(func, range(n))
results = client.gather(futures)

rejoin() # block until a slot is open in the thread pool
result = analyze(results)
return result

Alternatively, you can just use the normal compute function within a task. This will automatically call secede and
rejoin appropriately:

def f(name, fn):
df = dd.read_csv(fn) # note that this is a dask collection
result = df[df.name == name].count()

This calls secede
Then runs the computation on the cluster (including this worker)
Then blocks on rejoin, and finally delivers the answer
result = result.compute()

return result

3.11.8 Coordination Primitives

Queue([name, client, maxsize]) Distributed Queue
Variable([name, client, maxsize]) Distributed Global Variable
Lock([name, client]) Distributed Centralized Lock
Pub(name[, worker, client]) Publish data with Publish-Subscribe pattern
Sub(name[, worker, client]) Subscribe to a Publish/Subscribe topic

Sometimes situations arise where tasks, workers, or clients need to coordinate with each other in ways beyond normal
task scheduling with futures. In these cases Dask provides additional primitives to help in complex situations.

Dask provides distributed versions of coordination primitives like locks, queues, global variables, and pub-sub systems
that, where appropriate, match their in-memory counterparts. These can be used to control access to external resources,
track progress of ongoing computations, or share data in side-channels between many workers, clients, and tasks
sensibly.

These features are rarely necessary for common use of Dask. We recommend that beginning users stick with using

3.11. Futures 805

dask Documentation, Release 2.6.0

the simpler futures found above (like Client.submit and Client.gather) rather than embracing needlessly
complex techniques.

Queues

Queue([name, client, maxsize]) Distributed Queue

Dask queues follow the API for the standard Python Queue, but now move futures or small messages between clients.
Queues serialize sensibly and reconnect themselves on remote clients if necessary:

from dask.distributed import Queue

def load_and_submit(filename):
data = load(filename)
client = get_client()
future = client.submit(process, data)
queue.put(future)

client = Client()

queue = Queue()

for filename in filenames:
future = client.submit(load_and_submit, filename)
fire_and_forget(future)

while True:
future = queue.get()
print(future.result())

Queues can also send small pieces of information, anything that is msgpack encodable (ints, strings, bools, lists, dicts,
etc.). This can be useful to send back small scores or administrative messages:

def func(x):
try:

...
except Exception as e:

error_queue.put(str(e))

error_queue = Queue()

Queues are mediated by the central scheduler, and so they are not ideal for sending large amounts of data (everything
you send will be routed through a central point). They are well suited to move around small bits of metadata, or
futures. These futures may point to much larger pieces of data safely:

>>> x = ... # my large numpy array

Don't do this!
>>> q.put(x)

Do this instead
>>> future = client.scatter(x)
>>> q.put(future)

Or use futures for metadata
>>> q.put({'status': 'OK', 'stage=': 1234})

806 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

If you’re looking to move large amounts of data between workers, then you might also want to consider the Pub/Sub
system described a few sections below.

Global Variables

Variable([name, client, maxsize]) Distributed Global Variable

Variables are like Queues in that they communicate futures and small data between clients. However, variables hold
only a single value. You can get or set that value at any time:

>>> var = Variable('stopping-criterion')
>>> var.set(False)

>>> var.get()
False

This is often used to signal stopping criteria or current parameters between clients.

If you want to share large pieces of information, then scatter the data first:

>>> parameters = np.array(...)
>>> future = client.scatter(parameters)
>>> var.set(future)

Locks

Lock([name, client]) Distributed Centralized Lock

You can also hold onto cluster-wide locks using the Lock object. Dask Locks have the same API as normal
threading.Lock objects, except that they work across the cluster:

from dask.distributed import Lock
lock = Lock()

with lock:
access protected resource

You can manage several locks at the same time. Lock can either be given a consistent name or you can pass the lock
object around itself.

Using a consistent name is convenient when you want to lock some known named resource:

from dask.distributed import Lock

def load(fn):
with Lock('the-production-database'):

read data from filename using some sensitive source
return ...

futures = client.map(load, filenames)

Passing around a lock works as well and is easier when you want to create short-term locks for a particular situation:

3.11. Futures 807

dask Documentation, Release 2.6.0

from dask.distributed import Lock
lock = Lock()

def load(fn, lock=None):
with lock:

read data from filename using some sensitive source
return ...

futures = client.map(load, filenames, lock=lock)

This can be useful if you want to control concurrent access to some external resource like a database or un-thread-safe
library.

Publish-Subscribe

Pub(name[, worker, client]) Publish data with Publish-Subscribe pattern
Sub(name[, worker, client]) Subscribe to a Publish/Subscribe topic

Dask implements the Publish Subscribe pattern, providing an additional channel of communication between ongoing
tasks.

class distributed.Pub(name, worker=None, client=None)
Publish data with Publish-Subscribe pattern

This allows clients and workers to directly communicate data between each other with a typical Publish-
Subscribe pattern. This involves two components,

Pub objects, into which we put data:

>>> pub = Pub('my-topic')
>>> pub.put(123)

And Sub objects, from which we collect data:

>>> sub = Sub('my-topic')
>>> sub.get()
123

Many Pub and Sub objects can exist for the same topic. All data sent from any Pub will be sent to all Sub
objects on that topic that are currently connected. Pub’s and Sub’s find each other using the scheduler, but they
communicate directly with each other without coordination from the scheduler.

Pubs and Subs use the central scheduler to find each other, but not to mediate the communication. This means
that there is very little additional latency or overhead, and they are appropriate for very frequent data transfers.
For context, most data transfer first checks with the scheduler to find which workers should participate, and then
does direct worker-to-worker transfers. This checking in with the scheduler provides some stability guarantees,
but also adds in a few extra network hops. PubSub doesn’t do this, and so is faster, but also can easily drop
messages if Pubs or Subs disappear without notice.

When using a Pub or Sub from a Client all communications will be routed through the scheduler. This can cause
some performance degradation. Pubs and Subs only operate at top-speed when they are both on workers.

Parameters

name: object (msgpack serializable) The name of the group of Pubs and Subs on which to
participate

808 Chapter 3. Complex Algorithms

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

dask Documentation, Release 2.6.0

See also:

Sub

Examples

>>> pub = Pub('my-topic')
>>> sub = Sub('my-topic')
>>> pub.put([1, 2, 3])
>>> sub.get()
[1, 2, 3]

You can also use sub within a for loop:

>>> for msg in sub: # doctest: +SKIP
... print(msg)

or an async for loop

>>> async for msg in sub: # doctest: +SKIP
... print(msg)

Similarly the .get method will return an awaitable if used by an async client or within the IOLoop thread of a
worker

>>> await sub.get() # doctest: +SKIP

You can see the set of connected worker subscribers by looking at the .subscribers attribute:

>>> pub.subscribers
{'tcp://...': {},
'tcp://...': {}}

put(msg)
Publish a message to all subscribers of this topic

3.11.9 Actors

Note: This is an advanced feature and is rarely necessary in the common case.

Note: This is an experimental feature and is subject to change without notice.

Actors allow workers to manage rapidly changing state without coordinating with the central scheduler. This has the
advantage of reducing latency (worker-to-worker roundtrip latency is around 1ms), reducing pressure on the central-
ized scheduler (workers can coordinate actors entirely among each other), and also enabling workflows that require
stateful or in-place memory manipulation.

However, these benefits come at a cost. The scheduler is unaware of actors and so they don’t benefit from diagnostics,
load balancing, or resilience. Once an actor is running on a worker it is forever tied to that worker. If that worker
becomes overburdened or dies, then there is no opportunity to recover the workload.

Because Actors avoid the central scheduler they can be high-performing, but not resilient.

3.11. Futures 809

dask Documentation, Release 2.6.0

Example: Counter

An actor is a class containing both state and methods that is submitted to a worker:

class Counter:
n = 0

def __init__(self):
self.n = 0

def increment(self):
self.n += 1
return self.n

from dask.distributed import Client
client = Client()

future = client.submit(Counter, actor=True)
counter = future.result()

>>> counter
<Actor: Counter, key=Counter-afa1cdfb6b4761e616fa2cfab42398c8>

Method calls on this object produce ActorFutures, which are similar to normal Futures, but interact only with the
worker holding the Actor:

>>> future = counter.increment()
>>> future
<ActorFuture>

>>> future.result()
1

Attribute access is synchronous and blocking:

>>> counter.n
1

Example: Parameter Server

import numpy as np

from dask.distributed import Client
client = Client(processes=False)

class ParameterServer:
def __init__(self):

self.data = dict()

def put(self, key, value):
self.data[key] = value

def get(self, key):
return self.data[key]

ps_future = client.submit(ParameterServer, actor=True)

(continues on next page)

810 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

ps = ps_future.result()

ps.put('parameters', np.random.random(1000))

def train(batch, ps):
params = ps.get('parameters')

for batch in batches:

Asynchronous Operation

All operations that require talking to the remote worker are awaitable:

async def f():
future = client.submit(Counter, actor=True)
counter = await future # gather actor object locally

counter.increment() # send off a request asynchronously
await counter.increment() # or wait until it was received

n = await counter.n # attribute access also must be awaited

3.11.10 API

Client

Client([address, loop, timeout, . . .]) Connect to and submit computation to a Dask cluster
Client.cancel(futures[, asynchronous, force]) Cancel running futures
Client.compute(collections[, sync, . . .]) Compute dask collections on cluster
Client.gather(futures[, errors, direct, . . .]) Gather futures from distributed memory
Client.get(dsk, keys[, restrictions, . . .]) Compute dask graph
Client.get_dataset(name, **kwargs) Get named dataset from the scheduler
Client.get_executor(**kwargs) Return a concurrent.futures Executor for submitting

tasks on this Client
Client.has_what([workers]) Which keys are held by which workers
Client.list_datasets(**kwargs) List named datasets available on the scheduler
Client.map(func, *iterables[, key, workers, . . .]) Map a function on a sequence of arguments
Client.ncores([workers]) The number of threads/cores available on each worker

node
Client.persist(collections[, . . .]) Persist dask collections on cluster
Client.profile([key, start, stop, workers, . . .]) Collect statistical profiling information about recent

work
Client.publish_dataset(*args, **kwargs) Publish named datasets to scheduler
Client.rebalance([futures, workers]) Rebalance data within network
Client.replicate(futures[, n, workers, . . .]) Set replication of futures within network
Client.restart(**kwargs) Restart the distributed network
Client.run(function, *args, **kwargs) Run a function on all workers outside of task scheduling

system
Client.run_on_scheduler(function, *args, . . .) Run a function on the scheduler process
Client.scatter(data[, workers, broadcast, . . .]) Scatter data into distributed memory

Continued on next page

3.11. Futures 811

dask Documentation, Release 2.6.0

Table 66 – continued from previous page
Client.shutdown() Shut down the connected scheduler and workers
Client.scheduler_info(**kwargs) Basic information about the workers in the cluster
Client.shutdown() Shut down the connected scheduler and workers
Client.start_ipython_workers([workers,
. . .])

Start IPython kernels on workers

Client.start_ipython_scheduler([magic_name,
. . .])

Start IPython kernel on the scheduler

Client.submit(func, *args[, key, workers, . . .]) Submit a function application to the scheduler
Client.unpublish_dataset(name, **kwargs) Remove named datasets from scheduler
Client.upload_file(filename, **kwargs) Upload local package to workers
Client.who_has([futures]) The workers storing each future’s data

Future

Future(key[, client, inform, state]) A remotely running computation
Future.add_done_callback(fn) Call callback on future when callback has finished
Future.cancel(**kwargs) Cancel request to run this future
Future.cancelled() Returns True if the future has been cancelled
Future.done() Is the computation complete?
Future.exception([timeout]) Return the exception of a failed task
Future.result([timeout]) Wait until computation completes, gather result to local

process.
Future.traceback([timeout]) Return the traceback of a failed task

Functions

as_completed([futures, loop, with_results, . . .]) Return futures in the order in which they complete
fire_and_forget(obj) Run tasks at least once, even if we release the futures
get_client([address, timeout, resolve_address]) Get a client while within a task.
secede() Have this task secede from the worker’s thread pool
rejoin() Have this thread rejoin the ThreadPoolExecutor
wait(fs[, timeout, return_when]) Wait until all/any futures are finished

distributed.as_completed(futures=None, loop=None, with_results=False, raise_errors=True)
Return futures in the order in which they complete

This returns an iterator that yields the input future objects in the order in which they complete. Calling next
on the iterator will block until the next future completes, irrespective of order.

Additionally, you can also add more futures to this object during computation with the .add method

Parameters

futures: Collection of futures A list of Future objects to be iterated over in the order in
which they complete

with_results: bool (False) Whether to wait and include results of futures as well; in this case
as_completed yields a tuple of (future, result)

raise_errors: bool (True) Whether we should raise when the result of a future raises an ex-
ception; only affects behavior when with_results=True.

812 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> x, y, z = client.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> for future in as_completed([x, y, z]): # doctest: +SKIP
... print(future.result()) # doctest: +SKIP
3
2
4

Add more futures during computation

>>> x, y, z = client.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> ac = as_completed([x, y, z]) # doctest: +SKIP
>>> for future in ac: # doctest: +SKIP
... print(future.result()) # doctest: +SKIP
... if random.random() < 0.5: # doctest: +SKIP
... ac.add(c.submit(double, future)) # doctest: +SKIP
4
2
8
3
6
12
24

Optionally wait until the result has been gathered as well

>>> ac = as_completed([x, y, z], with_results=True) # doctest: +SKIP
>>> for future, result in ac: # doctest: +SKIP
... print(result) # doctest: +SKIP
2
4
3

distributed.fire_and_forget(obj)
Run tasks at least once, even if we release the futures

Under normal operation Dask will not run any tasks for which there is not an active future (this avoids un-
necessary work in many situations). However sometimes you want to just fire off a task, not track its future,
and expect it to finish eventually. You can use this function on a future or collection of futures to ask Dask to
complete the task even if no active client is tracking it.

The results will not be kept in memory after the task completes (unless there is an active future) so this is only
useful for tasks that depend on side effects.

Parameters

obj: Future, list, dict, dask collection The futures that you want to run at least once

Examples

>>> fire_and_forget(client.submit(func, *args)) # doctest: +SKIP

distributed.get_client(address=None, timeout=3, resolve_address=True)
Get a client while within a task.

This client connects to the same scheduler to which the worker is connected

3.11. Futures 813

dask Documentation, Release 2.6.0

Parameters

address [str, optional] The address of the scheduler to connect to. Defaults to the scheduler
the worker is connected to.

timeout [int, default 3] Timeout (in seconds) for getting the Client

resolve_address [bool, default True] Whether to resolve address to its canonical form.

Returns

Client

See also:

get_worker, worker_client, secede

Examples

>>> def f():
... client = get_client()
... futures = client.map(lambda x: x + 1, range(10)) # spawn many tasks
... results = client.gather(futures)
... return sum(results)

>>> future = client.submit(f) # doctest: +SKIP
>>> future.result() # doctest: +SKIP
55

distributed.secede()
Have this task secede from the worker’s thread pool

This opens up a new scheduling slot and a new thread for a new task. This enables the client to schedule tasks
on this node, which is especially useful while waiting for other jobs to finish (e.g., with client.gather).

See also:

get_client, get_worker

Examples

>>> def mytask(x):
... # do some work
... client = get_client()
... futures = client.map(...) # do some remote work
... secede() # while that work happens, remove ourself from the pool
... return client.gather(futures) # return gathered results

distributed.rejoin()
Have this thread rejoin the ThreadPoolExecutor

This will block until a new slot opens up in the executor. The next thread to finish a task will leave the pool to
allow this one to join.

See also:

secede leave the thread pool

814 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

distributed.wait(fs, timeout=None, return_when=’ALL_COMPLETED’)
Wait until all/any futures are finished

Parameters

fs: list of futures

timeout: number, optional Time in seconds after which to raise a dask.distributed.
TimeoutError

——-

Named tuple of completed, not completed

class distributed.Client(address=None, loop=None, timeout=’__no_default__’,
set_as_default=True, scheduler_file=None, security=None, asyn-
chronous=False, name=None, heartbeat_interval=None, se-
rializers=None, deserializers=None, extensions=[<class ’dis-
tributed.pubsub.PubSubClientExtension’>], direct_to_workers=None,
**kwargs)

Connect to and submit computation to a Dask cluster

The Client connects users to a Dask cluster. It provides an asynchronous user interface around functions and
futures. This class resembles executors in concurrent.futures but also allows Future objects within
submit/map calls. When a Client is instantiated it takes over all dask.compute and dask.persist
calls by default.

It is also common to create a Client without specifying the scheduler address , like Client(). In this case the
Client creates a LocalCluster in the background and connects to that. Any extra keywords are passed from
Client to LocalCluster in this case. See the LocalCluster documentation for more information.

Parameters

address: string, or Cluster This can be the address of a Scheduler server like a string
'127.0.0.1:8786' or a cluster object like LocalCluster()

timeout: int Timeout duration for initial connection to the scheduler

set_as_default: bool (True) Claim this scheduler as the global dask scheduler

scheduler_file: string (optional) Path to a file with scheduler information if available

security: (optional) Optional security information

asynchronous: bool (False by default) Set to True if using this client within async/await
functions or within Tornado gen.coroutines. Otherwise this should remain False for nor-
mal use.

name: string (optional) Gives the client a name that will be included in logs generated on
the scheduler for matters relating to this client

direct_to_workers: bool (optional) Whether or not to connect directly to the workers, or to
ask the scheduler to serve as intermediary.

heartbeat_interval: int Time in milliseconds between heartbeats to scheduler

**kwargs: If you do not pass a scheduler address, Client will create a LocalCluster
object, passing any extra keyword arguments.

See also:

distributed.scheduler.Scheduler Internal scheduler

distributed.deploy.local.LocalCluster

3.11. Futures 815

dask Documentation, Release 2.6.0

Examples

Provide cluster’s scheduler node address on initialization:

>>> client = Client('127.0.0.1:8786') # doctest: +SKIP

Use submit method to send individual computations to the cluster

>>> a = client.submit(add, 1, 2) # doctest: +SKIP
>>> b = client.submit(add, 10, 20) # doctest: +SKIP

Continue using submit or map on results to build up larger computations

>>> c = client.submit(add, a, b) # doctest: +SKIP

Gather results with the gather method.

>>> client.gather(c) # doctest: +SKIP
33

You can also call Client with no arguments in order to create your own local cluster.

>>> client = Client() # makes your own local "cluster" # doctest: +SKIP

Extra keywords will be passed directly to LocalCluster

>>> client = Client(processes=False, threads_per_worker=1) # doctest: +SKIP

asynchronous
Are we running in the event loop?

This is true if the user signaled that we might be when creating the client as in the following:

client = Client(asynchronous=True)

However, we override this expectation if we can definitively tell that we are running from a thread that is
not the event loop. This is common when calling get_client() from within a worker task. Even though the
client was originally created in asynchronous mode we may find ourselves in contexts when it is better to
operate synchronously.

call_stack(futures=None, keys=None)
The actively running call stack of all relevant keys

You can specify data of interest either by providing futures or collections in the futures= keyword or a
list of explicit keys in the keys= keyword. If neither are provided then all call stacks will be returned.

Parameters

futures: list (optional) List of futures, defaults to all data

keys: list (optional) List of key names, defaults to all data

Examples

>>> df = dd.read_parquet(...).persist() # doctest: +SKIP
>>> client.call_stack(df) # call on collections

816 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> client.call_stack() # Or call with no arguments for all activity #
→˓doctest: +SKIP

cancel(futures, asynchronous=None, force=False)
Cancel running futures

This stops future tasks from being scheduled if they have not yet run and deletes them if they have already
run. After calling, this result and all dependent results will no longer be accessible

Parameters

futures: list of Futures

force: boolean (False) Cancel this future even if other clients desire it

close(timeout=’__no_default__’)
Close this client

Clients will also close automatically when your Python session ends

If you started a client without arguments like Client() then this will also close the local cluster that
was started at the same time.

See also:

Client.restart

compute(collections, sync=False, optimize_graph=True, workers=None, allow_other_workers=False,
resources=None, retries=0, priority=0, fifo_timeout=’60s’, actors=None, traverse=True,
**kwargs)

Compute dask collections on cluster

Parameters

collections: iterable of dask objects or single dask object Collections like dask.array
or dataframe or dask.value objects

sync: bool (optional) Returns Futures if False (default) or concrete values if True

optimize_graph: bool Whether or not to optimize the underlying graphs

workers: str, list, dict Which workers can run which parts of the computation If a string
a list then the output collections will run on the listed workers, but other sub-
computations can run anywhere If a dict then keys should be (tuples of) collections
and values should be addresses or lists.

allow_other_workers: bool, list If True then all restrictions in workers= are considered
loose If a list then only the keys for the listed collections are loose

retries: int (default to 0) Number of allowed automatic retries if computing a result fails

priority: Number Optional prioritization of task. Zero is default. Higher priorities take
precedence

fifo_timeout: timedelta str (defaults to ’60s’) Allowed amount of time between calls to
consider the same priority

**kwargs: Options to pass to the graph optimize calls

Returns

List of Futures if input is a sequence, or a single future otherwise

See also:

3.11. Futures 817

dask Documentation, Release 2.6.0

Client.get Normal synchronous dask.get function

Examples

>>> from dask import delayed
>>> from operator import add
>>> x = delayed(add)(1, 2)
>>> y = delayed(add)(x, x)
>>> xx, yy = client.compute([x, y]) # doctest: +SKIP
>>> xx # doctest: +SKIP
<Future: status: finished, key: add-8f6e709446674bad78ea8aeecfee188e>
>>> xx.result() # doctest: +SKIP
3
>>> yy.result() # doctest: +SKIP
6

Also support single arguments

>>> xx = client.compute(x) # doctest: +SKIP

classmethod current()
Return global client if one exists, otherwise raise ValueError

gather(futures, errors=’raise’, direct=None, asynchronous=None)
Gather futures from distributed memory

Accepts a future, nested container of futures, iterator, or queue. The return type will match the input type.

Parameters

futures: Collection of futures This can be a possibly nested collection of Future objects.
Collections can be lists, sets, or dictionaries

errors: string Either ‘raise’ or ‘skip’ if we should raise if a future has erred or skip its
inclusion in the output collection

direct: boolean Whether or not to connect directly to the workers, or to ask the scheduler
to serve as intermediary. This can also be set when creating the Client.

Returns

results: a collection of the same type as the input, but now with

gathered results rather than futures

See also:

Client.scatter Send data out to cluster

Examples

>>> from operator import add # doctest: +SKIP
>>> c = Client('127.0.0.1:8787') # doctest: +SKIP
>>> x = c.submit(add, 1, 2) # doctest: +SKIP
>>> c.gather(x) # doctest: +SKIP
3
>>> c.gather([x, [x], x]) # support lists and dicts # doctest: +SKIP
[3, [3], 3]

818 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

get(dsk, keys, restrictions=None, loose_restrictions=None, resources=None, sync=True, asyn-
chronous=None, direct=None, retries=None, priority=0, fifo_timeout=’60s’, actors=None,
**kwargs)
Compute dask graph

Parameters

dsk: dict

keys: object, or nested lists of objects

restrictions: dict (optional) A mapping of {key: {set of worker hostnames}} that re-
stricts where jobs can take place

retries: int (default to 0) Number of allowed automatic retries if computing a result fails

priority: Number Optional prioritization of task. Zero is default. Higher priorities take
precedence

sync: bool (optional) Returns Futures if False or concrete values if True (default).

direct: bool Whether or not to connect directly to the workers, or to ask the scheduler to
serve as intermediary. This can also be set when creating the Client.

See also:

Client.compute Compute asynchronous collections

Examples

>>> from operator import add # doctest: +SKIP
>>> c = Client('127.0.0.1:8787') # doctest: +SKIP
>>> c.get({'x': (add, 1, 2)}, 'x') # doctest: +SKIP
3

get_dataset(name, **kwargs)
Get named dataset from the scheduler

See also:

Client.publish_dataset, Client.list_datasets

get_executor(**kwargs)
Return a concurrent.futures Executor for submitting tasks on this Client

Parameters

**kwargs: Any submit()- or map()- compatible arguments, such as workers or resources.

Returns

An Executor object that’s fully compatible with the concurrent.futures

API.

get_metadata(keys, default=’__no_default__’)
Get arbitrary metadata from scheduler

See set_metadata for the full docstring with examples

Parameters

keys: key or list Key to access. If a list then gets within a nested collection

3.11. Futures 819

dask Documentation, Release 2.6.0

default: optional If the key does not exist then return this value instead. If not provided
then this raises a KeyError if the key is not present

See also:

Client.set_metadata

classmethod get_restrictions(collections, workers, allow_other_workers)
Get restrictions from inputs to compute/persist

get_scheduler_logs(n=None)
Get logs from scheduler

Parameters

n [int] Number of logs to retrive. Maxes out at 10000 by default, confiruable in
config.yaml::log-length

Returns

Logs in reversed order (newest first)

get_task_stream(start=None, stop=None, count=None, plot=False, filename=’task-stream.html’)
Get task stream data from scheduler

This collects the data present in the diagnostic “Task Stream” plot on the dashboard. It includes the start,
stop, transfer, and deserialization time of every task for a particular duration.

Note that the task stream diagnostic does not run by default. You may wish to call this function once
before you start work to ensure that things start recording, and then again after you have completed.

Parameters

start: Number or string When you want to start recording If a number it should be the
result of calling time() If a string then it should be a time difference before now, like
’60s’ or ‘500 ms’

stop: Number or string When you want to stop recording

count: int The number of desired records, ignored if both start and stop are specified

plot: boolean, str If true then also return a Bokeh figure If plot == ‘save’ then save the
figure to a file

filename: str (optional) The filename to save to if you set plot='save'

Returns

L: List[Dict]

See also:

get_task_stream a context manager version of this method

Examples

>>> client.get_task_stream() # prime plugin if not already connected
>>> x.compute() # do some work
>>> client.get_task_stream()
[{'task': ...,
'type': ...,
'thread': ...,
...}]

820 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Pass the plot=True or plot='save' keywords to get back a Bokeh figure

>>> data, figure = client.get_task_stream(plot='save', filename='myfile.html
→˓')

Alternatively consider the context manager

>>> from dask.distributed import get_task_stream
>>> with get_task_stream() as ts:
... x.compute()
>>> ts.data
[...]

get_versions(check=False, packages=[])
Return version info for the scheduler, all workers and myself

Parameters

check [boolean, default False] raise ValueError if all required & optional packages do not
match

packages [List[str]] Extra package names to check

Examples

>>> c.get_versions() # doctest: +SKIP

>>> c.get_versions(packages=['sklearn', 'geopandas']) # doctest: +SKIP

get_worker_logs(n=None, workers=None, nanny=False)
Get logs from workers

Parameters

n [int] Number of logs to retrive. Maxes out at 10000 by default, confiruable in
config.yaml::log-length

workers [iterable] List of worker addresses to retrieve. Gets all workers by default.

nanny [bool, default False] Whether to get the logs from the workers (False) or the nan-
nies (True). If specified, the addresses in workers should still be the worker addresses,
not the nanny addresses.

Returns

Dictionary mapping worker address to logs.

Logs are returned in reversed order (newest first)

has_what(workers=None, **kwargs)
Which keys are held by which workers

This returns the keys of the data that are held in each worker’s memory.

Parameters

workers: list (optional) A list of worker addresses, defaults to all

See also:

Client.who_has, Client.nthreads, Client.processing

3.11. Futures 821

dask Documentation, Release 2.6.0

Examples

>>> x, y, z = c.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> wait([x, y, z]) # doctest: +SKIP
>>> c.has_what() # doctest: +SKIP
{'192.168.1.141:46784': ['inc-1c8dd6be1c21646c71f76c16d09304ea',

'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b',
'inc-1e297fc27658d7b67b3a758f16bcf47a']}

list_datasets(**kwargs)
List named datasets available on the scheduler

See also:

Client.publish_dataset, Client.get_dataset

map(func, *iterables, key=None, workers=None, retries=None, resources=None, priority=0, al-
low_other_workers=False, fifo_timeout=’100 ms’, actor=False, actors=False, pure=None,
**kwargs)
Map a function on a sequence of arguments

Arguments can be normal objects or Futures

Parameters

func: callable

iterables: Iterables List-like objects to map over. They should have the same length.

key: str, list Prefix for task names if string. Explicit names if list.

pure: bool (defaults to True) Whether or not the function is pure. Set pure=False
for impure functions like np.random.random.

workers: set, iterable of sets A set of worker hostnames on which computations may be
performed. Leave empty to default to all workers (common case)

retries: int (default to 0) Number of allowed automatic retries if a task fails

priority: Number Optional prioritization of task. Zero is default. Higher priorities take
precedence

fifo_timeout: str timedelta (default ‘100ms’) Allowed amount of time between calls to
consider the same priority

**kwargs: dict Extra keywords to send to the function. Large values will be included
explicitly in the task graph.

Returns

List, iterator, or Queue of futures, depending on the type of the

inputs.

See also:

Client.submit Submit a single function

Examples

>>> L = client.map(func, sequence) # doctest: +SKIP

822 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

nbytes(keys=None, summary=True, **kwargs)
The bytes taken up by each key on the cluster

This is as measured by sys.getsizeof which may not accurately reflect the true cost.

Parameters

keys: list (optional) A list of keys, defaults to all keys

summary: boolean, (optional) Summarize keys into key types

See also:

Client.who_has

Examples

>>> x, y, z = c.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> c.nbytes(summary=False) # doctest: +SKIP
{'inc-1c8dd6be1c21646c71f76c16d09304ea': 28,
'inc-1e297fc27658d7b67b3a758f16bcf47a': 28,
'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b': 28}

>>> c.nbytes(summary=True) # doctest: +SKIP
{'inc': 84}

ncores(workers=None, **kwargs)
The number of threads/cores available on each worker node

Parameters

workers: list (optional) A list of workers that we care about specifically. Leave empty
to receive information about all workers.

See also:

Client.who_has, Client.has_what

Examples

>>> c.threads() # doctest: +SKIP
{'192.168.1.141:46784': 8,
'192.167.1.142:47548': 8,
'192.167.1.143:47329': 8,
'192.167.1.144:37297': 8}

normalize_collection(collection)
Replace collection’s tasks by already existing futures if they exist

This normalizes the tasks within a collections task graph against the known futures within the scheduler.
It returns a copy of the collection with a task graph that includes the overlapping futures.

See also:

Client.persist trigger computation of collection’s tasks

3.11. Futures 823

dask Documentation, Release 2.6.0

Examples

>>> len(x.__dask_graph__()) # x is a dask collection with 100 tasks #
→˓doctest: +SKIP
100
>>> set(client.futures).intersection(x.__dask_graph__()) # some overlap
→˓exists # doctest: +SKIP
10

>>> x = client.normalize_collection(x) # doctest: +SKIP
>>> len(x.__dask_graph__()) # smaller computational graph # doctest: +SKIP
20

nthreads(workers=None, **kwargs)
The number of threads/cores available on each worker node

Parameters

workers: list (optional) A list of workers that we care about specifically. Leave empty
to receive information about all workers.

See also:

Client.who_has, Client.has_what

Examples

>>> c.threads() # doctest: +SKIP
{'192.168.1.141:46784': 8,
'192.167.1.142:47548': 8,
'192.167.1.143:47329': 8,
'192.167.1.144:37297': 8}

persist(collections, optimize_graph=True, workers=None, allow_other_workers=None, re-
sources=None, retries=None, priority=0, fifo_timeout=’60s’, actors=None, **kwargs)

Persist dask collections on cluster

Starts computation of the collection on the cluster in the background. Provides a new dask collection that
is semantically identical to the previous one, but now based off of futures currently in execution.

Parameters

collections: sequence or single dask object Collections like dask.array or dataframe or
dask.value objects

optimize_graph: bool Whether or not to optimize the underlying graphs

workers: str, list, dict Which workers can run which parts of the computation If a string
a list then the output collections will run on the listed workers, but other sub-
computations can run anywhere If a dict then keys should be (tuples of) collections
and values should be addresses or lists.

allow_other_workers: bool, list If True then all restrictions in workers= are considered
loose If a list then only the keys for the listed collections are loose

retries: int (default to 0) Number of allowed automatic retries if computing a result fails

priority: Number Optional prioritization of task. Zero is default. Higher priorities take
precedence

824 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

fifo_timeout: timedelta str (defaults to ’60s’) Allowed amount of time between calls to
consider the same priority

kwargs: Options to pass to the graph optimize calls

Returns

List of collections, or single collection, depending on type of input.

See also:

Client.compute

Examples

>>> xx = client.persist(x) # doctest: +SKIP
>>> xx, yy = client.persist([x, y]) # doctest: +SKIP

processing(workers=None)
The tasks currently running on each worker

Parameters

workers: list (optional) A list of worker addresses, defaults to all

See also:

Client.who_has, Client.has_what, Client.nthreads

Examples

>>> x, y, z = c.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> c.processing() # doctest: +SKIP
{'192.168.1.141:46784': ['inc-1c8dd6be1c21646c71f76c16d09304ea',

'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b',
'inc-1e297fc27658d7b67b3a758f16bcf47a']}

profile(key=None, start=None, stop=None, workers=None, merge_workers=True, plot=False, file-
name=None)

Collect statistical profiling information about recent work

Parameters

key: str Key prefix to select, this is typically a function name like ‘inc’ Leave as None to
collect all data

start: time

stop: time

workers: list List of workers to restrict profile information

plot: boolean or string Whether or not to return a plot object

filename: str Filename to save the plot

Examples

>>> client.profile() # call on collections
>>> client.profile(filename='dask-profile.html') # save to html file

3.11. Futures 825

dask Documentation, Release 2.6.0

publish_dataset(*args, **kwargs)
Publish named datasets to scheduler

This stores a named reference to a dask collection or list of futures on the scheduler. These references are
available to other Clients which can download the collection or futures with get_dataset.

Datasets are not immediately computed. You may wish to call Client.persist prior to publishing a
dataset.

Parameters

args [list of objects to publish as name]

name [optional name of the dataset to publish]

kwargs: dict named collections to publish on the scheduler

Returns

None

See also:

Client.list_datasets, Client.get_dataset, Client.unpublish_dataset,
Client.persist

Examples

Publishing client:

>>> df = dd.read_csv('s3://...') # doctest: +SKIP
>>> df = c.persist(df) # doctest: +SKIP
>>> c.publish_dataset(my_dataset=df) # doctest: +SKIP

Alternative invocation >>> c.publish_dataset(df, name=’my_dataset’)

Receiving client:

>>> c.list_datasets() # doctest: +SKIP
['my_dataset']
>>> df2 = c.get_dataset('my_dataset') # doctest: +SKIP

rebalance(futures=None, workers=None, **kwargs)
Rebalance data within network

Move data between workers to roughly balance memory burden. This either affects a subset of the
keys/workers or the entire network, depending on keyword arguments.

This operation is generally not well tested against normal operation of the scheduler. It it not recom-
mended to use it while waiting on computations.

Parameters

futures: list, optional A list of futures to balance, defaults all data

workers: list, optional A list of workers on which to balance, defaults to all workers

register_worker_callbacks(setup=None)
Registers a setup callback function for all current and future workers.

This registers a new setup function for workers in this cluster. The function will run immediately on all
currently connected workers. It will also be run upon connection by any workers that are added in the
future. Multiple setup functions can be registered - these will be called in the order they were added.

826 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

If the function takes an input argument named dask_worker then that variable will be populated with
the worker itself.

Parameters

setup [callable(dask_worker: Worker) -> None] Function to register and run on all work-
ers

register_worker_plugin(plugin=None, name=None)
Registers a lifecycle worker plugin for all current and future workers.

This registers a new object to handle setup, task state transitions and teardown for workers in this cluster.
The plugin will instantiate itself on all currently connected workers. It will also be run on any worker that
connects in the future.

The plugin may include methods setup, teardown, and transition. See the dask.
distributed.WorkerPlugin class or the examples below for the interface and docstrings. It must
be serializable with the pickle or cloudpickle modules.

If the plugin has a name attribute, or if the name= keyword is used then that will control idempotency. A
a plugin with that name has already registered then any future plugins will not run.

For alternatives to plugins, you may also wish to look into preload scripts.

Parameters

plugin: WorkerPlugin The plugin object to pass to the workers

name: str, optional A name for the plugin. Registering a plugin with the same name will
have no effect.

See also:

distributed.WorkerPlugin

Examples

>>> class MyPlugin(WorkerPlugin):
... def __init__(self, *args, **kwargs):
... pass # the constructor is up to you
... def setup(self, worker: dask.distributed.Worker):
... pass
... def teardown(self, worker: dask.distributed.Worker):
... pass
... def transition(self, key: str, start: str, finish: str, **kwargs):
... pass

>>> plugin = MyPlugin(1, 2, 3)
>>> client.register_worker_plugin(plugin)

You can get access to the plugin with the get_worker function

>>> client.register_worker_plugin(other_plugin, name='my-plugin')
>>> def f():
... worker = get_worker()
... plugin = worker.plugins['my-plugin']
... return plugin.my_state

>>> future = client.run(f)

3.11. Futures 827

dask Documentation, Release 2.6.0

replicate(futures, n=None, workers=None, branching_factor=2, **kwargs)
Set replication of futures within network

Copy data onto many workers. This helps to broadcast frequently accessed data and it helps to improve
resilience.

This performs a tree copy of the data throughout the network individually on each piece of data. This
operation blocks until complete. It does not guarantee replication of data to future workers.

Parameters

futures: list of futures Futures we wish to replicate

n: int, optional Number of processes on the cluster on which to replicate the data. De-
faults to all.

workers: list of worker addresses Workers on which we want to restrict the replication.
Defaults to all.

branching_factor: int, optional The number of workers that can copy data in each gen-
eration

See also:

Client.rebalance

Examples

>>> x = c.submit(func, *args) # doctest: +SKIP
>>> c.replicate([x]) # send to all workers # doctest: +SKIP
>>> c.replicate([x], n=3) # send to three workers # doctest: +SKIP
>>> c.replicate([x], workers=['alice', 'bob']) # send to specific #
→˓doctest: +SKIP
>>> c.replicate([x], n=1, workers=['alice', 'bob']) # send to one of
→˓specific workers # doctest: +SKIP
>>> c.replicate([x], n=1) # reduce replications # doctest: +SKIP

restart(**kwargs)
Restart the distributed network

This kills all active work, deletes all data on the network, and restarts the worker processes.

retire_workers(workers=None, close_workers=True, **kwargs)
Retire certain workers on the scheduler

See dask.distributed.Scheduler.retire_workers for the full docstring.

See also:

dask.distributed.Scheduler.retire_workers

Examples

You can get information about active workers using the following: >>> workers =
client.scheduler_info()[‘workers’]

From that list you may want to select some workers to close >>> client.retire_workers(workers=[‘tcp:
//address:port’, . . .])

retry(futures, asynchronous=None)
Retry failed futures

828 Chapter 3. Complex Algorithms

tcp://address:port
tcp://address:port

dask Documentation, Release 2.6.0

Parameters

futures: list of Futures

run(function, *args, **kwargs)
Run a function on all workers outside of task scheduling system

This calls a function on all currently known workers immediately, blocks until those results come back,
and returns the results asynchronously as a dictionary keyed by worker address. This method if generally
used for side effects, such and collecting diagnostic information or installing libraries.

If your function takes an input argument named dask_worker then that variable will be populated with
the worker itself.

Parameters

function: callable

*args: arguments for remote function

**kwargs: keyword arguments for remote function

workers: list Workers on which to run the function. Defaults to all known workers.

wait: boolean (optional) If the function is asynchronous whether or not to wait until that
function finishes.

nanny [bool, defualt False] Whether to run function on the nanny. By default, the
function is run on the worker process. If specified, the addresses in workers should
still be the worker addresses, not the nanny addresses.

Examples

>>> c.run(os.getpid) # doctest: +SKIP
{'192.168.0.100:9000': 1234,
'192.168.0.101:9000': 4321,
'192.168.0.102:9000': 5555}

Restrict computation to particular workers with the workers= keyword argument.

>>> c.run(os.getpid, workers=['192.168.0.100:9000',
... '192.168.0.101:9000']) # doctest: +SKIP
{'192.168.0.100:9000': 1234,
'192.168.0.101:9000': 4321}

>>> def get_status(dask_worker):
... return dask_worker.status

>>> c.run(get_hostname) # doctest: +SKIP
{'192.168.0.100:9000': 'running',
'192.168.0.101:9000': 'running}

Run asynchronous functions in the background:

>>> async def print_state(dask_worker): # doctest: +SKIP
... while True:
... print(dask_worker.status)
... await gen.sleep(1)

3.11. Futures 829

dask Documentation, Release 2.6.0

>>> c.run(print_state, wait=False) # doctest: +SKIP

run_coroutine(function, *args, **kwargs)
Spawn a coroutine on all workers.

This spaws a coroutine on all currently known workers and then waits for the coroutine on each worker.
The coroutines’ results are returned as a dictionary keyed by worker address.

Parameters

function: a coroutine function

(typically a function wrapped in gen.coroutine or a Python 3.5+ async function)

*args: arguments for remote function

**kwargs: keyword arguments for remote function

wait: boolean (default True) Whether to wait for coroutines to end.

workers: list Workers on which to run the function. Defaults to all known workers.

run_on_scheduler(function, *args, **kwargs)
Run a function on the scheduler process

This is typically used for live debugging. The function should take a keyword argument
dask_scheduler=, which will be given the scheduler object itself.

See also:

Client.run Run a function on all workers

Client.start_ipython_scheduler Start an IPython session on scheduler

Examples

>>> def get_number_of_tasks(dask_scheduler=None):
... return len(dask_scheduler.tasks)

>>> client.run_on_scheduler(get_number_of_tasks) # doctest: +SKIP
100

Run asynchronous functions in the background:

>>> async def print_state(dask_scheduler): # doctest: +SKIP
... while True:
... print(dask_scheduler.status)
... await gen.sleep(1)

>>> c.run(print_state, wait=False) # doctest: +SKIP

scatter(data, workers=None, broadcast=False, direct=None, hash=True, timeout=’__no_default__’,
asynchronous=None)

Scatter data into distributed memory

This moves data from the local client process into the workers of the distributed scheduler. Note that it is
often better to submit jobs to your workers to have them load the data rather than loading data locally and
then scattering it out to them.

Parameters

830 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

data: list, dict, or object Data to scatter out to workers. Output type matches input type.

workers: list of tuples (optional) Optionally constrain locations of data. Specify work-
ers as hostname/port pairs, e.g. ('127.0.0.1', 8787).

broadcast: bool (defaults to False) Whether to send each data element to all workers.
By default we round-robin based on number of cores.

direct: bool (defaults to automatically check) Whether or not to connect directly to the
workers, or to ask the scheduler to serve as intermediary. This can also be set when
creating the Client.

hash: bool (optional) Whether or not to hash data to determine key. If False then this
uses a random key

Returns

List, dict, iterator, or queue of futures matching the type of input.

See also:

Client.gather Gather data back to local process

Examples

>>> c = Client('127.0.0.1:8787') # doctest: +SKIP
>>> c.scatter(1) # doctest: +SKIP
<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>

>>> c.scatter([1, 2, 3]) # doctest: +SKIP
[<Future: status: finished, key: c0a8a20f903a4915b94db8de3ea63195>,
<Future: status: finished, key: 58e78e1b34eb49a68c65b54815d1b158>,
<Future: status: finished, key: d3395e15f605bc35ab1bac6341a285e2>]

>>> c.scatter({'x': 1, 'y': 2, 'z': 3}) # doctest: +SKIP
{'x': <Future: status: finished, key: x>,
'y': <Future: status: finished, key: y>,
'z': <Future: status: finished, key: z>}

Constrain location of data to subset of workers

>>> c.scatter([1, 2, 3], workers=[('hostname', 8788)]) # doctest: +SKIP

Broadcast data to all workers

>>> [future] = c.scatter([element], broadcast=True) # doctest: +SKIP

Send scattered data to parallelized function using client futures interface

>>> data = c.scatter(data, broadcast=True) # doctest: +SKIP
>>> res = [c.submit(func, data, i) for i in range(100)]

scheduler_info(**kwargs)
Basic information about the workers in the cluster

3.11. Futures 831

dask Documentation, Release 2.6.0

Examples

>>> c.scheduler_info() # doctest: +SKIP
{'id': '2de2b6da-69ee-11e6-ab6a-e82aea155996',
'services': {},
'type': 'Scheduler',
'workers': {'127.0.0.1:40575': {'active': 0,

'last-seen': 1472038237.4845693,
'name': '127.0.0.1:40575',
'services': {},
'stored': 0,
'time-delay': 0.0061032772064208984}}}

set_metadata(key, value)
Set arbitrary metadata in the scheduler

This allows you to store small amounts of data on the central scheduler process for administrative pur-
poses. Data should be msgpack serializable (ints, strings, lists, dicts)

If the key corresponds to a task then that key will be cleaned up when the task is forgotten by the scheduler.

If the key is a list then it will be assumed that you want to index into a nested dictionary structure using
those keys. For example if you call the following:

>>> client.set_metadata(['a', 'b', 'c'], 123)

Then this is the same as setting

>>> scheduler.task_metadata['a']['b']['c'] = 123

The lower level dictionaries will be created on demand.

See also:

get_metadata

Examples

>>> client.set_metadata('x', 123) # doctest: +SKIP
>>> client.get_metadata('x') # doctest: +SKIP
123

>>> client.set_metadata(['x', 'y'], 123) # doctest: +SKIP
>>> client.get_metadata('x') # doctest: +SKIP
{'y': 123}

>>> client.set_metadata(['x', 'w', 'z'], 456) # doctest: +SKIP
>>> client.get_metadata('x') # doctest: +SKIP
{'y': 123, 'w': {'z': 456}}

>>> client.get_metadata(['x', 'w']) # doctest: +SKIP
{'z': 456}

shutdown()
Shut down the connected scheduler and workers

Note, this may disrupt other clients that may be using the same scheudler and workers.

832 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

See also:

Client.close close only this client

start(**kwargs)
Start scheduler running in separate thread

start_ipython_scheduler(magic_name=’scheduler_if_ipython’, qtconsole=False, qtcon-
sole_args=None)

Start IPython kernel on the scheduler

Parameters

magic_name: str or None (optional) If defined, register IPython magic with this name
for executing code on the scheduler. If not defined, register %scheduler magic if
IPython is running.

qtconsole: bool (optional) If True, launch a Jupyter QtConsole connected to the
worker(s).

qtconsole_args: list(str) (optional) Additional arguments to pass to the qtconsole on
startup.

Returns

connection_info: dict connection_info dict containing info necessary to connect Jupyter
clients to the scheduler.

See also:

Client.start_ipython_workers Start IPython on the workers

Examples

>>> c.start_ipython_scheduler() # doctest: +SKIP
>>> %scheduler scheduler.processing # doctest: +SKIP
{'127.0.0.1:3595': {'inc-1', 'inc-2'},
'127.0.0.1:53589': {'inc-2', 'add-5'}}

>>> c.start_ipython_scheduler(qtconsole=True) # doctest: +SKIP

start_ipython_workers(workers=None, magic_names=False, qtconsole=False, qtcon-
sole_args=None)

Start IPython kernels on workers

Parameters

workers: list (optional) A list of worker addresses, defaults to all

magic_names: str or list(str) (optional) If defined, register IPython magics with these
names for executing code on the workers. If string has asterix then expand asterix
into 0, 1, . . . , n for n workers

qtconsole: bool (optional) If True, launch a Jupyter QtConsole connected to the
worker(s).

qtconsole_args: list(str) (optional) Additional arguments to pass to the qtconsole on
startup.

Returns

3.11. Futures 833

dask Documentation, Release 2.6.0

iter_connection_info: list List of connection_info dicts containing info necessary to
connect Jupyter clients to the workers.

See also:

Client.start_ipython_scheduler start ipython on the scheduler

Examples

>>> info = c.start_ipython_workers() # doctest: +SKIP
>>> %remote info['192.168.1.101:5752'] worker.data # doctest: +SKIP
{'x': 1, 'y': 100}

>>> c.start_ipython_workers('192.168.1.101:5752', magic_names='w') #
→˓doctest: +SKIP
>>> %w worker.data # doctest: +SKIP
{'x': 1, 'y': 100}

>>> c.start_ipython_workers('192.168.1.101:5752', qtconsole=True) # doctest:
→˓+SKIP

Add asterix * in magic names to add one magic per worker

>>> c.start_ipython_workers(magic_names='w_*') # doctest: +SKIP
>>> %w_0 worker.data # doctest: +SKIP
{'x': 1, 'y': 100}
>>> %w_1 worker.data # doctest: +SKIP
{'z': 5}

submit(func, *args, key=None, workers=None, resources=None, retries=None, priority=0,
fifo_timeout=’100 ms’, allow_other_workers=False, actor=False, actors=False, pure=None,
**kwargs)

Submit a function application to the scheduler

Parameters

func: callable

*args:

**kwargs:

pure: bool (defaults to True) Whether or not the function is pure. Set pure=False
for impure functions like np.random.random.

workers: set, iterable of sets A set of worker hostnames on which computations may be
performed. Leave empty to default to all workers (common case)

key: str Unique identifier for the task. Defaults to function-name and hash

allow_other_workers: bool (defaults to False) Used with workers. Indicates whether
or not the computations may be performed on workers that are not in the workers
set(s).

retries: int (default to 0) Number of allowed automatic retries if the task fails

priority: Number Optional prioritization of task. Zero is default. Higher priorities take
precedence

834 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

fifo_timeout: str timedelta (default ‘100ms’) Allowed amount of time between calls to
consider the same priority

Returns

Future

See also:

Client.map Submit on many arguments at once

Examples

>>> c = client.submit(add, a, b) # doctest: +SKIP

unpublish_dataset(name, **kwargs)
Remove named datasets from scheduler

See also:

Client.publish_dataset

Examples

>>> c.list_datasets() # doctest: +SKIP
['my_dataset']
>>> c.unpublish_datasets('my_dataset') # doctest: +SKIP
>>> c.list_datasets() # doctest: +SKIP
[]

upload_file(filename, **kwargs)
Upload local package to workers

This sends a local file up to all worker nodes. This file is placed into a temporary directory on Python’s
system path so any .py, .egg or .zip files will be importable.

Parameters

filename: string Filename of .py, .egg or .zip file to send to workers

Examples

>>> client.upload_file('mylibrary.egg') # doctest: +SKIP
>>> from mylibrary import myfunc # doctest: +SKIP
>>> L = c.map(myfunc, seq) # doctest: +SKIP

wait_for_workers(n_workers=0)
Blocking call to wait for n workers before continuing

who_has(futures=None, **kwargs)
The workers storing each future’s data

Parameters

futures: list (optional) A list of futures, defaults to all data

See also:

Client.has_what, Client.nthreads

3.11. Futures 835

dask Documentation, Release 2.6.0

Examples

>>> x, y, z = c.map(inc, [1, 2, 3]) # doctest: +SKIP
>>> wait([x, y, z]) # doctest: +SKIP
>>> c.who_has() # doctest: +SKIP
{'inc-1c8dd6be1c21646c71f76c16d09304ea': ['192.168.1.141:46784'],
'inc-1e297fc27658d7b67b3a758f16bcf47a': ['192.168.1.141:46784'],
'inc-fd65c238a7ea60f6a01bf4c8a5fcf44b': ['192.168.1.141:46784']}

>>> c.who_has([x, y]) # doctest: +SKIP
{'inc-1c8dd6be1c21646c71f76c16d09304ea': ['192.168.1.141:46784'],
'inc-1e297fc27658d7b67b3a758f16bcf47a': ['192.168.1.141:46784']}

write_scheduler_file(scheduler_file)
Write the scheduler information to a json file.

This facilitates easy sharing of scheduler information using a file system. The scheduler file can be used
to instantiate a second Client using the same scheduler.

Parameters

scheduler_file: str Path to a write the scheduler file.

Examples

>>> client = Client() # doctest: +SKIP
>>> client.write_scheduler_file('scheduler.json') # doctest: +SKIP
connect to previous client's scheduler
>>> client2 = Client(scheduler_file='scheduler.json') # doctest: +SKIP

class distributed.Future(key, client=None, inform=True, state=None)
A remotely running computation

A Future is a local proxy to a result running on a remote worker. A user manages future objects in the local
Python process to determine what happens in the larger cluster.

Parameters

key: str, or tuple Key of remote data to which this future refers

client: Client Client that should own this future. Defaults to _get_global_client()

inform: bool Do we inform the scheduler that we need an update on this future

See also:

Client Creates futures

Examples

Futures typically emerge from Client computations

>>> my_future = client.submit(add, 1, 2) # doctest: +SKIP

We can track the progress and results of a future

>>> my_future # doctest: +SKIP
<Future: status: finished, key: add-8f6e709446674bad78ea8aeecfee188e>

836 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

We can get the result or the exception and traceback from the future

>>> my_future.result() # doctest: +SKIP

add_done_callback(fn)
Call callback on future when callback has finished

The callback fn should take the future as its only argument. This will be called regardless of if the future
completes successfully, errs, or is cancelled

The callback is executed in a separate thread.

cancel(**kwargs)
Cancel request to run this future

See also:

Client.cancel

cancelled()
Returns True if the future has been cancelled

done()
Is the computation complete?

exception(timeout=None, **kwargs)
Return the exception of a failed task

If timeout seconds are elapsed before returning, a dask.distributed.TimeoutError is raised.

See also:

Future.traceback

result(timeout=None)
Wait until computation completes, gather result to local process.

If timeout seconds are elapsed before returning, a dask.distributed.TimeoutError is raised.

retry(**kwargs)
Retry this future if it has failed

See also:

Client.retry

traceback(timeout=None, **kwargs)
Return the traceback of a failed task

This returns a traceback object. You can inspect this object using the traceback module. Alternatively
if you call future.result() this traceback will accompany the raised exception.

If timeout seconds are elapsed before returning, a dask.distributed.TimeoutError is raised.

See also:

Future.exception

Examples

>>> import traceback # doctest: +SKIP
>>> tb = future.traceback() # doctest: +SKIP
>>> traceback.format_tb(tb) # doctest: +SKIP
[...]

3.11. Futures 837

dask Documentation, Release 2.6.0

class distributed.Queue(name=None, client=None, maxsize=0)
Distributed Queue

This allows multiple clients to share futures or small bits of data between each other with a multi-producer/multi-
consumer queue. All metadata is sequentialized through the scheduler.

Elements of the Queue must be either Futures or msgpack-encodable data (ints, strings, lists, dicts). All data is
sent through the scheduler so it is wise not to send large objects. To share large objects scatter the data and share
the future instead.

Warning: This object is experimental and has known issues in Python 2

See also:

Variable shared variable between clients

Examples

>>> from dask.distributed import Client, Queue # doctest: +SKIP
>>> client = Client() # doctest: +SKIP
>>> queue = Queue('x') # doctest: +SKIP
>>> future = client.submit(f, x) # doctest: +SKIP
>>> queue.put(future) # doctest: +SKIP

get(timeout=None, batch=False, **kwargs)
Get data from the queue

Parameters

timeout: Number (optional) Time in seconds to wait before timing out

batch: boolean, int (optional) If True then return all elements currently waiting in the
queue. If an integer than return that many elements from the queue If False (default)
then return one item at a time

put(value, timeout=None, **kwargs)
Put data into the queue

qsize(**kwargs)
Current number of elements in the queue

class distributed.Variable(name=None, client=None, maxsize=0)
Distributed Global Variable

This allows multiple clients to share futures and data between each other with a single mutable variable. All
metadata is sequentialized through the scheduler. Race conditions can occur.

Values must be either Futures or msgpack-encodable data (ints, lists, strings, etc..) All data will be kept and
sent through the scheduler, so it is wise not to send too much. If you want to share a large amount of data then
scatter it and share the future instead.

Warning: This object is experimental and has known issues in Python 2

See also:

Queue shared multi-producer/multi-consumer queue between clients

838 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Examples

>>> from dask.distributed import Client, Variable # doctest: +SKIP
>>> client = Client() # doctest: +SKIP
>>> x = Variable('x') # doctest: +SKIP
>>> x.set(123) # docttest: +SKIP
>>> x.get() # docttest: +SKIP
123
>>> future = client.submit(f, x) # doctest: +SKIP
>>> x.set(future) # doctest: +SKIP

delete()
Delete this variable

Caution, this affects all clients currently pointing to this variable.

get(timeout=None, **kwargs)
Get the value of this variable

set(value, **kwargs)
Set the value of this variable

Parameters

value: Future or object Must be either a Future or a msgpack-encodable value

class distributed.Lock(name=None, client=None)
Distributed Centralized Lock

Parameters

name: string Name of the lock to acquire. Choosing the same name allows two disconnected
processes to coordinate a lock.

Examples

>>> lock = Lock('x') # doctest: +SKIP
>>> lock.acquire(timeout=1) # doctest: +SKIP
>>> # do things with protected resource
>>> lock.release() # doctest: +SKIP

acquire(blocking=True, timeout=None)
Acquire the lock

Parameters

blocking [bool, optional] If false, don’t wait on the lock in the scheduler at all.

timeout [number, optional] Seconds to wait on the lock in the scheduler. This does not
include local coroutine time, network transfer time, etc.. It is forbidden to specify a
timeout when blocking is false.

Returns

True or False whether or not it sucessfully acquired the lock

3.11. Futures 839

dask Documentation, Release 2.6.0

Examples

>>> lock = Lock('x') # doctest: +SKIP
>>> lock.acquire(timeout=1) # doctest: +SKIP

release()
Release the lock if already acquired

class distributed.Pub(name, worker=None, client=None)
Publish data with Publish-Subscribe pattern

This allows clients and workers to directly communicate data between each other with a typical Publish-
Subscribe pattern. This involves two components,

Pub objects, into which we put data:

>>> pub = Pub('my-topic')
>>> pub.put(123)

And Sub objects, from which we collect data:

>>> sub = Sub('my-topic')
>>> sub.get()
123

Many Pub and Sub objects can exist for the same topic. All data sent from any Pub will be sent to all Sub
objects on that topic that are currently connected. Pub’s and Sub’s find each other using the scheduler, but they
communicate directly with each other without coordination from the scheduler.

Pubs and Subs use the central scheduler to find each other, but not to mediate the communication. This means
that there is very little additional latency or overhead, and they are appropriate for very frequent data transfers.
For context, most data transfer first checks with the scheduler to find which workers should participate, and then
does direct worker-to-worker transfers. This checking in with the scheduler provides some stability guarantees,
but also adds in a few extra network hops. PubSub doesn’t do this, and so is faster, but also can easily drop
messages if Pubs or Subs disappear without notice.

When using a Pub or Sub from a Client all communications will be routed through the scheduler. This can cause
some performance degradation. Pubs and Subs only operate at top-speed when they are both on workers.

Parameters

name: object (msgpack serializable) The name of the group of Pubs and Subs on which to
participate

See also:

Sub

Examples

>>> pub = Pub('my-topic')
>>> sub = Sub('my-topic')
>>> pub.put([1, 2, 3])
>>> sub.get()
[1, 2, 3]

You can also use sub within a for loop:

840 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> for msg in sub: # doctest: +SKIP
... print(msg)

or an async for loop

>>> async for msg in sub: # doctest: +SKIP
... print(msg)

Similarly the .get method will return an awaitable if used by an async client or within the IOLoop thread of a
worker

>>> await sub.get() # doctest: +SKIP

You can see the set of connected worker subscribers by looking at the .subscribers attribute:

>>> pub.subscribers
{'tcp://...': {},
'tcp://...': {}}

put(msg)
Publish a message to all subscribers of this topic

class distributed.Sub(name, worker=None, client=None)
Subscribe to a Publish/Subscribe topic

See also:

Pub for full docstring

get(timeout=None)
Get a single message

next(timeout=None)
Get a single message

3.12 Best Practices

It is easy to get started with Dask’s APIs, but using them well requires some experience. This page contains suggestions
for best practices, and includes solutions to common problems.

This document specifically focuses on best practices that are shared among all of the Dask APIs. Readers may first
want to investigate one of the API-specific Best Practices documents first.

• Arrays

• DataFrames

• Delayed

3.12.1 Start Small

Parallelism brings extra complexity and overhead. Sometimes it’s necessary for larger problems, but often it’s not.
Before adding a parallel computing system like Dask to your workload you may want to first try some alternatives:

3.12. Best Practices 841

dask Documentation, Release 2.6.0

• Use better algorithms or data structures: NumPy, Pandas, Scikit-Learn may have faster functions for what
you’re trying to do. It may be worth consulting with an expert or reading through their docs again to find a better
pre-built algorithm.

• Better file formats: Efficient binary formats that support random access can often help you manage larger-than-
memory datasets efficiently and simply. See the Store Data Efficiently section below.

• Compiled code: Compiling your Python code with Numba or Cython might make parallelism unnecessary. Or
you might use the multi-core parallelism available within those libraries.

• Sampling: Even if you have a lot of data, there might not be much advantage from using all of it. By sampling
intelligently you might be able to derive the same insight from a much more manageable subset.

• Profile: If you’re trying to speed up slow code it’s important that you first understand why it is slow. Modest
time investments in profiling your code can help you to identify what is slowing you down. This information
can help you make better decisions about if parallelism is likely to help, or if other approaches are likely to be
more effective.

3.12.2 Use The Dashboard

Dask’s dashboard helps you to understand the state of your workers. This information can help to guide you to efficient
solutions. In parallel and distributed computing there are new costs to be aware of and so your old intuition may no
longer be true. Working with the dashboard can help you relearn about what is fast and slow and how to deal with it.

See Documentation on Dask’s dashboard for more information.

3.12.3 Avoid Very Large Partitions

Your chunks of data should be small enough so that many of them fit in a worker’s available memory at once. You
often control this when you select partition size in Dask DataFrame or chunk size in Dask Array.

Dask will likely manipulate as many chunks in parallel on one machine as you have cores on that machine. So if you
have 1 GB chunks and ten cores, then Dask is likely to use at least 10 GB of memory. Additionally, it’s common for
Dask to have 2-3 times as many chunks available to work on so that it always has something to work on.

If you have a machine with 100 GB and 10 cores, then you might want to choose chunks in the 1GB range. You have
space for ten chunks per core which gives Dask a healthy margin, without having tasks that are too small

Note that you also want to avoid chunk sizes that are too small. See the next section for details.

3.12.4 Avoid Very Large Graphs

Dask workloads are composed of tasks. A task is a Python function, like np.sum applied onto a Python object,
like a Pandas dataframe or NumPy array. If you are working with Dask collections with many partitions, then every
operation you do, like x + 1 likely generates many tasks, at least as many as partitions in your collection.

Every task comes with some overhead. This is somewhere between 200us and 1ms. If you have a computation with
thousands of tasks this is fine, there will be about a second of overhead, and that may not trouble you.

However when you have very large graphs with millions of tasks then this may become troublesome, both because
overhead is now in the 10 minutes to hours range, and also because the overhead of dealing with such a large graph
can start to overwhelm the scheduler.

There are a few things you can do to address this:

• Build smaller graphs. You can do this by . . .

842 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

– Increasing your chunk size: If you have a 1000 GB of data and are using 10 MB chunks, then you have
100,000 partitions. Every operation on such a collection will generate at least 100,000 tasks.

However if you increase your chunksize to 1 GB or even a few GB then you reduce the overhead by orders
of magnitude. This requires that your workers have much more than 1 GB of memory, but that’s typical
for larger workloads.

– Fusing operations together: Dask will do a bit of this on its own, but you can help it. If you have a very
complex operation with dozens of sub-operations, maybe you can pack that into a single Python function
and use a function like da.map_blocks or dd.map_partitions.

In general, the more administrative work you can move into your functions the better. That way the Dask
scheduler doesn’t need to think about all of the fine-grained operations.

– Breaking up your computation: For very large workloads you may also want to try sending smaller
chunks to Dask at a time. For example if you’re processing a petabyte of data but find that Dask is only
happy with 100 TB, maybe you can break up your computation into ten pieces and submit them one after
the other.

3.12.5 Learn Techniques For Customization

The high level Dask collections (array, dataframe, bag) include common operations that follow standard Python APIs
from NumPy and Pandas. However, many Python workloads are complex and may require operations that are not
included in these high level APIs.

Fortunately, there are many options to support custom workloads:

• All collections have a map_partitions or map_blocks function, that applies a user provided function
across every Pandas dataframe or NumPy array in the collection. Because Dask collections are made up of
normal Python objects, it’s often quite easy to map custom functions across partitions of a dataset without much
modification.

df.map_partitions(my_custom_func)

• More complex map_* functions. Sometimes your custom behavior isn’t embarrassingly parallel, but requires
more advanced communication. For example maybe you need to communicate a little bit of information from
one partition to the next, or maybe you want to build a custom aggregation.

Dask collections include methods for these as well.

• For even more complex workloads you can convert your collections into individual blocks, and arrange those
blocks as you like using Dask Delayed. There is usually a to_delayed method on every collection.

map_partitions(func, *args, **kwargs) Apply Python function on each DataFrame partition.
rolling.map_overlap(func, df, before, after, . . .) Apply a function to each partition, sharing rows with

adjacent partitions.
groupby.Aggregation(name, chunk, agg[, final-
ize])

User defined groupby-aggregation.

blockwise(func, out_ind, *args[, name, . . .]) Tensor operation: Generalized inner and outer products
map_blocks(func, *args[, name, token, . . .]) Map a function across all blocks of a dask array.
map_overlap(x, func, depth[, boundary, trim]) Map a function over blocks of the array with some over-

lap
reduction(x, chunk, aggregate[, axis, . . .]) General version of reductions

3.12. Best Practices 843

dask Documentation, Release 2.6.0

3.12.6 Stop Using Dask When No Longer Needed

In many workloads it is common to use Dask to read in a large amount of data, reduce it down, and then iterate on
a much smaller amount of data. For this latter stage on smaller data it may make sense to stop using Dask, and start
using normal Python again.

df = dd.read_parquet("lots-of-data-*.parquet")
df = df.groupby('name').mean() # reduce data significantly
df = df.compute() # continue on with Pandas/NumPy

3.12.7 Persist When You Can

Accessing data from RAM is often much faster than accessing it from disk. Once you have your dataset in a clean
state that both:

1. Fits in memory

2. Is clean enough that you will want to try many different analyses

Then it is a good time to persist your data in RAM

df = dd.read_parquet("lots-of-data-*.parquet")
df = df.fillna(...) # clean up things lazily
df = df[df.name == 'Alice'] # get down to a more reasonable size

df = df.persist() # trigger computation, persist in distributed RAM

Note that this is only relevant if you are on a distributed machine (otherwise, as mentioned above, you should probably
continue on without Dask).

3.12.8 Store Data Efficiently

As your ability to compute increases you will likely find that data access and I/O take up a larger portion of your total
time. Additionally, parallel computing will often add new constraints to how your store your data, particularly around
providing random access to blocks of your data that are in line with how you plan to compute on it.

For example . . .

• For compression you’ll probably find that you drop gzip and bz2, and embrace newer systems like lz4, snappy,
and Z-Standard that provide better performance and random access.

• For storage formats you may find that you want self-describing formats that are optimized for random access,
metadata storage, and binary encoding like Parquet, ORC, Zarr, HDF5, GeoTIFF and so on

• When working on the cloud you may find that some older formats like HDF5 may not work well

• You may want to partition or chunk your data in ways that align well to common queries. In Dask DataFrame
this might mean choosing a column to sort by for fast selection and joins. For Dask dataframe this might mean
choosing chunk sizes that are aligned with your access patterns and algorithms.

3.12.9 Processes and Threads

If you’re doing mostly numeric work with Numpy, Pandas, Scikit-Learn, Numba, and other libraries that release the
GIL, then use mostly threads. If you’re doing work on text data or Python collections like lists and dicts then use
mostly processes.

844 Chapter 3. Complex Algorithms

https://docs.python.org/3/glossary.html#term-global-interpreter-lock

dask Documentation, Release 2.6.0

If you’re on larger machines with a high thread count (greater than 10), then you should probably split things up into
at least a few processes regardless. Python can be highly productive with 10 threads per process with numeric work,
but not 50 threads.

For more information on threads, processes, and how to configure them in Dask, see the scheduler documentation.

3.12.10 Load Data with Dask

If you need to work with large Python objects, then please let Dask create them. A common anti-pattern we see is
people creating large Python objects outside of Dask, then giving those objects to Dask and asking it to manage them.
This works, but means that Dask needs to move around these very large objects with its metadata, rather than as normal
Dask-controlled results.

Here are some common patterns to avoid and nicer alternatives:

DataFrames

Don't

ddf = ... a dask dataframe ...
for fn in filenames:

df = pandas.read_csv(fn) # Read locally with Pandas
ddf = ddf.append(df) # Give to Dask

Do

ddf = dd.read_csv(filenames)

Arrays

Don't

f = h5py.File(...)
x = np.asarray(f["x"]) # Get data as a NumPy array locally

x = da.from_array(x) # Hand NumPy array to Dask

Do

f = h5py.File(...)
x = da.from_array(f["x"]) # Let Dask do the reading

Delayed

Don't

@dask.delayed
def process(a, b):

...

df = pandas.read_csv("some-large-file.csv") # Create large object locally

(continues on next page)

3.12. Best Practices 845

dask Documentation, Release 2.6.0

(continued from previous page)

results = []
for item in L:

result = process(item, df) # include df in every delayed call
results.append(result)

Do

@dask.delayed
def process(a, b):

...

df = dask.delayed(pandas.read_csv)("some-large-file.csv") # Let Dask build object
results = []
for item in L:

result = process(item, df) # include pointer to df in every delayed call
results.append(result)

3.13 API

Dask APIs generally follow from upstream APIs:

• Arrays follows NumPy

• DataFrames follows Pandas

• Bag follows map/filter/groupby/reduce common in Spark and Python iterators

• Dask-ML follows the Scikit-Learn and others

• Delayed wraps general Python code

• Futures follows concurrent.futures from the standard library for real-time computation.

Additionally, Dask has its own functions to start computations, persist data in memory, check progress, and so forth
that complement the APIs above. These more general Dask functions are described below:

compute(*args, **kwargs) Compute several dask collections at once.
is_dask_collection(x) Returns True if x is a dask collection
optimize(*args, **kwargs) Optimize several dask collections at once.
persist(*args, **kwargs) Persist multiple Dask collections into memory
visualize(*args, **kwargs) Visualize several dask graphs at once.

These functions work with any scheduler. More advanced operations are available when using the newer scheduler
and starting a dask.distributed.Client (which, despite its name, runs nicely on a single machine). This API
provides the ability to submit, cancel, and track work asynchronously, and includes many functions for complex inter-
task workflows. These are not necessary for normal operation, but can be useful for real-time or advanced operation.

This more advanced API is available in the Dask distributed documentation

dask.compute(*args, **kwargs)
Compute several dask collections at once.

Parameters

args [object] Any number of objects. If it is a dask object, it’s computed and the result is
returned. By default, python builtin collections are also traversed to look for dask objects

846 Chapter 3. Complex Algorithms

https://ml.dask.org/modules/api.html
https://docs.python.org/3/library/concurrent.futures.html
https://distributed.dask.org/en/latest/api.html

dask Documentation, Release 2.6.0

(for more information see the traverse keyword). Non-dask arguments are passed
through unchanged.

traverse [bool, optional] By default dask traverses builtin python collections looking for dask
objects passed to compute. For large collections this can be expensive. If none of the
arguments contain any dask objects, set traverse=False to avoid doing this traversal.

scheduler [string, optional] Which scheduler to use like “threads”, “synchronous” or “pro-
cesses”. If not provided, the default is to check the global settings first, and then fall back
to the collection defaults.

optimize_graph [bool, optional] If True [default], the optimizations for each collection are
applied before computation. Otherwise the graph is run as is. This can be useful for
debugging.

kwargs Extra keywords to forward to the scheduler function.

Examples

>>> import dask.array as da
>>> a = da.arange(10, chunks=2).sum()
>>> b = da.arange(10, chunks=2).mean()
>>> compute(a, b)
(45, 4.5)

By default, dask objects inside python collections will also be computed:

>>> compute({'a': a, 'b': b, 'c': 1}) # doctest: +SKIP
({'a': 45, 'b': 4.5, 'c': 1},)

dask.is_dask_collection(x)
Returns True if x is a dask collection

dask.optimize(*args, **kwargs)
Optimize several dask collections at once.

Returns equivalent dask collections that all share the same merged and optimized underlying graph. This can be
useful if converting multiple collections to delayed objects, or to manually apply the optimizations at strategic
points.

Note that in most cases you shouldn’t need to call this method directly.

Parameters

*args [objects] Any number of objects. If a dask object, its graph is optimized and merged
with all those of all other dask objects before returning an equivalent dask collection.
Non-dask arguments are passed through unchanged.

traverse [bool, optional] By default dask traverses builtin python collections looking for dask
objects passed to optimize. For large collections this can be expensive. If none of the
arguments contain any dask objects, set traverse=False to avoid doing this traversal.

optimizations [list of callables, optional] Additional optimization passes to perform.

**kwargs Extra keyword arguments to forward to the optimization passes.

3.13. API 847

dask Documentation, Release 2.6.0

Examples

>>> import dask.array as da
>>> a = da.arange(10, chunks=2).sum()
>>> b = da.arange(10, chunks=2).mean()
>>> a2, b2 = optimize(a, b)

>>> a2.compute() == a.compute()
True
>>> b2.compute() == b.compute()
True

dask.persist(*args, **kwargs)
Persist multiple Dask collections into memory

This turns lazy Dask collections into Dask collections with the same metadata, but now with their results fully
computed or actively computing in the background.

For example a lazy dask.array built up from many lazy calls will now be a dask.array of the same shape, dtype,
chunks, etc., but now with all of those previously lazy tasks either computed in memory as many small numpy.
array (in the single-machine case) or asynchronously running in the background on a cluster (in the distributed
case).

This function operates differently if a dask.distributed.Client exists and is connected to a distributed
scheduler. In this case this function will return as soon as the task graph has been submitted to the cluster, but
before the computations have completed. Computations will continue asynchronously in the background. When
using this function with the single machine scheduler it blocks until the computations have finished.

When using Dask on a single machine you should ensure that the dataset fits entirely within memory.

Parameters

*args: Dask collections

scheduler [string, optional] Which scheduler to use like “threads”, “synchronous” or “pro-
cesses”. If not provided, the default is to check the global settings first, and then fall back
to the collection defaults.

traverse [bool, optional] By default dask traverses builtin python collections looking for dask
objects passed to persist. For large collections this can be expensive. If none of the
arguments contain any dask objects, set traverse=False to avoid doing this traversal.

optimize_graph [bool, optional] If True [default], the graph is optimized before computa-
tion. Otherwise the graph is run as is. This can be useful for debugging.

**kwargs Extra keywords to forward to the scheduler function.

Returns

New dask collections backed by in-memory data

Examples

>>> df = dd.read_csv('/path/to/*.csv') # doctest: +SKIP
>>> df = df[df.name == 'Alice'] # doctest: +SKIP
>>> df['in-debt'] = df.balance < 0 # doctest: +SKIP
>>> df = df.persist() # triggers computation # doctest: +SKIP

848 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> df.value().min() # future computations are now fast # doctest: +SKIP
-10
>>> df.value().max() # doctest: +SKIP
100

>>> from dask import persist # use persist function on multiple collections
>>> a, b = persist(a, b) # doctest: +SKIP

dask.visualize(*args, **kwargs)
Visualize several dask graphs at once.

Requires graphviz to be installed. All options that are not the dask graph(s) should be passed as keyword
arguments.

Parameters

dsk [dict(s) or collection(s)] The dask graph(s) to visualize.

filename [str or None, optional] The name (without an extension) of the file to write to disk.
If filename is None, no file will be written, and we communicate with dot using only
pipes.

format [{‘png’, ‘pdf’, ‘dot’, ‘svg’, ‘jpeg’, ‘jpg’}, optional] Format in which to write output
file. Default is ‘png’.

optimize_graph [bool, optional] If True, the graph is optimized before rendering. Otherwise,
the graph is displayed as is. Default is False.

color: {None, ‘order’}, optional Options to color nodes. Provide cmap= keyword for addi-
tional colormap

**kwargs Additional keyword arguments to forward to to_graphviz.

Returns

result [IPython.diplay.Image, IPython.display.SVG, or None] See dask.dot.dot_graph for
more information.

See also:

dask.dot.dot_graph

Notes

For more information on optimization see here:

https://docs.dask.org/en/latest/optimize.html

Examples

>>> x.visualize(filename='dask.pdf') # doctest: +SKIP
>>> x.visualize(filename='dask.pdf', color='order') # doctest: +SKIP

Finally, Dask has a few helpers for generating demo datasets

3.13. API 849

https://docs.dask.org/en/latest/optimize.html

dask Documentation, Release 2.6.0

3.14 Scheduling

All of the large-scale Dask collections like Dask Array, Dask DataFrame, and Dask Bag and the fine-grained APIs like
delayed and futures generate task graphs where each node in the graph is a normal Python function and edges between
nodes are normal Python objects that are created by one task as outputs and used as inputs in another task. After Dask
generates these task graphs, it needs to execute them on parallel hardware. This is the job of a task scheduler. Different
task schedulers exist, and each will consume a task graph and compute the same result, but with different performance
characteristics.

Dask has two families of task schedulers:

1. Single machine scheduler: This scheduler provides basic features on a local process or thread pool. This
scheduler was made first and is the default. It is simple and cheap to use, although it can only be used on a
single machine and does not scale

2. Distributed scheduler: This scheduler is more sophisticated, offers more features, but also requires a bit more
effort to set up. It can run locally or distributed across a cluster

For different computations you may find better performance with particular scheduler settings. This document helps
you understand how to choose between and configure different schedulers, and provides guidelines on when one might
be more appropriate.

3.14.1 Local Threads

import dask
dask.config.set(scheduler='threads') # overwrite default with threaded scheduler

The threaded scheduler executes computations with a local multiprocessing.pool.ThreadPool. It is
lightweight and requires no setup. It introduces very little task overhead (around 50us per task) and, because ev-
erything occurs in the same process, it incurs no costs to transfer data between tasks. However, due to Python’s Global
Interpreter Lock (GIL), this scheduler only provides parallelism when your computation is dominated by non-Python
code, such as is the case when operating on numeric data in NumPy arrays, Pandas DataFrames, or using any of the
other C/C++/Cython based projects in the ecosystem.

The threaded scheduler is the default choice for Dask Array, Dask DataFrame, and Dask Delayed. However, if your
computation is dominated by processing pure Python objects like strings, dicts, or lists, then you may want to try one
of the process-based schedulers below (we currently recommend the distributed scheduler on a local machine).

3.14.2 Local Processes

850 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Note: The distributed scheduler described a couple sections below is often a better choice today. We encourage
readers to continue reading after this section.

import dask.multiprocessing
dask.config.set(scheduler='processes') # overwrite default with multiprocessing
→˓scheduler

The multiprocessing scheduler executes computations with a local multiprocessing.Pool. It is lightweight to
use and requires no setup. Every task and all of its dependencies are shipped to a local process, executed, and then
their result is shipped back to the main process. This means that it is able to bypass issues with the GIL and provide
parallelism even on computations that are dominated by pure Python code, such as those that process strings, dicts,
and lists.

However, moving data to remote processes and back can introduce performance penalties, particularly when the data
being transferred between processes is large. The multiprocessing scheduler is an excellent choice when workflows
are relatively linear, and so does not involve significant inter-task data transfer as well as when inputs and outputs are
both small, like filenames and counts.

This is common in basic data ingestion workloads, such as those are common in Dask Bag, where the multiprocessing
scheduler is the default:

>>> import dask.bag as db
>>> db.read_text('*.json').map(json.loads).pluck('name').frequencies().compute()
{'alice': 100, 'bob': 200, 'charlie': 300}

For more complex workloads, where large intermediate results may be depended upon by multiple downstream tasks,
we generally recommend the use of the distributed scheduler on a local machine. The distributed scheduler is more
intelligent about moving around large intermediate results.

3.14.3 Single Thread

import dask
dask.config.set(scheduler='synchronous') # overwrite default with single-threaded
→˓scheduler

The single-threaded synchronous scheduler executes all computations in the local thread with no parallelism at all.
This is particularly valuable for debugging and profiling, which are more difficult when using threads or processes.

For example, when using IPython or Jupyter notebooks, the %debug, %pdb, or %prun magics will not work well
when using the parallel Dask schedulers (they were not designed to be used in a parallel computing context). However,
if you run into an exception and want to step into the debugger, you may wish to rerun your computation under the
single-threaded scheduler where these tools will function properly.

3.14.4 Dask Distributed (local)

from dask.distributed import Client
client = Client()
or
client = Client(processes=False)

The Dask distributed scheduler can either be setup on a cluster or run locally on a personal machine. Despite having
the name “distributed”, it is often pragmatic on local machines for a few reasons:

3.14. Scheduling 851

dask Documentation, Release 2.6.0

1. It provides access to asynchronous API, notably Futures

2. It provides a diagnostic dashboard that can provide valuable insight on performance and progress

3. It handles data locality with more sophistication, and so can be more efficient than the multiprocessing scheduler
on workloads that require multiple processes

You can read more about using the Dask distributed scheduler on a single machine in these docs.

3.14.5 Dask Distributed (Cluster)

You can also run Dask on a distributed cluster. There are a variety of ways to set this up depending on your cluster.
We recommend referring to the setup documentation for more information.

3.14.6 Configuration

You can configure the global default scheduler by using the dask.config.set(scheduler...) command.
This can be done globally:

dask.config.set(scheduler='threads')

x.compute()

or as a context manager:

with dask.config.set(scheduler='threads'):
x.compute()

or within a single compute call:

x.compute(scheduler='threads')

Additionally some of the scheduler support other keyword arguments. For example, the pool-based single-machine
scheduler allows you to provide custom pools or specify the desired number of workers:

from multiprocessing.pool import ThreadPool
with dask.config.set(pool=ThreadPool(4)):

...

with dask.config.set(num_workers=4):
...

3.15 Understanding Performance

The first step in making computations run quickly is to understand the costs involved. In Python we often rely on tools
like the CProfile module, %%prun IPython magic, VMProf, or snakeviz to understand the costs associated with our
code. However, few of these tools work well on multi-threaded or multi-process code, and fewer still on computations
distributed among many machines. We also have new costs like data transfer, serialization, task scheduling overhead,
and more that we may not be accustomed to tracking.

Fortunately, the Dask schedulers come with diagnostics to help you understand the performance characteristics of your
computations. By using these diagnostics and with some thought, we can often identify the slow parts of troublesome
computations.

852 Chapter 3. Complex Algorithms

https://docs.python.org/3/library/profile.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-prun
https://vmprof.readthedocs.io/en/latest/
https://jiffyclub.github.io/snakeviz/

dask Documentation, Release 2.6.0

The single-machine and distributed schedulers come with different diagnostic tools. These tools are deeply integrated
into each scheduler, so a tool designed for one will not transfer over to the other.

These pages provide four options for profiling parallel code:

1. Visualize task graphs

2. Single threaded scheduler and a normal Python profiler

3. Diagnostics for the single-machine scheduler

4. Diagnostics for the distributed scheduler and dashboard

Additionally, if you are interested in understanding the various phases where slowdown can occur, you may wish to
read the following:

• Phases of computation

3.16 Visualize task graphs

visualize(*args, **kwargs) Visualize several dask graphs at once.

Before executing your computation you might consider visualizing the underlying task graph. By looking at the inter-
connectedness of tasks you can learn more about potential bottlenecks where parallelism may not be possile, or areas
where many tasks depend on each other, which may cause a great deal of communication.

The .visualize method and dask.visualize function work exactly like the .compute method and dask.
compute function, except that rather than computing the result, they produce an image of the task graph.

By default the task graph is rendered from top to bottom. In the case that you prefer to visualize it from left to right,
pass rankdir="LR" as a keyword argument to .visualize.

import dask.array as da
x = da.ones((15, 15), chunks=(5, 5))

y = x + x.T

y.compute()
y.visualize(filename='transpose.svg')

Note that the visualize function is powered by the GraphViz system library. This library has a few considerations:

1. You must install both the graphviz system library (with tools like apt-get, yum, or brew) and the graphviz Python
library. If you use Conda then you need to install python-graphviz, which will bring along the graphviz
system library as a dependency.

2. Graphviz takes a while on graphs larger than about 100 nodes. For large computations you might have to
simplify your computation a bit for the visualize method to work well.

3.17 Diagnostics (local)

Profiling parallel code can be challenging, but dask.diagnostics provides functionality to aid in profiling and
inspecting execution with the local task scheduler.

This page describes the following few built-in options:

3.17. Diagnostics (local) 853

https://www.graphviz.org/

dask Documentation, Release 2.6.0

1. ProgressBar

2. Profiler

3. ResourceProfiler

4. CacheProfiler

Furthermore, this page then provides instructions on how to build your own custom diagnostic.

3.17.1 Progress Bar

ProgressBar([minimum, width, dt, out]) A progress bar for dask.

The ProgressBar class builds on the scheduler callbacks described above to display a progress bar in the terminal
or notebook during computation. This can give a nice feedback during long running graph execution. It can be used
as a context manager around calls to get or compute to profile the computation:

>>> from dask.diagnostics import ProgressBar
>>> a = da.random.normal(size=(10000, 10000), chunks=(1000, 1000))
>>> res = a.dot(a.T).mean(axis=0)

>>> with ProgressBar():
... out = res.compute()
[##] | 100% Completed | 17.1 s

or registered globally using the register method:

>>> pbar = ProgressBar()
>>> pbar.register()
>>> out = res.compute()
[##] | 100% Completed | 17.1 s

To unregister from the global callbacks, call the unregister method:

>>> pbar.unregister()

3.17.2 Profiler

Profiler() A profiler for dask execution at the task level.

Dask provides a few tools for profiling execution. As with the ProgressBar, they each can be used as context
managers or registered globally.

The Profiler class is used to profile Dask’s execution at the task level. During execution, it records the following
information for each task:

1. Key

2. Task

3. Start time in seconds since the epoch

4. Finish time in seconds since the epoch

5. Worker id

854 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

3.17.3 ResourceProfiler

ResourceProfiler([dt]) A profiler for resource use.

The ResourceProfiler class is used to profile Dask’s execution at the resource level. During execution, it records
the following information for each timestep:

1. Time in seconds since the epoch

2. Memory usage in MB

3. % CPU usage

The default timestep is 1 second, but can be set manually using the dt keyword:

>>> from dask.diagnostics import ResourceProfiler
>>> rprof = ResourceProfiler(dt=0.5)

3.17.4 CacheProfiler

CacheProfiler([metric, metric_name]) A profiler for dask execution at the scheduler cache
level.

The CacheProfiler class is used to profile Dask’s execution at the scheduler cache level. During execution, it
records the following information for each task:

1. Key

2. Task

3. Size metric

4. Cache entry time in seconds since the epoch

5. Cache exit time in seconds since the epoch

Here the size metric is the output of a function called on the result of each task. The default metric is to count each
task (metric is 1 for all tasks). Other functions may be used as a metric instead through the metric keyword. For
example, the nbytes function found in cachey can be used to measure the number of bytes in the scheduler cache:

>>> from dask.diagnostics import CacheProfiler
>>> from cachey import nbytes
>>> cprof = CacheProfiler(metric=nbytes)

3.17.5 Example

As an example to demonstrate using the diagnostics, we’ll profile some linear algebra done with Dask Array. We’ll
create a random array, take its QR decomposition, and then reconstruct the initial array by multiplying the Q and R
components together. Note that since the profilers (and all diagnostics) are just context managers, multiple profilers
can be used in a with block:

>>> import dask.array as da
>>> from dask.diagnostics import Profiler, ResourceProfiler, CacheProfiler
>>> a = da.random.random(size=(10000, 1000), chunks=(1000, 1000))
>>> q, r = da.linalg.qr(a)

(continues on next page)

3.17. Diagnostics (local) 855

dask Documentation, Release 2.6.0

(continued from previous page)

>>> a2 = q.dot(r)

>>> with Profiler() as prof, ResourceProfiler(dt=0.25) as rprof,
... CacheProfiler() as cprof:
... out = a2.compute()

The results of each profiler are stored in their results attribute as a list of namedtuple objects:

>>> prof.results[0]
TaskData(key=('tsqr-8d16e396b237bf7a731333130d310cb9_QR_st1', 5, 0),

task=(qr, (_apply_random, 'random_sample', 1060164455, (1000, 1000), (), {}
→˓)),

start_time=1454368444.493292,
end_time=1454368444.902987,
worker_id=4466937856)

>>> rprof.results[0]
ResourceData(time=1454368444.078748, mem=74.100736, cpu=0.0)

>>> cprof.results[0]
CacheData(key=('tsqr-8d16e396b237bf7a731333130d310cb9_QR_st1', 7, 0),

task=(qr, (_apply_random, 'random_sample', 1310656009, (1000, 1000), (), {}
→˓)),

metric=1,
cache_time=1454368444.49662,
free_time=1454368446.769452)

These can be analyzed separately or viewed in a bokeh plot using the provided visualize method on each profiler:

>>> prof.visualize()

To view multiple profilers at the same time, the dask.diagnostics.visualize function can be used. This
takes a list of profilers and creates a vertical stack of plots aligned along the x-axis:

>>> from dask.diagnostics import visualize
>>> visualize([prof, rprof, cprof])

Looking at the above figure, from top to bottom:

1. The results from the Profiler object: This shows the execution time for each task as a rectangle, organized
along the y-axis by worker (in this case threads). Similar tasks are grouped by color and, by hovering over each
task, one can see the key and task that each block represents.

2. The results from the ResourceProfiler object: This shows two lines, one for total CPU percentage used
by all the workers, and one for total memory usage.

3. The results from the CacheProfiler object: This shows a line for each task group, plotting the sum of the
current metric in the cache against time. In this case it’s the default metric (count) and the lines represent
the number of each object in the cache at time. Note that the grouping and coloring is the same as for the
Profiler plot, and that the task represented by each line can be found by hovering over the line.

From these plots we can see that the initial tasks (calls to numpy.random.random and numpy.linalg.qr for
each chunk) are run concurrently, but only use slightly more than 100% CPU. This is because the call to numpy.
linalg.qr currently doesn’t release the Global Interpreter Lock (GIL), so those calls can’t truly be done in parallel.
Next, there’s a reduction step where all the blocks are combined. This requires all the results from the first step to be
held in memory, as shown by the increased number of results in the cache, and increase in memory usage. Immediately
after this task ends, the number of elements in the cache decreases, showing that they were only needed for this step.

856 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Finally, there’s an interleaved set of calls to dot and sum. Looking at the CPU plot, it shows that these run both
concurrently and in parallel, as the CPU percentage spikes up to around 350%.

3.17.6 Custom Callbacks

Callback([start, start_state, pretask, . . .]) Base class for using the callback mechanism

Schedulers based on dask.local.get_async (currently dask.get, dask.threaded.get, and dask.
multiprocessing.get) accept five callbacks, allowing for inspection of scheduler execution.

The callbacks are:

1. start(dsk): Run at the beginning of execution, right before the state is initialized. Receives the Dask graph

2. start_state(dsk, state): Run at the beginning of execution, right after the state is initialized. Receives
the Dask graph and scheduler state

3. pretask(key, dsk, state): Run every time a new task is started. Receives the key of the task to be run,
the Dask graph, and the scheduler state

4. posttask(key, result, dsk, state, id): Run every time a task is finished. Receives the key of the
task that just completed, the result, the Dask graph, the scheduler state, and the id of the worker that ran the task

5. finish(dsk, state, errored): Run at the end of execution, right before the result is returned. Receives
the Dask graph, the scheduler state, and a boolean indicating whether or not the exit was due to an error

Custom diagnostics can be created either by instantiating the Callback class with the some of the above methods
as keywords or by subclassing the Callback class. Here we create a class that prints the name of every key as it’s
computed:

from dask.callbacks import Callback
class PrintKeys(Callback):

def _pretask(self, key, dask, state):
"""Print the key of every task as it's started"""
print("Computing: {0}!".format(repr(key)))

This can now be used as a context manager during computation:

>>> from operator import add, mul
>>> dsk = {'a': (add, 1, 2), 'b': (add, 3, 'a'), 'c': (mul, 'a', 'b')}

>>> with PrintKeys():
... get(dsk, 'c')
Computing 'a'!
Computing 'b'!
Computing 'c'!

Alternatively, functions may be passed in as keyword arguments to Callback:

>>> def printkeys(key, dask, state):
... print("Computing: {0}!".format(repr(key)))

>>> with Callback(pretask=printkeys):
... get(dsk, 'c')
Computing 'a'!
Computing 'b'!
Computing 'c'!

3.17. Diagnostics (local) 857

dask Documentation, Release 2.6.0

3.17.7 API

CacheProfiler([metric, metric_name]) A profiler for dask execution at the scheduler cache
level.

Callback([start, start_state, pretask, . . .]) Base class for using the callback mechanism
Profiler() A profiler for dask execution at the task level.
ProgressBar([minimum, width, dt, out]) A progress bar for dask.
ResourceProfiler([dt]) A profiler for resource use.
visualize(profilers[, file_path, show, save]) Visualize the results of profiling in a bokeh plot.

dask.diagnostics.ProgressBar(minimum=0, width=40, dt=0.1, out=None)
A progress bar for dask.

Parameters

minimum [int, optional] Minimum time threshold in seconds before displaying a progress
bar. Default is 0 (always display)

width [int, optional] Width of the bar

dt [float, optional] Update resolution in seconds, default is 0.1 seconds

Examples

Below we create a progress bar with a minimum threshold of 1 second before displaying. For cheap computa-
tions nothing is shown:

>>> with ProgressBar(minimum=1.0): # doctest: +SKIP
... out = some_fast_computation.compute()

But for expensive computations a full progress bar is displayed:

>>> with ProgressBar(minimum=1.0): # doctest: +SKIP
... out = some_slow_computation.compute()
[##] | 100% Completed | 10.4 s

The duration of the last computation is available as an attribute

>>> pbar = ProgressBar()
>>> with pbar: # doctest: +SKIP
... out = some_computation.compute()
[##] | 100% Completed | 10.4 s
>>> pbar.last_duration # doctest: +SKIP
10.4

You can also register a progress bar so that it displays for all computations:

>>> pbar = ProgressBar() # doctest: +SKIP
>>> pbar.register() # doctest: +SKIP
>>> some_slow_computation.compute() # doctest: +SKIP
[##] | 100% Completed | 10.4 s

dask.diagnostics.Profiler()
A profiler for dask execution at the task level.

Records the following information for each task:

858 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

1. Key

2. Task

3. Start time in seconds since the epoch

4. Finish time in seconds since the epoch

5. Worker id

Examples

>>> from operator import add, mul
>>> from dask.threaded import get
>>> dsk = {'x': 1, 'y': (add, 'x', 10), 'z': (mul, 'y', 2)}
>>> with Profiler() as prof:
... get(dsk, 'z')
22

>>> prof.results # doctest: +SKIP
[('y', (add, 'x', 10), 1435352238.48039, 1435352238.480655, 140285575100160),
('z', (mul, 'y', 2), 1435352238.480657, 1435352238.480803, 140285566707456)]

These results can be visualized in a bokeh plot using the visualize method. Note that this requires bokeh to
be installed.

>>> prof.visualize() # doctest: +SKIP

You can activate the profiler globally

>>> prof.register() # doctest: +SKIP

If you use the profiler globally you will need to clear out old results manually.

>>> prof.clear()

dask.diagnostics.ResourceProfiler(dt=1)
A profiler for resource use.

Records the following each timestep

1. Time in seconds since the epoch

2. Memory usage in MB

3. % CPU usage

Examples

>>> from operator import add, mul
>>> from dask.threaded import get
>>> dsk = {'x': 1, 'y': (add, 'x', 10), 'z': (mul, 'y', 2)}
>>> with ResourceProfiler() as prof: # doctest: +SKIP
... get(dsk, 'z')
22

These results can be visualized in a bokeh plot using the visualize method. Note that this requires bokeh to
be installed.

3.17. Diagnostics (local) 859

dask Documentation, Release 2.6.0

>>> prof.visualize() # doctest: +SKIP

You can activate the profiler globally

>>> prof.register() # doctest: +SKIP

If you use the profiler globally you will need to clear out old results manually.

>>> prof.clear() # doctest: +SKIP

Note that when used as a context manager data will be collected throughout the duration of the enclosed block.
In contrast, when registered globally data will only be collected while a dask scheduler is active.

dask.diagnostics.CacheProfiler(metric=None, metric_name=None)
A profiler for dask execution at the scheduler cache level.

Records the following information for each task:

1. Key

2. Task

3. Size metric

4. Cache entry time in seconds since the epoch

5. Cache exit time in seconds since the epoch

Examples

>>> from operator import add, mul
>>> from dask.threaded import get
>>> dsk = {'x': 1, 'y': (add, 'x', 10), 'z': (mul, 'y', 2)}
>>> with CacheProfiler() as prof:
... get(dsk, 'z')
22

>>> prof.results # doctest: +SKIP
[CacheData('y', (add, 'x', 10), 1, 1435352238.48039, 1435352238.480655),
CacheData('z', (mul, 'y', 2), 1, 1435352238.480657, 1435352238.480803)]

The default is to count each task (metric is 1 for all tasks). Other functions may used as a metric instead
through the metric keyword. For example, the nbytes function found in cachey can be used to measure
the number of bytes in the cache.

>>> from cachey import nbytes # doctest: +SKIP
>>> with CacheProfiler(metric=nbytes) as prof: # doctest: +SKIP
... get(dsk, 'z')

The profiling results can be visualized in a bokeh plot using the visualize method. Note that this requires
bokeh to be installed.

>>> prof.visualize() # doctest: +SKIP

You can activate the profiler globally

>>> prof.register() # doctest: +SKIP

860 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

If you use the profiler globally you will need to clear out old results manually.

>>> prof.clear()

dask.diagnostics.Callback(start=None, start_state=None, pretask=None, posttask=None, fin-
ish=None)

Base class for using the callback mechanism

Create a callback with functions of the following signatures:

>>> def start(dsk):
... pass
>>> def start_state(dsk, state):
... pass
>>> def pretask(key, dsk, state):
... pass
>>> def posttask(key, result, dsk, state, worker_id):
... pass
>>> def finish(dsk, state, failed):
... pass

You may then construct a callback object with any number of them

>>> cb = Callback(pretask=pretask, finish=finish) # doctest: +SKIP

And use it either as a context manager over a compute/get call

>>> with cb: # doctest: +SKIP
... x.compute() # doctest: +SKIP

Or globally with the register method

>>> cb.register() # doctest: +SKIP
>>> cb.unregister() # doctest: +SKIP

Alternatively subclass the Callback class with your own methods.

>>> class PrintKeys(Callback):
... def _pretask(self, key, dask, state):
... print("Computing: {0}!".format(repr(key)))

>>> with PrintKeys(): # doctest: +SKIP
... x.compute() # doctest: +SKIP

dask.diagnostics.visualize(profilers, file_path=None, show=True, save=True, **kwargs)
Visualize the results of profiling in a bokeh plot.

If multiple profilers are passed in, the plots are stacked vertically.

Parameters

profilers [profiler or list] Profiler or list of profilers.

file_path [string, optional] Name of the plot output file.

show [boolean, optional] If True (default), the plot is opened in a browser.

save [boolean, optional] If True (default), the plot is saved to disk.

**kwargs Other keyword arguments, passed to bokeh.figure. These will override all defaults
set by visualize.

3.17. Diagnostics (local) 861

dask Documentation, Release 2.6.0

Returns

The completed bokeh plot object.

3.18 Diagnostics (distributed)

The Dask distributed scheduler provides live feedback in two forms:

1. An interactive dashboard containing many plots and tables with live information

2. A progress bar suitable for interactive use in consoles or notebooks

3.18.1 Dashboard

If Bokeh is installed then the dashboard will start up automatically whenever the scheduler is created. For local use
this happens when you create a client with no arguments:

from dask.distributed import Client
client = Client() # start distributed scheduler locally. Launch dashboard

It is typically served at http://localhost:8787/status , but may be served elsewhere if this port is taken. The ad-
dress of the dashboard will be displayed if you are in a Jupyter Notebook, or can be queriesd from client.
scheduler_info()['services'].

There are numerous pages with information about task runtimes, communication, statistical profiling, load balancing,
memory use, and much more. For more information we recommend the video guide above.

Client([address, loop, timeout, . . .]) Connect to and submit computation to a Dask cluster

3.18.2 Capture diagnostics

get_task_stream([client, plot, filename]) Collect task stream within a context block
Client.profile([key, start, stop, workers, . . .]) Collect statistical profiling information about recent

work

You can capture some of the same information that the dashboard presents for offline processing using the
get_task_stream and Client.profile functions. These capture the start and stop time of every task and
transfer, as well as the results of a statistical profiler.

with get_task_stream(plot='save', filename="task-stream.html") as ts:
x.compute()

client.profile(filename="dask-profile.html")

history = ts.data

3.18.3 Progress bar

862 Chapter 3. Complex Algorithms

https://bokeh.pydata.org/en/latest/
http://localhost:8787/status

dask Documentation, Release 2.6.0

progress(*futures[, notebook, multi, complete]) Track progress of futures

The dask.distributed progress bar differs from the ProgressBar used for local diagnostics. The progress
function takes a Dask object that is executing in the background:

Single machine progress bar
from dask.diagnostics import ProgressBar

with ProgressBar():
x.compute()

Distributed scheduler ProgressBar

from dask.distributed import Client, progress

client = Client() # use dask.distributed by default

x = x.persist() # start computation in the background
progress(x) # watch progress

x.compute() # convert to final result when done if desired

3.18.4 External Documentation

More in-depth technical documentation about Dask’s distributed scheduler is available at https://distributed.dask.org/
en/latest

3.18.5 API

dask.distributed.progress(*futures, notebook=None, multi=True, complete=True, **kwargs)
Track progress of futures

This operates differently in the notebook and the console

• Notebook: This returns immediately, leaving an IPython widget on screen

• Console: This blocks until the computation completes

Parameters

futures: Futures A list of futures or keys to track

notebook: bool (optional) Running in the notebook or not (defaults to guess)

multi: bool (optional) Track different functions independently (defaults to True)

complete: bool (optional) Track all keys (True) or only keys that have not yet run (False)
(defaults to True)

Notes

In the notebook, the output of progress must be the last statement in the cell. Typically, this means calling
progress at the end of a cell.

3.18. Diagnostics (distributed) 863

https://distributed.dask.org/en/latest
https://distributed.dask.org/en/latest

dask Documentation, Release 2.6.0

Examples

>>> progress(futures) # doctest: +SKIP
[##] | 100% Completed | 1.7s

dask.distributed.get_task_stream(client=None, plot=False, filename=’task-stream.html’)
Collect task stream within a context block

This provides diagnostic information about every task that was run during the time when this block was active.

This must be used as a context manager.

Parameters

plot: boolean, str If true then also return a Bokeh figure If plot == ‘save’ then save the figure
to a file

filename: str (optional) The filename to save to if you set plot='save'

See also:

Client.get_task_stream Function version of this context manager

Examples

>>> with get_task_stream() as ts:
... x.compute()
>>> ts.data
[...]

Get back a Bokeh figure and optionally save to a file

>>> with get_task_stream(plot='save', filename='task-stream.html') as ts:
... x.compute()
>>> ts.figure
<Bokeh Figure>

To share this file with others you may wish to upload and serve it online. A common way to do this is to upload
the file as a gist, and then serve it on https://raw.githack.com

$ pip install gist
$ gist task-stream.html
https://gist.github.com/8a5b3c74b10b413f612bb5e250856ceb

You can then navigate to that site, click the “Raw” button to the right of the task-stream.html file, and
then provide that URL to https://raw.githack.com . This process should provide a sharable link that others can
use to see your task stream plot.

3.19 Debugging

Debugging parallel programs is hard. Normal debugging tools like logging and using pdb to interact with tracebacks
stop working normally when exceptions occur in far-away machines, different processes, or threads.

Dask has a variety of mechanisms to make this process easier. Depending on your situation, some of these approaches
may be more appropriate than others.

These approaches are ordered from lightweight or easy solutions to more involved solutions.

864 Chapter 3. Complex Algorithms

https://raw.githack.com
https://raw.githack.com

dask Documentation, Release 2.6.0

3.19.1 Exceptions

When a task in your computation fails, the standard way of understanding what went wrong is to look at the exception
and traceback. Often people do this with the pdb module, IPython %debug or %pdb magics, or by just looking at
the traceback and investigating where in their code the exception occurred.

Normally when a computation executes in a separate thread or a different machine, these approaches break down. To
address this, Dask provides a few mechanisms to recreate the normal Python debugging experience.

Inspect Exceptions and Tracebacks

By default, Dask already copies the exception and traceback wherever they occur and reraises that exception locally.
If your task failed with a ZeroDivisionError remotely, then you’ll get a ZeroDivisionError in your inter-
active session. Similarly you’ll see a full traceback of where this error occurred, which, just like in normal Python,
can help you to identify the troublesome spot in your code.

However, you cannot use the pdb module or %debug IPython magics with these tracebacks to look at the value of
variables during failure. You can only inspect things visually. Additionally, the top of the traceback may be filled with
functions that are Dask-specific and not relevant to your problem, so you can safely ignore these.

Both the single-machine and distributed schedulers do this.

Use the Single-Threaded Scheduler

Dask ships with a simple single-threaded scheduler. This doesn’t offer any parallel performance improvements but
does run your Dask computation faithfully in your local thread, allowing you to use normal tools like pdb, %debug
IPython magics, the profiling tools like the cProfile module, and snakeviz. This allows you to use all of your
normal Python debugging tricks in Dask computations, as long as you don’t need parallelism.

The single-threaded scheduler can be used, for example, by setting scheduler='single-threaded' in a com-
pute call:

>>> x.compute(scheduler='single-threaded')

For more ways to configure schedulers, see the scheduler configuration documentation.

This only works for single-machine schedulers. It does not work with dask.distributed unless you are comfort-
able using the Tornado API (look at the testing infrastructure docs, which accomplish this). Also, because this operates
on a single machine, it assumes that your computation can run on a single machine without exceeding memory limits.
It may be wise to use this approach on smaller versions of your problem if possible.

Rerun Failed Task Locally

If a remote task fails, we can collect the function and all inputs, bring them to the local thread, and then rerun the
function in hopes of triggering the same exception locally where normal debugging tools can be used.

With the single machine schedulers, use the rerun_exceptions_locally=True keyword:

>>> x.compute(rerun_exceptions_locally=True)

On the distributed scheduler use the recreate_error_locally method on anything that contains Futures:

>>> x.compute()
ZeroDivisionError(...)

(continues on next page)

3.19. Debugging 865

https://jiffyclub.github.io/snakeviz/
https://distributed.dask.org/en/latest/develop.html#writing-tests

dask Documentation, Release 2.6.0

(continued from previous page)

>>> %pdb
>>> future = client.compute(x)
>>> client.recreate_error_locally(future)

Remove Failed Futures Manually

Sometimes only parts of your computations fail, for example, if some rows of a CSV dataset are faulty in some way.
When running with the distributed scheduler, you can remove chunks of your data that have produced bad results if
you switch to dealing with Futures:

>>> import dask.dataframe as dd
>>> df = ... # create dataframe
>>> df = df.persist() # start computing on the cluster

>>> from distributed.client import futures_of
>>> futures = futures_of(df) # get futures behind dataframe
>>> futures
[<Future: status: finished, type: pd.DataFrame, key: load-1>
<Future: status: finished, type: pd.DataFrame, key: load-2>
<Future: status: error, key: load-3>
<Future: status: pending, key: load-4>
<Future: status: error, key: load-5>]

>>> # wait until computation is done
>>> while any(f.status == 'pending' for f in futures):
... sleep(0.1)

>>> # pick out only the successful futures and reconstruct the dataframe
>>> good_futures = [f for f in futures if f.status == 'finished']
>>> df = dd.from_delayed(good_futures, meta=df._meta)

This is a bit of a hack, but often practical when first exploring messy data. If you are using the concurrent.futures API
(map, submit, gather), then this approach is more natural.

3.19.2 Inspect Scheduling State

Not all errors present themselves as exceptions. For example, in a distributed system workers may die unexpectedly,
your computation may be unreasonably slow due to inter-worker communication or scheduler overhead, or one of
several other issues. Getting feedback about what’s going on can help to identify both failures and general performance
bottlenecks.

For the single-machine scheduler, see diagnostics documentation. The rest of the section will assume that you are
using the distributed scheduler where these issues arise more commonly.

Web Diagnostics

First, the distributed scheduler has a number of diagnostic web pages showing dozens of recorded metrics like CPU,
memory, network, and disk use, a history of previous tasks, allocation of tasks to workers, worker memory pressure,
work stealing, open file handle limits, etc. Many problems can be correctly diagnosed by inspecting these pages.
By default, these are available at http://scheduler:8787/, http://scheduler:8788/, and http://
worker:8789/, where scheduler and worker should be replaced by the addresses of the scheduler and each
of the workers. See web diagnostic docs for more information.

866 Chapter 3. Complex Algorithms

https://distributed.dask.org/en/latest/
https://distributed.dask.org/en/latest/web.html
https://distributed.dask.org/en/latest/web.html

dask Documentation, Release 2.6.0

Logs

The scheduler, workers, and client all emits logs using Python’s standard logging module. By
default, these emit to standard error. When Dask is launched by a cluster job scheduler
(SGE/SLURM/YARN/Mesos/Marathon/Kubernetes/whatever), that system will track these logs and will have
an interface to help you access them. If you are launching Dask on your own, they will probably dump to the screen
unless you redirect stderr to a file .

You can control the logging verbosity in the ~/.dask/config.yaml file. Defaults currently look like the follow-
ing:

logging:
distributed: info
distributed.client: warning
bokeh: error

So, for example, you could add a line like distributed.worker: debug to get very verbose output from the
workers.

3.19.3 LocalCluster

If you are using the distributed scheduler from a single machine, you may be setting up workers manually using the
command line interface or you may be using LocalCluster which is what runs when you just call Client():

>>> from dask.distributed import Client, LocalCluster
>>> client = Client() # This is actually the following two commands

>>> cluster = LocalCluster()
>>> client = Client(cluster.scheduler.address)

LocalCluster is useful because the scheduler and workers are in the same process with you, so you can easily inspect
their state while they run (they are running in a separate thread):

>>> cluster.scheduler.processing
{'worker-one:59858': {'inc-123', 'add-443'},
'worker-two:48248': {'inc-456'}}

You can also do this for the workers if you run them without nanny processes:

>>> cluster = LocalCluster(nanny=False)
>>> client = Client(cluster)

This can be very helpful if you want to use the Dask distributed API and still want to investigate what is going on
directly within the workers. Information is not distilled for you like it is in the web diagnostics, but you have full
low-level access.

3.19.4 Inspect state with IPython

Sometimes you want to inspect the state of your cluster but you don’t have the luxury of operating on a single machine.
In these cases you can launch an IPython kernel on the scheduler and on every worker, which lets you inspect state on
the scheduler and workers as computations are completing.

This does not give you the ability to run %pdb or %debug on remote machines. The tasks are still running in separate
threads, and so are not easily accessible from an interactive IPython session.

For more details, see the Dask distributed IPython docs.

3.19. Debugging 867

https://docs.python.org/3/library/logging.html
https://en.wikipedia.org/wiki/Redirection_(computing)#Redirecting_to_and_from_the_standard_file_handles
https://distributed.dask.org/en/latest/local-cluster.html
https://distributed.dask.org/en/latest/scheduling-state.html
https://distributed.dask.org/en/latest/ipython.html

dask Documentation, Release 2.6.0

3.20 Development Guidelines

Dask is a community maintained project. We welcome contributions in the form of bug reports, documentation, code,
design proposals, and more. This page provides resources on how best to contribute.

3.20.1 Where to ask for help

Dask conversation happens in the following places:

1. Stack Overflow #dask tag: for usage questions

2. GitHub Issue Tracker: for discussions around new features or established bugs

3. Gitter chat: for real-time discussion

For usage questions and bug reports we strongly prefer the use of Stack Overflow and GitHub issues over gitter chat.
GitHub and Stack Overflow are more easily searchable by future users and so is more efficient for everyone’s time.
Gitter chat is generally reserved for community discussion.

3.20.2 Separate Code Repositories

Dask maintains code and documentation in a few git repositories hosted on the GitHub dask organization, https:
//github.com/dask. This includes the primary repository and several other repositories for different components. A
non-exhaustive list follows:

• https://github.com/dask/dask: The main code repository holding parallel algorithms, the single-machine sched-
uler, and most documentation

• https://github.com/dask/distributed: The distributed memory scheduler

• https://github.com/dask/dask-ml: Machine learning algorithms

• https://github.com/dask/s3fs: S3 Filesystem interface

• https://github.com/dask/gcsfs: GCS Filesystem interface

• https://github.com/dask/hdfs3: Hadoop Filesystem interface

• . . .

Git and GitHub can be challenging at first. Fortunately good materials exist on the internet. Rather than repeat
these materials here, we refer you to Pandas’ documentation and links on this subject at https://pandas.pydata.org/
pandas-docs/stable/contributing.html

3.20.3 Issues

The community discusses and tracks known bugs and potential features in the GitHub Issue Tracker. If you have a
new idea or have identified a bug, then you should raise it there to start public discussion.

If you are looking for an introductory issue to get started with development, then check out the “good first issue” label,
which contains issues that are good for starting developers. Generally, familiarity with Python, NumPy, Pandas, and
some parallel computing are assumed.

868 Chapter 3. Complex Algorithms

https://stackoverflow.com/questions/tagged/dask
https://github.com/dask/dask/issues/
https://gitter.im/dask/dask
https://github.com/dask
https://github.com/dask
https://github.com/dask/dask
https://github.com/dask/distributed
https://github.com/dask/dask-ml
https://github.com/dask/s3fs
https://github.com/dask/gcsfs
https://github.com/dask/hdfs3
https://pandas.pydata.org/pandas-docs/stable/contributing.html
https://pandas.pydata.org/pandas-docs/stable/contributing.html
https://github.com/dask/dask/issues/
https://github.com/dask/dask/labels/good%20first%20issue

dask Documentation, Release 2.6.0

3.20.4 Development Environment

Download code

Make a fork of the main Dask repository and clone the fork:

git clone https://github.com/<your-github-username>/dask

Contributions to Dask can then be made by submitting pull requests on GitHub.

Install

You may want to install larger dependencies like NumPy and Pandas using a binary package manager like conda. You
can skip this step if you already have these libraries, don’t care to use them, or have sufficient build environment on
your computer to compile them when installing with pip:

conda install -y numpy pandas scipy bokeh psutil

Install Dask and dependencies:

cd dask
pip install -e ".[complete]"

For development, Dask uses the following additional dependencies:

pip install pytest moto

Run Tests

Dask uses py.test for testing. You can run tests from the main dask directory as follows:

py.test dask --verbose --doctest-modules

3.20.5 Contributing to Code

Dask maintains development standards that are similar to most PyData projects. These standards include language
support, testing, documentation, and style.

Python Versions

Dask supports Python versions 3.5, 3.6, and 3.7. Name changes are handled by the dask/compatibility.py
file.

Test

Dask employs extensive unit tests to ensure correctness of code both for today and for the future. Test coverage is
expected for all code contributions.

Tests are written in a py.test style with bare functions:

3.20. Development Guidelines 869

https://github.com/dask/dask
https://conda.io/
https://docs.pytest.org/en/latest/

dask Documentation, Release 2.6.0

def test_fibonacci():
assert fib(0) == 0
assert fib(1) == 0
assert fib(10) == 55
assert fib(8) == fib(7) + fib(6)

for x in [-3, 'cat', 1.5]:
with pytest.raises(ValueError):

fib(x)

These tests should compromise well between covering all branches and fail cases and running quickly (slow test suites
get run less often).

You can run tests locally by running py.test in the local dask directory:

py.test dask --verbose

You can also test certain modules or individual tests for faster response:

py.test dask/dataframe --verbose

py.test dask/dataframe/tests/test_dataframe_core.py::test_set_index

Tests run automatically on the Travis.ci and Appveyor continuous testing frameworks on every push to every pull
request on GitHub.

Tests are organized within the various modules’ subdirectories:

dask/array/tests/test_*.py
dask/bag/tests/test_*.py
dask/dataframe/tests/test_*.py
dask/diagnostics/tests/test_*.py

For the Dask collections like Dask Array and Dask DataFrame, behavior is typically tested directly against the NumPy
or Pandas libraries using the assert_eq functions:

import numpy as np
import dask.array as da
from dask.array.utils import assert_eq

def test_aggregations():
nx = np.random.random(100)
dx = da.from_array(nx, chunks=(10,))

assert_eq(nx.sum(), dx.sum())
assert_eq(nx.min(), dx.min())
assert_eq(nx.max(), dx.max())
...

This technique helps to ensure compatibility with upstream libraries and tends to be simpler than testing correctness
directly. Additionally, by passing Dask collections directly to the assert_eq function rather than call compute
manually, the testing suite is able to run a number of checks on the lazy collections themselves.

Docstrings

User facing functions should roughly follow the numpydoc standard, including sections for Parameters,
Examples, and general explanatory prose.

870 Chapter 3. Complex Algorithms

https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard

dask Documentation, Release 2.6.0

By default, examples will be doc-tested. Reproducible examples in documentation is valuable both for testing and,
more importantly, for communication of common usage to the user. Documentation trumps testing in this case and
clear examples should take precedence over using the docstring as testing space. To skip a test in the examples add the
comment # doctest: +SKIP directly after the line.

def fib(i):
""" A single line with a brief explanation

A more thorough description of the function, consisting of multiple
lines or paragraphs.

Parameters

i: int

A short description of the argument if not immediately clear

Examples

>>> fib(4)
3
>>> fib(5)
5
>>> fib(6)
8
>>> fib(-1) # Robust to bad inputs
ValueError(...)
"""

Docstrings are currently tested under Python 3.6 on Travis.ci. You can test docstrings with pytest as follows:

py.test dask --doctest-modules

Docstring testing requires graphviz to be installed. This can be done via:

conda install -y graphviz

Code Formatting

Dask uses Black and Flake8 to ensure a consistent code format throughout the project. black and flake8 can be
installed with pip:

pip install black flake8

and then run from the root of the Dask repository:

black dask
flake8 dask

to auto-format your code. Additionally, many editors have plugins that will apply black as you edit files.

Optionally, you may wish to setup pre-commit hooks to automatically run black and flake8 when you make a git
commit. This can be done by installing pre-commit:

pip install pre-commit

and then running:

3.20. Development Guidelines 871

https://black.readthedocs.io/en/stable/
http://flake8.pycqa.org/en/latest/
https://pre-commit.com/

dask Documentation, Release 2.6.0

pre-commit install

from the root of the Dask repository. Now black and flake8 will be run each time you commit changes. You can
skip these checks with git commit --no-verify.

3.20.6 Contributing to Documentation

Dask uses Sphinx for documentation, hosted on https://readthedocs.org . Documentation is maintained in the Restruc-
turedText markup language (.rst files) in dask/docs/source. The documentation consists both of prose and
API documentation.

To build the documentation locally, first install the necessary requirements:

cd docs/
pip install -r requirements-docs.txt

Then build the documentation with make:

make html

The resulting HTML files end up in the build/html directory.

You can now make edits to rst files and run make html again to update the affected pages.

3.21 Changelog

3.21.1 2.6.0 / 2019-10-15

Core

• Call ensure_dict on graphs before entering toolz.merge (GH#5486) Matthew Rocklin

• Consolidating hash dispatch functions (GH#5476) Richard J Zamora

DataFrame

• Support Python 3.5 in Parquet code (GH#5491) Ben Zaitlen

• Avoid identity check in warn_dtype_mismatch (GH#5489) Tom Augspurger

• Enable unused groupby tests (GH#3480) Jörg Dietrich

• Remove old parquet and bcolz dataframe optimizations (GH#5484) Matthew Rocklin

• Add getitem optimization for read_parquet (GH#5453) Tom Augspurger

• Use _constructor_sliced method to determine Series type (GH#5480) Richard J Zamora

• Fix map(series) for unsorted base series index (GH#5459) Justin Waugh

• Fix KeyError with Groupby label (GH#5467) Ryan Nazareth

872 Chapter 3. Complex Algorithms

https://www.sphinx-doc.org/
https://readthedocs.org
https://github.com/dask/dask/pull/5486
https://github.com/mrocklin
https://github.com/dask/dask/pull/5476
https://github.com/rjzamora
https://github.com/dask/dask/pull/5491
https://github.com/quasiben
https://github.com/dask/dask/pull/5489
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3480
https://github.com/joergdietrich
https://github.com/dask/dask/pull/5484
https://github.com/mrocklin
https://github.com/dask/dask/pull/5453
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5480
https://github.com/rjzamora
https://github.com/dask/dask/pull/5459
https://github.com/bluecoconut
https://github.com/dask/dask/pull/5467
https://github.com/ryankarlos

dask Documentation, Release 2.6.0

Documentation

• Use Zoom meeting instead of appear.in (GH#5494) Matthew Rocklin

• Added curated list of resources (GH#5460) Javad

• Update SSH docs to include SSHCluster (GH#5482) Matthew Rocklin

• Update “Why Dask?” page (GH#5473) Matthew Rocklin

• Fix typos in docstrings (GH#5469) garanews

3.21.2 2.5.2 / 2019-10-04

Array

• Correct chunk size logic for asymmetric overlaps (GH#5449) Ben Jeffery

• Make da.unify_chunks public API (GH#5443) Matthew Rocklin

DataFrame

• Fix dask.dataframe.fillna handling of Scalar object (GH#5463) Zhenqing Li

Documentation

• Remove boxes in Spark comparison page (GH#5445) Matthew Rocklin

• Add latest presentations (GH#5446) Javad

• Update cloud documentation (GH#5444) Matthew Rocklin

3.21.3 2.5.0 / 2019-09-27

Core

• Add sentinel no_default to get_dependencies task (GH#5420) James Bourbeau

• Update fsspec version (GH#5415) Matthew Rocklin

• Remove PY2 checks (GH#5400) Jim Crist

DataFrame

• Add option to not check meta in dd.from_delayed (GH#5436) Christopher J. Wright

• Fix test_timeseries_nulls_in_schema failures with pyarrow master (GH#5421) Richard J Zamora

• Reduce read_metadata output size in pyarrow/parquet (GH#5391) Richard J Zamora

• Test numeric edge case for repartition with npartitions. (GH#5433) amerkel2

• Unxfail pandas-datareader test (GH#5430) Tom Augspurger

• Add DataFrame.pop implementation (GH#5422) Matthew Rocklin

• Enable merge/set_index for cudf-based dataframes with cupy values (GH#5322) Richard J Zamora

3.21. Changelog 873

https://github.com/dask/dask/pull/5494
https://github.com/mrocklin
https://github.com/dask/dask/pull/5460
https://github.com/javad94
https://github.com/dask/dask/pull/5482
https://github.com/mrocklin
https://github.com/dask/dask/pull/5473
https://github.com/mrocklin
https://github.com/dask/dask/pull/5469
https://github.com/garanews
https://github.com/dask/dask/pull/5449
https://github.com/benjeffery
https://github.com/dask/dask/pull/5443
https://github.com/mrocklin
https://github.com/dask/dask/pull/5463
https://github.com/DigitalPig
https://github.com/dask/dask/pull/5445
https://github.com/mrocklin
https://github.com/dask/dask/pull/5446
https://github.com/javad94
https://github.com/dask/dask/pull/5444
https://github.com/mrocklin
https://github.com/dask/dask/pull/5420
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5415
https://github.com/mrocklin
https://github.com/dask/dask/pull/5400
https://github.com/jcrist
https://github.com/dask/dask/pull/5436
https://github.com/CJ-Wright
https://github.com/dask/dask/pull/5421
https://github.com/rjzamora
https://github.com/dask/dask/pull/5391
https://github.com/rjzamora
https://github.com/dask/dask/pull/5433
https://github.com/amerkel2
https://github.com/dask/dask/pull/5430
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5422
https://github.com/mrocklin
https://github.com/dask/dask/pull/5322
https://github.com/rjzamora

dask Documentation, Release 2.6.0

• drop_duplicates support for positional subset parameter (GH#5410) Wes Roach

Documentation

• Add screencasts to array, bag, dataframe, delayed, futures and setup (GH#5429) (GH#5424) Matthew Rocklin

• Fix delimeter parsing documentation (GH#5428) Mahmut Bulut

• Update overview image (GH#5404) James Bourbeau

3.21.4 2.4.0 / 2019-09-13

Array

• Adds explicit h5py.File mode (GH#5390) James Bourbeau

• Provides method to compute unknown array chunks sizes (GH#5312) Scott Sievert

• Ignore runtime warning in Array compute_meta (GH#5356) estebanag

• Add _meta to Array.__dask_postpersist__ (GH#5353) Benoit Bovy

• Fixup da.asarray and da.asanyarray for datetime64 dtype and xarray objects (GH#5334) Stephan
Hoyer

• Add shape implementation (GH#5293) Tom Augspurger

• Add chunktype to array text repr (GH#5289) James Bourbeau

• Array.random.choice: handle array-like non-arrays (GH#5283) Gabe Joseph

Core

• Remove deprecated code (GH#5401) Jim Crist

• Fix funcname when vectorized func has no __name__ (GH#5399) James Bourbeau

• Truncate funcname to avoid long key names (GH#5383) Matthew Rocklin

• Add support for numpy.vectorize in funcname (GH#5396) James Bourbeau

• Fixed HDFS upstream test (GH#5395) Tom Augspurger

• Support numbers and None in parse_bytes/timedelta (GH#5384) Matthew Rocklin

• Fix tokenizing of subindexes on memmapped numpy arrays (GH#5351) Henry Pinkard

• Upstream fixups (GH#5300) Tom Augspurger

DataFrame

• Allow pandas to cast type of statistics (GH#5402) Richard J Zamora

• Preserve index dtype after applying dd.pivot_table (GH#5385) therhaag

• Implement explode for Series and DataFrame (GH#5381) Arpit Solanki

• set_index on categorical fails with less categories than partitions (GH#5354) Oliver Hofkens

• Support output to a single CSV file (GH#5304) Hongjiu Zhang

874 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/5410
https://github.com/WesRoach
https://github.com/dask/dask/pull/5429
https://github.com/dask/dask/pull/5424
https://github.com/mrocklin
https://github.com/dask/dask/pull/5428
https://github.com/vertexclique
https://github.com/dask/dask/pull/5404
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5390
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5312
https://github.com/stsievert
https://github.com/dask/dask/pull/5356
https://github.com/estebanag
https://github.com/dask/dask/pull/5353
https://github.com/benbovy
https://github.com/dask/dask/pull/5334
https://github.com/shoyer
https://github.com/shoyer
https://github.com/dask/dask/pull/5293
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5289
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5283
https://github.com/gjoseph92
https://github.com/dask/dask/pull/5401
https://github.com/jcrist
https://github.com/dask/dask/pull/5399
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5383
https://github.com/mrocklin
https://github.com/dask/dask/pull/5396
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5395
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5384
https://github.com/mrocklin
https://github.com/dask/dask/pull/5351
https://github.com/
https://github.com/dask/dask/pull/5300
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5402
https://github.com/rjzamora
https://github.com/dask/dask/pull/5385
https://github.com/therhaag
https://github.com/dask/dask/pull/5381
https://github.com/arpit1997
https://github.com/dask/dask/pull/5354
https://github.com/OliverHofkens
https://github.com/dask/dask/pull/5304
https://github.com/hongzmsft

dask Documentation, Release 2.6.0

• Add groupby().transform() (GH#5327) Oliver Hofkens

• Adding filter kwarg to pyarrow dataset call (GH#5348) Richard J Zamora

• Implement and check compression defaults for parquet (GH#5335) Sarah Bird

• Pass sqlalchemy params to delayed objects (GH#5332) Arpit Solanki

• Fixing schema handling in arrow-parquet (GH#5307) Richard J Zamora

• Add support for DF and Series groupby().idxmin/max() (GH#5273) Oliver Hofkens

• Add correlation calculation and add test (GH#5296) Ben Zaitlen

Documentation

• Numpy docstring standard has moved (GH#5405) Wes Roach

• Reference correct NumPy array name (GH#5403) Wes Roach

• Minor edits to Array chunk documentation (GH#5372) Scott Sievert

• Add methods to API docs (GH#5387) Tom Augspurger

• Add namespacing to configuration example (GH#5374) Matthew Rocklin

• Add get_task_stream and profile to the diagnostics page (GH#5375) Matthew Rocklin

• Add best practice to load data with Dask (GH#5369) Matthew Rocklin

• Update institutional-faq.rst (GH#5345) DomHudson

• Add threads and processes note to the best practices (GH#5340) Matthew Rocklin

• Update cuDF links (GH#5328) James Bourbeau

• Fixed small typo with parentheses placement (GH#5311) Eugene Huang

• Update link in reshape docstring (GH#5297) James Bourbeau

3.21.5 2.3.0 / 2019-08-16

Array

• Raise exception when from_array is given a dask array (GH#5280) David Hoese

• Avoid adjusting gufunc’s meta dtype twice (GH#5274) Peter Andreas Entschev

• Add meta= keyword to map_blocks and add test with sparse (GH#5269) Matthew Rocklin

• Add rollaxis and moveaxis (GH#4822) Tobias de Jong

• Always increment old chunk index (GH#5256) James Bourbeau

• Shuffle dask array (GH#3901) Tom Augspurger

• Fix ordering when indexing a dask array with a bool dask array (GH#5151) James Bourbeau

Bag

• Add workaround for memory leaks in bag generators (GH#5208) Marco Neumann

3.21. Changelog 875

https://github.com/dask/dask/pull/5327
https://github.com/OliverHofkens
https://github.com/dask/dask/pull/5348
https://github.com/rjzamora
https://github.com/dask/dask/pull/5335
https://github.com/birdsarah
https://github.com/dask/dask/pull/5332
https://github.com/arpit1997
https://github.com/dask/dask/pull/5307
https://github.com/rjzamora
https://github.com/dask/dask/pull/5273
https://github.com/OliverHofkens
https://github.com/dask/dask/pull/5296
https://github.com/quasiben
https://github.com/dask/dask/pull/5405
https://github.com/WesRoach
https://github.com/dask/dask/pull/5403
https://github.com/WesRoach
https://github.com/dask/dask/pull/5372
https://github.com/stsievert
https://github.com/dask/dask/pull/5387
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5374
https://github.com/mrocklin
https://github.com/dask/dask/pull/5375
https://github.com/mrocklin
https://github.com/dask/dask/pull/5369
https://github.com/mrocklin
https://github.com/dask/dask/pull/5345
https://github.com/DomHudson
https://github.com/dask/dask/pull/5340
https://github.com/mrocklin
https://github.com/dask/dask/pull/5328
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5311
https://github.com/eugeneh101
https://github.com/dask/dask/pull/5297
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5280
https://github.com/djhoese
https://github.com/dask/dask/pull/5274
https://github.com/pentschev
https://github.com/dask/dask/pull/5269
https://github.com/mrocklin
https://github.com/dask/dask/pull/4822
https://github.com/tadejong
https://github.com/dask/dask/pull/5256
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3901
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5151
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5208
https://github.com/crepererum

dask Documentation, Release 2.6.0

Core

• Set strict xfail option (GH#5220) James Bourbeau

• test-upstream (GH#5267) Tom Augspurger

• Fixed HDFS CI failure (GH#5234) Tom Augspurger

• Error nicely if no file size inferred (GH#5231) Jim Crist

• A few changes to config.set (GH#5226) Jim Crist

• Fixup black string normalization (GH#5227) Jim Crist

• Pin NumPy in windows tests (GH#5228) Jim Crist

• Ensure parquet tests are skipped if fastparquet and pyarrow not installed (GH#5217) James Bourbeau

• Add fsspec to readthedocs (GH#5207) Matthew Rocklin

• Bump NumPy and Pandas to 1.17 and 0.25 in CI test (GH#5179) John A Kirkham

DataFrame

• Fix DataFrame.query docstring (incorrect numexpr API) (GH#5271) Doug Davis

• Parquet metadata-handling improvements (GH#5218) Richard J Zamora

• Improve messaging around sorted parquet columns for index (GH#5265) Martin Durant

• Add rearrange_by_divisions and set_index support for cudf (GH#5205) Richard J Zamora

• Fix groupby.std() with integer colum names (GH#5096) Nicolas Hug

• Add Series.__iter__ (GH#5071) Blane

• Generalize hash_pandas_object to work for non-pandas backends (GH#5184) GALI PREM SAGAR

• Add rolling cov (GH#5154) Ivars Geidans

• Add columns argument in drop function (GH#5223) Henrique Ribeiro

Documentation

• Update institutional FAQ doc (GH#5277) Matthew Rocklin

• Add draft of institutional FAQ (GH#5214) Matthew Rocklin

• Make boxes for dask-spark page (GH#5249) Martin Durant

• Add motivation for shuffle docs (GH#5213) Matthew Rocklin

• Fix links and API entries for best-practices (GH#5246) Martin Durant

• Remove “bytes” (internal data ingestion) doc page (GH#5242) Martin Durant

• Redirect from our local distributed page to distributed.dask.org (GH#5248) Matthew Rocklin

• Cleanup API page (GH#5247) Matthew Rocklin

• Remove excess endlines from install docs (GH#5243) Matthew Rocklin

• Remove item list in phases of computation doc (GH#5245) Martin Durant

• Remove custom graphs from the TOC sidebar (GH#5241) Matthew Rocklin

876 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/5220
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5267
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5234
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5231
https://github.com/jcrist
https://github.com/dask/dask/pull/5226
https://github.com/jcrist
https://github.com/dask/dask/pull/5227
https://github.com/jcrist
https://github.com/dask/dask/pull/5228
https://github.com/jcrist
https://github.com/dask/dask/pull/5217
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5207
https://github.com/mrocklin
https://github.com/dask/dask/pull/5179
https://github.com/jakirkham
https://github.com/dask/dask/pull/5271
https://github.com/douglasdavis
https://github.com/dask/dask/pull/5218
https://github.com/rjzamora
https://github.com/dask/dask/pull/5265
https://github.com/martindurant
https://github.com/dask/dask/pull/5205
https://github.com/rjzamora
https://github.com/dask/dask/pull/5096
https://github.com/NicolasHug
https://github.com/dask/dask/pull/5071
https://github.com/BlaneG
https://github.com/dask/dask/pull/5184
https://github.com/galipremsagar
https://github.com/dask/dask/pull/5154
https://github.com/ivarsfg
https://github.com/dask/dask/pull/5223
https://github.com/henriqueribeiro
https://github.com/dask/dask/pull/5277
https://github.com/mrocklin
https://github.com/dask/dask/pull/5214
https://github.com/mrocklin
https://github.com/dask/dask/pull/5249
https://github.com/martindurant
https://github.com/dask/dask/pull/5213
https://github.com/mrocklin
https://github.com/dask/dask/pull/5246
https://github.com/martindurant
https://github.com/dask/dask/pull/5242
https://github.com/martindurant
https://github.com/dask/dask/pull/5248
https://github.com/mrocklin
https://github.com/dask/dask/pull/5247
https://github.com/mrocklin
https://github.com/dask/dask/pull/5243
https://github.com/mrocklin
https://github.com/dask/dask/pull/5245
https://github.com/martindurant
https://github.com/dask/dask/pull/5241
https://github.com/mrocklin

dask Documentation, Release 2.6.0

• Remove experimental status of custom collections (GH#5236) James Bourbeau

• Adds table of contents to Why Dask? (GH#5244) James Bourbeau

• Moves bag overview to top-level bag page (GH#5240) James Bourbeau

• Remove use-cases in favor of stories.dask.org (GH#5238) Matthew Rocklin

• Removes redundant TOC information in index.rst (GH#5235) James Bourbeau

• Elevate dashboard in distributed diagnostics documentation (GH#5239) Martin Durant

• Updates “add” layer in HLG docs example (GH#5237) James Bourbeau

• Update GUFunc documentation (GH#5232) Matthew Rocklin

3.21.6 2.2.0 / 2019-08-01

Array

• Use da.from_array(. . . , asarray=False) if input follows NEP-18 (GH#5074) Matthew Rocklin

• Add missing attributes to from_array documentation (GH#5108) Peter Andreas Entschev

• Fix meta computation for some reduction functions (GH#5035) Peter Andreas Entschev

• Raise informative error in to_zarr if unknown chunks (GH#5148) James Bourbeau

• Remove invalid pad tests (GH#5122) Tom Augspurger

• Ignore NumPy warnings in compute_meta (GH#5103) Peter Andreas Entschev

• Fix kurtosis calc for single dimension input array (GH#5177) @andrethrill

• Support Numpy 1.17 in tests (GH#5192) Matthew Rocklin

Bag

• Supply pool to bag test to resolve intermittent failure (GH#5172) Tom Augspurger

Core

• Base dask on fsspec (GH#5064) (GH#5121) Martin Durant

• Various upstream compatibility fixes (GH#5056) Tom Augspurger

• Make distributed tests optional again. (GH#5128) Elliott Sales de Andrade

• Fix HDFS in dask (GH#5130) Martin Durant

• Ignore some more invalid value warnings. (GH#5140) Elliott Sales de Andrade

DataFrame

• Fix pd.MultiIndex size estimate (GH#5066) Brett Naul

• Generalizing has_known_categories (GH#5090) GALI PREM SAGAR

• Refactor Parquet engine (GH#4995) Richard J Zamora

• Add divide method to series and dataframe (GH#5094) msbrown47

3.21. Changelog 877

https://github.com/dask/dask/pull/5236
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5244
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5240
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5238
https://github.com/mrocklin
https://github.com/dask/dask/pull/5235
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5239
https://github.com/martindurant
https://github.com/dask/dask/pull/5237
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5232
https://github.com/mrocklin
https://github.com/dask/dask/pull/5074
https://github.com/mrocklin
https://github.com/dask/dask/pull/5108
https://github.com/pentschev
https://github.com/dask/dask/pull/5035
https://github.com/pentschev
https://github.com/dask/dask/pull/5148
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5122
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5103
https://github.com/pentschev
https://github.com/dask/dask/pull/5177
https://github.com/andrethrill
https://github.com/dask/dask/pull/5192
https://github.com/mrocklin
https://github.com/dask/dask/pull/5172
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5064
https://github.com/dask/dask/pull/5121
https://github.com/martindurant
https://github.com/dask/dask/pull/5056
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5128
https://github.com/QuLogic
https://github.com/dask/dask/pull/5130
https://github.com/martindurant
https://github.com/dask/dask/pull/5140
https://github.com/QuLogic
https://github.com/dask/dask/pull/5066
https://github.com/bnaul
https://github.com/dask/dask/pull/5090
https://github.com/galipremsagar
https://github.com/dask/dask/pull/4995
https://github.com/rjzamora
https://github.com/dask/dask/pull/5094
https://github.com/msbrown47

dask Documentation, Release 2.6.0

• fix flaky partd test (GH#5111) Tom Augspurger

• Adjust is_dataframe_like to adjust for value_counts change (GH#5143) Tom Augspurger

• Generalize rolling windows to support non-Pandas dataframes (GH#5149) Nick Becker

• Avoid unnecessary aggregation in pivot_table (GH#5173) Daniel Saxton

• Add column names to apply_and_enforce error message (GH#5180) Matthew Rocklin

• Add schema keyword argument to to_parquet (GH#5150) Sarah Bird

• Remove recursion error in accessors (GH#5182) Jim Crist

• Allow fastparquet to handle gather_statistics=False for file lists (GH#5157) Richard J Zamora

Documentation

• Adds NumFOCUS badge to the README (GH#5086) James Bourbeau

• Update developer docs [ci skip] (GH#5093) Jim Crist

• Document DataFrame.set_index computataion behavior Natalya Rapstine

• Use pip install . instead of calling setup.py (GH#5139) Matthias Bussonier

• Close user survey (GH#5147) Tom Augspurger

• Fix Google Calendar meeting link (GH#5155) Loïc Estève

• Add docker image customization example (GH#5171) James Bourbeau

• Update remote-data-services after fsspec (GH#5170) Martin Durant

• Fix typo in spark.rst (GH#5164) Xavier Holt

• Update setup/python docs for async/await API (GH#5163) Matthew Rocklin

• Update Local Storage HPC documentation (GH#5165) Matthew Rocklin

3.21.7 2.1.0 / 2019-07-08

Array

• Add recompute= keyword to svd_compressed for lower-memory use (GH#5041) Matthew Rocklin

• Change __array_function__ implementation for backwards compatibility (GH#5043) Ralf Gommers

• Added dtype and shape kwargs to apply_along_axis (GH#3742) Davis Bennett

• Fix reduction with empty tuple axis (GH#5025) Peter Andreas Entschev

• Drop size 0 arrays in stack (GH#4978) John A Kirkham

Core

• Removes index keyword from pandas to_parquet call (GH#5075) James Bourbeau

• Fixes upstream dev CI build installation (GH#5072) James Bourbeau

• Ensure scalar arrays are not rendered to SVG (GH#5058) Willi Rath

• Environment creation overhaul (GH#5038) Tom Augspurger

878 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/5111
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5143
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5149
https://github.com/beckernick
https://github.com/dask/dask/pull/5173
https://github.com/dsaxton
https://github.com/dask/dask/pull/5180
https://github.com/mrocklin
https://github.com/dask/dask/pull/5150
https://github.com/birdsarah
https://github.com/dask/dask/pull/5182
https://github.com/jcrist
https://github.com/dask/dask/pull/5157
https://github.com/rjzamora
https://github.com/dask/dask/pull/5086
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5093
https://github.com/jcrist
https://github.com/natalya-patrikeeva
https://github.com/dask/dask/pull/5139
https://github.com/Carreau
https://github.com/dask/dask/pull/5147
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5155
https://github.com/lesteve
https://github.com/dask/dask/pull/5171
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5170
https://github.com/martindurant
https://github.com/dask/dask/pull/5164
https://github.com/xavi-ai
https://github.com/dask/dask/pull/5163
https://github.com/mrocklin
https://github.com/dask/dask/pull/5165
https://github.com/mrocklin
https://github.com/dask/dask/pull/5041
https://github.com/mrocklin
https://github.com/dask/dask/pull/5043
https://github.com/rgommers
https://github.com/dask/dask/pull/3742
https://github.com/d-v-b
https://github.com/dask/dask/pull/5025
https://github.com/pentschev
https://github.com/dask/dask/pull/4978
https://github.com/jakirkham
https://github.com/dask/dask/pull/5075
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5072
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5058
https://github.com/willirath
https://github.com/dask/dask/pull/5038
https://github.com/tomaugspurger

dask Documentation, Release 2.6.0

• s3fs, moto compatibility (GH#5033) Tom Augspurger

• pytest 5.0 compat (GH#5027) Tom Augspurger

DataFrame

• Fix compute_meta recursion in blockwise (GH#5048) Peter Andreas Entschev

• Remove hard dependency on pandas in get_dummies (GH#5057) GALI PREM SAGAR

• Check dtypes unchanged when using DataFrame.assign (GH#5047) asmith26

• Fix cumulative functions on tables with more than 1 partition (GH#5034) tshatrov

• Handle non-divisible sizes in repartition (GH#5013) George Sakkis

• Handles timestamp and preserve_index changes in pyarrow (GH#5018) Richard J Zamora

• Fix undefined meta for str.split(expand=False) (GH#5022) Brett Naul

• Removed checks used for debugging merge_asof (GH#5011) Cody Johnson

• Don’t use type when getting accessor in dataframes (GH#4992) Matthew Rocklin

• Add melt as a method of Dask DataFrame (GH#4984) Dustin Tindall

• Adds path-like support to to_hdf (GH#5003) James Bourbeau

Documentation

• Point to latest K8s setup article in JupyterHub docs (GH#5065) Sean McKenna

• Changes vizualize to visualize (GH#5061) David Brochart

• Fix from_sequence typo in delayed best practices (GH#5045) James Bourbeau

• Add user survey link to docs (GH#5026) James Bourbeau

• Fixes typo in optimization docs (GH#5015) James Bourbeau

• Update community meeting information (GH#5006) Tom Augspurger

3.21.8 2.0.0 / 2019-06-25

Array

• Support automatic chunking in da.indices (GH#4981) James Bourbeau

• Err if there are no arrays to stack (GH#4975) John A Kirkham

• Asymmetrical Array Overlap (GH#4863) Michael Eaton

• Dispatch concatenate where possible within dask array (GH#4669) Hameer Abbasi

• Fix tokenization of memmapped numpy arrays on different part of same file (GH#4931) Henry Pinkard

• Preserve NumPy condition in da.asarray to preserve output shape (GH#4945) Alistair Miles

• Expand foo_like_safe usage (GH#4946) Peter Andreas Entschev

• Defer order/casting einsum parameters to NumPy implementation (GH#4914) Peter Andreas Entschev

• Remove numpy warning in moment calculation (GH#4921) Matthew Rocklin

3.21. Changelog 879

https://github.com/dask/dask/pull/5033
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5027
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/5048
https://github.com/pentschev
https://github.com/dask/dask/pull/5057
https://github.com/galipremsagar
https://github.com/dask/dask/pull/5047
https://github.com/asmith26
https://github.com/dask/dask/pull/5034
https://github.com/tshatrov
https://github.com/dask/dask/pull/5013
https://github.com/gsakkis
https://github.com/dask/dask/pull/5018
https://github.com/rjzamora
https://github.com/dask/dask/pull/5022
https://github.com/bnaul
https://github.com/dask/dask/pull/5011
https://github.com/codercody
https://github.com/dask/dask/pull/4992
https://github.com/mrocklin
https://github.com/dask/dask/pull/4984
https://github.com/dustindall
https://github.com/dask/dask/pull/5003
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5065
https://github.com/seanmck
https://github.com/dask/dask/pull/5061
https://github.com/davidbrochart
https://github.com/dask/dask/pull/5045
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5026
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5015
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/5006
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4981
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4975
https://github.com/jakirkham
https://github.com/dask/dask/pull/4863
https://github.com/mpeaton
https://github.com/dask/dask/pull/4669
https://github.com/hameerabbasi
https://github.com/dask/dask/pull/4931
https://github.com/
https://github.com/dask/dask/pull/4945
https://github.com/alimanfoo
https://github.com/dask/dask/pull/4946
https://github.com/pentschev
https://github.com/dask/dask/pull/4914
https://github.com/pentschev
https://github.com/dask/dask/pull/4921
https://github.com/mrocklin

dask Documentation, Release 2.6.0

• Fix meta_from_array to support Xarray test suite (GH#4938) Matthew Rocklin

• Cache chunk boundaries for integer slicing (GH#4923) Bruce Merry

• Drop size 0 arrays in concatenate (GH#4167) John A Kirkham

• Raise ValueError if concatenate is given no arrays (GH#4927) John A Kirkham

• Promote types in concatenate using _meta (GH#4925) John A Kirkham

• Add chunk type to html repr in Dask array (GH#4895) Matthew Rocklin

• Add Dask Array._meta attribute (GH#4543) Peter Andreas Entschev

– Fix _meta slicing of flexible types (GH#4912) Peter Andreas Entschev

– Minor meta construction cleanup in concatenate (GH#4937) Peter Andreas Entschev

– Further relax Array meta checks for Xarray (GH#4944) Matthew Rocklin

– Support meta= keyword in da.from_delayed (GH#4972) Matthew Rocklin

– Concatenate meta along axis (GH#4977) John A Kirkham

– Use meta in stack (GH#4976) John A Kirkham

– Move blockwise_meta to more general compute_meta function (GH#4954) Matthew Rocklin

• Alias .partitions to .blocks attribute of dask arrays (GH#4853) Genevieve Buckley

• Drop outdated numpy_compat functions (GH#4850) John A Kirkham

• Allow da.eye to support arbitrary chunking sizes with chunks=’auto’ (GH#4834) Anderson Banihirwe

• Fix CI warnings in dask.array tests (GH#4805) Tom Augspurger

• Make map_blocks work with drop_axis + block_info (GH#4831) Bruce Merry

• Add SVG image and table in Array._repr_html_ (GH#4794) Matthew Rocklin

• ufunc: avoid __array_wrap__ in favor of __array_function__ (GH#4708) Peter Andreas Entschev

• Ensure trivial padding returns the original array (GH#4990) John A Kirkham

• Test da.block with 0-size arrays (GH#4991) John A Kirkham

Core

• Drop Python 2.7 (GH#4919) Jim Crist

• Quiet dependency installs in CI (GH#4960) Tom Augspurger

• Raise on warnings in tests (GH#4916) Tom Augspurger

• Add a diagnostics extra to setup.py (includes bokeh) (GH#4924) John A Kirkham

• Add newline delimter keyword to OpenFile (GH#4935) btw08

• Overload HighLevelGraphs values method (GH#4918) James Bourbeau

• Add __await__ method to Dask collections (GH#4901) Matthew Rocklin

• Also ignore AttributeErrors which may occur if snappy (not python-snappy) is installed (GH#4908) Mark Bell

• Canonicalize key names in config.rename (GH#4903) Ian Bolliger

• Bump minimum partd to 0.3.10 (GH#4890) Tom Augspurger

• Catch async def SyntaxError (GH#4836) James Bourbeau

880 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4938
https://github.com/mrocklin
https://github.com/dask/dask/pull/4923
https://github.com/bmerry
https://github.com/dask/dask/pull/4167
https://github.com/jakirkham
https://github.com/dask/dask/pull/4927
https://github.com/jakirkham
https://github.com/dask/dask/pull/4925
https://github.com/jakirkham
https://github.com/dask/dask/pull/4895
https://github.com/mrocklin
https://github.com/dask/dask/pull/4543
https://github.com/pentschev
https://github.com/dask/dask/pull/4912
https://github.com/pentschev
https://github.com/dask/dask/pull/4937
https://github.com/pentschev
https://github.com/dask/dask/pull/4944
https://github.com/mrocklin
https://github.com/dask/dask/pull/4972
https://github.com/mrocklin
https://github.com/dask/dask/pull/4977
https://github.com/jakirkham
https://github.com/dask/dask/pull/4976
https://github.com/jakirkham
https://github.com/dask/dask/pull/4954
https://github.com/mrocklin
https://github.com/dask/dask/pull/4853
https://github.com/GenevieveBuckley
https://github.com/dask/dask/pull/4850
https://github.com/jakirkham
https://github.com/dask/dask/pull/4834
https://github.com/andersy005
https://github.com/dask/dask/pull/4805
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4831
https://github.com/bmerry
https://github.com/dask/dask/pull/4794
https://github.com/mrocklin
https://github.com/dask/dask/pull/4708
https://github.com/pentschev
https://github.com/dask/dask/pull/4990
https://github.com/jakirkham
https://github.com/dask/dask/pull/4991
https://github.com/jakirkham
https://github.com/dask/dask/pull/4919
https://github.com/jcrist
https://github.com/dask/dask/pull/4960
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4916
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4924
https://github.com/jakirkham
https://github.com/dask/dask/pull/4935
https://github.com/btw08
https://github.com/dask/dask/pull/4918
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4901
https://github.com/mrocklin
https://github.com/dask/dask/pull/4908
https://github.com/MarkCBell
https://github.com/dask/dask/pull/4903
https://github.com/bolliger32
https://github.com/dask/dask/pull/4890
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4836
https://github.com/jrbourbeau

dask Documentation, Release 2.6.0

• catch IOError in ensure_file (GH#4806) Justin Poehnelt

• Cleanup CI warnings (GH#4798) Tom Augspurger

• Move distributed’s parse and format functions to dask.utils (GH#4793) Matthew Rocklin

• Apply black formatting (GH#4983) James Bourbeau

• Package license file in wheels (GH#4988) John A Kirkham

DataFrame

• Add an optional partition_size parameter to repartition (GH#4416) George Sakkis

• merge_asof and prefix_reduction (GH#4877) Cody Johnson

• Allow dataframes to be indexed by dask arrays (GH#4882) Endre Mark Borza

• Avoid deprecated message parameter in pytest.raises (GH#4962) James Bourbeau

• Update test_to_records to test with lengths argument(GH#4515) asmith26

• Remove pandas pinning in Dataframe accessors (GH#4955) Matthew Rocklin

• Fix correlation of series with same names (GH#4934) Philipp S. Sommer

• Map Dask Series to Dask Series (GH#4872) Justin Waugh

• Warn in dd.merge on dtype warning (GH#4917) mcsoini

• Add groupby Covariance/Correlation (GH#4889) Ben Zaitlen

• keep index name with to_datetime (GH#4905) Ian Bolliger

• Add Parallel variance computation for dataframes (GH#4865) Ksenia Bobrova

• Add divmod implementation to arrays and dataframes (GH#4884) Henrique Ribeiro

• Add documentation for dataframe reshape methods (GH#4896) tpanza

• Avoid use of pandas.compat (GH#4881) Tom Augspurger

• Added accessor registration for Series, DataFrame, and Index (GH#4829) Tom Augspurger

• Add read_function keyword to read_json (GH#4810) Richard J Zamora

• Provide full type name in check_meta (GH#4819) Matthew Rocklin

• Correctly estimate bytes per row in read_sql_table (GH#4807) Lijo Jose

• Adding support of non-numeric data to describe() (GH#4791) Ksenia Bobrova

• Scalars for extension dtypes. (GH#4459) Tom Augspurger

• Call head before compute in dd.from_delayed (GH#4802) Matthew Rocklin

• Add support for rolling operations with larger window that partition size in DataFrames with Time-based index
(GH#4796) Jorge Pessoa

• Update groupby-apply doc with warning (GH#4800) Tom Augspurger

• Change groupby-ness tests in _maybe_slice (GH#4786) Ben Zaitlen

• Add master best practices document (GH#4745) Matthew Rocklin

• Add document for how Dask works with GPUs (GH#4792) Matthew Rocklin

• Add cli API docs (GH#4788) James Bourbeau

3.21. Changelog 881

https://github.com/dask/dask/pull/4806
https://github.com/justinwp
https://github.com/dask/dask/pull/4798
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4793
https://github.com/mrocklin
https://github.com/dask/dask/pull/4983
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4988
https://github.com/jakirkham
https://github.com/dask/dask/pull/4416
https://github.com/gsakkis
https://github.com/dask/dask/pull/4877
https://github.com/codercody
https://github.com/dask/dask/pull/4882
https://github.com/endremborza
https://github.com/dask/dask/pull/4962
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4515
https://github.com/asmith26
https://github.com/dask/dask/pull/4955
https://github.com/mrocklin
https://github.com/dask/dask/pull/4934
https://github.com/Chilipp
https://github.com/dask/dask/pull/4872
https://github.com/bluecoconut
https://github.com/dask/dask/pull/4917
https://github.com/mcsoini
https://github.com/dask/dask/pull/4889
https://github.com/quasiben
https://github.com/dask/dask/pull/4905
https://github.com/bolliger32
https://github.com/dask/dask/pull/4865
https://github.com/almaleksia
https://github.com/dask/dask/pull/4884
https://github.com/henriqueribeiro
https://github.com/dask/dask/pull/4896
https://github.com/tpanza
https://github.com/dask/dask/pull/4881
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4829
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4810
https://github.com/rjzamora
https://github.com/dask/dask/pull/4819
https://github.com/mrocklin
https://github.com/dask/dask/pull/4807
https://github.com/lijose
https://github.com/dask/dask/pull/4791
https://github.com/almaleksia
https://github.com/dask/dask/pull/4459
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4802
https://github.com/mrocklin
https://github.com/dask/dask/pull/4796
https://github.com/jorge-pessoa
https://github.com/dask/dask/pull/4800
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4786
https://github.com/quasiben
https://github.com/dask/dask/pull/4745
https://github.com/mrocklin
https://github.com/dask/dask/pull/4792
https://github.com/mrocklin
https://github.com/dask/dask/pull/4788
https://github.com/jrbourbeau

dask Documentation, Release 2.6.0

• Ensure concat output has coherent dtypes (GH#4692) Guillaume Lemaitre

• Fixes pandas_datareader dependencies installation (GH#4989) James Bourbeau

• Accept pathlib.Path as pattern in read_hdf (GH#3335) Jörg Dietrich

Documentation

• Move CLI API docs to relavant pages (GH#4980) James Bourbeau

• Add to_datetime function to dataframe API docs Matthew Rocklin

• Add documentation entry for dask.array.ma.average (GH#4970) Bouwe Andela

• Add bag.read_avro to bag API docs (GH#4969) James Bourbeau

• Fix typo (GH#4968) mbarkhau

• Docs: Drop support for Python 2.7 (GH#4932) Hugo

• Remove requirement to modify changelog (GH#4915) Matthew Rocklin

• Add documentation about meta column order (GH#4887) Tom Augspurger

• Add documentation note in DataFrame.shift (GH#4886) Tom Augspurger

• Docs: Fix typo (GH#4868) Paweł Kordek

• Put do/don’t into boxes for delayed best practice docs (GH#3821) Martin Durant

• Doc fixups (GH#2528) Tom Augspurger

• Add quansight to paid support doc section (GH#4838) Martin Durant

• Add document for custom startup (GH#4833) Matthew Rocklin

• Allow utils.derive_from to accept functions, apply across array (GH#4804) Martin Durant

• Add “Avoid Large Partitions” section to best practices (GH#4808) Matthew Rocklin

• Update URL for joblib to new website hosting their doc (GH#4816) Christian Hudon

3.21.9 1.2.2 / 2019-05-08

Array

• Clarify regions kwarg to array.store (GH#4759) Martin Durant

• Add dtype= parameter to da.random.randint (GH#4753) Matthew Rocklin

• Use “row major” rather than “C order” in docstring (GH#4452) @asmith26

• Normalize Xarray datasets to Dask arrays (GH#4756) Matthew Rocklin

• Remove normed keyword in da.histogram (GH#4755) Matthew Rocklin

Bag

• Add key argument to Bag.distinct (GH#4423) Daniel Severo

882 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4692
https://github.com/glemaitre
https://github.com/dask/dask/pull/4989
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3335
https://github.com/joergdietrich
https://github.com/dask/dask/pull/4980
https://github.com/jrbourbeau
https://github.com/mrocklin
https://github.com/dask/dask/pull/4970
https://github.com/bouweandela
https://github.com/dask/dask/pull/4969
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4968
https://github.com/mbarkhau
https://github.com/dask/dask/pull/4932
https://github.com/hugovk
https://github.com/dask/dask/pull/4915
https://github.com/mrocklin
https://github.com/dask/dask/pull/4887
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4886
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4868
https://github.com/kordek
https://github.com/dask/dask/pull/3821
https://github.com/martindurant
https://github.com/dask/dask/pull/2528
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4838
https://github.com/martindurant
https://github.com/dask/dask/pull/4833
https://github.com/mrocklin
https://github.com/dask/dask/pull/4804
https://github.com/martindurant
https://github.com/dask/dask/pull/4808
https://github.com/mrocklin
https://github.com/dask/dask/pull/4816
https://github.com/chrish42
https://github.com/dask/dask/pull/4759
https://github.com/martindurant
https://github.com/dask/dask/pull/4753
https://github.com/mrocklin
https://github.com/dask/dask/pull/4452
https://github.com/asmith26
https://github.com/dask/dask/pull/4756
https://github.com/mrocklin
https://github.com/dask/dask/pull/4755
https://github.com/mrocklin
https://github.com/dask/dask/pull/4423
https://github.com/daniel-severo

dask Documentation, Release 2.6.0

Core

• Add core dask config file (GH#4774) Matthew Rocklin

• Add core dask config file to MANIFEST.in (GH#4780) James Bourbeau

• Enabling glob with HTTP file-system (GH#3926) Martin Durant

• HTTPFile.seek with whence=1 (GH#4751) Martin Durant

• Remove config key normalization (GH#4742) Jim Crist

DataFrame

• Remove explicit references to Pandas in dask.dataframe.groupby (GH#4778) Matthew Rocklin

• Add support for group_keys kwarg in DataFrame.groupby() (GH#4771) Brian Chu

• Describe doc (GH#4762) Martin Durant

• Remove explicit pandas check in cumulative aggregations (GH#4765) Nick Becker

• Added meta for read_json and test (GH#4588) Abhinav Ralhan

• Add test for dtype casting (GH#4760) Martin Durant

• Document alignment in map_partitions (GH#4757) Jim Crist

• Implement Series.str.split(expand=True) (GH#4744) Matthew Rocklin

Documentation

• Tweaks to develop.rst from trying to run tests (GH#4772) Christian Hudon

• Add document describing phases of computation (GH#4766) Matthew Rocklin

• Point users to Dask-Yarn from spark documentation (GH#4770) Matthew Rocklin

• Update images in delayed doc to remove labels (GH#4768) Martin Durant

• Explain intermediate storage for dask arrays (GH#4025) John A Kirkham

• Specify bash code-block in array best practices (GH#4764) James Bourbeau

• Add array best practices doc (GH#4705) Matthew Rocklin

• Update optimization docs now that cull is not automatic (GH#4752) Matthew Rocklin

3.21.10 1.2.1 / 2019-04-29

Array

• Fix map_blocks with block_info and broadcasting (GH#4737) Bruce Merry

• Make ‘minlength’ keyword argument optional in da.bincount (GH#4684) Genevieve Buckley

• Add support for map_blocks with no array arguments (GH#4713) Bruce Merry

• Add dask.array.trace (GH#4717) Danilo Horta

• Add sizeof support for cupy.ndarray (GH#4715) Peter Andreas Entschev

• Add name kwarg to from_zarr (GH#4663) Michael Eaton

3.21. Changelog 883

https://github.com/dask/dask/pull/4774
https://github.com/mrocklin
https://github.com/dask/dask/pull/4780
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3926
https://github.com/martindurant
https://github.com/dask/dask/pull/4751
https://github.com/martindurant
https://github.com/dask/dask/pull/4742
https://github.com/jcrist
https://github.com/dask/dask/pull/4778
https://github.com/mrocklin
https://github.com/dask/dask/pull/4771
https://github.com/bchu
https://github.com/dask/dask/pull/4762
https://github.com/martindurant
https://github.com/dask/dask/pull/4765
https://github.com/beckernick
https://github.com/dask/dask/pull/4588
https://github.com/abhinavralhan
https://github.com/dask/dask/pull/4760
https://github.com/martindurant
https://github.com/dask/dask/pull/4757
https://github.com/jcrist
https://github.com/dask/dask/pull/4744
https://github.com/mrocklin
https://github.com/dask/dask/pull/4772
https://github.com/chrish42
https://github.com/dask/dask/pull/4766
https://github.com/mrocklin
https://github.com/dask/dask/pull/4770
https://github.com/mrocklin
https://github.com/dask/dask/pull/4768
https://github.com/martindurant
https://github.com/dask/dask/pull/4025
https://github.com/jakirkham
https://github.com/dask/dask/pull/4764
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4705
https://github.com/mrocklin
https://github.com/dask/dask/pull/4752
https://github.com/mrocklin
https://github.com/dask/dask/pull/4737
https://github.com/bmerry
https://github.com/dask/dask/pull/4684
https://github.com/GenevieveBuckley
https://github.com/dask/dask/pull/4713
https://github.com/bmerry
https://github.com/dask/dask/pull/4717
https://github.com/horta
https://github.com/dask/dask/pull/4715
https://github.com/pentschev
https://github.com/dask/dask/pull/4663
https://github.com/mpeaton

dask Documentation, Release 2.6.0

• Add chunks=’auto’ to from_array (GH#4704) Matthew Rocklin

• Raise TypeError if dask array is given as shape for da.ones, zeros, empty or full (GH#4707) Genevieve Buckley

• Add TileDB backend (GH#4679) Isaiah Norton

Core

• Delay long list arguments (GH#4735) Matthew Rocklin

• Bump to numpy >= 1.13, pandas >= 0.21.0 (GH#4720) Jim Crist

• Remove file “test” (GH#4710) James Bourbeau

• Reenable development build, uses upstream libraries (GH#4696) Peter Andreas Entschev

• Remove assertion in HighLevelGraph constructor (GH#4699) Matthew Rocklin

DataFrame

• Change cum-aggregation last-nonnull-value algorithm (GH#4736) Nick Becker

• Fixup series-groupby-apply (GH#4738) Jim Crist

• Refactor array.percentile and dataframe.quantile to use t-digest (GH#4677) Janne Vuorela

• Allow naive concatenation of sorted dataframes (GH#4725) Matthew Rocklin

• Fix perf issue in dd.Series.isin (GH#4727) Jim Crist

• Remove hard pandas dependency for melt by using methodcaller (GH#4719) Nick Becker

• A few dataframe metadata fixes (GH#4695) Jim Crist

• Add Dataframe.replace (GH#4714) Matthew Rocklin

• Add ‘threshold’ parameter to pd.DataFrame.dropna (GH#4625) Nathan Matare

Documentation

• Add warning about derived docstrings early in the docstring (GH#4716) Matthew Rocklin

• Create dataframe best practices doc (GH#4703) Matthew Rocklin

• Uncomment dask_sphinx_theme (GH#4728) James Bourbeau

• Fix minor typo fix in a Queue/fire_and_forget example (GH#4709) Matthew Rocklin

• Update from_pandas docstring to match signature (GH#4698) James Bourbeau

3.21.11 1.2.0 / 2019-04-12

Array

• Fixed mean() and moment() on sparse arrays (GH#4525) Peter Andreas Entschev

• Add test for NEP-18. (GH#4675) Hameer Abbasi

• Allow None to say “no chunking” in normalize_chunks (GH#4656) Matthew Rocklin

• Fix limit value in auto_chunks (GH#4645) Matthew Rocklin

884 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4704
https://github.com/mrocklin
https://github.com/dask/dask/pull/4707
https://github.com/GenevieveBuckley
https://github.com/dask/dask/pull/4679
https://github.com/hnorton
https://github.com/dask/dask/pull/4735
https://github.com/mrocklin
https://github.com/dask/dask/pull/4720
https://github.com/jcrist
https://github.com/dask/dask/pull/4710
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4696
https://github.com/pentschev
https://github.com/dask/dask/pull/4699
https://github.com/mrocklin
https://github.com/dask/dask/pull/4736
https://github.com/beckernick
https://github.com/dask/dask/pull/4738
https://github.com/jcrist
https://github.com/dask/dask/pull/4677
https://github.com/Dimplexion
https://github.com/dask/dask/pull/4725
https://github.com/mrocklin
https://github.com/dask/dask/pull/4727
https://github.com/jcrist
https://github.com/dask/dask/pull/4719
https://github.com/beckernick
https://github.com/dask/dask/pull/4695
https://github.com/jcrist
https://github.com/dask/dask/pull/4714
https://github.com/mrocklin
https://github.com/dask/dask/pull/4625
https://github.com/nmatare
https://github.com/dask/dask/pull/4716
https://github.com/mrocklin
https://github.com/dask/dask/pull/4703
https://github.com/mrocklin
https://github.com/dask/dask/pull/4728
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4709
https://github.com/mrocklin
https://github.com/dask/dask/pull/4698
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4525
https://github.com/pentschev
https://github.com/dask/dask/pull/4675
https://github.com/hameerabbasi
https://github.com/dask/dask/pull/4656
https://github.com/mrocklin
https://github.com/dask/dask/pull/4645
https://github.com/mrocklin

dask Documentation, Release 2.6.0

Core

• Updated diagnostic bokeh test for compatibility with bokeh>=1.1.0 (GH#4680) Philipp Rudiger

• Adjusts codecov’s target/threshold, disable patch (GH#4671) Peter Andreas Entschev

• Always start with empty http buffer, not None (GH#4673) Martin Durant

DataFrame

• Propagate index dtype and name when create dask dataframe from array (GH#4686) Henrique Ribeiro

• Fix ordering of quantiles in describe (GH#4647) gregrf

• Clean up and document rearrange_column_by_tasks (GH#4674) Matthew Rocklin

• Mark some parquet tests xfail (GH#4667) Peter Andreas Entschev

• Fix parquet breakages with arrow 0.13.0 (GH#4668) Martin Durant

• Allow sample to be False when reading CSV from a remote URL (GH#4634) Ian Rose

• Fix timezone metadata inference on parquet load (GH#4655) Martin Durant

• Use is_dataframe/index_like in dd.utils (GH#4657) Matthew Rocklin

• Add min_count parameter to groupby sum method (GH#4648) Henrique Ribeiro

• Correct quantile to handle unsorted quantiles (GH#4650) gregrf

Documentation

• Add delayed extra dependencies to install docs (GH#4660) James Bourbeau

3.21.12 1.1.5 / 2019-03-29

Array

• Ensure that we use the dtype keyword in normalize_chunks (GH#4646) Matthew Rocklin

Core

• Use recursive glob in LocalFileSystem (GH#4186) Brett Naul

• Avoid YAML deprecation (GH#4603)

• Fix CI and add set -e (GH#4605) James Bourbeau

• Support builtin sequence types in dask.visualize (GH#4602)

• unpack/repack orderedDict (GH#4623) Justin Poehnelt

• Add da.random.randint to API docs (GH#4628) James Bourbeau

• Add zarr to CI environment (GH#4604) James Bourbeau

• Enable codecov (GH#4631) Peter Andreas Entschev

3.21. Changelog 885

https://github.com/dask/dask/pull/4680
https://github.com/philippjfr
https://github.com/dask/dask/pull/4671
https://github.com/pentschev
https://github.com/dask/dask/pull/4673
https://github.com/martindurant
https://github.com/dask/dask/pull/4686
https://github.com/henriqueribeiro
https://github.com/dask/dask/pull/4647
https://github.com/gregrf
https://github.com/dask/dask/pull/4674
https://github.com/mrocklin
https://github.com/dask/dask/pull/4667
https://github.com/pentschev
https://github.com/dask/dask/pull/4668
https://github.com/martindurant
https://github.com/dask/dask/pull/4634
https://github.com/ian-r-rose
https://github.com/dask/dask/pull/4655
https://github.com/martindurant
https://github.com/dask/dask/pull/4657
https://github.com/mrocklin
https://github.com/dask/dask/pull/4648
https://github.com/henriqueribeiro
https://github.com/dask/dask/pull/4650
https://github.com/gregrf
https://github.com/dask/dask/pull/4660
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4646
https://github.com/mrocklin
https://github.com/dask/dask/pull/4186
https://github.com/bnaul
https://github.com/dask/dask/pull/4603
https://github.com/dask/dask/pull/4605
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4602
https://github.com/dask/dask/pull/4623
https://github.com/justinwp
https://github.com/dask/dask/pull/4628
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4604
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4631
https://github.com/pentschev

dask Documentation, Release 2.6.0

DataFrame

• Support setting the index (GH#4565)

• DataFrame.itertuples accepts index, name kwargs (GH#4593) Dan O’Donovan

• Support non-Pandas series in dd.Series.unique (GH#4599) Ben Zaitlen

• Replace use of explicit type check with ._is_partition_type predicate (GH#4533)

• Remove additional pandas warnings in tests (GH#4576)

• Check object for name/dtype attributes rather than type (GH#4606)

• Fix comparison against pd.Series (GH#4613) amerkel2

• Fixing warning from setting categorical codes to floats (GH#4624) Julia Signell

• Fix renaming on index to_frame method (GH#4498) Henrique Ribeiro

• Fix divisions when joining two single-partition dataframes (GH#4636) Justin Waugh

• Warn if partitions overlap in compute_divisions (GH#4600) Brian Chu

• Give informative meta= warning (GH#4637) Matthew Rocklin

• Add informative error message to Series.__getitem__ (GH#4638) Matthew Rocklin

• Add clear exception message when using index or index_col in read_csv (GH#4651) Álvaro Abella Bascarán

Documentation

• Add documentation for custom groupby aggregations (GH#4571)

• Docs dataframe joins (GH#4569)

• Specify fork-based contributions (GH#4619) James Bourbeau

• correct to_parquet example in docs (GH#4641) Aaron Fowles

• Update and secure several references (GH#4649) Søren Fuglede Jørgensen

3.21.13 1.1.4 / 2019-03-08

Array

• Use mask selection in compress (GH#4548) John A Kirkham

• Use asarray in extract (GH#4549) John A Kirkham

• Use correct dtype when test concatenation. (GH#4539) Elliott Sales de Andrade

• Fix CuPy tests or properly marks as xfail (GH#4564) Peter Andreas Entschev

Core

• Fix local scheduler callback to deal with custom caching (GH#4542) Yu Feng

• Use parse_bytes in read_bytes(sample=. . .) (GH#4554) Matthew Rocklin

886 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4565
https://github.com/dask/dask/pull/4593
https://github.com/danodonovan
https://github.com/dask/dask/pull/4599
https://github.com/quasiben
https://github.com/dask/dask/pull/4533
https://github.com/dask/dask/pull/4576
https://github.com/dask/dask/pull/4606
https://github.com/dask/dask/pull/4613
https://github.com/amerkel2
https://github.com/dask/dask/pull/4624
https://github.com/jsignell
https://github.com/dask/dask/pull/4498
https://github.com/henriqueribeiro
https://github.com/dask/dask/pull/4636
https://github.com/bluecoconut
https://github.com/dask/dask/pull/4600
https://github.com/bchu
https://github.com/dask/dask/pull/4637
https://github.com/mrocklin
https://github.com/dask/dask/pull/4638
https://github.com/mrocklin
https://github.com/dask/dask/pull/4651
https://github.com/alvaroabascar
https://github.com/dask/dask/pull/4571
https://github.com/dask/dask/pull/4569
https://github.com/dask/dask/pull/4619
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4641
https://github.com/aaronfowles
https://github.com/dask/dask/pull/4649
https://github.com/fuglede
https://github.com/dask/dask/pull/4548
https://github.com/jakirkham
https://github.com/dask/dask/pull/4549
https://github.com/jakirkham
https://github.com/dask/dask/pull/4539
https://github.com/QuLogic
https://github.com/dask/dask/pull/4564
https://github.com/pentschev
https://github.com/dask/dask/pull/4542
https://github.com/rainwoodman
https://github.com/dask/dask/pull/4554
https://github.com/mrocklin

dask Documentation, Release 2.6.0

DataFrame

• Fix up groupby-standard deviation again on object dtype keys (GH#4541) Matthew Rocklin

• TST/CI: Updates for pandas 0.24.1 (GH#4551) Tom Augspurger

• Add ability to control number of unique elements in timeseries (GH#4557) Matthew Rocklin

• Add support in read_csv for parameter skiprows for other iterables (GH#4560) @JulianWgs

Documentation

• DataFrame to Array conversion and unknown chunks (GH#4516) Scott Sievert

• Add docs for random array creation (GH#4566) Matthew Rocklin

• Fix typo in docstring (GH#4572) Shyam Saladi

3.21.14 1.1.3 / 2019-03-01

Array

• Modify mean chunk functions to return dicts rather than arrays (GH#4513) Matthew Rocklin

• Change sparse installation in CI for NumPy/Python2 compatibility (GH#4537) Matthew Rocklin

DataFrame

• Make merge dispatchable on pandas/other dataframe types (GH#4522) Matthew Rocklin

• read_sql_table - datetime index fix and index type checking (GH#4474) Joe Corbett

• Use generalized form of index checking (is_index_like) (GH#4531) Ben Zaitlen

• Add tests for groupby reductions with object dtypes (GH#4535) Matthew Rocklin

• Fixes #4467 : Updates time_series for pandas deprecation (GH#4530) @HSR05

Documentation

• Add missing method to documentation index (GH#4528) Bart Broere

3.21.15 1.1.2 / 2019-02-25

Array

• Fix another unicode/mixed-type edge case in normalize_array (GH#4489) Marco Neumann

• Add dask.array.diagonal (GH#4431) Danilo Horta

• Call asanyarray in unify_chunks (GH#4506) Jim Crist

• Modify moment chunk functions to return dicts (GH#4519) Peter Andreas Entschev

3.21. Changelog 887

https://github.com/dask/dask/pull/4541
https://github.com/mrocklin
https://github.com/dask/dask/pull/4551
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4557
https://github.com/mrocklin
https://github.com/dask/dask/pull/4560
https://github.com/JulianWgs
https://github.com/dask/dask/pull/4516
https://github.com/stsievert
https://github.com/dask/dask/pull/4566
https://github.com/mrocklin
https://github.com/dask/dask/pull/4572
https://github.com/smsaladi
https://github.com/dask/dask/pull/4513
https://github.com/mrocklin
https://github.com/dask/dask/pull/4537
https://github.com/mrocklin
https://github.com/dask/dask/pull/4522
https://github.com/mrocklin
https://github.com/dask/dask/pull/4474
https://github.com/jcorb
https://github.com/dask/dask/pull/4531
https://github.com/quasiben
https://github.com/dask/dask/pull/4535
https://github.com/mrocklin
https://github.com/dask/dask/pull/4530
https://github.com/HSR05
https://github.com/dask/dask/pull/4528
https://github.com/bartbroere
https://github.com/dask/dask/pull/4489
https://github.com/crepererum
https://github.com/dask/dask/pull/4431
https://github.com/horta
https://github.com/dask/dask/pull/4506
https://github.com/jcrist
https://github.com/dask/dask/pull/4519
https://github.com/pentschev

dask Documentation, Release 2.6.0

Bag

• Don’t inline output keys in dask.bag (GH#4464) Jim Crist

• Ensure that bag.from_sequence always includes at least one partition (GH#4475) Anderson Banihirwe

• Implement out_type for bag.fold (GH#4502) Matthew Rocklin

• Remove map from bag keynames (GH#4500) Matthew Rocklin

• Avoid itertools.repeat in map_partitions (GH#4507) Matthew Rocklin

DataFrame

• Fix relative path parsing on windows when using fastparquet (GH#4445) Janne Vuorela

• Fix bug in pyarrow and hdfs (GH#4453) (GH#4455) Michał Jastrzębski

• df getitem with integer slices is not implemented (GH#4466) Jim Crist

• Replace cudf-specific code with dask-cudf import (GH#4470) Matthew Rocklin

• Avoid groupby.agg(callable) in groupby-var (GH#4482) Matthew Rocklin

• Consider uint types as numerical in check_meta (GH#4485) Marco Neumann

• Fix some typos in groupby comments (GH#4494) Daniel Saxton

• Add error message around set_index(inplace=True) (GH#4501) Matthew Rocklin

• meta_nonempty works with categorical index (GH#4505) Jim Crist

• Add module name to expected meta error message (GH#4499) Matthew Rocklin

• groupby-nunique works on empty chunk (GH#4504) Jim Crist

• Propogate index metadata if not specified (GH#4509) Jim Crist

Documentation

• Update docs to use from_zarr (GH#4472) John A Kirkham

• DOC: add section of Using Other S3-Compatible Services for remote-data-services (GH#4405) Aploium

• Fix header level of section in changelog (GH#4483) Bruce Merry

• Add quotes to pip install [skip-ci] (GH#4508) James Bourbeau

Core

• Extend started_cbs AFTER state is initialized (GH#4460) Marco Neumann

• Fix bug in HTTPFile._fetch_range with headers (GH#4479) (GH#4480) Ross Petchler

• Repeat optimize_blockwise for diamond fusion (GH#4492) Matthew Rocklin

888 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4464
https://github.com/jcrist
https://github.com/dask/dask/pull/4475
https://github.com/andersy005
https://github.com/dask/dask/pull/4502
https://github.com/mrocklin
https://github.com/dask/dask/pull/4500
https://github.com/mrocklin
https://github.com/dask/dask/pull/4507
https://github.com/mrocklin
https://github.com/dask/dask/pull/4445
https://github.com/Dimplexion
https://github.com/dask/dask/pull/4453
https://github.com/dask/dask/pull/4455
https://github.com/inc0
https://github.com/dask/dask/pull/4466
https://github.com/jcrist
https://github.com/dask/dask/pull/4470
https://github.com/mrocklin
https://github.com/dask/dask/pull/4482
https://github.com/mrocklin
https://github.com/dask/dask/pull/4485
https://github.com/crepererum
https://github.com/dask/dask/pull/4494
https://github.com/dsaxton
https://github.com/dask/dask/pull/4501
https://github.com/mrocklin
https://github.com/dask/dask/pull/4505
https://github.com/jcrist
https://github.com/dask/dask/pull/4499
https://github.com/mrocklin
https://github.com/dask/dask/pull/4504
https://github.com/jcrist
https://github.com/dask/dask/pull/4509
https://github.com/jcrist
https://github.com/dask/dask/pull/4472
https://github.com/jakirkham
https://github.com/dask/dask/pull/4405
https://github.com/aploium
https://github.com/dask/dask/pull/4483
https://github.com/bmerry
https://github.com/dask/dask/pull/4508
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4460
https://github.com/crepererum
https://github.com/dask/dask/pull/4479
https://github.com/dask/dask/pull/4480
https://github.com/rpetchler
https://github.com/dask/dask/pull/4492
https://github.com/mrocklin

dask Documentation, Release 2.6.0

3.21.16 1.1.1 / 2019-01-31

Array

• Add support for cupy.einsum (GH#4402) Johnnie Gray

• Provide byte size in chunks keyword (GH#4434) Adam Beberg

• Raise more informative error for histogram bins and range (GH#4430) James Bourbeau

DataFrame

• Lazily register more cudf functions and move to backends file (GH#4396) Matthew Rocklin

• Fix ORC tests for pyarrow 0.12.0 (GH#4413) Jim Crist

• rearrange_by_column: ensure that shuffle arg defaults to ‘disk’ if it’s None in dask.config (GH#4414) George
Sakkis

• Implement filters for _read_pyarrow (GH#4415) George Sakkis

• Avoid checking against types in is_dataframe_like (GH#4418) Matthew Rocklin

• Pass username as ‘user’ when using pyarrow (GH#4438) Roma Sokolov

Delayed

• Fix DelayedAttr return value (GH#4440) Matthew Rocklin

Documentation

• Use SVG for pipeline graphic (GH#4406) John A Kirkham

• Add doctest-modules to py.test documentation (GH#4427) Daniel Severo

Core

• Work around psutil 5.5.0 not allowing pickling Process objects Janne Vuorela

3.21.17 1.1.0 / 2019-01-18

Array

• Fix the average function when there is a masked array (GH#4236) Damien Garaud

• Add allow_unknown_chunksizes to hstack and vstack (GH#4287) Paul Vecchio

• Fix tensordot for 27+ dimensions (GH#4304) Johnnie Gray

• Fixed block_info with axes. (GH#4301) Tom Augspurger

• Use safe_wraps for matmul (GH#4346) Mark Harfouche

• Use chunks=”auto” in array creation routines (GH#4354) Matthew Rocklin

• Fix np.matmul in dask.array.Array.__array_ufunc__ (GH#4363) Stephan Hoyer

3.21. Changelog 889

https://github.com/dask/dask/pull/4402
https://github.com/jcmgray
https://github.com/dask/dask/pull/4434
https://github.com/beberg
https://github.com/dask/dask/pull/4430
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4396
https://github.com/mrocklin
https://github.com/dask/dask/pull/4413
https://github.com/jcrist
https://github.com/dask/dask/pull/4414
https://github.com/gsakkis
https://github.com/gsakkis
https://github.com/dask/dask/pull/4415
https://github.com/gsakkis
https://github.com/dask/dask/pull/4418
https://github.com/mrocklin
https://github.com/dask/dask/pull/4438
https://github.com/little-arhat
https://github.com/dask/dask/pull/4440
https://github.com/mrocklin
https://github.com/dask/dask/pull/4406
https://github.com/jakirkham
https://github.com/dask/dask/pull/4427
https://github.com/daniel-severo
https://github.com/Dimplexion
https://github.com/dask/dask/pull/4236
https://github.com/geraud
https://github.com/dask/dask/pull/4287
https://github.com/vecchp
https://github.com/dask/dask/pull/4304
https://github.com/jcmgray
https://github.com/dask/dask/pull/4301
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4346
https://github.com/hmaarrfk
https://github.com/dask/dask/pull/4354
https://github.com/mrocklin
https://github.com/dask/dask/pull/4363
https://github.com/shoyer

dask Documentation, Release 2.6.0

• COMPAT: Re-enable multifield copy->view change (GH#4357) Diane Trout

• Calling np.dtype on a delayed object works (GH#4387) Jim Crist

• Rework normalize_array for numpy data (GH#4312) Marco Neumann

DataFrame

• Add fill_value support for series comparisons (GH#4250) James Bourbeau

• Add schema name in read_sql_table for empty tables (GH#4268) Mina Farid

• Adjust check for bad chunks in map_blocks (GH#4308) Tom Augspurger

• Add dask.dataframe.read_fwf (GH#4316) @slnguyen

• Use atop fusion in dask dataframe (GH#4229) Matthew Rocklin

• Use parallel_types() in from_pandas (GH#4331) Matthew Rocklin

• Change DataFrame._repr_data to method (GH#4330) Matthew Rocklin

• Install pyarrow fastparquet for Appveyor (GH#4338) Gábor Lipták

• Remove explicit pandas checks and provide cudf lazy registration (GH#4359) Matthew Rocklin

• Replace isinstance(. . . , pandas) with is_dataframe_like (GH#4375) Matthew Rocklin

• ENH: Support 3rd-party ExtensionArrays (GH#4379) Tom Augspurger

• Pandas 0.24.0 compat (GH#4374) Tom Augspurger

Documentation

• Fix link to ‘map_blocks’ function in array api docs (GH#4258) David Hoese

• Add a paragraph on Dask-Yarn in the cloud docs (GH#4260) Jim Crist

• Copy edit documentation (GH#4267), (GH#4263), (GH#4262), (GH#4277), (GH#4271), (GH#4279),
(GH#4265), (GH#4295), (GH#4293), (GH#4296), (GH#4302), (GH#4306), (GH#4318), (GH#4314),
(GH#4309), (GH#4317), (GH#4326), (GH#4325), (GH#4322), (GH#4332), (GH#4333), Miguel Farrajota

• Fix typo in code example (GH#4272) Daniel Li

• Doc: Update array-api.rst (GH#4259) (GH#4282) Prabakaran Kumaresshan

• Update hpc doc (GH#4266) Guillaume Eynard-Bontemps

• Doc: Replace from_avro with read_avro in documents (GH#4313) Prabakaran Kumaresshan

• Remove reference to “get” scheduler functions in docs (GH#4350) Matthew Rocklin

• Fix typo in docstring (GH#4376) Daniel Saxton

• Added documentation for dask.dataframe.merge (GH#4382) Jendrik Jördening

Core

• Avoid recursion in dask.core.get (GH#4219) Matthew Rocklin

• Remove verbose flag from pytest setup.cfg (GH#4281) Matthew Rocklin

• Support Pytest 4.0 by specifying marks explicitly (GH#4280) Takahiro Kojima

890 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4357
https://github.com/detrout
https://github.com/dask/dask/pull/4387
https://github.com/jcrist
https://github.com/dask/dask/pull/4312
https://github.com/crepererum
https://github.com/dask/dask/pull/4250
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4268
https://github.com/minafarid
https://github.com/dask/dask/pull/4308
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4316
https://github.com/slnguyen
https://github.com/dask/dask/pull/4229
https://github.com/mrocklin
https://github.com/dask/dask/pull/4331
https://github.com/mrocklin
https://github.com/dask/dask/pull/4330
https://github.com/mrocklin
https://github.com/dask/dask/pull/4338
https://github.com/gliptak
https://github.com/dask/dask/pull/4359
https://github.com/mrocklin
https://github.com/dask/dask/pull/4375
https://github.com/mrocklin
https://github.com/dask/dask/pull/4379
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4374
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4258
https://github.com/djhoese
https://github.com/dask/dask/pull/4260
https://github.com/jcrist
https://github.com/dask/dask/pull/4267
https://github.com/dask/dask/pull/4263
https://github.com/dask/dask/pull/4262
https://github.com/dask/dask/pull/4277
https://github.com/dask/dask/pull/4271
https://github.com/dask/dask/pull/4279
https://github.com/dask/dask/pull/4265
https://github.com/dask/dask/pull/4295
https://github.com/dask/dask/pull/4293
https://github.com/dask/dask/pull/4296
https://github.com/dask/dask/pull/4302
https://github.com/dask/dask/pull/4306
https://github.com/dask/dask/pull/4318
https://github.com/dask/dask/pull/4314
https://github.com/dask/dask/pull/4309
https://github.com/dask/dask/pull/4317
https://github.com/dask/dask/pull/4326
https://github.com/dask/dask/pull/4325
https://github.com/dask/dask/pull/4322
https://github.com/dask/dask/pull/4332
https://github.com/dask/dask/pull/4333
https://github.com/farrajota
https://github.com/dask/dask/pull/4272
https://github.com/li-dan
https://github.com/dask/dask/pull/4259
https://github.com/dask/dask/pull/4282
https://github.com/nixphix
https://github.com/dask/dask/pull/4266
https://github.com/guillaumeeb
https://github.com/dask/dask/pull/4313
https://github.com/nixphix
https://github.com/dask/dask/pull/4350
https://github.com/mrocklin
https://github.com/dask/dask/pull/4376
https://github.com/dsaxton
https://github.com/dask/dask/pull/4382
https://github.com/jendrikjoe
https://github.com/dask/dask/pull/4219
https://github.com/mrocklin
https://github.com/dask/dask/pull/4281
https://github.com/mrocklin
https://github.com/dask/dask/pull/4280
https://github.com/515hikaru

dask Documentation, Release 2.6.0

• Add High Level Graphs (GH#4092) Matthew Rocklin

• Fix SerializableLock locked and acquire methods (GH#4294) Stephan Hoyer

• Pin boto3 to earlier version in tests to avoid moto conflict (GH#4276) Martin Durant

• Treat None as missing in config when updating (GH#4324) Matthew Rocklin

• Update Appveyor to Python 3.6 (GH#4337) Gábor Lipták

• Use parse_bytes more liberally in dask.dataframe/bytes/bag (GH#4339) Matthew Rocklin

• Add a better error message when cloudpickle is missing (GH#4342) Mark Harfouche

• Support pool= keyword argument in threaded/multiprocessing get functions (GH#4351) Matthew Rocklin

• Allow updates from arbitrary Mappings in config.update, not only dicts. (GH#4356) Stuart Berg

• Move dask/array/top.py code to dask/blockwise.py (GH#4348) Matthew Rocklin

• Add has_parallel_type (GH#4395) Matthew Rocklin

• CI: Update Appveyor (GH#4381) Tom Augspurger

• Ignore non-readable config files (GH#4388) Jim Crist

3.21.18 1.0.0 / 2018-11-28

Array

• Add nancumsum/nancumprod unit tests (GH#4215) Guido Imperiale

DataFrame

• Add index to to_dask_dataframe docstring (GH#4232) James Bourbeau

• Text and fix when appending categoricals with fastparquet (GH#4245) Martin Durant

• Don’t reread metadata when passing ParquetFile to read_parquet (GH#4247) Martin Durant

Documentation

• Copy edit documentation (GH#4222) (GH#4224) (GH#4228) (GH#4231) (GH#4230) (GH#4234) (GH#4235)
(GH#4254) Miguel Farrajota

• Updated doc for the new scheduler keyword (GH#4251) @milesial

Core

• Avoid a few warnings (GH#4223) Matthew Rocklin

• Remove dask.store module (GH#4221) Matthew Rocklin

• Remove AUTHORS.md Jim Crist

3.21. Changelog 891

https://github.com/dask/dask/pull/4092
https://github.com/mrocklin
https://github.com/dask/dask/pull/4294
https://github.com/shoyer
https://github.com/dask/dask/pull/4276
https://github.com/martindurant
https://github.com/dask/dask/pull/4324
https://github.com/mrocklin
https://github.com/dask/dask/pull/4337
https://github.com/gliptak
https://github.com/dask/dask/pull/4339
https://github.com/mrocklin
https://github.com/dask/dask/pull/4342
https://github.com/hmaarrfk
https://github.com/dask/dask/pull/4351
https://github.com/mrocklin
https://github.com/dask/dask/pull/4356
https://github.com/stuarteberg
https://github.com/dask/dask/pull/4348
https://github.com/mrocklin
https://github.com/dask/dask/pull/4395
https://github.com/mrocklin
https://github.com/dask/dask/pull/4381
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4388
https://github.com/jcrist
https://github.com/dask/dask/pull/4215
https://github.com/crusaderky
https://github.com/dask/dask/pull/4232
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4245
https://github.com/martindurant
https://github.com/dask/dask/pull/4247
https://github.com/martindurant
https://github.com/dask/dask/pull/4222
https://github.com/dask/dask/pull/4224
https://github.com/dask/dask/pull/4228
https://github.com/dask/dask/pull/4231
https://github.com/dask/dask/pull/4230
https://github.com/dask/dask/pull/4234
https://github.com/dask/dask/pull/4235
https://github.com/dask/dask/pull/4254
https://github.com/farrajota
https://github.com/dask/dask/pull/4251
https://github.com/milesial
https://github.com/dask/dask/pull/4223
https://github.com/mrocklin
https://github.com/dask/dask/pull/4221
https://github.com/mrocklin
https://github.com/jcrist

dask Documentation, Release 2.6.0

3.21.19 0.20.2 / 2018-11-15

Array

• Avoid fusing dependencies of atop reductions (GH#4207) Matthew Rocklin

Dataframe

• Improve memory footprint for dataframe correlation (GH#4193) Damien Garaud

• Add empty DataFrame check to boundary_slice (GH#4212) James Bourbeau

Documentation

• Copy edit documentation (GH#4197) (GH#4204) (GH#4198) (GH#4199) (GH#4200) (GH#4202) (GH#4209)
Miguel Farrajota

• Add stats module namespace (GH#4206) James Bourbeau

• Fix link in dataframe documentation (GH#4208) James Bourbeau

3.21.20 0.20.1 / 2018-11-09

Array

• Only allocate the result space in wrapped_pad_func (GH#4153) John A Kirkham

• Generalize expand_pad_width to expand_pad_value (GH#4150) John A Kirkham

• Test da.pad with 2D linear_ramp case (GH#4162) John A Kirkham

• Fix import for broadcast_to. (GH#4168) samc0de

• Rewrite Dask Array’s pad to add only new chunks (GH#4152) John A Kirkham

• Validate index inputs to atop (GH#4182) Matthew Rocklin

Core

• Dask.config set and get normalize underscores and hyphens (GH#4143) James Bourbeau

• Only subs on core collections, not subclasses (GH#4159) Matthew Rocklin

• Add block_size=0 option to HTTPFileSystem. (GH#4171) Martin Durant

• Add traverse support for dataclasses (GH#4165) Armin Berres

• Avoid optimization on sharedicts without dependencies (GH#4181) Matthew Rocklin

• Update the pytest version for TravisCI (GH#4189) Damien Garaud

• Use key_split rather than funcname in visualize names (GH#4160) Matthew Rocklin

892 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4207
https://github.com/mrocklin
https://github.com/dask/dask/pull/4193
https://github.com/geraud
https://github.com/dask/dask/pull/4212
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4197
https://github.com/dask/dask/pull/4204
https://github.com/dask/dask/pull/4198
https://github.com/dask/dask/pull/4199
https://github.com/dask/dask/pull/4200
https://github.com/dask/dask/pull/4202
https://github.com/dask/dask/pull/4209
https://github.com/farrajota
https://github.com/dask/dask/pull/4206
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4208
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4153
https://github.com/jakirkham
https://github.com/dask/dask/pull/4150
https://github.com/jakirkham
https://github.com/dask/dask/pull/4162
https://github.com/jakirkham
https://github.com/dask/dask/pull/4168
https://github.com/samc0de
https://github.com/dask/dask/pull/4152
https://github.com/jakirkham
https://github.com/dask/dask/pull/4182
https://github.com/mrocklin
https://github.com/dask/dask/pull/4143
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4159
https://github.com/mrocklin
https://github.com/dask/dask/pull/4171
https://github.com/martindurant
https://github.com/dask/dask/pull/4165
https://github.com/aberres
https://github.com/dask/dask/pull/4181
https://github.com/mrocklin
https://github.com/dask/dask/pull/4189
https://github.com/geraud
https://github.com/dask/dask/pull/4160
https://github.com/mrocklin

dask Documentation, Release 2.6.0

Dataframe

• Add fix for DataFrame.__setitem__ for index (GH#4151) Anderson Banihirwe

• Fix column choice when passing list of files to fastparquet (GH#4174) Martin Durant

• Pass engine_kwargs from read_sql_table to sqlalchemy (GH#4187) Damien Garaud

Documentation

• Fix documentation in Delayed best practices example that returned an empty list (GH#4147) Jonathan Fraine

• Copy edit documentation (GH#4164) (GH#4175) (GH#4185) (GH#4192) (GH#4191) (GH#4190) (GH#4180)
Miguel Farrajota

• Fix typo in docstring (GH#4183) Carlos Valiente

3.21.21 0.20.0 / 2018-10-26

Array

• Fuse Atop operations (GH#3998), (GH#4081) Matthew Rocklin

• Support da.asanyarray on dask dataframes (GH#4080) Matthew Rocklin

• Remove unnecessary endianness check in datetime test (GH#4113) Elliott Sales de Andrade

• Set name=False in array foo_like functions (GH#4116) Matthew Rocklin

• Remove dask.array.ghost module (GH#4121) Matthew Rocklin

• Fix use of getargspec in dask array (GH#4125) Stephan Hoyer

• Adds dask.array.invert (GH#4127), (GH#4131) Anderson Banihirwe

• Raise informative error on arg-reduction on unknown chunksize (GH#4128), (GH#4135) Matthew Rocklin

• Normalize reversed slices in dask array (GH#4126) Matthew Rocklin

Bag

• Add bag.to_avro (GH#4076) Martin Durant

Core

• Pull num_workers from config.get (GH#4086), (GH#4093) James Bourbeau

• Fix invalid escape sequences with raw strings (GH#4112) Elliott Sales de Andrade

• Raise an error on the use of the get= keyword and set_options (GH#4077) Matthew Rocklin

• Add import for Azure DataLake storage, and add docs (GH#4132) Martin Durant

• Avoid collections.Mapping/Sequence (GH#4138) Matthew Rocklin

3.21. Changelog 893

https://github.com/dask/dask/pull/4151
https://github.com/andersy005
https://github.com/dask/dask/pull/4174
https://github.com/martindurant
https://github.com/dask/dask/pull/4187
https://github.com/geraud
https://github.com/dask/dask/pull/4147
https://github.com/exowanderer
https://github.com/dask/dask/pull/4164
https://github.com/dask/dask/pull/4175
https://github.com/dask/dask/pull/4185
https://github.com/dask/dask/pull/4192
https://github.com/dask/dask/pull/4191
https://github.com/dask/dask/pull/4190
https://github.com/dask/dask/pull/4180
https://github.com/farrajota
https://github.com/dask/dask/pull/4183
https://github.com/carletes
https://github.com/dask/dask/pull/3998
https://github.com/dask/dask/pull/4081
https://github.com/mrocklin
https://github.com/dask/dask/pull/4080
https://github.com/mrocklin
https://github.com/dask/dask/pull/4113
https://github.com/QuLogic
https://github.com/dask/dask/pull/4116
https://github.com/mrocklin
https://github.com/dask/dask/pull/4121
https://github.com/mrocklin
https://github.com/dask/dask/pull/4125
https://github.com/shoyer
https://github.com/dask/dask/pull/4127
https://github.com/dask/dask/pull/4131
https://github.com/andersy005
https://github.com/dask/dask/pull/4128
https://github.com/dask/dask/pull/4135
https://github.com/mrocklin
https://github.com/dask/dask/pull/4126
https://github.com/mrocklin
https://github.com/dask/dask/pull/4076
https://github.com/martindurant
https://github.com/dask/dask/pull/4086
https://github.com/dask/dask/pull/4093
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4112
https://github.com/QuLogic
https://github.com/dask/dask/pull/4077
https://github.com/mrocklin
https://github.com/dask/dask/pull/4132
https://github.com/martindurant
https://github.com/dask/dask/pull/4138
https://github.com/mrocklin

dask Documentation, Release 2.6.0

Dataframe

• Include index keyword in to_dask_dataframe (GH#4071) Matthew Rocklin

• add support for duplicate column names (GH#4087) Jan Koch

• Implement min_count for the DataFrame methods sum and prod (GH#4090) Bart Broere

• Remove pandas warnings in concat (GH#4095) Matthew Rocklin

• DataFrame.to_csv header option to only output headers in the first chunk (GH#3909) Rahul Vaidya

• Remove Series.to_parquet (GH#4104) Justin Dennison

• Avoid warnings and deprecated pandas methods (GH#4115) Matthew Rocklin

• Swap ‘old’ and ‘previous’ when reporting append error (GH#4130) Martin Durant

Documentation

• Copy edit documentation (GH#4073), (GH#4074), (GH#4094), (GH#4097), (GH#4107), (GH#4124),
(GH#4133), (GH#4139) Miguel Farrajota

• Fix typo in code example (GH#4089) Antonino Ingargiola

• Add pycon 2018 presentation (GH#4102) Javad

• Quick description for gcsfs (GH#4109) Martin Durant

• Fixed typo in docstrings of read_sql_table method (GH#4114) TakaakiFuruse

• Make target directories in redirects if they don’t exist (GH#4136) Matthew Rocklin

3.21.22 0.19.4 / 2018-10-09

Array

• Implement apply_gufunc(..., axes=..., keepdims=...) (GH#3985) Markus Gonser

Bag

• Fix typo in datasets.make_people (GH#4069) Matthew Rocklin

Dataframe

• Added percentiles options for dask.dataframe.describe method (GH#4067) Zhenqing Li

• Add DataFrame.partitions accessor similar to Array.blocks (GH#4066) Matthew Rocklin

Core

• Pass get functions and Clients through scheduler keyword (GH#4062) Matthew Rocklin

894 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4071
https://github.com/mrocklin
https://github.com/dask/dask/pull/4087
https://github.com/datajanko
https://github.com/dask/dask/pull/4090
https://github.com/bartbroere
https://github.com/dask/dask/pull/4095
https://github.com/mrocklin
https://github.com/dask/dask/pull/3909
https://github.com/rvaidya
https://github.com/dask/dask/pull/4104
https://github.com/justin1dennison
https://github.com/dask/dask/pull/4115
https://github.com/mrocklin
https://github.com/dask/dask/pull/4130
https://github.com/martindurant
https://github.com/dask/dask/pull/4073
https://github.com/dask/dask/pull/4074
https://github.com/dask/dask/pull/4094
https://github.com/dask/dask/pull/4097
https://github.com/dask/dask/pull/4107
https://github.com/dask/dask/pull/4124
https://github.com/dask/dask/pull/4133
https://github.com/dask/dask/pull/4139
https://github.com/farrajota
https://github.com/dask/dask/pull/4089
https://github.com/tritemio
https://github.com/dask/dask/pull/4102
https://github.com/javad94
https://github.com/dask/dask/pull/4109
https://github.com/martindurant
https://github.com/dask/dask/pull/4114
https://github.com/TakaakiFuruse
https://github.com/dask/dask/pull/4136
https://github.com/mrocklin
https://github.com/dask/dask/pull/3985
https://github.com/magonser
https://github.com/dask/dask/pull/4069
https://github.com/mrocklin
https://github.com/dask/dask/pull/4067
https://github.com/DigitalPig
https://github.com/dask/dask/pull/4066
https://github.com/mrocklin
https://github.com/dask/dask/pull/4062
https://github.com/mrocklin

dask Documentation, Release 2.6.0

Documentation

• Fix Typo on hpc example. (missing = in kwarg). (GH#4068) Matthias Bussonier

• Extensive copy-editing: (GH#4065), (GH#4064), (GH#4063) Miguel Farrajota

3.21.23 0.19.3 / 2018-10-05

Array

• Make da.RandomState extensible to other modules (GH#4041) Matthew Rocklin

• Support unknown dims in ravel no-op case (GH#4055) Jim Crist

• Add basic infrastructure for cupy (GH#4019) Matthew Rocklin

• Avoid asarray and lock arguments for from_array(getitem) (GH#4044) Matthew Rocklin

• Move local imports in corrcoef to global imports (GH#4030) John A Kirkham

• Move local indices import to global import (GH#4029) John A Kirkham

• Fix-up Dask Array’s fromfunction w.r.t. dtype and kwargs (GH#4028) John A Kirkham

• Don’t use dummy expansion for trim_internal in overlapped (GH#3964) Mark Harfouche

• Add unravel_index (GH#3958) John A Kirkham

Bag

• Sort result in Bag.frequencies (GH#4033) Matthew Rocklin

• Add support for npartitions=1 edge case in groupby (GH#4050) James Bourbeau

• Add new random dataset for people (GH#4018) Matthew Rocklin

• Improve performance of bag.read_text on small files (GH#4013) Eric Wolak

• Add bag.read_avro (GH#4000) (GH#4007) Martin Durant

Dataframe

• Added an index parameter to dask.dataframe.from_dask_array() for creating a dask DataFrame
from a dask Array with a given index. (GH#3991) Tom Augspurger

• Improve sub-classability of dask dataframe (GH#4015) Matthew Rocklin

• Fix failing hdfs test [test-hdfs] (GH#4046) Jim Crist

• fuse_subgraphs works without normal fuse (GH#4042) Jim Crist

• Make path for reading many parquet files without prescan (GH#3978) Martin Durant

• Index in dd.from_dask_array (GH#3991) Tom Augspurger

• Making skiprows accept lists (GH#3975) Julia Signell

• Fail early in fastparquet read for nonexistent column (GH#3989) Martin Durant

3.21. Changelog 895

https://github.com/dask/dask/pull/4068
https://github.com/Carreau
https://github.com/dask/dask/pull/4065
https://github.com/dask/dask/pull/4064
https://github.com/dask/dask/pull/4063
https://github.com/farrajota
https://github.com/dask/dask/pull/4041
https://github.com/mrocklin
https://github.com/dask/dask/pull/4055
https://github.com/jcrist
https://github.com/dask/dask/pull/4019
https://github.com/mrocklin
https://github.com/dask/dask/pull/4044
https://github.com/mrocklin
https://github.com/dask/dask/pull/4030
https://github.com/jakirkham
https://github.com/dask/dask/pull/4029
https://github.com/jakirkham
https://github.com/dask/dask/pull/4028
https://github.com/jakirkham
https://github.com/dask/dask/pull/3964
https://github.com/hmaarrfk
https://github.com/dask/dask/pull/3958
https://github.com/jakirkham
https://github.com/dask/dask/pull/4033
https://github.com/mrocklin
https://github.com/dask/dask/pull/4050
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4018
https://github.com/mrocklin
https://github.com/dask/dask/pull/4013
https://github.com/epall
https://github.com/dask/dask/pull/4000
https://github.com/dask/dask/pull/4007
https://github.com/martindurant
https://github.com/dask/dask/pull/3991
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/4015
https://github.com/mrocklin
https://github.com/dask/dask/pull/4046
https://github.com/jcrist
https://github.com/dask/dask/pull/4042
https://github.com/jcrist
https://github.com/dask/dask/pull/3978
https://github.com/martindurant
https://github.com/dask/dask/pull/3991
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3975
https://github.com/jsignell
https://github.com/dask/dask/pull/3989
https://github.com/martindurant

dask Documentation, Release 2.6.0

Core

• Add support for npartitions=1 edge case in groupby (GH#4050) James Bourbeau

• Automatically wrap large arguments with dask.delayed in map_blocks/partitions (GH#4002) Matthew Rocklin

• Fuse linear chains of subgraphs (GH#3979) Jim Crist

• Make multiprocessing context configurable (GH#3763) Itamar Turner-Trauring

Documentation

• Extensive copy-editing (GH#4049), (GH#4034), (GH#4031), (GH#4020), (GH#4021), (GH#4022),
(GH#4023), (GH#4016), (GH#4017), (GH#4010), (GH#3997), (GH#3996), Miguel Farrajota

• Update shuffle method selection docs (GH#4048) James Bourbeau

• Remove docs/source/examples, point to examples.dask.org (GH#4014) Matthew Rocklin

• Replace readthedocs links with dask.org (GH#4008) Matthew Rocklin

• Updates DataFrame.to_hdf docstring for returned values (GH#3992) James Bourbeau

3.21.24 0.19.2 / 2018-09-17

Array

• apply_gufunc implements automatic infer of functions output dtypes (GH#3936) Markus Gonser

• Fix array histogram range error when array has nans (GH#3980) James Bourbeau

• Issue 3937 follow up, int type checks. (GH#3956) Yu Feng

• from_array: add @martindurant’s explaining of how hashing is done for an array. (GH#3965) Mark Harfouche

• Support gradient with coordinate (GH#3949) Keisuke Fujii

Core

• Fix use of has_keyword with partial in Python 2.7 (GH#3966) Mark Harfouche

• Set pyarrow as default for HDFS (GH#3957) Matthew Rocklin

Documentation

• Use dask_sphinx_theme (GH#3963) Matthew Rocklin

• Use JupyterLab in Binder links from main page Matthew Rocklin

• DOC: fixed sphinx syntax (GH#3960) Tom Augspurger

3.21.25 0.19.1 / 2018-09-06

Array

• Don’t enforce dtype if result has no dtype (GH#3928) Matthew Rocklin

896 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/4050
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4002
https://github.com/mrocklin
https://github.com/dask/dask/pull/3979
https://github.com/jcrist
https://github.com/dask/dask/pull/3763
https://github.com/itamarst
https://github.com/dask/dask/pull/4049
https://github.com/dask/dask/pull/4034
https://github.com/dask/dask/pull/4031
https://github.com/dask/dask/pull/4020
https://github.com/dask/dask/pull/4021
https://github.com/dask/dask/pull/4022
https://github.com/dask/dask/pull/4023
https://github.com/dask/dask/pull/4016
https://github.com/dask/dask/pull/4017
https://github.com/dask/dask/pull/4010
https://github.com/dask/dask/pull/3997
https://github.com/dask/dask/pull/3996
https://github.com/farrajota
https://github.com/dask/dask/pull/4048
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/4014
https://github.com/mrocklin
https://github.com/dask/dask/pull/4008
https://github.com/mrocklin
https://github.com/dask/dask/pull/3992
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3936
https://github.com/magonser
https://github.com/dask/dask/pull/3980
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3956
https://github.com/rainwoodman
https://github.com/dask/dask/pull/3965
https://github.com/hmaarrfk
https://github.com/dask/dask/pull/3949
https://github.com/fujiisoup
https://github.com/dask/dask/pull/3966
https://github.com/hmaarrfk
https://github.com/dask/dask/pull/3957
https://github.com/mrocklin
https://github.com/dask/dask/pull/3963
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/dask/dask/pull/3960
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3928
https://github.com/mrocklin

dask Documentation, Release 2.6.0

• Fix NumPy issubtype deprecation warning (GH#3939) Bruce Merry

• Fix arg reduction tokens to be unique with different arguments (GH#3955) Tobias de Jong

• Coerce numpy integers to ints in slicing code (GH#3944) Yu Feng

• Linalg.norm ndim along axis partial fix (GH#3933) Tobias de Jong

Dataframe

• Deterministic DataFrame.set_index (GH#3867) George Sakkis

• Fix divisions in read_parquet when dealing with filters #3831 #3930 (GH#3923) (GH#3931) @andrethrill

• Fixing returning type in categorical.as_known (GH#3888) Sriharsha Hatwar

• Fix DataFrame.assign for callables (GH#3919) Tom Augspurger

• Include partitions with no width in repartition (GH#3941) Matthew Rocklin

• Don’t constrict stage/k dtype in dataframe shuffle (GH#3942) Matthew Rocklin

Documentation

• DOC: Add hint on how to render task graphs horizontally (GH#3922) Uwe Korn

• Add try-now button to main landing page (GH#3924) Matthew Rocklin

3.21.26 0.19.0 / 2018-08-29

Array

• Support coordinate in gradient (GH#3949) Keisuke Fujii

• Fix argtopk split_every bug (GH#3810) Guido Imperiale

• Ensure result computing dask.array.isnull() always gives a numpy array (GH#3825) Stephan Hoyer

• Support concatenate for scipy.sparse in dask array (GH#3836) Matthew Rocklin

• Fix argtopk on 32-bit systems. (GH#3823) Elliott Sales de Andrade

• Normalize keys in rechunk (GH#3820) Matthew Rocklin

• Allow shape of dask.array to be a numpy array (GH#3844) Mark Harfouche

• Fix numpy deprecation warning on tuple indexing (GH#3851) Tobias de Jong

• Rename ghost module to overlap (GH#3830) Robert Sare

• Re-add the ghost import to da __init__ (GH#3861) Jim Crist

• Ensure copy preserves masked arrays (GH#3852) Tobias de Jong

DataFrame

• Added dtype and sparse keywords to dask.dataframe.get_dummies() (GH#3792) Tom
Augspurger

• Added dask.dataframe.to_dask_array() for converting a Dask Series or DataFrame to a Dask Array,
possibly with known chunk sizes (GH#3884) Tom Augspurger

3.21. Changelog 897

https://github.com/dask/dask/pull/3939
https://github.com/bmerry
https://github.com/dask/dask/pull/3955
https://github.com/tadejong
https://github.com/dask/dask/pull/3944
https://github.com/rainwoodman
https://github.com/dask/dask/pull/3933
https://github.com/tadejong
https://github.com/dask/dask/pull/3867
https://github.com/gsakkis
https://github.com/dask/dask/pull/3923
https://github.com/dask/dask/pull/3931
https://github.com/andrethrill
https://github.com/dask/dask/pull/3888
https://github.com/Sriharsha-hatwar
https://github.com/dask/dask/pull/3919
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3941
https://github.com/mrocklin
https://github.com/dask/dask/pull/3942
https://github.com/mrocklin
https://github.com/dask/dask/pull/3922
https://github.com/xhochy
https://github.com/dask/dask/pull/3924
https://github.com/mrocklin
https://github.com/dask/dask/pull/3949
https://github.com/fujiisoup
https://github.com/dask/dask/pull/3810
https://github.com/crusaderky
https://github.com/dask/dask/pull/3825
https://github.com/shoyer
https://github.com/dask/dask/pull/3836
https://github.com/mrocklin
https://github.com/dask/dask/pull/3823
https://github.com/QuLogic
https://github.com/dask/dask/pull/3820
https://github.com/mrocklin
https://github.com/dask/dask/pull/3844
https://github.com/hmaarrfk
https://github.com/dask/dask/pull/3851
https://github.com/tadejong
https://github.com/dask/dask/pull/3830
https://github.com/rmsare
https://github.com/dask/dask/pull/3861
https://github.com/jcrist
https://github.com/dask/dask/pull/3852
https://github.com/tadejong
https://github.com/dask/dask/pull/3792
https://github.com/tomaugspurger
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3884

dask Documentation, Release 2.6.0

• Changed the behavior for dask.array.asarray() for dask dataframe and series inputs. Previously, the
series was eagerly converted to an in-memory NumPy array before creating a dask array with known chunks
sizes. This caused unexpectedly high memory usage. Now, no intermediate NumPy array is created, and a Dask
array with unknown chunk sizes is returned (GH#3884) Tom Augspurger

• DataFrame.iloc (GH#3805) Tom Augspurger

• When reading multiple paths, expand globs. (GH#3828) Irina Truong

• Added index column name after resample (GH#3833) Eric Bonfadini

• Add (lazy) shape property to dataframe and series (GH#3212) Henrique Ribeiro

• Fix failing hdfs test [test-hdfs] (GH#3858) Jim Crist

• Fixes for pyarrow 0.10.0 release (GH#3860) Jim Crist

• Rename to_csv keys for diagnostics (GH#3890) Matthew Rocklin

• Match pandas warnings for concat sort (GH#3897) Tom Augspurger

• Include filename in read_csv (GH#3908) Julia Signell

Core

• Better error message on import when missing common dependencies (GH#3771) Danilo Horta

• Drop Python 3.4 support (GH#3840) Jim Crist

• Remove expired deprecation warnings (GH#3841) Jim Crist

• Add DASK_ROOT_CONFIG environment variable (GH#3849) Joe Hamman

• Don’t cull in local scheduler, do cull in delayed (GH#3856) Jim Crist

• Increase conda download retries (GH#3857) Jim Crist

• Add python_requires and Trove classifiers (GH#3855) @hugovk

• Fix collections.abc deprecation warnings in Python 3.7.0 (GH#3876) Jan Margeta

• Allow dot jpeg to xfail in visualize tests (GH#3896) Matthew Rocklin

• Add Python 3.7 to travis.yml (GH#3894) Matthew Rocklin

• Add expand_environment_variables to dask.config (GH#3893) Joe Hamman

Docs

• Fix typo in import statement of diagnostics (GH#3826) John Mrziglod

• Add link to YARN docs (GH#3838) Jim Crist

• fix of minor typos in landing page index.html (GH#3746) Christoph Moehl

• Update delayed-custom.rst (GH#3850) Anderson Banihirwe

• DOC: clarify delayed docstring (GH#3709) Scott Sievert

• Add new presentations (GH#3880) Javad

• Add dask array normalize_chunks to documentation (GH#3878) Daniel Rothenberg

• Docs: Fix link to snakeviz (GH#3900) Hans Moritz Günther

• Add missing ‘ to docstring (GH#3915) @rtobar

898 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/3884
https://github.com/dask/dask/pull/3805
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3828
https://github.com/j-bennet
https://github.com/dask/dask/pull/3833
https://github.com/eric-bonfadini
https://github.com/dask/dask/pull/3212
https://github.com/henriqueribeiro
https://github.com/dask/dask/pull/3858
https://github.com/jcrist
https://github.com/dask/dask/pull/3860
https://github.com/jcrist
https://github.com/dask/dask/pull/3890
https://github.com/mrocklin
https://github.com/dask/dask/pull/3897
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3908
https://github.com/jsignell
https://github.com/dask/dask/pull/3771
https://github.com/horta
https://github.com/dask/dask/pull/3840
https://github.com/jcrist
https://github.com/dask/dask/pull/3841
https://github.com/jcrist
https://github.com/dask/dask/pull/3849
https://github.com/jhamman
https://github.com/dask/dask/pull/3856
https://github.com/jcrist
https://github.com/dask/dask/pull/3857
https://github.com/jcrist
https://github.com/dask/dask/pull/3855
https://github.com/hugovk
https://github.com/dask/dask/pull/3876
https://github.com/jmargeta
https://github.com/dask/dask/pull/3896
https://github.com/mrocklin
https://github.com/dask/dask/pull/3894
https://github.com/mrocklin
https://github.com/dask/dask/pull/3893
https://github.com/jhamman
https://github.com/dask/dask/pull/3826
https://github.com/JohnMrziglod
https://github.com/dask/dask/pull/3838
https://github.com/jcrist
https://github.com/dask/dask/pull/3746
https://github.com/cmohl2013
https://github.com/dask/dask/pull/3850
https://github.com/andersy005
https://github.com/dask/dask/pull/3709
https://github.com/stsievert
https://github.com/dask/dask/pull/3880
https://github.com/javad94
https://github.com/dask/dask/pull/3878
https://github.com/darothen
https://github.com/dask/dask/pull/3900
https://github.com/hamogu
https://github.com/dask/dask/pull/3915
https://github.com/rtobar

dask Documentation, Release 2.6.0

3.21.27 0.18.2 / 2018-07-23

Array

• Reimplemented argtopk to make it release the GIL (GH#3610) Guido Imperiale

• Don’t overlap on non-overlapped dimensions in map_overlap (GH#3653) Matthew Rocklin

• Fix linalg.tsqr for dimensions of uncertain length (GH#3662) Jeremy Chen

• Break apart uneven array-of-int slicing to separate chunks (GH#3648) Matthew Rocklin

• Align auto chunks to provided chunks, rather than shape (GH#3679) Matthew Rocklin

• Adds endpoint and retstep support for linspace (GH#3675) James Bourbeau

• Implement .blocks accessor (GH#3689) Matthew Rocklin

• Add block_info keyword to map_blocks functions (GH#3686) Matthew Rocklin

• Slice by dask array of ints (GH#3407) Guido Imperiale

• Support dtype in arange (GH#3722) Guido Imperiale

• Fix argtopk with uneven chunks (GH#3720) Guido Imperiale

• Raise error when replace=False in da.choice (GH#3765) James Bourbeau

• Update chunks in Array.__setitem__ (GH#3767) Itamar Turner-Trauring

• Add a chunksize convenience property (GH#3777) Jacob Tomlinson

• Fix and simplify array slicing behavior when step < 0 (GH#3702) Ziyao Wei

• Ensure to_zarr with return_stored True returns a Dask Array (GH#3786) John A Kirkham

Bag

• Add last_endline optional parameter in to_textfiles (GH#3745) George Sakkis

Dataframe

• Add aggregate function for rolling objects (GH#3772) Gerome Pistre

• Properly tokenize cumulative groupby aggregations (GH#3799) Cloves Almeida

Delayed

• Add the @ operator to the delayed objects (GH#3691) Mark Harfouche

• Add delayed best practices to documentation (GH#3737) Matthew Rocklin

• Fix @delayed decorator for methods and add tests (GH#3757) Ziyao Wei

Core

• Fix extra progressbar (GH#3669) Mike Neish

• Allow tasks back onto ordering stack if they have one dependency (GH#3652) Matthew Rocklin

• Prefer end-tasks with low numbers of dependencies when ordering (GH#3588) Tom Augspurger

3.21. Changelog 899

https://github.com/dask/dask/pull/3610
https://github.com/crusaderky
https://github.com/dask/dask/pull/3653
https://github.com/mrocklin
https://github.com/dask/dask/pull/3662
https://github.com/convexset
https://github.com/dask/dask/pull/3648
https://github.com/mrocklin
https://github.com/dask/dask/pull/3679
https://github.com/mrocklin
https://github.com/dask/dask/pull/3675
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3689
https://github.com/mrocklin
https://github.com/dask/dask/pull/3686
https://github.com/mrocklin
https://github.com/dask/dask/pull/3407
https://github.com/crusaderky
https://github.com/dask/dask/pull/3722
https://github.com/crusaderky
https://github.com/dask/dask/pull/3720
https://github.com/crusaderky
https://github.com/dask/dask/pull/3765
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3767
https://github.com/itamarst
https://github.com/dask/dask/pull/3777
https://github.com/jacobtomlinson
https://github.com/dask/dask/pull/3702
https://github.com/ZiyaoWei
https://github.com/dask/dask/pull/3786
https://github.com/jakirkham
https://github.com/dask/dask/pull/3745
https://github.com/gsakkis
https://github.com/dask/dask/pull/3772
https://github.com/GPistre
https://github.com/dask/dask/pull/3799
https://github.com/cjalmeida
https://github.com/dask/dask/pull/3691
https://github.com/hmaarrfk
https://github.com/dask/dask/pull/3737
https://github.com/mrocklin
https://github.com/dask/dask/pull/3757
https://github.com/ZiyaoWei
https://github.com/dask/dask/pull/3669
https://github.com/neishm
https://github.com/dask/dask/pull/3652
https://github.com/mrocklin
https://github.com/dask/dask/pull/3588
https://github.com/tomaugspurger

dask Documentation, Release 2.6.0

• Add assert_eq to top-level modules (GH#3726) Matthew Rocklin

• Test that dask collections can hold scipy.sparse arrays (GH#3738) Matthew Rocklin

• Fix setup of lz4 decompression functions (GH#3782) Elliott Sales de Andrade

• Add datasets module (GH#3780) Matthew Rocklin

3.21.28 0.18.1 / 2018-06-22

Array

• from_array now supports scalar types and nested lists/tuples in input, just like all numpy functions do; it
also produces a simpler graph when the input is a plain ndarray (GH#3568) Guido Imperiale

• Fix slicing of big arrays due to cumsum dtype bug (GH#3620) Marco Rossi

• Add Dask Array implementation of pad (GH#3578) John A Kirkham

• Fix array random API examples (GH#3625) James Bourbeau

• Add average function to dask array (GH#3640) James Bourbeau

• Tokenize ghost_internal with axes (GH#3643) Matthew Rocklin

• Add outer for Dask Arrays (GH#3658) John A Kirkham

DataFrame

• Add Index.to_series method (GH#3613) Henrique Ribeiro

• Fix missing partition columns in pyarrow-parquet (GH#3636) Martin Durant

Core

• Minor tweaks to CI (GH#3629) Guido Imperiale

• Add back dask.utils.effective_get (GH#3642) Matthew Rocklin

• DASK_CONFIG dictates config write location (GH#3621) Jim Crist

• Replace ‘collections’ key in unpack_collections with unique key (GH#3632) Yu Feng

• Avoid deepcopy in dask.config.set (GH#3649) Matthew Rocklin

3.21.29 0.18.0 / 2018-06-14

Array

• Add to/from_zarr for Zarr-format datasets and arrays (GH#3460) Martin Durant

• Experimental addition of generalized ufunc support, apply_gufunc, gufunc, and as_gufunc (GH#3109)
(GH#3526) (GH#3539) Markus Gonser

• Avoid unnecessary rechunking tasks (GH#3529) Matthew Rocklin

• Compute dtypes at runtime for fft (GH#3511) Matthew Rocklin

• Generate UUIDs for all da.store operations (GH#3540) Martin Durant

900 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/3726
https://github.com/mrocklin
https://github.com/dask/dask/pull/3738
https://github.com/mrocklin
https://github.com/dask/dask/pull/3782
https://github.com/QuLogic
https://github.com/dask/dask/pull/3780
https://github.com/mrocklin
https://github.com/dask/dask/pull/3568
https://github.com/crusaderky
https://github.com/dask/dask/pull/3620
https://github.com/m-rossi
https://github.com/dask/dask/pull/3578
https://github.com/jakirkham
https://github.com/dask/dask/pull/3625
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3640
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3643
https://github.com/mrocklin
https://github.com/dask/dask/pull/3658
https://github.com/jakirkham
https://github.com/dask/dask/pull/3613
https://github.com/henriqueribeiro
https://github.com/dask/dask/pull/3636
https://github.com/martindurant
https://github.com/dask/dask/pull/3629
https://github.com/crusaderky
https://github.com/dask/dask/pull/3642
https://github.com/mrocklin
https://github.com/dask/dask/pull/3621
https://github.com/jcrist
https://github.com/dask/dask/pull/3632
https://github.com/rainwoodman
https://github.com/dask/dask/pull/3649
https://github.com/mrocklin
https://github.com/dask/dask/pull/3460
https://github.com/martindurant
https://github.com/dask/dask/pull/3109
https://github.com/dask/dask/pull/3526
https://github.com/dask/dask/pull/3539
https://github.com/magonser
https://github.com/dask/dask/pull/3529
https://github.com/mrocklin
https://github.com/dask/dask/pull/3511
https://github.com/mrocklin
https://github.com/dask/dask/pull/3540
https://github.com/martindurant

dask Documentation, Release 2.6.0

• Correct internal dimension of Dask’s SVD (GH#3517) John A Kirkham

• BUG: do not raise IndexError for identity slice in array.vindex (GH#3559) Scott Sievert

• Adds isneginf and isposinf (GH#3581) John A Kirkham

• Drop Dask Array’s learn module (GH#3580) John A Kirkham

• added sfqr (short-and-fat) as a counterpart to tsqr. . . (GH#3575) Jeremy Chen

• Allow 0-width chunks in dask.array.rechunk (GH#3591) Marc Pfister

• Document Dask Array’s nan_to_num in public API (GH#3599) John A Kirkham

• Show block example (GH#3601) John A Kirkham

• Replace token= keyword with name= in map_blocks (GH#3597) Matthew Rocklin

• Disable locking in to_zarr (needed for using to_zarr in a distributed context) (GH#3607) John A Kirkham

• Support Zarr Arrays in to_zarr/from_zarr (GH#3561) John A Kirkham

• Added recursion to array/linalg/tsqr to better manage the single core bottleneck (GH#3586) Jeremy Chan
(GH#3396) Guido Imperiale

Dataframe

• Add to/read_json (GH#3494) Martin Durant

• Adds index to unsupported arguments for DataFrame.rename method (GH#3522) James Bourbeau

• Adds support to subset Dask DataFrame columns using numpy.ndarray, pandas.Series, and pandas.
Index objects (GH#3536) James Bourbeau

• Raise error if meta columns do not match dataframe (GH#3485) Christopher Ren

• Add index to unsupprted argument for DataFrame.rename (GH#3522) James Bourbeau

• Adds support for subsetting DataFrames with pandas Index/Series and numpy ndarrays (GH#3536) James
Bourbeau

• Dataframe sample method docstring fix (GH#3566) James Bourbeau

• fixes dd.read_json to infer file compression (GH#3594) Matt Lee

• Adds n to sample method (GH#3606) James Bourbeau

• Add fastparquet ParquetFile object support (GH#3573) @andrethrill

Bag

• Rename method= keyword to shuffle= in bag.groupby (GH#3470) Matthew Rocklin

Core

• Replace get= keyword with scheduler= keyword (GH#3448) Matthew Rocklin

• Add centralized dask.config module to handle configuration for all Dask subprojects (GH#3432) (GH#3513)
(GH#3520) Matthew Rocklin

• Add dask-ssh CLI Options and Description. (GH#3476) @beomi

• Read whole files fix regardless of header for HTTP (GH#3496) Martin Durant

3.21. Changelog 901

https://github.com/dask/dask/pull/3517
https://github.com/jakirkham
https://github.com/dask/dask/pull/3559
https://github.com/stsievert
https://github.com/dask/dask/pull/3581
https://github.com/jakirkham
https://github.com/dask/dask/pull/3580
https://github.com/jakirkham
https://github.com/dask/dask/pull/3575
https://github.com/convexset
https://github.com/dask/dask/pull/3591
https://github.com/drwelby
https://github.com/dask/dask/pull/3599
https://github.com/jakirkham
https://github.com/dask/dask/pull/3601
https://github.com/jakirkham
https://github.com/dask/dask/pull/3597
https://github.com/mrocklin
https://github.com/dask/dask/pull/3607
https://github.com/jakirkham
https://github.com/dask/dask/pull/3561
https://github.com/jakirkham
https://github.com/dask/dask/pull/3586
https://github.com/convexset
https://github.com/dask/dask/pull/3396
https://github.com/crusaderky
https://github.com/dask/dask/pull/3494
https://github.com/martindurant
https://github.com/dask/dask/pull/3522
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3536
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3485
https://github.com/cr458
https://github.com/dask/dask/pull/3522
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3536
https://github.com/jrbourbeau
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3566
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3594
https://github.com/mathewlee11
https://github.com/dask/dask/pull/3606
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3573
https://github.com/andrethrill
https://github.com/dask/dask/pull/3470
https://github.com/mrocklin
https://github.com/dask/dask/pull/3448
https://github.com/mrocklin
https://github.com/dask/dask/pull/3432
https://github.com/dask/dask/pull/3513
https://github.com/dask/dask/pull/3520
https://github.com/mrocklin
https://github.com/dask/dask/pull/3476
https://github.com/beomi
https://github.com/dask/dask/pull/3496
https://github.com/martindurant

dask Documentation, Release 2.6.0

• Adds synchronous scheduler syntax to debugging docs (GH#3509) James Bourbeau

• Replace dask.set_options with dask.config.set (GH#3502) Matthew Rocklin

• Update sphinx readthedocs-theme (GH#3516) Matthew Rocklin

• Introduce “auto” value for normalize_chunks (GH#3507) Matthew Rocklin

• Fix check in configuration with env=None (GH#3562) Simon Perkins

• Update sizeof definitions (GH#3582) Matthew Rocklin

• Remove –verbose flag from travis-ci (GH#3477) Matthew Rocklin

• Remove “da.random” from random array keys (GH#3604) Matthew Rocklin

3.21.30 0.17.5 / 2018-05-16

Array

• Fix rechunk with chunksize of -1 in a dict (GH#3469) Stephan Hoyer

• einsum now accepts the split_every parameter (GH#3471) Guido Imperiale

• Improved slicing performance (GH#3479) Yu Feng

DataFrame

• Compatibility with pandas 0.23.0 (GH#3499) Tom Augspurger

3.21.31 0.17.4 / 2018-05-03

Dataframe

• Add support for indexing Dask DataFrames with string subclasses (GH#3461) James Bourbeau

• Allow using both sorted_index and chunksize in read_hdf (GH#3463) Pierre Bartet

• Pass filesystem to arrow piece reader (GH#3466) Martin Durant

• Switches to using dask.compat string_types (GH#3462) James Bourbeau

3.21.32 0.17.3 / 2018-05-02

Array

• Add einsum for Dask Arrays (GH#3412) Simon Perkins

• Add piecewise for Dask Arrays (GH#3350) John A Kirkham

• Fix handling of nan in broadcast_shapes (GH#3356) John A Kirkham

• Add isin for dask arrays (GH#3363). Stephan Hoyer

• Overhauled topk for Dask Arrays: faster algorithm, particularly for large k’s; added support for multiple axes,
recursive aggregation, and an option to pick the bottom k elements instead. (GH#3395) Guido Imperiale

• The topk API has changed from topk(k, array) to the more conventional topk(array, k). The legacy API still
works but is now deprecated. (GH#2965) Guido Imperiale

902 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/3509
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3502
https://github.com/mrocklin
https://github.com/dask/dask/pull/3516
https://github.com/mrocklin
https://github.com/dask/dask/pull/3507
https://github.com/mrocklin
https://github.com/dask/dask/pull/3562
https://github.com/sjperkins
https://github.com/dask/dask/pull/3582
https://github.com/mrocklin
https://github.com/dask/dask/pull/3477
https://github.com/mrocklin
https://github.com/dask/dask/pull/3604
https://github.com/mrocklin
https://github.com/dask/dask/pull/3469
https://github.com/shoyer
https://github.com/dask/dask/pull/3471
https://github.com/crusaderky
https://github.com/dask/dask/pull/3479
https://github.com/rainwoodman
https://github.com/dask/dask/pull/3499
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3461
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3463
https://github.com/Pierre-Bartet
https://github.com/dask/dask/pull/3466
https://github.com/martindurant
https://github.com/dask/dask/pull/3462
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3412
https://github.com/sjperkins
https://github.com/dask/dask/pull/3350
https://github.com/jakirkham
https://github.com/dask/dask/pull/3356
https://github.com/jakirkham
https://github.com/dask/dask/pull/3363
https://github.com/shoyer
https://github.com/dask/dask/pull/3395
https://github.com/crusaderky
https://github.com/dask/dask/pull/2965
https://github.com/crusaderky

dask Documentation, Release 2.6.0

• New function argtopk for Dask Arrays (GH#3396) Guido Imperiale

• Fix handling partial depth and boundary in map_overlap (GH#3445) John A Kirkham

• Add gradient for Dask Arrays (GH#3434) John A Kirkham

DataFrame

• Allow t as shorthand for table in to_hdf for pandas compatibility (GH#3330) Jörg Dietrich

• Added top level isna method for Dask DataFrames (GH#3294) Christopher Ren

• Fix selection on partition column on read_parquet for engine="pyarrow" (GH#3207) Uwe Korn

• Added DataFrame.squeeze method (GH#3366) Christopher Ren

• Added infer_divisions option to read_parquet to specify whether read engines should compute divisions
(GH#3387) Jon Mease

• Added support for inferring division for engine="pyarrow" (GH#3387) Jon Mease

• Provide more informative error message for meta= errors (GH#3343) Matthew Rocklin

• add orc reader (GH#3284) Martin Durant

• Default compression for parquet now always Snappy, in line with pandas (GH#3373) Martin Durant

• Fixed bug in Dask DataFrame and Series comparisons with NumPy scalars (GH#3436) James Bourbeau

• Remove outdated requirement from repartition docstring (GH#3440) Jörg Dietrich

• Fixed bug in aggregation when only a Series is selected (GH#3446) Jörg Dietrich

• Add default values to make_timeseries (GH#3421) Matthew Rocklin

Core

• Support traversing collections in persist, visualize, and optimize (GH#3410) Jim Crist

• Add schedule= keyword to compute and persist. This replaces common use of the get= keyword (GH#3448)
Matthew Rocklin

3.21.33 0.17.2 / 2018-03-21

Array

• Add broadcast_arrays for Dask Arrays (GH#3217) John A Kirkham

• Add bitwise_* ufuncs (GH#3219) John A Kirkham

• Add optional axis argument to squeeze (GH#3261) John A Kirkham

• Validate inputs to atop (GH#3307) Matthew Rocklin

• Avoid calls to astype in concatenate if all parts have the same dtype (GH#3301) Martin Durant

3.21. Changelog 903

https://github.com/dask/dask/pull/3396
https://github.com/crusaderky
https://github.com/dask/dask/pull/3445
https://github.com/jakirkham
https://github.com/dask/dask/pull/3434
https://github.com/jakirkham
https://github.com/dask/dask/pull/3330
https://github.com/joergdietrich
https://github.com/dask/dask/pull/3294
https://github.com/cr458
https://github.com/dask/dask/pull/3207
https://github.com/xhochy
https://github.com/dask/dask/pull/3366
https://github.com/cr458
https://github.com/dask/dask/pull/3387
https://github.com/jmmease
https://github.com/dask/dask/pull/3387
https://github.com/jmmease
https://github.com/dask/dask/pull/3343
https://github.com/mrocklin
https://github.com/dask/dask/pull/3284
https://github.com/martindurant
https://github.com/dask/dask/pull/3373
https://github.com/martindurant
https://github.com/dask/dask/pull/3436
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3440
https://github.com/joergdietrich
https://github.com/dask/dask/pull/3446
https://github.com/joergdietrich
https://github.com/dask/dask/pull/3421
https://github.com/mrocklin
https://github.com/dask/dask/pull/3410
https://github.com/jcrist
https://github.com/dask/dask/pull/3448
https://github.com/mrocklin
https://github.com/dask/dask/pull/3217
https://github.com/jakirkham
https://github.com/dask/dask/pull/3219
https://github.com/jakirkham
https://github.com/dask/dask/pull/3261
https://github.com/jakirkham
https://github.com/dask/dask/pull/3307
https://github.com/mrocklin
https://github.com/dask/dask/pull/3301
https://github.com/martindurant

dask Documentation, Release 2.6.0

DataFrame

• Fixed bug in shuffle due to aggressive truncation (GH#3201) Matthew Rocklin

• Support specifying categorical columns on read_parquet with categories=[...] for
engine="pyarrow" (GH#3177) Uwe Korn

• Add dd.tseries.Resampler.agg (GH#3202) Richard Postelnik

• Support operations that mix dataframes and arrays (GH#3230) Matthew Rocklin

• Support extra Scalar and Delayed args in dd.groupby._Groupby.apply (GH#3256) Gabriele Lanaro

Bag

• Support joining against single-partitioned bags and delayed objects (GH#3254) Matthew Rocklin

Core

• Fixed bug when using unexpected but hashable types for keys (GH#3238) Daniel Collins

• Fix bug in task ordering so that we break ties consistently with the key name (GH#3271) Matthew Rocklin

• Avoid sorting tasks in order when the number of tasks is very large (GH#3298) Matthew Rocklin

3.21.34 0.17.1 / 2018-02-22

Array

• Corrected dimension chunking in indices (GH#3166, GH#3167) Simon Perkins

• Inline store_chunk calls for store’s return_stored option (GH#3153) John A Kirkham

• Compatibility with struct dtypes for NumPy 1.14.1 release (GH#3187) Matthew Rocklin

DataFrame

• Bugfix to allow column assignment of pandas datetimes(GH#3164) Max Epstein

Core

• New file-system for HTTP(S), allowing direct loading from specific URLs (GH#3160) Martin Durant

• Fix bug when tokenizing partials with no keywords (GH#3191) Matthew Rocklin

• Use more recent LZ4 API (GH#3157) Thrasibule

• Introduce output stream parameter for progress bar (GH#3185) Dieter Weber

904 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/3201
https://github.com/mrocklin
https://github.com/dask/dask/pull/3177
https://github.com/xhochy
https://github.com/dask/dask/pull/3202
https://github.com/postelrich
https://github.com/dask/dask/pull/3230
https://github.com/mrocklin
https://github.com/dask/dask/pull/3256
https://github.com/gabrielelanaro
https://github.com/dask/dask/pull/3254
https://github.com/mrocklin
https://github.com/dask/dask/pull/3238
https://github.com/dancollins34
https://github.com/dask/dask/pull/3271
https://github.com/mrocklin
https://github.com/dask/dask/pull/3298
https://github.com/mrocklin
https://github.com/dask/dask/issues/3166
https://github.com/dask/dask/pull/3167
https://github.com/sjperkins
https://github.com/dask/dask/pull/3153
https://github.com/jakirkham
https://github.com/dask/dask/pull/3187
https://github.com/mrocklin
https://github.com/dask/dask/pull/3164
https://github.com/MaxPowerWasTaken
https://github.com/dask/dask/pull/3160
https://github.com/martindurant
https://github.com/dask/dask/pull/3191
https://github.com/mrocklin
https://github.com/dask/dask/pull/3157
https://github.com/thrasibule
https://github.com/dask/dask/pull/3185
https://github.com/uellue

dask Documentation, Release 2.6.0

3.21.35 0.17.0 / 2018-02-09

Array

• Added a support object-type arrays for nansum, nanmin, and nanmax (GH#3133) Keisuke Fujii

• Update error handling when len is called with empty chunks (GH#3058) Xander Johnson

• Fixes a metadata bug with store’s return_stored option (GH#3064) John A Kirkham

• Fix a bug in optimization.fuse_slice to properly handle when first input is None (GH#3076) James
Bourbeau

• Support arrays with unknown chunk sizes in percentile (GH#3107) Matthew Rocklin

• Tokenize scipy.sparse arrays and np.matrix (GH#3060) Roman Yurchak

DataFrame

• Support month timedeltas in repartition(freq=. . .) (GH#3110) Matthew Rocklin

• Avoid mutation in dataframe groupby tests (GH#3118) Matthew Rocklin

• read_csv, read_table, and read_parquet accept iterables of paths (GH#3124) Jim Crist

• Deprecates the dd.to_delayed function in favor of the existing method (GH#3126) Jim Crist

• Return dask.arrays from df.map_partitions calls when the UDF returns a numpy array (GH#3147) Matthew
Rocklin

• Change handling of columns and index in dd.read_parquet to be more consistent, especially in han-
dling of multi-indices (GH#3149) Jim Crist

• fastparquet append=True allowed to create new dataset (GH#3097) Martin Durant

• dtype rationalization for sql queries (GH#3100) Martin Durant

Bag

• Document bag.map_paritions function may receive either a list or generator. (GH#3150) Nir

Core

• Change default task ordering to prefer nodes with few dependents and then many downstream dependencies
(GH#3056) Matthew Rocklin

• Add color= option to visualize to color by task order (GH#3057) (GH#3122) Matthew Rocklin

• Deprecate dask.bytes.open_text_files (GH#3077) Jim Crist

• Remove short-circuit hdfs reads handling due to maintenance costs. May be re-added in a more robust manner
later (GH#3079) Jim Crist

• Add dask.base.optimize for optimizing multiple collections without computing. (GH#3071) Jim Crist

• Rename dask.optimize module to dask.optimization (GH#3071) Jim Crist

• Change task ordering to do a full traversal (GH#3066) Matthew Rocklin

• Adds an optimize_graph keyword to all to_delayedmethods to allow controlling whether optimizations
occur on conversion. (GH#3126) Jim Crist

3.21. Changelog 905

https://github.com/dask/dask/issues/3133
https://github.com/fujiisoup
https://github.com/dask/dask/issues/3058
https://github.com/metasyn
https://github.com/dask/dask/pull/3064
https://github.com/jakirkham
https://github.com/dask/dask/pull/3076
https://github.com/jrbourbeau
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/3107
https://github.com/mrocklin
https://github.com/dask/dask/pull/3060
https://github.com/rth
https://github.com/dask/dask/pull/3110
https://github.com/mrocklin
https://github.com/dask/dask/pull/3118
https://github.com/mrocklin
https://github.com/dask/dask/pull/3124
https://github.com/jcrist
https://github.com/dask/dask/pull/3126
https://github.com/jcrist
https://github.com/dask/dask/pull/3147
https://github.com/mrocklin
https://github.com/mrocklin
https://github.com/dask/dask/pull/3149
https://github.com/jcrist
https://github.com/dask/dask/pull/3097
https://github.com/martindurant
https://github.com/dask/dask/pull/3100
https://github.com/martindurant
https://github.com/dask/dask/pull/3150
https://github.com/nirizr
https://github.com/dask/dask/pull/3056
https://github.com/mrocklin
https://github.com/dask/dask/pull/3057
https://github.com/dask/dask/pull/3122
https://github.com/mrocklin
https://github.com/dask/dask/pull/3077
https://github.com/jcrist
https://github.com/dask/dask/pull/3079
https://github.com/jcrist
https://github.com/dask/dask/pull/3071
https://github.com/jcrist
https://github.com/dask/dask/pull/3071
https://github.com/jcrist
https://github.com/dask/dask/pull/3066
https://github.com/mrocklin
https://github.com/dask/dask/pull/3126
https://github.com/jcrist

dask Documentation, Release 2.6.0

• Support using pyarrow for hdfs integration (GH#3123) Jim Crist

• Move HDFS integration and tests into dask repo (GH#3083) Jim Crist

• Remove write_bytes (GH#3116) Jim Crist

3.21.36 0.16.1 / 2018-01-09

Array

• Fix handling of scalar percentile values in percentile (GH#3021) James Bourbeau

• Prevent bool() coercion from calling compute (GH#2958) Albert DeFusco

• Add matmul (GH#2904) John A Kirkham

• Support N-D arrays with matmul (GH#2909) John A Kirkham

• Add vdot (GH#2910) John A Kirkham

• Explicit chunks argument for broadcast_to (GH#2943) Stephan Hoyer

• Add meshgrid (GH#2938) John A Kirkham and (GH#3001) Markus Gonser

• Preserve singleton chunks in fftshift/ifftshift (GH#2733) John A Kirkham

• Fix handling of negative indexes in vindex and raise errors for out of bounds indexes (GH#2967) Stephan
Hoyer

• Add flip, flipud, fliplr (GH#2954) John A Kirkham

• Add float_power ufunc (GH#2962) (GH#2969) John A Kirkham

• Compatability for changes to structured arrays in the upcoming NumPy 1.14 release (GH#2964) Tom
Augspurger

• Add block (GH#2650) John A Kirkham

• Add frompyfunc (GH#3030) Jim Crist

• Add the return_stored option to store for chaining stored results (GH#2980) John A Kirkham

DataFrame

• Fixed naming bug in cumulative aggregations (GH#3037) Martijn Arts

• Fixed dd.read_csv when names is given but header is not set to None (GH#2976) Martijn Arts

• Fixed dd.read_csv so that passing instances of CategoricalDtype in dtype will result in known
categoricals (GH#2997) Tom Augspurger

• Prevent bool() coercion from calling compute (GH#2958) Albert DeFusco

• DataFrame.read_sql() (GH#2928) to an empty database tables returns an empty dask dataframe Apos-
tolos Vlachopoulos

• Compatability for reading Parquet files written by PyArrow 0.8.0 (GH#2973) Tom Augspurger

• Correctly handle the column name (df.columns.name) when reading in dd.read_parquet (GH#2973) Tom
Augspurger

• Fixed dd.concat losing the index dtype when the data contained a categorical (GH#2932) Tom Augspurger

• Add dd.Series.rename (GH#3027) Jim Crist

906 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/3123
https://github.com/jcrist
https://github.com/dask/dask/pull/3083
https://github.com/jcrist
https://github.com/dask/dask/pull/3116
https://github.com/jcrist
https://github.com/dask/dask/pull/3021
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/2958
https://github.com/AlbertDeFusco
https://github.com/dask/dask/pull/2904
https://github.com/jakirkham
https://github.com/dask/dask/pull/2909
https://github.com/jakirkham
https://github.com/dask/dask/pull/2910
https://github.com/jakirkham
https://github.com/dask/dask/pull/2943
https://github.com/shoyer
https://github.com/dask/dask/pull/2938
https://github.com/jakirkham
https://github.com/dask/dask/pull/3001
https://github.com/magonser
https://github.com/dask/dask/pull/2733
https://github.com/jakirkham
https://github.com/dask/dask/pull/2967
https://github.com/shoyer
https://github.com/shoyer
https://github.com/dask/dask/pull/2954
https://github.com/jakirkham
https://github.com/dask/dask/pull/2962
https://github.com/dask/dask/pull/2969
https://github.com/jakirkham
https://github.com/dask/dask/pull/2964
https://github.com/tomaugspurger
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2650
https://github.com/jakirkham
https://github.com/dask/dask/pull/3030
https://github.com/jcrist
https://github.com/dask/dask/pull/2980
https://github.com/jakirkham
https://github.com/dask/dask/issues/3037
https://github.com/mfaafm
https://github.com/dask/dask/issues/2976
https://github.com/mfaafm
https://github.com/dask/dask/pull/2997
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2958
https://github.com/AlbertDeFusco
https://github.com/dask/dask/pull/2928
https://github.com/avlahop
https://github.com/avlahop
https://github.com/dask/dask/pull/2973
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2973
https://github.com/tomaugspurger
https://github.com/tomaugspurger
https://github.com/dask/dask/issues/2932
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3027
https://github.com/jcrist

dask Documentation, Release 2.6.0

• DataFrame.merge() now supports merging on a combination of columns and the index (GH#2960) Jon
Mease

• Removed the deprecated dd.rolling* methods, in preparation for their removal in the next pandas release
(GH#2995) Tom Augspurger

• Fix metadata inference bug in which single-partition series were mistakenly special cased (GH#3035) Jim Crist

• Add support for Series.str.cat (GH#3028) Jim Crist

Core

• Improve 32-bit compatibility (GH#2937) Matthew Rocklin

• Change task prioritization to avoid upwards branching (GH#3017) Matthew Rocklin

3.21.37 0.16.0 / 2017-11-17

This is a major release. It includes breaking changes, new protocols, and a large number of bug fixes.

Array

• Add atleast_1d, atleast_2d, and atleast_3d (GH#2760) (GH#2765) John A Kirkham

• Add allclose (GH#2771) by John A Kirkham

• Remove random.different_seeds from Dask Array API docs (GH#2772) John A Kirkham

• Deprecate vnorm in favor of dask.array.linalg.norm (GH#2773) John A Kirkham

• Reimplement unique to be lazy (GH#2775) John A Kirkham

• Support broadcasting of Dask Arrays with 0-length dimensions (GH#2784) John A Kirkham

• Add asarray and asanyarray to Dask Array API docs (GH#2787) James Bourbeau

• Support unique’s return_* arguments (GH#2779) John A Kirkham

• Simplify _unique_internal (GH#2850) (GH#2855) John A Kirkham

• Avoid removing some getter calls in array optimizations (GH#2826) Jim Crist

DataFrame

• Support pyarrow in dd.to_parquet (GH#2868) Jim Crist

• Fixed DataFrame.quantile and Series.quantile returning nan when missing values are present
(GH#2791) Tom Augspurger

• Fixed DataFrame.quantile losing the result .name when q is a scalar (GH#2791) Tom Augspurger

• Fixed dd.concat return a dask.Dataframe when concatenating a single series along the columns, match-
ing pandas’ behavior (GH#2800) James Munroe

• Fixed default inplace parameter for DataFrame.eval to match the pandas defualt for pandas >= 0.21.0
(GH#2838) Tom Augspurger

• Fix exception when calling DataFrame.set_index on text column where one of the partitions was empty
(GH#2831) Jesse Vogt

3.21. Changelog 907

https://github.com/dask/dask/pull/2960
https://github.com/jmmease
https://github.com/jmmease
https://github.com/dask/dask/pull/2995
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/3035
https://github.com/jcrist
https://github.com/dask/dask/pull/3028
https://github.com/jcrist
https://github.com/dask/dask/pull/2937
https://github.com/mrocklin
https://github.com/dask/dask/pull/3017
https://github.com/mrocklin
https://github.com/dask/dask/pull/2760
https://github.com/dask/dask/pull/2765
https://github.com/jakirkham
https://github.com/dask/dask/pull/2771
https://github.com/jakirkham
https://github.com/dask/dask/pull/2772
https://github.com/jakirkham
https://github.com/dask/dask/pull/2773
https://github.com/jakirkham
https://github.com/dask/dask/pull/2775
https://github.com/jakirkham
https://github.com/dask/dask/pull/2784
https://github.com/jakirkham
https://github.com/dask/dask/pull/2787
https://github.com/jrbourbeau
https://github.com/dask/dask/pull/2779
https://github.com/jakirkham
https://github.com/dask/dask/pull/2850
https://github.com/dask/dask/pull/2855
https://github.com/jakirkham
https://github.com/dask/dask/pull/2826
https://github.com/jcrist
https://github.com/dask/dask/pull/2868
https://github.com/jcrist
https://github.com/dask/dask/pull/2791
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2791
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2800
https://github.com/jmunroe
https://github.com/dask/dask/pull/2838
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2831
https://github.com/jessevogt

dask Documentation, Release 2.6.0

• Do not raise exception when calling DataFrame.set_index on empty dataframe (GH#2827) Jesse Vogt

• Fixed bug in Dataframe.fillna when filling with a Series value (GH#2810) Tom Augspurger

• Deprecate old argument ordering in dd.to_parquet to better match convention of putting the dataframe first
(GH#2867) Jim Crist

• df.astype(categorical_dtype -> known categoricals (GH#2835) Jim Crist

• Test against Pandas release candidate (GH#2814) Tom Augspurger

• Add more tests for read_parquet(engine=’pyarrow’) (GH#2822) Uwe Korn

• Remove unnecessary map_partitions in aggregate (GH#2712) Christopher Prohm

• Fix bug calling sample on empty partitions (GH#2818) @xwang777

• Error nicely when parsing dates in read_csv (GH#2863) Jim Crist

• Cleanup handling of passing filesystem objects to PyArrow readers (GH#2527) @fjetter

• Support repartitioning even if there are no divisions (GH#2873) @Ced4

• Support reading/writing to hdfs using pyarrow in dd.to_parquet (GH#2894, GH#2881) Jim Crist

Core

• Allow tuples as sharedict keys (GH#2763) Matthew Rocklin

• Calling compute within a dask.distributed task defaults to distributed scheduler (GH#2762) Matthew Rocklin

• Auto-import gcsfs when gcs:// protocol is used (GH#2776) Matthew Rocklin

• Fully remove dask.async module, use dask.local instead (GH#2828) Thomas Caswell

• Compatability with bokeh 0.12.10 (GH#2844) Tom Augspurger

• Reduce test memory usage (GH#2782) Jim Crist

• Add Dask collection interface (GH#2748) Jim Crist

• Update Dask collection interface during XArray integration (GH#2847) Matthew Rocklin

• Close resource profiler process on __exit__ (GH#2871) Jim Crist

• Fix S3 tests (GH#2875) Jim Crist

• Fix port for bokeh dashboard in docs (GH#2889) Ian Hopkinson

• Wrap Dask filesystems for PyArrow compatibility (GH#2881) Jim Crist

3.21.38 0.15.4 / 2017-10-06

Array

• da.random.choice now works with array arguments (GH#2781)

• Support indexing in arrays with np.int (fixes regression) (GH#2719)

• Handle zero dimension with rechunking (GH#2747)

• Support -1 as an alias for “size of the dimension” in chunks (GH#2749)

• Call mkdir in array.to_npy_stack (GH#2709)

908 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/2827
https://github.com/jessevogt
https://github.com/dask/dask/pull/2810
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2867
https://github.com/jcrist
https://github.com/dask/dask/pull/2835
https://github.com/jcrist
https://github.com/dask/dask/pull/2814
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2822
https://github.com/xhochy
https://github.com/dask/dask/pull/2712
https://github.com/chmp
https://github.com/dask/dask/pull/2818
https://github.com/xwang777
https://github.com/dask/dask/pull/2863
https://github.com/jcrist
https://github.com/dask/dask/pull/2527
https://github.com/fjetter
https://github.com/dask/dask/pull/2873
https://github.com/Ced4
https://github.com/dask/dask/pull/2894
https://github.com/dask/dask/pull/2881
https://github.com/jcrist
https://github.com/dask/dask/pull/2763
https://github.com/mrocklin
https://github.com/dask/dask/pull/2762
https://github.com/mrocklin
https://github.com/dask/dask/pull/2776
https://github.com/mrocklin
https://github.com/dask/dask/pull/2828
https://github.com/tacaswell
https://github.com/dask/dask/pull/2844
https://github.com/tomaugspurger
https://github.com/dask/dask/pull/2782
https://github.com/jcrist
https://github.com/dask/dask/pull/2748
https://github.com/jcrist
https://github.com/dask/dask/pull/2847
https://github.com/mrocklin
https://github.com/dask/dask/pull/2871
https://github.com/jcrist
https://github.com/dask/dask/pull/2875
https://github.com/jcrist
https://github.com/dask/dask/pull/2889
https://github.com/IanHopkinson
https://github.com/dask/dask/pull/2881
https://github.com/jcrist
https://github.com/dask/dask/pull/2781
https://github.com/dask/dask/pull/2719
https://github.com/dask/dask/pull/2747
https://github.com/dask/dask/pull/2749
https://github.com/dask/dask/pull/2709

dask Documentation, Release 2.6.0

DataFrame

• Added the .str accessor to Categoricals with string categories (GH#2743)

• Support int96 (spark) datetimes in parquet writer (GH#2711)

• Pass on file scheme to fastparquet (GH#2714)

• Support Pandas 0.21 (GH#2737)

Bag

• Add tree reduction support for foldby (GH#2710)

Core

• Drop s3fs from pip install dask[complete] (GH#2750)

3.21.39 0.15.3 / 2017-09-24

Array

• Add masked arrays (GH#2301)

• Add *_like array creation functions (GH#2640)

• Indexing with unsigned integer array (GH#2647)

• Improved slicing with boolean arrays of different dimensions (GH#2658)

• Support literals in top and atop (GH#2661)

• Optional axis argument in cumulative functions (GH#2664)

• Improve tests on scalars with assert_eq (GH#2681)

• Fix norm keepdims (GH#2683)

• Add ptp (GH#2691)

• Add apply_along_axis (GH#2690) and apply_over_axes (GH#2702)

DataFrame

• Added Series.str[index] (GH#2634)

• Allow the groupby by param to handle columns and index levels (GH#2636)

• DataFrame.to_csv and Bag.to_textfiles now return the filenames to which they have written
(GH#2655)

• Fix combination of partition_on and append in to_parquet (GH#2645)

• Fix for parquet file schemes (GH#2667)

• Repartition works with mixed categoricals (GH#2676)

3.21. Changelog 909

https://github.com/dask/dask/pull/2743
https://github.com/dask/dask/pull/2711
https://github.com/dask/dask/pull/2714
https://github.com/dask/dask/pull/2737
https://github.com/dask/dask/pull/2710
https://github.com/dask/dask/pull/2750
https://github.com/dask/dask/pull/2301
https://github.com/dask/dask/pull/2640
https://github.com/dask/dask/pull/2647
https://github.com/dask/dask/pull/2658
https://github.com/dask/dask/pull/2661
https://github.com/dask/dask/pull/2664
https://github.com/dask/dask/pull/2681
https://github.com/dask/dask/pull/2683
https://github.com/dask/dask/pull/2691
https://github.com/dask/dask/pull/2690
https://github.com/dask/dask/pull/2702
https://github.com/dask/dask/pull/2634
https://github.com/dask/dask/pull/2636
https://github.com/dask/dask/pull/2655
https://github.com/dask/dask/pull/2645
https://github.com/dask/dask/pull/2667
https://github.com/dask/dask/pull/2676

dask Documentation, Release 2.6.0

Core

• python setup.py test now runs tests (GH#2641)

• Added new cheatsheet (GH#2649)

• Remove resize tool in Bokeh plots (GH#2688)

3.21.40 0.15.2 / 2017-08-25

Array

• Remove spurious keys from map_overlap graph (GH#2520)

• where works with non-bool condition and scalar values (GH#2543) (GH#2549)

• Improve compress (GH#2541) (GH#2545) (GH#2555)

• Add argwhere, _nonzero, and where(cond) (GH#2539)

• Generalize vindex in dask.array to handle multi-dimensional indices (GH#2573)

• Add choose method (GH#2584)

• Split code into reorganized files (GH#2595)

• Add linalg.norm (GH#2597)

• Add diff, ediff1d (GH#2607), (GH#2609)

• Improve dtype inference and reflection (GH#2571)

Bag

• Remove deprecated Bag behaviors (GH#2525)

DataFrame

• Support callables in assign (GH#2513)

• better error messages for read_csv (GH#2522)

• Add dd.to_timedelta (GH#2523)

• Verify metadata in from_delayed (GH#2534) (GH#2591)

• Add DataFrame.isin (GH#2558)

• Read_hdf supports iterables of files (GH#2547)

Core

• Remove bare except: blocks everywhere (GH#2590)

910 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/2641
https://github.com/dask/dask/pull/2649
https://github.com/dask/dask/pull/2688
https://github.com/dask/dask/pull/2520
https://github.com/dask/dask/pull/2543
https://github.com/dask/dask/pull/2549
https://github.com/dask/dask/pull/2541
https://github.com/dask/dask/pull/2545
https://github.com/dask/dask/pull/2555
https://github.com/dask/dask/pull/2539
https://github.com/dask/dask/pull/2573
https://github.com/dask/dask/pull/2584
https://github.com/dask/dask/pull/2595
https://github.com/dask/dask/pull/2597
https://github.com/dask/dask/pull/2607
https://github.com/dask/dask/pull/2609
https://github.com/dask/dask/pull/2571
https://github.com/dask/dask/pull/2525
https://github.com/dask/dask/pull/2513
https://github.com/dask/dask/pull/2522
https://github.com/dask/dask/pull/2523
https://github.com/dask/dask/pull/2534
https://github.com/dask/dask/pull/2591
https://github.com/dask/dask/pull/2558
https://github.com/dask/dask/pull/2547
https://github.com/dask/dask/pull/2590

dask Documentation, Release 2.6.0

3.21.41 0.15.1 / 2017-07-08

• Add storage_options to to_textfiles and to_csv (GH#2466)

• Rechunk and simplify rfftfreq (GH#2473), (GH#2475)

• Better support ndarray subclasses (GH#2486)

• Import star in dask.distributed (GH#2503)

• Threadsafe cache handling with tokenization (GH#2511)

3.21.42 0.15.0 / 2017-06-09

Array

• Add dask.array.stats submodule (GH#2269)

• Support ufunc.outer (GH#2345)

• Optimize fancy indexing by reducing graph overhead (GH#2333) (GH#2394)

• Faster array tokenization using alternative hashes (GH#2377)

• Added the matmul @ operator (GH#2349)

• Improved coverage of the numpy.fft module (GH#2320) (GH#2322) (GH#2327) (GH#2323)

• Support NumPy’s __array_ufunc__ protocol (GH#2438)

Bag

• Fix bug where reductions on bags with no partitions would fail (GH#2324)

• Add broadcasting and variadic db.map top-level function. Also remove auto-expansion of tuples as map argu-
ments (GH#2339)

• Rename Bag.concat to Bag.flatten (GH#2402)

DataFrame

• Parquet improvements (GH#2277) (GH#2422)

Core

• Move dask.async module to dask.local (GH#2318)

• Support callbacks with nested scheduler calls (GH#2397)

• Support pathlib.Path objects as uris (GH#2310)

3.21.43 0.14.3 / 2017-05-05

DataFrame

• Pandas 0.20.0 support

3.21. Changelog 911

https://github.com/dask/dask/pull/2466
https://github.com/dask/dask/pull/2473
https://github.com/dask/dask/pull/2475
https://github.com/dask/dask/pull/2486
https://github.com/dask/dask/pull/2503
https://github.com/dask/dask/pull/2511
https://github.com/dask/dask/pull/2269
https://github.com/dask/dask/pull/2345
https://github.com/dask/dask/pull/2333
https://github.com/dask/dask/pull/2394
https://github.com/dask/dask/pull/2377
https://github.com/dask/dask/pull/2349
https://github.com/dask/dask/pull/2320
https://github.com/dask/dask/pull/2322
https://github.com/dask/dask/pull/2327
https://github.com/dask/dask/pull/2323
https://github.com/dask/dask/pull/2438
https://github.com/dask/dask/pull/2324
https://github.com/dask/dask/pull/2339
https://github.com/dask/dask/pull/2402
https://github.com/dask/dask/pull/2277
https://github.com/dask/dask/pull/2422
https://github.com/dask/dask/pull/2318
https://github.com/dask/dask/pull/2397
https://github.com/dask/dask/pull/2310

dask Documentation, Release 2.6.0

3.21.44 0.14.2 / 2017-05-03

Array

• Add da.indices (GH#2268), da.tile (GH#2153), da.roll (GH#2135)

• Simultaneously support drop_axis and new_axis in da.map_blocks (GH#2264)

• Rechunk and concatenate work with unknown chunksizes (GH#2235) and (GH#2251)

• Support non-numpy container arrays, notably sparse arrays (GH#2234)

• Tensordot contracts over multiple axes (GH#2186)

• Allow delayed targets in da.store (GH#2181)

• Support interactions against lists and tuples (GH#2148)

• Constructor plugins for debugging (GH#2142)

• Multi-dimensional FFTs (single chunk) (GH#2116)

Bag

• to_dataframe enforces consistent types (GH#2199)

DataFrame

• Set_index always fully sorts the index (GH#2290)

• Support compatibility with pandas 0.20.0 (GH#2249), (GH#2248), and (GH#2246)

• Support Arrow Parquet reader (GH#2223)

• Time-based rolling windows (GH#2198)

• Repartition can now create more partitions, not just less (GH#2168)

Core

• Always use absolute paths when on POSIX file system (GH#2263)

• Support user provided graph optimizations (GH#2219)

• Refactor path handling (GH#2207)

• Improve fusion performance (GH#2129), (GH#2131), and (GH#2112)

3.21.45 0.14.1 / 2017-03-22

Array

• Micro-optimize optimizations (GH#2058)

• Change slicing optimizations to avoid fusing raw numpy arrays (GH#2075) (GH#2080)

• Dask.array operations now work on numpy arrays (GH#2079)

• Reshape now works in a much broader set of cases (GH#2089)

912 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/2268
https://github.com/dask/dask/pull/2153
https://github.com/dask/dask/pull/2135
https://github.com/dask/dask/pull/2264
https://github.com/dask/dask/pull/2235
https://github.com/dask/dask/pull/2251
https://github.com/dask/dask/pull/2234
https://github.com/dask/dask/pull/2186
https://github.com/dask/dask/pull/2181
https://github.com/dask/dask/pull/2148
https://github.com/dask/dask/pull/2142
https://github.com/dask/dask/pull/2116
https://github.com/dask/dask/pull/2199
https://github.com/dask/dask/pull/2290
https://github.com/dask/dask/pull/2249
https://github.com/dask/dask/pull/2248
https://github.com/dask/dask/pull/2246
https://github.com/dask/dask/pull/2223
https://github.com/dask/dask/pull/2198
https://github.com/dask/dask/pull/2168
https://github.com/dask/dask/pull/2263
https://github.com/dask/dask/pull/2219
https://github.com/dask/dask/pull/2207
https://github.com/dask/dask/pull/2129
https://github.com/dask/dask/pull/2131
https://github.com/dask/dask/pull/2112
https://github.com/dask/dask/pull/2058
https://github.com/dask/dask/pull/2075
https://github.com/dask/dask/pull/2080
https://github.com/dask/dask/pull/2079
https://github.com/dask/dask/pull/2089

dask Documentation, Release 2.6.0

• Support deepcopy python protocol (GH#2090)

• Allow user-provided FFT implementations in da.fft (GH#2093)

DataFrame

• Fix to_parquet with empty partitions (GH#2020)

• Optional npartitions='auto' mode in set_index (GH#2025)

• Optimize shuffle performance (GH#2032)

• Support efficient repartitioning along time windows like repartition(freq='12h') (GH#2059)

• Improve speed of categorize (GH#2010)

• Support single-row dataframe arithmetic (GH#2085)

• Automatically avoid shuffle when setting index with a sorted column (GH#2091)

• Improve handling of integer-na handling in read_csv (GH#2098)

Delayed

• Repeated attribute access on delayed objects uses the same key (GH#2084)

Core

• Improve naming of nodes in dot visuals to avoid generic apply (GH#2070)

• Ensure that worker processes have different random seeds (GH#2094)

3.21.46 0.14.0 / 2017-02-24

Array

• Fix corner cases with zero shape and misaligned values in arange (GH#1902), (GH#1904), (GH#1935),
(GH#1955), (GH#1956)

• Improve concatenation efficiency (GH#1923)

• Avoid hashing in from_array if name is provided (GH#1972)

Bag

• Repartition can now increase number of partitions (GH#1934)

• Fix bugs in some reductions with empty partitions (GH#1939), (GH#1950), (GH#1953)

DataFrame

• Support non-uniform categoricals (GH#1877), (GH#1930)

• Groupby cumulative reductions (GH#1909)

• DataFrame.loc indexing now supports lists (GH#1913)

3.21. Changelog 913

https://github.com/dask/dask/pull/2090
https://github.com/dask/dask/pull/2093
https://github.com/dask/dask/pull/2020
https://github.com/dask/dask/pull/2025
https://github.com/dask/dask/pull/2032
https://github.com/dask/dask/pull/2059
https://github.com/dask/dask/pull/2010
https://github.com/dask/dask/pull/2085
https://github.com/dask/dask/pull/2091
https://github.com/dask/dask/pull/2098
https://github.com/dask/dask/pull/2084
https://github.com/dask/dask/pull/2070
https://github.com/dask/dask/pull/2094
https://github.com/dask/dask/pull/1902
https://github.com/dask/dask/pull/1904
https://github.com/dask/dask/pull/1935
https://github.com/dask/dask/pull/1955
https://github.com/dask/dask/pull/1956
https://github.com/dask/dask/pull/1923
https://github.com/dask/dask/pull/1972
https://github.com/dask/dask/pull/1934
https://github.com/dask/dask/pull/1939
https://github.com/dask/dask/pull/1950
https://github.com/dask/dask/pull/1953
https://github.com/dask/dask/pull/1877
https://github.com/dask/dask/pull/1930
https://github.com/dask/dask/pull/1909
https://github.com/dask/dask/pull/1913

dask Documentation, Release 2.6.0

• Improve multi-level groupbys (GH#1914)

• Improved HTML and string repr for DataFrames (GH#1637)

• Parquet append (GH#1940)

• Add dd.demo.daily_stock function for teaching (GH#1992)

Delayed

• Add traverse= keyword to delayed to optionally avoid traversing nested data structures (GH#1899)

• Support Futures in from_delayed functions (GH#1961)

• Improve serialization of decorated delayed functions (GH#1969)

Core

• Improve windows path parsing in corner cases (GH#1910)

• Rename tasks when fusing (GH#1919)

• Add top level persist function (GH#1927)

• Propagate errors= keyword in byte handling (GH#1954)

• Dask.compute traverses Python collections (GH#1975)

• Structural sharing between graphs in dask.array and dask.delayed (GH#1985)

3.21.47 0.13.0 / 2017-01-02

Array

• Mandatory dtypes on dask.array. All operations maintain dtype information and UDF functions like map_blocks
now require a dtype= keyword if it can not be inferred. (GH#1755)

• Support arrays without known shapes, such as arises when slicing arrays with arrays or converting dataframes
to arrays (GH#1838)

• Support mutation by setting one array with another (GH#1840)

• Tree reductions for covariance and correlations. (GH#1758)

• Add SerializableLock for better use with distributed scheduling (GH#1766)

• Improved atop support (GH#1800)

• Rechunk optimization (GH#1737), (GH#1827)

Bag

• Avoid wrong results when recomputing the same groupby twice (GH#1867)

914 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/1914
https://github.com/dask/dask/pull/1637
https://github.com/dask/dask/pull/1940
https://github.com/dask/dask/pull/1992
https://github.com/dask/dask/pull/1899
https://github.com/dask/dask/pull/1961
https://github.com/dask/dask/pull/1969
https://github.com/dask/dask/pull/1910
https://github.com/dask/dask/pull/1919
https://github.com/dask/dask/pull/1927
https://github.com/dask/dask/pull/1954
https://github.com/dask/dask/pull/1975
https://github.com/dask/dask/pull/1985
https://github.com/dask/dask/pull/1755
https://github.com/dask/dask/pull/1838
https://github.com/dask/dask/pull/1840
https://github.com/dask/dask/pull/1758
https://github.com/dask/dask/pull/1766
https://github.com/dask/dask/pull/1800
https://github.com/dask/dask/pull/1737
https://github.com/dask/dask/pull/1827
https://github.com/dask/dask/pull/1867

dask Documentation, Release 2.6.0

DataFrame

• Add map_overlap for custom rolling operations (GH#1769)

• Add shift (GH#1773)

• Add Parquet support (GH#1782) (GH#1792) (GH#1810), (GH#1843), (GH#1859), (GH#1863)

• Add missing methods combine, abs, autocorr, sem, nsmallest, first, last, prod, (GH#1787)

• Approximate nunique (GH#1807), (GH#1824)

• Reductions with multiple output partitions (for operations like drop_duplicates) (GH#1808), (GH#1823)
(GH#1828)

• Add delitem and copy to DataFrames, increasing mutation support (GH#1858)

Delayed

• Changed behaviour for delayed(nout=0) and delayed(nout=1): delayed(nout=1) does not de-
fault to out=None anymore, and delayed(nout=0) is also enabled. I.e. functions with return tuples
of length 1 or 0 can be handled correctly. This is especially handy, if functions with a variable amount
of outputs are wrapped by delayed. E.g. a trivial example: delayed(lambda *args: args,
nout=len(vals))(*vals)

Core

• Refactor core byte ingest (GH#1768), (GH#1774)

• Improve import time (GH#1833)

3.21.48 0.12.0 / 2016-11-03

DataFrame

• Return a series when functions given to dataframe.map_partitions return scalars (GH#1515)

• Fix type size inference for series (GH#1513)

• dataframe.DataFrame.categorize no longer includes missing values in the categories. This is
for compatibility with a pandas change (GH#1565)

• Fix head parser error in dataframe.read_csv when some lines have quotes (GH#1495)

• Add dataframe.reduction and series.reduction methods to apply generic row-wise reduction to
dataframes and series (GH#1483)

• Add dataframe.select_dtypes, which mirrors the pandas method (GH#1556)

• dataframe.read_hdf now supports reading Series (GH#1564)

• Support Pandas 0.19.0 (GH#1540)

• Implement select_dtypes (GH#1556)

• String accessor works with indexes (GH#1561)

• Add pipe method to dask.dataframe (GH#1567)

• Add indicator keyword to merge (GH#1575)

3.21. Changelog 915

https://github.com/dask/dask/pull/1769
https://github.com/dask/dask/pull/1773
https://github.com/dask/dask/pull/1782
https://github.com/dask/dask/pull/1792
https://github.com/dask/dask/pull/1810
https://github.com/dask/dask/pull/1843
https://github.com/dask/dask/pull/1859
https://github.com/dask/dask/pull/1863
https://github.com/dask/dask/pull/1787
https://github.com/dask/dask/pull/1807
https://github.com/dask/dask/pull/1824
https://github.com/dask/dask/pull/1808
https://github.com/dask/dask/pull/1823
https://github.com/dask/dask/pull/1828
https://github.com/dask/dask/pull/1858
https://github.com/dask/dask/pull/1768
https://github.com/dask/dask/pull/1774
https://github.com/dask/dask/pull/1833
https://github.com/dask/dask/pull/1515
https://github.com/dask/dask/pull/1513
https://github.com/pydata/pandas/pull/10929
https://github.com/dask/dask/pull/1565
https://github.com/dask/dask/pull/1495
https://github.com/dask/dask/pull/1483
https://pandas.pydata.org/pandas-docs/version/0.18.1/generated/pandas.DataFrame.select_dtypes.html
https://github.com/dask/dask/pull/1556
https://github.com/dask/dask/pull/1564
https://github.com/dask/dask/pull/1540
https://github.com/dask/dask/pull/1556
https://github.com/dask/dask/pull/1561
https://github.com/dask/dask/pull/1567
https://github.com/dask/dask/pull/1575

dask Documentation, Release 2.6.0

• Support Series in read_hdf (GH#1575)

• Support Categories with missing values (GH#1578)

• Support inplace operators like df.x += 1 (GH#1585)

• Str accessor passes through args and kwargs (GH#1621)

• Improved groupby support for single-machine multiprocessing scheduler (GH#1625)

• Tree reductions (GH#1663)

• Pivot tables (GH#1665)

• Add clip (GH#1667), align (GH#1668), combine_first (GH#1725), and any/all (GH#1724)

• Improved handling of divisions on dask-pandas merges (GH#1666)

• Add groupby.aggregate method (GH#1678)

• Add dd.read_table function (GH#1682)

• Improve support for multi-level columns (GH#1697) (GH#1712)

• Support 2d indexing in loc (GH#1726)

• Extend resample to include DataFrames (GH#1741)

• Support dask.array ufuncs on dask.dataframe objects (GH#1669)

Array

• Add information about how dask.array chunks argument work (GH#1504)

• Fix field access with non-scalar fields in dask.array (GH#1484)

• Add concatenate= keyword to atop to concatenate chunks of contracted dimensions

• Optimized slicing performance (GH#1539) (GH#1731)

• Extend atop with a concatenate= (GH#1609) new_axes= (GH#1612) and adjust_chunks=
(GH#1716) keywords

• Add clip (GH#1610) swapaxes (GH#1611) round (GH#1708) repeat

• Automatically align chunks in atop-backed operations (GH#1644)

• Cull dask.arrays on slicing (GH#1709)

Bag

• Fix issue with callables in bag.from_sequence being interpreted as tasks (GH#1491)

• Avoid non-lazy memory use in reductions (GH#1747)

Administration

• Added changelog (GH#1526)

• Create new threadpool when operating from thread (GH#1487)

• Unify example documentation pages into one (GH#1520)

• Add versioneer for git-commit based versions (GH#1569)

916 Chapter 3. Complex Algorithms

https://github.com/dask/dask/pull/1575
https://github.com/dask/dask/pull/1578
https://github.com/dask/dask/pull/1585
https://github.com/dask/dask/pull/1621
https://github.com/dask/dask/pull/1625
https://github.com/dask/dask/pull/1663
https://github.com/dask/dask/pull/1665
https://github.com/dask/dask/pull/1667
https://github.com/dask/dask/pull/1668
https://github.com/dask/dask/pull/1725
https://github.com/dask/dask/pull/1724
https://github.com/dask/dask/pull/1666
https://github.com/dask/dask/pull/1678
https://github.com/dask/dask/pull/1682
https://github.com/dask/dask/pull/1697
https://github.com/dask/dask/pull/1712
https://github.com/dask/dask/pull/1726
https://github.com/dask/dask/pull/1741
https://github.com/dask/dask/pull/1669
https://github.com/dask/dask/pull/1504
https://github.com/dask/dask/pull/1484
https://github.com/dask/dask/pull/1539
https://github.com/dask/dask/pull/1731
https://github.com/dask/dask/pull/1609
https://github.com/dask/dask/pull/1612
https://github.com/dask/dask/pull/1716
https://github.com/dask/dask/pull/1610
https://github.com/dask/dask/pull/1611
https://github.com/dask/dask/pull/1708
https://github.com/dask/dask/pull/1644
https://github.com/dask/dask/pull/1709
https://github.com/dask/dask/pull/1491
https://github.com/dask/dask/pull/1747
https://github.com/dask/dask/pull/1526
https://github.com/dask/dask/pull/1487
https://github.com/dask/dask/pull/1520
https://github.com/dask/dask/pull/1569

dask Documentation, Release 2.6.0

• Pass through node_attr and edge_attr keywords in dot visualization (GH#1614)

• Add continuous testing for Windows with Appveyor (GH#1648)

• Remove use of multiprocessing.Manager (GH#1653)

• Add global optimizations keyword to compute (GH#1675)

• Micro-optimize get_dependencies (GH#1722)

3.21.49 0.11.0 / 2016-08-24

Major Points

DataFrames now enforce knowing full metadata (columns, dtypes) everywhere. Previously we would operate in an
ambiguous state when functions lost dtype information (such as apply). Now all dataframes always know their
dtypes and raise errors asking for information if they are unable to infer (which they usually can). Some internal
attributes like _pd and _pd_nonempty have been moved.

The internals of the distributed scheduler have been refactored to transition tasks between explicit states. This improves
resilience, reasoning about scheduling, plugin operation, and logging. It also makes the scheduler code easier to
understand for newcomers.

Breaking Changes

• The distributed.s3 and distributed.hdfs namespaces are gone. Use protocols in normal methods
like read_text('s3://...' instead.

• Dask.array.reshape now errs in some cases where previously it would have create a very large number
of tasks

3.21.50 0.10.2 / 2016-07-27

• More Dataframe shuffles now work in distributed settings, ranging from setting-index to hash joins, to sorted
joins and groupbys.

• Dask passes the full test suite when run when under in Python’s optimized-OO mode.

• On-disk shuffles were found to produce wrong results in some highly-concurrent situations, especially on Win-
dows. This has been resolved by a fix to the partd library.

• Fixed a growth of open file descriptors that occurred under large data communications

• Support ports in the --bokeh-whitelist option ot dask-scheduler to better routing of web interface mes-
sages behind non-trivial network settings

• Some improvements to resilience to worker failure (though other known failures persist)

• You can now start an IPython kernel on any worker for improved debugging and analysis

• Improvements to dask.dataframe.read_hdf, especially when reading from multiple files and docs

3.21.51 0.10.0 / 2016-06-13

Major Changes

• This version drops support for Python 2.6

3.21. Changelog 917

https://github.com/dask/dask/pull/1614
https://github.com/dask/dask/pull/1648
https://github.com/dask/dask/pull/1653
https://github.com/dask/dask/pull/1675
https://github.com/dask/dask/pull/1722

dask Documentation, Release 2.6.0

• Conda packages are built and served from conda-forge

• The dask.distributed executables have been renamed from dfoo to dask-foo. For example dscheduler is
renamed to dask-scheduler

• Both Bag and DataFrame include a preliminary distributed shuffle.

Bag

• Add task-based shuffle for distributed groupbys

• Add accumulate for cumulative reductions

DataFrame

• Add a task-based shuffle suitable for distributed joins, groupby-applys, and set_index operations. The single-
machine shuffle remains untouched (and much more efficient.)

• Add support for new Pandas rolling API with improved communication performance on distributed systems.

• Add groupby.std/var

• Pass through S3/HDFS storage options in read_csv

• Improve categorical partitioning

• Add eval, info, isnull, notnull for dataframes

Distributed

• Rename executables like dscheduler to dask-scheduler

• Improve scheduler performance in the many-fast-tasks case (important for shuffling)

• Improve work stealing to be aware of expected function run-times and data sizes. The drastically increases the
breadth of algorithms that can be efficiently run on the distributed scheduler without significant user expertise.

• Support maximum buffer sizes in streaming queues

• Improve Windows support when using the Bokeh diagnostic web interface

• Support compression of very-large-bytestrings in protocol

• Support clean cancellation of submitted futures in Joblib interface

Other

• All dask-related projects (dask, distributed, s3fs, hdfs, partd) are now building conda packages on conda-forge.

• Change credential handling in s3fs to only pass around delegated credentials if explicitly given secret/key. The
default now is to rely on managed environments. This can be changed back by explicitly providing a keyword
argument. Anonymous mode must be explicitly declared if desired.

918 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

3.21.52 0.9.0 / 2016-05-11

API Changes

• dask.do and dask.value have been renamed to dask.delayed

• dask.bag.from_filenames has been renamed to dask.bag.read_text

• All S3/HDFS data ingest functions like db.from_s3 or distributed.s3.read_csv have been
moved into the plain read_text, read_csv functions, which now support protocols, like dd.
read_csv('s3://bucket/keys*.csv')

Array

• Add support for scipy.LinearOperator

• Improve optional locking to on-disk data structures

• Change rechunk to expose the intermediate chunks

Bag

• Rename from_filenames to read_text

• Remove from_s3 in favor of read_text('s3://...')

DataFrame

• Fixed numerical stability issue for correlation and covariance

• Allow no-hash from_pandas for speedy round-trips to and from-pandas objects

• Generally reengineered read_csv to be more in line with Pandas behavior

• Support fast set_index operations for sorted columns

Delayed

• Rename do/value to delayed

• Rename to/from_imperative to to/from_delayed

Distributed

• Move s3 and hdfs functionality into the dask repository

• Adaptively oversubscribe workers for very fast tasks

• Improve PyPy support

• Improve work stealing for unbalanced workers

• Scatter data efficiently with tree-scatters

3.21. Changelog 919

dask Documentation, Release 2.6.0

Other

• Add lzma/xz compression support

• Raise a warning when trying to split unsplittable compression types, like gzip or bz2

• Improve hashing for single-machine shuffle operations

• Add new callback method for start state

• General performance tuning

3.21.53 0.8.1 / 2016-03-11

Array

• Bugfix for range slicing that could periodically lead to incorrect results.

• Improved support and resiliency of arg reductions (argmin, argmax, etc.)

Bag

• Add zip function

DataFrame

• Add corr and cov functions

• Add melt function

• Bugfixes for io to bcolz and hdf5

3.21.54 0.8.0 / 2016-02-20

Array

• Changed default array reduction split from 32 to 4

• Linear algebra, tril, triu, LU, inv, cholesky, solve, solve_triangular, eye, lstsq, diag,
corrcoef.

Bag

• Add tree reductions

• Add range function

• drop from_hdfs function (better functionality now exists in hdfs3 and distributed projects)

920 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

DataFrame

• Refactor dask.dataframe to include a full empty pandas dataframe as metadata. Drop the .columns
attribute on Series

• Add Series categorical accessor, series.nunique, drop the .columns attribute for series.

• read_csv fixes (multi-column parse_dates, integer column names, etc.)

• Internal changes to improve graph serialization

Other

• Documentation updates

• Add from_imperative and to_imperative functions for all collections

• Aesthetic changes to profiler plots

• Moved the dask project to a new dask organization

3.21.55 0.7.6 / 2016-01-05

Array

• Improve thread safety

• Tree reductions

• Add view, compress, hstack, dstack, vstack methods

• map_blocks can now remove and add dimensions

DataFrame

• Improve thread safety

• Extend sampling to include replacement options

Imperative

• Removed optimization passes that fused results.

Core

• Removed dask.distributed

• Improved performance of blocked file reading

• Serialization improvements

• Test Python 3.5

3.21. Changelog 921

dask Documentation, Release 2.6.0

3.21.56 0.7.4 / 2015-10-23

This was mostly a bugfix release. Some notable changes:

• Fix minor bugs associated with the release of numpy 1.10 and pandas 0.17

• Fixed a bug with random number generation that would cause repeated blocks due to the birthday paradox

• Use locks in dask.dataframe.read_hdf by default to avoid concurrency issues

• Change dask.get to point to dask.async.get_sync by default

• Allow visualization functions to accept general graphviz graph options like rankdir=’LR’

• Add reshape and ravel to dask.array

• Support the creation of dask.arrays from dask.imperative objects

Deprecation

This release also includes a deprecation warning for dask.distributed, which will be removed in the next
version.

Future development in distributed computing for dask is happening here: https://distributed.dask.org . General feed-
back on that project is most welcome from this community.

3.21.57 0.7.3 / 2015-09-25

Diagnostics

• A utility for profiling memory and cpu usage has been added to the dask.diagnostics module.

DataFrame

This release improves coverage of the pandas API. Among other things it includes nunique, nlargest,
quantile. Fixes encoding issues with reading non-ascii csv files. Performance improvements and bug fixes with
resample. More flexible read_hdf with globbing. And many more. Various bug fixes in dask.imperative and
dask.bag.

3.21.58 0.7.0 / 2015-08-15

DataFrame

This release includes significant bugfixes and alignment with the Pandas API. This has resulted both from use and
from recent involvement by Pandas core developers.

• New operations: query, rolling operations, drop

• Improved operations: quantiles, arithmetic on full dataframes, dropna, constructor logic, merge/join, elemwise
operations, groupby aggregations

Bag

• Fixed a bug in fold where with a null default argument

922 Chapter 3. Complex Algorithms

https://distributed.dask.org

dask Documentation, Release 2.6.0

Array

• New operations: da.fft module, da.image.imread

Infrastructure

• The array and dataframe collections create graphs with deterministic keys. These tend to be longer (hash strings)
but should be consistent between computations. This will be useful for caching in the future.

• All collections (Array, Bag, DataFrame) inherit from common subclass

3.21.59 0.6.1 / 2015-07-23

Distributed

• Improved (though not yet sufficient) resiliency for dask.distributed when workers die

DataFrame

• Improved writing to various formats, including to_hdf, to_castra, and to_csv

• Improved creation of dask DataFrames from dask Arrays and Bags

• Improved support for categoricals and various other methods

Array

• Various bug fixes

• Histogram function

Scheduling

• Added tie-breaking ordering of tasks within parallel workloads to better handle and clear intermediate results

Other

• Added the dask.do function for explicit construction of graphs with normal python code

• Traded pydot for graphviz library for graph printing to support Python3

• There is also a gitter chat room and a stackoverflow tag

3.22 Configuration

Taking full advantage of Dask sometimes requires user configuration. This might be to control logging verbosity,
specify cluster configuration, provide credentials for security, or any of several other options that arise in production.

Configuration is specified in one of the following ways:

1. YAML files in ~/.config/dask/ or /etc/dask/

3.22. Configuration 923

dask Documentation, Release 2.6.0

2. Environment variables like DASK_DISTRIBUTED__SCHEDULER__WORK_STEALING=True

3. Default settings within sub-libraries

This combination makes it easy to specify configuration in a variety of settings ranging from personal workstations, to
IT-mandated configuration, to docker images.

3.22.1 Access Configuration

dask.config.get(key[, default, config]) Get elements from global config

Configuration is usually read by using the dask.config module, either with the config dictionary or the get
function:

>>> import dask
>>> import dask.distributed # populate config with distributed defaults
>>> dask.config.config
{

"array": {
"chunk-size": "128 MiB",

}
"distributed": {

"logging": {
"distributed": "info",
"bokeh": "critical",
"tornado": "critical"

},
"admin": {

"log-format": "%(name)s - %(levelname)s - %(message)s"
}

}
}

>>> dask.config.get("distributed.logging")
{

'distributed': 'info',
'bokeh': 'critical',
'tornado': 'critical'

}

>>> dask.config.get('distributed.logging.bokeh') # use `.` for nested access
'critical'

You may wish to inspect the dask.config.config dictionary to get a sense for what configuration is being used
by your current system.

Note that the get function treats underscores and hyphens identically. For example, dask.config.
get('num_workers') is equivalent to dask.config.get('num-workers').

3.22.2 Specify Configuration

YAML files

You can specify configuration values in YAML files like the following:

924 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

array:
chunk-size: 128 MiB

distributed:
logging:
distributed: info
bokeh: critical
tornado: critical

scheduler:
work-stealing: True
allowed-failures: 5

admin:
log-format: '%(name)s - %(levelname)s - %(message)s'

These files can live in any of the following locations:

1. The ~/.config/dask directory in the user’s home directory

2. The {sys.prefix}/etc/dask directory local to Python

3. The root directory (specified by the DASK_ROOT_CONFIG environment variable or /etc/dask/ by default)

Dask searches for all YAML files within each of these directories and merges them together, preferring configuration
files closer to the user over system configuration files (preference follows the order in the list above). Additionally,
users can specify a path with the DASK_CONFIG environment variable, which takes precedence at the top of the list
above.

The contents of these YAML files are merged together, allowing different Dask subprojects like dask-kubernetes
or dask-ml to manage configuration files separately, but have them merge into the same global configuration.

Note: for historical reasons we also look in the ‘‘~/.dask‘‘ directory for config files. This is deprecated and will soon
be removed.

Environment Variables

You can also specify configuration values with environment variables like the following:

export DASK_DISTRIBUTED__SCHEDULER__WORK_STEALING=True
export DASK_DISTRIBUTED__SCHEDULER__ALLOWED_FAILURES=5

resulting in configuration values like the following:

{
'distributed': {

'scheduler': {
'work-stealing': True,
'allowed-failures': 5

}
}

}

Dask searches for all environment variables that start with DASK_, then transforms keys by converting to lower case
and changing double-underscores to nested structures.

Dask tries to parse all values with ast.literal_eval, letting users pass numeric and boolean values (such as True in the
example above) as well as lists, dictionaries, and so on with normal Python syntax.

3.22. Configuration 925

https://docs.python.org/3/library/ast.html#ast.literal_eval

dask Documentation, Release 2.6.0

Environment variables take precedence over configuration values found in YAML files.

Defaults

Additionally, individual subprojects may add their own default values when they are imported. These are always added
with lower priority than the YAML files or environment variables mentioned above:

>>> import dask.config
>>> dask.config.config # no configuration by default
{}

>>> import dask.distributed
>>> dask.config.config # New values have been added
{

'scheduler': ...,
'worker': ...,
'tls': ...

}

Directly within Python

dask.config.set([arg, config, lock]) Temporarily set configuration values within a context
manager

Configuration is stored within a normal Python dictionary in dask.config.config and can be modified using
normal Python operations.

Additionally, you can temporarily set a configuration value using the dask.config.set function. This function
accepts a dictionary as an input and interprets "." as nested access:

>>> dask.config.set({'scheduler.work-stealing': True})

This function can also be used as a context manager for consistent cleanup:

with dask.config.set({'scheduler.work-stealing': True}):
...

Note that the set function treats underscores and hyphens identically. For example, dask.config.
set({'scheduler.work-stealing': True}) is equivalent to dask.config.set({'scheduler.
work_stealing': True}).

3.22.3 Updating Configuration

Manipulating configuration dictionaries

dask.config.merge(*dicts) Update a sequence of nested dictionaries
dask.config.update(old, new[, priority]) Update a nested dictionary with values from another
dask.config.expand_environment_variables(config)Expand environment variables in a nested config dictio-

nary

926 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

As described above, configuration can come from many places, including several YAML files, environment variables,
and project defaults. Each of these provides a configuration that is possibly nested like the following:

x = {'a': 0, 'c': {'d': 4}}
y = {'a': 1, 'b': 2, 'c': {'e': 5}}

Dask will merge these configurations respecting nested data structures, and respecting order:

>>> dask.config.merge(x, y)
{'a': 1, 'b': 2, 'c': {'d': 4, 'e': 5}}

You can also use the update function to update the existing configuration in place with a new configuration. This
can be done with priority being given to either config. This is often used to update the global configuration in dask.
config.config:

dask.config.update(dask.config, new, priority='new') # Give priority to new values
dask.config.update(dask.config, new, priority='old') # Give priority to old values

Sometimes it is useful to expand environment variables stored within a configuration. This can be done with the
expand_environment_variables function:

dask.config.config = dask.config.expand_environment_variables(dask.config.config)

Refreshing Configuration

dask.config.collect([paths, env]) Collect configuration from paths and environment vari-
ables

dask.config.refresh([config, defaults]) Update configuration by re-reading yaml files and env
variables

If you change your environment variables or YAML files, Dask will not immediately see the changes. Instead, you
can call refresh to go through the configuration collection process and update the default configuration:

>>> dask.config.config
{}

>>> # make some changes to yaml files

>>> dask.config.refresh()
>>> dask.config.config
{...}

This function uses dask.config.collect, which returns the configuration without modifying the global config-
uration. You might use this to determine the configuration of particular paths not yet on the config path:

>>> dask.config.collect(paths=[...])
{...}

3.22.4 Downstream Libraries

dask.config.ensure_file(source[, . . .]) Copy file to default location if it does not already exist
Continued on next page

3.22. Configuration 927

dask Documentation, Release 2.6.0

Table 86 – continued from previous page
dask.config.update(old, new[, priority]) Update a nested dictionary with values from another
dask.config.update_defaults(new[, config,
. . .])

Add a new set of defaults to the configuration

Downstream Dask libraries often follow a standard convention to use the central Dask configuration. This section
provides recommendations for integration using a fictional project, dask-foo, as an example.

Downstream projects typically follow the following convention:

1. Maintain default configuration in a YAML file within their source directory:

setup.py
dask_foo/__init__.py
dask_foo/config.py
dask_foo/core.py
dask_foo/foo.yaml # <---

2. Place configuration in that file within a namespace for the project:

dask_foo/foo.yaml

foo:
color: red
admin:

a: 1
b: 2

3. Within a config.py file (or anywhere) load that default config file and update it into the global configuration:

dask_foo/config.py
import os
import yaml

import dask.config

fn = os.path.join(os.path.dirname(__file__), 'foo.yaml')

with open(fn) as f:
defaults = yaml.load(f)

dask.config.update_defaults(defaults)

4. Within that same config.py file, copy the 'foo.yaml' file to the user’s configuration directory if it doesn’t
already exist.

We also comment the file to make it easier for us to change defaults in the future.

... continued from above

dask.config.ensure_file(source=fn, comment=True)

The user can investigate ~/.config/dask/*.yaml to see all of the commented out configuration files to
which they have access.

5. Ensure that this file is run on import by including it in __init__.py:

928 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dask_foo/__init__.py

from . import config

6. Within dask_foo code, use the dask.config.get function to access configuration values:

dask_foo/core.py

def process(fn, color=dask.config.get('foo.color')):
...

7. You may also want to ensure that your yaml configuration files are included in your package. This can be
accomplished by including the following line in your MANIFEST.in:

recursive-include <PACKAGE_NAME> *.yaml

and the following in your setup.py setup call:

from setuptools import setup

setup(...,
include_package_data=True,
...)

This process keeps configuration in a central place, but also keeps it safe within namespaces. It places config files in
an easy to access location by default (~/.config/dask/*.yaml), so that users can easily discover what they
can change, but maintains the actual defaults within the source code, so that they more closely track changes in the
library.

However, downstream libraries may choose alternative solutions, such as isolating their configuration within their
library, rather than using the global dask.config system. All functions in the dask.config module also work with
parameters, and do not need to mutate global state.

3.22.5 API

dask.config.get(key, default=’__no_default__’, config={’array’: {’chunk-size’: ’128MiB’, ’rechunk-
threshold’: 4, ’svg’: {’size’: 120}}, ’temporary-directory’: None})

Get elements from global config

Use ‘.’ for nested access

See also:

dask.config.set

Examples

>>> from dask import config
>>> config.get('foo') # doctest: +SKIP
{'x': 1, 'y': 2}

>>> config.get('foo.x') # doctest: +SKIP
1

3.22. Configuration 929

dask Documentation, Release 2.6.0

>>> config.get('foo.x.y', default=123) # doctest: +SKIP
123

dask.config.set(arg=None, config={’array’: {’chunk-size’: ’128MiB’, ’rechunk-threshold’: 4, ’svg’:
{’size’: 120}}, ’temporary-directory’: None}, lock=<unlocked _thread.lock object>,
**kwargs)

Temporarily set configuration values within a context manager

Parameters

arg [mapping or None, optional] A mapping of configuration key-value pairs to set.

**kwargs : Additional key-value pairs to set. If arg is provided, values set in arg will be
applied before those in kwargs. Double-underscores (__) in keyword arguments will
be replaced with ., allowing nested values to be easily set.

See also:

dask.config.get

Examples

>>> import dask

Set 'foo.bar' in a context, by providing a mapping.

>>> with dask.config.set({'foo.bar': 123}):
... pass

Set 'foo.bar' in a context, by providing a keyword argument.

>>> with dask.config.set(foo__bar=123):
... pass

Set 'foo.bar' globally.

>>> dask.config.set(foo__bar=123) # doctest: +SKIP

dask.config.merge(*dicts)
Update a sequence of nested dictionaries

This prefers the values in the latter dictionaries to those in the former

See also:

dask.config.update

Examples

>>> a = {'x': 1, 'y': {'a': 2}}
>>> b = {'y': {'b': 3}}
>>> merge(a, b) # doctest: +SKIP
{'x': 1, 'y': {'a': 2, 'b': 3}}

dask.config.update(old, new, priority=’new’)
Update a nested dictionary with values from another

This is like dict.update except that it smoothly merges nested values

930 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

This operates in-place and modifies old

Parameters

priority: string {‘old’, ‘new’} If new (default) then the new dictionary has preference. Oth-
erwise the old dictionary does.

See also:

dask.config.merge

Examples

>>> a = {'x': 1, 'y': {'a': 2}}
>>> b = {'x': 2, 'y': {'b': 3}}
>>> update(a, b) # doctest: +SKIP
{'x': 2, 'y': {'a': 2, 'b': 3}}

>>> a = {'x': 1, 'y': {'a': 2}}
>>> b = {'x': 2, 'y': {'b': 3}}
>>> update(a, b, priority='old') # doctest: +SKIP
{'x': 1, 'y': {'a': 2, 'b': 3}}

dask.config.collect(paths=[’/etc/dask’, ’/home/docs/checkouts/readthedocs.org/user_builds/dask/envs/latest/etc/dask’,
’/home/docs/.config/dask’, ’/home/docs/.dask’], env=None)

Collect configuration from paths and environment variables

Parameters

paths [List[str]] A list of paths to search for yaml config files

env [dict] The system environment variables

Returns

config: dict

See also:

dask.config.refresh collect configuration and update into primary config

dask.config.refresh(config={’array’: {’chunk-size’: ’128MiB’, ’rechunk-threshold’: 4, ’svg’: {’size’:
120}}, ’temporary-directory’: None}, defaults=[{’temporary-directory’: None,
’array’: {’svg’: {’size’: 120}}}, {’array’: {’chunk-size’: ’128MiB’, ’rechunk-
threshold’: 4}}], **kwargs)

Update configuration by re-reading yaml files and env variables

This mutates the global dask.config.config, or the config parameter if passed in.

This goes through the following stages:

1. Clearing out all old configuration

2. Updating from the stored defaults from downstream libraries (see update_defaults)

3. Updating from yaml files and environment variables

Note that some functionality only checks configuration once at startup and may not change behavior, even
if configuration changes. It is recommended to restart your python process if convenient to ensure that new
configuration changes take place.

See also:

3.22. Configuration 931

dask Documentation, Release 2.6.0

dask.config.collect for parameters

dask.config.update_defaults

dask.config.ensure_file(source, destination=None, comment=True)
Copy file to default location if it does not already exist

This tries to move a default configuration file to a default location if if does not already exist. It also comments
out that file by default.

This is to be used by downstream modules (like dask.distributed) that may have default configuration files that
they wish to include in the default configuration path.

Parameters

source [string, filename] Source configuration file, typically within a source directory.

destination [string, directory] Destination directory. Configurable by DASK_CONFIG envi-
ronment variable, falling back to ~/.config/dask.

comment [bool, True by default] Whether or not to comment out the config file when copy-
ing.

dask.config.expand_environment_variables(config)
Expand environment variables in a nested config dictionary

This function will recursively search through any nested dictionaries and/or lists.

Parameters

config [dict, iterable, or str] Input object to search for environment variables

Returns

config [same type as input]

Examples

>>> expand_environment_variables({'x': [1, 2, '$USER']}) # doctest: +SKIP
{'x': [1, 2, 'my-username']}

3.23 Educational Resources

This is the curated list of resources for learning Dask:

• Tutorials

• Examples

• Presentations

3.24 Presentations On Dask

• PyCon Korea 2019, August 2019

– Adapting from Spark to Dask: what to expect (18 minutes)

• SciPy 2019, July 2019

932 Chapter 3. Complex Algorithms

https://tutorial.dask.org/
https://examples.dask.org/
https://docs.dask.org/en/latest/presentations.html
https://www.youtube.com/watch?v=tx7qTHSlHKw

dask Documentation, Release 2.6.0

– Refactoring the SciPy Ecosystem for Heterogeneous Computing (29 minutes)

– Renewable Power Forecast Generation with Dask & Visualization with Bokeh (31 minutes)

– Efficient Atmospheric Analogue Selection with Xarray and Dask (18 minutes)

– Better and Faster Hyper Parameter Optimization with Dask (27 minutes)

– Dask image:A Library for Distributed Image Processing (22 minutes)

• EuroPython 2019, July 2019

– Distributed Multi-GPU Computing with Dask, CuPy and RAPIDS (29 minutes)

• SciPy 2018, July 2018

– Scalable Machine Learning with Dask (30 minutes)

• PyCon 2018, May 2018

– Democratizing Distributed Computing with Dask and JupyterHub (32 minutes)

• AMS & ESIP, January 2018

– Pangeo quick demo: Dask, XArray, Zarr on the cloud with JupyterHub (3 minutes)

– Pangeo talk: An open-source big data science platform with Dask, XArray, Zarr on the cloud with Jupyter-
Hub (43 minutes)

• PYCON.DE 2017, November 2017

– Dask: Parallelism in Python (1 hour, 2 minutes)

• PYCON 2017, May 2017

– Dask: A Pythonic Distributed Data Science Framework (46 minutes)

• PLOTCON 2016, December 2016

– Visualizing Distributed Computations with Dask and Bokeh (33 minutes)

• PyData DC, October 2016

– Using Dask for Parallel Computing in Python (44 minutes)

• SciPy 2016, July 2016

– Dask Parallel and Distributed Computing (28 minutes)

• PyData NYC, December 2015

– Dask Parallelizing NumPy and Pandas through Task Scheduling (33 minutes)

• PyData Seattle, August 2015

– Dask: out of core arrays with task scheduling (1 hour, 50 minutes)

• SciPy 2015, July 2015

– Dask Out of core NumPy:Pandas through Task Scheduling (16 minutes)

3.25 Dask Cheat Sheet

The 300KB pdf Dask cheat sheet is a single page summary about using Dask. It is commonly distributed at
conferences and trade shows.

3.25. Dask Cheat Sheet 933

https://www.youtube.com/watch?v=Q0DsdiY-jiw
https://www.youtube.com/watch?v=tYGcicSruck
https://www.youtube.com/watch?v=gdHiGsGUh3o
https://www.youtube.com/watch?v=x67K9FiPFBQ
https://www.youtube.com/watch?v=XGUS174vvLs
https://www.youtube.com/watch?v=en2zdTT-Vwk
https://www.youtube.com/watch?v=ccfsbuqsjgI
https://www.youtube.com/watch?v=Iq72dt1gO9c
https://www.youtube.com/watch?v=rSOJKbfNBNk
https://www.youtube.com/watch?v=mDrjGxaXQT4
https://www.youtube.com/watch?v=mDrjGxaXQT4
https://www.youtube.com/watch?v=rZlshXJydgQ
https://www.youtube.com/watch?v=RA_2qdipVng
https://www.youtube.com/watch?v=FTJwDeXkggU
https://www.youtube.com/watch?v=s4ChP7tc3tA
https://www.youtube.com/watch?v=PAGjm4BMKlk
https://www.youtube.com/watch?v=mHd8AI8GQhQ
https://www.youtube.com/watch?v=ieW3G7ZzRZ0
https://www.youtube.com/watch?v=1kkFZ4P-XHg

dask Documentation, Release 2.6.0

3.26 Comparison to Spark

Apache Spark is a popular distributed computing tool for tabular datasets that is growing to become a dominant name
in Big Data analysis today. Dask has several elements that appear to intersect this space and we are often asked, “How
does Dask compare with Spark?”

Answering such comparison questions in an unbiased and informed way is hard, particularly when the differences can
be somewhat technical. This document tries to do this; we welcome any corrections.

3.26.1 Summary

Generally Dask is smaller and lighter weight than Spark. This means that it has fewer features and, instead, is used
in conjunction with other libraries, particularly those in the numeric Python ecosystem. It couples with libraries like
Pandas or Scikit-Learn to achieve high-level functionality.

Language

• Spark is written in Scala with some support for Python and R. It interoperates well with other JVM code.

• Dask is written in Python and only really supports Python. It interoperates well with C/C++/Fortran/LLVM or
other natively compiled code linked through Python.

Ecosystem

• Spark is an all-in-one project that has inspired its own ecosystem. It integrates well with many other Apache
projects.

• Dask is a component of the larger Python ecosystem. It couples with and enhances other libraries like NumPy,
Pandas, and Scikit-Learn.

Age and Trust

• Spark is older (since 2010) and has become a dominant and well-trusted tool in the Big Data enterprise world.

• Dask is younger (since 2014) and is an extension of the well trusted NumPy/Pandas/Scikit-learn/Jupyter stack.

Scope

• Spark is more focused on traditional business intelligence operations like SQL and lightweight machine learning.

• Dask is applied more generally both to business intelligence applications, as well as a number of scientific and
custom situations.

Internal Design

• Spark’s internal model is higher level, providing good high level optimizations on uniformly applied computa-
tions, but lacking flexibility for more complex algorithms or ad-hoc systems. It is fundamentally an extension
of the Map-Shuffle-Reduce paradigm.

• Dask’s internal model is lower level, and so lacks high level optimizations, but is able to implement more
sophisticated algorithms and build more complex bespoke systems. It is fundamentally based on generic task
scheduling.

934 Chapter 3. Complex Algorithms

https://spark.apache.org/

dask Documentation, Release 2.6.0

Scale

• Spark scales from a single node to thousand-node clusters.

• Dask scales from a single node to thousand-node clusters.

APIs

DataFrames

• Spark DataFrame has its own API and memory model. It also implements a large subset of the SQL language.
Spark includes a high-level query optimizer for complex queries.

• Dask DataFrame reuses the Pandas API and memory model. It implements neither SQL nor a query optimizer.
It is able to do random access, efficient time series operations, and other Pandas-style indexed operations.

Machine Learning

• Spark MLLib is a cohesive project with support for common operations that are easy to implement with Spark’s
Map-Shuffle-Reduce style system. People considering MLLib might also want to consider other JVM-based
machine learning libraries like H2O, which may have better performance.

• Dask relies on and interoperates with existing libraries like Scikit-Learn and XGBoost. These can be more
familiar or higher performance, but generally results in a less-cohesive whole. See the dask-ml project for
integrations.

Arrays

• Spark does not include support for multi-dimensional arrays natively (this would be challenging given their
computation model), although some support for two-dimensional matrices may be found in MLLib. People may
also want to look at the Thunder project, which combines Apache Spark with NumPy arrays.

• Dask fully supports the NumPy model for scalable multi-dimensional arrays.

Streaming

• Spark’s support for streaming data is first-class and integrates well into their other APIs. It follows a mini-batch
approach. This provides decent performance on large uniform streaming operations.

• Dask provides a real-time futures interface that is lower-level than Spark streaming. This enables more creative
and complex use-cases, but requires more work than Spark streaming.

Graphs / complex networks

• Spark provides GraphX, a library for graph processing.

• Dask provides no such library.

3.26. Comparison to Spark 935

https://ml.dask.org
https://github.com/thunder-project/thunder

dask Documentation, Release 2.6.0

Custom parallelism

• Spark generally expects users to compose computations out of their high-level primitives (map, reduce, groupby,
join, . . .). It is also possible to extend Spark through subclassing RDDs, although this is rarely done.

• Dask allows you to specify arbitrary task graphs for more complex and custom systems that are not part of the
standard set of collections.

3.26.2 Reasons you might choose Spark

• You prefer Scala or the SQL language

• You have mostly JVM infrastructure and legacy systems

• You want an established and trusted solution for business

• You are mostly doing business analytics with some lightweight machine learning

• You want an all-in-one solution

3.26.3 Reasons you might choose Dask

• You prefer Python or native code, or have large legacy code bases that you do not want to entirely rewrite

• Your use case is complex or does not cleanly fit the Spark computing model

• You want a lighter-weight transition from local computing to cluster computing

• You want to interoperate with other technologies and don’t mind installing multiple packages

3.26.4 Reasons to choose both

It is easy to use both Dask and Spark on the same data and on the same cluster.

They can both read and write common formats, like CSV, JSON, ORC, and Parquet, making it easy to hand results off
between Dask and Spark workflows.

They can both deploy on the same clusters. Most clusters are designed to support many different distributed systems
at the same time, using resource managers like Kubernetes and YARN. If you already have a cluster on which you run
Spark workloads, it’s likely easy to also run Dask workloads on your current infrastructure and vice versa.

In particular, for users coming from traditional Hadoop/Spark clusters (such as those sold by Cloudera/Hortonworks)
you are using the Yarn resource manager. You can deploy Dask on these systems using the Dask Yarn project, as well
as other projects, like JupyterHub on Hadoop.

3.26.5 Developer-Facing Differences

Graph Granularity

Both Spark and Dask represent computations with directed acyclic graphs. These graphs however represent computa-
tions at very different granularities.

One operation on a Spark RDD might add a node like Map and Filter to the graph. These are high-level operations
that convey meaning and will eventually be turned into many little tasks to execute on individual workers. This many-
little-tasks state is only available internally to the Spark scheduler.

936 Chapter 3. Complex Algorithms

https://yarn.dask.org
https://jcrist.github.io/jupyterhub-on-hadoop/

dask Documentation, Release 2.6.0

Dask graphs skip this high-level representation and go directly to the many-little-tasks stage. As such, one map
operation on a Dask collection will immediately generate and add possibly thousands of tiny tasks to the Dask graph.

This difference in the scale of the underlying graph has implications on the kinds of analysis and optimizations one
can do and also on the generality that one exposes to users. Dask is unable to perform some optimizations that Spark
can because Dask schedulers do not have a top-down picture of the computation they were asked to perform. However,
Dask is able to easily represent far more complex algorithms and expose the creation of these algorithms to normal
users.

3.26.6 Conclusion

• Spark is mature and all-inclusive. If you want a single project that does everything and you’re already on Big
Data hardware, then Spark is a safe bet, especially if your use cases are typical ETL + SQL and you’re already
using Scala.

• Dask is lighter weight and is easier to integrate into existing code and hardware. If your problems vary beyond
typical ETL + SQL and you want to add flexible parallelism to existing solutions, then Dask may be a good fit,
especially if you are already using Python and associated libraries like NumPy and Pandas.

If you are looking to manage a terabyte or less of tabular CSV or JSON data, then you should forget both Spark and
Dask and use Postgres or MongoDB.

3.27 Opportunistic Caching

EXPERIMENTAL FEATURE added to Version 0.6.2 and above - see disclaimer.

Dask usually removes intermediate values as quickly as possible in order to make space for more data to flow through
your computation. However, in some cases, we may want to hold onto intermediate values, because they might be
useful for future computations in an interactive session.

We need to balance the following concerns:

1. Intermediate results might be useful in future unknown computations

2. Intermediate results also fill up memory, reducing space for the rest of our current computation

Negotiating between these two concerns helps us to leverage the memory that we have available to speed up future,
unanticipated computations. Which intermediate results should we keep?

This document explains an experimental, opportunistic caching mechanism that automatically picks out and stores
useful tasks.

3.27.1 Motivating Example

Consider computing the maximum value of a column in a CSV file:

>>> import dask.dataframe as dd
>>> df = dd.read_csv('myfile.csv')
>>> df.columns
['first-name', 'last-name', 'amount', 'id', 'timestamp']

>>> df.amount.max().compute()
1000

3.27. Opportunistic Caching 937

http://matthewrocklin.com/blog/work/2015/06/26/Complex-Graphs
https://www.postgresql.org/
https://www.mongodb.org/

dask Documentation, Release 2.6.0

Even though our full dataset may be too large to fit in memory, the single df.amount column may be small enough
to hold in memory just in case it might be useful in the future. This is often the case during data exploration, because
we investigate the same subset of our data repeatedly before moving on.

For example, we may now want to find the minimum of the amount column:

>>> df.amount.min().compute()
-1000

Under normal operations, this would need to read through the entire CSV file over again. This is somewhat wasteful
and stymies interactive data exploration.

3.27.2 Two Simple Solutions

If we know ahead of time that we want both the maximum and minimum, we can compute them simultaneously. Dask
will share intermediates intelligently, reading through the dataset only once:

>>> dd.compute(df.amount.max(), df.amount.min())
(1000, -1000)

If we know that this column fits in memory, then we can also explicitly compute the column and then continue forward
with straight Pandas:

>>> amount = df.amount.compute()
>>> amount.max()
1000
>>> amount.min()
-1000

If either of these solutions work for you, great. Otherwise, continue on for a third approach.

3.27.3 Automatic Opportunistic Caching

Another approach is to watch all intermediate computations, and guess which ones might be valuable to keep for
the future. Dask has an opportunistic caching mechanism that stores intermediate tasks that show the following
characteristics:

1. Expensive to compute

2. Cheap to store

3. Frequently used

We can activate a fixed sized cache as a callback:

>>> from dask.cache import Cache
>>> cache = Cache(2e9) # Leverage two gigabytes of memory
>>> cache.register() # Turn cache on globally

Now the cache will watch every small part of the computation and judge the value of that part based on the three
characteristics listed above (expensive to compute, cheap to store, and frequently used).

Dask will hold on to 2GB of the best intermediate results it can find, evicting older results as better results come in. If
the df.amount column fits in 2GB, then probably all of it will be stored while we keep working on it.

If we start work on something else, then the df.amount column will likely be evicted to make space for other more
timely results:

938 Chapter 3. Complex Algorithms

diagnostics.rst

dask Documentation, Release 2.6.0

>>> df.amount.max().compute() # slow the first time
1000
>>> df.amount.min().compute() # fast because df.amount is in the cache
-1000
>>> df.id.nunique().compute() # starts to push out df.amount from cache

3.27.4 Cache tasks, not expressions

This caching happens at the low-level scheduling layer, not the high-level Dask DataFrame or Dask Array layer. We
don’t explicitly cache the column df.amount. Instead, we cache the hundreds of small pieces of that column that
form the dask graph. It could be that we end up caching only a fraction of the column.

This means that the opportunistic caching mechanism described above works for all Dask computations, as long as
those computations employ a consistent naming scheme (as all of Dask DataFrame, Dask Array, and Dask Delayed
do).

You can see which tasks are held by the cache by inspecting the following attributes of the cache object:

>>> cache.cache.data
<stored values>
>>> cache.cache.heap.heap
<scores of items in cache>
>>> cache.cache.nbytes
<number of bytes per item in cache>

The cache object is powered by cachey, a tiny library for opportunistic caching.

3.27.5 Disclaimer

This feature is still experimental, and can cause your computation to fill up RAM.

Restricting your cache to a fixed size like 2GB requires Dask to accurately count the size of each of our objects in
memory. This can be tricky, particularly for Pythonic objects like lists and tuples, and for DataFrames that contain
object dtypes.

It is entirely possible that the caching mechanism will undercount the size of objects, causing it to use up more memory
than anticipated, which can lead to blowing up RAM and crashing your session.

3.28 Task Graphs

Internally, Dask encodes algorithms in a simple format involving Python dicts, tuples, and functions. This graph
format can be used in isolation from the dask collections. Working directly with dask graphs is rare, unless you intend
to develop new modules with Dask. Even then, dask.delayed is often a better choice. If you are a core developer, then
you should start here.

3.28.1 Specification

Dask is a specification to encode a graph – specifically, a directed acyclic graph of tasks with data dependencies –
using ordinary Python data structures, namely dicts, tuples, functions, and arbitrary Python values.

3.28. Task Graphs 939

https://github.com/blaze/cachey

dask Documentation, Release 2.6.0

Definitions

A Dask graph is a dictionary mapping keys to computations:

{'x': 1,
'y': 2,
'z': (add, 'x', 'y'),
'w': (sum, ['x', 'y', 'z']),
'v': [(sum, ['w', 'z']), 2]}

A key is any hashable value that is not a task:

'x'
('x', 2, 3)

A task is a tuple with a callable first element. Tasks represent atomic units of work meant to be run by a single worker.
Example:

(add, 'x', 'y')

We represent a task as a tuple such that the first element is a callable function (like add), and the succeeding elements
are arguments for that function. An argument may be any valid computation.

A computation may be one of the following:

1. Any key present in the Dask graph like 'x'

2. Any other value like 1, to be interpreted literally

3. A task like (inc, 'x') (see below)

4. A list of computations, like [1, 'x', (inc, 'x')]

So all of the following are valid computations:

np.array([...])
(add, 1, 2)
(add, 'x', 2)
(add, (inc, 'x'), 2)
(sum, [1, 2])
(sum, ['x', (inc, 'x')])
(np.dot, np.array([...]), np.array([...]))
[(sum, ['x', 'y']), 'z']

To encode keyword arguments, we recommend the use of functools.partial or toolz.curry.

What functions should expect

In cases like (add, 'x', 'y'), functions like add receive concrete values instead of keys. A Dask scheduler
replaces keys (like 'x' and 'y') with their computed values (like 1, and 2) before calling the add function.

Entry Point - The get function

The get function serves as entry point to computation for all schedulers. This function gets the value associated to
the given key. That key may refer to stored data, as is the case with 'x', or to a task, as is the case with 'z'. In the
latter case, get should perform all necessary computation to retrieve the computed value.

940 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> from dask.threaded import get

>>> from operator import add

>>> dsk = {'x': 1,
... 'y': 2,
... 'z': (add, 'x', 'y'),
... 'w': (sum, ['x', 'y', 'z'])}

>>> get(dsk, 'x')
1

>>> get(dsk, 'z')
3

>>> get(dsk, 'w')
6

Additionally, if given a list, get should simultaneously acquire values for multiple keys:

>>> get(dsk, ['x', 'y', 'z'])
[1, 2, 3]

Because we accept lists of keys as keys, we support nested lists:

>>> get(dsk, [['x', 'y'], ['z', 'w']])
[[1, 2], [3, 6]]

Internally get can be arbitrarily complex, calling out to distributed computing, using caches, and so on.

Why use tuples

With (add, 'x', 'y'), we wish to encode the result of calling add on the values corresponding to the keys 'x'
and 'y'.

We intend the following meaning:

add('x', 'y') # after x and y have been replaced

But this will err because Python executes the function immediately before we know values for 'x' and 'y'.

We delay the execution by moving the opening parenthesis one term to the left, creating a tuple:

Before: add('x', 'y')
After: (add, 'x', 'y')

This lets us store the desired computation as data that we can analyze using other Python code, rather than cause
immediate execution.

LISP users will identify this as an s-expression, or as a rudimentary form of quoting.

3.28.2 Custom Graphs

There may be times when you want to do parallel computing but your application doesn’t fit neatly into something like
Dask Array or Dask Bag. In these cases, you can interact directly with the Dask schedulers. These schedulers operate
well as standalone modules.

3.28. Task Graphs 941

dask Documentation, Release 2.6.0

This separation provides a release valve for complex situations and allows advanced projects to have additional oppor-
tunities for parallel execution, even if those projects have an internal representation for their computations. As Dask
schedulers improve or expand to distributed memory, code written to use Dask schedulers will advance as well.

Example

As discussed in the motivation and specification sections, the schedulers take a task graph (which is a dict of tuples
of functions) and a list of desired keys from that graph.

Here is a mocked out example building a graph for a traditional clean and analyze pipeline:

def load(filename):
...

def clean(data):
...

def analyze(sequence_of_data):
...

def store(result):
with open(..., 'w') as f:

f.write(result)

dsk = {'load-1': (load, 'myfile.a.data'),
'load-2': (load, 'myfile.b.data'),
'load-3': (load, 'myfile.c.data'),
'clean-1': (clean, 'load-1'),
'clean-2': (clean, 'load-2'),
'clean-3': (clean, 'load-3'),
'analyze': (analyze, ['clean-%d' % i for i in [1, 2, 3]]),
'store': (store, 'analyze')}

from dask.multiprocessing import get
get(dsk, 'store') # executes in parallel

Related Projects

The following excellent projects also provide parallel execution:

• Joblib

• Multiprocessing

• IPython Parallel

• Concurrent.futures

• Luigi

Each library lets you dictate how your tasks relate to each other with various levels of sophistication. Each library
executes those tasks with some internal logic.

Dask schedulers differ in the following ways:

1. You specify the entire graph as a Python dict rather than using a specialized API

2. You get a variety of schedulers ranging from single machine, single core to threaded, multiprocessing, dis-
tributed, and

942 Chapter 3. Complex Algorithms

https://joblib.readthedocs.io/en/latest/
https://docs.python.org/3/library/multiprocessing.html
https://ipyparallel.readthedocs.io/en/latest/
https://docs.python.org/3/library/concurrent.futures.html
https://luigi.readthedocs.io

dask Documentation, Release 2.6.0

3. The Dask single-machine schedulers have logic to execute the graph in a way that minimizes memory footprint

But the other projects offer different advantages and different programming paradigms. One should inspect all such
projects before selecting one.

3.28.3 Optimization

Performance can be significantly improved in different contexts by making small optimizations on the Dask graph
before calling the scheduler.

The dask.optimization module contains several functions to transform graphs in a variety of useful ways. In
most cases, users won’t need to interact with these functions directly, as specialized subsets of these transforms are
done automatically in the Dask collections (dask.array, dask.bag, and dask.dataframe). However, users
working with custom graphs or computations may find that applying these methods results in substantial speedups.

In general, there are two goals when doing graph optimizations:

1. Simplify computation

2. Improve parallelism

Simplifying computation can be done on a graph level by removing unnecessary tasks (cull), or on a task level by
replacing expensive operations with cheaper ones (RewriteRule).

Parallelism can be improved by reducing inter-task communication, whether by fusing many tasks into one (fuse),
or by inlining cheap operations (inline, inline_functions).

Below, we show an example walking through the use of some of these to optimize a task graph.

Example

Suppose you had a custom Dask graph for doing a word counting task:

>>> from __future__ import print_function

>>> def print_and_return(string):
... print(string)
... return string

>>> def format_str(count, val, nwords):
... return ('word list has {0} occurrences of {1}, '
... 'out of {2} words').format(count, val, nwords)

>>> dsk = {'words': 'apple orange apple pear orange pear pear',
... 'nwords': (len, (str.split, 'words')),
... 'val1': 'orange',
... 'val2': 'apple',
... 'val3': 'pear',
... 'count1': (str.count, 'words', 'val1'),
... 'count2': (str.count, 'words', 'val2'),
... 'count3': (str.count, 'words', 'val3'),
... 'out1': (format_str, 'count1', 'val1', 'nwords'),
... 'out2': (format_str, 'count2', 'val2', 'nwords'),
... 'out3': (format_str, 'count3', 'val3', 'nwords'),
... 'print1': (print_and_return, 'out1'),
... 'print2': (print_and_return, 'out2'),
... 'print3': (print_and_return, 'out3')}

3.28. Task Graphs 943

dask Documentation, Release 2.6.0

Here we are counting the occurrence of the words 'orange, 'apple', and 'pear' in the list of words, formatting
an output string reporting the results, printing the output, and then returning the output string.

To perform the computation, we first remove unnecessary components from the graph using the cull function and
then pass the Dask graph and the desired output keys to a scheduler get function:

>>> from dask.threaded import get
>>> from dask.optimization import cull

>>> outputs = ['print1', 'print2']
>>> dsk2, _ = cull(dsk, outputs) # remove unnecessary tasks from the graph

>>> results = get(dsk2, outputs)
word list has 2 occurrences of apple, out of 7 words
word list has 2 occurrences of orange, out of 7 words

>>> results
('word list has 2 occurrences of orange, out of 7 words',
'word list has 2 occurrences of apple, out of 7 words')

As can be seen above, the scheduler computed only the requested outputs ('print3' was never computed). This
is because we called the dask.optimization.cull function, which removes the unnecessary tasks from the
graph.

Culling is part of the default optimization pass of almost all collections. Often you want to call it somewhat early to
reduce the amount of work done in later steps:

>>> from dask.optimization import cull
>>> dsk1, dependencies = cull(dsk, outputs)

944 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Looking at the task graph above, there are multiple accesses to constants such as 'val1' or 'val2' in the Dask
graph. These can be inlined into the tasks to improve efficiency using the inline function. For example:

>>> from dask.optimization import inline
>>> dsk2 = inline(dsk1, dependencies=dependencies)
>>> results = get(dsk2, outputs)
word list has 2 occurrences of apple, out of 7 words
word list has 2 occurrences of orange, out of 7 words

3.28. Task Graphs 945

dask Documentation, Release 2.6.0

Now we have two sets of almost linear task chains. The only link between them is the word counting function. For
cheap operations like this, the serialization cost may be larger than the actual computation, so it may be faster to do
the computation more than once, rather than passing the results to all nodes. To perform this function inlining, the
inline_functions function can be used:

>>> from dask.optimization import inline_functions
>>> dsk3 = inline_functions(dsk2, outputs, [len, str.split],
... dependencies=dependencies)
>>> results = get(dsk3, outputs)
word list has 2 occurrences of apple, out of 7 words
word list has 2 occurrences of orange, out of 7 words

946 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Now we have a set of purely linear tasks. We’d like to have the scheduler run all of these on the same worker to reduce
data serialization between workers. One option is just to merge these linear chains into one big task using the fuse
function:

>>> from dask.optimization import fuse
>>> dsk4, dependencies = fuse(dsk3)
>>> results = get(dsk4, outputs)
word list has 2 occurrences of apple, out of 7 words
word list has 2 occurrences of orange, out of 7 words

Putting it all together:

3.28. Task Graphs 947

dask Documentation, Release 2.6.0

>>> def optimize_and_get(dsk, keys):
... dsk1, deps = cull(dsk, keys)
... dsk2 = inline(dsk1, dependencies=deps)
... dsk3 = inline_functions(dsk2, keys, [len, str.split],
... dependencies=deps)
... dsk4, deps = fuse(dsk3)
... return get(dsk4, keys)

>>> optimize_and_get(dsk, outputs)
word list has 2 occurrences of apple, out of 7 words
word list has 2 occurrences of orange, out of 7 words

In summary, the above operations accomplish the following:

1. Removed tasks unnecessary for the desired output using cull

2. Inlined constants using inline

3. Inlined cheap computations using inline_functions, improving parallelism

4. Fused linear tasks together to ensure they run on the same worker using fuse

As stated previously, these optimizations are already performed automatically in the Dask collections. Users not
working with custom graphs or computations should rarely need to directly interact with them.

These are just a few of the optimizations provided in dask.optimization. For more information, see the API
below.

Rewrite Rules

For context based optimizations, dask.rewrite provides functionality for pattern matching and term rewriting.
This is useful for replacing expensive computations with equivalent, cheaper computations. For example, Dask Array
uses the rewrite functionality to replace series of array slicing operations with a more efficient single slice.

The interface to the rewrite system consists of two classes:

1. RewriteRule(lhs, rhs, vars)

Given a left-hand-side (lhs), a right-hand-side (rhs), and a set of variables (vars), a rewrite rule
declaratively encodes the following operation:

lhs -> rhs if task matches lhs over variables

2. RuleSet(*rules)

A collection of rewrite rules. The design of RuleSet class allows for efficient “many-to-one”
pattern matching, meaning that there is minimal overhead for rewriting with multiple rules in a rule
set.

Example

Here we create two rewrite rules expressing the following mathematical transformations:

1. a + a -> 2*a

2. a * a -> a**2

where 'a' is a variable:

948 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

>>> from dask.rewrite import RewriteRule, RuleSet
>>> from operator import add, mul, pow

>>> variables = ('a',)

>>> rule1 = RewriteRule((add, 'a', 'a'), (mul, 'a', 2), variables)

>>> rule2 = RewriteRule((mul, 'a', 'a'), (pow, 'a', 2), variables)

>>> rs = RuleSet(rule1, rule2)

The RewriteRule objects describe the desired transformations in a declarative way, and the RuleSet builds an
efficient automata for applying that transformation. Rewriting can then be done using the rewrite method:

>>> rs.rewrite((add, 5, 5))
(mul, 5, 2)

>>> rs.rewrite((mul, 5, 5))
(pow, 5, 2)

>>> rs.rewrite((mul, (add, 3, 3), (add, 3, 3)))
(pow, (mul, 3, 2), 2)

The whole task is traversed by default. If you only want to apply a transform to the top-level of the task, you can pass
in strategy='top_level' as shown:

Transforms whole task
>>> rs.rewrite((sum, [(add, 3, 3), (mul, 3, 3)]))
(sum, [(mul, 3, 2), (pow, 3, 2)])

Only applies to top level, no transform occurs
>>> rs.rewrite((sum, [(add, 3, 3), (mul, 3, 3)]), strategy='top_level')
(sum, [(add, 3, 3), (mul, 3, 3)])

The rewriting system provides a powerful abstraction for transforming computations at a task level. Again, for many
users, directly interacting with these transformations will be unnecessary.

Keyword Arguments

Some optimizations take optional keyword arguments. To pass keywords from the compute call down to the right
optimization, prepend the keyword with the name of the optimization. For example, to send a keys= keyword
argument to the fuse optimization from a compute call, use the fuse_keys= keyword:

def fuse(dsk, keys=None):
...

x.compute(fuse_keys=['x', 'y', 'z'])

Customizing Optimization

Dask defines a default optimization strategy for each collection type (Array, Bag, DataFrame, Delayed). However,
different applications may have different needs. To address this variability of needs, you can construct your own
custom optimization function and use it instead of the default. An optimization function takes in a task graph and list
of desired keys and returns a new task graph:

3.28. Task Graphs 949

dask Documentation, Release 2.6.0

def my_optimize_function(dsk, keys):
new_dsk = {...}
return new_dsk

You can then register this optimization class against whichever collection type you prefer and it will be used instead
of the default scheme:

with dask.config.set(array_optimize=my_optimize_function):
x, y = dask.compute(x, y)

You can register separate optimization functions for different collections, or you can register None if you do not want
particular types of collections to be optimized:

with dask.config.set(array_optimize=my_optimize_function,
dataframe_optimize=None,
delayed_optimize=my_other_optimize_function):

...

You do not need to specify all collections. Collections will default to their standard optimization scheme (which is
usually a good choice).

API

Top level optimizations

cull(dsk, keys) Return new dask with only the tasks required to calcu-
late keys.

fuse(dsk[, keys, dependencies, ave_width, . . .]) Fuse tasks that form reductions; more advanced than
fuse_linear

inline(dsk[, keys, inline_constants, . . .]) Return new dask with the given keys inlined with their
values.

inline_functions(dsk, output[, . . .]) Inline cheap functions into larger operations

Utility functions

functions_of(task) Set of functions contained within nested task

Rewrite Rules

RewriteRule(lhs, rhs[, vars]) A rewrite rule.
RuleSet(*rules) A set of rewrite rules.

Definitions

dask.optimization.cull(dsk, keys)
Return new dask with only the tasks required to calculate keys.

In other words, remove unnecessary tasks from dask. keys may be a single key or list of keys.

Returns

dsk: culled dask graph

950 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

dependencies: Dict mapping {key: [deps]}. Useful side effect to accelerate other opti-
mizations, notably fuse.

Examples

>>> d = {'x': 1, 'y': (inc, 'x'), 'out': (add, 'x', 10)}
>>> dsk, dependencies = cull(d, 'out') # doctest: +SKIP
>>> dsk # doctest: +SKIP
{'x': 1, 'out': (add, 'x', 10)}
>>> dependencies # doctest: +SKIP
{'x': set(), 'out': set(['x'])}

dask.optimization.fuse(dsk, keys=None, dependencies=None, ave_width=None, max_width=None,
max_height=None, max_depth_new_edges=None, rename_keys=None,
fuse_subgraphs=None)

Fuse tasks that form reductions; more advanced than fuse_linear

This trades parallelism opportunities for faster scheduling by making tasks less granular. It can replace
fuse_linear in optimization passes.

This optimization applies to all reductions–tasks that have at most one dependent–so it may be viewed as fusing
“multiple input, single output” groups of tasks into a single task. There are many parameters to fine tune the
behavior, which are described below. ave_width is the natural parameter with which to compare parallelism
to granularity, so it should always be specified. Reasonable values for other parameters will be determined using
ave_width if necessary.

Parameters

dsk: dict dask graph

keys: list or set, optional Keys that must remain in the returned dask graph

dependencies: dict, optional {key: [list-of-keys]}. Must be a list to provide count of each
key This optional input often comes from cull

ave_width: float (default 2) Upper limit for width = num_nodes / height, a good
measure of parallelizability

max_width: int Don’t fuse if total width is greater than this

max_height: int Don’t fuse more than this many levels

max_depth_new_edges: int Don’t fuse if new dependencies are added after this many levels

rename_keys: bool or func, optional Whether to rename the fused keys with
default_fused_keys_renamer or not. Renaming fused keys can keep the
graph more understandable and comprehensive, but it comes at the cost of additional
processing. If False, then the top-most key will be used. For advanced usage, a function
to create the new name is also accepted.

fuse_subgraphs [bool, optional] Whether to fuse multiple tasks into SubgraphCallable
objects.

Returns

dsk: output graph with keys fused

dependencies: dict mapping dependencies after fusion. Useful side effect to accelerate
other downstream optimizations.

3.28. Task Graphs 951

dask Documentation, Release 2.6.0

dask.optimization.inline(dsk, keys=None, inline_constants=True, dependencies=None)
Return new dask with the given keys inlined with their values.

Inlines all constants if inline_constants keyword is True. Note that the constant keys will remain in the
graph, to remove them follow inline with cull.

Examples

>>> d = {'x': 1, 'y': (inc, 'x'), 'z': (add, 'x', 'y')}
>>> inline(d) # doctest: +SKIP
{'x': 1, 'y': (inc, 1), 'z': (add, 1, 'y')}

>>> inline(d, keys='y') # doctest: +SKIP
{'x': 1, 'y': (inc, 1), 'z': (add, 1, (inc, 1))}

>>> inline(d, keys='y', inline_constants=False) # doctest: +SKIP
{'x': 1, 'y': (inc, 1), 'z': (add, 'x', (inc, 'x'))}

dask.optimization.inline_functions(dsk, output, fast_functions=None, inline_constants=False,
dependencies=None)

Inline cheap functions into larger operations

Examples

>>> dsk = {'out': (add, 'i', 'd'), # doctest: +SKIP
... 'i': (inc, 'x'),
... 'd': (double, 'y'),
... 'x': 1, 'y': 1}
>>> inline_functions(dsk, [], [inc]) # doctest: +SKIP
{'out': (add, (inc, 'x'), 'd'),
'd': (double, 'y'),
'x': 1, 'y': 1}

Protect output keys. In the example below i is not inlined because it is marked as an output key.

>>> inline_functions(dsk, ['i', 'out'], [inc, double]) # doctest: +SKIP
{'out': (add, 'i', (double, 'y')),
'i': (inc, 'x'),
'x': 1, 'y': 1}

dask.optimization.functions_of(task)
Set of functions contained within nested task

Examples

>>> task = (add, (mul, 1, 2), (inc, 3)) # doctest: +SKIP
>>> functions_of(task) # doctest: +SKIP
set([add, mul, inc])

dask.rewrite.RewriteRule(lhs, rhs, vars=())
A rewrite rule.

Expresses lhs -> rhs, for variables vars.

952 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Parameters

lhs [task] The left-hand-side of the rewrite rule.

rhs [task or function] The right-hand-side of the rewrite rule. If it’s a task, variables in rhs
will be replaced by terms in the subject that match the variables in lhs. If it’s a function,
the function will be called with a dict of such matches.

vars: tuple, optional Tuple of variables found in the lhs. Variables can be represented as any
hashable object; a good convention is to use strings. If there are no variables, this can be
omitted.

Examples

Here’s a RewriteRule to replace all nested calls to list, so that (list, (list, ‘x’)) is replaced with (list, ‘x’), where
‘x’ is a variable.

>>> lhs = (list, (list, 'x'))
>>> rhs = (list, 'x')
>>> variables = ('x',)
>>> rule = RewriteRule(lhs, rhs, variables)

Here’s a more complicated rule that uses a callable right-hand-side. A callable rhs takes in a dictionary mapping
variables to their matching values. This rule replaces all occurrences of (list, ‘x’) with ‘x’ if ‘x’ is a list itself.

>>> lhs = (list, 'x')
>>> def repl_list(sd):
... x = sd['x']
... if isinstance(x, list):
... return x
... else:
... return (list, x)
>>> rule = RewriteRule(lhs, repl_list, variables)

dask.rewrite.RuleSet(*rules)
A set of rewrite rules.

Forms a structure for fast rewriting over a set of rewrite rules. This allows for syntactic matching of terms to
patterns for many patterns at the same time.

Examples

>>> def f(*args): pass
>>> def g(*args): pass
>>> def h(*args): pass
>>> from operator import add

>>> rs = RuleSet(# Make RuleSet with two Rules
... RewriteRule((add, 'x', 0), 'x', ('x',)),
... RewriteRule((f, (g, 'x'), 'y'),
... (h, 'x', 'y'),
... ('x', 'y')))

>>> rs.rewrite((add, 2, 0)) # Apply ruleset to single task
2

3.28. Task Graphs 953

dask Documentation, Release 2.6.0

>>> rs.rewrite((f, (g, 'a', 3))) # doctest: +SKIP
(h, 'a', 3)

>>> dsk = {'a': (add, 2, 0), # Apply ruleset to full dask graph
... 'b': (f, (g, 'a', 3))}

>>> from toolz import valmap
>>> valmap(rs.rewrite, dsk) # doctest: +SKIP
{'a': 2,
'b': (h, 'a', 3)}

Attributes

rules [list] A list of RewriteRule‘s included in the ‘RuleSet.

3.28.4 Custom Collections

For many problems, the built-in Dask collections (dask.array, dask.dataframe, dask.bag, and dask.
delayed) are sufficient. For cases where they aren’t, it’s possible to create your own Dask collections. Here we
describe the required methods to fulfill the Dask collection interface.

Note: This is considered an advanced feature. For most cases the built-in collections are probably sufficient.

Before reading this you should read and underestand:

• overview

• graph specification

• custom graphs

Contents

• Description of the Dask collection interface

• How this interface is used to implement the core Dask methods

• How to add the core methods to your class

• Example Dask Collection

• How to check if something is a Dask collection

• How to make tokenize work with your collection

The Dask Collection Interface

To create your own Dask collection, you need to fulfill the following interface. Note that there is no required base
class.

It is recommended to also read Internals of the Core Dask Methods to see how this interface is used inside Dask.

__dask_graph__(self)
The Dask graph.

dsk [MutableMapping, None] The Dask graph. If None, this instance will not be interpreted as a Dask collec-
tion, and none of the remaining interface methods will be called.

954 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

__dask_keys__(self)
The output keys for the Dask graph.

keys [list] A possibly nested list of keys that represent the outputs of the graph. After computation, the results
will be returned in the same layout, with the keys replaced with their corresponding outputs.

static __dask_optimize__(dsk, keys, **kwargs)
Given a graph and keys, return a new optimized graph.

This method can be either a staticmethod or a classmethod, but not an instancemethod.

Note that graphs and keys are merged before calling __dask_optimize__; as such, the graph and keys
passed to this method may represent more than one collection sharing the same optimize method.

If not implemented, defaults to returning the graph unchanged.

dsk [MutableMapping] The merged graphs from all collections sharing the same __dask_optimize__
method.

keys [list] A list of the outputs from __dask_keys__ from all collections sharing the same
__dask_optimize__ method.

**kwargs Extra keyword arguments forwarded from the call to compute or persist. Can be used or
ignored as needed.

optimized_dsk [MutableMapping] The optimized Dask graph.

static __dask_scheduler__(dsk, keys, **kwargs)
The default scheduler get to use for this object.

Usually attached to the class as a staticmethod, e.g.:

>>> import dask.threaded
>>> class MyCollection(object):
... # Use the threaded scheduler by default
... __dask_scheduler__ = staticmethod(dask.threaded.get)

__dask_postcompute__(self)
Return the finalizer and (optional) extra arguments to convert the computed results into their in-memory repre-
sentation.

Used to implement dask.compute.

finalize [callable] A function with the signature finalize(results, *extra_args). Called with the
computed results in the same structure as the corresponding keys from __dask_keys__, as well as
any extra arguments as specified in extra_args. Should perform any necessary finalization before
returning the corresponding in-memory collection from compute. For example, the finalize function
for dask.array.Array concatenates all the individual array chunks into one large numpy array, which
is then the result of compute.

extra_args [tuple] Any extra arguments to pass to finalize after results. If no extra arguments should
be an empty tuple.

__dask_postpersist__(self)
Return the rebuilder and (optional) extra arguments to rebuild an equivalent Dask collection from a persisted
graph.

Used to implement dask.persist.

rebuild [callable] A function with the signature rebuild(dsk, *extra_args). Called with a persisted
graph containing only the keys and results from __dask_keys__, as well as any extra arguments as
specified in extra_args. Should return an equivalent Dask collection with the same keys as self, but

3.28. Task Graphs 955

dask Documentation, Release 2.6.0

with the results already computed. For example, the rebuild function for dask.array.Array is
just the __init__ method called with the new graph but the same metadata.

extra_args [tuple] Any extra arguments to pass to rebuild after dsk. If no extra arguments should be an
empty tuple.

Note: It’s also recommended to define __dask_tokenize__, see Implementing Deterministic Hashing.

Internals of the Core Dask Methods

Dask has a few core functions (and corresponding methods) that implement common operations:

• compute: Convert one or more Dask collections into their in-memory counterparts

• persist: Convert one or more Dask collections into equivalent Dask collections with their results already
computed and cached in memory

• optimize: Convert one or more Dask collections into equivalent Dask collections sharing one large optimized
graph

• visualize: Given one or more Dask collections, draw out the graph that would be passed to the scheduler
during a call to compute or persist

Here we briefly describe the internals of these functions to illustrate how they relate to the above interface.

Compute

The operation of compute can be broken into three stages:

1. Graph Merging & Optimization

First, the individual collections are converted to a single large graph and nested list of keys. How this happens
depends on the value of the optimize_graph keyword, which each function takes:

• If optimize_graph is True (default), then the collections are first grouped by their
__dask_optimize__ methods. All collections with the same __dask_optimize__ method
have their graphs merged and keys concatenated, and then a single call to each respective
__dask_optimize__ is made with the merged graphs and keys. The resulting graphs are then merged.

• If optimize_graph is False, then all the graphs are merged and all the keys concatenated.

After this stage there is a single large graph and nested list of keys which represents all the collections.

2. Computation

After the graphs are merged and any optimizations performed, the resulting large graph and nested list of keys
are passed on to the scheduler. The scheduler to use is chosen as follows:

• If a get function is specified directly as a keyword, use that

• Otherwise, if a global scheduler is set, use that

• Otherwise fall back to the default scheduler for the given collections. Note that if all collections don’t
share the same __dask_scheduler__ then an error will be raised.

Once the appropriate scheduler get function is determined, it is called with the merged graph, keys, and extra
keyword arguments. After this stage, results is a nested list of values. The structure of this list mirrors that
of keys, with each key substituted with its corresponding result.

956 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

3. Postcompute

After the results are generated, the output values of compute need to be built. This is what the
__dask_postcompute__ method is for. __dask_postcompute__ returns two things:

• A finalize function, which takes in the results for the corresponding keys

• A tuple of extra arguments to pass to finalize after the results

To build the outputs, the list of collections and results is iterated over, and the finalizer for each collection is
called on its respective results.

In pseudocode, this process looks like the following:

def compute(*collections, **kwargs):
1. Graph Merging & Optimization

if kwargs.pop('optimize_graph', True):

If optimization is turned on, group the collections by
optimization method, and apply each method only once to the merged
sub-graphs.
optimization_groups = groupby_optimization_methods(collections)
graphs = []
for optimize_method, cols in optimization_groups:

Merge the graphs and keys for the subset of collections that
share this optimization method
sub_graph = merge_graphs([x.__dask_graph__() for x in cols])
sub_keys = [x.__dask_keys__() for x in cols]
kwargs are forwarded to ``__dask_optimize__`` from compute
optimized_graph = optimize_method(sub_graph, sub_keys, **kwargs)
graphs.append(optimized_graph)

graph = merge_graphs(graphs)
else:

graph = merge_graphs([x.__dask_graph__() for x in collections])
Keys are always the same
keys = [x.__dask_keys__() for x in collections]

2. Computation

Determine appropriate get function based on collections, global
settings, and keyword arguments
get = determine_get_function(collections, **kwargs)
Pass the merged graph, keys, and kwargs to ``get``
results = get(graph, keys, **kwargs)

3. Postcompute

output = []
Iterate over the results and collections
for res, collection in zip(results, collections):

finalize, extra_args = collection.__dask_postcompute__()
out = finalize(res, **extra_args)
output.append(out)

`dask.compute` always returns tuples
return tuple(output)

3.28. Task Graphs 957

dask Documentation, Release 2.6.0

Persist

Persist is very similar to compute, except for how the return values are created. It too has three stages:

1. Graph Merging & Optimization

Same as in compute.

2. Computation

Same as in compute, except in the case of the distributed scheduler, where the values in results are futures
instead of values.

3. Postpersist

Similar to __dask_postcompute__, __dask_postpersist__ is used to rebuild values in a call to
persist. __dask_postpersist__ returns two things:

• A rebuild function, which takes in a persisted graph. The keys of this graph are the same as
__dask_keys__ for the corresponding collection, and the values are computed results (for the sin-
gle machine scheduler) or futures (for the distributed scheduler).

• A tuple of extra arguments to pass to rebuild after the graph

To build the outputs of persist, the list of collections and results is iterated over, and the rebuilder for each
collection is called on the graph for its respective results.

In pseudocode, this looks like the following:

def persist(*collections, **kwargs):
1. Graph Merging & Optimization

Same as in compute
graph = ...
keys = ...

2. Computation

Same as in compute
results = ...

3. Postpersist

output = []
Iterate over the results and collections
for res, collection in zip(results, collections):

res has the same structure as keys
keys = collection.__dask_keys__()
Get the computed graph for this collection.
Here flatten converts a nested list into a single list
subgraph = {k: r for (k, r) in zip(flatten(keys), flatten(res))}

Rebuild the output dask collection with the computed graph
rebuild, extra_args = collection.__dask_postpersist__()
out = rebuild(subgraph, *extra_args)

output.append(out)

dask.persist always returns tuples
return tuple(output)

958 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

Optimize

The operation of optimize can be broken into two stages:

1. Graph Merging & Optimization

Same as in compute.

2. Rebuilding

Similar to persist, the rebuild function and arguments from __dask_postpersist__ are used to
reconstruct equivalent collections from the optimized graph.

In pseudocode, this looks like the following:

def optimize(*collections, **kwargs):
1. Graph Merging & Optimization

Same as in compute
graph = ...

2. Rebuilding

Rebuild each dask collection using the same large optimized graph
output = []
for collection in collections:

rebuild, extra_args = collection.__dask_postpersist__()
out = rebuild(graph, *extra_args)
output.append(out)

dask.optimize always returns tuples
return tuple(output)

Visualize

Visualize is the simplest of the 4 core functions. It only has two stages:

1. Graph Merging & Optimization

Same as in compute.

2. Graph Drawing

The resulting merged graph is drawn using graphviz and outputs to the specified file.

In pseudocode, this looks like the following:

def visualize(*collections, **kwargs):
1. Graph Merging & Optimization

Same as in compute
graph = ...

2. Graph Drawing

Draw the graph with graphviz's `dot` tool and return the result.
return dot_graph(graph, **kwargs)

3.28. Task Graphs 959

dask Documentation, Release 2.6.0

Adding the Core Dask Methods to Your Class

Defining the above interface will allow your object to used by the core Dask functions (dask.compute, dask.
persist, dask.visualize, etc.). To add corresponding method versions of these, you can subclass from dask.
base.DaskMethodsMixin which adds implementations of compute, persist, and visualize based on the
interface above.

Example Dask Collection

Here we create a Dask collection representing a tuple. Every element in the tuple is represented as a task in the graph.
Note that this is for illustration purposes only - the same user experience could be done using normal tuples with
elements of dask.delayed:

Saved as dask_tuple.py
from dask.base import DaskMethodsMixin
from dask.optimization import cull

We subclass from DaskMethodsMixin to add common dask methods to our
class. This is nice but not necessary for creating a dask collection.
class Tuple(DaskMethodsMixin):

def __init__(self, dsk, keys):
The init method takes in a dask graph and a set of keys to use
as outputs.
self._dsk = dsk
self._keys = keys

def __dask_graph__(self):
return self._dsk

def __dask_keys__(self):
return self._keys

@staticmethod
def __dask_optimize__(dsk, keys, **kwargs):

We cull unnecessary tasks here. Note that this isn't necessary,
dask will do this automatically, this just shows one optimization
you could do.
dsk2, _ = cull(dsk, keys)
return dsk2

Use the threaded scheduler by default.
__dask_scheduler__ = staticmethod(dask.threaded.get)

def __dask_postcompute__(self):
We want to return the results as a tuple, so our finalize
function is `tuple`. There are no extra arguments, so we also
return an empty tuple.
return tuple, ()

def __dask_postpersist__(self):
Since our __init__ takes a graph as its first argument, our
rebuild function can just be the class itself. For extra
arguments we also return a tuple containing just the keys.
return Tuple, (self._keys,)

def __dask_tokenize__(self):

(continues on next page)

960 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

For tokenize to work we want to return a value that fully
represents this object. In this case it's the list of keys
to be computed.
return tuple(self._keys)

Demonstrating this class:

>>> from dask_tuple import Tuple
>>> from operator import add, mul

Define a dask graph
>>> dsk = {'a': 1,
... 'b': 2,
... 'c': (add, 'a', 'b'),
... 'd': (mul, 'b', 2),
... 'e': (add, 'b', 'c')}

The output keys for this graph
>>> keys = ['b', 'c', 'd', 'e']

>>> x = Tuple(dsk, keys)

Compute turns Tuple into a tuple
>>> x.compute()
(2, 3, 4, 5)

Persist turns Tuple into a Tuple, with each task already computed
>>> x2 = x.persist()
>>> isinstance(x2, Tuple)
True
>>> x2.__dask_graph__()
{'b': 2,
'c': 3,
'd': 4,
'e': 5}

>>> x2.compute()
(2, 3, 4, 5)

Checking if an object is a Dask collection

To check if an object is a Dask collection, use dask.base.is_dask_collection:

>>> from dask.base import is_dask_collection
>>> from dask import delayed

>>> x = delayed(sum)([1, 2, 3])
>>> is_dask_collection(x)
True
>>> is_dask_collection(1)
False

3.28. Task Graphs 961

dask Documentation, Release 2.6.0

Implementing Deterministic Hashing

Dask implements its own deterministic hash function to generate keys based on the value of arguments. This function
is available as dask.base.tokenize. Many common types already have implementations of tokenize, which
can be found in dask/base.py.

When creating your own custom classes, you may need to register a tokenize implementation. There are two ways
to do this:

1. The __dask_tokenize__ method

Where possible, it is recommended to define the __dask_tokenize__ method. This method takes no argu-
ments and should return a value fully representative of the object.

2. Register a function with dask.base.normalize_token

If defining a method on the class isn’t possible, you can register a tokenize function with the
normalize_token dispatch. The function should have the same signature as described above.

In both cases the implementation should be the same, where only the location of the definition is different.

Note: Both Dask collections and normal Python objects can have implementations of tokenize using either of the
methods described above.

Example

>>> from dask.base import tokenize, normalize_token

Define a tokenize implementation using a method.
>>> class Foo(object):
... def __init__(self, a, b):
... self.a = a
... self.b = b
...
... def __dask_tokenize__(self):
... # This tuple fully represents self
... return (Foo, self.a, self.b)

>>> x = Foo(1, 2)
>>> tokenize(x)
'5988362b6e07087db2bc8e7c1c8cc560'
>>> tokenize(x) == tokenize(x) # token is deterministic
True

Register an implementation with normalize_token
>>> class Bar(object):
... def __init__(self, x, y):
... self.x = x
... self.y = y

>>> @normalize_token.register(Bar)
... def tokenize_bar(x):
... return (Bar, x.x, x.x)

>>> y = Bar(1, 2)
>>> tokenize(y)

(continues on next page)

962 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

'5a7e9c3645aa44cf13d021c14452152e'
>>> tokenize(y) == tokenize(y)
True
>>> tokenize(y) == tokenize(x) # tokens for different objects aren't equal
False

For more examples, see dask/base.py or any of the built-in Dask collections.

3.28.5 High Level Graphs

Dask graphs produced by collections like Arrays, Bags, and DataFrames have high-level structure that can be useful
for visualization and high-level optimization. The task graphs produced by these collections encode this structure
explicitly as HighLevelGraph objects. This document describes how to work with these in more detail.

Motivation and Example

In full generality, Dask schedulers expect arbitrary task graphs where each node is a single Python function call and
each edge is a dependency between two function calls. These are usually stored in flat dictionaries. Here is some
simple Dask DataFrame code and the task graph that it might generate:

import dask.dataframe as dd

df = dd.read_csv('myfile.*.csv')
df = df + 100
df = df[df.name == 'Alice']

{
('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),
('read-csv', 1): (pandas.read_csv, 'myfile.1.csv'),
('read-csv', 2): (pandas.read_csv, 'myfile.2.csv'),
('read-csv', 3): (pandas.read_csv, 'myfile.3.csv'),
('add', 0): (operator.add, ('read-csv', 0), 100),
('add', 1): (operator.add, ('read-csv', 1), 100),
('add', 2): (operator.add, ('read-csv', 2), 100),
('add', 3): (operator.add, ('read-csv', 3), 100),
('filter', 0): (lambda part: part[part.name == 'Alice'], ('add', 0)),
('filter', 1): (lambda part: part[part.name == 'Alice'], ('add', 1)),
('filter', 2): (lambda part: part[part.name == 'Alice'], ('add', 2)),
('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 3)),

}

The task graph is a dictionary that stores every Pandas-level function call necessary to compute the final result. We can
see that there is some structure to this dictionary if we separate out the tasks that were associated to each high-level
Dask DataFrame operation:

{
From the dask.dataframe.read_csv call
('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),
('read-csv', 1): (pandas.read_csv, 'myfile.1.csv'),
('read-csv', 2): (pandas.read_csv, 'myfile.2.csv'),
('read-csv', 3): (pandas.read_csv, 'myfile.3.csv'),

From the df + 100 call

(continues on next page)

3.28. Task Graphs 963

dask Documentation, Release 2.6.0

(continued from previous page)

('add', 0): (operator.add, ('read-csv', 0), 100),
('add', 1): (operator.add, ('read-csv', 1), 100),
('add', 2): (operator.add, ('read-csv', 2), 100),
('add', 3): (operator.add, ('read-csv', 3), 100),

From the df[df.name == 'Alice'] call
('filter', 0): (lambda part: part[part.name == 'Alice'], ('add', 0)),
('filter', 1): (lambda part: part[part.name == 'Alice'], ('add', 1)),
('filter', 2): (lambda part: part[part.name == 'Alice'], ('add', 2)),
('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 3)),

}

By understanding this high-level structure we are able to understand our task graphs more easily (this is more important
for larger datasets when there are thousands of tasks per layer) and how to perform high-level optimizations. For
example, in the case above we may want to automatically rewrite our code to filter our datasets before adding 100:

Before
df = dd.read_csv('myfile.*.csv')
df = df + 100
df = df[df.name == 'Alice']

After
df = dd.read_csv('myfile.*.csv')
df = df[df.name == 'Alice']
df = df + 100

Dask’s high level graphs help us to explicitly encode this structure by storing our task graphs in layers with dependen-
cies between layers:

>>> import dask.dataframe as dd

>>> df = dd.read_csv('myfile.*.csv')
>>> df = df + 100
>>> df = df[df.name == 'Alice']

>>> graph = df.__dask_graph__()
>>> graph.layers
{
'read-csv': {('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),

('read-csv', 1): (pandas.read_csv, 'myfile.1.csv'),
('read-csv', 2): (pandas.read_csv, 'myfile.2.csv'),
('read-csv', 3): (pandas.read_csv, 'myfile.3.csv')},

'add': {('add', 0): (operator.add, ('read-csv', 0), 100),
('add', 1): (operator.add, ('read-csv', 1), 100),
('add', 2): (operator.add, ('read-csv', 2), 100),
('add', 3): (operator.add, ('read-csv', 3), 100)}

'filter': {('filter', 0): (lambda part: part[part.name == 'Alice'], ('add', 0)),
('filter', 1): (lambda part: part[part.name == 'Alice'], ('add', 1)),
('filter', 2): (lambda part: part[part.name == 'Alice'], ('add', 2)),
('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 3))}

}

>>> graph.dependencies
{

(continues on next page)

964 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

(continued from previous page)

'read-csv': set(),
'add': {'read-csv'},
'filter': {'add'}

}

While the DataFrame points to the output layers on which it depends directly:

>>> df.__dask_layers__()
{'filter'}

HighLevelGraphs

The HighLevelGraph object is a Mapping object composed of other sub-Mappings, along with a high-level
dependency mapping between them:

class HighLevelGraph(Mapping):
layers: Dict[str, Mapping]
dependencies: Dict[str, Set[str]]

You can construct a HighLevelGraph explicitly by providing both to the constructor:

layers = {
'read-csv': {('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),

('read-csv', 1): (pandas.read_csv, 'myfile.1.csv'),
('read-csv', 2): (pandas.read_csv, 'myfile.2.csv'),
('read-csv', 3): (pandas.read_csv, 'myfile.3.csv')},

'add': {('add', 0): (operator.add, ('read-csv', 0), 100),
('add', 1): (operator.add, ('read-csv', 1), 100),
('add', 2): (operator.add, ('read-csv', 2), 100),
('add', 3): (operator.add, ('read-csv', 3), 100)}

'filter': {('filter', 0): (lambda part: part[part.name == 'Alice'], ('add', 0)),
('filter', 1): (lambda part: part[part.name == 'Alice'], ('add', 1)),
('filter', 2): (lambda part: part[part.name == 'Alice'], ('add', 2)),
('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 3))}

}

dependencies = {'read-csv': set(),
'add': {'read-csv'},
'filter': {'add'}}

graph = HighLevelGraph(layers, dependencies)

This object satisfies the Mapping interface, and so operates as a normal Python dictionary that is the semantic merger
of the underlying layers:

>>> len(graph)
12
>>> graph[('read-csv', 0)]
('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),

3.28. Task Graphs 965

dask Documentation, Release 2.6.0

API

class dask.highlevelgraph.HighLevelGraph(layers, dependencies)
Task graph composed of layers of dependent subgraphs

This object encodes a Dask task graph that is composed of layers of dependent subgraphs, such as commonly
occurs when building task graphs using high level collections like Dask array, bag, or dataframe.

Typically each high level array, bag, or dataframe operation takes the task graphs of the input collections, merges
them, and then adds one or more new layers of tasks for the new operation. These layers typically have at least as
many tasks as there are partitions or chunks in the collection. The HighLevelGraph object stores the subgraphs
for each operation separately in sub-graphs, and also stores the dependency structure between them.

Parameters

layers [Dict[str, Mapping]] The subgraph layers, keyed by a unique name

dependencies [Dict[str, Set[str]]] The set of layers on which each layer depends

See also:

HighLevelGraph.from_collections typically used by developers to make new HighLevelGraphs

Examples

Here is an idealized example that shows the internal state of a HighLevelGraph

>>> import dask.dataframe as dd

>>> df = dd.read_csv('myfile.*.csv') # doctest: +SKIP
>>> df = df + 100 # doctest: +SKIP
>>> df = df[df.name == 'Alice'] # doctest: +SKIP

>>> graph = df.__dask_graph__() # doctest: +SKIP
>>> graph.layers # doctest: +SKIP
{
'read-csv': {('read-csv', 0): (pandas.read_csv, 'myfile.0.csv'),

('read-csv', 1): (pandas.read_csv, 'myfile.1.csv'),
('read-csv', 2): (pandas.read_csv, 'myfile.2.csv'),
('read-csv', 3): (pandas.read_csv, 'myfile.3.csv')},

'add': {('add', 0): (operator.add, ('read-csv', 0), 100),
('add', 1): (operator.add, ('read-csv', 1), 100),
('add', 2): (operator.add, ('read-csv', 2), 100),
('add', 3): (operator.add, ('read-csv', 3), 100)}

'filter': {('filter', 0): (lambda part: part[part.name == 'Alice'], ('add', 0)),
('filter', 1): (lambda part: part[part.name == 'Alice'], ('add', 1)),
('filter', 2): (lambda part: part[part.name == 'Alice'], ('add', 2)),
('filter', 3): (lambda part: part[part.name == 'Alice'], ('add', 3))}

}

>>> graph.dependencies # doctest: +SKIP
{
'read-csv': set(),
'add': {'read-csv'},
'filter': {'add'}
}

966 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

classmethod from_collections(name, layer, dependencies=())
Construct a HighLevelGraph from a new layer and a set of collections

This constructs a HighLevelGraph in the common case where we have a single new layer and a set of old
collections on which we want to depend.

This pulls out the __dask_layers__() method of the collections if they exist, and adds them to the
dependencies for this new layer. It also merges all of the layers from all of the dependent collections
together into the new layers for this graph.

Parameters

name [str] The name of the new layer

layer [Mapping] The graph layer itself

dependencies [List of Dask collections] A lit of other dask collections (like arrays or
dataframes) that have graphs themselves

Examples

In typical usage we make a new task layer, and then pass that layer along with all dependent collections
to this method.

>>> def add(self, other):
... name = 'add-' + tokenize(self, other)
... layer = {(name, i): (add, input_key, other)
... for i, input_key in enumerate(self.__dask_keys__())}
... graph = HighLevelGraph.from_collections(name, layer,
→˓dependencies=[self])
... return new_collection(name, graph)

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D’s items

keys()→ a set-like object providing a view on D’s keys

values()→ an object providing a view on D’s values

3.28.6 Motivation

Normally, humans write programs and then compilers/interpreters interpret them (for example, python, javac,
clang). Sometimes humans disagree with how these compilers/interpreters choose to interpret and execute their
programs. In these cases, humans often bring the analysis, optimization, and execution of code into the code itself.

Commonly a desire for parallel execution causes this shift of responsibility from compiler to human developer. In
these cases, we often represent the structure of our program explicitly as data within the program itself.

A common approach to parallel execution in user-space is task scheduling. In task scheduling we break our program
into many medium-sized tasks or units of computation, often a function call on a non-trivial amount of data. We
represent these tasks as nodes in a graph with edges between nodes if one task depends on data produced by another.
We call upon a task scheduler to execute this graph in a way that respects these data dependencies and leverages
parallelism where possible, multiple independent tasks can be run simultaneously.

Many solutions exist. This is a common approach in parallel execution frameworks. Often task scheduling logic hides
within other larger frameworks (Luigi, Storm, Spark, IPython Parallel, and so on) and so is often reinvented.

3.28. Task Graphs 967

dask Documentation, Release 2.6.0

Dask is a specification that encodes task schedules with minimal incidental complexity using terms common to all
Python projects, namely dicts, tuples, and callables. Ideally this minimum solution is easy to adopt and understand by
a broad community.

3.28.7 Example

Consider the following simple program:

def inc(i):
return i + 1

def add(a, b):
return a + b

x = 1
y = inc(x)
z = add(y, 10)

We encode this as a dictionary in the following way:

d = {'x': 1,
'y': (inc, 'x'),
'z': (add, 'y', 10)}

While less pleasant than our original code, this representation can be analyzed and executed by other Python code, not
just the CPython interpreter. We don’t recommend that users write code in this way, but rather that it is an appropriate
target for automated systems. Also, in non-toy examples, the execution times are likely much larger than for inc and
add, warranting the extra complexity.

968 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

3.28.8 Schedulers

The Dask library currently contains a few schedulers to execute these graphs. Each scheduler works differently,
providing different performance guarantees and operating in different contexts. These implementations are not special
and others can write different schedulers better suited to other applications or architectures easily. Systems that emit
dask graphs (like Dask Array, Dask Bag, and so on) may leverage the appropriate scheduler for the application and
hardware.

3.29 Remote Data

Dask can read data from a variety of data stores including local file systems, network file systems, cloud object stores,
and Hadoop. Typically this is done by prepending a protocol like "s3://" to paths used in common data access
functions like dd.read_csv:

import dask.dataframe as dd
df = dd.read_csv('s3://bucket/path/to/data-*.csv')
df = dd.read_parquet('gcs://bucket/path/to/data-*.parq')

import dask.bag as db
b = db.read_text('hdfs://path/to/*.json').map(json.loads)

Dask uses fsspec for local, cluster and remote data IO. Other file interaction, such as loading of configuration, is done
using ordinary python method.

The following remote services are well supported and tested against the main codebase:

• Local or Network File System: file:// - the local file system, default in the absence of any protocol

• Hadoop File System: hdfs:// - Hadoop Distributed File System, for resilient, replicated files within a cluster.
This uses PyArrow as the backend.

• Amazon S3: s3:// - Amazon S3 remote binary store, often used with Amazon EC2, using the library s3fs

• Google Cloud Storage: gcs:// or gs: - Google Cloud Storage, typically used with Google Compute re-
source using gcsfs (in development)

• HTTP(s): http:// or https:// for reading data directly from HTTP web servers

• Azure Datalake Storage: adl://, for use with the Microsoft Azure platform, using azure-data-lake-store-
python, is unavailable in the current release of fsspec, but a new version using Microsoft’s “protocol 2”
should come soon.

fsspec also provides other file sytstems that may be of interest to Dask users, such as ssh, ftp and webhdfs. See the
documentation for more information.

When specifying a storage location, a URL should be provided using the general form protocol://path/to/
data. If no protocol is provided, the local file system is assumed (same as file://).

Lower-level details on how Dask handles remote data is described is described below in the Internals section

3.29.1 Optional Parameters

Two methods exist for passing parameters to the backend file system driver: extending the URL to include username,
password, server, port, etc.; and providing storage_options, a dictionary of parameters to pass on. The second
form is more general, as any number of file system-specific options can be passed.

Examples:

3.29. Remote Data 969

https://filesystem-spec.readthedocs.io/
https://arrow.apache.org/docs/python/
https://s3fs.readthedocs.io/
https://github.com/dask/gcsfs/
https://github.com/Azure/azure-data-lake-store-python
https://github.com/Azure/azure-data-lake-store-python

dask Documentation, Release 2.6.0

df = dd.read_csv('hdfs://user@server:port/path/*.csv')

df = dd.read_parquet('s3://bucket/path',
storage_options={'anon': True, 'use_ssl': False})

Details on how to provide configuration for the main back-ends are listed next, but further details can be found in the
documentation pages of the relevant back-end.

Each back-end has additional installation requirements and may not be available at runtime. The dictionary fsspec.
registry contains the currently imported file systems. To see which backends fsspec knows how to import, you
can do

from fsspec.registry import known_implementations
known_implementations

Note that some backends appear twice, if they can be referenced with multiple protocol strings, like “http” and “https”.

3.29.2 Local File System

Local files are always accessible, and all parameters passed as part of the URL (beyond the path itself) or with the
storage_options dictionary will be ignored.

This is the default back-end, and the one used if no protocol is passed at all.

We assume here that each worker has access to the same file system - either the workers are co-located on the same
machine, or a network file system is mounted and referenced at the same path location for every worker node.

Locations specified relative to the current working directory will, in general, be respected (as they would be with the
built-in python open), but this may fail in the case that the client and worker processes do not necessarily have the
same working directory.

3.29.3 Hadoop File System

The Hadoop File System (HDFS) is a widely deployed, distributed, data-local file system written in Java. This file
system backs many clusters running Hadoop and Spark. HDFS support can be provided by PyArrow.

By default, the back-end attempts to read the default server and port from local Hadoop configuration files on each
node, so it may be that no configuration is required. However, the server, port, and user can be passed as part of the
url: hdfs://user:pass@server:port/path/to/data, or using the storage_options= kwarg.

Extra Configuration for PyArrow

The following additional options may be passed to the PyArrow driver via storage_options:

• host, port, user: Basic authentication

• kerb_ticket: Path to kerberos ticket cache

PyArrow’s libhdfs driver can also be affected by a few environment variables. For more information on these, see
the PyArrow documentation.

3.29.4 Amazon S3

Amazon S3 (Simple Storage Service) is a web service offered by Amazon Web Services.

970 Chapter 3. Complex Algorithms

https://arrow.apache.org/docs/python/
https://arrow.apache.org/docs/python/filesystems.html#hadoop-file-system-hdfs

dask Documentation, Release 2.6.0

The S3 back-end available to Dask is s3fs, and is importable when Dask is imported.

Authentication for S3 is provided by the underlying library boto3. As described in the auth docs, this could be achieved
by placing credentials files in one of several locations on each node: ~/.aws/credentials, ~/.aws/config,
/etc/boto.cfg, and ~/.boto. Alternatively, for nodes located within Amazon EC2, IAM roles can be set up
for each node, and then no further configuration is required. The final authentication option for user credentials can be
passed directly in the URL (s3://keyID:keySecret/bucket/key/name) or using storage_options.
In this case, however, the key/secret will be passed to all workers in-the-clear, so this method is only recommended on
well-secured networks.

The following parameters may be passed to s3fs using storage_options:

• anon: Whether access should be anonymous (default False)

• key, secret: For user authentication

• token: If authentication has been done with some other S3 client

• use_ssl: Whether connections are encrypted and secure (default True)

• client_kwargs: Dict passed to the boto3 client, with keys such as region_name or endpoint_url. Notice: do not
pass the config option here, please pass it’s content to config_kwargs instead.

• config_kwargs: Dict passed to the s3fs.S3FileSystem, which passes it to the boto3 client’s config option.

• requester_pays: Set True if the authenticated user will assume transfer costs, which is required by some
providers of bulk data

• default_block_size, default_fill_cache: These are not of particular interest to Dask users, as they concern the
behaviour of the buffer between successive reads

• kwargs: Other parameters are passed to the boto3 Session object, such as profile_name, to pick one of the
authentication sections from the configuration files referred to above (see here)

Using Other S3-Compatible Services

By using the endpoint_url option, you may use other s3-compatible services, for example, using AlibabaCloud OSS:

dask_function(...,
storage_options={

"key": ...,
"secret": ...,
"client_kwargs": {

"endpoint_url": "http://some-region.some-s3-compatible.com",
},
this dict goes to boto3 client's `config`
`addressing_style` is required by AlibabaCloud, other services may not
"config_kwargs": {"s3": {"addressing_style": "virtual"}},

})

3.29.5 Google Cloud Storage

Google Cloud Storage is a RESTful online file storage web service for storing and accessing data on Google’s infras-
tructure.

The GCS back-end is identified by the protocol identifiers gcs and gs, which are identical in their effect.

Multiple modes of authentication are supported. These options should be included in the storage_options dic-
tionary as {'token': ..} submitted with your call to a storage-based Dask function/method. See the gcsfs
documentation for further details.

3.29. Remote Data 971

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html#boto3.session.Session.client
https://s3fs.readthedocs.io/en/latest/api.html#s3fs.core.S3FileSystem
https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#shared-credentials-file
https://github.com/dask/gcsfs/

dask Documentation, Release 2.6.0

General recommendations for distributed clusters, in order:

• use anon for public data

• use cloud if this is available

• use gcloud to generate a JSON file, and distribute this to all workers, and supply the path to the file

• use gcsfs directly with the browser method to generate a token cache file (~/.gcs_tokens) and distribute
this to all workers, thereafter using method cache

A final suggestion is shown below, which may be the fastest and simplest for authenticated access (as opposed to
anonymous), since it will not require re-authentication. However, this method is not secure since credentials will be
passed directly around the cluster. This is fine if you are certain that the cluster is itself secured. You need to create a
GCSFileSystem object using any method that works for you and then pass its credentials directly:

gcs = GCSFileSystem(...)
dask_function(..., storage_options={'token': gcs.session.credentials})

3.29.6 Azure

Warning: Support for AzureDLFileSystem (ADL) is not currently offered. We hope to provide both datalake and
blob support using Protocol 2 soon.

authentication in storage_options=, and all other parameters will be passed on to the AzureDLFileSystem con-
structor (follow the link for further information). The auth parameters are passed directly to workers, so this should
only be used within a secure cluster.

3.29.7 HTTP(S)

Direct file-like access to arbitrary URLs is available over HTTP and HTTPS. However, there is no such thing as glob
functionality over HTTP, so only explicit lists of files can be used.

Server implementations differ in the information they provide - they may or may not specify the size of a file via a
HEAD request or at the start of a download - and some servers may not respect byte range requests. The HTTP-
FileSystem therefore offers best-effort behaviour: the download is streamed but, if more data is seen than the config-
ured block-size, an error will be raised. To be able to access such data you must read the whole file in one shot (and it
must fit in memory).

Using a block size of 0 will return normal requests streaming file-like objects, which are stable, but provide no
random access.

3.29.8 Developer API

The prototype for any file system back-end can be found in fsspec.spec.AbstractFileSystem. Any
new implementation should provide the same API, or directly subclass, and make itself available as a protocol to
Dask. For example, the following would register the protocol “myproto”, described by the implementation class
MyProtoFileSystem. URLs of the form myproto:// would thereafter be dispatched to the methods of this
class:

fsspec.registry['myproto'] = MyProtoFileSystem

However, it would be better to submit a PR to fsspec to include the class in the known_implementations.

972 Chapter 3. Complex Algorithms

https://cloud.google.com/sdk/docs/
https://azure-datalake-store.readthedocs.io/en/latest/api.html#azure.datalake.store.core.AzureDLFileSystem
https://azure-datalake-store.readthedocs.io/en/latest/api.html#azure.datalake.store.core.AzureDLFileSystem

dask Documentation, Release 2.6.0

3.29.9 Internals

Dask contains internal tools for extensible data ingestion in the dask.bytes package and using fsspec. . These
functions are developer-focused rather than for direct consumption by users. These functions power user facing
functions like dd.read_csv and db.read_text which are probably more useful for most users.

read_bytes(urlpath[, delimiter, not_zero, . . .]) Given a path or paths, return delayed objects that read
from those paths.

open_files(urlpath[, mode, compression, . . .]) Given a path or paths, return a list of OpenFile ob-
jects.

These functions are extensible in their output formats (bytes, file objects), their input locations (file system, S3, HDFS),
line delimiters, and compression formats.

Both functions are lazy, returning either point to blocks of bytes (read_bytes) or open file objects (open_files).
They can handle different storage backends by prepending protocols like s3:// or hdfs:// (see below). They
handle compression formats listed in fsspec.compression, some of which may require additional packages to
be installed.

These functions are not used for all data sources. Some data sources like HDF5 are quite particular and receive custom
treatment.

Delimiters

The read_bytes function takes a path (or globstring of paths) and produces a sample of the first file and a list of
delayed objects for each of the other files. If passed a delimiter such as delimiter=b'\n', it will ensure that the
blocks of bytes start directly after a delimiter and end directly before a delimiter. This allows other functions, like
pd.read_csv, to operate on these delayed values with expected behavior.

These delimiters are useful both for typical line-based formats (log files, CSV, JSON) as well as other delimited
formats like Avro, which may separate logical chunks by a complex sentinel string. Note that the delimiter finding
algorithm is simple, and will not account for characters that are escaped, part of a UTF-8 code sequence or within the
quote marks of a string.

Compression

These functions support widely available compression technologies like gzip, bz2, xz, snappy, and lz4. More
compressions can be easily added by inserting functions into dictionaries available in the fsspec.compression
module. This can be done at runtime and need not be added directly to the codebase.

However, most compression technologies like gzip do not support efficient random access, and so are useful for
streaming open_files but not useful for read_bytes which splits files at various points.

API

dask.bytes.read_bytes(urlpath, delimiter=None, not_zero=False, blocksize=’128 MiB’, sample=’10
kiB’, compression=None, include_path=False, **kwargs)

Given a path or paths, return delayed objects that read from those paths.

The path may be a filename like '2015-01-01.csv' or a globstring like '2015-*-*.csv'.

The path may be preceded by a protocol, like s3:// or hdfs:// if those libraries are installed.

This cleanly breaks data by a delimiter if given, so that block boundaries start directly after a delimiter and end
on the delimiter.

3.29. Remote Data 973

https://filesystem-spec.readthedocs.io/

dask Documentation, Release 2.6.0

Parameters

urlpath [string or list] Absolute or relative filepath(s). Prefix with a protocol like s3:// to
read from alternative filesystems. To read from multiple files you can pass a globstring
or a list of paths, with the caveat that they must all have the same protocol.

delimiter [bytes] An optional delimiter, like b'\n' on which to split blocks of bytes.

not_zero [bool] Force seek of start-of-file delimiter, discarding header.

blocksize [int, str] Chunk size in bytes, defaults to “128 MiB”

compression [string or None] String like ‘gzip’ or ‘xz’. Must support efficient random ac-
cess.

sample [int, string, or boolean] Whether or not to return a header sample. Values can be
False for “no sample requested” Or an integer or string value like 2**20 or "1 MiB"

include_path [bool] Whether or not to include the path with the bytes representing a partic-
ular file. Default is False.

**kwargs [dict] Extra options that make sense to a particular storage connection, e.g. host,
port, username, password, etc.

Returns

sample [bytes] The sample header

blocks [list of lists of dask.Delayed] Each list corresponds to a file, and each delayed
object computes to a block of bytes from that file.

paths [list of strings, only included if include_path is True] List of same length as blocks,
where each item is the path to the file represented in the corresponding block.

Examples

>>> sample, blocks = read_bytes('2015-*-*.csv', delimiter=b'\n') # doctest: +SKIP
>>> sample, blocks = read_bytes('s3://bucket/2015-*-*.csv', delimiter=b'\n') #
→˓doctest: +SKIP
>>> sample, paths, blocks = read_bytes('2015-*-*.csv', include_path=True) #
→˓doctest: +SKIP

dask.bytes.open_files(urlpath, mode=’rb’, compression=None, encoding=’utf8’, errors=None,
name_function=None, num=1, protocol=None, newline=None, **kwargs)

Given a path or paths, return a list of OpenFile objects.

For writing, a str path must contain the “*” character, which will be filled in by increasing numbers, e.g., “part*”
-> “part1”, “part2” if num=2.

For either reading or writing, can instead provide explicit list of paths.

Parameters

urlpath: string or list Absolute or relative filepath(s). Prefix with a protocol like s3:// to
read from alternative filesystems. To read from multiple files you can pass a globstring
or a list of paths, with the caveat that they must all have the same protocol.

mode: ‘rb’, ‘wt’, etc.

compression: string Compression to use. See dask.bytes.compression.files for
options.

encoding: str For text mode only

974 Chapter 3. Complex Algorithms

dask Documentation, Release 2.6.0

errors: None or str Passed to TextIOWrapper in text mode

name_function: function or None if opening a set of files for writing, those files do not yet
exist, so we need to generate their names by formatting the urlpath for each sequence
number

num: int [1] if writing mode, number of files we expect to create (passed to name+function)

protocol: str or None If given, overrides the protocol found in the URL.

newline: bytes or None Used for line terminator in text mode. If None, uses system default;
if blank, uses no translation.

**kwargs: dict Extra options that make sense to a particular storage connection, e.g. host,
port, username, password, etc.

Returns

List of ‘‘OpenFile‘‘ objects.

Examples

>>> files = open_files('2015-*-*.csv') # doctest: +SKIP
>>> files = open_files('s3://bucket/2015-*-*.csv.gz', compression='gzip') #
→˓doctest: +SKIP

3.30 GPUs

Dask works with GPUs in a few ways.

3.30.1 Custom Computations

Many people use Dask alongside GPU-accelerated libraries like PyTorch and TensorFlow to manage workloads across
several machines. They typically use Dask’s custom APIs, notably Delayed and Futures.

Dask doesn’t need to know that these functions use GPUs. It just runs Python functions. Whether or not those Python
functions use a GPU is orthogonal to Dask. It will work regardless.

As a worked example, you may want to view this talk:

3.30.2 High Level Collections

Dask can also help to scale out large array and dataframe computations by combining the Dask Array and DataFrame
collections with a GPU-accelerated array or dataframe library.

Recall that Dask Array creates a large array out of many NumPy arrays and Dask DataFrame creates a large dataframe
out of many Pandas dataframes. We can use these same systems with GPUs if we swap out the NumPy/Pandas
components with GPU-accelerated versions of those same libraries, as long as the GPU accelerated version looks
enough like NumPy/Pandas in order to interoperate with Dask.

Fortunately, libraries that mimic NumPy, Pandas, and Scikit-Learn on the GPU do exist.

3.30. GPUs 975

dask Documentation, Release 2.6.0

DataFrames

The RAPIDS libraries provide a GPU accelerated Pandas-like library, cuDF, which interoperates well and is tested
against Dask DataFrame.

If you have cuDF installed then you should be able to convert a Pandas-backed Dask DataFrame to a cuDF-backed
Dask DataFrame as follows:

import cudf

df = df.map_partitions(cudf.from_pandas) # convert pandas partitions into cudf
→˓partitions

However, cuDF does not support the entire Pandas interface, and so a variety of Dask DataFrame operations will not
function properly. Check the cuDF API Reference for currently supported interface.

Arrays

Note: Dask’s integration with CuPy relies on features recently added to NumPy and CuPy, particularly in version
numpy>=1.17 and cupy>=6

Chainer’s CuPy library provides a GPU accelerated NumPy-like library that interoperates nicely with Dask Array.

If you have CuPy installed then you should be able to convert a NumPy-backed Dask Array into a CuPy backed Dask
Array as follows:

import cupy

x = x.map_blocks(cupy.asarray)

CuPy is fairly mature and adheres closely to the NumPy API. However, small differences do exist and these can cause
Dask Array operations to function improperly. Check the CuPy Reference Manual for API compatibility.

Scikit-Learn

There are a variety of GPU accelerated machine learning libraries that follow the Scikit-Learn Estimator API of fit,
transform, and predict. These can generally be used within Dask-ML’s meta estimators, such as hyper parameter
optimization.

Some of these include:

• Skorch

• cuML

• LightGBM

• XGBoost

• Thunder SVM

• Thunder GBM

976 Chapter 3. Complex Algorithms

https://rapids.ai
https://github.com/rapidsai/cudf
https://docs.rapids.ai/api/cudf/stable/
https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/reference/index.html
https://ml.dask.org
https://ml.dask.org/hyper-parameter-search.html
https://ml.dask.org/hyper-parameter-search.html
https://skorch.readthedocs.io/
https://rapidsai.github.io/projects/cuml/en/latest/
https://github.com/Microsoft/LightGBM
https://xgboost.readthedocs.io/en/latest/
https://github.com/Xtra-Computing/thundersvm
https://github.com/Xtra-Computing/thundergbm

dask Documentation, Release 2.6.0

3.30.3 Setup

From the examples above we can see that the user experience of using Dask with GPU-backed libraries isn’t very
different from using it with CPU-backed libraries. However, there are some changes you might consider making when
setting up your cluster.

Restricting Work

By default Dask allows as many tasks as you have CPU cores to run concurrently. However if your tasks primarily use
a GPU then you probably want far fewer tasks running at once. There are a few ways to limit parallelism here:

• Limit the number of threads explicitly on your workers using the --nthreads keyword in the CLI or the
ncores= keyword the Cluster constructor.

• Use worker resources and tag certain tasks as GPU tasks so that the scheduler will limit them, while leaving the
rest of your CPU cores for other work

Specifying GPUs per Machine

Some configurations may have many GPU devices per node. Dask is often used to balance and coordinate work
between these devices.

In these situations it is common to start one Dask worker per device, and use the CUDA environment varible
CUDA_VISIBLE_DEVICES to pin each worker to prefer one device.

If we have four GPUs on one machine
CUDA_VISIBLE_DEVICES=0 dask-worker ...
CUDA_VISIBLE_DEVICES=1 dask-worker ...
CUDA_VISIBLE_DEVICES=2 dask-worker ...
CUDA_VISIBLE_DEVICES=3 dask-worker ...

The Dask CUDA project contains some convenience CLI and Python utilities to automate this process.

3.30.4 Work in Progress

GPU computing is a quickly moving field today and as a result the information in this page is likely to go out of date
quickly. We encourage interested readers to check out Dask’s Blog which has more timely updates on ongoing work.

3.31 Citations

Dask is developed by many people from many institutions. Some of these developers are academics who depend on
academic citations to justify their efforts. Unfortunately, no single citation can do all of these developers (and the
developers to come) sufficient justice. Instead, we choose to use a single blanket citation for all developers past and
present.

To cite Dask in publications, please use the following:

Dask Development Team (2016). Dask: Library for dynamic task scheduling
URL https://dask.org

A BibTeX entry for LaTeX users follows:

3.31. Citations 977

https://distributed.dask.org/en/latest/resources.html
https://github.com/rapidsai/dask-cuda
https://blog.dask.org

dask Documentation, Release 2.6.0

@Manual{,
title = {Dask: Library for dynamic task scheduling},
author = {{Dask Development Team}},
year = {2016},
url = {https://dask.org},

}

The full author list is available using git (e.g. git shortlog -ns).

3.31.1 Papers about parts of Dask

Rocklin, Matthew. “Dask: Parallel Computation with Blocked algorithms and Task Scheduling.” (2015). PDF.

@InProceedings{ matthew_rocklin-proc-scipy-2015,
author = { Matthew Rocklin },
title = { Dask: Parallel Computation with Blocked algorithms and Task

→˓Scheduling },
booktitle = { Proceedings of the 14th Python in Science Conference },
pages = { 130 - 136 },
year = { 2015 },
editor = { Kathryn Huff and James Bergstra }

}

3.32 Funding

Dask receives generous funding and support from the following sources:

1. The time and effort of numerous open source contributors

2. The DARPA XData program

3. The Moore Foundation’s Data Driven Discovery program

4. Anaconda Inc

5. A variety of private companies who sponsor the development of particular open source features

We encourage monetary donations to NumFOCUS to support open source scientific computing software.

3.33 Images and Logos

978 Chapter 3. Complex Algorithms

https://conference.scipy.org/proceedings/scipy2015/pdfs/matthew_rocklin.pdf
https://github.com/dask/dask/graphs/contributors
https://www.darpa.mil/program/xdata
https://www.moore.org/
https://www.anaconda.com/
https://numfocus.org/

dask Documentation, Release 2.6.0

3.33. Images and Logos 979

dask Documentation, Release 2.6.0

980 Chapter 3. Complex Algorithms

Bibliography

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http:
//www.math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arccosh

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http:
//www.math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arcsinh

[1] ISO/IEC standard 9899:1999, “Programming language C.”

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 86. http:
//www.math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Inverse hyperbolic function”, https://en.wikipedia.org/wiki/Arctanh

[1] “Lecture Notes on the Status of IEEE 754”, William Kahan, https://people.eecs.berkeley.edu/~wkahan/
ieee754status/IEEE754.PDF

[2] “How Futile are Mindless Assessments of Roundoff in Floating-Point Computation?”, William Kahan, https:
//people.eecs.berkeley.edu/~wkahan/Mindless.pdf

[1] Wikipedia, “Two’s complement”, https://en.wikipedia.org/wiki/Two’s_complement

[1] Wikipedia, “Exponential function”, https://en.wikipedia.org/wiki/Exponential_function

[2] M. Abramovitz and I. A. Stegun, “Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-
matical Tables,” Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm

[1] Quarteroni A., Sacco R., Saleri F. (2007) Numerical Mathematics (Texts in Applied Mathematics). New York:
Springer.

[2] Durran D. R. (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. New York:
Springer.

[3] Fornberg B. (1988) Generation of Finite Difference Formulas on Arbitrarily Spaced Grids, Mathematics of
Computation 51, no. 184 : 699-706. PDF.

[1] Wikipedia, “Two’s complement”, https://en.wikipedia.org/wiki/Two’s_complement

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http:
//www.math.sfu.ca/~cbm/aands/

981

http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Arccosh
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Arcsinh
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Arctanh
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://en.wikipedia.org/wiki/Two's_complement
https://en.wikipedia.org/wiki/Exponential_function
http://www.math.sfu.ca/~cbm/aands/page_69.htm
http://www.ams.org/journals/mcom/1988-51-184/S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf
https://en.wikipedia.org/wiki/Two's_complement
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/

dask Documentation, Release 2.6.0

[2] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http:
//www.math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm

[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http:
//www.math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm

[1] : G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Baltimore, MD, Johns Hopkins University
Press, 1996, pg. 8.

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.
http://www.math.sfu.ca/~cbm/aands/

[2] Wikipedia, “Hyperbolic function”, https://en.wikipedia.org/wiki/Hyperbolic_function

[1] G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985,
pg. 15

[CT] Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of complex Fourier
series,” Math. Comput. 19: 297-301.

[1] Dalgaard, Peter, “Introductory Statistics with R”, Springer-Verlag, 2002.

[2] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[3] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

[4] Weisstein, Eric W. “Binomial Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/BinomialDistribution.html

[5] Wikipedia, “Binomial distribution”, https://en.wikipedia.org/wiki/Binomial_distribution

[1] NIST “Engineering Statistics Handbook” https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

[1] Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.

[2] Wikipedia, “Poisson process”, https://en.wikipedia.org/wiki/Poisson_process

[3] Wikipedia, “Exponential distribution”, https://en.wikipedia.org/wiki/Exponential_distribution

[1] Glantz, Stanton A. “Primer of Biostatistics.”, McGraw-Hill, Fifth Edition, 2002.

[2] Wikipedia, “F-distribution”, https://en.wikipedia.org/wiki/F-distribution

[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/GammaDistribution.html

[2] Wikipedia, “Gamma distribution”, https://en.wikipedia.org/wiki/Gamma_distribution

[1] Gumbel, E. J., “Statistics of Extremes,” New York: Columbia University Press, 1958.

[2] Reiss, R.-D. and Thomas, M., “Statistical Analysis of Extreme Values from Insurance, Finance, Hydrology and
Other Fields,” Basel: Birkhauser Verlag, 2001.

[1] Lentner, Marvin, “Elementary Applied Statistics”, Bogden and Quigley, 1972.

[2] Weisstein, Eric W. “Hypergeometric Distribution.” From MathWorld–A Wolfram Web Resource. http://
mathworld.wolfram.com/HypergeometricDistribution.html

[3] Wikipedia, “Hypergeometric distribution”, https://en.wikipedia.org/wiki/Hypergeometric_distribution

[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

982 Bibliography

https://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Logarithm
http://www.math.sfu.ca/~cbm/aands/
https://en.wikipedia.org/wiki/Hyperbolic_function
http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/BinomialDistribution.html
https://en.wikipedia.org/wiki/Binomial_distribution
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm
https://en.wikipedia.org/wiki/Poisson_process
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/F-distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GammaDistribution.html
https://en.wikipedia.org/wiki/Gamma_distribution
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/HypergeometricDistribution.html
https://en.wikipedia.org/wiki/Hypergeometric_distribution

dask Documentation, Release 2.6.0

[2] Kotz, Samuel, et. al. “The Laplace Distribution and Generalizations, ” Birkhauser, 2001.

[3] Weisstein, Eric W. “Laplace Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/LaplaceDistribution.html

[4] Wikipedia, “Laplace distribution”, https://en.wikipedia.org/wiki/Laplace_distribution

[1] Reiss, R.-D. and Thomas M. (2001), “Statistical Analysis of Extreme Values, from Insurance, Finance, Hydrol-
ogy and Other Fields,” Birkhauser Verlag, Basel, pp 132-133.

[2] Weisstein, Eric W. “Logistic Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/LogisticDistribution.html

[3] Wikipedia, “Logistic-distribution”, https://en.wikipedia.org/wiki/Logistic_distribution

[1] Limpert, E., Stahel, W. A., and Abbt, M., “Log-normal Distributions across the Sciences: Keys and Clues,”
BioScience, Vol. 51, No. 5, May, 2001. https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

[2] Reiss, R.D. and Thomas, M., “Statistical Analysis of Extreme Values,” Basel: Birkhauser Verlag, 2001, pp.
31-32.

[1] Buzas, Martin A.; Culver, Stephen J., Understanding regional species diversity through the log series distribution
of occurrences: BIODIVERSITY RESEARCH Diversity & Distributions, Volume 5, Number 5, September
1999 , pp. 187-195(9).

[2] Fisher, R.A„ A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and the number
of individuals in a random sample of an animal population. Journal of Animal Ecology, 12:42-58.

[3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.

[4] Wikipedia, “Logarithmic distribution”, https://en.wikipedia.org/wiki/Logarithmic_distribution

[1] Weisstein, Eric W. “Negative Binomial Distribution.” From MathWorld–A Wolfram Web Resource. http:
//mathworld.wolfram.com/NegativeBinomialDistribution.html

[2] Wikipedia, “Negative binomial distribution”, https://en.wikipedia.org/wiki/Negative_binomial_distribution

[1] Delhi, M.S. Holla, “On a noncentral chi-square distribution in the analysis of weapon systems effectiveness”,
Metrika, Volume 15, Number 1 / December, 1970.

[2] Wikipedia, “Noncentral chi-squared distribution” https://en.wikipedia.org/wiki/Noncentral_chi-squared_
distribution

[1] Weisstein, Eric W. “Noncentral F-Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/NoncentralF-Distribution.html

[2] Wikipedia, “Noncentral F-distribution”, https://en.wikipedia.org/wiki/Noncentral_F-distribution

[1] Wikipedia, “Normal distribution”, https://en.wikipedia.org/wiki/Normal_distribution

[2] P. R. Peebles Jr., “Central Limit Theorem” in “Probability, Random Variables and Random Signal Principles”,
4th ed., 2001, pp. 51, 51, 125.

[1] Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.

[2] Pareto, V. (1896). Course of Political Economy. Lausanne.

[3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp 23-30.

[4] Wikipedia, “Pareto distribution”, https://en.wikipedia.org/wiki/Pareto_distribution

[1] Weisstein, Eric W. “Poisson Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/PoissonDistribution.html

[2] Wikipedia, “Poisson distribution”, https://en.wikipedia.org/wiki/Poisson_distribution

[1] Christian Kleiber, Samuel Kotz, “Statistical size distributions in economics and actuarial sciences”, Wiley, 2003.

Bibliography 983

http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
https://en.wikipedia.org/wiki/Laplace_distribution
http://mathworld.wolfram.com/LogisticDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.html
https://en.wikipedia.org/wiki/Logistic_distribution
https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
https://en.wikipedia.org/wiki/Logarithmic_distribution
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
https://en.wikipedia.org/wiki/Negative_binomial_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution
http://mathworld.wolfram.com/NoncentralF-Distribution.html
http://mathworld.wolfram.com/NoncentralF-Distribution.html
https://en.wikipedia.org/wiki/Noncentral_F-distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/PoissonDistribution.html
http://mathworld.wolfram.com/PoissonDistribution.html
https://en.wikipedia.org/wiki/Poisson_distribution

dask Documentation, Release 2.6.0

[2] Heckert, N. A. and Filliben, James J. “NIST Handbook 148: Dataplot Reference Manual, Volume 2: Let Sub-
commands and Library Functions”, National Institute of Standards and Technology Handbook Series, June
2003. https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

[1] Brighton Webs Ltd., “Rayleigh Distribution,” https://web.archive.org/web/20090514091424/http:
//brighton-webs.co.uk:80/distributions/rayleigh.asp

[2] Wikipedia, “Rayleigh distribution” https://en.wikipedia.org/wiki/Rayleigh_distribution

[1] NIST/SEMATECH e-Handbook of Statistical Methods, “Cauchy Distribution”, https://www.itl.nist.gov/div898/
handbook/eda/section3/eda3663.htm

[2] Weisstein, Eric W. “Cauchy Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/CauchyDistribution.html

[3] Wikipedia, “Cauchy distribution” https://en.wikipedia.org/wiki/Cauchy_distribution

[1] Weisstein, Eric W. “Gamma Distribution.” From MathWorld–A Wolfram Web Resource. http://mathworld.
wolfram.com/GammaDistribution.html

[2] Wikipedia, “Gamma distribution”, https://en.wikipedia.org/wiki/Gamma_distribution

[1] Dalgaard, Peter, “Introductory Statistics With R”, Springer, 2002.

[2] Wikipedia, “Student’s t-distribution” https://en.wikipedia.org/wiki/Student’s_t-distribution

[1] Wikipedia, “Triangular distribution” https://en.wikipedia.org/wiki/Triangular_distribution

[1] Abramowitz, M. and Stegun, I. A. (Eds.). “Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing,” New York: Dover, 1972.

[2] von Mises, R., “Mathematical Theory of Probability and Statistics”, New York: Academic Press, 1964.

[1] Brighton Webs Ltd., Wald Distribution, https://web.archive.org/web/20090423014010/http://www.
brighton-webs.co.uk:80/distributions/wald.asp

[2] Chhikara, Raj S., and Folks, J. Leroy, “The Inverse Gaussian Distribution: Theory : Methodology, and Applica-
tions”, CRC Press, 1988.

[3] Wikipedia, “Inverse Gaussian distribution” https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

[1] Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Mate-
rials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag,
Stockholm.

[2] Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics
ASME Paper 1951.

[3] Wikipedia, “Weibull distribution”, https://en.wikipedia.org/wiki/Weibull_distribution

[1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

[2] https://en.wikipedia.org/wiki/Welch%27s_t-test

[1] Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 8. https://web.archive.org/web/
20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html

[2] “Chi-squared test”, https://en.wikipedia.org/wiki/Chi-squared_test

[1] Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 8. https://web.archive.org/web/
20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html

[2] “Chi-squared test”, https://en.wikipedia.org/wiki/Chi-squared_test

[3] “G-test”, https://en.wikipedia.org/wiki/G-test

984 Bibliography

https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
https://en.wikipedia.org/wiki/Rayleigh_distribution
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
http://mathworld.wolfram.com/CauchyDistribution.html
http://mathworld.wolfram.com/CauchyDistribution.html
https://en.wikipedia.org/wiki/Cauchy_distribution
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GammaDistribution.html
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Student's_t-distribution
https://en.wikipedia.org/wiki/Triangular_distribution
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
https://en.wikipedia.org/wiki/Welch%27s_t-test
https://web.archive.org/web/20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html
https://web.archive.org/web/20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html
https://en.wikipedia.org/wiki/Chi-squared_test
https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html
https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/G-test

dask Documentation, Release 2.6.0

[4] Sokal, R. R. and Rohlf, F. J. “Biometry: the principles and practice of statistics in biological research”, New
York: Freeman (1981)

[5] Cressie, N. and Read, T. R. C., “Multinomial Goodness-of-Fit Tests”, J. Royal Stat. Soc. Series B, Vol. 46, No.
3 (1984), pp. 440-464.

[1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman
& Hall: New York. 2000. Section 2.2.24.1

[1] R. B. D’Agostino, A. J. Belanger and R. B. D’Agostino Jr., “A suggestion for using powerful and informative
tests of normality”, American Statistician 44, pp. 316-321, 1990.

[1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman
& Hall: New York. 2000.

[1] see e.g. F. J. Anscombe, W. J. Glynn, “Distribution of the kurtosis statistic b2 for normal samples”, Biometrika,
vol. 70, pp. 227-234, 1983.

[1] D’Agostino, R. B. (1971), “An omnibus test of normality for moderate and large sample size”, Biometrika, 58,
341-348

[2] D’Agostino, R. and Pearson, E. S. (1973), “Tests for departure from normality”, Biometrika, 60, 613-622

[1] Lowry, Richard. “Concepts and Applications of Inferential Statistics”. Chapter 14. https://web.archive.org/web/
20171027235250/http://vassarstats.net:80/textbook/ch14pt1.html

[2] Heiman, G.W. Research Methods in Statistics. 2002.

[3] McDonald, G. H. “Handbook of Biological Statistics”, One-way ANOVA. http://www.biostathandbook.com/
onewayanova.html

[1] https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms

[1] https://docs.scipy.org/doc/numpy/reference/ufuncs.html

[2] https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html

[1] https://docs.scipy.org/doc/numpy/reference/ufuncs.html

[2] https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html

[1] https://docs.scipy.org/doc/numpy/reference/ufuncs.html

[2] https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html

[1] Pebay, Philippe (2008), “Formulas for Robust, One-Pass Parallel

Bibliography 985

https://web.archive.org/web/20171027235250/http://vassarstats.net:80/textbook/ch14pt1.html
https://web.archive.org/web/20171027235250/http://vassarstats.net:80/textbook/ch14pt1.html
http://www.biostathandbook.com/onewayanova.html
http://www.biostathandbook.com/onewayanova.html
https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms
https://docs.scipy.org/doc/numpy/reference/ufuncs.html
https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html
https://docs.scipy.org/doc/numpy/reference/ufuncs.html
https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html
https://docs.scipy.org/doc/numpy/reference/ufuncs.html
https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html

dask Documentation, Release 2.6.0

986 Bibliography

Index

Symbols
-bokeh, -no-bokeh

dask-scheduler command line option,
15

dask-worker command line option, 16
-bokeh-port <bokeh_port>

dask-scheduler command line option,
15

dask-worker command line option, 16
-contact-address <contact_address>

dask-worker command line option, 16
-dashboard, -no-dashboard

dask-scheduler command line option,
15

dask-worker command line option, 16
-dashboard-address <dashboard_address>

dask-scheduler command line option,
15

dask-worker command line option, 16
-dashboard-prefix <dashboard_prefix>

dask-scheduler command line option,
15

dask-worker command line option, 17
-death-timeout <death_timeout>

dask-worker command line option, 17
-host <host>

dask-scheduler command line option,
15

dask-worker command line option, 16
-hostfile <hostfile>

dask-ssh command line option, 20
-idle-timeout <idle_timeout>

dask-scheduler command line option,
16

-interface <interface>
dask-scheduler command line option,

15
dask-worker command line option, 17

-lifetime <lifetime>

dask-worker command line option, 17
-lifetime-restart,

-no-lifetime-restart
dask-worker command line option, 17

-lifetime-stagger <lifetime_stagger>
dask-worker command line option, 17

-listen-address <listen_address>
dask-worker command line option, 16

-local-directory <local_directory>
dask-scheduler command line option,

15
dask-worker command line option, 17

-log-directory <log_directory>
dask-ssh command line option, 20

-memory-limit <memory_limit>
dask-ssh command line option, 20
dask-worker command line option, 17

-name <name>
dask-worker command line option, 17

-nanny, -no-nanny
dask-worker command line option, 17

-nanny-port <nanny_port>
dask-ssh command line option, 20
dask-worker command line option, 16

-nohost
dask-ssh command line option, 20

-nprocs <nprocs>
dask-ssh command line option, 20
dask-worker command line option, 17

-nthreads <nthreads>
dask-ssh command line option, 20
dask-worker command line option, 17

-pid-file <pid_file>
dask-scheduler command line option,

15
dask-worker command line option, 17

-port <port>
dask-scheduler command line option,

15
-preload <preload>

987

dask Documentation, Release 2.6.0

dask-scheduler command line option,
16

dask-worker command line option, 17
-protocol <protocol>

dask-scheduler command line option,
15

dask-worker command line option, 17
-reconnect, -no-reconnect

dask-worker command line option, 17
-remote-dask-worker

<remote_dask_worker>
dask-ssh command line option, 20

-remote-python <remote_python>
dask-ssh command line option, 20

-resources <resources>
dask-worker command line option, 17

-scheduler <scheduler>
dask-ssh command line option, 20

-scheduler-file <scheduler_file>
dask-scheduler command line option,

15
dask-worker command line option, 17

-scheduler-port <scheduler_port>
dask-ssh command line option, 20

-show, -no-show
dask-scheduler command line option,

15
-ssh-port <ssh_port>

dask-ssh command line option, 20
-ssh-private-key <ssh_private_key>

dask-ssh command line option, 20
-ssh-username <ssh_username>

dask-ssh command line option, 20
-tls-ca-file <tls_ca_file>

dask-scheduler command line option,
15

dask-worker command line option, 16
-tls-cert <tls_cert>

dask-scheduler command line option,
15

dask-worker command line option, 16
-tls-key <tls_key>

dask-scheduler command line option,
15

dask-worker command line option, 16
-use-xheaders <use_xheaders>

dask-scheduler command line option,
15

-version
dask-scheduler command line option,

16
dask-ssh command line option, 20
dask-worker command line option, 17

-worker-port <worker_port>

dask-ssh command line option, 20
dask-worker command line option, 16

__dask_graph__(), 954
__dask_keys__(), 954
__dask_optimize__(), 955
__dask_postcompute__(), 955
__dask_postpersist__(), 955
__dask_scheduler__(), 955

A
abs() (dask.dataframe.DataFrame method), 432
abs() (dask.dataframe.Series method), 606
accumulate() (dask.bag.Bag method), 404
acquire() (distributed.Lock method), 839
Adaptive (class in distributed.deploy), 46
adaptive_target() (distributed.Scheduler

method), 33
add() (dask.dataframe.DataFrame method), 433
add() (dask.dataframe.Series method), 608
add_client() (distributed.Scheduler method), 33
add_done_callback() (distributed.Future method),

837
add_keys() (distributed.Scheduler method), 33
add_plugin() (distributed.Scheduler method), 33
add_worker() (distributed.Scheduler method), 33
agg() (dask.dataframe.groupby.DataFrameGroupBy

method), 717
agg() (dask.dataframe.groupby.SeriesGroupBy

method), 728
aggregate() (dask.dataframe.groupby.DataFrameGroupBy

method), 718
aggregate() (dask.dataframe.groupby.SeriesGroupBy

method), 729
Aggregation (class in dask.dataframe.groupby), 738
align() (dask.dataframe.DataFrame method), 436
align() (dask.dataframe.Series method), 608
all() (dask.array.Array method), 356
all() (dask.bag.Bag method), 404
all() (dask.dataframe.DataFrame method), 437
all() (dask.dataframe.Series method), 609
all() (in module dask.array), 80
allclose() (in module dask.array), 81
angle() (in module dask.array), 82
any() (dask.array.Array method), 356
any() (dask.bag.Bag method), 404
any() (dask.dataframe.DataFrame method), 438
any() (dask.dataframe.Series method), 611
any() (in module dask.array), 83
append() (dask.dataframe.DataFrame method), 440
append() (dask.dataframe.Series method), 613
apply() (dask.dataframe.DataFrame method), 442
apply() (dask.dataframe.groupby.DataFrameGroupBy

method), 720

988 Index

dask Documentation, Release 2.6.0

apply() (dask.dataframe.groupby.SeriesGroupBy
method), 730

apply() (dask.dataframe.Series method), 614
apply_along_axis() (in module dask.array), 84
apply_gufunc() (in module dask.array.gufunc), 346
apply_over_axes() (in module dask.array), 86
applymap() (dask.dataframe.DataFrame method), 443
arange() (in module dask.array), 87
arccos() (in module dask.array), 87
arccosh() (in module dask.array), 88
arcsin() (in module dask.array), 89
arcsinh() (in module dask.array), 90
arctan() (in module dask.array), 91
arctan2() (in module dask.array), 92
arctanh() (in module dask.array), 93
argmax() (dask.array.Array method), 357
argmax() (in module dask.array), 94
argmin() (dask.array.Array method), 357
argmin() (in module dask.array), 95
argtopk() (dask.array.Array method), 357
argtopk() (in module dask.array), 96
argwhere() (in module dask.array), 97
around() (in module dask.array), 97
Array (class in dask.array), 356
array() (in module dask.array), 98
as_completed() (in module distributed), 812
as_gufunc() (in module dask.array.gufunc), 348
asanyarray() (in module dask.array), 100
asarray() (in module dask.array), 101
assign() (dask.dataframe.DataFrame method), 444
astype() (dask.array.Array method), 357
astype() (dask.dataframe.DataFrame method), 445
astype() (dask.dataframe.Series method), 615
asynchronous (distributed.Client attribute), 816
atleast_1d() (in module dask.array), 101
atleast_2d() (in module dask.array), 102
atleast_3d() (in module dask.array), 102
autocorr() (dask.dataframe.Series method), 616
average() (in module dask.array), 103
average() (in module dask.array.ma), 259

B
Bag (class in dask.bag), 403
beta() (in module dask.array.random), 299
between() (dask.dataframe.Series method), 617
bfill() (dask.dataframe.DataFrame method), 447
bfill() (dask.dataframe.Series method), 618
bincount() (in module dask.array), 105
binomial() (in module dask.array.random), 300
bitwise_and() (in module dask.array), 106
bitwise_not() (in module dask.array), 106
bitwise_or() (in module dask.array), 108
bitwise_xor() (in module dask.array), 109
block() (in module dask.array), 110

blocks (dask.array.Array attribute), 357
blockwise() (in module dask.array), 111
blockwise() (in module dask.array.core), 353
broadcast() (distributed.Scheduler method), 34
broadcast_arrays() (in module dask.array), 113
broadcast_to() (in module dask.array), 113

C
CacheProfiler() (in module dask.diagnostics), 860
call_stack() (distributed.Client method), 816
Callback() (in module dask.diagnostics), 861
cancel() (distributed.Client method), 817
cancel() (distributed.Future method), 837
cancel_key() (distributed.Scheduler method), 34
cancelled() (distributed.Future method), 837
categorize() (dask.dataframe.DataFrame method),

447
ceil() (in module dask.array), 114
check_idle_saturated() (distributed.Scheduler

method), 34
chisquare() (in module dask.array.random), 301
chisquare() (in module dask.array.stats), 336
choice() (in module dask.array.random), 302
cholesky() (in module dask.array.linalg), 253
choose() (dask.array.Array method), 358
choose() (in module dask.array), 115
clear_divisions() (dask.dataframe.DataFrame

method), 447
clear_divisions() (dask.dataframe.Series

method), 618
Client (class in distributed), 815
client_heartbeat() (distributed.Scheduler

method), 34
client_releases_keys() (distributed.Scheduler

method), 34
clip() (dask.array.Array method), 358
clip() (dask.dataframe.DataFrame method), 447
clip() (dask.dataframe.Series method), 618
clip() (in module dask.array), 117
clip_lower() (dask.dataframe.DataFrame method),

448
clip_lower() (dask.dataframe.Series method), 620
clip_upper() (dask.dataframe.DataFrame method),

450
clip_upper() (dask.dataframe.Series method), 621
close() (distributed.Client method), 817
close() (distributed.Nanny method), 43
close() (distributed.Scheduler method), 34
close_gracefully() (distributed.Nanny method),

44
close_gracefully() (distributed.Worker method),

42
close_worker() (distributed.Scheduler method), 34
Cluster (class in distributed.deploy), 47

Index 989

dask Documentation, Release 2.6.0

coarsen() (in module dask.array), 78, 114
coerce_address() (distributed.Scheduler method),

34
coerce_hostname() (distributed.Scheduler

method), 34
collect() (in module dask.config), 931
combine() (dask.dataframe.DataFrame method), 451
combine() (dask.dataframe.Series method), 623
combine_first() (dask.dataframe.DataFrame

method), 453
combine_first() (dask.dataframe.Series method),

624
compress() (in module dask.array), 117
compute() (dask.dataframe.DataFrame method), 454
compute() (dask.dataframe.Series method), 624
compute() (distributed.Client method), 817
compute() (in module dask), 846
compute() (in module dask.dataframe), 756
compute_chunk_sizes() (dask.array.Array

method), 358
concat() (in module dask.bag), 419
concat() (in module dask.dataframe.multi), 759
concatenate() (in module dask.array), 80, 118
conj() (in module dask.array), 119
copy() (dask.array.Array method), 359
copy() (dask.dataframe.DataFrame method), 454
copy() (dask.dataframe.Series method), 624
copysign() (in module dask.array), 120
corr() (dask.dataframe.DataFrame method), 454
corr() (dask.dataframe.groupby.DataFrameGroupBy

method), 720
corr() (dask.dataframe.groupby.SeriesGroupBy

method), 731
corr() (dask.dataframe.Series method), 625
corrcoef() (in module dask.array), 120
cos() (in module dask.array), 121
cosh() (in module dask.array), 122
count() (dask.bag.Bag method), 404
count() (dask.dataframe.DataFrame method), 455
count() (dask.dataframe.groupby.DataFrameGroupBy

method), 721
count() (dask.dataframe.groupby.SeriesGroupBy

method), 731
count() (dask.dataframe.Series method), 625
count_nonzero() (in module dask.array), 123
cov() (dask.dataframe.DataFrame method), 456
cov() (dask.dataframe.groupby.DataFrameGroupBy

method), 721
cov() (dask.dataframe.groupby.SeriesGroupBy

method), 732
cov() (dask.dataframe.Series method), 625
cov() (in module dask.array), 123
cull() (in module dask.optimization), 950

cumcount() (dask.dataframe.groupby.DataFrameGroupBy
method), 723

cumcount() (dask.dataframe.groupby.SeriesGroupBy
method), 733

cummax() (dask.dataframe.DataFrame method), 458
cummax() (dask.dataframe.Series method), 626
cummin() (dask.dataframe.DataFrame method), 459
cummin() (dask.dataframe.Series method), 627
cumprod() (dask.array.Array method), 359
cumprod() (dask.dataframe.DataFrame method), 461
cumprod() (dask.dataframe.groupby.DataFrameGroupBy

method), 724
cumprod() (dask.dataframe.groupby.SeriesGroupBy

method), 734
cumprod() (dask.dataframe.Series method), 629
cumprod() (in module dask.array), 125
cumsum() (dask.array.Array method), 359
cumsum() (dask.dataframe.DataFrame method), 463
cumsum() (dask.dataframe.groupby.DataFrameGroupBy

method), 724
cumsum() (dask.dataframe.groupby.SeriesGroupBy

method), 734
cumsum() (dask.dataframe.Series method), 631
cumsum() (in module dask.array), 126
current() (distributed.Client class method), 818

D
dask-scheduler command line option

-bokeh, -no-bokeh, 15
-bokeh-port <bokeh_port>, 15
-dashboard, -no-dashboard, 15
-dashboard-address

<dashboard_address>, 15
-dashboard-prefix

<dashboard_prefix>, 15
-host <host>, 15
-idle-timeout <idle_timeout>, 16
-interface <interface>, 15
-local-directory <local_directory>,

15
-pid-file <pid_file>, 15
-port <port>, 15
-preload <preload>, 16
-protocol <protocol>, 15
-scheduler-file <scheduler_file>, 15
-show, -no-show, 15
-tls-ca-file <tls_ca_file>, 15
-tls-cert <tls_cert>, 15
-tls-key <tls_key>, 15
-use-xheaders <use_xheaders>, 15
-version, 16
PRELOAD_ARGV, 16

dask-ssh command line option
-hostfile <hostfile>, 20

990 Index

dask Documentation, Release 2.6.0

-log-directory <log_directory>, 20
-memory-limit <memory_limit>, 20
-nanny-port <nanny_port>, 20
-nohost, 20
-nprocs <nprocs>, 20
-nthreads <nthreads>, 20
-remote-dask-worker

<remote_dask_worker>, 20
-remote-python <remote_python>, 20
-scheduler <scheduler>, 20
-scheduler-port <scheduler_port>, 20
-ssh-port <ssh_port>, 20
-ssh-private-key <ssh_private_key>,

20
-ssh-username <ssh_username>, 20
-version, 20
-worker-port <worker_port>, 20
HOSTNAMES, 21

dask-worker command line option
-bokeh, -no-bokeh, 16
-bokeh-port <bokeh_port>, 16
-contact-address <contact_address>,

16
-dashboard, -no-dashboard, 16
-dashboard-address

<dashboard_address>, 16
-dashboard-prefix

<dashboard_prefix>, 17
-death-timeout <death_timeout>, 17
-host <host>, 16
-interface <interface>, 17
-lifetime <lifetime>, 17
-lifetime-restart,

-no-lifetime-restart, 17
-lifetime-stagger

<lifetime_stagger>, 17
-listen-address <listen_address>, 16
-local-directory <local_directory>,

17
-memory-limit <memory_limit>, 17
-name <name>, 17
-nanny, -no-nanny, 17
-nanny-port <nanny_port>, 16
-nprocs <nprocs>, 17
-nthreads <nthreads>, 17
-pid-file <pid_file>, 17
-preload <preload>, 17
-protocol <protocol>, 17
-reconnect, -no-reconnect, 17
-resources <resources>, 17
-scheduler-file <scheduler_file>, 17
-tls-ca-file <tls_ca_file>, 16
-tls-cert <tls_cert>, 16
-tls-key <tls_key>, 16

-version, 17
-worker-port <worker_port>, 16
PRELOAD_ARGV, 18
SCHEDULER, 18

DataFrame (class in dask.dataframe), 432
DataFrameGroupBy (class in

dask.dataframe.groupby), 717
decide_worker() (distributed.Scheduler method),

34
deg2rad() (in module dask.array), 127
degrees() (in module dask.array), 128
delayed() (in module dask.delayed), 789
delete() (distributed.Variable method), 839
describe() (dask.dataframe.DataFrame method), 464
describe() (dask.dataframe.Series method), 632
diag() (in module dask.array), 128
diagonal() (in module dask.array), 129
diff() (dask.dataframe.DataFrame method), 468
diff() (dask.dataframe.Series method), 636
diff() (in module dask.array), 131
digitize() (in module dask.array), 132
distinct() (dask.bag.Bag method), 404
div() (dask.dataframe.DataFrame method), 470
div() (dask.dataframe.Series method), 638
divide() (dask.dataframe.DataFrame method), 472
divide() (dask.dataframe.Series method), 639
done() (distributed.Future method), 837
dot() (dask.array.Array method), 359
dot() (in module dask.array), 134
drop() (dask.dataframe.DataFrame method), 475
drop_duplicates() (dask.dataframe.DataFrame

method), 477
drop_duplicates() (dask.dataframe.Series

method), 640
dropna() (dask.dataframe.DataFrame method), 478
dropna() (dask.dataframe.Series method), 640
dstack() (in module dask.array), 135
dt (dask.dataframe.Series attribute), 641
dtype (dask.dataframe.Series attribute), 641
dtypes (dask.dataframe.DataFrame attribute), 479

E
ediff1d() (in module dask.array), 136
einsum() (in module dask.array), 138
empty() (in module dask.array), 136
empty_like() (in module dask.array), 137
ensure_file() (in module dask.config), 932
eq() (dask.dataframe.DataFrame method), 479
eq() (dask.dataframe.Series method), 641
eval() (dask.dataframe.DataFrame method), 482
exception() (distributed.Future method), 837
executor_submit() (distributed.Worker method),

42
exp() (in module dask.array), 143

Index 991

dask Documentation, Release 2.6.0

expand_environment_variables() (in module
dask.config), 932

expm1() (in module dask.array), 144
exponential() (in module dask.array.random), 303
eye() (in module dask.array), 145

F
f() (in module dask.array.random), 303
f_oneway() (in module dask.array.stats), 344
fabs() (in module dask.array), 145
feed() (distributed.Scheduler method), 34
ffill() (dask.dataframe.DataFrame method), 483
ffill() (dask.dataframe.Series method), 642
fft() (in module dask.array.fft), 280
fft2() (in module dask.array.fft), 281
fft_wrap() (in module dask.array.fft), 279
fftfreq() (in module dask.array.fft), 297
fftn() (in module dask.array.fft), 283
fftshift() (in module dask.array.fft), 298
filled() (in module dask.array.ma), 260
fillna() (dask.dataframe.DataFrame method), 483
fillna() (dask.dataframe.Series method), 642
filter() (dask.bag.Bag method), 405
fire_and_forget() (in module distributed), 813
first() (dask.dataframe.DataFrame method), 485
first() (dask.dataframe.groupby.DataFrameGroupBy

method), 724
first() (dask.dataframe.groupby.SeriesGroupBy

method), 734
first() (dask.dataframe.Series method), 644
fix() (in module dask.array), 146
fix_invalid() (in module dask.array.ma), 260
flatnonzero() (in module dask.array), 146
flatten() (dask.array.Array method), 359
flatten() (dask.bag.Bag method), 405
flip() (in module dask.array), 147
fliplr() (in module dask.array), 148
flipud() (in module dask.array), 147
floor() (in module dask.array), 149
floordiv() (dask.dataframe.DataFrame method), 486
floordiv() (dask.dataframe.Series method), 645
fmax() (in module dask.array), 150
fmin() (in module dask.array), 151
fmod() (in module dask.array), 152
fold() (dask.bag.Bag method), 405
foldby() (dask.bag.Bag method), 406
frequencies() (dask.bag.Bag method), 407
frexp() (in module dask.array), 153
from_array() (in module dask.array), 76, 274
from_array() (in module dask.dataframe), 747
from_bcolz() (in module dask.dataframe), 748
from_collections()

(dask.highlevelgraph.HighLevelGraph class
method), 966

from_dask_array() (in module dask.dataframe),
749

from_delayed() (in module dask.array), 77, 275
from_delayed() (in module dask.bag), 417
from_delayed() (in module dask.dataframe), 749
from_npy_stack() (in module dask.array), 275
from_pandas() (in module dask.dataframe), 747
from_sequence() (in module dask.bag), 417
from_tiledb() (in module dask.array), 276
from_url() (in module dask.bag), 418
from_zarr() (in module dask.array), 275
fromfunction() (in module dask.array), 154
frompyfunc() (in module dask.array), 155
full() (in module dask.array), 155
full_like() (in module dask.array), 156
functions_of() (in module dask.optimization), 952
fuse() (in module dask.optimization), 951
Future (class in distributed), 836

G
gamma() (in module dask.array.random), 304
gather() (distributed.Client method), 818
gather() (distributed.Scheduler method), 34
ge() (dask.dataframe.DataFrame method), 489
ge() (dask.dataframe.Series method), 645
geometric() (in module dask.array.random), 305
get() (dask.highlevelgraph.HighLevelGraph method),

967
get() (distributed.Client method), 818
get() (distributed.Queue method), 838
get() (distributed.Sub method), 841
get() (distributed.Variable method), 839
get() (in module dask.config), 929
get_client() (in module distributed), 813
get_comm_cost() (distributed.Scheduler method),

34
get_current_task() (distributed.Worker method),

42
get_dataset() (distributed.Client method), 819
get_dtype_counts() (dask.dataframe.DataFrame

method), 491
get_dummies() (in module dask.dataframe.reshape),

767
get_executor() (distributed.Client method), 819
get_ftype_counts() (dask.dataframe.DataFrame

method), 492
get_group() (dask.dataframe.groupby.DataFrameGroupBy

method), 724
get_group() (dask.dataframe.groupby.SeriesGroupBy

method), 734
get_metadata() (distributed.Client method), 819
get_partition() (dask.dataframe.DataFrame

method), 492

992 Index

dask Documentation, Release 2.6.0

get_partition() (dask.dataframe.Series method),
646

get_restrictions() (distributed.Client class
method), 820

get_scheduler_logs() (distributed.Client
method), 820

get_task_duration() (distributed.Scheduler
method), 35

get_task_stream() (distributed.Client method),
820

get_task_stream() (in module dask.distributed),
864

get_versions() (distributed.Client method), 821
get_worker_logs() (distributed.Client method),

821
get_worker_service_addr() (dis-

tributed.Scheduler method), 35
getdata() (in module dask.array.ma), 261
getmaskarray() (in module dask.array.ma), 262
gradient() (in module dask.array), 156
groupby() (dask.bag.Bag method), 407
groupby() (dask.dataframe.DataFrame method), 492
groupby() (dask.dataframe.Series method), 646
gt() (dask.dataframe.DataFrame method), 494
gt() (dask.dataframe.Series method), 648
gufunc() (in module dask.array.gufunc), 349
gumbel() (in module dask.array.random), 306

H
handle_long_running() (distributed.Scheduler

method), 35
handle_worker() (distributed.Scheduler method),

35
has_what() (distributed.Client method), 821
head() (dask.dataframe.DataFrame method), 497
head() (dask.dataframe.Series method), 649
hfft() (in module dask.array.fft), 295
HighLevelGraph (class in dask.highlevelgraph), 966
histogram() (in module dask.array), 159
HOSTNAMES

dask-ssh command line option, 21
hstack() (in module dask.array), 159
hypergeometric() (in module dask.array.random),

308
hypot() (in module dask.array), 160

I
identity() (distributed.Scheduler method), 35
idxmax() (dask.dataframe.DataFrame method), 497
idxmax() (dask.dataframe.groupby.DataFrameGroupBy

method), 724
idxmax() (dask.dataframe.groupby.SeriesGroupBy

method), 735
idxmax() (dask.dataframe.Series method), 649

idxmin() (dask.dataframe.DataFrame method), 497
idxmin() (dask.dataframe.groupby.DataFrameGroupBy

method), 725
idxmin() (dask.dataframe.groupby.SeriesGroupBy

method), 735
idxmin() (dask.dataframe.Series method), 650
ifft() (in module dask.array.fft), 284
ifft2() (in module dask.array.fft), 286
ifftn() (in module dask.array.fft), 287
ifftshift() (in module dask.array.fft), 299
ihfft() (in module dask.array.fft), 296
iloc (dask.dataframe.DataFrame attribute), 498
imag() (in module dask.array), 161
imread() (in module dask.array.image), 346
index (dask.dataframe.DataFrame attribute), 498
index (dask.dataframe.Series attribute), 650
indices() (in module dask.array), 161
info() (dask.dataframe.DataFrame method), 498
inline() (in module dask.optimization), 951
inline_functions() (in module

dask.optimization), 952
insert() (in module dask.array), 162
instantiate() (distributed.Nanny method), 44
inv() (in module dask.array.linalg), 253
invert() (in module dask.array), 163
irfft() (in module dask.array.fft), 291
irfft2() (in module dask.array.fft), 293
irfftn() (in module dask.array.fft), 293
is_dask_collection() (in module dask), 847
isclose() (in module dask.array), 164
iscomplex() (in module dask.array), 166
isfinite() (in module dask.array), 166
isin() (dask.dataframe.DataFrame method), 498
isin() (dask.dataframe.Series method), 650
isin() (in module dask.array), 167
isinf() (in module dask.array), 168
isna() (dask.dataframe.DataFrame method), 499
isna() (dask.dataframe.Series method), 651
isnan() (in module dask.array), 170
isneginf() (in module dask.array), 169
isnull() (dask.dataframe.DataFrame method), 500
isnull() (dask.dataframe.Series method), 652
isnull() (in module dask.array), 171
isposinf() (in module dask.array), 171
isreal() (in module dask.array), 171
items() (dask.highlevelgraph.HighLevelGraph

method), 967
itemsize (dask.array.Array attribute), 360
iteritems() (dask.dataframe.Series method), 653
iterrows() (dask.dataframe.DataFrame method), 501
itertuples() (dask.dataframe.DataFrame method),

502

Index 993

dask Documentation, Release 2.6.0

J
join() (dask.bag.Bag method), 408
join() (dask.dataframe.DataFrame method), 503

K
keys() (dask.highlevelgraph.HighLevelGraph method),

967
kill() (distributed.Nanny method), 44
known_divisions (dask.dataframe.DataFrame at-

tribute), 505
known_divisions (dask.dataframe.Series attribute),

653
kurtosis() (in module dask.array.stats), 342
kurtosistest() (in module dask.array.stats), 342

L
laplace() (in module dask.array.random), 309
last() (dask.dataframe.DataFrame method), 505
last() (dask.dataframe.groupby.DataFrameGroupBy

method), 725
last() (dask.dataframe.groupby.SeriesGroupBy

method), 736
last() (dask.dataframe.Series method), 654
ldexp() (in module dask.array), 172
le() (dask.dataframe.DataFrame method), 506
le() (dask.dataframe.Series method), 654
linspace() (in module dask.array), 172
list_datasets() (distributed.Client method), 822
loc (dask.dataframe.DataFrame attribute), 508
loc (dask.dataframe.Series attribute), 655
local_dir (distributed.Nanny attribute), 44
local_dir (distributed.Worker attribute), 43
LocalCluster (class in distributed.deploy.local), 12
Lock (class in distributed), 839
log() (in module dask.array), 173
log10() (in module dask.array), 174
log1p() (in module dask.array), 175
log2() (in module dask.array), 176
logaddexp() (in module dask.array), 176
logaddexp2() (in module dask.array), 177
logical_and() (in module dask.array), 178
logical_not() (in module dask.array), 179
logical_or() (in module dask.array), 179
logical_xor() (in module dask.array), 180
logistic() (in module dask.array.random), 310
lognormal() (in module dask.array.random), 311
logseries() (in module dask.array.random), 313
lstsq() (in module dask.array.linalg), 253
lt() (dask.dataframe.DataFrame method), 508
lt() (dask.dataframe.Series method), 655
lu() (in module dask.array.linalg), 254

M
map() (dask.bag.Bag method), 409

map() (dask.dataframe.Series method), 656
map() (distributed.Client method), 822
map() (in module dask.bag), 420
map_blocks() (dask.array.Array method), 360
map_blocks() (in module dask.array), 181
map_blocks() (in module dask.array.core), 350
map_overlap() (dask.array.Array method), 362
map_overlap() (dask.dataframe.DataFrame

method), 511
map_overlap() (dask.dataframe.Series method), 657
map_overlap() (in module dask.array), 384
map_overlap() (in module dask.array.overlap), 273
map_overlap() (in module dask.dataframe.rolling),

755
map_partitions() (dask.bag.Bag method), 410
map_partitions() (dask.dataframe.DataFrame

method), 513
map_partitions() (dask.dataframe.Series method),

659
map_partitions() (in module dask.bag), 420
map_partitions() (in module dask.dataframe), 756
mask() (dask.dataframe.DataFrame method), 514
mask() (dask.dataframe.Series method), 661
masked_array() (in module dask.array.ma), 263
masked_equal() (in module dask.array.ma), 264
masked_greater() (in module dask.array.ma), 264
masked_greater_equal() (in module

dask.array.ma), 265
masked_inside() (in module dask.array.ma), 265
masked_invalid() (in module dask.array.ma), 266
masked_less() (in module dask.array.ma), 266
masked_less_equal() (in module dask.array.ma),

267
masked_not_equal() (in module dask.array.ma),

267
masked_outside() (in module dask.array.ma), 267
masked_values() (in module dask.array.ma), 268
masked_where() (in module dask.array.ma), 269
matmul() (in module dask.array), 183
max() (dask.array.Array method), 363
max() (dask.bag.Bag method), 410
max() (dask.dataframe.DataFrame method), 516
max() (dask.dataframe.groupby.DataFrameGroupBy

method), 725
max() (dask.dataframe.groupby.SeriesGroupBy

method), 736
max() (dask.dataframe.Series method), 663
max() (in module dask.array), 185
maximum() (in module dask.array), 187
mean() (dask.array.Array method), 363
mean() (dask.bag.Bag method), 410
mean() (dask.dataframe.DataFrame method), 518
mean() (dask.dataframe.groupby.DataFrameGroupBy

method), 725

994 Index

dask Documentation, Release 2.6.0

mean() (dask.dataframe.groupby.SeriesGroupBy
method), 736

mean() (dask.dataframe.Series method), 664
mean() (in module dask.array), 188
melt() (dask.dataframe.DataFrame method), 518
melt() (in module dask.dataframe.reshape), 768
memory_monitor() (distributed.Nanny method), 44
memory_monitor() (distributed.Worker method), 43
memory_usage() (dask.dataframe.DataFrame

method), 518
memory_usage() (dask.dataframe.Series method),

664
merge() (dask.dataframe.DataFrame method), 520
merge() (in module dask.config), 930
merge() (in module dask.dataframe.multi), 761
merge_asof() (in module dask.dataframe.multi), 763
meshgrid() (in module dask.array), 189
min() (dask.array.Array method), 363
min() (dask.bag.Bag method), 410
min() (dask.dataframe.DataFrame method), 521
min() (dask.dataframe.groupby.DataFrameGroupBy

method), 726
min() (dask.dataframe.groupby.SeriesGroupBy

method), 737
min() (dask.dataframe.Series method), 665
min() (in module dask.array), 191
minimum() (in module dask.array), 192
mod() (dask.dataframe.DataFrame method), 522
mod() (dask.dataframe.Series method), 667
modf() (in module dask.array), 193
moment() (dask.array.Array method), 364
moment() (in module dask.array), 194
moment() (in module dask.array.stats), 345
moveaxis() (in module dask.array), 194
mul() (dask.dataframe.DataFrame method), 525
mul() (dask.dataframe.Series method), 667

N
nan_to_num() (in module dask.array), 205
nanargmax() (in module dask.array), 195
nanargmin() (in module dask.array), 195
nancumprod() (in module dask.array), 195
nancumsum() (in module dask.array), 196
nanmax() (in module dask.array), 197
nanmean() (in module dask.array), 198
nanmin() (in module dask.array), 199
Nanny (class in distributed), 43
nanprod() (in module dask.array), 200
nanstd() (in module dask.array), 201
nansum() (in module dask.array), 202
nanvar() (in module dask.array), 204
nbytes (dask.array.Array attribute), 364
nbytes (dask.dataframe.Series attribute), 668
nbytes() (distributed.Client method), 822

ncores() (distributed.Client method), 823
ndim (dask.dataframe.DataFrame attribute), 528
ndim (dask.dataframe.Series attribute), 668
ne() (dask.dataframe.DataFrame method), 528
ne() (dask.dataframe.Series method), 668
negative_binomial() (in module

dask.array.random), 314
next() (distributed.Sub method), 841
nextafter() (in module dask.array), 206
nlargest() (dask.dataframe.DataFrame method), 530
nlargest() (dask.dataframe.Series method), 669
noncentral_chisquare() (in module

dask.array.random), 315
noncentral_f() (in module dask.array.random), 316
nonzero() (dask.array.Array method), 364
nonzero() (in module dask.array), 207
norm() (in module dask.array.linalg), 254
normal() (in module dask.array.random), 317
normalize_chunks() (in module dask.array.core),

355
normalize_collection() (distributed.Client

method), 823
normaltest() (in module dask.array.stats), 343
notnull() (dask.dataframe.DataFrame method), 532
notnull() (dask.dataframe.Series method), 671
notnull() (in module dask.array), 208
npartitions (dask.dataframe.DataFrame attribute),

533
npartitions (dask.dataframe.Series attribute), 672
nsmallest() (dask.dataframe.DataFrame method),

533
nsmallest() (dask.dataframe.Series method), 672
nthreads() (distributed.Client method), 824
nunique() (dask.dataframe.Series method), 674
nunique_approx() (dask.dataframe.DataFrame

method), 535
nunique_approx() (dask.dataframe.Series method),

674

O
ones() (in module dask.array), 208
ones_like() (in module dask.array), 209
open_files() (in module dask.bytes), 974
optimize() (in module dask), 847
outer() (in module dask.array), 209
overlap() (in module dask.array.overlap), 272

P
pad() (in module dask.array), 210
pareto() (in module dask.array.random), 318
partitions (dask.array.Array attribute), 364
partitions (dask.dataframe.DataFrame attribute),

535
partitions (dask.dataframe.Series attribute), 674

Index 995

dask Documentation, Release 2.6.0

percentile() (in module dask.array), 213
persist() (dask.dataframe.DataFrame method), 536
persist() (dask.dataframe.Series method), 674
persist() (distributed.Client method), 824
persist() (in module dask), 848
piecewise() (in module dask.array), 214
pipe() (dask.dataframe.DataFrame method), 536
pipe() (dask.dataframe.Series method), 675
pivot_table() (dask.dataframe.DataFrame

method), 537
pivot_table() (in module dask.dataframe.reshape),

768
pluck() (dask.bag.Bag method), 410
poisson() (in module dask.array.random), 319
pop() (dask.dataframe.DataFrame method), 537
pow() (dask.dataframe.DataFrame method), 538
pow() (dask.dataframe.Series method), 676
power() (in module dask.array.random), 320
power_divergence() (in module dask.array.stats),

338
PRELOAD_ARGV

dask-scheduler command line option,
16

dask-worker command line option, 18
processing() (distributed.Client method), 825
prod() (dask.array.Array method), 365
prod() (dask.dataframe.DataFrame method), 541
prod() (dask.dataframe.groupby.DataFrameGroupBy

method), 726
prod() (dask.dataframe.groupby.SeriesGroupBy

method), 737
prod() (dask.dataframe.Series method), 677
prod() (in module dask.array), 215
product() (dask.bag.Bag method), 411
profile() (distributed.Client method), 825
Profiler() (in module dask.diagnostics), 858
progress() (in module dask.distributed), 863
ProgressBar() (in module dask.diagnostics), 858
proxy() (distributed.Scheduler method), 35
ptp() (in module dask.array), 217
Pub (class in distributed), 808, 840
publish_dataset() (distributed.Client method),

825
put() (distributed.Pub method), 809, 841
put() (distributed.Queue method), 838

Q
qr() (in module dask.array.linalg), 256
qsize() (distributed.Queue method), 838
quantile() (dask.dataframe.DataFrame method), 541
quantile() (dask.dataframe.Series method), 678
query() (dask.dataframe.DataFrame method), 542
Queue (class in distributed), 837

R
rad2deg() (in module dask.array), 218
radd() (dask.dataframe.DataFrame method), 542
radd() (dask.dataframe.Series method), 678
radians() (in module dask.array), 218
randint() (in module dask.array.random), 321
random() (in module dask.array.random), 322
random_sample() (dask.bag.Bag method), 411
random_sample() (in module dask.array.random),

323
random_split() (dask.dataframe.DataFrame

method), 545
random_split() (dask.dataframe.Series method),

679
range() (in module dask.bag), 419
ravel() (dask.array.Array method), 365
ravel() (in module dask.array), 219
rayleigh() (in module dask.array.random), 323
rdiv() (dask.dataframe.DataFrame method), 545
rdiv() (dask.dataframe.Series method), 679
read_avro() (in module dask.bag), 419
read_bytes() (in module dask.bytes), 973
read_csv() (in module dask.dataframe), 739
read_fwf() (in module dask.dataframe), 742
read_hdf() (in module dask.dataframe), 744
read_json() (in module dask.dataframe), 745
read_orc() (in module dask.dataframe), 744
read_parquet() (in module dask.dataframe), 743
read_sql_table() (in module dask.dataframe), 746
read_table() (in module dask.dataframe), 740
read_text() (in module dask.bag), 417
real() (in module dask.array), 221
rebalance() (distributed.Client method), 826
rebalance() (distributed.Scheduler method), 35
rechunk() (dask.array.Array method), 365
rechunk() (in module dask.array), 221
reduction() (dask.bag.Bag method), 411
reduction() (dask.dataframe.DataFrame method),

548
reduction() (dask.dataframe.Series method), 680
reduction() (in module dask.array), 222
reevaluate_occupancy() (distributed.Scheduler

method), 35
refresh() (in module dask.config), 931
register_dataframe_accessor() (in module

dask.dataframe.extensions), 785
register_index_accessor() (in module

dask.dataframe.extensions), 785
register_series_accessor() (in module

dask.dataframe.extensions), 785
register_worker_callbacks() (dis-

tributed.Client method), 826
register_worker_plugin() (distributed.Client

method), 49, 827

996 Index

dask Documentation, Release 2.6.0

register_worker_plugin() (dis-
tributed.Scheduler method), 35

rejoin() (in module distributed), 814
release() (distributed.Lock method), 840
remove() (dask.bag.Bag method), 411
remove_client() (distributed.Scheduler method),

35
remove_plugin() (distributed.Scheduler method),

36
remove_worker() (distributed.Scheduler method),

36
rename() (dask.dataframe.DataFrame method), 550
rename() (dask.dataframe.Series method), 682
repartition() (dask.bag.Bag method), 412
repartition() (dask.dataframe.DataFrame

method), 551
repartition() (dask.dataframe.Series method), 682
repeat() (dask.array.Array method), 365
repeat() (in module dask.array), 223
replace() (dask.dataframe.DataFrame method), 552
replace() (dask.dataframe.Series method), 683
replicate() (distributed.Client method), 827
replicate() (distributed.Scheduler method), 36
report() (distributed.Scheduler method), 36
resample() (dask.dataframe.DataFrame method), 556
resample() (dask.dataframe.Series method), 688
reschedule() (distributed.Scheduler method), 36
reset_index() (dask.dataframe.DataFrame

method), 561
reset_index() (dask.dataframe.Series method), 692
reshape() (dask.array.Array method), 366
reshape() (in module dask.array), 224
ResourceProfiler() (in module dask.diagnostics),

859
restart() (distributed.Client method), 828
restart() (distributed.Scheduler method), 36
result() (distributed.Future method), 837
result_type() (in module dask.array), 224
retire_workers() (distributed.Client method), 828
retire_workers() (distributed.Scheduler method),

36
retry() (distributed.Client method), 828
retry() (distributed.Future method), 837
RewriteRule() (in module dask.rewrite), 952
rfft() (in module dask.array.fft), 288
rfft2() (in module dask.array.fft), 290
rfftfreq() (in module dask.array.fft), 297
rfftn() (in module dask.array.fft), 290
rfloordiv() (dask.dataframe.DataFrame method),

561
rfloordiv() (dask.dataframe.Series method), 693
rint() (in module dask.array), 225
rmod() (dask.dataframe.DataFrame method), 564
rmod() (dask.dataframe.Series method), 693

rmul() (dask.dataframe.DataFrame method), 567
rmul() (dask.dataframe.Series method), 694
roll() (in module dask.array), 226
rollaxis() (in module dask.array), 226
rolling() (dask.dataframe.DataFrame method), 570
rolling() (dask.dataframe.Series method), 695
round() (dask.array.Array method), 366
round() (dask.dataframe.DataFrame method), 570
round() (dask.dataframe.Series method), 696
round() (in module dask.array), 227
rpow() (dask.dataframe.DataFrame method), 571
rpow() (dask.dataframe.Series method), 696
rsub() (dask.dataframe.DataFrame method), 574
rsub() (dask.dataframe.Series method), 697
rtruediv() (dask.dataframe.DataFrame method), 576
rtruediv() (dask.dataframe.Series method), 698
RuleSet() (in module dask.rewrite), 953
run() (distributed.Client method), 829
run_coroutine() (distributed.Client method), 830
run_function() (distributed.Scheduler method), 37
run_on_scheduler() (distributed.Client method),

830

S
sample() (dask.dataframe.DataFrame method), 579
sample() (dask.dataframe.Series method), 699
scatter() (distributed.Client method), 830
scatter() (distributed.Scheduler method), 37
SCHEDULER

dask-worker command line option, 18
Scheduler (class in distributed), 32
scheduler_info() (distributed.Client method), 831
secede() (in module distributed), 814
select_dtypes() (dask.dataframe.DataFrame

method), 579
sem() (dask.dataframe.DataFrame method), 581
sem() (dask.dataframe.Series method), 699
send_task_to_worker() (distributed.Scheduler

method), 37
Series (class in dask.dataframe), 606
SeriesGroupBy (class in dask.dataframe.groupby),

728
set() (distributed.Variable method), 839
set() (in module dask.config), 930
set_fill_value() (in module dask.array.ma), 271
set_index() (dask.dataframe.DataFrame method),

581
set_metadata() (distributed.Client method), 832
sfqr() (in module dask.array.linalg), 258
shape (dask.dataframe.DataFrame attribute), 583
shape (dask.dataframe.Series attribute), 699
shift() (dask.dataframe.DataFrame method), 583
shift() (dask.dataframe.Series method), 699
shutdown() (distributed.Client method), 832

Index 997

dask Documentation, Release 2.6.0

sign() (in module dask.array), 227
signbit() (in module dask.array), 227
sin() (in module dask.array), 228
sinh() (in module dask.array), 229
size (dask.array.Array attribute), 366
size (dask.dataframe.DataFrame attribute), 584
size (dask.dataframe.Series attribute), 701
size() (dask.dataframe.groupby.DataFrameGroupBy

method), 726
size() (dask.dataframe.groupby.SeriesGroupBy

method), 737
skew() (in module dask.array.stats), 340
skewtest() (in module dask.array.stats), 341
solve() (in module dask.array.linalg), 257
solve_triangular() (in module dask.array.linalg),

257
sqrt() (in module dask.array), 230
square() (in module dask.array), 231
squeeze() (dask.array.Array method), 366
squeeze() (dask.dataframe.DataFrame method), 584
squeeze() (dask.dataframe.Series method), 701
squeeze() (in module dask.array), 231
SSHCluster() (in module distributed.deploy.ssh), 18
stack() (in module dask.array), 79, 232
standard_cauchy() (in module

dask.array.random), 324
standard_exponential() (in module

dask.array.random), 325
standard_gamma() (in module dask.array.random),

325
standard_normal() (in module

dask.array.random), 326
standard_t() (in module dask.array.random), 327
starmap() (dask.bag.Bag method), 412
start() (distributed.Client method), 833
start() (distributed.Nanny method), 44
start() (distributed.Scheduler method), 37
start_ipython() (distributed.Scheduler method),

37
start_ipython() (distributed.Worker method), 43
start_ipython_scheduler() (distributed.Client

method), 833
start_ipython_workers() (distributed.Client

method), 833
std() (dask.array.Array method), 366
std() (dask.bag.Bag method), 412
std() (dask.dataframe.DataFrame method), 586
std() (dask.dataframe.groupby.DataFrameGroupBy

method), 726
std() (dask.dataframe.groupby.SeriesGroupBy

method), 737
std() (dask.dataframe.Series method), 703
std() (in module dask.array), 233

stimulus_cancel() (distributed.Scheduler
method), 37

stimulus_missing_data() (distributed.Scheduler
method), 37

stimulus_task_erred() (distributed.Scheduler
method), 37

stimulus_task_finished() (dis-
tributed.Scheduler method), 37

store() (dask.array.Array method), 367
store() (in module dask.array), 77, 276
story() (distributed.Scheduler method), 37
str (dask.bag.Bag attribute), 413
str (dask.dataframe.Series attribute), 703
Sub (class in distributed), 841
sub() (dask.dataframe.DataFrame method), 586
sub() (dask.dataframe.Series method), 703
submit() (distributed.Client method), 834
sum() (dask.array.Array method), 367
sum() (dask.bag.Bag method), 413
sum() (dask.dataframe.DataFrame method), 589
sum() (dask.dataframe.groupby.DataFrameGroupBy

method), 727
sum() (dask.dataframe.groupby.SeriesGroupBy

method), 737
sum() (dask.dataframe.Series method), 704
sum() (in module dask.array), 234
svd() (in module dask.array.linalg), 257
svd_compressed() (in module dask.array.linalg),

257
swapaxes() (dask.array.Array method), 368

T
tail() (dask.dataframe.DataFrame method), 591
tail() (dask.dataframe.Series method), 706
take() (dask.bag.Bag method), 413
take() (in module dask.array), 236
tan() (in module dask.array), 237
tanh() (in module dask.array), 238
tensordot() (in module dask.array), 239
tile() (in module dask.array), 241
to_avro() (dask.bag.Bag method), 413
to_avro() (in module dask.bag.avro), 400
to_bag() (dask.dataframe.DataFrame method), 591
to_bag() (dask.dataframe.Series method), 706
to_bag() (in module dask.dataframe), 752
to_csv() (dask.dataframe.DataFrame method), 591
to_csv() (dask.dataframe.Series method), 706
to_csv() (in module dask.dataframe), 750
to_dask_array() (dask.dataframe.DataFrame

method), 593
to_dask_array() (dask.dataframe.Series method),

708
to_dask_dataframe() (dask.array.Array method),

368

998 Index

dask Documentation, Release 2.6.0

to_dataframe() (dask.bag.Bag method), 414
to_dataframe() (dask.bag.core.Bag method), 401
to_datetime() (in module dask.dataframe), 757
to_delayed() (dask.array.Array method), 368
to_delayed() (dask.bag.Bag method), 415
to_delayed() (dask.bag.core.Bag method), 401
to_delayed() (dask.dataframe.DataFrame method),

594
to_delayed() (dask.dataframe.Series method), 708
to_frame() (dask.dataframe.Series method), 709
to_hdf() (dask.dataframe.DataFrame method), 594
to_hdf() (dask.dataframe.Series method), 709
to_hdf() (in module dask.dataframe), 752
to_hdf5() (dask.array.Array method), 368
to_hdf5() (in module dask.array), 277
to_html() (dask.dataframe.DataFrame method), 595
to_json() (dask.dataframe.DataFrame method), 597
to_json() (dask.dataframe.Series method), 710
to_json() (in module dask.dataframe), 755
to_npy_stack() (in module dask.array), 278
to_parquet() (dask.dataframe.DataFrame method),

597
to_parquet() (in module dask.dataframe), 754
to_records() (dask.dataframe.DataFrame method),

598
to_records() (in module dask.dataframe), 750
to_string() (dask.dataframe.DataFrame method),

598
to_string() (dask.dataframe.Series method), 710
to_svg() (dask.array.Array method), 369
to_textfiles() (dask.bag.Bag method), 415
to_textfiles() (in module dask.bag.core), 398
to_tiledb() (dask.array.Array method), 369
to_tiledb() (in module dask.array), 279
to_timestamp() (dask.dataframe.DataFrame

method), 600
to_timestamp() (dask.dataframe.Series method),

711
to_zarr() (dask.array.Array method), 369
to_zarr() (in module dask.array), 278
topk() (dask.array.Array method), 369
topk() (dask.bag.Bag method), 416
topk() (in module dask.array), 242
trace() (dask.array.Array method), 369
traceback() (distributed.Future method), 837
transform() (dask.dataframe.groupby.DataFrameGroupBy

method), 727
transform() (dask.dataframe.groupby.SeriesGroupBy

method), 737
transition() (distributed.Scheduler method), 37
transition_story() (distributed.Scheduler

method), 37
transitions() (distributed.Scheduler method), 38
transpose() (dask.array.Array method), 369

transpose() (in module dask.array), 243
triangular() (in module dask.array.random), 328
trigger_profile() (distributed.Worker method),

43
tril() (in module dask.array), 243
trim_internal() (in module dask.array.overlap),

274
trim_overlap() (in module dask.array.overlap), 274
triu() (in module dask.array), 244
truediv() (dask.dataframe.DataFrame method), 600
truediv() (dask.dataframe.Series method), 711
trunc() (in module dask.array), 244
tsqr() (in module dask.array.linalg), 258
ttest_1samp() (in module dask.array.stats), 334
ttest_ind() (in module dask.array.stats), 333
ttest_rel() (in module dask.array.stats), 335

U
uniform() (in module dask.array.random), 329
unique() (dask.dataframe.Series method), 712
unique() (in module dask.array), 245
unpublish_dataset() (distributed.Client method),

835
unravel_index() (in module dask.array), 246
unzip() (dask.bag.Bag method), 416
update() (in module dask.config), 930
update_data() (distributed.Scheduler method), 38
update_graph() (distributed.Scheduler method), 38
upload_file() (distributed.Client method), 835

V
valid_workers() (distributed.Scheduler method),

38
value_counts() (dask.dataframe.Series method),

712
values (dask.dataframe.DataFrame attribute), 603
values (dask.dataframe.Series attribute), 713
values() (dask.highlevelgraph.HighLevelGraph

method), 967
var() (dask.array.Array method), 370
var() (dask.bag.Bag method), 417
var() (dask.dataframe.DataFrame method), 603
var() (dask.dataframe.groupby.DataFrameGroupBy

method), 727
var() (dask.dataframe.groupby.SeriesGroupBy

method), 738
var() (dask.dataframe.Series method), 713
var() (in module dask.array), 247
Variable (class in distributed), 838
vdot() (in module dask.array), 249
view() (dask.array.Array method), 370
vindex (dask.array.Array attribute), 371
visualize() (dask.dataframe.DataFrame method),

603

Index 999

dask Documentation, Release 2.6.0

visualize() (dask.dataframe.Series method), 714
visualize() (in module dask), 849
visualize() (in module dask.diagnostics), 861
vonmises() (in module dask.array.random), 330
vstack() (in module dask.array), 249

W
wait() (in module distributed), 814
wait_for_workers() (distributed.Client method),

835
wald() (in module dask.array.random), 331
weibull() (in module dask.array.random), 332
where() (dask.dataframe.DataFrame method), 604
where() (dask.dataframe.Series method), 715
where() (in module dask.array), 250
who_has() (distributed.Client method), 835
Worker (class in distributed), 39
worker_address (distributed.Worker attribute), 43
worker_objective() (distributed.Scheduler

method), 38
worker_send() (distributed.Scheduler method), 38
workers_list() (distributed.Scheduler method), 38
workers_to_close() (distributed.Scheduler

method), 38
write_scheduler_file() (distributed.Client

method), 836

Z
zeros() (in module dask.array), 251
zeros_like() (in module dask.array), 252
zip() (in module dask.bag), 421
zipf() (in module dask.array.random), 333

1000 Index

	Familiar user interface
	Scales from laptops to clusters
	Complex Algorithms
	Bibliography
	Index

