
A short tale of an Erlang program
Let’s say we have the following program:

EXAMPLES

Cool, it works... But it suddenly got pretty hairy, despite Erlang
being a high-level functional language!
Logic and communication all mixed up.

let f = λx. x ∗ x in f 3 + f 4

8 / 72

Now we want the f function to run on a separate node in
our distributed system. Let’s write it in Erlang:

EXAMPLE (ERLANG)

f (A pid) −>
rece ive X −> A pid ! X ∗ X end ,
f (A pid) .

main () −>
F pid = spawn (moduleName , f ,

[s e l f ()]) ,
F pid ! 3 ,
rece ive X −> F pid ! 4 ,

rece ive Y −> X + Y end
end .

f = λx. x ∗ x

f 3 + f 4

4 / 72

Seamless distributed computing

Geometry of Interaction
Girard’s Geometry of Interaction gives a syntax-free seman-
tics for programs as token-passing networks of compo-
nents”acting on the token.

Apart from being interesting from a semanticist’s viewpoint,
GoI has also inspired some interesting applications:

Here we are going to use it for compiling programs to net-
works of abstract machines.

Dan Ghica et al.’s
Geometry of Interac-
tion series uses it to
compile programs to
hardware circuits.

+

�if : (exp
1
× com2 × com3) → com4�
R4 D4

Q1 T1

F1

R2 D2

R3 D3

An acknowledgment of true (T1) from the guard of the branching
triggers the second argument (R2), whereas a false (F1) triggers the
third argument (R3). The branch acknowledges termination (D4)
when either of the command arguments terminates (D2, D3). Note
that the SHC rules prevent D3 responding to R2 or D2 to R3. For
iteration we use:

R3 D3

Q1 T1

F1

R2 D2

�while : (exp
1
× com2) → com3�

+

A true (T1) acknowledgment from the guard executes the body of
the loop (R2) whereas a false (F1) terminates the loop (D3).

For logical operators we assume the existence of circuits of shape

OP

T2

F2

T1

F1

T F

that produce output on T (respectively F) if and only if the last two
inputs were on ports X1 and Y2 and op(x1, y2) = 1 (respectively
0); after it produces the output OP must revert to its initial state.
Note that circuit OP needs to be stateful, since its inputs are not
simultaneous and need to be remembered. Also note that this aux-
iliary circuit is not itself SHC. The interpretation of logical operator
op in the language is the following:

Q1 T1

F1

�op : (bool1 × bool2) → bool3�

OP

+
Q2 T2

F2

Q3 T3

F3

Above we use the same JOIN circuit which was used for branching
and iteration. Its role is to propagate any of T1 or F1 input signals
to Q2.

Finally, the local state is interpreted by the circuit

+

R3 D3

WT1

WF1

D1

T1

F1Q
CELL

R2 D2

�newvar : (cell1 → com2) → com3�

S

The circuit CELL above is a two-state memory cell: If the input is
on WT1 (“write true”) it goes to state 1, if it is WF1 (“write false”)
it goes to state 0. Then it produces output on D1. After a Q request it
produces T1 if it is in state 1, F1 if it is in state 0. An input on the S
port resets the circuit to its initial state. This behaviour is specified
by the following (Mealy-style) automaton:

WT / D

WF / D

Q / F Q / T

S / -

S / -

The structural elements of bSCI are interpreted in the standard way
in the category SHC:

�x : θ � x : θ� = id�θ�

�Γ, x : θ′ � M : θ� = �Γ � M : θ� ◦ π1

�Γ � λx.M : θ′ → θ� = Λ(�Γ, x : θ′ � M : θ�)
�Γ, ∆ � FM : θ� = eval ◦

`
�∆ � M :θ′� ⊗ �Γ � F :θ′→θ�

´

�Γ � 〈M, N〉 : θ × θ′� =
`
�Γ � M :θ� ⊗ �ρ(Γ � N :θ′)�

´
◦ δ�Γ�,

where ρ(Γ � N : θ′) is the syntactic operation of substituting all
free variables from Γ with fresh ones.

We can state that:

LEMMA 8. The interpretations of bSCI constants are SHC circuits.

The following property is not required of SHCs, but it holds for all
circuits introduced so far:

PROPOSITION 9 (Reset). For any SHC �Γ � M : θ� the internal
state of the circuit before an initial input request is the same as after
the final output request.

Proof: Immediate, by structural induction on the syntax of M .

�

We show that this compilation technique is correct through the
following soundness theorem.

THEOREM 10 (Soundness). If M : com is a closed term and M ⇓
then �M : com� is equivalent to �skip : com�.

This is an immediate corollary of a more general following Lemma.

We say that a CELL is in state B if a Q input request would produce
a B output acknowledgment. We write CELLB for a cell which is
in initial state B.

LEMMA 11. If Γ � M : σ, σ ∈ {exp, com} is a semi-closed term
then for all states s : dom Γ → B if M, s ⇓ c, s′ then circuit
�Γ � M : σ�◦

`
CELLB1

1 ⊗· · ·⊗CELLBn
n

´
is equivalent to �c : σ�

and it leaves CELLj in state B′
j , where dom s = {x1, . . . , xn}

and s(xi) = Bi, s
′(xi) = B′

i.

Proof: The proof is by structural induction on the evaluation rules
in the operational semantics. Abstraction, application, product and
projection rules hold because of the structural properties of SHC.

Most constructs have routine proofs. We illustrate the proof for the
case of sequential composition of commands. The rule is

C, s ⇓ skip, s′ C′, s′ ⇓ skip, s′′

seq〈C, C′〉, s ⇓ skip, s′′

The interpretation of the sequential composition in state s is the
following circuit:

Ian Mackie’s Geometry of Interaction Machine uses it
for compiling programs to machine code.

Compilation
Components work in a simple request-answer manner, as
illustrated by the component for the zero constant:

Terms of function type can request their argument, mean-
ing that function application is done merely by communi-
cation:COMPILATION IN GENERAL

x : θ,Γ � x : θ

x d

Γ � λx. t : θ → θ′

t
x

Γ

Γ � t t′ : θ

t

t′δ

cΓ

39 / 72

Example
This is the result of compiling our initial program:

If we think of each box in the program as a node in the
network, this will work. But it extremely fine-grained, and
there is a lot of expensive communication even for this
very simple program. What now?

EXAMPLE AGAIN

(λf . f 3 + f 4) (λx. x ∗ x)

∗

d

dδ

δ

c

d

d

3

d

d

4

c

c

+

δ

δ

δ

δ

52 / 72

Abstract machines
To make our components more computational and thus
easy to compile, we construct abstract machines for de-
scribing their inner workings, and their interaction in a
network.

The example below shows ports, labels and code:

Combining components
We can arbitrarily combine abstract machines in a network
gotten from compiling a term, obtaining networks of the
granularity that we want.

Going back to the example, we can combine components
based on the locus specifiers:

Status
A prototype compiler has been created, which works by
producing networks that run C programs communicating
using MPI, following the abstract machine semantics.

The networks are first compiled into fine-grained networks
which are combined according on the locus specifiers in
the source code.

Future work
We are working on a separate description language for
specifying aspects related to the communication, such as
configuration, error-handling and code location. These
things could then be changed without having to rewrite
the logic of the program.

We are also adding constructs such as local variables and
parallelism (essentially making the language Idealised Al-
gol) to our language.

Olle Fredriksson
ohf162@cs.bham.ac.uk

The University of Birmingham

Configuration changes
On second thought, we actually need a proxy between the
two nodes, so we rewrite the program:

The problem
The logic of the program is the same, but we had to rewrite
it for a simple configuration change.

The logic and communication details of the program are all
mixed up.

EXAMPLE 2 (ERLANG)

c () −>
rece ive {Pid , X} −> Pid ! X ∗ X end ,
c () .

b (A pid , C pid) −>
rece ive

requesta −>
C pid ! {s e l f () , 3} ,
rece ive X −> A pid ! X end ;

requestb −>
C pid ! {s e l f () , 4} ,
rece ive X −> A pid ! X end

end ,
b (A pid , C pid) .

main () −>
C pid = spawn (moduleName , c , []) ,
B pid = spawn (moduleName , b , [s e l f () , C pid]) ,
B pid ! requesta ,
rece ive X −> B pid ! requestb ,

rece ive Y −> X + Y end
end .

a = f 3

a + b

f = λx. x ∗ x

b = f 4

6 / 72

EXAMPLE 2 (ERLANG)

c () −>
rece ive {Pid , X} −> Pid ! X ∗ X end ,
c () .

b (A pid , C pid) −>
rece ive

requesta −>
C pid ! {s e l f () , 3} ,
rece ive X −> A pid ! X end ;

requestb −>
C pid ! {s e l f () , 4} ,
rece ive X −> A pid ! X end

end ,
b (A pid , C pid) .

main () −>
C pid = spawn (moduleName , c , []) ,
B pid = spawn (moduleName , b , [s e l f () , C pid]) ,
B pid ! requesta ,
rece ive X −> B pid ! requestb ,

rece ive Y −> X + Y end
end .

a = f 3

a + b

f = λx. x ∗ x

b = f 4

6 / 72

Proposal
The first program could simply be:

Where @B is a locus specification, meaning that that part of
the compiled program should be on the node named B.

And the second:

We are creating a programming language where the pro-
gram logic is separated from the communication, which is
handled automatically, making this possible. This language
is a variant of PCF, and the locus specifiers can work on
any sub-term.

The typing and operational semantics are not affected by
these specifiers:

EXAMPLES

Cool, it works... But it suddenly got pretty hairy, despite Erlang
being a high-level functional language!
Logic and communication all mixed up.

(let f = (λx. x ∗ x) @ B in f 3 + f 4) @ A

f = λx. x ∗ x

f 3 + f 4

9 / 72

EXAMPLES

Cool, it works... But it suddenly got pretty hairy, despite Erlang
being a high-level functional language!
Logic and communication all mixed up.

(let f = (λx.x∗x)@C in(f 3)@B+(f 4)@B)@A

a = f 3

a + b

f = λx. x ∗ x

b = f 4

10 / 72

TYPING AND OPERATIONAL SEMANTICS

Γ � t : θ
Γ � t @ A : θ

t ⇓ v
t @ A ⇓ v

∼ a pragma.

12 / 72

EXAMPLE

· � 0 : nat

0 •

18 / 72

EXAMPLE

· � 0 : nat

0
0

19 / 72

COMBINING COMPONENTS

pout
1pin

1pin
0pout

0
box0

0 = 〈
{

pout
0 �→ l

}
,
{

l �→ zero; send pin
0
}
〉

box = 〈
{

pin
1 �→ l1

pin
0 �→ l0

}
,

{
l1 �→ snd; send pout

0
l0 �→ unsnd; send pout

1

}
〉

combine(0, box) = 〈
{

pin
1 �→ l1

}
,




l1 �→ snd; jump l
l �→ zero; jump l0
l0 �→ unsnd; send pout

1


〉

54 / 72

COMBINING COMPONENTS

pout
1pin

1pin
0pout

0
box0

0 = 〈
{

pout
0 �→ l

}
,
{

l �→ zero; send pin
0
}
〉

box = 〈
{

pin
1 �→ l1

pin
0 �→ l0

}
,

{
l1 �→ snd; send pout

0
l0 �→ unsnd; send pout

1

}
〉

combine(0, box) = 〈
{

pin
1 �→ l1

}
,




l1 �→ snd; jump l
l �→ zero; jump l0
l0 �→ unsnd; send pout

1


〉

54 / 72

COMBINING EXAMPLE

(let f = (λx. x ∗ x) @ B in f 3 + f 4) @ A

∗

d

dδ

δ

c

d

d

3

d

d

4

c

c

+

δ

δ

δ

δ

57 / 72

B A

