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ABSTRACT
Spoken dialogue systems typically use predefined seman-
tic slots to parse users’ natural language inputs into unified
semantic representations. To define the slots, domain ex-
perts and professional annotators are often involved, and the
cost can be expensive. In this paper, we ask the following
question: given a collection of unlabeled raw audios, can
we use the frame semantics theory to automatically induce
and fill the semantic slots in an unsupervised fashion? To do
this, we propose the use of a state-of-the-art frame-semantic
parser, and a spectral clustering based slot ranking model that
adapts the generic output of the parser to the target semantic
space. Empirical experiments on a real-world spoken dia-
logue dataset show that the automatically induced semantic
slots are in line with the reference slots created by domain
experts: we observe a mean averaged precision of 74.13%
using ASR-transcribed data. Our slot filling evaluations also
indicate the promising future of this proposed approach.

Index Terms— Unsupervised slot induction, semantic
slot filling, semantic representation.

1. INTRODUCTION

A number of recent and past efforts in industry (e.g. Google
Now1 and Apple’s Siri2) and academia (e.g. [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12]) have focused on developing semantic
understanding techniques for building better spoken dialogue
systems (SDS). The role of spoken language understanding
(SLU) is of great significance to SDS: in order to capture
the variation in language use from dialogue participants, the
SLU component must create a mapping between the natural
language inputs and a semantic representation that captures
users’ intentions.

As pointed out by [13], developing such a SLU-based
interactive system can be very challenging: in the initial
stage, domain experts or the developers themselves have to
manually define the semantic frames, slots, and possible val-
ues that situates the domain-specific conversation scenarios.

1http://www.google.com/landing/now/
2http://www.apple.com/ios/siri/

However, this approach might not generalize well to real-
world users, and the predefined slot definition can be limited,
and even bias the subsequent data collection and annotation.
Another issue is about the efficiency: the manual definition
and annotation process for domain-specific tasks can be very
time-consuming, and have high financial costs. Finally, the
maintenance cost is also non-trivial: when new conversational
data comes in, developers, domain experts, and annotators
have to manually analyze the audios or the transcriptions for
updating and expanding the existing grammars.

Given a collection of unlabeled raw audio files, we inves-
tigate an unsupervised approach for automatic induction and
filling of semantic slots. To do this, we use a state-of-the-art
probabilistic frame-semantic parsing approach [14], and per-
form an unsupervised spectral clustering approach to adapt,
rerank, and map the generic FrameNet [15] style semantic
parses to the target semantic space that is suitable for the
domain-specific conversation settings. To evaluate the per-
formance of our approach, we compare the automatically in-
duced semantic slots with the reference slots created by do-
main experts. Furthermore, we evaluate the accuracy of the
slot filling (also known as form filling) task on a real-world
SDS dataset, using the induced semantic slots. Empirical ex-
periments show that the slot creation results generated by our
approach aligns well with those of domain experts, and the
slot filling experiment result suggests that our system is accu-
rate in extracting the semantic information from users’ input.
Our main contributions of this paper are three-fold:

• We proposed an unsupervised method for automatic
induction and filling of semantic slots from unlabeled
speech data, using probabilistic frame-semantic pars-
ing;

• We showed that the performance of this unsuper-
vised slot induction method was in line with human-
generated slots;

• We obtained interesting slot filling results that demon-
strate the accuracy of our semantic information extrac-
tion system.



In the following sections, we outline related work in Sec-
tion 2. We describe the proposed approach in Section 3. The
experimental setup and results are shown in Section 4. Dis-
cussions are followed in Section 5, and we conclude in Sec-
tion 6.

2. RELATED WORK

Early knowledge-based and statistical systems [3, 5, 8], for
example, in the ATIS domain, all require developers to write
syntactic and semantic grammars [16]. With the advent of
statistical methods in language processing, Wong and Meng
and Pargellis et al. are among the firsts to consider semiau-
tomatic grammar induction [17, 18]. Their approaches are
based on pure data-driven methods, which require consider-
able amount of manual efforts to clean up the output. There
has been work in SLU that combines knowledge-based ap-
proach with the statistical approach. For example, Wang et
al. [16] have studied an HMM/CFG model that alleviates the
need for massive human annotated grammar.

Unsupervised methods for automatic semantic slot induc-
tion that make use of the frame-semantic formalism from lin-
guistic theories, on the other hand, have not been well stud-
ied in the SDS community in the past. Although there has
been work [19] using semi-supervised learning approaches to
explore unlabeled data, their focus was not on automatic in-
duction and filling of slots. More broadly, Chung et al. [20]
and Wang et al. [13] have studied the problem of obtaining in-
domain natural language data for SDS semantic understand-
ing, which address another important issue for building SDS
with limited resource, at the other end of the spectrum. How-
ever, their domain-specific semantic representations are also
predefined.

Despite our dialogue domain, our approach is relevant
to ontology induction from text in the natural language un-
derstanding (NLU) community. For example, Poon and
Domingos proposes an unsupervised ontology induction ap-
proach using Markov logic network [21]. Chambers and
Jurafsky have studied unsupervised approaches for informa-
tion extraction without templates [22]. Recently, Cheung et
al. have investigated a generative approach to induce seman-
tic frames in long passages across multiple documents [23].
Titov and Klementiev [24] use a Bayesian approach to induce
semantic roles, and Lang and Mirella [25] have also proposed
graph-based latent variable models for semantic role induc-
tion. However, our SLU problem is different than the NLU
problem: first, since spoken dialogue utterances are typically
very short and noisy, they are often more syntactically and
semantically ill-formed, as comparing to the newswire data
that is commonly used in NLU problems. Also, since the
SDS typically focus on specific domains, the resources for
building such systems can be very limited. For example,
the conventional semantic resources such as WordNet [26],
was mostly built on top of written text data, so that it might

can i have a cheap restaurant 

Frame: capability 
FT LU: can FE LU: i 

Frame: expensiveness 
FT LU: cheap 

Frame: locale by use 
FT/FE LU: restaurant 

Fig. 1. An example of probabilistic frame-semantic parsing
on ASR output. FT: frame target. FE: frame element. LU:
lexical unit.

not be directly applicable to the tasks in spoken language
processing.

3. THE PROPOSED APPROACH

Our main motivation is to use a FrameNet-trained statistical
probabilistic semantic parser [14] to generate initial frame-
semantic parses from automatic speech recognition (ASR) de-
codings of the raw audio conversation files. Obviously, the
question one might ask is: how do we map and adapt the
FrameNet-style frame-semantic parses to the semantic slots
in the target semantic space, so that they can be used practi-
cally in the spoken dialogue systems? To tackle this issue, we
formulate the semantic mapping and adaptation problem as
a reranking problem: we propose the use of an unsupervised
spectral clustering based slot ranking model to rerank the list
of most frequent parses from an unlabeled corpus.

In the remainder of the section, we introduce FrameNet
and statistical semantic parsing in Section 3.1. Then we
describe the slot ranking model that we use to adapt the
generic semantic parsing outputs to target semantic space in
Section 3.2.

3.1. Probabilistic Semantic Parsing

FrameNet is a linguistically-principled semantic resource that
includes considerable annotations about predicate-argument
semantics, and its associated lexical units in English [15].
FrameNet is developed based on a semantic theory called
Frame Semantics [27]. The theory believes that the mean-
ing of most words can be expressed on the basis of seman-
tic frames, which is represented as three major components:
frame (F), frame elements (FE), and lexical units (LU). For
example, the frame “food” contains words referring to items
of food. A “descriptor” frame element within the “food”
frame indicates the characteristic of the food. For example,
“lowfat” is a descriptor FE of milk, and the word “milk” is
the actual LU.

SEMAFOR is a state-of-the-art semantic parser for frame-
semantic parsing [14]. Trained on 170,000 manually anno-
tated sentences in FrameNet, SEMAFOR is relatively accu-



rate in predicting semantic frames, FE, and LU from raw text.
Augmented by the dual decomposition techniques in decod-
ing, SEMAFOR also produces the semantically-labeled out-
put in a timely manner.

In our approach, we parse all ASR-decoded utterances in
our corpus using SEMAFOR, and we extract all frames from
semantic parsing results as slot candidates, where the LUs that
correspond to the frames are extracted for slot-filling. For ex-
ample, in the Figure 1, we show an example of SEMAFOR
parsing on an ASR-decoded text output. So here, SEMAFOR
generates three frames (capability, expensiveness, and lo-
cale by use) for the utterance, which we consider as slot
candidates. Note that for each slot candidate, SEMAFOR also
includes the corresponding lexical unit (CAN I, CHEAP, and
RESTAURANT), which we consider as possible slot fillers.

Since SEMAFOR was trained on FrameNet annotation,
which has a more generic frame-semantic context, not all the
frames from the parsing results should be used as the actual
slots in the domain-specific dialogue systems. For instance,
in the example of Figure 1, we see that the “expensiveness”
and “locale by use” frames are essentially the key slots for
the purpose of dialog understanding of a SDS in the restau-
rant query domain, whereas the “capability” frame does not
convey particular valuable information to SLU. In order to fix
this issue, we compute the prominence of these slot candi-
dates, use a slot ranking model to rerank the most frequent
slots, and then generate a list of induced slots for the use in
domain-specific dialogue systems.

3.2. Slot Ranking Model

To induce meaningful slots for the purpose of SDS, we com-
pute the prominence of the slot candidates using a slot ranking
model described below.

With the semantic parses from SEMAFOR, the model
ranks the slot candidates by integrating the frequency of each
candidate slot in the corpus and the coherence of correspond-
ing values.

w(si) = log f(si) + α · log h(si), (1)

where w(si) is the ranking weight for the slot candidate si,
f(si) is the frequency of si from semantic parsing, h(si) is
the coherence measure of si, and α is the weighting parameter
within the interval [0, 1].

The coherence measure h(si) is based on word-level clus-
tering, which is described below.

h(si) =

∑
va,vb∈V (si),va 6=vb

Sim(va, vb)

|V (si)|2
, (2)

where V (si) is the set of values corresponding slot si, |V (si)|
is the size of the set, Sim(va, vb) is the cosine similarity be-
tween cluster distribution vectors obtained from clustering ap-
proaches for each pair of values va and vb. To calculate the

similarity between a pair of values, we define the similarity
function as:

Sim(va, vb) =

∑K
k=1 t(ck, va) · t(ck, vb)√∑K

k=1 t(ck, va)2
√∑K

k=1 t(ck, vb)
2

, (3)

where t(ck, va) is the vector indicating the frequency of
words in va clustered into cluster ck, and K is the number
of clusters. In general, a slot si with higher h(si) usually
focuses on fewer topics, which is more specific so that it is
better for slots of dialogue systems.

For clustering, we formulate each wordw as a feature vec-
tor w = [r1, r2, ..., ri, ...], where ri = 1 when w occurs in the
i-th utterance and ri = 0 otherwise. With a set of word fea-
ture vectors, here we mainly use spectral clustering to cluster
the words, because we assume that two words are topically-
related when they occur in the same utterance. In spectral
clustering [28], a key aspect is to define the Laplacian ma-
trix L for generating the eigenvectors. Our spectral clustering
approach can be summarized in the following five steps:

• Calculate the distance matrix Dist. Here, the goal
is to compare the distance between each word pairs in
the vector space. To do this, we use the the Euclidean
distance as a metric, and use the K-nearest neighbor
approach to select the top neighbors of each word.

• Derive the affinity matrix A. In order to convert the
the distance matrix Dist to a word affinity matrix, we
apply heat kernel in order to account for irregularities
in the data: θij = exp(−Dist2/2Σ2), where Σ is the
variance parameter.

• Generate the graph Laplacian L. To generate the
graph Laplacian L, we first define a diagonal degree
matrix D(i,i) =

∑n
i=1A(i,j). Here, i and j are the row

and column indices for the affinity matrix, and n is the
dimension of the square matrix. So D is essentially the
sum of all weighted connections of each word. Then,
we define graph Laplacian as a symmetric normalized
matrix L = D−1/2LD−1/2.

• Eigendecomposition of L. In the next step, we per-
form eigendecomposition of the graph Laplacian L,
and derive the eigenvectors Veigen for the next cluster-
ing step.

• Perform K-means clustering of eigenvectors Veigen.
Finally, we normalize each row of Veigen to be of unit
length, and perform standard K-means clustering to ob-
tain the cluster labels of each word.

The reason why we apply spectral clustering in this slot rank-
ing model is because: 1) spectral clustering is very easy to
implement, and can be solved efficiently by standard linear
algebra techniques; 2) it is invariant to the shapes and den-
sities of each cluster; 3) also, spectral clustering projects the



Table 1. The top 5 F1-measure slot-filling corresponding to matched slot mapping

SEMAFOR Slot speak on topic locale by use expensiveness origin direction
Reference Slot addr type pricerange food area
F1-Hard (%) 79.03 77.78 38.02 18.74 18.75
F1-Soft (%) 79.03 78.00 38.24 27.08 18.75

Table 2. The results of induced slots and corresponding val-
ues

Approach MAP-F1-Hard (%) MAP-F1-Soft (%)
ASR Manual ASR Mannual

Frequency 23.27 27.84 23.52 28.68
K-Means 23.31 27.93 23.55 28.77

Spectral Clustering 23.40 27.86 23.65 28.76

manifolds within data into solvable space, and often outper-
form other clustering approaches. After spectral clustering,
each word can have a cluster label ck according to the cluster-
ing results.

4. EXPERIMENTS

To evaluate the effectiveness of our approach, we perform two
evaluations. First, we examine the slot induction accuracy
by comparing the reranked list of frame-semantic parsing in-
duced slots with the reference slots created domain experts.
Secondly, using the reranked list of induced slots and their
associated slot fillers (value), we compare against the human
annotation. For the slot-filling task, we evaluate both on ASR
output of the raw audios, and the manual transcriptions.

4.1. Experimental Setup

In this experiment, we used the Cambridge University spoken
language understanding corpus, which was also used several
other SLU tasks [29, 30] in the past. The domain of the cor-
pus is about restaurant recommendation in Cambridge, and
the subjects of the corpus were asked to interact with mul-
tiple spoken dialogue systems for a number of dialogues in
an in-car setting. There were multiple recording settings: 1)
a stopped car with the air condition control on and off; 2) a
driving condition; 3) and in a car simulator. The distribution
of each condition in this corpus is uniform. An ASR system
was used to transcribe the speech into text, and the word error
rate was reported as 37%. The vocabulary size is 1868. The
corpus contains a total number of 2,166 dialogues, resulting a
total number of 15,453 utterances. The ratio of male vs. fe-
male is balanced, while there are slightly more native speak-
ers than non-native speakers. The total number of slots in the
corpus is 10, and they are: addr, area, food, name, phone,
postcode, pricerange, signature, task, and type.

Table 3. The mapping table between induced slots (left) and
reference slots (right)

Mapping Slots
speak on topic→ addr
locale by use→ type

expensiveness→ pricerange
origin→ food
food→ food

contacting→ phone
commerce scenario→ pricerange

seeking→ task
desiring→ task

part orientational→ area
sending→ postcode

Table 4. The results of induced slots

Approach MAP (%)
ASR Manual

Frequency 73.89 59.41
K-Means 73.96 59.68

Spectral Clustering 74.13 60.32

4.2. Slot Induction

To understand the accuracy of the induced slots, we measure
the quality of induced slots as the proximity between induced
slots and reference slots. We manually created a mapping
table to indicate if the semantics of induced slots and refer-
ence slots are semantically related. This mapping table allows
many-to-many mappings, and is shown in Table 3.

For example, “CommerceScenario→ PriceRange”, “Ex-
pensiveness→ Price”, “Food→Food”, and “Direction→ Ad-
dress’ are the mappings between the induced slot and the ref-
erence slot. Since we define the adaptation task as a rank-
ing problem, with a ranked list of induced slots, we can use
the standard mean average precision (MAP) as our metrics,
where the induced slot is counted as correct when it has a
mapping to a reference slot. Using the proposed spectral clus-
tering approach, we observed the best MAP of 74.13 on the
ASR output, and 60.32 on the manual transcription. The re-
sult is encouraging, because this indicates that a vast major-
ity of the reference slots that actually used in a real-world
dialogue system can be induced automatically in an unsuper-



vised fashion using our approach. Even though the frequency
only approach obtains interesting results, our proposed spec-
tral clustering approach significantly outperforms other meth-
ods. The reason why ASR obtains better result than manual
transcription in this task is because ASR has a much limited
vocabulary. The detailed results are shown in the Table 4.

4.3. Slot Filling

While semantic slot induction is essential for providing se-
mantic categories and imposing semantic constraints, we are
also interested in understanding the performance of our in-
duced slot fillers.

For each matched mapping between the induced slot and
the reference slot, we can compute F-measure by comparing
the lists of extracted slot fillers with the induced slots, and
the slot fillers in the reference list. Considering that the slot
fillers may contain multiple words, we have two ways to de-
fine whether two slot fillers match each other: hard match-
ing and soft matching, where “hard” means that the values of
two slot fillers should be exactly the same, and “soft” means
that if the two slot fillers both contain at least one overlapping
words, we count this comparison as a matched case. We show
the top-5 hard-matching and soft-matching results in Table 1.

Since the MAP score can be weighted by either soft or
hard matching, we compute the corresponding MAP-F1-Hard
and MAP-F1-Soft scores, which evaluate the accuracy of both
slot induction and slot-filling tasks together. The results of
slot ranking model are shown in Table 2.

5. DISCUSSIONS

In the slot induction experiment, we observed some interest-
ing induced slots: for example, LocativeRelation→Area, and
Expensiveness→PriceRange. Here, LocativeRelation and
Expensiveness are induced slots, whose semantic meanings
correspond to Area and PriceRange in the reference slots
respectively, which are essential to the task of SLU. Our best
system obtains an MAP of 74.13, indicating that our proposed
approach generates a good coverage of the domain-specific
semantic slots for real-world SDS.

In the slot filling evaluation, although the overall F-
measure is much lower than the slot induction task, it is
pretty much expected: when the induced slot mismatch the
reference slot, all the slot fillers will be judged as incorrect
fillers. However, even though our dataset is different, the
overall F-measure performance aligns with related work of
template induction and slot filling in newswire based NLU
tasks [22]. In addition, the best scoring systems [31, 32] in
the past NIST slot filling evaluation also have a F-measure ≈
0.3, indicating the challenging nature of the slot filling task.
While we work in the SLU domain, it is entirely possible
to apply our approach to the text-based NLU and slot filling
tasks.

6. CONCLUSION

In this paper, we propose an unsupervised approach for auto-
matic induction and filling of slots. Our work makes use of a
state-of-the-art semantic parser, and adapts the linguistically-
principled generic FrameNet-style outputs to the target se-
mantic space that corresponds to a domain-specific SDS set-
ting. In our experiments, we show that our automatically in-
duced semantic slots align well with the reference slots, which
are created by domain experts. In addition, we also study the
slot-filling tasks that extract the slot-filler information from
those automatically induced slots. In the future, we plan to
increase the coverage of frame semantic parses by incorpo-
rating the WordNet semantic resource.
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