
Vivado Design Suite
User Guide

Implementation

UG904 (v2020.2) February 26, 2021

See all versions
of this document

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG904

Implementation 2
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary

02/26/2021 Version 2020.2

General Updates General release updates.
08/25/2020 Version 2020.1

Using Remote Hosts and Compute Clusters Updated section.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Preparing for Implementation

About the Vivado Implementation Process . 5

Navigating Content by Design Process . 8

Managing Implementation . 8

Configuring, Implementing, and Verifying IP . 14

Guiding Implementation with Design Constraints. 14

Using Checkpoints to Save and Restore Design Snapshots. 17

Chapter 2: Implementing the Design

Running Implementation in Non-Project Mode . 18

Running Implementation in Project Mode. 22

Customizing Implementation Strategies . 34

Launching Implementation Runs . 40

Moving Processes to the Background. 42

Running Implementation in Steps . 42

About Implementation Commands . 44

Implementation Sub-Processes . 44

Opening the Synthesized Design. 46

Logic Optimization . 51

Power Optimization. 66

Placement. 68

Physical Optimization . 85

Routing . 100

Incremental Implementation . 110

Chapter 3: Analyzing and Viewing Implementation Results

Monitoring the Implementation Run . 130

Moving Forward After Implementation . 133

Viewing Messages . 136

Viewing Implementation Reports. 138

Modifying Implementation Results . 143
Implementation 3
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=3

Vivado ECO Flow . 169

Appendix A: Using Remote Hosts and Compute Clusters

Overview . 189

Requirements . 189

Manual Configuration . 190

Cluster Configurations . 192

Launching Jobs on Remote Hosts . 197

Appendix B: ISE Command Map

Tcl Commands and Options. 199

Appendix C: Implementation Categories, Strategy Descriptions, and Directive
Mapping

Implementation Categories. 200

Implementation Strategy Descriptions. 200

Directives Used By opt_design and place_design in Implementation Strategies 202

Directives Used by phys_opt_design and route_design in Implementation Strategies 203

Appendix D: Additional Resources and Legal Notices

Xilinx Resources . 206

Solution Centers. 206

Documentation Navigator and Design Hubs . 206

References . 207

Training Resources. 208

Please Read: Important Legal Notices . 208
Implementation 4
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=4

Chapter 1

Preparing for Implementation

About the Vivado Implementation Process
The Xilinx® Vivado® Design Suite enables implementation of the following Xilinx device
architectures: Versal™ adaptive compute acceleration platform (ACAP), UltraScale™+,
UltraScale™, and Xilinx 7 series FPGA. A variety of design sources are supported, including:

• RTL designs
• Netlist designs
• IP-centric design flows

Figure 1-1 shows the Vivado tools flow.

Vivado implementation includes all steps necessary to place and route the netlist onto
device resources, within the logical, physical, and timing constraints of the design.

For more information about the design flows supported by the Vivado tools, see the Vivado
Design Suite User Guide: Design Flows Overview (UG892) [Ref 1].

SDC and XDC Constraint Support

The Vivado Design Suite implementation is a timing-driven flow. It supports industry
standard Synopsys Design Constraints (SDC) commands to specify design requirements and
restrictions, as well as additional commands in the Xilinx Design Constraints format (XDC).
Implementation 5
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=5

Chapter 1: Preparing for Implementation
Vivado Implementation Sub-Processes

The Vivado Design Suite implementation process transforms a logical netlist and
constraints into a placed and routed design, ready for bitstream generation. The
implementation process walks through the following sub-processes:

1. Opt Design:
Optimizes the logical design to make it easier to fit onto the target Xilinx device.

2. Power Opt Design (optional):
Optimizes design elements to reduce the power demands of the target Xilinx device.

3. Place Design:
Places the design onto the target Xilinx device and performs fanout replication to
improve timing.

4. Post-Place Power Opt Design (optional):
Additional optimization to reduce power after placement.

5. Post-Place Phys Opt Design (optional):
Optimizes logic and placement using estimated timing based on placement. Includes
replication of high fanout drivers.

6. Route Design:
Routes the design onto the target Xilinx device.

X-Ref Target - Figure 1-1

Figure 1‐1: Vivado Design Suite High-Level Design Flow
Implementation 6
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=6

Chapter 1: Preparing for Implementation
7. Post-Route Phys Opt Design (optional):
Optimizes logic, placement, and routing using actual routed delays.

8. Write Bitstream:
Generates a bitstream for Xilinx device configuration. Typically, bitstream generation
follows implementation.

For more information about writing the bitstream, see this link in the Vivado Design
Suite User Guide: Programming and Debugging (UG908) [Ref 12].

Note: The Vivado Design Suite supports Module Analysis, which is the implementation of a part of
a design to estimate performance. I/O buffer insertion is skipped for this flow to prevent
over-utilization of I/O. For more information, search for “module analysis” in the Vivado Design Suite
User Guide: Hierarchical Design (UG905) [Ref 2].

Multithreading with the Vivado Tools

On multiprocessor systems, Vivado tools use multithreading to speed up certain processes,
including DRC reporting, static timing analysis, placement, and routing. The maximum
number of simultaneous threads varies, depending on the number of processors and task.
The maximum number of threads by task is:

• DRC reporting: 8
• Static timing analysis: 8
• Placement: 8
• Routing: 8
• Physical optimization: 8

The default number of maximum simultaneous threads is based on the OS. For Windows
systems, the limit is 2; for Linux systems the default is 8. The limit can be changed using a
parameter called general.maxThreads. To change the limit use the following Tcl
command:

Vivado% set_param general.maxThreads <new limit>

where the new limit must be an integer from 1 to 8, inclusive.

Tcl example on a Windows system:

Vivado% set_param general.maxThreads 2

This means all tasks are limited to 2 threads regardless of number of processors or the task
being executed. If the system has at least 8 processors, you can set the limit to 8 and allow
each task to use the maximum number of threads.

Vivado% set_param general.maxThreads 8
Implementation 7
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xGeneratingTheBitstream
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=7

Chapter 1: Preparing for Implementation
To summarize, the number of simultaneous threads is the smallest of the following values:

• Maximum number of processors
• Limit of threads for the task
• General limit of threads

Tcl API Supports Scripting

The Vivado Design Suite includes a Tool Command Language (Tcl) Application
Programming Interface (API). The Tcl API supports scripting for all design flows, allowing
you to customize the design flow to meet your specific requirements.

Note: For more information about Tcl commands, see the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 19] or type <command> -help.

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you
find relevant content for your current development task. This document covers the
following design processes:

Hardware, IP, and Platform Development

Creating the PL IP blocks for the hardware platform, creating PL kernels, subsystem
functional simulation, and evaluating the Vivado® timing, resource use, and power closure.
Also involves developing the hardware platform for system integration. Topics in this
document that apply to this design process include:

• Vivado ECO Flow
• Configuring, Implementing, and Verifying IP
• Auto-Pipelining

Managing Implementation
The Vivado Design Suite includes a variety of design flows and supports an array of design
sources. To generate a bitstream that can be downloaded onto a Xilinx device, the design
must pass through implementation.

Implementation is a series of steps that takes the logical netlist and maps it into the
physical array of the target Xilinx device. Implementation comprises:
Implementation 8
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=8

Chapter 1: Preparing for Implementation
• Logic optimization
• Placement of logic cells
• Routing of connections between cells

Project Mode and Non-Project Modes

The Vivado Design Suite lets you run implementation with a project file (Project Mode) or
without a project file (Non-Project Mode).

Project Mode

The Vivado Design Suite lets you create a project file (.xpr) and directory structure that
allows you to:

• Manage the design source files.
• Store the results of the synthesis and implementation runs.
• Track the project status through the design flow.

Working in Project Mode

In Project Mode, a directory structure is created on disk to help you manage design sources,
run results and reports, and track project status.

The automated management of the design data, process, and status requires a project
infrastructure that is stored in the Vivado project file (.xpr).

In Project Mode, the Vivado tools automatically write checkpoint files into the local project
directory at key points in the design flow.

To run implementation in Project Mode, you click the Run Implementation button in the
IDE or use the launch_runs Tcl command. See this link in the Vivado Design Suite User
Guide: Design Flows Overview (UG892) [Ref 1] for more information about using projects in
the Vivado Design Suite.

Flow Navigator

The complete design flow is integrated in the Vivado Integrated Design Environment (IDE).
The Vivado IDE includes a standardized interface called the Flow Navigator.

The Flow Navigator appears in the left pane of the Vivado Design Suite main window. From
the Flow Navigator you can assemble, implement, and validate the design and IP. It features
a pushbutton interface to the entire implementation process to simplify the design flow.
Figure 1-2 shows the implementation section of the Flow Navigator.
Implementation 9
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug892-vivado-design-flows-overview.pdf;a=xUsingProjectMode
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=9

Chapter 1: Preparing for Implementation
IMPORTANT: This guide does not give a detailed explanation of the Vivado IDE, except as it applies to
implementation. For more information about the Vivado IDE as it relates to the entire design flow, see
the Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 3].

Non-Project Mode

The Vivado tools also let you work with the design in memory, without the need for a
project file and local directory. Working without a project file in the compilation style flow
is called Non-Project Mode. Source files and design constraints are read into memory from
their current locations. The in-memory design is stepped through the design flow without
being written to intermediate files.

In Non-Project Mode, you must run each design step individually, with the appropriate
options for each implementation Tcl command.

Non-Project Mode allows you to apply design changes and proceed through the design
flow without needing to save changes and rerun steps. You can run reports and save design
checkpoints (.dcp) at any stage of the design flow.

IMPORTANT: In Non-Project Mode, when you exit the Vivado design tools, the in-memory design is
lost. For this reason, Xilinx recommends that you write design checkpoints after major steps such as
synthesis, placement, and routing.

You can save design checkpoints in both Project Mode and Non-Project Mode. You can only
open design checkpoints in Non-Project Mode.

X-Ref Target - Figure 1-2

Figure 1‐2: Flow Navigator, Implementation Section
Implementation 10
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=10

Chapter 1: Preparing for Implementation
Similarities and Differences Between Project Mode and Non-Project Mode

Vivado implementation can be run in either Project Mode or Non-Project Mode. The Vivado
IDE and Tcl API can be used in both Project Mode and Non-Project Mode.

There are many differences between Project Mode and Non-Project Mode. Features not
available in Non-Project Mode include:

• Flow Navigator
• Design status indicators
• IP catalog
• Implementation runs and run strategies
• Design Runs window
• Messages window
• Reports window
Note: This list illustrates features that are not supported in Non-Project Mode. It is not exhaustive.

You must implement the non-project based design by running the individual Tcl commands:

• opt_design

• power_opt_design (optional)
• place_design

• phys_opt_design (optional)
• route_design

• phys_opt_design (optional)
• write_bitstream

You can run implementation steps interactively in the Tcl Console, in the Vivado IDE, or by
using a custom Tcl script. You can customize the design flow as needed to include reporting
commands and additional optimizations. For more information, see Running
Implementation in Non-Project Mode.

The details of running implementation in Project Mode and Non-Project Mode are
described in this guide.

For more information on running the Vivado Design Suite using either Project Mode or
Non-Project Mode, see:

• Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 1]
• Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 3]
Implementation 11
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=11

Chapter 1: Preparing for Implementation
Beginning the Implementation Flow

The implementation flow typically begins by loading a synthesized design into memory.
Then the implementation flow can run, or the design can be analyzed and refined along
with its constraints and the design can be reloaded after updates.

There are two ways to begin the implementation flow with a synthesized design:

• Run Vivado synthesis. In Project Mode, the synthesis run contains the synthesis results
and those results are automatically used as the input for implementation run. In
Non-Project Mode, the synthesis results are in memory after synth_design
completes, and implementation can continue from that point.

• Load a synthesized netlist. Synthesized netlists can be used as the input design source,
for example when using a third-party tool for synthesis.

To initiate implementation:

• In Project Mode, launch the implementation run.
• In Non-Project Mode run a script or interactive commands.

To analyze and refine constraints, the synthesized design is loaded without running
implementation.

• In Project Mode, you accomplish this by opening the Synthesized Design, which is the
result of the synthesis run.

• In Non-Project Mode, you use the link_design command to load the design.

You can also drive the implementation flow using design checkpoints (.dcp) in Non-Project
Mode. Opening a checkpoint loads the design and restores it to its original state, which
might include placement and routing data. This enables re-entrant implementation flows,
such as loading a routed design and editing the routing, or loading a placed design and
running multiple routes with different options.

Importing Previously Synthesized Netlists

The Vivado Design Suite supports netlist-driven design by importing previously synthesized
netlists from Xilinx or third-party tools. The netlist input formats include:

• Structural Verilog
• Structural SystemVerilog
• EDIF
• Xilinx NGC
• Synthesized Design Checkpoint (DCP)
Implementation 12
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=12

Chapter 1: Preparing for Implementation
IMPORTANT: NGC format files are not supported in the Vivado Design Suite for UltraScale and later
devices. It is recommended that you regenerate the IP using the Vivado Design Suite IP customization
tools with native output products. Alternatively, convert_ngc Tcl utility to convert NGC files to EDIF or
Verilog formats. However, Xilinx recommends using native Vivado IP rather than XST-generated NGC
format files going forward.

IMPORTANT: When using IP in Project Mode or Non-Project Mode, always use the XCI file and not the
DCP file. This ensures that IP output products are used consistently during all stages of the design flow.
If the IP was synthesized out-of-context and already has an associated DCP file, the DCP file is
automatically used and the IP is not re-synthesized. For more information, this link in the Vivado
Design Suite User Guide: Designing with IP (UG896) [Ref 4].

For more information on the source files and project types supported by the Vivado Design
Suite, see the Vivado Design Suite User Guide: System-Level Design Entry (UG895) [Ref 6].

Starting From RTL Sources

At a minimum, Vivado implementation requires a synthesized netlist. A design can start
from a synthesized netlist, or from RTL source files.

IMPORTANT: If you start from RTL sources, you must first run Vivado synthesis before implementation
can begin. The Vivado IDE manages this automatically if you attempt to run implementation on an
un-synthesized design. The tools allow you to run synthesis first.

For information on running Vivado synthesis, see the Vivado Design Suite User Guide:
Synthesis (UG901) [Ref 8].

Creating and Opening the Synthesized Design in Non-Project Mode

In Non-Project Mode, you must run the Tcl command synth_design to create and open
the synthesized design. You can also run the Tcl command link_design to open a
synthesized netlist in any supported input format. You can open a synthesized design
checkpoint file using the open_checkpoint command.

For more information, see Opening the Synthesized Design in Chapter 2.

Loading the Design Netlist in Project Mode Before Implementation

In Project Mode, after synthesis of an RTL design, or with a netlist-based project open, you
can load the design netlist for analysis before implementation.

To open a synthesized design, do one of the following:
Implementation 13
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf;a=xAddingExistingIPToAProject
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=13

Chapter 1: Preparing for Implementation
• From the main menu, run Flow > Open Synthesized Design.
• In the Flow Navigator, run Synthesis > Open Synthesized

Design.
• In the Design Runs window, select the synthesis run and select Open Run from the

context menu.

Configuring, Implementing, and Verifying IP
For information on importing IP into your design prior to synthesis, see this link in the
Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4].

Guiding Implementation with Design Constraints
There are three types of design constraints, physical constraints, timing constraints and
power constraints. These are defined below.

Physical Constraints Definition

Physical constraints define a relationship between logical design objects and device
resources such as:

• Package pin placement.
• Absolute or relative placement of cells, including Block RAM, DSP, LUT, and flip-flops.
• Floorplanning constraints that assign cells to general regions of a device.
• Device configuration settings.

Timing Constraints Definition

Timing constraints define the frequency requirements for the design, and are written in
Xilinx Design Constraints (XDC) which is based on industry standard SDC.

Without timing constraints, the Vivado Design Suite optimizes the design solely for wire
length and routing congestion, and makes no effort to assess or improve design
performance.

Power Constraints Definition

Power constraints define the settings needed for accurate power analysis. These settings
include:
Implementation 14
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf;a=xCreatingAnIPCustomization
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=14

Chapter 1: Preparing for Implementation
• Operating conditions such as voltage settings, power and current budgets, and
operating environment details.

• Switching activity rates for:

° Design objects: individual nets and pins.

° Design object types such as block RAMs, DSPs, and transceivers.

° Global set and reset signals.

Vivado power analysis uses timing constraints to determine switching rates and applies
vectorless propagation to determine toggle rates throughout the design. Without power
constraints, a default 12.5% toggle rate is used. However, applying accurate switching
activity to override defaults is essential for accurate power calculations.

For further information see Vivado Power Analysis and Optimization (UG907) [Ref 11].

UCF Format Not Supported

IMPORTANT: The Vivado Design Suite does not support the UCF format.

For information on migrating UCF constraints to XDC commands, see this link in the ISE to
Vivado Design Suite Migration Guide (UG911) [Ref 20].

Constraint Sets Apply Lists of Constraint Files to Your Design

A constraint set is a list of constraint files that can be applied to your design in Project
Mode. The set contains design constraints captured in XDC or Tcl files.

Allowed Constraint Set Structures

The following constraint set structures are allowed:

• Multiple constraint files within a constraint set
• Constraint sets with separate physical and timing constraint files
• A master constraint file
• A new constraint file that accepts constraint changes
• Multiple constraint sets

TIP: Separate constraints by function into different constraint files to (a) make your constraint strategy
clearer, and (b) to facilitate targeting timing and implementation changes.
Implementation 15
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug911-vivado-migration.pdf;a=xMigratingUCFConstraintsToXDC
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=15

Chapter 1: Preparing for Implementation
Multiple Constraint Sets Are Allowed

You can have multiple constraint sets for a project. Multiple constraint sets allow you to use
different implementation runs to test different approaches.

For example, you can have one constraint set for synthesis, and a second constraint set for
implementation. Having two constraint sets allows you to experiment by applying different
constraints during synthesis, simulation, and implementation.

Organizing design constraints into multiple constraint sets can help you:

• Target various Xilinx devices for the same project. Different physical and timing
constraints might be needed for different target devices.

• Perform what-if design exploration. Use constraint sets to explore various scenarios for
floorplanning and over-constraining the design.

• Manage constraint changes. Override master constraints with local changes in a
separate constraint file.

TIP: To validate the timing constraints, run report_timing_summary and report_methodology on the
synthesized design. Fix problematic constraints before implementation!

For more information on defining and working with constraints that affect placement and
routing, see this link in the Vivado Design Suite User Guide: Using Constraints (UG903)
[Ref 9].

Adding Constraints as Attribute Statements

Constraints can be added to HDL sources as attribute statements. Attributes can be added
to both Verilog and VHDL sources to pass through to Vivado synthesis or Vivado
implementation.

In some cases, constraints are available only as HDL attributes, and are not available in XDC.
In those cases, the constraint must be specified as an attribute in the HDL source file. For
example, Relatively Placed Macros (RPMs) must be defined using HDL attributes. An RPM is
a set of logic elements (such as FF, LUT, DSP, and RAM) with relative placements.

You can define RPMs using U_SET and HU_SET attributes and define relative placements
using Relative Location Attributes.

For more information about Relative Location Constraints, see this link in the Vivado Design
Suite User Guide: Using Constraints (UG903) [Ref 9].

For more information on constraints that are not supported in XDC, see the ISE to Vivado
Design Suite Migration Guide (UG911) [Ref 20].
Implementation 16
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xPhysicalConstraints
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf;a=xDefiningRelativelyPlacedMacros
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=16

Chapter 1: Preparing for Implementation
Using Checkpoints to Save and Restore Design
Snapshots
The Vivado Design Suite uses a physical design database to store placement and routing
information. Design checkpoint files (.dcp) allow you to save and restore this physical
database at key points in the design flow. A checkpoint is a snapshot of a design at a
specific point in the flow.

This design checkpoint file includes:

• Current netlist, including any optimizations made during implementation
• Design constraints
• Implementation results

Checkpoint designs can be run through the remainder of the design flow using Tcl
commands. They cannot be modified with new design sources.

IMPORTANT: In Project Mode, the Vivado design tools automatically save and restore checkpoints as
the design progresses. In Non-Project Mode, you must save checkpoints at appropriate stages of the
design flow, otherwise, progress is lost.

Writing Checkpoint Files

Run File > Checkpoint > Write to capture a snapshot of the design database at any point
in the flow. This creates a file with a dcp extension.

The related Tcl command is write_checkpoint.

Reading Checkpoint Files

Run File > Checkpoint > Open to open the checkpoint in the Vivado Design Suite.

The design checkpoint is opened as a separate in-memory design.

The related Tcl command is open_checkpoint.
Implementation 17
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=17

Chapter 2

Implementing the Design

Running Implementation in Non-Project Mode
To implement the synthesized design or netlist onto the targeted Xilinx® devices in
Non-Project Mode, you must run the Tcl commands corresponding to the Implementation
sub-processes:

• Opt Design (opt_design): Optimizes the logical design to make it easier to fit onto
the target Xilinx device.

• Power Opt Design (power_opt_design) (optional): Optimizes design elements to
reduce the power demands of the target Xilinx device.

• Place Design (place_design): Places the design onto the target Xilinx device and
replicates logic to improve timing.

• Post-Place Power Opt Design (power_opt_design) (optional): Additional optimization
to reduce power after placement.

• Post-Place Phys Opt Design (phys_opt_design) (optional): Optimizes logic and
placement using estimated timing based on placement. Includes replication of high
fanout drivers.

• Route Design (route_design): Routes the design onto the target Xilinx device.
• Post-Route Phys Opt Design (phys_opt_design) (optional): Optimizes logic,

placement, and routing using actual routed delays.
• Write Bitstream (write_bitstream): Generates a bitstream for Xilinx device

configuration except for Versal ACAP devices. Typically, bitstream generation follows
implementation.

• Write Device Image (write_device_image): Generates a a programmable device image
for programming a Versal device.

For more information about writing the bitstream or creating a device image, see this link
in the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 12].

These steps are collectively known as implementation.

Enter the commands in any of the following ways:
Implementation 18
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xGeneratingTheBitstream
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=18

Chapter 2: Implementing the Design
• In the Tcl Console from the Vivado® IDE.
• From the Tcl prompt in the Vivado Design Suite Tcl shell.
• Using a Tcl script with the implementation commands and source the script in the

Vivado Design Suite.

Non-Project Mode Example Script

The script below is an example of running implementation in Non-Project Mode. Assuming
the script is named run.tcl, you would call the script using the source command in the Tcl
shell.

Note: The read_xdc step reads XDC constraints from the XDC files and applies constraints to
design objects. Therefore all netlist files must be read into Vivado and link_design should be run
before read_xdc to ensure that the XDC constraints can be applied to their intended design
objects.

source run.tcl

Step 1: Read in top-level EDIF netlist from synthesis tool
read_edif c:/top.edf
Read in lower level IP core netlists
read_edif c:/core1.edf
read_edif c:/core2.edf

Step 2: Specify target device and link the netlists
Merge lower level cores with top level into single design
link_design -part xc7k325tfbg900-1 -top top

Step 3: Read XDC constraints to specify timing requirements
read_xdc c:/top_timing.xdc
Read XDC constraints that specify physical constraints such as pin locations
read_xdc c:/top_physical.xdc

Step 4: Optimize the design with default settings
opt_design

Step 5: Place the design using the default directive and save a checkpoint
It is recommended to save progress at certain intermediate steps
The placed checkpoint can also be routed in multiple runs using different options
place_design -directive Default
write_checkpoint post_place.dcp

Step 6: Route the design with the AdvancedSkewModeling directive. For more
information
on router directives type 'route_design -help' in the Vivado Tcl Console
route_design -directive AdvancedSkewModeling

Step 7: Run Timing Summary Report to see timing results
report_timing_summary -file post_route_timing.rpt
Run Utilization Report for device resource utilization
report_utilization -file post_route_utilization.rpt

Step 8: Write checkpoint to capture the design database;
The checkpoint can be used for design analysis in Vivado IDE or TCL API
Implementation 19
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=19

Chapter 2: Implementing the Design
write_checkpoint post_route.dcp

Key Steps in Non-Project Mode Example Script

The key steps in the Non-Project Mode Example Script, page 19 above, are:

• Step 1: Read Design Source Files
• Step 2: Build the In-Memory Design
• Step 3: Read Design Constraints
• Step 4: Perform Logic Optimization
• Step 5: Place the Design
• Step 6: Route the Design
• Step 7: Run Required Reports
• Step 8: Save the Design Checkpoint

Step 1: Read Design Source Files

EDIF netlist design sources are read into memory through use of the read_edif
command. Non-Project Mode also supports an RTL design flow, which allows you to read
source files and run synthesis before implementation.

Use the read_checkpoint command to add synthesized design checkpoint files as
sources.

The read_* Tcl commands are designed for use with Non-Project Mode. The read_* Tcl
commands allow the Vivado tools to read a file on the disk and build the in-memory design
without copying the file or creating a dependency on the file.

This approach makes Non-Project Mode highly flexible with regard to design.

IMPORTANT: You must monitor any changes to the source design files, and update the design as
needed.

Step 2: Build the In-Memory Design

The Vivado tools build an in-memory view of the design using link_design. The
link_design command combines the netlist based source files read into the tools with
the Xilinx part information, to create a design database in memory.

There are two important link_design options:

• The -part option specifies the target device.
Implementation 20
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=20

Chapter 2: Implementing the Design
• The -top option specifies the top design for implementation. If the top-level netlist is
EDIF and the -top option is not specified, the Vivado tools will use the top design
embedded in the EDIF netlist. If the top-level netlist is not EDIF but structural Verilog,
the -top option is required. The -top option can also be used to specify a submodule
as the top, for example when running the Module Analysis flow to estimate
performance and utilization.

All actions taken in Non-Project Mode are directed at the in-memory database within the
Vivado tools.

The in-memory design resides in the Vivado tools, whether running in batch mode, Tcl shell
mode for interactive Tcl commands, or in the Vivado IDE for interaction with the design data
in a graphical form.

Step 3: Read Design Constraints

The Vivado Design Suite uses design constraints to define requirements for both the
physical and timing characteristics of the design.

For more information, see Guiding Implementation with Design Constraints, page 14.

The read_xdc command reads an XDC constraint file, then applies it to the in-memory
design.

TIP: Although Project Mode supports the definition of constraint sets, containing multiple constraint
files for different purposes, Non-Project Mode uses multiple read_xdc commands to achieve the same
effect.

Step 4: Perform Logic Optimization

Logic optimization is run in preparation for placement and routing. Optimization simplifies
the logic design before committing to physical resources on the target part.

The Vivado netlist optimizer includes many different types of optimizations to meet varying
design requirements. For more information, see Logic Optimization, page 51.

Step 5: Place the Design

The place_design command places the design. For more information, see Placement,
page 68. After placement, the progress is saved to a design checkpoint file using the
write_checkpoint command.

Step 6: Route the Design

The route_design command routes the design. For more information, see Routing,
page 100.
Implementation 21
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=21

Chapter 2: Implementing the Design
Step 7: Run Required Reports

The report_timing_summary command runs timing analysis and generates a timing
report with details of timing violations. The report_utilization command generates a
summary of the percentage of device resources used along with other utilization statistics.
In Non-Project Mode, you must use the appropriate Tcl command to specify each report
that you want to create. Each reporting command supports the -file option to direct
output to a file.

See this link the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 19] for
further information on the report_timing_summary command and this link for further
information on report_utilization command.

You can output reports to files for later review, or you can send the reports directly to the
Vivado IDE to review now. For more information, see Viewing Implementation Reports,
page 138.

Step 8: Save the Design Checkpoint

Saves the in-memory design into a design checkpoint file. The saved in-memory design
includes the following:

• Logical netlist
• Physical and timing related constraints
• Xilinx part data
• Placement and routing information

In Non-Project Mode, the design checkpoint file saves the design and allows it to be
reloaded for further analysis and modification.

For more information, see Using Checkpoints to Save and Restore Design Snapshots.

Running Implementation in Project Mode
In Project Mode, the Vivado IDE allows you to:

• Define implementation runs that are configured to use specific synthesis results and
design constraints.

• Run multiple strategies on a single design.
• Customize implementation strategies to meet specific design requirements.
• Save customized implementation strategies to use in other designs.
Implementation 22
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_timing_summary
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_utilization
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=22

Chapter 2: Implementing the Design
IMPORTANT: Non-Project Mode does not support predefined implementation runs and strategies.
Non-project based designs must be manually moved through each step of the implementation process
using Tcl commands. For more information, see Running Implementation in Non-Project Mode.

Creating Implementation Runs

You can create and launch new implementation runs to explore design alternatives and find
the best results. You can queue and launch the runs serially or in parallel using multiple,
local CPUs.

On Linux systems, you can launch runs on remote servers. For more information, see
Appendix A, Using Remote Hosts and Compute Clusters.

Defining Implementation Runs

To define an implementation run:

1. From the main menu, select Flow > Create Runs.

Alternatively, in the Flow Navigator, select Create Implementation Runs from the
Implementation popup menu. Or, in the Design Runs window, select Create Runs from
the popup menu.

The Create New Runs wizard opens.

2. Select Implementation on the first page of the Create New Runs wizard, and click Next.
3. The Configure Implementation Runs screen appears, as shown in Figure 2-1. Specify

settings as described in the steps below the figure.
X-Ref Target - Figure 2-1

Figure 2‐1: Configure Implementation Runs
Implementation 23
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=23

Chapter 2: Implementing the Design
a. In the Name column, enter a name for the run in the Configure Implementation
Runs dialog box or accept the default name.

b. Select a Synth Name to choose the synthesis run that will generate (or that has
already generated) the synthesized netlist to be implemented. The default is the
currently active synthesis run in the Design Runs window. For more information, see
Appendix C, Implementation Categories, Strategy Descriptions, and Directive
Mapping.
Note: In the case of a netlist-driven project, the Create Run command does not require the
name of the synthesis run.

Alternatively, you can select a synthesized netlist that was imported into the project
from a third-party synthesis tool. For more information, see the Vivado Design Suite
User Guide: Synthesis (UG901) [Ref 8].

c. Select a Constraints Set to apply during implementation. The optimization,
placement, and routing are largely directed by the physical and timing constraints in
the specified constraint set.

For more information on constraint sets, see the Vivado Design Suite User Guide:
Using Constraints (UG903) [Ref 9].

d. Select a target Part.

The default values for Constraints Set and Part are defined by the Project Settings
when the Create New Runs command is executed.

For more information on the Project Settings, see this link in the Vivado Design Suite
User Guide: System-Level Design Entry (UG895) [Ref 6].

TIP: To create runs with different constraint sets or target parts, use the Create New Runs command.
To change these values on existing runs, select the run in the Design Runs window and edit the Run
Properties.

For more information, see Changing Implementation Run Settings, page 29.

e. Select a Strategy.

Strategies are a defined set of Vivado implementation feature options that control
the implementation results. Vivado Design Suite includes a set of pre-defined
strategies. You can also create your own implementation strategies.

Select from among the strategies shown in Appendix C, Implementation Categories,
Strategy Descriptions, and Directive Mapping. The strategies are broken into
categories according to their purposes, with the category name as a prefix. The
categories are shown in Appendix C.

For more information see Defining Implementation Strategies, page 35.
Implementation 24
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf;a=xConfiguringProjectSettings
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=24

Chapter 2: Implementing the Design
TIP: The optimal strategy can change between designs and software releases.

The purpose of using Performance strategies is to improve design performance at
the expense of run time. You should always try to meet timing goals, using the
Vivado implementation defaults first, before choosing a Performance strategy. This
ensures that your design has sufficient margin for absorbing timing closure impact
due to design changes. But if your design goals cannot be met, and if increased run
time is acceptable, the Performance_Explore strategy is a good first choice. It
covers all types design types.

IMPORTANT: Strategies containing the terms SLL or SLR are for use with SSI devices only.

TIP: Before launching a run, you can change the settings for each step in the implementation process,
overriding the default settings for the selected strategy. You can also save those new settings as a new
strategy. For more information, see Changing Implementation Run Settings, page 29.

f. Click More to define additional runs. By default, the next strategy in the sequence is
automatically chosen. Specify names and strategies for the added runs. See
Figure 2-1, above.

g. Use the Make Active check box to select the runs you wish to initiate.
h. Click Next.
Implementation 25
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=25

Chapter 2: Implementing the Design
4. The Launch Options screen appears, as shown in Figure 2-2. Specify options as
described in the steps below the figure.

Note: The Launch runs on remote hosts and Launch runs on Cluster options shown in
Figure 2-2 are Linux-only. They are not visible on Windows machines.
a. Specify the Launch directory, the location at which implementation run data is

created and stored.

The default directory is located in the local project directory structure. Files for
implementation runs are stored by default at:

<project_name>/<project_name>.runs/<run_name>

TIP: Defining a directory location outside the project directory structure makes the project
non-portable, because absolute paths are written into the project files.

X-Ref Target - Figure 2-2

Figure 2‐2: Implementation Launch Options
Implementation 26
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=26

Chapter 2: Implementing the Design
b. Use the radio buttons and drop-down options to specify settings appropriate to
your project. Choose from the following:
- Select the Launch runs on local host option if you want to launch the run on

the local machine.
- Use the Number of jobs drop-down menu to define the number of local

processors to use when launching multiple runs simultaneously.
- Select Launch runs on remote hosts (Linux only) if you want to use remote

hosts to launch one or more jobs.
- Use the Configure Hosts button to configure remote hosts. For more

information, see Appendix A, Using Remote Hosts and Compute Clusters.
- Select Launch runs on Cluster (Linux only) if you want to use a compute cluster

command to launch one or more jobs. Use the drop down menu to select one of
the natively supported Vivado Clusters (lsf, sge or slurm) or a User Defined
Cluster that has been added previously.

- Select the Generate scripts only option if you want to export and create the run
directory and run script but do not want the run script to launch at this time.
The script can be run later outside the Vivado IDE tools.

- Select Do not launch now if you want to save the new runs, but you do not
want to launch or create run scripts at this time.

5. Click Next to review the Create New Runs Summary.
6. Click Finish to create the defined runs and execute the specified launch options.

New runs are added to the Design Runs window. See Using the Design Runs Window.

Using the Design Runs Window

The Design Runs window displays all synthesis and implementation runs created in the
project. It includes commands to configure, manage, and launch the runs.

Opening the Design Runs Window

Select Window > Design Runs to open the Design Runs window (see Figure 2-3) if it is not
already open.
Implementation 27
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=27

Chapter 2: Implementing the Design
Design Runs Window Functionality

• Each implementation run appears indented beneath the synthesis run of which it is a
child.

• A synthesis run can have multiple implementation runs. Use the tree widgets in the
window to expand and collapse synthesis runs.

• The Design Runs window is a tree table window.

For more information on working with the columns to sort the data in this window, see this
link in the Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 3].

Run Status

The Design Runs window reports the run status, including when:

• The run has not been started.
• The run is in progress.
• The run is complete.
• The run is out-of-date.

The Design Runs window reports start and elapsed run times.

Run Times

The Design Runs window reports start time and elapsed time for the runs.

Run Timing Results

The Design Runs window reports timing results for implementation runs including WNS,
TNS, WHS, THS, and TPWS.

Out-of-Date Runs

Runs can become out-of-date when source files, constraints, or project settings are
modified. You can reset and delete stale run data in the Design Runs window.

X-Ref Target - Figure 2-3

Figure 2‐3: Design Runs Window
Implementation 28
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xUsingDataTableWindows
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=28

Chapter 2: Implementing the Design
Active Run

All views in the Vivado IDE reference the active run. The Log view, Report view, Status Bar,
and Project Summary display information for the active run. The Project Summary window
displays only compilation, resource, and summary information for the active run.

TIP: Only one synthesis run and one implementation run can be active in the Vivado IDE at any time.

The active run is displayed in bold text.

To make a run active:

1. Select the run in the Design Runs window.
2. Select Make Active from the popup menu.

Changing Implementation Run Settings

Select a run in the Design Runs window to display the current configuration of the run in
the Run Properties window, shown in Figure 2-4, below.

In the Run Properties window, you can change:

• The name of the run
• The Xilinx part targeted by the run
• The run description
• The constraints set that both drives the implementation and is the target of new

constraints from implementation

For more information on the Run Properties window, see this link in the Vivado Design Suite
User Guide: Using the Vivado IDE (UG893) [Ref 3].
X-Ref Target - Figure 2-4

Figure 2‐4: Implementation Run Properties Window
Implementation 29
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf;a=xUsingTheRunPropertiesWindow
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=29

Chapter 2: Implementing the Design
Specifying Design Run Settings

Specify design run settings in the Design Run Settings dialog box, shown in Figure 2-5. To
open the Design Run Settings dialog box:

1. Right-click a run in the Design Runs window.
2. Select Change Run Settings from the popup menu to open the Design Run Settings

dialog box, shown in Figure 2-5.

TIP: You can change the settings only for a run that has a Not Started status. Use Reset Run to return
a run to the Not Started status. See Resetting Runs, page 33.

The Design Run Settings dialog box displays the following:

• The implementation strategy currently employed by the run.
• The command options associated with that strategy for each step of the

implementation process. The three command options are described below.

X-Ref Target - Figure 2-5

Figure 2‐5: Design Run Settings
Implementation 30
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=30

Chapter 2: Implementing the Design
Strategy

Selects the strategy to use for the implementation run. Vivado Design Suite includes a set
of pre-defined implementation strategies, or you can create your own.

For more information see Defining Implementation Strategies, page 35.

Description

Describes the selected implementation strategy.

Options

When you select a strategy, each step of the Vivado implementation process displays in a
table in the lower part of the dialog box:

• Opt Design (opt_design)
• Power Opt Design (power_opt_design) (optional)
• Place Design (place_design)
• Post-Place Power Opt Design (power_opt_design) (optional)
• Post-Place Phys Opt Design (phys_opt_design) (optional)
• Route Design (route_design)
• Post-Route Phys Opt Design (phys_opt_design) (optional)
• Write Bitstream (write_bitstream)

Click the command option to view a brief description of the option at the bottom of the
Design Run Settings dialog box.

Modifying Command Options

To modify command options, click the right-side column of a specific option. You can do
the following:

• Select options with predefined settings from the pull down menu.
• Select or deselect a check box to enable or disable options.

Note: The most common options for each implementation command are available through the
check boxes. Add other supported command options using the More Options field. Syntax:
precede option names with a hyphen and separate options from each other with a space.

• Type a value to define options that accept a user-defined value.
• Options accepting a file name and path open a file browser to let you locate and

specify the file.
Implementation 31
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=31

Chapter 2: Implementing the Design
• Insert a custom Tcl script (called a hook script) before and after each step in the
implementation process (tcl.pre and tcl.post).

Inserting a hook script lets you perform specific tasks before or after each
implementation step (for example, generate a timing report before and after Place
Design to compare timing results).

For more information on defining Tcl hook scripts, see this link in the Vivado Design
Suite User Guide: Using Tcl Scripting [Ref 5].

TIP: Relative paths in the tcl.pre and tcl.post scripts are relative to the appropriate run directory
of the project they are applied to:
<project>/<project.runs>/<run_name>

Use the DIRECTORY property of the current project or current run to define the relative
paths in your Tcl scripts:

get_property DIRECTORY [current_project]
get_property DIRECTORY [current_run]

Save Strategy As

Select the Save Strategy As icon next to the Strategy field to save any changes to the
strategy as a new strategy for future use.

CAUTION! If you do not select Save Strategy As, changes are saved to the current
implementation run, but are not preserved for future use.

Verifying Run Status

The Vivado IDE processes the run and launches implementation, depending on the status of
the run. The status is displayed in the Design Runs window (shown in Figure 2-3).

• If the status of the run is Not Started, the run begins immediately.
• If the status of the run is Error, the tools reset the run to remove any incomplete run

data, then restarts the run.
• If the status of the run is Complete (or Out-of-Date), the tools prompt you to confirm

that the run should be reset before proceeding with the run.
Implementation 32
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf;a=xDefiningTclHookScripts
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=32

Chapter 2: Implementing the Design
Resetting Runs

To reset a run:

1. Select a run in the Design Runs window.
2. Select Reset Runs from the popup menu.

Resetting an implementation run returns it to the first step of implementation
(opt_design) for the selected run.

As shown in Figure 2-6, the Vivado tools prompt you to confirm the Reset Runs command,
and optionally delete the generated files from the run directory.

TIP: The default setting is to delete the generated files. Disable this check box to preserve the generated
run files.

Deleting Runs

To delete runs from the Design Runs window:

1. Select the run.
2. Select Delete from the popup menu.

As shown in Figure 2-7, the Vivado tools prompt you to confirm the Delete Runs command,
and optionally delete the generated files from the run directory.

TIP: The default setting is to delete the generated files. Disable this check box to preserve the generated
run files.

X-Ref Target - Figure 2-6

Figure 2‐6: Reset Run Prompt

X-Ref Target - Figure 2-7

Figure 2‐7: Delete Runs Prompt
Implementation 33
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=33

Chapter 2: Implementing the Design
Customizing Implementation Strategies
Implementation Settings define the default options used when you define new
implementation runs. Configure these options in the Vivado IDE.

Figure 2-8 shows the Implementation Settings view in the Settings dialog box. To open this
dialog box from the Vivado IDE, select Tools > Settings from the main menu.

TIP: The Settings command is not available in the Vivado IDE when running in Non-Project Mode. In
this case, you can define and preserve implementation strategies as Tcl scripts that can be used in batch
mode, or interactively in the Vivado IDE.

Accessing Implementation Settings for the Active Run from
Flow Navigator

You can also access Implementation Settings for the active implementation run by selecting
Settings at the top of the Flow Navigator, and then clicking the Implementation category.

The Settings dialog box, shown in Figure 2-8, contains the following fields:

• Default Constraint Set:
Select the constraint set to be used by default for the implementation run.

• Report Settings:
Use this menu to select the report strategy. You can choose from a preset report
strategy or define your own strategy to choose which reports to run at each design
step.

• Incremental Compile:
Specify the Incremental Compile checkpoint, if desired.

• Strategy:
Select the strategy to use for the implementation run. The Vivado Design Suite includes
a set of pre-defined strategies. You can also create your own implementation strategies
and save changes as new strategies for future use. For more information see Defining
Implementation Strategies.

• Description:
Describes the selected implementation strategy. The description of user-defined
strategies can be changed by entering a new descriptions. The description of Vivado
tools standard implementation strategies cannot be changed.
Implementation 34
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=34

Chapter 2: Implementing the Design

Defining Implementation Strategies

A run strategy is a defined approach for resolving the synthesis or implementation
challenges of the design.

• Strategies are defined in pre-configured sets of options for the Vivado implementation
features.

• Strategies are tool and version specific.
• Each major release of the Vivado Design Suite includes version-specific strategies.

X-Ref Target - Figure 2-8

Figure 2‐8: Implementation Settings
Implementation 35
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=35

Chapter 2: Implementing the Design
Vivado implementation includes several commonly used strategies that are tested against
internal benchmarks.

TIP: You cannot save changes to the predefined implementation strategies. However, you can copy,
modify, and save the predefined strategies to create your own.

Accessing Currently Defined Strategies

To access the currently defined run strategies, select Tools > Settings in the Vivado IDE
main menu.

Reviewing, Copying, and Modifying Strategies

To review, copy, and modify run strategies:

1. Select Tools > Settings from the main menu.

X-Ref Target - Figure 2-9

Figure 2‐9: Default Implementation Strategies
Implementation 36
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=36

Chapter 2: Implementing the Design
2. Select Strategies in the left-side panel.
3. Select Run Strategies to review, copy, or modify run strategies. The Run Strategies page

(shown in Figure 2-9) contains a list of pre-defined run strategies for various tools and
release versions.
Note: For information on reviewing, copying, or modifying Report Strategies, see this link in
Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 10].

4. In the Flow pull-down menu, select the appropriate Vivado Implementation version
for the available strategies. A list of included strategies is displayed.

5. Create a new strategy or copy an existing strategy.

° To create a new strategy, click the Create Strategy button on the toolbar or
select it from the right-click menu.

° To copy an existing strategy, select Copy Strategy from the toolbar or from the
popup menu. The Vivado design tools:

a. Create a copy of the currently selected strategy.
b. Add it to the User Defined Strategies list.
c. Display the strategy options on the right side of the dialog box for you to modify.

6. Provide a name and description for the new strategy as follows:

° Name: Enter a strategy name to assign to a run.

° Type: Specify Synthesis or Implementation.

° Tool Version: Specify the tool version.

° Description: Enter the strategy description displayed in the Design Run results
table.
Implementation 37
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf;a=xConfigurableReportStrategies
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=37

Chapter 2: Implementing the Design
7. Edit the Options for the various implementation steps:

° Design Initialization (init_design)

° Opt Design (opt_design)

° Power Opt Design (power_opt_design) (optional)

° Place Design (place_design)

° Post-Place Power Opt Design (power_opt_design) (optional)

° Post-Place Phys Opt Design (phys_opt_design) (optional)

° Route Design (route_design)

° Post-Route Phys Opt Design (phys_opt_design) (optional)

° Write Bitstream (write_bitstream) (all devices except Versal)

° Write Device Image (write_device_image) (Versal devices)

TIP: Select an option to view a brief description of the option at the bottom of the Design Run Settings
dialog box.

X-Ref Target - Figure 2-10

Figure 2‐10: Edit Implementation Steps
Implementation 38
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=38

Chapter 2: Implementing the Design
8. Click the right-side column of a specific option to modify command options. See
Figure 2-10 above for an example.

You can then:

° Select predefined options from the pull down menu.

° Enable or disable some options with a check box.

° Type a user-defined value for options with a text entry field.

° Use the file browser to specify a file for options accepting a file name and path.

° Insert a custom Tcl script (called a hook script) before and after each step in the
implementation process (tcl.pre and tcl.post). This lets you perform specific
tasks either before or after each implementation step (for example, generating a
timing report before and after Place Design to compare timing results).

For more information on defining Tcl hook scripts, see this link in the Vivado Design
Suite User Guide: Using Tcl Scripting (UG894) [Ref 5].

Note: Relative paths in the tcl.pre and tcl.post scripts are relative to the appropriate
run directory of the project they are applied to:
<project>/<project.runs>/<run_name>

You can use the DIRECTORY property of the current project or current run to define
the relative paths in your scripts:

get_property DIRECTORY [current_project]
get_property DIRECTORY [current_run]

9. Click OK to save the new strategy.

The new strategy is listed under User Defined Strategy. The Vivado tools save user-defined
strategies to the following locations:

• Linux OS
$HOME/.Xilinx/Vivado/strategies

• Windows
C:\Users\<username>\AppData\Roaming\Xilinx\Vivado\strategies

Sharing Run Strategies

Design teams that want to create and share strategies can copy any user-defined strategy
from the user directory to the <InstallDir>/Vivado/<version>/strategies
directory, where <InstallDir> is the installation directory of the Xilinx software, and
<version> is the release version.
Implementation 39
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf;a=xDefiningTclHookScripts
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=39

Chapter 2: Implementing the Design
Launching Implementation Runs
Do any of the following to launch the active implementation run in the Design Runs
window:

• Select Run Implementation in the Flow Navigator.
• Select Flow > Run Implementation from the main menu.
• Select Run Implementation from the toolbar menu.
• Select a run in the Design Runs window and select Launch Runs from the popup menu.

Launching a single implementation run initiates a separate process for the implementation.

TIP: Select a run in the Design Runs window to launch a run other than the active run. Select two or
more runs in the Design Runs window to launch multiple runs at the same time.

1. Use Shift+click or Ctrl+click to select multiple runs.
Note: You can choose both synthesis and implementation runs when selecting multiple runs in
the Design Runs window. The Vivado IDE manages run dependencies and launches runs in the
correct order.

2. Select Launch Runs to open the Launch Selected Runs dialog box, shown in Figure 2-11.
Note: You can select Launch Runs from the popup menu, or from the Design Runs window
toolbar menu.

3. Select Launch Directory.

The default launch directory is in the local project directory structure. Files for
implementation runs are stored at:

X-Ref Target - Figure 2-11

Figure 2‐11: Launch Selected Implementation Runs
Implementation 40
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=40

Chapter 2: Implementing the Design
<project_name>/<project_name>.runs/<run_name>

TIP: Defining any non-default location outside the project directory structure makes the project
non-portable because absolute paths are written into the project files.

4. Specify Options.

° Select the Launch runs on local host option if you want to launch the run on the
local machine.

° Use the Number of jobs drop-down menu to define the number of local processors
to use when launching multiple runs simultaneously.

° Select Launch runs on remote hosts (Linux only) if you want to use remote hosts
to launch one or more jobs.

° Use the Configure Hosts button to configure remote hosts. For more information,
see Appendix A, Using Remote Hosts and Compute Clusters.

° Select Launch runs using LSF (Linux only) if you want to use LSF (Load Sharing
Facility) bsub command to launch one or more jobs. Use the Configure LSF button
to set up the bsub command options and test your LSF connection.

TIP: LSF, the Load Sharing Facility, is a subsystem for submitting, scheduling, executing, monitoring,
and controlling a workload of batch jobs across compute servers in a cluster.

° Select the Generate scripts only option if you want to export and create the run
directory and run script but do not want the run script to launch at this time. The
script can be run later outside the Vivado IDE tools.
Implementation 41
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=41

Chapter 2: Implementing the Design
Moving Processes to the Background
As the Vivado IDE initiates the process to run synthesis or implementation, it reads design
files and constraint files in preparation for the run. The Starting Run dialog box, shown in
Figure 2-12, lets you move this preparation to the background.

Putting this process into the background releases the Vivado IDE to perform other functions
while it completes the background task. The other functions can include functions such as
viewing reports and opening design files. You can use this time, for example, to review
previous runs, or to examine reports.

CAUTION! When you put this process into the background, the Tcl Console is blocked. You cannot
execute Tcl commands, or perform tasks that require Tcl commands, such as switching to another open
design.

Running Implementation in Steps
Vivado implementation consists of a number of smaller processes such as:

• Opt Design (opt_design)
• Power Opt Design (power_opt_design) (optional)
• Place Design (place_design)
• Post-Place Power Opt Design (power_opt_design) (optional)
• Post-Place Phys Opt Design (phys_opt_design) (optional)
• Route Design (route_design)
• Post-Route Phys Opt Design (phys_opt_design) (optional)
• Write Bitstream (write_bitstream) (all devices except Versal)
• Write Device Image (write_device_image) (Versal devices)

The Vivado tools let you run implementation as a series of steps, rather than as a single
process.

X-Ref Target - Figure 2-12

Figure 2‐12: Starting Run - Background Process
Implementation 42
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=42

Chapter 2: Implementing the Design
How to Run Implementation in Steps

To run implementation in steps:

1. Right-click a run in the Design Runs window and select Launch Next Step: <Step> or
Launch Step To from the popup menu shown in Figure 2-13.

Valid <Step> values depend on which run steps have been enabled in the Run Settings.
The steps that are available in an implementation run are:

° Opt Design:
Optimizes the logical design and fit sit onto the target Xilinx device.

° Power Opt Design:
Optimizes elements of the design to reduce power demands of the implemented
device.

° Place Design:
Places the design onto the target Xilinx device.

° Post-Place Power Opt Design:
Additional optimization to reduce power after placement.

° Post-Place Phys Opt Design:
Performs timing-driven optimization on the negative-slack paths of a design.

° Route Design:
Routes the design onto the target Xilinx device.

° Post-Route Phys Opt Design:
Optimizes logic, placement, and routing, using actual routed delays.

° Write Bitstream (all devices except Versal):
Generates a bitstream for Xilinx device configuration. Although not technically part
of an implementation run, bitstream generation is available as an incremental step.

° Write Device Image (Versal devices):
Generates a programmable device image for programming a Versal device.

2. Repeat Launch Next Step: <Step> or Launch Step To as needed to move the design
through implementation.

X-Ref Target - Figure 2-13

Figure 2‐13: Popup Menu in Design Runs Window
Implementation 43
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=43

Chapter 2: Implementing the Design
3. To back up from a completed step, select Reset to Previous Step: <Step> from the
Design Runs window popup menu.

Select Reset to Previous Step to reset the selected run from its current state to the
prior incremental step. This allows you to:

° Step backward through a run.

° Make any needed changes.

° Step forward again to incrementally complete the run.

About Implementation Commands
The Xilinx® Vivado® Design Suite includes many features to manage and simplify the
implementation process for project-based designs. These features include the ability to
step manually through the implementation process.

For more information, see Running Implementation in Project Mode, page 22.

Non-Project based designs must be manually taken through each step of the
implementation process using Tcl commands or Tcl scripts.

Note: For more information about Tcl commands, see the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 19], or type <command> -help.

For more information, see Running Implementation in Non-Project Mode, page 18.

Implementation Sub-Processes
In Project Mode, the implementation commands are run in a fixed order. In Non-Project
Mode the commands can be run in a similar order, but can also be run repeatedly,
iteratively, and in a different sequence than in Project Mode.

IMPORTANT: Implementation Commands are re-entrant.

Implementation commands are re-entrant, which means that when an implementation
command is called in Non-Project Mode, it reads the design in memory, performs its tasks,
and writes the resulting design back into memory. This provides more flexibility when
running in Non-Project Mode.
Implementation 44
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=44

Chapter 2: Implementing the Design
Examples:

• opt_design followed by opt_design -remap
The Remap operation occurs on the opt_design results.

• place_design called on a design that contains some placed cells
The existing cell placement is used as a starting point for place_design.

• route_design called on a design that contains some routing
The existing routing is used as a starting point for route_design.

• route_design called on a design with unplaced cells
Routing fails because cells must be placed first.

• opt_design called on a fully-placed and routed design
Logic optimization might optimize the logical netlist, creating new cells that are
unplaced, and new nets that are unrouted. Placement and routing might need to be
rerun to finish implementation.

Putting a design through the Vivado implementation process, whether in Project Mode or
Non-Project Mode, consists of several sub-processes:

• Open Synthesized Design:
Combines the netlist, the design constraints, and Xilinx target part data, to build the
in-memory design to drive implementation.

• Opt Design:
Optimizes the logical design to make it easier to fit onto the target Xilinx device.

• Power Opt Design (optional):
Optimizes design elements to reduce the power demands of the target Xilinx device.

• Place Design:
Places the design onto the target Xilinx device.

• Post-Place Power Opt Design (optional):
Additional optimization to reduce power after placement.

• Post-Place Phys Opt Design (optional):
Optimizes logic and placement using estimated timing based on placement. Includes
replication of high fanout drivers.

• Route Design:
Routes the design onto the target Xilinx device.

• Post-Route Phys Opt Design:
Optimizes logic, placement, and routing using actual routed delays (optional).

• Write Bitstream:
Generates a bitstream for Xilinx device configuration (except Versal device).

• Write Device Image:
Generates a programmable device image for programming a Versal device.
Implementation 45
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=45

Chapter 2: Implementing the Design
Note: Although not technically part of an implementation run, Write Bitstream and Write Device
Image are available as a separate step.

To provide a better understanding of the individual steps in the implementation process,
the details of each step, and the associated Tcl commands, are documented in this chapter.
The following table provides a list of sub-processes and their associated Tcl commands.

For a complete description of the Tcl reporting commands and their options, see the Vivado
Design Suite Tcl Command Reference Guide (UG835) [Ref 19].

Opening the Synthesized Design
The first steps in implementation are to read the netlist from the synthesized design into
memory and apply design constraints. You can open the synthesized design in various ways,
depending on the flow used.

Creating the In-Memory Design

To create the in-memory design, the Vivado Design Suite uses the following process to
combine the netlist files, constraint files, and the target part information:

1. Assembles the netlist.

The netlist is assembled from multiple sources if needed. Designs can consist of a mix of
structural Verilog, EDIF, and Vivado IP.

IMPORTANT: NGC format files are not supported in the Vivado Design Suite for UltraScale™ devices. It
is recommended that you regenerate the IP using the Vivado Design Suite IP customization tools with

Table 2‐1: Implementation Sub-processes and Associated Tcl Commands

Sub-Process Tcl Command

Open Synthesized Design synth_design
open_checkpoint
open_run
link_design

Opt Design opt_design
Power Opt Design power_opt_design
Place Design place_design
Phys Opt Design phys_opt_design
Route Design route_design
Write Bitstream (all devices except Versal) write_bitstream
Write Device Image (Versal devices) write_device_image
Implementation 46
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xsynth_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xopen_checkpoint
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xopen_run
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xlink_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xopt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xpower_opt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xplace_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xphys_opt_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xroute_design
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_bitstream
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=46

Chapter 2: Implementing the Design
native output products. Alternatively, you can use the convert_ngc Tcl utility to convert NGC files to
EDIF or Verilog formats. However, Xilinx recommends using native Vivado IP rather than XST-generated
NGC format files going forward.

2. Transforms legacy netlist primitives to the currently supported subset of Unisim
primitives.

TIP: Use report_transformed_primitives to generate a list of transformed cells.

3. Processes constraints from XDC files.

These constraints include both timing constraints and physical constraints such as
package pin assignments and Pblocks for floorplanning.

IMPORTANT: Review critical warnings that identify failed constraints. Constraints might be placed on
design objects that have been optimized or no longer exist. The Tcl command 'write_xdc -constraints
INVALID' also captures invalid XDC constraints.

4. Builds placement macros.

The Vivado tools create placement macros of cells, based on their connectivity or
placement constraints to simplify placement.

Examples of placement macros include:

° An XDC-based macro.

° A relatively placed macro (RPM).
Note: RPMs are placed as a group rather than as individual cells.

° A long carry chain that needs to be placed in multiple CLBs.
Note: The primitives making up the carry chains must belong to a single macro to ensure
that downstream placement aligns it into vertical slices.

Tcl Commands

The Tcl commands shown in Table 2-2 can be used to read the synthesized design into
memory, depending on the source files in the design, and the state of the design.

Table 2‐2: Modes in Which Tcl Commands Can Be Used

Command Project Mode Non-Project Mode

synth_design X X
open_checkpoint X
open_run X
link_design X X
Implementation 47
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=47

Chapter 2: Implementing the Design
synth_design

The synth_design command can be used in both Project Mode and Non-Project Mode. It
runs Vivado synthesis on RTL sources with the specified options, and reads the design into
memory after synthesis.

synth_design Syntax

synth_design [-name <arg>] [-part <arg>] [-constrset <arg>] [-top <arg>]
 [-include_dirs <args>] [-generic <args>] [-verilog_define <args>]
 [-flatten_hierarchy <arg>] [-gated_clock_conversion <arg>]
 [-directive <arg>] [-rtl] [-bufg <arg>] [-no_lc]
 [-shreg_min_size <arg>] [-mode <arg>] [-fsm_extraction <arg>]
 [-rtl_skip_mlo] [-rtl_skip_ip] [-rtl_skip_constraints]
 [-srl_style <arg>] [-keep_equivalent_registers]
 [-resource_sharing <arg>] [-cascade_dsp <arg>]
 [-control_set_opt_threshold <arg>] [-incremental <arg>]
 [-max_bram <arg>] [-max_uram <arg>] [-max_dsp <arg>]
 [-max_bram_cascade_height <arg>] [-max_uram_cascade_height <arg>]
 [-retiming] [-no_srlextract] [-assert] [-no_timing_driven]
 [-sfcu] [-debug_log] [-quiet] [-verbose]

synth_design Example Script

The following is an excerpt from the create_bft_batch.tcl script found in the
examples/Vivado_Tutorials directory of the software installation.

Setup design sources and constraints
read_vhdl -library bftLib [glob ./Sources/hdl/bftLib/*.vhdl]
read_vhdl ./Sources/hdl/bft.vhdl
read_verilog [glob ./Sources/hdl/*.v]
read_xdc ./Sources/bft_full.xdc

Run synthesis, report utilization and timing estimates, write design checkpoint
synth_design -top bft -part xc7k70tfbg484-2 -flatten rebuilt
write_checkpoint -force $outputDir/post_synth

For more information on using the synth_design example script, see the Vivado Design
Suite Tutorial: Design Flows Overview (UG888) [Ref 21] and the Vivado Design Suite User
Guide: Synthesis (UG901) [Ref 8].

The synth_design example script reads VHDL and Verilog files, reads a constraint file,
and synthesizes the design on the specified part. The design is opened by the Vivado tools
into memory when synth_design completes. A design checkpoint is written after
completing synthesis.

For more information on the synth_design Tcl command, see this link in the Vivado
Design Suite Tcl Command Reference Guide (UG835) [Ref 19]. This reference guide also
provides a complete description of the Tcl commands and their options.
Implementation 48
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xsynth_design
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=48

Chapter 2: Implementing the Design
open_checkpoint

The open_checkpoint command opens a design checkpoint file (DCP), creates a new
in-memory project and initializes a design immediately in the new project with the contents
of the checkpoint. This command can be used to open a top-level design checkpoint, or the
checkpoint created for an out-of-context module.

Note: In previous releases, the read_checkpoint command was used to read and initialize
checkpoint designs. Beginning in version 2014.1, this function is provided by the open_checkpoint
command.The behavior of read_checkpoint has been changed such that it only adds the
checkpoint file to the list of source files. This is consistent with other read commands such as
read_verilog, read_vhdl, and read_xdc. A separate link_design command is required to
initialize the design and load it into memory when using read_checkpoint.

When opening a checkpoint, there is no need to create a project first. The
open_checkpoint command reads the design data into memory, opening the design in
Non-Project Mode. Refer to this link in the Vivado Design Suite User Guide: Design Flows
Overview (UG892) [Ref 1] for more information on Project Mode and Non-Project Mode.

IMPORTANT: In the incremental compile flow, the read_checkpoint command is still used to
specify the reference design checkpoint.

open_checkpoint Syntax

open_checkpoint [-part <arg>] [-quiet] [-verbose] <file>

open_checkpoint Example Script

Read the specified design checkpoint and create an in-memory design.
open_checkpoint C:/Data/post_synth.dcp

The open_checkpoint example script opens the post synthesis design checkpoint file.

open_run

The open_run command opens a previously completed synthesis or implementation run,
then loads the in-memory design of the Vivado tools.

IMPORTANT: The open_run command works in Project Mode only. Design runs are not supported in
Non-Project Mode.

Use open_run before implementation on an RTL design in order to open a previously
completed Vivado synthesis run then load the synthesized netlist into memory.

TIP: Because the in-memory design is updated automatically, you do not need to use open_run after
synth_design. You need to use open_run only to open a previously completed synthesis run from
an earlier design session.
Implementation 49
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug892-vivado-design-flows-overview.pdf;a=xUnderstandingProjectModeAndNonProjectMode
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=49

Chapter 2: Implementing the Design
The open_run command is for use with RTL designs only. To open a netlist-based design,
use link_design.

open_run Syntax

open_run [-name <arg>] [-quiet] [-verbose] <run>

open_run Example Script

Open named design from completed synthesis run
open_run -name synth_1 synth_1

The open_run example script opens a design (synth_1) into the Vivado tools memory
from the completed synthesis run (also named synth_1).

If you use open_run while a design is already in memory, the Vivado tools prompt you to
save any changes to the current design before opening the new design.

link_design

The link_design command creates an in-memory design from netlist sources (such as
from a third-party synthesis tool), and links the netlists and design constraints with the
target part.

TIP: The link_design command supports both Project Mode and Non-Project Mode to create the
netlist design. Use link_design -part <arg> without a netlist loaded, to open a blank design for
device exploration.

link_design Syntax

link_design [-name <arg>] [-part <arg>] [-constrset <arg>] [-top <arg>]
 [-mode <arg>] [-pr_config <arg>] [-reconfig_partitions <args>]
 [-partitions <args>] [-quiet] [-verbose]

link_design Example Script

Open named design from netlist sources.
link_design -name netDriven -constrset constrs_1 -part xc7k325tfbg900-1

If you use link_design while a design is already in memory, the Vivado tools prompt you
to save any changes to the current design before opening the new design.

RECOMMENDED: After creating the in-memory synthesized design in the Vivado tools, review Errors
and Critical Warnings for missing or incorrect constraints. After the design is successfully created, you
can begin running analysis, generating reports, applying new constraints, or running implementation.

Note: For more information on the Partial Reconfiguration options of link_design, see this link in
Vivado Design Suite User Guide: Partial Reconfiguration (UG909) [Ref 15].
Implementation 50
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug909-vivado-partial-reconfiguration.pdf;a=xReadingDesignModules
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=50

Chapter 2: Implementing the Design
Immediately after opening the in-memory synthesized design, run
report_timing_summary to check timing constraints. This ensures that the design goals
are complete and reasonable. For more detailed descriptions of the
report_timing_summary command, see this link in the Vivado Design Suite Tcl
Command Reference Guide (UG835) [Ref 19].

BUFG Optimization

Mandatory logic optimization (MLO), which occurs at the beginning of link design,
supports the use of the CLOCK_BUFFER_TYPE property to insert global clock buffers.
Supported values are BUFG for 7 series, and BUFG and BUFGCE for UltraScale, UltraScale+,
and Versal. The value NONE can be used for all architectures to suppress global clock buffer
insertion through MLO and opt_design. For BUFG and BUFGCE, MLO inserts the
corresponding buffer type to drive the specified net.

Use of CLOCK_BUFFER_TYPE provides the advantage of controlling buffer insertion using
XDC constraints so that no design source or netlist modifications are required. Buffers
inserted using CLOCK_BUFFER_TYPE are not subject to any limits, so the property must be
used cautiously to avoid introducing too many global clocks into the design, which may
result in placement failures. For more information, see the Vivado Design Suite Properties
Reference Guide (UG912) [Ref 14].

Logic Optimization
Logic optimization ensures the most efficient logic design before attempting placement. It
performs a netlist connectivity check to warn of potential design problems such as nets with
multiple drivers and un-driven inputs. Logic optimization also performs block RAM power
optimization.

Often design connectivity errors are propagated to the logic optimization step where the
flow fails. It is important to ensure valid connectivity using DRC Reports before running
implementation.

Logic optimization skips optimization of cells and nets that have DONT_TOUCH properties
set to a value of TRUE. Logic optimization also skips optimization of design objects that
have directly applied timing constraints and exceptions. This prevents constraints from
being lost when their target objects are optimized away from the design. An Info message
at the end of each optimization stage provides a summary of the number of optimizations
prevented due to constraints. Specific messages about which constraint prevented which
optimizations can be generated with the -debug_log switch.

The Tcl command used to run Logic Optimization is opt_design.
Implementation 51
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_timing_summary
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=51

Chapter 2: Implementing the Design
Common Design Errors

One common error that can cause logic optimization to fail is using undriven LUT inputs,
where the input is used by the LUT logic equation. This results in an error such as:

ERROR: [Opt 31-67] Problem: A LUT6 cell in the design is missing
a connection on input pin I0, which is used by the LUT equation.

This error often occurs when the connection was omitted while assembling logic from
multiple sources. Logic optimization identifies both the cell name and the pin, so that it can
be traced back to its source definition.

Available Logic Optimizations

The Vivado tools can perform the logic optimizations on the in-memory design.

IMPORTANT: Logic optimization can be limited to specific optimizations by choosing the
corresponding command options. Only those specified optimizations are run, while all others are
disabled, even those normally performed by default.

The following table describes the order in which the optimizations are performed when
more than one option is selected. This ordering ensures that the most efficient optimization
is performed.

Table 2‐3: Optimization Ordering for Multiple Options

Phase Name Option Default

1 Retargeting -retarget X
2 Constant Propagation -propconst X
3 Sweep -sweep X
4 Mux Optimization -muxf_remap

5 Carry Optimization -carry_remap

6 Control Set Merging -control_set_merge

7 Equivalent Driver Merging -merge_equivalent_drivers

8 BUFG Optimization -bufg_opt X
9 Shift Register Optimization -shift_register_opt X

10 MBUFG Optimization -mbufg_opt

11 DSP Register Opt -dsp_register_opt

12 Control Set Reduction (property controlled) X
13 Module-Based Fanout Opt -hier_fanout_limit <arg>

14 Remap -remap

15 Resynth Area -resynth_area
Implementation 52
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=52

Chapter 2: Implementing the Design
Phase 4 and 5 are not supported for Versal. Phase 10 is only supported for Versal.

When an optimization is performed on a primitive cell, the OPT_MODIFIED property of the
cell is updated to reflect the optimizations performed on the cell. When multiple
optimizations are performed on the same cell, the OPT_MODIFIED value contains a list of
optimizations in the order they occurred. The following table lists the OPT_MODIFIED
property value for the various opt_design options:

Retargeting (Default)

When retargeting the design from one device family to another, retarget one type of block
to another. For example, retarget instantiated MUXCY or XORCY components into a CARRY4
block; or retarget DCM to MMCM. In addition, simple cells such as inverters are absorbed
into downstream logic. When the downstream logic cannot absorb the inverter, the
inversion is pushed in front of the driver, eliminating the extra level of logic between the
driver and its loads. After the transformation, the driver’s INIT value is inverted and
set/reset logic is transformed to ensure equivalent functionality.

Constant Propagation (Default)

Constant Propagation propagates constant values through logic, which results in:

16 Resynth Sequential Area -resynth_seq_area

17 Block RAM Power Opt -bram_power_opt X

Table 2‐4: Optimization Options and Values

opt_design Option OPT_MODIFIED Value

-bufg_opt BUFG_OPT
-carry_remap CARRY_REMAP
-control_set_merge CONTROL_SET_MERGE
-hier_fanout_limit HIER_FANOUT_LIMIT
-merge_equivalent_drivers MERGE_EQUIVALENT_DRIVERS
-muxf_remap MUXF_REMAP
-propconst PROPCONST
-remap REMAP
-resynth_area RESYNTH_AREA
-resynth_seq_area RESYNTH_AREA
-retarget RETARGET
-shift_register_opt SHIFT_REGISTER_OPT
-sweep SWEEP

Table 2‐3: Optimization Ordering for Multiple Options (Cont’d)

Phase Name Option Default
Implementation 53
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=53

Chapter 2: Implementing the Design
• Eliminated logic:
For example, an AND with a constant 0 input

• Reduced logic:
For example, A 3-input AND with a constant 1 input is reduced to a 2-input AND.

• Redundant logic:
For example, A 2-input OR with a logic 0 input is reduced to a wire.

Sweep (Default)

Sweep removes cells that have no loads.

Mux Optimization

Remaps MUXF7, MUXF8, and MUXF9 primitives to LUT3 to improve routability. You can limit
the scope of mux remapping by using the MUXF_REMAP cell property instead of the
-muxf_remap option. Set the MUXF_REMAP property to TRUE on individual MUXF
primitives.

Note: Not applicable to Versal.

TIP: To further optimize the netlist after the mux optimization is performed, combine the mux
optimization with remap (opt_design -muxf_remap -remap).

Carry Optimization

Remaps CARRY4 and CARRY8 primitives of carry chains to LUTs to improve routability. When
running with the -carry_remap option, only single-stage carry chains are converted to
LUTs. You can control the conversion of individual carry chains of any length by using the
CARRY_REMAP cell property. The CARRY_REMAP property is an integer that specifies the
maximum carry chain length to be mapped to LUTs. The CARRY_REMAP property is applied
to CARRY4 and CARRY8 primitives and each CARRY primitive within a chain must have the
same value to convert to LUTs. The minimum supported value is 1.

Example: A design contains multiple carry chains of lengths 1, 2, 3, and 4 CARRY8 primitives.

The following assigns a CARRY_REMAP property on all CARRY8 primitives:

Vivado% set_property CARRY_REMAP 2 [get_cells -hier -filter {ref_name == CARRY8}]

After opt_design, only carry chains of length 3 or greater CARRY8 primitives remain
mapped to CARRY8. Chains with a length of 1 and 2 are mapped to LUTs.

Note: Not applicable to Versal.
Implementation 54
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=54

Chapter 2: Implementing the Design
TIP: Remapping long carry chains to LUTs may significantly increase delay even with further
optimization by adding the remap option. Xilinx recommends only remapping smaller carry chains,
those consisting of one or two cascaded CARRY primitives.

Control Set Merging

Reduces the drivers of logically-equivalent control signals to a single driver. This is like a
reverse fanout replication, and results in nets that are better suited for module-based
replication.

Equivalent Driver Merging

Reduces the drivers of all logically-equivalent signals to single drivers. This is similar to
control set merging but is applied to all signals, not only control signals.

You can limit the scope of equivalent driver and control set merging by using the
EQUIVALENT_DRIVER_OPT cell property. Setting the EQUIVALENT_DRIVER_OPT
property to MERGE on the original driver and its replicas triggers the merge equivalent
driver phase during opt_design and merges the drivers with that property. Setting the
EQUIVALENT_DRIVER_OPT property to KEEP on the original driver and its replicas
prevents the merging of the drivers with that property during the equivalent driver merging
and the control set merging phase.

Note: Some interfaces require a one to one mapping from FF driver to interface pin and merging
these logically-equivalent signals to a single driver can result in unroutable nets. In that case set a
DONT_TOUCH property to TRUE or set the EQUIVALENT_DRIVER_OPT property to KEEP on those
registers.

BUFG Optimization (Default)

Logic optimization conservatively inserts global clock buffers on clock nets and high-fanout
non-clock nets such as device-wide resets. In Versal devices BUFG_FABRIC clock buffers are
inserted on high-fanout non-clock nets.

For 7 series designs, clock buffers are inserted as long as 12 total global clock buffers are
not exceeded.

For UltraScale, UltraScale+, and Versal designs, clock buffers are inserted as long as 24 total
global clock buffers are not exceeded, not including BUFG_GT buffers.

For non-clock nets:

• The fanout must be above 25,000.
• The clock period of the logic driven by the net is below a device/speed grade specific

limit.

For fabric-driven clock nets, the fanout must be 30 or greater.
Implementation 55
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=55

Chapter 2: Implementing the Design
Note: To prevent BUFG Optimization on a net, assign the value NONE to the CLOCK_BUFFER_TYPE
property of the net. Some clock buffer insertion that is required to legalize the design can also occur
in mandatory logic optimization.

MBUFG Optimization

For Versal devices, a new Multi-Clock Buffer (MBUFG) provides divide by 1, 2, 4, 8 clocks of
the clock input on its O1, O2, O3, O4 outputs. The MBUFG clock outputs are all routed on
the same global clock routing resources and only divided once they reach the BUFDIV_LEAF
route-thru Bels. MBUFG driven clocks consume less routing resources and clock skew is
minimized for synchronous CDC paths between clocks driven by the same MBUFG because
the common node is closer to the source and destination.

The MBUFG optimization transforms parallel clock buffers driven by a common driver or
clock modifying block (CMB), such as MMCM, DPLL, or XPLL, to MBUFG. The transformation
occurs if the divide factors of the parallel clocks are divide by 1, 2, 4, 8 of a common clock.
For CMB driven clocks, the phase shift has to be 0 and the duty cycle 50%. If the clock nets
driven by the BUFGs have conflicting constraints such as CLOCK_DELAY_GROUP or
USER_CLOCK_ROOT the transformation is also prevented. The transformation is only
occurring when it is safe to do so without corrupting timing constraints. The following
transformations are supported:

• Parallel BUFGCEs connected to a CMB to an MBUFGCE.
• Parallel BUFGCE_DIVs connected to a common clock driver to an MBUFGCE.
• Parallel BUFG_GTs connected to a common clock driver to an MBUFG_GT.

In addition to the global optimization using the -mbufg_opt option, you can control the
conversion of selected BUFGs to MBUFG using the MBUFG_GROUP property. You must set
the MBUFG_GROUP constraint on the net segment directly connected to the clock buffer.
The following example shows the property applied to two clock nets, which are directly
driven by the clock buffers:

set_property MBUFG_GROUP grp1 [get_nets -of [get_pins {BUFG_inst_0/O BUFG_inst_1/O}]

1. The picture in Figure 2-14 shows an MMCM driving several BUFGCE buffers. The
CLKOUTn driven clocks are integer divides of 1, 2, 4, 8 of the CLKOUT1 driven clock. After
the MBUFG transformation the four BUFGCEs are transformed to a single MBUFGCE and
the CLKOUT1 driven clock is connected to the MBUFGCE I pin. The loads that were
driven by the BUFGCEs are connected to the MBUFGCE O1, O2, O3, O4 pins.
Implementation 56
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=56

Chapter 2: Implementing the Design
Shift Register Optimization (Default)

Shift register optimization includes multiple transformations.

• SRL fanout optimization: if an SRL (LUT-based shift register) primitive drives a fanout of
100 or greater, a register stage is taken from the end of the SRL chain and transformed
into a register primitive. This enables more flexible downstream replication if the net
becomes timing-critical. In general it is easier to replicate high-fanout register drivers
compared to high fanout SRL drivers.

• Transformation between SRL and register primitives:

° An SRL primitive can be converted to a logically equivalent chain of register
primitives using the SRL_TO_REG property with a value of true. This transform is
typically used to increase the number of available pipeline register stages that can
be spread to allow signals to traverse long distances within a device. Increasing the
number of register stages can increase the clock frequency at the expense of higher
latency.

° A chain of register primitives can be converted to a logically equivalent SRL
primitive using the REG_TO_SRL property with a value of true. This transform is
typically used to reduce the number of pipeline register stages used by signals to
traverse long distances within a device. Having too many register stages may create
congestion or other placement problems.

• Selective movement of pipeline stages between SRLs and register chains: These
transformations can be used when a pipeline register chain consists of SRLs and
register primitives. A register stage can be pulled out of or pushed into SRLs on either
the SRL inputs or SRL outputs. This allows increased control of pipeline register
structures to address under and over-pipelining.

X-Ref Target - Figure 2-14

Figure 2‐14: MBUFG Optimization
Implementation 57
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=57

Chapter 2: Implementing the Design
° Under-pipelining: To pull a register from an SRL through its input, apply the SRL
property SRL_STAGES_TO_REG_INPUT with value 1. To pull a register stage from
an SRL output, apply SRL_STAGES_TO_REG_OUTPUT with value 1.

° Over-pipelining: To push a register into an SRL input, apply the SRL property
SRL_STAGES_TO_REG_INPUT with value -1. To push a register stage into an SRL
output, apply SRL_STAGES_TO_REG_OUTPUT with value -1.

Note: All transforms from registers to SRLs are only possible if control sets are compatible.

Shift Register Remap

This is a set of optimizations that convert shift registers between discrete register chains
and SRLs which are the LUTRAM-based shift register primitives. These optimizations specify
global thresholds to convert from one form to another. The optimizations are used to
balance utilization of registers and LUTRAM-based SRLs. High SRL utilization can lead to
congestion and converting small SRLs to registers can help ease congestion and
simultaneously improve performance by providing discrete registers to cover more distance
for critical paths. However congestion can emerge again when register utilization becomes
too high. Converting very long register chains to SRLs can absorb register stages and their
routing which helps reduce congestion.

The optimizations are accessed using the -srl_remap_mode option which takes a Tcl list
of lists as an argument to define the mode. Following are the different types of
optimizations.

• Converting small SRLs to registers: For this optimization use the
max_depth_srl_to_ffs mode:

° opt_design -srl_remap_modes {{max_depth_srl_to_ffs <depth>}}

° Here all SRLs of depth <depth> and smaller are remapped to register chains.
• Converting large shift register chains to SRLs: For this optimization use the

min_depth_ffs_to_srl mode:

° opt_design -srl_remap_modes {{min_depth_ffs_to_srl <depth>}}

° Here all register chains greater than depth <depth> are remapped to SRL
primitives.

• Automatic target utilization optimizations: This mode uses the following syntax:

° -srl_remap_modes {{target_ff_util <ff_util> target_lutram_util
<lutram_util>}}

Here you specify percent utilization targets (0 to 100) for both registers and LUTRAMs. If the
current utilization exceeds a target, Vivado will convert from the overutilized resource type
to the other until the utilization target is met. When converting from SRLs to registers,
Vivado begins with the smallest SRLs. When converting from registers to SRLs, Vivado
begins with the largest register chains.
Implementation 58
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=58

Chapter 2: Implementing the Design
Note: The max_depth_srl_to_ffs and min_depth_ffs_to_srl can be used simultaneously but cannot be
used with the target utilization settings.

DSP Register Opt

This option is used to perform various optimizations on DSP slice pipeline, input and output
registers to improve timing within and to and from the DSP slices. The table below lists the
available optimization.

Note: Not applicable to Versal.
Table 2‐5: DSP Register Opt Available Optimizations

Optimization
Type

Configuration Required
to Trigger

Post Optimization
State Timing Requirement

MREG to PREG MREG=1, PREG=0 MREG=0, PREG=1 Timing from MREG is
critical (slack less than
0.5ns), and timing to MREG
is not critical (slack greater
than 1ns)

PREG to MREG MREG=0, PREG=1 MREG=1, PREG=0 Timing to PREG is critical
(slack less than 0.5ns), and
timing from PREG is not
critical (slack greater than
1ns)

MREG to ADREG ADREG=0, MREG=1 ADREG=1, MREG=0 Timing to MREG is critical
(slack less than 0.5ns), and
timing from MREG is not
critical (slack greater than
1ns)

ADREG to MREG ADREG=1, MREG=0 ADREG=0, MREG=1 Timing from ADREG is
critical (slack less than
0.5ns), and timing to
ADREG is not critical (slack
greater than 1ns)

AREG/BREG push
out to fabric

AREG=1/2, BREG=1/2 AREG=0/1, BREG=0/1,
FDRE in fabric

Timing to AREG/BREG is
critical (slack less than
0.5ns), and timing from
AREG/BREG is not critical
(slack greater than 1ns)

AREG/BREG pull
in from fabric

AREG=0/1, BREG=0/1,
FDRE in fabric

AREG=1/2, BREG=1/2 Timing to DSP input is
critical (slack less than
0.5ns)

AREG and BREG
to MREG

AREG=1/2, BREG=1/2,
MREG=0

AREG=0/1, BREG=0/1,
MREG=1

Timing from AREG/BREG is
critical (slack less than
0.5ns), and timing to
AREG/BREG is not critical
(slack greater than 1ns)
Implementation 59
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=59

Chapter 2: Implementing the Design
Control Set Reduction

Designs with several unique control sets can have fewer options for placement, resulting in
higher power and lower performance. Designs with fewer control sets have more options
and flexibility in terms of placement, generally resulting in improved results. The number of
unique control sets can be reduced by applying the CONTROL_SET_REMAP property to a
register that has a control signal driving the synchronous set/reset pin or CE pin. This
triggers the optional control set reduction phase and maps the set/reset and/or CE logic to
the D-input of the register. If possible, the logic is combined with an existing LUT driving
the D-input, which prevents extra levels of logic.

The CONTROL_SET_REMAP property supports the following values:

• ENABLE - Remaps the EN input to the D-input.
• RESET - Remaps the synchronous S or R input to the D-input.
• ALL - Same as ENABLE and RESET.
• NONE or unset - No optimization (Default).
Note: This optimization is automatically triggered when the CONTROL_SET_REMAP property is
detected on any register.

Module-Based Fanout Optimization

Net drivers with fanout greater than the specified limit, provided as an argument with this
option, will be replicated according to the logical hierarchy.

For each hierarchical instance driven by the high-fanout net, if the fanout within the
hierarchy is greater than the specified limit, then the net within the hierarchy is driven by a
replica of the driver of the high-fanout net.

MREG to AREG
and BREG

AREG=0, BREG=0,
MREG=1

AREG=1, BREG=1,
MREG=0

Timing to MREG is critical
(slack less than 0.5ns), and
timing from MREG is not
critical (slack greater than
1ns)

PREG push out to
fabric

PREG=1 PREG=0, FDRE in fabric Timing from PREG is critical
(slack less than 0.5ns), and
timing to PREG is not
critical (slack greater than
1ns)

PREG pull in from
fabric

PREG=0, FDRE in fabric PREG=1 Timing from DSP output is
critical (slack less than
0.5ns)

Table 2‐5: DSP Register Opt Available Optimizations

Optimization
Type

Configuration Required
to Trigger

Post Optimization
State

Timing Requirement
Implementation 60
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=60

Chapter 2: Implementing the Design
IMPORTANT: Each use of logic optimization affects the in-memory design, not the synthesized design
that was originally opened.

Remap

Remap combines multiple LUTs into a single LUT to reduce the depth of the logic. Selective
remap can be triggered by applying the LUT_REMAP property to a group of LUTs. Chains of
LUTs with LUT_REMAP values of TRUE are collapsed into fewer logic levels where possible.
Remap optimization can combine LUTs that belong to different levels of logical hierarchy
into a single LUT to reduce logic levels. Remapped logic is combined into the LUT that is
furthest downstream in the logic cone.

This optimization also replicates LUTs with the LUT_REMAP property that have fanout
greater than one before the transformation.

Note: Setting the LUT_REMAP property to FALSE does not prevent LUTs from getting remapped
when running opt_design with the -remap option.

Aggressive Remap

Similar to Remap, Aggressive Remap combines multiple LUTs into a single LUT to reduce
logic depth. Aggressive Remap is a more exhaustive optimization than Remap, and may
achieve further logic level reduction than Remap at the expense of longer runtime.

Resynth Area

Resynth Area performs re-synthesis in area mode to reduce the number of LUTs.

Resynth Sequential Area

Resynth Sequential Area performs re-synthesis to reduce both combinational and
sequential logic. Performs a superset of the optimization of Resynth Area.

Block RAM Power Optimization (Default)

Block RAM Power Optimization enables power optimization on block RAM cells including:

• Changing the WRITE_MODE on unread ports of true dual-port RAMs to NO_CHANGE.
• Applying intelligent clock gating to block RAM outputs.

Property-Only Optimization

This is a non-default option where opt_design runs only those phases that are triggered
by opt_design properties. If no such properties are found, opt_design exits and leaves the
design unchanged.
Implementation 61
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=61

Chapter 2: Implementing the Design
Following are opt_design cell properties that trigger optimizations when using this option:

• MUXF_REMAP

• CARRY_REMAP

• SRL_TO_REG

• REG_TO_SRL

• SRL_STAGES_TO_REG_INPUT

• SRL_STAGES_TO_REG_OUTPUT

• LUT_REMAP

• CONTROL_SET_REMAP

• EQUIVALENT_DRIVER_OPT

opt_design

The opt_design command runs Logic Optimization.

opt_design Syntax

opt_design [-retarget] [-propconst] [-sweep] [-bram_power_opt] [-remap]
 [-aggressive_remap] [-resynth_area] [-resynth_seq_area]
 [-directive <arg>] [-muxf_remap] [-hier_fanout_limit <arg>]
 [-bufg_opt] [-mbufg_opt] [-shift_register_opt] [-dsp_register_opt]
 [-srl_remap_modes <arg>] [-control_set_merge]
 [-merge_equivalent_drivers] [-carry_remap] [-debug_log]
 [-property_opt_only] [-quiet] [-verbose]

opt_design Example Script

Run logic optimization with the remap optimization enabled, save results in a
checkpoint, report timing estimates
opt_design -directive AddRemap
write_checkpoint -force $outputDir/post_opt
report_timing_summary -file $outputDir/post_opt_timing_summary.rpt

The opt_design example script performs logic optimization on the in-memory design,
rewriting it in the process. It also writes a design checkpoint after completing optimization,
and generates a timing summary report and writes the report to the specified file.

Restrict Optimization to Listed Types

Use command line options to restrict optimization to one or more of the listed types. For
example, the following is another method for skipping the block RAM optimization that is
run by default:

opt_design -retarget -propconst -sweep -bufg_opt -shift_register_opt
Implementation 62
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=62

Chapter 2: Implementing the Design
Using Directives

Directives provide different modes of behavior for the opt_design command. Only one
directive can be specified at a time. The directive option is incompatible with other options.
The following directives are available:

• Explore:
Runs multiple passes of optimization.

• ExploreArea:
Runs multiple passes of optimization with emphasis on reducing combinational logic.

• AddRemap:
Runs the default logic optimization flow and includes LUT remapping to reduce logic
levels.

• ExploreSequentialArea:
Runs multiple passes of optimization with emphasis on reducing registers and related
combinational logic.

• RuntimeOptimized:
Runs minimal passes of optimization, trading design performance for faster run time.

• NoBramPowerOpt:
Runs all the default opt_design optimizations except block RAM Power Optimization.

• ExploreWithRemap:
Same as the Explore directive but includes the Remap optimization.

• Default:
Runs opt_design with default settings.

Table 2-6 provides an overview of the optimization phase for the different directives.
Implementation 63
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=63

Chapter 2: Implementing the Design

Im 64
UG

Ta

P NoBramPowerOpt RuntimeOptimized

1 Retargeting Retargeting
2 Constant

Propagation
Constant
Propagation

3 Sweep Sweep
4 BUFG Optimization BUFG Optimization

5 Shift Register
Optimization

Shift Register
Optimization

6

7

8

9

1

a.
plementation
904 (v2020.2) February 26, 2021 www.xilinx.com

ble 2‐6: Optimization Phases for Directives

hase Default Explore ExploreWithRemap ExploreArea AddRemap
Explore

SequentialArea

Retargeting Retargeting Retargeting Retargeting Retargeting Retargeting
Constant
Propagation

Constant
Propagation

Constant
Propagation

Constant
Propagation

Constant
Propagation

Constant
Propagation

Sweep Sweep Sweep Sweep Sweep Sweep
BUFG
Optimization

BUFG
Optimization

BUFG Optimization BUFG
Optimization

BUFG
Optimization

BUFG
Optimization

Shift Register
Optimization

Shift
Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

Shift Register
Optimization

Block RAM
Power Opt

Constant
Propagation

Constant
Propagation

Constant
Propagation

Remap Constant
Propagation

Sweep Sweep Sweep Block RAM
Power Opt

Sweep

Block RAM
Power Opta

Remap Resynth Area Resynth Area

Block RAM Power
Opta

Block RAM
Power Opt

Resynth
Sequential Area

0 Block RAM
Power Opt

Phase not run in UltraScale/UltraScale+/Versal designs.

https://www.xilinx.com

Chapter 2: Implementing the Design
Using the -debug_log and -verbose Options

To better analyze optimization results, use the -debug_log option to see additional details
of the logic affected by opt_design optimization. The log displays additional messages of
logic that is reduced due to constant values and loadless logic that is subject to removal.
The log also displays detailed messages about optimizations that are prevented due to
constraints.

Use the -verbose option to see full details of all logic optimization performed by
opt_design. The -verbose option is off by default due to the potential for a large
volume of additional messages. Use the -verbose option if you believe it might be helpful.

RECOMMENDED: To improve tool run time for large designs, use the -verbose option only in shell or
batch mode and not in the GUI mode.

IMPORTANT: The opt_design command operates on the in-memory design. If run multiple times,
the subsequent run optimizes the results of the previous run. Therefore you must reload the synthesized
design before adding either the -debug_log or -verbose options.

Logic Optimization Constraints

Logic Preservation

The Vivado Design Suite respects the DONT_TOUCH property during logic optimization. It
does not optimize away nets or cells with these properties. To speed up the net selection
process, nets with DONT_TOUCH properties are pre-filtered and not considered for physical
optimization. For more information, see this link in the Vivado Design Suite User Guide:
Synthesis (UG901) [Ref 8].

You would typically apply the DONT_TOUCH property to leaf cells to prevent them from
being optimized. DONT_TOUCH on a hierarchical cell preserves the cell boundary, but
optimization might still occur within the cell and constants can still be propagated across
the boundary. To preserve a hierarchical net, apply the DONT_TOUCH property to all net
segments using the -segments option of get_nets.

The tools automatically add DONT_TOUCH properties of value TRUE to nets that have
MARK_DEBUG properties of value TRUE. This is done to keep the nets intact throughout the
implementation flow so that they can be probed at any design stage. This is the
recommended use of MARK_DEBUG. However, on rare occasions DONT_TOUCH might be too
restrictive and could prevent optimization such as constant propagation, sweep, or remap,
leading to more difficult timing closure. In such cases, you can set DONT_TOUCH to a value
of FALSE, while keeping MARK_DEBUG TRUE. The risk in doing this is that nets with
MARK_DEBUG can be optimized away and no longer probed.
Implementation 65
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf;a=xSynthesisAttributes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=65

Chapter 2: Implementing the Design
Logic Optimization

Certain optimizations can be performed on specific objects rather than the entire design.
These optimizations are triggered by object properties. Logic Optimization detects the
presence of these properties and automatically runs the necessary optimization phases.
This is true for all properties except for shift register optimizations properties, which require
the -shift_register_opt option. The following is a summary of properties for
object-specific optimization.

Power Optimization
Power optimization is an optional step that optimizes dynamic power using clock gating. It
can be used in both Project Mode and Non-Project Mode, and can be run after logic
optimization or after placement to reduce power demand in the design. Power optimization
includes Xilinx intelligent clock gating solutions that can reduce dynamic power in your
design, without altering functionality.

For more information, see the Vivado Design Suite User Guide: Power Analysis and
Optimization (UG907) [Ref 11].

Vivado Tools Power Optimization

The Vivado power optimization analyzes all portions of the design, including legacy and
third-party IP blocks. It also identifies opportunities where actively changing signals can be
clock-gated because they are not being read every clock cycle. This reduces switching
activity which in turn reduces dynamic power.

Table 2‐7: Logic Optimization Properties

Property Description

MUXF_REMAP Set to TRUE on MUXF primitives to convert them to LUTs
CARRY_REMAP Set the threshold on CARRY primitives to convert to LUTs
SRL_TO_REG1 Set to TRUE on SRL primitives to convert them to register chains
REG_TO_SRL1 Set to TRUE on register chains to convert them to SRL primitives
SRL_STAGES_TO_REG_INPUT1 Set to the appropriate value on an SRL primitive to move a register

across its input
SRL_STAGES_TO_REG_OUTPUT1 Set to the appropriate value on an SRL primitive to move a register

across its output
LUT_REMAP Set to TRUE on cascaded LUTs to reduce LUT levels
CONTROL_SET_REMAP Set on registers to specify the type of control signal to remap to LUTs
EQUIVALENT_DRIVER_OPT Set on logically-equivalent drivers to force or prevent merging

Notes:
1. Requires -shift_register_opt option to perform optimization.
Implementation 66
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=66

Chapter 2: Implementing the Design
Using Clock Enables (CEs)

The Vivado power optimizer takes advantage of the abundant supply of Clock Enables (CEs).
Power optimization creates gating logic to drive register clock enables such that registers
only capture data on relevant clock cycles.

Note that in actual silicon, CEs are actually gating the clock rather than selecting between
the D input and feedback Q output of the flip-flop. This increases the performance of the CE
input but also reduces clock power.

Intelligent Clock Gating

Intelligent clock gating also reduces power for dedicated block RAMs in either simple
dual-port or true dual-port mode, as shown in Figure 2-16.

These blocks include several enables:

• Array enable
• Write enable
• Output register clock enable

Most of the power savings comes from using the array enable. The Vivado power optimizer
implements functionality to reduce power when no data is being written and when the
output is not being used.

X-Ref Target - Figure 2-15

Figure 2‐15: Intelligent Clock Gating

X-Ref Target - Figure 2-16

Figure 2‐16: Leveraging Block RAM Enables

Before

address

data in

data out

After

address

data in data out

ce
Implementation 67
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=67

Chapter 2: Implementing the Design
power_opt_design

The power_opt_design command analyzes and optimizes the design. It analyzes and
optimizes the entire design as a default. The command also performs intelligent clock
gating to optimize power.

power_opt_design Syntax

power_opt_design [-quiet] [-verbose]

If you do not want to analyze and optimize the entire design, configure the optimizer with
set_power_opt. This lets you specify the appropriate cell types or hierarchy to include or
exclude in the optimization. You can also use set_power_opt to specify the specific Block
RAM cells for optimization in opt_design.

The syntax for set_power_opt is:

set_power_opt [-include_cells <args>] [-exclude_cells <args>] [-clocks <args>]
[-cell_types <args>] [-quiet] [-verbose]

Note: Block RAM power optimization is skipped if it is run using opt_design.

RECOMMENDED: If you want to prevent block RAM Power Optimization on specific block RAMs during
opt_design, use set_power_opt -exclude_cells [get_cells <bram_insts>].

Placement
The Vivado Design Suite placer places cells from the netlist onto specific sites in the target
Xilinx device. Like the other implementation commands, the Vivado placer works from, and
updates, the in-memory design.

Design Placement Optimization

The Vivado placer simultaneously optimizes the design placement for:

• Timing slack: Placement of cells in timing-critical paths is chosen to minimize negative
slack.

• Wirelength: Overall placement is driven to minimize the overall wirelength of
connections.

• Congestion: The Vivado placer monitors pin density and spreads cells to reduce
potential routing congestion.
Implementation 68
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=68

Chapter 2: Implementing the Design
Design Rule Checks

Before starting placement, Vivado implementation runs Design Rule Checks (DRCs),
including user-selected DRCs from report_drc, and built-in DRCs internal to the Vivado
placer. Internal DRCs check for illegal placement, such as Memory IP cells without LOC
constraints and I/O banks with conflicting IOSTANDARDs.

Clock and I/O Placement

After design rule checking, the Vivado placer places clock and I/O cells before placing other
logic cells. Clock and I/O cells are placed concurrently because they are often related
through complex placement rules specific to the targeted Xilinx device. For UltraScale,
UltraScale+, and Versal devices, the placer also assigns clock tracks and pre-routes the
clocks. Register cells with IOB properties are processed during this phase to determine
which registers with an IOB value of TRUE should be mapped to I/O logic sites. If the placer
fails to honor an IOB property of TRUE, a critical warning is issued.

Placer Targets

The placer targets at this stage of placement are:

• I/O ports and their related logic
• Global clock buffers
• Clock management tiles (MMCMs and PLLs)
• Gigabit Transceiver (GT) cells

Placing Unfixed Logic

When placing unfixed logic during this stage of placement, the placer adheres to physical
constraints, such as LOC properties and Pblock assignments. It also validates existing LOC
constraints against the netlist connectivity and device sites. Certain IP (such as Memory IP
and GTs) are generated with device-specific placement constraints.

IMPORTANT: Due to the device I/O architecture, a LOC property often constrains cells other than the
cell to which LOC has been applied. A LOC on an input port also fixes the location of its related I/O
buffer, IDELAY, and ILOGIC. Conflicting LOC constraints cannot be applied to individual cells in the
input path. The same applies for outputs and GT-related cells.

Clock Resources Placement Rules

Clock resources must follow the placement rules described in the 7 Series FPGAs Clocking
Resources User Guide (UG472) [Ref 17], UltraScale Architecture Clocking Resources User
Guide (UG572) [Ref 18] and Versal ACAP Clocking Resources Architecture Manual
(AM003)[Ref 16]. For example, an input that drives a global clock buffer must be located at
Implementation 69
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=69

Chapter 2: Implementing the Design
a clock-capable I/O site, must be located in the same upper or lower half of the device for
7 series devices, and in the same clock region for UltraScale devices. These clock placement
rules are also validated against the logical netlist connectivity and device sites.

When Clock and I/O Placement Fails

If the Vivado placer fails to find a solution for the clock and I/O placement, the placer
reports the placement rules that were violated, and briefly describes the affected cells.

Placement can fail because of several reasons, including:

• Clock tree issues caused by conflicting constraints
• Clock tree issues that are too complex for the placer to resolve
• RAM and DSP block placement conflicts with other constraints, such as Pblocks
• Over-utilization of resources
• I/O bank requirements and rules

In some cases, the Vivado placer provisionally places cells at sites, and attempts to place
other cells as it tries to solve the placement problem. The provisional placements often
pinpoint the source of clock and I/O placement failure. Manually placing a cell that failed
provisional placement might help placement converge.

TIP: Use place_ports to run the clock and I/O placement step first. Then run place_design. If
port placement fails, the placement is saved to memory to allow failure analysis. For more information,
run place_ports -help from the Vivado Tcl command prompt.

For more information about UltraScale clock tree placement and routing, see the UltraFast
Design Methodology Guide for the Vivado Design Suite (UG949) [Ref 13].

Global Placement, Detailed Placement, and Post-Placement
Optimization

After Clock and I/O placement, the remaining placement phases consist of global
placement, detailed placement, and post-placement optimization.

Global Placement

Global placement consists of two major phases: floorplanning and physical synthesis.

Floorplanning Phase

During floorplanning, the design is partitioned into clusters of related logic and initial
locations are chosen based on placement of I/O and clocking resources. When targeting SSI
devices, the design is also partitioned into different SLRs to minimize SLR crossings and
Implementation 70
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=70

Chapter 2: Implementing the Design
their associated delay penalties. Soft SLR floorplan constraints can be applied to guide the
logic partitioning during this phase. For more information about Using Soft SLR Floorplan
Constraints, see the UltraFast Design Methodology Guide for the Vivado Design Suite
(UG949) [Ref 13].

Physical Synthesis Phase

During physical synthesis, the placer can perform various physical optimizations that will
optimize the netlist for later placement phases based on the initial placement of the design
after the floorplanning stage. For example, for fanout based replication the replicated driver
can be co-located with its loads because the initial placement is known. This alleviates
congestion that can be introduced when replication is done without knowledge of
placement prior to place_design. Optimizations are considered based on internal
parameters and for timing based optimizations the timing is evaluated and the optimization
is committed if timing is improved. The following optimizations are available as shown in as
shown in Figure 2-16.

Figure 2‐16: Summary of Physical Sythesis Optimizations

• LUT Decomposition and Combining

LUT Decomposition breaks LUT shapes if it improves timing (only LUTs with
SOFT_HLUTNM property are considered). LUT combining combines LUTs if it improves
utilization.

• Very High-Fanout Optimization

Very High-Fanout Optimization replicates registers driving high-fanout nets (Fanout >
1000, Slack < 2.0 ns).

• Critical Cell Optimization

Critical-Cell Optimization replicates cells in failing paths. If the loads on a specific cell
are placed far apart, the cell might be replicated with new drivers placed closer to load
clusters. This optimizations often applies to nets driving large BRAM or URAM arrays or
large number of DSPs as the sites for these blocks are spread over a wider area of the
device. High fanout is not a requirement for this optimization to occur (Slack < 0.5 ns).

• Fanout Optimization
Implementation 71
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=71

Chapter 2: Implementing the Design
Nets with a MAX_FANOUT property value that is less than the actual fanout of the net
are considered for fanout optimization. The user can force the replication of a register or
a LUT driving a net by adding the FORCE_MAX_FANOUT property to the net. The value
of the FORCE_MAX_FANOUT specifies the maximum physical fanout the nets should
have after the replication optimization. The physical fanout in this case refers to the
actual site pin loads, not the logical loads. For example if the replica drives multiple
LUTRAM loads that are all grouped in the same slice, the combined fanout will be 1 for
all of the LUTRAMs in the same slice. The FORCE_MAX_FANOUT forces the replication
during physical synthesis regardless of the slack of the signal. The user can force
replication based on physical device attributes with the MAX_FANOUT_MODE property.
The property can take on the value of CLOCK_REGION, SLR, or MACRO. For example, the
MAX_FANOUT_MODE property with a value of CLOCK_REGION replicates the driver
based on the physical clock region, the loads placed into same clock region will be
clustered together. The MAX_FANOUT_MODE property takes precedence over the
FORCE_MAX_FANOUT property and physical synthesis will try to honor both by applying
MAX_FANOUT_MODE based optimization first and then all its replicated drivers will
inherit the FORCE_MAX_FANOUT property to do further replication within a clock
region. This is illustrated in the Figure 2-17 example where a register drives four loads;
two registers and two MACRO loads (Block RAM, UtraRAM or DSP). Replication provides
separate drivers for the register loads and MACRO loads and then the driver for the
MACRO loads is replicated until the FORCE_MAX_FANOUT property value is satisfied.

• DSP Register Optimization

X-Ref Target - Figure 2-17

Figure 2‐17: Applying MAX_FANOUT_MODE with value MACRO together with
FORCE_MAX_FANOUT
Implementation 72
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=72

Chapter 2: Implementing the Design
DSP Register Optimization can move registers out of the DSP cell into the logic array or
from logic to DSP cells if it improves the delay on the critical path.

• Shift Register to Pipeline Optimization

Shift Register to Pipeline Optimization turns a shift register with fixed length to
dynamically adjusted register pipeline and places the pipeline optimally to improve
timing. Only SRLs with the PHYS_SRL2PIPELINE attribute set to TRUE are considered for
this optimization. The pull/push of FFs happens on the SRL's Q-pin. The SRL length
needs to be fixed and dynamic SRLs are not supported for this optimization.

• Shift Register Optimization

The shift register optimization improves timing on negative slack paths between shift
register cells (SRLs) and other logic cells.

• Block RAM Register Optimization

Block RAM Register Optimization can move registers out of the block RAM cell into the
logic array or from logic to block RAM cells if it improves the delay on the critical path.

• URAM Register Optimization

UltraRAM Register Optimization can move registers out of the UltraRAM cell into the
logic array or from logic to UltraRAM cells if it improves the delay on the critical path.

• Dynamic/Static Region Interface Net Replication

Optimization to replicate drivers on static design to reconfigurable module boundary
paths in DFX flow.

• Equivalent Driver Rewire Optimization

This optimization redistributes loads between logically-equivalent drivers to minimize
routing overlap and provide a more optimal co-location of drivers and loads. This helps
reduce utilization and congestion and allows later placer stages to move drivers and
loads more optimally to improve QoR. For more information on these optimizations see
Available Physical Optimizations in the Physical Optimization section. Physical synthesis
in the placer is run by default in all of the placer directives. At the end of the physical
synthesis phase, a table shows the summary of optimizations.

Detailed Placement

Detailed placement takes the design from the initial global placement to a fully-placed
design, generally starting with the largest structures (which serve as good anchors) down to
the smallest. The detail placement process begins by placing large macros such as
multi-column URAM, BRAM, and DSP block arrays, followed by LUTRAM array macros, and
smaller macros such as user-defined XDC Macros. Logic placement is iterated to optimize
Implementation 73
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=73

Chapter 2: Implementing the Design
wirelength, timing, and congestion. LUT-FF pairs are packed into CLBs with the additional
constraints that registers in the CLB must share common control sets.

Post-Placement Optimization

After all logic locations have been assigned, Post-Placement Optimization performs the
final steps to improve timing and congestion. These include improving critical path
placement and the optional BUFG insertion phase during which the placer can route high
fanout nets on global routing tracks to free up fabric routing resources. High-fanout nets
(fanout > 1000) driving control signals with a slack greater than 1.0ns are considered for
this optimization. The loads are split between critical loads and high positive slack loads.
The high positive slack loads are driven through a BUFGCE which is placed at the nearest
available site to the original driver, whereas the critical loads remain connected to the
original driver. This optimization is performed only if there is no timing degradation. BUFG
Insertion is on by default and can be disabled with the -no_bufg_opt option.

RECOMMENDED: Run report_timing_summary after placement to check the critical paths. Paths
with very large negative setup slack might need manual placement, further constraining, or logic
restructuring to achieve timing closure.

place_design

The place_design command runs placement on the design. Like the other
implementation commands, place_design is re-entrant in nature. For a partially placed
design, the Vivado placer uses the existing placement as the starting point instead of
starting from scratch.

place_design Syntax

place_design [-directive <arg>] [-no_timing_driven] [-timing_summary]
 [-unplace] [-post_place_opt] [-no_psip] [-no_bufg_opt]
 [-quiet] [-verbose]

place_design Example Script

Run placement, save results to checkpoint, report timing estimates
place_design
write_checkpoint -force $outputDir/post_place
report_timing_summary -file $outputDir/post_place_timing_summary.rpt

The place_design example script places the in-memory design. It then writes a design
checkpoint after completing placement, generates a timing summary report, and writes the
report to the specified file.

Using Directives

Directives provide different modes of behavior for the place_design command. Only one
directive can be specified at a time. The directive option is incompatible with other options
Implementation 74
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=74

Chapter 2: Implementing the Design
with the exception of -no_fanout_opt, -no_bufg_opt, -quiet, and -verbose. Use the
-directive option to explore different placement options for your design.

Placer Directives

Because placement typically has the greatest impact on overall design performance, the
Placer has the most directives of all commands. Table 2-8 shows which directives might
benefit which types of designs.

Available Directives

• Explore:
Higher placer effort in detail placement and post-placement optimization.

• WLDrivenBlockPlacement:
Wirelength-driven placement of RAM and DSP blocks. Override timing-driven
placement by directing the Placer to minimize the distance of connections to and from
blocks. This directive can improve timing to and from RAM and DSP blocks.

• EarlyBlockPlacement:
Timing-driven placement of RAM and DSP blocks. The RAM and DSP block locations
are finalized early in the placement process and are used as anchors to place the
remaining logic.

• ExtraNetDelay_high:
Increases estimated delay of high fanout and long-distance nets. This directive can
improve timing of critical paths that meet timing after place_design but fail timing
in route_design due to overly optimistic estimated delays. Two levels of pessimism
are supported: high and low. ExtraNetDelay_high applies the highest level of
pessimism.

• ExtraNetDelay_low:
Increases estimated delay of high fanout and long-distance nets. This directive can
improve timing of critical paths that have met timing after place_design but fail
timing in route_design due to overly optimistic estimated delays. Two levels of

Table 2‐8: Directive Guidelines

Directive Designs Benefitted

BlockPlacement Designs with many block RAM, DSP blocks, or both
ExtraNetDelay Designs that anticipate many long-distance net connections

and nets that fan out to many different modules
SpreadLogic Designs with very high connectivity that tend to create

congestion
ExtraPostPlacementOpt All design types
SSI SSI designs that might benefit from different styles of

partitioning to relieve congestion or improve timing.
Implementation 75
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=75

Chapter 2: Implementing the Design
pessimism are supported: high and low. ExtraNetDelay_low applies the lowest level
of pessimism.

• SSI_SpreadLogic_high:
Spreads logic throughout the SSI device to avoid creating congested regions. Two
levels are supported: high and low. SpreadLogic_high achieves the highest level of
spreading.

• SSI_SpreadLogic_low:
Spreads logic throughout the SSI device to avoid creating congested regions. Two
levels are supported: high and low. SpreadLogic_low achieves a minimal level of
spreading.

• AltSpreadLogic_high:
Spreads logic throughout the device to avoid creating congested regions. Three levels
are supported: high, medium, and low. AltSpreadLogic_high achieves the highest
level of spreading.

• AltSpreadLogic_medium:
Spreads logic throughout the device to avoid creating congested regions. Three levels
are supported: high, medium, and low. AltSpreadLogic_medium achieves a nominal
level of spreading.

• AltSpreadLogic_low:
Spreads logic throughout the device to avoid creating congested regions. Three levels
are supported: high, medium, and low. AltSpreadLogic_low achieves a minimal
level of spreading.

• ExtraPostPlacementOpt:
Higher placer effort in post-placement optimization.

• ExtraTimingOpt:
Use an alternate set of algorithms for timing-driven placement during the later stages.

• SSI_SpreadSLLs:
Partition across SLRs and allocate extra area for regions of higher connectivity.

• SSI_BalanceSLLs:
Partition across SLRs while attempting to balance SLLs between SLRs.

• SSI_BalanceSLRs:
Partition across SLRs to balance number of cells between SLRs.

• SSI_HighUtilSLRs:
Force the placer to attempt to place logic closer together in each SLR.

• RuntimeOptimized:
Run fewest iterations, trade higher design performance for faster run time.

• Quick:
Absolute, fastest run time, non-timing-driven, performs the minimum required for a
legal design.
Implementation 76
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=76

Chapter 2: Implementing the Design
• Default:
Run place_design with default settings.

Using the -unplace Option

The -unplace option unplaces all cells and all ports in a design that do not have fixed
locations. An object with fixed location has an IS_LOC_FIXED property value of TRUE.

Using the -no_timing_driven Option

The -no_timing_driven option disables the default timing driven placement algorithm.
This results in a faster placement based on wire lengths, but ignores any timing constraints
during the placement process.

Using the -timing_summary Option

After placement, an estimated timing summary is output to the log file. By default, the
number reflects the internal estimates of the placer. For example:

INFO: [Place 30-746] Post Placement Timing Summary WNS=0.022. For the most accurate
timing information please run report_timing.

For greater accuracy at the expense of slightly longer run time, you can use the
-timing_summary option to force the placer to report the timing summary based on the
results from the static timing engine.

INFO: [Place 30-100] Post Placement Timing Summary | WNS=0.236 | TNS=0.000 |

where

° WNS = Worst Negative Slack

° TNS = Total Negative Slack

Using the -verbose Option

To better analyze placement results, use the -verbose option to see additional details of
the cell and I/O placement by the place_design command.

The -verbose option is off by default due to the potential for a large volume of additional
messages. Use the -verbose option if you believe it might be helpful.

Using the -post_place_opt Option

Post placement optimization is a placement optimization that can potentially improve
critical path timing at the expense of additional run time. The optimization is performed on
a fully placed design with timing violations. For each of the top few critical paths, the placer
tries moving critical cells to improve delay and commits new cell placements if they improve
Implementation 77
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=77

Chapter 2: Implementing the Design
estimated delay. For designs with longer run times and relatively more critical paths, these
placement passes might further improve timing.

Using the no_psip Option

The no_psip option disables the default physical synthesis algorithm in the placer.

Using the -no_bufg_opt Option

The -no_bufg_opt option disables the default BUFG insertion algorithm in the placer.

Auto-Pipelining

You can optionally insert additional pipeline registers during placement to address timing
closure challenges on specific buses and interfaces.

Using the AXI Register Slice in Auto-Pipelining Mode

The AXI Register Slice IP core is typically used for adding pipeline registers between
memory mapped or streaming AXI interfaces to help close timing. For larger devices,
adding the right amount of pipelining without overly increasing the register utilization and
the application latency is a common challenge. To simplify the pipeline insertion task and
allow the Vivado placer more flexibility, you can use the auto-pipeline optimization feature
for the AXI Register Slice IP core. When this feature is enabled, a special physical synthesis
phase (between the floorplanning and global placer phases) inserts and places the
additional pipeline stages based on setup timing slack and SLR distance. The AXI Register
Slice IP core remains compliant with the AXI handshake protocol despite the increased
latency due to the use of small FIFOs.

You can enable this feature in the IP Configuration Wizard. Set the Register Slice Options
(REG_*) to Multi SLR Crossing. In addition, set the Use timing-driven pipeline insertion for
all Multi-SLR channels option to 1 to enable auto-pipelining. The following figure shows an
example.
Implementation 78
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=78

Chapter 2: Implementing the Design
X-Ref Target - Figure 2-18

Figure 2‐18: Example AXI Register Slice IP Settings to Enable Auto-Pipelining Feature
Implementation 79
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=79

Chapter 2: Implementing the Design
Using Auto-Pipelining on Custom Interfaces

Auto-pipelining is not limited to the AXI Register Slice IP. You can also control
auto-pipelining on custom interfaces using the properties shown in the following table,
which are specified in the RTL. For more information, see the Vivado Design Suite Properties
Reference Guide (UG912) [Ref 14].

All nets that belong to the same AUTOPIPELINE_GROUP must have an equal number of
pipeline registers inserted on each tagged signal. Following are additional considerations:

• If an AUTOPIPELINE_GROUP does not reference an AUTOPIPELINE_INCLUDE group, the
number of pipeline stages inserted into the AUTOPIPELINE_GROUP must be between 0
and the AUTOPIPELINE_LIMIT.

• If an AUTOPIPELINE_GROUP references an AUTOPIPELINE_INCLUDE group, the sum of
the pipeline stages inserted into the AUTOPIPELINE_GROUP and the
AUTOPIPELINE_INCLUDE group must be between 0 and the AUTOPIPELINE_LIMIT.

When you specify the AUTOPIPELINE_GROUP, AUTOPIPELINE_LIMIT, and
AUTOPIPELINE_INCLUDE properties on a register in RTL, the Vivado tools automatically
propagate the properties to the net directly connected to the output of the register.

For best timing QoR, Xilinx recommends the following:

• Only apply the AUTOPIPELINE_* properties to registers with no clock enable and no
reset control signals.

Table 2‐9:

Property Name Object Format/Range Description

AUTOPIPELINE_MODULE hierarchical cell Boolean Establishes a separate
name-space for all group names
defined throughout
sub-hierarchies. This property
must be used when a module
with auto-pipelining properties is
instantiated several times in the
design.

AUTOPIPELINE_GROUP net String
(case-insensitive)

Establishes the auto-pipeline
group name of signals that must
receive an equal number of
auto-inserted pipeline flip-flops.

AUTOPIPELINE_INCLUDE net String
(case-insensitive)

Specifies the name of another
AUTOPIPELINE_GROUP to
include when applying the
AUTOPIPELINE_LIMIT.

AUTOPIPELINE_LIMIT net 0 < integer <= 24 Defines the maximum number of
auto-inserted pipeline flip-flops
for associated groups.
Implementation 80
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=80

Chapter 2: Implementing the Design
• Create distinct hierarchies for both sides of the interface, and apply a different
USER_SLR_ASSIGNMENT with a different string to each side. The strings must not be
SLR<n>. The soft floorplanning constraints guide the Vivado placer to move the two
groups of registers to different SLRs as needed to improve timing QoR. For example, if
hierarchy hierA includes the source registers, and hierB includes the destination
registers, you must add the following constraints:
set_property USER_SLR_ASSIGNMENT apSrcGrpA [get_cells hierA]
set_property USER_SLR_ASSIGNMENT apDstGrpB [get_cells hierB]

IMPORTANT: The auto-pipelining feature changes the latency of the design. Therefore, you must
ensure the functionality remains correct for the specified AUTOPIPELINE_LIMIT range. If the handshake
circuitry is required, you must add appropriate logic, such as a FIFO, with enough depth to support
backpressure without losing data. The Vivado tools do not verify the correctness of the design logic.

Note: For the best timing QoR results, the auto-pipeline properties must be set on registers without
clock enable or reset logic.

The following figure shows how the auto-pipeline properties are used in the AXI Register
Slice RTL.
X-Ref Target - Figure 2-19

Figure 2‐19: Example of Auto-Pipelining RTL Property Usage
Implementation 81
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=81

Chapter 2: Implementing the Design
The following logic diagram shows one AXI channel of the AXI Register Slice with nets
tagged with auto-pipeline properties.

Reviewing the Auto-Pipelining Implementation Results

The following tables are printed in the Vivado log file during the floorplanning phase of
place_design:

• Summary of Latency Increase due to Auto-Pipeline Insertion: This table details the
number of pipeline stages inserted for each group.

• Summary of Physical Synthesis Optimizations: This table shows the total number of
inserted pipeline registers and the number of auto-pipeline groups optimized
(Optimized Cells/Nets).

X-Ref Target - Figure 2-20

Figure 2‐20: Auto-Pipelining Logic Diagram
Implementation 82
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=82

Chapter 2: Implementing the Design
The following figure shows an example of the Summary of Latency Increase Due to
Auto-Pipeline Insertion table.

The following figure shows an example of the Summary of Physical Synthesis Optimizations
table.

The inserted pipeline registers can be retrieved based on their names as follows:

<origCellName>_psap and <origCellName>_psap_<N>

X-Ref Target - Figure 2-21

Figure 2‐21: Example of Summary of Latency Increase Due to Auto-Pipeline InsertionTable

X-Ref Target - Figure 2-22

Figure 2‐22: Summary of Physical Synthesis Options for Auto Pipeline Table
Implementation 83
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=83

Chapter 2: Implementing the Design
The following figure shows the path from SLR2 to SLR0 where nine pipeline stages were
automatically inserted during place_design.
X-Ref Target - Figure 2-23

Figure 2‐23: Schematic View of Auto-Pipeline Inserted Registers
Implementation 84
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=84

Chapter 2: Implementing the Design
The following figure shows the same example in the Device view.

Physical Optimization
Physical optimization performs timing-driven optimization on the negative-slack paths of a
design. Physical optimization has two modes of operation: post-place and post-route.

In post-place mode, optimization occurs based on timing estimates based on cell
placement. Physical optimization automatically incorporates netlist changes due to logic
optimizations and places cells as needed.

In post-route mode, optimization occurs based on actual routing delays. In addition to
automatically updating the netlist on logic changes and placing cells, physical optimization
also automatically updates routing as needed.

X-Ref Target - Figure 2-24

Figure 2‐24: Device View of Auto-Pipeline Inserted Registers
Implementation 85
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=85

Chapter 2: Implementing the Design
IMPORTANT: Post-route physical optimization is most effectively used on designs that have a few
failing paths. Using post-route physical optimization on designs with WNS<-0.200 ns or more than 200
failing end points can result in long run time with little improvement to QOR.

Overall physical optimization is more aggressive in post-place mode, where there is more
opportunity for logic optimization. In post-route mode, physical optimization tends to be
more conservative to avoid disrupting timing-closed routing. Before running, physical
optimization checks the routing status of the design to determine which mode to use,
post-place or post-route.

If a design does not have negative slack, and a physical optimization with a timing based
optimization option is requested, the command exits quickly without performing
optimization. To balance runtime and design performance, physical optimization does not
automatically attempt to optimize all failing paths in a design. Only the top few percent of
failing paths are considered for optimization. So it is possible to use multiple consecutive
runs of physical optimization to gradually reduce the number of failing paths in the design.

Available Physical Optimizations

The Vivado tools perform the physical optimizations on the in-memory design, as shown in
the following table.

IMPORTANT: Physical optimization can be limited to specific optimizations by choosing the
corresponding command options. Only those specified optimizations are run, while all others are
disabled, even those normally performed by default.

Table 2‐10: Post-Place and Post-Route Physical Optimizations

Option Name
post-place post-route

valid default valid default

High-Fanout Optimization Y Y N n/a
Placement Optimization Y Y Y Y
Routing Optimization N n/a Y Y
Rewiring Y Y Y Y
Critical-Cell Optimization Y Y Y N
DSP Register Optimization Y Y N n/a
Block RAM Register Optimization Y Y N n/a
URAM Register Optimization Y N N n/a
Shift Register Optimization Y Y N n/a
Critical Pin Optimization Y Y Y Y
Block RAM Enable Optimization Y Y N n/a
Hold-Fixing Y N Y N
Negative-Edge FF Insertion Y N N n/a
Implementation 86
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=86

Chapter 2: Implementing the Design
When an optimization is performed on a primitive cell, the PHYS_OPT_MODIFIED property
of the cell is updated to reflect the optimizations performed on the cell. When multiple
optimizations are performed on the same cell, the PHYS_OPT_MODIFIED value contains a
list of optimizations in the order they occurred. The following table lists the
phys_opt_design options that trigger an update to the PHYS_OPT_MODIFIED property
and the corresponding value.

High-Fanout Optimization

High-Fanout Optimization works as follows:

1. High fanout nets, with negative slack within a percentage of the WNS, are considered for
replication.

2. Loads are clustered based on proximity, and drivers are replicated and placed for each
load cluster.

Timing is re-analyzed, and logical changes are committed if timing is improved.

Retiming Y N Y N
Forced Net Replication Y N N n/a
SLR-Crossing Optimization Y N Y Y
Clock Optimization N n/a Y Y

Table 2‐11: Optimization Options and Values

phys_opt_design Option PHYS_OPT_MODIFIED Value

-fanout_opt FANOUT_OPT
-placement_opt PLACEMENT_OPT
-slr_crossing_opt SLR_CROSSING_OPT
-rewire REWIRE
-insert_negative_edge_ffs INSERT_NEGEDGE
-critical_cell_opt CRITICAL_CELL_OPT
-dsp_register_opt DSP_REGISTER_OPT
-bram_register_opt BRAM_REGISTER_OPT
-uram_register_opt URAM_REGISTER_OPT
-shift_register_opt SHIFT_REGISTER_OPT
-force_replication_on_nets FORCE_REPLICATION_ON_NETS
-clock_opt CLOCK_OPT

Table 2‐10: Post-Place and Post-Route Physical Optimizations (Cont’d)

Option Name
post-place post-route

valid default valid default
Implementation 87
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=87

Chapter 2: Implementing the Design
TIP: Replicated objects are named by appending _replica to the original object name, followed by
the replicated object count.

Placement-Based Optimization

Optimizes placement on the critical path by re-placing all the cells in the critical path to
reduce wire delays.

Routing Optimization

Optimizes routing on critical paths by re-routing nets and pins with shorter delays.

Rewiring

Optimizes the critical path by swapping connections on LUTs to reduce the number of logic
levels for critical signals. LUT equations are modified to maintain design functionality.

Critical-Cell Optimization

Critical-Cell Optimization replicates cells in failing paths. If the loads on a specific cell are
placed far apart, the cell might be replicated with new drivers placed closer to load clusters.
High fanout is not a requirement for this optimization to occur, but the path must fail timing
with slack within a percentage of the worst negative slack.

DSP Register Optimization

DSP Register Optimization can move registers out of the DSP cell into the logic array or
from logic to DSP cells if it improves the delay on the critical path.

Block RAM Register Optimization

Block RAM Register Optimization can move registers out of the block RAM cell into the
logic array or from logic to block RAM cells if it improves the delay on the critical path.

URAM Register Optimization

UltraRAM Register Optimization can move registers out of the UltraRAM cell into the logic
array or from logic to UltraRAM cells if it improves the delay on the critical path.

Shift Register Optimization

The shift register optimization improves timing on negative slack paths between shift
register cells (SRLs) and other logic cells.
Implementation 88
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=88

Chapter 2: Implementing the Design
If there are timing violations to or from shift register cells (SRL16E or SRLC32E), the
optimization extracts a register from the beginning or end of the SRL register chain and
places it into the logic fabric to improve timing. The optimization shortens the wirelength of
the original critical path.

The optimization only moves registers from a shift register to logic fabric, but never from
logic fabric into a shift register, because the latter never improves timing.

The prerequisites for this optimization to occur are:

• The SRL address must be one or greater, such that there are register stages that can be
moved out of the SRL.

• The SRL address must be a constant value, driven by logic 1 or logic 0.
• There must be a timing violation ending or beginning from the SRL cell that is among

the worst critical paths.

Certain circuit topologies are not optimized:

• SRLC32E that are chained together to form larger shift registers are not optimized.
• SRLC32E using a Q31 output pin.
• SRL16E that are combined into a single LUT with both O5 and O6 output pins used.

Registers moved from SRLs to logic fabric are FDRE cells. The FDRE and SRL INIT properties
are adjusted accordingly as is the SRL address. Following is an example.

A critical path begins at a shift register (SRL16E) srl_inste, as shown in Figure 2-25.
X-Ref Target - Figure 2-25

Figure 2‐25: Critical Path Starting at Shift Register srl_inste

Implementation 89
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=89

Chapter 2: Implementing the Design
After shift register optimization, the final stage of the shift register is pulled from the
SRL16E and placed in the logic fabric to improve timing, as shown in Figure 2-26.

The srl_inste SRL16E address is decremented to reflect one fewer internal register stage.
The original critical path is now shorter as the srlopt register is placed closer to the
downstream cells and the FDRE cell has a relatively faster clock-to-output delay.

Critical Pin Optimization

Critical Pin Optimization performs remapping of logical LUT input pins to faster physical
pins to improve critical path timing. A critical path traversing a logical pin mapped to a slow
physical pin such as A1 or A2 is reassigned to a faster physical pin such as A6 or A5 if it
improves timing. A cell with a LOCK_PINS property is skipped, and the cell retains the
mapping specified by LOCK_PINS. Logical-to-physical pin mapping is given by the
command get_site_pins.

Block RAM Enable Optimization

The block RAM enable optimization improves timing on critical paths involving
power-optimized block RAMs.

Pre-placement block RAM power optimization restructures the logic driving block RAM
read and write enable inputs, to reduce dynamic power consumption. After placement, the
restructured logic might become timing-critical. The block RAM enable optimization
reverses the enable-logic optimization to improve the slack on the critical enable-logic
paths.

X-Ref Target - Figure 2-26

Figure 2‐26: Critical Path after Shift Register Optimization

Implementation 90
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=90

Chapter 2: Implementing the Design
Hold-Fixing

Hold-Fixing attempts to improve slack of High hold violators by increasing delay on the
hold critical path.

Aggressive Hold-Fixing

Performs optimizations to insert data path delay to fix hold time violations. This
optimization considers significantly more hold violations than the standard hold-fix
algorithm.

TIP: Hold-Fixing only fixes hold time violations above a certain threshold. This is because the router is
expected to fix any hold time violations that are less than the threshold.

Negative-Edge Register Insertion

Inserts negative-edge triggered registers to fix difficult hold time violations. A register
insertion splits a hold-critical timing path into two half-period paths, making it easier to
meet hold requirements. As the name implies, only negative-edge-triggered register
insertion is supported which fixes hold violations between two positive-edge-triggered
sequential cells.

Retiming

Retiming improves the delay on the critical path by moving registers across combinational
logic. The phys_opt_design retiming optimization supports forward retiming.

Forced Net Replication

Forced Net Replication forces the net drivers to be replicated, regardless of timing slack.
Replication is based on load placements and requires manual analysis to determine if
replication is sufficient. If further replication is required, nets can be replicated repeatedly
by successive commands. Although timing is ignored, the net must be in a
timing-constrained path to trigger the replication.

SLR-Crossing Optimization

Performs post-place or post-route optimizations to improve the path delay of inter-SLR
connections. The optimization adjusts the locations of the driver, load, or both along the
SLR crossing. Replication is supported in post-route optimization if the driver has inter- and
intra-SLR loads. A TNS cleanup option is supported with the -tns_cleanup switch in
conjunction with the -slr_crossing_opt switch. TNS cleanup allows some slack
degradation on other paths when performing inter-SLR path optimization as long as the
overall WNS of the design does not degrade. For UltraScale devices, either a TX_REG or an
Implementation 91
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=91

Chapter 2: Implementing the Design
RX_REG SLL register can be targeted. In UltraScale+ devices both, TX_REG and RX_REG
registers on the same inter-SLR connection can be targeted.

SLL Register Hold Fix

Performs SLL register hold fix optimization for UltraScale+ devices. Use this option when
the router is having trouble resolving hold violations on SLR crossing paths between the
dedicated SLL TX_REG and RX_REG registers.

Clock Optimization

Inserts global buffers to create useful skew between critical path start and endpoints. To
improve setup timing, buffers are inserted to delay the destination clock.

Routing Optimization

Performs routing optimization on timing-critical nets to reduce delay.

Path Group Optimization

Performs post-place and post-route optimizations on the specified path groups only.

TIP: Use the group_path Tcl command to set up the path groups that are targeted for optimization.

Physical Optimization Messages

TIP: Physical Optimization reports each net processed for optimization, and a summary of the
optimization performed (if any).

A summary, as shown in the following figure, is provided at the end of physical optimization
showing statistics of each optimization phase and its impact on design performance. This
highlights the types of optimizations that are most effective for improving WNS.
X-Ref Target - Figure 2-27

Figure 2‐27: Summary of Physical Synthesis Optimizations
Implementation 92
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=92

Chapter 2: Implementing the Design
phys_opt_design

The phys_opt_design command runs physical optimization on the design. It can be run
in post-place mode after placement and in post-route mode after the design is fully-routed.

phys_opt_design Syntax

phys_opt_design [-fanout_opt] [-placement_opt] [-routing_opt]
 [-slr_crossing_opt] [-rewire] [-insert_negative_edge_ffs]
 [-critical_cell_opt] [-dsp_register_opt] [-bram_register_opt]
 [-uram_register_opt] [-bram_enable_opt] [-shift_register_opt]
 [-hold_fix] [-aggressive_hold_fix] [-retime]
 [-force_replication_on_nets <args>] [-directive <arg>]
 [-critical_pin_opt] [-clock_opt] [-path_groups <args>]
 [-tns_cleanup] [-sll_reg_hold_fix] [-quiet] [-verbose]

Note: The -tns_cleanup option can only be run in conjunction with the -slr_crossing_opt
option.

phys_opt_design Example Script

open_checkpoint top_placed.dcp

Run post-place phys_opt_design and save results
phys_opt_design
write_checkpoint -force $outputDir/top_placed_phys_opt.dcp
report_timing_summary -file $outputDir/top_placed_phys_opt_timing.rpt

Route the design and save results
route_design
write_checkpoint -force $outputDir/top_routed.dcp
report_timing_summary -file $outputDir/top_routed_timing.rpt

Run post-route phys_opt_design and save results
phys_opt_design
write_checkpoint -force $outputDir/top_routed_phys_opt.dcp
report_timing_summary -file $outputDir/top_routed_phys_opt_timing.rpt

The phys_opt_design example script runs both post-place and post-route physical
optimization. First, the placed design is loaded from a checkpoint, followed by post-place
phys_opt_design. The checkpoint and timing results are saved. Next the design is
routed, with progress saved afterwards. That is followed by post-route phys_opt_design
and saving the results. Note that the same command phys_opt_design is used for both
post-place and post-route physical optimization. No explicit options are used to specify the
mode.

Using Directives

Directives provide different modes of behavior for the phys_opt_design command. Only
one directive can be specified at a time, and the directive option is incompatible with other
options. The available directives are described below.
Implementation 93
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=93

Chapter 2: Implementing the Design
• Explore:
Run different algorithms in multiple passes of optimization, including replication for
very high fanout nets, SLR crossing optimization, and a final phase called Critical Path
Optimization where a subset of physical optimizations are run on the top critical paths
of all endpoint clocks, regardless of slack.

• ExploreWithHoldFix:
Run different algorithms in multiple passes of optimization, including hold violation
fixing, SLR crossing optimization and replication for very high fanout nets.

• ExploreWithAggressiveHoldFix:
Run different algorithms in multiple passes of optimization, including aggressive hold
violation fixing, SLR crossing optimization and replication for very high fanout nets.

TIP: Hold-Fixing only fixes hold time violations above a certain threshold. This is because the router is
expected to fix any hold time violations that are less than the threshold.

• AggressiveExplore:
Similar to Explore but with different optimization algorithms and more aggressive
goals. Includes a SLR crossing optimization phase that is allowed to degrade WNS
which should be regained in subsequent optimization algorithms. Also includes a hold
violation fixing optimization.

• AlternateReplication:
Use different algorithms for performing critical cell replication.

• AggressiveFanoutOpt:
Uses different algorithms for fanout-related optimizations with more aggressive goals.

• AddRetime:
Performs the default phys_opt_design flow and adds register retiming.

• AlternateFlowWithRetiming:
Perform more aggressive replication and DSP and block RAM optimization, and enable
register retiming.

• Default:
Run phys_opt_design with default settings.

• RuntimeOptimized:
Run fewest iterations, trade higher design performance for faster run time.

TIP: All directives are compatible with both post-place and post-route versions of phys_opt_design.

Using the -verbose Option

To better analyze physical optimization results, use the -verbose option to see additional
details of the optimizations performed by the phys_opt_design command.
Implementation 94
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=94

Chapter 2: Implementing the Design
The -verbose option is off by default due to the potential for a large volume of additional
messages. Use the -verbose option if you believe it might be helpful.

IMPORTANT: The phys_opt_design command operates on the in-memory design. If run twice, the
second run optimizes the results of the first run.

Physical Optimization Constraints

The Vivado Design Suite respects the DONT_TOUCH property during physical optimization.
It does not perform physical optimization on nets or cells with these properties. To speed
up the net selection process, nets with DONT_TOUCH properties are pre-filtered and not
considered for physical optimization. Additionally, Pblock assignments are obeyed such
that replicated logic inherits the Pblock assignments of the original logic. Timing exceptions
are also copied from original to replicated cells.

For more information, see this link in the Vivado Design Suite User Guide: Synthesis (UG901)
[Ref 8].

The DONT_TOUCH property is typically placed on leaf cells to prevent them from being
optimized. DONT_TOUCH on a hierarchical cell preserves the cell boundary, but
optimization can still occur within the cell.

The tools automatically add DONT_TOUCH properties of value TRUE to nets that have
MARK_DEBUG properties of value TRUE. This is done to keep the nets intact throughout the
implementation flow so that they can be probed at any design stage. This is the
recommended use of MARK_DEBUG. However there might be rare occasions on which the
DONT_TOUCH is too restrictive and prevents optimizations such as replication and retiming,
leading to more difficult timing closure. In those cases DONT_TOUCH can be set to a value
of FALSE while keeping MARK_DEBUG TRUE. The consequence of removing the
DONT_TOUCH properties is that nets with MARK_DEBUG can be optimized away and no
longer probed. If a MARK_DEBUG net is replicated, only the original net retains
MARK_DEBUG, not the replicated nets.

Physical Optimization Reports

The Tcl reporting command report_phys_opt provides details of each optimization
performed by phys_opt_design at a very fine level of detail. It must be run in the same
Vivado session as phys_opt_design while the optimization history resides in memory.
Therefore, if a report is desired, it is recommended to include the report_phys_opt
command in Tcl scripts immediately following the last phys_opt_design command.

The reports are available only for post-placement phys_opt_design optimizations. The
reports are cumulative, reflecting all phys_opt_design optimizations, including those
from multiple runs of phys_opt_design.
Implementation 95
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf;a=xSynthesisAttributes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=95

Chapter 2: Implementing the Design
The following report example shows the first entry of a fanout optimization involving a
register named pipeline_en. The following details are shown in the report:

1. The original driver pipeline_en drives 816 loads and the paths containing this high
fanout net fail timing with WNS of -1.057 ns.

2. The driver pipeline_en was replicated to create one new cell,
pipeline_en_replica.

3. The 816 loads were split between pipeline_en_replica, which takes 386 loads, and
the original driver pipeline_en, which takes the remaining 430 loads.

4. After replication and placement of pipeline_en_replica, the WNS of
pipeline_en_replica paths is +0.464 ns, and the WNS of pipeline_en paths is
reduced to zero.

5. The placement of the original driver pipeline_en was changed to improve WNS based
on the locations of its reduced set of loads.

Interactive Physical Optimization

Beginning with the 2015.3 release, Physical Optimization has the capability to "replay"
optimization using an interactive Tcl command iphys_opt_design. The
iphys_opt_design command describes a specific optimization occurrence, such as a the
replication of a critical cell or the pulling of a set of registers from a block RAM. The
command includes all the information necessary to recreate both the netlist and the
placement changes required for the optimization occurrence.

Interactive physical optimization can be used in two ways:

• Applying post-placement physical optimizations to the pre-placement netlist to
improve the overall placement result and improve design performance.

• Saving the physical optimizations in a Tcl script to be repeated as needed

Retrofitting phys_opt_design Netlist Changes

The design flow involving retrofit is described in the following figure.

X-Ref Target - Figure 2-28

Figure 2‐28: Fanout Optimization Report
Implementation 96
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=96

Chapter 2: Implementing the Design
Two runs are involved, which are the “original run,” where phys_opt_design is run after
place_design and the “replay run,” where phys_opt_design netlist changes are
performed before placement.

After the original run, the phys_opt_design optimizations are saved to a Tcl script file
using the Tcl command write_iphys_opt_tcl. The script contains a series of
iphys_opt_design Tcl commands to recreate exactly the design changes performed by
phys_opt_design in the original run. You can save the optimizations from the current
design in memory or after opening an implemented design or checkpoint where
phys_opt_design has performed optimization.

The same design and constraints are used for the replay run. Before place_design runs,
the read_iphys_opt_tcl command processes the iphys_opt_design command
script and applies the netlist changes from the original run. As a result of the netlist
changes, the design in the replay run might be more suitable for placement than the
original run. The design now incorporates the benefits of the phys_opt_design
optimizations before placement, such as fewer high-fanout nets after replication and fewer
long distance paths from block RAM outputs.

Similar to the phys_opt_design command, the read_iphys_opt_tcl command has
options to limit the replayed design steps to certain types, such as fanout optimization,
block RAM register optimization, and rewiring.

X-Ref Target - Figure 2-29

Figure 2‐29: Design Flow Involving Retrofit
Implementation 97
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=97

Chapter 2: Implementing the Design
Repeating phys_opt_design Design Changes

The design flow for repeating phys_opt_design design changes is shown in the
following figure.

This flow differs from the retrofit flow in two aspects:

• The iphys_opt_design changes are incorporated after place_design instead of
beforehand.

• Both placement changes as well as netlist changes are captured in the
iphys_opt_design Tcl script.

Typically, you would use this flow to gain more control over the post-place
phys_opt_design step. Custom "recipes" are created from combinations of replayed
optimizations and new optimizations resulting in many possibilities for exploration of
design closure.

The write_iphys_opt_tcl and read_iphys_opt_tcl commands have a -place
option to replay the placement changes from phys_opt_design. This option should be
used in this flow to repeat phys_opt_design steps after placement.

Interactive Physical Optimization Command Reference

The interactive physical optimization commands, along with corresponding options, are
described below.

X-Ref Target - Figure 2-30

Figure 2‐30: Design Flow when Repeating phys_opt_design Changes
Implementation 98
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=98

Chapter 2: Implementing the Design
write_iphys_opt_tcl

This command writes a file containing the iphys_opt_design Tcl commands
corresponding to the physical optimizations performed in the current design.

Syntax:

write_iphys_opt_tcl [-place] [-quiet] [-verbose] <output file>

The -place option directs the command to include placement information with the
iphys_opt_tcl commands. Use this option when you intend to apply placement with
netlist changes during iphys_opt_design command replay.

The write_iphys_opt_tcl command can be used any time after phys_opt_design
has been run.

read_iphys_opt_tcl

This command reads a file containing the iphys_opt_design Tcl commands
corresponding to the physical optimizations performed in a previous run.

Syntax:

read_iphys_opt_tcl [-fanout_opt] [-critical_cell_opt] [-placement_opt]
 [-rewire] [-dsp_register_opt] [-bram_register_opt]

[-uram_register_opt][-shift_register_opt] [-critical_pin_opt]
[-insert_negative_edge_ffs] [-slr_crossing_opt]

 [-include_skipped_optimizations] [-quiet]
 [-verbose] <input file>

The read_iphys_opt_design command has many of the same options as
phys_opt_design to limit the scope of replayed optimizations to only those specified.
These options include -fanout_opt, -critical_cell_opt, -placement_opt,
-rewire, -dsp_register_opt, -bram_register_opt, -uram_register_opt,
-shift_register_opt, -insert_negative_edge_ffs, -slr_crossing_opt, and
-critical_pin_opt.

Apply the skipped optimizations that are defined in the input Tcl script, as well as the
standard optimizations. These are optimizations identified by phys_opt_design that are
skipped because suitable locations for optimized logic cannot be found. When this option
is specified, the iphys_opt_design command will attempt to use the included skipped
optimizations in the pre-placement netlist.

iphys_opt_design

The iphys_opt_design command is a low-level Tcl command that performs a physical
optimization. All default phys_opt_design optimizations can be performed using
iphys_opt_design. Although it is possible to modify iphys_opt_design commands,
and even to create them from scratch, you would typically write them to a script and replay
them in a separate run.
Implementation 99
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=99

Chapter 2: Implementing the Design
RECOMMENDED: Avoid using the Tcl source command to execute a script of iphys_opt_design
commands. For most efficient processing of commands and for fastest runtime, use the
read_iphys_opt_tcl command instead.

Syntax:

iphys_opt_design [-fanout_opt] [-critical_cell_opt] [-placement_opt] [-rewire]
 [-net <arg>] -cluster <args> -place_cell <args> [-place]
 [-dsp_register_opt] [-bram_register_opt] [-uram_register_opt]
 [-shift_register_opt] [-slr_crossing_opt] [-cell <arg>]

[-packing][-unpacking][-port <arg>] [-critical_pin_opt]
[-skipped_optimization][-insert_negative_edge_ffs]
[-quiet] [-verbose]

Routing
The Vivado router performs routing on the placed design, and performs optimization on
the routed design to resolve hold time violations.

The Vivado router starts with a placed design and attempts to route all nets. It can start with
a placed design that is unrouted, partially routed, or fully routed.

For a partially routed design, the Vivado router uses the existing routes as the starting
point, instead of starting from scratch. For a fully-routed design, the router checks for
timing violations and attempts to re-route critical portions to meet timing.

Note: The re-routing process is commonly referred to as "rip-up and re-route."

The router provides options to route the entire design or to route individual nets and pins.

When routing the entire design, the flow is timing-driven, using automatic timing
budgeting based on the timing constraints.

Routing individual nets and pins can be performed using two distinct modes:

• Interactive Router mode
• Auto-Delay mode

The Interactive Router mode uses fast, lightweight timing modeling for greater
responsiveness in an interactive session. Some delay accuracy is sacrificed with the
estimated delays being pessimistic. Timing constraints are ignored in this mode, but there
are several choices to influence the routing:

• Resource-based routing (default): The router chooses from the available routing
resources, resulting in the fastest router runtime.
Implementation 100
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=100

Chapter 2: Implementing the Design
• Smallest delay (the -delay option): The router tries to achieve the smallest possible
delay from the available routing resources.

• Delay-driven (the -max_delay and -min_delay options): Specify timing
requirements based on a maximum delay, minimum delay, or both. The router tries to
route the net with a delay that meets the specified requirements.

In Auto-Delay mode, the router runs the timing-driven flow with automatic timing
budgeting based on the timing constraints, but unlike the default flow, only the specified
nets or pins are routed. This mode is used to route critical nets and pins before routing the
remainder of the design. This includes nets and pins that are setup-critical, hold-critical, or
both. Auto-Delay mode is not intended for routing individual nets in a design containing a
significant amount of routing. Interactive routing should be used instead.

For best results when routing many individual nets and pins, prioritize and route these
individually. This avoids contention for critical routing resources.

Routing requires a one-time “run time hit” for initialization, even when editing routes of
nets and pins. The initialization time increases with the size of the design and with the size
of the device. The router does not need to be re-initialized unless the design is closed and
reopened.

Design Rule Checks

Before starting routing, the Vivado tools run Design Rule Checks (DRC), including:

• User-selected DRCs from report_drc
• Built-in DRCs internal to the Vivado router engine

Routing Priorities

The Vivado Design Suite routes global resources first, such as clocks, resets, I/O, and other
dedicated resources.

This default priority is built into the Vivado router. The router then prioritizes data signals
according to timing criticality.

Impact of Poor Timing Constraints

Post-routing timing violations are sometimes the result of incorrect timing constraints.
Before you experiment with router settings, make sure that you have validated the
constraints and the timing picture seen by the router. Validate timing and constraints by
reviewing timing reports from the placed design before routing.

Common examples of the impact of poor timing constraints include:
Implementation 101
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=101

Chapter 2: Implementing the Design
• Cross-clock paths and multi-cycle paths in which a positive hold time requirement
causes route delay insertion

• Congested areas, which can be addressed by targeted fanout optimization in RTL
synthesis or through physical optimization

RECOMMENDED: Review timing constraints and correct those that are invalid (or consider RTL
changes) before exploring multiple routing options. For more information, see this link in UltraFast
Design Methodology Guide for the Vivado Design Suite (UG949) [Ref 13].

Router Timing Summary

At the end of the routing process, the router reports an estimated timing summary
calculated using actual routing delays. However, to improve run time, the router uses
incremental timing updates rather than doing the full timing computation to calculate the
timing summary. Consequently, the estimated WNS can be more pessimistic (by a few ps)
than actual timing. It is therefore possible for the router WNS to be negative while the
actual WNS is positive. If the router reports estimated WNS that is negative, the message is
a warning, not a critical warning.

TIP: When you run route_design -directive Explore, the router timing summary is based on
signoff timing.

IMPORTANT: You must check the actual signoff timing using report_timing_summary or run
route_design with the -timing_summary option.

route_design

The route_design command runs routing on the design.

route_design Syntax

route_design [-unroute] [-release_memory] [-nets <args>] [-physical_nets]
 [-pins <arg>] [-directive <arg>] [-tns_cleanup]
 [-no_timing_driven] [-preserve] [-delay] [-auto_delay]
 [-max_delay <arg>] [-min_delay <arg>] [-timing_summary] [-finalize]
 [-ultrathreads] [-quiet] [-verbose]

Using Directives

When routing the entire design, directives provide different modes of behavior for the
route_design command. Only one directive can be specified at a time. The directive
option is incompatible with most other options to prevent conflicting optimizations. The
following directives are available:
Implementation 102
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug949-vivado-design-methodology.pdf;a=xCheckingThatYourDesignIsProperlyConstrained
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=102

Chapter 2: Implementing the Design
• Explore:
Allows the router to explore different critical path placements after an initial route.

• AggressiveExplore:
Directs the router to further expand its exploration of critical path routes while
maintaining original timing budgets. The router runtime might be significantly higher
compared to the Explore directive because the router uses more aggressive
optimization thresholds to attempt to meet timing constraints.

• NoTimingRelaxation:
Prevents the router from relaxing timing to complete routing. If the router has difficulty
meeting timing, it runs longer to try to meet the original timing constraints.

• MoreGlobalIterations:
Uses detailed timing analysis throughout all stages instead of just the final stages, and
runs more global iterations even when timing improves only slightly.

• HigherDelayCost:
Adjusts the internal cost functions of the router to emphasize delay over iterations,
allowing a tradeoff of run time for better performance.

• RuntimeOptimized:
Run fewest iterations, trade higher design performance for faster run time.

• AlternateCLBRouting:
Chooses alternate routing algorithms that require extra runtime but may help resolve
routing congestion.

• Quick:
Absolute, fastest compile time, non-timing-driven, performs the minimum required for
a legal design.

• Default:
Run route_design with default settings.

Trading Compile Time for Better Routing

The following directives are methods of trading compile time for potentially better routing
results:

• NoTimingRelaxation

• MoreGlobalIterations

• HigherDelayCost

• AdvancedSkewModeling

• AggressiveExplore
Implementation 103
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=103

Chapter 2: Implementing the Design
Using Other route_design Options

Following are more details on the route_design options and option values where
applicable.

• Using -nets

This limits operation to only the list of nets specified. The option requires an argument
that is a Tcl list of net objects. Note that the argument must be a net object, the value
returned by get_nets, as opposed to the string value of the net names.

• Using -pins

This limits operation only to the specified pins. The option requires an argument, which
is a Tcl list of pin objects. Note that the argument must be a pin object, the value
returned by get_pins, as opposed to the string value of the pin names.

• Using -delay

By default, the router routes individual nets and pins with the fastest run time, using
available resources without regard to timing criticality. The -delay option directs the
router to find the route with the smallest possible delay.

• Using -min_delay and -max_delay

These options can be used only with the pin option and to specify a desired target delay
in picoseconds. The -max_delay option specifies the maximum desired slow-max
corner delay for the routing of the specified pin. Similarly the -min_delay option
specifies the minimum fast-min corner delay. The two options can be specified
simultaneously to create a desired delay range.

• Using -auto_delay

Use with -nets or -pins option to route in timing constraint-driven mode. Timing
budgets are automatically derived from the timing constraints so this option is not
compatible with -min_delay, -max_delay, or -delay.

• Using -preserve

This option routes the entire design while preserving existing routing. Without
-preserve, the existing routing is subject to being unrouted and re-routed to improve
critical-path timing. This option is most commonly used when "pre-routing" critical nets,
that is, routing certain nets first to ensure that they have best access to routing
resources. After achieving those routes, the -preserve option ensures they are not
disrupted while routing the remainder of the design. Note that -preserve is
completely independent of the FIXED_ROUTE and IS_ROUTE_FIXED net properties.
The route preservation lasts only for the duration of the route_design operation in
which is it used. The -preserve option can be used with -directive, with one
Implementation 104
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=104

Chapter 2: Implementing the Design
exception, the -directive Explore option, which modifies placement, which in turn
modifies routing.

• Using -unroute

The -unroute option removes routing for the entire design or for nets and pins, when
combined with the nets or pin options. The option does not remove routing for nets
with FIXED_ROUTE properties. Removing routing on nets with FIXED_ROUTE
properties requires the properties to be removed first.

• Using -timing_summary

The router outputs a final timing summary to the log, based on its internal estimated
timing which might differ slightly from the actual routed timing due to pessimism in the
delay estimates. The -timing_summary option forces the router to call the Vivado
static timing analyzer to report the timing summary based on the actual routed delays.
This incurs additional run time for the static timing analysis. The -timing_summary is
ignored when the -directive Explore option is used.

When the -directive Explore option is used, routing always calls the Vivado static
timing analyzer for the most accurate timing updates, whether or not the
-timing_summary option is used.

• Using -tns_cleanup

For optimal run time, the router focuses on improving the Worst Negative Slack (WNS)
path as opposed to reducing the Total Negative Slack (TNS). The -tns_cleanup option
invokes an optional phase at the end of routing, during which the router attempts to fix
all failing paths to reduce the TNS. Consequently, this option might reduce TNS at the
expense of run time but might not affect WNS. Use the -tns_cleanup option during
routing when you intend to follow router runs with post-route physical optimization.
Use of this option during routing ensures that physical optimization focuses on the
WNS path and that effort is not wasted on non-critical paths that can be fixed by the
router. Running route_design -tns_cleanup on an already routed design only
invokes the TNS cleanup phase of the router and does not affect WNS (TNS cleanup is
re-entrant). This option is compatible with -directive.

• Using -physical_nets

The -physical_nets option operates only on logic 0 and logic 1 routes. The option
covers all logic constant values in the design and is compatible with the -unroute
option. Because constant 0 and 1 tie-offs in the physical device have no exact
correlation to logical nets, these nets cannot be routed and unrouted reliably using the
-nets and -pins options.

• Using -ultrathreads
Implementation 105
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=105

Chapter 2: Implementing the Design
This option shortens router runtime at the expense of repeatability. With
-ultrathreads, the router runs faster but there is a very small variation in routing
between identical runs.

• Using -release_memory

After router initialization, router data is kept in memory to ensure optimal performance.
This option forces the router to delete its data from memory and release the memory
back to the operating system. This option should not be required for mainstream use
and is provided in case router memory must be manually managed, for example, with
extremely large designs.

• Using -finalize

When routing interactively you can specify route_design -finalize to complete
any partially routed connections.

For UltraScale+ designs, this step is required if placement and routing of registers was
changed as part of an ECO task.

• Using -no_timing_driven

This option disables timing-driven routing and is used primarily for testing the routing
feasibility of a design.

• Using -eco

This option is used with incremental mode to get a shorter runtime after some ECO
modifications to the design while keeping the routability and timing closure.

Routing Example Script 1

Route design, save results to checkpoint, report timing estimates
route_design
write_checkpoint -force $outputDir/post_route
report_timing_summary -file $outputDir/post_route_timing_summary.rpt

The route_design example script performs the following steps:

1. Routes the design
2. Writes a design checkpoint after completing routing
3. Generates a timing summary report
4. Writes the report to the specified file.

Routing is performed as part of an implementation run, or by running route_design after
place_design as part of a Tcl script.
Implementation 106
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=106

Chapter 2: Implementing the Design
The router provides info in the log to indicate progress, such as the current phase
(initialization, global routing iterations, and timing updates). At the end of global routing,
the log includes periodic updates showing the current number of overlapping nets as the
router attempts to achieve a fully legalized design. For example:

Phase 4.1 Global Iteration 0
 Number of Nodes with overlaps = 435
 Number of Nodes with overlaps = 3
 Number of Nodes with overlaps = 1
 Number of Nodes with overlaps = 0

The timing updates are provided throughout the flow showing timing closure progress.

Timing Summary

[Route 35-57] Estimated Timing Summary | WNS=0.105 | TNS=0 | WHS=0.051 | THS=0

where:

° WNS = Worst Negative Slack

° TNS = Total Negative Slack

° WHS = Worst Hold Slack

° THS = Total Hold Slack
Note: Hold time analysis can be skipped during intermediate routing phases. If hold time is not
performed, the router shows a value of "N/A" for WHS and THS.

After routing is complete, the router reports a routing utilization summary and a final
estimated timing summary. An example of the Router Utilization Summary is shown below.

Router Utilization Summary

 Global Vertical Routing Utilization = 15.3424 %
 Global Horizontal Routing Utilization = 16.3981 %
 Routable Net Status*
 *Does not include unroutable nets such as driverless and loadless.
 Run report_route_status for detailed report.
 Number of Failed Nets = 0
 Number of Unrouted Nets = 0
 Number of Partially Routed Nets = 0
 Number of Node Overlaps = 0

Routing Example Script 2

Get the nets in the top 10 critical paths, assign to $preRoutes
set preRoutes [get_nets -of [get_timing_paths -max_paths 10]]

route $preRoutes first with the smallest possible delay
route_design -nets [get_nets $preRoutes] -delay

preserve the routing for $preRoutes and continue with the rest of the design
route_design -preserve
Implementation 107
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=107

Chapter 2: Implementing the Design
In this example script, a few critical nets are routed first, followed by routing of the entire
design. It illustrates routing individual nets and pins (nets in this case), which is typically
done to address specific routing issues such as:

• Pre-routing critical nets and locking down resources before a full route.
• Manually unrouting non-critical nets to free up routing resources for more critical nets.

The first route_design command initializes the router and routes essential nets, such as
clocks.

Routing Example Script 3

get nets of the top 10 setup-critical paths
set preRoutes [get_nets -of [get_timing_paths -max_paths 10]]

get nets of the top 10 hold-critical paths
lappend preRoutes [get_nets -of [get_timing_paths -hold -max_paths 10]]

route $preRoutes based on timing constraints
route_design -nets [get_nets $preRoutes] -auto_delay

preserve the routing for $preRoutes and continue with the rest of the design
route_design -preserve

As in example 2, a few critical nets are routed first, followed by routing of the entire design.
The difference is the use of -auto_delay instead of -delay. The router performs
timing-driven routing of the critical nets, which sacrifices some runtime for greater
accuracy. This is particularly useful for situations in which nets are involved in both
setup-critical and hold-critical paths, and the routes must fall within a delay range to meet
both setup and hold requirements.

Routing Example Script 4

route_design
Unroute all the nets in u0/u1, and route the critical nets first
route_design -unroute [get_nets u0/u1/*]
route_design -delay -nets [get_nets $myCritNets]
route_design -preserve

The strategy in this example script illustrates one possible way to address timing failures
due to congestion. In the example design, some critical nets represented by $myCritNets
need routing resources in the same device region as the nets in instance u0/u1. The nets in
u0/u1 are not as timing-critical, so they are unrouted to allow the critical nets
$myCritNets to be routed first, with the smallest possible delay. Then route_design
-preserve routes the entire design. The -preserve switch preserves the routing of
$myCritNets while the unrouted u0/u1 nets are re-routed. Table 2-12 summarizes the
commands in the example.
Implementation 108
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=108

Chapter 2: Implementing the Design
Router Messaging

The router provides helpful messages when it struggles to meet timing goals due to
congestion or excessive hold violation fixing. The router commonly exhibits these
symptoms when it struggles:

• Excessive runtimes, on the order of hours per iteration
• Large number of overlaps reported, in the hundreds or thousands
• Setup and hold slacks become progressively worse, as seen in the Estimated Timing

Summaries

The router might provide further warning messages when any of the following occurs:

• Congestion is expected to have negative timing closure impact, which typically occurs
when the congestion level is 5 or greater. Level 5 indicates a congested region
measuring 32x32 (2^5 = 32).

• The overall router hold-fix effort is expected to be very high, which impacts the ability
to meet overall setup requirements.

• Specific endpoint pins become both setup-critical and hold-critical and it is difficult or
impossible to satisfy both. The message includes the names of up to ten pins for design
analysis.

• Specific CLBs experience high pin utilization or high routing resource utilization which
results in local congestion. The messages will include the names of up to ten of the
most congested CLBs.

• In extreme cases with severe congestion, the router warns that congestion is
preventing the router from routing all nets, and the router will prioritize the successful
completion of routing all nets over timing optimizations.

When targeting UltraScale devices or later, the router generates a table showing initial
estimated congestion when congestion might affect timing closure. The table does not
show specific regions but gives a measure of different types of congestion for an overall
assessment. The congestion is categorized into bins of Global (design-wide), Long
(connections spanning several CLBs), and Short Congestion. The tables of different runs can
be compared to determine which have better chances of meeting performance goals
without being too negatively impacted by congestion.

INFO: [Route 35-449] Initial Estimated Congestion
 __
	Global Congestion	Long Congestion	Short Congestion			
	___________________	___________________	___________________			
Direction	Size	% Tiles	Size	% Tiles	Size	% Tiles
___________	________	__________	________	__________	________	__________
NORTH	8x8	0.13	4x4	0.11	32x32	1.14
___________	________	__________	________	__________	________	__________
SOUTH	8x8	0.21	4x4	0.35	16x16	1.03
___________	________	__________	________	__________	________	__________
Implementation 109
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=109

Chapter 2: Implementing the Design
EAST	2x2	0.05	2x2	0.15	8x8	0.97
___________	________	__________	________	__________	________	__________
WEST	2x2	0.03	2x2	0.17	8x8	0.83
___________	________	__________	________	__________	________	__________

Report Design Analysis provides complexity and congestion analysis that can give further
insight into the causes of congestion and potential solutions. The congestion reporting also
includes an Average Initial Routing Congestion, which is not exactly the same as the
congestion reported by the router, but can be analyzed against the pre-route design to
determine which regions are causing problems. For further information on Report Design
Analysis, refer to the Vivado Design Suite User Guide: Design Analysis and Closure
Techniques (UG906) [Ref 10].

Intermediate Route Results

Even when routing fails, the router continues and tries to provide a design that is as
complete as possible to aid in debug. If the routing is not complete, you might have to
intervene manually.

Use the report_route_status command to identify nets with routing errors. For more
information see this link in the UltraFast Design Methodology Guide for the Vivado Design
Suite (UG949) [Ref 13].

The router reports routing congestion during Route finalize. The highest congested regions
are listed for each direction (North, East, South, and West). For each region, the information
includes the dimensions in routing tiles, the routing utilization labeled "Max Cong," and the
bounding box coordinates (lower-left corner to upper-right corner). The “INT_xxx” numbers
are the coordinates of the interconnecting routing tiles that are visible in the device routing
resource view.

For a complete description of the Tcl reporting commands and their options, see the Vivado
Design Suite Tcl Command Reference Guide (UG835) [Ref 19].

Incremental Implementation
Incremental Implementation refers to the implementation phase of the Incremental
Compile design flow that:

Table 2‐12: Commands Used During Routing for Design Analysis

Command Function

report_route_status Reports route status for nets
report_timing Performs path endpoint analysis
report_design_analysis Provides information about congested areas
Implementation 110
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_route_status
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_timing
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xreport_design_analysis
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug949-vivado-design-methodology.pdf;a=xRouting
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=110

Chapter 2: Implementing the Design
• Preserves QoR predictability by reusing prior placement and routing from a reference
design.

• Speeds up place and route run time or attempts last mile timing closure.

A diagram of the Incremental Implementation design flow is provided in the following
figure.

Note: This diagram also illustrate the incremental synthesis flow. For more details about incremental
synthesis flow, see the "Incremental Synthesis" section in the Vivado Design Suite User Guide:
Synthesis (UG901)[Ref 8].

Incremental Implementation Flow Designs

As shown in Figure 2-31, the Incremental Run requires a reference checkpoint to be read in
to start the incremental place and route. The read_checkpoint -incremental
<reference>.dcp command initiates the incremental flow and must be issued before
place_design.

Reference Design

The reference design is typically a fully routed checkpoint from a previous iteration or a
different variation of the incremental design. If using a different variation or a design, it is
important that the hierarchy names from the reference design match the incremental
design.

X-Ref Target - Figure 2-31

Figure 2‐31: Incremental Compile Design Flow

Reference
RTL

Synthesis

Normal
Place &
Route

Reference
Checkpoint

RTL
Change

Netlist
ChangeReference

Netlist

Revised
RTL

Synthesis

Revised
Netlist

Incremental
Place &
Route

Revised
Checkpoint

Incremental
Run
Implementation 111
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=111

Chapter 2: Implementing the Design
When lower levels of reuse are required, for example reusing only RAM and DSP block
placement, it is acceptable to have as little as the placement information for those cells in
the reference checkpoint. The reference design must match device. It is also recommended
to match tool version but this is not a requirement.

Incremental Design

The incremental design is the updated design that is to be run through the implementation
tools. It can include RTL Changes, Netlist Changes or both.

Constraint changes are allowed but general tightening of constraints will significantly
impact placement and routing and is generally best added outside of the incremental flow.

Incremental Directives

There are 3 directives that control how the incremental flow behaves. Incremental directives
are set using the command:

read_checkpoint -directive <directiveName> <reference>.dcp

RuntimeOptimized

The RuntimeOptimized directive tries to reuse as much placement and routing information
from the reference run as possible. The timing target will be the same as the reference run.
If the reference run has WNS -0.050, then the incremental run will not try to close timing on
this design and instead also target -0.050. This impacts setup time only. This is the default
behavior when no directive is specified.

TimingClosure

The TimingClosure directive will reuse placement and routing from the reference but it
will rip up paths that do not meet timing and try to close them. Some run time intensive
algorithms are run to get as much timing improvement as possible but as the placement is
largely given up front gains are limited. This technique can be effective on designs with a
reference WNS > -0.250 ns.

Note: For further chance of closing timing, run report_qor_suggestions to generate
automated design enhancements.

Quick

Quick is a special mode that does not call the timer during place and route and instead uses
the placement of related logic as a guide. It is the fastest mode but not applicable for most
designs. Designs will need WNS > 1.000 ns to be effective. These are typically ASIC
emulation or prototyping designs.
Implementation 112
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=112

Chapter 2: Implementing the Design
Note: In versions 2019.1 and before, the same behavior was achieved via directive mapping at
place_design and route_design. The Explore directive was mapped to TimingClosure, Quick mapped
to Quick and other directives mapped to RuntimeOptimized.

CAUTION! Users upgrading from 2019.1 and earlier who are specifying the Explore or Quick directives
for place_design will need to specify the incremental directive to achieve the equivalent
functionality in 2020.1.

Incremental Modes

The incremental implementation works in one of three modes: automatic, high reuse or low
reuse.

Automatic Incremental

Automatic Incremental Implementation allows a user to activate the Incremental
Implementation flow but let Vivado decide whether to use the default or incremental
algorithms at the time read_checkpoint -auto_incremental is issued. It bases this
decision on the quality of the reference checkpoint.

In order to accept the reference checkpoint, the following criteria must be met:

• 94% cell matching

• 90% net matching

• WNS > -0.250

By guaranteeing a good reference checkpoint, the incremental flow can get good QoR
results and when the checkpoint is poor a new place and route solution is sought.

In project mode, the updating of the checkpoint is also managed for you and is adhering to
the above criteria. In non project mode, the user has control over whether to update the
checkpoint.

The flow is activated using the following command:

read_checkpoint -incremental -auto_incremental <reference>.dcp

When updating the checkpoint, it is worth checking to ensure that WNS has not degraded
beyond acceptable limits. This can be done by running the following command at the end
of the implementation flow:

if {[get_property SLACK [get_timing_path]] > -0.250} {
file copy -force <postroute>.dcp <reference>.dcp

}

Implementation 113
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=113

Chapter 2: Implementing the Design
High Reuse Mode

In High Reuse mode, incremental implementation is run if cell reuse is above 75%. When
cell reuse is below this, placement information is not reused and the flow will continue with
the default algorithms. The target WNS is determined by a combination of both the
reference checkpoint and the directive.

For high reuse mode, the following message is printed in the log file after place_design has
started:

INFO: [Place 46-42] Incremental Compile is being run in High Reuse Mode.

Low Reuse Mode

In Low Reuse mode, reuse is determined by the read_checkpoint -reuse_object
<objects> -incremental <reference>.dcp switch. In this mode:

• The user can target cell types, hierarchical cells, clock regions and SLRs to be reused.

• The Target WNS is always 0.

• Incremental directives are ignored and the directives from the default place and route
algorithms are used.

Low reuse mode is most effective on designs that are exhibiting challenges to the place and
route in specific areas. Examples of use cases are:

• Reusing Block Memory or DSP placement from a good run can improve the total
number of good runs at each place and route iteration.

• Reusing a particular level of hierarchy that closes timing intermittently.

You can determine if the tool is in low reuse mode by examining the log file after
place_design has started for the following message:

INFO: [Place 46-42] Incremental Compile is being run in Low Reuse Mode.

Running Incremental Place and Route

After the reference checkpoint is read by Vivado, the following actions are taken:

• Physical optimizations that match the ones in the reference run are carried out on the
incremental design automatically.

• The netlist in the incremental design is compared to the reference design to identify
matching cells and nets.

• Placement from the reference design checkpoint is reused to place matching cells in
the incremental design.
Implementation 114
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=114

Chapter 2: Implementing the Design
• Routing is reused to route matching nets on a per-load-pin basis. If a load pin
disappears due to netlist changes, then its routing is discarded, otherwise it is reused.
Therefore it is possible to have partially-reused routes.

Incremental placement and incremental routing might discard cell placements and net
routes instead of reusing them, if it helps improve routability of the netlist or helps maintain
performance comparable to that of the reference design.

Design objects that do not match between the reference design and the current design are
placed after incremental placement is complete and routed after routing is complete.

read_checkpoint -incremental

After the current design is loaded, load the reference design checkpoint using the
read_checkpoint -incremental <dcp> command. The -incremental option
enables the Incremental Compile design flow for subsequent place and route operations

Incremental Implementation Controls

If no command arguments (other than -incremental) are specified, the tool reuses as
much of the reference checkpoint information that it can. However, command arguments
can be applied to the read_checkpoint -incremental command that give the user
control over what is used and not reused.

-auto_incremental Option

This enables the automatic incremental flow described in Automatic Incremental.

-reuse_objects Option

-reuse_objects <cell objects>

The -reuse_objects can take either cells, clock regions or SLRs as an argument. When
specifying cells, use the get_cells command. When using get_cells, hierarchical or
leaf cells can be specified along with cell types when using the -filter switch. When
specifying clock regions (get_clock_regions) or SLRs (get_slrs) for reuse, the cells in
the region of the reference checkpoint will be reused if they exist in the incremental run.
When specifying any of the arguments, net reuse is inferred based on the cells identified for
reuse.

-fix_objects Option

-fix_objects <cell objects>

The -fix_objects option can be used to lock a subset of cells. These cells are not
touched by the incremental place and route tools. The -fix_objects option only works
on cells that match and are identified for cell reuse. This is the full design space when
Implementation 115
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=115

Chapter 2: Implementing the Design
-reuse_objects is not specified, or the associated cells when -reuse_objects is
specified.

Examples

The following are examples of their use:

• To reuse and fix only Block Memory placement:
read_checkpoint -incremental routed.dcp -reuse_objects [all_rams] -fix_objects [all_rams]

• To reuse and fix only DSP placement:
read_checkpoint -incremental routed.dcp -reuse_objects [all_dsps] -fix_objects [all_dsps]

• To reuse both Block Memory and DSP placement, and fix the placement of all cells
specified for reuse:
read_checkpoint -incremental routed.dcp -reuse_objects [all_rams] \
-reuse_objects [all_dsps] -fix_reuse [current_design]

• To reuse all cells at and below the level of hierarchy indicated and allow the tools some
flexibility to deal with changes in critical areas:
read_checkpoint -incremental routed.dcp \
-reuse_objects [get_cells <cell_name>] -fix_objects [get_cells <cell_name>]

Using report_incremental_reuse

The report_incremental_reuse command is available at any stage of the flow after
read_checkpoint -incremental has been used. The report allows the user to compare
the following between the reference and current design runs:

• Examine cell, net, I/O and pin reuse in the current run
• Runtimes
• Timing WNS at each stage of the flow
• Tool options
• Tool versions
• Iphys_opt_design replaying optimization
• QoR suggestions applied with the incremental flow

By examining the cell reuse and the other factors mentioned above, a user can determine
the effectiveness of the incremental. Where the flow is judged ineffective, a user would
typically update the checkpoint to a newer version of the design or adjust the tool flow.

The report is split into 7 sections:

1. Flow Summary

° This reports the general information for the current whole incremental flow:
Implementation 116
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=116

Chapter 2: Implementing the Design
1. Incremental Flow Summary

+-----------------------+---------------+
| Flow Information | Value |
+-----------------------+---------------+
Synthesis Flow	Default
Auto Incremental	No
Incremental Directive	TimingClosure
Reuse mode	High
Target WNS	-0.160
QoR Suggestions	0
+-----------------------+---------------+

2. Reuse Summary

° This contains an overview of the cells, nets, pins, and ports that are reused.

An example is:

2. Reuse Summary

+------+----------------------+--------------------+--------------------+---------+
| Type | Matched % (of Total) | Reuse % (of Total) | Fixed % (of Total) | Total |
+------+----------------------+--------------------+--------------------+---------+
Cells	100.00	99.82	0.38	688982
Nets	99.98	99.72	0.00	795869
Pins	-	99.11	-	2823905
Ports	100.00	100.00	100.00	667
+------+----------------------+--------------------+--------------------+---------+

3. Reference Checkpoint Information

° This contains information about the reference checkpoint. From this section you can
examine the:
- Vivado version that generated it
- Stage of the implementation
- Recorded WNS and WHS
- Speedfile version information of both the reference and incremental runs

An example is:

3. Reference Checkpoint Information
+--------------------------------+----------------------------+
| DCP Information | Value |
+--------------------------------+----------------------------+
| Vivado Version | 2020.2 |
| DCP State | POST_ROUTE |
| Recorded WNS | -0.305 |
| Recorded WHS | 0.000 |
| Reference Speed File Version | PRODUCTION 1.27 02-28-2020 |
| Incremental Speed File Version | PRODUCTION 1.27 02-28-2020 |
+--------------------------------+----------------------------+
* Recorded WNS/WHS timing numbers are estimated timing numbers. They may vary
slightly from sign-off timing numbers.
Implementation 117
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=117

Chapter 2: Implementing the Design
4. Comparison with Reference Run

° This contains useful metrics about a comparison with the reference run. From this
section you can compare:
- Runtime information
- WNS at each stage of the flow
- Tool options at each stage of the flow.

An example is:

5. Optimization Comparison With Reference Run

° This section contains the iphys_opt_design replaying information which is retrieved
from the reference dcp, along with the RQS suggestions derived, generated, and
applied in the current incremental flow.

An example is:

5.1 iphys_opt_replay Optimizations

+-------------------------+--------+------------+
| iphys_opt_design replay | Reused | Not Reused |
+-------------------------+--------+------------+
hold_fix	113	0
fanout_opt	2	0
critical_cell_opt	10	0
restruct_opt	4	0
+-------------------------+--------+------------+

5.2 QoR Suggestion Optimizations

+--+-------+
| QoR Suggestions | Value |
+--+-------+
QoR Suggestions	0
Suggestions Included In Reference	0
Yet to apply	0

X-Ref Target - Figure 2-32

Figure 2‐32: Reference Run Comparison
Implementation 118
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=118

Chapter 2: Implementing the Design
Applied	0
Failed to apply	0
New Suggestions	0
Yet to apply	0
Applied	0
Failed to apply	0
Non Incremental Friendly New Suggestions	0
+--+-------+

6. Command Comparison with Reference Run

° This section contains the commands executed for flow command comparison.

An example is:

6.1 Reference:

opt_design -directive Default
place_design -directive ExtraPostPlacementOpt
phys_opt_design -directive AlternateFlowWithRetiming
phys_opt_design -directive AggressiveFanoutOpt
phys_opt_design -directive AggressiveExplore
phys_opt_design -directive AlternateReplication
route_design -directive Explore
phys_opt_design -directive Explore

6.2 Incremental:

opt_design -directive Default
read_checkpoint -directive TimingClosure -incremental
/group/2020.1/post_route_phys_opt2.dcp

7. Non-reuse Information

° This contains metrics about what was not reused and why.

An example is:

7. Non Reuse Information

+--+------+
| Type | % |
+--+------+
Non-Reused Cells	0.17
Discarded illegal placement due to netlist changes	0.17
Discarded to improve timing	0.01
Partially reused nets	0.00
Non-Reused nets	0.27
Non-Reused Ports	0.00
+--+------+

Factors Affecting Run Time Improvement

Factors that can affect run time improvement include:
Implementation 119
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=119

Chapter 2: Implementing the Design
• The amount of change in timing-critical areas. If critical path placement and routing
cannot be reused, more effort is required to preserve timing. Also, if the small design
changes introduce new timing problems that did not exist in the reference design,
higher effort and run time might be required, and the design might not meet timing.

• The initialization portion of the place and route run time. In short place and route runs,
the initialization overhead of the Vivado placer and router might eliminate any gain
from the incremental place and route process. For designs with longer run times,
initialization becomes a small percentage of the run time.

Using Incremental Implementation

In both Project Mode and Non-Project Mode, incremental implementation mode is entered
when you load the reference design checkpoint using the read_checkpoint
-incremental <dcp_file> command where <dcp_file> specifies the path and file
name of the reference design checkpoint. Loading the reference design checkpoint with the
-incremental option enables the Incremental Compile design flow for subsequent place
and route operations. In Non-Project Mode, read_checkpoint -incremental should
follow opt_design and precede place_design.

Using Incremental Implementation in Non-Project Mode

To specify a design checkpoint file (DCP) to use as the reference design, and to run
incremental place in Non-Project Mode:

1. Load the current design.
2. Run opt_design.
3. Run read_checkpoint -incremental <dcp_file>.
4. Run place_design.
5. Run phys_opt_design (optional). Run phys_opt_design if it was used in the

reference design.
6. Run route_design.

link_design; # to load the current design
opt_design
read_checkpoint -incremental <dcp_file>
place_design
phys_opt_design;
route_design

Using Incremental Implementation in Project Mode

In Project Mode, you can set the incremental compile option in two ways: in the Design
Runs window and in the Implementation section of the Settings dialog box. To set the
incremental compile option in the Design Runs window:
Implementation 120
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=120

Chapter 2: Implementing the Design
1. Right-click a run in the Design Runs window.
2. Click Set Incremental Implementation from the context menu.

To set Incremental Implementation in the Settings dialog box:

1. In the Flow Navigator, select Settings under Project Manager.
2. Select Implementation.
3. Next to Incremental Implementation, select the button to enable the Incremental

Implementation selection dialog box.

To enable automatic checkpoint management as described above in Automatic Mode….,
select the Automatically use the checkpoint from the previous run radio button.

Alternatively use the TCL command:

set_property AUTO_INCREMENTAL_CHECKPOINT 1 [get_runs <run_name>]

To clean the reference data, set Incremental Implementation to “Disable Incremental
Compile” and reset the run. After resetting the run, it can be turned on again starting fresh.

To reference a user specified checkpoint, select the option Specify Design Checkpoint.
When a checkpoint is selected, it will be added to the utils_1 fileset. Alternatively use the
TCL commands:

add_files -fileset utils_1 -norecurse <reference>.dcp
set_property INCREMENTAL CHECKPOINT <reference>.dcp [get_runs <run_name>]

X-Ref Target - Figure 2-33

Figure 2‐33: Enabling Automatic Incremental Implementation
Implementation 121
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=121

Chapter 2: Implementing the Design
To disable incremental compile for the current run:

• Select Disable incremental compile in the Incremental Implementation window.

or

• Run the following command in the Tcl Console:
set_property AUTO_INCREMENTAL_CHECKPOINT 0 [get_runs <run_name>]

Note: Low reuse mode is not natively supported in project mode. It can be achieved using a post
opt_design Tcl script with the read_checkpoint -incremental command.

Orphaned Route Segments

Some cells might have been eliminated from the current design, or moved during
placement, leaving orphaned route segments from the reference design. If you are running
in the Vivado IDE, you might see potentially problematic nets. These orphaned or
improperly connected route segments are cleaned up during incremental routing by the
Vivado router.

The following INFO message appears during placement.

INFO: [Place 46-2] During incremental compilation, routing data from the original
checkpoint is applied during place_design. As a result, dangling route segments and
route conflicts may appear in the post place_design implementation due to changes
between the original and incremental netlists. These routes can be ignored as they
will be subsequently resolved by route_design. This issue will be cleaned up
automatically in place_design in a future software release.

Using Synplify Compile Points

The Incremental Compile flow is most effective when the revised and reference designs are
most similar, preferably with at least 95 percent of the cells matching. Synthesis flows such
as Synplify Compile Points minimize the amount of netlist changes resulting from RTL
changes. Compile points are logical boundaries across which no optimization might occur.
This sacrifices some design performance for predictability, but when combined with
Incremental Compile, the resulting flow yields even more run time savings and
predictability.

Synplify provides two different compile point flows, which are automatic and manual. In the
automatic compile point mode, compile points are automatically chosen by synthesis,
based on existing hierarchy and utilization estimates. This is a pushbutton mode. Aside
from enabling the flow, there is no action required on your part. To enable, check the Auto
Compile Point check box in the GUI or add the following setting to the Synplify project:

set_option -automatic_compile_point 1

The manual compile point flow offers more flexibility, but requires more interaction to
choose compile points. The flow involves compiling the design, then using either the SCOPE
Implementation 122
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=122

Chapter 2: Implementing the Design
editor Compile Points tab or the define_compile_point setting. For further information
on compile point flows, see the Synplify online help.

Using Incremental Synthesis

Vivado Synthesis can be run incrementally. In this flow, the tool will have a reference run
that will be referred to in later runs. It will be able to detect when the design has changed
and then only re-run synthesis on sections of the design that have changed. The key
advantage of this flow is that for designs with small changes, the runtime will be greatly
reduced. In addition, the QoR of the design will fluctuate less when small changes are
inserted into the RTL.

Saving Post-Reuse Checkpoints

After read_checkpoint -incremental applies the reference checkpoint to the current
design, the incremental reuse data is retained throughout the flow. If a checkpoint is saved,
then reloaded in the same or a separate Vivado Design Suite session, it remains in
incremental compile mode. Consider the following command sequence:

opt_design; # optimize the current design
read_checkpoint -incremental reference.dcp; # apply reference data to current design
write_checkpoint incr.dcp; # save a snapshot of the current design
read_checkpoint incr.dcp
place_design
write_checkpoint top_placed.dcp; # save incremental placement result
route_design

Upon read_checkpoint incr.dcp, the Vivado tools determine that incremental data
exists, and the subsequent place_design and route_design commands run
incrementally.

Even if you exit and restart the Vivado Design Suite, in the following command sequence
the route_design command is run in incremental mode, using the routing data from the
original reference checkpoint reference.dcp:

read_checkpoint top_placed.dcp
phys_opt_design
route_design

Constraint Conflicts

Constraints of the revised design can conflict with the physical data of the reference
checkpoint. When conflicts occur, the behavior depends on the constraint used. This is
illustrated in the following examples.
Implementation 123
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=123

Chapter 2: Implementing the Design
LOC Constraint Conflict Example

A constraint assigns a fixed location RAMB36_X0Y0 for a cell cell_A. However in the
reference checkpoint reference.dcp, cell_A is placed at RAMB36_X0Y1 and a different
cell cell_B is placed at RAMB36_X0Y0.

After running read_checkpoint -incremental reference.dcp, cell_A is placed
at RAMB36_X0Y0 and cell_B is unplaced. The cell cell_B is placed during incremental
placement.

PBlock Conflict Example

In the reference checkpoint there are no Pblocks, but one has been added to the current
run. Where there is a conflict, the placement data from the reference checkpoint is used.

Incremental Compile Advanced Analysis

The Vivado tools provide reporting, timing labels, and object properties for advanced reuse
analysis.

Reuse Reporting

The report_incremental_reuse command provides options for more detailed analysis,
similar to report_utilization.

-cells <list of cells>

The -cells option limits the reuse reporting to the list of given cells instead of reporting
reuse of the entire design.

For example, limit the reuse reporting to only block RAM:

report_incremental_reuse -cells [get_cells -hierarchical -filter { PRIMITIVE_TYPE =~
BLOCKRAM.*.* }]

Incremental Reuse Summary

1. Reuse Summary

+-------+----------------------+--------------------+--------------------+-------+
| Type | Matched % (of Total) | Reuse % (of Total) | Fixed % (of Total) | Total |
+-------+----------------------+--------------------+--------------------+-------+
| Cells | 100.00 | 100.00 | 0.00 | 16 |
+-------+----------------------+--------------------+--------------------+-------+

2. Reference Checkpoint Information

+----------------+-------------------------+
| DCP Location: | ./impl_1/bft_routed.dcp |
Implementation 124
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=124

Chapter 2: Implementing the Design
+----------------+-------------------------+

+--------------------------------+-------------------------------+
| DCP Information | Value |
+--------------------------------+-------------------------------+
Vivado Version	v2018.1
DCP State	POST_ROUTE
Recorded WNS	1.749
Recorded WHS	0.024
Reference Speed File Version	PRODUCTION 1.24.01 01-12-2017
Incremental Speed File Version	PRODUCTION 1.24.01 01-12-2017
+--------------------------------+-------------------------------+

3. Comparison with Reference Run

+----------------+---------------------+-----------------------+---------------------+
| | WNS(ns) |Runtime(elapsed)(hh:mm)| Runtime(cpu)(hh:mm) |
+----------------+---------+-----------+-----------+-----------+-----------+---------+
| Stage |Reference|Incremental| Reference |Incremental|Reference|Incremental|
+----------------+---------+-----------+-----------+-----------+---------+-----------+
synth_design	1.09		< 1 min	00:01		00:01
opt_design			00:01	00:01	00:01	00:01
read_checkpoint				< 1 min		< 1 min
place_design	2.338	1.721	< 1 min	< 1 min	< 1 min	< 1 min
route_design	1.749	1.746	00:01	00:01	00:01	00:001
+----------------+---------+-----------+-----------+-----------+---------+-----------+

4. Non Reuse Information

+------------------+------+
| Type | % |
+------------------+------+
| Non-Reused Cells | 0.00 |
+------------------+------+

Hierarchical Implementation Reuse Summary

The -hierarchical option displays a breakdown of cell reuse at each hierarchical level.
Following is an example of report_incremental_reuse -hierarchical:

Note: The sample report has been truncated horizontally and vertically to fit.
1. Summary

+--------------------------+------------------+--------+-----+---------------------+
| Instance | Module | Reused | New | Discarded(Illegal)* |
+--------------------------+------------------+--------+-----+---------------------+
bft	(top)	3607	9	2
(bft)	(top)	210	9	2
arnd1	round_1	256	0	0
Implementation 125
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=125

Chapter 2: Implementing the Design
transformLoop[0].ct	coreTransform_43	32	0	0
transformLoop[1].ct	coreTransform_38	32	0	0
transformLoop[2].ct	coreTransform_42	32	0	0
transformLoop[3].ct	coreTransform_40	32	0	0
transformLoop[4].ct	coreTransform_45	32	0	0
+--------------------------+------------------+--------+-----+---------------------+
* Discarded illegal placement due to netlist changes
** Discarded to improve timing
*** Discarded placement by user
**** Discarded due to its control set source is unguided
***** Discarded due to its connectivity has Loc Fixed Insts

The reuse status of each cell is reported, beginning with the top-level hierarchy, then
covering each level hierarchy contained within that level. The report progresses to the
lowest level of hierarchy contained within the first submodule, then moves on to the next
one.

In this example, the top level cell is bft with a cumulative reuse total of 3,607 cells with 9
new cells. The row with bft in parentheses show the cell reuse status contained within bft
and but not its submodules. Of the 3,607 cells, only 210 are within bft and the remainder
are within its submodules. However all 9 new cells are within bft. Within bft is a
submodule arnd1 containing 256 reused cells, and no cells within arnd1 itself, only in
submodules transformLoop[0].ct, transformLoop[1].ct, and so on.

There are 5 columns indicating cell reuse status at each level, although only the first one
Discarded(Illegal) is shown. These columns have footnote references in the report
with further reasons for discarding reused placement.

* Discarded illegal placement due to netlist changes

** Discarded to improve timing

*** Discarded placement by user

**** Discarded due to its control set source is unguided

***** Discarded due to its connectivity has Loc Fixed Insts

Instead of reporting all hierarchical levels, you can use the -hierarchical_depth option
to limit the number of submodules to an exact number of levels. The following is the
previous example, adding -hierarchical_depth of 1:

report_incremental_reuse -hierarchical -hierarchical_depth 1

1. Summary

+----------+--------+--------+-----+---------------------+
| Instance | Module | Reused | New | Discarded(Illegal)* |
+----------+--------+--------+-----+---------------------+
| bft | (top) | 3607 | 9 | 2 |
+----------+--------+--------+-----+---------------------+
Implementation 126
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=126

Chapter 2: Implementing the Design
This limits reporting to the top level bft. If you had used a -hierarchical_depth of 2,
the top and each level of hierarchy contained within bft would be reported, but nothing
below those hierarchical cells.

Hierarchical Implementation Reuse Summary

1. Summary

+--------------------------------+---------------+--------+-----+---------------------+
| Instance | Module | Reused | New | Discarded(Illegal)* |
+--------------------------------+---------------+--------+-----+---------------------+
bft	(top)	3607	9	2
(bft)	(top)	210	9	2
arnd1	round_1	256	0	0
arnd2	round_2	256	0	0
arnd3	round_3	256	0	0
arnd4	round_4	256	0	0
egressLoop[0].egressFifo	FifoBuffer_6	173	0	0
+--------------------------------+---------------+--------+-----+---------------------+

Timing Reports

After completing an incremental place and route, you can analyze timing with details of cell
and net reuse. Objects are tagged in timing reports to show the level of physical data reuse.
This identifies whether or not your design updates are affecting critical paths.

The following references are used with their associated meaning:

• (ROUTING): Both the cell placement and net routing are reused.
• (PLACEMENT): The cell placement is reused but the routing to the pin is not reused.
• (MOVED): Neither the cell placement nor the routing to the pin is reused.
• (NEW): The pin, cell, or net is a new design object, not present in the reference design.

See the following example.

Routing SLICE_X65Y175 FDRE(Prop_EFF_SLICEL_C_Q)

0.114 -0.446 r base_mb_i/microblaze_0/Q
 net (fo=637, routed) 0.752 0.306

base_mb_i/microblaze_0/reset_bool_for_rst
Routing SLICE_X73Y171 FDRE r
base_mb_i/microblaze_0/command_reg_clear_reg/R
--

The above report, as it appears in the Vivado IDE, appears below.
Implementation 127
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=127

Chapter 2: Implementing the Design
To remove the labels from the timing report, use the report_timing
-no_reused_label option.

Object Properties

The read_checkpoint -incremental command assigns two cell properties which are
useful for analyzing incremental flow results using scripts or interactive Tcl commands.

• IS_REUSED: A boolean property on cell, port, net, and pin objects. The property is set
to TRUE on the respective object if any of the following incremental data is reused:

° A cell placement

° A package pin assignment for a port

° Any portion of the routing for a net

° Routing to a pin
• REUSE_STATUS: A string property on cells and nets denoting the reuse status after

incremental placement and routing.

Possible values for cells are:

° New

° Reused

° Discarded placement to improve timing

° Discarded illegal placement due to netlist changes

Possible values for nets are:

° REUSED

° NON_REUSED

° PARTIALLY_REUSED

• IS_MATCHED: A boolean property assigned to a primitive-level cell. The property is set
to TRUE on leaf cells that have matching leaf cells in the reference design. Matching
cells are eligible for placement reuse.

TIP: Xilinx has published several applications in XHUB, in the Incremental Compile package. These
applications include visualization of placement and routing reuse when analyzing critical path and

X-Ref Target - Figure 2-34

Figure 2‐34: Incremental Reuse Summary in Vivado
Implementation 128
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=128

Chapter 2: Implementing the Design
other design views. Also included is an application for automatic Incremental Compile for the project
flow, which automatically manages reference checkpoints for incremental design runs.

TIP: For more information on how to effectively use incremental compile, see this link in UltraFast
Design Methodology Guide for the Vivado Design Suite (UG949) [Ref 13].
Implementation 129
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug949-vivado-design-methodology.pdf;a=xIncrementalFlows
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=129

Chapter 3

Analyzing and Viewing Implementation
Results

Monitoring the Implementation Run
Monitoring the implementation run allows you to:

• Read the compilation information.
• Review warnings and errors in the Messages window.
• View the Project Summary.
• Open the Design Runs window.

Monitor the status of a Synthesis or Implementation run in the Log window.

Viewing the Run Status Display

The status of a run that is in progress can be displayed in two ways for synthesis and
implementation runs. These status displays show that a run is in progress. They allow you to
cancel the run if desired.

• You can find a run status indicator in the project status bar at the upper right corner of
the Vivado® IDE, as shown in Figure 3-1. The run status indicator displays a scrolling
bar to indicate that the run is in process. You can click Cancel to end the run.

• You can also find a run status indicator in the Design Runs window, as shown at the
bottom left of Figure 3-2. It displays a circular arrow (noted in red in the figure) to
indicate that the run is in process. You can select the run and use the Reset Run
command from the popup menu to cancel the run.

X-Ref Target - Figure 3-1

Figure 3‐1: Run Status Indicator
Implementation 130
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=130

Chapter 3: Analyzing and Viewing Implementation Results
Cancelling or Resetting the Run

If you cancel a run that is in-progress, by clicking either Cancel or Reset Run, the Vivado
IDE prompts you to delete any run files created during the canceled run, as shown in
Figure 3-3.

Select Delete Generated Files to clear the run data from the local project directories.

RECOMMENDED: Delete any data created as a result of a cancelled run to avoid conflicts with future
runs.

Viewing the Log in the Log Window

The Log window opens in the Vivado IDE after you launch a run. It shows the standard
output messages. It also displays details about the progress of each individual
implementation process, such as place_design and route_design.

The Log window, shown Figure 3-4, can help you understand where different messages
originate to aid in debugging the implementation run.

X-Ref Target - Figure 3-2

Figure 3‐2: Implementation Run Status

X-Ref Target - Figure 3-3

Figure 3‐3: Cancel Implementation
Implementation 131
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=131

Chapter 3: Analyzing and Viewing Implementation Results
Pausing Output

Click the Pause output button to pause the output to the Log window. Pausing allows
you to read the log while implementation continues running.

Displaying the Project Status

The Vivado IDE uses several methods to display the project status and which step to take
next. The project status reports only the results of the major design tasks.

The project status is displayed in the Project summary and the Status bar. It allows you to
immediately see the status of a project when you open the project, or while you are running
the design flow commands, including:

• RTL elaboration
• Synthesis
• Implementation
• Bitstream generation

Viewing Project Status in the Project Status Bar

The project status is displayed in the project status
bar in the upper-right corner of the Vivado IDE.

As the run progresses through the Synthesize, Implement,
and Write Bitstream commands, the Project Status Bar
changes to show either a successful or failed attempt. Failures are displayed in red text.

Viewing Out-of-Date Status

If source files or design constraints change, and either synthesis or implementation was
previously completed, the project might be marked as Out-of-Date, as shown in Figure 3-5.

X-Ref Target - Figure 3-4

Figure 3‐4: Log Window
Implementation 132
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=132

Chapter 3: Analyzing and Viewing Implementation Results
The project status bar shows an Out-of-Date status. Click more info to display which
aspects of the design are out of date. It might be necessary to rerun implementation, or
both synthesis and implementation.

Forcing Runs Up-to-Date

Click Force-up-to-date to force the implementation or synthesis runs up to date. Use
Force-up-to-date if you changed the design or constraints, but still want to analyze the
results of the current run.

TIP: The Force-up-to-date command is also available from the popup menu of the Design Runs window
when an out-of-date run is selected.

Moving Forward After Implementation
After implementation has completed, for both Project Mode and Non-Project Mode, the
direction you take the design next depends on the results of the implementation.

• Is the design fully placed and routed, or are there issues that need to be resolved?
• Have the timing constraints and design requirements been met, or are their additional

changes required to complete the design?
• Are you ready to generate the bitstream for the Xilinx part?

X-Ref Target - Figure 3-5

Figure 3‐5: Implementation Out-of-Date
Implementation 133
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=133

Chapter 3: Analyzing and Viewing Implementation Results
Recommended Steps After Implementation

The recommended steps after implementation are:

1. Review the implementation messages.
2. Review the implementation reports to validate key aspects of the design:

° Timing constraints are met (report_timing_summary).

° Utilization is as expected (report_utilization).

° Power is as expected (report_power).
3. Write the bitstream file.

Writing the bitstream file includes a final DRC to ensure that the design does not violate
any hardware rules.

4. If any design requirements have not been met:
a. In Project Mode, open the implemented design for further analysis.
b. In Non-Project Mode, open a post-implementation design checkpoint.

For more information on analysis of the implemented design, see this link in the Vivado
Design Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 10].

Moving Forward in Non-Project Mode

In Non-Project Mode, the Vivado Design Suite generated messages for the design session,
and wrote the messages to the Vivado log file (vivado.log). Examine this log file and the
reports generated from the design data to view an accurate assessment of the current
project state.

Moving Forward in Project Mode

In Project Mode, the Vivado Design Suite:

• Displays the messages from the log file in the Messages window
• Automates the creation and delivery of numerous reports for you to review

In Project Mode, after an implementation run is complete in the Vivado IDE, you are
prompted for the next step, as shown in Figure 3-6.
Implementation 134
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf;a=xDesignAnalysisWithinTheIDE
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=134

Chapter 3: Analyzing and Viewing Implementation Results

In the Implementation Completed dialog box:

1. Select the appropriate option:

° Open Implemented Design
Imports the netlist, design constraints, the target part, and the results from place
and route into the Vivado IDE for design analysis and further work as needed.

° Generate Bitstream
Launches the Generate Bitstream dialog box. For more information, see this link in
the Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 12].

° View Reports
Opens the Reports window for you to select and view the various reports produced
by the Vivado tools during implementation. For more information, see Viewing
Implementation Reports, page 138.

2. Click OK.

X-Ref Target - Figure 3-6

Figure 3‐6: Project Mode - Implementation Completed
Implementation 135
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf;a=xGeneratingTheBitstream
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=135

Chapter 3: Analyzing and Viewing Implementation Results
Viewing Messages
IMPORTANT: Review all messages. The messages might suggest ways to improve your design for
performance, power, area, and routing. Critical warnings might also expose timing constraint problems
that must be resolved.

Viewing Messages in Non-Project Mode

In Non-Project Mode, review the Vivado log file (vivado.log) for:

• The commands that you used during a single design session
• The results and messages from those commands

RECOMMENDED: Open the log file in the Vivado text editor and review the results of all commands for
valuable insights.

Viewing Messages in Project Mode

In Project Mode, the Messages window, shown in Figure 3-7, displays a filtered list of the
Vivado log. This list includes only the main messages, warnings, and errors. The Messages
window sorts by feature, and includes toolbar options to filter and display only specific
types of messages.

Use the following features when viewing messages in Project Mode:

• Click the expand and collapse tree widgets to view the individual messages.
• Check the appropriate check box in the banner to display errors, critical

warnings, warnings, and informational messages in the Messages window.

X-Ref Target - Figure 3-7

Figure 3‐7: Messages Window
Implementation 136
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=136

Chapter 3: Analyzing and Viewing Implementation Results
• Select a linked message in the Messages window to open the source file and highlight
the appropriate line in the file.

• Run Search for Answer Record from the Messages window popup menu to search the
Xilinx® Customer Support database for answer records related to a specific message.

Incremental Compile Messages

The Vivado tools log file reports incremental placement and routing summary results from
Incremental Compile.

Incremental Placement Summary

The following example of the Incremental Placement Summary includes a final assessment
of cell placement reuse and run time statistics.

+---+
|Incremental Placement Summary |
+---+
| Type | Count | Percentage |
+---+
Total instances	33406	100.00
Reused instances	32390	96.96
Non-reused instances	1016	3.04
New	937	2.80
Discarded illegal placement due to netlist changes	16	0.05
Discarded to improve timing	63	0.19
+---+		
Incremental Placement Runtime Summary		
+---+		
Initialization time(elapsed secs)	79.99	
Incremental Placer time(elapsed secs)	31.19	
+---+

Incremental Routing Summary

The Incremental Routing Summary displays reuse statistics for all nets in the design. The
categories reported include:

• Fully Reused

The entire routing for a net is reused from the reference design.

• Partially Reused

Some of the routing for a net from the reference design is reused. Some segments are
re-routed due to changed cells, changed cell placements, or both.
Implementation 137
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=137

Chapter 3: Analyzing and Viewing Implementation Results
• New/Unmatched

The net in the current design was not matched in the reference design.

Incremental Routing Reuse Summary
Type

Fully reused nets	30393	96.73
Partially reused nets	0	0.00
Non-reused nets	1028	3.27

Viewing Implementation Reports
The Vivado Design Suite generates many types of reports, including reports on:

• Timing, timing configuration, and timing summary
• Clocks, clock networks, and clock utilization
• Power, switching activity, and noise analysis

When viewing reports, you can:

Reporting in Non-Project Mode

In Non-Project Mode, you must run these reports manually.

• Use Tcl commands to create an individual report.
• Use a Tcl script to create a series of reports.

Example Tcl Script

The following Tcl script runs a series of reports and saves them to a Reports folder:

Report the control sets sorted by clk, clkEn
report_control_sets -verbose -sort_by {clk clkEn} -file C:/Report/cntrl_sets.rpt
Run Timing Summary Report for post implementation timing
report_timing_summary -file C:/Reports/post_route_timing.rpt -name time1
Run Utilization Report for device resource utilization
report_utilization -file C:/Reports/post_route_utilization.rpt

• Browse the report file using the scroll bar.

• Click Find or Find in Files to search for specific text.
Implementation 138
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=138

Chapter 3: Analyzing and Viewing Implementation Results
Opening Reports in a Vivado IDE Window

You can open these reports in a Vivado IDE window. In the example Tcl script above, the
report_timing_summary command:

• Uses the -file option to direct the output of the report to a file.
• Uses the -name option to direct the output of the report to a Vivado IDE window.

Figure 3-9 shows an example of a report opened in a Vivado IDE window.

TIP: The directory to which the reports are to be written must exist before running the report, or the file
cannot be saved, and an error message will be generated.

Getting Help With Implementation Reports

Use the Tcl help command in the Vivado IDE or at the Tcl command prompt.

For a complete description of the Tcl reporting commands and their options, see the Vivado
Design Suite Tcl Command Reference Guide (UG835) [Ref 19].

Reporting in Project Mode

In Project Mode, many reports are generated automatically. View report files in the Reports
window, shown in Figure 3-8.

The Reports window usually opens automatically after synthesis or implementation
commands are run. If the window does not open do one of the following:

• Select the Reports link in the Project Summary.
• Select Windows > Reports.

TIP: The tcl.pre and tcl.post options of an implementation run let you output custom reports at each
step in the process. These reports are not listed in the Reports window, but can be customized to meet
your specific needs. For more information, see Changing Implementation Run Settings, page 29.
Implementation 139
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=139

Chapter 3: Analyzing and Viewing Implementation Results
The reports available from the Reports window contain information related to the run. The
selected report opens in text form in the Vivado IDE, as shown in Figure 3-9.

X-Ref Target - Figure 3-8

Figure 3‐8: Example Reports View
Implementation 140
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=140

Chapter 3: Analyzing and Viewing Implementation Results
Cross Probing from Reports

In both Project Mode and Non-Project Mode, the Vivado IDE supports cross probing
between reports and the associated design data in different windows (for example, the
Device window).

• You generate the report using a menu command or Tcl command.
• Text reports do not support cross probing.

For example, the Reports window includes a text-based Timing Summary Report under
Route Design (as shown in Figure 3-8).

When analyzing timing, it is helpful to see the design data associated with critical paths,
including placement and routing resources in the Device window.

To regenerate the report in the Vivado IDE, select Tools >Timing > Report Timing
Summary. The resulting report allows you to cross-probe among the various views of the
design.

X-Ref Target - Figure 3-9

Figure 3‐9: Control Sets Report
Implementation 141
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=141

Chapter 3: Analyzing and Viewing Implementation Results
Cross Probing Between Timing Report and Device Window Example

Figure 3-10 shows an example of cross probing between the Timing Summary report and
the Device window. The following steps take place in this Non-Project Mode example:

• A post-route design checkpoint is opened in the Vivado IDE.
• The Timing Summary report is generated and opened using

report_timing_summary -name.
• The Routing Resources are enabled in the Device window.
• When the timing path is selected in the Timing Summary report, cross probing on the

path occurs automatically in the Device window, as shown in Figure 3-10.

For more information on analyzing reports and strategies for design closure, see the Vivado
Design Suite User Guide: Design Analysis and Closure Techniques (UG906) [Ref 10].

X-Ref Target - Figure 3-10

Figure 3‐10: Cross-Probing Between Timing Report and Device Window
Implementation 142
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=142

Chapter 3: Analyzing and Viewing Implementation Results
Modifying Implementation Results
This section describes how to modify placement, routing, and logic for your design.

Modifying Placement

The Vivado tools track two states for placed cells, Fixed and Unfixed, which describes the
way in which the Vivado tools view placed cells in the design.

Fixed Cells

Fixed cells are those that you have placed yourself, or the location constraints for the cells
have been imported from an XDC file.

• The Vivado Design Suite treats these placed cells as Fixed.
• Fixed cells are not moved unless directed to do so.
• The FF in Figure 3-11 is shown in orange (default) to indicate that it is Fixed.

Unfixed Cells

Unfixed cells have been placed by the Vivado tools in implementation, during the
place_design command, or on execution of one of optimization commands.

• The Vivado Design Suite treats these placed cells as Unfixed (or loosely placed).
• These cells can be moved by the implementation tools as needed in design iterations.
• The LUT in Figure 3-11 is shown in blue (default) to indicate that it is Unfixed.
Implementation 143
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=143

Chapter 3: Analyzing and Viewing Implementation Results
Both LOCS and BELS can be fixed. The placement above generates the following constraints:

set_property is_bel_fixed true [get_cells [list {usbEngine0/u4/u6/csr0_reg[6]}]]
set_property is_loc_fixed true [get_cells [list {usbEngine0/u4/u6/csr0_reg[6]}]]

There is no placement constraint on the LUT. Its placement is unfixed, indicating that the
placement should not go into the XDC.

Fixing Placer-Placed Logic

To fix cells placed by the Vivado placer in the Vivado IDE:

1. Select the cells.
2. Choose Fix Cells from the popup menu.

X-Ref Target - Figure 3-11

Figure 3‐11: Logic Placed in a Slice
Implementation 144
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=144

Chapter 3: Analyzing and Viewing Implementation Results
To fix cell placement with Tcl, use a command of this form:

set_property is_bel_fixed TRUE [get_cells [list {fftEngine/control_reg_reg[1]_i_1}]]
set_property is_loc_fixed TRUE [get_cells [list {fftEngine/control_reg_reg[1]_i_1}]]

For more information on Tcl commands, see the Vivado Design Suite Tcl Command Reference
Guide (UG835) [Ref 19], or type <command> -help.

Placing and Moving Logic by Hand

You can place and move logic by hand.

• If the cell is already placed, drag and drop it to a new location.
• If the cell is unplaced:

a. Enter Create BEL Constraint Instance Drag & Drop mode.
b. Drag the logic from the Netlist window, or from the Timing Report window, onto the

Device window.

The logic snaps to a new legal location.

TIP: When dragging logic to a location in the Device Window, the GUI allows you to drop the logic only
on legal locations. If the location is illegal (for example, because of control set restriction for Slice FFs),
the logic does not "snap" to the new location in the Device view, and it cannot be assigned.

Hand-placing logic can be slow, and used in specific situations only. The constraints are
fragile with respect to design changes because the cell name is used in the constraint.

Placing Logic using a Tcl Command

You can place logic onto device resources of the target part using the place_cell Tcl
command. Cells can be placed onto specific BEL sites (for example, SLICE_X49Y60/A6LUT)
or into available sites (for example, SLICE_X49Y60). If you specify the site but not the BEL,
the tool determines an appropriate BEL within the specified site if one is available. You can
use the place_cell command to place cells or to move placed cells from one site on the
device to another site. The command syntax is the same for placing an unplaced cell or for
moving a placed cell.

TIP: When assigning logic to an illegal location (for example, because of control set restriction for Slice
FFs), the Tcl Console issues an error message, and the assignment is ignored.

Cells that have been placed using the place_cell Tcl command are treated as Fixed by the
Vivado tool.
Implementation 145
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=145

Chapter 3: Analyzing and Viewing Implementation Results
Modifying Routing

The Device View allows you to modify the routing for your design. You can Unroute, Route,
and Fix Routing on any individual net.

To Unroute, Route, or Fix Routing on a net:

1. Open Device View.
2. Select the net.

° Unrouted nets are indicated by a red flyline

° Partially routed nets are highlighted in yellow

° Nets with fixed routing are indicated by a dashed route
3. Right-click and select Unroute, Route, or Fix Routing.
• Unroute and Route: Calls the router in re-entrant mode to perform the operation on

the net. For more information, see route_design in Chapter 2.
• Fix Routing: Deposits the route, marks it fixed in the route database, and fixes the LOC

and BEL of the driver and the load of the net. You can also enter Assign Routing Mode
to route a net manually. For more information, see Manual Routing, below.

TIP: All net commands are available from the context menu on a net.

X-Ref Target - Figure 3-12

Figure 3‐12: Modify Routing
Implementation 146
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=146

Chapter 3: Analyzing and Viewing Implementation Results
Manual Routing

Manual routing allows you to select specific routing resources for your nets. This gives you
complete control over the routing paths that a signal is going to take. Manual routing does
not invoke route_design. Routes are directly updated in the route database.

You might want to use manual routing when you want to precisely control the delay for a
net. For example, assume a source synchronous interface, in which you want to minimize
routing delay variation to the capture registers in the device. To accomplish this, you can
assign LOC and BEL constraints to the registers and I/Os, and then precisely control the
route delay from the IOB to the register by manual routing the nets.

Manual routing requires detailed knowledge of the device interconnect architecture. It is
best used for a limited number of signals and for short connections.

Manual Routing Rules

Observe these rules during manual routing:

• The driver and the load require a LOC constraint and a BEL constraint.
• Branching is not allowed during manual routing, but you can implement branches by

starting a new manual route from a branch point.
• LUT loads must have their pins locked.
• You must route to loads that are not already connected to a driver.
• Only complete connections are permitted. Antennas are not allowed.
• Overlap with existing unfixed routed nets is allowed. Run route_design after manual

routing to resolve any conflicts due to overlapping nets.

Entering Assign Routing Mode

To enter Assign Routing Mode:

1. Open Device View.
2. Be sure that Routing Resources in the Device window is selected.
3. Enable the Layers for Unrouted Net and Partially Routed Net in the Device Options

Layers view, shown in Figure 3-13.
Implementation 147
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=147

Chapter 3: Analyzing and Viewing Implementation Results
,

4. Select the net that requires routing.

° Unrouted nets are indicated by a red flyline.

° Partially routed nets are highlighted in yellow.
5. Right-click and select Enter Assign Routing Mode.

The Target Load Cell Pin window opens.

6. Optionally, select a load cell pin to which you want to route.
7. Click OK.
Note: To display partially routed or unrouted nets in the Device View, ensure that those layers are
selected in the Device Options menu, shown in Figure 3-14.

X-Ref Target - Figure 3-13

Figure 3‐13: Device Options Layers
Implementation 148
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=148

Chapter 3: Analyzing and Viewing Implementation Results
You are now in Manual Routing Mode. A Routing Assignment window, shown in Figure 3-15,
appears next to the Device View.

X-Ref Target - Figure 3-14

Figure 3‐14: Device Options Pull-Out Menu
Implementation 149
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=149

Chapter 3: Analyzing and Viewing Implementation Results
Routing Assignment Window

The Routing Assignment window is divided into the Options, Assigned Nodes, and
Neighbor Nodes sections:

• The Options section, shown in Figure 3-16, controls the settings for the Routing
Assignment window.

,

° The Number of hops value allows you to specify the number of routing hops that
can be assigned for Neighbor Nodes. This also affects the Neighbor Nodes

X-Ref Target - Figure 3-15

Figure 3‐15: Routing Assignment Window

X-Ref Target - Figure 3-16

Figure 3‐16: Routing Assignment Options
Implementation 150
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=150

Chapter 3: Analyzing and Viewing Implementation Results
displayed. If the number of hops is greater than 1, only the last node of the route is
displayed in the Neighbor Nodes section.

° The Maximum number of neighbors value allows you to limit the number of
neighbor nodes that are displayed in the Neighbor Nodes section. Only the last
node of the route is displayed.

° The Allow overlap with unfixed nets switch controls whether overlaps of assigned
routing with existing unfixed routing is allowed. Any overlaps need to be resolved
by running the route_design command after fixed route assignment.

The Options section is hidden by default. To show the Options section, click Show.

• The Assigned Nodes section shows the nodes that already have assigned routing. Each
assigned node is displayed as a separate line item.

In the Device View, nodes with assigned routing are highlighted in orange. Any gaps
between assigned nodes are shown in the Assigned nodes section as a GAP line item. To
auto-route gaps:

a. Right-click a net gap in the Assigned Nodes section.
b. Select Auto-route from the context-sensitive menu.

To assign the next routing segment, select an assigned node before or after a gap, or the
last assigned node in the Assigned Nodes section.

• The Neighbor Nodes section (shown in Figure 3-17) displays the allowed neighbor
nodes, highlights the current selected nodes (in white). and highlights the allowed
neighbor nodes (white dotted) in the Device View.
Implementation 151
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=151

Chapter 3: Analyzing and Viewing Implementation Results
,

Assigning Routing Nodes

Once you have decided which Neighbor Node to assign for your next route segment, you
can:

• Right-click the node in the Neighbor Nodes section and select Assign Node.
• Double-click the node in the Neighbor Nodes section.
• Click the node in the Device View

After you have assigned routing to a Neighbor Node, the node is displayed in the assigned
nodes section and highlighted in orange in the Device View.

Assign nodes until you have reached the load, or until you are ready to assign routing with
a gap.

Un-Assigning Routing Nodes

To un-assign nodes:

X-Ref Target - Figure 3-17

Figure 3‐17: Assign Next Routing Segment
Implementation 152
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=152

Chapter 3: Analyzing and Viewing Implementation Results
1. Go to the Assigned Nodes pane of the Routing Assignment window.
2. Select the nodes to be un-assigned.
3. Right-click and select Remove.

The nodes are removed from the assignment.

Exiting Assign Routing Mode

To finish the routing assignment and exit Assign Routing Mode, click the Assign Routing
button in the Routing Assignment window.

The Assign Routing Window is displayed, as shown in Figure 3-18, allowing you to verify the
assigned nodes before they are committed.

Canceling Out of Assign Routing Mode

If you are not ready to commit your routing assignments, you can cancel out of the Assign
Routing Mode using one of the following methods:

• Click Exit Mode in the Routing Assignment window, or
• Right-click in the Device View and select Exit Assign Routing Mode.

When the routes are committed, the driver and load BEL and LOC are also fixed.

X-Ref Target - Figure 3-18

Figure 3‐18: Assign Routing Confirmation
Implementation 153
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=153

Chapter 3: Analyzing and Viewing Implementation Results
Verifying Assigned Routes

• Assigned routes appear as dotted green lines in the Device View.
• Partially assigned routes appear as dotted yellow lines in the Device view.

Figure 3-19 shows an example of an assigned and partially assigned route.

Branching

When assigning routing to a net with more than one load, you must route the net in the
following steps:

1. Assign routing to one load following the steps provided in Entering Assign Routing
Mode, page 147, above.

2. Assign routing to all the branches of the net.

Figure 3-20 shows an example of a net that has assigned routing to one load and requires
routing to two additional loads.

X-Ref Target - Figure 3-19

Figure 3‐19: Assigned Partially Assigned Routing
Implementation 154
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=154

Chapter 3: Analyzing and Viewing Implementation Results
Assigning Routing to a Branch

To assign routing to a branch:

1. Go to Device View.
2. Select the net to be routed.
3. Right-click and select Enter Assign Routing Mode.

The Target Load Cell Pin window opens, showing all loads.

Note: The loads that already have assigned routing have a checkmark in the Routed column of
the table.

X-Ref Target - Figure 3-20

Figure 3‐20: Assign Branching Route
Implementation 155
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=155

Chapter 3: Analyzing and Viewing Implementation Results
4. Select the load to which you want to route.
5. Click OK. The Branch Start window (shown in Figure 3-22) opens.

6. Select the node from which you want to branch off the route for your selected load.
7. Click OK.
8. Follow the steps shown in Assigning Routing Nodes, page 152.

Locking Cell Inputs and Adding DONT_TOUCH Constraint on LUT Loads

You must ensure that the inputs of LUT loads to which you are routing are not being
swapped with other inputs on those LUTs. To do so, lock the cell inputs of LUT loads as
follows:

1. Open Device View.
2. Select the load LUT.

X-Ref Target - Figure 3-21

Figure 3‐21: Target Load Cell Pin (Multiple Loads)

X-Ref Target - Figure 3-22

Figure 3‐22: Branch Start
Implementation 156
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=156

Chapter 3: Analyzing and Viewing Implementation Results
3. Right-click and select Lock Cell Input Pins.

The equivalent Tcl command is:

set_property LOCK_PINS {NAME:BEL_PIN} <cell object>

To prevent pin swapping in Physical Synthesis in the Placer, a DONT_TOUCH constraint
needs to be applied to the LUT cell. The TCL command is:

set_property DONT_TOUCH TRUE <cell object>

For nets that have fixed routing and multiple LUT loads, the following Tcl script can be used
to lock the cell inputs of all the LUT loads.

set fixed_nets [get_nets -hierarchical -filter IS_ROUTE_FIXED]
foreach LUT_load_pin [get_pins -leaf -of [get_nets $fixed_nets] \
-filter DIRECTION==IN&&REF_NAME=~LUT*] {
set pin [get_property REF_PIN_NAME $LUT_load_pin]
set BEL_pin [file tail [get_bel_pins -of [get_pins $LUT_load_pin]]]
set LUT_name [get_property PARENT_CELL $LUT_load_pin]
need to handle condition when LOCK_pins property already exists on LUT
set existing_LOCK_PIN [get_property LOCK_PINS [get_cells $LUT_name]]
if { $existing_LOCK_PIN ne "" } {

reset_property LOCK_PINS [get_cells $LUT_name]
}
set_property LOCK_PINS \
[lsort -unique [concat $existing_LOCK_PIN $pin:$BEL_pin]] [get_cells $LUT_name]

}

Directed Routing Constraints

Fixed route assignments are stored as Directed Routing Strings in the route database. In a
Directed Routing String, branching is indicated by nested {curly braces}.

For example, consider the route described in Figure 3-23, below. In this simplified
illustration of a route, the various elements are indicated as shown in the following table
(Directed Routing Constraints).

A simplified version of a Directed Routing String for that route is as follows:

{A B { D E T } C { F G H I M N } {O P Q} R J K L S }.

The route branches at B and C. The main trunk of this route is A B C R J K L S.

Table 3‐1: Directed Routing Constraints

Elements Indicated By

Driver and Loads Orange Rectangles
Nodes Red lines
Switchboxes Blue rectangles
Implementation 157
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=157

Chapter 3: Analyzing and Viewing Implementation Results
Using the find_routing_path Command to Create Directed Routing
Constraints

The find_routing_path Tcl command can be used to create directed routing
constraints. You can then assign the created constraints to the FIXED_ROUTE property of a
net to lock down the routing.

For partially routed nets, the nodes can be found associated directly to the net. Refer to the
Vivado Design Suite Properties Reference Guide (UG912) [Ref 14] for more information on
the relationship between these objects.

The find_routing_path command returns one of the following:

• A list of nodes representing the route path found from the start point to the end point
• no path found if the command runs but has no result
• An error if the command fails to run.

X-Ref Target - Figure 3-23

Figure 3‐23: Branch Route Example

D

L1

L2

L4

L3

A B

E T

I M N

Q
PO

G

H

F

D

C

R

J
K L S
Implementation 158
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=158

Chapter 3: Analyzing and Viewing Implementation Results
Modifying Logic

Properties on logical objects that are not Read Only can be modified after Implementation
in the Vivado IDE as well as Tcl.

Note: For more information about Tcl commands, see the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 19], or type <command> -help.

To modify a property on an object in Device View:

1. Select the object.
2. Modify the property value of the object in the Properties section of the Properties

window.

These properties can include everything from Block RAM INITs to the clock modifying
properties on MMCMs. There is also a special dialog box to set or modify INIT on LUT
objects. This dialog box allows you to specify the LUT equation and have the tools
determine the appropriate INIT.

X-Ref Target - Figure 3-24

Figure 3‐24: Property Modify
Implementation 159
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=159

Chapter 3: Analyzing and Viewing Implementation Results
Saving Modifications

To capture the changes to the design made in memory, write a checkpoint of the design.

Because the assignments are not back-annotated to the design, you must add the
assignments to the XDC for them to impact the next run.

To save the constraints to your constraints file in Project Mode, select File > Constraints >
Save.

Modifying the Netlist

Netlists sometimes require changes to fix functional logic bugs, meet timing closure, or
insert debug logic. You can modify an existing netlist using Tcl commands post-synthesis,
post-place, and post-route.

Netlist Modifying Commands

The following commands allow you to modify an existing netlist:

• create_port
• remove_port
• create_cell

X-Ref Target - Figure 3-25

Figure 3‐25: Equation Editor
Implementation 160
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xcreate_port
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xremove_port
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xcreate_cell
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=160

Chapter 3: Analyzing and Viewing Implementation Results
• remove_cell
• create_pin
• remove_pin
• create_net
• remove_net
• connect_net
• disconnect_net
Note: For more information about these Tcl commands, see the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 19], or type <command> -help.

The netlist modifying commands work on a post-synthesis, post-place or post-route netlist.
Before the netlist is modified, it must be loaded into memory. The netlist modifying
commands allow you to make logical changes to the netlist when it is in memory. You can
use the write_checkpoint command to save changes.

TIP: The Vivado tools allows you to make netlist changes unconditionally using the netlist modifying
commands. However, logical changes can lead to invalid physical implementation. It is recommended
to run DRCs after performing your netlist changes. In addition, DRCs are run as part of the process of
adding the logical changes to the physical implementation. These DRCs flag any invalid netlist changes
or new physical restrictions that need to be addressed before physical implementation can commence.

Logical changes are reflected in the schematic view as soon as the netlist modifying
commands are executed. Figure 3-26 shows an example of a cell that was created using a
LUT1 as a reference cell.
Implementation 161
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xremove_cell
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xcreate_pin
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xremove_pin
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xcreate_net
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xremove_net
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xconnect_net
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf;a=xdisconnect_net
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=161

Chapter 3: Analyzing and Viewing Implementation Results
When the output of the LUT1 is connected to an OBUF, the schematic reflects this change
showing the ECO_INV/O pin no longer with a "no-connect". Figure 3-27 shows the
resulting schematic view.

X-Ref Target - Figure 3-26

Figure 3‐26: Cell Created Using LUT1 as a Reference Cell

X-Ref Target - Figure 3-27

Figure 3‐27: Schematic After Connection of LUT1 to an OBUF
Implementation 162
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=162

Chapter 3: Analyzing and Viewing Implementation Results
Use Cases

The following examples show some of the most common use cases for netlist modifications.
The examples show the schematic of the original logical netlist, list the netlist modifying Tcl
commands, and show the schematic of the resulting modified netlist.

Use Case 1: Inverting the Logical Value of a Net

Inverting the logical value of a net can be as simple as modifying the existing LUT equations
of a LUTx primitive, or it can require inserting a LUT1 that is configured to invert the output
from its input. The schematic in Figure 3-28 shows a FDRE primitive that is driving the
output port wbOutputData[0] through an OBUF.

The following Tcl commands show how to add an inverter between the output of the FDRE
and the OBUF:

create_cell -reference LUT1 ECO_INV
set_property INIT 2'h1 [get_cells ECO_INV]
disconnect_net -net {n_0_SuspendM_pad_0_o_reg} -objects \
[get_pins {SuspendM_pad_0_o_reg/Q}]

connect_net -net {n_0_SuspendM_pad_0_o_reg} -objects [get_pins {ECO_INV/O}]
create_net ECO_INV_in
connect_net -net ECO_INV_in -objects [get_pins {SuspendM_pad_0_o_reg/Q ECO_INV/I0}]

In this example script, LUT1 cell ECO_INV is created, and the INIT value is set to 2'h1,
which implements an inversion. The net between the FDRE and OBUF is disconnected from
the Q output pin of the FDRE, and the output of the inverting LUT1 cell ECO_INV is
connected to the I input pin of the OBUF. Finally, a net is created and connected between
the Q output pin of the FDRE and the I0 input pin of the inverting LUT1 cell.

Figure 3-29 shows the schematic of the resulting logical netlist changes.

X-Ref Target - Figure 3-28

Figure 3‐28: FDRE Primitive Driving Output Port through an OBUF
Implementation 163
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=163

Chapter 3: Analyzing and Viewing Implementation Results

After the netlist has been successfully modified, the logical changes must be implemented.
The LUT1 cell must be placed, and the nets to and from the cell routed. This must occur
without modifying placement or routing of parts of the design that have not been modified.
The Vivado implementation commands automatically use incremental mode when
place_design is run on the modified netlist, and the log file reflects that by showing the
Incremental Placement Summary:

+---+
|Incremental Placement Summary |
+---+
| Type | Count | Percentage |
+---+
Total instances	3834	100.00
Reused instances	3833	99.97
Non-reused instances	1	0.03
New	1	0.03
+---+

To preserve existing routing and route only the modified nets, use the route_design
command. This incrementally routes only the changes, as you can see in the Incremental
Routing Reuse Summary in the log file:

--
Incremental Routing Reuse Summary
Type
--
Fully reused nets	6401	99.97
Partially reused nets	0	0.00
Non-reused nets	2	0.03
--

Instead of automatically placing and routing the modified netlist using the incremental
place_design and route_design commands, the logical changes can be committed
using manual placement and routing constraints. For more information see the Modifying
Placement and Modifying Routing sections earlier in this chapter.

X-Ref Target - Figure 3-29

Figure 3‐29: Schematic Showing Netlist Changes After Adding Inverter
Implementation 164
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=164

Chapter 3: Analyzing and Viewing Implementation Results
Use Case 2: Adding a Debug Port

You can easily route an internal signal to a debug port with a netlist change. The schematic
below shows the pin demuxState_reg/Q, which you can observe on an external port of
the device.

The following Tcl script shows how to add a port to the existing design and route the
internal signal to the newly created port.

create_port -direction out debug_port_out
set_property PACKAGE_PIN AB20 [get_ports {debug_port_out}]
set_property IOSTANDARD LVCMOS18 [get_ports [list debug_port_out]]
create_cell -reference [get_lib_cells [get_libs]/OBUF] ECO_OBUF1
create_net ECO_OBUF1_out
connect_net -net ECO_OBUF1_out -objects ECO_OBUF1/O
connect_net -net ECO_OBUF1_out -objects [get_ports debug_port_out]
connect_net -net [get_nets -of [get_pins demuxState_reg/Q]] -objects ECO_OBUF1/I

X-Ref Target - Figure 3-30

Figure 3‐30: Schematic Showing demuxState_reg
Implementation 165
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=165

Chapter 3: Analyzing and Viewing Implementation Results
The example script accomplishes the following:

• Creates a debug port.

° Assigns it to package pin AB20.

° Assigns it an I/O standard of LVCMOS18.
• Creates an OBUF that drives the debug port through net ECO_OBUF1_out.
• Creates a net to connect the output of the demuxState_reg register to the input of

the OBUF.

Figure 3-31 shows the schematic of the resulting logical netlist changes.
X-Ref Target - Figure 3-31

Figure 3‐31: Schematic after Adding/Routing a Debug Port
Implementation 166
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=166

Chapter 3: Analyzing and Viewing Implementation Results
After the netlist has been successfully modified, the logical changes must be implemented.
Because the port has been assigned to a package pin, the OBUF driving the port is
automatically placed in the correct location. Therefore, the placer does not have anything to
place and therefore incremental compile is not triggered when running place_design
followed by route_design. To route the newly added net that connects the internal signal
to the OBUF input, use the route_design -nets command or route the net manually to
avoid a full route_design pass which might change the routing for other nets.
Alternatively, you can run route_design -preserve, which preserves existing routing.
See Using Other route_design Options, page 104.

Use Case 3: Adding a Pipeline Stage to Improve Timing

Adding registers along a path to split combinational logic into multiple cycles is called
pipelining. Pipelining improves register-to-register performance by introducing additional
latency in the pipelined path. Whether pipelining works depends on the latency tolerance of
your design. The schematic in Figure 3-32 shows the critical path originating at a
RAMB36E1 and going through two LUT6 cells before terminating at an FF. Adding a
pipeline stage can improve timing for the critical path and can be accomplished by
modifying the netlist.

X-Ref Target - Figure 3-32

Figure 3‐32: Schematic Prior to Addition of Pipeline Register
Implementation 167
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=167

Chapter 3: Analyzing and Viewing Implementation Results
The following Tcl script shows how to insert a pipeline register between the two LUT6 cells.
The register is implemented with the same control signals as the load register.

create_cell -reference [get_lib_cells -of [get_cells {wbOutputData_reg[29]}]]
ECO_pipe_stage[29]
foreach control_pin {C CE R} {
connect_net -net [get_nets -of [get_pins wbOutputData_reg[29]/${control_pin}]] \
-objects [get_pins ECO_pipe_stage[29]/${control_pin}]

}
disconnect_net -objects \
{egressLoop[4].egressFifo/buffer_fifo/infer_fifo.block_ram_performance.fifo_ram_reg/DOBDO[
29]}
create_net {egressLoop[4].egressFifo/buffer_fifo/ECO_pipe_stage[29]_in}
connect_net -hierarchical -net
{egressLoop[4].egressFifo/buffer_fifo/ECO_pipe_stage[29]_in} -objects \ [list \
{ECO_pipe_stage[29]/D} \

{egressLoop[4].egressFifo/buffer_fifo/infer_fifo.block_ram_performance.fifo_ram_reg/DOBDO[
29]}]
connect_net -hierarchical -net {egressLoop[4].egressFifo/buffer_fifo/dout2_in[29]}
-objects [list \ {ECO_pipe_stage[29]/Q}]

The picture below shows the schematic of the resulting logical netlist changes.
Implementation 168
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=168

Chapter 3: Analyzing and Viewing Implementation Results
After the netlist has been successfully modified, the logical changes must be committed.
Accomplish this using the place_design and route_design commands.

Vivado ECO Flow
IMPORTANT: ECOs only work on design checkpoints. The ECO Layout is only available after a design
checkpoint has been opened in the Vivado IDE.

Engineering change orders (ECOs) are modifications to the post implementation netlist
with the intent to implement the changes with minimal impact to the original design.
Vivado provides an ECO flow, which allows you to modify a design checkpoint, implement
the changes, run reports on the changed netlist, and generate programming files.

Common use cases for the ECO flow are:

X-Ref Target - Figure 3-33

Figure 3‐33: Schematic Showing Addition of Pipeline Register
Implementation 169
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=169

Chapter 3: Analyzing and Viewing Implementation Results
• Modifying debug probes of ILA and/or VIO cores in the design
• Routing an internal net to a package pin for external probing
• Evaluating what-if scenarios (improving timing, fixing logic bugs, and so on)

The advantage of the ECO flow is fast turn-around time by taking advantage of the
incremental place and route features of the Vivado tool.

The Vivado IDE provides a predefined layout to support the ECO flow.

To access the ECO Layout, select Layout > ECO.

ECO Navigator

The ECO Navigator provides access to the commands that are required to complete an ECO.

Scratch Pad

The scratch pad tracks netlist changes and place and route status for Cells, Pins, Ports, and
Nets.
Implementation 170
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=170

Chapter 3: Analyzing and Viewing Implementation Results
X-Ref Target - Figure 3-34

Figure 3‐34: Vivado ECO Layout
Implementation 171
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=171

Chapter 3: Analyzing and Viewing Implementation Results
ECO Flow Chart

The figure below shows a typical ECO flow. You open a previously implemented design.
After modifying the netlist, if the design is not fully placed, you run Incremental Place.
Otherwise you can skip straight to Incremental route. After that you can save your changes
to a new checkpoint and write new programming and debug probe files and Open the
Hardware manger to program your device. If you are satisfied with your changes you can
incorporate them into your original design. Otherwise, you can start at the beginning of the
ECO flow until the design is working as expected.

TIP: When you re-run implementation in project mode the results in the previous run directory will be
deleted. Save the ECO checkpoint to a new directory or create a new implementation run for your
subsequent compile to preserve the changes to the ECO checkpoint.

X-Ref Target - Figure 3-35

Figure 3‐35: ECO Flow Chart
Implementation 172
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=172

Chapter 3: Analyzing and Viewing Implementation Results
ECO Navigator Use

The ECO Navigator provides access to all of the commands required to complete an ECO.
The ECO Navigator is divided into four sections: Edit, Run, Report, and Program.

Edit Section

The Edit section of the ECO Navigator (shown in the below figure) provides access to all the
commands that are required to modify the netlist.

Create Net: Opens the Create Net dialog box, which allows you to create new nets in the
current loaded design. Nets can be created hierarchically from the top level of the design,
or within any level of the hierarchy by specifying the hierarchical net name. Bus nets can be
created with increasing or decreasing bus indexes, using negative and positive index values.
To create a bus net, turn on Create bus and specify the beginning and ending index values.
If you select a pin or port, you can have the newly created net automatically connect to
them by selecting the Connect selected pins and ports check box.

X-Ref Target - Figure 3-36

Figure 3‐36: ECO Navigator Edit Commands
Implementation 173
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=173

Chapter 3: Analyzing and Viewing Implementation Results
Create Cell: Opens the Create Cell dialog box, which allows you to add cells to the netlist of
the currently loaded design. You can add new cell instances to the top- level of the design,
or hierarchically within any module of the design. Instances can reference an existing cell
from the library or design source files, or you can add a black box instance that references
cells that have not yet been created. If a LUT cell is created, you can specify a LUT equation
in the Specify LUT Equation dialog box by selecting it.

X-Ref Target - Figure 3-37

Figure 3‐37: Create Net Dialog Box

X-Ref Target - Figure 3-38

Figure 3‐38: Create Cell Dialog Box
Implementation 174
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=174

Chapter 3: Analyzing and Viewing Implementation Results
Create Port: Opens the Create Port dialog box, in which you can create a port and specify
such parameters as direction, width, single-ended, or differential. New ports are added at
the top level of the design hierarchy. You can create bus ports with increasing or decreasing
bus indexes, using negative and positive index values. You can also specify I/O standard,
pull type, and ODT type. When a Location is specified, the port is assigned to a package pin.

X-Ref Target - Figure 3-39

Figure 3‐39: Specify LUT Equation Dialog Box

X-Ref Target - Figure 3-40

Figure 3‐40: Create Port Dialog Box
Implementation 175
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=175

Chapter 3: Analyzing and Viewing Implementation Results
Create Pin: Opens the Create Pin dialog box, which allows you to add single pins or bus
pins to the current design. You can define attributes of the pin, such as direction and bus
width, as well as the pin name. You can create bus pins with increasing or decreasing bus
indexes, using negative and positive index values. A pin must be created on an existing cell
instance, or it is considered a top-level pin, which should be created using the
create_port command. If the instance name of a cell is not specified, the pin cannot be
created.

Connect Net: The selected pin or port is connected to the selected net. If a net is not
selected, the Connect Net dialog box opens, which allows you to specify a net to connect to
the selected pins or ports in the design. The window displays a list of nets at the current
selected level of hierarchy that can be filtered dynamically by typing a net name in the
search box. The selected net will be connected across levels of hierarchy in the design, by
adding pins and hierarchical nets as needed to complete the connection.

X-Ref Target - Figure 3-41

Figure 3‐41: Create Pin Dialog Box
Implementation 176
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=176

Chapter 3: Analyzing and Viewing Implementation Results
Disconnect Net: Disconnects the selected net, pin, port or cell from the net in the current
design. If a cell is selected, all nets connected to that cell will be disconnected.

X-Ref Target - Figure 3-42

Figure 3‐42: Connect Net Dialog Box
Implementation 177
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=177

Chapter 3: Analyzing and Viewing Implementation Results
Replace Debug Probes: Opens the Replace Debug Probes dialog box, if a Debug core has
previously been inserted into the design. The Replace Debug Probes dialog box contains
information about the nets that are probed in your design using the ILA and/or VIO cores.
You can modify the nets that are connected to the debug probe by clicking the icon next to
the net name in the Probe column. This opens the Choose Nets dialog box, which allows
you to select a new net to connect to the debug probe.
X-Ref Target - Figure 3-43

Figure 3‐43: Replace Debug Probes Dialog Box
Implementation 178
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=178

Chapter 3: Analyzing and Viewing Implementation Results
Place Cell: Places the selected cell onto the selected device resource.

Unplace Cell: Unplaces the selected cell from its current placement site.

Delete Objects: Deletes the selected objects from the current design.

Run Section

The Run Section of the ECO Navigator, shown in the figure below, provides access to all the
commands required to implement the current changes.

Check ECO: Runs the ECO checks rule deck on the current design.

X-Ref Target - Figure 3-44

Figure 3‐44: Choose Nets Dialog Box

X-Ref Target - Figure 3-45

Figure 3‐45: ECO Navigator Run Commands
Implementation 179
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=179

Chapter 3: Analyzing and Viewing Implementation Results
TIP: The Vivado tools allows you to make netlist changes unconditionally using the ECO commands.
However, logical changes can lead to invalid physical implementation. Run the Check ECO function to
flag any invalid netlist changes or new physical restrictions that need to be addressed before physical
implementation can commence.

Optimize Logical Design: In some cases, it is desirable to run opt_design on the
modified design to optimize the netlist. This command opens the Optimize Logical Design
dialog box, allowing you to specify options for the opt_design command. Any options
that are entered in the dialog box are appended to the opt_design command as they are
typed. For example, to run opt_design -sweep, type -sweep under Options.
.

Place Design: Runs incremental place_design on the modified netlist as long as 75% or
more of the placement can be reused. The Incremental Placement Summary at the end of
place_design provides statistics on incremental reuse. Selecting this command opens
the Place Design dialog box and allows you to specify options for the place_design
command. Any options that are entered in the dialog box are appended to the
place_design command as they are typed.

Refer to Incremental Implementation, page 110 for additional information on Incremental
Place and Route.

X-Ref Target - Figure 3-46

Figure 3‐46: Optimize Logical Design Dialog Box

X-Ref Target - Figure 3-47

Figure 3‐47: Place Design Dialog Box
Implementation 180
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=180

Chapter 3: Analyzing and Viewing Implementation Results
Optimize Physical Design: In some cases it is desirable to run phys_opt_design on the
modified design to perform physical optimization on the netlist. This command opens the
Optimize Physical Design dialog box and allows you to specify options for the
phys_opt_design command. Any options that are entered in the dialog box are
appended to the phys_opt_design command as they are typed. For example, to run
phys_opt_design -fanout_opt, type -fanout_opt under Options.

Route Design: Selecting this command opens the Route Design dialog box. Depending on
the selection, this command allows you to perform an Incremental Route of the
modifications made to the design, Route the selected pin, or Route selected nets. If
Incremental Route is selected on a modified netlist that has less than 75% of reused nets,
the tool reverts to the non-incremental route_design.

Refer to Incremental Implementation, page 110 for additional information on incremental
Place and Route.

X-Ref Target - Figure 3-48

Figure 3‐48: Optimize Physical Design Dialog Box

X-Ref Target - Figure 3-49

Figure 3‐49: Route Design Dialog Box
Implementation 181
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=181

Chapter 3: Analyzing and Viewing Implementation Results
Depending on your selection, you have four options to route the ECO changes:

• Incremental Route: This is the default option.
• Route selected pin: This option limits the route operation to the selected pin.
• Route selected non-Power nets: This option routes only the selected signal nets.
• Route selected Power nets: This option routes only the selected VCC/GND nets.

Report Section

The Report Section of the ECO Navigator, shown in the figure below, provides access to all
the commands that are required to run reports on the modified design.

For more information on these commands, refer to Vivado Design Suite User Guide: Using
the Vivado IDE (UG893) [Ref 3].

Program Section

The Program Section of the ECO Navigator, shown in the figure below, provides access to
the commands that allow you to save your modifications, generate a new BIT file for
programming and a new LTX file for your debug probes, and program the device.

X-Ref Target - Figure 3-50

Figure 3‐50: ECO Navigator Report Commands

X-Ref Target - Figure 3-51

Figure 3‐51: ECO Navigator Program Commands
Implementation 182
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=182

Chapter 3: Analyzing and Viewing Implementation Results
Save Checkpoint As: This command allows you to save your modifications to a new
checkpoint.

Generate Bitstream: This command allows you to generate a new .bit file for
programming.

X-Ref Target - Figure 3-52

Figure 3‐52: Save Checkpoint As Dialog Box

X-Ref Target - Figure 3-53

Figure 3‐53: Generate Bitstream Dialog Box
Implementation 183
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=183

Chapter 3: Analyzing and Viewing Implementation Results
Write Debug Probes: This command allows you to generate a new .ltx file for your debug
probes. If you made changes to your debug probes using the Replace Debug Probes
command, you need to save the updated information to a new debug probes file (LTX) to
reflect the changes in the Vivado Hardware Manager.

Scratch Pad

The Scratch Pad is updated as changes are made to the loaded checkpoint. See the
following figure. The Object Name column displays hierarchical names of Cells, Nets, Ports,
and Pins. The Connectivity (Con) column tracks the connectivity of the objects and the Place
and Route (PnR) column tracks the place and route status of the objects. In the Scratch Pad
shown in the following figure, notice that check marks in the Con and PnR columns identify
connectivity and place/route status. Looking at this figure, you can identify the following:

• The port ingressFifoWrEn_debug has been added and assigned to a package pin.
• The net ingressFifoWrEn has been connected to the newly created Port, but the

connection has not yet been routed to the port.

X-Ref Target - Figure 3-54

Figure 3‐54: Write Debug Probes Dialog Box
Implementation 184
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=184

Chapter 3: Analyzing and Viewing Implementation Results
Scratch Pad Toolbar Commands

The Scratch Pad commands are:

• Search: Searches the Scratch Pad for objects by name.
• Collapse All: Displays objects by groups, and does not display individual members of

the group.
• Expand All: Shows an expanded view of all members of a group.
• Group by Type: Displays the objects by type, or in the order they have been added.
• Add selected objects: Adds selected objects to the Scratch Pad.
• Remove selected objects: Removes selected objects from the Scratch Pad.

Scratch Pad Pop-up Menu

When you right-click in the Scratch Pad, the following pop-up menu commands are
available:

• Clear Scratch Pad: Clears the contents of the Scratch Pad.
• Add Objects to Scratch Pad: Adds unconnected, unplaced, or unrouted objects to the

Scratch Pad.

X-Ref Target - Figure 3-55

Figure 3‐55: Scratch Pad
Implementation 185
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=185

Chapter 3: Analyzing and Viewing Implementation Results
• Select Array Elements: Selects all the elements in an array if one element has been
selected.

• Clone: Creates a copy of the selected object.
• Connect Net to Output Port: Opens the Connect Net to Output Port dialog box, which

allows you to connect the selected net to an external port. See Figure 3-56.
• Elide Setting: Specifies how to truncate long object names that don't fit in the Object

Name column. Choices are Left, Middle, and Right.
• Object Properties: Opens the Object Properties dialog box.
• Report Net Route Status: Reports the route status of the selected net.
• Select Driver Pin: Selects the driver pin of the selected net.
• Unplace: Unplaces the selected I/O ports.
• Configure I/O Ports: Assigns various properties of the selected I/O ports.
• Split Diff Pair: Removes the differential pair association from the selected port.
• Auto-place I/O Ports: Places I/O ports using the Autoplace I/O Ports wizard.
• Place I/O Ports in Area: Assigns the currently selected ports onto pins in the specified

area.
• Place I/O Ports Sequentially: Assigns the currently selected ports individually onto

package pins.
• Fix Ports: Fixes the selected placed I/O ports.
• Unfix Ports: Unfixes the selected placed I/O ports.
• Floorplanning: Assign selected cells to Pblock.
• Highlight Leaf Cells: Highlights the primitive logic for the selected cell.
• Unhighlight Leaf Cells: Unhighlights the primitive logic for the selected cell.
• Delete: Deletes the selected objects.
• Highlight: Highlights the selected objects.
• Unhighlight: Unhighlights the selected objects.
• Mark: Draws a marker for the selected object.
• Unmark: Removes the marker for the selected object.
• Schematic: Creates a schematic from the selected objects.
• Show Connectivity: Shows the connectivity of the selected object.
• Find: Opens the Find dialog box to find objects in the current design or device by

filtering TCL properties and objects.
Implementation 186
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=186

Chapter 3: Analyzing and Viewing Implementation Results
• Export to Spreadsheet: Writes the contents of the Scratch Pad to a Microsoft Excel
spreadsheet.

Schematic Window

Logical changes are reflected in the schematic view as soon as the netlist is changed. The
following figure shows an updated schematic based on the netlist changes shown in
Figure 3-56.

TIP: Use the Mark Objects and Highlights Objects command to help you keep track of objects in the
Schematic Window as you make changes to the netlist.

X-Ref Target - Figure 3-56

Figure 3‐56: Connect Net to Output Port Dialog Box
Implementation 187
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=187

Chapter 3: Analyzing and Viewing Implementation Results
X-Ref Target - Figure 3-57

Figure 3‐57: Schematic Window
Implementation 188
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=188

Appendix A

Using Remote Hosts and Compute
Clusters

Overview
The Xilinx® Vivado® Integrated Design Environment (IDE) supports simultaneous parallel
execution of synthesis and implementation runs on multiple Linux hosts. You can
accomplish this manually by configuring individual hosts or by specifying the commands to
launch jobs on existing compute clusters.

Currently Linux is the only operating system Vivado supports for remote host
configurations. Remote host settings are accessible through the Tools menu by selecting
Tools > Settings > Remote Hosts.

Requirements
The requirements for launching synthesis and implementation runs on remote Linux hosts
are:

• Vivado tools installation is assumed to be available from the login shell, which means
that $XILINX_VIVADO and $PATH are configured correctly in your .cshrc/.bashrc
setup scripts.

For Manual Configuration, if you do not have Vivado set up upon login (CSHRC or
BASHRC), use the Run pre-launch script option, described below, to define an
environment setup script to be run prior to all jobs.

• Vivado IDE installation must be visible from the mounted file systems on remote
machines. If the Vivado IDE installation is stored on a local disk on your own machine, it
might not be visible from remote machines.

• Vivado IDE project files (.xpr) and directories (.data and .runs) must be visible from
the mounted file systems on remote machines. If the design data is saved to a local
disk, it might not be visible from remote machines.
Implementation 189
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=189

Appendix A: Using Remote Hosts and Compute Clusters
Manual Configuration
Manual configuration of remote hosts allows you to specify individual machine names on
which Vivado can execute. Vivado will open a Secure Shell (SSH) on these machines and
spawn additional Vivado processes. Host names can be added by clicking the add button
shown in Figure A-1. Once added, the number of jobs per host can selected and hosts can
optionally be disabled. The specific command used to launch the jobs must be provided.
Optionally, users can configure pre and post launch scripts and an email address if you
desire to be notified once the jobs complete.

IMPORTANT: Use caution when specifying the “launch jobs with” command. For example, removing
BatchMode=yes might cause the remote process to hang because the Secure Shell incorrectly prompts
for an interactive password.

RECOMMENDED: Test each host to ensure proper setup before submitting runs to the host.

A “greedy,” round-robin style algorithm is used to submit jobs to the remote hosts. Before
launching runs on multiple Linux hosts it is important to configure SSH so that the host
does not require a password each time you launch a remote run.
Implementation 190
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=190

Appendix A: Using Remote Hosts and Compute Clusters
Setting Up SSH Key Agent Forward

You can configure SSH with the following commands at a Linux terminal or shell.

Note: This is a one-time step. When successfully set-up, this step does not need to be repeated.
1. Run the following command at a Linux terminal or shell to generate a public key on your

primary machine. Though not required, it is a good practice to enter (and remember) a
private key phrase when prompted for maximum security.
ssh-keygen -t rsa

2. Append the contents of your publish key to an authorized_keys file on the remote
machine. Change remote_server to a valid host name:
cat ~/.ssh/id_rsa.pub | ssh remote_server “cat - >> ~/.ssh/
authorized_keys”

X-Ref Target - Figure A-1

Figure A‐1: Manual Configuration of Remote Hosts
Implementation 191
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=191

Appendix A: Using Remote Hosts and Compute Clusters
3. Run the following command to prompt for your private key pass phrase, and enable key
forwarding:
ssh-add

You should now be able to ssh to any machine without typing a password. The first time
you access a new machine, it prompts you for a password. It does not prompt upon
subsequent access.

TIP: If you are always prompted for a password, contact your System Administrator.

Cluster Configurations
Compute Clusters are groups of machines configured through third party tools that accept
jobs, schedule them, and efficiently allocate the compute resources. Common compute
clusters include LSF, SGE and SLURM. To add custom compute clusters to Vivado, you can
click the plus tool bar button shown in figure def and provide a name for the cluster
configuration. You then need to specify the command necessary to submit a job to the
cluster, cancel a job on the cluster, and the cluster type. Vivado natively support LSF, SGE
and SLURM. For any other cluster you can choose CUSTOM in the combo box. The
configuration can be tested by pressing the test configuration button.

SLURM Specific Configuration

Configuring Vivado to run on SLURM using ssh to connect the client to the scheduler.

X-Ref Target - Figure A-2

Figure A‐2: Cluster configurations Settings Dialog Box
Implementation 192
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=192

Appendix A: Using Remote Hosts and Compute Clusters
In this example, the client machine name is xcolc200189, the scheduler machine name is
xcolc200185.

1. Set up SSH keys on client and scheduler to enable ssh without password.
2. Start Vivado on the client machine.
3. Create a custom SLURM cluster.

a. Open the Vivado settings window (Tools > Settings).
b. Select Tool Settings > Remote Hosts > Cluster Configuration.
c. Click the "+" button in the toolbar to create a new cluster configuration.
d. Fill in the form as follows. Important to leave the type as Custom.

X-Ref Target - Figure A-3

Figure A‐3: SLURM Compute Nodes
Implementation 193
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=193

Appendix A: Using Remote Hosts and Compute Clusters
4. Launch a job on the cluster to test the configuration.
a. Select File > Project > Open Example Project.
b. Next. Select BFT and click Next.
c. Select a name and directory and click Next.
d. Select the default part (xc7k70tfbg484-2) and click Next.
e. Click Finish. In the design runs Window, select synth_1 row and click the green play

toolbar button.

X-Ref Target - Figure A-4

Figure A‐4: Remote Hosts Cluster Configuration
Implementation 194
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=194

Appendix A: Using Remote Hosts and Compute Clusters
f. In the launch runs window, choose "Lunch runs on cluster" and in the combo box,
select the custom cluster name created above.

X-Ref Target - Figure A-5

Figure A‐5: Project Manager
Implementation 195
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=195

Appendix A: Using Remote Hosts and Compute Clusters
g. Click OK to launch the job.
h. In a terminal, ssh into the scheduler machine and check to see the job running using

the squeue command on the scheduler machine.

i. See the job complete successfully in the Vivado session running on the client.

X-Ref Target - Figure A-6

Figure A‐6: Launch Runs

X-Ref Target - Figure A-7

Figure A‐7: Terminal Window
Implementation 196
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=196

Appendix A: Using Remote Hosts and Compute Clusters
Launching Jobs on Remote Hosts
Once remote hosts are configured, using them to launch Vivado jobs is easy. Figure A-9
shows the launch runs dialog box. When launching a run, choose either “Launch runs on
remote hosts” or “Launch runs on cluster” and choose a specific cluster. The jobs will use
your preconfigured settings to execute.

X-Ref Target - Figure A-8

Figure A‐8: Project Manager
Implementation 197
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=197

Appendix A: Using Remote Hosts and Compute Clusters
Jobs can be executed on the user configured remote hosts or clusters.

X-Ref Target - Figure A-9

Figure A‐9: Launch Runs Dialog Box.
Implementation 198
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=198

Implementation 199
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Appendix B

ISE Command Map

Tcl Commands and Options
Some command line options in the Xilinx® Vivado® IDE implementation are one-to-one
equivalents of Xilinx Integrated Software Environment (ISE®) Design Suite commands.

Table B-1 lists various ISE tool command line options, and their equivalent Vivado Design
Suite Tcl command and Tcl command options. For more information about Tcl commands,
see the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 19], or type
<command> -help.

Table B‐1: ISE Command Map

ISE Command Vivado Tcl Command and Option

ngdbuild -p partname link_design -part partname
ngdbuild -a (insert pads) synth_design -mode out_of_context (opposite)
ngdbuild -u (unexpanded blocks) Enabled by default, generates critical warnings.
ngdbuild -quiet link_design -quiet

map -detail opt_design -verbose

map -lc auto Enabled by default in place_design
map -logic_opt opt_design and phys_opt_design
map -mt place_design automatically runs multi-threaded. See

Multithreading with the Vivado Tools, page 7 for details.
map -ntd place_design -non_timing_driven
map -power power_opt_design

map -u link_design -mode out_of_context, opt_design
-retarget (skip constant propagation and sweep)

par -mt route_design automatically runs multi-threaded. See
Multithreading with the Vivado Tools, page 7 for details.

par -k The route_design command is always re-entrant.
par -nopad The -nopad behavior is the Vivado tools default behavior.

You must use report_io to obtain the PAD file report
generated by PAR.

par -ntd route_design -no_timing_driven

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=199

Appendix C

Implementation Categories, Strategy
Descriptions, and Directive Mapping

Implementation Categories
I

Implementation Strategy Descriptions

Table C‐1: Implementation Categories

Category Purpose

Performance Improve design performance
Area Reduce LUT count
Power Add full power optimization
Flow Modify flow steps
Congestion Reduce congestion and related problems

Table C‐2: Implementation Strategy Descriptions

Implementation Strategy Name Description

Vivado® Implementation Defaults Balances runtime with trying to achieve timing closure.
Performance_Explore Uses multiple algorithms for optimization, placement, and routing to get

potentially better results.
Performance_
ExplorePostRoutePhysOpt

Similar to Peformance_Explore but adds phys_opt_design after
routing for further improvements.

Performance_
WLBlockPlacement

Ignore timing constraints for placing block RAM and DSPs, use
wirelength instead.

Performance_
WLBlockPlacementFanoutOpt

Ignore timing constraints for placing block RAM and DSPs, use wirelength
instead, and perform aggressive replication of high fanout drivers.

Performance_EarlyBlockPlace
ment

Finalize placement of Block RAM and DSPs in the early stages of global
placement.

Performance_NetDelay_high To compensate for optimistic delay estimation, add extra delay cost to
long distance and high fanout connections (high setting, most
pessimistic).
Implementation 200
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=200

Appendix C: Implementation Categories, Strategy Descriptions, and Directive Mapping
Performance_NetDelay_low To compensate for optimistic delay estimation, add extra delay cost to
long distance and high fanout connections low setting, least pessimistic).

Performance_Retiming Combines retiming in phys_opt_design with extra placement
optimization and higher router delay cost.

Performance_ExtraTimingOpt Runs additional timing-driven optimizations to potentially improve
overall timing slack.

Performance_RefinePlacement Increase placer effort in the post-placement optimization phase, and
disable timing relaxation in the router.

Performance_SpreadSLL A placement variation for SSI devices with tendency to spread SLR
crossings horizontally.

Performance_BalanceSLL A placement variation for SSI devices with more frequent crossings of SLR
boundaries.

Congestion_SpreadLogic_high Spread logic throughout the device to avoid creating congested regions
(high setting is the highest degree of spreading).

Congestion_SpreadLogic_
medium

Spread logic throughout the device to avoid creating congested regions
(medium setting is the medium degree of spreading).

Congestion_SpreadLogic_low Spread logic throughout the device to avoid creating congested regions
(low setting is the lowest degree of spreading).

Congestion_SpreadLogic_
Explore

Similar to Congestion_SpreadLogic_high, but uses the Explore
directive for routing.

Congestion_SSI_SpreadLogic_
high

Spread logic throughout the device to avoid creating congested regions,
intended for SSI devices (high setting is the highest degree of spreading).

Congestion_SSI_SpreadLogic_
low

Spread logic throughout the device to avoid creating congested regions,
intended for SSI devices (low setting is the lowest degree of spreading).

Area_Explore Uses multiple optimization algorithms to get potentially fewer LUTs.
Area_ExploreSequential Similar to Area_Explore but adds optimization across sequential cells.
Area_ExploreWithRemap Similar to Area_Explore but adds the remap optimization to compress

logic levels.
Power_DefaultOpt Adds power optimization (power_opt_design) to reduce power

consumption.
Power_ExploreArea Combines sequential area optimization with power optimization

(power_opt_design) to reduce power consumption.
Flow_RunPhysOpt Similar to the Implementation Run Defaults, but enables the physical

optimization step (phys_opt_design).
Flow_RunPostRoutePhysOpt Similar to Flow_RunPhysOpt, but enables the Post-Route physical

optimization step with the -directive Explore option.
Flow_RuntimeOptimized Each implementation step trades design performance for better run time.

Physical optimization (phys_opt_design) is disabled.
Flow_Quick Fastest possible runtime, all timing-driven behavior disabled. Useful for

utilization estimation.

Table C‐2: Implementation Strategy Descriptions (Cont’d)

Implementation Strategy Name Description
Implementation 201
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=201

Appendix C: Implementation Categories, Strategy Descriptions, and Directive Mapping
Directives Used By opt_design and place_design in
Implementation Strategies

Table C‐3: Directives Used by opt_design and place_design in Implementation Strategies

Strategy opt_design -directive place_design -directive

Performance_Explore Explore Explore

Performance_ExplorePostRoutePhysOpt Explore Explore

Performance_ExploreWithRemap ExploreWithRemap Explore

Performance_WLBlockPlacement Default WLDrivenBlockPlacement

Performance_WLBlockPlacementFanoutOpt Default WLDrivenBlockPlacement

Performance_EarlyBlockPlacement Explore EarlyBlockPlacement

Performance_NetDelay_high Default ExtraNetDelay_high

Performance_NetDelay_low Explore ExtraNetDelay_low

Performance_Retiming Default ExtraPostPlacementOpt

Performance_ExtraTimingOpt Default ExtraTimingOpt

Performance_RefinePlacement Default ExtraPostPlacementOpt

Performance_SpreadSLLs Default SSI_SpreadSLLs

Performance_BalanceSLLs Default SSI_BalanceSLLs

Performance_BalanceSLRs Default SSI_BalanceSLRs

Performance_HighUtilSLRs Default SSI_HighUtilSLRs

Congestion_SpreadLogic_high Default AltSpreadLogic_high

Congestion_SpreadLogic_medium Default AltSpreadLogic_medium

Congestion_SpreadLogic_low Default AltSpreadLogic_low

Congestion_SSI_Spreadlogic_high Default SSI_SpreadLogic_high

Congestion_SSI_Spreadlogic_low Default SSI_SpreadLogic_low

Area_Explore ExploreArea Default

Area_ExploreSequential ExploreSequentialArea Default

Area_ExploreWithRemap ExploreWithRemap Default

Power_DefaultOpts Default Default

Power_ExploreArea ExploreSequentialArea Default

Flow_RunPhysOpt Default Default

Flow_RunPostRoutePhysOpt Default Default

Flow_RuntimeOptimized RuntimeOptimized RuntimeOptimized

Flow_Quick RuntimeOptimized Quick
Implementation 202
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=202

Appendix C: Implementation Categories, Strategy Descriptions, and Directive Mapping
Directives Used by phys_opt_design and route_design
in Implementation Strategies

Table C‐4: Directives Used by phys_opt_design and route_design in Implementation Strategies

Strategy phys_opt_design
-directive

route_design -directive

Performance_Explore Explore Explore

Performance_ExplorePostRoutePhysOpt Explorea Explore

Performance_ExploreWithRemap Explore NoTimingRelaxation

Performance_WLBlockPlacement Explore Explore

Performance_WLBlockPlacementFanoutOpt AggressiveFanoutOpt Explore

Performance_EarlyBlockPlacement Explore Explore

Performance_NetDelay_high AggressiveExplore NoTimingRelaxation

Performance_NetDelay_low AggressiveExplore NoTimingRelaxation

Performance_Retiming AlternateFlowWithRet
iming

Explore

Performance_ExtraTimingOpt Explore NoTimingRelaxation

Performance_RefinePlacement Default NoTimingRelaxation

Performance_SpreadSLLs Explore Explore

Performance_BalanceSLLs Explore Explore

Performance_BalanceSLRs Explore Explore

Performance_HighUtilSLRs Explore Explore

Congestion_SpreadLogic_high AggressiveExplore AlternateCLBRouting

Congestion_SpreadLogic_medium Explore AlternateCLBRouting

Congestion_SpreadLogic_low Explore AlternateCLBRouting

Congestion_SSI_SpreadLogic_high AggressiveExplore AlternateCLBRouting

Congestion_SSI_SpreadLogic_low Explore AlternateCLBRouting

Area_Explore Not enabled Default

Area_ExploreSequential Not enabled Default

Area_ExploreWithRemap Not enabled Default

Power_DefaultOpts Not enabled Default

Power_ExploreArea Not enabled Default

Flow_RunPhysOpt Explore Default

Flow_RunPostRoutePhysOpt Explorea Default

Flow_RuntimeOptimized Not enabled RuntimeOptimized

Flow_Quick Not enabled Quick
Implementation 203
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=203

Appendix C: Implementation Categories, Strategy Descriptions, and Directive Mapping
Listing the Strategies for a Release

You can list the Synthesis and Implementation Strategies for a particular release using the
list_property_value command in an open Vivado project. The following are examples
using a Vivado version 2017.3 project containing synthesis run synth_1 and
implementation run impl_1.

Vivado% join [list_property_value strategy [get_runs synth_1]] \n
Vivado Synthesis Defaults
Flow_AreaOptimized_high
Flow_AreaOptimized_medium
Flow_AreaMultThresholdDSP
Flow_AlternateRoutability
Flow_PerfOptimized_high
Flow_PerfThresholdCarry
Flow_RuntimeOptimized

Vivado% join [list_property_value strategy [get_runs impl_1]] \n
Vivado Implementation Defaults
Performance_Explore
Performance_ExplorePostRoutePhysOpt
Performance_WLBlockPlacement
Performance_WLBlockPlacementFanoutOpt
Performance_EarlyBlockPlacement
Performance_NetDelay_high
Performance_NetDelay_low
Performance_Retiming
Performance_ExtraTimingOpt
Performance_RefinePlacement
Performance_SpreadSLLs
Performance_BalanceSLLs
Congestion_SpreadLogic_high
Congestion_SpreadLogic_medium
Congestion_SpreadLogic_low
Congestion_SpreadLogic_Explore
Congestion_SSI_SpreadLogic_high
Congestion_SSI_SpreadLogic_low
Area_Explore
Area_ExploreSequential
Area_ExploreWithRemap
Power_DefaultOpt
Power_ExploreArea
Flow_RunPhysOpt
Flow_RunPostRoutePhysOpt
Flow_RuntimeOptimized
Flow_Quick

The list of strategies also includes user-defined strategies.

a. Explore applies to both post-place and post-route phys_opt_design
Implementation 204
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=204

Appendix C: Implementation Categories, Strategy Descriptions, and Directive Mapping
Listing the Directives for a Release

You can display the list of directives for a command for a particular release. This is done
programmatically using Tcl to list the properties of the runs. Each design run has a property
corresponding to a Design Runs step command:

STEPS.<STEP>_DESIGN.ARGS.DIRECTIVE

Where <STEP> is one of SYNTH, OPT, PLACE, PHYS_OPT, or ROUTE. This property is an
enum type, so all supported values can be returned using list_property_value.
Following is an example:

Vivado% list_property_value STEPS.SYNTH_DESIGN.ARGS.DIRECTIVE [get_runs synth_1]
RuntimeOptimized
AreaOptimized_high
AreaOptimized_medium
AlternateRoutability
AreaMapLargeShiftRegToBRAM
AreaMultThresholdDSP
FewerCarryChains
Default

The following Tcl example shows how to list the directives for each synthesis and
implementation command using a temporary, empty project:

create_project p1 -force -part xcku035-fbva900-2-e

#get synth_design directives
set steps [list synth]
set run [get_runs synth_1]
foreach s $steps {
puts "${s}_design Directives:"
set dirs [list_property_value STEPS.${s}_DESIGN.ARGS.DIRECTIVE $run]
set dirs [regsub -all {\s} $dirs \n]
puts "$dirs\n"

}

#get impl directives
set steps [list opt place phys_opt route]
set run [get_runs impl_1]
foreach s $steps {
puts "${s}_design Directives:"
set dirs [list_property_value STEPS.${s}_DESIGN.ARGS.DIRECTIVE $run]
set dirs [regsub -all {\s} $dirs \n]
puts "$dirs\n"

}
close_project -delete
Implementation 205
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=205

Appendix D

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see
Xilinx® Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
Implementation 206
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=206

Appendix D: Additional Resources and Legal Notices
References

Vivado Design Suite User Guides

1. Vivado Design Suite User Guide: Design Flows Overview (UG892)
2. Vivado Design Suite User Guide: Hierarchical Design (UG905)
3. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
4. Vivado Design Suite User Guide: Designing with IP (UG896)
5. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)
6. Vivado Design Suite User Guide: System-Level Design Entry (UG895)
7. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)
8. Vivado Design Suite User Guide: Synthesis (UG901)
9. Vivado Design Suite User Guide: Using Constraints (UG903)
10. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)
11. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)
12. Vivado Design Suite User Guide: Programming and Debugging (UG908)
13. UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
14. Vivado Design Suite Properties Reference Guide (UG912)
15. Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)
16. Versal ACAP Clocking Resources Architecture Manual (AM003)

Other Vivado Design Suite Documents

17. 7 Series FPGAs Clocking Resources User Guide (UG472)
18. UltraScale™ Architecture Clocking Resources Advanced Specification User Guide (UG572)
19. Vivado Design Suite Tcl Command Reference Guide (UG835)
20. Vivado Design Suite Migration Guide (UG911)
21. Vivado Design Suite Tutorial: Design Flows Overview (UG888)

Vivado Design Suite Documentation Site

22. Vivado Design Suite Documentation
Implementation 207
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug905-vivado-hierarchical-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug906-vivado-design-analysis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug949-vivado-design-methodology.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug912-vivado-properties.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug472_7Series_Clocking.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug572-ultrascale-clocking.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug835-vivado-tcl-commands.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug911-vivado-migration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;d=ug888-vivado-design-flows-overview-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.2;t=vivado+docs
https://www.xilinx.com/support/documentation/architecture-manuals/am003-versal-clocking-resources.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=207

Appendix D: Additional Resources and Legal Notices
Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Designing FPGAs Using the Vivado Design Suite 1
2. Designing FPGAs Using the Vivado Design Suite 2
3. Designing FPGAs Using the Vivado Design Suite 3
4. Designing FPGAs Using the Vivado Design Suite 4

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012-2021 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.
Implementation 208
UG904 (v2020.2) February 26, 2021 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-4.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG904&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2020.2&docPage=208

	Vivado Design Suite User Guide
	Revision History
	Table of Contents
	Ch. 1: Preparing for Implementation
	About the Vivado Implementation Process
	SDC and XDC Constraint Support
	Multithreading with the Vivado Tools
	Tcl API Supports Scripting

	Navigating Content by Design Process
	Hardware, IP, and Platform Development​

	Managing Implementation
	Project Mode and Non-Project Modes
	Project Mode
	Working in Project Mode
	Flow Navigator

	Non-Project Mode
	Similarities and Differences Between Project Mode and Non-Project Mode
	Beginning the Implementation Flow
	Importing Previously Synthesized Netlists
	Starting From RTL Sources

	Creating and Opening the Synthesized Design in Non-Project Mode
	Loading the Design Netlist in Project Mode Before Implementation

	Configuring, Implementing, and Verifying IP
	Guiding Implementation with Design Constraints
	Physical Constraints Definition
	Timing Constraints Definition
	Power Constraints Definition
	UCF Format Not Supported
	Constraint Sets Apply Lists of Constraint Files to Your Design
	Allowed Constraint Set Structures
	Multiple Constraint Sets Are Allowed

	Adding Constraints as Attribute Statements

	Using Checkpoints to Save and Restore Design Snapshots
	Writing Checkpoint Files
	Reading Checkpoint Files

	Ch. 2: Implementing the Design
	Running Implementation in Non-Project Mode
	Non-Project Mode Example Script
	Key Steps in Non-Project Mode Example Script
	Step 1: Read Design Source Files
	Step 2: Build the In-Memory Design
	Step 3: Read Design Constraints
	Step 4: Perform Logic Optimization
	Step 5: Place the Design
	Step 6: Route the Design
	Step 7: Run Required Reports
	Step 8: Save the Design Checkpoint

	Running Implementation in Project Mode
	Creating Implementation Runs
	Defining Implementation Runs

	Using the Design Runs Window
	Opening the Design Runs Window
	Design Runs Window Functionality
	Run Status
	Run Times
	Run Timing Results
	Out-of-Date Runs
	Active Run
	Changing Implementation Run Settings

	Specifying Design Run Settings
	Strategy
	Description
	Options
	Modifying Command Options
	Save Strategy As

	Verifying Run Status
	Resetting Runs
	Deleting Runs

	Customizing Implementation Strategies
	Accessing Implementation Settings for the Active Run from Flow Navigator
	Defining Implementation Strategies
	Accessing Currently Defined Strategies
	Reviewing, Copying, and Modifying Strategies
	Sharing Run Strategies

	Launching Implementation Runs
	Moving Processes to the Background
	Running Implementation in Steps
	How to Run Implementation in Steps

	About Implementation Commands
	Implementation Sub-Processes
	Opening the Synthesized Design
	Creating the In-Memory Design
	Tcl Commands
	synth_design
	synth_design Syntax
	synth_design Example Script

	open_checkpoint
	open_checkpoint Syntax
	open_checkpoint Example Script

	open_run
	open_run Syntax
	open_run Example Script

	link_design
	link_design Syntax
	link_design Example Script
	BUFG Optimization

	Logic Optimization
	Common Design Errors
	Available Logic Optimizations
	Retargeting (Default)
	Constant Propagation (Default)
	Sweep (Default)
	Mux Optimization
	Carry Optimization
	Control Set Merging
	Equivalent Driver Merging
	BUFG Optimization (Default)
	MBUFG Optimization
	Shift Register Optimization (Default)
	Shift Register Remap
	DSP Register Opt
	Control Set Reduction
	Module-Based Fanout Optimization
	Remap
	Aggressive Remap
	Resynth Area
	Resynth Sequential Area
	Block RAM Power Optimization (Default)
	Property-Only Optimization

	opt_design
	opt_design Syntax
	opt_design Example Script
	Restrict Optimization to Listed Types
	Using Directives
	Using the -debug_log and -verbose Options

	Logic Optimization Constraints
	Logic Preservation
	Logic Optimization

	Power Optimization
	Vivado Tools Power Optimization
	Using Clock Enables (CEs)
	Intelligent Clock Gating

	power_opt_design
	power_opt_design Syntax

	Placement
	Design Placement Optimization
	Design Rule Checks
	Clock and I/O Placement
	Placer Targets
	Placing Unfixed Logic
	Clock Resources Placement Rules
	When Clock and I/O Placement Fails

	Global Placement, Detailed Placement, and Post-Placement Optimization
	Global Placement
	Floorplanning Phase
	Physical Synthesis Phase

	Detailed Placement
	Post-Placement Optimization

	place_design
	place_design Syntax
	place_design Example Script

	Using Directives
	Placer Directives
	Available Directives
	Using the -unplace Option
	Using the -no_timing_driven Option
	Using the -timing_summary Option
	Using the -verbose Option
	Using the -post_place_opt Option
	Using the no_psip Option
	Using the -no_bufg_opt Option

	Auto-Pipelining
	Using the AXI Register Slice in Auto-Pipelining Mode
	Using Auto-Pipelining on Custom Interfaces
	Reviewing the Auto-Pipelining Implementation Results

	Physical Optimization
	Available Physical Optimizations
	High-Fanout Optimization
	Placement-Based Optimization
	Routing Optimization
	Rewiring
	Critical-Cell Optimization
	DSP Register Optimization
	Block RAM Register Optimization
	URAM Register Optimization
	Shift Register Optimization
	Critical Pin Optimization
	Block RAM Enable Optimization
	Hold-Fixing
	Aggressive Hold-Fixing
	Negative-Edge Register Insertion
	Retiming
	Forced Net Replication
	SLR-Crossing Optimization
	SLL Register Hold Fix
	Clock Optimization
	Routing Optimization
	Path Group Optimization

	Physical Optimization Messages
	phys_opt_design
	phys_opt_design Syntax
	phys_opt_design Example Script

	Using Directives
	Using the -verbose Option
	Physical Optimization Constraints
	Physical Optimization Reports
	Interactive Physical Optimization
	Retrofitting phys_opt_design Netlist Changes
	Repeating phys_opt_design Design Changes
	Interactive Physical Optimization Command Reference
	write_iphys_opt_tcl
	read_iphys_opt_tcl
	iphys_opt_design

	Routing
	Design Rule Checks
	Routing Priorities
	Impact of Poor Timing Constraints
	Router Timing Summary
	route_design
	route_design Syntax

	Using Directives
	Trading Compile Time for Better Routing
	Using Other route_design Options
	Routing Example Script 1
	Timing Summary
	Router Utilization Summary

	Routing Example Script 2
	Routing Example Script 3
	Routing Example Script 4
	Router Messaging
	Intermediate Route Results

	Incremental Implementation
	Incremental Implementation Flow Designs
	Reference Design
	Incremental Design

	Incremental Directives
	RuntimeOptimized
	TimingClosure
	Quick

	Incremental Modes
	Automatic Incremental
	High Reuse Mode
	Low Reuse Mode

	Running Incremental Place and Route
	read_checkpoint -incremental
	Incremental Implementation Controls
	-auto_incremental Option
	-reuse_objects Option
	-fix_objects Option
	Examples

	Using report_incremental_reuse
	Factors Affecting Run Time Improvement

	Using Incremental Implementation
	Using Incremental Implementation in Non-Project Mode
	Using Incremental Implementation in Project Mode
	Orphaned Route Segments

	Using Synplify Compile Points
	Using Incremental Synthesis

	Saving Post-Reuse Checkpoints
	Constraint Conflicts
	LOC Constraint Conflict Example
	PBlock Conflict Example

	Incremental Compile Advanced Analysis
	Reuse Reporting
	Incremental Reuse Summary
	Hierarchical Implementation Reuse Summary
	Hierarchical Implementation Reuse Summary

	Timing Reports
	Object Properties

	Ch. 3: Analyzing and Viewing Implementation Results
	Monitoring the Implementation Run
	Viewing the Run Status Display
	Cancelling or Resetting the Run

	Viewing the Log in the Log Window
	Pausing Output
	Displaying the Project Status
	Viewing Project Status in the Project Status Bar
	Viewing Out-of-Date Status
	Forcing Runs Up-to-Date

	Moving Forward After Implementation
	Recommended Steps After Implementation
	Moving Forward in Non-Project Mode
	Moving Forward in Project Mode

	Viewing Messages
	Viewing Messages in Non-Project Mode
	Viewing Messages in Project Mode
	Incremental Compile Messages
	Incremental Placement Summary
	Incremental Routing Summary

	Viewing Implementation Reports
	Reporting in Non-Project Mode
	Example Tcl Script

	Opening Reports in a Vivado IDE Window
	Getting Help With Implementation Reports
	Reporting in Project Mode
	Cross Probing from Reports
	Cross Probing Between Timing Report and Device Window Example

	Modifying Implementation Results
	Modifying Placement
	Fixed Cells
	Unfixed Cells
	Fixing Placer-Placed Logic
	Placing and Moving Logic by Hand
	Placing Logic using a Tcl Command

	Modifying Routing
	Manual Routing
	Manual Routing Rules
	Entering Assign Routing Mode
	Routing Assignment Window
	Assigning Routing Nodes
	Un-Assigning Routing Nodes
	Exiting Assign Routing Mode
	Canceling Out of Assign Routing Mode
	Verifying Assigned Routes
	Branching
	Assigning Routing to a Branch
	Locking Cell Inputs and Adding DONT_TOUCH Constraint on LUT Loads

	Directed Routing Constraints
	Using the find_routing_path Command to Create Directed Routing Constraints

	Modifying Logic
	Saving Modifications

	Modifying the Netlist
	Netlist Modifying Commands
	Use Cases
	Use Case 1: Inverting the Logical Value of a Net
	Use Case 2: Adding a Debug Port
	Use Case 3: Adding a Pipeline Stage to Improve Timing

	Vivado ECO Flow
	ECO Navigator
	Scratch Pad
	ECO Flow Chart
	ECO Navigator Use
	Edit Section
	Run Section
	Report Section
	Program Section

	Scratch Pad
	Scratch Pad Toolbar Commands
	Scratch Pad Pop-up Menu

	Schematic Window

	Appx. A: Using Remote Hosts and Compute Clusters
	Overview
	Requirements
	Manual Configuration
	Setting Up SSH Key Agent Forward

	Cluster Configurations
	SLURM Specific Configuration

	Launching Jobs on Remote Hosts

	Appx. B: ISE Command Map
	Tcl Commands and Options

	Appx. C: Implementation Categories, Strategy Descriptions, and Directive Mapping
	Implementation Categories
	Implementation Strategy Descriptions
	Directives Used By opt_design and place_design in Implementation Strategies
	Directives Used by phys_opt_design and route_design in Implementation Strategies
	Listing the Strategies for a Release
	Listing the Directives for a Release

	Appx. D: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Vivado Design Suite User Guides
	Other Vivado Design Suite Documents
	Vivado Design Suite Documentation Site

	Training Resources
	Please Read: Important Legal Notices

