Seamless distributed computing

A short tale of an Erlang program

Let’s say we have the following program:

letf = Mx.xxxinf3+f4

Now we want the f function to run on a separate node in
our distributed system. Let’s write it in Erlang:

f(A_pid) —
receive X —> A_pid ! X x X end,
f(A_pid).

main () —>
F_pid

spawn (moduleName, f,

[self()]),

F_pid ! 3,

receive X — F_pid ! 4,
receive Y —> X + Y end

end.

f3+f4

Geometry of Interaction

Girard’s Geometry of Interaction gives a syntax-free seman-
tics for programs as token-passing networks of compo-
nents acting on the token.

Apart from being interesting from a semanticist’s viewpoint,
Gol has also inspired some interesting applications:

[op : (booly X booly) — bools]
o 3

Dan Ghica et al’s
Geometry of Interac-
tion series uses it to
compile programs to
hardware circuits.

Ian Mackie’s Geometry of Interaction Machine uses it
for compiling programs to machine code.

Here we are going to use it for compiling programs to net-
works of abstract machines.

Abstract machines

To make our components more computational and thus
easy to compile, we construct abstract machines for de-
scribing their inner workings, and their interaction in a
network.

The example below shows ports, labels and code:

box

out in
Po Po

0= ({pS"t —1},{l— zero; sendp*})

F

l; — snd; send pg™t
lp — unsnd; send p™

box = <{piln — L

b

Configuration changes

On second thought, we actually need a proxy between the
two nodes, so we rewrite the program:

c() >
receive {Pid, X} — Pid ! X * X end,
c().

b(A_pid, C_pid) —>
receive
requesta —>
C.pid ! {self(), 3},
receive X — A_pid ! X end;
requestb —>
C.pid ! {self(), 4},
receive X —> A_pid ! X end
end,
b(A_pid,

C_pid).

spawn (moduleName, c,

spawn (moduleName, b,

! requesta,

receive X — B_pid ! requestb,
receive Y — X + Y end

end.

(1),
[self (), C.pidl]),

N

The problem

The logic of the program is the same, but we had to rewrite
it for a simple configuration change.

The logic and communication details of the program are all
mixed up.

Compilation

Components work in a simple request-answer manner, as
illustrated by the component for the zero constant:

—

N

Terms of function type can request their argument, mean-
ing that function application is done merely by communi-
cation:

I'EXx.t:0—¢

X

t ——

F_

't : 0

J- ) t

F_ C -----------
] e

Combining components

We can arbitrarily combine abstract machines in a network
gotten from compiling a term, obtaining networks of the
granularity that we want.

N

l1 — snd; jump !
combine(0, box) = ({p* — L1}, { I — zero; jumply
lop = unsnd; sendp

)

out
1

8"

Going back to the example, we can combine components
based on the locus specifiers:

N

Proposal

The first program could simply be:

(letf = (AMx.xxx)@QBinf3+f4)QA

Where @B is a locus specification, meaning that that part of
the compiled program should be on the node named B.

And the second:

(letf = (\x.xxx)@QCin(f3)@QB+(f4)@QB)QA

We are creating a programming language where the pro-
gram logic is separated from the communication, which is
handled automatically, making this possible. This language
is a variant of PCF, and the locus specifiers can work on
any sub-term.

The typing and operational semantics are not aftected by
these specifiers:

t{ o
t@Al o

'+¢t: 0
I'Ft@A : 60

Example

This is the result of compiling our initial program:

If we think of each box in the program as a node in the
network, this will work. But it extremely fine-grained, and
there is a lot of expensive communication even for this
very simple program. What now?

Status

A prototype compiler has been created, which works by
producing networks that run C programs communicating
using MPI, following the abstract machine semantics.

The networks are first compiled into fine-grained networks
which are combined according on the locus specifiers in
the source code.

Future work

We are working on a separate description language for
specifying aspects related to the communication, such as
configuration, error-handling and code location. These
things could then be changed without having to rewrite
the logic of the program.

We are also adding constructs such as local variables and
parallelism (essentially making the language Idealised Al-
gol) to our language.

Olle Fredriksson
ohfl62@cs.bham.ac.uk
The University of Birmingham




