# RCA VICTOR SERVICE DATA 

# VOLUME VIII 1952 <br> RADIO RECEIVERS <br> PHONOGRAPHS 

## TELEVISION

[^0]
# RCA Victor SBRICRIDTA (8G) <br> - television receivers - RADIO RECEIVERS -PHONOGRAPHS 

This volume is a compilation of Service Data previously issued for the year 1952 with the latest changes and corrections.

PREPARED BY RCA SERVICE CO., INC.
FOR
RADIO CORPORATION OF AMERICA
rCA VICTOR dIVISION
harrison, N. J., U. S. A.

## INDEX

The page numbers given in the index below refer to the number at the top of the pages. The numbers which are found in the text and at the bottom of some pages refer only to that particular Service Data.
The regular Service Data will be found on the pages indicated by boldface numbers (1, 2, 3, etc.). Supplementary data is indicated by lightface numbers.

| RADIOS AND PHONOGRAPHS | Model Chassis <br> No. No. |
| :---: | :---: |
| Model Cbassis Page <br> No. No. No. | 21T159DE, |
| 2B400, $2 \mathrm{B401}$ | T166DE, |
| B400, 2B401, <br> 2B402, 2B403, | $21 \mathrm{Tl14} \mathrm{DE}$, |
| 2B404, 2B405..RC-1114 ....................................... | 21T178DE, |
| 2BX63 ..............RC-1115 | 21T176, 21T177, |
| 2C511 ..............RC-1118 | 217178, |
| 2C512 ..............RC-118A ..................................... 9 | 217179 ..........KCS-68C ....................................... 173 |
| 2C513 ..............RC-1118B ...................................... 9 | 21T197DE …......KCS-68H, RC-1111A, |
| 2C514 ..............RC-1118C ..................................... 9 | 21007 hS-141A .....................180-193, 209 |
| 2C521 ..............RC-1120, RC-1120B ........................ 13 | 21T207G |
| 2C522, 2 C 527 ....RC-1120A, RC-1120C ..................... 13 | 217208, |
| 2ES3 ................RS-142 ......................................... 17 | 21 2172, |
| 2ES31 ..............RS-142 .......................................... 19 | 21 T227, |
| 2ES38 ..............RS-142 .......................................... 17 | 217228, |
| 2ISl .................Record Player ......................... 21 | $21 T 229$..........KCS-72A ....................................... 229 |
|  | 21 T242 .............KCS-72D-1, RC-1117B ......236-249, 261 |
| 2R51, 2R51A, <br> 2R52, 2R52A..RC-1119 $\qquad$ | 21 T244 ..............KCS-72D-2, RC-1111B, <br> RS-141C |
| 2S7 .................RC-1117D .................................... 25 | U-1A KRK-19A 285 |
| 2S10 .................RC-1111, RS-141 ............................ 29 | U-1B ................KRK-19 ...................................... 285 |
| 2US7 .................RC-1117A, RC-1117C .................... 37 | U-2 ...................KCS-79 ...................................... 289 |
| 2X61 ...............RC-1080C .................................... 41 | U-2A ................KCS-79A ..................................... 289 |
| 2X62 ...............RC-1080D .................................... 41 | U-70 ..................KCS-70 ....................................... 295 |
| 2X621 ...............RC-1085B .................................... 43 | Supplementary Information: |
| 2XF91 ..............RC-1121 ...................................... 47 | General notes on KCS-66, KCS-66A, KCS-68C, |
| 2XF931, 2XF932. | KCS-68E .....................................................XVII |
| $2 \mathrm{XF933}$, | Interchangeability of R-F tuners ......................XIX |
| 2XF934 .........RC-1121A ....................................... 53 | Oscillator switch wafers ................................XIX |
| 15E, 15E-1 .........RS-139A ..................................... 59 | R-F unit oscillator tracking .............................XX |
|  | Use of WR39A and WR39B Television Calibrators $\qquad$ |
| RECORD CHANGERS | Correcting pix i-f response ...............................XX |
| 930409 Series .......................................................... 63 | Hígh-pass filter .............................................XXI |
|  | High voltage arcs at kinescopes .......................XXI |
| TELEVISION | Adjustment of A-G-C control .............................XXI |
| 17T150, 17T151, <br> 17 T 163 ..........KCS-66C | Television receiver cross-reference ..................XXII |
|  | MISCELLANEOUS |
| 17 T 202 | Complete Index to Models-Vol. I to Vol. VIII ........IV |
| 17T211, | Index to Chassis Numbers ..................................XII |
| 17 T 220 .........KCS-72, KCS-72M1, KCS-72M2 ... 109 | Model Number vs. Record Changer ...................XVI |
| 17T250DE, <br> 17T26IDE KCS-74, KCS-74 | Sales Name vs. Model Number .............................XVI |
| 21T159, 21 T165..KCS-68E ...................................... 173 | Crystal pickup cross-reference ..........................XXVI |

## COMPLETE INDEX OF MODELS

| NOTES: <br> †denotes "Radiola" <br> - denotes "Victor" <br> All others "RCA" or "RCA Victor" <br> Refer to the index of the listed Volume for additional information contained in that Volume. | VOL. I | 1923 to 1937 |
| :---: | :---: | :---: |
|  | VOL. 11 | .1938 to 1942 |
|  | VOL. 111 | 1943 to 1946 |
|  | VOL. IV | 1947 to 1948 |
|  | VOL. V | . . . . . . 1949 |
|  | VOL. VI | . . . . . . 1950 |
|  | VOL. VII | . 1951 |
|  | VOI.. VIII | . 1952 |


| Model | Chassis No. or Description | Vol. Page | Model | Chassis No. or Description | Vol. Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A A-1400 | Detector-Amplifier | 1-238A | HF-2 | RC-354B | .11-14C |
| AA-1520 | R-F Amplifier | I-238A | HF-4 | RC-354A | 11 - 14C |
| $\dagger$ AC | Audio Amplifier | I- 2A | HF-6 | RC-331A | . 11 - 124C |
| †AR | R-F Amplifier | I- 1A | HF-8 | RC-331 | $11-124 \mathrm{C}$ |
| AR-1300 |  | I-238A | K-50 | RC-418A, RC-497 | . 11 -504C |
| A-55 | RC-1087 | VI- 1 | K-60 | RC-415 | . $11-531 \mathrm{C}$ |
| A-78 | RC-1084A | VI- 5 | 2nd Prod. | RC-415B | . 11 - 537C |
| A-82 | RC-1094 | VI- 11 | K-61 | RC-498F | . 11 - 548C |
| A-91 | RC-1095 | VI- 15 | K-62 | RC-415B | . $11-537 \mathrm{C}$ |
| A-101 | RC-1096, RC-1096B | VI- ${ }^{\circ} 23$ | K-80 | RC-415A | $.11-531 \mathrm{C}$ |
| A-106 | .RC-622 | VI-33 | 2nd Prod. | RC-415C, RC-415D | . $11-537 \mathrm{C}$ |
|  | . Correction to Parts Lis | VII- V | K-81, K-82 | RC-415C | $11-537 \mathrm{C}$ |
| A-108 | RC-1096, RC-1096B | VI- 41 | K-105 | RC-476 | $11-664 \mathrm{C}$ |
| BC6-4 |  | . 1 - 90B | K-130 | RC-501A, RS-102C | .11-498C |
| BC6-6 |  | . 1 - 94B | MB-1, MB-2, MB-3 | Repl. Motor Board | . 1 - 13A |
| BC7-9 |  | I-122B | MI-8122 | Power Unit | $.11-34 C$ |
| BK-41 | RC-449 | . $11-458 \mathrm{C}$ | MI-13174 | Coin Operated Radi | $V-X V$ |
| BK-42 | RC-408C | . 11 - 460C | M-30 |  | I-118A |
| BP-10 | RC-544 | . 111 - 297C | M-32 |  | I-135A |
| BP-55, BP-56. | RC-455 | . $11-522 \mathrm{C}$ | M-34 |  | I - 287 B |
| BT6-3 |  | . 1 - 90B | M-50 | RC-357 J | . 11 - 217C |
| BT6-5 |  | I-94B | M-60 | RC-357K | . $11-222 \mathrm{C}$ |
| BT6-10 |  | . 1 - 90B | M-70 | RC-394 | . 11 - 560C |
| BT7-8 |  | . I-122B | M-101, M-104 |  | I-409B |
| BT-40 | RC-408 | . $11-456 \mathrm{C}$ | M-105 |  | . 1 -420B |
| BT-41 | RC-449 | . $11-458 \mathrm{C}$ | M-107 |  | I-437B |
| BT-42 | RC-408A | . $11-460 \mathrm{C}$ | M-108 |  | -409B |
| BX-6 | RC-1082, RC-1082A | $V I-47$ | M-109 |  | -449 B |
| BX-55 | RC-1088, RC-1088B | VI- 51 | M-116 |  | 480 |
| BX-57 | RC-1088A, RC-1088C | VI- 55 | M-123 |  | - 480 B |
| +B-50 | RC-1004H | . $11-399 \mathrm{C}$ | OSC. 22 | Phono. Oscillator | . 11 - 395C |
| †B-52 | RC-1004D | $11-407 \mathrm{C}$ | O-1 | Portable Victrola | . 1 - 18 |
| B-411 | RC-1098, RC-1098A | VI- 43 | O-2 | Portable Victrola | $.11-20 C$ |
| CRD-9 A.C. | Record Damonstrator | . I - 186B | O-3 | Portable Victrola |  |
| CRD-9 D.C. | Record Demonstrator | . 1 - 188 B | O-6, 0-10 | Portable Victrola | $\begin{array}{r} 11-20 C \\ 1-\quad 1 B \end{array}$ |
| CV-8 | Power Unit | . I - 160B | $\begin{array}{lll}0-11 & \cdots\end{array}$ | Portable Victrola Portable Victrola | ...1— 1 B |
| CV-9 | RS-79B | . $11-610 \mathrm{C}$ | O-12, O-14 | Portable Victrola | ..11— 20C |
| CV-40 | RS-98. | . $11-458 \mathrm{C}$ | 0-15 | Portable Victrola | $11-1 B$ $i 11$ |
| CV-42 | RS-1000 | 111-404C | O-16, 0-19 | Portable Victrola | $\begin{aligned} & 11-20 \mathrm{C} \\ & 11-509 \mathrm{c} \end{aligned}$ |
| CV-45 | RS-1001 | . 111 - 67 | O-50 | Record Player | $\begin{aligned} & 11-509 \mathrm{C} \\ & 1 \mathrm{H}-81 \mathrm{C} \end{aligned}$ |
| CV-110 | RS-83C | . 11 - 34C | PLF-10 | Power Line Filter | $17-81 \mathrm{C}$ |
| CV-111 | RS-95 | .11-44C | PSU-8A, PSU-8B, |  |  |
| CV-112 | RS-111 | . $11-23 C$ | PSU-8C | Power Unit |  |
| CV-112X | RS-111A | .11-87C | PSU-8E ...... | Power Unit | $.11-213 C$ |
| CV-120 | Power Unit | . V - XVI | PSU-10A, PSU-1 |  |  |
| C6-2 |  | I-98B | PSU-10C | Power Unit |  |
| C6-8 |  | I-103B | PSU-10E | Power Unit | II - 213C |
| C6-12 |  | . I - 107B | PT-33 | Record Player | $\text { ii) } 149 \mathrm{~A}$ |
| C7-6 |  | . I - 127B | PX61-10 | $R C-1023 B$ | $\text { V11- } 45^{11}$ |
| C7-14 |  | $\cdots \mathrm{I}$ - 98 B | PX-600 $+\mathrm{P}-5$ | $R C-1110$ $R C-465, ~ R C-1020 B$ | $\begin{aligned} & V 11=45 \\ & . .11-83 C \end{aligned}$ |
| C8-15 | . | . . I - 146B | $\begin{aligned} & \dagger P-5 \\ & 0 \end{aligned}$ | RC-465, RC-1020B | $\begin{aligned} & 1-83 C \\ & 1-128 A \end{aligned}$ |
| C8-17 ${ }^{\text {C8-19, }}$ C8-20 |  | I-152B I-161B | $\begin{aligned} & \text { P-31 } \\ & \text { QB-1 } \end{aligned}$ | RC-529A | $\begin{aligned} & \because 1-128 A \\ & \cdots 11-8 C \end{aligned}$ |
| C8-19, C8-20 C9-4 |  | I-161B I-146B | QB-2 | RC-529 | . $11-23 C$ |
| C9-6 |  | I-152B | QB-3 | RC-539D | . 11 - 34C |
| C11-1, C113 |  | I - 215B | QB-5 | RC-563A | . 11 - 87C |
| C13-2, C13-3 |  | . 1 - 230 B | QB-6 | RC-529D | . 11 - 23C |
| C15-3, C15-4 |  | I - 253 B | QB-9 | RC-529H | . $11-8 \mathrm{C}$ |
| D7-7 |  | I-127B | QB-11, QB-12 | RC-529A | .111-7 |
| D8-28 |  | I-161B | QB-13 | RC-612 | $.111-7$ |
| D9-19 |  | ... I-152E | QB-55 | RC-563A | . . 111 - 41 |
| D11-2 |  | . $1-2198$ | QB-55X | .RC-563K | .111-43 |
| D22-1, D22-1A |  | . 1 - 262B | QB-60 | . . RC-607 | .IV - 113 |
| -E-35 | Electrola | . 1 - 138A |  | Correction to Parts | ...V- XVI |
| -E-135 | R-32 Amp. \& Speaker |  | QH-1 | Record Player | IV - 1 |
| - E-152 | R-32 Amp. \& Speaker |  | QK-23 | RC-507B | $11-27 \mathrm{C}$ |
| G-8 | Armchair Control | I-619B | QU-2C | RC-507C | $11-27 \mathrm{C}$ |
| HF-1 | RC-339 | $11-5 C$ | QU-2M | RC-507D |  |

COMPLETE INDEX OF MODELS (Continued)



COMPLETE INDEX OF MODELS (Continued)



| Model | Chassis No. or Description | Vol. Page | Model | Chassis No. or Description | Vol. Puge |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $12 \times 2$ | RC-1001B | $11-291 \mathrm{C}$ | $\dagger 26$ |  | I- 98A |
| -12-1 | Cromwell | $1-57 \mathrm{~A}$ | 26BP | RC-559 | $11-414 \mathrm{C}$ |
| -12-2 | Tusqany | 1-57A | 26x-1 | RC-1014 | $11-416 \mathrm{C}$ |
| -12-15 | AZ-774, AZ-1077 | 1-58A | 26X-3 | RC-1014A | $11-416 \mathrm{C}$ |
| -12-25 |  | 1-59A | 26X-4 | RC-1014B | II-416C |
| 13K |  | I-225B | 27K | RC-567 | $11-421 \mathrm{C}$ |
| $14 \mathrm{AX}, 14 \mathrm{AX} 2$ | RC-1001E | 11.324 C | $\dagger 28$ | AR-920, UP-972 | I - 112A |
| 14 BK | RC-525B | . $11-328 \mathrm{C}$ | $\dagger 28$ D.C. | AR-920, AR-969 | I-107A |
| 14BT-1 | RC-525 | 11-328C | 287 | RC-569 | . 11 - 4255 |
| 14BT-2 | RC-525A | $11-328 \mathrm{C}$ | 28 X | RC-1002 | 11-429C |
| 14X. $14 \times 2$ | RC-1001D | II-324C | 28X-5 | RC-1002A | 11-423C |
| $15 \mathrm{BP}-1,-2,-4,-6$ | RC-527 | $11-333 \mathrm{C}$ | 29 K | RC-570 | $11-434 \mathrm{C}$ |
| 15BP-3, -5 | RC-527A | $11-333 \mathrm{C}$ | 29K2 | RC-570C, RC-570D | $11-434 \mathrm{C}$ |
| $15 \mathrm{BP}-7$ | RC-527C | $11-333 \mathrm{C}$ | +30.. | AR-921 . . . . . . . | I - 122A |
| 15BT ${ }^{\text {che }}$ | RC-526 | ViII-335C | +30A | AR-906, AR-926 | I-124A |
| 15-E, 15-E-1 | RS-139A | VIII- 59 | +30A D.C. | AR-912 ....... | $1-12 \wedge A$ |
| 15 K 15 U |  | I-236B | +32 $\ldots$. ${ }^{\text {c }}$ | AR-925 | I-131A |
| 15 X | RC-462 | II二 131 C | $\dagger 32$ D.C. | AR-928 | 1-131A |
| (2nd Prod.) | RC-1011 | II-331C | $\stackrel{+33}{+}$ | AR-784 | I-143A |
| -15-1........ | Hyperion | I- 112 A | $\dagger 33$ D.C. | (110 V.) | I-147A |
| $\dagger 16$ | AR-924. | I- 65 A | $\dagger 33$ D.C. | ( 220 V .) | 1-145A |
| 16K | RC-509C | $11-344 \mathrm{C}$ | $34 \times$ | RC-1001E, RC-1022 | $11-324 \mathrm{C}$ |
| 16 T 2 | RC-509B, RC-509J | $11-344 \mathrm{C}$ | $35 \times$ | RC-1001C, RC-1022A | $11-291 \mathrm{C}$ |
| $16 T 3$ | RC-509A. RC-509H | $11-344 \mathrm{C}$ | 36 X | RC-462A | $11-337 \mathrm{C}$ |
| 16 T 4 | RC-509, RC-509F | $11-351 \mathrm{C}$ | 36 x | RC-1011 | $11-341 \mathrm{C}$ |
| 16 T 152 | KCS-47E | VII-204 | 40X-30 | RC-405C | 11-243C |
| 16X-1, 16X-2 | RC-462A | $11-337 \mathrm{C}$ | $40 \times-31$ | RC-405D | 11-243C |
| 16X-3 | RC-462B | 11-337c | 40X-50 to -57 | RC-436 | 11-243C |
| 16X-4 | RC-462C | $11-355 \mathrm{C}$ | 40X-52 (2nd Prod.) | RC-453 | 11-246C |
| 16X-11 | RC-1000 | .11-357C | 40X-55 (2nd Prod.) | RC-453 | $11-246 \mathrm{C}$ |
| 16X-13 | RC-1000A | .11-357C | $\dagger 41$ | AR-782 | I-158A |
| 16X-14 | RC-1000B | $11-357 \mathrm{C}$ | +41 D.C. | AR-871 | I-161A |
| $\dagger 17$ | AR-927 | 1-67A | $\dagger 42$ |  | I- 60A |
| 17K | RC-512 | $11-365 \mathrm{C}$ | ${ }^{+44}$ | AR-594 | I-164A |
| 17T-150, 17T-151 | KCS-66C | VIII- 77 | 45-E Series | RC-435A | $11-475 \mathrm{C}$ |
| 17T-153, 17T-154, 17T-155, 17T-160 |  |  | 45-EY <br> 45-EY-1 | RS-132, RS-132A, R RS-132F | $\begin{aligned} & \mathrm{VI}-73 \\ & \mathrm{VI}-73 \end{aligned}$ |
| $\begin{array}{r} \text { 17T-155, 17T-160 } \\ \text { 17T-162 } \end{array}$ | KCS-66 KCS-66A | VII-227 | 45-EY-2 | RS-138A, RS-138-H | Vİ 77 |
| 17T-163 | KCS-66C | V1II- 77 |  | RS-138A, RS-138F, |  |
| $\begin{gathered} \text { 17T-172. } 17 \mathrm{~T}-173, \\ 17 \mathrm{~T}-174 \ldots \ldots \end{gathered}$ | KCS-66A | VII-227 | 45-EY-3 | RS-138H <br> RS-136, RS-136A, RS | $-136 \mathrm{~V} \cdot \mathrm{VI}-{ }_{79}^{23}$ |
| 17T-172K, 17T-173K, |  |  |  | RS-136, RS-136A, RS RS-136E | -136C. VII - 25 |
|  | KCS-66D | VII - 227 | 45-EY-4 | RS-140 | VII- 29 |
| 17T-200, 17T-201, |  |  | 45-EY-15 | RS-132H | VII- 73 |
| 17T-202, 17T-211, |  |  | 45-EY-26 | RS-138L, RS-138M | VII- 31 |
| $17 \mathrm{~T}-220$ | KCS-72 | VIII-109 | 45-J | Record Player | VI- 81 |
| 17T-250DE, <br> 17T-261DE | S-74 |  | 45-J-2 | Record Player | VI- 83 |
| $\dagger 18$ | AR-936 | $1-71 \mathrm{~A}$ | 45-J-3 | Record Player | VI- 84 |
| +18 D.C. | AR-891 | $1-74 \mathrm{~A}$ | 45-W-9 | RC-1095A | V1-85 |
| 18 T . | RC-511 | i1-372C | $\begin{aligned} & 45-W-10 \\ & 45 x \end{aligned}$ | RC-1096A, RC-1096C RC-459 L | VII-897c |
| 19 K | RC-512A | $11-377 \mathrm{C}$ |  |  | $11-481 \mathrm{C}$ |
| +20 | AR-918 | 1-75A | $45 x-3,45 x-4$ | RC-457E | 11-481C |
| +21 | AR-1258 | I-92A | $45 \mathrm{X}-5,45 \mathrm{X}-6$ | RC-457D | 11-484C |
| 21T-159, 21T-165 | KCS-68E | VIII - 173 | 45x-11, $45 \mathrm{X}-12$ | RC-459, RC-459D, RC | -459T. 11 - 477C |
| 21T-159DE, |  |  | 45X-13 . | RC-459A, RC-459E | . 11 - 477C |
| 21T-166DE, |  |  | 45X-16, $45 \mathrm{X}-17$ | RC-459M . | . 11 -486C |
| 21T-174DE, |  |  | 45X-18 | RC-541C | . 11 -489C |
| 21T-175DE, |  |  | $45 \mathrm{X}-111,45 \mathrm{X}-112$ | RC-459J | . $11-486 \mathrm{C}$ |
| 21T-178DE, <br> 21T-179DE |  |  | 45X-113 | RC-459K | .11-486C |
| $\begin{aligned} & \text { 21T-179DE } \\ & 21 \mathrm{~T}-176,21 \mathrm{~T}-177, \end{aligned}$ | KCS-68F | VIII-173 | $\dagger 46$ | AR-596 | . $1-164 \mathrm{~A}$ |
| 21T-178, 21T-179 |  |  | 46 D.C. | AR-597 | 1-169 A |
| $21 \mathrm{~T} \text {-197DE }$ |  | VIII - 173 | 46X-1, 46X-2 | RC-459B, RC-459F | .11-491C |
|  | RS-141A |  | $46 \mathrm{X}-3$ | RC-459C, RC-459H | . 11 -491C |
| 21T-207, 21 T -207G, |  |  | 46X-11, 46X-12 | RC-456 | II-494C |
| 21T-208, $21 \mathrm{~T}-217$, |  |  | $46 \times-13$ | RC-456A | . $11-494 \mathrm{C}$ |
| 21T-218, 21T-227, |  |  | 46 X -21 | RC-461B | . 11 -496C |
| 21T-228, 21T-229 | KCS-72A | VIII-229 | 46X-23 | RC-461A | $11-496 \mathrm{C}$ |
| $21 \mathrm{~T}-242$ $21 \mathrm{~T}-244$ | KCS-72D-1, RC-1117B | VIII-261 | 46X-24 | RC-461 | 11-496C |
| 21T-244 | $\begin{gathered} \text { KCS-72D-2, } 1111 \mathrm{~B}, \\ \text { RS-141C } \ldots \ldots \ldots . \end{gathered}$ | VIII-261 | +47 +48 |  | $1-171 \mathrm{~A}$ $1-60 \mathrm{~A}$ |
| $\dagger 22$ | AR-1265 | - I I - 92A | †50 | AR-910 | Similar to Rad. 17 |
| $\dagger 24$ | AR-804 | 1-98A | $\dagger 51$ | AR-904 | Similar to Rad. 18 |
| 24BT-1, -2 | RC-1004F | 11-399C | $\dagger 51$ D.C. |  | 1-74A |
| $\dagger 25$ | AR-919 | 1-103A | 54B-1 | RC-589, RC-589U | .111-29 |
| $\dagger 25$ A.C. | AR-919, UP-971 | I - 105A | 54B-1N | RC-589D | .111-29 |
| 25BK | RC-1004B | 11-404C | 54B-2 | RC-589A, RC-589UA | . 111 - 29 |
| 25BP | RC-527D, RC-1020 | . .11-83C | 54B-3 | RC-589B, RC-589 B | .111-29 |
| 25BT-2 | RC-1004A | 11-407C | 54B-5 | RC-1047 | .111-33 |
| 25 BT -3 | RC-1004B | .11-404C | 54B-6 | RC-589UE | . 111 - 111 |
| 25 X | RC-1003 | $11-1 \mathrm{C}$ | 55 F | RC-1004E | $111-37$ |


| Model | Chassis No. or Description | Vol. Page | Model | Chassis No. or Description | Vol. Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $55 \mathrm{AU}, 55 \mathrm{U}$ | RC-1017 | 111-39 | 86T-44 |  | . 1-354B |
| 55X | RC-1003C | . $11-520 \mathrm{C}$ | 86X |  | I - 358B |
| $56 \mathrm{X}, 56 \mathrm{X} \cdot 2,56 \mathrm{X}-3$ | $\begin{aligned} & R C-1011, R C-1011 A \\ & R C-1011 B \ldots \end{aligned}$ |  | $86 \mathrm{X}-4$ 87 Y |  | $1-361 \mathrm{~B}$ $1-364 \mathrm{~B}$ |
| 56x-5 | RC-1023 | .111-47 | 87K |  | -346B |
| 56x-10 | RC-1023B | .111-47 | 87K-1, 87K-2 | RC-319 | I-368B |
| 56X-11 | RC-1023A | .111-49 | 87 T |  | -346B |
| 58AV, 58 V | RC-604 | $.10-51$ | $87 \mathrm{~T}-1$ $87 \mathrm{~T}-2$ | RC-315A | I-351B |
| $59 A V-1,59 \vee-1$ | RC-605 | .111-55 | 87T-2 | RC-319 | $\begin{array}{r} -368 \mathrm{~B} \\ -36 a \mathrm{R} \end{array}$ |
| +60.... | AR-954 | ... I-176A | $\begin{aligned} & 87 \mathrm{X}, 87 \mathrm{Y} \\ & 88 \mathrm{~K} . . . \end{aligned}$ |  | $\begin{aligned} & 1-364 B \\ & 1-372 B \end{aligned}$ |
| †61-1, 61-2, 61-3. | $\begin{aligned} & R C-1011, R C-1011 A \\ & \text { RC-1011B } \end{aligned}$ |  | 88K 38. |  | $\begin{aligned} & 1-372 B \\ & 1-372 B \end{aligned}$ |
| †61-5 | RC-1023 ......... | .111- 111 | 94BK | RC-333 | . $11-574 \mathrm{C}$ |
| +61-6, 61-7 | RC-594D | $.111-63$ | 94BK-1 | RC-333B | $11-576 \mathrm{C}$ |
| +61-8, 61-9 | RC-1034, RC-1064 | .111- IV | 94BK-2 | RC-390 | $11-578 \mathrm{C}$ |
| +61-10... | RC-1023B, RC-1023C | .111- 111 | 94BP-4 Series | RC-410 | $11-585 \mathrm{C}$ |
| $\begin{aligned} & +62 \ldots \\ & +62-1 \end{aligned}$ | AR-982 RC-1017 | $I-176 A$ | 94BP-61, 94BP-62, 94BP-64, 94BP-66, |  |  |
| 63E, 63EM | RS-127 | .111-65 | 94BP-80, 94BP-81 | RC-407, RC-407B | 11-582C |
| $\dagger 64$ | AR-894 | . 1 - 180A | 94BT | .RC-333 | $11-574 \mathrm{C}$ |
| 64F-1, 64F-2 | RC-1037 | $111-67$ | 94BT-1 | RC-333B | . 11 -576C |
| 64F-3 ..... | . RC-1037A | .111-67 | 94BT-2 | .RC-390 | .11-578C |
| 65AU | RC-1017A, RC-1017B | .111-73 | 94BT-6 | RC-333A | 11 - 587C |
| 65BR-9 | RC-1045 | .111-69 | 94 | RC-333C | $11-589 \mathrm{C}$ |
| 65 F | RC-1004E | .111-71 | $94 \times$ | $R C$ | 11-591C |
| 65U, 65U-1 | RC-1017A, RC-1017B | $.111-73$ | 94X-1, 94 | 40 | -591C |
| $65 \mathrm{X}-1,65 \mathrm{X}-2$ | RC-1034, RC-1064. | .111-75 |  | $R C-315 C$ | $11-50 \mathrm{C}$ |
| $65 \mathrm{X}-8,65 \mathrm{X}-9$ | RC-1034 | 111-75 | 95T-5 | RC-348 | -595C |
| $\dagger 66$ | AR-598 | I-187A | $95 \mathrm{~T}-5 \mathrm{~L} . \mathrm{W} .$ | RC-348F | $\begin{aligned} & 11-597 C \\ & 11-601 C \end{aligned}$ |
| 66 BX | $\begin{gathered} \text {. RC-1040, RC-1040A, } \\ R C-1040 R \end{gathered}$ |  | $95 \times$. . . W. | RC-345D | . $11-603 \mathrm{C}$ |
| 66E | $\begin{array}{r} \text { RC-1040B } \\ \text { RS-126 } \end{array}$ | 111-73 | $95 \times 1$ | RC-345E | . 11 -603C |
| 66ED | RS-126 | $111-1 \mathrm{IV}$ | 95X-L.W. | RC-345F | . 11 -608C |
| 66E-1 | . RS-126 | .111-85 | 95X-1. | RC-345C | . 11 -605C |
| $66 \times-1,66 \times-2$ | . RC-1038 | .111-87 | 95x-6 | RC-381A | . II -603C |
| $66 \mathrm{X}-3,66 \times-7$, |  | - 87 | 95X-11 ....... | RC-381 | . $11-605 \mathrm{C}$ |
| $66 \times-8,66 \times-9$ | RC-1038A | .111-87 | 96BK-6, 96BT-6 | RC-392 | . $11-610 \mathrm{C}$ |
| 66X-11 | . RC-1046A, RC-1046C | .111-89 |  |  | .11-597C |
| 66X-12 | RC-1046 | .1II-89 |  | RC-35 RC-351 | $\begin{aligned} & 11-614 C \\ & 11-619 C \end{aligned}$ |
| 2nd Prod. | . RC-1046D | 111- IV | 96 K 2 | RC-351B |  |
| $\begin{array}{r} 66 x-13 \\ +67 \end{array}$ | . $R$ R $-1046 B, R C-1046 E ~$ AR-1168 | $\begin{aligned} & 111-89 \\ & 1-191 \mathrm{~A} \end{aligned}$ | $96 \mathrm{~K} 2,96 \mathrm{~K} 6$ | . $\mathrm{RC-351B}$ | $\begin{aligned} & .11-627 C \\ & . .11-614 C \end{aligned}$ |
| 67AV-1 | RC-606, RC-606C |  | 96 T | RC-348A | . 11 - 597C |
| $67 \mathrm{M}, 67 \mathrm{M}-1,67 \mathrm{M}-2,$ |  |  | 96 T 1 | RC-348D | . 11 -597C |
| 67 M - 3 |  | - 297B | 96 T 2 | RC-351 | . 11 -619C |
| 67V-1 | RC-606, RC-606C | $111-91$ | $96 T 3$ | RC-351B | . 11 -627C |
| $68 R-1,68 R-2,68 R-3,$ |  |  | 96T4, 96T5 | .RC-399 | 11-632C |
| 68R-4 | RC-608 | III-99 | 96 T 6 | RC-399A | . 11 -632C |
| 75X-11 | RC-1050, RC-1050A, |  | $96 \mathrm{X}-1 \text { to } 96 \mathrm{X}-4$ | RC-351L | .II - 614C |
|  | RC-1050B .... | . IV - 127 | $96 \times-5$ | RC-490 | 11-637C |
| $75 \times-12$ | RC-1050, RC-1050A | . IV - 127 | $96 \mathrm{X}-11$ to $96 \mathrm{X}-14$ | RC-400A | . 11 - 635C |
| 75x-14 | . RC-1050A, RC-1050B | .IV - 127 | 97E | RC-351A | . . 11 -627C |
| $75 \times-15$ | RC-1050A | .IV - 127 | 97K | . RC-351F | . $11-619 \mathrm{C}$ |
| 75X-16, $75 \times-17$, |  |  | 97 KG | RC-351A | . $11-627 \mathrm{C}$ |
| 75X-18, 75X-19 | . RC-1050B | IV- XII | 97 K 2 | RC-351K | . $11-614 \mathrm{C}$ |
| †75ZU | RC-1063A | IV - 129 | 97 T | .RC-351A | . $11-627 \mathrm{C}$ |
| 2nd Prod. $+76 \geq$ - | RC-1063B ${ }_{\text {RC-1058, }}$ RC-1058A | IV IV - ${ }^{\text {XII }}$ | 97T2 | , RC-351K | . 11 -614C |
| †76Z 77 U -11, 76 ZX | RC-1058, RC-1058A |  | 97X | .RC-349 | . 11 -638C |
| $77 \mathrm{~V}-1$ | RC-615 | IV - 135 | $97 Y$ | RC-352A | . 11 -640C |
| $77 \mathrm{~V}-2$ | RC-606C ... | . IV - 137 | 98EY | RC-352 | . 11 -640c |
| $\dagger 80$ |  | . I - 215A | 98K | .RC-335A | . 11 - 644C |
| $\dagger 82$ |  | . $1-215$ A | 98K2 | .RC-386A | . 11 - 409C |
| 84BT, 84BT-6 |  | . I - 315B | 98T | .RC-386A | . 11 -409C |
| 85BK, 85BT |  | . I - 319B | 98 T 2 | RC-352D | .11-649C |
| 85BT-6 | RC-316 | . . I - 323B | 98X, 98YG | . RC-352 | .11-640C |
| 85 E |  | . . 1 - 3263 | 99 K | RC-335B | . $11-644 \mathrm{C}$ |
| 85 K | . . . . . . | . . 1-330B | 99T | .RC-335H .... | . 11 - 644C |
| 85 T |  | ... I - 333B | 100 |  | I - 405B |
| 85T-1 | . . . . . . . . . . . . . . . | ... 1-330B | 100 | Loudspeaker UZ-915 | . 1 - 228 A |
| $85 \mathrm{~T}-2$ | . . . . . . . . . . . . . . . . . | ... I-333B | 100-A | Loudspeaker UZ-1076, |  |
| 85T-5 | . . . . . . . . . . . . . . . | (... I - 336B |  | UZ-1078 .......... | . 1 - 228A |
| 85T-8 | . . . . . . . . . . . . . . . . . | . I - 1339 B | 100-B | Loudspeaker UZ-783 | . 1 - 228A |
| +86... | . . . . . . . . . | . 1-215A | 101 |  | . $1-405$ B |
| 86BK | . .-................. | ... 1-342B | 102 |  | -419B |
| 86BT |  | . 1 -342B |  |  |  |
| 86E, 86K, 86K-7 |  | . I - 346B | 102 | Loudspeaker UZ-913 | I-228A |
| 86T, 36T-1 |  | . 1 - 346 B | 103 |  | . $1-405 \mathrm{~B}$ |
| 86T-2 |  | . I - 351B | 103 | Loudspeaker UZ-749 | . 1 - 228A |
| 86T-3 | RC-315 | . 1 I-351B | 104 | Loudspeaker UZ-914 | . . 1 - 229A |
| 86T-4 |  | . $1-354 \mathrm{~B}$ | 104 D.C. | Loudspeaker | . $1-229$ A |
| 86T-6 | RC-315B | I - 584C | 105 | oudspeaker UZ-1082 | - 231A |



Identification numbers beginning with $R(R C, R S$, etc.) are used with all radios and some television receivers. Identification numbers beginning with $K$ (KCS, KRS, etc.) are used exclusively with television.

RADIO CHASSIS


# INDEX TO CHASSIS NO'S (Continued) 

RADIO CHASSIS (Continued)

| Chassis No. | Model | Chassis No. | Model | Chassis No. | Model |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RC.498A | U-40 | RC-563D | Q12 | RC-620B | . Q641 (50/60 cy.) |
| RC-498B | . U. 42 Tuner Unit | RC-563E | Q11 | RC-620C | Q641 (25 cy.) |
| RC-498E | . U-43 | RC.563F | Q11 | RC-620D | 4QV8C R-F/I-F |
| RC-498F | . . K-61 | RC-563K | QB55X |  | Chassis |
| RC. 501 | U-46 Tuner Unit | RC-564 . | V.215, V-221 | RC-622 | .9W106, A106 |
| RC-501A | . K-130 Tuner Unit | RC-564A . | V-219 | RC-1000 | .16X11 |
| RC-502 | .7Q4X | RC-564B | V-225 | RC-1000A | . $16 \times 13$ |
| RC-507 | . Q22, Q22A, Q32, Q121 <br> (EM) | $\begin{aligned} & \text { RC-566 } \\ & \text { RC- } 566 \mathrm{~A} \end{aligned}$ | Q14, Q15 <br> QU56C, QU56M | $\begin{aligned} & \text { RC-1000B } \\ & \text { RC-1000C } \end{aligned}$ | $\begin{aligned} & \text {... } 16 \times 14 \\ & \text {. . Radiola } 515 \end{aligned}$ |
| RC-507. ${ }^{\text {a }}$ | . Q25 | RC-566B | Q14E, Q15E | RC-1001 | .10x |
| RC-507B | QK23 | RC-567 | 27K | RC-1001A | .11×1 |
| RC-507C | . QU2C | RC-568 | QU51C, QU51M | RC-1001B | . .12X, 12X2 |
| RC-507D | . QU2M | RC-568A | QU55 | RC-1001B | .10X (2nd Prod.) |
| RC.507F | QU3C | RC-568B | QU61 | RC-1001C | .12AX, 12A2, 35X, |
| RC-507 H | . QU3M | RC-569 . | 28T |  | Radiola 516, 517, |
| RC-507J | Q26 | RC-570 | 29K |  | 522 |
| RC.507K | Q27 | RC-570C | 29K2 | RC-1001D | .14X, 14X2 |
| RC-507L | .QU52C | RC-570D | 29K2 (2nd Prod.) | RC-1001E | . .14AX, 14AX2, 34X, |
| RC-507N | QU52M | RC-571 | 211K |  | Radiola 526, 527 |
| RC-507U | . Q121 (PM) | RC.572A | V-140 | RC-1002 | .28X |
| RC-508 | .Q24 | RC-573 | V-209 | RC-1002A | .28X5 |
| RC-509 | 16T4 | RC.573A | V-210 | RC-1003 | .1X, 1X2, 25X |
| RC-509 A | .16T3 | RC-574 | VHR-212 | RC-1003A | .1AX, 1AX2 |
| RC-509B | .16T2 | RC. 582 | V175 | RC.1003B | . Radiola 510 (2nd |
| RC.509C | 16K | RC-585 | Q36 |  | Prod.), 511 (2nd |
| RC-509F | .16T4 (2nd Prod.) | RC-589 | 54B1 |  | Prod.) |
| RC-509H | .16T3 (2nd Prod.) | RC-589A | 54B2 | RC-1003C | . .55X |
| RC-509J | .16T2 (2nd Prod.) | RC-589B | 54B3 | RC-1003D | ...Radiola 510 (3rd |
| RC-511 | .18T | RC.589D | 54B1-N |  | Prod.), 520 |
| RC-512 | 17K | RC-589U | 54B1 2nd Prod. | RC-1004A | 25BT2 |
| RC-512A | 19 K | RC-589U A | 54B2 2nd Prod. | RC-1004B | .25BK, 25BT3 |
| RC-513 | $110 \mathrm{~K}, 110 \mathrm{~K} 2$ | RC-589 ${ }^{\text {B }}$ | .54B3 2nd Prod. | RC-1004D | Radiola B-52 |
| RC-513A | 111K | RC-589UE | 54B6 | RC-1004E | .55F, 65F |
| RC-514. | . . Q20, Q21 | RC-592 | Q23 | RC.1004F | .24BT1, 24 BT 2 |
| RC-517 | . V-100 | RC-594C | Q10, Q10A, Q10-2, | RC-1004H | . Radiola B-50 |
| RC-517C | . V-105 |  | Q10A-2, Q10-3, Q110 | RC-1011 | .. 15X (2nd Prod.), 36X |
| RC-517F | . Radiola R-560P | RC-594D | Radiola 61-6, 61-7 |  | (2nd Prod.) |
| RC-517H | .V. 135 | RC. 601 | Q122 (EM) |  | $56 \times 2$ 56X3, Ra- |
| RC-517J | . Radiola R-566P | RC-601A | Q122X (EM) |  | diola 61-1, 61-2, 61-3 |
| RC. 518 | V-300 Tuner Unit | RC-601B | .7QV5, QU68 | RC-1011A | . 56X, 56X2, 56X3, Ra- |
| RC-518A | ..V-301, V-302 Tuner | RC.601D | .Q122 (PM) |  | diola 61-1, 61-2, 61-3 |
|  | Unit | RC-601E | Q122X (PM) |  | 2nd Prod. |
| RC-519 | . V-200 | RC-602. | Q109 | RC-1011B | . $56 \mathrm{X}, 56 \times 2,56 \times 3$, Ra- |
| RC-521 | V-205 | RC.602A | Q109X |  | diola 61.1, 61.2, 61.3 |
| RC-521B | . V. 405 | RC-602B | QU62 |  | 3rd Prod. |
| RC. 522 | . V-201 | RC.604 | .58V, 58AV | RC-1013 | . $6 \times 2$ |
| RC-523 | V-170 | RC-605 | 59V1, 59AV1 | RC-1014 | 26×1 |
| RC-524 | V-102 | RC-606 | .67V1, 67AV1 | RC-1014A | .26×3, Radiola 515 |
| RC-525 | 14BT-1 | RC-606C | .67V1, 67AV1 2nd |  | (2nd Prod.) |
| RC-525A | 14BT-2 |  | Prod., 77V2 | RC-1014B | . $26 \times 4$ |
| RC-525B | 14BK | RC-607 | QB60 | RC. 1017 | .55U, 55AU |
| RC-526 | .15BT | RC-608 | 68R1, 68R2, 68R3, | RC-1017 A | .65U, 65AU, 65U-1, |
| RC-527 | .15BP-1, -2, -4, -6 |  | 68R4 |  | Radiola 62-1 |
| RC-527A | .15BP-3, -5 | RC-610 | .610V1, 610V2 | RC-1017B | .65U, 65AU (50 cycle) |
| RC-527C | 15BP. 7 | RC-610A | .730TV1 Radio Section | RC-1020. | .25BP (2nd Prod.) |
| RC-527D | 25BP | RC.610B | 730TV2 Radio Section | RC-1020B | . Radiola P-5 (2nd |
| RC-529 | QB2 | RC.610C | 610V1. 610V2 2nd |  | Prod.) |
| RC-529A | . QB1, QB11, QB12 |  | Prod. | RC-1022 | . .34X (2nd Prod.) |
|  | Tuner Unit | RC-612 | QB-13 Tuner Unit | RC-1022A | 12X (2nd Prod.), 35X |
| RC-529D | . QB6 | RC-613A | .710V2 |  | (2nd Prod.), Radiola |
| RC-529H | . QB9 Tuner Unit | RC. 614 | .9Q53 |  | 522 (2nd Prod.) |
| RC-530 | . QU5 Tuner Unit | RC-614C | .9QV5 R-F/I-F Chassis | RC-1023 | 56×5, Radiola 615 |
| RC. 531 | . Q44 | RC-614D | .9QV5 R-F/I-F | RC-1023A | . $56 \times 11$ ( |
| RC-538B | . Q30 |  | Chassis | RC-1023B | . .56×10, Radiola 61-10, |
| RC-538C | . Q31 | RC-615 | .77V1, 8V7 |  | Postone (PX) 61-10 |
| RC. 539 | . Q33 | RC-616 | .8V112 | RC-1023C | . Radiola 61-10 2nd |
| RC-539D | . QB-3 | RC.616A | 8V91 |  | Prod. |
| RC-539E | . Q34 | RC-616B | 8TV321 Radio Section | RC-1034. | . .65X1, 65X2, 65×8, |
| RC-540 | V-101 | RC-616C | .8TV323 Radio Section |  | 65×9, Radiola 61.8, |
| RC-541C | . $45 \times 18$ | RC-616F | .8V112 2nd Prod. |  | 61.9 |
| RC-544 | BP-10 | RC-616 H | 8V91 2nd Prod. | RC-1035 | . QU72, QU72A |
| RC-547 | VHR-207 | RC-616J | .8TV321 2nd Prod. | RC-1037 | .64F1, 64 F2 |
| RC-547A | VHR-407 |  | Radio Section | RC-1037A | .64F3 |
| RC-548 | VHR-202 | RC.616K | .8TV323 2nd Prod. | RC-1037B | .8F43 |
| RC-551 . . | . .QU7, QU8 Tuner |  | Radio Section | RC-1038 | . $66 \times 1,66 \times 2$ |
|  | Unit | RC-616N | .9TW333 Radio Section | RC-1038A | . $66 \times 3,66 \times 7,66 \times 8$, |
| RC-555 | . . VHR-307 Tuner Unit | RC-617A | .9TW390 Radio Chassis |  | 66X9 |
| RC-559 | 26BP | RC.618 | .8V90 | RC-1040 | . 666 BX (3Q4 output) |
| RC-561 | Q-16 | RC-618A | 8V90 2nd Prod. | RC-1040A | . 66 BX (3V4 output) |
| RC-561A | Q-17 | RC-618B | .9W101, 9W103 | RC-1040B | . 66 BX (Selenium rect.) |
| RC-561C | Q-16E | RC.618C | .9W105 | RC-1040C | .8BX6, 8BX65 |
| RC-563A | QB5, QB55 | RC-618D | .9W102 | RC.1040D | .8BX6 2nd Prod. |
| RC-563B | Q12 | RC-620A. | .4QV8C R.F/I-F | RC-1044. | . Q103, Q103A, Q103-2, |
| RC-563C . | . Q12 |  | Chassis |  | Q103A.2 |

# INDEX TO CHASSIS NO'S (Continued) <br> RADIO CHASSIS (Continued) 



AUDIO AMP. AND POWER UNITS


## AUDIO AMP. AND POWER UNITS (Continued)



TELEVISION CHASSIS



KRS-20 ........648PTK, 648PV Horiz. Defl. Chassis
KRS-20A ......741PCS, 8PCS41 Horiz. Defl. Chassis
KRS-20B ......8PCS41, 9PC41 Horiz. Defl. Chassis
KRS-21 .........648PTK, 648PV TV Power Supply
KRS-21A .....741PCS, 8PCS41, 9PC41, TV Power Supply

## SALES NAME vs. MODEL NUMBER

| Ainsworth | 17-T-261DE | Forbes | 2-X F-91 | Penfield | 21-T-244 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Albury | 17-T-220 | Gladwin | 1-X-591 | Personal | 54B1, 8B41, B-411, |
| Ashley | A-91 | Glenside | 17-T-151 |  | 2-C-511, 2-R-51 |
| Ashton | 17-T-211 | Globetrotter | $66 \mathrm{BX}, 8 \mathrm{BX} 6, \mathrm{BX}-6 \text {, }$ | Prentiss | 8-X-541 |
| Bancroft | 21-T-174DE | Globetrot | $\text { PIX-600, } 2-B X_{-63}$ | Preston | 17-T-155 |
| Belgrove | 21-T-229 | Grayson |  | Provincial | T-76, 7-T-125, 9-T-128 |
| Bentley | 4-T-101 | Hadley | 17-T-201 | Randolph | $9 \times 561$ |
| Benton | 21-T-175DE | Hampton | 17-T-160 | Regency | 74, 7-T-123 |
| Blaine | 1-X-51 | Hartford | 6-T-87 | Reveler | BX-57 |
| Brandon | 21-T-228 | Haywo | 17-T-111B | Rockingham | 21-T-178, 21-T-178DE |
| Brantley | 45-W-10 | Haywood | 65,7-T-112 | Rutland | 6-T-86, 7-T-143 |
| Brett | 17-T-250DE | Highland.ugh | 6-T-65, $\begin{array}{r}\text {-T-112 } \\ \text { A-101 }\end{array}$ | Sedgwick | 11-9-T-89, 9-T-147 |
| Bristol | 17-T-153 | Hillsborough | - ${ }_{\text {A-101 }}$ | Selfridge | 21-T-159, 21-T-159DE |
| Brookfield | 21-T-217 | Hillsdale | 9-T-126 | Shelby | 2-T-51 |
| Calhoun | 17-T-173 | Kendall | 17-T-174 | Shelley | 17-T-200 |
| Carlisle | A-108 | Kent | 6-T-54, 7-T-104 | Somervell | 2-T-81, 4-T-141 |
| Clarendon | 21-T-179, 21-T-179DE | Kentwood | 17-T-202 | Suffolk | 21-T-176 |
| Colby | 17-T-150 | Kerby | 2-X-621 | Sunderland | 21-T-197DE |
| Covington | 17-T-172 | Lambert | 21-T-208 | Super Personal | 2-B-400 |
| Crafton | 17-T-163 | Lansford | 21-T-218 | Talbot | 16-T-152 |
| Crandall | 21-T-207, 21-T-207G | Lindale | 21-T-227 | Terrel | A-82 |
| Crestwood | $612 \mathrm{~V} 1,8 \mathrm{~V} 151$ | Lindsay... | $2-X-61$ $1-R-81$ | Torrance | 9-X-571 |
| Cumberland | 2-T-60 | Livingston | -1-R-81 | Townley | - ${ }^{\text {-X }}$ - |
| Donley | 21-T-177 | Meredith | 21-T-165 | Wewnlland |  |
| Fairfax | 6-T-84 | Modern | 6-T-75, 7-T-124 | Westland | 21-T-242 |
| Fairfield | 6-T-71, 6-T-72, 7-T-122 | Newport | 6-T-53, 7-T-103 | Whitfield | 17-T-154 |
| Farmington | 21-T-166DE | Northampton | 9-T-79 | Winston | 7-T-132 |
| Fenwick. | 2-S-10 | Oakland | 2-S-7 | York | 9-T-57, 9-T-105 |

## MODEL vs. RECORD CHANGER (1943 to 1952 incl.)

| Model | Record Changer | Model | Record Changer | Model | Record Changer |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A55. | RP 168 \& 960282-1 | 6T84 | RP 168 or RP 190-2 | 9 Y 511. | RP 168 |
| A78. | RP 168 \& 960282-1 |  | \& 960282-4 or -5 | 15-E, 15-E-1. |  |
| A-82 | RP 168 or RP 190-2 <br> \& 960282-4 or -5 | $6 T 86$ | or 960284-1 or -2 <br> RP 168 or RP 190-2 | 21T197DE | Manual turntable 930409-5, -10 |
| A-91 | RP 168 or RP 190-2 | 6786 | RP 168 or RP 190-2 \& $960284-4$ or -5 | 21T242... | $930409-5,-10$ $930409-5,-10$ |
|  | \& 960284-1 or -2 | 6T87 | RP 168 or RP 190-2 | 21T244. | 930409-5, -10 |
| A-101 | RP 190-2 \& 960282-4 or -5 |  | \& 960284-1 or -2 | 35QU | 930409-4, -6 |
|  | or 960284-1 or -2 | 7QV5 | 960001-4 | 45-EY | ...RP 168 |
| A-106 | RP 168 \& 960285-1 | 7T143 | RP 190-2 | 45-EY-1 | RP 168 |
| A-108 | RP 168 or RP 190-2 |  | \& 960284-1 or -2 | 45-EY-2 | RP 190 |
|  | \& 960284-1 or -2 | 8TV41 | RP 177A | 45-EY-3 | RP 190-1 or RP 190-3 |
| QEY4 | RP 190-5 | 8 TV321 | RP 178 | 45-EY-4. | . RP 190-2 |
| QEY5 | RP 190-5 | 8 8V323. | RP 178 | 45-EY-15 | RP 168 |
| QEY6 | RP 190-5 | 8V7 | RP 178 | 45-EY-26 | RP 190A-2 |
| QJY | RP 168 | 8V90 | RP 178 | 45-J | RP 168 |
| QEY3 | RP 168 | 8 V 91 | RP 178 | 45-J-2. | RP 190-1 |
| QU61 | 960001-4 | 8 V 112 | RP 178 | 45-J-3 | RP 193 |
| QU62 | 960001-4 | 8 V 151 | RP 177B | 45-W-9 | RP 190-2 |
| QU68 | 960001-4 | $9 E Y 3$ | RP 168 | 45-W-10 | RP 190-2 |
| S1000. | RP 168 \& 960285-1 | 9EY31 | RP 168 | 55U, 55AU | 960015 |
| TA128 | RP 168 \& 960282-1 | 9 EY 32 | RP 168 | 58V, 58AV | 960001-1 |
| TA129 | RP 168 \& 960282-1 | 9 EY 35 | RP 168 | $59 \mathrm{~V} 1,59 \mathrm{AV} 1$. | 960001-2 |
| TA169 | RP 168 \& 960285-1 | 9 EY 35 U | RP 168 | Rad. 62-1.. | 960260-2 |
| 2-ES-3 | 930409-5 | 9 EY 36 | RP 168 | 65U, 65AU | 960260-2 |
| 2-ES-31 | 930409-5 | 9EY36U | RP 168 | 65U-1. | 960260-2 |
| 2-ES-31E | 930409-5 | 9 JY | RP 168 | 67V1, 67AV1 | 960260-1 |
| 2-ES-31Q | .930409-6 | 9QV5 | RP 168 \& 960282-2 | Rad. $75 \mathbf{Z U}$. | RP178 or 960276 |
| 2-ES-38 | 930409-5 | $9 \mathrm{T89}$ | RP 168 or RP 190-2 | 77 U | . . RP 178 |
| 2-ES-38E | 930409-5 |  | \& 960284-1 or -2 | 77 V 1 | 960260-1 |
| 2-ES-38Q | 930409-6 | 9 T 147 | RP 190-2 | 77 V 2 | 960260-1 |
| 2-JS-1 | 930409-5 |  | \& 960284-1 or -2 | $610 V_{1}$ | 960001-5 or -6 or RP 177 |
| 2-JS-1E | 930409-5 | 9TW309 | RP 168 \& RP 178 | 610 V 2 | 960001-5 or -6 or RP 177 |
| 2-JS-1.Q | 930409-6 | 9TW333 | RP 168 \& RP 178 | 612 V 1 | RP 176A or RP 176B |
| 2-S-7 | 930409-5, -10 | 9TW390 | RP 168 \& RP 177B | 612 V 3 | RP 176 or RP 176A |
| 2-S-10 | 930409-5,-10 | 9W51 | RP 168 | 612 V 4 | RP 176 or RP 176A |
| 2T81 | RP 168 or RP 190-2 | 9W78 | RP 168 \& RP 178 | 641TV | . 960001-4 or -6 |
|  | \& 960282-4 or -5 | $9 W 101$ | RP 168 | 648PV | . . RP 176 |
| 2-US-7 | .930409-5,-10, -11 | 9 W 102 | RP 168 | 710 V 2 | RP 177 or RP 177 A |
| 4QV8C | RP 168 \& 960282-2 | 9W103 | RP 168 | 730 TV1 | RP 177 or RP 177A |
| 4 T141 | $\cdots$ RP 190-2 | 9 W 105. | RP 168 \& RP 178 | 730 TV2 | RP 177 or RP 177A |
|  | \& 960282-4 or -5 | 9 W 106 | RP 168 \& RP 178 | 711 V 1. | . 960001-5 |
| 6QU3 | RP 178-3 | 9 Y 7 | RP 168 | 711V2 | 960001-5 |
| 6QU3Y | RP 168 | $9 Y 51$ | RP 168 | 711 V 3 | 960001-5 |
| 6QV3. | RP 178-3 | 9Y510 | RP 190-1 |  |  |

NOTES ON 17T150, 17T151, 17T153, 17T154, 17T155, 17T160, 17T162, 17T163, 17T172, 17T172K, 17T173, 17T173K, 17T174, 17T174K, 21T159, 21T165, 21T176, 21T177, 21 T 178 AND 21 T179 TELEVISION RECEIVERS

SEPARATION OF SOUND AND PICTURE IN WEAK SIGNAL AREAS-Normally the picture carrier falls at $50 \%$ on the slope of the overall response curve as shown below. When receiving signals of less than 50 microvolts, on intercarrier receivers, it is common practice to adjust the fine tuning control so as to move the picture carrier up the slope to improve the signal to noise ratio. The actual amount which the carrier is moved depends upon the signal strength. On extremely weak signals, the picture carrier may be moved as high as $80 \%$ to $90 \%$ on the slope of the curve. This may represent a change of as much as . 75 megacycles of all frequencies being passed through the pix i-f amplifier. Under such conditions the sound may become weak and noisy even on inter carrier receivers. The reason for this is shown in figure 1 below.


Figure I-Details of Overall Response Curves

When the picture carrier is rolled up the slope and lowered in frequency by .75 mc ., the sound carrier is also lowered in frequency by .75 mc . to become 40.50 mc . As can be seen by the enlarged section of the response curve, the sound carrier begins to fall into the adjacent channel picture trap with a consequent reduction of sound output. Receiver designs which do not incorporate an adjacent channel picture trap may avoid this difficulty at the expense of adjacent channel picture rejection.

It is possible to overcome the above described difficulty in many cases by a simple adjustment which can be made in the field without the aid of test equipment. When the picture carrier is rolled up the slope by .75 mc ., the adjacent channel picture carrier is lowered in frequency to 39.00 mc . and no longer falls into the adjacent channel picture trap. If the trap is returned to 39.00 mc . it will permit the response at 40.50 mc . to rise somewhat and produce stronger sound and will produce greater adjacent channel picture rejection under the actual operating condition. If a strong signal is available on another channel and the fine tuning is adjusted to roll the picture carrier down the slope to the normal $50 \%$ point, the adjacent channel picture trap will appear mistuned. However, it is not likely that adjacent channel picture interference will be experienced on strong signals.
In addition to the above adjustment, Tl07, normally peaked at 41.8 mc ., may be lowered in frequency to provide improved sound gain. Care should be taken in making this adjustment not to lower its frequency any more than necessary as it reduces adjacent channel picture rejection somewhat and might cause difficulty from sound in the picture if a strong signal is available on another channel.
The above adjustments may be made without removing the chassis from the cabinet. First, tune in the desired channel and adjust the fine tuning control for best picture. Then, since the adjacent channel picture trap is under the kinescope, disconnect the high voltage lead at the chassis to prevent getting a shock. Turn the T104 top core clockwise, approximately $1 / 2$ turn if it is a threaded core type or approximately $11 / 2$ turn clockwise if it employs a brass stud extending from the transformer shield. Restore the kinescope high voitage connection. Then, from the top of the chassis, adjust T107 clockwise $1 / 2$ turn or less.

If adjacent channel picture interference is a severe problem, it may be necessary to remove the chassis from the cabinet and adjust T1O4 top core while observing the picture for minimum interference.

R-F AND I-F BIAS RATIOS-In medium field strength areas an occasional receiver may show some snow on signals in the 300 to 1000 microvolt signal range due to an improper ratio of r-f and i-f bias. If the r-f bias is high with respect to the i-f bias, the picture becomes snowy. If the i-f bias is too high with. respect to r-f bias, the receiver may overload on strong signals.

To determine whether or not the biases are of the correct ratio, tune in a signal and measure the r-f bias, the i-f bias and the AGC amplifier plate voltage with a "VoltOhmyst". The signal must be steady during these measurements. Plot these points on the accompanying graph. The values should fall within the range of the dotted lines.


Figure 2-Chart of R-F, I-F Bias Ratios

According to the graph, when the AGC amplifier plate measures -45 volts, the i-f bias should be -8.2 volts. If the i-f bias actually measured - 10 volts, it indicates that R143 or R145 is too low in value and/or Rl44 or Rl50 is too high. If, however, the i-f bias actually measured -6 volts it indicates R143 or R145 is too high in value and/or R144 or R150 is too low. The resistors originally employed in production were $10 \%$ tolerance units. However, if R143 and R145 are at one limit of their tolerance and R144 and R150 are at the other limit of their tolerance, a considerable error in i-f bias is produced.

Similarly at -45 volts AGC amplifier plate voltage the $r$-f bias should measure - 6.8 volts. If the i- $f$ bias should measure say - 12 volts, it indicates that R128 or R129 is too low or R127 is too high or the Rl45 volt bus is too low. If the bias is too low, obviously the converse is true.

In several instances, r-f or i-f bias difficulties have been traced to leaky electrolytic capacitors Cl 24 or C 138 . In two known instances, one of these two capacitors was connected into the circuit in reversed polarity due to a reversal of the polarity markings on the capacitor.

The above AGC bias circuit description is for the 17T153 series receivers. The $21 T 176$ receivers are similar except for slight differences which cause the biases to occur at slightly different AGC plate voltages.

AGC THRESHOLD CONTROL ADJUSTMENT-The AGC control is adjusted at the factory to provide maximum possible gain without clipping sync for all signals above the receiver threshold up to 25000 microvolts. The adjustment of this control should not be touched in the field unless it is definitely known to be incorrect. If the control is misadjusted so as to increase the receiver gain, it may overload when a strong signal is received or when a weak signal temporarily increases in strength die to unusual propagation conditions. On the other hand, if the receiver gain is lowered by the AGC control, the sync noise immunity is reduced.

In order to reduce the prominence of snow on weak signals it is important that the picture control not be operated at its maximum clockwise position. Such an adjustment will provide a higher contrast picture but at the same time may produce an apparent poorer signal to noise ratio due to the fact that an excessive amount of signal on the kinescope grid causes the snow to bloom or defocus thus causing the flake particle to become larger and more prominent than normal. At the same time it is equally important that the receiver be focused to obtain the appearance of the least amount of

# NOTES ON 17T150, 17T151, 17T153, 17T154, 17T155, 17T160, 17T162, 17T163, 17T172, 17T172K, 17T173, 17T173K, 17T174, 17T174K, 21T159, 21T165, 21T176, 21T177, 21T178 AND $21 T 179$ TELEVISION RECEIVERS 

snow in the picture. To do this, focus the receiver by the method directed in the Service Data. As a final adjustment, adjust the focus control for the appearance of minimum snow in the picture.

Only under two conditions can it be consideted permissible to adjust the AGC control. In an area where the signal is so weak that the snow practically obscures the picture after having taken all the above precautions, then the AGC control may be adjusted to give the best signal to noise ratio. It should be recognized however, that trouble from loss of sync noise immunity might be experienced.

The other condition which would justify adjustment of the AGC control is where a signal of over 25,000 microvolts is received. Under this condition the AGC control should be adjusted until the receiver no longer overloads.

NOTES ON GERMANIUM CRYSTAL DETECTOR CR1O1Several different types and makes of crystals are used, such as 1N60, 1N64 and CK706. These crystals have slightly different characteristics and may not be directly interchangeable. In production, these differences are taken care of by varying the value of Rl54 which is located in T109. This resistor is normally l0K. However, to take care of different crystals, this resistor may vary from 5600 ohms to 10 K ohms.
If the crystal is to be replaced, it should be replaced by one of the same make and type. However, if desired, the entire Tl09 transformer and matching resistor may be installed. In any event, if Tl09 or CR10l is replaced, the over-all response should be checked.

If a crystal is replaced, care should be taken to get it connected in the proper polarity. Since germanium crystals are marked differently than selenium rectifiers, confusion may result. Selenium rectifiers are marked + and - to show the polarity of the d-c output voltage. Germanium crystals are marked to show the polarity of voltage that must be applied to obtain maximum current flow. The cathode end of a germanium crystal may be coded with green paint or marked -. The anode end may not be coded or may be coded + . In schematic symbols, the anode is shown as an arrow ( 4 ) and the cathode as a flat bar. In Tl09, the anode $(+)$ end is connected to terminal $A$ and the cathode ( - ) end to terminal D. Care should also be taken not to overheat the crystal with the soldering iron as damage to the crystal may result.

As a protection against damage to the crystal detector, a $220 \mathrm{ohm}, 1 / 2$ watt resistor has been added in series with the screen of,V110, the 6AG7 video amplifier. This resistor is designated as Rl74 in both 17 and 21 inch receivers and is carried under stock number 503122 . It is shown in the latest editions of the receiver Service Data.

T104 FREQUENCY CHANGE-In late production receivers, the adjacent channel picture trap in T1O4 has been tuned to 39.25 mc r rather than 39.75 mc . This results in slightly more sound sensitivity when operating the receiver in fringe areas. It also provides slightly higher adjacent channel picture rejection when the fine tuning is adjusted so as to roll the picture carrier up on the slope of the i-f response as is done in receiving weak signals. This change, suggested as a field adjustment, was covered more fully in RPT Tip, Volume II, Issue 9, dated November 19, 1951.

KRKll OSCILLATOR INJECTION VOLTAGE-If low oscillator injèction voltage is encountered in KRKll r-f unit, it may be necessary to select a 6X8 tube which will give proper injection when the r-f unit is properly aligned. Recent changes in the circuit and parts makes it easier to obtain sufficient injection with average $6 \mathbf{X} 8$ tubes. R-F units in which these changes are made are marked M1. The parts list of the 17 inch receiver Service Data lists parts for early and late production units.

FUSE CHANGE-Early production receivers employed a 0.25 ampere fuse. This was later changed to a 0.20 ampere slow blow type. The latest production receivers have reverted to the regular type 0.25 ampere fuse, stock number 73600 . If a fuse requires replacement, it is recommended that the regular type be employed.

LEAD DRESS IN KRKIl-In several early production units, difficulty has been reported due to the shield of the cable from Tl shorting against C28. When working on one of these units, take care not to disturb the dress of this cable so as to make this short more likely to happen in service. It may also be a worthwhile precaution to wrap the shield of the cable with several turns of tape at the point where it passes C28. In late production units, this lead has been dressed so that a short cannot occur.

VERTICAL SYNC AND HOLD IN 17TI53 SERIES-In a few cases it has been found that Cl 72 has changed value with time and temperature requiring resetting the vertical hold control during initial warm-up and causing the control to be operated at the extreme clockwise position. If such a condition is encountered, replace Cl 72 with another capacitor which will permit normal operation of the control.

Several cases have been reported from the field that R191 was connected to the cathode side of R266 instead of the junction of R265 and R266. This results in 70 to 80 volts on the cathode pin 6 of V113 instead of the normal 100 volts, causing unstable vertical sync.

KCS68 VERTICAL SYNC INSTABILITY DUE TO REFLEC-TIONS-In some cases, reflections may cause vertical sync to be unstable. The following changes to KCS68 chassis are suggested as a possible cure for this condition at a slight detrement of sync noise immunity on weak signals.

1. Change Rl85 to $1.0 \mathrm{meg}, \pm 10 \%, 1 / 2$ watt, Stock No. 503510 .
2. Change Rl86 to 3.9 meg, $\pm 10 \%, 1 / 2$ watt, Stock No. 503539 .
3. Change R189 to $22 \mathrm{~K}, \pm 10 \%, 1 / 2$ watt, Stock No. 503322.
4. Change Cl 60 to $.056 \mathrm{mfd}, 400$ volts, Stock No. 73791.
5. Add a 100 mmf capacitor, Stock No. 39628 from pin 4 of V113 to ground.

The above changes apply only to KCS68 and are not applicable to KCS66 series chassis.

SOCKET CONNECTIONS TO 1B3GT RECTIFIER (KCS66 SERIES)-In some KCS66 series chassis, the 1B3GT socket, terminal 5 has been used as a tie point. It has been found that. some brands of tubes have an internal connection in the tube between pins 5 and 7. Such tubes will not operate in KCS66 series chassis which are wired as noted above.

When replacing the 1B3GT tube in the field, the serviceman may employ one of the three following methods to avoid difficulty.

1. Use a tube which does not employ a connection between pins 5 and 7. RCA tubes do not have this connection.
2. Rewire the 1B3GT tube socket so that terminal 4 is employed as the tie point instead of terminal 5 .
3. If the tube has a connection between pins 5 and 7, clip pin 5 off of the tube base.

DEFLECTION TROUBLE SYMPTOMS IN 21-INCH RE-CEIVERS-Fold over or white bar in center of raster. This trouble may be caused by low screen voltage on the 6CD6 tube due to R253 or R235 being open.

Low brilliance, change in pix size and linearity, etc. This may be caused by a defective L106.

Poor interlace-To prevent coupling between the vertical and horizontal sweep circuits, thus causing poor interlace, dress the red lead from the yoke socket to the HV transformer under the lance on the side of the high voltage cage. To prevent parasitic oscillations in the horizontal sweep circuit, Cl85 should be connected from pin 2 of V116 to ground instead of from the nearby terminal board to ground.

17CP4, 21AP4 AND 17QP4 KINESCOPES-If certain kinescope "electron gun" parts become magnetized, "poor focus" may result. To demagnetize these tubes, connect a 630TS receiver EM focus coil to 110 volts a-c and pass the coil slowly over the kinescope neck, past the "gun" and slowly withdraw.

## R-F TUNERS

The attached information lists the differences between the various types of KRK2, KRK5, KRK7 and KRK8 series r-f tuners. This information should be helpful in adapting one type of unit to another in event the correct type is not available.

KRK2 SERIES TUNERS

| Receiver Model | $\begin{aligned} & \text { R-F } \\ & \text { Unit }_{\text {nit }} \end{aligned}$ | Detent Stock No. | Converter <br> Transformer Tap | Conv. Trans. Cap. |
| :---: | :---: | :---: | :---: | :---: |
| 621TS | KRK2 | 71463 (Short) | 3rd or 4th Turn Down | 62 mmi . |
| 630 TS | KRK2 | 71463 (Short) | 4th Turn Down | 68 mmf . |
| 630 TCS | KRK2 | 71463 (Short) | 4th Turn Down | 68 mmf . |
| $641 T \mathrm{~V}$ | KRK2 | 71463 (Short) | 4th Turn Down | 68 mmf . |
| 648PTK | KRK2A | 71463 (Short) | 4th Turn Down | 68 mmf . |
| 648 PV | KRK2A | 71463 (Short) | 4th Turn Down | 68 mmf . |
| 721TS | KRK2B-1 | 72743 (Long) | 3rd Turn Down | 62 mmf . |
| 721TCS | KAK2B-1 | 72743 (Long) | 3rd Turn Down | 62 mmf . |
| 730TV1 \& 2 | KRK2B-1 | 72743 (Long) | 3rd Turn Down | 62 mmf . |
| 741 PCS | KRK2A | 71463 (Short) | 4th Turn Down | 68 mmi . |
| 8 TS 30 | KRK2 | 72743 (Long) | 4th Turn Down | 68 mmf . |
| $8 \mathrm{PCS41}$ | KRK2A | 71463 (Short) | 4th Turn Down | 68 mmf . |
| 8TV41 | KRK2 | 71463 (Short) | 4th Turn Down | 68 mmf . |
| 9 PC 41 | KRK2A | 71463 (Short) | 4th Turn Down | 68 mmf |

NOTE \# l-Converter transformers using 62 mmf . capacitors are aligned on the primary side to 22.8 mcs. and are recognized by a painted dot on top. All others are aligned to 21.8 mcs .
NOTE \#2-There is no difference between the KRK2 and the KRK2A, except that " $2 A^{\prime}$ " unit is used in the projection receivers.
NOTE \#3-Using the 621TS (KRK2) r-f unit in the 630TS or 8TS30 without the modification indicated may result in i-f oscillation. Using the 630TS (KRK2) r-f unit in the 621TS without modification indicated may result in insufficient sound.
NOTE \#4-The KRK2 unit can be changed to a KRK2B-1 by changing the detent, tap on converter transformer, and converter shunt capacitor as listed above. All other parts are identical.

KRK5 AND KRK7 SERIES TUNERS

| Receiver Model | R-F <br> Unit | Front <br> Plate | Chan. Sel. Shaft | Actuating Shaft | Shaft Length |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 T241 | KRK5 | 73436 | 73437 | 73439 | Short |
| 8TV321-3 | KRK5 | 73436 | 73437 | 73439 | Short |
| 8 T 270 | KRK5A | 74166 | 74168 | 74167 | Long |
| 8TK320 | KRK5A | 74166 | 74168 | 74167 | Long |
| 8TR29 <br> 8TK29 | KRKS | 73436 | 73437 | 73439 | Short |
| 9 T 240 | KRKS | 73436 | 73437 | 74439 | Short |
| 9 TC 240 | KRK5 A | 74166 | 74168 | 74167 | Long |
| 9TC245-47-49 | KRKS | 73436 | 73437 | 73439 | Short |
| 9 T 246 | KRK7 | 74572 | 74573 | $\left\{\begin{array}{l}74574 \\ 74577\end{array}\right.$ | - |
| 9 T 256 | KRK7 | 74572 | 74573 | $\left\{\begin{array}{l}74574 \\ 74577\end{array}\right.$ | - |
| $\left.\begin{array}{l} 9 \mathrm{~T} 270 \\ 9 \mathrm{TC} 272-5 \end{array}\right\}$ | KRK5A | 74166 | 74168 | 74167 | Long |
| 9TW309 | KRK5 | 73436 | 73437 | 73439 | Short |
| 9TW333 | KRK5 | 73436 | 73437 | 73439 | Short |
| 9TW390 | KRK5A | 74166 | 74168 | 74167 | Long |
| T100 | KRK7 | 74572 | 74573 | $\left\{\begin{array}{l}74574 \\ 74577\end{array}\right.$ | - |
| T120 | KRK5 | 73436 | 73437 | 73439 | Shori |
| Tl21 | KRKS | 73436 | 73437 | 73439 | Short |
| TC124-5-7 | KRK5 | 73436 | 73437 | 73439 | Short |
| TA128 | KRK 5 | 73436 | 73437 | 73439 | Short |
| TA129 | KRK5 | 73436 | 73437 | 73439 | Short |
| $\left.\begin{array}{l} \text { T164 } \\ \text { TC165-6-7-8 } \end{array}\right\}$ | KRK5B | 73436 | 73437 | 73439 | Short |
| TA169 | KRK5B | 73436 | 73437 | 73439 | Short |
| S1000 | KRK5A | 74166 | 74168 | 74167 | Long |
| 6 T72 | KRK5 B | 73436 | 73437 | 73439 | Short |

NOTE \# 1-KRK5 units may be converted to KRK5A by the replacement of the front plate, fine tuning shaft, and channel selector shaft. (Parts No. 73436, 73437 and 73439 are replaced by Parts No. 74166, 74167 and 74168 .)

NOTE \#2-KRK5, KRK5A and KRK5B* units may be converted to KRK7 by discarding the following parts:

Stock Number
73465
73441
73634
73436
73464
14343
73437
73438
73439
73454
73456
$* * 74166$
$* * 74167$
$*+74168$

Description
Belt, fine tuning
Cam, fine tuning
Nut, speed nut
Front Plate and Bushing
Pulley, fine tuning
Retainer for chan. sel. shaft
Shaft, channel sel.
Shaft, fine tuning
Shaft, actuating
Shield for belt
Spring, belt tension
Front Plate and Bushing
Shaft, actuating
Shaft, channel selector
and replace with the following Parts:

Stock Number
74572
74573
74574
74577
*The KRK5B unit is the same as the KRKS, except the inside front corner of the tuner shield is cut off diagonally.
*These parts used with KRK5A only.

## KRK8 SERIES TUNERS

| Receiver Model | $\underset{\text { Unit }}{\text { R-F }}$ | Chan. Sel Shaft | Fine Tuning Shaft \& Cam | Insulating <br> Washer | Front |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2T51-60 | KRK8 | 75159 | 75160 | 73466 (Round) |  |
| 2 T 81 | KRK8 | 75159 | 75160 | 73466 (Round) |  |
| 4 TlO | KRK8C | 76133 | 76134 | 73466 (Round) | 76754 |
| 4 Tl 41 | KRK8C | 76133 | 76134 | 73466 (Round) | 76754 |
| 6T53-54-64. 65-71-74-75-76 | KRK8B | 75159 | 75160 | 75607 (Hex) | 76135 |
| 6T84-86-87 | KRK8B | 75159 | 75160 | 76507 (Her) | 76135 |
| 7T103-103B. <br> 104-104B-111B. <br> 112-112B-122. <br> 122B-123-123B <br> 124-125B-132 | KTK8B | 75159 | 75160 | 75607 (Hex) | 76135 |
| 7 T 143 | KRK8B | 75159 | 75160 | 75607 (Hex) | 76153 |
| 9T57-77-79 | KTK8B | 75159 | 75160 | 75607 (Hex) | 76135 |
| 9789 | KRK8B | 75159 | 75160 | 75607 (Hex) | 5 |
| 9T105-126-128 | KRK8B | 75159 | 75160 | 75607 (Hex) | 76135 |
| $9 \mathrm{Tl47}$ | KRK8B | 75159 | 75160 | 75607 (Hex) | 76135 |
| 16 T 152 | KRK8B | 75159 | 75160 | 75607 (Hex) | 76135 |
| $\begin{aligned} & \text { 17T200-201. } \\ & 11-20 \end{aligned}$ | KRK8D | 76519 | 76134 | 75607 (Hex) | 76518 |
| $\begin{aligned} & \text { 21T208-17- } \\ & 18-27-28-29 \end{aligned}$ | KRK8D | 76519 | 76134 | 75607 (Hex) | 76518 |

NOTE \# l-Any KRK8 series r-f tuner can be changed from a KRK8 to a KRK8B or 8C, or vice-versa, by installing the proper parts as listed above for each unit. All other parts are identical.

NOTE \#2-Front plate No. 76135 is for the KRKll tuner, but can be used on the KRK8B tuner.
NOTE \#3-The KRK8D r-f unit differs from the other units both mechanically and electrically. A KRK8D unit can be mechanically converted so as to be used in place of a KRK8, 8B or 8C provided that R13 is shorted out. However, the KRK8D has a wide range fine tuning control which might cause the fine tuning adjustment to be critical on non intercarrier receivers. In general, electrical conversions are not recommended due to the nature and amount of work involved.

## OSCILLATOR SWITCH WAFERS

Some switches have a wax treated wafer. Heat, due to soldering operations, melts the wax and loosens the switch terminal on which the inductances are mounted. Operation of the switch causes variations in inductance during switching operations. Tuning will vary, depending on the direction of approach of the channel selector switch. This is the result of compression and expansion of the coils mounted on the loose switch contacts. Therefore, when repairing r-f units, take care not to overheat the oscillator switch wafer. If the water is thus damaged, replacement of the wafer is the most prac-
tical solution.

## R-F UNIT OSCILLATOR TRACKING

The frequency of the r-f unit oscillator is a function of the circuit inductance and capacity, and since the steps of inductance are fairly well fixed on Channels 7 to 12 , inclusive, the only sizeable variables that are available are (l) the capacity and (2) Channel 13 inductance.


Figure 3-Simplified Schematic of R-F Oscillator.
On KRK2, "C" consists of stray capacity, fine tuning capacity and (in some units only a "gimmic", a piece of insulated wire about $1 / 4$ inch long) between the plate pins on the tube socket.

On KRK5, KRK7 and new KRK8, " C " is composed of stray capacity and a real adjustable capacitor.

On KRK2, " C " becomes less with a counter-clockwise rotation of the fine tuning control.

On KRK5, KRK7 and KRK8, a clockwise rotation of the fine tuning control gives less capacity.

To properly track an r-f unit oscillator on the high channels, the following process may prove helpful:

1. Make sure that the adjustment screws for Channels 7 to 12 , inclusive, are spaced about $1 / 32$ of an inch ( $11 / 2$ turns from full in position) away from the rivets holding the inductance strap.
2. Tune for correct Channel 13 oscillator frequency by using the readily available adjustments for the purpose (a capacity trimmer on the KRK8 and an inductance slug on the KRK5.)
3. Without moving the fine tuning control, turn the detent to Channel 7 position and note the oscillator frequency.
4. If the noted frequency is higher than it should be, the Channel 13 capacity should be increased and the Channel 13 inductance should be decreased. Go back to Channel 13 and make the necessary changes to give both the correct frequency and an approximation of tracking correction. See Chart below.
5. If, on the other hand, the Channel 7 oscillator frequency is lower than it should be, the Channel 13 capacity should be decreased and the inductance increased. See Chart below.

## KRK2

| To Increase Channel 13 Capacity | To Decrease Channel 13 Capacity |
| :---: | :--- |

1. Pick oscillator tube to give lower 1. Pick oscillator tube to give Pick oscill
frequency.
2. Add a "gimmic" between oscillator tube socket plate pins or move the existing "gimmic"
closer. (Use a production sample
for reference-some unit
ready have a "gimmic".)
3. Check cross feed capacitors for correctness of value.
4. Move "gimmic" away from plate pins.
5. Check cross feed capacitors for value.
To Increase Channel 13 Inductance To Decrease Channel 13 Inductance
The Channel 13 slugs are brass and normally inserted through the coil. If the slug screws stick out about $3 / 8$ of an inch, they are in their minimum inductance position and any tuning, either in or out, gives a change toward the maximum inductance position.

| 1. Move Channel 13 slug in if the |
| :--- | :--- |
| stud protrudes $33 / 8$ of an inch, or |
| less. Move out if they protrude |
| moxe than $3 / 8$ of an inch. | | (. Move Channel 13 slug out if the |
| :---: |
| stud protrudes $3 / 8$ |
| less. Move in on in inch, or |
| more than $3 / 8$ of an inch. |

KRK5 AND KRK1
To Increase Channel 13 Inductance To Decrease Channel 13 Inductance

1. Screw brass slug out of Ll 1. Screw brass slug into Ll
and L2. are available from the bottom of the ranit chassis and are normally cemented lightly.

KRK8
To Increase Channel 13 Inductance To Decrease Channel 13 Inductance

1. Screw brass slug out of coil. 1. Screw brass slug into coil.

This slug is available from front of unit only
On the KRK5, KRK7 and KRK8, the Channel 13 capacity adjustment is fairly obvious. Screwing the stud out gives less capacity; in, gives more capacity.

After the proper adjustments have been made to give oscillator tracking within 1.0 mc . or so from 13 to 7 , each channel can be individually aligned by using the available screw trimmers.

For field use in areas having two or more high channel stations, a slightly different approach may be taken:

1. If the highest high channel is aligned with the fine tuning centered and the lowest high channel calls for a clockwise rotation of the fine tuning control, Step 4 applies for KRK2 and Step 5 for all other units.
2. If the highest high channel is aligned with the fine tuning centered and the lowest high channel calls for a counterclockwise rotation of the fine tuning, Step 5 applies for KRK2 and Step 4 for other units.
Step 4 means an increase of Channel 13 capacity and a decrease of inductance.
Step 5 means a decrease of Channel 13 , capacity and an increase of inductance.

## USE OF WR39A \& WR39B TELEVISION CALIBRATORS

In some instances it may be difficult to hear the heterodyne beat between the variable oscillator and the crystal standard in subject instruments, particularly at the high frequencies.

If the audio system of the receiver under test is in good condition, it is suggested that an audio lead can be run from the head phone jack of the calibrator to the "high" side of the volume control of the television receiver, thus utilizing the additional audio amplification available in the television chassis.

## CORRECTING PIX I-F RESPONSE OF RECEIVERS USING KRK5, KRK7 or <br> KRK8 R-F UNITS

Curve " $A$ " below illustrates a normal pix i-f response, Curves " $B$ " and " $C$ " below, illustrate results that are obtained in some cases due to abnormal conditions in the i-f system.
"Correcting" Curve "B", by using the adjusting slugs, usually results in placing the pix carrier minus .75 mc . point at the top of the curve which, again, is not the proper alignment. "Correcting" Curve "C", usually results in very much reduced gain and an excessive amount of adjacent channel response.

To correct Curve " $B$ " with the minimum amount of bad effects, the turns of the second pix I-F trap (T-102) should be moved away from the primary of the same transformer. Moving the whole trap coil about two or three nicks up the coil form is usually sufficient.

To correct Curve " $C$ ", the following must be checked:

1. Make sure that the cathode sound trap is not shorting.
2. Check the sound I-F alignment.
3. Check sweep and scope response by removing "blanking" on the sweep and checking for response overlap. (A defective scope cable or input can cause overshoot on this side of the response curve.)
4. If none of the above results in a satisfactory curve, then the sound take-off trap coil (T-103) should be moved up and away from T-103 primary. One notch on the coil form is usually sufficient.


## HIGH PASS FILTER FOR REJECTION OF INTERFERING SIGNALS BELOW 50 MC.

If interference is experienced due to the presence of strong signals below 50 mc . it can usually be eliminated by the use of a high pass filter. To be effective, the filter must be installed at the r-f units with as short leads as possible and the case of the filter connected to the $r$-f unit chassis.
Figure 5 shows the method of attaching the antenna input connectors to the filter so that it can be "plugged" directly into the antenna matching units employed with KRK5, KRK7 and KRK8 r-f tuners.
Figure 6 shows the method of mounting the filter on receivers employing KRK2 r-f units.


Figure 5-Filter for KRK5, KRK7 and KRK8 R-F Units


Figure 6-Filter for KRK2 R-F Units

## ADJUSTMENT OF THE AGC CONTROL ON 17T200 AND $21 T 208$ SERIES RECEIVERS

In setting the $A G C$ control on these and other RCA receivers, care must be taken that the receiver is generating the maximum $A G C$ voltage which will be required for that particular location of the receiver.

If the AGC control is adjusted on a weak signal, the receiver may overload, bend on sync etc. when a stronger signal is received.
One source of difficulty not likely to be suspected is the position of the fine tuning control. If the AGC control is adjusted with the fine tuning set so that the picture carrier is low on the slope of the i-f response curve, then the receiver may overload, bend on sync, etc. when the picture carrier is moved up the slope with the fine tuning control. The obvious cure is to set fine tuning so that the picture carrier is well up the slope (fine tuning ccw on KRK8) when making final adjustment of the AGC control

## HIGH VOLTAGE ARCS AT KINESCOPES

During days of humid weather, difficulty may be experienced with arcing across the bell of metal cone picture tubes due to a collection of dust and moisture around this area.

In the past, many remedies have been suggested, all of which have been helpful for a short period of time. The best field remedy found to date has been an application of "Car-Plate", mfd. by S. C. Johnson \& Son, Racine, Wis.

The following procedure should be employed:

1. Remove the entire coating on glass bell, using methanol or acetone.
2. Wash the glass bell thoroughly with a good detergent.
3. Dry the glass bell thoroughly.
4. Apply a good coating of Johnson's "Car-Plate". Allow to dry, then wipe off the white residue. Brush application is satisfactory.

## FIXED COMPOSITION RESISTOR STOCK NO. CODE

The RCA six digit stock number for fixed composition resistors.
The first digit will always be 5 .
The second digit is to indicate the wattage. $O=1 / 2$ watt, $1=1$ watt, $2=2$ watt.
The third digit is to indicate the resistor tolerance. $2=5 \%$, $3=10 \%, 4=20 \%$.

The fourth digit is for the number of zeros following the significant figures of the resistor value.
The fifth and sixth digits are for the significant figures of the resistor value.

Example 503268 is the stock number of a $1 / 2$ watt, fixed composition resistor, 6800 ohms $\pm 10 \%$.

A few resistors are still being listed in the Service Data under four or five digit stock numbers. This is because there are still some of these resistors in stock packaged under the old stock numbers. However, as these are depleted, the new stock will be carried under the six digit stock number system.

Wire wound or cther special resistors will continue to carry four or five digit stock numbers.

TELEVISION RECEIVER MODELS AND CHASSIS

| Receiver Models | Television Chassis | Radio Chassis | Record K <br> Changer s | $\begin{aligned} & \text { Kine- } \\ & \text { scope } \end{aligned}$ | $\begin{aligned} & \text { R-F } \\ & \text { Tuner } \end{aligned}$ | Speaker Size | Television Power Supply | Audio Amplifier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TTS (PRE WAR) TRKS (PRE WAR) | $\begin{aligned} & \mathrm{KC}-3 \text { or } \mathrm{KC}-3 \mathrm{~B} \dagger \\ & \mathrm{KC}-3 \mathrm{~A} \text { or } \mathrm{KC}-3 \mathrm{C} \dagger \end{aligned}$ | RC429 \& RS89A |  | $\begin{array}{l\|l} \hline \text { SBP4 } & 5 \\ 5 \mathrm{BP} 4 & 5 \\ \hline \end{array}$ | 5 channels <br> 5 channels | None $12^{\prime \prime}$ EM |  |  |
| TRK9 (PRE WAR) <br> TRK90 (PRE WAR) <br> TRK12 (PRE WAR) <br> TRK120 (PRE WAR) | $\begin{aligned} & \text { KC-4A or KC-4C } \dagger \\ & \text { KC-4H } \\ & \text { KC-4 or KC-4B } \dagger \\ & \text { KC-4F or KC-4J } \dagger \\ & \hline \end{aligned}$ | RC427A \& RS83E RC427G \& RS83E RC427 \& RS83E RC427F \& RS83 |  |  |  | $12^{\prime \prime}$ EM  <br> $12^{\prime \prime}$ EM K <br> $12^{\prime \prime}$ EM K <br> $12^{\prime \prime}$ EM K <br> $4^{\prime \prime} 6^{\prime \prime}$ EM  | $\begin{aligned} & \text { KK-7A or KK-7E } \dagger \\ & \text { KK-7H } \\ & \text { KK-7 or KK-7D } \dagger \\ & \text { KK-7F or KK-7J } \end{aligned}$ |  |
| 621TS | KCS21 |  |  | 7DP4 K. | KRK2 | $4^{\prime \prime} \times 6^{\prime \prime}$ EM |  |  |
|  | $\begin{aligned} & \text { KCS20A or } \\ & \text { KCS20C-2 } \end{aligned}$ |  |  | 10BP4 K | KRK2 | 5' EM |  |  |
| 630 TCS | $\begin{aligned} & \text { KCS20B or } \\ & \text { KCS20D-2 } \end{aligned}$ |  |  | 10BP4 K | KRK2 | 12"EM |  |  |
| 641 TV | $\begin{aligned} & \text { KCS25A-1 or } \\ & \text { KCS25C-2 } \dagger \\ & \hline \end{aligned}$ | RK117A | $\begin{aligned} & 960001 \\ & (78 \mathrm{RPM}) \end{aligned}$ | 10BP4 K | KRK2 | $12^{\prime \prime} \mathrm{EM}$ |  | RSI23A |
| 648PTK | $\begin{aligned} & \text { KCS24-1* } \\ & \text { KRS20-1** } \\ & \text { KRKl-1*** } \end{aligned}$ | RK121A |  | 5TP4 K | KRK2A | $12^{\prime \prime} \mathrm{EM}$ | KRS21 | RS123A |
| 648PV | $\begin{aligned} & \text { KCS24A-1* } \\ & \text { KRS20-1** } \\ & \text { KRK1A**** } \end{aligned}$ | RK121A | $\begin{aligned} & \text { RP176 } \\ & \text { (78 RPM) } \end{aligned}$ | 5TP4 K | KRK2A | $12^{\prime \prime} \mathrm{EM}$ | KRS21A-1 | RS123B |
| 721TS | $\begin{array}{\|l\|l} \mathrm{KCS} 26-1 \\ \text { KCS } \\ \text { KCit } \end{array}$ |  |  | 10BP4 K | KRK2B-1 | $4^{\prime \prime} \times 6^{\prime \prime} \mathrm{EM}$ |  |  |
| 721TCS | $\begin{aligned} & \text { KCS26A-1 or } \\ & \text { KCS26A-2 } \dagger \end{aligned}$ |  |  | 10BP4 K | KRK2B-1 | 12" EM |  |  |
| $\begin{aligned} & \text { 730TV1 } \\ & 730 \mathrm{TV} \end{aligned}$ | $\begin{aligned} & \text { KCS27-1 or } \\ & \text { KCS27-2 } \end{aligned}$ | RC610A RC610B RC610 | $\begin{aligned} & \text { RP177 } \\ & \text { RP177 } \end{aligned}$ | $\begin{array}{l\|l} \text { 10BP4 } \\ \text { 10BP4 } & \mathrm{K} \\ \hline \end{array}$ | $\begin{array}{\|} \left\lvert\, \begin{array}{l} \text { KRK2B-1 } \\ \text { KRK2B-1 } \end{array}\right. \end{array}$ | $\begin{aligned} & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & \hline \end{aligned}$ |  |  |
| 741 PCS | $\begin{aligned} & \text { KCS24B-1* } \\ & \text { KRS20A-1** } \\ & \text { KRK1A-1*** } \end{aligned}$ |  |  | 5TP4 K | KRK2A | $12^{\prime \prime} \mathrm{EM}$ | KRS21A-1 | RS123C |
| 8PCS41 | $\begin{array}{\|l\|l\|} \mathrm{KCS24B-1*} \\ \text { KRS20A-1** } \end{array}$ |  |  | 5TP4 K | KRK2A | $12^{\prime \prime} \mathrm{EM}$ | KRS21A-1 | RS123C |
| 8PCS41B | $\begin{aligned} & \text { KRK1A-1*** } \\ & \text { KCS24C-1* } \\ & \text { KRS20B-1** } \end{aligned}$ |  |  | 5 TP4 K | KRK2A | $12^{\prime \prime} \mathrm{EM}$ | KRS21A.1 | RS123C |
| 8PCS41C | $\begin{aligned} & \text { KRK4*** } \\ & \text { KCS24C-1* } \\ & \text { KRS20A-1*** } \\ & \text { KRK1A-1*** } \end{aligned}$ |  |  | 5TP4 K | KRK2A | $12^{\prime \prime} \mathrm{EM}$ | KRS21A-1 | RS123C |
| 8TS30 | KCS20J-1 or KCS20K-2 $\dagger$ |  |  | 10BP4 | KRK2 | $5^{\prime \prime} \times 7^{\prime \prime}$ PM |  |  |
| 8TV41 | $\begin{aligned} & \begin{array}{l} \text { KCS25D-1 or } \\ \text { KCS25E-2 } \dagger \end{array} \end{aligned}$ | RK117A | $\begin{aligned} & \text { RP177A } \\ & \text { (78RPM) } \end{aligned}$ | 10BP4 | KRK2 | $12^{\prime \prime}$ EM |  | RS123A |
| 8T241, 8T243, 8T244 | KCS28 |  |  | 10BP4 | KRK5 | $5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PM}$ |  |  |
| 8T270 | $\begin{aligned} & \mathrm{KCS29} \\ & \mathrm{KCS} 29 \mathrm{~A} \end{aligned}$ | , |  | $\begin{aligned} & 16 \mathrm{AP} 4 \\ & 16 \mathrm{AP} 4 \end{aligned}$ | $\begin{aligned} & \text { KRKSA } \\ & \text { KRKSA } \end{aligned}$ | $\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 8^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| 8TR29 $8 \mathrm{TK} 29$ | $\begin{array}{\|l} \hline \text { KCS32 or } 32 \mathrm{~B} \\ \mathrm{KCS} 32 A \text { or } 32 \mathrm{C} \end{array}$ | $\begin{aligned} & \text { RK135 or } 135 \mathrm{~A} \\ & \text { RK135 or } 135 \mathrm{~A} \end{aligned}$ |  | $\begin{aligned} & \text { 10BP4 } \\ & \text { 10BP4 } \end{aligned}$ | $\begin{aligned} & \text { KRK5 } \\ & \text { KRK5 } \end{aligned}$ | $\begin{aligned} & 5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & \hline \end{aligned}$ |  |  |
| 8TK320 | KCS33A-1 | RK135A-1 |  | 16AP4 | KRK5A | $12^{\prime \prime} \mathrm{PM}$ |  |  |
| $8 T V 321$ $8 T V 323$ | $\begin{aligned} & \text { KCS3O-1. } \\ & \text { KCS30-1 } \end{aligned}$ | $\begin{aligned} & \text { RC616C or K } \\ & \text { RC616B or J } \end{aligned}$ | $\begin{aligned} & \text { RP178 } \\ & \text { RP178 } \end{aligned}$ | $\begin{array}{\|l\|} \hline 10 \mathrm{BP} 4 \\ 10 \mathrm{BP} 4 \\ \hline \end{array}$ | $\begin{aligned} & \text { KRK5 } \\ & \text { KRK5 } \end{aligned}$ | $\begin{aligned} & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & \hline \end{aligned}$ |  |  |
| $\begin{aligned} & 9 P C 41(a) \\ & 9 P C 41(b), 9 P C 41(c) \end{aligned}$ | $\begin{aligned} & \text { KCS24C.1** } \\ & \text { KRS20B-1** } \\ & \text { KRK4*** } \\ & \text { KCS24D* } \\ & \text { KRS20B-1** } \\ & \text { KRK4*** } \end{aligned}$ |  |  | $\begin{aligned} & 5 \mathrm{TP} 4 \\ & 5 \mathrm{TP} 4 \end{aligned}$ | KRK2A KRK2A | $\begin{aligned} & 12^{\prime \prime} \mathrm{EM} \\ & 12^{\prime \prime} \mathrm{EM} \end{aligned}$ | KRS21A-1 <br> KRS21A-1 | RS123A RS123A |
| $\begin{aligned} & \text { 9T240 } \\ & 9 \mathrm{~T} 240 \mathrm{~K} \\ & 9 \mathrm{TC} 240 \end{aligned}$ | KCS28 <br> KCS28B |  |  | $\begin{array}{\|l\|} \hline 10 \mathrm{BP} 4 \\ 10 \mathrm{BP} 4 \\ 10 \mathrm{BP} 4 \\ \hline \end{array}$ | KRK5 <br> KRK5 <br> KRK5A | $\begin{aligned} & 5^{\prime \prime} \times 7^{\prime \prime \prime} \text { PM } \\ & 5^{\prime \prime} \times 7^{\prime \prime} \text { PM } \\ & 12^{\prime \prime} \text { PM } \end{aligned}$ |  |  |
| 9TC245, 9TC247, 9TC249 | $\begin{aligned} & 9 \begin{array}{l} \text { KCS34B } \\ \text { or KCS34 in } \\ \text { some } 247 \& 249 \end{array} \end{aligned}$ |  |  | 12LP4 | KRK5 | $12^{\prime \prime}$ PM |  |  |
| 9 T 246 | $\begin{aligned} & \text { KCS28C or } \\ & \text { KCS38 } \end{aligned}$ |  |  | $\begin{aligned} & 10 \mathrm{BP} 4 \\ & 10 \mathrm{BP} 4 \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { KRK7 } \\ \text { KRK7 } \\ \hline \end{array}$ | $\begin{aligned} & 5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PM} \\ & 5^{\prime \prime} \times 7^{\prime \prime} \mathrm{EM} \end{aligned}$ |  |  |
| 9 T 256 | KCS38C |  |  | 10BP4 | KRK7 | $5^{\prime \prime} \times 7$ " EM |  |  |
| 9T270 | KCS29 |  |  | 16AP4 | KRK $\mathrm{KRK}^{\text {KRK }}$ | $\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| 9TC272, 9TC275 | KCS29C |  |  | 16AP4 |  |  |  |  |
| 9TW309 | KCS41-1 | RK135C | RP178 (78 RPM) RP168A-1(45RPM) | 12LP4 | KRK5 | $12^{\prime \prime} \mathrm{PM}$ |  |  |
| 9TW333 | KCS30-1 | RC616N | $\begin{aligned} & \text { RP178 (78 RPM) } \\ & \text { RP168A-1(45RPM) } \end{aligned}$ | 10BP4 | 4 KRK5 | $12^{\prime \prime} \mathrm{PM}$ |  |  |
| 9TW390 | KCS31-1 | RC617A | RP177B (78 RPM) | 16AP4 | 4 KRK5A | $12^{\prime \prime} \mathrm{PM}$ |  |  |

TELEVISION RECEIVER MODELS AND CHASSIS

| Receiver Models | Television Chassis | Radio Chassis | Record Changer | Kinescope | $\left\lvert\, \begin{gathered} \text { R-F } \\ \text { Tuner } \end{gathered}\right.$ | Speaker | Television Power Supply | Audio Amplifier |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T100 | KCS38 |  |  | 10BP4 | KRK7 | $5^{\prime \prime} \times 7^{\prime \prime} \mathrm{EM}$ |  |  |
| T120, 1121 | KCS34C |  | * | 12LP4 | KRK5 | $5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PM}$ |  |  |
| TCl24, TCl25, TCl27 | KCS34B |  |  | 12LP4 | KRK5 | $12^{\prime \prime}$ PM |  |  |
| TA128 | KCS42A | RK135D | $\begin{aligned} & 960282(33 / 78) \\ & \text { RP168 ( } 45 \mathrm{RPM} \text { ) } \\ & \hline \end{aligned}$ | 12LP4 | KRK5 | 12' ${ }^{\text {PM }}$ |  |  |
| TA129 | KCS41A-1 | RK135D | $\begin{aligned} & 960282(33 / 78) \\ & \text { RP168C ( } 45 \mathrm{RPM}) \\ & \hline \end{aligned}$ | 12LP4 | KRK5 | $12^{\prime \prime} \mathrm{PM}$ |  |  |
| $\begin{aligned} & \text { T164 } \\ & \text { TC165, 166, 167, } 168 \end{aligned}$ | $\begin{aligned} & \hline \text { KCS4O } \\ & \text { KCS40A } \end{aligned}$ |  |  | $\begin{aligned} & \text { 16GP4 } \\ & 16 \mathrm{GP} 4 \end{aligned}$ | KRK5B <br> KRK5B | $\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| TA169 | KCS43 | RK135D | $\begin{aligned} & 960285(33 / 78) \\ & \text { RP168C ( } 45 \text { RPM) } \end{aligned}$ | 16GP4 | KRK5B | $12^{\prime \prime} \mathrm{PM}$ |  |  |
| S1000 | KCS31-1 | RC617B | $\begin{aligned} & 960285(33 / 78) \\ & \mathrm{RPl} 68 \mathrm{C}(45 \mathrm{RPM}) \\ & \hline \end{aligned}$ | 16AP4 | KRK5A | $12^{\prime \prime}$ PM |  |  |
| $\begin{array}{r} 2 \mathrm{~T} 51 \\ 2 \mathrm{~T} 60 \\ \hline \end{array}$ | $\begin{aligned} & \hline \text { KCS45 } \\ & \text { KCS45A } \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & \text { 12LP4 } \\ & \text { 12LP4 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { KRK8 } \\ & \text { KRKK } \end{aligned}$ | $\begin{aligned} & 5^{\prime \prime \prime} \times 7^{\prime \prime \prime} \mathrm{EM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| 2T81 | KCS46 | RC1090 | $\begin{aligned} & 960282(33 / 78) \\ & \text { RP168 (45 RPM) } \end{aligned}$ | 12LP4 | KRK8 | $12^{\prime \prime}$ PM |  |  |
| $4 \mathrm{TlO1}$ | KCS61 |  |  | 14EP4 | KRK8C | $5^{\prime \prime} \times 7^{\prime \prime} \mathrm{PM}$ |  |  |
| $4 \mathrm{Tl41}$ | KCS62 | RC1090 | $\begin{aligned} & 960282(33 / 78) \\ & \text { RP190-2 (45 RPM) } \end{aligned}$ | 14EP4 | KRK8C | $12^{\prime \prime}$ PM |  |  |
| 6 T72 | KCS40B |  |  | 16GP4 | KRK5B | $12^{\prime \prime}$ PM |  |  |
| $\begin{aligned} & \text { 6T53, 6T54 } \\ & \text { 6T64,65,71,74,75,76 } \end{aligned}$ | $\begin{aligned} & \text { KCS47 or } 47 \mathrm{~T} \\ & \text { KCS47A or } 47 \mathrm{AT} \end{aligned}$ |  |  | $\begin{aligned} & \text { 16GP4 } \\ & 16 \mathrm{GP} 4 \\ & \hline \end{aligned}$ | KRK8B <br> KRK8B | $\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| 6 T84 <br> 6T86,6T87 | KCS48 or 48 T KCS48 or 48 T | $\begin{aligned} & \mathrm{RCl} 1090 \\ & \mathrm{RCl} 1 \end{aligned}$ | $\begin{aligned} & 960282 \text { or } 284 \\ & \text { RP168 or } 190 \\ & 960282 \text { or } 284 \\ & \text { RP168 or } 190 \end{aligned}$ | $\begin{aligned} & 16 \mathrm{GP} 4 \\ & 16 \mathrm{GP} 4 \end{aligned}$ | $\begin{aligned} & \text { KRK8B } \\ & \text { KRK8B } \end{aligned}$ | $\begin{aligned} & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| 7T103, 7T104 <br> 7T103B, 7T104B <br> 7T112, $122,123,124$ <br> 7T12B, 122B, 123B, 25 B <br> 7T112B, <br> 7T11B2B, 123B <br> 7T132 | KCS47B <br> KCS47F <br> KCS47C <br> KCS47G or GF <br> KCS47GF-2 <br> KCS47GF-2 <br> KCS47D |  | RP190 | $\begin{aligned} & \text { 17CP4 } \\ & 17 \mathrm{GP4} \\ & 17 \mathrm{GP} 4 \\ & 17 \mathrm{CP} 4 \end{aligned}$ | KRK8B <br> KRK8B KRK8B KRK8B KRK8B KRK8B KRK8B | $\begin{aligned} & 8^{\prime \prime} \text { PM } \\ & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \text { PM } \\ & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & 8^{\prime \prime} \text { PM } \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| 7T143 | KCS48A | RCl092 | $\begin{aligned} & 960284(33 / 78) \\ & \text { RP190 (45 RPM) } \end{aligned}$ | 17CP4 | KRK8B | $12^{\prime \prime} \mathrm{PM}$ |  |  |
| $\begin{aligned} & \text { 9T57, } \\ & \text { 9T77, } 9 \mathrm{~T} 79 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { KCS49 or } 49 \mathrm{~T} \\ & \text { KCS49A or } 49 \mathrm{AT} \\ & \hline \end{aligned}$ |  |  | $\begin{array}{\|l\|} \hline 19 A P 4 A \\ \text { 19AP4A } \end{array}$ | KRK8B | $\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| 9789 | KCS60 or 60T | RC1092 | $\begin{aligned} & 960284(33 / 78) \\ & \text { RP168 or } 190 \end{aligned}$ | 19AP4A | KRK8B | $12^{\prime \prime}$ PM |  |  |
| $\begin{aligned} & 9 \mathrm{~T} 105 \\ & 9 \mathrm{Tl} 126,9 \mathrm{~T} 128 \end{aligned}$ | $\begin{aligned} & \text { KCS49B, 49BF } \\ & \text { or 49BF-2 } \\ & \text { KCS49C, 49CF } \\ & \text { or 49CF-2 } \end{aligned}$ |  |  | $\begin{aligned} & 19 A P 4 A \\ & 19 A P 4 A \end{aligned}$ | KRK8B KRK8B | $\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| $9 \mathrm{Tl47}$ | KCS60A | RCl092 | $\begin{aligned} & 960284(33,78) \\ & \text { RP190 (45 RPM) } \end{aligned}$ | 19AP4A | KRK8B | $12^{\prime \prime}$ PM |  |  |
| 16 T 152 | KCS47E |  |  | 16GP4 | KRK8B | $8^{\prime \prime}$ PM |  |  |
| $\begin{aligned} & 17 \mathrm{~T} 150 \\ & 17 \mathrm{~T} 151,17 \mathrm{~T} 163 \end{aligned}$ | KCS66C <br> KCS66C |  |  | $\begin{aligned} & 17 \mathrm{QP4} \\ & 17 \mathrm{QP4} \end{aligned}$ | $\begin{aligned} & \text { KRKIl } \\ & \text { KRKIl } \end{aligned}$ | $\begin{aligned} & 4^{\prime \prime} \times 6^{\prime \prime} \text { PM } \\ & 8^{\prime \prime} \text { PM } \end{aligned}$ |  |  |
| $\begin{aligned} & 17 \mathrm{~T} 153,154,155,160 \\ & 17 \mathrm{~T} 162,17 \mathrm{~T} 114 \\ & 17 \mathrm{~T} 112,17 \mathrm{~T} 3 \\ & 17 \mathrm{T172K}, 17 \mathrm{~T} 173 \mathrm{~K} \\ & 17 \mathrm{~T} 174 \mathrm{~K} \end{aligned}$ | KCS66 <br> KCS66A <br> KCS66A <br> KCS66D <br> KCS66D |  |  | $\begin{aligned} & 17 \mathrm{GP} 4 \\ & 17 \mathrm{GPP} \\ & 17 \mathrm{GP} 4 \\ & 17 \mathrm{CP} 4 \\ & 17 \mathrm{CP} 4 \end{aligned}$ | KRKIl KRKll KRK11 KRK11 KRKll | $\begin{aligned} & 8^{\prime \prime \prime} \text { PM } \\ & 8^{\prime \prime} \text { PM } \\ & 12^{\prime \prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & 8^{\prime \prime} \text { PM } \end{aligned}$ |  |  |
| $\begin{aligned} & \text { 17T200, } 17 \mathrm{~T} 201,17 \mathrm{~T} 202 \\ & 17 \mathrm{~T} 211,17 \mathrm{~T} 220 \end{aligned}$ | $\begin{aligned} & \text { KCS72 } \\ & \text { KCS72 } \end{aligned}$ |  |  | $\begin{aligned} & 17 \mathrm{QP} \\ & 17 \mathrm{OP} 4 \end{aligned}$ | $\begin{aligned} & \text { KRK8D } \\ & \text { KRK8D } \end{aligned}$ | $\begin{aligned} & \text { 5"PM } \\ & 8^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| $\begin{aligned} & \text { 17T250DE } \\ & \text { 17T261DE } \end{aligned}$ | $\begin{aligned} & \hline \text { KCS74 } \\ & \text { KCS74 } \end{aligned}$ |  |  | $\begin{aligned} & 17 \mathrm{QP4} \\ & 17 \mathrm{QP} 4 \end{aligned}$ | KRKIIA <br> KRK11A | $\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & \hline \end{aligned}$ |  |  |
|  | KCS68E KCS68F KCS68E KCS68F KCS68C KCS68F |  |  | $\begin{aligned} & \text { 21AP4 } \\ & \text { 21AP4 } \end{aligned}$ | KRKll <br> KRKlla <br> KRK11 <br> KRK11A <br> KRKll <br> KRK11A | $\begin{aligned} & 8^{\prime \prime} \mathrm{PM} \\ & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| 21T197DE | KCS68H | RC1111A | 930409 | 21AP4 | KRK11A | $12^{\prime \prime}$ PM |  | RS141A |
| $\begin{aligned} & 21 \mathrm{~T} 207,21 \mathrm{~T} 207 \mathrm{G} \\ & 21 \mathrm{~T} 208,21 \mathrm{~T} 217,21 \mathrm{~T} 229 \\ & 21 \mathrm{~T} 218,21 \mathrm{~T} 227,21 \mathrm{~T} 228 \\ & \hline \end{aligned}$ | KCS72A <br> KCS72A <br> KCS72A |  |  | $\begin{aligned} & \text { 21AP4 } \\ & \text { 21AP4 } \\ & 21 \mathrm{AP4} \\ & \hline \end{aligned}$ | KRK8D KRK8D KRK8D | $\begin{aligned} & 5^{\prime \prime} \mathrm{PM} \\ & 8^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  |  |
| $\begin{aligned} & \text { 21T242 } \\ & 21 T 244 \end{aligned}$ | $\begin{aligned} & \text { KCS72D-1 } \\ & \text { KCS72D-2 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \text { RC1117B-1 } \\ & \text { RC1111B } \end{aligned}$ | $\begin{aligned} & 930409 \\ & 930409 \end{aligned}$ | $\begin{aligned} & \text { 21AP4 } \\ & \text { 21AP4 } \end{aligned}$ | KRK8D <br> KRK8D | $\begin{aligned} & 12^{\prime \prime} \mathrm{PM} \\ & 12^{\prime \prime} \mathrm{PM} \end{aligned}$ |  | RS141C |

## RCA RENEWAL PRODUCTS



## RECEIVING TUBES AND KINESCOPES

With RCA Receiving Tubes and Kinescopes, Top Quality Control makes the difference. The RCA brand on any tube is your best assurance of dependable performance in every AM, FM, television, and industrial application.


# for 

## RCA RADIO-TV Service Information



Accurate servicing information on all RCA Victor Radio, Phono, and TV sets... data which can't be found elsewhere . . is at your fingertips with the famous Bound Volumes of RCA Victor Service Data. Here is detailed, authoritative information for the rapid, profitable servicing of any RCA Victor home instrument.

Prepared by RCA servicing experts, RCA Victor Service Data will give you the information you need to know in the fastest possible time. Watch your job turn-over time on RCA Victor sets decrease once you use this authentic servicing aid.

You'll save time and dollars by maintaining a complete file of these handsome, sturdily bound volumes of RCA Victor Service Data. See your local RCA Parts Distributor today.


## RCA's Comprehensive

Literature Gives You
The Servicing
Information
You Need.

For Quick, Ready
Answers To All
Your Servicing
Problems
... Get Authentic
RCA Literature
From Your
RCA Distributor!



```
"A", Top Needle Hole
"B" Viscoloid Damper "C." Thick ( \(\overline{\mathrm{S}} / 16\)-in.) Mtg. Hole "D." Thin ( \(7 / 32 \cdot \mathrm{in}\).) Mtg. Hole '"E", Grounded Lug "F", Small Weight
```



``` "J", 5/8-in. Needle Screw "K" \(11 / 16\) in. Needle Screw
"L" \(13 / 16\) in. Needle Screw " \({ }^{\text {M }}\) " \({ }^{13 / 16 / 16 \text { in. } 15 \text {. Needle Screw }}\)
```



MS 1151 E


MS 115 : G


MS 1151 н


## RCA CRYSTAL PICKUP DATA



FIG. 15


FIG. 19


FIG. 20


FIG. 27


osmus.
Fig. 109


| MODEL vs. PICKUP CARTRIDGE |  |  | Model <br> UY-124 | Record Changer | Cartridge Stock No. | Model | Record Changer | Cartridge Stock No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Record | Cartridge |  |  | 31156 | 9-EY-35 | RP-168 | 74067 |
| Model | Changer | Cartridge | U-125 | RP-132C | 31156 31156 | 9-EY-36 | RP-168 | 74067 |
| A-55 | RP-168 |  | U-127E |  | 31050 | 9-JYM | RP-168 | 74067 |
|  | $\begin{aligned} & \text { RP-168 } \\ & 960282-1 \end{aligned}$ | + 75044 | U-128 | RP-132 | 31156 |  |  |  |
| A-78 | RP-168 | - 74625 | U-129 |  |  | 9-QV-5 | RP-168 | * S-5578 |
| A-82 | 960282-1 | + 75044 | U-129 | RP-132F | 31156 |  | 960282-2 | + S-5652 |
|  | RP-168 | - 74625 | U-132 | RP-132C | 32632 | 9-T-89 | RP-168 | * 74625 |
|  | RP-190-2 | - 75575 | U-134 | RP-132B | 32632 |  | RP-190-2 | * 75575 |
|  | 960282-4 |  | V-100 |  | 33122 |  | 960284-1 |  |
| A-91 | or -5 $\mathrm{RP}-168$ | $\dagger 75475$ +74625 |  |  | 33122 | 9-T-147 | RP-190-2 | $\begin{array}{r}\dagger \\ \hline\end{array} 5475$ |
|  | RP-190-2 | * 75575 | V-101 V-102 |  | 33122 33905 | 9-T-147 | 960284-1 |  |
|  | 960284-1 |  | V-105 |  | 33122 |  | $\stackrel{\text { or-2 }}{ }$ | † 75475 |
|  | RP. ${ }_{\text {or }}$ | +75475 $+\quad 75575$ | V-135 | RP-162 | 38610 | 9-TW-309 | RP-168 | - 74625 |
| A-101 | $\begin{aligned} & \text { RP-190-2 } \\ & 960282-4 \end{aligned}$ | * 75575 | V-140 | RP-162 | 38610 | 9-TW-333 | RP-178 RP-168 | $\begin{array}{r}\ddagger \\ \hline 72551 \\ \hline 7\end{array}$ |
|  | or -5 or | † 75475 |  |  |  |  | RP-177 | + 72551 |
|  | 960284-1 |  | V-175 | RP-158 | 38610 |  |  |  |
|  | or -2 |  | V-200 | RP-152A | 35171 | 9-TW-390 | RP-168 | - 74067 |
| A-106 | RP-168 | 74625 | V-201 | RP-152A | 35171 |  | RP-177 | + 72351 |
| A-108 | 960285-1 | + 75044 | V-205 | RP-152B | 37158 | 9-W-51 | RP-168 | - 74625 |
|  | RP-168 | - 74625 |  |  |  | 9-W-78 | RP-168 | - 74625 |
|  | RP-190-2 | - 75575 | V-209 | RP-158 | 38610 |  | RP-178 | + 72551 |
|  | 960284-1 |  | .V-210 | RP-158 | 38610 | 9-W-101 | RP-168 | 74067 |
|  | or -2 | + 75475 | V-215 | RP-160 | [38453 | 9-W-102 | RP-168 | 74067 |
| $\begin{aligned} & \mathrm{O}-50 \\ & \mathrm{QEY}-3 \end{aligned}$ |  | 33217 |  |  | 39550 |  |  |  |
|  | RP-168 | 74984 | V-219 | RP-160 | 38453 | 9-W-103 | RP-168 | 74067 |
| QEY-4 | RP-190-5 | 76297 |  |  | 39550 | 9-W-105 | RP-168 | * 74067 |
| QEY-5 <br> QJY <br> QJY-2 <br> QU-2C <br> QU-3C | RP-190-5 | 76297 | V.221 | RP-160 | 38453 39550 |  | -RP-178 | \$ 72551 |
|  | RP-168 | 74984 | V-225 |  |  | 9.W-106 | RP-168 | +74625 |
|  | RP-190-5 | 76297 | V-225 | RP-151 Bott. | t. 38598 | 9-Y-7 | RP-168 | + 74067 |
|  |  | 33905 | V-300 | RP-152J | 37158 | 9-Y-51 | RP-168 | 74625 |
|  |  |  | V-301 | RP-153 | 33905 |  |  |  |
| $\begin{aligned} & \text { QU-5C } \\ & \text { QU-51C } \\ & \text { QU-52C } \\ & \text { QU-56C } \\ & \text { QU-61 } \end{aligned}$ | RP.145E | 33905 | V-302 | RP-153 | 33905 | 9.Y-510 | RP-190-1 |  |
|  | RP-145E | 35171 | V-405 | RP-152J | 37158 | 9.Y-510 | Or-4 | 76318 |
|  | RP-152S | 35171 |  |  |  | 9.Y-511 | RP-168 | 74625 |
|  |  | 33122 | VA-15 | RP-152 | 35171 | 11 -QU | RP-132A | 31156 |
|  | 960001-4 | 39851 | VA-20 |  | 31050 | 12-OU | RP-132A | 31156 |
| QU-62 | 960001-4 | 39851 | VA-21 | RP-139D | 33122 31156 | 45-EY | RP-168 | ¢ 74067 |
| QU-68 | 960001-4 | 39851 | VA-22A | RP-145C | 33905 |  |  | 74625 |
| QU-72 |  | 39851 |  |  |  |  |  |  |
| QU-72A |  | 39851 |  |  |  | 45-EY-1 | RP-168 | 74067 |
| R-56 |  | 39686 | VAR-24 202 | RP.145C | 33905 37158 | 45-EY-2 | RP-190-1 | ¢75476 |
| R-60 |  |  | VHR-207 | RP-155 | 37158 | 45-EY-3 | RP-190-1 | 15476 |
| R-89 |  | 31050 | VHR-212 | RP-161 | 38610 | 45-EY-3 | or-3 | 76318 |
| R-91 |  | 31050 |  |  |  | 45-EY-15 | RP-168 | 74067 |
| R-93B | ........ | 31050 | VHR-307 | RP-155 | 37158 |  |  |  |
| R-93C |  | 31050 | VHR-407 | RP-155 | 37158 | 45-J | RP-168 | 74067 |
| R-93F |  | 33122 | 2-S7-ED |  | + 73839 | 45-J-2 | RP-190-1 | ¢75476 |
| R-94B |  | 31050 | 2-T-81 | RP.168 ${ }_{\text {RP. }}$ | $\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$ |  | $\stackrel{\text { Or-4 }}{ }$ | 76318 |
| R-98 |  | 31156 |  | RP-180-2 | - 75575 | 45-J-2 | RP-190-6 | 24067 |
| R-100 |  | 33122 |  | or-5 | † 75475 | 45-J.3 $45-\mathrm{W}-9$ | RP-193-2 | 76257 |
| R-103S |  | 33122 | 4-QV-8C | RP-168 | *S-5578 | 45-W-9 | RP-190-2 | 15575 |
| R-560P |  | 33122 |  | 960282-2 | $\dagger$ S-5652 | 45-W-10 | RP-190-2 | 75575 |
| R-566P | RP-162 | 38610 |  |  |  | 55-U, 55-AU | 960015 | 71173 |
| S-1000 | RP. 168 | * 74625 | 4-T-141 | RP-190-2 | * 75575 |  |  | 70338 |
|  | 960285-1 | + 75044 |  |  |  | 58-V, 58-AV | 960001-1 | 39851 |
| TA-128 | RP-168 | - 74625 |  | or-5 | $\begin{array}{r}+\quad 75475 \\ \hline 70338 \\ \hline\end{array}$ | 59-V-1 | 960001-2 | 70332 |
| TA-129 | 960282-1 | + 75044 | ${ }_{6-\mathrm{JM}}^{6-\mathrm{J}}$ |  | 70338 | 59-AV-1 | 960001-2 | 70332 |
|  | RP-168 | * 74625 |  |  |  |  |  |  |
|  | 960282.1 | + 75044 | $\begin{aligned} & \text { 6-QU } \\ & \text { 6-QU.3 } \end{aligned}$ | RP-178-3 | ${ }_{72551}$ | 62-1 | 960260-2 | 70338 |
| TA-169 | RP-168 | 74625 |  |  |  | 63-EM |  | 70338 |
|  | 960285-1 | † 75044 | 6-OU-3Y | RP-168 | 74984 | 65-U | 960260-2 | 70338 |
| U-8 | ........ | 33122 | 6-QV-3 | RP-178-3 | 72551 | 65-AU | 960260-2 | 70338 |
| U-9 |  | 33122 | 6-T-84 | RP-168 | * 74625 |  |  |  |
| U-12 |  | 33122 |  | RP-190-2 | * 75575 |  |  |  |
|  |  | 33905 |  | ${ }_{\text {960282-4 }}^{\text {Or- }}$ |  | ${ }_{66-\mathrm{E}}^{65-1}$ | 960260-2 | 70338 |
| U-20 |  | 33905 | 6-T-86 | $\stackrel{\text { Or-5 }}{\text { RP- } 168}$ | $\begin{array}{r}\dagger \\ \hline 74625 \\ \hline\end{array}$ | 66-ED |  | 70332 |
| U-25 | RP-132M | 31156 | 6.7-86 | RP-190-2 | - 75575 | 66-E-1 |  | 70332 |
| U-26 | RP-132M | 31156 |  | 960284-1 |  | 67-V-1 | 960260-1 | 70338 |
| U-40 | RP-132M | 31156 |  | or-2 | + 75475 |  |  | - |
|  | RP-139A | 35171 | 6-T-87 | RP. 168 | - 74625 | 67-AV-1 | 960260-1 | 70338 |
| U-42 | RP-145 | 35171 |  | RP-190-2 | * 75575 | 75-ZU | RP-178 ${ }^{\text {96027 }}$ | 72551 |
| U-43 | RP-145 | 35171 |  | 960284-1 |  | 77-V | RP-178 | 72551 |
| U. 44 | RP-145 RP-139A | 35171 35171 |  | or-2 | $\dagger 75475$ | 77-V-1 | $960260-1$ | 70338 |
| U-46 | RP-140 | 33905 | 7-QV-5 | 960001-4 | 39851 | 77-V-2 | 960260-1 | 70338 |
|  |  |  | 7-T-132 | RP-190-2 | 75575 |  |  |  |
| $\begin{aligned} & \mathrm{U}-50 \\ & \mathrm{U}-104 \end{aligned}$ |  | 33217 | 7-T-143 | RP-190-2 | * 75575 | 610-V-1 | 960001-5or-6 | 639851 |
|  | RP-129B | 31050 |  | 960284-1 |  |  | or RP-177 | 72551 |
| U-106 | (9820) | 14820 | 8-QU-5C | or-2 | $\begin{array}{r}+75475 \\ \hline 4307\end{array}$ | 610-V-2 | $960001-5$ or 66 or RP-177 | $6 \begin{aligned} & 39851 \\ & 72551\end{aligned}$ |
| U-107 | $\begin{gathered} R P-129 \mathrm{~A} \\ (9820) \end{gathered}$ | 14820 | 8-TV-41 | RP-177A | 72551 | 612-V-1 | RP-176A or RP-176B | 70339 |
| U-108 | RP-129 (9820) | 0) 14820 | 8-TV-321 | RP-178 | 72551 | 612-V-3 | RP-176 or |  |
| U-109U-111 | RP-129 (9820) | 0) 14820 | 8-TV-323 | RP-178 | 72551 |  | RP-176B | 70339 |
|  | RP-129 (9820) | 31050 | 8-V-7 | RP-178 | 72551 | 612-V-4 | RP-176 or |  |
| U-112 |  | 31050 | 8-V-90 | RP-178 | 72551 |  | RP-176B | 70339 |
| $\begin{aligned} & \mathrm{U}-115 \\ & \mathrm{U}-119 \end{aligned}$ |  | 31050 | 8-V-91 | RP-178 | 72551 |  |  |  |
|  |  | 31156 |  |  |  | 641-TV | 960001-1 |  |
| U-121 |  | 31050 | 8-V-151 | $\mathrm{RPP}_{\text {R-177B }}$ | 70339 | 648-PV | RP-176 | 70339 |
| U-122E |  | 31156 | 9-EY-3 | RP-168 | 74067 | $710-\mathrm{V}-2$ | RP-177 or |  |
| UY-122E |  | 31156 | 9-EYM-3 | RP-168 | 74067 |  | RP-177A | 72551 |
| U-123 | RP-139B | 31156 31156 | 9-EY-31 | RP-168 RP-168 | 74625 | $711-\mathrm{V}-1$ $711-\mathrm{V}-2$ | $960001-5$ $960001-5$ | 39851 39851 |



| Pickup |  | Stylus |  |
| :---: | :---: | :---: | :---: |
| Stock | Fig. | Stock | Fig. |
| No. | No. | No. | No. |
| 9890 | 16-2N | 39863* | 101 |
| 38453* | 17-AL | 38449* | 102 |
| 38598 | 18 | 384494 |  |
| 38610 | 13 | 39564 | 103 |
| $39851{ }^{\text {4 }}$ | 19-2N | 39863 ${ }^{\text {4 }}$ | 101 |
| 39550 | 17-ZN | 38449 ${ }^{\text {a }}$ | 102 |
| 39919 | 17-AL | 384494 | 102 |
| 70332* | 19-AL | 38449* | 102 |
| 70338 | 14-AL | 72345 | 101 |
| 70339 | 14-AL | 70915 | 102 |
| 72551 | 14-ZN | 72345 | 101 |
| 73839 | 20 | 73840 | 104 |
| 74067 | 21 | 74068 | 105 |
| 74625 | 21 | 74818 | 106 |
| $74984^{\text {* }}$ | 22 | 74985 | 107 |
| 75044 | 23 | 75045 (1) | 108 |
|  |  | 75046 ( | 108 |
| 75475 | 24 | 75496 ${ }^{(1)}$ | 109 |
|  |  | 75497 ${ }^{\text {(1) }}$ | 109 |
| 75575 | 25 | 75770 | 110 |
| 75976 | 16-ZN | 39863* | 101 |
| 76257 | (26 | 76374 ? | 111 |
|  | 27 | 763230 | 112 |
| 76297 | 28 | 74985 | 107 |
| 76318* | 21 | 75496 | 109 |
| S-5652 | 23 | 75045 (3) | 108 |
|  |  | 75046 ${ }^{\text {© }}$ | 108 |

PICKUPS WITH FIXED STYLUS

| Stock | Fig. |
| :---: | :---: |
| No. | No. |
| S-5578 | 29 |
| $75476^{4}$ | 30 |
| ZN $=$ Zinc case, |  |
| AL $=$ Aluminum case |  |
| Ceramic type pickup |  |
| Discontinued: |  |
| $38449 \rightarrow$ use 70915 |  |
| $38453 \rightarrow$ use 39919 |  |
| $39851 \rightarrow$ use 75976 |  |
| $39863 \rightarrow$ use 73345 |  |
| $70332 \rightarrow$ use 75976 |  |
| $74984 \rightarrow$ use 76297 |  |
| $75476 \rightarrow$ use 74067 |  |
| $76318 \rightarrow$ use 74067 |  |
| O331/3 r.p.m. |  |



| 2 B 400 SERIES |  |  |
| :---: | :---: | :---: |
| $2 B 400$ | 2 B 401 | 2 B 402 |
| Grey | Black | Ivorv |
| 2 B403 | 2 B 404 | 2 B 405 |
| Green | Tan | Red |

Battery Operated Personal Receiver

## 2B400 Series

Chassis No. RC-1114
Service Data

- 1952 No. 5 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## Specifications



Batteries Required:
Type of Battery

|  | Normal Pos. | Saver Pos |
| :---: | :---: | :---: |
| "A"--1.5 volt (two) $\}$ | 0.25 amp . | 0.20 amp . |
| RCA VS 236 \} | 0.25 amp . |  |
| "B'-67.5 volts | 8.45 ma . | 5.45 ma . |

Battery life is approximately 100 hrs . intermittent service with battery-saver switch in "Normal" position. With switch in "Saver" position, battery life is increased approximately $30 \%$.

Power Output:


Case Back
To remove-insert small coin in the slot at top rear of case and pry open.
To replace-insert bottom edge into case and snap top edge i.: place.

C4.On Indicator
A window in the case (just below edge of volume control knob) indicates whether set is tumed ON or OFF. "ON" appears in window when set is turned $O N$ and disappears when set is turned OFF.

Battery-Life Saver Switch
Maximum power is obtained when the slider button is pushed toward left (outer edge of case). Extra battery life with slight effect on performance is obtained with the slider button pushed to the right (toward center of case).

## Battery Life

The life of the " $A$ " and " $B$ " batteries is approximately equal. For best performance all batteries should be replaced at the same time.

Output Meter.-Connect meter to voice coil terminals. Turn volume control to maximum position.

Test-Oscillator.-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.

Note:-The ant. coil is supplied pre-adjusted and cemented to rod. This makes further adjustment unnecessary. However when replacing ant. assembly make certain that the coil end of the rod is fully entered in its rubber mounting grommet but does not extend through the grommet more than is required to permit the opposite end to fit inside the case.

## Replacement of Component Parts

## I. To Remove Back Cover

a. Depress top of case midway between the handle supports, until the top end of the back separates from the main case.
b. Pull the back cover back and up, thereby unhooking the retaining lugs in the bottom of the main case.
II. To Replace Battories
a. Remove back cover
b. Remove both " $A$ " and " $B$ " batteries. The " $B$ " battery snap fasteners can best be removed by inserting a screwdriver under the snap fastener strip and prying upward.
c. The " $A$ " batteries can easily be removed by pulling up on the spring wire clips.
Notet The " $A$ " and " $B$ " batteries have approximately equal life and therefore it is advisable to replace all batteries at one time.
III. To Remove Chassis
a. Remove dial knob by grasping with finger tips at two sides and pulling.
b. Remove back cover
c. Remove batteries.
d. Remove " $A+$ " contacts by squeezing against case and sliding out of slots in case.
e. Remove the four screws "A."
f. Grasp the assembly by the speaker and pull the bottom end down and outward to clear the volume con trol knob.

## IV. To Replace Chassis

a. Observe the position of the battery save button exten sion in relation to the "battery-save" switch. This extension mus engage with the center of the battery save switch.
b. Replace in reverse order to that given for chassis removal.

## V. To Remove Handle

a. Spread the square spring wire clips by pulling on one side of a clip.
b. Allow the clip to return to its original shape but rest ing on the outside of the case.
c. Pull the other side of the clip out of the case.

V1. To Replace Battery Save Switch Button
a. Remove chassis
b. Spread the open end of the spring clip retainer no more than necessary to permit removal of clip.
c. Slide the clip clear of the slider button.
d. Turn slider button one-quarter turn and pull out of case.
e. Replace button in reverse order-do not use excessive force in replacing spring clip.

| Steps | Connect high side of test osc. to- | Tune testose. to- | Turn radio dial to | Adjust the following for max. output- |
| :---: | :---: | :---: | :---: | :---: |
| 1 | High side of ant. coil (terminal lug on coil which is connected to Pin \#6 of lRs tube) | 455 ke | $\begin{aligned} & \text { Quiet point } \\ & \text { near } \\ & 1600 \mathrm{kc} \end{aligned}$ | Trimmers of 2nd I-F trans |
| 2 |  |  |  | Trimmers of lst I-F trans. |
| 3 |  | Repeat steps 1 and 2 |  |  |
| 4 | Short wire placed near ant. coil for radiated signal | 1400 kc | 14 <br> Rock gang | C1-1T (osc.) |
| 5 |  | 600 kc | $\stackrel{60}{\text { Hock gang }}$ | L2 (osc.) |
| 6 |  | Repeat steps 4 and 5 |  |  |



Tube and Trimmer Locations


Schematic Diagram
In some chassis the on-off switch terminals are not in the order shown in the wiring diagram. USE CONTINUITY CHECK when connecting replacement control.


## Connection Diagram

## CRITICAL LEAD DRESS

1. Position Ferrite antenna rod as described above.
2. Dress all bus wires, pigtail leads and non-insulated components away from chassis base and away from each other.
3. Dress neutralizing capacitor C 5 against front of chassis and with clearance under volume control knob. Utilize shielding effect of oscillator coil mounting bracket.
4. Dress all I-F transformer leads down to base.

| $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION | $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES RC 1114 | $\begin{aligned} & 77163 \\ & 76859 \end{aligned}$ | Back-Case back-RED-for Model 2B405 <br> Button-Battery saver switch slider button-GREY-for Model 2B400 |
| 76847 | Antenna-Ferrite rod antenna (L1) | 77164 | Button-Battery saver switch slider button-BLACK-and |
| 76846 | Capacitor-Variable tuning capacitor (Cl-1, Cl-2) |  | spring clip for Model 2B401 |
| 57090 75784 | Capacitor-Ceramic, 3 mmi . (C5) Capacitor-Ceramic, 56 mmi . (C2, C7) | 77165 | Button-Battery saver switch slider button-IVORY-and spring clip for Model 2B402 |
| 75785 | Capacitor-Ceramic, 82 mmf . (C9, Cl0) | 77166 | Button-Battery saver switch slider button-GREEN-and |
| 73960 | Capacitor-Ceramic, $10,000 \mathrm{mmf}$. (C4) |  | spring clip for Model 2B403 |
| 73964 | Capacitor-Electrolytic, 10 mid., 70 volts (Cl5) Capacitor-Tubular, paper, . $001 \mathrm{mid} ., 200$ volts (C12) | 77167 | Button-Batiery saver switch slider button-TAN-and spring clip for Model 2B404 |
| 73750 | Capacitor-Tubular, paper, . $002 \mathrm{mfd}, .200$ volts (Cll, Cl4) | 77168 | Bution-Battery saver switch slider button-RED-and |
| 73961 | Capacitor-Tubular, paper, $003 \mathrm{mfd.}$,200 volts (C6) |  | spring slip for Model 2B405 |
| 71928 | Capacitor-Tubular, paper, $02 \mathrm{mfd} ., 200$ volts (Cl3) | 76838 | Case-Case assembly-GREY-less handle, links and |
| 73558 | Capacitor-Tubular, paper, . 047 mfd ., 200 volts (C8) |  | back for Model 2B400 |
| 76852 | Clip-"A" baftery mounting clip (formed spring wire) (2 required) | 77154 | Case-Case assembly-BLACK-less handle, links and back for Model 2B4Ol |
| 75010 | Clip-'"C" clip and screw to mount output transformer | 77155 | Case-Case assembly-IVORY-less handle, links and |
| 75774 | Coil-Oscillator coil complete with adjustable core (L2, L3) | 77156 | back for Model 2B402 <br> Case-Case assembly-GREEN-less handle, links and |
| 76854 | Contact-"A" battery contact (2 required) |  | back for Model 2B403 |
| 75773 | Control-Volume control and power switch (R6, Sl) | 77157 | Case-Case assembly-TAN-less handle, links and back |
| 37396 | Grommet-Rubber grommet for antenna rod (2 required) |  | for Model 2B404 <br> Case-Case assembly-RED-less handle, links and back |
| 76853 | Insulator-Bakelite insulator for ferrite rod antenna | 77158 | Case-Case assembly-RED-less handle, links and back for Model 2B405 |
| 76851 | Knob-Volume control and power switch knob-less set screw | 76860 | Clip-Retaining spring clip for battery saver switch slider button |
| 76855 | Lead-"B" battery lead complete with connector Resistor-Fixed, composition:- | 76842 | Dial-Polystyrene dial scale-GREY-for Model 2B400 |
| 503139 | 390 ohms, $\pm 10 \%$, $1 / 2$ watt (Rll, Rl3) | 77169 77170 | Dial-Polystyrene dial scale-BLACK-for Model 2B401 Dial-Polystyre dial scale-IVORY-for Model 2B402 |
| 504210 | 1000 ohms, $\pm 20 \%$, $1 / 2$ watt (R12) | $77170$ | Dial-Polystyrene dial scale-GREEN-for Model 2 B4 03 |
| 503315 | 15.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R2) | 77172 | Dial-Polystyrene dial scale-TAN-for Model 2B404 |
| 504347 | 47.000 ohms, $\pm 20 \%$, 1/2 watt (R5) | 77173 | Dial-Polystyrene dial scale-RED for Model 2B405 |
| 504410 | 100.000 ohms, $\pm 20 \%$, $1 / 2$ watt (Rl) | 75844 | Emblem-"RCA Victor" emblem |
| 504510 | 1 megohm, $\pm 20 \%$, $1 / 2$ watt (R9) | 73843 | Grille-Metal grille-perforated-GREY-for Model 2B400 |
| 504533 | 3.3 megohm, $\pm 20 \%$, $1 / 2$ watt (R4, R10) | 77179 | Grille-Metal grille-perforated-GOLD-for Models 2B401 |
| 504547 | 4.7 megohm, $\pm 20 \%$, $1 / 2$ watt (R3, R7) |  | and 2B402 |
| 504610 | 10 megohm, $\pm 20 \%$, 1/2 watt (R8) | 77180 | Grille-Metal grille-perforated-GREEN-for Model 2B403 |
| 70527 | Screw-\#6-32, x 3/16" socket head set screw for volume control knob | $\begin{aligned} & 77181 \\ & 77182 \end{aligned}$ | Grille-Metal grille-perforated-TAN-for Model 2 B404 Grille-Metal grille-perforated-_RED-for Model 2 B405 |
| 75780 | Socket-Tube socket, 7 pin, miniature, saddle mounted | 73839 | Handle-Carrying handle-BLACK-for Models 2B400 and |
| 76848 | Switch-Battery saver switch (S2) |  | 2B401 |
| 76849 | Transformer-First I.F. transformer (T1) | 77183 | Handle-Carrying handle-BEIGE-for Model 2B402 |
| 76850 | Transformer-Second I.F. transformer (T2) | 77184 | Handle-Carrying handle-GREEN-for Model 2 B403 |
| 75777 | Tansformer-Output transformer (T3) | 77185 | Handle-Carrying handle-BROWN-for Model 2B404 |
|  |  | 77186 | Handle-Carrying handle-RED-for Model 2B405 |
|  | SPEAKER ASSEMBLY | 76856 | Knob-Tuning control knob-GREY-for Model 2B400 |
|  | 92523.W | 77174 | Knob-Tuning control knob-BLACK-for Model 2B401 |
| 76373 | Speaker-2" $\times 3^{\prime \prime}$ P.M. speaker complete with cone and | 77175 | Knob-Tuning control knb-IVORY- for Model 2 B402 |
|  | voice coil | 77176 | Knob-Tuning control knob-GREEN-for Model 28403 |
|  | MISCELLANEOUS | 77177 | Knob-Tuning control knob-TAN-for Model 2B404 |
| 76841 | Back-Case back-GREY-for Model 2B400 | 77178 78840 | Knob-Tuning control knob-RED-for Model 2B405 |
| 77159 | Back-Case back-BLACK-for Model 2B401 | 71858 | link-Carrying handle link (2 req d) |
| 77160 | Back-Case back-IVORY-for Model 2B402 | $7 \mathrm{C857}$ | Screw- \#4-40 x \%/3, " rross recessed binder head machine |
| 77161 | Back-Case back-GREEN-for Model 2 B403 |  | screw for mounting chassis (4 req'd) |
| 77162 | Back-Case back-TAN-for Model 2B404 | 74734 | Spring-Spring clip for tuning control knob |

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS

## Incorrect Tube Location Label:

A tew receivers were shipped with an incorrect tube location label in which the designation of 3 V 4 and $1 \mathrm{U5}$ tubes were transposed. These may be readily identified by the label color. The incorrect label is BLUE, the correct label is YELLOW. The correct tube locations are illustrated below.


## " $A$ " Battery Lead:

$A$ rubber band is used for the purpose of holding the " $A$ " battery lead in a position where it will not be accidentally torn loose when replacing the battery. When servicing one of these receivers, make sure that this rubber band is around the i-f transformer shield can and holding the " $A$ " battery lead against the chassis.

## Correct Tonal Response:

For correct tonal response it is necessary that the holes in the case, where the metal grille is attached, be closed. This is done at the factory by covering the tabs, on the inside of the case, with tape. Absence of this tape will adversely affect the tonal response of these receivers.


## Specifications

Tuning Range ................................ 540-1, 600 kc
Intermediate Frequency ............................... 455 kc
Power Supply Rating
Power Line Operation
115 volts, d. c. or 50 to 60 cycles a. c. .............. 15 watts
or
Battery Operated .................. (Average battery life - 100 hrs. intermittent service)
Battery current ................... "A" 50 ma., "B" 13 ma.
Tube Complement

| (1) | RCA 1T4 | R.F. Amplifier |
| :---: | :---: | :---: |
| (2) | RCA 1R5 | Converter |
| (3) | RCA 1 T4 | I.F.-Amplifier |
| (4) | RCA 1 U5 | VC-lst A.F. |
| (5) | RCA 3V4 | ... Output |

> A selenium rectifier is used.

## To Remove Hinges

Remove back from cabinet as described at right. Spread the hinge apart to remove it from the cabinet back.


Removal of Cabinet Back

Weight (Approx.)
Without battery . 4 lb .10 oz . With battery . 7 lb .12 oz .
Power Output
Undistorted ....................................... 0.170 watt
Maximum
0.320 watt
.4 in. P.M.
Loudspeaker
Voice Coil impedance
Cabinet Dimensions
Height ... 8 in. Width ... $12 \frac{1}{2} / 2$ in. Depth ... $5 \frac{5}{8}$ in.

## To Remove Chassis:

1. Pull out battery and disconnect battery plug.
2. Unsolder the two loop antenna leads.
3. Remove the two large screws (under handle) in the to, of the case.

## To Remove Cabinet Back

With the back fully open, grip the cabinet as illustrated. Insert a screwdriver under one hinge and pry the center of the hinge out of the opening in the cabinet while maintaining pressure on the back with the fingers and on the cabinet with the thumb. Repeat this procedure with the other hinge. Pull the back straight to the rear using both hands.


Rear View With Back Removed

## Alignment Procedure

Output Meter Alignment - If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.
-Test Oscillator - For all alignment operations, connect the low side of the test oscillator to the receiver chassis and keep the oscillator output as low as possible to avoid AVC action.

Battery operation of the receiver is preferable during alignment; on AC operation an isolation transformer (117v. $/ 117 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also AC operated.
Dial Pointer Position - With the tuning condenser fully meshed the center of the dial pointer should be in line with the score mark on the chassis.

| Step | Connect High Side of Sig. Gen. to - | $\begin{gathered} \text { Sig. } \\ \text { Gen. } \\ \text { Output } \end{gathered}$ | Dial Pointer Setting | Adjust for Max. Output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Disconnect loop-remove chassis-remove bottom plate. |  |  |  |
| 2 | Pin \#6 of 1T4 I.F. Amplifier thru 005 mf . | 455 kc | Quiet <br> point <br> near <br> 1600 kc | 2nd I.F. Trans. T2 Top \& Bottom |
| 3 | Pin \#6 of 1R5 Converter thru .005 ml . |  |  | 1st I.F. Trans. Tl Top \& Bottom |
| 4 | Replace bottom cover and install chassis in cabinet. Re-connect loop. |  |  |  |
| 5 | Short wire placed near loop for radiated signal | 1620 kc | min. cap. | 1600 kc osc. trimmer Cl-3T |
| 6 |  | 1400 kc | 1400 kc Signal | 1400 kc r.f. \& ant. trimmers* |
| 7 |  | Connect a 22,000 ohm resistor in parallel with r.f. tuning cond. Cl-2 |  |  |
| 8 |  | 600 kc | 600 kc Signal | L4 osc. core* while rocking gang |
| 9 |  | Remove the 22,000 ohm resistor from r.f. tuning cond. Cl-2. |  |  |
| 10 |  | 600 kc | $\begin{aligned} & 600 \mathrm{kc} \\ & \text { Signal } \end{aligned}$ | L3 r.f. core |
| 11 | Repeat Steps 5, 6, 7, 8, 9 and 10. |  |  |  |

* The position of the battery affects loop inductance. The battery should be in place during steps 5 to 11.



Schematic Diagram-Chassis No. RC-1115
2 BX 63

## Replacement Parts

| STOCK No. | DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  |  | 513233 | 3300 ohms, $\pm 10 \%$, l watt .........................22 |
|  | $\underset{\text { RC-1115 }}{\text { CHASLIES }}$ | 504315 | 15,000 ohms, $\pm 20 \%$, $1 / 2$ watt ...................R20 |
|  |  | 503327 | 27,000 ohms, $\pm 10 \%$, 1/2 watt ................ R14 |
| 77054 | Capacitor-Variable tuning capacitor complete with | 504368 | 68,000 ohms, $\pm 20 \%$, $1 / 2$ watt .................. R10 |
|  | drive drum .................. ClA, ClB, ClC | 504410 | 100,000 ohms, $\pm 20 \%$, $1 / 2$ watt ....................R5 |
| 73153 | Capacitor-Ceramic, 4 mmf . ................ C21 | 503422 | 220,000 ohms, $\pm 10 \%$, 1/2 watt ...................R15 |
| 39622 | Capacitor-Mica, 56 mmf . . . . . . . . . . . . . . . . . 77 | 504510 | 1 megohm, $\pm 20 \%$, 1/2 watt ....................R16 |
| 71514 | Capacitor-Ceramic, 82 mmf . . . . . . . . . . C2, C12 | 503518 |  |
| 51416 | Capacitor-Mica, 180 mmf . ................... Cl5 | 503533 | 3.3 megohm, $\pm 10 \%$, $1 / 2$ watt ...................R8 |
| 76659 | Capacitor-Electrolytic comprising 1 section of 50 | 504547 | 4.7 megohm، $\pm 20 \%, 1 / 2$ watt .................R13 |
|  | mfd., 150 volts, 1 section of 40 mfd ., 150 volts, 1 | 503556 | 5.6 megohm, $\pm 10 \%, 1 / 2$ watt $\ldots . . . . . . . . . . . . . . . R 7$ |
|  | section of 160 mfd ., 25 volts and 1 section of 40 | 503568 | 6.8 megohm, $\pm 10 \%$, $1 / 2$ watt ...................Rl |
|  | mfd., 25 volts .........Cl8A, C18B, Cl8C, Cl8D | 504610 | 10 megohm, $\pm 20 \%$, $1 / 2$ watt $\ldots \ldots . . . . . . . . . . . . . . ~ R 12 ~$ |
| 73595 | Capacitor-Tubular, paper, . $0022 \mathrm{mfd} ., 600$ volts . . Cl 7 | 73117 | Socket-Tube socket, 7 pin, miniature |
| 73795 | Capacitor-Tubular, paper, .0033 mfd , 600 volts . . C8 | 76368 | Spring-Drive cord spring |
| 73796 | Capacitor-Tubular, paper, .0039 mfd ., 600 volts . . Cl9 | 71039 | Switch-"Line-Battery" switch ................. Sl |
| 73561 | Capacitor-Tubular, paper, $.01 \mathrm{mfd} ., 400$ volts Cl3, Cl 6 | 73129 | Transformer-First I.F. transformer complete with adjustable cores |
| 73562 | Capacitor-Tubular, paper, . $022 \mathrm{mfd} ., 400$ volts... Cl 4 | 75487 | Transformer-Second I.F. transformer complete with |
| 73558 | Capacitor-Tubular, paper, 047 mfd , 200 volts $\mathrm{C}, \mathrm{C}, \mathrm{ClO}$ | 71047 | adjustable cores .....................................T2 <br> Transformer-Output transformer .....................T3 |
| 73553 | Capacitor-Tubular, paper, 047 mfd ., 400 volts | 33726 | Washer-"C" washer for tuning knob shaft |
| 75071 | Capacitor-Tubular, moulded paper, 047 mfd., 400 volts |  | SPEAKER ASSEMBLIES |
| 73551 | Capacitor-Tubular, paper, oil impregnated, 0.1 mfd ., 400 volts |  | $\begin{aligned} & 971495-7 \mathrm{~W} \\ & \text { RL-108B10 } \end{aligned}$ |
| 73935 | Clip-Mounting clip for I.F. transformer | 77055 | Speaker-4" P.M. speaker complete with cone and |
| 73114 | Coil-Oscillator coil complete with adjustable core |  | voice coil ( 3.2 ohms) |
| 74992 | Coil-RF coil complete with adjustable core ..L2, L3 |  | MISCELLANEOUS |
| 71041 | Connector-5 contact male connector or battery cable | 77068 | Antenna-Antenna loop assembled to polystyrene |
| 72776 | Connector-Single contact pin connector or output transformer leads (2 req'd) | 77060 | frame and support $\qquad$ Back - Cabinet back - polystyrene - complete with |
| 75474 | Connector-Single contact male connector for output transformer leads | 77061 | strikes <br> Cap-Carrying handle cap and chassis support |
| 74285 | Control-Volume control and power switch ...R9, S2 | 77065 | Case-Case front-less handle, handle support, caps, |
| 72953 | Cord-250' Drive Cord Reel (approx. 50" required) |  | links and chassis mounting screw |
| 70022 | Cord-Power cord and plug | 77064 | Emblem-"RCA Victor" emblem |
| 77051 | Dial-Metal dial scale complete with (3) pulleys | 77057 | Eyelet-Metal eyelet for mounting loop assembly |
| 74838 | Grommet-Power cord strain relief (l set) | 77066 | Grille-Metal grille |
| 72283 | Grommet-Rubber grommet for mounting variable capacitor | $\begin{aligned} & 77056 \\ & 77063 \end{aligned}$ | Grommet-Rubber grommet for mounting loop assembly Handle--Carrying handle |
| 18469 | Plate-Bakelite mounting plate for electrolytic | 74790 | Hinge-Cabinet hinge (2 req'd) |
| 77053 | Pointer-Station selector pointer | 77248 | Knob-Control knob |
| 72602 | Pulley-Drive cord pulley | 77062 | Link-Carrying handle link |
| 74322 | Rectifier-Selenium rectifier | 77013 | Nut-Speed nut for fastening "RCA Victor" emblem |
| 74319 | Resistor-Wire wound, 2650 ohms, 7 watts ...... R19 <br> Resistor-Fixed, composition:- | 76671 | Screw-\#6 x $1 / 2$ " cross recessed self-tapping round head screw for mounting loop |
| 514033 | 33 ohms, $\pm 20 \%$, 1 watt $\ldots$.....................R21 | 77058 | Screw-\#8-32 $\times 7 / 16^{\prime \prime}$ cross recessed pan head machine |
| 504210 | 1000 ohms, $\pm 20 \%$, $1 / 2$ watt $\ldots . . . . . . . . . . . . . . ~ R 4$ |  | screw for mounting loop |
| 503215 | 1500 ohms, $\pm 10 \%$, 1/2 watt ....................R17 | 74734 | Spring-Spring clip for knobs |
| 503218 | 1800 ohms, $\pm 10 \%$, $1 / 2$ watt ….............R6, Rl8 | 77467 | Washer-Knob washer-felt |
| 503227 | 2700 ohms, $\pm 10 \%$, 1/2 watt $\ldots$.................. R3 | 77067 | Window-Clear vinylite dial window |



| 2C511 | 2C512 | 2C513 | 2C514 |
| :---: | :---: | :---: | :---: |
| Black E Gray | Ivory | Red | Tuo Tone Gray |

PREPARED BY RCA SERVICE CO., INC.
FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## SPECIFICATIONS

| Tuning Range | 540-1600 kc |
| :---: | :---: |
| Intermediate Frequency | 455 kc |
| Tube Complement: |  |
| (1) RCA 12BE6 | Converter |
| (2) RCA 6BJ6 | I.F. Amplifier |
| (3) RCA 12AV6 | Det.-AVC-A.F. Amp. |
| (4) RCA 6AK6 | Output |
| RCA Stock No. 77292 | Rectifier |
| Power Supply Rating: |  |
| 115 volts a.c., 60 cycles | 20 watts |

CAUTION: DO NOT OPERATE ON D.C.

Loudspeaker:
Size and type
Voice Coil impedance
Power Output:
Undistorted
Maximum
Tuning Drive Ratio
Weight
Dimensions (overall):
Height....6" Width... 81/2" Depth... $41 / 2^{\prime \prime}$

## OPERATING INSTRUCTIONS

This instrument contains a timer-type electric clock mechanism which may be used to automatically acfuate the self-contained ac. radio. The radio may also be operated independently of the clock mechanism.


Clock Radio Controls

CLOCK-l. Plug instrument into 115 v. a.c. outlet. The clock will start to operate immediately. Set the correct time by turning clockwise, the "TIME" knob located at the center of the instrument back. To set the alarm, turn the "ALARM" knob clockwise until the desired time is indicated by the alarm pointer extension on the hour hand. Pull knob out for alarm buzzer operation. To turn off buzzer, push knob in.
RADIO-l. To obtain radio operation independently of the clock, push the slide switch lever at the top of the cabinet to the left "ON" position. Adjust volume and tuning control knobs as required after approximately 30 second warm-up. To increase volume turn knob clockwise as viewed from volume control side panel. Push slide switch lever to the center "OFF" position when finished listening.
2. To automatically actuate the radio by the clock mechanism, make initial volume and station settings as described in section labove. Set the "ALARM" knob to the time desired. Push slide switch lever to the right "AUTO" position. If the alarm buzzer knob is pulled out, the alarm will sound approximately ten minutes after the radio starts operating. Push alarm knob in to turn off alarm. The radio will turn itself off after a period of approximately one hour if the slide switch remains in the "AUTO" position after start of playing.
CAUTION-Keep slide switch "ON-OFF-AUTO" lever in "OFF" position when instrument is not in use. Locate instrument so that "TIME" and "ALARM" knobs have free movement.

## 2-C-51l Series

## ALIGNMENT PROCEDURE

Output Meter Alignment-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.
Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid AVC action.
On a.c operation an isolation transformer ( $115 \mathrm{v} . / 115 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also a.c. operated.

## ALIGNMENT TABULATION

| Step | Connect the high side of test-oscillator | Tune test-osc. to- | Turn radio dial to- | Adjust the following for max. output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 6BJ6 I-F grid through .01 mid. capacitor | 455 kc | Quietpoint 1600 kc end of dial | T2 (top and bottom) 2nd 1-F trans |
| 2 | Stator of Cl-A through 01 mid. |  |  |  |
| 3 | Short wire placed near loop to radiate signal | 1620 kc | Min cap. | osc. trimmer ClB-T |
| 4 |  | 1400 kc | 1400 kc signal | ant trimmer ClA-T |
| 5 |  | 600 kc | $600 \mathrm{kc}$ <br> (rock) | $\begin{aligned} & \text { (osc. coil) } \\ & \text { Slug L3 } \\ & \hline \end{aligned}$ |
| 6 |  | Repeat steps 3, 4, and 5 |  |  |

## RADIO CHASSIS AND CLOCK SERVICE

TOOL REQUIREMENTS-A small \#l size cross-head screwdriver is required for disassembly of the radio into its major cabinet and chassis components.

TUBE SERVICE-Disassembly-To make tubes accessible for testing, remove the volume and tuning control knobs by pulling off. Unscrew counterclockwise the alarm and time knobs from their shafts. Invert the cabinet and remove only the two cross-head screws along the back underside of the cabinet. Place the cabinet in its normal position. Using only firm hand pressure, press down alternately at front right and left sides of the cabinet top, midway between the "ON-OFF-AUTO" slide switch lever and the cabinet sides, torcing down and backward, to disengage the molded-in plastic catches. Then lift off the cabinet rear cover.
Assembly-To reassemble, proceed in the reverse order, sliding the cabinet rear cover into its track on the cabinet base. Lift the front corners up slightly to clear the two molded-in pads at each front corner of the cabinet base. Then press down and snap-in the upper front edge of the cabinet rear cover under the top rim of the cabinet base. Make sure the slide switch and switch lever are in corresponding center "OFF" positions. Reassemble ciock and radio knobs, and the two screws securing the cabinet rear cover.
RADIO CHASSIS SERVICE-Disassembly-To service chassis, open case as described above. In addition, remove the single cross-head screw remaining at the front underside of the cabinet and also the two cross-head screws located on the chassis near the tuning gang and the volume control. Lift out the chassis and remove the four selftapping cross-head screws holding the bottom cover to the chassis. Lift off the bottom cover.

Assembly-Reassemble in the reverse order. Secure the bottom cover to the chassis with the four self-tapping screws. Next, insert the single self-tapping screw holding the chassis to the bottom of the cabinet base. Center the chassis mounting holes so that they line up with the holes in the cabinet and replace the two ctoss-head machine screws. Tighten just sufficiently to hold the chassis firmly. Do not turn the screws to the possible limit of travel unless this is necessary to hold the chassis firmly. The average receiver may have $\alpha 1 / 32^{\prime \prime}$ clearance between the chassis
metal panel and molded plastic boss. If any of the four foam rubber cushions on the bottom cover register in the clock face after assembly, push the excess length under the " $Z$ " tabs of the bottom cover.
CLOCK SERVICE-Disassembly-To service clock, remove chassis and bottom cover as described above. In addition, remove the three screws holding the speaker to the speaker mounting bracket. Remove the two hex nuts holding the clock to the chassis pan recess. Lift the clock out. Unsolder the clock leads at the clock terminals.
Assembly-Proceed in the reverse order. Solder clock leads, and secure clock to chassis pan with two hex head nuts. Reassemble speaker to speaker mounting bracket.

## CRITICAL LEAD DRESS

1. Filament leads should be dressed away from secondary output lead, terminal \#1, of 2nd I.F. Transtormer and secondary output lead, terminal \#l, of lst I.F. transformer.
2. Connect the outside foil of capacitors as shown on schematic.
3. Dress electrolytic capacitor leads and filament transformer leads away from selenium rectifier.
4. Plate and grid leads of 12 BE 6 and 6BJ6 tubes should be kept as short and direct as possible.


Tube and Trimmer Locations

Schematic Circuit Diagram-Chassis No. KClll8

REPLACEMENT PARTS

| $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES | 77414 | Transformer-Output transformer |
|  | RC 1118-Model 2C511 RC 1118A-Model 2C512 | 77416 | Tránsformer-lst. I.F. transformer complete with adjustable cores |
|  | RC 1118B-Model 2C513 RC 1118C-Model 2C514 | 77417 | Transformer-2nd. I.F. transformer complete with |
| 77410 | Antenna-Ferrite rod antenna complete with windings ........................................Il | 77420 | adjustable cores T2 <br> Washer-Shoulder washer (nylon) for variable |
| 77408 | Capacitor-Variable tuning capacitor... ClA, ClB |  | tuning capacitor mounting (3 req'd) |
| 77471 | Capacitor-Ceramic, 4.7 mmf ............... Cll |  |  |
| 75609 | Capacitor-Ceramic, 47 mmf ................... C2 |  | 971920-1 |
| 75641 | Capacitor-Ceramic, $390 \mathrm{mmf}$. ............... Cl2 | 77428 |  |
| 75198 | Capacitor-Ceramic, $470 \mathrm{mmf.................C7}$ | 77428 | Speaker-3 P.M. speaker complete with cone voice coil ( 3.2 ohms) |
| 77427 | Capacitor-Electrolytic comprising l section of 50 mid., 150 volts and 1 section of 30 |  | MISCELLANEOUS |
|  | mfd., 150 volts <br> C5A, C5B | 77430 | Back-Polystyrene cabinet back-gray tan-for Model 2C511 |
| 77425 | Capacitor-Tubular, paper, $0015 \mathrm{mfd}, 200$ volts C9...................................... | 77505 | Back-Polystyrene cabinet back-ivory-for Model 2C512 |
| 77488 77424 | Capacitor-Tubular, paper, $.0056 \mathrm{mid} ., 400$ volts | 77507 | Back-Polystyrene cabinet back-red-for Model 2C513 |
| 77424 | Capacitor-Tubular, paper, 01 mfd ., 200 volts. . C8 Capacitor-Tubular, paper, 047 mid ., 400 volts. . C4 | 77509 | Back-Polystyrene cabinet back-gray-for Model |
| 75071 | Capacitor-Tubular, moulded, 047 mfd ., 400 volts | 77433 | Button-Slide button for function switch less clip |
| 77423 | Capacitor-Tubular, paper, 0.1 mfd., 400 volts. . C6 | 77429 | Case - Polystyrene case front - black - complete with window less back for Model 2C511 |
| 77421 | Clip-"C" clip for mounting speaker | 77504 | Case-Polystyrene case front-ivory - complete |
| 75010 | Clip-"C" clip for mounting output transformer |  | with window less b |
| 73935 | Clip-Mounting clip for I.F. transformer | 77506 | Case-Polystyrene case front-red-complete with |
| 77411 | Coil-Oscillator coil complete with adjustable core .....................................22, L3 | 77508 | window less back for Model 2C513 <br> Case - Polystyrene case front - gray - complete |
| 77409 | Control-Volume control ..................... R6 |  | with window less back for Mo |
| 70392 | Cord-Power cord and plug | 77434 | Clip-Spring clip for function |
| 77404 | Cover-Chassis bottom cov | 77431 | Dial-Dial knob-gray tan-i |
| 77419 | Cushion-Foam rubber cushion for speaker rim or bottom cover | 77498 77499 | Dial-Dial knob-ivory-for Model 2C512 Dial-Dial knob-red-for Model 2C513 |
| 74838 | Grommet-Power cord strain relief (l set) | 77500 | Dial-Dial knob-gray-for Model 2C514 |
| 77418 | Grommet-Rubber grommet for mounting ferrite rod antenna | 77432 | Knob-Volume control knob-gray tan-for Model 2 C 511 |
| 77405 | Insulator-Bakelite insulator for variable tuning capacitor | 77501 | Knob-Volume control knob-ivory-ior Model 2C512 |
| 77406 | Insulator-Ferrite rod antenna mounting insulator -L.H. | 77502 | Knob-Volume control knob-red-for Model 2C513 |
| 77407 | Insulator-Ferrite rod antenna mounting insulator -R.H. | 77503 | Knob--Volume control knob-gray-for Model 2C514 |
| 77292 | Rectifier-Selenium rectifier | $77412$ $77437$ | Knob-Timer knob <br> Screw-\#6 $\times 5 / 6$ "c cross recessed truss head tapping |
| 503022 | Resistor-Fixed, composition:22 ohms, $\pm 10 \%$, $1 / 2$ watt ........................... R2 | $77437$ | Screw-\#6 $\times 5 / 10$ " cross recessed truss head tapping screw for mounting chassis |
| 503110 | 100 ohms, $\pm 10 \%$, $1 / 2$ watt. ......................R11 | 77436 | Screw-\#6-32 x $3 / 16^{\prime \prime}$ cross recessed truss head |
| 503139 | 390 ohms, $\pm 10 \%$. $1 / 2$ watt ................... R10 | 77435 | Screw-\#6-32 x $5 / 10$ " cross recessed truss head |
| 532215 | 1500 ohms, $\pm 10 \%$, 2 watts.................... R3 |  | machine screw for fastening case assembly |
| 503333 503347 | 33,000 ohms, $\pm 10 \%$, $1 / 2$ watt ..................R1 47,000 ohms, $\pm 10 \%, 1 / 2$ watt. ...............R5 | 74734 | Spring-Spring clip for dial knob or volume control |
| 503433 | 330,000 ohms, $\pm 10 \%$, $1 / 2$ watt. .............. R8 | 77467 |  |
| 503482 | 820,000 ohms, $\pm 10 \%$, 1/2 watt . . . . . . . . . . . . . R9 |  | CLOCK ASSEMBLY |
| 503533 | 3.3 megohm, $\pm 10 \%$, $1 / 2$ watt ..................R4 |  |  |
| 503547 | 4.7 megohm, $\pm 10 \%$, $1 / 2$ watt . . . . . . . . . . . . . . . .R7 |  | sary, remove the clock from the radio. The RCA |
| 75780 | Socket-Tube socket, 7 pin. miniature, saddle mounted |  | Victor Distributor in your area will advise you of the address of the nearest authorized service |
| 77415 | Switch-Function switch ................... Sl |  | station for clock mechanisms. Repair facilities |
| 77413 | Transformer-Filament transiormer 117 volts A.C. input |  | and replacement parts are available at these authorized service stations. |



| 2C521 | 2C522 | 2C527 |
| :---: | :---: | :---: |
| Maroon | Ivory | White |

rca Victor

A-C Operated Clock Radio Receiver 2-C-521 SERIES
Chassis Nos. RC-1120, RC-1120A, RC-1120B, RC-1120C, RC-1120D, RC-1120E Service Data

- 1952 No. 10 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION

CAMDEN, N. J., U. S. A.

## Specifications

| Tuning Range . . . . . . . . . . . . . . . . . . . . . . . . . 540-1600 kc |  |
| :---: | :---: |
| Intermediate Frequency ........................... . 455 kc |  |
| Tube Complement: |  |
| (1) RCA 12BE6 | Converter |
| (2) RCA 12BA6 | I.F. Amplifier |
| (3) RCA l2AV6 | Det.-AVC-A.F. Amp. |
| (4) RCA 50C5 | Output |
| (5) RCA 35W4 | Rectifier |
| Power Supply Rating: |  |
| 115 volts a.c., 60 cycles | . 30 watts |
| CAUTION:-DO | E ON D.C. |

Appliance Rating
115 volts, 15 a.

Loudspeaker:
Size and type
Voice Coil impedance ......... 3.2 ohms at 400 cycles
Power Output:
Undistorted ...................................... 1.2 watts
Maximum ............................................ 1.6 watts

Tuning Drive Ratio 10 to ( 5 turns of knob)
Weight
10 to 1 ( 5 turns of knob)

Cabinet Dimensions:
Height... $6^{1 / 8^{\prime \prime}}$ Width . . $113 / 4^{\prime \prime}$ Depth. . $5 \frac{1}{2} 2^{\prime \prime}$

## Operating Instructions

This instrument can be used in any one of several ways. It may be used as a clock with alarm alone, radio, phonograph amplifier, or clock-controlled radio or appliance outlet. Instructions for the various uses follow:

Clock-Plug instrument into a.c. outlet. The clock will start to operate immediately. Set the correct time with the "TIME-SET" knob on the back panel of the instrument. To set the alarm, pull out the "ALARM" knob and turn coun-ter-clockwise until the desired time is indicated by the alarm pointer. Leave knob out for alarm buzzer operation. Push knob in to turn off buzzer.

Radio-1. Push "RADIO" slide switch lever to the right, as view,ed from the back. Turn "RADIO" knob on clock from "OFF" to "ON" position. Adjust volume and tuning knobs as required after 30 second warm-up. Turn clock "RADIO" knob to "OFF" position when finished listening.
2. To have radio turn itself off after a period of up to 60 minutes, set "SLEEP" knob to desired playing time. Turn clock "RADIO" knob "OFF."
3. To have radio turn itself on, turn tuning and volume knobs to desired position, and then set the alarm as explained above. Turn clock "RADIO" knob to "AUTO" position.
4. To have the radio turn itself off during any time within a 60 minute period and then turn itself on, after an off period of up to twelve hours, set the "SLEEP" and "ALARM"
knobs, and volume and tuning controls as explained previously. Turn clock "RADIO" knob to "AUTO" position.
Appliances-1. To use appliance outlet, plug appliance into rear receptacle, and turn clock "RADIO" knob to "ON" pasition. If operation of the radio is not desired at the same time, push radio slide-switch lever on the back panel to the off position (lever pushed to the left).
2. To start appliance automatically, proceed as above, except that the "ALARM" knob should be set to the desired starting time, and the clock "RADIO" knob set to the "AUTO" position. To turn off appliance, turn clock "RADIO" knob to "OFF" position, or remove appliance plug if radio operation is desired.
3. To operate appliance for any time within a 60 minute period, have appliance plugged in, with clock "RADIO" knob turned to "OFF" position. Set "SLEEP" knob for desired operating period. Appliance will be turned off automatically at the end of this period.
Phonograph-l. Make sure radio slide switch is on (lever pushed to the right). Plug phonograph attachment audio plug into jack provided. Turn clock "RADIO" knob to "ON" position. If a spare a.c. receptacle is not available for the record changer, the appliance outlet may be used to provide power.

CAUTION:-Keep clock "RADIO" knob "OFF" when instrument is not in use.


Dial Cord Drive- Chassis RC-1120D, E

## Alignment Procedure

| Step | Connect the high side of test-oscillator to- | Tune test-osc. to- | Turn radio dial to- | Adjust the following for max. output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 12BA6 I-F grid through .l mid, capacitor | 455 kc . | Quietpoint <br> 1600 kc end of dial | T2 (top and bottom) 2nd I-F trans. |
| 2 | Stator of Cl-B through .1 mfd . |  |  | Tl (top and bottom) lst I-F trons. |
| 3 | Short wire placed near loop to radiate signal | 1620 kc | Min. cap. | osc. trimmer |
| 4 |  | 1400 kc | 1400 kc signal | ant. trimmer |
| * 5 |  | 600 kc | 600 kc signal | $\begin{gathered} \text { osc. coil } \\ \text { L1, L2 } \\ \text { (rock gang) } \end{gathered}$ |
| 6 |  | Repeat steps 3, 4, and 5. |  |  |

*Necessary only on receivers having RC-1120D, E chassis.
Test-Oscillator-For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the oscillator output as low as possible to avoid a-v-c action.
On a.c. operation an isolation transformer ( $115 \mathrm{v} . / 115 \mathrm{v}$.) may be necessary for the receiver if the test oscillator is also a.c. operated.



## REPLACEMENT PARTS

| $\begin{aligned} & \text { STOCR } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES | 77903 | Transformer-Output transformer (RC-1120B, |
|  | RC-1120, RC-1120B-Model 2-C-521 <br> RC-1120A, RC-1120C-Models 2-C-522, 2-C-527 | 33726 | Washer-"C" washer for tuning knob shaft |
| 77357 | Capacitor-Variable tuning capacitor complete with drive drum ....ClA, ClA-T, ClB |  | SPEAKER ASSEMBLIES <br> B12A512 RL108E7 |
| 77364 | Capacitor-Ceramic, 6 mmf. ................. Cl3 $^{\text {a }}$ |  |  |
| 76348 |  | 77226 | Speaker-4" P.M. speaker complete with cone and |
| 77116 | Capacitor-Ceramic, 56 mmf . ................ C 3 |  | voice coil (3.2 ohms) |
| 73520 | Capacitor-Electrolytic comprising l section of $80 \mathrm{mid} ., 150$ volts and 1 section of 50 mld ., |  | Miscellaneous |
| 73561 | 150 volts, <br> C18A, C18B <br> Capacitor-Tubular, paper, 01 mld .400 volts. Cl5 | 77367 | Antenna-Antenna loop complete with back cover |
| 73554 | Capacitor-Tubular, paper, .027 mfd .400 volts . . Cl 0 |  | -maroon-for Model 2C521 (RC-1120, RC-1120A) |
| 73553 | Capacitor-Tubular, paper, 047 mfd ., 400 volts | 77904 | Includes C2 <br> Antenna-Antenna loop complete with back cover |
| $\begin{aligned} & 73551 \\ & 73935 \end{aligned}$ | Capacitor-Tubular, paper, 0.1 mfd ., 400 volts. . Cl 6 Clip-Mounting clip for I.F. transformer | 77368 | -maroon-for Model 2C521 (RC-1120B, C, D, E) Antenna-Antenna loop complete with back cover |
| 77356 | Coil-Oscillator coil ....................... L1, L2 |  | -ivory-for Models 2C522, and 2C527 (RC-1120, RC-1120A) |
| 78586 | Coil-Oscillator coil complete with adjustable core (L1, L2) RC-1120D, E only | 77905 | Antenna-Antenna loop complete with back cover —ivory-for Models 2C522, 2C527 (RC-1120B, |
| 52131 | Connector-2 contact female connector for appliance outlet (RC-1120, RC-1120A, D, E) | 77367 | C, D, E) <br> Back-Cabinet back-maroon-and antenna loop |
| 77901 | Connector-2 contact female connector for appliance outlet (RC-1120B, RC-1120C) |  | for Model 2C521 (RC-1120, RC-1120A), <br> Includes C2 |
| 77359 | Control-Volume control .....................R8 | 77904 | Back-Cabinet back complete with antenna loop- |
| $\begin{aligned} & 72953 \\ & 70392 \end{aligned}$ | Cord-250' Drive Cord Reel (approx. $26^{\prime \prime \prime}$ required) Cord-Power cord and plug | 77368 | maroon-for Model 2C51 (RC-1120B, C, D, E) |
| 28451 | Cover-Insulating cover for electrolytic |  | Models 2C522 and 2C527 (RC-1120, RC-1120A), |
| 77360 | Grommet-Rubber grommet for mounting tuning capacitor | 77905 | Back-Cabinet back complete with antenna loop- |
| 73693 | Grommet-Power cord strain relief ( 1 set ) |  | ivory-for Models 2C522, 2 C 527 (RC-1120B, C, D, E) |
| 77355 | Plate-Dial back plate complete with pointed escutcheon (RC-1120, RC-1120A) | X3304 | Baffle-Baffle board and grille cloth for Model 2C521 |
| 77900 | Plate-Dial back plate (RC-1120B, RC-1120C) | X3305 | Baffle-Baffle board and grille cloth for Models 2 C 522 and 2C527 |
| 77354 | Pointer-Station selector pointer | Y2463 |  |
| $\begin{aligned} & 77365 \\ & 77363 \end{aligned}$ | Printed Circuit . PCl (C9A, C9B, C9C, R4A, R4B) Pulley-Drive cord idler pulley | Y2463 | Cabinet-Plastic cabinet-maroon-complete with crystals (2) for Model 2C521 |
|  | Pulley-Drive cord $\begin{aligned} & \text { Resistor-Fixed, composition:- } \\ & 33 \text { ohms, } \pm 10 \% \text {, } 1 \text { watt }\end{aligned}$. | Y2464 | Cabinet-Plastic cabinet-ivory-complete with crystals for Model 2C522 |
| 503110 | 100 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}$ watt . . . . . . . . . . . . . . . . . . . . . .R2 2 | Y2465 | Cabinet-Plastic cabinet-white-complete with |
| 503115 | 150 ohms, $\pm 10 \%$, $1 / 2$ watt ...................R5 |  | crystals for Model 2C527 |
| 513212 | 1200 ohms, $\pm 10 \%$, 1 watt ……...............R6 | 77372 | Clip-Spring clip for mounting timer assembly |
| 503339 |  |  | (5 req'd) <br> Emblem-"RCA Victor" emblem |
| 503347 | 47,000 ohms, $\pm 10 \%$, $1 / 2$ watt $\ldots \ldots \ldots \ldots$. R3 | $\begin{aligned} & 77033 \\ & 77369 \end{aligned}$ | Emblem-"RCA Victor" emblem <br> Knob-Timer control knob-maroon-for Model |
| 503422 |  |  | Knob-Timer control knob-maroon-ior Model 2 C 51 |
| 503610 | 10 megohm, $\pm 10 \%$, $1 / 2$ watt ......................R9 | 77370 | Knob-Timer control knob-ivory-for Model 2C522 |
| 77358 | Shaft-Tuning knob shaft (RC-1120, RC-1120A) | 77371 | Knob-Timer control knob-white-for Model 2C527 |
| 77909 | Shaft-Tuning knob shaft (RC-1120B, C, D, E) | 77373 | Knob-Tuning control or volume control knob |
| 76870 | Shield-Tube shield |  | Knob-Tuning control or volume control knob |
| 77115 51955 | Socket-Tube socket, 7 pin, miniature, moulded Socket-Tube socket, 7 pin, miniature, moulded, saddle-mounted | 77374 77375 | Knob-Tuning control or volume control knob ivory-for Model 2C522 <br> Knob-Tuning control or volume control knob |
| 75780 | Socket-Tube, 7 pin min., molded, saddle-mounted, for V1, V4, V5 (RC-1120D, E only) | 77013 | white-for Model 2C527 <br> Nut-Speed nut to fasten "RCA Victor" emblem to |
| 77306 | Socket-Tube, 7 pin min., molded, saddle-mounted, for V2, V3 (RC-1120D, E only) | 77491 | Window-Polystyrene window for radio or timer dials |
| 77902 | Spring-Drive cord spring (RC-Drive cord spring (RC-1120B, RC-1120C) |  |  |
| 31418 | Spring-Drive cord spring (RC-1120D, RC-1120E) |  | CLOCK ASSEMBLY |
| 32875 | Switch-Radio power switch ............... Sl |  | Clock-If clock mechanism repair becomes neces- |
| 75486 | Transformer-First I.F. transformer, complete with adjustable cores ................T1, C4, C5 |  | sary, remove the clock from the radio. The RCA Victor Distributor in your area will advise you |
| 75487 | Transformer-Second I.F. transformer, complete with adjustable cores ............T2, C6, C7, C8 |  | of the address of the nearest authorized service station for clock mechanisms. Repair facilities |
| 77362 | Transformer-Output transformer (RC-1120, RC-1120A) |  | and replacement parts are available at these authorized service stations. |

Dimensions (overall)

## Model 2 ES 3

Model 2 ES 38

## Weight

| Model 2 ES 3 | 5 lbs. |
| :---: | :---: |
| Model 2 ES 38 | 4 lbs . |

## Record Changer (930409-5)

Turntable speed
Record capacity or twelve to 10 inch.
or ten 12 inch.
or ten 10 in . and 12 in . intermixed.
Pickup (Stock No. 75475). Crystal with replaceable styli.
REPLACEMENT PARTS

| $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 75980 | AMPLIFIER ASSEMBLIES <br> RS 142 <br> Capacitor-Electrolytic comprising l section of 50 mfd., 150 volts and 1 section of 80 mid., 150 volts |  | Note: If stamping on speaker in instruments does not agree with above speaker number, order replacement parts by referring to model number of instrument, number stamped on speaker and full description of part required. |
| 73595 73920 | Capacitor-Tubular, paper, 0022 mfd ., 600 volts. C4 Capacitor-Tubular, paper, .0047 mid., 600 volts. . C 3 |  | MISCELLANEOUS FOR MODEL 2ES3 |
| 73561 | Capacitor-Tubular, paper, 01 mid., 400 volts. C2, C7 | X1756 | Cloth-Grille cloth |
| 73554 | Capcitor-Tubular, paper, .027 mid ., 400 volts. C6 | 77139 | Knob-Centrol Knob |
| 73553 75562 | Capacitor-Tubular, paper, $047 \mathrm{mfd} ., 400$ volts . . Cl, | 76895 | Foot-Rubber foot (4 required) <br> Nut-Speed nut for No. 8 screw for speaker bracket |
| 76885 | Control-Volume control ............................. |  | mounting screws |
| 70392 | Cord-Power cord and plug | 76887 | Screv-No. $10-32 \times 11 / 2^{\prime \prime}$ round head cross recessed |
| 73693 74838 | Grommet-Output transformer leads strain relief (1 set) <br> Grommet-Power cord strain relief (1 set) | 74734 | machine screw complete with fibre washer and No. <br> 10-32 hex nut for mounting changer ( 2 required) <br> Spring-Spring clip for knobs |
| 72314 | Resistor-Wire wound, 120 ohms, 5 watts ..... Rl0 Resistors-Fixed, composition: |  | MISCELLANEOUS FOR MODEL 2ES38 |
| 514033 |  | 77128 | Button-Plug button and ventilating screen (3 required) |
| 503115 503215 |  | 76890 | Catch-Cabinet catch and lock (2 required) |
| 503410 |  | 74809 | Emblem-"RCA Victor" emblem |
| 503427 | 270,000 ohms, $\pm 10 \%$, $1 / 2$ watt $\ldots$..............RS, R6, R12 | 77126 | Escutcheon-Knob well escutcheon |
| 503518 504547 | 1.8 megohm, $\pm 10 \%, ~ 1 / 2 ~ w a t t ~$ 4.7 megohm, $\pm 20 \%, ~ 1 / 2 ~ w a t t ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ R3 | 77059 | Fastener-No. $2 \times 11 / 16^{\prime \prime}$ wood screw and stud for fastening pickup arm hold-down strap |
| 70827 | Socket-Tube socket, octal, wafer, for 12 SQ 7 and 50L6GT tubes | 76891 76555 | Foot-Cabinet foot and glide ( 8 required) <br> Handle-Carrying handle only |
| 73117 | Socket-Tube socket, 7 pin, miniature, wafer for 35W4 tube | 765889 | Hinge-Cabinet lid hinge ( 2 required) |
| 75939 | Transformer-Output transformer SPEAKER ASSEMBLIES FOR MODEL 2ES3 922258-6 W RL 100 C 7 | $\begin{aligned} & 75945 \\ & 76520 \\ & 76894 \\ & 73634 \end{aligned}$ | Knob-Control knob-maroon <br> Loop-Carrying handle loop and plate (2 required) <br> Nut-No. $10-32$ spring nut for changer mounting stud <br> Nut-Speednut for speaker mounting screws (4 required) |
| 76886 | Speaker-4" x 6"' P.M. speaker complete with cone and voice coil ( 3.2 ohms ) <br> SPEAKER ASSEMBLIES FOR MODEL 2ES38 92586-4 W <br> RL 105 C 4 | $\begin{aligned} & 77127 \\ & 75902 \\ & 14270 \\ & 76892 \end{aligned}$ | Plate-Background plate (perforated) for knobs <br> Spring-Cable suspension spring (coil) <br> Spring-Retaining spring for knob <br> Strap-Hold down strap for pickup arm |
| $\begin{aligned} & 75024 \\ & 74664 \end{aligned}$ | Cone-Cone and voice coil ( 3.2 ohms ) Speaker-8" P.M. speaker complete with cone and voice coil ( 3.2 ohms ) | 76893 77125 | Stud-No. $10-32 \times 13 /{ }^{\prime \prime}$ special stud for mounting changer (2 required) <br> Support-Lid support |

2 ES 3, 2 ES 38


## Schematic Diagram



## CRITICAL LEAD DRESS

1. Dress $R_{3}$ down next to chassis.
2. Dress all leads away from $\mathrm{R}_{9}$ and $\mathrm{R}_{10}$.
3. Dress power cord and other A.C. leads down next to chassis.
4. Connect $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ with short leads.
5. Dress electrolytic capacitor leads away from audio input circuit.

## FOR RECORD CHANGER SERVICE INFORMATION REFER TO 930409 SERIES SERVICE DATA

Amplifier Top View

## CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete cutomatic operation. The mechanism will shut off cufomatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three positions; " 33 ", " 45 ", " 78 "", to select the turntable speed desired.

The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $331 / 3$ or 45 r.p.m. records the lever is turned so that " $33-45$ " is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.
The removable centerpost is for use with 45 r.p.m. records having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard



# Chassis No. RS-142 <br> Record Changer 930409-5 <br> Service Data 

- 1952 No. 7 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## SPECIFICATIONS

Tube Complement

| 1. RCA 12SQ7 | A.F. Amplifier |
| :---: | :---: |
| 2. RCA 50L6-GT | Output |
| 3. RCA 35 W 4 | ectifier |

Power Supply Rating
115 volts, 60 cycles A.C.
50 watts

## Loudspeaker

Size and type
Voice coil impedance

4" x 6" PM
3.2 ohms at 400 cycles

## Power Output

Undistorted .... 1.2 watts Maximum .... 1.5 watts

Dimensions (overall)
Height $103 / 4^{\prime \prime}$
Width $137 / \mathrm{g}^{\prime \prime}$
Depth $131 / 2^{\prime \prime}$
Weight
Net weight
15 lbs.
Record Changer (930409-5)

Turntable speed
Record capacity
$33^{1 / 3}, 45$ or 78 r.p.m. Up to fourteen 7 inch RCA type or twelve 10 inch. or ten 12 inch. or ten 10 in . and 12 in . intermixed.

Pickup (Stock No. 75475). Crystal with replaceable styli.

REPLACEMENT PARTS

| $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION | $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | AMPLIFIER ASSEMBLIES RS 142 | 73117 | Socket-Tube socket, 7 pin, miniature, wafer for 35W 4 tube |
| 75980 | Capacitor-Electrolytic comprising 1 section of 50 mfd ., 150 volts and 1 section of 80 mfd ., 150 volts | 75939 | Transformer-Output transformer ........... Tl SPEAKER ASSEMBLY |
| 73595 | Capacitor-Tubular, paper, $0022 \mathrm{mfd}$. , 600 volts . . 44 4, C8B |  | 922258-6 W RL $100 \mathrm{C7}$ |
| 73920 | Capacitor-Tubular, paper, $\mathrm{Capacitor-Tubular} 0047 \mathrm{mfd} .$,.600 volts. . C3 | 76886 | Speaker-4" ${ }^{\prime \prime}$ 6'" P.M. speaker complete with $^{\prime \prime}$ |
| 73554 | Capacitor-Tubular, paper, 01 mfd ., 400 volts..C2, C7 |  | cone and voice coil ( 3.2 ohms) |
| 73553 | Capacitor-Tubular, paper, $.047 \mathrm{mfd} ., 400$ volts. 4 Cl, C5 |  | Nole: If stamping on speaker in instruments does not |
| 75562 76885 | Control-Tone control Contral-Volume control |  | agree with above speaker number, order replacement parts by referring to model number of instrument num- |
| 70392 | Cord-Power cord and plug |  | ber stamped on speaker and full description of part |
| 73693 | Grommet-Output transformer leads strain relief (1 set) |  | required. |
| 74838 | Grommet-Power cord strain relief (l set) |  | MISCELLANEOUS |
| 72314 | Resistor-Wire wound, 120 ohms, 5 watts .....Rlo | Y2400 | Cabinet-Plastic cabinet-maroon |
| 514033 |  | X1756 76888 | Cloth-Grille cloth Cover-Cabinet bottom cover less rubber teet |
| 503115 | 150 ohms, $\pm 10 \%$, $1 / 2$ watt . . . . . . . . . . . . . . . . . . . . . .R7 | 76787 | Cover-Cabinet bottom cover less rubber feet Foot-Rubber foot (4 req'd) |
| 503215 |  | 77139 | Knob-Control knob |
| 503410 |  | 73634 | Nut-Speed nut for \#8 screw for speaker bracket mount- |
| 503427 503518 |  |  | ing screws |
| 504547 |  | 76894 | Nut-\#10-32 spring nut for changer mounting stud |
| 70827 | Socket-Tube socket, octal, wafer, for 12SQ7 and 50L6GT tubes | 76893 | Stud-\#10-32 $\times 1^{13 / 4}$ " special stud for mounting changer ( 2 req'd) |



## Schematic Diagram



## CRITICAL LEAD DRESS

1. Dress $R_{3}$ down next to chassis.
2. Dress all leads away from $R_{9}$ and $R_{10}$
3. Dress power cord and other A.C. leads down next to chassis.
4. Connect $C_{2}$ and $C_{4}$ with short leads.
5. Dress electrolytic capacitor leads awory from audio input circuit.

## FOR RECORD CHANGER SERVICE INFORMATION REFER TO 930409 SERIES SERVICE DATA

Amplifier Top View

## CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).
The outer control (double ended lever) is the speed control. It has three positions; " 33 ", " 45 ", " 78 ", to select the turntable speed desired.

The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $33^{1 / 3}$ or 45 r.p.m. records the lever is turned so that " $33-45$ " is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.

The removable centerpost is for use with $45 \mathrm{r}: \mathrm{p} . \mathrm{m}$. records having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.


Record Changer Controls

## rca Victor

SPECIFICATIONS
Record Changer (930409-5)

Turntable speed Record capacity

Up $33^{1 / 3}, 45$ or 78 r.p.m
Up to fourteen 7 inch RCA type or twelve 10 inch.
or ten 12 inch.
or ten 10 in . and 12 in . intermixed.
Pickup (Stock No. 75475) . . Crystal with replaceable styli.

## Power Supply Rating

115 volts, 60 cycles A.C.
15 watts

## Dimensions (overall)

Height $83 / 8^{\prime \prime} \quad$ Width $131 / 2^{\prime \prime}$
Depth 131/4"

FOR RECORD CHANGER SERVICE INFORMATIONREFER TO 930409 SERIES SERVICE DATA



## Schematic Diagram

## CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three positions; " 33 ", " 45 ", " 78 ", to select the turntable speed desired.
The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $331 / 3$ or $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. records the lever is turned so that " $33-45$ " is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.

The removable centerpost is for use with 45 r.p.m. records having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.

## REPLACEMENT PARTS

| STOCK <br> No. | DESCRIPTION |
| :---: | :--- |
| 70392 | Cord-Power cord and plug |
| 77192 | Foot-Rubber foot (4 required) |
| 31048 | Plug-Pin plug for audio output cable |

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS.

## Connecting Record Changer Attachment to Radio or Television Receivers

In general, the Record Changer Attachment must be used with receivers having at least two stages of high-gain audio amplification. The output of the Record Changer Attachment should be connected to the input of the first audio tube, and at the same time the output of the detector portion of the receiver should be shorted or opened, to prevent radio signals being heard while the Record Changer Attachment is in operation.

RCA Radios or Television Receivers with Phono Jack
Plug male connector on the end of the "Phono" lead into the female connector on the receiver chassis. If set is provided with a phono switch, push or turn the "Phono" switch to "Phono"" position, and operate the Record Changer Attachment according to instructions. If no switch is provided, use minimum setting of receiver volume control which will give acceptable volume, and tune receiver off frequency from any very strong station. In some instances the radio volume control will have the effect of a tone control.

## Radios Without Phono Jack

Methods of connecting the Record Changer Attachment to various types of audio systems are given in the accompanying text and illustrations. The data given requires that an RCA Type No. 240XI (Formerly Stock No. 240) Radio-Phono switch be used for switching from radio to phonograph, as desired. For ease in connecting the "Phono" lead to the switch, the male plug on the end of the lead matches the phono jack on the switch.
Note:
If connected to a radio or television receiver as shown in Figures A or B, it will probably be necessary to add a volume control ( 1 to 2 megohm) to the Record Changer Attachment, since most receivers do not have a volume control following the first audio tube.

## Installation of Switch

Fasten the bracket to the cabinet in such a position that the switch may be easily reached. For wooden cabinets, a suggested place is the upper rear edge of the cabinet. If the radio has a plastic cabinet, the bracket may be fastened to the chassis by self-tapping screws or soldering. In the case of a.c.-d.c. sets, the bracket should not be fastened to the chassis. In such cases, a wooden block may be fastened to the chassis and the bracket screwed to the wooden block, care being exercised that there is no metallic path from the bracket to the chassis.


Connect the braided shield extension to the radio chassis by either soldering or placing the spade lug under a mounting screw.

On a.c.-d.c. sets it is necessary to isolate the cable shield from the chassis. This is best done by connecting the shield to the chassis through a .1 mf .400 -volt condenser. Care should be taken that the shield braiding and switch bracket do not come in contact with the chassis.
If the common-negative wiring in the a.c.-d.c. set is isolated from the set chassis, connect the cable shield, through a 1 mfd. capacitor, to the common-negative wiring, and not to the chassis.


For receivers in which the lst-audio tube has a top grid cap-see Fig. A.

1. Disconnect the grid lead from the first audio tube.
2. Connect the cap on the black lead to the clip on the grid lead, as shown above.
3. Connect the clip on the black-brown lead to the grid cap at the top of the lst-audio tube, bending the terminal if necessary to proper size for a metal tube cap.
4. Insert the plug on the end of the record player lead into the jack on the bracket.
5. Secure or position the connection cable assembly so that the cap and clip terminals are well separated from each other and other metal parts.
For receivers in which the 1st-audio tube is type 6SQI, 6SR7, 12SO7 or 12SR7-see Fig. B:
6. Use adaptor plug RCA Stock No. 37798.
7. Remove the lst-audio tube,
8. Solder the switch leads to the adaptor plug terminalsblack to bottom lug-black-brown to top lug.
9. Tape terminals to prevent short circuits when installed in set.
10. Insent the adaptor into the lst-audio tube socket.
11. Insert the lst-audio tube into the adaptor.
12. Insert the plug on the end of the record player lead into the jack on the bracket.


For other radio receivers in which the lst-audio tube does not have a grid cap; connection to volume control input-see Fig. C:

1. Unsolder the lead from the volume control lug indicated in Fig. C. It is usually necessary to remove the chassis from the cabinet to do this.
2. Solder the black-brown lead (remove clip) to the lug or pin disconnected in Step 1.
3. Solder the black lead (remove plug) to the lead disconnected in Step 1. Tape the joint to prevent short circuits.
4. Insert the plug on the end of the record player lead into the jack on the bracket.

## Radio-Phonograph Combinations

## RCA Type 202-W-1 Record Player Selector Switch may be

 used to select the output of two record changers for connection to one phono input jack. A choice of two types of input jacks and output cable plugs are provided.Most radio-phonograph combinations use resistors and/or capacitors in their phono input circuit for tone compensation purposes. This may result in unsatisfactory reproduction from Model 2JS 1 when connected to the phono jack of such instruments. In such cases it is suggested that Model 2JS1 be connected as indicated tor instruments not having a phono jack.

A-C Operated Radio Receiver


Models $2-\mathrm{R}-51,2-\mathrm{R}-52$,
$2-\mathrm{R}-5 \mathrm{~A}$,
$2-\mathrm{R}-52 \mathrm{~A}$
Chassis No. RC-1119
Service Data

- 1952 No. 13 -

PREPARED BY RCA SERVICE CO., INC.
FOR
RADIO CORPORATION OF AMERICA
rCA VICTOR division
CAMDEN, N. J., U. S. A.

## SPECIFICATIONS



| Loudspeaker: |  |  |
| :---: | :---: | :---: |
| Size and type ..................... $4 \times 6 \mathrm{in}. \mathrm{P.M}$. |  |  |
| Voice Coil impedance ..........3.2 ohms at 400 cycles |  |  |
| Power Output: |  |  |
| Undistorted |  | 0.30 watts |
| Maximum |  | 0.45 watts |
| Tuning Drive Ratio ................. 1 to 1 (Direct Drive) |  |  |
| Weight |  |  |
| Cabinet Dimensions: |  |  |
| Height . . $55 / 8^{\prime \prime}$ | Width . . $83 / 8^{\prime \prime}$ | Depth... $35 /{ }^{\prime \prime}$ |



[^1]VOLTAGES MEASUREDTO COMMON
 , $K=1000$
ALL CAPAC.TAMCE VALESE LESS TMAN 1.0
EXCEPT ME'IADICETEO. ARE NW MMF.

Top View


## CRITICAL LEAD DRESS

1. Oscillator coil should be centered in space provided and have at least $1 / 4$ inch between winding and chassis.
2. The filament wiring should be dressed down on chassis and away from audio leads and audio coupling condensers.
3. The I.F. plate and grid leads, including the 2nd I.F. diode lead should be as short as practical.

REPLACEMENT PARTS

| $\begin{aligned} & \text { STOCR } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES | 503547 | 4.7 megohm, $\pm 10 \%$, $1 / 2$ watt .......................... R7 |
|  | RC 1119 | 76723 | Socket-Lamp socket |
|  |  | 75780 | Socket-Tube socket, 7 pin, miniature saddle-mounted |
| 77438 | Antenna-Ferrite rod antenna complete with windings....L1 | 77441 | Transformer-Filament transformer 117 volts AC |
| 77440 | Capacitor-Variable tuning capacitor ........... ClA, C1B | 77445 | Transformer-Output transformer |
| 77471 | Capacitor-Ceramic, 4.7 mmf .......................... Cl3 | 77416 | Transformer-1st I.F. transformer complete with adjustable |
| 75609 | Capacitor-Ceramic, 47 mmf . ..................... C2 |  | cores $\mathrm{Tl}$ |
| 76347 | Capacitor-Ceramic, 120 mmf . ......................... C12 | 77417 | Transtormer-2nd I.F. transformer complete with adjustable |
| 75611 | Capacitor-Ceramic, $220 \mathrm{mmf}$. . . . . . . . . . . . . . . 7 |  | cores ......................................... ${ }^{\text {a }}$ |
| 77443 | Capacitor-Electrolytic comprising 1 section of 50 mfd ., 150 volts and 1 section of 30 mfd ., 150 volts. | 77420 | Washer-Shoulder washer (nylon) for mounting variable tuning capacitor |
| 77446 | Capacitor-Tubular, paper, 0022 mid., 400 volts ........ C9 |  |  |
| 77447 | Capacitor-Tubular, paper, . 0033 mld , 400 volts. ....... Cl0 |  | SPEAKER ASSEMBLIES |
| 77424 | Capacitor-Tubular, paper, 01 mid., 200 volts........ C8 |  | 922258-7 |
| 77448 | Capacitor-Tubular, paper, $027 \mathrm{mid}, 200$ volts $\ldots . . . \mathrm{Cll}$ | 77451 |  |
| 77422 | Capacitor-Tubular, paper, 047 mid., 400 volts .........C4 Capacitor-Tubular, moulded paper, $.047 \mathrm{mid}, 400$ volts . C3 |  | coil ( 3.2 ohms) |
| 77423 | Capacitor-Tubular, paper, 0.1 mfd ., 400 volts .......... C6 |  |  |
| 73935 | Clip-Mounting clip for I.F. transformer |  | Case-Polystyrene case-black $\delta$ beige-complete with |
| 77450 | Coil-Oscillator coil ...........................2, L3 | 77457 |  |
| 77442 | Control-Volume control and power switch ....... R6, S1 |  | speaker baffle and screen assemblies less bottom cover for Model 2R5 |
| 70392 | Cord-Power cord and plug Cover-Insulating cover for chassis | 77465 | Case-Polystyrene case-tan \&ivory-complete with speaker |
| 74838 | Grommet-Power cord strain relief (1 set) |  | baffle and screen assemblies less bottom cover for Model 2R52 |
| 77405 | Insulator-Bakelite insulator for variable tuning capacitor | 77456 | Clip-Spring clip to mount station selector pointer |
| 77444 | Nut-Speed nut for oulput transformer mounting screws | 77458 | Cover-Bottom cover-beige-lor Model 2R51 |
| 28452 | Plate-Bakelite mounting plate for electrolytrc | 77466 | Cover-Bottom cover-ivory-ior Model 2R52 |
| 77292 | Rectifier-Selenium rectifier ....................... | 77453 | Dial-Dial knob-black \& gold-for Model 2R51 |
| 77571 | Resistor-Wire wound, fuse type, 22 ohms, 0.4 amps ...... R2 | 77464 | Dial-Dial knob-tan \& gold-for Model 2R52 |
| 503110 | Resistor-Fixed, composition:- <br> 100 ohms, $\pm 10 \%, 1 / 2$ watt | 77452 | Knob-Volume control and power switch knob-black \& gold - for Model 2R5 |
| 503147 | 470 ohms, $\pm 10 \%$, $1 / 2$ watt ........................ R10 | 77463 | Knob-Volume control and power switch knob-tan \& gold- |
| 523215 | 1500 ohms, $\pm 10 \%$. 2 watts ....................... R3 |  | for Model 2R52 |
| 503268 | 6800 ohms, $\pm 10 \%$, $1 / 2$ watt ....................... Rl2 | 11765 | Lamp-Pilot lamp-Mazaja 51 |
| 503333 | 33,000 ohms, $\pm 10 \%$, $1 / 2$ watt ....................... | 77455 | Pointer-Station selector pointer |
| 503347 |  | 77454 | Screw-\#8-32 $\times 3 / 9^{\prime \prime}$ cross recessed truss head machine screw |
| 503433 | 330,000 ohms, $\pm 10 \%$, 1/2 watt ........................ R8 |  | for fastening bottom cover |
| 503482 | 820,000 ohms, $\pm 10 \%$, $1 / 2$ watt ..................... R9 | 76783 | Shield-Pilot lamp shield |
| 503533 | 33 megohm, $\pm 10 \%$, $1 / 2$ watt. ........................... R4 | 74734 | Spring-Spring clip for volume control knob or dial knob |



FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO 930409 SERIES SERVICE DATA.

## rca Victor

Radio Phonograph Combination Model 2-S-7

Chassis No. RC-1117D
Service Data - 1953 No. 1 -

PREPARED BY RCA SERVICE CO., INC. FOR

RADIO CORPORATION OF AMERICA<br>RCA VICTOR DIVISION<br>CAMDEN, N. J., U. S. A.

## SPECIFICATIONS

| Tuning Range . . . . . . . . . . . . . . . . . 540-1600 kc. |  |
| :---: | :---: |
| Intermediate Frequency | 455 kc . |
| Tube Complement |  |
| 1. RCA 12BE6 | Converter |
| 2. RCA 12BA6 | I.F. Amplifier |
| 3. RCA 6AQ6 | Detector-A.F. Amplitier |
| 4. RCA 6AQ6 | Phase Inverter |
| 5. RCA 35C5 | Push Pull Output |
| 6. RCA 35C5 |  |

Power Supply Rating
115 volts A.C., 60 cycles
45 watts

Dial Lamps (2) ..... Mazda type 51, 6-8 volts, 0.2 amp.


Record Cbanger Controls

Loudspeaker
Size and type.................................. $8^{\prime \prime}$ P.M. Voice coil impedance ........... 3.2 ohms at 400 cycles
Power Output
At $10 \%$ distortion ............................. 2.0 watts
Maximum .....
Cabinet Dimensions
Height $32^{1 / 4^{\prime \prime}} \quad$ Width $28 \frac{1 / 2^{\prime \prime}}{} \quad$ Depth $19^{1 / 8^{\prime \prime}}$
Tuning Drive Ratio ....... 141/4:1 (71/8 turns of knob)
Record Changer (930409-5, or -10)
Turntable speed Record capacity
up to fourteen 7 inch
or twelve 10 inch
or ten 12 inch
or ten 10 in . and 12 in . intermixed.
Pickup (Stock No. 75475). Crystal with replaceable styli. Weight

66 lbs . net

## RECORD CHANGER CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three normal positions, " $33^{\prime \prime}$ " " 45 ", " 78 " to select the turntable speed desired and a neutral position (midway between " 45 " and " 78 "). The control should be turned to this neutral position if the changer is not expected to be in use for an extended period of time.

The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $33^{1 / 3}$ or 45 r.p.m. records the lever is turned so that " $33-45$ " is visible on the 'IOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.

The removable centerpost is for use with 45 r.p.m. records having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.

To load or remove records, the record stabilizer is lifted and turned oft-side. After loading it is turned to the center where it rests on top of the stack of records.


## Radio Controls

## Critical Lead Dress

1. Dress all leads away from R22.
2. Dress all tilament leads down to chassis.
3. Dress output plate leads down to chassis.
4. Dress R12 close to chassis.


Dial Cord Layout

## Alignment Procedure

Output Meter.-Connect meter across speaker voice coil, Turn volume control to maximum.
Test Oscillator.-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is acc operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a-v-c action.

| Steps | Connect the high side of test-oscillator to- | Tune test-asc. to- | Turn radio dial to- | Adjust the fol lowing for max. output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | I.F. grid, in series with .1 mfd . | 455 kc | Quiet point $1,600 \mathrm{kc}$ end of dial | $\begin{aligned} & \text { Pri. \& Sec. } \\ & \text { 2nd I.F. } \\ & \text { transformer } \end{aligned}$ |
| 2 | Converter grid in series with 1 mfd . |  |  | Pri. \& Sec. <br> lst I.F. <br> transformer |
| NOTE.-ANTENNA LOOP MUST BE IN CABINET FOR THE FOLLOWING |  |  |  |  |
| 3 | Short wire placed near loop for radiated signal | 1,620 kc | $\begin{gathered} \text { Extreme } \\ \text { R. H. end } \\ \text { (gang open) } \end{gathered}$ | C22 (osc.) |
| 4 |  | $1,400 \mathrm{kc}$ | 1.400 kc | C5 (ant.) |
| 5 |  | 600 kc | 600 kc Signal | $\stackrel{\text { L3 }}{\text { (Rock Gang })}$ |
| 6 | Repeat steps 3, 4 \& 5 if necessary |  |  |  |

Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer so that it is $315 / 16^{\prime \prime}$ from the left hand edge of the dial back plate.



| $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | PART DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | PART DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES | 74697 | Socket-Dial lamp socket |
|  | RCl117D | 77115 | Socket-Tube socket, 7 pin, miniature, moul |
| 76876 | Antenna-Antenna loop and back cover, Ll | 51955 | Socket-Tube socket, 7 pin, miniature, moulded sad-dle-mounted |
| 76867 | Capacitor-Variable tuning capacitor, ClA, ClB | 76368 | Spring-Drive cord spring |
| '6872 | Capacitor-Adjustable trimmer, $2.5-30 \mathrm{mmf}$., C5, | 76873 | Switch-Function switch less volume control, Sl |
|  | C22 | 77122 | Transformer-Output transformer, T3 |
| 77116 | Capacitor-Fixed, ceramic, insulated, temp. coef.-$-3300,56 \mathrm{mmf} ., \pm 20 \%, 500$ volts DC, C4 | 74918 | Transformer-First I.F. transformer complete with adjustable cores, Tl |
| 93603 | ```Capacitor-Fixed, ceramic, insulated, high K type- 56 mmf., }\pm10%,500\mathrm{ volts, C9``` | 73037 | Transformer-Second I.F. transformer complete with adjustable cores, T2 |
| 76347 | $120 \mathrm{mmf} ., \pm 20 \%, 500$ volts, Cl 3 | 33726 | Washer-"C" washer for tuning knob shaft |
| 73013 | Capacitor-Electrolytic: comprising l section of 80 mid., 150 volts, 1 section of 30 mfd., 150 volts and 1 section of 10 mfd , 150 volts, C17A, Cl7B, Cl7C |  | SPEAKER ASSEMBLIES 92586-4W RL10504 RMA-274 |
|  | Capacitor-Fixed, tubular, paper: | 75024 | Cone-Cone and voice coil ( 3.2 ohms) |
| 73851 | . 0018 mid., 1600 volts, C8, C21 | 74664 | Speaker-8" P.M. speaker complete with cone and |
| 73595 73795 | . 0022 mid., 600 volts, C7 |  | voice coil (3.2 ohms) |
| 73795 73920 | $.0033 \mathrm{mfd}, 400$ volts, Cl2 $.0047 \mathrm{mfd}, 400$ volts, Cl0 |  | MISCELLANEOUS |
| 73788 | . 0056 mid., 400 volts, Cl 4 | 71892 | Catch-Bullet catch and strike |
| 73561 | . 01 mid., 400 volts, Cl6, Cl9, C20 | 70142 | Clamp-Dial clamp (l set) |
| 73562 | $.022 \mathrm{mid}, 400$ volts, Cll, Cl5 | X3351 | Cloth-Grille cloth for blonde mahogany instruments |
| 73553 | . 047 mfd., 400 volts, C2, C3, C6 | X3350 | Cloth-Grille cloth for mahogany or walnut instru- |
| 75071 | Capacitor-Fixed, tubular, moulded paper: .047 mfd ., 400 volts, C18 | 30870 | ments <br> Connector-2 contact male connector for motor |
| 73935 | Clip-Mounting elip for I.F. tremsformer |  | cable, P2 3 cont |
| 78586 | Coil-Oscillator coil complete with adjustable core L2. L3 | 74192 | Connector-3 contact male connector for pickup cable, Pl |
| 36422 | Connector-Phono input connector, Jl | 77898 | Decal-Control function decal for blonde mahogany |
| 77114 | Connector-Single contact male connector for loop lead | 77897 | instruments <br> Decal-Contral function decal for mahogany or wal- |
| 75474 | Connector-Single contact male connector for speaker cable | 74273 | nut instruments <br> Decal-"Victrola" decal |
| 30868 | Connector-2 contact female connector for motor cable, P2 | $\begin{aligned} & 77889 \\ & 74205 \end{aligned}$ | Dial-Glass dial scale <br> Escutcheon-Dial scale escutcheon less dial |
| 76874 | Control-Volume control, Rll | 74838 | Grommet-Power cord strain relief (l set) |
| 72953 | Cord-250' Drive Cord Reel (approx. 54" overall req'd) | 77402 | Handle-Pullout handle for record changer mechanism |
| 73690 | Cord-Power cord and plug | 74308 | Hinge-Door hinge (l set) |
| 74838 | Grommet-Power cord strain relief (l set) | 77892 | Knob-Function switch knob-beige-for blonde ma- |
| 72283 | Grommet-Rubber grommet for mounting variable capacitor | 77891 | hogany instruments (outer) <br> Knob-Function switch knob-maroon-for mahog- |
| 11765 | Lamp-Dial lamp-Mazda 51 |  | any or walnut instruments (outer) |
| 28452 | Plate-Bakelite mounting plate for electrolytic | 77382 | Knob-Tuning control knob-beige-for blonde ma- |
| 77926 | Plate-Dial back plate complete less dial |  | hogany instruments (inner) |
| 77378 | Pointer-Station selector pointer | 77386 | Knob-Tuning control knob-beige-for blonde ma- |
| 76871 | Rectifier-Selenium rectifier, SRl |  | hogany instruments (outer) |
| 73072 | Resistor-Normal vadue 95 ohms, @ $38^{\circ} \mathrm{C}$ with negative temperature coefficient, R23 | 75945 | Knob-Tuning control knob-maroon-for mahogany or walnut instruments (inner) |
| 77379 | Resistor-Wire wound, 66 ohms, 5 watts, R22 Resistors-Fixed, composition: | 77385 | Knob-Tuning control knob-maroon-for mahogany or walnut instruments (outer) |
| 503082 | 82 ohms, $\pm 10 \%$, $1 / 2$ watt, R19 | 75464 | Knob-Volume control knob-beige for blonde ma- |
| 503127 | 270 ohms, $\pm 10 \%$, $1 / 2$ watt, R6 |  | hogany instruments (inner) |
| 513212 503218 | 1200 ohms, $\pm 10 \%$, 1 watt, R21 | 74963 | Knob-Volume control knob-maroon-for mahog- |
| 503218 | 1800 ohms, $\pm 10 \%$, $1 / 2$ watt, R20 |  | any or walnut instruments (inner) |
| 503312 | 12,000 ohms, $\pm 10 \%$, 1/2 watt, R17 | 77894 | Pan-Record changer mounting pan-beige-for |
| 503339 | 39,000 ohms, $\pm 10 \%$, 1/2 watt, R2 |  | blonde mahogany instruments |
| 503347 | 47,000 ohms, $\pm 10 \%$, 1/2 watt, R4 | 77893 | Pan-Record changer mounting pan-plum-for |
| 503356 503412 | 56,000 ohms, $\pm 10 \%$, $1 / 2$ watt, R10 | 76421 | mahogany or walnut instruments |
| 503422 | 220,000 ohms, $\pm 10 \%$, 1/2 watt, R1, Rl3, R14 | 77896 | Pull-Door pull |
| 503433 | 330,000 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}, \mathrm{R} 3$ | 74113 | Screw-\#8-32 x $\mathrm{l}^{\prime \prime}$ trimit head screw for door pull |
| 503439 | 390,000 ohms, $\pm 10 \%$, 1/2 watt, R8 | 77895 | Slide-Mounting pan slide mechanism |
| 503447 | 470,000 ohms, $\pm 10 \%, 1 / 2$ watt, R16, Rl 8 | 76422 | Spring-Retaining spring for slide mechanism stop |
| 503515 | 1.5 megohm, $\pm 10 \%$, $1 / 2$ watt, R9 |  | pin |
| 503533 | 3.3 megohm, $\pm 10 \%$, $1 / 2$ watt, R5 | 30330 | Spring-Retaining spring for knobs 74963 and 75464 |
| 503610 76869 | 10 megohm, $\pm 10 \%$, $1 / 2$ watt, R12, R15 Shaft-Tuning knob shaft | 76837 | Spring-Retaining spring for knobs 75945, 77382, 77385, 77386, 77891, 77892 |
| 76870 | Shield-Tube shield | 72936 | Stop-Door stop |



FOR RECORD CHANGER SERVICE INFOR-MATION-REFER TO 930409 SERIES SERVICE DATA.

## Specifications

| Tuning Range |  |
| :---: | :---: |
| Standard Broadcast (AM) .................... . 540-1600 kc. |  |
| Frequency Mod | ulation (FM) . . . . . . . . . . . . . . . 88-108 mc. |
| Intermediate Frequency (AM) |  |
| Intermediate Frequency (FM) . . . . . . . . . . . . . . . . 10.7 mc . |  |
| Tube Complement |  |
| Tube Used | Function |
| Radio Chassis RC1111 |  |
| (1) RCA 6CB6 | R-F Amplifier |
| (2) RCA 6J6.................. . Mixer and Oscillator |  |
| (3) RCA 6BA6........................ I-F Amplifier |  |
| (4) RCA 6AU6...........................M Driv |  |
| (5) RCA 6AL5 ...................... Ratio Detector |  |
| (6) RCA 6AV6..............AM Det.-AVC-A-F Amplifier |  |
| Audio Chassis RS 141 |  |
| (1) RCA 6C4. | Phase Inverter |
| (2) RCA 6V6GT | Audio Output |
| (3) RCA 6V6GT | Audio Output |
| (4) RCA 5Y3GT | Rectifier |

Tuning Range
Standard Broadcast (AM)
Frequency Modulation (FM)
Intermediate Frequency (FM)

## Function

R-F Amplifier
(2) RCA $6 J 6$

Mixer and Oscillator
(3) RCA 6BA6 F-M Driver
(5) RCA 6AL5 AM Det.-AVC-A-F Amplifier

Phase Inverter
(2) RCA GVGGT
(3) RCA 6V6GT

Audio Output
Rectifier

## Lamps

Dial (2) ................................. \#51, 6-8 volts, 0.2 amp.
Jewel (1)..................... volts, 0.2 amp.

Power Supply Rating....... 115 volts, 60 cycles, 100 watts
Audio Power Output Rating
Radio ...............undistorted 8 watts, maximum 9 watts Phonograph......... undistorted 10 watts, maximum 12 watts

Loudspeaker (92569-12W)
Size and Type ................................ . . 12 inch P.M.
Voice Coil Impedance. ............... 3.2 ohms at 400 cycles
Tuning Drive Ratio . . . . . . . . . . . 9:1 (41/2 turns of knob)
Net Weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 lbs.
Dimensions (overall)
Height.... $351 / 2 \mathrm{in}$. Width.... 35 in . Depth.... 23 in.
Record Changer (930409-5, or - 10 )
Turntable Speed.... . $331 / 3$, 45 or 78 r.p.m,
Record Capacity.... Up to fourteen 7 inch RCA type or twelve 10 inch
or ten 12 inch
or ten 10 inch and 12 inch intermixed
Pickup (Stock No. 75475) . . . . Crystal with replaceable styli

## General Description

This instrument is a Victrola combination having nine tubes, plus one rectifier. It has a modern style cabinet in either walnut, mahogany, or limed oak finish. The entire receiver (with the exception of the power supply and speaker) is built as a unit with the automatic record changer for "pull-out" operation. The three speed record changer is nested over the radio chassis on a plastic case. Record storage space is provided for both large and small diameter records.

For standard broadcast reception, a loop antenna is mounted on the roll-out unit back. A folded dipole is mounted inside the cabinet for use on the FM band. Provision is made for connecting an external antenna for either the broadcast or FM bands.

By rotating the function switch, the 2 S 10 can be operated as:

1. Phonograph sound channel for the three speed record changer.
2. Standard broadcast " $A$ " band receiver ( $540-1600 \mathrm{kc}$ ).
3. Broadcast "FM" band receiver ( $88-108 \mathrm{mc}$ ).

The function switch controls the internal connections for:
A. RF-IF stage AVC voltages from AM or FM detector.
B. Audio amplifier input from any one of three channels.
C. $\mathrm{B}+$ voltage application to RF-IF circuits.
D. Audio output tube bias voltage. In phonograph operation, R2 is disconnected from R107, increasing available power output for phonograph operation.
E. Selection of tuned circuits for $\bar{A} M$ or $F M$ operation.

A horizontal tilted slide rule type dial is located along the top front face of the plastic roll-out case. The dial is edge-lighted at both ends by dial lamps. An amber jewel lamp, visible at the bottom front, glows whenever the set is in operation.

Complete Schematic Diagram-Chassis RC1111 and RS141

| FM Alignment <br> FUNCTION SWITCH IN FM POSITION－VOLUME <br> （B）CONTROL MAXIMUM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Steps | Connect high side of sig． gen．to－ | Sig．gen output | Turn radio dial to－ | Adjust for max．output |
| 1 | Connect the d．c probe of a VoltOhmyst to the negative lead of the 2 mid．capacitor C39 and the common lead to chassis．Adjust sig． gen．output to provide approx．-4 v ．indication during alignment． |  |  |  |
| 2 | Pin \＃l of 6AU6 （V4）in series with 01 mf ． | $\begin{aligned} & 10.7 \mathrm{mc} \text { AM } \\ & \text { modulated } \end{aligned}$ |  | Top of driver trans． <br> T5 for max．d－c voltage |
| 3 |  |  |  | $\dagger$ Bottom of driver trans． <br> T5 for min．audio output |
| 4 | Repeat steps 2 and 3 |  |  |  |
| 5 | Thru 470 ohm 8 to Cl－F．Con－ nect grid．end of cable close to V2 cathode ground on r －f shelf | 10.7 mc | 88 mc | ＊Top（sec．）\＆ bottom（pri．） cores of T3 ＊Top（sec．）\＆ bottom（pri．） cores of Tl |
| 6 | To FM antenna terminals thru 120 ohms in each side of line | 90 | 90 | L8（osc．） |
| 7 |  | 106 mc | $\begin{aligned} & 106 \mathrm{mc} \\ & \text { Signal } \end{aligned}$ | Cl－F trimmer <br> （ant．）and Cl－C <br> trimmer（r．f．） |
| 8 |  | 90 mc | $90 \mathrm{mc}$ Signal | $\begin{aligned} & \mathrm{L}_{1} \text { (ant.) and L2 } \\ & \text { (r.f.) } \end{aligned}$ |
| 9 | Repeat steps 6， 7 and 8 |  |  |  |
| 10 | Connect a sweep generator to the antenna terminals thru 120 ohms in each side of line．Connect an oscilloscope to junction of R33 and C35 to check response and linearity of FM band．Peak to peak separation should not be less than 180 kc ． |  |  |  |
| $\dagger$ Two or more points may be found which lower the audio output．At the correct point the minimum audio output is approached rapidly and is much lower than at any incorrect point． <br> ＊Use a 680 ohm resistor to load the plate winding while the grid winding of the same trans is being peaked．Then the grid winding is loaded with the 680 ohm resistor while the plate winding is being peaked．When windings are loaded，it is necessary to increase the 10.7 mc input to maintain the -4 volts indication． <br> L8，L1 and L2 are adjustable by increasing or decreasing the spacing between turns．Oscillator signal tracks above signal frequency． <br> The proper adjustment of the I．F．cores can be determined by starting the core all the way out．The first peak obtained is the correct one． |  |  |  |  |

FM Alignment

| Tube Socket Voltages |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Tube Type } \\ \text { Fund } \\ \text { Function } \end{gathered}$ | $\begin{gathered} \text { Tube } \\ \text { Element } \end{gathered}$ | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | AM | FM | Phono |
| $\begin{aligned} & \text { Vl 6CB6 } \\ & \text { R-F Amp. } \end{aligned}$ | $\begin{aligned} & \text { Plate } \\ & \text { Screen } \\ & \text { Cathode } \\ & \text { Grid } \end{aligned}$ | $\begin{aligned} & 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$ | $\begin{array}{r} 215 \\ 74 \\ 0.4 \\ -0.8 \end{array}$ | $\begin{aligned} & 180 \\ & 62 \\ & 0.4 \\ & 0.4 \end{aligned}$ | 二 |
| v2 636 <br> Osc．and Mixer | $\begin{aligned} & \text { Plate } \\ & \text { Grid } \\ & \text { Plate } \\ & \text { Grid } \end{aligned}$ | $\begin{aligned} & 2 \\ & 5 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{array}{r} 55 \\ -1.2 \\ -43 \\ -2.0 \end{array}$ | $\begin{array}{r} 58 \\ -1.3 \\ -16 \\ -1.2 \end{array}$ | 二 |
| $\begin{aligned} & \text { V3 } 6 \mathrm{BA} 6 \\ & \text { I-F Amp. } \end{aligned}$ | $\begin{aligned} & \text { Plate } \\ & \text { Screen } \\ & \text { Cathode } \\ & \text { Grid } \end{aligned}$ | $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$ | $\begin{array}{r} 210 \\ 126 \\ 0.9 \\ -0.8 \end{array}$ | $\begin{array}{r}210 \\ 115 \\ 0.7 \\ -0.2 \\ \hline\end{array}$ | 二 |
| V4 6AU6 <br> Driver | Plate Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$ | $\begin{gathered} 216 \\ 150 \\ 1.5 \\ 1.5 \end{gathered}$ | $\begin{array}{r} 216 \\ 150 \\ 1.5 \\ 0 \end{array}$ | 二 |
| V5 6ALS Ratio Det． | 二 | 二 | － | 二 | 二 |
| $\begin{aligned} & \text { V6 6AV6 } \\ & \text { Audio } \\ & \text { Amp. } \end{aligned}$ | $\begin{aligned} & \text { Plate } \\ & \text { arid } \end{aligned}$ | ${ }_{1}^{7}$ | 88 -0.7 | 88 -0.7 | $\begin{array}{r} 104 \\ -0.8 \end{array}$ |
| $\begin{aligned} & \text { 6C4 } \\ & \text { Phase } \\ & \text { Inverter } \end{aligned}$ | $\begin{aligned} & \text { Plate } \\ & \text { Cathode } \\ & \text { Grid } \end{aligned}$ | $\begin{aligned} & 5 \\ & \hline 7 \\ & 6 \end{aligned}$ | $\begin{aligned} & 87.5 \\ & -11 \\ & -16 \end{aligned}$ | $\begin{array}{r} 88 \\ -11 \\ -16 \\ \hline \end{array}$ | $\begin{array}{r} 120 \\ -13 \\ -19 \end{array}$ |
| $\begin{aligned} & \text { 6V6GT } \\ & \text { Audio } \\ & \text { Output } \end{aligned}$ | Plate <br> Screen <br> Cathod <br> Grid | $\begin{aligned} & 3 \\ & 4 \\ & 8 \\ & 5 \end{aligned}$ | $\begin{array}{r} 300 \\ 224 \\ 0 \\ -17 \\ \hline \end{array}$ | $\begin{array}{r} 300 \\ 224 \\ -17 \\ -17 \end{array}$ | $\begin{array}{r} 298 \\ 292 \\ 0 \\ 0 \\ -21 \\ \hline \end{array}$ |
| 5Y3GT Rectifier | Fil． | 8 | 305 | 305 | 307 | Critical Lead Dress 1．The lst F．M．I．F．plate lead should be dressed away from 2．Dress the 1st A．M．I．F．plate lead to S－2 wafer away from


 4．Dress A．C．power switch wires away from all audio 5．Dress C－26 down toward base between terminal board and 6．C－18 bypass should ground as close to the R．F．Shelf

7．Dress C－25 away from arm of volume control． All leads，from the R．F．shelf，leaving through the shields
must be kept as short as possible so as to minimize F．M． 9．Dress A radiation． RS141 chassis away from audio 1．All leads for F．M．should be kept short especially on the
 Alignment Indicators：

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d－c voltage during FM alignment．Con－
nections are specified in the alignment tabulation．An output meter is also necessary to indicate minimum audio output during FM Ratio Detector alignment．Connect the output meter

The RCA VoltOhmyst can also be used as an AM align－ ment indicator，either to measure audio output or to measure

When audio output is being measured the volume control should be turned to maximum．Adjust tone controls for
maximum highs and lows during alignment． Signal Generator：

For all alignment operations connect the low side of the signal generator to the receiver chassis．The output should be
 the signal generator should be kept as low as possible to
avoid a－v－c action．
AM Alignment
(A) RANGE SWITCH IN AM POSITION

| Steps | Connect high side of sig． gen to－ | Sig．gen． output | Turn radio dial to－ | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{gathered} \text { Pin No. l } \\ \text { of V3 } \\ \text { in series } \\ \text { with } .01 \mathrm{mfd} . \end{gathered}$ | $\begin{aligned} & 455 \mathrm{kc} . \\ & \text { (mod.) } \end{aligned}$ | Quiet point at low freq．end | T4 bottom $\dagger$ core（sec．）． <br> T4 top core（pri．） |
| 2 | To stator of Cl－E |  |  | T2 top $\dagger$ core（sec．）． T2 bottom core（pri．）． |
| （C） | PERFORM FM ALIGNMENT BEFORE PROCEEDING |  |  |  |
| 3 | Short wire placed near loop for radiated signal | $\begin{gathered} 1620 \mathrm{kc} . \\ \text { (mod.) } \end{gathered}$ | 1620 kc ． | ClB－T（osc．）． |
| 4 |  | $\begin{gathered} 1400 \mathrm{kc} . \\ \text { (mod.) } \end{gathered}$ | 1400 kc ． | $\begin{aligned} & \text { C1D-T (ant.). } \\ & \text { C1E-T (rt.). } \end{aligned}$ |
| 5 |  | 600 kc ． （mod．） | 600 kc ． | L5（osc．）with $10,000 \mathrm{hm}$ resistor from RF stator to gnd． （rocking gang） |
| 6 |  |  |  | L7（RF） with the 10,000 ohms removed． |
| 7 | Repeat steps 4， 5 and 6 until no improvement in sensitivity is obtained． |  |  |  |


Simplified Schematic Diagram-"FM" Position


## Record Changer



## Controls <br> Record Changer Controls

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).
The outer control (double ended lever) is the speed control. It has three normal positions, " $33^{\prime \prime}$ " " 45 ", " 78 " to select the turntable speed desired and a neutral position (midway between " $45^{\prime \prime}$ and " 78 "). The control should be turned to this neutral position if the changer is not expected to be in use for an extended period of time.
The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $331 / 3$ or $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. records the lever is turned so that " $33-45^{\prime \prime}$ is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.

The removable centerpost is for use with $45 \mathrm{r}, \mathrm{p} . \mathrm{m}$. records
having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.

To load or remove records, the record stabilizer is lifted and turned off-side. After loading it is turned to the center where it rests on top of the stack of records.

## Record Changer Adjustments

## Landing Adjustment

Only one landing adjustment is necessary. The landing position of the stylus is adjusted by means of the eccentric stud (20A), mounted on the pickup arm support bracket. When adjusted for correct landing on one side of record, the landing position for other sizes of records is automatically corrected

## Pickup Arm Height Adjustment

The pickup arm height during cycle is adjusted by means of the hex head screw (17), located in the pickup arm.

Turn control knob to "REJ" and rotate turntable by hand until arm has risen to its maximum height. Adjust screw so that stylus is $13 / 8^{\prime \prime}$ above turntable.

## Stylus Force Adjustment

Stylus force should be $71 / 2$ to $91 / 2$ grams. Loosen screw (14), and move slide until the correct force is obtained.


## Tripping

The tripping method used in this mechanism is a velocity method. Velocity tripping is effective between $43 / 4^{\prime \prime}$ and $31 / 4^{\prime \prime}$ diameters, when the stylus moves inward $1 / 8^{\prime \prime}$ or more per revolution of the turntable. No adjustment is required.

## Radio

## Operating Instructions

RADIO-Turn extreme right hand FUNCTION knob to "AM" or "FM" radio position as desired. Turn OFF-VOLUME Knob "ON" and advance to mid-position for medium volume. Allow approximately 20 seconds for tube warm-up. With TUNING knob, select desired station indicated by dial pointer. Set tone controls for most pleasing reception. Turn BASS control counter-clockwise and TREBLE control clockwise for full tone. Adjust volume level as desired.

PHONOGRAPH - Turn extreme right hand FUNCTION knob to "PH" position. Turn OFF-VOLUME knob "ON" and advance to mid-position for medium volume. Set tone controls as indicated above for best tone. Refer to RECORD CHANGER section for operational information.

OFF-VOLUME BASS TREBLE TUNING PH-AM-FM


Radio Controls

## Roll-Out Mechanism

## Record Changer Mounting

The record-changer is mounted in a roll-out carriage. The changer mechanism is mounted on springs and should be free floating.

## Roll-out Carriage Removal

Roll-out carriage has two stop pins, (one at the back end of each slide) held in place by retaining spring. To remove roll-out carriage, it is first necessary to pull the retaining springs out of the slides with a pair of long nose pliers, the stop pins are then easily removed. The roll-out carriage may then be removed from the front of the cabinet after disconnecting its connecting cables.

## Roll-out Carriage Travel

The roll-out carriage has a normal movement limitation of approximately 10 inches. If it does not have this amount of movement, it may be due to an obstruction or from slippage or creeping of the balls of the slide mechanism. Travel restriction due to slippage or creeping of balls in the slide mechanism can be corrected by exerting slightly greater pull until the normal travel limitation is reached. The carriage should then operate to its full travel with normal pull.


## Replacement Parts

| $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | PART DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | PART DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES RC 1111 | $\begin{aligned} & 77315 \\ & 77305 \end{aligned}$ | Coil-Oscillator coil-FM (L8) <br> Coil-R.F. coil-AM-complete with adjustable core (L6, L7) |
| 77308 | Capacitor-Variable tuning capacitor ( $\mathrm{Cl}-\mathrm{A}, \mathrm{Cl}-\mathrm{B}$, | $77314$ | Coil-R.F. coil-FM (L2) |
| 75613 |  |  | Connector-2 contact female connector for phono power cable (Pl) |
| 77352 | Capacitor-Ceramic, 6.8 mmf . (Cl6) | 74879 | Connector-2 contact female connector for an- |
| 39044 | Capacitor-Ceramic, 15 mmf . (Cl4) |  | tenna leads |
| $\begin{aligned} & 76348 \\ & 75612 \end{aligned}$ | Capacitor-Ceramic, 47 mmf . (ClO) <br> Capacitor-Ceramic, 68 mmf . (C15, Cl7) | 75062 | Connector-9 contact male connector for power input (Jl) |
| 39396 | Capacitor-Ceramic, 100 mmf . (C5) | 35787 | Connector-Single contact female connector for |
| 75614 | Capacitor-Ceramic, 150 mmf ( $\mathrm{C} 13, \mathrm{C} 28, \mathrm{C} 31)$ |  | audio cable (J2) |
| 75611 | Capacitor-Ceramic, 220 mmf . (C3) | 33742 | Connector-Single contact female connector for |
| 39640 | Capacitor-Mica, 330 mmf ( ( $\mathrm{C} 36, \mathrm{C} 37)$ |  |  |
| 39644 | Capacitor-Mica, 470 mmf. (C6) | 75562 | Control-Tone control-H.F. (R29) |
| 73473 | Capacitor-Ceramic, 4700 mmf . (C2, C4, C7, C9, C11, C18, C20, C23, C24, C27, C32, C34, C35, C40) | $\begin{aligned} & 75561 \\ & 75537 \end{aligned}$ | Control-Tone control-L.H. (R16) <br> Control-Volume control and power switch (R19, S2) |
| 73747 | Capacitor-Electrolytic 2 mfd ., 50 volts (C39) | 72953 | Cord-250' Drive Cord Reel (approx. 57" overall |
| 77468 | Capacitor-Tubular, paper, .0018 mfd ., 600 volts (C8) | 75564 |  |
| 73795 | Capacitor-Tubular, paper, .0038 mfd ., 600 volts (C25) | 74839 | extension shaft <br> Fastener-Push fastener to fasten RF shelf ( 4 req'd) |
| 73920 | Capacitor-Tubular, paper, . 0047 mfd ., 600 volts (C30) | 16058 | Grommet-Rubber grommet for mounting RF shelf (4 req'd) |
| 72490 | Capacitor-Tubular, paper, 005 mfd ., 200 volts (C33, C38) | 75548 | Grommet-Rubber grommet for mounting slides (4 req'd) |
| 73561 | Capacitor-Tubular, paper, 01 mfd ., 400 volts (C29) | $\begin{aligned} & 11765 \\ & 77311 \end{aligned}$ | Lamp-Dial lamp-Mazda 51 Latch-Bottom cover latch |
| 73797 | Capacitor-Tubular, paper, $015 \mathrm{mfd} ., 600$ volts | 77486 | Nut-Speed nut for latch adjustment screw |
|  | (C22) | 76421 | Pin-Slide mechanism stop pin |
| 77469 | Capacitor-Tubular, paper, 018 mfd., 200 volts (C21) | $\begin{aligned} & 72602 \\ & 35641 \end{aligned}$ | Pulley-Drive cord pulley <br> Pulley-Drive cord pulley-13/8" dia. |
| 73562 | Capacitor-Tubular, paper, 022 mfd., 400 volts (C26) | 503039 | Resistor-Fixed, composition:39 ohms, $\pm 10 \%, 1 / 2$ watt (R3) |
| 73558 | Capacitor-Tubular, paper, $.047 \mathrm{mfd} ., 200$ volts (C19) | 503068 503110 | 68 ohms, $\pm 10 \%, 1 / 2$ watf (R21) 100 hms $\pm 10 \%$ 1/2 wat (RI |
| 73935 | Clip-Mountin | 503112 | 120 ohms, $\pm 10 \%$, 1/2 watt (R30) |
|  | \& 76328 | 503139 | 390 ohms, $\pm 10 \%$, 1/2 watt (R12) |
| 77313 | Coil-Antenna coil-FM (Ll) | 503168 | 680 ohms, $\pm 10 \%$, 1/2 watt (R6, R25, R32) |
| 71942 | Coil-Filament choke coil (L9, L10) | 503210 | 1000 ohms, $\pm 10 \%, 1 / 2$ watt (R2) |
| 75569 | Coil-Oscillator coil-AM-complete with adjustable core (L3, L4, L5) | $\begin{aligned} & 502212 \\ & 502233 \end{aligned}$ | 1200 ohms, $\pm 5 \%, 1 / 2$ watt (R36) 3300 ohms, $\pm 5 \% \quad 1 / 2$ watt (R35) |




FOR RECORD CHANGER SERVICE INFORMA-TION-REFER TO 930409 SERIES SERVICE DATA.

## rca Victor

## Radio Phonograph Combination <br> Model 2 US 7

 Service Data - 1952 No. 3-PREPARED BY RCA SERVICE CO., INC.

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION<br>CAMDEN, N. J., U. S. A.

## SPECIFICATIONS

| Tuning Range . . . . . . . . . . . . . . . . . 540-1600 kc. |  |  |
| :---: | :---: | :---: |
| Intermediate Frequency |  |  |
| Tube Complement |  |  |
| 1. RCA 12BE6 ......................... Converter |  |  |
| 2. RCA 12BA6 .............................alifier |  |  |
| 3. RCA 6AQ6 .a....... Detector-A.F. Amplifier |  |  |
| 4. RCA 6AQ6 .............................ase |  |  |
| 5. RCA 35C5 |  |  |
| 6. RCA 35C5 ..................... Push |  |  |
|  |  |  |
| Power Supply Rating |  |  |
| 1. 115 volts A.C., 60 cycles |  |  |
| 2. 115 volts A.C., 50 cycles |  |  |
|  |  |  |

Dial Lamps (2) ...... Mazda type 51, 6-8 volts, 0.2 amp .


Record Changer Controls

Loudspeaker
Size and type ...........................5" x $7^{\prime \prime}$ P.M.
Voice coil impedance .......... 3.2 ohms at 400 cycles
Power Output
Undistorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 watts
Maximum ....................................................... 2.4 watts
Cabinet Dimensions
Height $10^{\prime \prime} \quad$ Width $16334^{\prime \prime}$ Depth $20^{3 / 4^{\prime \prime}}$
Tuning Drive Ratio ...... 141/4:1 (71/8 turns of knob)
Record Changer (930409-5, -10 or -11)
Turntable speed ..................331/3, 45 or' 78 r.p.m.
Record capacity ....up to fourteen 7 inch RCA type
or twelve 10 inch
or ten 12 inch
or ten 10 in . and 12 in . intermixed.
Pickup (Stock No. 75475) . Crystal with replaceable styli. Weight

26 lbs net

## RECORD CHANGER CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizes the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three normal positions, " 33 ", " 45 ", " 78 " to select the turntable speed desired and a neutral position (midway between " 45 " and " 78 "). The control should be turned to this neutral position if the changer is not expected to be in use for an extended period of time.

The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $33^{1 / 3}$ or $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. records the lever is turned so that " $33-45$ " is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.

The removable centerpost is for use with 45 r.p.m. records having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.

To load or remove records, the record stabilizer is lifted and turned off-side. After loading it is turned to the center where it rests on top of the stack of records.


Radio Controls

## Service Hints

All tubes, except the 12BE6, are accessible for testing by lifting up one side of the cabinet and removing the tubes from the rear chassis apron. To service the 12BE6 tube and the pilot lights, remove the four wood screws holding the sloping panel at the front of the record changer compartment. This panel also holds the loop antenna.

To remove the radio chassis for service, first remove the push-on type knobs. Secure the record changer pickup arm to the center post and rest the cabinet on its side. Remove loop antenna connections, and pickup arm audio plug. Hook-on connectors are used to connect a.c. power from the radio chassis to the phono motor. These connectors are covered by taped-over black insulating sleeves located in one corner of the cabinet. Push back sleeves and unhook. Remove the four flat-head wood screws holding the chassis mounting board to the bottom of the cabinet. Slide chassis out of cabinet, then remove the three $1 / 4$ inch hex head self-tapping screws holding the chassis to the panel.


Dial Cord Layout

Alignment Procedure

Output Meter.-Connect meter across speaker voice coil. Turn volume control to maximum.

Test Oscillator.-Connect low side of test oscillator to common wiring in series with a .l mf. capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent $a-v-c$ action

| Steps | Connect the high side of test-oscillator to- | $\begin{gathered} \text { Tune } \\ \text { test-osc. } \end{gathered}$ to- | $\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$ | Adjust the following for max. output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | I.F. grid, in series with .1 mfd . | 455 kc | Quiet point $1,600 \mathrm{kc}$ end of dial | Pri. \& Sec. 2nd I.F. transformer |
| 2 | Converter grid in series with .1 mid. |  |  | Pri. \& Sec. lst I.F. transformer |
| NOTE.-ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR THE FOLLOWING |  |  |  |  |
| 3 | Short wire <br> placed near <br> loop for <br> radiated <br> signal | 1,620 kc | $\left\|\begin{array}{c}\text { Extreme } \\ \text { R. H. end } \\ \text { (gang open) }\end{array}\right\|$ | ClB-T (osc.) |
| 4 |  | 1,400 kc | $1,400 \mathrm{kc}$ | C5 (ant.) |
| 5 |  | 600 kc | 600 kc Signal | $\stackrel{\text { L3 }}{\text { (Rock Gang) }}$ |
| 6 | Repeat steps 3, 4 \& 5 if necessary |  |  |  |

## Critical Lead Dress

1. Dress Cl5 (. 022 mfd, at grid of phase inverter) over tube socket away from filament leads.
2. Keep all filament leads close to chassis.
3. Keep leads of R26 (270 ohms at I-F amplifier cathode) short as possible.
4. Connect outside foil of all capacitors as indicated in schematic diágram.
5. Dress output plate bypasses, C 19 and C 20 , as near chassis as possible

Dial Pointer Adjustment.-Rotate tuning condenser fully counterclockwise (plates fully meshed). Adjust indicator pointer so that it is $315 / 16^{\prime \prime}$ from the left hand edge of the dial back plate.



| $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION | $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES | 503356 | 56,000 ohms, $\pm 10 \%, 1 / 2$ watt, R10 |
|  | RCl117A, RCl117C | 503412 | 120,000 ohms, $\pm 10 \%$, $1 / 2$ watt, R7 |
| 76867 | Capacitor-Variable tuning capacitor complete with | 504422 | 220,000 ohms, $\pm 20 \%$, 1/2 watt, Rl, R13, R14 |
|  | drive drum, ClA, ClB | 503433 | 330,000 ohms, $\pm 10 \%, 1 / 2$ watt, R3 |
| 93603 | Capacitor-Ceramic, $56 \mathrm{mmi} ., \mathrm{C} 9$. | 503439 | 390,000 ohms, $\pm 10 \%, 1 / 2$ watt, R8 |
| 77116 | Capacitor-Ceramic, 56 mmf ., C 4 | 503447 | 470,000 ohms, $\pm 10 \%$, 1/2 watt, R16 |
| 76347 | Capacitor-Ceramic, $120 \mathrm{mml} ., \mathrm{Cl3}$ | 504447 | 470,000 ohms, $\pm 20 \%$, $1 / 2$ watt, R18 |
| 76872 | Capacitor-Adjustable trimmer, 2.5-30 mmf., C5 | 503515 | 1.5 megohm, $\pm 10 \%$, $1 / 2 \mathrm{watt}$, R9 |
| 73013 | Capacitor-Electrolytic comprising l section of 80 | 504533 | 3.3 megohm, $\pm 20 \%$, $1 / 2$ watt, R5 |
|  | mfd., 150 volts, 1 section of 30 mid ., 150 volts and 1 section of 10 mfd ., 150 volts, Cl7A, Cl7B, | 504610 | 10 megohm, $\pm 20 \%$, 1/2 watt, Rl2, Rl5 |
|  | C17C | 76869 | Shaft-Tuning knob shaft |
| 73851 | Capacitor-Tubular, paper, 0018 mfd., 1600 volts, | 76870 | Shield-Tube shield for V1, V2, V3 |
|  | C8. C21 (RCl117C only) | 74697 | Socket-Dial lamp socket |
| 73595 | Capacitor-Tubular, paper, . 0022 mfd., 600 volts, C7 | 51955 | Socket-Tube socket, 7 pin, miniature, moulded, |
| 73795 | Capacitor-Tubular, paper, .0033 mfd ., 400 volts, Cl2 | 77115 | saddle-mounted <br> Socket-Tube socket, 7 pin, miniature, moulded |
| 73920 | Capacitor-Tubular, paper, $.0047 \mathrm{mfd} ., 600$ volts, Clo | 76368 | Spring-Drive cord spring |
| 73788 | Capacitor-Tubular, paper, . 0056 mid., 400 volts, Cl4 | 77113 | Switch-Function switch less volume control, S1 Terminal-Phono lead assembly terminal (knife) disconnect type) |
| 73561 | Capacitor-Tubular, paper, $.01 \mathrm{mfd} ., 400$ volts, Cl 6 , C19, C20 | 74918 | Transformer-First I.F. transformer complete with adjustable cores, Tl |
| 73562 | Capacitor-Tubular, paper, 022 mfd., 400 volts, C11, Cl5 | 73037 | Transformer-Second I.F. transformer complete with adjustable cores, T2 |
| 73553 | Capacitor-Tubular, paper, . $047 \mathrm{mfd} ., 400$ volts, C2, C3, C6 | $\begin{aligned} & 77122 \\ & 33726 \end{aligned}$ | Transformer-Output transformer, T3 <br> Washer-" $C^{\prime \prime}$ washer for tuning knob shaft (2 req'd) |
| 75071 | Capacitor-Tubular, moulded paper, 047 mfd ., 400 volts, Cl8 |  | SPEAKER ASSEMBLIES |
| 76866 | Coil-Oscillator coil without adjustable core L2, L3 | 76875 | Speaker-5" x 7" P.M. speaker complete with cone and voice coil ( 3.2 ohms) |
| 78586 | Coil-Oscillator coil with adjustable core L2. L3 |  | MISCELLANEOUS |
| 74192 | Connector-3 contact male connector for shielded pickup cable, Pl | 76876 | Back-Cabinet back and antenna loop assembly (Ll) |
| 77114 | Connector-Single contact male connector for loop lead | 77350 | Cable-Cable and Capacitor assembly (includes C21) (For RCl117A only) |
| 76874 | Control-Volume control, Rll | 74273 | Decal-"Victrolan decal |
| 72953 | Cord-250' Drive Cord Reel (approx. 54" required) | 76877 | Dial-Polystyrene dial scale |
| 70392 | Cord-Power cord and plug | 76588 | Emblem-"RCA Victor" emblem |
| 74838 | Grommet-Power cord strain relief (l set) | 74225 | Escutcheon-Dial escutcheon less dial |
| 72283 | Grommet-Rubber grommet to mount variable tuning capacitor ( $3 \mathrm{req}{ }^{\mathrm{d}}$ ) | $\begin{aligned} & 76878 \\ & 76879 \end{aligned}$ | Escutcheon-Function switch escutcheon Escutcheon-Tuning control escutcheon |
| 11765 | Lamp-Dial lamp-Mazda 51 | 76895 | Foot-Rubber foot (4 req'd) |
| 28452 | Plate-Bakelite mounting plate for electrolytic | 72692 | Hinge-Cabinet lid hinge |
| 76865 | Plate-Dial back plate complete with three (3) pulleys less dial | $\begin{aligned} & 76882 \\ & 76881 \end{aligned}$ | Knob-Function switch knob-light gray <br> Knob-Tuning control knob-(inner) light gray |
| 76868 | Pointer-Station selector pointer | 76883 | Knob-Tuning control knob (outer)-light gray |
| 76871 | Rectifier-Selenium rectifier, SRI | 76880 | Knob-Volume control knob-light gray |
| 73038 | Resistor-Wire wound, 66 ohms, 5 watts, R22 | 71095 | Nut-Speed nut to fasten dial escutcheon |
| 73072 | Resistor-Normal value, 95 ohms, @ $38^{\circ} \mathrm{C}$ with negative temperature coefficient | 72765 | Nut-Speed nut to fasten function switch or tuning control escutcheon |
| 503082 | Resistor-Fixed, composition: <br> 82 ohms, $\pm 10 \%$, $1 / 2$ watt, R19 | 76894 30330 | Nut-\#10-32 spring nut for mounting stud Spring-Retaining spring for volume control knob |
| 503127 | 270 ohms, $\pm 10 \%$, $1 / 2$ watt, R6 | 14270 | Spring-Retaining spring for tuning control or func- |
| 513212 | 1200 ohms, $\pm 10 \%$, 1 watt, R21 |  | tion switch knobs |
| 503218 | 1800 ohms, $\pm 10 \%, 1 / 2$ watt, R20 | 76893 | Stud-\#10-32 $\times 1{ }^{3 / 4}{ }^{\prime \prime}$, special stud to mount changer |
| 503312 | 12,000 ohms, $\pm 10 \%$, $1 / 2$ watt, Rl7 |  | in cabinet (2 req'd) |
| 503339 | 39,000 ohms, $\pm 10 \%$, $1 / 2 \mathrm{watt}, \mathrm{R} 2$ | 71824 | Stud-Stud and screw (1 set) for cabinet lid hinge |
| 503347 | 47,000 ohms, $\pm 10 \%$, 1/2 watt, R4 | 77221 | Support-Lid Support |



Model 2X61 Maroon
Model 2X62 Ivory

## SPECIFICATIONS



REPLACEMENT PARTS

| $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | DESCRIPTION | $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  |  | 503112 | 120 ohms $\pm 10 \%$, $1 / 2$ watt, R4, Rll |
|  | RC 1080C-Model 2X61 RC 1080D-Model 2X62 | 503118 | 180 ohms, $\pm 10 \%$, $1 / 2$ watt, R1, |
| 77143 | Antenna-Antenna loop and back cover assembly- | 503127 513212 | 270 ohms, $\pm 10 \%, 1 / 2$ watt, RlS 1200 ohms, $\pm 10 \%$, 1 watt, R12 |
| 77144 | Antenna-Antenna loop and back cover assembly- | 503312 | 12,000 ohms, $\pm 10 \%$, $1 / 2$ watt, R2 |
| 7144 | A ivory-for Model 2X62 and back cover assembly- | 503322 | 22,000 ohms, $\pm 10 \%$, 1/2 watt, R3 |
| 77143 | Back-Cabinet back cover and antenna loop assembly -moon-for Model 2X61 | $\begin{aligned} & 503356 \\ & 503410 \end{aligned}$ | 56,000 ohms, $\pm 10 \%$, $1 / 2$ watt, R7 100,000 ohms, $\pm 10 \%, 1 / 2$ watt, R16 |
| 77144 | Back-Cabinet back cover and antenna loop assembly | 503422 | 220,000 ohms, $\pm 10 \%$, 1/2 watt, R5, R6 |
|  | -ivory-ior Model 2 X62 | 503447 | 470,000 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$, R1 |
| 77145 |  | 503522 503547 |  |
| 39042 | Capacitor-Ceramic, 47 mmf ., ${ }^{\text {a }} 8$ | 74691 | Shaft-Tuning knob shaft |
| 71924 | Capacitor-Ceramic, 56 mmf ., C 9 | 74697 | Socket-Dial lamp socket |
| 73501 | Capacitor-Ceramic, $150 \mathrm{mml}, \mathrm{Cl2}, \mathrm{Cl3}$ | 54414 76368 | Socket-Tube socket |
| 73473 74662 |  | 76368 33634 | Spring-Drive cord spring Switch-"Radio-Phono' switch, ${ }^{\text {a }}$, |
|  | 150 volts and 1 section of 50 mid., 150 volts, C19R, C19B | 73036 | Transformer-First I.F. transformer complete with adjustable cores, Tl |
| 73595 | Capacitor-Tubular, paper, 0022 mid., 600 volts, Cl 4 | 73037 | Transformer-Second I.F. transformer complete with adjustable cores, T2 |
| 73797 73562 | Capacior-Tubular, paper, . 022 mida., 400 volts, Cls | 73976 | Transformer-Output transformer, T3 |
| 73553 | Capacitor-Tubular, paper, . 047 midd., 400 volts, Cli ${ }^{\text {c }}$ C18 | 35969 | Washer-"C" washer for tuning knob shaft |
| 73551 | Capacitor-Tubular, paper, $0.1 \mathrm{mid} ., 400$ volts, C10, Cll |  | PEAKER ASSEMBL |
| 73794 | Capacitor-Tubular, paper, 0.22 mid., 400 volts, C21 |  | 971495-3 |
| 74693 | Coil-Oscillator coil complete with adjustable cores, L3, L4 | 76391 | Speaker-4" P.M. speaker complete with cone and voice coil ( 3.2 ohms ) |
| 73677 35787 | Coil-R.F. coil complete with adjustable cores, L1, L2 Connector-Phono input connector |  | MISCELLANEOUS |
| 75474 | Connector-Single contact male connector for output transformer leads ( $2 \mathrm{req}{ }^{\prime} \mathrm{d}$ ) | Y2445 | Cabinet-Plastic cabinet-maroon-complete with dial escutcheon for Model 2X61 |
| 38410 72953 | Control-Volume control and power switch, R14, Sl Cord-Drive cord (approx. $50^{\prime \prime}$ overall) | Y2446 | Cabinet-Plastic cabinet-ivory - complete with dial escutcheon for Model 2X62 |
| 70392 | Cord-Power cord and plug | 77146 | Dial-Polystyrene dial scale |
| 73693 | Grommet-Power cord strain relief (l set) | 77241 | Escutcheon-Dial escutcheon |
| 72283 | Grommet-Rubber grommet for mounting tuning capacitor | 74931 | Knob-Control knob-maroon-for Model 2X61 Knob-Control knob-ivory-for Model 2X62 |
| 77142 | Pointer-Station selector pointer | 71116 |  |
| 72602 | Pulley-Drive cord pulley <br> Resistor-Fixed, composition | 74301 | Screw-\#8 $x 1 / 8$ binder head screw (cross recessed) for mounting dial |
| 514033 | 33 ohms, $\pm 20 \%$, 1 watt, R13 | 30900 | Spring-Retaining spring for knobs |

I Stock No. 72953 is a reel containing 250 feet of cord.

NOTE.-If reception is not obtained on d. c. operation, reverse plug in outlet receptacle. On a. c. operation this may reduce hum.
The position of the speaker is adjustable; the correct position is indicated on the illustration "Tube and Trimmer Locations."

## ALIGNMENT PROCEDURE

Cathode Ray Alignment is the preferable method. Connections for the oscilloscope are shown on the schematic diagram.

Output Meter Alignment.-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.-Connect low side of fest oscillator to common wiring in series with $\alpha .1 \mathrm{mf}$. capacitor. If the test oscillator is a.c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent $\alpha-v-c$ action.

| Step | Connect high side of sig. gen. to- | Sig. gen. output | Turn radio dial to- | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Pin No. 4 of 12SK2 (V3 I.F.) | 455 kc | Quiet point near 600 kc | Top and bottom cores of T2 |
| 2 | Pin No. 8 of 12SA7 (V2 conv.) |  |  | Top and bottom cores of Tl |
| 3 | "External Antenna" terminal through 100 mmf . capacitor | 1620 kc | Gang open | C6 Osc. |
| 4 |  | 1400 kc | 1400 kc signal | $\begin{aligned} & \text { CS R.F. } \\ & \text { C4 Ant. } \end{aligned}$ |
| 5 |  | Shunt C5 with 22,000 ohm resistor |  |  |
|  |  | 600 kc | 600 kc | L4 Osc. (Rock gang) |
| 6 |  | Remove 22,000 ohm resistor from C5 |  |  |
|  |  | 600 kc | 600 kc | L2 R.F. |
| 7 |  | Repeat steps 4, 5 and 6 |  |  |



Dial Indicator and Drive Mechanism


Tube and Trimmer Locations

The position of the loop antenna in relation to the chassis affects adjustment of C4. The correct position is indicated on the illustration "Tube and Trimmer Locations."


## Specifications

## Tuning Ranges

Standard Broadcast ("A" Band).......... 540-1600 kc
Short Wave ("C" Band) . . . . . . . . . . . . . . . . . . . 5.8-18.0 nic
Intermediate Frequency ........................... 455 kc
Tube Complement

| (1) | RCA 12BA6 | R. F. Amplifier |
| :---: | :---: | :---: |
| (2) | RCA 12BE6 | Converter |
| (3) | RCA 12BA6 | I. F. Amplifier |
| (4) | RCA 12SQ7 | Det. - A.F. - A.V.C. |
| (5) | RCA 35L6GT | Output |
| (6) | RCA 3525 | Rectifier |

Dial Lamp .............. 2 Type 1490, 3.2 volts, 0.15 amp.
Power Supply Rating
115 volts, D.C. or 50 to 60 cycles, A.C. $\qquad$ 35 watts


Tube and Trimmer Locations


Dial Indicator and Drive Mechanism

## ALIGNMENT PROCEDURE

| Steps | Connect the High Side of The Test Osc. to | Tune Test Osc. | Range Switch to- | Turn Radio Dial to- | Adjust for maximum output |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Pin No. 1 of 12BA6 I.F. amp. tube in series with 0.1 mfd . | 455 kc . | "A" | Quiet Point near 1600 kc . | Top and bottom T2 2nd I.F. Trans. |
| 2 | Pin No. 7 of 12BE6 Converter tube in series with 0.1 mfd . |  |  |  | *Top and bottom T1 1st I.F. Trans. |
| 3 | Pin No. 1 of 12BA6 R.F. tube in series with 0.1 mfd . |  |  |  | L2 wave trap for minimum output. |
| 4 | (Radiated signal) short piece of wire placed near ant. | 1620 kc . | "A" | $\begin{gathered} 1620 \mathrm{kc} . \\ (\text { Cap. min. }) \end{gathered}$ | C-13 "A" Osc. |
| 5 |  | 1400 kc . |  | 1400 kc . | C-2 "A" ant. |
| 6 |  | 600 kc . |  | 600 kc . | L6 "A" Osc. Rocking gang. |
| 7 | Repeat steps 4, 5 and 6. |  |  |  |  |
| 8 | Center terminal on loop antenna Term. board through 47 mfd . Low side to loop primary terminal | 18.2 mc . | "C' | 18.2 mc . <br> (Min. cap.) | **C-12 "C" Osc. |
| 9 |  | 15.2 mc . |  | 15.2 mc . | ***+C-3 'C' Ant. |
| 10 |  | 6.1 mc . |  | 6.1 mc . | ††L-5 "C" Osc. L-1 "C" Ant. |
| 11 | Repeat steps 8, 9, and 10 as necessary. |  |  |  |  |

*Use 18 K resistor across primary when aligning secondary, across sec ondary when aligning primary.
*"Two peaks should be found, use one having lowest capacity.
***Two peaks should be found, use one having highest capacity. Note: Check for image frequences.
$\dagger$ Radio dial tuned to 15.2 mc . as in step 9, tune test osc. to 16.11 mc . where a weaker signal should be heard.
$\dagger \dagger$ Radio dial tuned to 6.1 mc . as in step 10 , tune test osc. to 7.01 mc . where a weaker signal should be heard.

Test Oscillator-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is a. c. operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent $a-v-c$ action.

Output Meter Alignment-If this method is used, connect the meter across the voice coil and turn the receiver volume control to maximum.


MAX. CAP.
CRITICAL LEAD DRESS

[^2]
Schematic Diagram—Chassis RC1085B

## Replacement Parts

| $\begin{aligned} & \text { sTOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  |  |  | Resistor-Fixed, composition:- |
|  | CHASSIS ASSEMBLIES | 514033 | 33 ohms, $\pm 20 \%$, 1 watt. .......................R15 |
|  | RC-1085B | 503082 | 82 ohms, $\pm 10 \%, 1 / 2$ watt.......................R12 |
|  |  | 503112 | 120 ohms, $\pm 10 \%$, 1/2 watt ...................... R14 |
| 77217 | Antenna-Antenna loop and back cover-maroon | 503118 | $180 \mathrm{ohms}, \pm 10 \%$, $1 / 2$ watt . . . . . . . . . . . . . . . . . . . . . . R7 |
| 77217 | Back-Cabinet back cover and antenna loop assembly -maroon | 503127 | 270 ohms, $\pm 10 \%$, $1 / 2$ watt ...................... R20 |
| 71042 | Button-Plug button for trimmer adjustment hole | 503156 <br> 503210 | 560 ohms, $\pm 10 \%, 1 / 2$ watt. ............................... R 6 |
| 77216 | Capacitor-Variable tuning capacitor complete with drive drum | 513212 | 1200 ohms, $\pm 10 \%$, 1 watt........................... 13 |
| 74924 | Capacitor-Mica trimmer, dual $3-35 \mathrm{mml} \ldots . . \mathrm{C}, \mathrm{Cl}, \mathrm{Cl}$ | 503333 | 33,000 ohms, $\pm 10 \%, 1 / 2$ watt .....................R4 |
| 74923 | Capacitor-Mica trimmer, $4-70 \mathrm{mmi} . . . . . . . . . . . . C l 3 ~$ | 503356 | 56,000 ohms, $\pm 10 \%$, $1 / 2$ watt ......................R8 |
| 71924 | Capacitor-Ceramic, 56 mmf ................ C9, Cll | 503410 | 100,000 ohms, $\pm 10 \%, 1 / 2$ watt . . . . . . . . . . . . . . R21 |
| 73501 | Capacitor-Ceramic, $150 \mathrm{mmf} \ldots . . . . . . \mathrm{ClO}, \mathrm{C} 14, \mathrm{C} 23$ | 503422 | 220,000 ohms, $\pm 10 \%$, $1 / 2$ watt ........... R3, R9, R16 |
| 38831 | Capacitor-Mica, 620 mmf . . . . . . . . . . . . . . . . . . C6 | 503447 | 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt . .................... R10 |
| 39665 |  | 504522 | 2.2 megohm, $\pm 20 \%$, $1 / 2$ watt. . . . . . . . . . . . . . . . R5 |
| 73473 | Capacitor-Ceramic, 4700 mmf . . . . . . . . . . . C21 | 504547 | 4.7 megohm, $\pm 20 \%, 1 / 2$ watt ....................Rll |
| 72312 | Capacitor-Electrolytic comprising 1 section of $30 \mathrm{mid} .$, | 74922 | Shaft-Tuning knob shaft |
|  | 150 volts and 1 section of $80 \mathrm{mid} ., 150$ volts | 74697 | Socket-Dial lamp socket |
|  | C17A, Cl7B | 73117 | Socket-Tube socket, 7 pin, miniature for V1, V2, V3 |
| 73595 | Capacitor-Tubular, paper, $0022 \mathrm{mfd} ., 600$ volts... $\mathrm{Cl5}$ | 54414 | Socket-Tube socket, octal, saddle-mounted for V4, V5, V6 |
| 73561 | Capacitor-Tubular, paper, $01 \mathrm{mfd} ., 400$ volts.... C22 |  |  |
| 73797 | Capacitor-Tubular, paper, . 015 mfd ., 600 volts ... Cl6 | 76368 | Spring-Drive cord spring |
| 73562 | Capacitor-Tubular, paper, $022 \mathrm{mid} ., 400$ volts ... C20 | 74921 | Switch-Selector switch ........................... Sl |
| 73553 | Capacitor-Tubular, paper, .047 mfd , 400 volts | 74918 | Transformer-First I.F. transformer complete with adjustable cores |
| 73551 | Capacitor-Tubular, paper, 0.1 mfd .400 volts... Cl 8 | 73037 | Transformer-Second I.F. transformer complete with adjustable cores |
| 73794 | Capacitor-Tubular, paper, 0.22 mfd ., 400 volts.... C24 | 73976 |  |
| 73935 | Clip-Mounting clip for I.F. transformer | 35969 | Washer-" $C$ " washer for tuning knob shaft |
| 74927 | Coil-Antenna coil-"C" band................. Ll |  | Washer-' washer for tuning knob shaft |
| 74925 | Coil-Oscillator coil-"A" band-complete with adjustable core |  | AKER ASSEMBLIES 971495-9W |
| 74926 | Coil-Oscillator coil-"C" band-complete with adjustable core | 77218 | Speaker-4" P.M. speaker complete with cone and |
| 74930 | Coil-Peaking coil (12 muh.) ................. L3, R1 |  | voice coil ( 3.2 ohms) |
| 72618 | Coil-Peaking coil (20 muh.) .............. L4, R18 |  |  |
| 74928 | Coil-Series wavetrap coil ( 455 KC ) complete with adjustable core | Y2447 | MISCELLANEOUS |
| 35787 | Connector-Phono input connector ...............Jl |  | escutcheon |
| 75474 | Connector-Single contact male connector for output transformer leads ( 2 req'd.) | $77220$ | Dial-Polystyrene dial scale |
| 38410 | Control-Volume control and power switch... R19, S2 | 75761 | Grommet-Rubber grommet for mounting speaker (4 |
| 72953 | Cord-250' Drive Cord Reel (approx. $50^{\prime \prime}$ req'd.) |  | req' d .) |
| 70392 | Cord-Power cord and plug | 77219 | Knob-Selector switch knob-maroon |
| 74838 | Grommet-Power cord strain relief (1 set) | 74931 | Knob-Tuning control or volume control and power |
| 33139 | Grommet-Rubber grommet for chassis base |  | switch knob-maroon |
| 16058 | Grommet-Rubber grommet for mounting tuning ca- | 71116 | Lamp-Dial lamp-Mazda 1490 |
| 70980 | pacitor <br> Lead-Antenna lead-"C" band | 74301 | Screw-\#8 x $3 / 8^{\prime \prime}$ cross recessed binder head screw for mounting dial |
| 77142 | Pointer-Station selector pointer | 30900 | Spring-Retaining spring for knobs |



AM-FM Radio Receiver MODEL 2-XF-91

Chassis No. RC1121

Service Data

- 1952 No. 16 -

PREPARED BY RCA SERVICE CO., INC. FOR<br>RADIO CORPORATION OF AMERICA RCA VICTOR DIVIIION CAMDEN, N. J., U. S. A.

## SPECIFICATIONS

| TUNING RANGE |  |
| :---: | :---: |
| Standard Broadcast (AM)....................... . . . 540-1600 kc |  |
| Frequency Modulation (FM) . . . . . . . . . . . . . . . . . . . . . 88-108 mc |  |
| Intermediate Frequency (AM)........................ 455 kc |  |
| Intermediate Frequency (FM).......................... 10.7 mc |  |
| TUBE COMPLEMENT |  |
| (1) RCA 6BJ6 | R.F. Amplifier |
| (2) RCA 19X8 | Mixer-Oscillator |
| (3) RCA 12BA 6 | .I.F. Amplifier |
| (4) RCA 12AU6 | FM I.F. Amplifier |
| (5) RCA 12AU6 | FM I.F. Amplifier |
| (6) RCA 12AL5 | F.M. Detector |
| (7) RCA 12AV6 | AM Det.-AVC-Audio |
| (8) RCA 35C5 | Audio Output |
| RCA Stock No. 77519 | . Selenium Rectifier |

## CIRCUIT DESCRIPTION

This instrument, an AM-FM table radio, has eight tubes, plus selenium rectifier. Individual dials are provided for AM and FM bands. RF circuits, contained on a two tube sub-chassis, include RF amplification for both bands and a combination mixeroscillator circuit. The input circuit to the FM RF stage is broadbanded, and is tuned to the approximate FM band center at 100 mc . The mixer is pentode connected for AM operation; triode connected for FM operation. AM IF circuits use an IF amplifier and conventional diode detector with AVC. FM IF circuits include three IF amplifier stages and a discriminator detector. The two tube audio amplifier has an adjustable tone control circuit with combination bass and treble compensation. A hum-bucking circuit uses the tapped-winding output transformer. An inbuilt AM loop antenna, and line cord FM antenna, allow reception without the use of external antennas. A phono jack at the instrument rear permits the use of a record player attáchment.




TUNING


## POWER SUPPLY RATING

115 volts, $50-60$ cycles, or I 15 volts d.c................... 35 watts

## LOUDSPEAKER

Size and Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $5^{1 / 4^{\prime \prime}}$ P.M.
Voice Coil Impedance
.3 .2 ohms

## AUDIO POWER OUTPUT

Undistorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. 0 watt
Maximum ................................................ . . . . 1.3 watts
TUNING DRIVE RATIO.................... 9:1 ( $41 / 2$ turns of knob)
NET WEIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 lbs.
DIMENSIONS (Overall)
Height..... $81 / 8^{\prime \prime}$ Width..... 13 $9 / 16^{\prime \prime}$ Depth..... . 73/4"

## OPERATING INSTRUCTIONS

RADIO - Turn OFF-VOLUME control about half-way in a clockwise direction to turn receiver $O N$ and provide for medium VOLUME. Allow a short warm-up period. Set FUNCTION control at desired service - AM or FM. Rotate TUNING control to move the pointers to the desired AM or FM frequency. Do not touch the pointers themselves. Adjust VOLUME and TONE controls as desired.

PHONOGRAPH - Connect attachment to PHONO jack at instrument rear. Switch the FUNCTION control to "PH" position. Turn on receiver and adjust VOLUME and TONE controls as desirent



Tube and Trimmer Locations

## ALIGNMENT PROCEDURE

ALIGNMENT INDICATORS:
An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d.c voltage during FM alignment. Connections are specified in the alignment tabulation. An output meter is also necessary to indicate maximum audio output during AM alignment. Connect the output meter across the speaker voice coil. The RCA VoltOhmyst can also be used as an AM alignment indicator, either to measure audio output or to measure AVC voltage. When audio output is being measured, the volume control should be turned to maximum. Adjust tone control to mid-position.

## SIGNAL GENERATOR:

For all alignment operations, connect the low side of the signal generator to the receiver chassis. If output measurement is used for AM alignment, the output of the signal generator should be kept as low as possible to avoid AVC action.

If an FM sweep generator is used for FM alignment, adjust for $10.7 \mathrm{mc}, 0.4 \mathrm{mc}$ sweep. Connect oscilloscope across C26, adjusting discriminator T5 top core for 10.7 mc crossover, and T6 bottom core for balanced peaks. Peak separation should be approximately 330 kc . When aligning the other FM tuned circuits, connect oscilloscope lead through a 220 K resistor to pin 1 of V5. Follow alignment table sequence, adjusting for maximum qain and symmetrical curves.

Tube Socket Voltages

| Tube Type and Function | Tube Element | Pin <br> No. | AM | FM | Phono |
| :---: | :---: | :---: | :---: | :---: | :---: |
| V1 6BJ6 R.F. Amp. | Plate <br> Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$ | $\begin{array}{r} 94 \\ 94 \\ 0.7 \\ -0.5 \end{array}$ | $\begin{array}{r} 92 \\ 92 \\ 0.9 \\ 0 \end{array}$ | $\begin{array}{r} 92 \\ 92 \\ 0.5 \\ -0.6 \end{array}$ |
| V2 19X8 <br> Mixer <br> Osc. | Plate <br> Screen Cathode Grid <br> Plate <br> Grid | $\begin{aligned} & 9 \\ & 8 \\ & 6 \\ & 7 \\ & 3 \\ & 2 \end{aligned}$ | $\begin{array}{r} 75 \\ 75 \\ 0 \\ -1.6 \\ 85 \\ -3.3 \end{array}$ | $\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \\ 85.6 \\ -3 \end{array}$ | $\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \\ 74 \\ -0.3 \end{array}$ |
| V3 12BA6 <br> I.F. Amp. | Plate Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$ | $\begin{array}{r} 94 \\ 94 \\ 0.8 \\ -0.4 \end{array}$ | $\begin{array}{r} 92 \\ 92.3 \\ 0.9 \\ -0.2 \end{array}$ | $\begin{array}{r} 90 \\ 90 \\ 0.8 \\ -0.2 \end{array}$ |
| $\begin{aligned} & \text { V4 12AU6 } \\ & \text { 2nd I.F. } \\ & \text { Amp. (F.M.) } \end{aligned}$ | Plate Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$ | $\begin{array}{r} 95 \\ 95 \\ 0.8 \\ 0 \\ \hline \end{array}$ | $\begin{array}{r} 93.5 \\ 94.1 \\ 0.8 \\ 0 \end{array}$ | $\begin{array}{r} 92 \\ 92 \\ 0.8 \\ 0 \end{array}$ |
| $\begin{aligned} & \text { V5 12AU6 } \\ & \text { 3rd I.F. } \\ & \text { Amp. (F.M.) } \end{aligned}$ | Plate Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$ | $\begin{array}{r} 74 \\ 74 \\ 0.3 \\ -0.2 \end{array}$ | $\begin{array}{r} 73 \\ 73 \\ 0.3 \\ -0.4 \end{array}$ | $\begin{array}{r} 72 \\ 72 \\ 0.4 \\ -0.2 \end{array}$ |
| V6 12AL5 <br> F.M. Det. | Plate Cathode Plate Cathode | 2 5 7 1 | - | -- | - |
| V7 12AV6 A.M. Det. Audio Amp. | Plate <br> Grid Plate (Diode) | $\begin{aligned} & 7 \\ & 1 \\ & 5 \end{aligned}$ | $\begin{array}{r} 58 \\ -0.8 \\ -0.5 \end{array}$ | $\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$ | $\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$ |
| V8 35C5 Audio Output | Plate Screen Cathode Grid | $\begin{gathered} 7 \\ 6 \\ 1 \\ 2.5 \end{gathered}$ | $\begin{array}{r} 130 \\ 96 \\ 5.1 \end{array}$ | $\begin{array}{r} 130 \\ 94.5 \\ 5.0 \end{array}$ | $\begin{array}{r} 130 \\ 94.5 \\ 5.0 \end{array}$ |

Rectifier output should be approximately 139 volts, 7 m ma.


Dial and Drive Cord Drive
AM Alignment FUNCTION SWITCH IN AM POSITION

| Steps | Connect high side of sig. gen. to- | Sig. gen. output | Turn radio dial to- | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{array}{\|c\|} \hline \text { Pin No. } 1 \\ \text { of V3 } \\ \text { in series } \\ \text { with } .01 \mathrm{mfd} . \\ \hline \end{array}$ | 455 kc . (mod.) | Quiet point at high freq. end | T4 bottom core (sec.) <br> T4 top core (pri.) |
| 2 | $\begin{gathered} \text { Tap lug } 4 \\ \text { on AM RF coil } \end{gathered}$ |  |  | T2 bottom core (sec.) T2 top core (pri.) |
| 3 | Short wire placed near loop for radiated signal | 1620 kc . (mod.) | 1620 kc . | CIA-T (osc.) |
| 4 |  | 1400 kc . (mod.) | 1400 kc . | $\begin{aligned} & \text { C37 (ant.) } \\ & \text { ClC-T (ri.) } \end{aligned}$ |
| 5 |  | 600 kc . (mod.) | 600 kc . | L6 (osc.) with 10,000 ohm resistor from ClC RF stator to gnd. (rocking gang) |
| 6 |  |  |  | $\begin{aligned} & \text { L4 (RF) } \\ & \text { with the } 10,000 \\ & \text { ohms removed } \end{aligned}$ |
| 7 | Repeat steps 4, 5 and 6 until maximum gain is obtained |  |  |  |

FM Alignment
FUNCTION SWITCH IN FM POSITION-VOLUME CONTROL MINIMUM-TONE CONTROL CENTER

| Steps | Connect high side of sig. gen. to- | Sig. gen. output | Turn radio dial to | Adjust for max. output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Pin No. 1 of V5-12AU6 | 10.7 mc . | Quiet point at low frequency end | T6 top core for zero d.c. (across C26) T6 bottom core for maximum d.c. (junction of R24 and R25) |
| 2 | Pin No. 1 of V4-12AU6 |  |  | $\dagger$ T5 top core |
| 3 | Pin No. 1 of V3-12BA6 |  |  | T3 top core †"T3 bottom core |
| 4 | ClD Stator |  |  | Tl top core †"Tl bottom core |
| 5 | FM Ant. terminals thru 270 ohm resistor | 90 mc . | 90 mc . | $\dagger$ FM osc. L8 |
| 6 |  | 106 mc . | 106 mc . | $\dagger$ FM R.F. C1D-T |
| 7 |  | 90 mc . | 90 mc . | †FM R.F. L2 |
| 8 |  | Repeat steps 6 and 7 until maximum gain is obtained |  |  |
| 9 |  | 100 mc . | 100 mc. | $\dagger$ FMAnt. coil L5 |

"If necessary for accurate peaking, the winding in the same transformer not beinc peal:ed should be loaded with a 680 ohm resistor +Connect Voltohmyst to pin 1 of V5 through a 220 K isolating resistor with $1 / 4$ inch maximum exposed lead at grid terminal end Output cajusted for 1 volt d.c. Dress Voltohmyst lead away from input circuits.
Oscillator frequency is above signal frequency on both AM and FM

CRITICAL LEAD DRESS
13．Filament chokes L10 and Lil should be raised a minimum
Use varnished tubing only on choke and coupling cond． Condenser C2 should have lead on antenna terminal end not more than $3 / 16^{\prime \prime}$ long to prevent possible contact of lead or body to＂Hot＂chassis． vinyl，to prevent breakthrough crossing chassis edge． be dressed away from filament choke Lilo．
 have a minimum of three twists．

CRITICAL LEAD DRESS
8．Dress C28 down on chassis and against terminal board． Run filament lead between V5 and V6 on side of V6 socket

9．All ceramic button 4700 uf condensers should have leads 10．Green lead from AM oscillator stator gang terminal to AM oscillator coil should be dressed against front of shield box RF plate choke L1，should be dressed at least $1 / \mathbf{s}^{\prime \prime}$ away Mixer grid condenser C7 should be dressed away from FM oscillator gang stator terminal and away 1．All FM IF Transformer grid and plate leads should be short C26 leads should be kept as short as possible． 4．R24 and R25 leads should be kept as short as possible on 5．C27 should ground in hole near terminal 5 of V6 with short 6．AM oscillator coil should not be tilted over toward function Switch when wrapping short bus leads to Keep leads V5 pin 5，to T6 term 1，as short as possible and low near chassis．
ウ ゥ ャ
6


Acceptable value of R 9 may be 2 to 50 megohms．


Schematic Circuit Diagram－Chassis No．RC1121

Simplified Schematic-"FM" Position

REPLACEMENT PARTS

| $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | $\begin{gathered} \text { PART } \\ \text { DESCRIPTION } \end{gathered}$ | STOCK No. | PART DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES | 77519 | Rectifier Selenium rectifier, 100 MA (CR1) |
|  | RC1121 | 76346 | Resistor-Wire wound, 1200 ohms, 4 watts (R13) |
| 77520 | Bushing-Laminated bushing (5/8" long with shoul- | 503022 | Resistor-Fixed, composition: 22 ohms, $\pm 10 \%, 1 / 2$ watt (R27) |
|  | der) for station selector pointer pulley | 503068 | 68 ohms, $\pm 10 \%$, 1/2 watt (R16, R30) |
|  | assembly. | 503112 | 120 ohms, $\pm 10 \%$, 1/2 watt (R19, R21) |
| 77522 | Capacitor-Variable tuning capacitor (ClA. ClB, ClC, ClD, ClE, ClA-T, ClC-T, ClD-T) | 503115 | 150 ohms, $\pm 10 \%, 1 / 2$ watt (R12) |
| 70997 | Capacitor-Fixed, ceramic, non-insulated, 5.6 mmf ., | $\begin{aligned} & 503122 \\ & 503227 \end{aligned}$ | 220 ohms, $\pm 10 \%$, $1 / 2$ watt (Rl, R 2700 ohms, $\pm 10 \%$, $1 / 2$ watt (R4) |
|  | $\pm 1 \mathrm{mmf}$., 500 volts D.C. Temp. coef. $=0$ (C2) | 503282 | 8200 ohms, $\pm 10 \%$, 1/2 watt (R31) |
| 77530 | Capacitor-Fixed, ceramic, non-insulated, 7 mmf ., | 503310 | 10,000 ohms, $\pm 10 \%, 1 / 2$ watt (R6, R14, R23) |
|  | $\pm .5 \mathrm{mmi} ., 500$ volts D.C. Temp. coel. $=80$ (Cls) | 503318 | 18,000 ohms, $\pm 10 \%, 1 / 2$ watt (R3) |
| 33380 | Capacitor-Fixed, ceramic, non-insulated, 12 mmf ., $\pm 5 \%, 500$ volts D.C. Temp. coef. $=0$ (C6) | 503347 502410 | 47,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R18) |
| 77531 | Capacitor-Fixed, ceramic, non-insulated, 47 mmf ., $\pm 10 \%, 500$ volts D.C. Temp. coef. = 0 (Cl7) | 503410 | 100,000 ohms, $\pm 10 \%$, 1/2 watt (R15, R22, R26) |
| 77532 | Capacitor-Fixed, ceramic, non-insulated, 130 mmi. | 503422 503447 | 220,000 ohms, $\pm 10 \%, 1 / 2$ watt (R10) $470,000 \mathrm{hms}, \pm 10 \%, 1 / 2$ watt (R11) |
|  | $\pm 21 / 2 \%$, 500 volts D.C. Temp. coef. $=-750$ (C18) | 503522 | 2.2 megohm, $\pm 10 \%$, $1 / 2$ watt (R5) |
| 39636 | Capacitor-Fixed, mica, 220 mmf ., 500 volts D.C. (C7) | 503539 | 3.9 megohm, $\pm 10 \%, 1 / 2$ watt (R2) |
| 75792 | Capacitor-Fixed, ceramic, insulated, 330 mmf ., $\pm 20 \%, 500$ volts D.C. High K (C9) | $503547$ | 4.7 megohm, $\pm 10 \%, 1 / 2$ watt (R8) |
| 76992 | Capacitor-Fixed, mica, 470 mmf ., 300 volts D.C. (C26, C31) | 75192 | Shield-Tube shield for V1 |
| 39644 | (C26, C31) Capacitor-Fixed, mica, 470 mmf., 500 volts D.C. (C3) | 76331 | Shield-Tube shield for V2 |
| 39644 73473 | Capacitor-Fixed, mica, 470 mms, 4700 mmf ., $+100 \%$, | 77087 | Socket-Tube socket, 7 pin, miniature, moulded, saddle mounted for Vl |
|  | $-0 \%, 500$ volts D.C. High K disc (C5, C8, C19, C21, C22, C23, C24, C25, C29, С30, С36, С38, C39) | 76336 | Socket-Tube socket, 9 pin, miniature, moulded, saddle mounted for V2 |
| 73520 | Capacitor-Electrolytic comprising 1 section of 80 mid., 150 volts and 1 section of 50 mfd ., 150 volts (C33A, C33B) | 73117 31970 | Socket-Tube socket, 7 pin, miniature, wafer for V3, V4, V5, V6، V7, V8 |
| 77533 | Capacitor-Fixed, miniature, tubular, paper, . 001 | 31970 | Spring-Dial cord spring |
|  | mfd., 200 volts D.C. (C27) | 31418 77524 | ing |
| 73920 | Capacitor-Fixed, tubular, paper, 0047 mdd ., 600 | 77517 | Transformer-Output transformer (T7) |
| 73561 | volts (Cl2, Cl3, C28) <br> Capacitor-Fixed, tubular, paper, $01 \mathrm{mfd} ., 400$ volts | 77511 | Transformer-Ratio detector transformer - complete with adjustable cores (T6) |
| 73594 | (Cl0) <br> Capacitor-Fixed, tubular, paper, 01 mid., 600 volts (Cl4) | 76335 | Transformer-First I.F. transformer-A.M.-complete with adjustable cores (T2) |
| 73562 | Capacitor-Fixed, tubular, paper, . $022 \mathrm{mfd} ., 400$ volts (Cll) | 77514 76328 | Transformer-First I.F. transformer-F.M.-complete with adjustable cores (Tl) |
| 73558 | Capacitor-Fixed, tubular, paper, . 047 mid ., 200 | 76328 | Transformer-Second I.F. transformer-A.M.-complete with adjustable cores (T4) |
| 75071 | Capacitor-Fixed, tubular, moulded, . $047 \mathrm{mfd} ., 400$ volts (C32) | 77513 | Transformer-Second I.F. transformer-F.M.-complete with adjustable cores (T3) |
| 73551 | Capacitor-Fixed, tubular, paper, 0.1 mid., 400 volts (C35) | 77512 33726 | Transtormer-Third I.F. transtormer-F.M.-complete with adjustable cores (T5) |
| 73935 | Clip-Mounting clip for I.F. transformers | 3372 | Washer-" washer for station selector pointer pulley and shaft or tuning knob shaft |
| 77538 | Coil-Antenna coil-F.M. (L5) | 34373 | Washer-"C" washer to fasten idler pulleys |
| 77534 | Coil-Choke coil (Ll) |  | Washer ${ }^{\text {c }}$ |
| 77535 | Coil-Choke coil (L9, L10, Lll) |  | SPEAKER ASSEMBLIES |
| 77526 | Coil-Oscillator coil-A.M.-complete with adjustable core (L6, L7) |  | 971933-1 |
| 77537 | Coil-Oscillator coil-F.M. (L8) | 77539 | Speaker-51/4" P.M. speaker complete with cone |
| 77525 | Coil-RF coil-A.M.-complete with adjustable core (L3, L4) |  | and voice coil (3.2 ohms) |
| 77536 | Coil-RF coil-F.M. (L2) |  | MISCELLANEOUS |
| 77528 | Connector-Combination phono input connector and antenna terminal board (Jl) | 77543 | Antenna-Antenna loop and back assembly complete with power cord (includes C37) |
| 75474 | Connector-Single contact male connector for speaker lead | 77543 | Back-Cabinet back complete with loop, capacitor and power cord (includes C37) |
| 77529 | Connector-Two (2) contact male connector for power cord | Y2467 | Cabinet-Maroon plastic cabinet less "RCA Victor" emblem and function decal |
| 77516 | Control-Tone control (R9) | 77544 | Capacitor-Adjustable, mica trimmer, 3-30 mmi. |
| 77515 | Control-Volume control and power switch (R7, S2) |  | (C37) |
| 72953 | 250 ' Dial Cord Reel-Dial cord (approx, 49" overall required) | $\begin{aligned} & 77545 \\ & 77542 \end{aligned}$ | Cord-Power cord and plugs Decal-Control function decal |
|  | Drive cord (approx. $11{ }^{\prime \prime}$ overall required) | 77033 | Emblem-"RCA Victor" emblem |
| 77523 | Drum-Variable tuning capacitor drive drum and hub | $\begin{aligned} & 77548 \\ & 77547 \end{aligned}$ | Knob-Function switch knob <br> Knob-Tuning control, tone control or volume con- |
| 16058 | Grommet-Rubber grommet for mounting RF shelf (4 required) | 73203 | trol and power switch knob <br> Nut-Speednut to fasten "RCA Victor" emblem to |
| 77521 | Nut-Speednut for station selector pointer pulley and shaft bushing | 77541 | cabinet. <br> Pointer-Station selector pointer-A.M. |
| 72602 | Pulley-Idler pulley for indicator cord (2 required) | 77540 | Pointer-Station selector pointer-F.M. |
| 77510 | Pulley-Pulley and shaft (split) for station selector pointers | $\begin{aligned} & 73992 \\ & 76837 \end{aligned}$ | Retainer-Knob retainer (knob to cabinet) <br> Spring-Retaining spring for knobs (knob to shaft) |



AM-FM Radio Receiver
2-XX-931 SERRIES
Chassis No. RC1121A
Service Data

- 1952 No. 17 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## SPECIFICATIONS

TUNING RANGE

| Standard B | 600 kc |
| :---: | :---: |
| Frequency Modulation (FM) | $88-108 \mathrm{mc}$ |
| Intermediate Frequency ( AM ) | 455 kc |
| Intermediate Frequency (FM) | 10.7 mc |

TUBE COMPLEMENT


## CIRCUIT DESCRIPTION

This instrument, an AM-FM table radio, has eight tubes, plus selenium rectifier. Individual dials are provided for AM and FM bands. RF circuits, contained on $\alpha$ two tube sub-chassis, include RF amplification for both bands and a combination mixeroscillator circuit. The input circuit to the FM RF stage is broadbanded, and is tuned to the approximate FM band center at 100 mc . The mixer is pentode connected for AM operation; triode connected for FM operation. AM IF circuits use an IF amplifier and conventional diode detector with AVC. FM IF circuits include three IF amplifier stages and a discriminator detector. The two tube audio amplifier has an adjustable tone control circuit with combination bass and treble compensation. A hum-bucking circuit uses the tapped-winding output transformer. An inbuilt AM loop antenna, and line cord FM antenna, allow reception without the use of external antennas. A phono jack at the instrument rear permits the use of a record player attachment.


FUNCTION
TUNING

ma.1s.o

POWER SUPPLY RATING
115 volts, $50-60$ cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 watts
CAUTION: DO NOT OPERATE ON D.C.


## OPERATING INSTRUCTIONS

RADIO - Turn OFF-VOLUME control about half-way in a clockwise direction to turn receiver $O N$ and provide for medium VOLUME. Allow a short warm-up period. Set FUNCTION control at desired service - AM or FM. Rotate TUNING control to move the pointers to the desired AM or FM frequency. Adjust VOLUME and TONE controls as desired.

PHONOGRAPH - Connect attachment to PHONO jack at instrument rear. Switch the FUNCTION control to " PH " position. Turn on receiver and adjust VOLUME and TONE controls as desired.



Tube and Trimmer Locations

## ALIGNMENT PROCEDURE

## ALIGNMENT INDICATORS：

An RCA VoltOhmyst or equivalent meter is necessary for measuring developed d－c voltage during FM alignment．Connec－ tions are specified in the alignment tabulation．An output meter is also necessary to indicate maximum audio output during AM alignment．Connect the output meter across the speaker voice coil．The RCA VoltOhmyst can also be used as an AM align－ ment indicator，either to measure audio output or to measure AVC voltage．When audio output is being measured，the vol－ ume control should be turned to maximum．Adjust tone control to mid－position．

## SIGNAL GENERATOR：

For all alignment operations，connect the low side of the signal generator to the receiver chassis．If output measurement is used for AM alignment，the output of the signal generator should be kept as low as possible to avoid AVC action．

If an FM sweep generator is used for FM alignment，adjust for $10.7 \mathrm{mc}, 0.4 \mathrm{mc}$ sweep．Connect oscilloscope across C26， adjusting discriminator T6 top core for 10.7 mc crossover，and T6 bottom core for balanced peaks．Peak separation should be approximately 330 kc ．When aligning the other FM tuned cir－ cuits，connect oscilloscope lead through a 220 K resistor to pin 1 of V5．Follow alignment table sequence，adjusting for maximum gain and symmetrical curves．

Tube Socket Voltages

| $\begin{gathered} \text { Tube Type } \\ \text { and } \\ \text { Function } \end{gathered}$ | Tube Element | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | AM | FM | Phono |
| :---: | :---: | :---: | :---: | :---: | :---: |
| V1 6BJ6 <br> H．F．Amp． | Plate <br> Screen Cathode Grid | $\begin{aligned} & \hline 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$ | $\begin{array}{r} 94 \\ 94 \\ 0.7 \\ -0.5 \end{array}$ | $\begin{array}{r} 92 \\ 92 \\ 0.9 \\ 0 \end{array}$ | $\begin{array}{r} 92 \\ 92 \\ 0.5 \\ -0.6 \end{array}$ |
| $\text { V2 } 19 \times 8$ <br> Mixer | Plate Screen Cathode Grid | $\begin{aligned} & 9 \\ & 8 \\ & 6 \\ & 7 \end{aligned}$ | $\begin{array}{r} 75 \\ 75 \\ 0 \\ -1.6 \end{array}$ | $\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \end{array}$ | $\begin{array}{r} 80 \\ 80 \\ 0 \\ -2.3 \end{array}$ |
| Osc． | Plate Grid | $\begin{aligned} & 3 \\ & 2 \end{aligned}$ | $\begin{array}{r} 85 \\ -3.3 \end{array}$ | 85.6 -3 | $\begin{array}{r} 74 \\ -0.3 \end{array}$ |
| V3 12BA6 <br> I．F．Amp． | Plate Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$ | $\begin{array}{r} 94 \\ 94 \\ 0.8 \\ -0.4 \end{array}$ | $\begin{array}{r} 92 \\ 92.3 \\ 0.9 \\ -0.2 \end{array}$ | $\begin{array}{r} 90 \\ 90 \\ 0.8 \\ -0.2 \end{array}$ |
| $\begin{aligned} & \text { V4 12AU6 } \\ & \text { 2nd I.F. } \\ & \text { Amp. (F.M.) } \end{aligned}$ | Plate Screen Cathode Grid | $\begin{aligned} & \hline 5 \\ & 6 \\ & 7 \\ & 1 \end{aligned}$ | $\begin{gathered} 95 \\ 95 \\ 0.8 \\ 0 \end{gathered}$ | $\begin{array}{r} 93.5 \\ 94.1 \\ 0.8 \\ 0 \end{array}$ | 92 92 0.8 0 |
| V5 12AU6 3rd I．F． Amp．（F．M．） | Plate <br> Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 7 \\ & 7 \end{aligned}$ | $\begin{array}{r} 74 \\ 74 \\ 0.3 \\ -0.2 \end{array}$ | $\begin{array}{r} 73 \\ 73 \\ 0.3 \\ -0.4 \end{array}$ | 72 72 0.4 -0.2 |
| V6 12AL5 <br> F．M．Det． |  | 2 5 7 1 | 二 | 二 | 二 |
| V7 12AV6 A．M．Det． Audio A mp | Plate Grid Plate （Diode | $\begin{aligned} & \hline 7 \\ & 1 \\ & 5 \end{aligned}$ | $\begin{array}{r} 58 \\ -0.8 \\ -0.5 \end{array}$ | $\begin{array}{r} 57 \\ -0.8 \\ -0.3 \end{array}$ | 57 -0.8 -0.3 |
| $\begin{aligned} & \text { V8 35C5 } \\ & \text { Audio } \\ & \text { Output } \end{aligned}$ | Plate <br> Screen Cathode Grid | $\begin{gathered} 7 \\ 6 \\ 1 \\ 1-5 \end{gathered}$ | $\begin{array}{r}130 \\ 96 \\ 5.1 \\ \hline\end{array}$ | $\begin{array}{r} 130 \\ 94.5 \\ 5.0 \end{array}$ | 130 94.5 5.0 |

Rectifier output should be approximately 139 volts， 70 ma ．


Dial and Drive Cord Drive

AM Alignment
FUNCTION SWITCH IN AM POSITION

| Steps | Connect high side of sig． gen．to－ | Sig．gen． output | Turn radio dial to | Adjust for peak output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Pin No． 1 of V3 in series with .01 mid． | 455 kc ． （mod．） | Quiet point at high freq．end | T4 bottom core（sec．） T4 top core（pri．） |
| 2 | Tap lug 4 on AM RF coil |  |  | T2 bottom core（sec．） T2 top core（pri．） |
| 3 | Short wire placed near loop for radiated signal | $\begin{aligned} & 1620 \mathrm{kc} . \\ & \text { (mod.) } \end{aligned}$ | 1620 kc. | ClA－T（osc．） |
| 4 |  | 1400 kc ． （mod．） | 1400 kc. | $\begin{aligned} & \text { C37 (ant.) } \\ & \text { C1C-T (ri.) } \end{aligned}$ |
| 5 |  | 600 kc ． （mod．） | 600 kc ． | L6（ose．）with $10,000 \mathrm{ohm}$ resistor from ClC RF stator to gnd． （rocking gang） |
| 6 |  |  |  | L 4 （RF） with the 10,000 ohms removed |
| 7 | Repeat steps 4， 5 and 6 until maximum gain is obtained |  |  |  |

FM Alignment
FUNCTION SWITCH IN FM POSITION－VOLUME CONTROL MINIMUM－TONE CONTROL CENTER

| Steps | Connect high side of sig． gen．to－ | Sig．gen． output | Turn radio dial to－ | Adjust for max．output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Pin No． 1 of V5－12AU6 | 10.7 mc ． | Quiet point at low frequency end | T6 top core for zero d．c． （across C26） T6 bottom core for maximum d．c． （junction of R24 and R25） |
| 2 | $\begin{aligned} & \text { Pin No. } 1 \text { of } \\ & \text { V4-12A } \end{aligned}$ |  |  | $\dagger$ T5 top core |
| 3 | $\begin{gathered} \text { Pin } N o .1 \text { of } \\ \text { V3-12BA } 6 \end{gathered}$ |  |  | $\begin{aligned} & \text { T3 top core } \\ & \dagger * \text { I3 bottom } \\ & \text { core } \end{aligned}$ |
| 4 | CID Stator |  |  | T1 top core †＇Tl bottom core |
| 5 | FMAnt． terminals thru 270 ohm resistor | 90 mc ． | 90 mc ． | $\dagger$ FM osc． L． 8 |
| 6 |  | 106 mc. | 106 mc ． | †FMR．F． ClD．T |
| 7 |  | 90 mc ． | 90 mc ． | $\dagger \underset{\mathrm{I}, 2}{ } \mathrm{~F} . \mathrm{F} .$ |
| 8 |  | Repeat steps 6 and 7 until maximum gain is obtained |  |  |
| 9 |  | 100 mc ． | 100 mc ． | †FM Ant． coil 15 |

＊If necessary for accurate peaking，the winding in the same trans－ former not being peated should be loaded with a 680 ohm resistor． ＋Connect Voltohmyst to pin 1 of V5 through a 220 K isolating re sistor with $1 / 4$ inch maximum exposed lead at grid terminal end． Output adjusted for 1 volt d．c．Dress VoltOhmyst lead away from nput circuits．
Oscillator frequency is above signal frequency on both $\mathbb{A M}$ and FM
CRITICAL LEAD DRESS
 Use varnished tubing only on choke and coupling cond leads coming through shield partition slot. Condenser C2 should have lead on antenna terminal end

6. Condensers C3 and C35 should use varnished tubing, not Oscillator grid condenser $C 17$ should have short leads and be dressed away from filament choke L10. have a minimum of three twists. Run filament lead between V5 and V6 on side of V6 socket All ceramic button 4700 uuf condensers should have leads 10. Green lead from AM oscillator stator gang terminal to AM oscillator coil should be dressed against front of shield box 11. RF plate choke L1, should be dressed at least $1 / \mathbf{a}^{\prime \prime}$ away from AM R.F. coil L4 and at least $1 / 8^{\prime \prime}$ from shield. Mixer grid condenser C7 should be dressed away from FM
oscillator gang stator terminal and away from leads connecting to terminals 8 and 9 of V2 socket.

Schematic Circuit Diagram-Chassis No. RC1121A


[^3]2. C26 leads should be kept as short as possible.
3. C32 leads should be kept as short as possible. near and direct as possible and kept low, near chassis. r


[^4]

Simplified Schematic-"FM" Position



MODELS ${ }^{\text {Rearas Demanterar }} 15-\mathrm{E}-1$

Chassis No. RS-139A, Record Changer RP-190A-1 and Two Speed Manual Turntable SERVICE DATA - 1951 No. 7 -

PREPARED BY RCA SERVICE CO., INC. FOR

## RADIO CORPORATION OF AMERICA <br> RCA VICTOR DIVISION <br> CAMDEN, N. J., U. S. A.

## Specifications

| Tube Complement |  |
| :---: | :---: |
| 1. RCA 6SQ7 | A.F. Amplifier |
| 2. RCA 6SQ7 | Ph . Inverter |
| 3. RCA 6V6GT | Output |
| 4. RCA 6V6GT | Output |
| 5. RCA 5Y3GT | Rectifier |
| Power Supply Rating |  |
| Power Output <br> Undistorted <br> 10 watts | Maximum .....ll watts |
| Loudspeaker |  |
| Size and type | 12 inch P.M. |
| Voice coil impedance | 3.2 ohms @ 400 cycles |
| Pilot Lamp | \# 51, 6-8 volts, . 2 amp |



## RP-190A-1 Record Changer:

The record changer will play up to fourteen 45 r.p.m. records having a $1 / 1 / 2$ inch center hole It is identical to RP. 190-2a record changer except for the omission of the power switch.
FOR RECORD CHANGER SERVICE DATA REFER TO RP-190 SERIES SERVICE DATA.

Manual Turntable:
The manual turntable will play one $331 / 3$ or 78 r.p.m. record up to twelve inches in diameter. The speed is controlled by a knob on the motorboard. The correct stylus is selected by a lever knob on the end of the pickup arm.

## VOLUME CONTROL STOP

This instrument is provided with a volume control stop to provide a pre-determined "maximum" volume level and yet allow normal volume control operation up to the predetermined "maximum."

Adjusting "Maximum" Volume Level:
With the instrument operating, remove the volume control knob. Note the extending ends of two coil springs cone light and one heavy) on the volume control shaft.

## TO INCREASE

Turn control fully clockwise and then, with end of a pencil or similar item, press counterclockwise on the end of the LIGHT spring. Rotate control shaft clockwise until desired level is reached. Release pressure on the spring and replace knob.

## TO DECREASE

Turn control fully clockwise and then, wath the end of a pencil or similar item, press clockwise on the end of the HEAVY spring. Rotate control counterclockwise to a very low level. Increase volume to desired level as described above.



Speed Control Lever Assembly


Controls

MANUAL MOTORBOARD SERVICE HINTS
(a) Stylus force of pickup arm should be 8 to 10 grams. Insufficient force resulting from use of incorrect spring or pickup may atlow stylus to jump grooves. Excessive force may cause distortion and record wear.
(b) Pickup arm pivots should be adjusted to provide a minimum of side play - yet allowing free vertical movement. Binding may cause stylus to jump groove.
(c) Inner surface of turntable rim must be clean and smooth. Idler wheel and drive pulleys must have no rough spots and be free of oil and grease. Roughness may cause rumble - oil may cause wow.
(d) Lubricate idler wheel and drive pulleys with a good quality light oil - one or two drops for each is sufficient.
(e) The pickup arm pivot shaft may be lubricated with a film of light oil. The pivot post rubber mounting should not be excessively compressed. The bearing nut should be tightened only enough to elevate the pivot shatt $1 / 32^{\prime \prime}$ above the post with the steel ball in place. This ball must be in place to permit free lateral pickup arm movement.

## CRITICAL, LEAD DRESS

. Dress all filament leads next to chassis.
2. Dress power cord lead, from strain relief grommet to on-of! switch, along side apron.
Dress A.C. leads at ON-OFF switch away from all audio components.
4. Dress output tube plate leads next to chassis.
5. Dress C8 next to chassis and wire with as short leads as practical.
6. Dress lead from arm of low frequency tone control to grid of V-3 away from A.C, leads at ON-OFF switch.

## MODIFICATION

Although designed and assembled for 3-speed operation provision is made for modification of this instrument for 33 and 45 rpm performance only. To eliminate the use of the 78 SPEED control and 78 stylus, proceed as follows:

## To alter SPEED SELECTOR control

Tie both pickup arms to their rests and place the instru ment on its left side (not on control knobs) on a table. Through the opening in the bottom of the cabinet, disconnect the black power plug and the phono plug from its chassis connection. While supporting the top panel, remove the hex head screw and washer, centrally located beneath the top panel at the back of the cabinet.

Place cabinet upright, move SPEED SELECTOR to 45 position, then lift off top panel assembly
From the back, the switch can be viewed from beneath the top panel and conversion effected as shown below. Bend the 33 stop to the vertical position of the adjacent 78 stop. The speed change lever (on left) should now halt against the vertical 33 stop, eliminating the 78 speed position.


Replace top panel (rubber supporting grommets must be in place) and the hex head screw and washer.
NOTE: It is important that screw be tightened until top panel can be lifted approximately $1 / 16$ inch only. The board should float freely on its mounts; there must be no restriction of movement.

Reconnect the black power plug and insert phono plug in the chassis socket. Place the instrument in the upright position and untie pickup arms.

To adapt STYLUS CONTROL LEVER -
With lever in 33 position, loosen left holding screw just enough to turn lug to the position shown below and tighten screw. This will prevent the 78 stylus from being turned for use.


Before Operation -
Remove SPEED SELECTOR knob and turn over the CIRCULAR PLATE which will now show only 33 OFF 45 positions. Replace knob on shaft

Reverse the left INSTRUCTIONS PLATE to read for 33 operation only,


| STOCK <br> No. | DESCRIPTION | $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | TWO SPEED MANUAL TURNTABLE Pickup Arm Assembly 15-E | 73797 | Capacitor-Tubular, paper, . $015 \mathrm{mid} ., 600$ volts ......... C3 |
| 76731 | Arrn-Pickup arm shell-less cartridge, mount, and cable | 73562 | Capacitor-Tubular, paper, 022 mid., 400 volts ....C4, C9 |
| 76734 | Bracket-Pickup arm mounting bracket complete with pivot | 35787 | Connector-Phono input connector (socket) ...............ll |
| 76737 | bin and counterbalance spring | 72776 | Connector-Single contact male connector for speaker leads (2 req'd) |
| 76738 | Knob-Stylus selector knob complete | 30868 | Connector-2 contact female connector for motor power. Pl |
| 76732 | Mount-Pickup mount and swivel assembly | 38405 | Control-H.F. tone control .................................9 |
| 74230 | Nut-\#00-112 nut and washer to mount stylus | 38402 | Control-L.F. tone control and power switch .......R10, Sl |
| 75475 | Pickup-Dual stylus pickup crystal cartridge complete with two stylus | $\begin{aligned} & 71980 \\ & 74838 \end{aligned}$ | Control-Volume control-less stop .......................... R3 Grommet-Power cord strain relief (1 set) |
| 75366 | Pin-Pivot pin for counterbalance spring | 76684 | Resistor-Wire wound, 0.47 ohms, 1 watt ............R16, R17 |
| 75357 | Pivot-Pickup arm pivot (2 req'd) |  | Resistors-Fixed, composition |
| 76733 | Post-Pickup arm pivot post and stop pin | 523127 | 270 chms, $\pm 10 \%$, 2 watts ...............................R15 |
| 76736 | Ring-Retaining ring for pickup arm mounting bracket | $523268$ | 6800 ohms, $\pm 10 \%$, 2 wat is ............................. ${ }^{\text {R } 5}$ |
| 71097 | Screw-\#4 $\times 1 / 4^{\prime \prime}$ self tapping screw for pickup mount and swivel (4 req'd) | 503282 503315 | 8200 ohms, $\pm 10 \%$, $1 / 2$ watt ..................................... Rl3 <br> 15,000 ohms, $\pm 10 \%$, $1 / 2$ watt ................................ |
| 76735 | Spring-Counterbalance spring | 503327 | 27,000 ohms, $\pm 10 \%$, 1/2 watt ............................... 2 |
| 75497 | Stylus-Osmium tip stylus for 78 RPM (not coded) | 503427 | 270,000 ohms, $\pm 10 \%$, $1 / 2$ watt .................. Re, R7, R11 |
| 75496 | Stylus-Osmium tip stylus for $331 / 3$ RPM (coded red) | 503447 | 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt ....................R12, R14 |
|  | Pickup \& Arm Assemblies 15-E-1 | 504610 31364 | 10 megohm, $\pm 20 \%$, $1 / 2$ watt ...................... R4, R8 |
| 77977 | Arm-Pickup arm shell (plastic) | 31364 | Socket-pilot lamp socket |
| 76947 | Bearing-Pickup arm mounting bracket pivot bearing | 54414 |  |
| 77978 | Bracket-Pickup arm mounting bracket | $76695$ | Stop-Volume control adjustable stop (two springs) <br> Transformer-Output transformer |
| 75810 | Bracket-Pickup arm weight adjustment bracket (slide) | 76695 75566. | Transformer-Output transformer $\ldots \ldots . . . . . . . . . . . . .$. T2 Transformer-Power transformer, 117 volt 60 cycle ......Tl |
| 77982 | Cable-Three wire cable complete with conne Grommet-Rubber gronmet for pickup arm post |  | FUNCTION SWITCH ASSEMBLY |
| 76738 | Knob-Stvlus selector knob | 72437 | Cable-Shielded audio cable complete with pin plug |
| 7423 | Nut-\#00-112 nut and washer to mount stylus |  |  |
| 77779 | Pickup-Crystal pickup complete with two (2) styli | 75643 | Capacitor-Tubular, paper, . 001 ml , 1000 volts ...... Cl01 |
| 77979 | Post-Pickup arm pivot post | 30868 | Connector-Two contact female connector for motor |
| 76898 | Screw-\#2-56 $\times 3 / 16^{\prime \prime}$ headless set screw for stylus selector knob | 30870 | cables <br> Connector-Two contact male connector for motor power |
| 76899 | Screw-\#6-32 x $1 /$ a $^{\prime \prime}$ round head screw for pickup arm weight adjustment bracket | 76693 | cable Lever-Speed change lever (mounted on switch shaft) |
| 76948 | Screw-Pickup arm mounting bracket pivot screw |  | Resistors-Fixed composition: |
| 77980 | Shaft-Pickup arm pivot shaft | 503318 503356 | 18,000 ohms, $\pm 10 \%, 1 / 2$ watt .......................... R103 56,000 ohms, $\pm 10 \%, 1 / 2$ watt |
| 75809 | Spring-Pickup arm counterbalance spring | 503510 | 1.0 megohm, $\pm 10 \%$, 1/2 watt ..........................................104 |
| 75497 | Stylus-Osmium tip stylus (.003 r. uncoded) for 78 r.p.m. | 503515 |  |
| 77899 | Stylus-Sapphire tip stylus (. 001 r. coded red) for $331 / 3$ r.p.m. | 75694 | Switch-Function switch-less speed change <br> lever .........................................S101, S102, S103 |
| 77976 | Swivel-Pickup cartridge mount and swivel assembly |  |  |
| 77.983 | Washer- "C" washer for lower end of pickup arm pivot shaft |  | 971494-2W RLI11B |
| 75876 | Washer-" "C" washer for upper end of pickup arm post and shaft | 75023 | Cap-Dust cap RMA274 |
| 77981 | Washer-Metal washer for pickup arm post and shatt Motor and Turntable Assembly | $\begin{aligned} & 76296 \\ & 76389 \end{aligned}$ | Cone-Cone and voice coil ( 3.2 ohms ) <br> Speaker-12" P.M. speaker complete with cone and voice coil ( 3.2 ohms) |
| 30870 | Connector-2 contact male connector for motor leads |  | SPEAKER ASSEMBLIES |
| 76751 | Grommet-Rubber grommet to mount motor (3 req'd) |  | 92569-12W RL111A1 |
| 76753 | Motor- 117 volt 60 cycle complete with mounting plateless \#76768 plate and idler wheel |  |  |
| 76768 | Plate-Speed control pulley mounting plate complete with pulleys | $\begin{aligned} & 13867 \\ & 75682 \end{aligned}$ | Cap-Dust cap <br> Cone-Cone and voice coil ( 3.2 ohms ) |
| 76746 | Pulley-78 RPM pulley | 76093 | Speaker-12"' P.M. speaker complete with cone and voice coil |
| 76748 | Pulley- $33^{1 / 3}$ RPM pulley |  | NOTE:-If stamping on speaker instrument does not agree |
| 76755 | Sleeve-Spring sleeve for motor shaft Spring-Detent spring (below motor mounting plate) |  | with above speaker number, order replacement parts by |
| 76744 | Spring-Hairpin spring to retain idler wheel |  | description of part required. |
| 76745 | Spring-Idler wheel tension spring (above motor mounting plate) | X3240 | MISCELLANEOUS <br> Baffle-Baffle board and grille cloth |
| 76752 | Turntable-Finished turntable ( $9^{\prime \prime}$ dia.) | 10941 | Ball-Steel ball (1/4 dia.) for pickup arm mounting |
| 76743 | Washer-Flat fibre washer for idler wheel | 71599 | Bracket-Pilot lamp bracket |
| 35969 | Washer-" ${ }^{\text {C" }}$ washer to retain turntable on shaft | 13103 | Cap-Pilot lamp cap |
| 76750 | Wheel-Idler wheel | 72113 |  |
| , | 45 R.P.M. AUTOMATIC RECORD CHANGER | 75697 72856 | Grommet-Rubber grommet for mounting 45 RPM changer $(3 \text { req'd) }$ <br> Grommet-Rubber grommet for motor board (4 req.d) |
|  | Same as listed for RP 190-2a in RP 190 Series Service Data | 77984 | Housing-Pickup arm pivot shaft housing (15-E-1 only) |
|  | except for the omission of the on-off switch and switch | 74979 | Knob-Selector switch knob-tan |
|  | housing | 72118 | Knob-Tone control or volume control knob-brown |
|  |  | 11765 | Lamp-Pilot lamp-Mazda 51 |
|  | $\text { RSI } 39 \mathrm{~A}$ | 75692 | Link-Motor speed change link (bent-end section only) |
| 76685 | Capacitor-Ceramic, 560 mmf . ........................ C7 | 75691 76688 | Link-Motor speed change link (slotted section only) Nut-Pickup arm pivot shatt bearing nut (15-E only) |
| 71976 | Capacitor-Electrolytic comprising 1 section of 20 mfd ., 450 <br>  | 73634 76689 76686 | Nut-Speed nut for speaker mounting screws ( 4 req'd) <br> Rest-Pickup arm rest (for $331 / 3-78$ RPM arm) |
| 73850 | Capacitor-Tubular, paper, oil impregnated, 0012 mfd . 1000 volts | 76686 14270 | Sleeve-Rubber sleeve (39/64 O.D. x 7/16' 1.D. x 11/32 for pickup arm pivot post (15-E only) <br> Spring-Retaining spring for knob 74057 |
| 73595 | Capacitor-Tubular, paper, . 0022 mid., 600 volts ....... C12 | 30900 | Spring-Retaining spring for knob 72118 |
| 737 | Capacitor-Tubular, paper, $0033 \mathrm{mid} ., 600$ volts ........ C5 | 76690 | Spring-Speed change link and lever tension spring |
| 73796 | Capacitor-Tubular, paper, $0039 \mathrm{mid} ., 600$ volts ...... C6 | 76687 | Washer-Rubber washer (13/16" O.D. x 7/16" I.D. x $1 / 6^{\prime \prime}$ ) |
| 73561 | Capacitor-Tubular, paper, . 01 mid., 400 volts ...... C2, C8 |  | for pickup arm pivot post ( 2 req'd) |



## SPECIFICATIONS

Turntable speed Record capacity
$331 / 3,45$ or 78 r.p.m. Up to 14 seven-inch or

12 ten-inch or 10 twelve-inch
or 10 ten and twelve-inch intermixed
930409-3 115 v. 60 cycle motor convertible to 50 cycles. Ceramic pickup Stock No. S-5652.
930409-4 115 v. 25 cycle motor.
Ceramic pickup Stock No. 162A00l.
Used in Model 35QU.
930409-5 115 v. 60 cycle motor
Crystal pickup Stock No. 75475 or 77779.
Used in Models 2ES3, 2ES31, 2ES38, 2ES38E, 2ISl, 2JSlE, 2S7, 2S10, 2US7, 21T197DE, $21 T 242$ and 21 T 244.
930409-6 115 v. 60 cycle motor convertible to 50 cycles. Ceramic pickup Stock No. 162A001.
Used in Models 2ES31Q, 2ES38Q, 2JSIQ and 35QU.
930409-9 230 v. 50 cycle motor convertible to 60 cycles. Crystal pickup Stock No. 75044.
930409-10 Same as 930409-5 except light color.
Used in Models 2S7, 2S10, 2US7 and $21 T 242$.
930409-11 115 v. 50 cycle motor convertible to 60 cycles. Crystal pickup Stock No. 75475 or 77779. Used in Model 2US7.

## CONTROLS

The record changer has a dual control on the motorboard and a stylus selector control on the pickup arm. The inner control (circular knob) is the OFF-ON-REJECT control. Turning this knob to the center position energizas the motor and starts the turntable, when turned to the right (clockwise) it starts the mechanism into complete automatic operation. The mechanism will shut off automatically after the last record has been played but can be shut off manually by turning this knob to the left (counter-clockwise).

The outer control (double ended lever) is the speed control. It has three normal positions, " 33 ", " 45 ", " 78 " to select the turntable speed desired and a neutral position (midway between " 45 " and " 78 "). The control should be turned to this neutral position if the changer is not expected to be in use for an extended period of time.

The stylus control has two normal positions (right and left) and one shipping position (lever pointing up). When playing $331 / 3$ or 45 r.p.m. records the lever is turned so that " $33-45^{\prime \prime}$ is visible on the TOP of the lever; likewise for 78 r.p.m. records " 78 " should be visible on the TOP.

The removable centerpost is for use with 45 r.p.m. records having the large centerhole. It must be placed over the center spindle with the "RCA" trademark monogram FACING to the FRONT. When not in use it is placed in a well at the front of the motorboard.

To load or remove records, the record stabilizer is lifted and turned off-side. After loading it is turned to the center where it rests on top of the stack of records.

RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.

## INDEX

Lubrication ..... 2
Stylus Replacement ..... 2
Record Stabilizer Arm ..... 2
50/60 Cycle Conversion ..... 2
Adjustments ..... 3
Cycle of Operation ..... 4 to 7
Exploded View of Mechanism ..... 8
Replacement Parts ..... 9 to 14


Controls


Figure 1-Bottom View

## LUBRICATION

The mechanism is properly lubricated when it leaves the factory, additional lubrication should not be necessary for a long period of time. If the mechanism has unusual use or high operating temperatures, it may be necessary to lubricate more frequently

It is suggested to use Lubriplate or STA-PUT No. 512 on:

1. Pickup arm pivot.
2. Points of sliding contact with cycling slide, including:
a. elevating rod
b. lift arm
c. roller on cycling cam
d. pickup arm return lever
e. pickup arm lever
3. End of selecior lever contacting tab on cycling gear.
4. Turntable thrust bearing.
5. Sparingly on a trip slide.
6. All points of sliding contact.

Apply a small quantity of light machine oil to:

1. Trip pawl pivot.
2. Cycling engagement pawl pivot.
3. Bearing of record stabilizer.
4. Elevating rod.
5. Bearing of lift arm.
6. Bearing of reject lever.
7. Bearing of stop lever
8. Bearing of cycling gear.
9. Motor bearings.

NOTE: Keep oil or grease away from all rubber parts.

## Stylus Replacement

PICKUPS NO. 75044 and S-5652
The styli are held in position by small thumb nuts (one for each stylus). Loosen the nut to remove stylus.

## PICKUP NO. 75475

The styli are held in position by small hex nuts (one for each stylus). Remove the nut and push threaded end of stylus through the cartridge.

PICKUP NO. 162A001
The styli are held in position by pressure fit. To remove stylus, grip with tweezers and pull straight to the front of pickup.

## CAUTION :

The internal element of the pickups can be fractured by use of excessive force. It is advisable to grip stylus with pliers instead of holding pickup case while removing nuts
Although the 78 and the $45-331 / 3$ styli are mechanically interchangeable, they should be replaced in such manner that the stylus which is coded red will contact the record when " $33-45$ " on the stylus selector knob is visible from the top.

## Record Stabilizer Ārm

Two types of stabilizer arms are in use. Type " $A$ " when raised and moved outward will remain projected beyond the edge of the motorboard. Use Stock Number 76941 (plum) or Stock Number 76942 (beige) record stabilizer housing. Type " $B$ " when raised and moved outward will return to within the edge of the motorboard. Use Stock Number 77256 (plum) record stabilizer housing, and Stock Number 77257 record stabilizer return spring.

The replacement stabilizer arm (plum) Stock Number 77255 can be used with either Type " $A$ " or Type " $B$ ".

## 50/60 Cycle Conversion

Models 930409-3 and 930409-6 are made for 60 cycle operation but may be converted to 50 cycle operation.

Models 930409-9 and 930409-11 are made for 50 cycle operation but may be converted to 60 cycle operation.

To convert the above listed models it is necessary to remove the original spring sleeve from the motor shaft and install the alternate spring sleeve (in envelope attached to record changer). This is easily accomplished by holding the rotor of the motor while removing or installing the spring sleeve with a twisting motion.

## ADJUSTMENTS

14
STYLUS FORCE


Figure 2-Adjustments

Figure 3Slide Assembly (Complete)


## TURN ON-OFF-REJECT CONTROL KNOB TO REJECT POSITION \& RELEASE

1. The on-off-reject control knob, through the linkage of the function control lever (54), reject rod (52), and reject lever (109) actuates the power switch and the trip slide (139)
2. The closing of the power switch energizes the motor and starts the turntable rotating.

## CYCLING STARTS

1. The trip slide (139) in its movement contacts the lower trip pawl (131) and moves both the lower and the upper trip pawls which are linked together. The movement of the upper trip pawl (129) actuates the cycling engagement pawl (130A) sufficiently to cause it to engage with the projection on the hub of the rotating turntable.
2. The contact between the cycling engagement pawl ( $130 \bar{A}$ ) and the projection on the turntable hub gives the necessary push for the teeth in the cycling gear (I30) to engage the teeth in the shaft of the turntable and thus start the change cycle.

## PICKUP ARM RISES \& MOVES OUTWARD

1. As the cycling gear rotates, the stud (130B) mounted on the underside of the gear, rides inside a slot cut in the cycling slide (141). The rotation of the cycling gear pushes the cycling slide back, and later, allows it to return.
2. As the slide moves away from the center post, an incline formed on the end of the slide causes the elevating rod (123) to rise and lift the pickup arm.
3. At the same time that the elevating rod is pushed upward, the pickup arm lever (124) is also pushed up by the force transferred through the spring (125). The raising of the pickup arm lever causes the two formed dimples in the pickup arm lever to engage the two holes in the pickup arm return lever (120), and couple them together. This directs the movement of the pickup arm during change cycle.
4. The cycling slide continues to move away from the center post until the formed end of the slide pushes against the pickup arm return lever. This relieves the force of pickup arm return lever against stop lever (115). This permits the stop lever return spring (114) to return the stop lever to the normal (raised) position.
5. The end (115A) of stop lever (115) pushes trip slide back ready for the next change cycle.


Figure 5


Figure 6


Figure 7


## RECORD DROPS TO TURNTABLE

1. After the cycling slide has raised the pickup arm and is moving it outward, the lift arm (100) is actuated by the cycling slide.
2. The lift arm pushes up on the shaft extending from the bottom end of the center post. This shaft actuates the push-off mechomism inside the center post, and the record drops to the turntable.

## SELECTION OF LANDING POSITION

1. During rotation of the cycling gear the riveted tab (130C) near the center of the gear, pushes down on one end of the selector lever (103) (which is pivoted in the center) thereby raising the other end causing if to latch on the end (89A) of the twelve-inch indezing lever (89).
2. The mechanism is thus automatically indexed to land on a ten inch record unless the selector lever (139) is disengaged from the end of the twelve-inch indering lever.

## 7 Inch Indexing:

The ten-inch indexing lever (133) is pivoted in the center and one end (133A) is held (by tensior of spring) against the top surface of the cycling gear. A hole in the gear will permit the end of the indezing lever to lower and thus raise the opposite end of the lever. A projection (133B) on the lever will at the same time lift the selector lever, permitting it to engage the top step of the pickup arm return lever (120) This position allows the pickup arm to land on the edge of the seven-inch record.

## 10 Inch Indexing:

The ten-inch indexing lever will lift the selector lever unless a record on the turntable contacts the rubbe: tip of the ten-inch indexing lever (133), and preven:s it from rising. When the lever is prevented from rising, the selector lever will remain in position to engage the middle step of the pickup arm return lever.

## 12 Inch Indexing:

When $\alpha$ twelve-inch record drops to the turntable, it strikes the twelve-inch indexing lever (89) and forcきs it backward. This disengages the end of the selector lever

(103) from the edge of the indexing lever and permits the selector lever to drop down into the recess (89B) at the end of the indexing lever. This position of the selector lever causes it to engage the bottom step of the pickup arm return lever (120) and will push the pickup arm to land on the edge of a twelve-inch record.


Figure 11
Figure 12
Figure 13

## PICKUP MOVES IN FOR LANDING

1. As the cycling slide returns, the formed end (141A) on the slide moves back, permitting the pickup arm return lever spring (118) to expand. This causes the pickup arm return lever (120) to move the pickup inward until the pickup arm return lever comes against the selector lever (103). The pickup is now directly above the point of landing.

## PICKUP LANDS ON RECORD

1. The elevating rod (123) slides down the incline on the slide permitting the pickup to land on the start of the record.
2. A cut-away portion (130D) of the teeth of the cycling gear stops the return movement of the slide before completion of cycle. The stud (130B) in the cycling gear rests in the first indentation (offset from center) of the slide to stabilize it in this position.
3. Just before the cycling gear completes cycle, a small tab (141C) on cycling slide makes contact with lower trip pawl (131) thereby moving upper trip pawl and cycling engagement pawl back. This prevents the reengagement with the projection on the turntable hub which would start a new change cycle.
4. On the next revolution the projection on the hub of the turntable engages with a formed lug (l30E) on the outer edge of the cycling gear. The cycling gear will then rotate until the second cut-away portion (130F) of the teeth again stops the movement of the slide, this time at completion of the cycle. The stud on the cycling gear rests in the second indentation (center) of the slide to stabilize it in this position.
The purpose of this pause in the cycle is to allow the pickup to enter the starting groove of the record before the full effect of the feed-in spring is applied to the pickup arm.

## RECORD PLAYS

1. As the record plays, the pickup moves in toward the center of the record carrying the trip slide along. This is due to the contact made with the pickup arm lever which turns with the pickup arm pivot.
2. The trip slide contacts the lower trip pawl, causing both (lower and upper) trip pawls and the cycling engagement pawl to move slightly with each revolution of the record. This slight movement of the pawls is reversed each time the projection on the turntable hub comes in contact with the cycling engagement pawl. The back movement is taken up in the friction connection between the upper and lower trip pawls.

## TRIPPING

This slight movement of the pawls continues as long as the pickup moves in at a constant rate of speed. When the stylus leaves the recorded section of the record, the rapid acceleration results in rapid movement of the cycling engagement pawl. The cycling engagement pawl assumes a position in which the projection on the turntable hub makes a positive contact and the cycling cam is pushed sufficiently for engagement between the teeth of the cycling gear and the teeth on the turntable hub. This starts change cycle.


Figure 16


## MECHANISM STOPS AFTER PLAYING OF LAST RECORD

After the mechanism has been tripped it again follows the preceding sequence of cycling and playing the records until the last record of the stack has been played.

1. As the last record of the stack drops to the turntable the record stabilizer drops and actuates the stop arm (115). This stop arm in turn applies force to stop lever (115) through spring (115B) and connecting wire (137). At this moment the cycling slide is in the outermost position (away from centerpost) and the end (115B) of stop lever is forced against escape lever (141B) which prevents it from lowering any further.
2. As the cycling slide returns to the out of cycle position the end (115B) of stop lever slides off the escape lever permitting the end to extend down through the slot in the cycling slide. At this time the pickup arm return lever has rotated too far to be blocked by the other end (115C) of the stop lever and the pickup is permitted to land on the record.
3. After the last selection has been played the mechanism again goes into change cycle, and the cycling slide moves into its outermost position. At this moment the force which has been applied to the stop lever from the record stabilizer causes the end (115B) to lower, thus extending further through the cycling slide. The other end (115C) of stop lever raises and blocks the pickup arm return lever which at this moment is held back by the cycling slide.
4. As the cycling slide moves back, it carries the raised trip slide along until finally the formed end (139A) of the trip slide pushes reject lever which in turn actuates the power switch (110). This removes the power from the drive motor and mechanism stops.
5. The elevating rod (124) lowers the pickup arm to the rest.

## 45 R.P.M. CENTERPOST

For playing of $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. records which have a $11 / 2$ inch center hole, the 45 r.p.m. centerpost is placed over the $1 / 4$ inch centerpost. The push-off finger ( $84 \hat{A}$ ), which is part of the $1 / 4$ inch centerpost actuates the slide (24), this slide actuates the separator knives ( $25 A$ \& $25 B$ ) and separator shelves ( $26 \mathrm{~A} \& 26 \mathrm{~B}$ ) of the $45 \mathrm{r} . \mathrm{p} . \mathrm{m}$. centerpost.

As the push-off finger moves up it engages a finger (24B) of the slide ( 24 ) in the 45 r.p.m. centerpost; and, as it moves horizontally, it pushes the slide against the tension of the slide return spring (27). A projecting pin (24C) on the bottom of the slide engages both shelves and both knives and forces them to turn on their pivots. The shelves are pivoted near their center and are caused to retract as the slide is forced to move by the push-off finger. The knives are pivoted at their ends and are forced outward at the same time that the shelves are retracted. A formed spring (28) returns the shelves to the extended position.


Figure 23


Figure 19


Figure 24


| $\begin{aligned} & \text { ILL. } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: |
| 1 | 76913 | Stabilizer－Recordstabilizer－plum－complete with plastic cap for $930409-3,-4,-5,-6,-9$ and -11 |
| 1 | 76914 | Stabilizer－Recordstabilizer－beige－completewith plastic cap for 930409－10 |
| 1A | 15804 | Cap－Plastic cap－maroon－for record stabilizer for $930409-3,-4,-5,-6,-9$ and -11 |
| 1 A | 75805 | $\begin{aligned} & \text { Cap-Plastic cap-beige-for record stabilizer for } \\ & 930409-10 \end{aligned}$ |
| 2 | 77118 | Turntable－Turntableand hubassembly－maroon flock． |
| 2 | 77119 | Turntable－Turntable and hub assernbly－tan Hock－for 930409－10 |
| 3 | 76905 | Nut－1／4－28 hex nut（jam）for pickup arm bracket |
| 4 |  | Lockwasher－1／4 external typelockwasher for pickup arm shaft |
| 35 | 76941 | Housing－Record stabilizer housing－plum－Type ＂＇A＂（see Page2）for 930409－3，－4，－5，－6，－9 and－11 |
| 35 | 77256 | Housing－Record stabilizer housing－plum－Type ＇＂B＇（see Page 2） |
| 35A | 77257 | Spring－Record stabilizer return spring for use with Type＂＇B＇record stabilizer housing |
| 35 | 76942 | Housing－Record stabilizer housing－beige－for 930409－10 |
| 36 |  | Motorboard－Motorboard－complete |
| 37 | 74782 | Emblem－＇RCA Victor＇emblem |
| 38 | －ー－ | Screw－\＃10－24 $\times 3 / \mathbf{g}^{*}$ binding head machine screw and internal lockwasher |
| 39 | 75829 | Hausing－Pickup arm pivot shaft housing－plum －for $930409-3,-4,-5,-6,-9$ and -11 |
| 39 | 75873 | Housing－Pickup arm pivot shaft housing－beige－ for 930409－10 |
| 40 | 76915 | Knob－Reject control knob and shaft－maroon－ for $930409-3,-4,-5,-6,-9$ and -11 |
| 40 | 76916 | Knob－Reject control knob and shaft－beige－for 930409－10 |
| 41 | 75827 | Rest－Pickup arm rest（maroon）for 930409－3，－4， $-5,-6,-9$ and -11 |
| 41 | 75828 | Rest－Pickup arm rest（beige）for 930409－10 |
| 42 | 76937 | Knob－Motor speed control knob and shaft |
| 43 |  | Screw－\＃6－32 $\times 1 / 4^{\prime \prime}$ hex head screw |
| 44 | 75385 | Washer－＇${ }^{\text {C }}$＂washer to mount record stabilizer |
| 45 |  | Clamp－Cable clamp |
| 46 |  | Screw－Screw for mounting cable clamp |
| 47 | 75830 | Screw－\＃ $10 \times 1 / 2$ cross recessed pan head screw to mount pickup arm rest |
| 48 |  | Screw－\＃6－32 x $1 / 4^{\prime \prime}$ hex head screw |
| 49 | 76920 | Rod－Motor speed control rod |
| 50 | 77229 | Grommet－Rubber grommet for motor speed con－ trol rod |
| 51 | 76918 | Lever－Motor speed control lever |
| 52 | 76919 | Rod－＇＇On－Off＇－＇＇Reject＇${ }^{\text {rod }}$ |
| 53 | 75825 | Washer－＂$C$＂washer for motor speed contral knob and shaft |
| 54 | 76917 | Lever－Switch control lever |
| 55 | 77227 | Nut－Pal nut for reject control knob and shaft |
| 56 | 76927 | Arm－Stop arm assembly |
| 57 | 76926 | Spring－Return spring（coil type）for stop arm $\left(1 / \mathrm{B}^{2} \text { ID. } \times 19 / 32\right)$ |
| 58 |  | Screw－6－32 5 5／16＂cross recessed round head screw |
| 77 | 75876 | Washer－＇ C ＇ washer to mount motor |
| 78 | 76925 | Spring－Spring for 45 r．p．m．centerpost housing hinge pin |
| 79 | 76922 | Lid－45r．p．m．centerpost housinglid－maroon－for 930409－3，$-4,-5,-6,-9$ and -11 |
| 79 | 76923 | Lid－45 r．p．m．centerpost housing lid－beige－for 930409－10 |
| 80 | 76921 | Housing－45r．p．m．centerpost housing well－lesslid and rubber bumper |
| 81 | －－－ | Screw－\＃ $10-32 \times 3 / 16^{\prime \prime}$ cross recess pan head screw to mount 45 r．p．m．centerpost housing |
| 82 | 76924 | Pin－Hinge pin for 45 r r．p．m．centerpost housing lid |
| 83 | 76940 | Bumper－45 r．p．m．centerpost housing rubber burnper |
| 147 | －ーー | Screw－\＃10－24 x 3／8＂binding head machine screw and internal lockwasher <br> 45 RPM CENTERPOST ASSEMBLY |
| 21 | 76945 | Centerpost－45 r．p．m．centerpost complete Cap－Nose cap |
| 22 | 76930 | Spring－Nose spring（formed） |
| 23 | 76909 | Screw－\＃4－40 $\times 1 / 4^{\prime \prime}$ cross recessed binding head screw for nose spring |
| 24 | 76933 | Plate－Slider plate assembly complete with springs 24A |
| 25 | 76932 | Knife－Record separator knife（1 set） |
| 26 | 76931 | Shelf－Record support shelf（1 set） |
| 27 | 16934 | Spring－Slider return spring（coil type－2 in 1） |
| 28 | 76935 | Spring－Shelf return spring（formed） |
| 29 |  | Body－Spindle body assembly |
| 30 31 | 76936 | Screw－\＃4－40 ${ }^{7 / 8^{\prime \prime}}$ fillister head screw for nose cap |
| 31 |  | Rotor－Die－cast rotor |
| 32 | 76954 | Spring－Rotor lift spring（coil）（1．168＊O．D． $\mathrm{z}^{\prime \prime} 1^{\prime \prime}$－ 4－5 turns） |
| 33 |  | Lift－Rotor lift |
| 34 | 76929 | Bearing－Bottom bearing |




Fig. 27-Slide Assembly

Late production record changers use a revised frame (Item 85) and pickup arm lever (Item 120). These items are not directly interchangeable but may be interchanged in a group as listed below.

| Item | Early | Late | Description |
| ---: | :---: | :---: | :---: |
| No. | Part | Part |  |
| 85 | 76910 | 78635 | Frame |
| 119 | 75848 | Not used | Washer |
| 120 | 75849 | 78636 | Lever |
| 121 | 75850 | 78637 | Retainer |

Frames may be identified by a number which is cast into the frame (see Fig. 28 below).

Early frame is identified by number " 2525 ".
Late frame is identified by number " 6425 ".
Levers may be identified by having or not having a bearing collar staked to the lever (see Fig. 28 below).

Early lever does not have staked collar.
Late lever does have staked collar.
Retainers may be identified by size.
Early retainer is .312" I. D.
Late retainer is . $390^{\prime \prime}$ I. D.


Fig. 28-Alternate Slide Plate Frame

| $\begin{aligned} & \text { ILL. } \\ & \text { NO. } \end{aligned}$ | $\begin{gathered} \text { STOCK } \\ \text { NO. } \end{gathered}$ | DESCRIPTION |
| :---: | :---: | :---: |
|  |  | SLIDE ASSEMBLIES |
| 84 | 76904 | Centerpost-331/3-78r.p.m. centerpost complete with bearing |
| 85 | 76910 | Frame-Main frame-(die-cast) |
| 86 | 75373 | Washer- ' C " washer for mounting cycling gear |
| 87 | 75845 | Washer-Fibre washer for mounting cycling gear |
| 88 | 75397 | Washer-' C ' ' washer for 12 " indexing lever |
| 89 | 75844 | Lever-12" record indexing lever |
| 90 | 76309 | Spring-12" record indexing lever spring |
| 91 | 76903 | Washer-Pickup thrust washer (fibre) |
| 92 | 75841 | Nut-Speed nut for $12^{\prime \prime}$ indexing lever return spring |
| 93 | 75842 | Spring-12" indexing lever return spring (formed) |
| 94 |  | Bracket-Muting switch bracket |
| 95 |  | Screw-\#4-40 $\times 1 / 4^{\prime \prime}$ hex head (indented) thread cutting screw to mount muting switch assembly |
| 96 | 77191 | Switch-Muting switch-less mounting bracket |
| 97 |  | Torminal-\#4 locking terminal for muting switch assembly |
| 98 |  | Screw-\#3-48×13/32" binding head machine screw for muting switch |
| 99 |  | Nut-1/2-20 pal rut for mounting 331/3-78 r.p.m. spindle |
| 100 | 75864 | Arm-Liftarm |
| 101 | --- | Screw-\#10-24 x 3/8" binding head machine screw and internal lockwasher |
| 102 |  | Screw- \# 10-24 $\times 3 / 8^{\prime \prime}$ binding head machine screw and internal lockwasher |
| 103 | 75859 | Lever-Landing selector levar |
| 104 | 75860 | Spring-Return spring (coil type) for landing selector lever (. $110^{\prime \prime}$ O.D. $\times 3 / 8^{\prime \prime}-14$ turns) |
| 105 | - - - | ```Washer-Metal washer (steel) (1/32" x 7/16" O.D. x.140)``` |
| 106 | --- | Screw-\#6-32 $\times 1 / 4{ }^{\prime \prime}$ hex head screw |
| 107 | 76312 | Spring-Reject spring (special) |
| 108 | 75392 | Washer-' C' washer for mounting reject lever |
| 109 | 75856 | Lever-Reject lever |
| $\left.\begin{array}{l}110 \\ 111 \\ 112\end{array}\right\}$ | 75857 | Switch-''On-Off'' switch complete with insulating strip (111) and cover (112) |
| 113 | 76908 | Retainer-Switch cover retainer (flat) |
| 114 | 76314 | Spring-Return spring (coiltype) (.125"O.D. x 7/16" -14turns) |
| 115 | 76313 | Lever-Stop lever |
| 116 | 77258 | Strip-Bearing strip for stop lever shaft |
| 117 | 76912 | Nut-Speed nut for mounting stop lever bearing shafts |
| 118 | 76944 | Spring-Pickup arm return lever spring (coil) (. $593^{\prime \prime}$ O.D. $-31 / 2$ turns) |
| 119 | 75848 | Washer-Fibre washer for pickup arm pivot shaft |
| 120 | 75849 | Lever-Pickup arm return lever |
| 121 | 75850 | Retainer-Retaining ring for pickup arm return lever |
| 122 | 76952 | Nut-Elevating rod adjustment nut |
| 123 | 76951 | Rod-Elevating rod |
| 124 | 76946 | Shaft-Pickup arm pivot shaft and lever |
| 125 | 76906 | Spring-Thrust spring (conical) for olevating rod |
| 126 | 77269 | Ring-Retaining ring |
| 127 | 75397 | Washer-' C ' washer |
| 128 | 76309 | Spring-Trip pawl spring |
| 129 | 77250 | Pawl-Trip pawl-upper |
| 129A | 77249 | Spring-Trip pawl cushion spring (coil) |
| 130 | 76955 | Gear-Cycling gear complete with shaft and engagement pawl 130A |
| 131 | 76953 | Pawl-Trip pawl-lower |
| 132 | 76900 | Bumper-Rubber bumper for 10 " indexing lever |
| 133 | 76901. | Lever-10" indexing lever |
| 134 | 76314 | Spring-Return spring (coiltype) (.125" O.D. $\times 7 / 16^{\prime \prime}$ -14turns) |
| 135 | - - | $\begin{aligned} & \text { Washer-Metal washer (steel) }\left(1 / 32^{\prime \prime} \times 7 / 16^{\prime \prime}\right. \text { O.D. } \\ & \times .140) \end{aligned}$ |
| 136 | --- | Screw-\#6-32 x $1 / 4^{\prime \prime}$ hex head screw |
| 137 | 75862 | Link-Control link |
| 138 | 75397 | Washer- ' C " washer |
| 139 | 76950 | Slide-Trip slide |
| 140 | 75861 | Spring-Escape lever spring (coil) (.120"O.D. $\times 1 / 2^{\prime \prime}$ -21 turns) |
| 141 | 76956 | Slide-Cycling slide and cam assembly-less escape lever spring |
| 142 | 77228 | Spring-Stabilizing spring (coil) for cycling slide $\text { (. } 146^{\prime \prime} \text { O.D. } \times 3 / 4^{\prime \prime}-141 / 2 \text { turns) }$ |
| 143 | --- | Screw-\#6-32 $\times 1 / 4^{\prime \prime}$ hex head screw |
| 144 | 75872 | Plate-Bearing plate for cycling slide |
| 145 | 16897 | Washer-Metal washer (brass) for cycling slide |
| 146 | - | Screw-\#6-32 $\mathrm{1}^{1 / 4}{ }^{\prime \prime}$ hex head screw |
| 148 | 77934 | Spring-Slide detent spring |

## 930409 Series

REPLACEMENT PARTS (Cont.)

| ILL. | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: |
|  |  | MOTOR ASSEMBLIES <br> Motors Stamped: <br> 5046-for 930409-3 \& -6 <br> 5355-for 930409-5 \& -10 <br> 5047-for 930409.9 <br> 5432-for 930409-11 |
| 59 | 76744 | Spring-Hairpin spring for idler wheel |
| 60 | 76743 | Washer-Flat metal washer |
| 61 | 76750 | Wheel-Idler wheel |
| 62 | 77132 | Plate-Drive pulley mounting plate complete with three pulleys |
| 62A | 76746 | Pulley-78 r.p.m. pulley |
| 62B | 76747 | Pulley-45 r.p.m. pulley |
| 62C | 76748 | Pulley-331/3 r.p.m. pulley |
| 63 | - | Screw-Screw to mount drive pulley plate |
| 64 | - | Lookwasher-Lockwasher for pulley plate screw |
| 65 | 77685 | Lever-Speed shift lever for \#5046, \#5047, and \#5432 motors ( $930409.3,-6,-9$ and -11) |
| 65 | 77133 | Lever-Speed shift lever for \#5355 motor (930409-5 and -10) |
| 66 | 77229 | Grommet-Rubber grommet for speed shift lever |
| 67 | 75432 | Spring-Hairpin spring for idler wheel plate and support |
| 68 | 4 | Plate-Ider wheel slide plate and support assembly |
| 69 | 78374 | Spring-Slide plate tension spring |
| 70 | 76751 | Grommet-Rubber grommet for motor mounting |
| 71 | 76743 | Washer-Slide plate bearing washer (metal) |
| 72 | 76749 | Sleeve-Spring sleeve pulley for 60 cycle operation |
| 72 | 77686 | Sleeve-Spring sleeve pulley for 50 cycle operation for motors \#5432, \#5046 and \#5047 (930409-3, -6, -9 and -11) |
| 73 | 30870 | Connector-2 prong male connector |
| 74 | - | Motor-Motor assembly complete (Refer to page 13) |
| 75 | 76755 | Spring-Detent spring for speed shift lever |
| 76 | $77134$ | Collar-Collar for speed shift lever mounting Item 68 -discontinued. Use Stock No. 78371 top plate and knuckle joint assembly described at right. Two other types of motors have been used as alternates for the above listed motors. See page 13 . |



Fig. 29-Assembly of Motors
Stamped 5046, 5047, 5355 and 5432

## "WOW" OR SLOW SPEED-

"Wow" or slow speed is generally most noticeable in the 33 1/3 RPM position but may also occur on the 45 RPM and 78 RPM positions. The most frequent causes of "wow" and slow speed are listed below. It is suggested that all these items be checked when servicing changers.

## A. CHANGERS USING IDLER WHEEL SLIDE PLATE

 TYPE MOTOR ASSEMBLIES1. PIN IN SLIDE PLATE RESTRICTS MOVEMENT OF SLIDE PLATE.
This prevents idler wheel from making firm contact with turntable rim. TO CORRECT-Remove pin from slide plate and discard-remove all burrs from around the hole after pin is removed.

## 2. BIND IN IDLER WHEEL SLIDE PLATE.

The slide plate must be completely free to move its full travel without binding. It must be flat and without burrs or scratches.

TO CORRECT-Straighten slide plate if necessary. Remove any burrs on slide plate. Thoroughly clean slide plate and slots of casting with carbon tetrachloride. Lubricate slide plate with STA-PUT \#320 to assure ample lubrication at all slide contact surfaces.
3. OIL ON RUBBER TIRES.

TO CORRECT-Wash all rubber tires with carbon tetrachloride. Do not handle with oily fingers.
4. IDLER WHEEL TENSION SPRING TOO LONG. TO CORRECT-Remove turns if necessary-there should be only 18 active turns. It may be necessary to remove as much as 5 turns. Stock No. 78374 spring should be used for replacement.
B. IDLER WHEEL TOP PLATE AND KNUCKLE-JOINT ASSEMBLY, STOCK NO. 78371
If the procedure in section " $A$ " does not prove completely satisfactory for critical applications, the original slide plate assembly may be replaced with the idler wheel top plate and knuckle-joint assembly, Stock No. 78371 using the following procedure:

## Disassembly

1. Remove turntable " C " washer and lift turntable up.
2. Remove idler wheel, two fiber washers, and hair pin retainer spring. (Items 59, 60, 61).
3. Remove motor (held by three " C " washers) (Item 77) from changer and disengage the speed shift linkage rod (Item 49).

## Transfer of Usable Parts

1. Transfer rubber mounting grommets (Item 70) from old plate to new plate.
2. Remove motor top plate (held by three screws to motor laminations). Motor bearings are loose and must be kept intact during the transfer of plates.
3. Remove detent spring (Item 75) from detent lever on bottom surface of old top plate and transfer this spring to corresponding location on new plate.
4. Transfer the idler speed-changer mounting plate and speed-shift lever from old plate to new plate. (Held by screw, washer, and collar.)
5. Assemble new plate to motor laminations. Make sure motor bearings are properly positioned and that armature is free after screws are tightened.

Assembly of New Top Plate

1. Engage speed shift linkage rod, and re-assemble motor to changer.
2. Install idler wheel with fiber washers, top and bottom, and hair pin retainer spring to knuckle-joint lever, applying not more than one drop of STA-PUT \#320 lubricant to the idler wheel bearing.
3. Thoroughly clean surface of idler wheel, pulleys on speed change plate, upper end of motor shaft, and inner rim of turntable with carbon tetrachloride to remove all traces of oil and grease.
4. Replace turntable and retaining " C " washer, making sure that idler wheel is pressed inward under the turntable before seating the turntable, to avoid damage to the idler or knuckle-joint assembly.

| $\underset{\text { NO. }}{\text { ILL. }}$ | STOCK NO. | DESCRIPTION | $\begin{aligned} & \text { ILL. } \\ & \text { NO. } \end{aligned}$ | $\begin{gathered} \text { STOCK } \\ \text { NO. } \end{gathered}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MOTOR ASSEMBLIES $\begin{aligned} & \text { Stamped: } 5685-\text { for } 930409-9 \\ & 5686-\text { for } 930409-5 \&-10 \\ & 5687-\text { for } 930409-11 \end{aligned}$ |  |  | MOTOR ASSEMBLIES <br> Stamped 4638-for 930409-3,-5,-6,-10 and -11 |
|  | 76750 |  | 1 | 78508 | Wheel-Idler wheel with fibre washer |
| 2 | 75433 | Wheel--Ider wheel Washer-Fibre washer | 2 | 78509 | Washer-Fibre washer |
| 3 | 76744 | Retainer-Idler wheel retainer (hairpin spring) | 3 | 78510 | Washer--Felt washer |
| 4 | 78645 | Support-Idler wheel support | 5 | 78512 | Spring-Idler spring |
| 5 | 78646 | Retainer-Support retainer (hairpin spring) | 6 |  | Screw-Holddown plate mounting screw |
| 6 | 78647 | Washer-Bearing washer | 7 |  | Lockwasher-Holddown plate mounting screw |
| 7 | 78648 | Link-Idler wheel support link | 1 |  | washer |
| 8 |  | Spacer-Metal spacer for link mounting | 8 | 78513 | Plate-Holddown plate |
| 9 | 78374 | Spring-Idler wheel tension spring | 9 | 78514 | Grommet-Motor mounting grommet |
| 10 |  | Screw-Screw for mounting plate | 10 | 78515 | Washer-Blued steel washer |
| 11 |  | Lockwasher-Lockwasher for mounting plate | 11 | 78516 | Plate-Idler plate assembly |
| 12 | 76751 | Grommet-Rubber grommet for motor mounting | 12 | 78517 | Link-Idler link |
| 13 | 30870 | Plug-Two (2) prong male plug | 13 | 78518 | Arm-Pulley plate latch arm |
| 14 | 76755 | Spring-Detent spring | 14 | 78519 | Spring-Pulley latch spring |
| 15 | 77134 | Collar-Speed shift lever collar (nut) | 15 | 78520 | Spring-Shifter latch spring |
| 16 | 78371 | Plate-Mounting plate assembly includes items 4, $5,6,7,8$, and 9 | 16 | 78521 | Lever-Latch arm lever <br> Sleeve-Spring sleeve pulley for 60 cycle operation |
| 17 | 76749 | Sleeve-Spring sleeve pulley for 60 cycle operation of \#5685, \#5686 and \#5687 | 17 | 78523 | Sleeve-Spring sleeve pulley for 50 cycle operation |
| 17 | 77686 | Sleeve-Spring sleeve pulley for 50 cycle operation of \#5685 and \#5687 | 18 18 188 | 78524 | Plate-Speed pulley mounting plate-less pulleys Pulley-33 1/3 r.p.m. pulley |
| 18 | 77685 | Lever-Speed shift lever | 18B | 78526 | Pulley-45 r.p.m. pulley |
| 19 | 77229 | Grommet-Rubber grommet for shift lever | 18C | 78527 | Pulley-78 r.p.m. pulley |
| 20 | 77132 | Plate-Speed pulley mounting plate with 3 pulleys | 18D | 78528 | Washer-Speed pulley fibre washer |
| 20A | 76748 | Pulley-33 1/3 r.p.m. speed pulley | 19 | 78529 | Lever-Speed shift lever |
| 20B | 76747 | Pulley-45 r.p.m. speed pulley | 20 | 78530 | Grommet-Speed shift lever grommet |
| 20 C | 76746 | Pulley-78 r.p.m. speed pulley | 21 | 30870 | Plug-2 prong raale plug |
| 20 D | 75428 | Washer-Felt washer |  | 78531 |  |
| 20 E | 75427 | Retainer-Retainer for speed pulleys |  | , | grommets and plug-for 115 volts, 60 cycles. |
| 21 | - | Screw-Screw for mounting pulley plate |  |  |  |
| 22 | 460A001 | Lockwasher-Lockwasher for pulley plate <br> Motor-Motor assembly ( $\# 5685$ ) COMPLETE for 230 |  |  | MOTOR ASSEMBLIES |
|  | 460 A 001 | volts, 50 cycles |  |  | Motor Stamped: |
|  | 78372 | Motor-Motor assembly (\#5686) with mounting plate and idlersupport-LESS idler wheel, speed shiftlever and pulley mounting plate for 115 volts, 60 cycles. |  |  | 5191-for 930409-4 Order by description |
|  | 78373 | Motor-Motor assembly (\#5687) COMPLETE for 115 volts, 50 cycles. |  |  |  |



Fig. 30- Assembly of Motors
Stamped 5685, 5686 and 5687


930409 Series
REPLACEMENT PARTS (Cont.)

| $\begin{aligned} & \text { ILL. } \\ & \text { NO. } \end{aligned}$ | STOCK No. | DESCRIPTION | $\begin{aligned} & \text { ILL. } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & \text { STOCK } \\ & \text { NO. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | PICKUP ASSEMBLIES For 930409-3 and 930409-9 | 7 | 76949 | Arm-Pickup arm shell (plastic) for 930409-5, - 10 and 11 |
| 10 | S-5652 | Pickup-Ceramic pickup complete with two styli - for 930409-3 | 7 | 100 A 001 | Arm-Pickup arm shell (plastic) for 930409-3. -4, -6 and -9 |
| 10 | 75044 | Pickup-Crystal pickup complete with two styli -for 930409-9 | 7A | 76948 | Screw-Pickup arm mounting bracket pivot screw Bearing--Pickup arm mounting bracket pivot |
| 10A | 75046 | Stylus-Osmium tip stylus arat holder (.003"r.. uncoded) for 78 r.p.m. | 8 | 75808 | bearing <br> Cable-Three (3) wire pickup cable complete with |
| 10B | 75045 | Stylus-Osmium tip stylus and holder (.001" r.. coded red) for $45-331 / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}$. | 8 | 163A001 | connectors for 930409-5. - 10 : ind -11 <br> Cable-Three (3) wire pichup cable complete with |
| 10C | 75274 | Nut-Knurled nut to mount stylus <br> PICKUP ASSEMBLIES | 9 | 163A001 | connectors for 930409.3 . 4. . 6 and 9 <br> Screw $-=4-40 \times 1 / 80$ fillister head screw to mount pickup cartridge |
|  |  | For 930409-4 and 930409-6 | 11 | 76957 | Swivel-Pickup cartridge mount and swivel assembly for 930409-5, -10 and -11 |
| 10 | 162 A 001 | Pickup-Ceramic pickup complete with two styli | 11 | 130 A001 |  |
| 10A | 490B001 | Stylus-Osmium tip stylus (. $003^{\prime \prime}$ r.. uncoded) for 78 r.p.m. | 12 | 130 A001 | bly for $930409-3,-4,-6$ and -9 |
| 10 B | 490A001 | Stylus-Osmium tip stylus (. $001^{\prime \prime} r$., coded red) for 45-331/3 r.p.m. | $\begin{aligned} & 12 \\ & 13 \end{aligned}$ | $\begin{aligned} & 75809 \\ & 75810 \end{aligned}$ | Spring-Pickup arm counterbalance spring Bracket-Pickup arm weight adjustment bracket (slide) |
|  |  | PICKUP ASSEMBLIES <br> For 930409-5, 930409-10 and 930409-11 | 14 | 76899 | Screw $=6-32 \times 1 / b^{\prime \prime}$ round head screw for pickup arm weight adjustment bracket |
| 10 | 75475 | Pickup-Crystal pickup complete with two osmium styli | 15 | 76896 | Screw $-=4 \times 1 / 4 "$ binding head sheet metal screw to mount swivel assembly in arm |
| 10 | 77779 | Pickup-Crystal pickup complete with one osmium stylus and one sapphire stylus | 16 | 75812 | Spring-Lock spring (coil type) for height adjustment screw |
| 10A | 75497 | Stylus-Osmium tip stylus ( $.003^{\prime \prime} \mathrm{r}$., uncoded) for 78 r.p.m. | 17 | 75813 | Screw--Height adjustment screw (hex head-$=5-40$ thread) |
| 10B | 75496 | Stylus-Osmium tip stylus (.001" r., coded red) for 45-33 1/3 r.p.m. | 18 | 76943 | Spring-Tension spring (coil) for landing adjust- |
| 10B | 77899 | Stylus-Sapphire tip stylus (. 001 " r.. coded red) for $45.33 \mathrm{l} / 3 \mathrm{r} . \mathrm{p} . \mathrm{m}$. | 19 | 76911 | ment stud <br> Cam-Landing adjustment cam |
| 10C | 74230 | Nut-\#00-112 nut and washer to mount stylus PICKUP ARM ASSEMBLIES | 20 | 76907 | Bracket-. Pickup arm mounting bracket complete with pin |
| 5 | 76902 | Knob-Stylus selector knob less screw | 20A | 75816 | Stud-Landing adjustmentstud (eccentric) |
| 6 | 76898 | Screw-\#2-56 x 3/16" headless set screw for stylus selector hnob | 20B | 75818 | Nut-Speed nut for landing adjustmentstud |

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS


Fig. 32--Pickup Arm Assembly for 930409-5 and -10
Pickup Stock No. 162A001.


Model 17T151 "Glenside"
Mahosany Grained Metal

# Service Data <br> - 1952 No. TI- 

PREPARED BY RCA SERVICE CO., INC. FOR<br>RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION<br>CAMDEN, N. J., U.S.A.

## GENERAL DESCRIPTION

Models 17 Tl 50 , 17 Tl 51 , and 17 Tl 63 are deluxe " 17 inch" television receivers. The receivers are identical except for cabinets, and speakers.

Features of the television unit are: full twelve channel coverage; "totem" r-f amplifier; intercarrier FM sound system; ratio detector; 40 mc picture i-f; improved picture brilliance;
pulsed picture A-G-C; A-F-C horizontal hold; stabilized vertical hold; compensated video gain control; noise saturation circuits; improved sync separator and clipper; four mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE. 146 square inches on a 17QP4 Kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc .
Picture I-F Carrier Frequency . . . . . . . . . . . . . . 45.75 mc .
Sound I-F Carrier Frequency 41.25 mc . and 4.5 mc .

VIDEO RESPONSE
To 4 mc .
SWEEP DEFLECTION
Magnetic
FOCUS
Magnetic
POWER SUPPLY RATING
KCS66C
115 volts, 60 cycles, 190 watts
AUDIO POWER OUTPUT RATING
KCS66C
5.0 watts max.

CHASSIS DESIGNATIONS
KCS66C
In Models 17T150, 17T151 \& 17 Tl 63

## LOUDSPEAKERS

Model 17T150 ..... (971614-1) 4"x6" PM Dynamic, 3.2 ohms Models 17Tl5l \& 17Tl63 (971490-2) 8" PM Dynamic, 3.2 ohms

| WEIGHT <br> Model | Chassis with Tubes in cabinet | Shipping Weight |
| :---: | :---: | :---: |
| 17 Tl 50 | 88 lbs . | 103 lbs . |
| 17 Tl 51 | 88 lbs . | 103 lbs . |
| 17 Tl 63 | 95 lbs | 115 lbs . |

## RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohms balanced or 72 ohms unbalanced.

## RCA TUBE COMPLEMENT

|  | Tube Used | Function |
| :---: | :---: | :---: |
|  | RCA 6BQ7 | Amplifier |
| (2) | RCA 6X8 | Oscillator and Mixer |
| (3) | RCA 6AU6 | lst Picture I-F Amplifier |
| ( 4 | RCA 6CB6 | 2nd Picture I-F Amplifier |
| ( 5 | RCA 6CB6 | 3rd Picture I-F Amplifier |
| $(6)$ | RCA 6CB6 | 4th Picture I-F Amplifier |
| ( 7 | RCA 6AG7 | Video Amplifier |
| (8) | RCA 6AU6 | 1st Sound I-F Amplifier |
| (9) | RCA 6AU6 | 2nd Sound I-F Amplifier |
| (10) | RCA 6AL5 | Ratio Detector |
| (11) | RCA 6AV6 | 1st Audio Amplifier |
| (12) | RCA 6AQ5 | Audio Output |
| (13) | RCA 6CB6 | AGC Amplifier |
| (14) | RCA 6SN7GT | Sync Separator |
| (15) | RCA 6SN7GT.Ve | lifier and Vert Sweep Osc: |
| (16) | RCA 6AQ5 | Vertical Sweep Output |
| (17) | RCA 6SN7GT | Horizontal Sync Amplifier |
| (18) | RCA 6SN7GT Hori | ep Oscillator and Control |
| (19) | RCA 6BQ6GT | Horizontal Sweep Output |
| (20) | RCA 6W4GT | Damper |
| (21) | RCA 1B3-GT/8016 | High Voltage Rectifier |
| 2) | RCA 17QP4 | Kinescop |

ELECTRICAL AND MECHANICAL SPECIFICATIONS
(Continued)

PICTURE INTERMEDIATE FREQUENCIES
Picture Carrier Frequency ........................ . 45.75 mc.

Adjacent Channel Sound Trap .................. 47.25 mc .
Accompanying Sound Traps
Adjacent Channel Picture Carrier Trap......... 39.25 mc .

SOUND INTERMEDIATE FREQUENCIES

| Sound Carrier Frequency .......... 41.25 mc . and 4.5 mc . |  |
| :---: | :---: |
| VIDEO RESPONSE .......................... To 4 mc . |  |
| FOCUS | Magnetic |
| SWEEP DEFLECTION | Magnetic |
| SCANNING | Interlaced, 525 line |
| HORIZONTAL SWEEP FREQUENCY | . . . 15,750 cps |
| VERTICAL SWEEP FREQUENCY | . . 60 cps |
| FRAME FREQUENCY (Picture Repetition Rate) . 30 cp |  |


NON-OPERATING CONTROLS (not including r-f and i-f adjustments)
Picture Centering . . . . . . . . . . . . . . . . top chassis adjustment
Width rear chassis adjustment Height. ............................ rear chassis adjustment Horizontal Linearity .....rear chassis screwdriver adjustment
Vertical Linearity rear chassis adjustment Vertical Peaking Control............rear chassis adjustment Horizontal Drive ........rear chassis screwdriver adjustment Horizontal Oscillator Frequency .... rear chassis adjustment Horizontal Oscillator Waveform . . . bottom chassis adjustment Horizontal Locking Range rear chassis adjustment Focus.......................... top chassis adjustment Ion Trap Magnet ................ top chassis adjustment Deflection Coil
AGC Control
top chassis wing nut adjustment rear chassis adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

[^5]The following adjustments are necessary when turning the receiver on for the first time.

1. See that the TV-PH switch is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best pix and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.

8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.
9. In switching from one channel to another, it may be necessary to repeat steps 4 and 8.
10. When the set is turned on again after an idle period it should not be necessary to repeat the adjustment if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
11. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8.
12. To use a record player, plug the record-player output cable into the PHONO jack on the rear apron, and set the TV-PH switch to " $\mathrm{PH}^{\prime}$.

Figure 1-Receiver Operating Controls

## INSTALLATION INSTRUCTIONS

UNPACKING.-These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.

Take the receiver out of the carton and remove all packing material.
Make sure that all tubes are in place and are firmly seated in their sockets.

Check to see that the kinescope high voltage lead clip is in place.
Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can


Figure 2-Yoke and Focus Magnet Adjustments

DEFLECTION YOKE ADJUSTMENT.-I the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. Connect the antenna transmission line to the receiver.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R175 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGN-MENT.-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 or 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90


Figure 3-Rear Chassis Adjustments
degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

## ALIGNMENT OF HORIZONTAL OSCILLATOR.—If in

 the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point it will be necessary to make the following adjustments.Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tll3 horizontal frequency adjustment at the rear of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster. Then turn the Tll3 core until the bar moves out of the picture leaving it in sync.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tll3 rear core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync adjust the horizontal locking range trimmer Cl81 A slightly clockwise. If less than 2 bars are present, adjust C181A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11. For field purposes paragraph " B " under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENT.-The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the center of the opening.

PIN CUSHION CORRECTION.-Two pin-cushion correction magnets are employed to correct a small amount of pin-cushion of the raster due to the lens effect of the face of the kinescope. These magnets are mounted on small arms, one on each side of the kinescope as shown in Figure 2. The arms hinge in one plane on self tapping screws which act both as a hinge and an adjustment locking screw. When the magnets are swung towards the tube, maximum correction is obtained. Minimum correction is obtained when the arms are swung away from the tube. To adjust the magnets, loosen the two self tapping screws and position the magnets until the sides of the raster appear straight. Tighten the screws without shifting the position of the magnets. In some cases it may be necessary to twist or bend the magnet support arms to obtain the appearance of straight raster edges.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. The centering plates include a locking screw which must be loosened before centering Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture adjust horizontal drive trimmer Cl81B counter-clockwise until the picture begins to "wrinkle" in the middle then clockwise until the "wrinkle" disappears.

Turn the horizontal linearity control LlO 07 clockwise until the picture begins to "wrinkle" on the right and then counterclockwise until the "wrinkle" disappears and best linearity is obtained.

Adjust the width control Ll06 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the best linearity.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R203 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R214 on rear apron) until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.


Figure 4-R-F Oscillator Adjustments
CHECK OF R-F OSCILLATOR ADJUSTMENTS.Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required these should be made by the method outlined in the alignment procedure on page 9 The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis.

AGC THRESHOLD CONTROL.-The AGC threshold control R175 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of Ri75. If the picture requires an appreciable portion of a second to reappear, or bends excessively, Rl75 should be readjusted.

Turn R175 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn Rl75 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn R175 counter-clockwise just sufficiently to remove this bend or change of bend.

If the signal is weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn Rl 75 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L58 core on top of the antenna matching transformer for minimum interference in the picture.

CAUTION.-In some receivers, the FM trap L58 will tune down into channel 6 or even into channel 5. Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L58 to make sure that it does not affect sensitivity on these two channels.
Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

KINESCOPE SCREEN CLEANING.-The kinescope safety glass is held in place by four spring clips which may be removed from the back of the front panel. This permits removing the safety glass for cleaning without the necessity of removing the chassis and kinescope.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the yoke and high voltage cable. Take out the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling

INSTALLATION OF KINESCOPE.-To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly
Handle this tube by the portion at the edge of the screen. Do not cover the glass bell cf the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

INSTALLATION OF KINESCOPE.-Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.
Replace the kinescope and chassis by reversal of the removing process. The kinescope should be installed so that the high voltage contact is to the right when looking at it from the rear of the cabinet. The magnet of the ion trap magnet should be to the left.

CABINET ANTENNA. - A cabinet antenna is provided in model 17 TI 63 receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.

ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.
It two or more stations are available and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.
If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for turning the antenna when switching channels or to install a separate antenna for one or more channels and to switch antennas when switching channels.

In some cases, the antenna should not be installed permanently until the quality of the picture reception has been observed on a television receiver. A temporary transmission line can be run between receiver and the antenna, allowing sufficient slack to permit moving the antenna. Then, with a telephone system connecting an observer at the receiver and an assistant at the antenna, the antenna can be positioned to give the most satisfactory results on the received signal. A shift of direction or a few feet in antenna position may effect a tremendous difference in picture reception.

REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.
Under certain extremely unusual conditions, it may be possible to rotate or position the antenna so that it receives the cleanest picture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surfaces.
Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE.-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals, doctors' offices and similar sources of interference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal roofs, gutters or other metal objects.
Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.
WEAK PICTURE. - When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

RECEIVER LOCATION. - The owner should be advised of the importance of placing the receiver in the proper location in the room.

The location should be chosen-

- Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation.


Figure 5-Chassis Top View


Figure 6-Chassis Bottom View

## ALIGNMENT PROCEDURE

TEST EQUIPMENT.-To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

## R-F Sweep Generator meeting the following requirements:

(a) Frequency Ranges

35 to $90 \mathrm{mc} ., 1 \mathrm{mc}$. to 12 mc . sweep width
170 to $225 \mathrm{mc} ., 12 \mathrm{mc}$. sweep width
(b) Output adjustable with at least 11 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope.-For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion.

For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
4.5 mc . sound i-f transformer
39.25 mc . adjacent channel picture trap
41.25 mc . sound trap
45.75 mc . picture carrier
47.25 mc. adjacent channel sound trap
(b) Radio frequencies

| Channel Number | Picture Carrier Freq. Mc. | Sound Carrier Freq. Mc. | Receiver R-F Osc. Freq. Mc |
| :---: | :---: | :---: | :---: |
| 2 | 55.25 | 59.75 | 101 |
| 3 | 61.25 | 65.75 | 107 |
| 4 | 67.25 | 71.75 | 113 |
| 5 | 77.25 | 81.75 | 123 |
| 6. | 83.25 | 87.75 | 129 |
| 7 | 175.25 | 179.75 | 221 |
| 8 | 181.25 | 185.75 | 227 |
| 9 | 187.25 | 191.75 | 233 |
| 10. | 193.25 | 197.75 | 239 |
| 11 | 199.25 | 203.75 | 245 |
| 12 | 205.25 | 209.75 | 251 |
| 13 | 211.25 | 215.75 | 257 |

(c) Output of these ranges should be adjustable and at least .1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior or Senior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 20 kv .

CAUTION : Do not short the kinescope second anode lead. Its short circuit current presents a considerable overload on the high voltage rectifier V119.

ORDER OF ALIGNMENT.-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Ant. Matching Unit
(6) Picture I-F Traps
(2) R-F Unit
(3) Ratio Detector
(7) Picture I-F Trans.
(4) Sound I-F Trans.
(8) Sweep Alignment of I-F
(5) Sound Take-Off Trans.
(10) Sensitivity Check

ANTENNA MATCHING UNIT ALIGNMENT.-The antenna matching unit is accurately aligned at the factory. Adjustment of this unit should not be attempted in the customer's home since even slight misalignment may cause serious attenuation of the signal especially on channel 2. The r-f unit is aligned with a particular antenna matching transformer in place. If for any reason, a new antenna matching transformer is installed, the r-f unit should be realigned.

The F-M Trap which is mounted in the antenna matching unit may be adjusted without adversely affecting the alignment of the unit.

To align the antenna matching unit disconnect the lead from the FM trap L58 to the channel selector switch S5.

With a short jumper, connect the output of the matching unit through a 1000 mmf capacitor to the grid of the second pix i-f amplifier, pin 1 of V107.

Replace the cover on the matching unit while making all adjustments.

Remove the first pix i.f amplifier tube V106.
Connect the positive terminal of a bias box to the chassis and the potentiometer arm to the junction of R143 and R144. Set the potentiometer to produce approximately -6.0 volts of bias at the test point TPIOl.

Connect an oscilloscope to the video test point TP102 and set the oscilloscope gain to maximum.

Conriect a signal generator to the antenna input terminals: Modulate the signal generator $30 \%$ with an audio signal.

Tune the signal generator to 45.75 mc . and adjust the generator output to give an indication on the oscilloscope. Adjust L59 in the antenna matching unit for minimum audio indication on the oscilloscope.

Tune the signal generator to 41.25 mc . and adjust L 60 for minimum audio indication on the oscilloscope.

Remove the jumper from the output of the matching unit.
Connect a 300 ohm $1 / 2$ watt composition resistor from L58 to ground, keeping the leads as short as possible.

Connect an oscilloscope low capacity crystal probe from L58 to ground. The sensitivity of the oscilloscope should be approximately 0.03 volts per inch. Set the oscilloscope gain to maximum.

Connect the r-f sweep generator to the matching unit antenna input terminals. In order to prevent coupling reactance from the sweep generator into the matching unit, it is advisable to employ a resistance pad at the matching unit terminals. Figure ll shows three different resistance pads for use with sweep generators with 50 ohm co-ax output, 72 ohm co-ax output or 300 ohm balanced output. Choose the pad to match the output impedance of the particular sweep employed.

Connect the signal generator loosely to the matching unit antenna terminals.

Set the sweep generator to sweep from 45 mc . to 54 mc . With RCA type WR59A sweep generators, this may be accomplished by retuning channel number 1 to cover this range. With WR59B sweep generators this may be accomplished by retuning channel number 2 to cover the range. In making these adjustments on the generator, be sure not to turn the core too far clockwise so that it becomes lost beyond the core retaining spring.

Adjust L61 and L62 to obtain the response shown in figure 12. L6l is most effective in locating the position of the shoulder of the curve at 52 mc . and L62 should be adjusted to give maximum amplitude at 53 mc . and above consistent with the specified shape of the response curve. The adjustments in the matching unit interact to some extent: Repeat the above procedure until no further adjustments are necessary.

Remove the 300 ohm resistor and crystal probe connections. Restore the connection between L58 and S5. Replace V106.

R-F UNIT ALIGNMENT.-An r-f unit which is operative and requires only touch up adjustments, requires no presetting of adjustments. For such units, skip the remainder of this paragraph. For units which are completely out of adjustment, preset all adjustments to the approximate center of their range with the following exceptions: Set Cl 8 so that the screw head is approximately three-eighths of an inch above chassis. Set the Tl core for maximum inductance (core turned counter-clockwise). Set Cll near maximum capacity (onequarter turn from tight). Do not change any of the adjustments in the antenna matching unit.

Disconnect the link from terminals " $A$ " and " $\mathrm{B}^{\prime}$ " of TlO 4 and terminate the link with a 39 ohm composition resistor.

The r-f unit is aligned with zero AGC bias. To insure that the bias will remain constant, take a clip lead and short circuit the r-f unit power terminal board terminal 3 to ground.

Connect the oscilloscope to the test point TPl on top of the r-f unit. Set the oscilloscope gain to maximum.

Turn the receiver channel selector switch to channel 2 .
Connect the output of the signal generator to the grid of the r-f amplifier, V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a small piece of wire around pin number 7. Reploce the tube in the socket leaving the end of the wire protruding from under the tube. Connect the signal generator to this wire through a 1,500 mmf capacitor.

Tune the signal generator to 43.5 mc . and modulate it $30^{\circ}{ }^{\circ}$ " with a 400 cycle sine wave. Adjust the signal generator for maximum output.

Adjust L65 on top of the r-f unit for minimum 400 cycle indication on the oscilloscope. If necessary, this adjustment can be retouched in the field to provide additional rejection to one specific frequency in the i-f band pass. However, in such cases, care should be taken not to adjust it so as to reduce sensitivity on channel 2 .

Remove the wire clip from pin 7 of V2 and replace the tube and tube shield.

Set the channel selector switch to channel 8.
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range now and at all times when adjusting the oscillator frequency.

Adjust Cl for proper oscillator frequency, 227 mc . This may be done in several ways. The easiest way and the way which will be recommended in this procedure will be to use the signal generator as a heterodyne frequency meter and beat the oscillator against the signal generator. To do this, tune the signal generator to 227 mc . with crystal accuracy. Insert one end of a piece of insulated wire into the r-f unit through the hole provided for the adjustment for CII. Be careful that the wire does not touch any of the tuned circuits as it may cause the frequency of the r-f unit oscillator to shift. Connect the other end of the wire to the "r-f in" terminal of the signal generator. Adjust Cl to obtain an audio beat with the signal generator.

Connect the sweep generator through a suitable attenuator as shown in Figure 11 to the input terminals of the antenna matching unit.

Connect the signal generaticr loosely to the antenna terminals

Set the sweep oscillator to cover channel 8 .
Set the oscilloscope to maximum gain and use the minimum input signal which will produce a useable pattern on the oscilloscope. Excessive input can change oscillator injection during alignment and produce consequent misalignment even though the response as seen on the oscilloscope may look normal.

Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc and 185.75 mc .
Adjust C9, Cll, C15 and Cl8 for approximately correct curve shape, frequency, and band width as shown in Figure 13.
The correct adjustment of CI8 is indicated by maximum amplitude of the curve midway between the markers. Cl 5 tunes the r-f amplifier plate circuit and alfects the frequency of the pass band most noticeably. C9 tunes the mixer grid circuit and affects the tilt of the curve most noticeably (assuming that Cl 8 has been properly adjusted). Cll is the coupling adjustment and hence primarily affects the response band width.

Set the receiver channel switch to channel 6.
Adjust the signal generator to the channel 6 oscillator fre. quency 129 mc .
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range.

Adjust L5 for an audible beat with the signal generator as before.

Set the sweep generator to channel 6 .
From the signal generator, insert channel 6 sound and pic. ture carrier markers, 83.25 mc . and 87.75 mc .

Adjust L48, L50 and L53 for proper response as shown in Figure 13.

L50 tunes the r-f amplifier plate circuit and primarily affects the frequency of the pass band. L53 tunes the r-f amplifier grid and is adjusted to give maximum amplitude of the curve between the markers. L48 affects the tilt of the curve but not quite the same as C9 adjustment. When the circuits
are correctly adjusted and L48 is rocked on either side of its proper setting, the high frequency (sound carrier) end of the curve appears to remain nearly fixed in amplitude while the picture carrier end tilts above or below this point.

Turn off the sweep and signal generators.
Connect the "VoltOhmyst" to the r-f unit test point TP1.
Adjust the oscillator injection trimmer C8 for -3.5 volts or at maximum if -3.5 volts cannot be reached. This voltage should fall between -2.5 and -5.5 volts on all channels when the alignment of all circuits is completed.

Turn the sweep oscillator and signal generator back on and recheck channel 6 response. Readjust L48, L50 and L53 if necessary.

Set the receiver channel selector switch to channel 8 and readjust Cl for proper oscillator frequency, 227 mc .

Set the sweep oscillator and signal generator to channel 8 :
Readjust C9, Cll, Cl 5 and Cl 8 for correct curve shape, frequency and band width.

Turn off the sweep and signal generators, switch back to channel 6 and check the oscillator injection voltage at TPl if C9 was adjusted in the recheck of channel 8 response.

If the initial setting of oscillator injection trimmer C8 was far off, it may be necessary to adjust the oscillator frequency and response on channel 8, adjust the oscillator injection on channel 6 and repeat the procedure several times before the proper setting is obtained.

Turn off the sweep generator and switch the receiver to channel 13.
Adjust the signal generator to the channel 13 oscillator frequency 257 mc .

Set the fine tuning control 30 degrees clockwise from the center of its mechanical range.

Adjust L46 to obtain an audible beat. Slightly overshoot the adjustment of L46 by turning the slug a little more in the same direction from the original setting, then reset the oscillator to proper frequency by adjusting Cl to again obtain the beat.

Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 13 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response.

If the markers do not \{alk within this requirement, switch to channel 8 and readjust $\mathrm{C} 9, \mathrm{Cl1}, \mathrm{Cl} 5$ and Cl 8 as necessary.

Turn off the sweep generator and check the channel 8 oscillator frequency. If Cl has to be readjusted for channel 8 , the principle of overshooting the adjustment and then correcting by adjusting L46 should be followed in order to establish the L/C ratio for the desired oscillator tracking.

Turn the receiver channel selector switch to channel 6 . Adjust L5 for correct oscillator frequency, 129 mc .

Turn the sweep oscillator on and to channel 6 and observe the response curve. If necessary readjust L48, L50 and L53.

Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscillator injection voltage.

If excessive tilt in the same direction occurs on channels 2 , 3 and 4, adjust Cl8 on channel 2 to overshoot the correction of this tilt, then switch to channel 6 and adjust L53 for maximum amplitude of curve between markers. This adjustment should produce "flat" response on the low channels if the other adjustments especially L48 are correct.
Likewise check channels 7 through 13, stopping on 13 for the next step.
With the receiver on channel 13 , check the receiver oscillator frequency. Correct by adjustment of Cl if necessary.

Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer to obtain the audible beat. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range. When employing WR39 calibrators to adjust the receiver oscillator, tune the calibrator to one-half the receiver oscillator frequency on channels 4,5 and 6 and to one-fourth the receiver oscillator frequency on channels 11,12 and 13 .

| Channel Number | Picture <br> Carrier <br> Freq. Mc. | Sound Carrier Freq. Mc. | Receiver R-F Osc. Freq. Mc. | Channel Oscillator Adjustment |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 55.25 | 59.75 | 101 | Ll |
| 3 | 61.25 | 65.75 | 107 | L2 |
| 4 | 67.25 | 71.75 | 113 | L3 |
| 5 | 77.25 | 81.75 | 123 | L4 |
| 6 | 83.25 | 87.75 | 129 | L5 |
| 7 | 175.25 | 179.75 | 221 | L6 |
| 8 | 181.25 | 185.75 | 227 | L. 7 |
| 9 | 187.25 | 191.75 | 233 | L8 |
| 10 | 193.25 | 197.75 | 239 | L9 |
| 11 | 199.25 | 203.75 | 245 | Llo |
| 12 | 205.25 | 209.75 | 251 | Lll |
| 13. | 211.25 | 215.75 | 257 | Cl |

Remove the 39 ohm resistor from the link and reconnect the link to terminals " $A$ " and " $B$ " of TlO4.

RATIO DETECTOR ALIGNMENT.--Set the signal generator at 4.5 mc. and connect it to the second sound i-f grid, pin l of V102. Set the generator for $30 \% 400$ cycle modulation.

As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed. If used connect its output cable to the grid of the 4th pix i-f amplifier pin 1 of V109. Set the frequency of the calibrator to 45.75 (pix carrier) and modulate with 4.5 mc . crystal. Also turn on the internal AM audio modulation. The 4.5 mc signal will be picked off at TlloA and amplified through the sound i-f amplifier.

Connect the "VoltOhmyst" to the junction of R11O and R114.
Connect the oscilloscope across the speaker vaice coil and turn the volume control for maximum output.

Set the trimmer C226 (on the bottom of the V1O3 socket) for minimum capacity.

Tune the ratio detector primary, Tl 02 top core for maximum DC output on the "VoltOhmyst." Adjust the signal level from the signal generdtor for 10 volts on the "VoltOhmyst" when finally peaked. This is approximately the operating level of the ratio detector for average signals.

Tune the ratio detector secondary T102 bottom core for minimum AM output on the oscilloscope.

Repeat adjustments of TlO 2 top for maximum DC and TlO 02 bottom for minimum output on the oscilloscope making final adjustment with the 4.5 mc . input level adjusted to produce 10 volts d-c on the "VoltOhmyst."

Connect the "VoltOhmyst" to the junction of Rll2 and Cll3 and note the amount of d-c present. If this voltage exceeds $\pm 1.5$ volts, adjust C 226 by turning the core in until zero d-c is obtained. Readjust the T102 bottom core for minimum output on the oscilloscope. Repeat the adjustments of C226 and T102 bottom core until the voltage at R112 and Cl13 is less than $\pm 1.5$ volts when TlO bottom core is set for minimum indication on the oscilloscope.

Connect the "VoltOhmyst" to the junction of R11O and R114 and repeat the TlO2 top core for maximum d-c on the meter and again reset the generator output so that the meter reads minus 10 volts.

Repeat the adjustments in the above two paragraphs until the voltage at Rll2 and Cl13 is less than $\pm 1.5$ volts when the T102 top core is set for maximum d-c at the junction of RllO and Rll4 and the T1O2 bottom core is set for minimum indication on the oscilloscope.

SOUND I-F ALIGNMENT.-Connect the sweep generator to the first sound i-f amplifier grid, pin 1 of V1Ol. Adjust the generator for a sweep width of 1 mc . at a center frequency of 4.5 mc .

Insert a 4.5 mc . marker signal from the signal generator into the first sound i-f grid.

Connect the oscilloscope in series with a 10,000 ohm resistor to terminal A of TlOl.

Adjust TlOl top and bottom cores for maximum gain and symmetry about the 4.5 mc . marker on the i-f response. The pattern obtained should be similar to that shown in Figure 14.

The output level from the sweep should be set to produce approximately 2.0 volt peak-to-peak at terminal A of TlOl when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

Connect the oscilloscope to the junction of RIl2 and Cll3 and check the linearity of the response. The pattern obtained should be similar to that shown in Figure 15.

SOUND TAKE-OFF ALIGNMENT.-Connect the 4.5 mc . generator in series with a $1,000 \mathrm{ohm}$ resistor to terminal " C " of Tllo. The input signal should be approximately 0.5 volts.

Short the fourth pix i-f grid to ground, pin 1 Vl09, to prevent noise from masking the output indication.
As an alternate source of signal the RCA WR39B or WR39C calibrator may be used. In such a case, disregard the above two paragraphs. Connect calibrator across link circuit, T104 $A, B$, and modulate 45.75 carrier with 4.5 mc . crystal.

Connect the crystal diode probe of a "VoltOhmyst" to the plate of the video amplifier, pin 8 of V110.

Adjust the core of TllO for minimum output on the meter. Remove the short from pin $1 \mathrm{VlO9}$ to ground, if used.

PICTURE I-F TRAP ADJUSTMENT.--Connect the i-f signal generator across the link circuit on terminals $A$ and $B$ of $\mathrm{TlO4}$.

Connect the "VoltOhmyst" to test point TP1Ol.
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a 1000 ohm potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction of Rl43 and Rl44.

Set the bias pot to produce approximately -1.0 volt of bias at test point TP1Ol.

Connect the "VoltOhmyst" to test point TPlO2 at the picture detector.
Set the signal generator to each of the following frequencies and adjust the corresponding circuit for minimum d-c output at TP102. Use sufficient signal input to produce 1.0 volt of $d-c$ on the meter when the final adjustment is made.

| 39.25 mc . | T104 top core |
| :---: | :---: |
| 41.25 mc . | Tl05 bottom core |
| 47.25 mc . | Tl06 bottom core |

PICTURE I-F TRANSFORMER ADJUSTMENTS. Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if necessary in order to produce 1.0 volt of d-c at test point TP102 with -1.0 volt of i-f bias at test point TPlOl.

| 43.7 mc | T109 |
| :---: | :---: |
| 45.5 mc | T108 |
| 41.8 mc . | T107 |

To align Tl05 and Tl06 connect the sweep generator to the first picture i-f grid pin 1 of V106 through a $1,000 \mathrm{mmf}$ ceramic capacitor. Shunt Rl41 Rl49 and terminals "A" and " $F$ " of $\mathrm{TlO9}$ with 330 ohm composition resistors. Set the i-f bias to -1.0 volt at test terminal TP101

Adjust Tl05 and Tl06 top cores for maximum gain and curve shape as shown in Figure 16. For final adjustments set the output of the sweep generator to produce 0.5 volts peak-to-peak at the oscilloscope terminals.

To align Tl and TlO 4 connect the sweep generator to the mixer grid test point TP2. Use the shortest leads possible with not more than one inch of unshielded lead at the end of the sweep cable.

Set the channel selector switch to channel 4.
Connect a 180 ohm composition resistor from terminal B of T105 to the junction of R135 and Cl32. Connect the oscilloscope diode probe to terminal B of T1O5 and to ground.

Couple the signal generator loosely to the diode probe in order to obtain markers.
In most receivers, C 221 is variable and is provided as a band width adjustment. Preset C 221 to minimum capacity.
Adjust Tl top and TlO 4 bottom for maximum gain at 43.5 mc. and with 45.75 mc . at $70 \%$ of maximum response.

Adjust C22l until 41.25 mc . is at $85 \%$ response with respect to the low frequency shoulder at approximately 41.9 mc . as shown in Figure 17.

In receivers in which C 221 is fixed, adjust Tl top and TlO 4 bottom for maximum gain and the response shown in Figure 16.
Disconnect the diode probe, the 180 ohm and three 330 ohm resistors.

SWEEP ALIGNMENT OF PIX I-F.-Connect the oscilloscope to the test point TP102.

Adjust the bias potentiometer to obtain -6.0 volts of bias as measured by a "VoltOhmyst" at test point TP1Ol.

## ALIGNMENT PROCEDURE

Leave the sweep generator connected to the mixer grid test point TP2 with the shortest leads possible and with not more than one inch of unshielded lead at the end of the sweep cable. If these precautions are not observed, the receiver may be unstable and the response curves obtained may be unreliable.

Adjust the output of the sweep generator to obtain 3.0 volts peak-to-peak on the oscilloscope.

Couple the signal generator loosely to the grid of the first pix i-f amplifier. Adjust the output of the signal generator to produce small markers on the response curve.
Retouch Tl 08 and Tl 09 to obtain the response shown in Figure 18. Do not adjust Tl07 unless absolutely necessary. If Tl 07 is adjusted too low in frequency it will raise the level of the 41.25 mc . sound i-f carrier and may create interference in the picture. It will also cause poor adjacent channel picture rejection. If TlO 07 is tuned too high in frequency, the level of the 41.25 mc . sound i-f carrier will be too low and may produce noisy sound in weak signal areas.
Remove the oscilloscope, sweep and signal generator connections.

Remove the bias box employed to provide bias for alignment.
HORIZONTAL OSCILLATOR ADJUSTMENT.-Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment may require the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.

Horizontal Frequency Adjustment.-Tune in a station and sync the picture. If the picture cannot be synchronized with the horizontal hold control R201B, then adjust the T113 frequency core on the rear apron until the picture will synchronize. If the picture still will not sync, turn the Tll3 waveform adjustment core (under the chassis) out of the coil several turns from its original position and readjust the T113 frequency core until the picture is synchronized.

Examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control Cl81B, the width control L106 and the linearity control Ll07 until the picture is correct.

Horizontal Oscillator Waveform Adjustment.-The horizontal oscillator waveform may be adjusted by either of two methods. The method outlined in paragraph A below may be employed in the field when an oscilloscope is not a vailable. The service shop method outlined in paragraph B below requires the use of an oscilloscope.
A. - Turn the horizontal hold control completely clockwise. Place adjustment tools on both cores of T113 and be prepared to make simultaneous adjustments while watching the picture on the screen. First, turn the Tll3 frequency core (on the rear apron) until the picture falls out of sync and one diagonal black bar sloping down to the right appears on the screen. Then, turn the waveform adjustment core (under the chassis) into the coil while at the same time adjusting the frequency core so as to maintain one diagonal black bar on the screen. Continue this procedure until the oscillator begins to motorboat, then turn the waveform adjustment core out until the motorboating just stops. As a check, turn the Tll3 frequency core until the picture is synchronized then reverse the direction of rotation of the core until the picture begins to fall out of sync with the diagonal bar sloping down to the right. Continue to turn the frequency core in the same direction. Additional bars should not appear on the screen. Instead, the horizontal oscillator should begin to motorboat. Retouch the adjustment of the Tll3 waveform adjustment core if necessary until this condition is obtained.
B.-Connect the low capacity probe of an oscilloscope to terminal C of Tll3. Turn the horizontal hold control onequarter turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 19. Adjust the waveform adjustment core of Tll3 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.
Remove the oscilloscope upon completion of this adjustment.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tll3 frequency core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl81A slightly clockwise. If less than 2 bors are present, adjust C181A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Turn the horizontal hold control to the maximum clockwise position. Adjust the Tll3 frequency core so that the diagonal bar sloping down to the right appears on the screen and then reverse the direction of adjustment so that bar just moves off the screen leaving the picture in synchronization.

SENSITIVITY CHECK.- $\AA$ comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions. This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad.

RESPONSE CURVES.-The response curves shown on page 14 are typical though some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator

NOTES ON R-F UNIT ALIGNMENT.-Because of the frequency spectrum involved and the nature of the device, many of the r-f unit leads and components are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the performance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in their components and physical arrangement without being troublesome." When the r-f unit is aligned in the receiver, no trouble from resonant loops should be experienced. However, if the unit is aligned in a jig separate from the receiver, attention should be paid to insure that unwanted resonances do not exist which might present a faulty representation of r-f unit alignment.

A resonant circuit exists between the r-f tuner chiassis and the outer shield box, which couples into the antenna and r-f plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance between the tuner chassis and the front plate. This resonance is controlled in the design by using insulating washers of proper thickness in the front plate to tuner chassis mounting. The performance of the tuner will be impaired if the proper washers are not used. Obviously then, if the r-f unit is removed for service, the washers should be replaced in the correct order when the unit is replaced.

## 17T150, 17T151, 17T163

## ALIGNMENT TABLE

THE DETAILED ALIGNMENT PROCEDURE BEGINNING ON PAGE 8 SHOULD BE READ BEFORE ALIGNMENT BY USE OF THE TABLE IS ATTEMPTED

| $\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$ | $\begin{gathered} \text { CONNECT } \\ \text { SIGNAL. } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$ | $\begin{gathered} \text { SIGNAL } \\ \text { GEN. } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$ |  | $\begin{aligned} & \text { SWEEP } \\ & \text { GEN. } \\ & \text { FREO. } \\ & \text { MC. } \end{aligned}$ | CONNECT HETERODYNE FREQ. METER |  | $\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$ | MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS | ADJUST | $\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANTENNA MATCHING UNIT ALIGNMENT |  |  |  |  |  |  |  |  |  |  |
| 1 | Do not adjust this unit unless fairly certain that it requires adjustment. Disconnect lead from L58 to S5. Connect output of matching unit through 1000 mmf . to pin 1 of V107. Replace cover on matching unit. Remove V106from socket. Connect bias box to junction of R143 and R144 and set to produce -6 volts. |  |  |  |  |  |  |  |  |  |
| 2 | Antennaterminals | 45.75 mc . $30 \% \mathrm{mod}$. | Not used | - | Not used | - | TP102. Scope gain to max. | - | L59 for min. audio on scope | Fig. 7 |
| 3 | " | $\begin{aligned} & 41.25 \mathrm{mc} . \\ & 30 \% \mathrm{mod} . \end{aligned}$ | " | - | " | - | '" | - | L60 for min. audio on scope | Fig. 7 |
| 4 | Antennaterminals loosely |  | Antennaterminals through pad | 45 to 54 mc . | " | - | Scope a xtal probe to gnd. | Connect 300 ohms from L58 to gnd. | L61 and L62 to obtain response of Fig. 12 | Fig. 7 <br> Fig. 11 <br> Fig. 12 |

## R-F UNIT ALIGNMENT

| 5 | If unit is completely out of adjustment, preset all adjustments to center of range with following exceptions. Set C18 so that head is $3 / \mathrm{s}^{\prime \prime}$ above chassis. Set Tl max. counterclockwise. Set Cll $1 / 4$ turn from max. clockwise. Disconnect link from Tl04 and terminate with 39 ohms. Shortr-f unit power terminal 3 to ground. Set fine tuning 30 degrees clockwise from mechanical center of its range for all oscillator adjustments. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Grid, pin 7 of V2through 1500 mmf. | 43.5 mc . $30 \%$ mod. | Not used | - N | Not used | - | TP1. Gainto maximum | Set r-f unit on channel 2 | L65 for min. indication on scope | $\begin{aligned} & \text { Fig. } 7 \\ & \text { Fig. } 10 \end{aligned}$ |
| 7 | Not used | - | Not used | $\cdots$ | Loosely to r-f unit oscillator | 227 mc . | Not used | R-F unit on channel 8 | Cl for beat on het. freq. meter | Fig. 7 |
| 8 | Antennaterminals loosely | $\begin{gathered} 181.25 \\ \text { and } \\ 185.75 \end{gathered}$ | Antennaterminals through pad | $\underset{8}{\text { Channel }}$ | Not used | - | TPl. Gain to maximum | " | C9, Cll, Cl5 and C18 for response shown in Fig. 13 | $\begin{array}{l\|} \hline \text { Fig. } 7 \\ \text { Fig. } 13 \end{array}$ |
| 9 | Not used | - | Not used | $-\mathrm{L}$ | Looselytor-5 unit oscillator | 129 mc . | Not used | R-F unit on channel 6 | LS for beat on het. freq. meter | Fig. 8 |
| 10 | Antennaterminals loosely | $\begin{aligned} & 83.25 \\ & \text { and } \\ & 87.75 \end{aligned}$ | Antennaterminals through pad | $\underset{6}{\text { Channel }}$ | Not used | - | TPl. Gain to maximum | , | L48, L50 and L53 for response shown in Fig. 13 | $\begin{aligned} & \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$ |
| 11 | Not used | - | Not used | N | Not used | -- | Not used | Onchannel6. Connect''VoltOhmyst' to TPl | $\begin{aligned} & \text { C8 for }-3.5 \text { volts on } \\ & \text { meter } \end{aligned}$ | Fig. 7 |
| 12 | Antennaterminals loosely | $\begin{aligned} & 83.25 \\ & \text { and } \\ & 87.75 \end{aligned}$ | Antennaterminols through pad | $\underset{6}{\text { Channel }}$ | Not used | - | TPI. Gain to maximum | R-F unit on channel 6 | Checkresponse. Readjust L48, L50 and L53 if necessary | $\begin{aligned} & \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$ |
| 13 | Not used | - | Not used | L | Loosely to r-f unit oscillator | 227 mc . | Not used | R-F unit on channel 8 | Cl for beat on het. freq. meter | Fig. 7 |
| 14 | Antennaterminals loosely | $\begin{gathered} 181.25 \\ \text { and } \\ 185.75 \end{gathered}$ | Antennaterminals through pad | $\begin{array}{\|c\|} \hline \text { Channel } \\ 8 \end{array}$ | Not used | - | TPl. Gain to maximum | - | Check response adjust C9, Cll. Cl5 and C18 if necessary | Fig. 7 |
| 15 | If C9 was readjusted instep 14, repeatstep 11, step 13 and step 14 untilthe conditions specified in each step are fulfilled without additional adjustments. |  |  |  |  |  |  |  |  |  |
| 16 | Not used | - - | Not used | - | Loosely to r-f unit oscillator | 257 mc . | Not used | Rec. on channel 13 | L46 for beat on het. freq. meter. Overshoot L46 slightly and adjust Cl for beat. | Fig. 7 |
| 17 | Antennaterminals loosely | $\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$ | Antennaterminals through pad | $\underset{13}{\text { Channel }}$ | Not used | - | TPl. Gain to maximum | Rec. on channel 13 <br> "VoltOhmyst" on TPl | Check to see that response is correct and -3.0 volts of osc. injection is present | Fig. 13 |
| 18 | - | $\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$ | - | Channel 12 | Not used | - | " | Rec. on channel 12 | ." | Fig. 13 |
| 19 | * | $\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$ | ' | Channel 11 |  | - | " | Rec. on channel 11 | ' | Fig. 13 |
| 20 | " | $\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$ | " | $\begin{gathered} \text { Channel } \\ 10 \end{gathered}$ | " | - | " | Rec. on channel 10 | " | Fig. 13 |
| 21 | ' | $\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$ | ' | $\begin{gathered} \text { Channel } \\ 9 \end{gathered}$ | " | - | " | Rec. on channel 9 | '' | Fig. 13 |
| 22 | " | $\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$ | " | $\begin{gathered} \text { Channel } \\ 8 \end{gathered}$ | " | - | " | Rec. on channel 8 | " | Fig. 13 |
| 23 | '' | $\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$ | $\cdots$ | $\underset{7}{\text { Channel }}$ | 1 | - | " | Rec. on channel 7 | ' | Fig. 13 |
| 24 | If the response of any channel (steps 17 through 23) is below $80 \%$ at either marker, adjust C9, C11, Cl5 and C18 as necessary to pull response up on the low channel yet maintain correct response on channel 8 . |  |  |  |  |  |  |  |  |  |
| 25 | Repeat step 13. If the oscillator is off frequency overshoot the adjustment of Cl and correct by adjusting L46. |  |  |  |  |  |  |  |  |  |
| 26 | Repeat steps 16 through 25 until all adjustments are obtained. |  |  |  |  |  |  |  |  |  |
| 27 | Not used | - | Not used | - | Loosely to r-f unit oscillator | 129 mc . | Not used | Rec. on channel 6 | L5 for beat on het. freq. meter | Fig. 7 |
| 28 | Antennaterminals loosely | $\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$ | Antennaterminals through pad | $\underset{6}{\text { Channel }}$ | Not used | - | TPl. Gain to maximum | Rec. on channel 6 <br> "VoltOhmyst" on TP1 | Check to see that response is correct and -3.0 volts of ose. injection is present | Fig. 7 <br> Fig. 13 |
| 29 | ' | $\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$ | " | $\underset{5}{\text { Channel }}$ | 1 ${ }^{\prime}$ | - | '' | Rec. on channel 5 | " | Fig. 13 |
| 30 | " | $\begin{aligned} & 67.25 \\ & 71.75 \end{aligned}$ | ' | $\underset{4}{\text { Channel }}$ | $1 \quad$ " | - | '' | Rec. on channel 4 | " | Fig. 13 |
| 31 | " | $\begin{aligned} & 61.25 \\ & 65.75 \end{aligned}$ | ' | $\mathrm{Channel}_{3}$ | 1 " | - | " | Rec. on channel 3 | ' | Fig. 13 |

92

## 17T150, 17T151, 17T163 <br> SERVICE SUGGESTIONS

Following is a list of symptoms of possible failures and an indication of some of the possible faults:

## NO RASTER ON KINESCOPE

(1) Incorrect adjustment of ion trap magnet. Magnet reversed either front to back or top to bottom
(2) V116 or Vllz inoperative. Check waveforms on grids and plates.
(3) No high voltage-if horizontal deflection is operating as evidenced by the correct waveform on terminall of high voltage transformer, the trouble can be isolated to the 1B3GT circuit. Either the T114 high voltage winding is open, the 1B3GT tube is defective, its filament circuit is open or C197 is shorted.
4) Vllo circuit inoperative-Refer to schematic and waveorm chart.
Damper tube (V120) inoperative
(6) Defective kinescope.
(7) R218 open.
8) No receiver plate voltage-filler capacitor shorted-or

NO VERTICAL DEFLECTION
(1) V114B or V115 inoperative. Check voltage and waveforms on grids and plates.
(2) T111 open.
(3) Vertical deflection coils open

## SMALL RASTER

1) Low Plus B or low line voltage.
(2) V117 defective

## POOR VERTICAL LINEARITY

1) If adjustments cannot correst, change Vlls
(2) Vertical output transformer Tlll defective
(3) V114B defective-check voltage and waveforms on grid and plate.
(4) $\mathrm{C} 168, \mathrm{C} 170, \mathrm{C} 171, \mathrm{Cl} 72, \mathrm{C} 173$ or Cl 74 defective
(5) Low plate voltage-check rectifiers and capacitors in supply circuits.
(6) If height is insufficient, try changing V114

## POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V117, or V120
2) T114 or Ll07 defective.
(3) C 195 or Cl 96 defective

WRINKLES ON SIDE OF RASTER

1) C199 defective
(2) Defective yoke

PICTURE OUT OF SYNC HORIZONTALLY

1) T113 incorrectly tuned
(2) R226, R227 or R201B defective

TRAPEZOIDAL OR NON SYMMETRICAL RASTER:
(1) Improper adjustment of centering of focus magnet or ion (2) Defective yoke

RASTER AND SIGNAL ON KINESCOPE BUT NO SOUND
(1) T110 defective
(2) Sound i-f, ratio detector or audio amplifier inoperative
(3) Audio system defective.
(4) Speaker defective

SIGNAL AT KINESCOPE GRID BUT NO SYNC
(1) AGC control R175 misadjusted
(2) V111, inoperative. Check voltage and waveforms at its

SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC
11) Check V114B and associated circuit
(2) Integrating network inoperative-Check

V113 or V114A defective or associated circuit defective.
(4) Gas current grid emission or grid cathode leakage in

SIGNAL ON KINESCOPE GRID BUT NO HORIZONTAL SYNC
(1) Tl13 misadjusted-readjust as instructed on page 11
(2) V112 or V113 inoperative-check socket voltages and
(3) T113 defective
(4) Cl57, C181A, C182, C183, C184, C185, C186, C187 or 5) If horizontal speed is completely off and cannot be
adiusted check R226, R227, R201 B, R229, R230 and
R231

SOUND AND RASTER BUT NO PICTURE OR SYNC:
(1) Picture, detector or video amplifier defective-check
CR101 and V110-check socket voltages. (2) Ba

PICTURE STABLE BUT POOR RESOLUTION:

1) CR1Ol or VllO defective
(2) Peaking coils defective-check resistance
(3) Make sure that the focus control operates on both sides
2) R-F and I-F circuits misaligned.

## PICTURE SMEAR:

(1) R-F or I-F circuits misaligned.
2) Open peaking coil.
(3) This trouble can originate at the transmitter--check on

## PICTURE JITTER:

(1) AGC control Rl75 misadjusted.
(2) If regular sections at the left picture are displaced

| ${ }_{\text {Step }} \mathrm{S}$. | $\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$ | $\begin{aligned} & \text { SIGNAL } \\ & \text { SREN } \\ & \text { FRCO. } \end{aligned}$ | $\begin{gathered} \text { CONNECT } \\ \text { SWEEP } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$ |  |  | $\begin{aligned} & \text { HET } \\ & \text { MEER } \\ & \text { FRCO. } \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { CONNECT } \\ \text { OSCILESECOPE } \\ \text { TO } \end{gathered}\right.$ | MISCELLANEOUS CONNCTIONS ANSTRUCTIONS INTRUC | adjust | $\underset{\text { Refer }}{\text { To }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 |  | ${ }_{59}^{55.75}$ |  | $\underset{2}{\text { Channel }}$ |  | - | - ." | Rec. on channel 2 |  | ${ }_{\text {Fi }}$ |
| 33 | If excessive tilt in the same direction occurs on channels 2,3 and 4 , adjust $\mathbf{C 1 8}$ on channel 2 to overshoot the correction of this tilt then switch to channel 6 and adjust L53 for max. amplitude of response between carrier markers. |  |  |  |  |  |  |  |  |  |
| 34 | Check r-f response and oscillator injection on channels 7 through 13 steps 23 back up through step 17 stopping on channel 13 for the next step. |  |  |  |  |  |  |  |  |  |
| 35 | Not used | - | Not used |  | Loosely coupled tor-f oscillator | 257 mc . | TP1. Gain to maximum | Rec. on channel 13 | Cl for beat on het freq. meter | Fig. 7 |
| 36 | . | - |  | - |  | 251 mc . |  | Rec. on channel 12 | Lll as above | Fig. 7 |
| 37 | " | - |  | - | " | 245 mc . | " | Rec.on channell 1 | L10 as above | Fig. 7 |
| 38 | . | - | " | - | " | 239 mc . |  | Rec. on channel 10 | L9 as above | Fig. 7 |
| 39 | " | - | " | - | * | 233 mc . | " | Rec. on channel 9 | L8 as above | Fig. 7 |
| 40 | " | - | " | - | * | 227 mc . | " | Rec. on channel 8 | L7 as above | Fig. 7 |
| 41 | " | - | " | - | * | 221 mc . | " | Rec. on channel 7 | L6 as above | Fig. 7 |
| 42 | . | - | " |  | " | 129 mc . | . | Rec. on channel 6 | L5 as above | Fig. 7 |
| 43 |  | - |  | - |  | 123 mc . |  | Rec. on channel 5 | L4 as above | Fig. 7 |
| 44 | " | - | * | - | * | 113 mc . | " | Rec. on channol 4 | L3 as above | Fig. 7 |
| 45 | " | - | " | - | " | 107 mc . | " | Rec. on channel 3 | L2 as above | Fig. 7 |
| 46 | - " | - | $\cdots$ | - | - ${ }^{\text {a }}$ | 101 mc . | " | Roc. on channel 2 | Ll as above | Fig. 7 |
| 4 | Repeat steps 35 through 46 as a check. On complotion, remove 39 ohm resistor and reconnect link to terminals $A$ and $B$ of $T 104$. |  |  |  |  |  |  |  |  |  |

RATIO DETECTOR, SOUND I-F AND SOUND TAKE-OFF ALIGNMEN

| 48 |  |  | Not used | - | Not used | - | Across speaker voice coil. Volume control set $\xrightarrow{\text { for }}$ | "VoltOhmyst'" to junction of R110 R1 C226 for min. capacity. Set signal on meter. |  | ${ }_{\text {Fig. }}^{\text {Fig. }} 10$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 |  | . | " | - |  | - | , |  |  | Fig. 9 Fig. 10 |
| 50 | Sig. Gen. to lst | 4.5 mc . | $\begin{aligned} & \text { list Sound } \begin{array}{l} \text { I-F } \\ \text { gridi } \\ \text { vioi) } \end{array} \text { (pin } \\ & \hline \end{aligned}$ | 4.5 mc . | , | - |  | Sweep output re- duced to provide $2 \mathrm{v} p-\mathrm{p}$ on scope. |  | $\begin{aligned} & \text { Fig. } 90 \\ & F_{\text {Iig. }} 10 \\ & \text { Fig. } 14 \end{aligned}$ |
| 51 | - |  | - |  |  | - | $\underset{\substack{\text { Junction of R112 } \\ \text { and Cl13 }}}{ }$ | Check for symmetr | ital response wave | Fig. 15 |
| 52 |  | . | Not used | - | " | - |  |  | Adjust T110for minimum reading on Voltohmyst. on "VoltOhmyst | Fig. 9 |


| 53 | Not used | - | Not used | - | Not used | - | Not used | Connect bias box to Ni4 and to gnd on | junction of R143 and diust to give -1.0 vin TP101 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 54 | $\underbrace{\text { T104 }}_{\text {Sig. Gen. across }}$ | 39.25 mc . | " | - |  | - |  |  |  | Fig. |
| 55 | " | 41.25 mc . | " | - |  | - | " |  | T105 bot. for min. | Fig. 10 |
| 56 | " | 47.25 mc . | " | - |  | - | " | " | T106 bot. for min. | Fig. 10 |
| 57 | " | 43.7 mc . | " | - | " | - | " | Sig. Gen. outputto give -1.0 V d-c at ${ }_{\text {TPI02 }}^{\text {givo }}$ | T109 for max. | Fig. 7 |
| 58 | " | 45.5 mc . | . | - | , | - | " | " | T. 1.08 for max. | Fig. 9 |
| 59 | - " | 41.8 mc . | " | - | " | - | " | " | T107 for max. | Fig. 9 |
| 60 | $\begin{aligned} & \text { First pix i- if qrid } \\ & \text { (pin } \\ & \text { poosely. } \end{aligned}$ | $\begin{gathered} \text { Various } \\ \text { Fis. } \\ \text { Fig. } 16 \end{gathered}$ |  | 40 to 48 mc | " | - | $\mathrm{T}_{\text {TPIO2 }}^{\text {Tost point }}$ |  | Adjust Tli05 and Tho6 top cores for max. gain and re- got sponse Fig. 16. | $\underset{\text { Fig. } 91}{\text { Fig } 16}$ |
| 61 | Connected loosely to diode probe. | $\begin{array}{\|l\|l} \text { Various } \\ \text { Figee } \\ \text { Fig. } 17 \end{array}$ | Mixer grid test point TP2 with short lead | $\begin{gathered} 40 \mathrm{to} \\ 48 \mathrm{mc} . \end{gathered}$ | " | - | Scope diodo and to gnd | Rec. on chan. 4 Connect 180 ohms from Tl05-B to junction R135 and Cl32. Upon com- pletion disconnect cope and shunt ing resistors. | Set C221 to min T104 bot. for max gain at 43.5 mc <br>  ${ }_{80}{ }^{\text {unti }}$ | $\begin{aligned} & \text { Fig. } 97 \\ & \text { Fig. } 17 \end{aligned}$ |
| 62 | $\begin{aligned} & \text { Connected } \\ & \text { loosely io torid } \\ & \text { of lst pixi-f. } \end{aligned}$ | $\begin{gathered} \text { Various } \\ \text { Sige } \\ \text { Fig. } \end{gathered}$ | " | " | " | - | $\begin{aligned} & \text { Connect scope } \\ & \text { to TPlo2. } \end{aligned}$ |  | Retouch T108 and Tl09 to obtain response shown in Fig. 18. Do not adjust Tl07 unless sary. | Fig. 18 |



Figure 7-R-F Unit Adjustments


Figure 8-R-F Oscillator Adjustments



Figure 10-Bottom Chassis Adjustments


Figure 11-Sweep Attenuator Pads


Figure 13-R-F Response


Figure 19-Horizontal Oscillator Waveforms
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync.

RASTER BUT NO SOUND, PICTURE OR SYNC:
(1) Defective antenna or transmission line.
(2) A-F oscillator off frequency.
(3) R-F unit inoperative-check V1, V2.

DARK VERTICAL LINE ON LEFT OF PICTURE:
(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V117

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) Cl 93 defective
(2) V120 defective

PICTURE I-F RESPONSE.-At times it may be desirable to observe the individual i-f stage response. This can be achieved by the following method:

For T107, Tl08 or Tl09, shunt all i-f transformers with a 330 ohm carbon resistor except the one whose response is to be observed.

Connect a wide band sweep generator to the second pix i-f grid and adjust it to sweep from 38 mc . to 48 ms .

Connect the oscilloscope to test point TP1O2 and observe the overall response. The response obtained will be essentially that of the unshunted stage.

To see the response of transformers $\mathrm{Tl}, \mathrm{Tl} 04$ and $\mathrm{Tl05}, \mathrm{Tl06}$, follow the instructions given on page 10 .

Figures 28 through 36 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.

RESPONSE PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope


Figure 28-Overall Pix 1-F Restonse


Figure 31-Response of T107 Pix I-F Transformer


Figure 34-Video Response at Average Contrast


Figure 29-Response of T1-T104 Pix I-F Transformers


Figure 32-Response of T108 Pix I-F Coil


Figure 35-Video Response (100 KC Square Have)


Figure 30-Response of T105-T106 Pix I-F Transformer


Figure 33-Response of T109 Pix I-F Coil


Figure 36-Video Response ( 60 Cycle Square Wave)

17T150, 17T151, 17T163


WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

Grid of 1st Video Amplifier (Pin 4 of Vilo) (6AG7) Voltage Depends on Picture
Figure 37-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (6.0 Volts PP)
$\longleftarrow<$
Figure 38-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep
 Rate) (6.0 Volts PP)


Plate of 1st Video Amplifier (Pin 8 of VIIO) (6AG7)
Voltage depends oin picture
Figure 39-Vertical (105 Volts PP)
$\longleftarrow<$
Figure $40-$ Horizontal (105 Volts PP)

$\rightarrow$

Grid of Sync Separator
(Pin 4 of V113) ( $6 S N 7$ )
Voltage depends on picture
Figure 41-Vertical (30 Volts PP)
$\longleftarrow<$

Figure 42-Horizontal (30 Volts PP)


Plate of Sync Separator
(Pin 5 of V113) ( $6 S N 7$ )
(.25 mfd in series with probe)

Figure 43-Vertical (33 Volts PP)
$\longleftarrow \longleftarrow 4$
Figure 44-Horizontal (8 Volts PP)

$\rightarrow$

Grid of Vertical Sync Amp. (Pin 4 of VII4A) (6SN7)

Figure 45-Vertical (12 Volts PP)

Figure 46-Horizontal (5 Volts PP)


# WAVEFORM PHOTOGRAPHS 

Taken from RCA WO58A Oscilloscope


Figure 51-Grid of Vertical Sweep Output (Pin 1 of V115) (6AQ5) (35 Volts PP)
$\longleftarrow \leftarrow$

Figure 52-Plate of Vertical Sweep Output (Pin 5 of V115) (6AQ5) ( 800 Volts PP)
$\rightarrow$


Cathode of Sync Separator (Pin 3 of V113) (6SN7)

Figure 53-Vertical (11 Volts PP)
$\leftrightarrow<$

Figure 54-Horizontal (6 Volts PP)


Grid of Sync Separator (Pin 1 of V113) (6SN7)

Figure 55-Vertical ( 40 Volts PP) $\longleftarrow 4$

Figure 56-Horizontal ( 40 Volts PP)
$\rightarrow$


Taken from RCA WO58A Oscilloscope

Plate of Sync Separator (Pin 2 of V113) (6SN7)

Figure 57-Vertical (15 Volts PP)


Figure 58-Horizontal (15 Volts PP)


Grid of Hor. Sync Amp. (Pin 4 of V112) (6SN7)

Figure 59-Vertical (15 Volts PP)
$\longleftarrow \leftarrow$

Figure 60-Horizontal (15 Volts PP)


Plate of Hor. Sync Amp. (Pin 5 of V112) ( 6 SN7)

Figure 61-Vertical (70 Volts PP)


Figure 62-Horizontal (70 Volts PP)

$\rightarrow$


Grid of Hor. Sync Amp. (Pin 1 of V112) (6SN7)

Figure 63-Vertical (65 Volts PP)
$\longleftarrow<$

Figure 64-Horizontal (65 Volts PP)

$\rightarrow$


Cathode of Hor. Sync Amp. (Pin 3 of V112) ( 6 SN7)

Figure 65-Vertical (18 Volts PP) $\longleftarrow<$


Figure 66-Horizontal (18 Volts PP)


Figure 71 -Terminal "C" of T113 ( 120 Volts PP)


Figure 72-Grid of Horizontal Output Tube (Pin 5 of V117) (6BQ6) (95 Volts PP)
$\rightarrow \longrightarrow$

Figure 73-Plate of Horizontal Output (Approx. 4000 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V117 to Ground)
$\longleftarrow<$
Figure 74-Cathode of Damper (Pin 3 of V120) (6W4GT) (2300 Volts PP)
$\rightarrow$

Figure 75-Plate of Damper (Pin 5 of V120) ( $6 W_{4 G T}$ ) (180 Volts PP)
$\longleftarrow \leftarrow$

Figure 76-Plate of AGC Amplifier (Pin 5 of V1II) (6CB6) ( 600 Volts PP)
$\rightarrow$


## VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, $a-c$. The symbol $<$ means less than.

| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts |  |
| V1 | 6X8 | Mixer | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 9 | - | 8 | - | 6 | 0 | 7 | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 9 | $\begin{gathered} 145 \text { to } \\ 150 \end{gathered}$ | 8 | $\begin{gathered} 145 \text { to } \\ 150 \end{gathered}$ | 6 | 0 | 7 | $\begin{gathered} -2.8 \text { to } \\ -3.5 \\ \hline \end{gathered}$ | Depending on channel |
| V1 | 6X8 | R-F Oscillator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 3 | - | - | - | 6 | 0 | 2 | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \\ \hline \end{gathered}$ | 3 | $\begin{gathered} 88 \text { to } \\ 108 \end{gathered}$ | - | - | 6 | 0 | 2 | $\begin{gathered} -3.0 \text { to } \\ -5.1 \\ \hline \end{gathered}$ | Depending on channel |
| V2 | 6BQ7 | R-F Amplifier | $5000 \mathrm{Mu} . \mathrm{V}$. Signal | 6 | - | - | - | 8 | - | 7 | - |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 6 | $\begin{gathered} 133 \text { to } \\ 138 \end{gathered}$ | - | - | 8 | 1.1 | 7 | - | Depending on channel |
| V2 | 6BQ7 | $\begin{aligned} & \text { R-F } \\ & \text { Amplifier } \end{aligned}$ | 5000 Mu . V. Signal | 1 | - | - | - | 3 | - | 2 | - |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 1 | 260 | - | - | 3 | $\begin{gathered} 133 \text { to } \\ 138 \end{gathered}$ | 2 | - | Depending on channel |
| V101 | 6AU6 | $\begin{aligned} & \text { lst Sound } \\ & \text { I-F Amp. } \end{aligned}$ | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 255 | 6 | 185 | 7 | 0.8 | 1 | -1.0 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 5 | 245 | 6 | 165 | 7 | 0.9 | 1 | 0 |  |
| V102 | 6AU6 | $\begin{aligned} & \text { 2d Sound } \\ & \text { I-F Amp. } \\ & \hline \end{aligned}$ | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 5 | 260 | 6 | 52 | 7 | 0.17 | 1 | -24 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 5 | 255 | 6 | 54.0 | 7 | 0.12 | 1 | *-1.5 | *Unreliable measuring point. Voltage depends on noise. |
| V103 | 6AL5 | $\begin{aligned} & \text { Ratio } \\ & \text { Detector } \end{aligned}$ | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 7 | 0.54 | - | - | 1 | 15.1 | - | - | 7.5 kc deviation at 400 cycles |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 7 | -0.85 | - | - | 1 | *6.85 | - | - | *Unreliable measuring point. Voltage depends on noise. |
| V104 | 6AV6 | lst Audio Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 7 | 102 | - | - | 2 | 0 | 1 | -0.3 | At min. volume |
|  |  |  | $\begin{gathered} \mathrm{N} \circ \\ \text { Signal } \end{gathered}$ | 7 | 100 | - | - | 2 | 0 | 1 | -0.3 | At min. volume |
| V105 | 6AQ5 | Audio Output | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 5 | 245 | 6 | 254 | 2 | 17 | 7 | 0 | At min. volume |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 240 | 6 | 250 | 2 | 17 | 7 | 0 | At min. volume |
| V106 | 6AU6 | lst Pix. I-F Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 5 | 248 | 6 | 255 | 7 | 0.2 | 1 | -6.7 |  |
|  |  |  | No Signal | 5 | 150 | 6 | $120^{\circ}$ | 7 | 1.0 | 1 | *0 | *Unreliable measuring point. Make measurement at Tl04-D. |
| V107 | 6CB6 | 2nd Pix. I-F <br> Amplifier | 5000 Mu . V. Signal | 5 | 249 | 6 | 232 | 2 | 0.15 | 1 | -6.7 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 145 | 6 | 108 | 2 | 0.8 | 1 | 0 |  |
| V108 | 6CB6 | $\begin{aligned} & \text { 3d Pix. I-F } \\ & \text { Amplifier } \end{aligned}$ | 5000 Mu . V. Signal | 5 | . 145 | 6 | 135 | 2 | 1.2 | 1 | 0 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 130 | 6 | 127 | 2 | 1.1 | 1 | 0 |  |
| V109 | 6CB6 | 4th Pix. I-F Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .} \text { V. }$ | 5 | 215 | 6 | 150 | 2 | 2.1 | 1 | 0 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 210 | 6 | 140 | 2 | 2.0 | 1 | 0 |  |
| V110 | 6AG7 | Video Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 8 | 135 | 6 | 150 | 5 | 1.35 | 4 | -3.0 |  |
|  |  |  | $\begin{gathered} \mathrm{N} \circ \\ \text { Signal } \\ \hline \end{gathered}$ | 8 | 100 | 6 | 125 | 5 | 1.65 | 4 | *-0.6 | *Depends on noise |
| V111 | 6CB6 | AGC <br> Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ Signal | 5 | -35.8 | 6 | 238 | 2 | 120 | 1 | 120 | AGC control set for normal operation |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 4.0 | 6 | 265 | 2 | 100 | 1 | 80 | AGC control set for normal operation |

The following measurements represent two sets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the receiver the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting ground and antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, $a-c$. The symbol < means less than.

| $\begin{aligned} & \text { Tube } \\ & \text { No. } \\ & \hline \end{aligned}$ | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  |  | E. Cathode |  | E. Grid |  |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \\ & \hline \end{aligned}$ | Volts |  | Pin No. | Volts |  |
| V112 | 6SN7GT | Hor. Sync Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | 150 |  | - | - | 3 | 1.2 |  | 1 | -38.0 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 2 | 143 |  | - | - | 3 | 0.68 |  | 1 | *-18 | *Unreliable measurement point. Voltage depends on noise. |
|  |  |  | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 77 |  | - | - | 6 | 0 |  | 4 | -1.3 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 75 |  | - | - | 6 | 0 |  | 4 | *-0.8 | *Voltage depends on noise. |
| V113 | 6SN7GT | Hor. Sync Seporator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | 269 |  | - | - | 3 | 118 |  | 1 | 100 | Volage depends on noise. |
|  |  |  | No Signal | 2 | 263 |  | - | - | 3 | *90 |  | 1 | *80 | *Unreliable measurement points. Voltage depends on noise |
| V113 | 6SN7GT | Vert. Sync Separator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 5 | 450 |  | - | - | 6 | 125 |  | 4 | 100 |  |
|  |  |  | No Signal | 5 | 400 |  | - | - | 6 | 100 |  | 4 | 80 |  |
| V114A | 6SN7GT | Vert. Sync Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 12.0 |  | - | - | 6 | 0 |  | 4 | -0.13 |  |
|  |  |  | No Signal | 5 | 11.0 |  | - | - | 6 | 0 |  | 4 | 0.05 |  |
| Vl14B | 6SN7GT | Vertical Oscillator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | *53 |  | - | - | 3 | 0 |  | 1 | *-14.8 | Depends on setting of Vert. |
|  |  |  | No Signal | 2 | *53 |  | - | - | 3 | 0 |  | 1 | *-14.1 | hold control. Voltages shown are synced pix adjustment. |
| V115 | 6AQ5 | Vertical Output | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 245 |  | 6 | 259 | 2 | 21.5 |  | 1 | 0 |  |
|  |  |  | No Signal | 5 | 240 |  | 6 | 252 | 2 | 21.6 |  | 1 | 0 |  |
| V116 | 6SN7GT | Horizontal Osc. Control | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | 182 | - | - | - | 3 | +8.0 |  | 1 | -12.5 |  |
|  |  |  | No Signal | 2 | 180 | - | - | - | 3 | -3.0 | 1 |  | -19.5 |  |
|  |  |  | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | 135 | - | - | - | 3 | +8.8 | 1 |  | -13.5 | Hor. hold counter-clockwise |
|  |  |  | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 2 | 225 | - | - | - | 3 | +8.8 | 1 |  | -12.5 | Hor. hold clockwise |
| V116 | 6SN7GT | Horizontal Oscillator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 185 | - | - | - | 6 | 0 | 4 | 4 | -58 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 180 | - |  | - | 6 | 0 | 4 |  | 67 |  |
|  |  |  | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 185 | - |  | - | 6 | 0 | 4 |  | -58 | Hor. hold counter-clockwise |
|  |  |  | $\begin{gathered} 5000 \mathrm{Mu} \text { V. } \\ \text { Signal } \end{gathered}$ | 5 | 185 | - |  | - | 6 | 0 | 4 |  | -58 | Hor. hold clockwise |
| V117 | 6BQ6GT | Horizontal Output | $\underset{\substack{5 i g n a l}}{5000 \mathrm{Mu} .}$ | Cap | * | 4 |  | 168 | 8 | 18.0 | 5 |  | -15.0 |  |
|  |  |  | No Signal | Cap | * | 4 |  | 168 | 8 | 18.5 | 5 |  | -15.0 | Pulse Present |
| V119 | $\begin{aligned} & \text { 1B3GT } \\ & 8016 \\ & \hline \end{aligned}$ | H. V. Rectifier | $\begin{array}{\|c\|} \hline 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$ | Cap | * | - |  | - | 2 \& 7 | 13,500 | - |  | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | Cap | * | - |  | - | 2 \& 7 | 13,200 | - |  | - | Pulse Present |
| V120 | 6W4GT | Damper | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 266 | - |  | - | 3 | * | - |  | - | *High Voltage Pulse Present |
|  |  |  | No Signal | 5 | 261 | - |  | - | 3 | * | - |  | - |  |
| V121 | 17QP4 | Kinescope | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | Cone | 13,500 | 10 |  | 475 | 11 | 140 | 2 |  | 90 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | Cone | 13,200 | 10 |  | 470 | 11 | 135 | 2 |  | 90 | Brightness |



Figure 77-R-F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. Keep all wiring in the pix i-f, sound i-f and video circuits as short as possible.
2. Keep the leads on $\mathrm{CllO}, \mathrm{Cll}, \mathrm{Cll2}, \mathrm{C} 200, \mathrm{RlO9}, \mathrm{RllO}$, Rlll, Rll2, R114, Rll5 and R233 as short and direct as possible.
3. Do not change the bus wire connection to pin 2 of VlOl and V102. Sleeving is used on these wires to insure length and to prevent shorting.
4. Dress Cll 4 down between Rll7 (volume control) and wafer SlOl-2.
5. Ground Rl30 to pin 3 of V1O6 and Rl38 to pin 7 of VlO7.
6. Do not change the grounding of R141, Rl46 and R149.
7. Keep the bus wire from $\mathrm{Tl} 09-\mathrm{A}$ to Cl 46 (plug in capacitor) short and direct.
8. Ground the filaments of sockets V107, V1O8 and V109 independently of the socket center pin. Use ground lances proved near each socket.
9. Dress Cl 98 straight up to act as a shield between TlOl-A and V110-4.
10. Dress Cl53 and R170 (kine cathode) up in the air above the terminal board.
11. Keep the leads connected to T113-C and Tll3-D (synchoguide) down so that they will not short out when the chassis is placed in the cabinet.
12. Do not reroute any wires between TlO and the terminal board alongside it. Keep all leads on the foot side of the terminal board.
13. Dress all wires routed past Tl04, shielded wires W102 and W103 under the big lances near Tl 04.
14. Dress all a-c leads to SlO 02 under the large lances on the front apron.
15. Dress Rll6 close to the chassis with leads as short as possible.
16. Dress C212 and C221 up in the air and away from all other leads and components.
17. The blue lead from pin 5 of V1ll to the terminal board under the high voltage cage should be routed between V117 socket and the rear apron.
18. Dress all 2 watt resistors away from each other and all other wires and components.
19. Dress all wires away from damper tube V120.
20. Blue wire from pin 5 Vll6 to Tll3-A should not be more than 5 inches long.
21. Dress all peaking coils up and away from the base.
22. Dress all leads in the high voltage compartment awav from each other and away from the high voltage transformer.

17T150, 17T151, 17T163 REPLACEMENT PARTS (Continued)

| $\underset{\substack{\text { STOCK } \\ \mathrm{No} .}}{ }$ | description | $\underset{\substack{\text { Stock } \\ \text { No. }}}{\text { chen }}$ | description |
| :---: | :---: | :---: | :---: |
| 76141 | Magnet-Ion trap magnot (P.M. typo) | 503410 | $100,000 \mathrm{ohms}, \pm 10 \% .1 / 2 \mathrm{watt}$ (R129, R206, R220, R26) |
| 76633 | Magnet-Pin cushion correction magnot comploto with support arm | 504410 | $100.000 \mathrm{ohms}, \pm 20 \% \%$, $1 / 2 \mathrm{watt}$ (R136) |
| 76728 | Nut-Speod nut for trimmer capacitor 76800 |  | 120,000 ohma $+5 \%$, $1 / 2$ watt (R209) |
| 18469 | Plate-Bakolite mounting plate for electrolytic 75220 | 5034 | 120,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R190, R242, R245) |
| 76464 | Plate-Hi-voltago plate-bakelite-comploto with tubo | 503415 504415 | 150,000 ohms, $\pm 10 \%, 1 / 2$ watt (R145, R150. R186, R221) |
|  | socket and corona ring Rectifier-Pictura detector crystal rectifier (CR101) | ${ }_{512415}$ | 150,000 ohms, $\pm 5 \%$, 1 watt (R230) |
| ${ }_{76452}$ |  | 503418 | $180,000 \mathrm{ohms}. \pm 10 \%$, $1 / 2$ watt (R257) |
| 76796 | Resistor-Wire wound, 5.1 ohms , $1 / 3 \mathrm{watt}$ (R241) | 503422 | $220,000 \mathrm{ohms}$. $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R185, R219) |
| 76639 | Resistor-Wire wound. $180 \mathrm{ohms}$,2 watts (R234) | 503427 | $270,000 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R193) |
| 76465 | Resistor-Wire wound, 330 ohms, 1 watt (R122, R123) | 503433 | 330,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R120. R222) |
| ${ }^{76469}$ | Resistor-Wire wound, 2500 oh ms, 10 watts (R131) | 512433 | $330,000 \mathrm{ohms}. \pm 5 \% .1$ watt (R224) |
| ${ }_{763930}$ | Resistor-Wire wound, 5600 ohms, 5 watts (R151) | 503447 | 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R199, R232, R26 |
| 76638 | Resistor-Wire wound, 6000 ohms, 6 watts (R163) | 504447 | 470.000 ohms, $\pm 20 \%$, $1 / 2$ watt (R121, R263) |
|  | Resistor-Fixed, composition:- | 503456 | 560.000 ohms. $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R202, R270) |
| 502043 | $43 \mathrm{ohms}, \pm 5 \% \% 1 / 2$ watt (R159) | 30562 | $680,000 \mathrm{ohms}, \pm 5 \%$, $1 / 2$ watt (R122) |
| 30732 504047 | 47 ohms, $\pm 5 \%$ \% $1 / 2$ watt (R109) | 503482 | 820,000 ohms, $\pm 10 \%$, 1/2 watt (R200, R204, R223) |
| 504047 502056 | 47 ohms, $\pm 20 \%$ \% $1 / 2$ watt (R233) | 50351 | 1 megohm, $\pm 10 \%$. $1 / 2$ watt (R189) |
| ${ }_{\substack{502056 \\ 34763}}$ | 56 ohms, $\pm 5 \%, 1 / 2$ watt (R138) 68 ohms, $\pm 5 \%, 1 / 2$ watt (R105, R146) | 504510 | $1 \mathrm{mogohm}, \pm 20 \% \% 1 / 2$ watt (R182) |
| 139 | $82 \mathrm{ohms}, \pm 5 \%$, $1 / 2$ watt (R101) | 503512 | $1.2 \mathrm{mogohm}, \pm 10 \%, 1 / 2 \mathrm{watt}$ (R171) |
| 2110 | $100 \mathrm{ohms}, \pm 5 \%$, $1 / 2$ watt (R130) | 503515 | $1.5 \mathrm{megohm}, \pm 10 \%, 1 / 2$ watt (R192) |
| 504110 | 100 ohms, $\pm 20 \%$, $1 / 2$ watt (R126, R133) | 11769 | 1.8 mogohm, $\pm 5 \%$, $1 / 2$ watt (R266) |
| 503118 | 180 ohms, $\pm 10 \%$, $1 / 2$ watt (R152) | 504522 | 2.2 megohm, $\pm 20 \%$ \% $1 / 2$ watt (R207, R213) |
| 503133 | $330 \mathrm{ohms}, \pm 10 \%, 1 / 2 \mathrm{watt}$ (R160) | 5035 | 3.9 megohm, $\pm 10 \%$, $1 / 2$ watt (R179) |
| 503147 | 470 ohms, $\pm 10 \%$, $1 / 2$ watt (R215) | 503356 | 5.6 mogohm, $\pm 10 \% .1 / 2$ watt (R166) |
| 5041 | 470 ohms, $\pm 20 \%$, $1 / 2$ watt (R177) | 503582 | 8.2 mogohm, $\pm 10 \% .1 / 2$ watt (R255) |
| 513147 | 470 ohms, $\pm 10 \%$. 1 watt (R246) | 504610 | $10 \mathrm{mogohm} . \pm 20 \%, 1 / 2$ watt (R116) |
| 513156 <br> 34766 | 560 ohms, $\pm 10 \%$. 1 watt (R253) 1000 ohms $+5 \%$ \% $1 / 2$ watt (R111) | 71456 | $\begin{gathered}\text { Screw- } \\ \text { yoko }\end{gathered} \boldsymbol{8} .32 \times 7 / 16^{\prime \prime}$ wing screw to mount de |
| 34766 503210 | $1000 \mathrm{ohms}, \pm 5 \%, 1 / 2$ watt (R111) $1000 \mathrm{ohms}, \pm 10 \% .1 / 2$ watt (R13, | 76455 | Shaft-Connecting shaft (nylor) for |
|  | ${ }^{1000}$ ohishms, $\pm 10 \%$ \% $1 / 2$ watt |  | noss controls |
| 504210 | $\underset{\mathrm{R156}}{1000 \text { ohms, }} \pm 20 \%, 1 / 2$ watt (R103, R108, R125, R140, R148, | 73584 | Shiold-Tube shiold |
| 30731 | 1200 ohms $\pm 5 \%, 1 / 2$ watt (R110) | 50367 | Socket-Tube socket, 6 pin, moulded, saddle mounted |
| 503312 50322 | 1200 ohms , $\pm 10 \%$, $1 / 2$ watt (R183) 2200 ohms + $+10 \%$ watt (R168) | 73117 | Sockot-Tube socket, 7 pin, wafer, miniature |
| ${ }_{504323}^{50322}$ | $2200 \mathrm{ohms}$. , $\pm 10 \%$ \% $1 / 2 \mathrm{watt}$ (R168) 3300 ohms, $\pm 20 \%$, $1 / 2 \mathrm{watt}$ (R259) | 73115 | Socket-Tube socket, 7 pin, moulded, miniature, plate |
| 30694 | 3900 ohms, $\pm 5 \% .1 / 2$ watt (R157) | 7523? | Sockot-Tube sacket, octal, ceramic, plat |
| 503239 503247 | 3900 ohms, $\pm 10 \% \% 1 / 2$ watt (R2z8) $47700 \mathrm{ohms}, \pm 10 \% \% 1 / 2$ watt (R162) | 76453 | Sockot-Tube socket, octal, moulded bakelite. |
| 504247 | 4700 ohms, $\pm 20 \%$, $1 / 2$ watt (R147) |  |  |
| 503256 | 5600 ohms, $\pm 10 \%$, $1 / 2$ watt (R164) | ${ }^{31251}$ | Socket-Tube socke |
| 14659 | 6800 ohms, $\pm 5 \%, 1 / 2$ watt (R114, R115, R141) | 75118 | Socket-Channel indicator lamp |
| 503268 | 6800 ohms, $\pm 10 \%$, $1 / 2$ watt (R158, R176) | 74834 |  |
| ${ }^{513268}$ | $6800 \mathrm{ohms}, \pm 10 \%, 1$ watt (R155) | 75173 | Stud-Adjustable stud for trim mer capacitor 76800 |
| 523268 | 6800 ohms, $\pm 10 \%, 2$ watts (R235) | ${ }^{76636}$ | Stud-Adjusting stud complete with guard for focus |
| 502282 50382 | $8200 \mathrm{ohms}. \pm 5 \%, 1 / 2$ watt (R229) $8200 \mathrm{hms}, 10 \%$, $1 / 2 \mathrm{watt}$ (R165, R196, R197, R212) | 764 | Support-Bakelite support only-part of hi-voltage shiold |
| 503310 | $10,000 \mathrm{ohms}$, $\pm 10 \% .1 / 2 \mathrm{watt}$ (R208) | 76446 | Switch-Tone control and phono switch (S101) |
| 504310 | 10,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R172) | 76795 | Transformer-Hi-voltage transformer (T14) |
| 503312 503315 | 12,000 ohms, $\pm 10 \%$, $1 / 1 /$ watt (R178, | 76440 | Transformer-H Horizontal ossillotor transfor |
| 503315 523315 | $15,000 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R258) $15.000 \mathrm{ohms}, 10 \%, 2$ watts (R133) |  |  |
| ${ }_{503318}^{5035}$ | (15,000 ohms, $\pm 10 \%$, $1 / 2 \mathrm{wattt}$ (R106, R113, R271) | 76429 | ${ }_{\text {Transtor mer }}^{\text {(T12) }}$ |
| 523318 503322 |  | 6439 | Transtormer-Ratio detoctor transfor |
| $\underset{\substack{503322 \\ 71989}}{ }$ | 22,000 ohms $\pm 10 \%$. $1 / 2$ watt (R1118, R195) 22,000 ohms, $\pm 5 \%, 1$ watt (R210, R211) | 76438 |  |
| 71989 | 22,000 ohms, $\pm 5 \% .1$ watt (R210, R211) $22,000 \mathrm{ohms} .+10 \% .1$ watt (R227) | 76438 |  |
| 513322 503327 |  | 6437 | Transformer-Sound take-offtrans |
| ${ }_{513327}$ | ${ }^{27,000 ~ o h m s . ~} \pm 10 \% \% 1$ watt (R184) |  | adjustable cores (T110, C148) |
| ${ }^{503333}$ | $33,000 \mathrm{ohms}$, $\pm 10 \% .1 / 2$ watt (R273) | ${ }_{76431} 7$ | Transformer-- Vertical output transformer (Th1) |
| 513333 50339 | 33.000 ohms, $\pm 10 \% .1$ watt (R169) | 76432 |  |
| ${ }_{503347}^{50339}$ |  | 76434 | Transformor-First pix i-f plate transf |
| 513347 | 47,000 ohms, $\ddagger 10 \%$, 1 watt (R132, R139, R269) |  | with adjustable |
| ${ }^{5023366}$ | 56,000 ohms, $\pm 5 \% \%$, $1 / 2$ watt (R149) | 78435 |  |
| 503356 513356 | 56,000 ohms, $+10 \%$, $1 / 2$ watt (R187, R236, R256) 56,000 hms $+10 \%$ 1 watt (R107) | 76433 | Transformer-Third or fourth pix i-f transformer (T107, |
| ${ }_{503368}$ | 68,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R128, R143) |  |  |
| 504368 | 68,000 ohms, $\pm 20 \%$. $1 / 2 \mathrm{watt}$ (R198, R205) |  |  |
| ${ }_{513368}$ | ${ }^{68,000 ~ o h m s, ~} \pm 10 \%$ \% 11 watt (R226) |  | Trap-4.5 mc trap (L114, C137) |
| (8064 | $82,000 \mathrm{ohms}, \pm 5 \%, 1 / \mathrm{watt}(\mathrm{R144)}$ $82,000 \mathrm{hms}, \pm 5 \% .1$ watt (R231) | 76616 | Yoke-Deflection Yoke complete with 6 contact male |
| 513382 | 82,000 ohms, $\pm 10 \%, 1$ watt (R225) |  |  |

17T150, 17T151, 17T163 REPLACEMENT PARTS (Continued)

| $\underset{\substack{\text { STOCK } \\ \text { No. }}}{ }$ | description | $\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$ | description |
| :---: | :---: | :---: | :---: |
| 76834 <br> 76156 | Speaker assembly | 7651 | al for maroon, |
|  | RLILOD 3 RMA-274 | 76512 | Decal-Control panel function decal for blonde or o |
|  | For Model 17T150 | 75456 | Escutcheon-Channel mark |
|  | Connector-4 contact male connector for spoaker (J101) | 74889 | Foot-Felt foot for cabinet ( 4 req'd) for Models 17 T 150 . 17T151 |
|  | Speaker-4"x $6^{\prime \prime}$ P.M. speaker complete with cone and voice coil less transformer and connector <br> Transformer-outputtransformer (T103) | 76806 | Class-Safety glass |
|  |  | 76595 | Knob-Brightness control or vertical hold control knob - maroon (outer) |
|  | SPEAKER assembly | 76596 | $\underset{\substack{\mathrm{Knob}-\mathrm{Brightness} \\ \text {-boigr (outer) }}}{\mathrm{K}}$ control or vertical hold control knob |
|  |  | 76593 | Knob-Channel selector knob-maroon (inner) |
|  | RL105E8 | 76594 | Knob-Channel selector knob-beige (inner) |
|  | RMA-274 | 765 | Knob-Fine tuning control knob-maroon (outer) |
|  | Models 17T151, 17T163 | 76592 | Knob-Finotuning control knob-beige (outer) |
| 75024 5039 | Cone-Cone and voice coil assembly ( 3.2 ohms) Connector-4 prong male connector for speaker (J101) | 74963 | Knob-Picture control, horizontal hold control or volume control and power switch knob-maroon (inner) |
| ${ }_{75022}$ | Speaker-8" P.M. speaker complete with cone and voice coil ( 3.2 ohms) less transformer and plug | 75464 | Knob-Picture control, horizontal hold control or volume control and power switch knob-beige (inner) |
| 75520 | Transformer-Output transtormer (T103) | 76597 | Knob-Tone control and phono switch knob-maroon (outer) |
|  | KER ASSEMBLIES | 76598 | Knob-Tone control and phono switch knob-beige (outer) |
|  | 9714902 R | 11 | Lamp-Channol marker escutcheon-lamp-Marda 51 |
|  | rMA285 | 7545 | Mask-Channel marker escutcheon light mask-bur- gundy |
|  | Cone-Cone and voice coil <br> Note:-If stamping on speaker in instrument does not agree with above speaker number, order replacement parts by referring to model number of instrument, num ber stamped on speaker and full description of part required. | 76589 | Mask-Channal marker escutcheon light mask-medium dark beige |
| 77129 |  | ${ }^{76822}$ | Nut-Speed nut to lock flexible straps |
|  |  | 71 | Nut- $-8-32$ wing nut to fasten deflection yoke hood to hanger bracket |
|  |  | 761 | Nut - \# $10-32$ spocial nut for deflection yoke hood support rods $(2$ req'd $)$ |
|  |  | 76819 | Pad-Rubber pad (channal) for flexible straps (2 req'd) |
|  | 1CB8 CABinet base <br> For use with Model 17T150, 17T151 | 76825 | Pad-Rubber pad (channel) mounted on cradle support to cushion kinescope |
| X3249 | Pull-Door pull-mahogany finish-for maroon bases | 76824 | Panel-Metal front panel for mahogany or walnut in. struments for Model 17T 163 |
| $\times 3250$ | Pull-Door pull-blonde finish-for mahogany bases | 76826 | Panel-Metal front panel for oak instruments for Model 17 T 163 |
|  | miscellaneous | 76828 | Plate-Plate complete with weld bolts for kinoscope cradle lower support for Model 17 Tl 63 |
| 76805 | Back-Cabinet back complete with power cord and terminal board for | 76816 | Retainer-Safety glass retainer (2 roa'd) |
| 76827 | Back-Cabinet back complete with power cord for Model 17 T 163 | 76809 | Rod-"L" shape threaded rod to support defiection yoke hood assembly (2 roq"d) for Models 17 TIT . 17 T 151 |
| 76184 | Board-"Antenna" terminal board | 76810 | Rod-"L' shape threaded rod to support de flection yoke hood assembly (2 req'd) for Model 17 Tl 163 |
| 76811 | Bracket-Hanger bracket for deflection yoke hood for Models 17 T 150 . 17 T 151 | 682 | Screw- \#10×13/8"hex head tapping screw to lock llexible straps |
| 76812 | Bracket-Hangar bracket for deflection yoke hood for Model 17T163 | 76808 | Sleeve-Poly thylene aleeve for insulating high voltage lead- -H R. H suport red lead-on R.H. support rod |
| 76814 | Bracket-Stiffening bracket for kinescope cradle (2 req'd) for Models 17 T 150 . 17 T 151 | 73643 76820 | Spring-Channel marker escutcheon spring clip |
| 76829 | Bracket-Stiftening bracket $(2$ reacd) for Model 17 T163 | 30330 | Spring-Retaining spring for knobs 74963 and 75464 |
| ${ }^{76823}$ | Clip-Spring clip for spacing ground braid | 142 | Spring-Retaining spring for knobs 76593, 76594, 76595, $_{\text {76596 }}$ |
| x312 | Cloth-Grille cloth for Models 17T 150, 17T151 | 72845 | Spring-Retaining spring for knobs 76591 and 76592 |
| $\mathrm{x}_{3222}$ | Cloth-Grille cloth for oak instruments for Model 17T163 | 36580 | Spring-Suspension spring (coil type) for ground braid |
| x 3248 | $\underset{\substack{\text { Cloth-Grille cloth for mahogany or walnut instruments } \\ \text { for Model } 17 \mathrm{~T} 163}}{ }$ | $76813$ | Strap-Flexible steel strap to secure kinescope <br> Support-Cradle support for kinescope |
| 39153 | Connector-4 contact male connector for antenna cable | $\begin{aligned} & 76817 \\ & 76815 \end{aligned}$ | Support-Cradle support for kinescope |
| 75474 | Connector-Single contact male connector for antenna cable (2.req'd) | 754 | Washer-Felt washer-dark brown-between knob and channel marker escutcheon |
| 71457 | Cord-Power cord and plug | 75500 | Washer-Felt washer for cabinet back mounting scrows |
| 26818 |  | 75458 | Washer-Felt washer-beige-between knob and channel marker escutcheon |
| 76807 | Cushion-Vinylite cushion (formed) for picture opening | 76836 | Washer-Cellulose washer-gold-for knobs |

The system of employing an asterisk before the stock number of new items has been discontinuod.
apply to your rca distributor for prices of replacement parts.



| $\underset{\substack{\text { Stock } \\ \text { No. }}}{ }$ | description | $\underset{\substack{\text { stock } \\ \text { No. }}}{ }$ | description |
| :---: | :---: | :---: | :---: |
|  | ies | 410 | 000 ohms, $\pm 20 \%$, $1 / 2$ watt (R1, R5, R6) |
|  | KRK11 | 504447 | 470,000 ohms, $\pm 20 \%$, 1/2 watt (R8) |
| 76539 |  | 14343 | Rotainor-Finotuning sh |
|  | as8, coils L58, L59, L60 and less capacitors C24, C25, | 75164 | Rod-Actuating plunger rod (fib |
| 76531 | Board-Terminal board, 5 contact and ground | 76547 |  |
| 76522 | Bracket - Vertical bracket for holding r-f mixer tubo ( $6 X 8$ ) shield (early production) | 76548 |  |
| 76845 | Bracket-Vertical bracket for holding oscillator-mixer tube shield (production marked 'M1'") | 76549 76519 | Screw-\#4-40 $\times 3 / \mathbf{m}^{\prime \prime}$ adjusting screw for coil L |
| 75186 | Capacitor-Ceramic, variable, for fine tuning-plunger typo (C2) | 76519 | Shaft-Channel selector shaft and plate Shaft-Fine tuning shaft and cam |
| ${ }_{93056}$ | Capacitor-Ceramic, 5 mmf. (C26) | 76518 | Shield-Front shield complote with shaft bushing and brackot |
| 70597 | Capacitor-Ceramic, 8 mmf . (C29) | 76534 |  |
| 55326 | Capacitor-Coramic, 10 mmf . (C3) (production markod | ${ }_{76533}$ |  |
| 26550 | Capacitor-Ceramic, 12 mmf . (C3) (oarly production) | 76533 | Shield-Tube shield (lead coated) for V1 (early produc- tion) |
| 54207 | Capacitor-Coramic, 18 mmf . (C27) | 76336 | Socket-Tube socket, 9 pin, miniature, bakolite, saddle |
| ${ }_{7} 76557$ | Capacitor-Ceramic, 22 mmf . (C19) | 76530 |  |
| 76558 | Capacitor-Coramic, 22 mmf . (C5) | 76530 | Socket-Tubesocket, 9 pin, miniature, ceramic, saddle mounted |
| 70935 | Capacitor-Coramic, 27 mmf ( (C25) | 75191 | Spacer-Insu |
| 339 | Capacitor-Coramic, 33 mmf ( (C24) | ${ }^{75163}$ | Spring-Friction spring (formed) for finotuning |
| 76527 75199 | Capacitor-Mica trimmer, $55-80 \mathrm{mmf}$. (C1) | 3 40 | Spring-Hairpin epring for fine tuning link |
| 76552 | Capacitor-Coramic, 330 mmf ( (C10) (early productio | 23 | Spring-Rotaining spring for oscillator mixert tube shie |
| 198 | Capacitor-Ceramic, 470 mmf ( (C10) (production marked | 75068 |  |
| 75166 | Capacitor-Ceramic, 1500 mmf . (stand-off) (C13, C17, C21, C22, C28) | 73457 | Spring-Roturn spring for fino tuning control |
| 73748 | Capacitor-Coramic, 1500 mmf . (C16, C20, c23) |  |  |
| 510 | Capacitor-Ceramic, 1500 mmf . (C6) | 76551 | Stator-Converter stator complete with rotori pacitors and roils |
| 71088 75184 | Capacitor-Ceramic, 0.68 mmf . (C7) |  | L18, L19, L20, L21, L48, C10, C12, R4, R5, R6) (early production) |
| 75184 | apacitor-Ceramic, adjustab) with adjusting stud (C1, C9) <br> Capacitor-Tubular, steatite, adjustable $0.8-2.25 \mathrm{mmf}$. <br> (C8) (early production) | 76780 | Stator-Convertor stator complote with rotor, coils, capacitors and resistors (S2, L12, $\mathrm{LH} 3, \mathrm{LI4}, \mathrm{LI5}, \mathrm{L16,L17}$ tion marked ', M1 ', |
|  | Capacitor-Tubular, staatite, adjustable $0.8-1.4 \mathrm{mmf}$. | 76546 | Stator-Oscillator stator complate with rotor, coils, and capacitor (S1, C3, C7, L1, L2, L3, L4, L5, L6, Li, L8, |
|  | (C18) <br> Capacitor-Adjustable trimmer, staatite, $1.0-4.0 \mathrm{mmf}$. | 779 |  |
| 76143 | Clip-Tubular, clip for mounting stand-off capacitors |  | capacitor (S1, C3 C7, L1, L2, L3, L4, L5, L6, L7, L8, |
| 73591 | Coil-Antonna matching coil (2 req'd) | 76556 | Stator-R-F grid stator completo with rotor, coils a |
| $\begin{aligned} & 76560 \\ & 73477 \end{aligned}$ | Coil-Channel \#13 converter coil (L44) (early production) Coil-Choke coil (L57) |  | resistors (S4, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L53, C19, R11, R12) L40, L41, L53, C19, R11, R12) |
| 76763 | Coil | 76553 |  |
| 76562 | Coil-R-F amplifier coupling coil (LS1) |  | L29, L30, L31, L50, C14, R7) |
| ${ }^{76537}$ | Coil-Shunt coil complote with adjustable core (L61) | 76561 | Strap-Channel \# 13 r-f grid strap (L52) |
| 265 | Coil-Shunt coil complote with adjustable core (L62) | 765 | Strip-Coil segment mounting strip-L.H. lower |
| 76529 | Coil-Trimmer coil (3 turns) with adjustable inductance core and capacito soction (L49, C15) | 76525 | Strip-Coil sogment mounting strip-L.H. uppor-loss trimmor <br> Strip-Coil segment mounting strip-R.R. center |
| 76559 | Connector-Oscillator grid connector | 75446 | Stud-Capacitor stuid-brass-\#4.40 $\times 13 / 16^{\prime \prime}$ with $3 / 6$ |
| 38853 | Connector-4 contact female connector-part of antenna matching transformer |  | screw driver. slot for trimmer coil L49, C15 uncoded and coded " $E R$ " |
| 76460 | Contact-Test point contact | 75447 | Stud-Capacitor stud-brass-\#4-40 $\times 13 / 16^{\prime \prime}$ with $3 / 64^{* \prime}$ screw driver slot for trimmer coil L49, C15 coded |
| ${ }_{75187} 76$ | Core-Adjustabio core for fine tuning capaci |  |  |
| 76543 76521 | Co | 767 |  |
| ${ }_{73453}$ | Form-Coil form for coils L48, L50 \& L53 | 75173 |  |
| 76524 | Link-Link assombly for fine tuning | 76536 | Transformer-Antonna ma |
|  | Res |  | (T2, C24, C25, C26, C27, L58, L59, L60, L61, L62, J1) |
| ${ }^{503047}$ | 47 ohms, $\pm 10 \%$. $1 / 2$ watt (R9) | $76540$ | Trap-FM trap comploto with adjustable core (L5) |
| 503082 50415 | 82 ohms, $\pm 10 \%$, $1 / 2$ watt (R10) | 76535 | Trap-I.F trap (L65) |
| $504210$ | 1000 ohms, $\pm 20 \%, 1 / 2 \mathrm{watt}$ (R7, R14) | 76542 | Trap-I- $\mathbf{F}$ trap ( 41.25 MC ) complete with core (L.60) |
| ${ }^{50323}$ | 3300 ohms, $\pm 10 \%$, $1 / 2$ watt (R4, R11, R12). | 76541 | Trap-I-F trap ( 45.75 MC ) complote with core (L59) |
| 504310 | 10,000 ohms $\pm 20 \%$, $1 / 2$ watt (R2) | 75190 | Washer-Insulating washer (neoprene) for mounting capacitor on coil strip |



## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE . . 146 square inches on a 17QP4 Kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc}, 174 \mathrm{mc}$. to 216 mc . Picture I-F Carrier Frequency 25.50 mc Sound I-F Carrier Frequency 21.00 mc and 4.5 mc POWER SUPPLY RATING . . 115 volts, 60 cycles, 190 watts AUDIO POWER OUTPUT RATING ...... . 4.0 watts max. VIDEO RESPONSE To 3.2 mc . SWEEP DEFLECTION Magnetic FOCUS Magnetic

## LOUDSPEAKERS

In Models 17T200, 17T201 \& 17 T 202
971636-1 5" PM Dynamic, 3.2 ohms In Models 17T2ll \& 17T220
(971490-3) 8" PM Dynamic, 3.2 ohms
WEIGHT AND DIMENSIONS

Model \begin{tabular}{c}
Net <br>
Weight

$\quad$

Shipping <br>
Weight

 

Width <br>
Inches

 

Height <br>
Inches

 

Depth <br>
Inches
\end{tabular}

## RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohms balanced or 72 ohms unbalanced.

RCA TUBE COMPLEMENT

Tube Used
Function R-F Amplifier
( 1) RCA 6CB6
( 2) RCA 6J6
( 3) RCA 6CB6
(4) RCA 6CB6
(5) RCA 6CB6
(6) RCA 12AU7. . Picture 2nd Detector and Vert. Sync. Sep.
( 7) RCA 6CL6 (6AC7) (6AG7)
*Video Amplifier
(8) RCA 6AU6.................... lst Sound I-F Amplifier
(9) RCA 6AU6................... 2nd Sound I-F Amplifier
(10) RCA 6AL5 ................................ Ratio Detector
(11) RCA 6AV6 . . . . . . . . . . . . . . . . . . 1st Audio Amplifier
(12) RCA 6K6GT ............................. Audio Output
(13) RCA 6AU6................................ AGC Amplitier
(14) RCA 6SN7GT . Horizontal Sync. Sep. and Sync. Output
(15) RCA 6 J 5

Vertical Sweep Oscillator
(16) RCA 6K6GT

Vertical Sweep Output
(17) RCA 6SN7GT . Horizontal Sweep Oscillator and Control
(18) RCA 6BQ6GT................ Horizontal Sweep Output
(19) RCA 6W4GT

Damper
(20) RCA IB3-GT/8016
(2) RCA 17QP4

High Voltage Rectifier
(22) RCA 5U4G

Rectifier
(23) RCA 5Y3GT

Rectifier

ELECTRICAL AND MECHANICAL SPECIFICATIONS
(Continued)

| PICTURE INTERMEDIATE FREQUENCIES |  |
| :---: | :---: |
| Picture I-F Carrier Frequency | 25.50 mc . |
| Adjacent Channel Sound Trap | 27.00 mc . |
| SOUND INTERMEDIATE FREQUENCIES |  |
| Sound I-F Carrier Frequency | 21.00 mc . |
| Sound I-F Frequency | 4.5 mc . |
| VIDEO RESPONSE ..................... To 3.2 mc. |  |
| FOCUS | Magnetic |
| SWEEP DEFLECTION | Magnetic |
| SCANNING ...................... Interlaced, 525 line |  |
| HORIZONTAL SWEEP FREQUENCY ......15,750 cps |  |
| VERTICAL SWEEP FREQUENCY | . 60 cps |
| FRAME FREQUENCY (Picture Repetition Ra | e) 30 cps |



## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES, AND HEAVY GLOVES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses $a$ high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, the kinescope must be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

The following adjustments are necessary when turning the receiver on for the first time.

1. See that the TV-PH switch is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best pix and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.

8. Adjust the CONTRAST and BRIGHTNESS controls for suitable picture contrast and brightness.
9. In switching from one channel to another, it may be necessary to repeat steps 4 and 8.
10. When the set is turned on again after an idle period it should not be necessary to repeat the adjustment if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
11. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8.
12. To use a record player, plug the record-player output cable into the PHONO jack on the rear apron, and set the TV-PH switch to " $\mathrm{PH}^{\prime}$ "

Figure 1 -Receiver Operating Controls

## INSTALLATION INSTRUCTIONS

UNPACKING. - These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.

Take the receiver out of the carton and remove all packing material.

Make sure that all tubes are in place and are firmly seated in their sockets.

Check to see that the kinescope high voltage lead clip is in place.

Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.


Figure 2-Yoke and Focus Magnet Adjustments

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. Connect the antenna transmission line to the receiver.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R149 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGN. MENT. - Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 or 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90


Figure 3-Rear Chassis Adjustments

## INSTALLATION INSTRUCTIONS

degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. -If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the TllO horizontal frequency adjustment at the rear of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster. Then turn the TllO core until the bar moves out of the picture leaving it in sync.

Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the TllO rear core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl6lA slightly clockwise. If less than 2 bars are present, adjust Cl61A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page ll: For field purposes paragraph " $\mathrm{B}^{\prime}$ under Horizontal Oscillator Waveform Adjustment may be omitted.
FOCUS MAGNET ADJUSTMENT. - The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the center of the opening.

PIN-CUSHION CORRECTION. - Two pin-cushion correction magnets are employed to correct a small amount of pin-cushion of the raster due to the lens effect of the face of the kinescope. These magnets are mounted on small arms, one on each side of the kinescope as shown in Figure 2. The arms hinge in one plane on self tapping screws which act both as a hinge and an adjustment locking screw. When the magnets are swung towards the tube, maximum correction is obtained. Minimum correction is obtained when the arms are swung away from the tube. To adjust the magnets, loosen the two self tapping screws and position the magnets until the sides of the raster appear straight. Tighten the screws without shifting the position of the magnets. In some cases it may be necessary to twist or bend the magnet support arms to obtain the appearance of straight raster edges.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. The centering plates include a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive trimmer Cl61B counter-clockwise until the picture begins to "wrinkle" in the middle then clockwise until the "wrinkle" disappears.

Turn the horizontal linearity control L108 clockwise until the picture begins to "wrinkle" on the right and then counterclockwise until the "wrinkle" disappears and best linearity is obtained.

Adjust the width control L106 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the best linearity.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

HEIGHT AND VERTICAL LINEARITY ADJUST-MENTS.-Adjust the height control (Rl73 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R181 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.


Figure 4-R-F Oscillator Adjustments
CHECK OF R-F OSCILLATOR ADJUSTMENTS. Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 9 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis.

AGC THRESHOLD CONTROL.-The AGC threshold control R149 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R149. If the picture requires an appreciable portion of a second to reappear, or bends excessively, Rl49 should be readjusted.

## INSTALLATION INSTRUCTIONS

Turn Rl 49 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn Rl49 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn Rl49 counter-clockwise just sufficiently to remove this bend or change of bend.

If the signal is weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R149 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received.

FM TRAP ADJUSTMENT. - In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L203 core on top of the antenna matching transformer for minimum interference in the picture.

CAUTION. - In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5 . Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

KINESCOPE SCREEN CLEANING.-The kinescope safety glass is held in place by four spring clips which may be removed from the back of the front panel. This permits removing the safety glass for cleaning without the necessity of removing the chassis and kinescope.

CHASSIS REMOVAL. - To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the yoke and high voltage cable. Take out the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION. - Do not install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

REMOVAL OF KINESCOPE. - To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly.

Handle this tube by the portion at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

INSTALLATION OF KINESCOPE. - Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Replace the kinescope and chassis by reversal of the removing process. The kinescope should be installed so that the high voltage contact is to the right when looking at it from the rear of the cabinet. The magnet of the ion trap magnet should be to the left.

CABINET ANTENNA. - A cabinet antenna is provided in CABINET ANTENNA.-A cabinet antenna is provided in
Models 17T21l and 17 T 220 and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.

ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly
If two or more stations are available and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.

If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for turning the antenna when switching channels or to install a separate antenna for one or more channels and to switch antennas when switching channels.

In some cases, the antenna should not be installed permanently until the quality of the picture reception has been observed on a television receiver. A temporary transmission line can be run between receiver and the antenna, allowing sufficient slack to permit moving the antenna. Then, with a telephone system connecting an observer at the receiver and an assistanl at the antenna, the antenna can be positioned to give the most satisfactory results on the received signal. A shift of direction or a few feet in antenna position may effect a tremendous difference in picture reception.

REFLECTIONS. - Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Under certain extremely unusual conditions, it may be pos. sible to rotcte or position the antenna so that it receives the cleanest picture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surlaces.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE. - Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from high ways, hospitals, doctors' offices and similar sources of inter. ference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal roofs, gutters or other metal objects.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmis. sion line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAK PICTURE. - When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

RECEIVER LOCATION. - The owner should be advised of the importance of placing the receiver in the proper location in the room

The location should be chosen-

- Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
- Convenient to an electrical outlet.
-To allow adequate ventilation.


## CHASSIS TOP VIEW



Figure 5-Chassis Top View


Figure 6-Cbassis Bottom View

17T200, 17T201, 17T202, 17T211, 17T220

TEST EQUIPMENT.-To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

## R-F Sweep Generator meeting the following requirements:

(a) Frequency Ranges

20 to $30 \mathrm{mc} ., 1 \mathrm{mc}$. and 10 mc . sweep width
50 to $90 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
170 to $225 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
(b) Output adjustable with at least 11 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope.-For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60-cycle square wave without appreciable distortion.

For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
22.25 and 25.5 mc . conv. and first pix i-f trans.
22.75 mc . second picture i-f transformer
24.25 mc . fourth picture i-f transformer
25.5 mc . third picture i-f transformer
25.50 mc . picture carrier
27.00 mc. adjacent channel sound trap
(b) Radio frequencies

| Channel | Picture Carrier | Sound Carrier |
| :---: | :---: | :---: |
| Nurnber | Freq. Mc. | Freq. Mc |
| 2 | 55.25 | 59.75 |
| 3 | 61.25 | 65.75 |
| 4 | 67.25 | 71.75 |
| 5 | 77.25 | 81.75 |
| 6 | 83.25 | 87.75 |
| 7 | 175.25 | 179.75 |
| 8 | 181.25 | 185.75 |
| 9 | 187.25 | 191.75 |
| 10 | 193.25 | 197.75 |
| 11 | 199.25 | 203.75 |
| 12 | 205.25 | 209.75 |
| 13 | 211.25 | 215.75 |

(c) Output of these ranges should be adjustable and at least 1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator which covers the frequency range from 80 mc . to 109 mc . and from 200 mc . to 237 mc .

Electronic Voltmeter of Junior or Senior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 15 kv .

Service Precautions.- If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, it would be a great convenience to have a bench mounted kinescope and speaker complete with a set of extension cables.

CAUTION : Do not short the kinescope second anode lead. Its short circuit current presents a considerable overload on the high voltage rectifier V117.

Adjustrments Required.-Normally, only the r-f oscillator and mixer lines will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

ORDER OF ALIGNMENT.-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) R-F unit
(6) Sound i-f alignment
(2) Picture i-f transformers
(7) 4.5 Mc Trap Adjustment
(3) Picture i-f trap
(4) Sweep of picture i-f
(5) Ratic detector alignment
( 8) Check of overall response
( 9) A GC control adjustment
(10) Horizontal oscillator alignment

R-F UNIT ALIGNMENT.-Disconnect the co-ax link from terminal 2 of the r-f unit terminal board and connect a 39 ohm composition resistor between lugs $l$ and 2 .

Detune Tl by backing the core all the way out of the coil.
Back the L44 core all the way out. Back the L203 core all the way out.

In order to align the r-f tuner, it will first be necessary to set the channel-13 oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter. Couple the meter probe loosely to the receiver oscillator.

Set the channel selector switch to 13 .
Adjust the heterodyne frequency meter to the correct frequency ( 236.75 mc ).

Set the fine tuning control 30 degrees clockwise from the mechanical center of its range.
Adjust Cl for an audible beat on the heterodyne frequency meter.

Now that the channel-13 oscillator is set to frequency, we may proceed with the r- $\{$ alignment.

Turn the AGC control fully clockwise.
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a $1,000 \mathrm{ohm}$ potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to terminal 3 of the r-f unit. Adjust the bias box potentiometer to produce -3.5 volts of bias at the r-f unit terminal board.

Connect the oscilloscope to the test point TPl on top of the r-f unit.

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P300 connections for 300-ohm balanced or 72 -ohm single-ended input are shown in the circuit schematic diagram. If the sweep oscillator has a 50 -ohm or 72 -ohm single-ended output, 300 -ohm balanced output can be obtained by connecting as shown in Figure 9.

Connect the signal generator loosely to the receiver antenna terminals.

Set the receiver channel switch to channel 8 .
Set the sweep oscillator to cover channel 8.
Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc . and 185.75 mc .

Adjust C9, Cl1, C16 and C22 for approximately correct curve shape, frequency, and band width as shown in Figure 11.

The correct adjustment of C22 is indicated by maximum amplitude of the curve midway between the markers. Cl 6 tunes the r-f amplifier plate circuit and affects the frequency of the curve most noticeably. C9 tunes the converter grid circuit and affects the tilt of the curve most noticeably (assuming that C 22 has been properly adjusted). $\mathrm{Cl1}$ is the coupling adjustment and hence primarily affects the response band width.

Set the receiver channel switch to channel 6.
Adjust the heterodyne frequency meter to the correct frequency ( 108.75 mc .).

Set the fine tuning control 30 degrees clockwise from the mechanical center of its range.

Adjust L5 for an audible beat on the heterodyne frequency meter.

Set the sweep generator to channel 6 .
From the signal generator, insert channel 6 sound and picture carrier markers, 83.25 mc . and 87.75 mc

Adjust L42, L45 and L49 for proper response as shown in Figure 12

L42 is adjusted to give maximum amplitude of the curve between the markers. L45 primarily affects the tilt of the curve L49 primarily affects the frequency of response.

Connect the "VoltOhmyst" to the r-f unit test point TPI.
Adjust C7 for -3.0 volts at the test point
Retouch L42, L45 and L49 for proper response if necessary. If necessary, retouch Cll for proper band width on channel 6. Continue these retouching adjustments until proper response is obtained and -3.0 volts of oscillator injection are present at the test point, TPl.

Set the receiver channel selector switch to channel 8 and readjust Cl for proper oscillator frequency.

Set the sweep oscillator and signal generator to channel 8 .
Readjust C9, C16 and C22 for correct curve shape, frequency and band width. Readjust Cll only if necessary

Switch the receiver, the sweep oscillator and signal generator to channel 13 .

Adjust L52 for maximum amplitude of the curve midway between markers and then overshoot the adjustment by turning the slug in the same direction from the initial setting a little more than the amount of turning required to reach maximum amplitude of response

Adjust C22 for maximum amplitude of response.
Turn off the sweep generator. Adjust the L43 core for correct channel 13 oscillator frequency, then overshoot the adjustment by turning the slug a little more in the same direction from the initial setting. Reset the oscillator to proper frequency by adjustment of Cl .

## Turn the sweep oscillator back on.

Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 11 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above 80', response.

If the morkers do not fall within this requirement, switch to channel 8 and readjust C9, C11, Cl6 and C22 as necessary. If C22 required adjustment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. The antenna circuit (L52, C22) is broad so that tracking is not particularly critical.

If the valley in the top of the selectivity curves for the high channels is deeper than normal, the curve can be flattened somewhat by decreasing the inductance of L44 by turning the core stud in. Be sure to check for undesirable resonant suckouts on channels 7 and 8 if this is done.

Turn the sweep oscillator off and check the receiver channel 8 r-f oscillator frequency. If the oscillator is off frequency overshoot the adjustment of Cl and correct by adjusting L43.

Turn the receiver channel selector switch to channel 6. Adjust LS for correct oscillator frequency.

Turn the sweep oscillator on and to channel 6 and observe the response curve. If necessary readjust L42; L45 and L49. It should not be necessary to touch Cll.

Check the oscillator injection voltage at the test point TPI. If necessary adjust C7 to give -3 volts injection. If C7 is adjusted, switch to channel 8, and readjust C9 for proper curve shape, then recheck channel 6.

Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscillator injection voltage.

Likewise check channels 7 through 13, stopping on 13 for the next step.

With the receiver on channel 13 , check the receiver oscillator frequency. Correct by adjustment of Cl if necessary.

Adjust the oscillator to frequency on all channels by switching the receiver and the heterodyne frequency meter to each channel and adjusting the appropriate oscillator trimmer to obtain a beat on the treq. meter. It should be possible to adjust the oacillator to the correct frequency on all channels with the fine tuning control 30 degrees clockwise from the mechanical center of its range.

| Channel Number | Picture Carrier Freq. Mc. | Sound Carrier Freq. Mc. | Receiver R-F Osc. Freq. Mc. | Channel Oscillator Adjustment |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 55.25 | 59.75 | 80.750 | Ll |
| 3 | - 61.25 | 65.75 | 86.750 | L2 |
| 4 | - 67.25 | 71.75 | 92.750 | L3 |
| 5 | 77.25 | 81.75 | 102.750 | L4 |
| 6 | 83.25 | 87.75 | 108.750 | L5 |
| 7 | 175.25 | 179.75 | 200.750 | L6 |
| 8 | 181.25 | 185.75 | 206.750 | L7 |
| 9 | 187.25 | 191.75 | 212.750 | L8 |
| 10 | 193.25 | 197.75 | 218.750 | L9 |
| 11 | 199.25 | 203.75 | 224.750 | L10 |
| 12 | 205.25 | 209.75 | 230.750 | Lll |
| 13 | 211.25 | 215.75 | 236.750 | Cl |

Switch to channel 8 and observe the response.
Adjust Tl clockwise while watching the change in response. When Tl is properly adjusted, the selectivity curve will be slightly wider with a slightly deeper valley in its top.

Switch through all channels and observe response, oscillator injection and r-f oscillator frequency. Minor touch-ups of adjustments may be made at this time. However, if C7 or C9 are changed appreciably, then a recheck of the oscillator frequency on all channels should be made.

Reconnect the link from TlOl to terminal 2 of the $\mathrm{r}-\mathrm{f}$ unit terminal board.
Simce Tl was adjusted during the r-f unit alignment it will be necessary to sweep the overall i-f response.

R-F UNIT TUBE CHANGES.-Since most of the circuits are low capacitance circuits the r-f unit may require readjustments when the tubes are changed.
If the 6CB6 r-f amplifier tube is changed, it may be necessary to readjust Cl 6 and C 22 .
If the 6I6 oscillator and mixer tube is changed, then more extensive adjustments are required.
For good conversion efficiency, the oscillator injection to a triode mixer must be held reasonably close to the optimum value. Although there is some latitude in this level, it is nearly expended in the normal variation in injection from channel to channel. Consequently, the adjustment of C7 is limited primarily to establishing the conditions for good conversion. Since changes in oscillator injection affect conversion gain, it also affects the input capacity of the mixer, thus also affecting tracking of the mixer grid circuit. These tube variations with their consequent effect on circuit alignment thereby require readjustment of the r-f unit if maximum conversion efficiency is to be retained after the 6 J 6 tube is changed. It may be possible, however, to try several 6I6 tubes and select one which gives satisfactory performance without realignment.
PICTURE I-F TRANSFORMER ADJUSTMENTS. Connect the "VoltOhmyst" to the junction of R142 and Rl43.
Turn the AGC control fully clockwise.
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a 1,000 ohm potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction Rl42 and Rl 43. Adjust the potentiometer for -5.0 volts indication on the "VoltOhmyst".

Set the channel switch to channel number 9,10 or 11 .
Connect the "VoltOhmyst" to pin 2 of VllO (Pin 4 if 6AC7 or 6AG7 is used) and to ground.
Connect the output of the signal generator to the mixer grid test point TP2 in series with a 1500 mmf ceramic capacitor.
Connect a separate -5 volt bias supply to TPI with the positive terminal to ground.
Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment for maximum indication on the "VoltOhmyst". In each instance the generator should be checked against a crystal calibrator to insure that the generator is on frequency.

## ALIGNMENT PROCEDURE

Adjust the signal generator output to give 3 volts on the "VoltOhmyst" as the final adjustment is made.
(1) $24.25 \mathrm{mc} .-\mathrm{Tl} 07$
(3) $22.75 \mathrm{mc} .-\mathrm{Tl} 05$
(2) 25.5 mc - Tl 06

PICTURE I-F TRAP ADJUSTMENT.-With the same connections as above, tune the generator to 27.00 mc . and adjust the T104 top core for minimum d-c on the "VoltOhmyst". Set the generator output so that this minimum is about 3 volts when final adjustment is made. If necessary, the i-f bias may be reduced in order to obtain the 3 volt reading on the "VoltOhmyst"
SWEEP ALIGNMENT OF PIX I-F.-To align Tl and Tl04, connect the sweep generator to the mixer grid test point TP2. In series with a 1500 mmf ceramic capacitor use the shortest leads possible, with not more than one inch of unshielded lead at the end of the sweep cable. Connect the sweep ground lead to the r-f unit outer shield.
Connect a separate -5.0 volt bias supply to TPI with the positive terminal connected to ground and by-pass TP1 to ground with a 1500 mmf . ceramic capacitor.
Set the channel selector switch between channels 2 and 13.
Clip 330 ohm resistors across terminals A and B of Tl06 and T107.
Preset Cll5 to minimum capacity.
Adjust the bias box potentiometer to obtain -5.0 volts of bias as measured by a "VoltOhmyst" at the junction of R142 and Rl43. Leave the AGC control fully clockwise.
Connect a 180 ohm composition resistor from pin 5 of Vl06 to terminal A of T105. Connect the oscilloscope diode probe to pin 5 of V106 and to ground.
Couple the signal generator loosely to the diode probe in order to obtain markers.
Adjust Tl (top) and TlO (bottom) for maximum gain and with 25.5 mc . at $70 \%$, of maximum response.
Set the sweep output to give 0.3 volt peak-to-peak on the oscilloscope when making the final touch on the above adjustment.
Adjust $\mathrm{Cll5}$ until 22.25 mc . is at $70 \%$ response with respect to the low frequency shoulder of the curve as shown in Figure 12.
Disconnect the diode probe, the 180 ohm and two 330 ohm resistors.
Connect the oscilloscope to pin 2 of VllO socket (or pin 4 of $6 \mathrm{AC7}$ or 6AG7).
Leave the sweep generator connected to the mixer grid test point TP2 with the shortest leads possible.

Adjust the output of the sweep generator to obtain 3.0 volts peak-to-peak on the oscilloscope.
Couple the signal generator loosely to the grid of the first pix i-f amplifier. Adjust the output of the signal generator to produce small markers on the response curve.
Retouch T105, T106 and T107 to obtain the response shown in Figure 13.
It is especially important that the 22.4 mc . marker should fall at $55 \%$ on the overall i-f response curve. If the marker should fall appreciably higher than $55 \%$, trouble may be experienced with sound in the picture. If the marker should fall appreciably below $55 \%$ response, the sound sensitivity may be reduced and may cause the sound to be noisy in weak signal areas.

RATIO DETECTOR ALIGNMENT.-Set the signal generator at 4.5 mc . and connect it to the first sound i-f grid, pin 1 of V101.
As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed. In such a case, connect the calibrator to the grid of the third pix i-f amplifier, pin 1 of V108.
Set the frequency of the calibrator to 25.50 mc . (pix carrier) and modulate with 4.5 mc . crystal. The 4.5 mc . signal will be picked off at LlO and amplified through the sound i-f amplifier.

Connect the "VoltOhmyst" to pin 2 of V103.
Tune the ratio detector primary, T102 top core for maximum d-c output on the "Voltohmyst". Adjust the signal level from the signal generator for 6 volts on the "VoltOhmyst" when finally peaked. This is approximately the operating level of the ratio detector for average signals.

Connect the "VoltOhmyst" to the junction of R106 and Cl08.
Tune the ratio detector secondary Tl02 bottom core for zero d-c on the "VoltOhmyst".
Repeat adjustments of Tl 02 top for maximum d-c at pin 2 of V103 and T102 bottom for zero d-c at the junction of R106 and Cl08. Make the final adjustments with the signal input level adjusted to produce 6 volts d-c on the "VoltOhmyst" at pin 2 of V103.
SOUND I-F ALIGNMENT.-Connect the signal generator to the first sound i-f amplifier grid, pin 1 of Viol.
As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed as above.

Connect the "VoltOhmyst" to pin 2 of V103.
Tune the TlOl top core for maximum d-c on the "Volt. Ohmyst".
The output from the signal generator should be set to produce approximately 6.0 volts on the "VoltOhmyst" when the final touches on the above adjustment are made.
4.5 MC. TRAP ADJUSTMENT.-Connect the signal generator in series with a 1,000 ohm resistor to pin 2 of V109. Set the generator to 4.5 mc . and modulate it $30 \%$ with 400 cycles. Set the output to approximately 0.5 volts.

Short the third pix i-f grid to ground, pin 1, V108, to prevent noise from masking the output indication.
Connect the crystal diode probe of an oscilloscope to the plate of the video amplifier, pin 6 of V1lO (pin 8 when $6 A C 7$ or $6 \mathrm{AG7}$ is used).
Adjust the core of Ll03 for minimum output on the oscilloscope.

Remove the short from pin 1, V108 to ground.
As an alternate method, this step may be omitted at this point in the alignment procedure and the adjustment made "on the air" after the alignment is completed.
If this is done, tune in a station and observe the picture on the kinescope. If no 4.5 mc . beat is present in the picture, when the fine tuning control is set for proper oscillator-frequency, then L103 requires no adjustment. If a 4.5 mc . beat is present, turn the fine tuning control slightly clockwise so as to exaggerate the beat and then adjust L103 for minimum beat.

CHECK OF OVERALL RESPONSE.-If desired, the overall response of the receiver can be checked on each channel.

Connect the r-f sweep generator to the receiver antenna input terminals. If necessary, employ one of the pads shown in Figure 9 to match the sweep output cable to the r-f unit.

Connect the signal generator loosely to the first pix i-f amplifier grid.
Adjust the bias potentiometer to obtain -5.0 volts of bias as measured by a "VoltOhmyst" at the junction of R142 and R143.
Connect the oscilloscope to pin 2 of Vll0 (or pin 4 if 6AC7 or 6AG7 is used).

Check the response of channels 2 through 13 by switching the receiver channel switch and sweep oscillator to each of these channels and observing the response obtained. On each channel, adjust the output of the sweep generator to obtain 3.0 volts peak-to-peak on the oscilloscope.

I-F markers at $22.4 \mathrm{mc} ., 24.75 \mathrm{mc}$. and 25.5 mc . should be provided by the signal generator.
The response obtained in this manner should be very similar to that shown in Figure 13.
Some curves may show a $10 \%$ sag in the top between 22.75 mc . and 24.75 mc . while others may show a $10 \%$ peak in this region. This may be considered normal.
If the picture carrier is consistently high or low on all channels, Tl06 may be adjusted slightly. Do not adjust T105.
AGC CONTROL ADJUSTMENT.-Disconnect all test equipment except the oscilloscope which should be connected to pin 6 of V110 (pin 8 when 6AC7 or 6AG7 is used).
Connect an antenna to the receiver antenna terminals.
Turn the AGC control fully counter-clockwise.
Tune in a strong signal and adjust the oscilloscope to see the video waveform.
Turn the AGC control clockwise until the tips of sync begin to be compressed, then counter-clockwise until no compression is obtained.

HORIZONTAL OSCILLATOR ADJUSTMENT.-Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment may require the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.

Horizontal Frequency Adjustment. -Tune in a station and sync the picture. If the picture cannot be synchronized with the horizontal hold control RI7OB then adjust the Tll frequency core on the rear apron until the picture will synchronize. If the picture still will not sync, turn the Tllo waveform adjustment core (under the chassis) out of the coil several turns from its original position and readjust the TllO frequency core until the picture is synchronized.

Examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the harizontal drive control Cl61B, the width control L106 and the linearity control L108 until the picture is correct.

Horizontal Oscillator Waveform Adjustment.-The horizontal oscillator waveform may be adjusted by either of two methods. The method outlined in paragraph A below may be employed in the field when an oscilloscope is not available. The service shop method outlined in paragraph $B$ below requires the use of an oscilloscope.
A.-Turn the horizontal hold control completely clockwise. Place adjustment tools on both cores of TllO and be prepared to make simultaneous adjustments while watching the picture on the screen. First, turn the TllO frequency core (on the rear apron) until the picture falls out of sync and three or four diagonal black bars sloping down to the right appear on the screen. Then, turn the waveform adjustment core (under the chassis) into the coil while at the same time adjusting the frequency core so as to maintain three or four diagonal black bars on the screen. Continue this procedure until the oscillator begins to motorboat, then turn the waveform adjustment core out until the motorboating just stops. As a check, turn the T110 frequency core until the picture is synchronized then reverse the direction of rotation of the core until the picture falls out of sync with the diagonal bars sloping down to the right. Continue to turn the frequency core in the same direction. No more than three or four bars should appear on the screen. Instead, the horizontal oscillator should begin the motarboat. Retouch the adjustment of the TllO waveform adjustment core if necessary until this condition is obtained.
B.-Connect the low capacity probe of an oscilloscope to terminal C of Tllo. Turn the horizontal hold control onequarter turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 14. Adjust the waveform adjustment core of TllO until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.

Remove the oscilloscope upon completion of this adjustment.
Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tllo frequency core slightly and momentarily switch off channel.

Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl61A slighfly clockwise. If less than 2 bars are present, adjust Cl61A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Turn the horizontal hold control to the maximum clockwise position. Adjust the Tllo frequency core so that the diagonal bar sloping down to the right appears on the screen and then reverse the direction of adjustment so that bar just moves to the left side of the screen leaving the picture in synchronization.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop anterna to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clock wise position. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES.-The response curves shown on page 14 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical, some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.

NOTE ON R-F UNIT ALIGNMENT.-Because of the frequency spectrum involved and the nature of the device, many of the r-f unit leads and components are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the performance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in their components and physical arrangement without being troublesome. When the r-f unit is aligned in the receiver, no trouble from resonant loops should be experienced. However, if the unit is aligned in a jig separate from the receiver, attention should be paid to insure that unwanted resonances do not exist which might present a faulty representation of r-f unit alignment.

A resonant circuit exists between the r-f tuner chassis and the outer shield box, which couples into the antenna and r- $\ddagger$ plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance between the tuner chassis and the front plate. In the KRK8 units, this resonance should fall between 120 and 135 mc . and is controlled in the design by using insulating washers of different thicknesses (in the front plate to tuner chassis mounting) to compensate for differences in the shield boxes of different models of receivers. The performance of the tuner, particularly on channels 7 and 8 will be impaired if the proper washers for the particular shield box involved are not used. Obviously then, if the r-f unit is removed for service, the washers should be replaced in the correct order when the unit is replaced.

## ALIGNMENT TABLE

THE DETAILED ALIGNMENT PROCEDURE BEGINNING ON PAGE 8 SHOULD BE READ BEFORE ALIGNMENT BY USE OF THE TABLE IS ATTEMPTED

| $\begin{gathered} \text { STEP. } \\ \text { No. } \end{gathered}$ | CONNECT SIGNAL GENERATOR TO | $\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { FREO. } \\ & \text { MC. } \end{aligned}$ | $\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$ | $\begin{gathered} \text { SWEEP } \\ \text { GEN. } \\ \text { FREO. } \\ \text { MC. } \end{gathered}$ | $\begin{gathered} \text { CONNECT } \\ \text { HETERODYNE } \\ \text { FREQ. NEETER } \\ \text { TO } \end{gathered}$ | $\begin{gathered} \text { HET. } \\ \text { METER } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$ | $\begin{gathered} \text { CONNECT } \\ \text { "VOLTOHMYST" } \\ \text { TO } \end{gathered}$ | MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS | ADJUST | $\begin{gathered} \text { REFER } \\ \text { TO } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

R-F UNIT ALIGNMENT

| 1 | Disconnect the co-ax link from terminal 2 of the r-f unit terminal board and connect a 39 ohm composition resistor between lugs 1 and 2 . Detune Tl by backing the core all the way out of the coil. Back the L44 core all the way out. Back the L203 core all the way out. In order to align the r-f tuner, it will first be necessary to set the channel 13 oscillatar to frequency. The shield over the bottom of the $r$ - $f$ unit must be in place when making any adjustments. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | Not used |  | Not used |  | Loosely coupled to $\mathrm{r}-\mathrm{f}$ oscillator | $\begin{aligned} & 236.75 \\ & \text { MC. } \end{aligned}$ | Not used | Fine tuning 30 degrees clockwise from mechanical center of its range. Receiver on channel 13. | Cl for an audible beat on het. freq. meter | Fig. 7 |
| 3 | " |  | '• |  |  |  | Connect ' 'VoltOhmyst" to terminal 3 of the $r$-f unit terminal board | Turn AGC control fully clockwise. Connect bias box to terminal 3 of r-f unit term. board | Adjust the bias box potentiometer for -3.5 volts. |  |
| 4 | Antenna <br> terminal (loosely) | $\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$ | Antenna terminals (see text for precaution) | Sweeping channel | Not used | - | Not used | Rec. on chan. 8. Conne Adjust C9, Cl1, Cl6 and shape, frequency and adjusted to give max markers. C9 affects ti frequency of response sponse band width. | ect oscilloscope to TP1. <br> d C22 for correct curve <br> d band width. C22 is amplitude between <br> It and Cl6 affects the <br> e. Cll affects the re- | Fig. 7 |
| 5 | Not used |  | Not used | Not used | Loosely coupled to $r-f$ oscillator | 108.75 | $\cdots$ | Rec. on channel 6 | L5 for audible beat on het. freq. meter. | Fig. 8 |
| 6 | Antenna terminal (loosely) | $\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$ | Antenna terminals (see text for precaution) | Channel 6 | Not used | - | " | Rec. on chan. 6. Adjus proper response. L42 is amplitude between m affects tilt and L49 pri response. If necessa proper width. | L L42, L45 and L49 for adjusted to give max. arkers. L45 primarily marily affects freq. of ry, retouch Cll for | Fig. 11 |
| 7 | Not used | - | Not used | - | Not used | - | Connect "VoltOhmyst' to $x-f$ unit test point TP1 | Rec. on channel 6 | Adjust C7 for -3.0 volts at the test point | $\begin{aligned} & \text { Fig. } \quad{ }^{7} \\ & \text { Fig. } \end{aligned}$ |
| 8 | Repeat above steps until the specified conditions are obtained. |  |  |  |  |  |  |  |  |  |
| 9 | Not used |  | Not used | - | Loosely coupled to $r$-f oscillator | 206.75 |  | Rec. on chan. 8 | Cl for audible beat on het. freq. meter | Fig. 7 |
| 10 | Antenna terminal (loosely) | $\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$ | Antenna terminals (see text for precaution) | Sweeping channel 8 | Not used | - | Not used | Rec. on chan. 8. Read for correct curve shape width. Readjust Cll o | djust C9, C16 and C22 , frequency and band nly if necessary. | $\begin{aligned} & \text { Fig. }{ }^{7}{ }_{\text {Fig. }}^{\text {(8) }} 11 \end{aligned}$ |
| 11 | " | $\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$ | ${ }^{\prime}$ | $\begin{array}{\|c} \text { Sweep- } \\ \text { ing } \\ \text { channel } \\ 13 \end{array}$ | Not used | - | Not used | Rec. on chan. 13. Adju tude between marker more than required to Adjust C22 to regain response. | st L 52 for max. amplirs, overshoot a little reach max. response. max. amplitude of | $\begin{gathered} \text { Fig. } \\ \text { Fig. }_{\text {(13) }}{ }^{7} \end{gathered}$ |
| 12 | - | 215.75 | Not used | - | Loosely coupled to $\mathrm{r}-\mathrm{f}$ oscillator | 236.75 |  | Receiver on chan. 13. channel 13 osc. Ereq. the osc. to proper freq | Adjust L43 for correct then overshoot. Reset by adjustment of Cl . | $\begin{aligned} & \text { Fig. } \\ & \text { Fig. } \end{aligned}$ |
| 13 | . | $\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$ | Anterna | $\operatorname{channel}_{12}$ | Not used | - | Connect "VoltOhmyst" to r-f unit test point TP1 | Rec. on chan. 12 | Check to see that response is correct and -3.0 volts of ose. injection is present | Fig. 11 |
| 14 | - | $\begin{array}{r} 199.25 \\ 203.75 \end{array}$ | (see text for precaution) | channel 11 | -• | - | -• | Rec. on chan. 11 | " | $\underset{(11)}{\text { Fig. } 11}$ |
| 15 | - | $\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$ | -• | $\underset{10}{\text { channel }}$ | - | - | " | Rec. on chan. 10 | " | $\underset{(10)}{ }{ }^{\text {Fig. }} 11$ |
| 16 | - | $\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$ | " | $\begin{gathered} \text { channel } \\ 9 \end{gathered}$ | '* | - | $\cdots$ | Rec. on chan. 9 | - | $\underset{(9)}{\text { Fig. }^{11}}$ |
| 17 | . | $\begin{array}{r} 181.25 \\ 185.75 \end{array}$ | " | $\begin{gathered} \text { channel } \\ 8 \\ \hline \end{gathered}$ | . | - | . | Rec. on chan. 8 | " | Fig. 11 <br> (8) |
| 18 | . | $\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$ | - | channel 7 | - " | - | " | Rec. on chan. 7 | ' ${ }^{\prime}$ | ${ }^{\mathrm{Fig}_{(7)}} 11$ |


| 19 | If the response of any channel (steps 13 through 18) is below $80 \%$ at either marker, repeat step 10 and adjust C9, C11, C16 and C22 as necessary to pull response up on the low channel yet maintain correct response on channel 8. If C22 required adjustment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | Repeat step 9. If the oscillator is off frequency overshoot the adjustment of Cland correct by adjusting L43. |  |  |  |  |  |  |  |  |  |
| 21 | Repeat steps 13 through 20 until all requirements are obtained. |  |  |  |  |  |  |  |  |  |
| 22 | Not used | - | Not used | - | Loosely coupled to r-f oscillator | 108.75 |  | Rec. on chan. 6 | L5 for zero beat on het. freq. meter | Fig. 8 |
| 23 | Antenna terminals (loosely) | $\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$ | Anterna terminals (see text for precaution) | Sweeping channel 6 | Not used | - | Not used | Observe respons L45 and L49. It touch Cll. | ecessary readjust L42, ld not be necessary to | $\begin{aligned} & \text { Fig. } \\ & \text { Fig. } 11 \end{aligned}$ |
| 24 | Not used | - | Not used | - | Not used | - | Connect "VoltOhmyst' to the r-funit test point TP1 | Check ose. injec to give -3 volts. channel 8 , and sponse then rep | If necessary adjust $\mathrm{C}_{7}$ is adjusted, switch to just C9 for proper re23. | $\begin{aligned} & \text { Fig. } 1 \\ & \text { Fig. } 11 \end{aligned}$ |
| 25 | Antennd terminals (loosely) | $\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$ | Antenna terminals (see text for precaution) | $\underset{5}{\text { channel }}$ | " | - | " | Rec. on chan. 5 | Check to see that rosponse is correct and -3.0 volts of ose. injection is present | ${ }_{(5 \text { ig. }} 11$ |



123

Figure 15-Top Qhassis Adjustments


Rigure 16-Bottom Chassis Adjustment


Figure 17-Normal Picture


$$
\Longrightarrow
$$

$$
\Rightarrow
$$



Figure 19-Horizontal Linearit)
Control Misadiusted (Picture Cramped in Middle)

$$
\longleftarrow
$$

Figure $\begin{gathered}\text { 20-Width } \\ \text { Misadjusted }\end{gathered}$
Misadjusted


Figure 21-Horizontal Dri
Control Misadjusted
$\longleftarrow<$
$\xrightarrow{\text { Figure }} \underset{ }{22-T \text { ransients }}$
 Figure 23-Test Pattern Show-
ing out of Sync Condtion When
Horizontal Hold Control Is in a Counter-clock wisise Position-Just
Before Pulling Into Sync $\longleftarrow<$

Figure 24-Test Pattern Sbow-
ing Out of Sync Coud ing out of Syn Condtition When When
Horizontal Hold Control Is at Horizontal Hold Control Is at
the Maximum Clockuise Position

Following is a list of symptoms of possible failures and an indication of some of the possible faults:

## NO RASTER ON KINESCOPE :

(1) Incorrect adjustment of ion trap magnet. Magnet reversed either front to back or top to bottom.
(2) V1l5 or Vll6 inoperative. Check waveforms on grids and plates.
(3) No high voltage-if horizontal deflection is operating as evidenced by the correct waveform on terminal 1 of high voltage transformer, the trouble can be isolated to the 1B3GT circuit. Either the Tlll high voltage winding is open, the 1B3GT tube is defective or its filament circuit is open.
(4) VllO circuit, inoperative-Refer to schematic and waveform chart.
(5) Damper tube (V118) inoperative.
(6) Defective kinescope.
(7) Rl84 open.
(8) No receiver plate voltage-filter capacitor shorted-or tilter choke open.

## NO VERTICAL DEFLECTION:

(1) V113 or V114 inoperative. Check voltage and waveforms on grids and plates.
(2) Tl 08 open.
(3) Vertical deflection coils open.

## SMALL RASTER:

(1) Low Plus $B$ or low line voltage.
(2) V116, V120 or V121 defective.

## POOR VERTICAL LINEARITY:

(1) If adjustments cannot correct, change Vll4.
(2) Vertical output transformer T108 defective.
(3) V113 defective-check voltage and waveforms on grid and plate.
(4) C151, C152, C153, Cl55, or Cl56 defective.
(5) Low plate voltage-check rectifiers and capacitors in supply circuits.
(6) If height is insufficient, try changing V113.

## POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change V1l6, or V1l8.
(2) T108 or Ll08 defective.
(3) Cl 76 or $\mathrm{Cl77}$ defective.

## WRINKLES ON SIDE OF RASTER:

(1) Cl81 defective.
(2) Defective yoke.

## PICTURE OUT OF SYNC HORIZONTALLY:

(1) TllO incorrectly tuned.
(2) R192, R193 or Rl70B defective.

TRAPEZOIDAL OR NON SYMMETRICAL RASTER:
(1) Improper adjustment of centering of focus magnet or ion trap magnet.
(2) Defective yoke.

## RASTER AND SIGNAL ON KINESCOPE BUT NO SOUND:

(1) LlO 2 defective.
(2) Sound i-f, ratio detector or audio amplifier inoperativecheck V101, V102, V103 and their socket voltages.
(3) Audio system defective.
(4) Speaker defective.

SIGNAL AT KINESCOPE GRID BUT NO SYNC:
(1) AGC control R149 misadjusted.
(2) Vlll, inoperative. Check voltage and waveforms at its grid and plate.

## SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC:

(1) Check V113 and associated circuit.
(2) Integrating network inoperative-Check.
(3) V109B or V112B defective or associated circuit defective.
(4) Gas current, grid emission or grid cathode leakage in Vl12. Replace.

## SIGNAL ON KINESCOPE GRID BUT NO HORIZONTAL SYNC:

(1) T110 misadjusted-readjust as instructed on page 11.
(2) V112 inoperative-check socket voltages and waveforms.
(3) TllO defective.
(4) Cl42, Cl61A, Cl63, Cl65, Cl66, Cl67, Cl68, Cl69 or Cl 70 defective.
(5) If horizontal speed is completely off and cannot be adjusted check R192, R193, R170B, R195, R196 and R198.

## SOUND AND RASTER BUT NO PICTURE OR SYNC:

(1) Picture, detector or video amplifier defective-check V109A and V110-check socket voltages.
(2) Bad contact to kinescope cathode.

PICTURE STABLE BUT POOR RESOLUTION:
(1) V109A or V110 defective.
(2) Peaking coils defective-check resistance.
(3) Make sure that the focus control operates on both sides of proper focus.
(4) R-F and I-F circuits misaligned.

## PICTURE SMEAR :

(1) R-F or I-F circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on another station.

## PICTURE JITTER:

(1) AGC control R149 misadjusted.
(2) If regular sections at the left picture are displaced change Vll6.
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync.

## RASTER BUT NO SOUND, PICTURE OR SYNC:

(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative-check V1, V2.

## DARK VERTICAL LINE ON LEFT OF PICTURE:

(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V116.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) V118 defective.


Figure 29-Response of T107 Pix I-F Transformer


Figure 30-Video Response at Average Contrast
igure 27-Response of T10s
Pix I-F Transformer
$\longleftarrow<4$

Figure 28-Response of T106 Pix I-F Transformer
$\rightarrow$


Grid of Video Amplifier (Pin 2 of V110) (6CL6) Voltage Depends on Picture
Figure 31-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (1.5 Volts PP)

## $\longleftarrow<4$

Figure 32-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep Rate) (1.5 Volts PP)


Plate of Video Amplifier (Pin 6 of V110) (6CL6)
Voltage depends on picture
Figure 33-Vertical (85 Volts PP)

## $\longleftarrow \rightarrow$

Figure 34-Horizontal (85 Volts PP)


WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope
Grid of Horizontal Sync Separator (Pin 1 of V112A) (6SA7) Voltage depends on pickure

Figure 35-Vertical (85 Volts PP)


Figure 36-Horizontal (85 Volts PP)


(Pid of Vertical Sync Sep. (Pin 7 of Vl09B) (12AU7)

Figure 41 -Vertical (55 Volts PP)


Figure 42-Horizontal (55 Valts PP)


Plate of Vertical Sync Sep. (Pin 6 of V109B) (12AU7)

Figure 43-Vertical (65 Volts PP)


Figure 44-Horizontal (65 Volts PP)


17T200, 17T201, 17T202, 17T211, 17T220


WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

> Grid of Sync Output (Pin 4 V112B) (6SN7)

Figure 45-Vertical (40 Volts PP)


Figure 46-Horizontal (40 Volts PP)



Plate of Sync Output (Pin 5 of V112) (GSN7)

Figure 47-Vertical (47 Volts. PP)


Figure 48-Horizontal (47 Volts PP)
$\rightarrow$


Figure 51-Grid of Vertical Sweep Output (Pin 5 of V114) (6K6) (100 Volts PP)

Figure 52-Plate of Vertical
Sweep Output (Pin 3 of V114) (6K6) (715 Volts PP)
$\rightarrow$


Cathode of Kinescope (Pin 11 of V119) (17QP4)

Voltage depends on picture
Figure 53-Vertical
$\longleftarrow 4$

Figure 54-Horizontal


## WAVEFORM PHOTOGRAPHS

Taken from RCA WOS8A Oscilloscope
Figure 55-Grid of Horizontal Oscillator Control (Pin 1 of V115) ( 6 SN7GT) ( 19 Volts PP)
$\longleftarrow 4$

Figure 56-Cathode of Horizontal Oscillator Control (Pin 3 of V115) ( 6 SN7GT) (1.2 Volts PP)
$\rightarrow$

Figure 57-Grid of Horizontal Oscillator (Pin 4 of V115)
(6SN7GT) (330 Volts PP)

## 

Figure 58-Plate of Horizontal Oscillator (Pin 5 of V115) (6SN7GT) (140 Volts PP)
$\rightarrow$

Figure 59-Terminal "C"' of T110 (150 Volts PP)
$\longleftarrow<4$

Figure 60-Grid of Horizontal Output Tube (Pin 5 of V116) (6BQ6) (90 Volts PP)
$\rightarrow$


Figure 61-Plate of HorizonLal Output (Approx. 4000 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V116 to Ground)


Figure 62-Cathode of Damper (Pin 3 of V118) ( $6 W^{\prime} 4 G T$ ) (2350 Volts PP)


Figure 63-Plate of Damper (Pin 5 of V118) ( $6 W^{\prime} 4 G T$ ) ( 160 Volts PP)


Figure 64-Plate of AGC Amplifier (Pin 5 of V111) (GAU6) (560 Volts PP)
$\qquad$


## VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition, a 15000 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, $a-c$. The symbol $<$ means less than.

| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\underset{\text { Pin }}{\text { No }}$ | Volts | Pin No. | Volts | Pin No. | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts |  |
| Vl | 6 J 6 | Mixer | $\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}$ | 2 | 153 | - | - | 7 | 0 | 5 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 2 | 135 | - | - | 7 | 0 | 5 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
| V1 | 6 J 6 | R-F Oscillator | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 1 | 100 | - | - | 7 | 0 | 6 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
|  |  |  | No Signal | 1 | 85 | - | - | 7 | 0 | 6 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
| V2 | 6CB6 | R.F Amplifier | $\underset{\text { Signal }}{15000 \mathrm{Mu}}$ | 5 | 260 | 6 | 150 | 2 | . 1 | 1 | $-5.8$ |  |
|  |  |  | No Signo Signal | 5 | 220 | 6 | 100 | 2 | 1.0 | 1 | -0.1 |  |
| V101 | 6AU6 | lst Sound I-F Amp. | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 5 | 130 | 6 | 142 | 7 | 0.8 | 1 | 0 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 116 | 6 | 129 | 7. | 0.6 | 1 | 0 |  |
| V102 | 6AU6 | 2d Sound I-F Amp. | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 131 | 6 | 148 | 7 | 0 | 1 | -5.1 |  |
|  |  |  | No Signal | 5 | 110 | 6 | 120 | 7 | 0 | 1 | *-0.3 | *Unreliable measuring point. <br> Voltage depends on noise. |
| V103 | 6AL5 | Ratio Detector | $15000 \mathrm{Mu} . \mathrm{V} \text {. }$ <br> Signal | 7 | 0 | - | - | 1 | 12 | - | - | 7.5 kc deviation at 1000 cycles |
|  |  |  | No Signa Signal | 7 | 0.7 | - | - | 1 | *5.1 | - | - | *Unreliable measuring point. Voltage depends on noise. |
| V104 | 6AV6 | 1st Audio Amplifier | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 7 | 87 | - | - | 2 | 0 | 1 | -0.7 | At min. volume |
|  |  |  | No Signal | 7 | 76 | - | - | 2 | 0 | 1 | -0.6 | At min. volume |
| V105 | 6K6GT | Audio Output | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 3 | 260 | 4 | 263 | 8 | 19 | 5 | -0.7 | At min. volume |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 3 | 250 | 4 | 251 | 8 | 18.5 | 5 | -0.7 | At min. volume |
| V106 | 6CB6 | lst Pix. I-F Amplifier | $\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}$ | 5 | 246 | 6 | 258 | 2 | $<0.1$ | 1 | -8.6 |  |
|  |  |  | No Signal | 5 | 108 | 6 | 108 | 2 | 0.7 | 1 | *-0.2 | *Unreliable measuring point. Make measurement at T104.B |
| V107 | 6CB6 | 2nd Pix. I-F Amplifier | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 5 | 242 | 6 | 255 | 2 | $<0.1$ | 1 | -8.6 |  |
|  |  |  | No Signo Signal | 5 | 108 | 6 | . 108 | 2 | 0.5 | 1 | -0.2 |  |
| V108 | 6CB6 | 3rd Pix. I-F <br> Amplifier | $\underset{\substack{15000 \mathrm{Mu} . \mathrm{V} \\ \text { Signal }}}{ }$ | 5 | 133 | 6 | 172 | 2 | 2.1 | 1 | 0 | . |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 115 | 6 | 162 | 2 | 1.9 | 1 | 0 |  |
| V109A | 12AU7 | Picture 2d Det. | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 1 | -8.4 | - | - | 3 | 0 | 2 | -1.3 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 1 | $-1.8$ | - | - | 3 | 0 | 2 | -0.6 |  |
| V109B | 12AU7 | Vert. Sync Separator | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 6 | 71 | - | - | 8 | 0 | 7 | -40 |  |
|  |  |  | No Signal | 6 | $\begin{gathered} * 50 \\ \text { to } 100 \end{gathered}$ | - | - | 8 | 0 | 7 | *-15 | *Unreliable, depends on noise |


| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts |  |
| V110 | $\begin{gathered} 6 \mathrm{CL} 6 \\ *(6 \mathrm{AC7}) \\ *(6 \mathrm{AG} 7) \end{gathered}$ | Video <br> Amplifier | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 6 | 130 | 8 | 149 | 1 | 0.2 | 4 | $-1.3$ | AGC control set for normal operation |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 6 | 110 | 8 | 130 | 1 | 0.5 | 4 | -0.6 | *Refer to Fig. 67 for socket connections |
| Vill | 6AU6 | AGC <br> Amplifier | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 5 | -40 | 6 | 250 | 7 | 153 | 1 | 151 |  |
|  |  |  | No Signal | 5 | +2.3 | 6 | 258 | 7 | 135 | 1 | 105 |  |
| V112A | 6SN7GT | Hor. Sync Separator | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 2 | 263 | - | - | 3 | 190 | 1 | 130 |  |
|  |  |  | $\stackrel{\mathrm{No}}{\text { Signal }}$ | 2 | 258 | - | - | 3 | 138 | 1 | 110 |  |
| V112B | 6SN7GT | Sync Output | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 5 | 58 | - | - | 6 | 0 | 4 | -2.1 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 48 | - | - | 6 | 0 | 4 | $+0.6$ | *Depends on noise |
| V113 | 6 J 5 | Vertical Oscillator | $\begin{aligned} & 15000 \mathrm{Mu} . \mathrm{V} . \\ & \text { Signal } \end{aligned}$ | 3 | 70 | - | - | 8 | 0 | 5 | -15 | *Depends on setting of Vert. hold control |
|  |  |  | No Signal | 3 | 68 | - | - | 8 | 0 | 5 | -14 | Voltages shown are synced pix adjustment |
| V114 | 6K6GT | Vertical Output | $15000 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal | 3 | 265 | 4 | 270 | 8 | 30 | 5 | -5 |  |
|  |  |  | No Signal | 3 | 253 | 4 | 260 | 8 | 28 | 5 | -5 |  |
| V115 | 6SN7GT | Horizontal Osc. Control | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 2 | 165 | - | - | 3 | +1.5 | 1 | -21 |  |
|  |  |  | $\stackrel{\text { No }}{\text { Signal }}$ | 2 | 160 | - | - | 3 | -10 | 1 | -24 |  |
| V115 | 6SN7GT | Horizontal Oscillator | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 5 | 185 | - | - | 6 | 0 | 4 | -80 |  |
|  |  |  | No Signal | 5 | 170 | - | - | 6 | 0 | 4 | -88 |  |
| V116 | 6BQ6GT | Horizontal Output | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | Cap | * | 4 | 180 | 8 | 21.2 | 5 | $-13$ | *High Voltage Pulse Present |
|  |  |  | No Signal | Cap | * | 4 | 170 | 8 | 21.0 | 5 | -13 | *High Voltage Pulse Present |
| V117 | $\begin{gathered} \text { 1B3GT } \\ 8016 \end{gathered}$ | H. V. Rectifier | $15000 \mathrm{Mu} . \mathrm{V} .$ <br> Signal | Cap | * | - | - | $2 \& 7$ | 14,000 | - | - | *High Voltage <br> Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | Cap | * | - | - | 2\& 7 | 13,600 | - | - | *High Voltage <br> Puise Present |
| V118 | 6W4GT | Damper | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 270 | - | - | 3 | * | - | - | *High Voltage <br> Pulse Present |
|  |  |  | No Signal | 5 | 260 | - | - | 3 | * | - | - | *High Voltage Pulse Present |
| V119 | 21AP4 | Kinescope | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | Cap | 14,000 | 10 | 400 | 11 | 170 | 2 | 120 | At average Brightness |
|  |  |  | $\stackrel{N o}{\text { No }}$ | Cap | 13,600 | 10 | 385 | 11 | 150 | 2 | 115 | At average Brightness |
| $\begin{aligned} & \text { V120 } \\ & \text { V121 } \end{aligned}$ | $\begin{aligned} & 5 \mathrm{U} 4 \mathrm{G} \\ & 5 \mathrm{Y} 3 \mathrm{GT} \end{aligned}$ | Rectifiers | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 4 \& 6 | - | - | - | 2\&8 | 285 | - | - |  |
|  |  |  | No Signal | 4\&6 | - | - | - | 2 \& 8 | 275 | - | - |  |

17T200, 17T201, 17T202,
17T211, 17T220
,

## R-F UNIT WIRING DIAGRAM



Figure 65-R-F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. Keep all wiring in the pix i.f, sound i-f and video circuits as short as possible.
2. Keep the leads on $\mathrm{Cl18}, \mathrm{Cl20}, \mathrm{C122}, \mathrm{C124}, \mathrm{Cl26}, \mathrm{Rll4}$, R121 and R123 as short and direct as possible.
3. Do not run any leads under Cll5 trimmer capacitor.
4. Dress Cll8 vertically parallel to terminals $\bar{A}$ and $B$ of Tl04. Dress Cl35 parallel to terminals A and B of T1O4 close to the chassis.
5. Keep Cl27 away from chassis with no more than $1 / 4$ inch leads at each end.
6. Dress the lead from $\mathrm{TlO5}(\mathrm{C})$ to the terminal board, close to the chassis.
7. Keep all filament leads dressed close to the chassis.
8. Ground filaments of V106, V107 and V108 independently of tube shields (pin 8). Use ground lances provided near pins of each socket.
9. Dress lead from pin 5 of VllO to JlO2-2 close to the chassis.
10. Keep leads to LlO3 as short as possible.
11. Dress Cl30, C132, L102, L104, L105, L114, R131, R133, R135 and Rl 139 away from the chassis.
12. Do not tape kinescope cathode lead in with other kinescope leads.
13. Do not change the bus wire connections to pin 2 of V1O1 and V102. Sleeving is used to insure length and to prevent shorting.
14. Keep leads on Cl36 short and direct. Dress the lead from Cl36 to pin 5 of Vlll as shown in wiring diagram.
15. Do not dress Cl 70 in such a position that adjustment of Tllo is inaccessible.
16. Keep the leads on R2O1 as short and direct as possible.
17. Dress the lead from pin 3 of V113 to Cl53 as shown in the wiring diagram.
18. Mount Cl83 directly on the terminal board provided keeping it as far away from Tl09 as possible.
19. Dress all leads in the high voltage compartment away from each other and away from the high voltage transformer.

17T200, 17T201, 17T202,
17T211, 17T220

| $\begin{aligned} & \text { STOCK } \\ & \text { No } \end{aligned}$ | description | $\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$ | description |
| :---: | :---: | :---: | :---: |
| 76633 | Magnot-Pin cushion corroction magnet completo with support arm | ${ }_{503427}$ | 270,000 ohms, $\pm 10 \% .1 / 2$ watt (R15) |
| 76464 | Plate-Hi-voltage prate (bakelite) assembly complote | 512433 | 330,000 ohms, $\pm 5 \%$, 1 watt (R190) |
|  | Wesithor-Wire wound 5.1 ohms, $1 / 3$ watt (R205) | 503439 | 390,000 ohms. $\pm 10 \%$ \% $1 / 2 \mathrm{watt}$ (R168) |
| 16796 | Resistor-Wire wound, 5.1 ohms, $1 / 3$ watt (R205) | 503447 | 470,000 ohms. $\pm 10 \% .1 / 2$ watt (R150, R200) |
| 76639 | Resistor-Wire wound, 180 ohms, 2 watts (R202) | 504447 | $470,000 \mathrm{ohms}, \pm 20 \%$, $1 / 2 \mathrm{watt}$ (R112, R147) |
| 76988 | Resistar-Wire wound, 820 ohms, 1 watt (R113) | 503456 | 560,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R148, R171) |
| 76469 | Reastor-Wire wound, 2500 ohms, 10 watts (R115) | 503468 | 680.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R154, R161) |
| 76989 | Resistor-Wire wound, 4650 ohms. 7 watts (R116) | 503882 | 820,000 ohms, $\pm 10 \%$, $1 / 2$ watt(R189, R199) |
|  | Resistor-Fixed, composition:- | 503 | $1 \mathrm{mogohm}, \pm 10 \% .1 / 2 \mathrm{watt}$ (R155) |
| 503033 | 33 ohms. $\pm 10 \%$, $1 / 2$ watt (R130) | 502511 | $1.1 \mathrm{megohm}, \pm 5 \%$, $1 / 2 \mathrm{watt}(\mathrm{R} 136)$ |
| 502039 | 39 ohms. $\pm 5 \%$. $1 / 2$ watt (R122) | 503512 | $1.2 \mathrm{megohm}, \pm 10 \%, 1 / 2$ watt (R180) |
| 502047 | 47 ohans. $\pm 5 \%$ \% $1 / 2$ watt (R119) | 503515 | $1.5 \mathrm{megohm}, \pm 10 \% .1 / 2 \mathrm{watt}$ (R172) |
| 503047 | 47 ohms, $\pm 10 \%$. $1 / 2$ watt (R105) | 11769 | 1.8 mogohm. $\pm 5 \% .1 / 2$ watt (R140) |
| 504047 | 47 ohms. $\pm 20 \%$. $1 / 2$ watt (R201) | 39063 50322 | 1.8 megohm, $\pm 5 \%$. 1 watt (R197) ${ }^{\text {a }}$ |
| 50382 | $82 \mathrm{ohms}. \pm 10 \% .1 / 2$ watt (R101) |  | 2.2 megohm, $\pm 10 \%, 1 / 2$ watt (R126, R159) |
| 502118 | 180 ohms, $\pm 5 \% .1 / 2$ watt (R125) | 71456 | Screw-\#8-32 $7 / 16^{1 / 1 /}$ wing screw to mount doflectio |
| 503139 | 390 ohms. $\pm 10 \%$, $1 / 2$ Watt (R182) |  | yoke |
| 503147 | 470 ohms. $\pm 10 \%$, $1 / 2$ watt (R114) | 76455 | Shaft-Connectit ness controls |
| 513156 | $560 \mathrm{ohms}. \pm 10 \%$. 1 watt (R207) | 73584 | Shield-Tube shield for viol, vio2, vi03, vio8 |
| 504210 | 1000 ohms, $\pm 20 \% .1 / 2$ watt(R102. R118. R120, R124. R127) | 76972 | Shiold-Tube shield for V109 |
| 503222 | 2200 ohms, $\pm 10 \%$. $1 / 2$ watt (R104. R 212 ) | 75718 | Sockot-Channel indicator lam |
| 523222 | 2200 ohms. $\pm 10 \%$. 2 watts (R131) | ${ }_{31251}^{74834}$ | Socket-Kinescopo socket Socket-Tube socket, octol, water for V105, V110, V112, |
| 504233 | 3300 ohms. $\pm 20 \%$. $1 / 2 \mathrm{watt}$ (R211) |  | V113, V116, v120, v121 for KCS72 (KCS72 uses 6AC7 |
| ${ }^{523223}$ | 3300 ohms. $\pm 10 \%$, 2 watts (R131) | 71508 | Socket-Tube socket, 6 pin, moulded-for V117 |
| ${ }_{502239}$ | 3900 ohms. $\pm 5 \%$ \% $1 / 2$ watt (R129, R164) | 50367 | Socket-Tube socket, 6 pin, moulded, saddle mountod for V118 |
| 503239 | 3900 ohms. $\pm 10 \%$. $1 / 2$ watt (R194) | 73117 | Socket-Tube socket. 7 pin, wafer miniature for Viol, |
| ${ }^{503236}$ | 5600 ohms. $\pm 10 \%$ \% $1 / 2 \mathrm{watt}$ (R138) |  | 102, vi03, V104, V106. V107, v108, v111 |
| 523 | 6800 ohms, $\pm 10 \%$. 2 watts (R203) | 76453 |  |
| 503282 | 8200 ohms, $\pm 10 \%$. $1 / 2$ watt (R176, R179) 8200 ohms, $+10 \%$ watt (R165) | 50367 | ket-Tube socket, 8 pin, moulded saddlo-mountod |
| 502310 | 10,000 ohms, $\pm 5 \%$, $1 / 2$ watt (R107, R108, R123) | 72627 | Socket-Tube socket, 8 pin, steatite saddle mountod for |
| 504310 | 10.000 ohms. $\pm 20 \%$. $1 / 2 \mathrm{watt}$ (R152) | 76971 | Socket-Tube socket, 9 pin, wafor miniature for V109 |
| 502312 503312 | 12,000 ohms, $\pm 5 \%$, $1 / 2 \mathrm{watt}(\mathrm{R} 121)$ | 77470 |  |
| 23312 | $12,00 \mathrm{ohms}, \pm 10 \%$, $1 / 2 \mathrm{watt}(\mathrm{R} 145)$ 12,000 ohms, $+10 \% .2$ watts (R135) | 76636 | Stud-Ãdjusting stud completo with guard for focus |
| 503315 | 15,000 ohms. $\pm 10 \%$. $1 / 2 \mathrm{watt}$ (R153) | 77011 | Switch-Tone control and phono switch loss volume |
| 503318 | $18,000 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R128, R158, R166, R196) |  | $\xrightarrow[\text { control and power switch }]{\text { Terminal-Screw type grou }}$ |
| 5233 | 18,000 ohms, $\pm 10 \%$. 2 watts (R133) | 76977 | Transformer-Anterna matching transformor comploto |
| 503322 | 22,000 ohms. $\pm 10 \%$, $1 / 2 \mathrm{watt}$ (R167, R217) |  |  |
| 513322 | 22,000 ohms, $\pm 10 \%, 1$ watt (R193) | 76795 | Transfor mer-Hi-voltage transformer |
| 503327 | 27,000 ohms, $\pm 10 \% .1 / 2$ watt (R215) | 76440 | Transformor-Horizontal oscillator transformor com- |
| ${ }^{513327}$ | 27.000 ohms, $\pm 10 \%$, 1 watt (R218) |  | Transformer-Output transformer (T103) |
| ${ }_{513333}$ | 33,000 ohms, $\pm 10 \%$, 1 watt (R214) | 76984 | Transformer-Power transformer, 117 volts 60 cycle |
| 5033 | 39,000 ohms $\pm 10 \%$, 1/2 watt (R106, R142) |  | ${ }_{\text {Transformer-Ratio detector transformer ( }}^{\text {(T102, }}$ (105) |
| 513339 503347 | 39,000 ohms, $\pm 10 \%$, 1 watt (R132) 47,000 ohms, $+10 \%, 1 / 2$ watt (R160) | 76981 | Tranformer-Sound i-f transformor complote with adjuatable core (T101, C102, C103, R103) |
| ${ }_{504347}^{50337}$ | 47,000 ohms. $\pm 10 \% .1 /$ watt (R160) $^{\text {a }}$ | 76978 | Transformer-Vertical output transformor (T108) |
| ${ }_{512347}$ | 47,000 ohms, $\pm 5 \%$, 1 watt (R148) | 76979 |  |
| 513347 | 47,000 ohms, $\pm 10 \%, 1$ watt (R132) | 76980 | Transtorm |
| 503356 | 56,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R146, R185, R204) |  | Ti07) |
| 512356 | $56,000 \mathrm{ohms}. \pm 5 \% .1$ watt (R178) | 75449 |  |
| 5033 | 68,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R219) | 75242 | Trap-1.F trap (L200, L201, C200, C201) |
| ${ }^{513368}$ | 68,000 ohms, $\pm 10 \%$. 1 watt (R192) |  | Trap-4.5 MC trap (L103, C128) |
| 513382 | $82,000 \mathrm{ohms}, \pm 10 \% .1$ watt (R191) | 76616 |  |
| 50 | 1000000 ohma, $\pm 20 \% .1 / 2$ watt (R213) |  | 209, R210) |
| 513410 | 100,000 ohms. $\pm 10 \% .1$ watt (R175) |  | SPEAKER ASSEmblies |
| 30180 | $120,000 \mathrm{ohms}$, $\pm 5 \%$. $1 / 2 \mathrm{watt}$ (R143) |  | ${ }^{771636-1 / W}$ |
| 503415 | 150,000 ohms, $\pm 10 \%, 1 / 2$ watt (R174, R183, R187) |  | $\underset{\text { RMA-274 }}{\text { RL-101C5 }}$ |
| 50 | 150,000 ohms, $\pm 20 \%$. $1 / 2$ watt (R139) |  |  |
| 512415 | $150,000 \mathrm{ohms}, \pm 5 \%$. 1 watt (R195) |  | (For Models 17T200, 17T201 \& 17T |
| 2418 | 180,000 ohms, $\pm 5 \%, 1 / 2$ watt (R141) | 77000 | Speaker-5" P.M. speaker complote with cone and voice |


| $\begin{gathered} \text { stock } \\ \text { Noo. } \end{gathered}$ | description | $\begin{gathered} \text { stock } \\ \text { No. } \end{gathered}$ | des |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 75024 \\ & 75022 \end{aligned}$ | SPEAKER ASSEMblies |  |  |
|  | 91490-3W RL-105E RMA-27 | 772 | Kno |
|  |  |  |  |
|  |  |  |  |
|  | Speaker- $8^{\prime \prime}$ P.M. speakor complete with cone and voice <br> NOTE: If stamping on speaker in instruments does not agree with above speaker numbor, order replacement parts by referring to model number of instrument, num- ber stamped on speaker and full description of part required. |  |  |
|  |  |  | $\underset{\text { (outer) }}{\text { Knob-Tone control and ph }}$ |
|  |  |  |  |
|  |  |  | $\begin{gathered} \text { Mask } \\ \text { gur } \end{gathered}$ |
|  | miscellaneous <br> Back-Cabinet back complete for Models 17T200, 17T201, 17 T 202 |  | Mask |
| 7718 |  | 77 | Mas |
| 77190 | Back-Cabinot back complote for Modols 17T211, 17T220 |  |  |
|  |  |  | N |
| 76811 | Board-'Antenna'terminal board_ <br> Bracket-Hanger bracket for deflection yoke hood for Models 17T200, 17T201, 17T202 | ${ }_{77013}^{73634}$ |  |
|  | Bracket-Hanger brackat for daflection yoke hood forModel 17T211 |  | Nut-Spoed nut for speaker mounting acrows for Mocold |
|  |  |  | Pad- |
| 76812 | Bracket-Hangor brackot for defloction yoke hood for Model 177220 |  | Pad-Rubber pad (chan |
| 7681 |  |  | Panol-Motal fort panel for |
| 76829 | Bracket-Stiffoning brackot for kinescope cradle forModels17T211, 17 T 220 |  | Panel-Metal front panel for blonde |
| 71892 |  |  | Pull-Door pull Model 17T220 |
| 76823 | Catch-Bullet catch and strike for Model 17T220 <br> Clip-Spring clip for spacing ground braid <br> Cloth-Grille cloth for Model 17T201, 17T202 <br> Cloth-Grille eloth for mahogany cabinet for Model 17T211 | 兂 | Pull-Door pull |
| $\begin{aligned} & \mathrm{x} 3128 \\ & \mathrm{x} 3199 \end{aligned}$ |  |  | Rotainer-Safety glass retainer (2 req'd) for maroon, mahogany grain, mahogany or walnut instruments |
|  |  | 7681 | Retainer-Safety glass retainer ( 2 reg'd) for blonde instruments instruments |
| $\times 175$ | Cloth-Grille cloth for mahogany and walnut instru- ments for Modol $17 T 220$ |  | Rod--'L" shape threaded rod to support deflection yoke hood assembly (2 req'd) for Models 17 T200, 17 T 201 \& ${ }_{1 T T 202}$ |
| 75474 | Connector-Single contact male connector for antenna cable ( 2 req'd) cable (2 req ${ }^{\text {d }}$ | 768 | 17T202 <br> Rod-''L' shape threaded rod to support deflection yoke hood assembly ( 2 req'd) for Models 17 T211 \& 17 T 220 |
| 391 | Connector- 4 contact male connector for antenna cable Cord-Power cord and plug | 76632 | Screw-\#8×5/8" hex head screw for mounting front panel or hanger bracket for Models $17 T 211$ \& 17 T 220 |
| 7681 | Cushion-Rubber cushion ( $1 / 16^{\prime \prime} \times 1^{\prime \prime} \times 5 / 8^{\prime \prime} \times 1 / 4^{\prime \prime}$ ) for kinescope and cradle support ( $4 \mathrm{req}{ }^{\prime} \mathrm{d}$ ) |  |  |
| 77014 | Decal-Control panel function decal for mahogany or ${ }_{\&}^{\text {walnut }}$ in | 76821 | Screw-\# $10 \times 13 / \mathrm{s}^{\prime \prime}$ hex head screw to lock flexible atrapa or kinescope <br> Sleeve-Polyethylene sleeve for insulating high voltage |
| 71984 <br> 77012 | Decal-Trade mark decal for Model 17 T220 <br> Emblem-"RCA Victor" omblem for Models $17 T 202, ~$ 17T211, 17T220 |  | Spr |
| 75456 |  | 768 | Spring-Formed spring for safoty glass rotainers |
|  | Escutcheon-Channel marker escutcheon-gold Foot-Felt foot (4 req'd) for Models $17 \mathrm{~T} 200,17 \mathrm{~T} 201$ \&17 T 202 | 77006 | Spring-Retaining spring for deflection yoke hood sup port rods |
| 748 |  | 30330 72845 | Spring-Retaining apring for knobs 74963, 15464, 77265 Spring-Retoining apring tor kno 7659, 70592,7265 |
| $\begin{aligned} & 76806 \\ & 74308 \\ & 76595 \end{aligned}$ | Glass-Safety glass <br> Hinge-Cabinet door hinge (l set) for Model 17T220 | 76837 | Spring-Retaining gpring for knobs 76593, 76594, 76595. |
|  |  |  | 76596, 76597, 76598, 77261, 77264, 77263 |
|  | Hinge-Cabinot door hingo (1 sot) for Model 17 Tr220 <br> Knob-Brightness control or vertical hold control knob -maroon-(outer) | 14930 | Spring-Suspension spring (coil) for ground braid |
| 76593 | Knob-Channel selector knob-maroon-(inner) <br> Knob-Fine tuning contral knob-maroon-(outer) | 729 | Stop-Cabinot door stop for Model 17 T 2 |
| 74963 |  | 768 | Strap-Floxible stool strap to socure kinoscop- |
|  | Knob-Picture control, horizontal hold control or volume control and powerswitch knob-maroon-(inner) | 766 | Strap-Ground strap (005" $\times 1 / 2^{\prime \prime}$ soft coppor strip) for 17 T220 |
| 597 | $\underset{\substack{\text { Knob-Ton. oontrol and phono switch knob-maroon- } \\ \text { (outor) }}}{\text { Kint }}$ | ${ }_{76}^{77003}$ | Support-Cradle support for kinotcope Waahor-Collulose washor-gold -for knobs |
| 76596 |  | 75457 | Washhor-Folt washor-dark brown-botwoon knob channol marker oscutchheon channol marker escutchoon |
| 76594 | Knob-Channel aelector knob-boige-(innor) <br> Knob-Fine tuning control knob-beige-(outer) <br> Knob-Picture control, horizontal hold control or vol- umo control and powor awitch knob-bioco-(innor) |  | Washer-Felt washer-beige <br> nel marker escutcheon |
|  |  | 77 | Waehhor-Folt washer--bony- |
|  |  |  |  |




## PRODUCTION CHANGES IN KCST2

The schematic is shown in the latest condition. The notes
below tell how early receivers differed from the schematic shown above.
In some receivers, C 27 was omitted.
In some receivers, Cl30 was 120 mmt .
In some receivers, Cl 89 was omitted.
In some receivers, R 12 was 8200 ohms.
In some receivers, R126 was 220,000 ohms and was con
nected between the junction of V109A
and the i.f AGC buss.
In some receivers, R131 was 3300 ohms.
In some receivers, R132 was $47,000 \mathrm{ohms}$
In some receivers, R133 was $27,000 \mathrm{hms}$.
In some receivers, R135 was 12,000 ohms.
In some receivers, Rl 82 was 470 ohms.
In some receivers, R183 was 100,000 ohms.
In some receivers, R185 was 56,000 ohms.
In some receivers, 1885 was 100,000 ohms.
In some receivers, R185 was omitted.
In some receivers, R185 was omitted
In some receivers, 218 was omitted
In some receivers,
In some receivers, V119-10 was connected to the junction of
R171 and Cl83.


All resistance values in ohms. $\mathrm{K}=1000$, All capacitance values less than 1 in MF
and abovel in MMF unless otherwise noted

Direction of arrows at controls indicates
Direction of arrows
clockwise rotation.

All voltages measured with "Voltohmyst" and with no signal input. Voltages should
hold within $+20 \%$ with 117 v a-c supply.

In KCS72 V110 was a 6AC7. In KCS72M1 V110 was a

| $\begin{gathered} \text { stock } \\ \text { No. } \end{gathered}$ | description | $\underset{\substack{\text { stock } \\ \text { No. }}}{ }$ | description |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 75188 \\ & 76845 \end{aligned}$ | R-F UNIT ASSEMBLIESKR K8DBoard-Terminal board 5 contact and ground <br> Bracketerevertical bracket for holding oscillator tube <br> shiold | $64$ | Rod-Actuating plunger rod (fibre) for fine tuning link Screw- $=4-40 \times 1 / 4$ adjusting screw for L6. L7, L8, L9, L10. L11 <br> Screw- $=4-40 \times 3 / \mathbf{B}^{\prime \prime}$ adjusting screw for L1, L2, L3, L4, L43 <br> Screw --. $\$ 4-40 \times 7 / 16^{\prime \prime}$ adjusting screw for L5 |
| 75201 | Cable-75 ohm coax cable ( $71 / 4$ ) complote with cuil (W1, L50) | 73640 74575 | Screw - $4-40 \times 7 / 16^{\prime \prime}$ adjusting screw for L52 Screw $-\$ 4.40 \times .359^{\prime \prime}$ adjusting screw for L42 |
| 76965 | $\underset{\substack{\text { Capacitor-Ceramic, variable for fine tuning-plunger } \\ \text { type (C25) }}}{\text { ( }}$ | 76519 | Shait-Channel selector shaft and |
| 71088 | Capacitor-Headed Lead, 0.68 mmf . (C27) | 76134 | Shaft-Fine tuning shaft and cam |
| 769 | Capa | 76962 | Sh |
| 75200 | Capacitor-Ceramic, 12 mmf ( (C24) | 76967 | Shield-Tube shield for V1, V2 |
| 4546 | Capacitor-Ceramic. 15 mmf . (C3) | 088 | Socket-Tube socket, 7 contact, miniature, ceramic. |
| 75196 | Capacitor-Ceramic, 39 mmf . (C5) |  | soddle-mounted ${ }^{\text {a }}$, 7 cont |
| 75199 | Capacitor-Ceramic, 270 mmf ( (C12, C13, C20) | 75191 | Spacer-Insulating spacer for front plate |
| 75641 | Capacitor-Ceramic. 390 mmf . (C10) | 63 | Spring-Friction spring (formed) for fin |
| 75166 | Capacitor-Ceramic, 1500 mmf . (C6, C14, C15, C19) | 30340 | Spring-Hair pin spring for fine tuning link |
| 73748 | Cap | 74578 | Sp |
| 75089 | Capacitor-Ceramic, dual 1500 mmf . (C17A, C17B) | 76961 | $\mathrm{s}_{\mathrm{pr}}$ |
| 73473 | Capacitor-Ceramic. 50 | 73457 | Spring-Return spring for fine tuning co |
| 517 |  | 75180 | Stator- Antenna stator complet ewith rotor, Coils, capac itors (C20, C21) and resistors (R9, R10, R11) (S1-4, C20 <br>  L42, L52; R9, R10, R11) |
| 75184 | Capacitor-Ceramic. odjustable, $0.75-4 \mathrm{~mm}$. completo with adjusting stud (Ci) | 77459 | Stator-Converter stator complete with rotor, coils, capac. itors and resisors, L17, L18, L19, L20, L21. L45, R4, R5, Ri2) |
| 751 | Capacit | 963 | Stator-Oscillator section stator complete with rotor segment, coils, adjusting screws and capacitors C3 |
| 75189 | Capacitor-Adjustable, 7 -30 mmf. (C22) |  | ${ }_{\text {segment }}^{\text {sen }}$ (S1-1, C3, C23. L1, L2, L3, L4, L5, L6, L7, L8, L9 L10, L11, L43) |
| 75174 | Capacitor-Ceramic. trimmer, $50-75 \mathrm{mmf}$. (Cl1) | 76964 | Stator-R-F amplifier stator complete with rotor coils, |
| 76143 | Clip--Tubular clip for mounting stand-off capacitors |  |  |
| 73477 | Coil | 75170 | Strip |
| 7520 | Coil-Choke coil, 56 muh | 75171 | Strip-Coil segment mounting strip-L.H. upper-less trimmer C7 |
| 75185 | Coil-Converter plate loading coil (L44) | 75169 | Strip-Coil segment mounting strip-R.H. center |
| 7518 | Coil-Trimmer coil ( $11 / 2$ turns) with adjustable induc-促 converter section (C9, L47) | 75446 | Stud-Capacitor stud-brass- $44-40 \times 3 / 16^{\prime \prime}$ with $3 / 64^{\prime \prime}$ screw driver slot for trimmer coils L47, L48 and capac itor Cl uncoded and coded ER |
| 183 | Coil-Trimmor coil (3turns) with adjustable inductanco core and capacitor stud (screw adjustment) for $r$ core and capacita, section (L48, C16) | 75447 | Stud-Capacitor stud-brass- $=4.40 \times 3 / 16^{\prime \prime}$ with $3 / 64^{\prime \prime}$ screw driver slot fortrimmer coils L47, L48 and capac itor Cl coded numerically and "Hi-O, itor Cl coded numerically and " Hi - O |
| 7646 | Contact-Test point contact | 75173 | Stud- $\ddagger 6.32 \times 13 / 16$ " adjusting stud for trim |
| 76966 | Core-Adjustable core for fine tuning capacitor | 75181 | Transformer-Converter transformer ( |
| 75162 | Dotent-Detent mechanism and fibre shoft | 75607 | Washer-Insulating washer (hex) |
| 734 | Form | 75190 | Washer-Insulating washer (neoprene) for trimmer |
| 75165 | Link-Link assembly for fine tuning |  |  |
| 76518 | Plate-Front plate and shaft bearing Resistor-Fixed, composition:- |  | chassis assemblies |
| 50302 | 27 ohms . $\pm 10 \% .1 / 2 \mathrm{watt}$ (R8) | 764 | Bracket-Channel indicator lamp brack |
| 503068 | 68 oh ms, $\pm 10 \%, 1 / 2$ watt (R13) |  |  |
| 504115 | 150 ohms. $\pm 20 \%$, $1 / 2$ watt (R10) |  | picture control |
| 503 | 2200 ohms, $\pm 10 \% .1 / 2 \mathrm{watt}$ (R6) | 71496 | Capacitor-Adjustable, mica, 5-70 mmf. (C115) |
| 50323 | 3900 ohms, $\pm 10 \%$, $1 / 2$ watt (R9, R11) | 33098 | Capacitor-Ceramic. 10 mmf . (C127) |
| 50324 | 4700 ohms , $\pm 10 \%, 1 / 2$ watt (R12) | 33380 | Capacitor-Ceramic, 12 mmf . (C162) |
| 50 | 1000 ohms, $\pm 5 \% .1 / 2 \mathrm{watt}$ (R3) | 75450 | Capacitor-Ceramic. 39 mmf . (C203) |
| 504310 | 10,000 ohms, $\pm 20 \%$, $1 / 2$ watt (R2) | 73664 | Capacitor-Ceramic, 39 mmf . (C131) |
| 50332 | 22,000 ohms, $\pm 10 \%$. $1 / 2$ watt (R7) | 76475 | Capacitor-Mica, 68 mmf . (C164) |
| 504410 | 00.000 ohms, $\pm 20 \%$, $1 / 2$ watt (R1. R4, R5) | 76474 | Capacitor-Mica, 82 mmf . (C142) |
| 3343 | Retainer-Fine tuning shaft retaining ring | 754 | Capacitor-Ceramic, 100 mmf . (C202) |

138
17T200, 17T201, 17T202 17T211, 17T220

REPLACEMENT PARTS (Continued)

| stock | description | $\underset{\substack{\text { stock } \\ \text { No. }}}{\text { cos }}$ | description |
| :---: | :---: | :---: | :---: |
| 76673 | Capacitor-Ceramic, 220 mmf ( (C136) | 73553 |  |
| 75248 | Ca | 7507 |  |
| 47617 | Ca | 507 |  |
| 39638 | Cap | ${ }^{3} 7$ | Capacitor-Tubular, paper, oil impregnated, 0.068 m |
| 73091 | Capacitor-Mica. 270 mmf ( (C140, C178) |  |  |
| 76476 | Capacitor-Mica, 330 mmf ( (C169, C175) | 7378 | Capacitor- Tub 200 volts $(\mathbb{C l} 132$ |
| 39640 | Ca | 7355 |  |
| 73094 | Cap |  |  |
| 39644 | Capacitor-Mica, 470 mmf . (C107, | 73557 | $\begin{aligned} & \text { Capacitor- } \mathbf{T u b u} \text { b } \\ & 600 \text { volts (C153. } \end{aligned}$ |
| 73473 |  | 7378 | $\begin{aligned} & \text { Capacitor-Tub } \text { Cob }_{200 \text { volts (C C } 174} \end{aligned}$ |
| 73 |  | 76994 | $\mathrm{Ca}$ |
| 76991 | 01a, | 73787 |  |
| 7452 | Capacitor-Electrolytic, 5 mid., 50 volts (C109 |  |  |
| 75218 | Capacitor-Electrolytic, comprising 1 section of 10 mfd .350 volts. 1 section of 5 mfd . 350 volts and 1 section of 350 volts. 1 section of 5 mfd , 350 volts an150 mfd... 50 volts (Cl $85 A \mathrm{~A}$. Ci85B. C185C) |  | c |
|  |  | 75241 | c |
| 75217 | Capacitor-Mica trimmer, dual C161B) | 76442 | Coil-Horizontal linearity coil complete with adjustable core (LLOB) |
| 76987 | Capacitor-Electrolytic. comprising 1 section of 80 mfd , 400 volts and 1 section of 10 mfd . 350 volts ( C 182 A . C182B) | 76441 | Coil-Width coil complete with adjustable core (L106) |
| 76970 | Capacitor-Electrolytic comprising 1 section of 100 ffd 400 volts. 1 soction of 10 mfd. 350 volits ond 1 section of <br>  | 76011 | co |
| 76479 | Capacitor-Tubular, moulded paper, oil impregnated, .00068 mfd. 600 volts (C171) |  | $\begin{aligned} & \mathrm{Coi}_{0 i} \\ & \mathrm{Coi} \end{aligned}$ |
|  | Capacitor-Tubular, paper, oil impreqnated, $.001 \mathrm{mfd} .$. 1000 volts (C148, C163) |  | Coil-Peaking coil ( 500 muh) (L102) Coil-Peahing coil (1000 muh) (Llo5, |
| 76995 | Capacitor-Tubular moulded paper, oil impregnated, .0012 mfd.. 600 volts (C172) | 71789 | c |
| 76508 | Capacitor-Tubular, paper, oil impregnated. 0015 mfd .. 600 volts (Cl38) | ${ }_{35474} 3578$ | Connector-Phono input connector (Jl01) <br> Connector-Single contact male connector for speaker cable |
| 77123 | Capacitor-Tubular. moulded paper, oil impregnated, 0015 mid. 1000 volts (C155) d., 1000 volts (C155) |  | c |
|  | Capacitior-Tubularipaper, oil impregnated, 0022 mfd ., 600 volts (C108, C154) | 74594 | Connector-2 contact male connector for power c |
| 73599 | Capacitor-Tubular, paper, oil impregnated, . 0027 mfd., Capacitor- Cob volis Cl112) | 5036 | transformer (J200) <br> Connector-6 contact fernale connector for yoke lead (J103) |
| 73818 | Capacititor-Tubular, paper, oil impregnated. 0027 mfd .. 1600 volts (C114) | 75542 | Connector-6 contact male connector-part of deflection onnector-6 yoke (P103) |
| 7379 |  | 7697 |  |
| 7392 | Capacititor-Tubular, paper, oil impregnated. . 0047 mfd ..600 volts (C1100. Cisl) | 7644 | Co |
|  |  | 764 | Control-Height control (R17 |
| 73808 | Capacitor-Tubular. paper, oil impregnated. $0082 \mathrm{mfd} .$. 1000 volts (Cl47) | 7697 |  |
| 73561 |  | 76445 | Co |
| 73594 | Capacitor-Tubular. moulded paper, oil impregnated. .01 mdd. 600 volts (Cl170) | 7701 | Control-Volume control and power switch (R109, S102) |
|  | Capacitor --Tubular. paper, oil impregnated. . 012 m fd.. 200 volts (Cl88) | $769$ | Core-Adjustable core and stud for FM trap Caver-Back cover for hi-voltage compartme |
|  | Capacitor-Tubular, paper. oil impregnated, . 015 mfd. 600 volts (C129) | 769 | co |
| 73562 | Capacitor-Tubular. paper, oil impregnated, 022 mfd .. 400 volts (C167) | ${ }_{7483}^{7495}$ | Cushion-Rubber cushion for deflection yoke hood <br> Fastener-Push fastener for mounting tube sochet |
| 73798 |  600 volts (C157) | 73600 | F |
| 73810 | Capacitor-Tubular, paper. oil impregnated. . 022 mfd .. 1000 volits (C177) | ${ }^{373965}$ | Grommet-Rubber grommet for mounting tube <br> Grommet-Rubber grommet for 2nd. anode lead |
| 73811 | Capacitor-Tubular. paper, oil impregnated, 027 mfd . <br> 1000 volts (C176) <br> Capacitor-Tubular, paper, oil impregnated. . 033 mfd . <br> 1000 volts (Cl52) | 7683 |  |
|  |  | 76168 | Magnet-Focus magne |
| 735 |  | 76141 | Magnet-Ion trap magnet (P.M. type) |



Model 17T261DE
"Ainsworth"
Walnut, Mahogany, Blonde

Model 17T250DE
"Brett"
Walnut, Mahogany Shown on Base


TELEVISION RECEIVERS MODELS I7T250DE, I7T26IDE

Chassis No. KCS74 or KCS74M1

- Mfr. No. 274 -

Service Data

- 1952 No. T3 -

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

Models 17T250DE and 17T261DE are deluxe " 17 inch" television receivers. The receivers are identical except for cabinets, and speakers.

Features of the television unit are: full twelve channel coverage: "totem" r-f amplifier; intercarrier FM sound system; ratio detector; 40 mc picture i-f; improved picture brilliance;
pulsed picture A-G-C; A-F-C horizontal hold; stabilized vertical hold; compensated video gain control; noise saturation circuits; improved sync separator and clipper; four me. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE...... 146 square inches on a 17QP4 Kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Picture I-F Carrier Frequency . . . . . . . . . . . ......... 45.75 mc . Sound I-F Carrier Frequency........... 41.25 mc . and 4.5 mc . VIDEO RESPONSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . To 4 mc . SWEEP DEFLECTION . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic FOCUS. Magnetic

POWER SUPPLY RATING KCS74

115 volts, 60 cycles, 190 watts
AUDIO POWER OUTPUT RATING
KCS74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.0 watts max.
CHASSIS DESIGNATIONS
KCS74 or KCS74M1...... In Models 17T250DE and 17T261DE *KCS74 (V110-6CL6). KCS74M1 (V110-6AG7)

LOUDSPEAKERS
Model 17T250DE........(971490-3) 8" PM Dynamic, 3.2 ohms Model 17T261DE........(92569-12) 12" PM Dynamic, 3.2 ohms WEIGHT

| Model | Shipping <br> Weight | Width <br> Inches | Height <br> Inches | Depth <br> Inches |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17T250DE $\ldots .88 \mathrm{lbs}$. | $\ldots$ | 105 lbs | $\ldots$ | $215 / 8$ | $\ldots$ | $22^{5 / 8}$ |$\ldots .222^{3 / 4}$

## RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohms balanced or 72 ohms unbalanced.
RCA TUBE COMPLEMENT



OPERATING CONTROLS (Front Panel)


NON.OPERATING CONTROLS (not including r-f and i-f adjustments)

Picture Centering. .................... . . top chassis adjustment Width. ................................. . . rear chassis adjustment Height.. . . . . . . . . . . . . . . . . . . . . . . . . . rear chassis adjustment Horizontal Linearity..... rear chassis screwdriver adjustment Vertical Linearity . . . . . . . . . . . . . . . . . . rear chassis adjustment Horizontal Drive............rear chassis screwdriver adjustment Horizontal Oscillator Frequency . . . . . . rear chassis adjustment Horizontal Oscillator Waveform.... . bottom chassis adjustment Horizontal Locking Range...............rear chassis adjustment Focus. . . . . . . . . . . . . . . . . . . . . . . . . . . .top chassis adjustment Ion Trap Magnet. .........................top chassis adjustment Deflection Coil............. top chassis wing nut adjustment AGC Control............................ rear chassis adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, the kinescope must be handled with more care than ordinary receiving tubes.

[^6]The following adjustments are necessary when turning the receiver on for the first time,

1. See that the TV-PH tone switch is in a "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best pix and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS con trol fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is ob tained and centered.


Figure 1-Receiver Operating Controls
8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.
9. In switching from one channel to another, it may be necessary to repeat steps 4 and 8 .
10. When the set is turned on again after an idle period it should not be necessary to repeat the adjustment if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient

1l. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8
12. To use a record player plug the record-player output cable into the PHONO jack on the rear apron, and set the TV PH tone switch to $\alpha$ " $\mathrm{PH}^{\prime}$ posi tion.

## INSTALLATION INSTRUCTIONS

UNPACKING.-These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.

Take the receiver out of the carton and remove all packing material.

Make sure that all tubes are in place and are firmly seated in their sockets.
Check to see that the kinescope high voltage lead clip is in place.

Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.


Figure 2-Yoke and Focus Mugnet Adjustments

DEFLECTION YOKE ADJUSTMENT. - If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS. -- It will now be necessary to obtain a test pattern picture in order to make further adjustments. Connect the antenna transmission line to the receiver.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn R181 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. Turn the horizontal hold control to the extreme counterclockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 or 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90


Figure 3-Rear Chassis Adjustments

## INSTALLATION INSTRUCTIONS

degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."
ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tll3 horizontal frequency adjustment at the rear of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster. Then turn the Tll3 core until the bar moves out of the picture leaving it in sync.
Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tll3 rear core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.
If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Ci91A slightly clockwise. If less than 2 bars are present, adjust C191A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.
If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the "Blignment procedure on page 11. For field purposes paragraph " $B$ " under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENT. - The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the center of the opening.

PIN-CUSHION CORRECTION. - Two pin-cushion correc tion magnets are employed to correct a small amount of pin-cushion of the raster due to the lens effect of the face of the kinescope. These magnets are mounted on small arms, one on each side of the kinescope as shown in Figure 2. The arms hinge in one plane on self tapping screws which act both as a hinge and an adjustment locking screw. When the magnets are swung towards the tube, maximum correction is obtained. Minimum correction is obtained when the arms are swung away from the tube. To adjust the magnets, loosen the two self tapping screws and position the magnets until the sides of the raster appear straight. Tighten the screws without shifting the position of the magnets. In some cases it may be necessary to twist or bend the magnet support arms to obtain the appearance of straight raster edges.
CENTERING ADJUSTMENT. - No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. The centering plates include a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUST. MENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive trimmer Cl91B counterclockwise until the picture begins to "wrinkle" in the middle then clockwise until the "wrinkle" disappears.

Turn the horizontal linearity control L107 clockwise until the picture begins to "wrinkle" on the right and then counterclockwise until the "wrinkle" disappears and best linearity is obtained.

Adjust the width control L106 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the best linearity.
Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. It the drive control was adjusted, recheck the oscillator alignment.
HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R199 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity ( R 211 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.
Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.
Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.


Figure 4-R-F Oscillator Adjustments
CHECK OF R-F OSCILLATOR ADJUSTMENTS. - Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 9 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis.

AGC THRESHOLD CONTROL. - The AGC threshold control R181 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R181. If the picture requires an appreciable portion of a second to reappear, or bends excessively. R181 should be readjusted.

Turn R181 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn R181 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn R181 counter-clockwise just sufficiently to remove this bend or change of bend.
If the signal is weak, the above method may not work as It may be impossible to get the picture to bend. In this case, turn R181 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received.

FM TRAP ADJUSTMENT. - In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L58 core on top of the antenna matching transformer for minimum interference in the picture.

CAUTION. - In some receivers, the FM trap L58 will tune down into channel 6 or even into channel 5. Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L58 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

KINESCOPE SCREEN CLEANING. - The kinescope safety glass is held in place by four spring clips which may be removed from the back of the front panel. This permits removing the safety glass for cleaning without the necessity of removing the chassis and kinescope.

CHASSIS REMOVAL. - To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the yoke and high voltage cable. Take out the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION. - Do not install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

REMOVAL OF KINESCOPE.-To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly.

Handle this tube by the portion at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

INSTALLATION OF KINESCOPE. - Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Replace the kinescope and chassis by reversal of the removing process. The kinescope should be installed so that the high voltage contact is to the right when looking at it from the rear of the cabinet. The magnet of the ion trap magnet should be to the left.

CABINET ANTENNA.-A cabinet antenna is provided in these receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.

ANTENNAS.-The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.
If two or more stations are available and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal an all such channels.
If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for turning the antenna when switching channels or to install a separate antenna for one or more channels and to switch antennas when switching channels.
In some cases, the antenna should not be installed permanently until the quality of the picture reception has been observed on a television receiver. A temporary transmission line can be run between receiver and the antenna, allowing sufficient slack to permit moving the antenna. Then, with a telephone system connecting an observer at the receiver and an assistant at the antenna, the antenna can be positioned to give the most satisfactory results on the received signal. A shift of direction or a few feet in antenna position may effect a tremeadous difference in picture reception.

REFLECTIONS. - Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Under certain extremely unusual conditions, it may be possible to rotate or position the antenna so that it receives the cleanest picture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surfaces.
Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE.-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals, doctors' offices and similar sources of interference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal roofs, gutters or other metal objects.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAK PICTURE.-When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

RECEIVER LOCATION.-The owner should be advised of the importance of placing the receiver in the proper location in the room.
The location should be chosen-
-Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.

- To allow adequate ventilation.


Figure 5-Chassis Top View


Figure 6-Chassis Bottom View

TEST EQUIPMENT. - To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

35 to $90 \mathrm{mc} ., 1 \mathrm{mc}$. to 12 mc . sweep width
170 to 225 mc ., 12 mc . sweep width
(b) Output adjustable with at least .1 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope. - For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion.

For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
4.5 mc ., 39.25 mc ., 41.25 mc ., 45.75 mc ., 47.25 mc .
(b) Radio frequencies

| Channel Number | Picture Carrier Freq. Mc. | Sound Carrier Freq. Mc. | Receive: R-F Osc. Freq. Mc. |
| :---: | :---: | :---: | :---: |
| 2 | 55.25 | 59.75 | . 101 |
| 3. | . 61.25 | 65.75. | . . 107 |
| 4. | . 67.25 | 71.75 | . 113 |
| 5 | . 77.25 | 81.75 | . 123 |
| 6 | . 83.25 | 87.75 | . 129 |
|  | .175.25. | 179.75 | . 221 |
| 8. | . 181.25. | 185.75 | . 227 |
| 9 | . 187.25 | 191.75 | . 233 |
| 10. | . 193.25. | 197.75 | 239 |
| 11. | . 199.25. | 203.75 | 245 |
| 12. | 205.25 | 209.75 | 251 |
| 13. | 211.25 | 215.75 | 257 |

(c) Output of these ranges should be adjustable and at least . 1 volt maximum.

Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior or Senior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 20 kv .

ORDER OF ALIGNMENT. - When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:
(1) Ant. Matching Unit
(6) Picture I-F Traps
(2) R-F Unit
(7) Picture I-F Trans.
(3) Ratio Detector
(8) Sweep Alignment of I-F
(4) Sound I-F Trans.
(9) Horizontal Oscillator
(5) Sound Take.OH Trans.
(10) Sensitivity Check

ANTENNA MATCHING UNIT ALIGNMENT. - The antenna matching unit is accurately aligned at the factory. Adjustment of this unit should not be attempted in the customer's home since even slight misalignment may cause serious attenuation of the signal especially on chamnel 2 . The r-f unit is aligned with a particular antenna matching transformer in place. If for any reason, a new antenna matching transformer is installed, the r-f unit should be realigned.

The F-M Trap which is mounted in the antenna matching unit may be adjusted without adversely affecting the alignment of the unit.

To align the antenna matching unit disconnect the lead from the F-M Trap L58 to the channel selector switch S5.

With a short jumper, connect the output of the matching unit through a 1000 mmf capacitor to the grid of the second pix i-f amplifier, pin 1 of V107.

Replace the cover on the matching unit while making all adjustments.

Remove the first pix i-f amplifier tube V106.

Connect the positive terminal of $a$ bias box to the chassis and the potentiometer arm to the junction of R193 and R194. Set the potentiometer to produce approximately -6.0 volts of bias at the junction of R193 and R194.

Connect an oscilloscope to pin 2 of V110 (pin 4 if 6AG7 used) and set the oscilloscope gain to maximum.

Connect a signal generator to the antenna input terminals. Modulate the signal generator $30 \%$ with an audio signal.

Tune the signal generator to 45.75 mc . and adjust the generator output to give an indication on the oscilloscope. Adjust L59 in the antenna matching unit for minimum audio indication on the oscilloscope.

Tune the signal generator to 41.25 mc , and adjust L 60 for minimum audio indication on the oscilloscope.
Remove the jumper from the output of the matching unit.
Connect a 300 ohm $1 / 2$ watt composition resistor from L58 to ground, keeping the leads as short as possible.

Connect an oscilloscope low capacity crystal probe from L58 to ground. The sensitivity of the oscilloscope should be approximately 0.03 volts per inch. Set the oscilloscope gain to maximum.

Connect the r-f sweep generator to the matching unit antenna input terminals. In order to prevent coupling reactance from the sweep generator into the matching unit, it is advisable to employ a resistance pad at the matching unit terminals. Figure 11 shows three different resistance pads for use with sweep generators with 50 ohm co-ax output. 72 ohm co-ax output or 300 ohm balanced output. Choose the pad to match the output impedance of the particular sweep employed.

Connect the signal generator loosely to the matching unit antenna terminals.

Set the sweep generator to sweep from 45 mc . to 54 mc . With RCA type WRS9A sweep generators, this may be accomplished by retuning channel number 1 to cover this range. With WR59B sweep generators this may be accomplished by retuning channel number 2 to cover the range. In making these adjustments on the generator, be sure not to turn the core too far clockwise so that it becomes lost beyond the core retaining spring.

Adjust L61 and L62 to obtain the response shown in Figure 12. L61 is most effective in locating the position of the shoulder of the curve at 52 mc . and L62 should be adjusted to give maximum amplitude at 53 mc . and above consistent with the specified shape of the response curve. The adjustments in the matching unit interact to some extent. Repeat the above procedure until no further adjustments are necessary.

Remove the 300 ohm resistor and ciystal probe connections. Restore the connection between L58 and S5. Replace V106.

R-F UNIT ALIGNMENT. - An r-f unit which is operative and requires only touch up adjustments, requires no presetting of adjustments. For such units, skip the remainder of this paragraph. For units which are completely out of adjustment, preset all adjustments to the approximate center of their range with the following exceptions: Set Cl8 so that the screw head is approximately three-eighths of an inch above chassis. Set Cll near maximum capacity (one-quarter turn from tight). Do not change any of the adjustments in the antenna matching unit.

Disconnect the link from terminals " $A$ " and " $B$ "' of T104 and terminate the link with a 39 ohm composition resistor.

The r-f unit is aligned with zero AGC bias. To insure that the bias will remain constant, take a clip lead and short circuit the r-f unit power terminal board terminal 3 to ground.

Connect the oscilloscope to the test point TPl on top of the r-f unit. Set the oscilloscope gain to maximum.

Turn the receiver channel selector switch to channel 2 .
Connect the output of the signal generator to the grid of the r-f amplifier, V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a small piece of wire around pin number 7. Replace the tube in the socket leaving the end of the wire protruding from under the tube. Connect the signal generator to this wire through a 1.500 mmf. capacitor.

Tune the signal generator to 43.5 mc . and modulate it $30 \%$ with a 400 cycle sine wave. Adjust the signal generator for maximum output.

Adjust L65 on top of the r-f unit for minimum 400 cycle indication on the oscilloscope. If necessary, this adjustment can be retouched in the field to provide additional rejection to one specific frequency in the i-f band pass. However, in such cases, care should be taken not to adjust it so as to reduce sensitivity on channel 2 .
Remove the wire clip from pin 7 of V2 and replace the tube and tube shield.

Set the channel selector switch to channel 8.
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range now and at all times when adjusting the oscillator frequency.

Adjust C2 for proper oscillator frequency, 227 mc . This may be done in several ways. The easiest way and the way which will be recommended in this procedure will be to use the signal generator as a heterodyne frequency meter and beat the oscillator against the signal generator. To do this, tune the signal generator to 227 mc , with crystal accuracy. Insert one end of a piece of insulated wire into the r-f unit through the hole provided for the adjustment for Cll. Be careful that the wire does not touch any of the tuned circuits as it may cause the frequency of the r-f unit oscillator to shift. Connect the other end of the wire to the "r-f in" terminal of the signal generator, Adjust C2 to obtain an audio beat with the signal generator.
Note.-If on some units, it is not possible to reach the proper channel 8 oscillator frequency by adjustment of C 2 , switch to channel 13 and adjust L46 to obtain proper channel 13 oscillator frequency as indicaied in the table on page 8 . Then, switch to channel 12 and adjust L11 to obtain proper channel 12 oscillator frequency. Continue down to channel 8 adjusting the appropriate oscillator trimmer to obtain the proper frequency on each channel. Then again on channel 8, adjust C2 to obtain proper channel 8 oscillator frequency. Switch back to channel 13 and adjust $L 46$ and back to channel 8 and adjust C2.
Set the Tl core for maximum inductance (core turned counterclockwise.)
Connect the sweep generator through a suitable attenuator as shown in Figure 11 to the input terminals of the antenna matching unit.

Connect the signal generator loosely to the antenna terminals.

Set the sweep generator to cover channel 8.
Set the oscilloscope to maximum gain and use the minimum input signal which will produce a useable pattern on the oscilloscope. Excessive input can change oscillator injection during alignment and produce consequent misalignment even though the response as seen on the oscilloscope may look normal.

Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc . and 185.75 mc .
Adjust C9, Cl1, Cl5 and C18 for approximately correct curve shape, frequency, and band width as shown in Figure 13.

The correct adjustment of Cl 8 is indicated by maximum amplitude of the curve midway between the markers. Cls tunes the r-f amplifier plate circuit and affects the frequency of the pass band most noticeably. C9 tunes the mixer grid circuit and affects the tilt of the curve most noticeably (assuming that Cl8 has been properly adjusted). Cll is the coupling adjustment and hence primarily affects the response band width.

Set the receiver channel switch to channel 6.
Adjust the signal generator to the channel 6 oscillator frequency 129 mc .

Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range.

Adjust L5 for an audible beat with the signal generator as before.

Set the sweep generator to channel 6 .
From the signal generator, insert channel 6 sound and picture carrier markers, 83.25 mc . and 87.75 mc .

Adjust L48, L50 and L53 for proper response as shown in Figure 13.

L50 tunes the r-f amplifier plate circuit and primarily affects the frequency of the pass band. L53 tunes the r-f amplifier grid and is adjusted to give maximum amplitude of the curve between the markers. 148 affects the tilt of the curve but not quite the same as C9 adjustment. When the circuits are correctly adjusted and L48 is rocked on either side of its proper setting, the high frequency (sound carrier) end of the
curve appears to remain nearly fixed in amplitude while the picture carrier end tilts above or below this point.

Turn off the sweep and signal generators.
Connect the "VoltOhmyst" to the $r$-f unit test point TPI.
Adjust the oscillator injection trimmer C8 for -3.5 volts or at maximum if -3.5 volts cannot be reached. This voltage should fall between -2.5 and -5.5 volts on all channels when the alignment of all circuits is completed.

Turn the sweep generator and signal generator back on and recheck channel 6 response. Readjust L48, L50 and L53 if necessary.

Set the receiver channel selector switch to channel 8 and readjust C2 for proper oscillator frequency, 227 mc .

Set the sweep generator and signal generator to channel 8 .
Readjust C9, C11, Cl5 and C18 for correct curve shape, frequency and band width.

Turn off the sweep and signal generators, switch back to channel 6 and check the oscillator injection voltage at TPI if C9 was adjusted in the recheck of channel 8 response.
If the initial setting of oscillator injection trimmer C8 was far off, it may be necessary to adjust the oscillator frequency and response on channel 8, adjust the oscillator injection on channel 6 and repeat the procedure several times before the proper setting is obtained,

Turn off the sweep generator and switch the receiver to channel 13.

Adjust the signal generator to the channel 13 oscillator frequency 257 mc .

Set the fine tuning control 30 degrees clockwise from the center of its mechanical range.

Adjust L46 to obtain an audible beat. Slightly overshoot the adjustment of L46 by turning the slug a little more in the same direction from the original setting, then reset the oscillator to proper frequency by adjusting $C 2$ to again obtain the beat.

Check the response of channels 7 through 13 by switching the receiver channel switch, sweep generator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 13 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response.
If the markers do not fall within this requirement, switch to channel 8 and readjust C9, C11, C15 and C18 as necessary.

Turn off the sweep generator and check the channel 8 oscillator frequency. If C 2 has to be readjusted for channel 8 , the principle of overshooting the adjustment and then correcting by adjusting $L 46$ should be followed in order to establish the I/C ratio for the desired oscillator tracking.
Turn the receiver channel selector switch to channel 6. Adjust L5 for correct oscillator frequency, 129 mc .

Turn the sweep generator on and to channel 6 and observe the response curve. If necessary readjust L48, L50 and L53.
Switch the receiver, the sweep and signal generators to channel 2 and adjust Tl clockwise to a point where there is no change in the channel 2 response as Tl is turned,

Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscillator injection voltage.
If excessive tilt in the same direction occurs on channels 2 , 3 and 4, adjust C18 on channel 2 to overshoot the correction of this tilt, then switch to channel 6 and adjust L53 for maximum amplitude of curve between markers. This adjustment should produce "flat" response on the low channels if the other adjustments especially L48 are correct.

Likewise check channels 7 through 13, stopping on 13 for the next step.

With the receiver on channel 13 , check the receiver oscillator frequency. Correct by adjustment of C 2 if necessary.

Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer to obtain the audible beat. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range. When employing WR39 calibrators to adjust the receiver oscillator, tune the calibrator to one-half the receiver oscillator frequency on channels 45 and 6 and to one-fourth the receiver oscillator frequency on channels 11,12 and 13.

| Channel Number | Picture Carrier Freq, Mc. | Sound Carrier Freq. Mc. | Receiver R-F Osc. Freq. Mc. | Channel <br> Oscillator <br> Adjustment |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 55.25 | 59.75 | 101 | Ll |
| 3. | . 61.25 | . 65.75 | . 107. | . . L2 |
|  | 67.25 | . 71.75 | 113 | L3 |
|  | . 77.25. | . 81.75 | . 123. | . . L4 |
| 6. | 83.25. | . 87.75 | . 129. | L5 |
| 7. | . 175.25 | . 179.75 | . 221. | . .L6 |
| 8. | . 181.25 | . 185.75 | 227. | $L 7$ |
| 9. | . 187.25. | . 191.75 | . 233 | L8 |
| 10. | . 193.25. | . 197.75 | . 239 | . L9 |
| 11. | . 199.25 | . 203.75 | . 245 | . . L10 |
| 12. | . 205.25 | . 209.75 . | . 251. | . Lll |
| 13. | 211.25 | 215.75. | . 257 | Cl |

Remove the 39 ohm resistor from the link and reconneat the link to terminals " $A$ " and " $B$ " of T104.

RATIO DETECTOR ALIGNMENT, - Set the signal generator at 4.5 mc . and connect it to the second sound i-f grid, pin 1 of V102. Set the generator for $30 \% 400$ cycle modulation.

As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed. If used, connect its output cable to the grid of the 4th pix i-f amplifier, pin 1 of V109. Set the frequency of the calibrator to 45.75 (pix carrier) and modulate with 4.5 mc . crystal. Also turn on the internal AM audio modulation. The 4.5 mc . signal will be picked of at TlloA and amplified through the sound i-f amplifier.

Connect the "VoltOhmyst" to the junction of R110 and R150. Connect the oscilloscope to the junction of R1ll and Cll3.
Tune the ratio detector primary, T 102 top core for maximum DC output on the "VoltOhmyst." Adjust the signal level from the signal generator for 10 volts on the "VoltOhmyst" when finally peaked. This is approximately the operating level of the ratio detector for average signals.

Connect the "VoltOhmyst" to the junction of R111 and Cll3.
Tune the ratio detector secondary T 102 bottom core for zero d-c on the "VoltOhmyst."

Adjust R139 for minimum AM indication on the oscilloscope.
Retune the Tl02 bottom core to obtain zero d-c on the "VoltOhmyst."

Repeat the adjustment of T102 bottom core for zero d-c on the "VoltOhmyst" and R139 for minimum AM indication on the ascilloscope until both conditions are satisfied at the same settings of the adjustments. Final touches on these adjustments must be made with the input signal adjusted to produce 10 volts d-c on the "VoltOhmyst" at the junction of R110 and R150,

SOUND I-F ALIGNMENT. - Connect the sweep generator to the first sound i-f amplifier grid, pin 1 of V101. Adjust the generator for a sweep width of 1 mc . at $a$ center frequency of 4.5 mc .

Insert a 4.5 mc . marker signal from the signal generator into the first sound i-f grid.

Connect the oscilloscope in series with a 10.000 ohm resistor to terminal $A$ of Tlol.

Adjust TlOl top and bottom cores for maximum gain and symmetry about the 4.5 mc . marker on the i - f response. The pattern obtained should be similar to that shown in Figure 14.

The output level from the sweep should be set to produce approximately 2.0 volt peak-to-peak at terminal A of Tlol when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broadened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals.

Connect the oscilloscope to the junction of R111 and C113 and check the linearity of the response. The pattern obtained should be similar to that shown in Figure 15.

SOUND TAKE-OFF ALIGNMENT. - Connect the 4.5 mc . generator in series with $a 1.000$ ohm resistor to terminal " $C$ " of T110. The input signal should be approximately 0.5 volts.

Short the fourth pix i-f grid to ground, pin 1 V109, to prevent noise from masking the output indication.

As an alternate source of signal the RCA WR39B or WR39C calibrator may be used. In such a case, disregard the above two paragraphs. Connect calibrator across link circuit, T104 A, B, and modulate 45.75 carrier with 4.5 mc crystal.

Connect the crystal diode probe of a "VoltOhmyst" to the plate of the video amplifier, pin 6 of V110 (pin 8 if 6AG7 used).

Adjust the core of Tllo for minimum output on the meter.
Remove the short from pin 1 Vl09 to ground, if used.
PICTURE I-F TRAP ADJUSTMENT. - Connect the i-f signal generator across the link circuit on terminals A and B of T104.

Connect the "VoltOhmyst" to the junction of R193 and R194.
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a 1,000 ohm potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction of R193 and R194.
Set the bias pot to produce approximately -1.0 volt of bias at the junction of R193 and R194.

Connect the "VoltOhmyst" to pin 2 of V110 (pin 4 of 6AG7). Set the signal generator to each of the following frequencies and adjust the corresponding circuit for minimum d-c output at pin 2 of V110. Use sufficient signal input to produce 1.0 volt of $\mathrm{d}-\mathrm{c}$ on the meter when the final adjustment is made.

| 39.25 mc . | Tl04 top core |
| :---: | :---: |
| 41.25 mc . | T105 bottom core |
| 47.25 mc | . T106 bottom core |

PICTURE I-F TRANSFORMER ADJUSTMENTS. - Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if neces. sary in order to produce 1.0 volt of d-c at pin 2 of V110 with -1.0 volt of i-f bias at the junction of R193 and R194.
43.7 mc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

To align T105 and T106, connect the sweep generator to the first picture i-f grid, pin 1 of V106 through a $1,000 \mathrm{mmf}$ ceramic capacitor. Shunt R136, R143 and terminals " $A$ " and " $F$ " of Tl09 with 330 ohm composition resistors. Set the i-f bias to -1.0 volt at the junction of R193 and R194.

Connect the oscilloscope to pin 2 of V110 (pin 4 of 6AG7).
Adjust Tl05 and Tl06 top cores for maximum gain and curve shape as shown in Figure 16. For final adjustments set the output of the sweep generator to produce 0.5 volts peak-to-peak at the oscilloscope terminals.
To align Tl and T104, connect the sweep generator to the mixer grid test point TP2. Use the shortest leads possible, with not more than one inch of unshielded lead at the end of the sweep cable.

Set the channel selector switch to channel 4.
Connect a 180 ohm composition resistor from terminal B of T105 to the junction of R131 and C131. Connect the oscilloscope diode probe to terminal B of TlO5 and to ground.

Couple the signal generator loosely to the diode probe in order to obtain markers.

Cl22 is variable and is provided as a band width adjustment. Preset Cl 22 to minimum capacity.

Adjust Tl top and Tl04 bottom for maximum gain at 43.5 mc. and with 45.75 mc . at $70 \%$ of maximum response.

Adjust Cl22 until 41.25 mc . is at $85 \%$ response with respect to the low frequency shoulder at approximately 41.9 mc . as shown in Figure 17.

Disconnect the diode probe, the 180 ohm and three 330 ohm resistors.

SWEEP ALIGNMENT OF PIX I-F. - Connect the oscilloscope to pin 2 of V110 (pin 4 where V1l0 is a 6AG7).

Adjust the bias potentiometer to obtain -6.0 volts of bias as measured by a "VoltOhmyst" at the junction of R193 and R194.

Leave the sweep generator connected to the mixer grid test point TP2 with the shortest leads possible and with not more than one inch of unshielded lead at the end of the sweep cable. If these precautions are not observed; the receiver may be unstable and the response curves obtained may be unreliable.

Adjust the output of the sweep generator to obtain 3.0 volts peak-to-peak on the oscilloscope.

Couple the signal generator loosely to the grid of the first pix i-f amplifier. Adjust the output of the signal generator to produce small markers on the response curve.
Retouch T108 and T109 to obtain the response shown in Figure 18. Do not adjust Tl07 unless absolutely necessary. If T107 is adjusted too low in frequency it will raise the level of the 41.25 mc . sound i-f carrier and may create interference in the picture. It will also cause poor adjacent channel picture rejection. If T107 is tuned too high in frequency, the level of the 41.25 mc . sound i-f carrier will be too low and may produce noisy sound in weak signal areas.
Remove the oscilloscope, sweep and signal generator connections.
Remove the bias box employed to provide bias for alignment.
HORIZONTAL OSCILLATOR ADJUSTMENT. - Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment may require the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.

Horizontal Frequency Adjustment.-Tune in a station and sync the picture. If the picture cannot be synchronized with the horizontal hold control R197B, then adjust the Tll3 irequency core on the rear apron until the picture will synchronize. If the picture still will not sync, turn the Tll3 waveform adjustment core (under the chassis) out of the coil several turns from its original position and readjust the Tll3 frequency core until the picture is synchronized.
Examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C191B, the width control L106 and the linearity control L107 until the picture is correct.

Horizontal Oscillator Waveform Adjustment.-The horizontal oscillator wavelorm may be adjusted by either of two methods. The method outlined in paragraph A below may be employed in the field when an oscilloscope is not available. The service shop method outlined in paragraph $B$ below requires the use of an oscilloscope.
A.-Turn the horizontal hold control completely clockwise. Place adjustment tools on both cores of T113 and be prepared to make simultaneous adjustments while watchirg the picture on the screen. First, tum the Tll3 frequency core (on the rear apron) until the picture falls out of sync and one diagonal black bar sloping down to the right appears on the screen. Then, turn the waveform adjustment core (under the chassis) into the coil while at the same time adjusting the frequency core so as to maintain three or four diagonal black bars on the screen. Continue this procedure until the oscillator begins to motorboat, then turn the waveform adjustment core out until the motorboating just stops. As a check, turn the Tll3 frequency core until the picture is synchronized then reverse the direction of rotation of the core until the picture begins to fall out of sync with the diagonal bars sloping down to the right. Continue to turn the frequency core in the same direction. No more than three or four bars should appear on the screen. Instead, the horizontal oscillator should begin to motorboat. Retouch the adjustment of the Tll3 waveform adjustment core if necessary until this condition is obtained.
B.- Connect the low capacity probe of an oscilloscope to terminal C of T113. Turn the horizontal hold control onequarter turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 19. Adjust the waveform adjustment core of Tll3 until the two peaks ate at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes - poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inade. quate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.
Remove the oscilloscope upon completion of this adjustment.
Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the TIl3 frequency core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl91A slightly clockwise. If less than 2 bars are present, adjust Cl91A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Turn the horizontal hold control to the maximum clockwise position. Adjust the Tll3 frequency core so that the diagonal bar sloping down to the right appears on the screen and then reverse the direction of adjustment so that bar just moves off the screen leaving the picture in synchronization.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from $a$ television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions. This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad.

RESPONSE CURVES.-The response curves shown on page 14 are typical though some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.

NOTES ON R-F UNIT ALIGNMENT.-Because of the frequency spectrum involved and the nature of the device, many of the $r$ - 1 unit leads and components are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the performance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in their components and physical arrangement without being troublesome. When the r-f unit is aligned in the receiver. no trouble from resonant loops should be experienced. However, if the unit is aligned in a jig separate from the receiver, attention should be paid to insure that unwanted resonances do not exist which might present a faulty representation of r-f unit alignment.
A resonant circuit exists between the $r$-f tuner chassis and the outer shield box, which couples into the antenna and r-f plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance between the tuner chassis and the front plate. This resonance is controlled in the design by using insulating washers of proper thickness in the front plate to tuner chassis mounting. The performance of the tuner will be impaired if the proper washers are not used. Obviously then, if the r-f unit is removed for service, the washers should be replaced in the correct order when the unit is replaced.

## ALIGNMENT PROCEDURE

THE DETAILED ALIGNMENT PROCEDURE BEGINNING ON PAGE 8 SHOULD BE READ BEFORE ALIGNMENT BY USE OF THE TABLE IS ATTEMPTED

| $\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$ | $\begin{gathered} \text { CONNECT } \\ \text { SIGNAL } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$ | $\begin{gathered} \text { SIGNAL } \\ \text { GEN. } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$ | $\begin{gathered} \text { CONNECT } \\ \text { SWEEP } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$ | SWEEP <br> GREN. MC. | CONNECT HETERODYNE FREQ. METER TO | $\begin{gathered} \text { HET. } \\ \text { METERR } \\ \text { FREO. } \\ \text { MC. } \end{gathered}$ | $\begin{gathered} \text { CONNECT } \\ \text { OSCILLOSCOPE } \\ \text { TO } \end{gathered}$ | MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS | ADJUST | $\underset{\text { TOER }}{\text { REFER }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANTENNA MATCHING UNIT ALIGNMENT |  |  |  |  |  |  |  |  |  |  |
| 1 | Do not adjust this unit unless fairly certain that it requires adjustment. Disconnect lead from L58 to S5. Connect output of matching unit through 1000 mmf . to pin 1 of V107. Replace cover on matehing unit. Remove V106 from socket. Connect bias box to junction of R143 and R144 and set to produce -6 volts. |  |  |  |  |  |  |  |  |  |
| 2 | Antennatorminals | 45.75 mc . $30 \% \mathrm{mod}$. | Not used | - | Not used | - | TP102. Scope gain to max. | - | L59 for min. audio on scope | Fig. 7 |
| 3 | " | 41.25 mc . $30 \% \mathrm{mod}$. | " | - | " | - | " | - | L60 for min. audio on scope | Fig. 7 |
| 4 | Antennaterminals loosely |  | Antennaterminals through pad | $\begin{aligned} & 45 \text { to } \\ & 54 \mathrm{me} . \end{aligned}$ | " | - | Scope a xtal probe to gad. | Connect 300 ohms from L58 to gnd. | L61 and L62 to obtain response of Fig. 12 | Fig. 7 <br> Fig. 11 <br> Fig. 12 |

## R-F UNIT ALIGNMENT

| 5 | If unit is completely out of adjustment, preset all adjustments to center of range with following exceptions. Set Cl8 so that head is $3 / 8^{\prime \prime}$ above chassis. Set Tl max. counterclockwise. Set C11 $1 / 4$ turn from max. clockwise. Disconnect link from Tl04 and terminate with 39 ohms. Shortr-f unit power terminal 3 to ground. Set fine tuning 30 degrees clockwise from mechanical center of its range for all oscillator adjustments. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Grid, pin 7 of V2through 1500 mmi. | $\begin{array}{r} 43.5 \mathrm{mc} . \\ 30 \% \mathrm{mod} . \end{array}$ | Not used | $-\mathrm{N}$ | Not used | - | TPl. Gain to maximum | Set r-f unit on channel 2 | L65 for min. indication on scope | $\begin{aligned} & \text { Fig. }{ }^{\text {Fig. }} \\ & \text { Fig. } 10 \end{aligned}$ |
| 7 | Not used | - | Not used | L | Loosely to $r$-f unit oscillator | 227 mc . | Not used | R.F unit on channel 8 | Cl for beat on het. freq. meter | Fig. 7 |
| 8 | Antennaterminals loosely | $\begin{gathered} 181.25 \\ \text { and } \\ 185.75 \end{gathered}$ | Antennaterminals through pad | $\underset{8}{\text { Channel }}$ | Not used | - | TP1. Gain to maximum | " | C9, Cll, Cl5 and Cl8 for response shown in Fig. 13 | $\begin{aligned} & \text { Fig. }{ }^{\text {Fig. }} \\ & \text { Fig. }^{2} \end{aligned}$ |
| 9 | Not used | - | Not used | $-\quad \frac{1}{4}$ | Loosely to r-f unit oscillator | 129 mc . | Not used | R-F unit on chan- nel 6 | L5 for beat on het. freq. meter | Fig. 8 |
| 10 | Antennaterminals loosely | $\begin{aligned} & 83.25 \\ & \text { and } \\ & 87.75 \end{aligned}$ | Antennaterminals through pad | $\underset{6}{\text { Channel }}$ | Not used | - | TPl. Gain to maximum | - ${ }^{\text {a }}$ | L48, L50 and L53 for response shown in Fig. 13 | $\begin{aligned} & \text { Fig. } \\ & \text { Fig. } 13 \end{aligned}$ |
| 11 | Not used | - | Not used | N | Not used | - | Not used | Onchannel6.Connect "VoltOhmyst' to TP1 | C8 for -3.5 volts on meter | Fig. 7 |
| 12 | Antennaterminals loosely | $\begin{aligned} & 83.25 \\ & \text { and } \\ & 87.75 \end{aligned}$ | Antennatermi- nals through pad | $\underset{6}{\text { Channel }}$ | Not used | - | TP1. Gain to maximum | R-F unit on channel 6 | Checkresponse. Readjust L48, L50 and L53 if necessary | $\begin{aligned} & \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$ |
| 13 | Not used | - | Not used | I | Loosely to r-f unit oscillator | 227 mc . | Not used | R-F unit on channel 8 | Cl for beat on het. freg. meter | Fig. 7 |
| 14 | Antennaterminals loosely | $\begin{gathered} 181.25 \\ \text { and } \\ 185.75 \end{gathered}$ | Antennatermi- nals through pad | $\begin{gathered} \text { Channel } \\ 8 \end{gathered}$ | Not used | - | TPl. Gain to maximum | - | Check response adjust C9, Cll, ClS and C18 if necessary | Fig. 7 |
| 15 | If C9 was readjusted in step 14, repeatstep 11, step 13 and step 14 untilthe conditions specified in each step are fulfilled without additional adjustments. |  |  |  |  |  |  |  |  |  |
| 16 | Not used | - | Not used | - | Loosely to r-f unit oscillator | 257 mc . | Not used | Rec. on channel 13 | L46 for beat on het. freq. meter. Overshoot L46 slightly and adjust Cl for beat. | Fig. 7 |
| 17 | Antenna terminals loosely | $\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$ | Antennaterminals through pad | $\underset{13}{\text { Channel }}$ | Not used | - | TP1. Gain to maximum | Rec. on channel 13 <br> "VoltOhmyst" on TPI | Check to see that response is correct and -3.0 volts of osc. injection is present | Fig. 13 |
| 18 | - | $\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$ | - | Channel 12 | Not used | - | '' | Rec. on channel 12 | ' | Fig. 13 |
| 19 | ' | $\begin{aligned} & 199.25 \\ & 203.75 \end{aligned}$ | $\cdots$ | Channel 11 | - | - | - | Rec. on channel 11 | $\cdots$ | Fig. 13 |
| 20 | ' | $\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$ | $\cdots$ | $\begin{array}{\|c} \text { Channel } \\ 10 \end{array}$ | - | - | " | Rec. on channel 10 | "' | Fig. 13 |
| 21 | $\cdots$ | $\begin{array}{r} 187.25 \\ 191.75 \\ \hline \end{array}$ | " | $\begin{gathered} \text { Channel } \\ 9 \end{gathered}$ | - $\quad$ - | - | ' | Rec. on channel 9 | - | Fig. 13 |
| 22 | " | $\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$ | . ${ }^{\text {- }}$ | $\begin{array}{\|c\|} \hline \text { Channel } \\ 8 \end{array}$ | " | - | " | Rec. on channel 8 | " | Fig. 13 |
| 23 | ' | $\begin{aligned} & 175.25 \\ & 179.75 \end{aligned}$ | ' | Channel 7 | + | - | " | Rec. on channel 7 | $\cdots$ | Fig. 13 |
| 24 | If the response of any channel (steps 17 through 23 ) is below $80 \%$ at either marker, adjust C9, C11, Cl5 and C18 as necessary to pull response up on the low channel yet maintain correct response on channel 8. |  |  |  |  |  |  |  |  |  |
| 25 | Repeat step 13. If the oscillator is off frequency overshoot the adjustment of Cl and correct by adjusting L46. |  |  |  |  |  |  |  |  |  |
| 26 | Repeat steps 16 through 25 until all adjustments are obtained. |  |  |  |  |  |  |  |  |  |
| 27 | Not used | - | Not used | - - | Loosely to r-f unit oscillator | 129 mc . | Not used | Rec. on channel 6 | L5 for beat on het. freq. meter | Fig. 7 |
| 28 | Antennaterminals loosely | 83.25 87.75 | Antennaterminals through pad | $\underset{6}{\text { Channel }}$ | 1 Not used | - | TP1. Gain to maximum | Rec. on channel 6 <br> "VoltOhmyst" on TP1 | Check to see that response is correct and -3.0 volts of osc. injection is present | $\begin{aligned} & \hline \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$ |
| 29 | " | $\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$ | $\cdots$ | $\underset{5}{\text { Channel }}$ | 1 " | - | " | Rec. on channel 5 | " | Fig. 13 |
| 30 | " | $\begin{aligned} & 67.25 \\ & 71.75 \end{aligned}$ | " | $\underset{4}{\text { Channel }}$ | 1 '" | - | $\cdots$ | Rec. on channel 4 | '' | Fig. 13 |
| 31 | " | $\begin{aligned} & 61.25 \\ & 65.75 \end{aligned}$ | " | $\underset{3}{\text { Channel }}$ |  | - | - | Rec. on channel 3 | - | Fig. 13 |

ALIGNMENT PROCEDURE
17T250DE. 17T261DE


RATIO DETECTOR. SOUND I-F AND SOUND TAKE-OFF ALIGNMENT

| 48 |  |  | Not usod | - | Not used | - | Across spacker doice cont. for max. vol yrne. | "VoltOhmyst" to and R114. Set C226 for min. capacity. Sot signal on meter. |  | ${ }_{\text {Fig. }}^{\text {Fig. }} 10$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49 |  | . ${ }^{\text {e }}$ | " | - | " | - | " |  |  | Fig. 9 |
| 50 | Sig, Gon. to lst | 4.5 me. |  | 4.5 mc . | , | - | In series with 10,000 ohms to terminal $\mathbf{A}$, of TIOI | Sweep output re$2 \mathrm{vp-p}$ on scope. | $\begin{aligned} & \text { T101 top and bot. } \\ & \text { cores for max. gain } \\ & \text { and symmetry at } \\ & 4.5 \text { me. } \end{aligned}$ | Fig. 9 Fig. 14 Fig. |
| ${ }^{51}$ | " | " | , | " | " | - | Junction of R112 and Cl13 | Check for symmetr form (positive and | ical response wave negative). | Fig. 15 |
| 52 |  | " | Not used | - | " | - |  | is used short pin vilog to ground. | Adjust Tllofor minimum reading on VoltOhmyst | Fig. 9 |


| 53 | Not used | ${ }^{-}$ | Not used | - | Not used | - | Not used | Connect bias box to R144 and to gnd. 'VoltOhmyst | $\begin{aligned} & \text { junction of R143and } \\ & \text { fdjust to give }-1.0 \mathrm{v} \\ & \text { at TP101. } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 54 |  | 39.25 mc . | " | -- |  | - |  |  | $\begin{aligned} & \text { Tive top core to } \\ & \begin{array}{l} \text { give min. core } \\ \text { motor. } \end{array} \\ & \text { doc on } \end{aligned}$ | Fig |
| 55 | " | 41.25 mc . | " | - | " | - | $\cdots$ | - | Tl05 bot, for min. | Fig. 10 |
| 56 | " | 47.25 mc . | . | - | " | - | " | " | T106 bot. for min. | Fig. 10 |
| ${ }^{57}$ | " | 43.7 mc . |  | - | " | - | " | $\begin{aligned} & \text { Sig. Gen. outputto } \\ & \text { give } 1.0 \mathrm{~V} \text { d-c at } \\ & \text { TP102. } \end{aligned}$ | T109 for max. | Fig. 7 |
| 58 | " | 45.5 mc . | " | - | " | - | . | " | T108 for max. | Fig. 9 |
| 59 | - | 41.8 mc . | " | - | " | - | " | " | T107 for max. | Fig. 9 |
| 60 | First pixi-fgrid (pin I, Vl06) Min ly: Loosaly: | $\begin{aligned} & \text { Various } \\ & \text { Sig.ous }^{\text {ig }} \end{aligned}$ |  | $\begin{array}{\|c} \hline 40 \mathrm{oto} \\ 48 \mathrm{mc} . \end{array}$ | ' | - | $\mathrm{TPO}_{\text {T } 102 \mathrm{tat}}{ }^{\text {point }}$ |  |  | ${ }_{\text {Fig. }}^{\text {Fig. }} 16$ |
| 61 | Connected loonaly to diode probe. | $\begin{aligned} & \text { Various } \\ & \text { Vige } \end{aligned}$ | Mixar grid test point TP2 with short load. | $\begin{gathered} 40 \text { to } \\ 48 \end{gathered}$ | " | - | Scopo diode and to gnd. |  | Sot C221 to min Tio4 bot. for max ${ }_{\mathrm{gain}} \mathrm{at}{ }_{43.5} \mathrm{max}$ and $70 \%$ Adjust C 221 ${ }_{80 \%}$ | ${ }_{\text {Fig. }}^{\text {Fig. }} 17$ |
| 62 |  | $\begin{gathered} \text { Various } \\ \text { Fig. } \\ \text { Fige } 18 \end{gathered}$ | " | " | " | - | Connoct scops to TP102. |  | Retouch Tl08 and Tlog to obtain re sponse shown in Fig. 18. Do not adjust Tl07 unless sary. | Fig. |



Figure 7-R.F Unit Adjustments


Figure 8-R-F Oscillator Adjustments


Figure 9-Top Chassis Adjustments


Figure 10-Bottom Chassis Adjustments




Figure 12-Antenna Matching Unit Response


Figure 19-Horizontal Oscillator Waveforms


Figure 20-Normal Picture
Figure 21-Focus Magnet and
Ion Trap Magnet Misadjusted


Figure $22-$ Horizontal Linearity
Coutrol Misad insted Control Misad justed (Pictur
Cramped in Middle)

## Figure 23-Width Control

$\xrightarrow{\stackrel{2}{4 n d i u s t e}}$


Figure 26-Test Pattern Showing Out of Sync Condition When hen
Horizontal Hold Control Is in a Counter-clockwise Position--
Just Before Pulling Into Sync $\stackrel{\text { Puling }}{\longleftrightarrow}$
Figure $27-T$ est Pattern Show-
ing Out of Sync Condition When ing Out of Sync Condition When hen
Horizontal Hold Control Is at Horizontal Hold Control Is at
the Maximum Clockwise Posi$\xrightarrow{\text { tion }}$

liowing is a list of symptoms of possible failures and an indication of some of the possible faults

NO RASTER ON KINESCOPE

1) Incorrect adjustment of ion trap magnet. Magnet reversed either front to back or top to bottom.
(2) V116 or V117 inoperative. Check waveforms on grids and plates.
(3) No high voltage-if horizontal deflection is operating as evidenced by the correct waveform on terminal 1 of high voltage transformer, the trouble can be isolated to the he IB3GT tube is defective or its filcment circuit is open.
(4) V110 circuit inoperative-Refer to schematic and wave form chart.
(5) Damper tube (V119) inoperative.
(6) Defective kinescope
(7) R216 open
(8) No receiver plate voltage-filter capacitor shorted-or filter choke open.
no VERTICAL DEFLECTION:
(1) V114B or V115 inoperative. Check voltage and waveforms on grids and plates.
(2) T111 open.
(3) Vertical deflection coils open

## small raster

(1) Low Plus B or low line voltage.
(2) V117 defective.

## poor vertical linearity

(1) If adjustments cannot correct, change V115
(2) Vertical output transformer T 111 defective.
(3) V114B defective-check voltage and waveforms on grid and plate
(4) $\mathrm{C} 176, \mathrm{C} 180, \mathrm{C} 181, \mathrm{C} 178, \mathrm{C} 177$ or C 182 defective
(5) Low plate voltage-check rectifiers and capacitors in sup. ply circuits.
(6) If height is insufficient, try changing V114.

POOR HORIZONTAL LINEARITY
(1) If adjustments do not correct, change V117, or V119.
(2) T114 or L107 defective
(3) C205 or C206 defective

WRINKLES ON SIDE OF RASTER:
(1) C208 defective.
(2) Defective yoke.
picture out of sync horizontally
(1) T113 incorrectly tuned
(2) R226, R227 or R197B defective

TRAPEZOIDAL OR NON SYMMETRICAL RASTER:
(1) Improper adjustment of centering of focus magnet or ion trap magnet.
(2) Defective yoke.
raster and signal on kinescope but no sound:
(1) T110 defective.
(2) Sound i.f, ratio detector or audio amplifier inoperative-
(2) Sound i-1, ratio detector or audio ampinitier inope
check V101, V102, V103 and their socket voltages.
(3) Audio system defective
(4) Speaker defective.

SIGNAL AT KINESCOPE GRID but No SYnc:

1) AGC control R181 misadjusted.
(2) V111 inoperative. Check voltage and waveforms at its grid and plate
signal on kinescope grid but no vertical sync
(1) Check V114B and associated circuit.
(2) Integrating network inoperative-Check.
(3) V113 or V114A defective or associated circuit defective.
(4) Cas current, grid emission or grid cathode leakage in V114. Replace.
SIGNAL ON KINESCOPE GRID but NO horizontal sync (1) T113 misadjusted-readjust as instructed on page 11. (2) V112 or V113 inoperative-check socket voltages and waveforms.
2) T 113 defective.
(4) C163, C191A, C190, C194, C195, C197, C196, C198 or C199 defecive.
(5) If horizontal speed is completely off and cannot be adjusted check R226, R227, R197B, R228, R229, R230 and R232.

SOUND AND RASTER BUT NO PICTURE OR SYNC:
(1) Picture, detector or video amplifier defective-check CR101 and V110--check socket voltages.
(2) Bad contact to kinescope cathode.
picture stable but poor resolution
(1) CR101 or V110 defective.
(2) Peaking coils defective-check resistance
proper focus.
(4) R-F and I.F circuits miscligned.
picture smear:
(1) R-F or I-F circuits miscligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on another station.

## PICTURE IITTER:

(1) AGC control R181 misadjusted.
(2) If regular sections at the left picture are displaced change v117
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable transmitted sync.

RASTER BUT NO SOUND, PICTURE OR SYNC:
(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-I unit inoperative-check V1, V2.

DARK VERTICAL LINE ON LEFT OF PICTURE:
(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V117.

LIGHT VERTICAL LINE ON LEFT OF PICTURE:
(1) V119 defective.

PICTURE I-F RESPONSE.-At times it may be desirable to observe the individual i-f stage response. This can be achieved by the following method:

For T107. Tl08 or Tl09, shunt all i-f transformers with a 330 ohm carbon resistor except the one whose response is to be observed.
Connect a wide band sweep generator to the second pix i-f grid and adjust it to sweep from 38 mc . to 48 mc .

Connect the oscilloscope to test point TP102 and observe the overall response. The response obtained will be essentially that of the unshunted stage.
To see the response of transformers Tl, T104 and T105, T106, follow the instructions given on page 10 .

Figures 28 through 36 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected. Relative stage gain is not shown.


Figure 28-Overall Pix I-F Response


Figure 31-Response of T107 Pix I-F Transformer


Figure 34-Video Response at Average Contrast

RESPONSE PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope


Figure 29-Response of T1.T104 Pix I-F Transformers


Figure 32-Response of T108 Pix I-F Coil


Figure 35-Video Response ( 100 KC Square Wave)


Figure 30-Response of T105-T106 Pix I-F Transformer


Figure 33-Response of T109 Pix I-F Coil


Figure 36-Video Response ( 60 Cycle Square Wave)

17T250DE, 17T261DE


## WAVEFORM PHOTOGRAPHS

Taken from RCA WO58A Oscilloscope

Grid of Video Amplifier (Pin 2 of V110) (6CL6) (Pin 4 of V110) (6AG7)
Figure 37-V ertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (6 Volts PP) ↔世
Figure 38-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep Rate) (6 Volts PP)
$\rightarrow$

Plate of Video Amplifier (Pin 6 of V110) (6CL6) (Pin 8 of V110) (6AG7)
$V$ oltage depends on picture
Figure 39-Vertical (105 Volts PP) $\leftrightarrow \ll$

Figure 40-Horizontal (105 Volts PP) $\rightarrow$

Grid of Sync Separator (Pin 4 of V113) (6SN7)
Voltage depends on picture
Figure 41-Vertical (30 Volts PP)

Figure 42-Horizontal (30 Volts PP) $\rightarrow$

Plate of Sync Separator (Pin 5 of V113) (6SN7)
Voltage depends on picture
Figure 43-Vertical (33 Volts PP)
4
Figure 44-Horizontal (8 Volts' PP)
$\rightarrow$

Grid of Vertical Sync Amp. (Pin 4 of V114A) (6SN7)
Figure 45-Vertical (12 Volts PP)
$\leftrightarrow \nleftarrow$
Figure 46-Horizontal (5 Volts PP)
$\rightarrow$



Plate of Vertical Sync Amp. (Pin 5 of V114A) ( $6 S N 7$ )

Figure 47-Vertical (27 Volts PP) $\leftarrow \leftarrow$

Figure 48-Horizontal (16 Volts PP) $\rightarrow$


Figure 49-Grid of Vertical Sweep Osc. (Pin 1 of Vll4B) (6SN7)
(25 Volts PP)


Figure 50-Plate of Vertical Sweep Osc. (Pin 2 of V114B) (30 Volts PP)
$\rightarrow$


Figure 51-Grid of Vertical Sweep Output (Pin 1 of V115) (6AQ5) (35 Volts PP)
$\longleftarrow 4$

Figure 52-Plate of Vertical Sweep Output (Pin 5 of V115) (6AQ5) ( 800 Volts PP)
$\rightarrow$


Cathode of Sync Separator (Pin 3 of V113) (6SN7)

Figure 53-Vertical (11 Volts PP)
$\leftarrow \leftarrow$
Figure 54-Horizontal (6 Volts PP) $\rightarrow$


Grid of Sync Separator
(Pin 1 of V113) (6SN7)
Figure 55—Vertical (40 Volts PP)
$\leftrightarrow 4$
Figure 56-Horizontal (40 Volts PP) $\rightarrow$


17T250DE, 17T261DE


Cathode of Hor Sync Amp (Pin 3 of V112) ( 6 SN7)
Figure 65-Vertical (18 Volts PP)
$\longleftarrow$
Figure 66-Horizontal (18 Volts PP) $\rightarrow$



Figure 71-Terminal "C" of T114 (120 Volts PP)

$$
\leftarrow 4
$$

Figure $72-G r i d$ of Horizontal Out. put Tube (95 Volts PP) (Pin 5 of V117) (6BQ6)
$\rightarrow$


Figure 73-Plate of Horizontal Output
(Approx. 4000 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V117 to Ground) $\leftarrow+$

Figure 74-Cathode of Damper (2300 Volts PP) (Pin 3 of VII9) (6W 4GT) $\rightarrow$

Figure 75-Plate of Damper (180 Volts PP) (Pin 5 of V119) ( $6 W 4 G T$ )
$\longleftarrow+$
Figure 76-_Plate of AGC Amplifier (Pin 5 of VIII) (6CB6) ( 600 Volts PP)
$\rightarrow$


The following measurements represent two sets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c.

| Tube No. | Tube TYpe | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Pin No: | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | Pin No. | Volts |  |
| V1 | 6X8 | Mixer | 5000 Mu . V. Signal | 9 | - | 8 | - | 6 | 0 | 7 | - |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 9 | $\begin{gathered} 145 \text { to } \\ 150 \\ \hline \end{gathered}$ | 8 | $\begin{array}{\|c} 145 \text { to } \\ 150 \\ \hline \end{array}$ | 6 | 0 | 7 | $\begin{gathered} -2.8 \text { to } \\ -3.5 \\ \hline \end{gathered}$ | Depending on channel |
| V1 | 6X8 | R-F Oscillator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 3 | - | - | - | 6 | 0 | 2 | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 3 | $\begin{gathered} 88 \text { to } \\ 108 \\ \hline \end{gathered}$ | - | - | 6 | 0 | 2 | $\begin{array}{\|c\|} \hline-3.0 \text { to } \\ -5.1 \\ \hline \end{array}$ | Depending on channel |
| V2 | 6BQ7 | R-F Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 6 | - | - | - | 8 | - | 7 | - |  |
|  |  |  | No Signal | 6 | $\begin{array}{\|c\|} \hline 133 \text { to } \\ 138 \\ \hline \end{array}$ | - | - | 8 | 1.1 | 7 | - | Depending on channel |
| V2 | 6BQ7 | R-F <br> Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 1 | - | - | - | 3 | - | 2 | - |  |
|  |  |  | No Signal | 1 | 260 | - | - | 3 | $\begin{gathered} 133 \text { to } \\ 138 \end{gathered}$ | 2 | - | Depending on channel |
| V101 | 6AU6 | $\begin{aligned} & \text { 1st Sound } \\ & \text { I-F Amp. } \end{aligned}$ | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 140 | 6 | 152 | 7 | 0.3 | 1 | -3.8 |  |
|  |  |  | No Signal | 5 | 112 | 6 | 122 | 7 | 0.8 | 1 | -0.2 |  |
| V102 | 6AU6 | 2d Sound I-F Amp. | $\begin{gathered} 5000 \mathrm{Mu} \mathrm{~V} . \\ \text { Signal } \end{gathered}$ | 5 | 258 | 6 | 58 | 7 | 0.19 | 1 | -21 |  |
|  |  |  | No Signal | 5 | 255 | 6 | 55 | 7 | 0.22 | 1 | *-2.5 | *Unreliable measuring point. Voltage depends on noise. |
| V103 | 6AL5 | Ratio Detector | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 7 | 0.4 | - | - | 1 | 16.8 | - | - | 7.5 kc deviation at 400 cycles |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 7 | 0.5 | - | - | 1 | *9.35 | - | - | *Unreliable measuring point. <br> Voltage depends on noise. |
| V104 | 6AV6 | lst Audio Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 7 | 95 | - | - | 2 | 0 | 1 | -0.6 | At min. volume |
|  |  |  | $\begin{gathered} \text { N } \circ \\ \text { Signal } \end{gathered}$ | 7 | 95 | - | - | 2 | 0 | 1 | -0.6 | At min. volume |
| V105 | 6AQ5 | Audio Output | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 5 | 263 | 6 | 273 | 2 | 18.2 | 7 | 0 | At min. volume |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 262 | 6 | 272 | 2 | 18.2 | 7 | 0 | At min. volume |
| V106 | 6AU6 | 1st Pix. I-F Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 5 | 242 | 6 | 279 | 7 | 0.06 | 1 | -7.6 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 140 | 6 | 135 | 7 | 1.03 | 1 | *0 | *Unreliable measuring point. Make measurement at Tl04-D. |
| V107 | 6CB6 | 2nd Pix. I-F <br> Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 5 | 240 | 6 | 267 | 2 | 0.2 | 1 | -7.6 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 5 | 131 | 6 | 110 | 2 | 0.9 | 1 | 0 |  |
| V108 | 6CB6 | 3d Pix. I-F Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 127 | 6 | 112 | 2 | 0.92 | 1 | 0 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 121 | 6 | 110 | 2 | 0.96 | 1 | 0 |  |
| V109 | 6CB6 | 4th Pix. I-F Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 194 | 6 | 159 | 2 | 2.4 | 1 | 0 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 198 | 6 | 150 | 2 | 2.2 | 1 | 0 |  |
| V110 | $\begin{array}{\|r\|} \hline \text { 6CL6 } \\ \hline 6 \text { AG7 } \\ \hline \end{array}$ | Video Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 6 | 128 | 8 | 192 | 1 | 1.12 | 2 | -3.5 | *See Figure 79 for socket connections |
|  |  |  | No Signal | 6 | 72 | 8 | 142 | 1 | 1.48 | 2 | $\dagger-0.9$ | $\dagger$ Depends on noise |
| V111 | 6CB6 | AGC <br> Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .} \mathrm{V}$. | 5 | -51 | 6 | 278 | 2 | 116 | 1 | 108 | AGC control set for normal operation |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 0.9 | 6 | 282 | 2 | 100 | 1 | 54 | AGC control set for normal operation |

The following measurements represent two sets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c.

| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts |  |
| V112 | 6SN7GT | Hor. Sync. Amplifier | $\begin{array}{\|c} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$ | 2 | 162 | - | - | 3 | 1.4 | 1 | -40 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 2 | 152 | - | - | 3 | 0.52 | 1 | *-24 | *Unreliable measurement point. Voltage depends on noise. |
|  |  |  | $\begin{array}{\|c} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{array}$ | 5 | 84 | - | - | 6 | 0 | 4 | -1.38 |  |
|  |  |  | No Signal | 5 | 98 | - | - | 6 | 0 | 4 | ${ }^{*} 1.08$ | *Voltage depends on noise. |
| V113 | 6SN7GT | Hor. Sync. Separator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | 290 | - | - | 3 | 95 | 1 | 50 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 2 | 285 | - | - | 3 | *56 | 1 | *38 | *Unreliable measurement points. Voltage depends on noise. |
| V113 | 6SN7GT | Vert. Sync. Separator | $\begin{gathered} 5000 \mathrm{Mu} \text { V. } \\ \text { Signal } \end{gathered}$ | 5 | 115 | - | - | 6 | 0 | 4 | -58 |  |
|  |  |  | No Signal | 5 | 59 | - | - | 6 | 0 | 4 | -11 |  |
| V114A | 6SN7GT | Vert. Sync. Amplifier | $\underset{\substack{5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal }}}{ }$ | 5 | 45 | - | - | 6 | 0 | 4 | 0.03 |  |
|  |  |  | No Signal | 5 | 43 | - | - | 6 | 0 | 4 | 0 |  |
| V114B | 6SN7GT | Vertical Oscillator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | *72 | - | - | 3 | 0 | 1 | *-15.3 | *Depends on setting of Vert. hold control. Voltages shown are synced pix adjustment. |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 2 | *70 | - | - | 3 | 0 | 1 | *-15 |  |
| V115 | 6AQ5 | Vertical Output | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 270 | 6 | 290 | 2 | 27 | 1 | 0 |  |
|  |  |  | No Signal | 5 | 267 | 6 | 285 | 2 | 26 | 1 | 0 |  |
| V116 | 6SN7GT | Horizontal Osc. Control | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | 237 | - | - | 3 | -10 | 1 | -28.5 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 2 | 228 | - | - | 3 | -18 | 1 | -29.5 |  |
|  |  |  | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | 104 | - | - | 3 | -36.3 | 1 | -44 | Hor. hold counter-clockwise |
|  |  |  | $\begin{gathered} 5000 \mathrm{Mu} . \overline{\mathrm{V}} . \\ \text { Signal } \\ \hline \end{gathered}$ | 2 | 246 | - | - | 3 | -11.5 | 1 | -26 | Hor. hold clockwise |
| V116 | 6SN7GT | Horizontal Oscillator | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 5 | 200 | - | - | 6 | 0 | 4 | -75 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 197 | - | - | 6 | 0 | 4 | -78 |  |
|  |  |  | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 193 | - | - | 6 | 0 | 4 | -93 | Hor. hold counter-clockwise |
|  |  |  | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 198 | - | - | 6 | 0 | 4 | -74 | Hor. hold clockwise |
| V117 | 6BQ6GT | Horizontal Output | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | Cap | * | 4 | 190 | 8 | 19.2 | 5 | -16 | *High Voltage Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | Cap | * | 4 | 190 | 8 | 19.2 | 5 | -15.3 |  |
| V118 | $\begin{array}{\|l\|} \hline \text { 1B3GT } \\ \text { /8016 } \\ \hline \end{array}$ | H. V. Rectifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | Cap | * | - | - | 2 \& 7 | 15,150 | - | - | *High Voltage Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \\ \hline \end{gathered}$ | Cap | * | - | - | $2 \& 7$ | 15,300 | - | - |  |
| V119 | 6W4GT | Damper | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 287 | - | - | 3 | . | - | - | *High Voltage Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 280 | - | -- | 3 | * | - | - |  |
| V120 | 17QP4 | Kinescope | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | Cone | 15,150 | 10 | 568 | 11 | 178 | 2 | 117 | At average Brightness |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | Cone | 15,300 | 10 | 560 | 11 | 151 | 2 | 101 |  |



Figure 77—R.F Unit Wiring Diagram

## CRITICAL LEAD DRESS

1. Keep all wiring in the pix i-f, sound i-f and video circuits as short as possible.
2. Keep the leads on Cl10, Cl11, C112, R108, R139, R150, R111, R109, R110 and R233 as short and direct as possible.
3. Do not change the bus wire connection to pin 2 of V101 and V102. Sleeving is used on these wires to insure length and to prevent shorting.
4. Dress Cll5 down between R114 (volume control) and wafer Sl01-B.
5. Ground R126 to pin 3 of V106 and R134 to pin 7 of V107.
6. Do not change the grounding of R136, R140 and R143.
7. Keep the bus wire from T109-A to C144 (plug in capacitor) short and direct.
8. Ground the filaments of sockeis V107, V108 and V109 independently of the socket center pin. Use ground lances proved near each socket.
9. Dress C148 straight up to act as a shield between T101-A and V110-2.
10. Dress C155 and R160 (kine cathode) up in the air above the terminal board.
11. Keep the leads connected to T113-C and Tll3-D (synchoguide) down so that they will not short out when the chassis is placed in the cabinet.
12. Do not reroute any wires between T104 and the terminal board alongside it. Keep all leads on the foot side of the terminal board.
13. Dress all wires routed past T104, shielded wires W102 and W103 under the big lances near T104.
14. Dress all a-c leads to S102 under the large lances on the front apron.
15. Dress R113 close to the chassis with leads as short as possible.
16. Dress C158 and C122 up in the air and away from all other leads and components.
17. The lead from pin 5 of V1ll to the terminal board under the high voltage cage should be routed between V117 socket and the rear apron.
18. Dress all 2 watt resistors away from each other and all other wires and components.
19. Dress all wires away from damper tube V119.
20. The wire from pin 5 V1l6 to Tll3-A should not be more than 5 inches long.
21. Dress all peaking coils up and away from the base.
22. Dress all leads in the high voltage compartment away from each other and away from the high voltage trans. former.

| $\begin{aligned} & \text { stock } \\ & \text { stor } \end{aligned}$ | description | $\underset{\substack{\text { stock } \\ \text { No. }}}{ }$ | description |
| :---: | :---: | :---: | :---: |
| 76442 | Resistor-Wire wound, 6750 ohms, 10 watts (R156) Reslstor-Flxed, composition: | 503482 503510 | 820,000 ohms, $\pm 10 \%, 1 / 2$ watt (R188, R200, R222, R231) 1 megohm, $\pm 10 \%, 1 / 2$ watt (R177) |
| 503047 | 47 ohms, $\pm 10 \%, 1 / 2 \mathrm{watt}$ (R108, R154, R233) | 11769 | 1.8 megohm, $\pm 5 \%, 1 / 2$ watt (R161) |
| 502056 | 56 ohms, $\pm 5 \%, 1 / 2 \mathrm{watt}$ (R134) | 39063 | 1.8 megohm, $\pm 5 \%$, 1 watt (R229) |
| 34763 | $68 \mathrm{ohms}, \pm 5 \%, 1 / 2 \mathrm{watt}($ R140 $)$ | 503522 | 2.2 megohm, $\pm 10 \%$, $1 / 2$ watt (R189, R204, R207) |
| 502082 | 82 ohms , $\pm 5 \%, 1 / 2$ watl (R101) | 503539 | $3.9 \mathrm{megohm}, \pm 10 \%, 1 / 2 \mathrm{watl}($ R174 $)$ |
| 502110 | $100 \mathrm{ohms}, \pm 5 \%$ \% $1 / 2$ watt (R126) | 503582 | 8.2 megohm, $\pm 10 \%$, $1 / 2$ watt (R163) |
| 503110 | 100 ohms . $\pm 10 \%$, $1 / 2$ watt (R122, R129) | 503610 | $10 \mathrm{megohm}, \pm 10 \%, 1 / 2 \mathrm{watt}$ (R113) |
| 503118 | $180 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R144) | 71456 | Screw-No. $8.32 \times 7 / 16^{\prime \prime}$ wing screw for mounting deflection yoke |
| 503 | $220 \mathrm{ohms}, \pm 10 \%$, $2_{2}$ watt (R153) | 76455 | flection yoke <br> Shaft-Connecting shaft (nylon) for picture and bright. |
| 503133 503147 | $330 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R213) | 76455 | Shaft-Connecting shaft (nylon) for picture and bright- ness controls <br> ness controls |
| 503147 513147 |  | 73584 | Shield-Tube shield for V101, V102, V103, V106, V107, |
| 50316 | 680 ohms, $\pm 10 \%, 1 / 2$ watt (R157) | 75718 | Socket-Channel indicator lamp socket |
| 5022 | 1000 ohms, $\pm 5 \%, 1 / 2$ watt (R150) | 74834 | Socket-Kinescopa socke: |
| 503210 | 1000 ohms, $\pm 10 \%, 1 / 2$ watt (R107, R121, R125, R131, R133, R137, R142, R145, R175) | 75222 | Socket-Tube socket, octal, ceramic, plate mounted for V116 |
| 503212 | 1200 ohms, $\pm 10 \% .1 / 2$ watt (R178) | 31251 | Socket-Tube socket, octal, wafer, for vit |
| 503222 | 2200 ohms, $\pm 10 \%$, $1 / 2$ watt (R159) |  | v117 |
| 523222 | 2200 ohms, $\pm 10 \%$, 2 watts (1164) | 50367 | Socket-Tube socket, 6 pin, moulded, saddle-mounted ocket-Tub for V119 |
| ${ }_{5}^{503233}$ | 3300 ohms, $\pm 10 \%$, $1 / 2$ watt (R218) | 71508 | Socket-Tube socket, 6 pin, moulded for V118 |
| 513233 50239 | 3300 ohms, $\pm 10 \%$, 1 watt (R102) <br> 3900 ohms, $\pm 5 \%$, $1 / 2$ watt (R151) | 73117 | Socket-Tube socket, 7 pin, wafer, minicture, for V101, V102, V103, V104, V105, V106, V107, V108, V109, V111 |
| 503239 | 3900 ohms, $\pm 10 \%$, $1 / 2$ watt (R225) | 7311 | Socket-Tube socket, 7 pin, moulded, miniature, plate. |
| 51324 | 4700 ohms, $\pm 10 \%$. 1 watt (R155) |  | mounted for vills |
| 502256 | 5600 ohms, $\pm 5 \%$, $1 / 2$ watt (R136) | 76453 | Socket-Tube socket, octal, moulded, saddle-mounted for V110 (6AG7) for KCS47M1 |
| ${ }^{503256}$ | 5660 ohms, $\pm 10 \%, 1 / 2$ watt ( 1172 ) | 76971 | Socket-Tube socket, 9 pin, wafer, minicture, for V110 |
| 14659 | 6800 ohms, $\pm 5 \%$, $1 / 2 \mathrm{watt}($ R109, R110) |  | (6CL6) for KC574 |
| 513268 503828 | 8800 ohms $\pm 10 \%, 1$ watt (R147) | 76636 | Stud-Adjusting stud complete with guard for focus magnet |
| 503382 503310 | 8200 ohms, $\pm 10 \%$, $1 / 2$ watt (R210) $10,000 \mathrm{ohms}, 10 \%, 1 / 2$ watt (R115, R205) | 76428 | ${ }_{\text {Support-Bakelite support only-part of hivoltage shield }}^{\text {mat }}$ |
| 513310 | lo,000 ohms, $\pm 10 \%, 1 / 2$ watt (RITS, R205) $10,000 \mathrm{ohms}$, $\pm 10 \%, 1$ watt (R141) | 77215 | Switch-Tone control and phono switch (S101) |
| 5233 | 10,000 ohms, $\pm 10 \%, 2$ watts (R236) | 76463 | Terminal-Screw type grounding terminal |
| 503312 | $12,000 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R171, R173) | 77198 | Transformer-First pix i.f grid transtormer completo with adjustable cores (T104, C125, R124) |
| 513312 | 12,000 ohms, $\pm 10 \% .1$ watt (R176) | 77197 | Transformer-First pix i.f plate transformer complete |
| 503315 | 15,000 ohms, $\pm 10 \%, 1 / 2$ watt (R219) |  | with adjustable cores (T105, C132, C133, R130) |
| 503318 513322 | $18,000 \mathrm{ohms}, \pm 10 \% 1 / 2 / 2$ watt (R105, R184, R190, R228) | 76435 | Transformer-Second pix i-f grid transformer completo with adjustable core (T106, C134) |
| 503333 | $22,000 \mathrm{ohms}, \pm 10 \%, 1$ watt (R227) 33,000 ohms, $\pm 10 \%, 1 / 2$ watt (R132, ${ }^{\text {a }}$ (183, R192) | 76433 |  |
| 503339 | 33,000 ohms, $\pm 10 \%, 1 / 2$ watt (R132, R183, R192) 39,000 ohms, $\pm 10 \%, 1 / 2$ watt (R111) |  |  |
| 513339 | 39,000 ohms, $\pm 10 \%$, 1 watt (R180) | 76436 | Transformer-Fifth pix i.f transformer (T109, C143, C146, L102, R146, CR101) |
| 512343 | 43,000 ohms, $\pm 5 \%$, 1 watt (R209) | 76795 | Transformer-Hi-voltage transtormer (T114) |
| $\begin{gathered} 30787 \\ 503347 \end{gathered}$ | 47,000 ohms, $\pm 5 \%, 1 / 2$ watt (R193) <br> 47,000 ohms, $\pm 10 \%, 1 / 2$ watt (R103, R169) | 76440 | Transformer-Horizontal oscillator transformer complete with adjustable cores (T113) |
| 513347 | $47,000 \mathrm{ohms}$, $\pm 10 \%, 1$ watt (R127, R135, R191, R232) | 76997 | Transformer-Output transformer (T103) |
| 502356 | $56,000 \mathrm{ohms}$. $\pm 5 \% .1 / 2$ watt (R143) | 76429 | Transformer-Power transformer, 117 volt, 60 cycle (T112) |
| 523356 | 55,000 ohms, $\pm 10 \%, 2$ walts (R106) |  |  |
| 503368 | 68,000 ohms, $\pm 10 \%, 1 / 2$ watt (R195, R201, R202) | 76438 | Transformer-Sound i-f transformer complete with ad. ustable cores (T101, C103, C104) |
| ${ }_{513368}$ | $68.000 \mathrm{ohms}, \pm 10 \%$, 1 watt (R226) | 76437 |  |
| 513382 | ${ }^{82,000}$ ohms, $\pm 10 \%, 1$ watt (R224) |  | adiustable cores (T110, C147) |
| 503410 512410 | 100,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R203, R217) 10,000 ohms $\pm 5 \%, 1$ watt (R230) | 76439 | Transtormer-Ratio detector transformer complete with adjustable cores (T102, C108, C109) |
| 研 | 120,000 ohms, $\pm 5 \%$, $1 / 2$ watt (R206) | 76431 | Transformer-Verical output transformer (T111) |
| 50341 | 150,000 ohms, $\pm 10 \%, 1 / 2$ watt (R160, R179, R $215, \mathrm{R} 220$ ) | 77225 | Trap-4.5 MC trap (L105, C149) |
| 3046 | 200,000 ohms, $\pm 5 \%$ \% $1 / 2$ watt (R194) | 76616 |  |
| 503422 | 220,000 ohms, $\pm 10 \%, 1 / 2$ watt (R214) |  | R240, R241) |
| 502427 | $270,000 \mathrm{ohms}, \pm 5 \%, 1 / 2$ watt (R162) |  | SPEAKER ASSEmbiles |
| 503427 | $270,000 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R185) |  | ${ }^{971490-3 W}$ |
| ${ }^{503433}$ | 330,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R116, R221) |  | RL-105E6 RMA-27 |
| 512433 | 330,000 ohms, $\pm 5 \%, 1$ watt (R223) |  |  |
| 503439 | 390,000 ohms, $\pm 10 \%$, 1/2 watl (R196) | 75024 | Cone-Cone and voice coil (3.2 ohms) |
| 503447 503456 | 470,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R117, R148, R168, R234) | S22 | Speaker-8 ${ }^{\prime \prime}$ P.M. speaker complete with cone and voice |
| 50345 | 560,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R198) |  |  |


| $\underset{\substack{\text { stoct } \\ \text { No. }}}{\text { nto }}$ | description | ${ }_{\substack{\text { stocr } \\ \text { No. }}}^{\text {coser }}$ | description |
| :---: | :---: | :---: | :---: |
| 76389 | SPEAKEH ASSEMBLIES <br> 92569.12W <br> RL-111A1 <br> RMA-274 <br> (For Model 17T261DE) <br> Cone-Cone and voice coil ( 3.2 ohms) <br> Speaker-12" P.M. speaker complete with cone and voice coil ( 3.2 ohms) <br> NOTE: If stamping on speaker in instruments does not agree with above speaker number, order replacement parts by referring to model number of instruof part required. <br> miscellaneous | 76594 76593 76592 76591 74963 75464 | Knob-Channel selector knoD-beige-ior blonde mahogany instruments (inner) <br> Knob-Channel selector knob-maroon-for mahogany <br> or walnut instruments (inner) <br> Knob-Fine tuning control knob-beige-for blonde mahogany instruments (outer) <br> Knob-Fine tuning control knob-maroon-for mahogany or walnut instruments (outer) <br> Knob-Picture control, horizontal hold control of volume control and power switch knob-maroon-for mahogany or walnut instruments (inner) <br> Knob-Picture control, horizontal hold control or volume control and power switch knob-beige-for blonde mahogany instruments (inner) <br> Knob-Tone control and phono switch knob-beige-for |
| 77213 | Back-Cabinet back complete with terminal board and power cord for Model 17T250DE <br> Back-Cabinet back complete with power cord for | 76597 | blonde mahogany instruments (outer) <br> Knob-Tone control and phono switch knob-maroonfor mahogeny or walnut instruments (outer) |
|  | Model 17T261DE | 11765 | Lamp-Channel marker escutcheon lamp-Mazda 51 |
| 76590 | Board-Antenna terminal board Bracket-Hanger bracket for deflection yoke hood as. | 76589 | Mask-Channel marker escutcheon light mask-beigefor blonde mahogany instruments |
| 77028 | sembly <br> Bracket-Support bracket ("L'" shape) for kinescope masking panel (2 required) | 75459 | Mask-Channel marker escutcheon light mask-bur. gundy-for mahogany or walnut instruments Mask-Polystyrene masking panel |
| 76599 | Bracket-'"U', shape bracket for deflection yoke hood support rod | 77013 | Nut-Speednut for fastening "RCA Victor" emblem to cabinet (3 required) |
| 77029 | Clip-Retaining clip (top or bottom) for safety glass retainer retainer | 73634 | Nut-Speednut for speaker mounting screws for Model 17T261DE |
| 77030 | Clip-Retaining clip (sides) for satety glass retciiner | 76177 | Nut-No. 10.32 special nut for deflection yoke hood sup- port rods |
| x 1 | Cloth-Grille cloth for mahogany or walnut instruments for Model 17T250DE | 01 | port rods <br> Pad-Kinescope edge support pad (2 required) |
| x 3222 | Cloth-Grille cloth for blonde mahogany instruments for Model 17T261DE | 77027 | Retainer-Safety glass retainer |
| X3199 | Cloth-Grille cloth for mahogany or walnut instruments for Model 17T261DE | 77024 | Rod-'L" shape threaded rod to support deflection yoke hood assembly |
| 75474 | Connector-Single contact male connector for antenna cable | 76632 | Screw-No. $8 \times 5 / 8^{\prime \prime}$ hex head wood screw for mounting hanger bracket |
| 39153 | Connectio-4 contact male connector for antenna cable | 88 | Sleeve-Polyethylene sleeve for insulating high voltage lead-on support rod |
| ${ }^{71457}$ | Cord-Power gord and plug | ${ }^{73643}$ | Spring-Channel marker escutcheon spring clip |
| 77031 | Cushion-Adhesive cushion (sponge rubber- $3 / 8^{\prime \prime}$ dia.) for masking panel | 76020 | Spring-Formed spring for glass retainer clips (6 re- quired) . |
| 76698 | Cushion-Rubber cushion for kinescope masking panel support bracket | 77025 | Spring-Formed spring for kinescope masking pa |
| 770 | Decal-Control function decal for mahogany or walnut instruments | 77006 | Spring-Retaining, spring (coil) for deflection yoke hood support rod nut |
| 76512 | Decal-Control function decal for blonde mahogany instruments | 30330 | Spring-Ketaining spring for knobs 74963, 75464 |
| 77244 | Emblem-"Deluxe" emblem for mahogany or walnut instruments for Model l7T250DE | ${ }^{72845}$ | Spring-Retaining spring for knobs 76591, 76592 |
| 77245 | $\underset{\substack{\text { Emblem-"Deluxe" } \\ \text { Model } 17 \text { T250DE }}}{\text { emblem for blonde instruments for }}$ | 76837 | Spring-Retaining spring for knobs 76593, 76594, 76595, $7659,7657,76598$ 76596, 76597, 76598 |
| 774 | Emblem-"Deluxe" emblem for Model 17T261DE | 77032 | $\underset{\substack{\text { Spring-Suspension } \\ \text { braid }}}{\text { spring clip (formed) for ground }}$ |
| 77012 | Emblem-"RCA Victor" emblem | 36580 | Spring-Suspension spring (coil) for ground braid |
| 75456 | Es | 76600 | Strap-Grounding strap (upper |
| 7213 | Foot-Rubber foot (4 required) for Model 17 T25 | 77023 | Washer-Cellulose washer-gold-for knobs |
| 77026 | Glass-Safety glass | 75500 |  |
| 37396 | Grommet-Rubber Model 17 T 261 DE grommet tor mounting speaker for |  | washer-bise between kno and cha |
| 76596 | Knob-Brightness control or vertical hold control knob-beige-for blonde mahogany instruments (outer) | 75458 | Washer-Felt washer-beige-between knob and chan. nel marker escutcheon for blonde mahogany instrunel mar ments |
| 76595 | Knob-Brightness conitrol or vertical hold control knob -maroon-for mahogany or walnut instruments (outer) | 75457 | Washer-Felt washer-dark brown-between knob and channel marker escutcheon for mahogany or walnut instruments |



Figure 78-Chassis Wiring Diagram, KCS74, KCS74M1

## KCS74 CIRCUIT SCHEMATIC DIAGRAM (*KCS74MI)



| $\begin{gathered} \text { STOCI } \\ \text { No. } \end{gathered}$ | EsChiption | stock No. | deschiption |
| :---: | :---: | :---: | :---: |
|  | R-F Unit Assembuies | 76548 | Screw-No. $4.40 \times 5 / 16^{\prime \prime}$ adjusting screw tor coils L , L2, L3, L4, L46 |
| 76539 | Board-Antenna matching transtormer terminal board | 76519 | Shaft-Channel selector shaft and plate |
|  | less coils L58, L59, L60 and less capacitors C24, C25, C26, C27 | 76134 | Shaft-Fine tuning shaft and cam |
| 765 | Board-Terminal board, 5 contact and ground |  | bracket |
| 7684 | Brackel-Vertical bracket for holding V1 tube shield | 76534 | Shield-Tube shield |
| 76965 | Capacitor-Ceramic, variable, for fine tuning-plunger type (C2) | 76530 | Socket-Tube socket, 9 pin, miniature, ceramic, saddlemounted for V 1 |
| 93056 | Capacitor-Ceramic, 5 mmf. (C26, C32) | 76336 | Socket-Tube socket, 9 pin, miniature, bakelite, saddlemounted for V2 |
| 70597 | Capacitor-Ceramic, 8 mmi. (C29) | 77149 | Spacer-Metal spacer for front plate |
| 55326 | Capacitor-Ceramic, 10 mmL ( (C3) | 75163 | Spring-Friction spring (tormed) for tine tuning cam |
| 54207 | Capacitor-Ceramic, 18 mmf ( (C27) | 30340 | Spring-Hairpin spring for fine turing link |
| 76557 | Capacitor-Ceramic, 22 mmi ( C19, $^{\text {c }}$ C31) | 75068 | Spring-Retaining spring for tube shield |
| 76558 | Capacitor-Ceramic, 22 mmi . (C5) | 77204 | Spring-Return spring for tine tuning control |
| 70935 | Capacitor-Ceramic, 27 mmf ( C25 $^{\text {a }}$ | 76554 | Stator-Antenna stator complete with rotor, coils, ca- |
| 76739 | Capacitor-Ceramic, 33 mmf . (C24) |  | $\left.\begin{array}{c}\text { pacitors } \\ \text { L54, L5S, } \\ \text { R13 }\end{array}\right)$ resistor (S5, C20, L42, L43, L44, L45, |
| 77460 | Capacitor-Ceramic, 220 mmf . (C10) | ${ }^{77353}$ | Stator-Convertor stator complete with rotor, coils, ca- |
| 75199 |  |  | pacitor and resistors (S2, C10, C12, L12, L13, L14, |
| 75166 | Capacitor-Ceramic, 1500 mmt . (stand-o甘) (C13, C17, C21, C22, C28, C30) | 77205 | L15, L16, L17, L18, L19, L20, L21, L47, L48, R4, R5, R6) Stator-Oscillator stator complete with rotor, coils and |
| 75610 | Capacitor-Ceramic, 1500 |  | capacitors (S1, C3, C7, L1, L2, L3, L4, L5, L6, L7, L8, |
| 73748 | Capacitor-Ceramic, 1500 mmi ( $\mathrm{C} 16, \mathrm{C} 20, \mathrm{C} 23$ ) |  | Stator-R-F plate stator complete with rotor, coils, ca- |
| 71088 | Capacitor-Ceramic, 0.68 m |  | pacitor and resistor (S3, C14, L22, L23, L24, L25, L26. |
| 77151 | Capacitor-Tubular, steatite, adjustable, $0.8 \cdot 3.0 \mathrm{~mm}$. (C8) |  |  |
| 75184 | Capacitor-Ceramic, adiustable, $0.80-3.8 \mathrm{mmt}$ complete with adjusting stud (C9) |  | Stator-R-F grid stator complete with rotor, coils, ca- <br>  |
| 76532 | Capacior-Adjustable trimmer, steatite, 1.4. mmf. (C18) | 76561 | Strap--Channel No. 13 r.f grid strap (L52) |
|  | Capacitor-Mica trimmer, 55.80 mml . (C11) | 76525 | Strip-Coil segment mounting strip-RH center |
|  | Clip-Tubular clip for mounting stand.ot capacitors | 76526 | Strip-Coil segment mounting strip-LH lower |
| ${ }_{73477}^{7391}$ | Coil-Choke coil (LS7) | 76544 | $\underset{\substack{\text { Strip-Coil } \\ \text { trimmer }}}{\text { segment mounting strip - LH uppe }}$ |
| 76763 | coil (L63, L64) | 75446 |  |
| 77206 | ment choke coil (L56) |  | and coded "ER") |
| 76562 | Coil-R-F amplitier coupling coil (LSS1) | 75447 | Slud-Capacitor stud for trimmer coil L49, C15 (coded numerically and "Hi Q") |
| 77153 | Coil-R-F choke coil (L66) | 76740 | Stud-No. $6.32 \times 1$ " adjusting stud for adj |
| 76537 | Coil-Shunt coil complete with adiustable core (L61) |  | pacitor |
| 76538 | Coil-Shunt coil complete with adiustable core (L62) | 77152 | Terminal-Terminal for mount |
| 76529 | Coil-Trimmer coil ( 3 turns) with adjustable inductance core and capacitor stud (screw adjustment) for r-i section (L49, C15) | 76536 77148 | Transformer-Antenna matching transformer complete <br> (T2, C24, C25, C26, C27, L58, L59, L60, L61, L62, J1) <br> Transtormer-Convertor transiormer (T1, R3) |
| 38853 | Connector-4 contact female connector-part of matching transformer (Il) | 76540 | Trap-FM trap complete with adjustable core (L58) |
| 76559 | Connector-Oscillator qrid cond | 76535 | Trap-1.F trap (L65) |
| 76460 | Contact-Test point contact | 76542 | Trap-1.F trap ( 41.25 MC ) complete with core (L60) |
| 77202 | Core-Adjustable core for fine tuning capacitor | 76541 | Trap-1.F trap ( 45.75 MC ) complete with core (L59) |
| 76543 | Core-Adjusting core for FM trap | 90 | Washer-Insulating washer (neoprene) for adjustable capacitor |
| 76521 | Detent-Detent mechanism and fibre shatt |  |  |
| 73453 | Frrm-Coil form for coils L48, L50, LS3 |  | ASSIS ASSEMBLIES |
| 77203 | Link-Link assembly for fine tuning |  | KCS74 |
| 76728 | unting adjustable trimmer 76532 |  | Bracket-Channel indicator lamp brack |
|  | Resistor-Fixed, compositio |  |  |
| 047 | $47 \mathrm{ohms}, \pm 10 \%, 1 / 2 \mathrm{wc}$ | 7645 | Bracket-Mounting bracket complete with insulator for picture control |
| 503082 | 82 ohms, $\pm 10 \%, 1 / 2$ wal | 71496 | Capacitor-Adjustable trimmer, 5.70 mmf. (C122) |
| 503115 | 150 ohms, $\pm 10 \%, 1 / 2$ watt (R13 | 75217 | Capacitor-Mica trimmer, dual 10.160 mml . (C191A. |
| 50 | 1000 ohms, $\pm 10 \%$, $1 / 2$ watt (R7, R14) |  | C1918) |
| 503233 | $3300 \mathrm{ohms}, \pm 10 \%, 1 / 2$ watt (R4, R11, R12) | ${ }^{33380}$ | Capacitor-Ceramic, 12 mmt |
| 503247 | 4700 ohms, $\pm 10 \%, 1 / 2$ watt (R2) | 39044 | Capacitor-Ceramic, 15 mmf . (C1 |
| 503410 | 100.000 ohms . $\pm 10 \%$, $1 / 2 \mathrm{wwftl}$ (R1, R5, R6) | 73664 | Capacitor-Ceramic, 39 mmf ( (C |
| 50 | 470,000 ohms, $\pm 10 \%, 1 / 2$ watl (R8) | 71924 | Capacior-Ceramic, $56 \mathrm{mmf}$. ( Cl 105 ) |
| 14343 | Retainer-Fine tuning shaft retaining ring | 76475 | Capacitor-Mica, 68 mmi . (C192) |
| 75164 | Rod-Actuating plunger rod (fibre) for fine tuning link | 76474 | Capacitor-Mica, 82 mmi ( (C163) |
| 76547 | Screw-No. 4 4.40 $\times 1 / 4^{\prime \prime}$ adjusting screw for coils L6, L7, | 39396 | Capacitor-Ceramic, 100 mmf ( (C114, C162) |
|  | L8, L9, L10, L11 | 75437 | Capacitor-Ceramic, 100 mmf ( (C152) |
| 76549 | Screw-No. $4.40 \times 3 / 81$ adjusting screw for coil Ls | 51416 | Capacitor-Mica, 180 mmf ( (C167) |


| $\begin{aligned} & \text { stock } \\ & \text { No. } \end{aligned}$ | description | stock | description |
| :---: | :---: | :---: | :---: |
| 76673 | tor-Ceramic, 220 mmf ( (C184) | 73784 | Capacitor-Tubular, paper, oil impregnated, 0.1 mid., 200 valts (C155, C175) |
| 73091 | Capacitor-Mica, 270 mmit (C207) |  |  |
| 47617 | Capacitor-Ceramic, 270 mmi ( (C118) | 73551 | Capacitor-Tubular, paper, 400 volts (C170. C185, C194) |
| 39640 | citor-Mica, 330 mmi ( (C166) | 73557 | Capacitor-Tubular, paper, oil impregnc |
| 76476 | Sitor-Micca, 330 mmf ( (C1 |  | 500 volts (C181, C203) |
| 7309 | Capacitor-Mica, 390 mmf . (C174) | 73786 | Capacitor-Tubular, paper, oil impregnated, 0.27 mfd., 200 volts (C202) |
| ${ }^{54003}$ |  | 73787 | Capacitor-Tubular, paper, oil impregnated, 0.47 mfd , |
| 75166 | Capacitor-Ceramic, 1500 mmf . (stand-ott) (C144) |  | 200 volts |
| 3473 | Capacitor-Ceramic, 4700 mmf . (C126, C127, C128, C129, C130, C131, C135, C136, C139, C142, C216) | 76498 76143 | Choke-Filter choke (LI15) |
| 76470 | Capacitor-Ceramic, dual, 4700 mmf . (C123A, C123B, C137A, C137B, C140A, C140B, C141A, C141B, C156A, | 761 | Coil-Choke coil (L101) |
|  |  | 76442 | Coil-Horizontal linearity coil complete with adjustable core (L107) |
| 73960 | Capacitor-Ceramic, 10.000 mmf ( (C145, C148) |  |  |
| 75877 | Capacitor-Ceramic, dual, $10,000 \mathrm{mmi}$. (C101A, C101B, C107A, C107B) | 76640 | Coil-R |
| 74521 | Capacitor-Electrolytic, 5 mtd., 50 volts (C112) | 77195 | Coil-Peaking coil (120 muh) (L103, R149) |
| 28417 | Capacitor-Electrolytic, 5 mfd., 450 volts (C183) | 76647 | Coil-Peaking coil (180 muh) (L108, R |
| 75218 | Capacitor-Electrolytic, comprising 1 section of 10 mfd . 350 volts, 1 section of 5 mid., 350 volts and 1 section 150 mfd., 50 volts (C212A, C212B, C212C) | 71526 77194 | Coil-Peaking coil ( 250 muh) (L104) Coil-Peaking coil ( 1000 muh) (Lllo) |
| 76451 | Capacitor-Electrolytic, comprising 1 section of 100 mtd . 350 volits, 2 sections of 10 mid., 350 volts and 1 sec- tion of 20 mid. 50 volts (C211A. C211B, C211C, C211D) | 89 | Connector-Anode connector <br> Connector-Phono input connector (J101) |
| 75220 |  | 75474 | Connector-Single contact male connector for spacker cable (2 required) |
| 76479 | Capacitor-Tubular, moulded, oil impregnated, .00068 mid., 600 volits (C200) | $\begin{aligned} & 75482 \\ & 74594 \end{aligned}$ | Connector-Video connector (J102) <br> Connector-2 contact male connector for power cord |
| 75249 | Capacitor-Tubular, paper, oil impregnated, 001 mid., 600 volts (C164, C172, C190) | 67 | Connector-6 contact female connector for yoke leads (J103) |
| 769 | Capacitor-Tubular, moulded, oil impregnated, . 0012 mfd., 600 volts (C201) | 75542 | Connector-6 contact male connector-part of deflection yoke (P103) |
| 73802 | Capacitor-Tubular, paper, oil impregnated, . 0015 mid., 600 volts (C159) | 77200 | Control-AGC control (R181) |
| 73595 | Capacitor-Tubular, paper, oil impregnated, . 0022 mid., 600 volts (Cl13, C161, C173, C176, C177, C178) | 764 | Control-Brightness control (R216) Control-Height control (R199) |
| 73599 | Capacitor-Tubular, paper, oil impregnated, 0027 mid., 600 volts (C119) | 77201 | Control-Horizontal and vertical hold control (R197A, R197B) |
| 73818 | Capacitor-Tubular, paper, oil impregnated. 0027 mid., 1600 volts (C121) | 76445 77199 | Control-Picture control (R158) |
| 737 | Capacitor-Tubular, paper, oil impregnated, . 0033 mid., 600 voits (C160) | 76449 | Control-Vertical linearity control (R211) |
| 73920 | Capacitor-Tubular, paper, oil impregnated, . 0047 mid. 600 volts (C115, C187) | $\begin{aligned} & 77010 \\ & 76966 \end{aligned}$ | Control-Volume control and power switch (R114, S102) Cover-Back cover for hi.voltage compartment |
| 73789 | Capacitor-Tubular, paper, oil impregnated, 0068 mid., 400 volts (C151) | 85 | Cover-Side cover for hi-voltage compartment |
| 73561 | Capacitor-Tubular, paper, oil impregnated, 01 mid., 400 volts (C116, C120, C165) | 74839 | Fastener-Push fastener for mounting tube socket for V116 and tube socket 76453 |
| 73594 | Capacitor-Tubular, moulded, oil impreqnated, .01 mid., 600 volts (C199) | 73600 | Fuse-0.25 amps. (F101) |
| 73562 | Capacitor-Tubular, paper, oil impregnated, 022 mid., 400 volts (C195) | $\begin{aligned} & 76459 \\ & 37396 \end{aligned}$ | Grommet-Rubber grommet for 2nd anode lead exit Grommet-Rubber grommet for mounting tube socket for V116 and tube socket 76453 |
| 73798 | Capacitor-Tubular, paper, oil impregnated, .022 mid., 600 volts (C179) | 76830 | Hood-Deflection yoke hood less rubber cushions |
| 73810 | Capacitor-Tubular, paper, oil impreqnated, 022 mid., 1000 volts (C206) | 76168 76141 | Magnet-Focus magnet <br> Magnet-Ion trap magnet (P.M. |
| 73811 | Capacitor-Tubular, paper, oil impreqnated, 027 mad., 1000 volts (C205) | 76633 | Magnet-Pin cushion correction magnet complete with support arm |
| 73596 | Capacitor-Tubular, paper, oil impreqnated, . 033 mfd., 1000 volts (C180) | 18469 | Plate-Bakelite mounting plate for electrolytic 75220 |
| 73790 | Capacitor-Tubular, paper, oil impreqnated, . 039 mid., 400 volts (C117) | 764 | Plate-Hi-voltage plate-bakelite-complete with tube socket and corona ring |
| 73558 | Capacitor-Tubular, paper, oil impregnated, 047 mid. 200 volts (C171) <br> Capacitor-Tubular, paper, oil impregnated, 047 mid., | 7719 | Printed Circuit-Consisting of 1 section of 22,000 ohms. 2 sections of 8200 ohms, 1 section of .002 mid., and 2 sections of 005 , mid. PC101 (C213, C214, C215, R165. 2 seck R157) . |
|  | Capacitor-Tubular, paper, oil impregnated, 047 mfd , 400 volts (C158, C197) |  | R166. R167) |
| 750 | Capacitor-Tubular, moulded, .047 mid., 400 volts (C188, C189) | 76675 | Rectifier-Picture detector crystal rectifier ( Rectifier-Selenium rectifier (CR102, CR103) |
| 23592 | Capacitor-Tubular, paper, oil impregnated, 047 mfd . 600 volts (Cl24) | 76796 76639 | Resistor-Wire wound, 5.1 ohms, $1 / 3$ watt (R237) |
| 73597 | Capacitor-Tubular, paper, oil impregnated, .047 mfd , 1000 volts (C186) | 77193 | Resistor-Wire wound, 680 ohms, 1 watt (R119) |
| 73792 | Capacitor-Tubular, paper, oil impregnated. . 068 mfd . 400 volts (Cl82) | $34473$ | Resistox-Wire wound, 2090 ohms, 10 watts (R128) <br> Resistor-Wire wound, 5600 ohms, 5 watts (R138) |



GENERAL DESCRIPTION
Features of these receivers are: full twelve channel coverage; "totem" r-f amplifier; intercarrier FM sound system; ratio detector; 40 mc picture i-f; improved picture brilliance; pulsed picture A-G-C; A-F-C horizontal hold; stabilized vertical hold; compensated video gain control; noise saturation circuits; improved sync. separator and clipper; four mc. band width for picture channel and reduced hazard high voltage supply. An auxiliary audio input jack is provided to permit the use of an external record playing attachment.

ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE .... 227 square inches on a 21AP4 Kinescope TELEVISION R.F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc}, 174 \mathrm{mc}$. to 216 mc . Picture I-F Carrier Frequency 45.75 mc . Sound I-F Carrier Frequency .......... 41.25 mc . and 4.5 mc . POWER SUPPLY RATING .... 115 volts, 60 cycles, 300 watts AUDIO POWER OUTPUT RATING
5.0 watts max. CHASSIS DESIGNATIONS
KCS68C
KCS68E
In Models 21T176, 21T177, 21 T178, 21 T179
In Models 21T159, 21 T165
In Models 21T159DE, 21T166DE, 21T174DE,
21T175DE, 21T178DE, 21T179DE

| Model Weight | Chassis with Tubes in Cabinet | Shipping Weight |
| :---: | :---: | :---: |
| 21T159, 21T159DE | 104 lbs . | 125 lbs . |
| 21 T 165 | 111 lbs . | 149 lbs . |
| 21T166DE | 120 lbs . | 152 lbs . |
| $21 \mathrm{Tl74DE}$ | 140 lbs | 172 lbs. |
| $21 \mathrm{Tl75DE}$ | 152 lbs . | 184 lbs . |
| 21 T176 | 128 lbs . | 159 lbs . |
| 21 T177 | 143 lbs . | 174 lbs . |
| 21T178, 21T178DE | 148 lbs . | 182 lbs . |
| 21T179, $21 \mathrm{Tl79DE}$ | 153 lbs . | 187 lbs . |

RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

RCA TUBE COMPLEMENT


21T178DE, 21T179, 21T179DE
LOUDSPEAKERS
Models 21T159, 21T159DE (971490-2) 8"' PM dynamic, 3.2 ohms Models 21T165, 21T166DE, 21T174DE, 21T175DE, 21T178DE, 21T179DE (92561-14W) 12" PM Dynamic, 3.2 ohms Models 21T176, 177, 178 and 179
(971494-1W) 12" PM Dynamic, 3.2 ohms

## PICTURE INTERMEDIATE FREQUENCIES

| Picture Carrier Frequency | 5.75 mc . |
| :---: | :---: |
| Adjacent Channel Sound Trap | 47.25 mc . |
| Accompanying Sound Traps | 41.25 mc . |
|  | 39.25 mc . |

## SOUND INTERMEDIATE FREQUENCIES

41.25 me. and 4.5 mc .

| YIDEO RESPONSE | To 4 mc . |
| :---: | :---: |
| FOCUS | Magnetic |
| SWEEP DEFLECTION | Magnetic |
| SCANNING | Interlaced, 525 line |
| HORIZONTAL SWEEP FREQUENCY | . . 15,750 cps |
| VERTICAL SWEEP FREQUENCY | 60 cps |
|  | e) . . . . . 30 cps |

OPERATING CONTROLS (Front Panel)

| Channel Selector | Dual Control Knobs |
| :---: | :---: |
| Fine Tuning |  |
| Picture | Dual Control Knobs |
| Brightness | Dual Control Knobs |
| Picture Horizontal Hold \} | Dual Control Knobs |
| Picture Vertical Hold |  |
| Sound Volume and On-Off Switch | Dual Control Knobs |
| Tone Control and Phono Switch |  |

NON-OPERATING CONTROLS (not including r-f and l-f adjustments)
Picture Centering ...................... top chassis adjustment Width .............................. rear chassis adjustment Height .............................. rear chassis adjustment Horizontal Linearity ...... rear chassis screwdriver adjustment Vertical Linearity Vertical Peaking Control Horizontal Drive ...........rear chassis screwdriver adjustment Horizontal Oscillator Frequency .......rear chassis adjustment Horizontal Oscillator Waveform ...... bottom chassis adjustment Horizontal Locking Range rear chassis adjustment Focus ................................. top chassis adjustment Ion Trap Magnet . . . . . . . . . . . . . . . . .top chassis adjustment Deflection Ccil ............... top chassis wing nut adjustment AGC Control ................................rear chassis adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE the receiver with the high voltage Compartment shield removed. be sure the GROUND STRAP, BETWEEN THE YOKE ASSEMBLY AND THE CHASSIS, IS SECURELY FASTENED BEFORE TURNING THE RECEIVER ON.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN any manner unless shatterproof goggles are worn. people not so equipped should be kept away while handling kinescopes. keep the kinescope away from the body WHILE HANDLING.

The kinescope bulb encloses $\alpha$ high vacuum and, due to its large surface area, is subjectea to considerable air pressure. For this reason, the kinescope must be handled with more care than ordinary receiving tubes.

[^7]The following adjustments are necessary when turning the receiver on for the first time.

1. See that the TV-PH switch is in the "TV" position.
2. Tum the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best pix and the SOUND VOLUME control for suitable volume.
5. Tum the BRIGHTNESS control fully counter-clockwise, then clockwise until a light patterm appears on the screen.
6. Adjust the VERTICAL hold control until the pattem stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.

8. When the set is tumed on again after an idle period it should not be necessary to repeat the adjustment if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
9. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8.
10. To use a record player, plug the record-player output cable into the PHONO jack on the rear apron, and set the TV-PH switch to "PH."
11. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.
12. In switching from one channel to another, it may be necessary to repeat steps 4 and 8.

Figure 1-Receiver Operating Controls

## INSTALLATION INSTRUCTIONS

UNPACKING.-These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.
Take the receiver out of the carton and remove all packing material.
Install the control knobs on the proper control shafts.
Make sure that all tubes are in place and are firmly seated in their sockets.
Check to see that the kinescope high voltage lead clip is in place.

Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle.
Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control coun-ter-clockwise.
ION TRAP MAGNET ADJUSTMENT. - Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen.
DEFLECTION YOKE ADIUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.
PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. Connect the antenna transmission line to the receiver.


Figure 2-Ion Trap and Centering Magnet Adjustments

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.
If the receiver is overloading, turn Rl75 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synchronized.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT.Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Centering Adjustment."


Figure 3-Rear Chassis Adjustments

## INSTALLATION INSTRUCTIONS

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the follow. ing adjustments.

Horizontal Frequency Adjustment.-Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tll4 horizontal frequency adjustment at the rear of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster. Then turn the Tll4 core until the bar moves out of the picture leaving it in sync.

Horizontal Locking Range Adjustment--Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tll 14 rear core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl81A slightly clockwise. If less than 2 bars are present, adjust C181A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on Page 11. For field purposes paragraph "B" under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENTS.-The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. The centering plate includes a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the ion trap magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUST-MENTS.-Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive trimmer Cl81B for maximum drive (minimum capacity) consistent with a linear raster. Compression of the raster due to excessive drive can be seen as a white vertical bar or bars in the right half of the picture. Besides compression caused by excessive drive, another item to watch for is the change in linearity at the extreme left with changes of brightness control setting. By proper adjustment of the linearity coil, the changes in linearity with changes in brightness can be made negligible. In general, to achieve this condition, the linearity coil should be set slightly on the high inductance side (core slightly clockwise) of the optimum
position and the linearity rheostat R209 should be as far clockwise as possible.
Note: In late production receivers, R209 has been omitted since it normally was operated at zero resistance.

Preset the following adjustments as directed:
A.-Place the width plug ( P 105 ) in the minimum width position (top).
B.-Set the width control coil L106 in approximately mid position.
C.-Set the linearity control coil Ll07 near minimum inductance (counter-clockwise).
D.--Set the linearity control rheostat near zero resistance (clockwise).
E.-Set the drive capacitor C181B in the maximum drive position (counter-clockwise).
If the raster is cramped or shows compression bars on the right half of the picture turn C181B clockwise until this condition is just eliminated.

Adjust the linearity control coil L107 clockwise until best linearity and maximum deflection or best compromise are obtained then turn one quarter turn clockwise from this position.

Retouch the drive trimmer C181B if necessary to obtain best linearity and maximum width.
Check the horizontal linearity at various settings of the brightness control R218. There should be no compression of the right half and no appreciable change of linearity especially at the extreme left of the picture. If objectional change does occur, turn linearity coil Ll07 slightly clockwise and repeat the test.

Adjust the width control L106 to fill the mask.
If the left side of the picture appears stretched, turn the linearity control rheostat R209 counter-clockwise. If the left side of the picture is cramped, turn R209 clockwise. Whenever possible, correct nonlinearity by adjustment of R209 rather than by reduction of drive.

If the line voltage is low and it becomes impossible 10 fill the mask, move the width plug Plos to the bottom position. The width coil L106 is inoperative in this position.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS.Adjust the height control (R203 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R214 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. If the top few lines of the picture are stretched or squeezed, adjust the vertical peaking control R207 until this condition is corrected.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

If necessary readjust centering to align the picture with the mask.

CHECK OF R-F OSCILLATOR ADJUSTMENTS.-Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 7. The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis.


Figure 4-R.F Oscillator Adjustments

AGC THRESHOLD CONTROL.-The AGC threshold control R175 is adjusted at the factory and normally should not require readjustment in the field.
To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back. If the piciure reappears immediately, the receiver is not overloading due to improper setting of R175. If the picture requires an appreciable portion of a second to reappear, or bends excessively, R175 should be readjusted
Turn R175 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn R175 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn R175 counter-clockwise just sufficiently to remove this bend or change of bend.

If the signal is weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn RI75 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.
The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received.

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L58 core on top of the antenna matching transformer for minimum interference in the picture.

CAUTION.-In some receivers, the FM trap L58 will tune down into channel 6 or even into channel 5 . Needless to say. such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L58 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

CABINET ANTENNA.-A cabinet antenna is provided in these receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are strong and no reflections are experienced.
KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus or centering magnet as an assembly.

INSTALLATION OF KINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "'dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning aqent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus maqnet. If the tube sticks or fails to slip into place smoothly, investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the wing screw and tighten. Engage the two side rods into the yoke frame and tighten the two nuts. Slide
the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnet because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the four chassis bolts.

Slip the ion trap magnet over the neck of the kinescope,
Connect the kinescope socket to the tube base and connect the high voltage lead from the rim of the kinescope into the high voltage bushing on the high voltage compartment.

Reconnect all other cables. Do not forget to replace the yoke frame grounding strap. Perform the entire set-up procedure beginning with the Ion Trap Magnet Adjustment.

ANTENNAS.-The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.
If two or more stations are available and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.
If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for turning the antenna when switching channels or to install a separate antenna for one or more channels and to switch antennas when switching channels.

In some cases, the antenna should not be installed permanently until the quality of the picture reception has been observed on a television receiver. A temporary transmission line can be run between receiver and the antenna, allowing sufficient slack to permit moving the antenna. Then, with $a$ telephone system connecting an observer at the receiver and an assistant at the antenna, the antenna can be positioned to give the most satisfactory results on the received signal. A shitt of direction or a few feet in antenna position may effect a tremendous difference in picture reception.

REFLECTIONS.-Multiple images sometimes known as echoes or ghosts, are caused by the-signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a siqnal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.

Under certain extremely unusual conditions, it may be possible to rotate or position the antenna so that it receives the cleanest picture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surfaces.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE.-Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals, doctors offices and similar sources of interference. In mountina the antenna, care must be taken 10 keep the antenna rods at least $1 / 4$ wave lenath (at least 6 feet) away from other antennas, metal roofs, gutters or other metal objects.
Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering sianal is on the same frequency as the television station, a trap will provide no improvement.

WEAK PICTURE.-When the installation is near the limit of the area served by the transmittina station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strenath from the transmitter.


Figure 5-Chassis Top View

21T159, 21T159DE, 21T165 21T166DE, 21T174DE, 21T175DE

21T176, 21T177, 21T178
21T178DE, 21T179, 21T179DE


Figure 6-Chassis Bottom View

TEST EQUIPMENT.-To properly service the television chassis of this receiver, it is recommended that the following test equip. ment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

35 to 90 mc ., 1 mc . to 12 mc . sweep width
170 to 225 mc ., 12 mc . sweep width
(b) Output adjustable with at least .1 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope. - For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response.

For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
4.5 mc ., $39.25 \mathrm{mc} ., 41.25 \mathrm{mc} ., 45.75 \mathrm{mc} ., 47.25 \mathrm{mc}$.
(b) Radio frequencies

| Channel <br> Number | Picture Carrier Freq. Mc. | Sound Carrier Freq. Mc. | Receiver R-F Osc. Freq. Mc |
| :---: | :---: | :---: | :---: |
| 2 | 55.25 | 59.75 | 101 |
| 3 | 61.25 | 65.75 | 107 |
| 4 | 67.25 | . 71.75 | 113 |
| 5 | 77.25 | 81.25 | 123 |
| 6 | 83.25 | 87.75 | 129 |
| 7 | 175.25 | 179.75 | 221 |
| 8 | 181.25 | 185.75 | 227 |
| 9 | 187.25 | 191.75 | 233 |
| 10 | 193.25 | 197.75 | 239 |
| 11 | 199.25 | 203.75 | 245 |
| 12 | 205.25 | 209.75 | 251 |
| 13 | 211.25 | 215.75 | 257 |

(c) Output of these ranges should be adjustable and at least 11 volt maximum.
Heterodyne Frequency Meter with crystal calibrator if the signal generator is not crystal controlled.

Electronic Voltmeter of Junior or Senior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit measurements up to 20 kv .

ORDER OF ALIGNMENT.-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:

| (1) Ant. Matching Unit | (6) Picture I-F Traps |
| :--- | :--- |
| (2) R-F Unit | (7) Picture I-F Trans. |
| (3) Ratio Detector | (8) Sweep Alignment of I-F |
| (4) Sound I-F Trans. | (9) Horizontal Oscillator |
| (5) Sound Take-Off Trans. | (10) Sensitivity Check |

ANTENNA MATCHING UNIT ALIGNMENT. - The antenna matching unit is accurately aligned at the factory. Adjustment of this unit should not be attempted in the customer's home since even slight misalignment may cause serious attenuation of the signal especially on channel 2 . The r-f unit is aligned with a particular antenna matching transformer in place. If for any reason, a new antenna matching transformer is installed, the r-f unit should be realigned.
The F-M Trap which is mounted in the antenna matching unit may be adjusted without adversely affecting the alignment of the unit.

To align the antenna matching unit disconnect the lead from the F-M trap LS8 to the channel selector switch SlE or SS.

With a short jumper, connect the output of the matchiny unit through a 1000 mmf . capacitor to the grid of the second pix i-f amplifier, pin 1 of V107.
Replace the cover on the matching unit while making all adjustments.

Remove the first pix i-f amplifier tube V106.
Connect the positive terminal of a bias box to the chassis and the potentiometer arm to the junction of R143 and R144. Set the potentiometer to produce approximately -6.0 volts of bias at the junction of R143 and R144.

Connect an oscilloscope to the video test point TP102 or pin
4. V110 and set the oscilloscope gain to maximum.

Connect a signal generator to the antenna input terminals. Modulate the signal generator $30 \%$ with an audio signal.
Tune the signal generator to 45.75 mc . and adjust the generator output to give an indication on the oscilloscope. Adjust L59 in the antenna matching unit for minimum audio indication on the oscilloscope.

Tune the signal generator to 41.25 mc . and adjust L 60 for minimum audio indication on the oscilloscope.

Remove the jumper from the output of the matching unit. Connect a 300 ohm $1 / 2$ watt composition resistor from L58 to ground, keeping the leads as short as possible.
Connect an oscilloscope low capacity crystal probe from L58 to ground. The sensitivity of the oscilloscope should be approximately $0 . C 3$ volts per inch. Set the oscilloscope gain to maximum.

Connect the r-f sweep generator to the matching unit antenna input terminals. In order to prevent coupling reactance from the sweep generator into the matching unit, it is advisable to employ a resistance pad at the matching unit terminals. Figure 11 shows three different resistance pads for use with swoep generators with 50 ohm co-ax output, 72 ohms co-ax output or 300 ohm balanced output. Choose the pad to match the output impedance of the particular sweep employed.

Connect the signal generator loosely to the matching unit antenna terminals.

Set the sweep generator to sweep from 45 mc . to 54 mc . With RCA type WRS9A sweep generators, this may be accomplished by retuning channel number 1 to cover this range. With WRS9B sweep generators this may be accomplished by retuning channel number 2 to cover the range. In making these adjustments on the generator, be sure not to turn the core too far clockwise so that it becomes lost beyond the core retaining spring.

Adjust L61 and L62 to obtain the response shown in figure 12. L61 is most effective in locating the position of the shoulder of the curve at 52 mc . and L62 should be adjusted to give maximum amplitude at 53 mc . and above consistent with the specified shape of the response curve. The adjustments in the matching unit interact to some extent. Repeat the above procedure until no further adjustments are necessary.

Remove the 300 ohm resistor and crystal probe cunnections. Restore the connection between L58 and SlEor SS. Replace V106.
R-F UNIT ALIGNMENT.-An r-f unit which is operative and requires only touch up adjustments, requires no presetting of adjustments. For such units, skip the remainder of this paragraph. For units which are completely out of adjustment, preset all adjustments to the approximate center of their range with the following exceptions. Set C18 so that the screw head is approximately three-eighths of an inch above chassis. Set Cll near maximum capacity (one-quarter turn from tight). Do not change any of the adjustments in the antenna matching unit.
Disconnect the link from terminals " $A$ " and " $B$ " of T104 and terminate the link with a 39 ohm composition resistor.

The r-f unit is aligned with zero A-G-C bias. To insure that the bias will remain constant, take a clip lead and short circuit the r-f unit power terminal board terminal 3 to ground.

Connect the oscilloscope to the test point TP1 on top of the r-f $u$ nit. Set the oscilloscope gain to maximum.

Turn the receiver channel selector switch to channel 2.
Connect the output of the signal generator to the grid of the r-f amplifier, V2. To do this, remove the tube from the socket and fashion a clip by twisting one end of a small piece of wire around pin number 7 . Replace the tube in the socket leaving the end of the wire protruding from under the tube. Connect the sicgnal generator to this wire through a 1.500 mmf . capacitor.

Tune the signal generator to 43.5 mc . and modulate it $30 \%$ with a $4 G 0$ cycle sine wave. Adjust the signal generator for maximum output.

Adjust L65 on top of the r-f unit for minimum 400 cycle indication on the oscilloscope. If necessary, this adjustment can be retouched in the field to provide additional rejection to one specific frequency in the i-f band pass. However, in such cases, care should be taken not to adjust it so as to reduce sensitivity on channel 2.

## ALIGNMENT PROCEDURE

## 21T159, 21T159DE, 21T165 21T166DE, 21T174DE, 21T175DE 21T176, 21T177, 21T178 21T178DE, 21T179, 21T179DE

Remove the wire clip from pin 7 of V2 and replace the tube and tube shield.
Set the channel selector switch to channel 8.
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range now and at all times when adjusting the oscillator frequency.

Adjust Cl in KRK11 or C2 in KRK11A for proper oscillator frequency, 227 mc . This may be done in several ways. The easiest way and the way which will be recommended in this procedure will be to use the signal generator as a heterodyne frequency meter and beat the oscillator against the signal generator. To do this, tune the signal generator to 227 mc . with crystal accuracy. Insert one end of a piece of insulated wire into the r-f unit through the hole provided for the adjustment for Cll. Be careful that the wire does not touch any of the tuned circuits as it may cause the frequency of the r-f unit oscillator to shift. Connect the other end of the wire to the "r-f in" terminal of the signal generator. Adjust Cl in KRKll or C 2 in KRK11A to obtain an audio beat with the signal generator.

Note-If, on some KRKllA units, it is not possible to reach the proper channel 8 oscillator frequency by adjustment of C2, switch to channel 13 and adjust L46 to obtain proper channel 13 oscillator frequency as indicated in the table on page 10. Then switch to channel 12 and adjust Lll to obtain proper channel 12 oscillator frequency. Continue down to channel 8 adjusting the appropriate oscillator trimmer to obtain the proper frequency on each channel. Then again on channel 8 adjust C2 to obtain proper channel 8 oscillator frequency. Switch back to channel 13 and adjust L46 and back to channel 8 and adjust C2.
Set the Tl core for maximum inductance (core turned counter-clockwise).

Connect the sweep generator through a suitable attenuator as shown in Figure 11 to the input terminals of the antenna matching unit.

Connect the signal generator loosely to the antenna terminals.
Set the sweep generator to cover channel 8.
Set the oscilloscope to maximum gain and use the minimum input signal which will produce a usable pattern on the oscilloscope. Excessive input can change oscillator injection during alignment and produce consequent misalignment even though the pattern on the oscilloscope may look normal.
Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc . and 185.75 mc .

Adjust C9, C11, C15 and C18 for approximately correct curve shape, frequency, and band width as shown in Figure 13.

The correct adjustment of Cl 8 is indicated by maximum amplitude of the curve midway between the markers. Cl5 tunes the r-f amplifier plate circuit and affects the frequency of the pass band most noticeably. C9 tunes the mixer grid circuit and affects the tilt of the curve most noticeably (assuming that C18 has been properly adjusted). Cll is the coupling adjustment and hence primarily affects the response band width.
Set the receiver channel switch to channel 6.
Adjust the signal generator to the channel 6 oscillator frequency 129 mc .
Turn the fine tuning control 30 degrees clockwise from the center of its mechanical range.
Adjust LS for an audible beat with the signal generator as before.

Set the sweep generator to channel 6 .
From the signal generator, inser, channel 6 sound and picture carrier markers, 83.25 mc . and 87.75 mc .
Adjust L48, L50 and L53 for proper response as shown in Figure 13.

L50 tunes the r-f amplifier plate circuit and primarily affects the frequency of the pass band. L53 tunes the r-f amplifier grid and is adjusted to give maximum amplitude of the curve between the markers. L48 affects the tilt of the curve but not quite the same as C9 adjustment. When the circuits are correctly adjusted and L48 is rocked on either side of its proper setting, the high frequency (sound carrier) end of the curve appears to remain nearly fixed in amplitude while the picture carrier end tilts above or below this point.
Turn off the sweep and signal generators.
Connect the "VoltOhmyst" to the r-f unit test point TPI.

Adjust the oscillator injection trimmer C 8 for -3.5 volts or at maximum if -3.5 volts cannot be reached. This voltage should fall between -2.5 and -5.5 volts on all channels when the alignment of all circuits is completed.

Turn the sweep generator and signal generator back on and recheck channel 6 response. Readjust L48, L50 and L53 if necessary.

Set the receiver channel selector switch to channel 8 and readjust Cl in KRKll or C 2 in KRK1lA for proper oscillator frequency, 227 mc .

Set the sweep generator and signal generator to channel 8 .
Readjust C9, Cl1, Cl5 and Cl8 for correct curve shape, frequency and band width.

Turn off the sweep and signal generators, switch back to channel 6 and check the oscillator injection voltage at TPl if C9 was adjusted in the recheck of channel 8 response.

If the initial setting of oscillator injection trimmer C8 was far off, it may be necessary to adjust the oscillator frequency and response on channel 8, adjust the oscillator injection on channel 6 and repeat the procedure several times before the proper setting is obtained.

Turn off the sweep generator and switch the receiver to channel 13.

Adjust the signal generator to the channel 13 oscillator frequency 257 mc .
Set the fine tuning control 30 degrees clockwise from the center of its mechanical range.

Adjust L46 to obtain an audible beat. Slightly overshoot the adjustment of 446 by turning the slug a little more in the same direction from the original setting, then reset the oscillator to proper frequency by adjusting Cl in KRKll or C2 in KRKlla to again obtain the beat.

Check the response of channels 7 through 13 by switching the receiver channel switch, sweep generator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 13 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response.

If the markers do not fall within this requirement, switch to channel 8 and readjust $\mathrm{C} 9, \mathrm{Cll}, \mathrm{Cl} 5$ and Cl 8 as necessary.
Turn off the sweep generator and check the channel 8 oscillator frequency. If Cl or C 2 was readjusted for channel 8 , the principle of overshooting the adjustment and then correcting by adjusting L46 should be followed in order to establish the L/C ratio for the desired oscillator tracking.
Turn off the sweep generator and check the channel 6 oscillator frequency. Adjust L5 for correct oscillator frequency. 129 mc .
Turn the sweep generator on and to channel 6 and observe the response curve. If necessary readjust L48, L50 and L53.
For KRKIlA units switch to channel 2 and tune T1 clockwise to a point where there is no change in the channel 2 response as Tl is turned.
Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscillator injection voltage.

If excessive tilt in the same direction occurs on channels 2 , 3 and 4. adjust Cl8 on channel 2 to overshoot the correction of this tilt, then switch to channel 6 and adjust L53 for maximum amplitude of curve between carrier markers. This adjustment should produce "flat" response on the low channels if the other adjustments, especially L48, are correct.

Likewise check r-f response and oscillator injection on channels 7 through 13, stopping on 13 for the next step.

With the receiver on channel 13 , check the receiver oscillator frequency. Correct by adjustment of Cl in KRKll or C 2 in KRKlla if necessary.

Adjust the oscillator to frequency on all channels by switching the receiver and the frequency standard to each channel and adjusting the appropriate oscillator trimmer to obtain the audible beat. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control in the middle third of its range. When employing WR39 calibrators to adjust the receiver oscillator, tune the calibrator to one half the receiver oscillator frequency on channels 4,5 and 6 and to one fourth the receiver oscillator frequency on channels 11,12 and 13 .

|  | Picture | Sound | Receiver | Channel |
| :---: | :---: | :---: | :---: | :---: |
| Channel | Carrier | Carrier | R-F Osc. | Oscillator |
| Number | Freq. Mc. | Freq. Mc. | Freq. Mc. | Adjustment |
| 2 | 55.25 | 59.75 | 101 | Ll |
| 3 | 61.25 | 65.75 | 107 | L2 |
| 4 | 67.25 | 71.75 | 113 | L3 |
| 5 | 77.25 | 81.75 | 123 | L4 |
| 6 | 83.25 | 87.75 | 129 | L5 |
| 7 | 175.25 | 179.75 | 221 | L6 |
| 8 | 181.25 | 185.75 | 227 | L7 |
| 9 | 187.25 | 191.75 | 233 | L8 |
| 10 | 193.25 | 197.75 | 239 | L9 |
| 11 | 199.25 | 203.75 | 245 | L10 |
| 12 | 205.25 | 209.75 | 251 | Lll |
| 13 | 211.25 | 215.75 | 257 | Cl |

Remove the 39 ohm resistor from the link and reconnect the link to terminals " $A$ " and "B" of T104.

RATIO DETECTOR ALIGNMENT.-In order to obtain good ratio detector alignment an AM modulated signal generator that is exceptionally free from FM modulation must be employed. Set the signal generator at 4.5 mc . and connect it to the second sound i-f grid, pin l of V102. Set the generator for $30 \% 400$ cycle modulation.

As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed. If used, connect it to the grid of the 4 th pix i-f amplifier, pin 1, V109. Set the frequency of the calibrator to 45.75 (pix carrier) and modulate with 4.5 mc . crystal. Also turn on the internal AM audio modulation. The 4.5 mc . signal will be picked off at T110A and amplified through the Sound i-f amplifier.

Connect the "VoltOhmyst" to the junction of R110 and R114.
Connect the oscilloscope across the speaker voice coil and turn the volume control for maximum output.

Adjust C226 on the bottom of the V103 socket for minimum capacity.

Tune the ratio detector primary, T102 top core for maximum DC output on the "VoltOhmyst." Adjust the signal level from the signal generator for minus 10 volts on the "VoltOhmyst" when finally peaked. This is approximately the operating level of the ratio detector for average signals

Connect the "VoltOhmyst" to the junction of R112 and Cll3.
Adjust the T102 bottom core for zero d-c on the meter. Then, turn the core to the nearest minimum AM output on the oscilloscope.

Repeat adjustments of T102 top for maximum DC and T102 bottom for minimum output on the oscilloscope making final adjustment with the 4.5 mc . input level adjusted to produce 10 volts d.c on the "VoltOhmyst" at the junction of Rll0 and Rll4.

Connect the "VoltOhmyst" to the junction of R112 and Cll3 and note the amount of $\mathrm{d}-\mathrm{c}$ present. If this voltage exceeds $\pm 1.5$ volts, adjust C 226 by turning it in until zero d-c is obtained. Readjust the T102 bottom core for minimum output on the oscilloscope. Repeat adjustments of C226 and Tl02 bottom core until the voltage at R112 and Cl13 is less than $\pm 1.5$ volts when T102 bottom core is set for minimum output on the oscilloscope.

Connect the "VoltOhmyst" to the junction of R110 and R114 and repeak Tl02 top core for maximum d-c on the meter and again reset the generator so as to have -10 volts on the meter.

Repeat the adjustments in the above two paragraphs until the voltage at R112 and C113 is less than $\pm 1.5$ volts when the Tl02 top core is set for maximum d-c at the junction of Rllo and R114 and the T102 bottom core is set for minimum indication on the oscilloscope.

SOUND I-F ALIGNMENT.-Connect the sweep generator to the first sound i-f amplifier grid, pin l of V101. Adjust the generator for a sweep width of 1 mc . at a center frequency of 4.5 mc .

Insert a 4.5 mc . marker signal from the signal generator into the first sound i-f grid. With the WR39B or WR39C calibrators the 4.5 mc . crystal signal may be obtained at the R-F out ter minal by turning the variable osc. switch off, the calibrate switch to 4.5 mc . and the volume control with mod. off.

Connect the oscilloscope in series with a 10.000 ohm resistor to terminal A of Tlol.

Adjust Tl0l top and bottom cores for maximum gain and
symmetry about the 4.5 mc . marker on the i-f response. The pattern obtained should be similar to that shown in Figure 14.
The output level from the sweep should be set to produce approximately 2.0 volt peak-to-peak at terminal A of Tl0l when the final touches on the above adjustment are made. It is necessary that the sweep output voltage should not exceed the specified values otherwise the response curve will be broad ened, permitting slight misadjustment to pass unnoticed and possibly causing distortion on weak signals

Connect the oscilloscope to the junction of R112 and Cll3 and check the linearity of the response. The pattern obtained should be similar to that shown in Figure 15.

SOUND TAKE-OFF ALIGNMENT.--Connect the 4.5 mc . gen erator in series with a 1000 ohm resistor to terminal " C " of T110. The input signal should be approximately 0.5 volt.

Short the fourth pix i-f grid to ground, pin 1 Vl09, to preven' noise from masking the output indication.

As an alternate spurce of signal the RCA WR39B or WR39C calibrator may be used. In such a case, disregard the above two paragraphs. Connect calibrator across link circuit, T104 A, B, and modulate 45.75 with 4.5 mc . crystal.

Connect the crystal diode probe of a "VoltOhmyst" to the plate of the video amplifier, pin 8 of V1l0.

Adjust the core of Tll0 for minimum output on the meter
Remove the short from pin 1 V109 to ground, if used.
PICTURE I-F TRAP ADJUSTMENT.-Connect the i-f signal generator across the link circuit on terminals A and B of T104

Conrect the "VoltOhmyst" to the junction of R143 and R144
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a 1,000 ohm potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction of R143 and R144

Set the bias to produce approximately -1.0 volt of bias at the junction of R143 and R144.

Connect the "VoltOhmyst" to pin 4 of V110, the 6AG7 video amplifier

Set the signal generator to each of the following frequencies and adjust the corresponding circuit for minimum $d \cdot c$ output at pin 4 of Vll0. Use sufficient signal input to produce 1.0 volt of $\mathrm{d}-\mathrm{c}$ on the meter when the final adjustment is made

| 39.25 mc . | T104 top core |
| :---: | :---: |
| 41.25 mc . | T105 bottom core |
| 47.25 mc . | T106 bottom core |

PICTURE I-F TRANSFORMER ADJUSTMENTS.-Set the signal generator to each of the following frequencies and peak the specified adjustment for maximum indication on the "VoltOhmyst." During alignment, reduce the input signal if necessary in order to produce 1.0 volt of d-c at pin 4 of V110 with -1.0 volt of i-f bias at the junction of R143 and R144.

| 43.7 mc . | T109 |
| :---: | :---: |
| 45.5 mc . | T108 |
| 41.8 mc . | T107 |

To align T105 and T106, connect the sweep generator to the first picture i-f grid, pin 1 of V106 through a 1000 mmf . ceramic capacitor. Shunt R141, R149 and terminals "A" and "F" of Tl09 with 330 ohm composition resistors. Set the i-f bias to -1.0 volt at the junction of R143 and R144.

Connect the oscilloscope to pin 4 of V110.
Adjust T105 and T106 top cores for maximum gain and curve shape as shown in Figure 16. For final adjustment set the output of the sweep generator to produce 0.5 volt peak-to-peak at the oscilloscope terminals.
To align Tl and T104, connect the sweep generator to the mixer grid test point TP2. Use the shortest leads possible, with not more than one inch of unshielded lead at the end of the sweep cable.

Set the channel selector switch to channel 4.
Connect a 180 ohm composition resistor from terminal B of T105 to the junction of R135 and C132. Connect the oscilloscope diode probe to terminal B of T105 and to ground.

Couple the signal generator loosely to the diode probe in order to obtain markers.
In some receivers, C 220 is variable and is provided as a bandwidth adjustment. Preset C220 to minimum capacity.

Adjust Tl (top) and Tl04 (bottom) for maximum gain at 43.5 mc . and with 45.75 mc . at $70 \%$ of maximum response.

Adjust C220 until 41.25 mc . is at $85 \%$ response with respect to the low frequency shoulder at approximately 41.9 mc . as shown in Figure 17.

In receivers in which C220 is fixed, adjust Tl (top) and Tl04 (bottom) for maximum gain and the response shown in Figure 17.

Disconnect the diode probe, the 180 ohm and three 330 ohm resistors.

## SWEEP ALIGNMENT OF PIX I-F.-Connect the oscilloscope

 to pin 4 of Vllo.Adjust the bias potentiometer to obtain -6.0 volts of bias as measured by a "VoltOhmyst" at the junction of R143 and R144.

Leave the sweep generator connected to the mixer grid test point TP2 with the shortest leads possible and with not more than one inch of unshielded lead at the end of the sweep cable. If these precautions are not observed, the receiver may be unstable and the response curves obtained may be unreliable.

Adjust the output of the sweep generator to obtain 3.0 volts peak-to-peak on the oscilloscope.

Couple the signal generator loosely to the grid of the first pix i-f amplifier. Adjust the output of the signal generator to produce small markers on the response curve.

Retouch T108 and T109 to obtain the response shown in Fig. ure 18. Do not adjust T107 unless absolutely necessary. If T107 is adjusted too low in frequency it will raise the level of the 41.25 mc . sound i.f carrier and may create interference in the picture. It will also cause poor adjacent channel picture rejection. If T107 is tuned too high in frequency, the level of the 41.25 mc . sound $\mathrm{i} \cdot \mathrm{f}$ carrier will be too low and may produce noisy sound in weak signal areas.
Remove the oscilloscope, sweep and signal generator connections.

Remove the bias box employed to provide bias for alignment.
HORIZONTAL OSCILLATOR ADJUSTMENT. - Normally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment may require the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper
Horizontal Frequency Adjustment.-Tune in a station and sync the picture. If the picture cannot be synchronized with the horizontal hold control R201B, then adjust the T114 frequency core on the rear apron until the picture will synchronize. It the picture still will not sync, turn the Tll4 waveform adjustment core (under the chassis) out of the coil several turns from its original position and readjust the Tll4 frequency core until the picture is synchronized.
Examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control C181B, the width control L106 and the linearity control L107 until the picture is correct.

Horizontal Oscillator Waveform Adjustment.-The horizontal oscillator waveform may be adjusted by either of two methods. The method outlined in paragraph $\bar{A}$ below may be employed in the field when an oscilloscope is not available. The service shop method outlined in paragraph $B$ below requires the use of an oscilloscope.
A.-Turn the horizontal hold control completely clockwise. Place adjustment tools on both cores of T114 and be prepared to make simultaneous adjustments while watching the picture on the screen. First, furn the T114 frequency core (on the rear apron) until the picture falls out of sync and one diagonal black bar sloping down to the right appears on the screen. Then, turn the waveform adjustment core (under the chassis) into the coil while at the same time adjusting the frequency core so as to maintain one diagonal black bar on the screen. Continue this procedure until the oscillator begins to motorboat, then turn the waveform adjustment core out until the motorboating just stops. As a check, turn the Tll4 frequency core until the picture is synchronized then reverse the direction of rotation of the core until the picture begins to fall out of sync with the diagonal bar sloping down to the right. Continue to turn the frequency core in the same direction. Additional bars should not appear on the screen. Instead, the horizontal
oscillator should begin to motorboat. Retouch the adjustment of the Tll4 waveform adjustment core if necessary until this condition is obtained.
B.-Connect the low capacity probe of an oscilloscope to terminal C of T114. Turn the horizontal hold control one-quarter turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 19. Adjust the waveform adjustment core of T114 until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.

Remove the oscilloscope upon completion of this adjustment.
Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The pic. ture may remain in sync. If so turn the Tll4 frequency core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer C181A slightly clockwise. If less than 2 bars are present, adjust C181A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are present.

Turn the horizontal hold control to the maximum clockwise position. Adjust the Tll4 frequency core so that the diagonal bar sloping down to the right appears on the screen and then reverse the direction of adjustment so that bar just moves off the screen leaving the picture in synchronization.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions. This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad.

RESPONSE CURVES.-The response curves shown on page 14 are typical, though some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator.

NOTES ON R.F UNIT ALIGNMENT.-Because of the frequency spectrum involved, many of the r-f unit leads are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the performance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in physical arrangement without being troublesome. When the r-f unit is aligned in the receiver, no trouble from resonant loops should be experienced. However, if the unit is aligned in a jig separate from the receiver, attention should be paid to insure that unwanted resonance does not exist which might present a faulty representation of alignment.

A resonant circuit exists between the r-f tuner chassis and the outer shield box, which couples into the antenna and r-f plate circuits. The frequency of this resonance depends on the structure of the shield box. This resonance is controlled by using insulating washers of proper thickness in the front plate to tuner chassis mounting. Obviously, if the r-f unit is removed for service, the washers should be replaced in the correct order.
the detailed alignment procedure beginning on page b should be read before alignment by use of the table is attempted

| $\begin{aligned} & \text { Step } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & \text { CONNECT } \\ & \text { SIGNAL } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$ | $\begin{aligned} & \text { SIGNAL } \\ & \text { GEEN. } \\ & \text { FREQ. } \end{aligned}$ | CONNECT SWEEP GENERATOR TO | SWEEP GEN. FREQ MC | $\begin{aligned} & \text { CONNECT } \\ & \text { HETERODYNE } \\ & \text { FREQ METER } \\ & \text { TO } \end{aligned}$ | $\begin{aligned} & \text { HET. } \\ & \text { MEEER } \\ & \text { FREQ. } \\ & \text { MC. } \end{aligned}$ | $\begin{gathered} \text { CONNECT } \\ \text { OSCILIOSCOPE } \\ \text { TO } \end{gathered}$ | MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS | ADJUST | $\begin{aligned} & \text { REFER } \\ & \text { TO } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antenna matching unit alignment |  |  |  |  |  |  |  |  |  |  |
| 1 | Do not adjust this unit unless fairly certain that it requires adjustment. Disconnect lead from L58 to SIE. Connect output of matching unit through 1000 mmf . to pin 1 of V107 Replace cover on matching unit. Remove V106 from socket. Connect bias box to junction of R143 and R144 and set to produce -6 volts. |  |  |  |  |  |  |  |  |  |
| 2 | Antenna terminale | $\begin{aligned} & 45.75 \mathrm{mc} . \\ & 30 \% \mathrm{mod} . \end{aligned}$ | Not used | - | Not used | - | Pin 4, V110 Scope gain to max. | - | L59 for min. audio on scope | Fig. 7 |
| 3 | " | $\begin{aligned} & 41.25 \mathrm{mc} . \\ & 30 \% \mathrm{mod} . \end{aligned}$ | " | - | " | - | " | - | L60 for min. audio on scope | Fig. 7 |
| 4 | Ântenna terminals loosely | - | Antenna terminalsthrough pad | $\begin{gathered} 45 \text { to } \\ 54 \mathrm{mc} . \end{gathered}$ | " | - | Scope a xtal probe to gnd. | Connect 300 ohms from L58 to gnd. | L61 and L62 to obtain response of Fig. 12 | Fig. 7 <br> Fig. 11 <br> Fiq. 12 |

R-F UNIT ALIGNMENT

| 5 | If unit is completely out of adjustment, preset all adjustments to center of range with following exceptions. Set Cl8 so that head is $3 / 8$ "above chassis. Set Cll $1 / 4$ turn from max clockwise Disconnect link from Tl04 and terminate with 39 ohms. Short r-f unit power terminal 3 to ground. Set fine tuning 30 degrees clockwise from mechanical center of its range for all oscillator adjustments. |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Grid, pin 7 of V2 through 1500 mmi. | $\begin{aligned} & 43.5 \mathrm{mc} . \\ & 30 \% \mathrm{mod} . \end{aligned}$ | Not used | - | Not used | - | TP1. Gain to maximum | Set r.f unit on channel 2 | L65 for min. indication on scope | Fig. 7 <br> Fig. 10 |
| 7 | Not used | - | Not used | - | Loosely to x-f unit oscillator | 227 mc . | Not used | R-F unit on channel 8 | Cl-KRKIl, or C2-KRK. 11A for beat on freq. meter | Fig. 7 |
| 8 | Antenna terminals loosely | $\begin{aligned} & 181.25 \\ & \text { and } \\ & 185.75 \\ & \hline \end{aligned}$ | Antenna terminals through pad | $\begin{gathered} \text { Channel } \\ 8 \end{gathered}$ | Not used | - | TPl. Gain to maximum | R-F unit on channel 8 Set Tl max. counterclockwise | C9, C11, C15 and C18 for response shown in in Fig. 13 | $\begin{aligned} & \text { Fig. } 7 \\ & \text { Fig. } \end{aligned}$ |
| 9 | Not used | - | Not used | - | Loosely to r-f unit oscillator | 129 mc . | Not used | R-F unit on channel 6 | L5 for beat on het. freq. meter | Fig. 8 |
| 10 | Antenna terminals loosely | $\begin{aligned} & 83.25 \\ & \text { and } \\ & 87.75 \end{aligned}$ | Antenna terminals through pad | $\begin{gathered} \text { Channel } \\ 6 \end{gathered}$ | Not used | - | TP1. Gain to maximum | " | L48, L50 and L53 for response shown in Fig. 13 | $\begin{aligned} & \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$ |
| 11 | Not used | - | Not used | - | Not used | - | Not used | On channel 6. Connect "VoltOhmyst" to TP1 | C8 for -3.5 volts on meter | Fig. 7 |
| 12 | Antenna terminals loosely | $\begin{aligned} & 83.25 \\ & \text { and } \\ & 87.75 \\ & \hline \end{aligned}$ | Antenna terminals through pad | $\underset{6}{\text { Channel }}$ | Not used | - | TP1. Gain to maximum | R-F unit on channel 6 | Check response Readjust L48, L50 and L53 if necessary | $\begin{aligned} & \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$ |
| 13 | Not used | - | Not used | - | $\begin{aligned} & \text { Loosely to r-f } \\ & \text { unit oscillator } \end{aligned}$ | 227 mc . | Not used | R-F unit on channel 8 | Cl-KRK11, or C2-KRK11A for beat on freq. meter | Fig. 7 |
| 14 | Antenna terminals loosely | $\begin{gathered} 181.25 \\ \text { and } \\ 185.75 \end{gathered}$ | Antenna terminals through pad | $\underset{8}{\text { Channel }}$ | Not used | - | TP1. Gain to maxi mum | " | Check response adjust C9 Cl1, Cl5 and Cl8 if necessary | Fig. 7 |
| 15 | If C9 was readjusted in step 14, repeat step 11, step 13 and step 14 until the conditions apecified in each step are fulfilled without additional adjustments. |  |  |  |  |  |  |  |  |  |
| 16 | Not used | - | Not used | - | Loosely to $x-i$ unit oscillator | 257 mc . | Not used | Rec. on channel 13 | L46 for beat on het. freq. meter. Overshoot L46 slightly and adjust Cl-KRKll or C2-KRK11Å for beat | Fig. 7 |
| 17 | Antenna terminals loosely | $\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$ | Antenna termizals through pad | Channel 13 | Not used | - | TPI. Gain to maximum | Rec. on channel 13 "VoltOhmyst' on TP1 | Check to see that response is correct and -3.0 volts of osc. injection is present | Fig. 13 |
| 18 | " | $\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$ | " | Channel 12 | Not used | - | " | Rec. on channel 12 | " | Fig. 13 |
| 19 | " | $\begin{array}{r} 199.25 \\ 203.75 \\ \hline \end{array}$ | " | Channel | " | - | " | Rec. on channel 11 | " | Fig. 13 |
| 20 | " | $\begin{array}{r} 193.25 \\ 197.75 \\ \hline \end{array}$ | " | $\begin{gathered} \text { Channel } \\ 10 \end{gathered}$ | " | - | " | Rec. on channel 10 | " | Fig. 13 |
| 21 | " | $\begin{array}{r} 187.25 \\ 191.75 \\ \hline \end{array}$ | " | $\begin{gathered} \text { Channel } \\ \hline \end{gathered}$ | " | - | " | Rec. on channel 9 | " | Fig. 13 |
| 22 | -' | $\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$ | " | $\mathrm{Channel}_{8}$ | " | - | " | Rec. on channel 8 | " | Fig. 13 |
| 23 | " | $\begin{array}{r} 175.25 \\ 179.75 \\ \hline \end{array}$ | " | $\underset{7}{\text { Channel }}$ | " | - | " | Rec. on channel 7 | " | Fig. 13 |
| 24 | If the response of any channel (steps 17 through 23) is below $80 \%$ at either marker, adjust $\mathrm{C} 9, \mathrm{Cll}, \mathrm{Cl} 5$ and Cl 8 as necessary to pull response up on the low channel yet maintain correct response on channel 8 . |  |  |  |  |  |  |  |  |  |
| 25 | Repeat step 13. If the oscillator is off frequency overshoot the adjustment of Cl in KRK11 or C 2 in KRK11A and correct by adjusting L46. |  |  |  |  |  |  |  |  |  |
| 26 | Repeat steps 16 through 25 until all adjustments are obtained. |  |  |  |  |  |  |  |  |  |
| 27 | Not usped | - | Not used | - | Loosely to r-it unit oscillator | 129 mc . | Not used | Rec. on channel 6 | LS for beat on het. freq. meter | Fig. 7 |
| 28 | Antenna terminale loosely | $\begin{aligned} & 55.25 \\ & 59.75 \end{aligned}$ | Antenna terminals through pad | $\begin{gathered} \text { Channel } \\ 2 \end{gathered}$ | Not used | - | TPI. Gain to maximum | Rec. on channel 2 | Adjust Tl core clockwise to a point at which channel 2 responsedoes not change | Fig. 7 |
| 29 | " | $\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$ | " | $\begin{gathered} \text { Channel } \\ \hline \end{gathered}$ | Not used | - | " | Rec. on channel 6. "VoltOhmyst" onTP1 | Check to see that response is correct and -3.0 volts of osc. injection is present | $\begin{aligned} & \hline \text { Fig. } 7 \\ & \text { Fig. } 13 \end{aligned}$ |
| 30 | " | $\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$ | " | $\begin{gathered} \text { Channel } \\ 5 \end{gathered}$ | " | - | " | Rec. on channel 5 | " | Fig. 13 |
| 31 | " | $\begin{aligned} & 67.25 \\ & 71.75 \end{aligned}$ | " | $\underset{4}{\text { Channel }}$ | '* | - | " | Rec. on channel 4 | " | Fig. 13 | 21T176, 21T177, 21T178



TEST PATTERN PHOTOGRAPHS


Figure 24 Horizontal Drive
Control Misadjusted

Figure $25-T_{\text {ransients }}$



 ounter-clockwise Position-
Before Pulling Into Sync

## Figure 27-Test Pattern Showing Out of Sync Condition Wh hen Horizontal Hold Control Is

 he Maximum Clockwise Posi $\stackrel{\text { tion }}{ }$

21T159, 21T159DE, 21 T165 21T166DE, 21T174DE, 21T175DE 21T176, 21T177, 21T178
21T178DE, 21T179, 21T179DE

Following is a list of symptoms of possible failures and an
indication of some of the possible faults:
NO RASTER ON KINESCOPE:
(1) Incorrect adjustment of ion trap magnet. Maqnet reversed
(2) V116 or V117 inoperative. Check waveforms on grids and
plates.
(3) No high voltage-if horizontal deflection is operating as
 1B3GT circuit. Either the T115 high voltage winding is open,
the 1 B3GT tube is defective, its filament circuit is open or C197 is shorted.
(4) Vl10 circuit inoperative-Refer to schematic and waveform
chart.
(5) Damper tubes (V119 or V120) inoperative.
(6) Defective kinescope.
(8) No receiver plate voltage-filler capacitor shorted-or filter
choke open.
no vertical deflection:
(1) V114B or V115 inoperative. Check voltage and waveforms
(2) T 111 or T 位 12 open.
(2) T111 or T112 open.
(3) Vertical deflection coils open
small raster:
SMALL RASTER:
(1) Low Plus B or
(1) Low Plus B or low line voltage.
(2) V117 defective.
poor vertical linearity:
(1) If adjustments cannot correct, change V115.
(2) Vertical output transformer T112 defective.
3) V114B defective check voltage and waveforms on grid and (4) Plate.
(5) 170, C171, C201D or C202B defective.
(5) Low plate voltage-check rectifiers and capacitors in supply (6) If heitght is insufficient try changing v114.

POOR HORIZONTAL LINEARITY:
(1) If adiustments do not correct, change V117, V119 or V120
(2) T115 or Llot defective.
(3) C195 or C219 defective.

WRINKLES ON SIDE OF RASTER:
(1) C 193 defective.
(2) Defective yoke.
picture out of sync horizontally:
(1) T114 incorrectly tuned.
(2) R226. R227 or R201B defective.
trapezoidal or non symmetrical raster
(1) Improper adjustment of focus magnet or ion trap maqnet 2) Defective yoke.
raster and signal on kinescope but no sound:
(1) T110 defective.
(2) Sound i.f., ratio detector or audio amplifier inoperative-
check vil1, V102, V103 and their socket voltages.
(3) Audio system defec
(4) Speaker defective.

Signal at kinescope ghid but no sync:
(1) AGC control R175 misaduusted.
(2) V111, inoperative. Check voltage and waveforms at its grid Signal on kinescope grid but no vertical sync: (1) Check V114B and associated circuit-C165, etc.
(3) Integrating network inoperative-Check.
V113 or $V 114 \mathrm{~A}$ defective or associated circuit defective
(4) Gas current grid emission or grid cathode leakage in V114 Replace.
signal on kinescope grid but no horizontal sync (1) T114 misadjusted-readjust as instructed on page 11 . (2) V112 or V113 inoperative--check socket voltages and wave
forms (3) T114 defectiv
(4) C215, C157, C181A, C182, C183, C184, C185, C186 or C187 (5) If horizontal speed is completely off and cannot be adjusted
check R266, R227, R201B, R229, R230 and R231. SOUND and raster but no picture or sync:
(1) Picture, detector or video amplifier defective-check CR10 (1) Picture, detector or video amplifier
and V1IO- check socket voltages.
2) Bad contact to kinescope cathode
picture stable but poor resolution:
(1) CR101 or V110 defective.
(2) Peaking coils defective-
(3) Make sure that the focus control operates on both sides proper focus.
circuits misalign
picture smear:
R-F or I-F circuits misaligned
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on ICTURE JITTER

1) AGC control R175 misadjusted.
(2) If regular sections at the left picture are displaced change
V117. (3) Vertical instability may be due to loose connections or noise. (4) Horizontal instability may be due to unstable transmitted
raster but no sound. picture or sync:
2) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative-check V1. V2.
dark vertical line on left of picture:
(1) Reduce horizontal drive and readjust width and horizontal
linearity. (2) Replace V117.
light vertical line on left of picture: (1) C193 defective. (2) V119 or V120 defective.

## CRITICAL LEAD DRESS:

1. Keep all wiring in the pix i.f, sound i-f and video circuits
as short as possible.
2. Keep thort as possible. C110, C111, C112, C200, R109, R110,
possible. R14
3. $\begin{aligned} & \text { Dossibie. not change the bus wire connection to pin } 2 \text { of V101 } \\ & \text { and V102. Sleeving is used on these wires to insure lenqth }\end{aligned}$
4. Dress C114 down between R117 volume control) and
5. water S101-2. Ground R130 to pin 3 of V106 and R138 to pin 7 of V107.
6. Do not change the grounding of R141, B146 and A149. 7. Keep the bus wire from T109.A to C146 (plug in capacitor)
7. Ground the filaments of sockets of V107, V108 and V109 independently of the socket center pin. Use ground lances
8. Dress C198 straight up to act as a shield between T101-A Dress C153 and R170 (kine cathode) up in the air above
the terminal board.

| Stap No. No | $\begin{aligned} & \text { CONNECT } \\ & \text { SENANLL } \\ & \text { GEERATOR } \end{aligned}$ | $\begin{aligned} & \text { SIGNAL } \\ & \text { SIGN. } \\ & \text { FRMC. } \end{aligned}$ | $\begin{gathered} \hline \text { CONNECT } \\ \text { SEEEEPATOR } \\ \text { GENA } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { SWEEP } \\ & \text { SEREP } \\ & \text { FERC. } \\ & \text { MC. } \end{aligned}$ | CONNECT HETERODYNE HETERODYNE FREQ METER TO | $\begin{aligned} & \text { HET } \\ & \text { METE } \\ & \text { MRER } \\ & \text { MRC. } \end{aligned}$ | $\underset{\substack{\text { CONNECT } \\ \text { OSILISCOPE } \\ \text { TO }}}{ }$ | MISCELLANEOUS <br> CONNECTIONS <br> AND INSTRUCTION | adust | ${ }_{\text {TOFER }}^{\text {TO }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | " | ¢ ${ }_{6}^{61.25}$ |  | Channel |  | -. |  | Rec. on channel 3 |  | Fig. 13 |
| 33 | " | $\stackrel{555}{59.25}$ |  | Channel |  | - |  | Rec. on channel 2 |  | Fig. 13 |
| 34 | If excessive tilt in the same direction occurs on channels 2,3 and 4 , adjust C18 on channel 2 to overshoot the correction of this tilt then switch to channel 6 and adjust 53 for max. amplitude of response between carrier markers. <br> Check r-f response and oscillator injection on channels 7 through 13 steps 23 back up through step 17 stopping on channel 13 for the next step. |  |  |  |  |  |  |  |  |  |
| 35 |  |  |  |  |  |  |  |  |  |  |
| 36 | Not used | - | Not used | - | ${ }_{\text {Loosely }}$ to coupled | 257 mc . | ${ }_{\text {mum }}^{\text {Tpl. Gain to maxi- }}$ | Rec. on channel 13 |  | Fig. 7 |
| 37 | " | - | " | - | " | 251 mc . | " | Rec. on channel 12 | L11 as above | Fig. 7 |
| 38 | " | - | " | - | " | 245 mc . | " | Rec. on channel 11 | L10 as above | Fig. 7 |
| 39 | " | - | " | - | " | 239 mc . | " | Rec. on channel 10 | L9 as above | Fig. 7 |
| 40 | " | - | " | - | " | 233 mc . | " | Rec. on channel 9 | L8 as above | Fiq. 7 |
| 41 | " | - | " | 二 | " | 227 mc . | " | Rec. on channel 8 | L7 as above | Fig. 7 |
| 42 | " | - | " | - | " | 221 mc . | " | Rec. on channel 7 | L6 as above | Fiq. 7 |
| 43 | " | - | " | - | " | 129 mc . | " | Rec. on channel 6 | 15 as above | Fiq. 7 |
| 44 | " | - | " | - | " | 123 mc . | " | Rec. on channel 5 | L.4 as above | Fiq. 7 |
| 45 | " | - | " | - | " | 113 mc . | " | Rec. on channel 4 | L.3 as above | Fig. 7 |
| 46 | " | - | " | - | " | 107 mc . |  | Rec. on channel 3 | L2 as above | Fig. 7 |
| 47 | -" | - | -" | - | ] " | 101 mc . | -" | Rec. on channel 2 | Ll as above | Fiq. 7 |
| 48 | Repeat steps 35 hhrough 46 as a check. On completion, remove 39 ohm resistor and reconnect link to terminals A and B of T 204. |  |  |  |  |  |  |  |  |  |
| ratio detector, sound i.f and sound takeoff alignment |  |  |  |  |  |  |  |  |  |  |
| 49 |  |  | Not used | - | Not used | - | Across speaker control set for max. olume |  | $\begin{aligned} & \text { T102 top core for max } \\ & \text { doc on meter. TIO2 bat. } \\ & \text { dom core for min. adio } \\ & \text { on the oscilloscope. } \end{aligned}$ | $\|$Fig. 9 <br> Fig <br> 10 |
| 50 | " |  | " | - | , | - | " | "VoitOhmyst" to iun C2te for zero on the (bot.) for min. output and 49 until all condi |  | Fig\% Fig \% 10 |
| 51 | Sig, Gen. to tot | 4.5 mc . |  | 4.5 mc . | " | - | In series with 10, On or orms to termi. nal $A$, of Tlol | Sweep output re- duced to provide $2 v$ p-p on scope. | T101 top and bot. cores <br>  |  |
| 52 |  | " |  | " |  | - | ${ }_{\text {Junction }}$ of R112 | Check for symmetric | cal response wave-form | Fig. 15 |
| 53 |  | " | Not used | - | " | - |  |  | $\begin{aligned} & \text { Adjust Tl10 for mini- } \\ & \text { mum reading or "Vont- } \\ & \text { Ohmyst" } \end{aligned}$ | Fig, 9 |
| picture if and trap adjustment |  |  |  |  |  |  |  |  |  |  |
| 54 | Not used | - | Not used | - | Not used | - | Not used | Connect bias box an box to qive -1.0 v on | d "VoltO hmyst". to iunc. and to gnd. Aju bit bias <br> and to gnd. Adjust bias |  |
| 55 | Sig Gen. across | 39.25 mc . | " | - | " | - | " | "VoltOhmyst" to pin 4, V110. Gen, output Lo give - 1.0 volt d.c. | $\left\lvert\, \begin{aligned} & \text { Tlo4 top core to give } \\ & \text { min. } \mathrm{d} \text { - } \text { on meter. }\end{aligned}\right.$ | Fig. 9 |
| 56 | " | 41.25 mc . | " | - | " | - | " | " | T105 bot. for min. | Fig. 10 |
| 57 | " | 47.25 mc . | " | - | " | - | " | " | T106 bot. for min. | Fig. 10 |
| ${ }^{58}$ | " | 43.7 mc . | " | - | " | - | " | Sig. Gen. output to <br>  | Tlo9 tor max. | Fig. 7 |
| 59 | " | 45.5 mc . | " | - | " | - | " |  | T108 for max. | Fig. 9 |
| 60 | " | 41.8 mc . | " | - | " | - | - " | " ${ }^{\text {a }}$ | T107 for max. | Fig. 9 |
| 61 |  | $\begin{aligned} & \text { Vaxious } \\ & \text { Ficig. } \end{aligned}$ | First pix i.f gridpin 1 vionPin <br> through <br> ha mmf. |  | " | - | To pin 4 of Vllo |  | Adiust Tlos and Tlo6 top coreses or max. gain and susponse shown in and and respon in Fig. 16. |  |
| 62 | Connected Cosely to diode probe | $\begin{aligned} & \text { Various } \\ & \text { Figig } \end{aligned}$ | $\begin{aligned} & \text { Mixer grid test } \\ & \text { point Tp2 } \\ & \text { shith } \end{aligned}$ short lead |  | " | - | Scope diode probe gnd. | Rec. on chan. 4. ConTlOS.B to junction R135 and C132. Upon completion discon- nect scope and shunting resistors. |  | Fig. ${ }_{\text {Fig }}$ |
| 63 | $\underset{\substack{\text { Connected } \\ \text { losipt grid of } \\ \text { lat pix if }}}{\text { and }}$ | $\begin{gathered} \text { Various } \\ \text { Fig. } \\ \text { Fig. } 18 \end{gathered}$ | " | " | " | - | (conect scope to |  |  | Fig. 18 |

Figure i--R.F Unit Adjustments

Figure 8-R-F Oscillator Adjustments


Figure 9-Top Chassis Adjustments

Figure 10-Bottom Chassis Adjustments


21T159. 21 T159DE 18 21T166DE, $21 \mathrm{~T} 174 \mathrm{DE}, 21 \mathrm{E},{ }^{2} 175 \mathrm{DE}$ 21T178DE, 21T179, 21T179DE


Figure 11-Sweep Attenuator Pads


Figure 13-R-F Response


Figure 19-Horizontal Oscillator Waveforms
11. Keep the leads connected to T114-C and Tll4-D (synchroguide) down so that they will not short out when the chassis is placed in the cabinet.
12. Do not reroute any wires between T104 and the terminal board along side it.
13. Dress all wires routed past T104, shielded wires W102 and W103 under the big lances near Tl04.
14. Dress all a-c leads to Sl02 under the large lances on the front apron and away from R243.
15. Dress Rll6 close to the chassis using short leads.
16. Dress C206, C221 and C212 up in the air and away from all other leads and components.
17. Dress all leads away from bleeder resistor R243.
18. The blue lead from pin 5 of Vlll to the terminal board under the high voltage cage should be routed between V117 socket and the rear apron.
19. Keep leads on C214 as short and direct as possible.
20. Dress R206 away from all other wires and components to prevent excessive heating.
21. Keep the wire from the vertical output transformer Tll4 away from the $5 U 4 G$ rectifier tubes.
22. Dress all 2 watt resistors away from each other and all other wires and components.
23. Dress all wires away from damper tubes V119 and V120.
24. Keep blue wire from pin 5 V1l6 to T114-A under $5^{\prime \prime}$ long.
25. Dress all peaking coils up and away from the base.

## PICTURE I-F RESPONSE

It may be desirable to observe the individual i-f stage response. To do this use the following method:

For T107. T108 or T109, shunt all i-f transformers with a 330 ohm carbon resistor except the one to be observed.

Connect a wide band sweep generator to the second pix i-f grid and adjust it to sweep from 38 mc . to 48 mc .

Connect the oscilloscope to TP102 and observe the overall response. It will essentially be that of the unshunted stage.
To see the response of transformers T1, T104 and T105, T106, follow the instructions given on page 10 .
Figures 28 through 36 show the response of the various stages obtained in the above manner. The curves shown are typical although some variation between receivers can be expected.

## RESPONSE PHOTOGRAPHS



Figure 28-Overall Pix I-F Restionse


Figure 31-Response of T107 Pix I-F Transformer


Figure 34-Video Response at Average Contrast

Taken from RCA WO58A Oscilloscope


Figure 29—Response of T1-T104 Pix I-F Transformers


Figure 32-Response of T108
Pix I-F Coil


Figure 35-Video Response (100 KC Square Wave)


Figure 30-Response of T105-T106 Pix I-F Transformer


Figure 33-Response of T109 Pix I-F Coil


Figure 36-Video Response ( 60 Cycle Square Wave)

21T159, 21T159DE, $21 T 165$ 21T166DE, 21T174DE, 21T175DE 21T176, 21T177, 21T178 21T178DE, 21T179, 21T179DE


## WAVEFORM PHOTOGRAPHS

Taken from RCA WO58A. Oscilloscope

Grid of 1st Video Amplifier (Pin 4 of V110) (6AG7)

Figure 37-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) (5.5 Volts PP)

```
\leftarrow<<<
```

Figure 38-Horizontal (Oscilloscope Synced to $1 / 2$ of Horizontal Sweep Rate) (5.5 Volis PP)
$\rightarrow>$

Plate of 1st Video Amplifier (Pin 8 of V110) (6AG7)

Voliage depends on picture
Figure 39—Vertical (110 Volts PP)

Figure 40-Horizontal (110 Volts PP)
$\rightarrow$

Grid of Sync Separator
(Pin 4 of V113) (6SN7)
Voltage depends on picture
Figure 41-Vertical (75 Volts PP)


Figure 42-Horizontal (75 Volts PP)
$\rightarrow$

Figure 43-Plate of Sync Separator (Pin 5 of V113) ( $6 S N 7$ ) ( 35 Volts PP) Voltage depends on picture $\longleftarrow<$

Figure 44-Cathode of Sync Separator (Pin 6 of VII3) ( 6 SN 7 ) ( 10 Volts PP) $\rightarrow$

Figure 45--Grid of Vert. Sync Amplifier (Pin 4 of V114A) (6SN7) (12 Volts PP)


Figure 46-Plate of Vert Sync Ampli. fier (Pin 5 of V114A) (6SN7) (100 Volts PP)


WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope


Cathode of Sync Separator (Pin 3 of V113) (6SN7)

Figure 53-Vertical (15 Volts PP)


Figure 54-Horizontal (8 Vols PP)


Grid of Sync Separator (Pin 1 of V113) (6SN7)

Figure 55-Vertical (110 Volts PP)
$\longleftarrow<4$

Figure 56-Horizontal (110 Volts PP)
$\rightarrow$


WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

Plate of Sync Separator (Pin 2 of V113)
Figure 57-Vertical (30 Volts PP)
$\qquad$

Figure 58-Horizontal (30 Volts PP) $\rightarrow$

Grid of Hor Sync Amp
(Pin 4 of V112) (6SN7)
Figure 59-Vertical (30 Volts PP)


Figure 60 -Horizontal ( 30 Volts PP) $\rightarrow$

Plate of Hor Sync Amp
(Pin 5 of V112) (6SN7)
Figure 61-Vertical ( 85 Volts PP) $4<$

Figure 62-Horizontal (85 Volts PP) $\Rightarrow$

Grid of Hor Sync Amp (Pin 1 of V112) (6SN7)

Figure 63-Vertical (75 Volts PP)
$\longleftarrow \leftarrow$

Figure 64 -Horizontal ( 75 Volts PP)
$\rightarrow$

Cathode of Hor Sync Amp
(Pin 3 of V112) (6SN7)
Figure 65—Vertical (18 Volts PP)
$\longleftarrow+4$

Figure 66-Horizontal (18 Volts PP)
$\rightarrow$


## WAVEFORM PHOTOGRAPHS

Taken from RCA WO58A Oscilloscope


Figure 67-Grid of Horizontal Oscillator Control (25 Volts PP) (Pin I of V'll6) (6SNTGT)

Figure 68-Cathode of Horizontal Oscillator Control (1.3 Volts PP) (Pin 3 of V116) (6SN7GT)
$\rightarrow$

Figure 69—Grid of Horizontal Oscillator (550 Volts PP) (Pin 4 o! Vllo) (6SN7GT)

Figure 70-Plate of Horizontal Oscillator (290 Volts PP) (Pin 5 of V116) (6SN7GT)
$\rightarrow$

Figure 71-Terminal "C" of T114 (150 Volis PP)


Figure 72 -Grid of Horizontal Output Tube (140 Volts PP) (Pin 5 of V117) (6CD6G)
$\rightarrow$

Figure 73-Plate of Horizontal Output (Approx. 5400 Volts PP) (Measured Through a Capacily Voltage Divider Connected from Top Cap of V117 to Ground)


Figure 74-Cathode of Damper (2300 Volis PP) (Pin 3 of V119) ( $6 W^{\prime} 4 G T$ )

Figure 75--Plate of Damper (100 Volts PP) (Pin 5 of V119) ( $6 W 4 G T$ )
$\longleftarrow<4$

Figure 76-Plate of AGC Amplifier (Pin 5 of V1II) (6CB6) (700 Volts PP)
$\rightarrow$


The following measurements represent two sets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the receiver, the picture synchronized and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and shor circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c.


| Tube | $\begin{gathered} \text { Tube } \\ \text { Type } \end{gathered}$ | Function | OTorating | E. Plate |  | E. Screan |  | E. Catodo |  | E. Grid |  | $\substack{\text { plate } \\ \text { (pate }}$ | $\begin{gathered} \text { ccrean } \\ (\text { maen } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ${ }_{\text {che }}^{\text {Pin }}$ | Vols | Pin | Volts | , | Volts | $\underbrace{\substack{\text { Pin } \\ \text { No. }}}_{\text {Pin }}$ | Volts |  |  |  |
| vil1 | 6CB6 | $\underset{\substack{\text { AGCl } \\ \text { Amplier }}}{\text { der }}$ |  | 5 | -27 | 6 | 238 | 2 | 152 | 1 | 155 | 0.1 | 3.4 | $\begin{gathered} \text { AGC control } \\ \text { set for } \\ \text { normal } \\ \text { operation } \end{gathered}$ |
|  |  |  | ${ }_{\text {Signal }}^{\text {Nop }}$ | 5 | 4.5 | 6 | 218 | 2 | 135 | 1 | 118 | 0 | 0 |  |
| v112 | 6SN2GT |  |  | 2 | 152 | - | - | 3 | 0.9 | 1 | -44 | 1.1 | - |  |
|  |  |  | $\xrightarrow{\text { No }}$ Signal | 2 | 135 | - | - | 3 | *0.4 | 1 | *-30 | 0.5 | - |  |
|  |  |  |  | 5 | 86 | - | - | 6 | 0 | 4 | -2.0 | 5.5 | - |  |
|  |  |  | Sigol | 5 | 50 | - | - | 6 | 0 | 4 | -1.8 | 4.6 | - |  |
| v113 | 6SN2GT |  | $\underbrace{5000 \mathrm{Map} \text { v. }}_{\text {Sigual }}$ | 2 | 374 | - | - | 3 | 216 | 1 | 155 | 1.2 | - |  |
|  |  |  | ${ }_{\text {Sigol }}^{\text {Nopal }}$ | 2 | 372 | - | - | 3 | 155 | 1 | 134 | 0.8 | - |  |
| v113 | 6SN2GT | $\xrightarrow[\substack{\text { Vert. Symo } \\ \text { Separator }}]{\text { a }}$ |  | 5 | 345 | - | - | 6 | 205 | 4 | 135 | <0.1 | - |  |
|  |  |  | Sigol | 5 | 340 | - | - | 6 | 180 | 4 | 130 | <0.1 | - |  |
| V114A | 6SN76T | $\substack{\text { Verts Sync } \\ \text { Amplifier }}$ |  | 5 | 2.0 | - | - | 6 | - | 4 | -0.2 | 0.6 | - |  |
|  |  |  | $\xrightarrow{\text { Nigoal }}$ | 5 | *. 0 | - | - | 6 | - | 4 | * | 0.5 | - | (topends |
| V1148 | 6SN6GT | Vertical |  | 2 | 176 | - | - | 3 | - | 1 | -27 | 0.2 | - |  |
|  |  |  | Sigol | 2 | 176 | - | - | 3 | - | 1 | -27 | 0.2 | - |  |
| v 115 | 6по5 | Verital |  | 5 | 359 | 6 | 359 | 2 | 30 | I | 0 | 17.3 | 1.2 |  |
|  |  |  | ${ }_{\text {Sigol }}^{\text {Nol }}$ | 5 | 357 | 6 | 357 | 2 | 29 | 1 | 0 | 17.3 | 1.2 |  |
| v116 | 6SN7GT | Horizonal | Sigonal | 2 | 188 | - | - | 3 | -24 | 1 | -42 | 0.37 | - |  |
|  |  |  |  | 2 | 145 | - | - | 3 | 18 | 1 | -42 | 0.4 | - |  |
|  |  |  |  | 2 | 230 | - | - | 3 | $-18$ | 1 | -42 | 0.4 | - | $\substack{\text { Hor. hold } \\ \text { clockise }}$ |
| v116 | 6SN2GT | Horiontal |  | 5 | 258 | - | - | 6 | 0 | 4 | *91 | 2.0 | - |  |
|  |  |  | Sigol | 5 | 256 | - | - | 6 | - | 4 | *.94 | 2.0 | - |  |
| v117 | 6CD6G | Horizont |  | Cap | . | 8 | 165 | 3 | 12.5 | 5 | 30 | 110 | 15.0 | $\begin{gathered} \text { High } \\ \substack{\text { Hiflase } \\ \text { phrsesent }} \\ \text { Proset } \end{gathered}$ |
|  |  |  | $\mathrm{Sig}_{\text {Signal }}^{\text {Nol }}$ | Cap | * | 8 | 165 | 3 | 12.5 | 5 | -30 | 110 | 15.0 |  |
| V118 | ${ }_{183616}^{1881}$ | $\xrightarrow{\text { H. } \mathrm{V} \text { Vectier }}$ |  | Cap | . | - | - | 247 | 716,000 | - | - | 0.2 | - | $\begin{gathered} \text { High } \\ \text { Siftase } \\ \text { Siflee } \\ \text { Prusent } \end{gathered}$ |
|  |  |  | Sigol | Cap | . | - | - | $2 \& 7$ | 16,400 | - | - | 0.2 | - |  |
| (129 | 6w4GT | Dampers |  | cap | 355 | - | - | , | . | - | - | 57 | - | $\begin{array}{\|l\|l\|} \substack{\text { Higigh } \\ \text { Sifise } \\ \text { Prusent } \\ \text { Preset }} \end{array}$ |
|  |  |  | $\mathrm{Sigol}_{\text {Sigal }}^{\text {Nol }}$ | 5 | 353 | - | - | 3 | - | - | - | 57 | - |  |
| v121 | $21 . \mathrm{P}^{4}$ | Kinescope |  |  | 16,000 | 10 | 555 | 11 | 140 | 2 | 82 | 0.2 | - | $\underbrace{}_{\substack{\text { At average } \\ \text { Brightess }}}$ |
| ${ }_{\text {vil22 }}^{1 / 23}$ |  |  | $\mathrm{Sigol}_{\text {Signal }}^{\text {Nom }}$ |  | ela,400 | 10 | 550 | 11 | 132 | 2 | 76 | 0.2 | - |  |
|  | sula | Rectitiers |  | 486 | 6388 | - | - | 288 | 8389 | - | - | ${ }^{139}$ | - | $\underset{\substack{\text { Per } \\ \text { Tube }}}{ }$ |
|  |  |  | $\mathrm{Sigol}_{\text {Sol }}^{\text {Nol }}$ | 446 | 6386 | - | - | 288 | 387 | - | - | ${ }^{145}$ | - |  |







Figure 80-KRK11A R-F Unit Wiring Diagram












|  | - |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | 2 m |  |  |  |
| , | $\underline{+}$ |  |  |  |
|  | $\underline{\square}$ |  |  |  |
|  | $2 \times$ | : |  |  |
|  | - |  |  | $\underline{=}$ |
|  |  |  |  | $\pm$ |
|  | $\underline{=2}=$ |  |  |  |
|  |  |  |  |  |
|  | $\pm$ |  |  | Ex |
|  | Tiva |  |  | $\pm$ |
|  | Cwa |  |  | = |
|  | $\%$ |  |  | , |
|  | +5. |  |  | $\underline{\square}$ |
|  | = |  |  | - |
|  | = |  |  | = |



## GENERAL DESCRIPTION

Model 2l-T-197DE is a deluxe television-AM-FM radio phonograph combination. The receiver employs 29 tubes plus 4 rectifiers and a 21 inch kinescope.

A three speed record changer is provided to play $331 / 3,45$ and 78 RPM records.

The receiver is provided with cabinet antennas for AM, FM and television where local conditions permit their use.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE 227 square inches on a 2lAP4 Kinescope

## TELEVISION R-F FREQUENCY RANGE

All 12 television channels, 54 mc . to 88 mc ., 174 mc . to 216 mc . Fine Tuning Range. $\pm 250 \mathrm{kc}$. on chan. $2, \pm 650 \mathrm{kc}$. on chan. 13 Picture Carrier Frequency
45.75 mc .

Sound Carrier Frequency

## RADIO TUNING RANGE

Broadcast
$540-1,600 \mathrm{kc}$.
Frequency Modulation
88.108 mc .

455 kc .
Intermediate Frequency-AM 10.7 mc .

## POWER SUPPLY RATING

115 volts, 60 cycles, 410 watts max.

## AUDIO POWER OUTPUT RATING

10 watts max.

## CHASSIS DESIGNATTIONS

| Television Chassis. | KCS68H |
| :---: | :---: |
| Radio Chassis | RCllllA |
| Audio Chassis | RSI41A |
| Record Changer | 930409-5 |
| Refer to Service Data 930409 for record changer information |  |
| LOUDSPEAKER-92569-12 | Dynamic |
| Voice Coil Impedance | 400 cycles |

## WEIGHT

Chassis with Tubes in Cabinet
Shipping Weight
222 lbs.
281 lbs.
DIMENSIONS (inches)
Width Height Depth 43 $3 / 8 \quad 391 / 8 \quad 277 / 8$

RCA TUBE COMPLEMENT
Tube Used Television Chassis Functicn
(1) RCA 6 BQ 7
(2) RCA 6 X 8
(3) RCA 6AU6
(4) RCA 6CB6
(5) RCA 6CB6
(6) RCA 6CB6
(7) RCA 6AG7
(8) RCA 6AU6
(9) RCA 6AU6
(10) RCA 6AL5
(11) RCA 6AV6
(12) RCA 6CB6
(13) RCA 6SN7GT
(15) RCA 6AQ5 ..................... Vertical Sweep Output
(16) RCA 6SN7GT ................. Horizontal Sync Amplifier
(17) RCA 6SN7GT Horizontal Sweep Oscillator and Control
(18) RCA 6CD6G................. Horizontal Sweep Output
(19) RCA 6W4GT (2 tubes) ....................... Dampers
(20) RCA 1B3-GT/8016
(21) RCA 5U4G (2 tubes)
(22) RCA 21AP4

High Voltage Rectifier
Rectifiers
Kinescope
Radio Chassis RCllllA
(1) RCA 6CB6
(2) RCA $6 J 6$
(3) RCA 6BA6
(4) RCA 6AU6
(5) RCA 6AL5
(6) RCA $6 A V 6$

R-F Amplifier
Mixer and Oscillator
I-F Amplifier F-M Driver
Ratio Detector
AM Detector AVC and Audio Amplifier Audio Chassis RSl4lA
(1) RCA 6 C 4
(2) RCA 6V6GT (2 tubes)
(3) RCA 5Y3GT

Phase Inverter
Audio Output
Rectifier

# ELECTRICAL AND MECHANICAL 

 SPECIFICATIONS(Continued)

PICTURE INTERMEDIATE FREQUENCIES

| Picture Carrier Frequency | 45.75 mc . |
| :---: | :---: |
| Adjacent Channel Sound Trap. | 47.25 mc . |
| Accompanying Sound Traps | 41.25 mc . |
| Adjacent Channel Picture Carr | 39.25 m |

SOUND INTERMEDIATE FREQUENCIES
Sound Carrier Frequency. 41.25 mc . and 4.5 mc .

| VIDEO RESPONSE | To 4 mc . |
| :---: | :---: |
| FOCUS | Magnetic |
| SWEEP DEFLECTION | Magnetic |
| SCANNING | Interlaced, 525 line |
| HORIZONTAL SWEEP FREQUENCY | .... 15,750 cps |
| VERTICAL SWEEP FREQUENCY | . 60 cps |
| FRAME FREQUENCY (Picture Repeti | Rate)....... 30 cps |

OPERATING CONTROLS (Front Panel)

| Channel Selector $\}$ | Dual Control Knobs |
| :---: | :---: |
| Fine Tuning...... $\}$..................... Dual Control Knobs |  |
| Picture $\}$ | Dual Control Knobs |
| Brightness $\}$.............................. Dual Control |  |
| Picture Horizontal Hold | Dual Control Knobs |
| Picture Vertical Hold |  |
| Sound Volume and On-Off Switch | Dual Control Knobs |
| Tone Control |  |

NON-OPERATING CONTROLS (not including r-f and i-f adjustments)


## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED. BE SURE THE GROUND SPRING, BETWEEN THE YOKE ASSEMBLY AND THE CHASSIS, IS SECURELY FASTENED BEFORE TURNING THE RECEIVER ON.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, the kinescope must be handled with more care than ordinary receiving tubes.

The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

The following adjustments are necessary when turning the receiver on for the first time.
I. Turn the radio FUNCTION switch to TV.
2. Turn the receiver "ON" and advance the SOUND VOL. UME control to approximately mid-position.
3. Set the CHANNEL SELECTOR to the desired chan. nel.
4. Adjust the FINE TUN. ING control for best sound fidelity and SOUND VOLUME for suitable volume.
5. Turn the BRIGHTNESS control fully counterclockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Turn the BRIGHTNESS control counterclockwise until the retrace lines just disappear.
9. Adjust the PICTURE control for suitable picture contrast.


Figure I-Receiver Operating Controls
10. In switching from one channel to another, it may be necessary to repeat steps numbers 4 and 9 .
11. When the set is turned on again after an idle period, it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
12. If the positions of the controls have been changed, it may be necessary to repeat steps numbers 1 through 9 .
13. For radio operation turn the radio FUNCTION switch to AM or FM and tune in station with the radio TUNING control.
14. For phono operation, turn the function switch to PH . Set the stylus on the phono tone arm to 78 or 33.45 whichever applies. Set speed control to the desired speed. Place a record on the turntable (for 45 RPM records place 45 RPM centerpost over spindle) and turn phono to "ON" position.

# REFER TO PAGES 180 TO 193 FOR TELEVISION ALIGNMENT PROCEDURE AND WÁVE FORM PHOTOGRAPHS 

## INSTALLATION INSTRUCTIONS

ION TRAP MAGNET ADJUSTMENT.-Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the


Figure 2-Ion Trap and Centering Magnet Adjustments
focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. Connect the antenna transmission line to the receiver.

If the Horizontal Oscillator and A GC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn Rl75 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synchronized.

CHECK OF HORIZONTAL OSCILLATOR ALIGNMENT. - Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal
black bars will be gradually reduced and when only 2 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."


Figure 3-Rear Chassis Adjustments
ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the Tll 4 horizontal frequency adjustment at the rear of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster. Then turn the Tll 4 core until the bar moves out of the picture leaving it in sync.

Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tll 4 rear core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 2 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl81A slightly clockwise. If less than 2 bars are present, adjust C181A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 bars are prasent.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure. For field purposes paragraph " $B$ " under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENTS. - The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the middle.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. The centering plate includes a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the ion trap magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.
WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive trimmer Cl8lB for maximum drive (minimum capacity) consistent with a linear raster. Compression of the raster due to excessive drive can be seen as a white vertical bar or bars in the right half of the picture. Besides compression caused by excessive drive, another item to watch for is the change in linearity at the extreme left with changes of brightness control setting, By proper adjustment of the linearity coil, the changes in linearity with changes in brightness can be made negligible. In general, to achieve this condition, the linearity coil should be set slightly on the high inductance side (core slightly clockwise) of the optimum position.

Preset the following adjustments as directed:
A.-Place the width plug (P105) in the minimum width position (top).
B.-Set the width control coil L106 in approximately mid position.
C. - Set the linearity control coil L107 near minimum inductance (counter-clockwise).
D.-Set the drive capacitor C181B in the maximum drive position (counter-clockwise).

If the raster is cramped or shows compression bars on the right half of the picture turn Cl81B clockwise until this condition is just eliminated.

Adjust the linearity control coil Ll07 clockwise until best linearity and maximum deflection or best compromise are obtained then turn one quarter turn clockwise from this position.

Retouch the drive trimmer Cl81B if necessary to obtain best linearity and maximum width.

Check the horizontal linearity at various settings of the brightness control R218. There should be no compression of the right half and no appreciable change of linearity especially at the extreme left of the picture. If objectional change does occur, turn linearity coil L107 slightly clockwise and repeat the test.

Adjust the width control L106 to fill the mask.
If the line voltage is low and it becomes impossible to fill the mask, move the width plug P105 to the bottom position. The width coil L106 is inoperative in this position.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R203 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R214 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. If the top few lines of the picture are stretched or squeezed, adjust the vertical peaking control R207 until this condition is corrected.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

If necessary readjust centering to align the picture with the mask.
CHECK OF R-F OSCILLATOR ADJUSTMENTS. Tune in all available stations to see if the receiver $r$-f oscillator is adjusted to the proper frequency on all channels. If adjust-
ments are required, these should be made by the method outlined in the alignment procedure on page 9. The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis.


Figure 4-R-F Oscillator Adjustments
AGC THRESHOLD CONTROL.-The AGC threshold control R175 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R175. If the picture requires an appreciable portion of a second to reappear, or bends excessively, R175 should be readjnsted.

Turn Rl75 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn R175 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn R175 counter-clockwise just sufficiently to remove this bend or change of bend.

If the signal is weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn R175 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal then the receiver may overload when a strong signal is received.

FM TRAP ADJUSTMENT. - In some instances interterence may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L58 core on top of the antenna matching transformer for minimum interference in the picture.

CAUTION.-In some receivers, the FM trap L58 will tune down into channel 6 or even into channel 5 . Needless to say such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received check L58 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight otherwise it may rattle or buzz when the receiver is operated at high volume.

CABINET ANTENNA.-A cabinet television antenna is provided in these receivers and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where signals are strong and no reflections are experienced. However, if reception is unsatisfactory, it will be necessary to employ an outdoor antenna or an indoor antenna which can be oriented.

RADIO OPERATION. - Turn the receiver function switch to the AM and FM positions and check the radio for proper operation.

RECORD CHANGER OPERATION.-Turn the receiver function switch to the phono position and check the record player for proper operation.

KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatter-proof goggles are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the wing screw which holds the yoke frame to the cabinet. hemove the kinescope, the yoke frame with yoke and focus or centering magnet as an assembly.

INSTALLATION OF KINESCOPE.-Handle this tube by the metal rim at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Turn the tube so that the key on the base of the tube will be down and insert the neck of the kinescope through the deflection coil and focus magnet. If the tube sticks, or fails to slip into place smoothly investigate and remove the cause of the trouble. Do not force the tube.

Replace the kinescope and yoke frame assembly in the cabinet. Insert the wing screw and tighten. Engage the two side rods into the yoke frame and tighten the two nuts. Slide the deflection yoke as far forward as possible. If this is not done, difficulty will be encountered in adjusting the ion trap and focus magnet because of shadows on the corner of the raster.

Slide the chassis into the cabinet, then insert and tighten the four chassis bolts.

Slip the ion trap magnet over the neck of the kinescope.
Connect the kinescope socket to the tube base and connect the high voltage lead from the rim of the kinescope into the high voltage bushing on the high voltage compartment.

Reconnect all other cables. Do not forget to replace the yoke frame grounding spring. Perform the entire set-up procedure beginning with the Ion Trap Magnet Adjustment.


Figure 5-Instrument Cable Diagram


Figure 6-Chassis Top View


Figure 7-Chassis Bottom View


[^8]6. Dress C25 away from the arm contact of the volume control.
8. All leads from the r-f shelf leaving through the shields must be
9. All leads for FM should be kept short especially on the r-f shelf.
10. Dress the a-c leads in the RS141 chassis away from the audio
11. Dress all leads away from RIOl in RSI41.

## RADIO ALIGNMENT PROCEDURE

Before aligning set, completely mesh the gang and set the dial pointer to the mechanical max. calibration point at extreme left end of dial. When making a complete alignment follow the table below in sequence. Connect the output meter across the speaker voice coil, and turn the receiver volume control to max. Turn tone controls for maximum highs and maximum lows.
"AM'" I-F ALIGNMENT'
Test-Oscillator.-Connect low side of the test-osc. to the chassis, and keep the output as low as possible to avoid a-v-c action.

| Steps | Connect the High Side of <br> the Test Osc. to- | Tune Test Osc. <br> to- | Function <br> Switch | Turn Radio <br> Dial to- | Adjust the following |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\dagger$ For proper adjustment of the i-f cores start with the cores all the way out. The first peak obtained will be the correct one.
"FM'" ALIGNMENT PROCEDURE
Connect probe of "VoltOhmyst" to negative side of C39 and low side to chassis. Top shield must be on and the bottom shield off.

| Steps | Connect the High Side of the Test Osc. to- | $\begin{aligned} & \text { Tune Test Osc. } \\ & \text { to- } \end{aligned}$ | Function Switch | Turn Radio Dial to- | Adjust the following |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | Pin No. 1 of V4 in series with .01 mid . | $\begin{gathered} 10.7 \mathrm{mc} . \\ 30 \% \mathrm{AM} \\ \text { Modulated } \end{gathered}$ | FM | - | Top of Ratio d-c† Trans. T5 for maximum DC on "VoltOhmyst." |
| 4 | Pin No. l of V4 in series with .01 mfd . |  | FM | -- | Bottom of Ratio d-ct Trans. T5 for minimum audio output on meter. |
| 5 | Repeat steps 3 and 4 as necessary making tinal adjustment with input set to give approx. -4.0 v . on "VoltOhmyst." |  |  |  |  |
| 6 | Pin No. l of V3 in series with .01 mfd . | 10.7 mc . | FM | 88 mc . | †Top and bottom cores of T3 for maximum d-c across C39. |
| 7 | Stator of $\mathrm{Cl}-\mathrm{C}$ in series with .01 mfd . | 10.7 mc . | FM | 88 mc . | $\dagger$ Top and bottom cores of Tl for maximum d-c across C39. |
| 8 | Connect sweep generator cable to antenna terminals through 120 ahms in each side of line. | 90 mc . <br> 22.5 kc . FM mod. | FM | 90 mc . | OSC, L8 for max. audio, output. |
| 9 |  | 106 mc . 22.5 kc . FM mod. | FM | Tune to signal | ANT, Cl-FT and R-F Cl-CT for max. voltage across C39. |
| 10 |  | 90 mc . <br> 22.5 kc . FM mod. | FM | Tune to signal | ANT, Ll and R-F L2 for max. voltage across C39. |
| 11 | Repeat steps 8, 9 and 10 as required. |  |  |  |  |
| 12 | Connect a scope to junct. R33 and C35. Check response and linearity. Peak separation should be at least 180 kc . |  |  |  |  |

$\dagger$ For proper adjustment of the i-f cores start with the cores all the way out. The first peak obtained will be the correct one.
"AM" R-F ALIGNMENT

| Steps | Connect the High Side of the Test Osc. to- | Tune Test Osc. to- | Function Switch | Turn Radio Dial to- | Adjust the following |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | External radiating loop and couple loosely to receiver loop. | 1,620 kc. | AM | Min. capacity | *Osc. Cl-BT for maximum output. |
| 14 |  | 1,400 kc. | AM | Tune to signal | *Cl-DT and Cl-ET for max. output. |
| 15 |  | 600 kc . | AM | Tune to signal | $\ddagger$ Osc. L5 for max. output while rocking gang. |
| 16 |  | 600 kc . | AM | Tune to signal | ***R-F L. 7 for max. output. |

Repeat steps $13,14,15$ and 16 until no additional gain in sensitivity is obtained.
$\ddagger$ Clip a 10,000 ohm resistor across $\mathrm{Cl}-\mathrm{D}$ when making this adjustment.
*All R-F shields must be in place.
${ }_{* * * B e}$ sure the resistor employed in step 15 is removed for this adjustment.


Figure 10-Audio
Chassis Top View

Figure $11-$
Dial Cord
Figure $11-$
Dial Cord


## TELEVISION VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition, a 5000 microvolt test pattern signal was fed into the receiver, the picture synchronized and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV 97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c.

| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | $\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$ | $\underset{\substack{\text { Screen } \\ \text { (ma.) }}}{\text { in }}$ | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\operatorname{Pin}$ No. | Volts |  |  |  |
| Vl | 6X8 | Mixer | $5000 \mathrm{Mu} . \mathrm{V}$. Signal | 9 | 160 | 8 | 160 | 6 | 0 | 7 | $\begin{gathered} -2.4 \text { to } \\ -3.0 \end{gathered}$ | - | - |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 9 | 145 | 8 | 145 | 6 | 0 | 7 | $\begin{gathered} -2.8 \text { to } \\ -3.5 \end{gathered}$ | - | - |  |
| Vl | 6X8 | R-F <br> Oscillator | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 3 | 95 | - | - | 6 | 0 | 2 | $\begin{gathered} -3.8 \text { to } \\ -5.5 \end{gathered}$ | - | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 3 | 90 | - | - | 6 | 0 | 2 | $\begin{array}{\|c} \hline-3.0 \text { to } \\ -5.1 \end{array}$ | - | - |  |
| V2 | 6BQ7 | R-F <br> Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} \text { V. }}$ | 6 | 170 | - | - | 8 | 0.1 | 7 |  | - | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 6 | 133 | - | - | 8 | 1.1 | 7 | 0 | - | - |  |
| V2 | 6BQ7 | R-F Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 1 | 270 | - | - | 3 | 170 | 2 | - | - | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 1 | 260 | - | - | 3 | 133 | 2 | - | - | - | Depending on channel |
| V101 | 6AU6 | lst Sound I-F Amp. | $5000 \mathrm{Mu} . \mathrm{V}$. Signal | 5 | 127 | 6 | 124 | 7 | 0.7 | 1 | -0.4 | 6.0 | 3.0 |  |
|  |  |  | No Signo | 5 | 126 | 6 | 123 | 7 | 0.5 | 1 | -1.2 | 5.0 | 3.0 |  |
| V102 | 6AU6 | $\begin{aligned} & \text { 2d Sound } \\ & \text { I-F Amp. } \end{aligned}$ | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 132 | 6 | 60 | 7 | 0.14 | 1 | $-10$ | 2.8 | 1.2 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 131 | 6 | 65 | 7 | 0.14 | 1 | -5 | 2.0 | 1.0 |  |
| V103 | 6AL5 | Ratio Detector | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$ | 7 | 1.0 | - | - | 1 | 9.2 | - | - | - | - |  |
|  |  |  | No Signal | 7 | 0 | - | - | 1 | 8.0 | - | - | - | - |  |
| V104 | 6AV6 | lst Audio Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \\ \hline \end{gathered}$ | 7 | 90 | - | - | 2 | 0 | 1 | -0.7 | 0.45 | - | At min. |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 7 | 86 | - | - | 2 | 0 | 1 | -0.7 | 0.45 | - | volume |
| V106 | 6AU6 | lst Pix. I-F <br> Amplifier | $5000 \mathrm{Mu} . \mathrm{V} .$ <br> Signal | 5 | 180 | 6 | 230 | 7 | 0.15 | 1 | $-6.5$ | 1.5 | 0.3 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 5 | 97 | 6 | 129 | 7 | 1.0 | 1 | 0 | 7.0 | 3.0 |  |
| V107 | 6CB6 | 2nd Pix. I-F Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 5 | 236 | 6 | 233 | 2 | 0.1 | 1 | $-6.5$ | 1.5 | 0.14 |  |
|  |  |  | No Signal | 5 | 226 | 6 | 138 | 2 | 0.85 | 1 | 0 | 12.0 | 3.0 |  |
| V108 | 6CB6 | 3d Pix. I-F Amplitier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | 149 | 6 | 144 | 2 | 0.9 | 1 | 0 | 11.0 | 3.0 |  |
|  |  |  | No Signal | 5 | 129 | 6 | 133 | 2 | 0.8 | 1 | 0 | 10.0 | 2.0 |  |
| V109 | 6CB6 | 4th Pix. I-F Amplifier | 5000 Mu . V. Signal | 5 | 178 | 6 | 163 | 3 | 2.2 | 1 | 0 | 8.9 | 2.1 |  |
|  |  |  | No Signal | 5 | 165 | 6 | 150 | - 2 | 2.0 | 1 | 0 | 7.9 | 2.1 |  |
| V110 | 6AG7 | Video <br> Amplifier | 5000 Mu . V. Signal | 8 | 130 | 6 | 172 | 5 | 1.2 | 4 | *-5.0 | 22.5 | 5.5 | *Depends on picture |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 8 | 130 | 6 | 107 | - 5 | 0.8 | 4 | *-2.0 | 15.0 | 4.0 | *Depends on picture |
| V1ll | 6CB6 | AGC <br> Amplifier | $\begin{gathered} 5000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 5 | -27 | 76 | 238 | - 2 | 152 | 1 | 155 | 0.1 | 3.4 | $\begin{aligned} & \text { AGC control } \\ & \text { set for } \end{aligned}$ |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 5 | 4.5 | 6 | 218 | 82 | 135 | 1 | 118 | 0 | 0 | normal operation |


| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | $\begin{aligned} & \text { I } \\ & \text { Plate } \\ & \text { (ma.) } \end{aligned}$ | $\begin{gathered} \text { I } \\ \text { Screen } \\ \text { (ma.) } \end{gathered}$ | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts |  |  |  |
| V112 | 6SN7GT | Hor. Sync Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 2 | 152 | - | - | 3 | 0.9 | 1 | -44 | 1.1 | - |  |
|  |  |  | No Signal | 2 | 135 | - | - | 3 | *0.4 | 1 | *-30 | 0.5 | - | *Depends on noise |
|  |  |  | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 5 | 86 | - | - | 6 | 0 | 4 | $-2.0$ | 5.5 | - |  |
|  |  |  | No Signal | 5 | 50 | - | - | 6 | 0 | 4 | -1.8 | 4.6 | - |  |
| V113 | 6SN7GT | Hor. Sync Separator | $5000 \mathrm{Mu} . \mathrm{V}$. Signal | 2 | 374 | - | - | 3 | 216 | 1 | 155 | 1.2 | - |  |
|  |  |  | No Signa Signal | 2 | 372 | - | - | 3 | 155 | 1 | 134 | 0.8 | - |  |
| V113 | 6SN7GT | Vert. Sync Separator | 5000 Mu . V. Signal | 5 | 345 | - | - | 6 | 205 | 4 | 153 | $<0.1$ | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 340 | - | - | 6 | 160 | 4 | 130 | $<0.1$ | - |  |
| V114A | 6SN7GT | Vert. Sync Amplifier | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 5 | 7.0 | - | - | 6 | 0 | 4 | -0.2 | 0.6 | - |  |
|  |  |  | No Signal | 5 | *7.0 | - | - | 6 | 0 | 4 | * 0 | 0.5 | - | *Depends on noise |
| V114B | 6SN7GT | Vertical Oscillator | 5000 Mu . V. Signal | 2 | 176 | - | - | 3 | 0 | 1 | -27 | 0.2 | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 2 | 176 | - | - | 3 | 0 | 1 | -27 | 0.2 | - |  |
| V115 | 6AQ5 | Vertical <br> Output | 5000 Mu . V. Signal | 5 | 359 | 6 | 359 | 2 | 30 | 1 | 0 | 17.3 | 1.2 |  |
|  |  |  | No Signal | 5 | 357 | 6 | 357 | 2 | 29 | 1 | 0 | 17.3 | 1.2 |  |
| V116 | 6SN7GT | Horizontal Osc. Control | $5000 \mathrm{Mu} . \mathrm{V}$. Signal | 2 | 145 | - | - | 3 | -18 | 1 | -42 | 0.4 | - | Hor. hold couñter. clockwise |
|  |  |  | $5000 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal | 2 | 230 | - | - | 3 | -18 | 1 | -42 | 0.4 | - | Hor hold clockwise |
|  |  |  | No Signal | 2 | 188 | - | - | 3 | -24 | 1 | -42 | 0.37 | - |  |
| Vll6 | 6SN7GT | Horizontal Oscillator | $5000 \mathrm{Mu} . \mathrm{V}$. Signal | 5 | 258 | - | - | 6 | 0 | 4 | *-91 | 2.0 | - | * Depends on Oscillator Adjustment |
|  |  |  | No Signal | 5 | 256 | - | - | 6 | 0 | 4 | *-94 | 2.0 | - |  |
| V117 | 6CD6G | Horizontal Output | 5000 Mu . V. Signal | Cap | * | 8 | 165 | 3 | 12.5 | 5 | -30 | 110 | 15.0 | *High Voltage Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | Cap | * | 8 | 165 | 3 | 12.5 | 5 | -30 | 110 | 15.0 |  |
| V118 | $\begin{array}{r} \text { 1B3GT } \\ / 8016 \end{array}$ | H. V. Rectifier | 5000 Mu . V. Signal | Cap | * | - | - | 2\& 7 | 16,000 | - | - | 0.2 | - | *High Voltage <br> Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | Cap | * | - | - | 2\&7 | 16,400 | - | - | 0.2 | - |  |
| $\begin{aligned} & \text { V119 } \\ & \text { V120 } \end{aligned}$ | 6W4GT | Dampers | 5000 Mu V. Signal | $5$ | 355 | - | - | 3 | * | - | - | 57 | - | *High Voltage Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 353 | - | - | 3 | * | - | - | 57 | - |  |
| V121 | 21AP4 | Kinescope | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | Cone | 16,000 | 10 | 555 | 11 | 140 | 2 | 82 | 0.2 | - | At average Brightness |
|  |  |  | -No <br> Signal | Cone | 16,400 | 10 | 550 | 11 | 132 | 2 | 76 | 0.2 | - |  |
| $\begin{aligned} & \mathrm{V} 122 \\ & \mathrm{~V} 123 \end{aligned}$ | 5U4G | Rectifiers | $\underset{\text { Signal }}{5000 \mathrm{Mu} .}$ | 4\&6 | 388 | - | - | 2\&8 | 389 | - | - | *139 | - | * Per Tube |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Sianal } \end{aligned}$ | 4\&6 | 386 | - | - | 2\&8 | 387 | - | - | *145 | - |  |



Figure 12-KRK11A R-F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. Keep all wiring in the pix i-f, sound i-f and video circuits as short as possible.
2. Keep the leads on CllO, Clll, Cll2, C200, RlO9, RllO, R111, Rll2, R114, R115 and R233 as short and direct as possible.
3. Do not change the bus wire connections to pin 2 of VlOl and V102. Sleeving is used on these wires to insure length and to prevent shorting.
4. Dress Cll4 down between Rll7 (volume control) and wafer Sl01-2.
5. Ground R130 to pin 3 of V106 and R138 to pin 7 of V107.
6. Do not change the grounding of R141, R146 and R149.
7. Keep the bus wire from Tl09-A to Cl46 (plug in capacitor) short and direct.
8. Ground the filaments of sockets of V107, V108 and V109 independently of the socket center pin. Use ground lances provided near each socket.
9. Dress Cl98 straight up to act as a shield between T101-A and V110-4.
10. Dress C153 and R170 (kine cathode) up in the air above the terminal board.
11. Keep the leads connected to Tll4-C and Tll4-D (synchroguide) down so that they will not short out when the chassis is placed in the cabinet.
12. Do not reroute any wires between TlO 4 and the terminal board alongside it. Keep all leads on the foot side of the terminal board.
13. Dress all wires routed past Tl04, shielded wires W102 and W103 under the big lances near T104.
14. Dress all a-c leads to S102 under the large lances on the front apron and away from R243.
15. Dress Rll6 close to the chassis with leads as short as possible.
16. Dress C206, C221 and C212 up in the air and away from all other leads and components.
17. Dress all leads away from bleeder resistor R243.
18. The blue lead from pin 5 of Vlll to the terminal board under the high voltage cage should be routed between V117 socket and the rear apron.
19. Keep leads on C214 as short and direct as possible.
20. Dress R206 away from all other wires and components to prevent excessive heating.
21. Keep the wire from the vertical output transformer Tll4 away from the $5 U 4 \mathrm{G}$ rectifier tubes.
22. Dress all 2 watt resistors away from each other and all other wires and components.
23. Dress all wires away from damper tubes V119 and V120.
24. Blue wire from pin 5 Vll6 to Tll4-A should not be more than 5 inches long.
25. Dress all peaking coils up and away from the base.
chassis wirng diagram кcsser




Models 21T207, 21T207G "Crandall" Mahogany


Model 21T208 "Lambert" Walnut, Mabogany


Model 21 T217 "Brookfield" Walnut, Mabogany MODELS 2IT207, 2IT207G 21T208, 2IT217, 21T218, 21T227, 21T228, 21T229
Chassis No. KCS72A —Mfr. No. 274Service Data - 1952 No. T4-


Model 21T218 "Lansford" Walnut, Mabogany, Blonde


Model 21 T227 "Lindale" Walnut, Mahogany, Blonde

## PREPARED BY RCA SERVICE CO., INC. FOR <br> RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION <br> CAMDEN, N. J., U. S. A.



ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE . 227 square inches on a 21 AP4 Kinescope TELEVISION R-F FREQUENCY RANGE
All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc . Picture I-F Carrier Frequency ................... 25.50 mc . Sound I-F Carrier Frequency. 21.00 mc . and 4.5 mc . POWER SUPPLY RATING 115 volts, 60 cycles, 190 watts AUDIO POWER OUTPUT RATING 4.0 watts max.

## VIDEO RESPONSE

SWEEP DEFLECTION FOCUS
LOUDSPEAKERS
Models 21T207, 207G. (971636-1) 5" PM Dynamic, 3.2 ohms Models 21T208, 217, 229. (971490-3) 8" PM Dynamic, 3.2 ohms Models 21 T218, 227, 228. (92569-12) 12" PM Dynamic, 3.2 ohms WEIGHT AND DIMENSIONS (inches)

| Model | Net Weight | Shipping Weight | Width | Height | Depth |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21 T 207 | 94 | 115 | 281/2 | 281/4 | 271/2 |
| 21T207G | 105 | 126 | 285/8 | 281/4 | 285/8 |
| 21 T 208 | 94 | 115 | 251/8 | 243/4 | 251/8 |
| 21 T 217 | 104 | 132 | 26 | 393/8 | 251/8 |
| 21 T 218 | 112 | 144 | 275/8 | 391/4 | 24 |
| $21 T 227$ | 130 | 162 | 271/2 | 401/8 | 271/8 |
| 21 T 228 | 132 | 164 | 275/8 | 395/8 | 265/8 |
| 21 T229 | 139 | 173 | .271/8 | 40 | 261/8 |

## RECEIVER ANTENNA INPUT IMPEDANCE

Choice: 300 ohms balanced or 72 ohms unbalanced.

## RCA TUBE COMPLEMENT

| Tube Used | Function |
| :---: | :---: |
| (1) RCA 6CB6 | R-F Amplifier |
| (2) RCA 6 J 6 | R-F Oscillator and Mixer |
| 3) RCA 6 CB 6 | lst Picture I-F Amplifier |
| ( 4) RCA 6CB6 | 2nd Picture I-F Amplifier |
| 5) RCA 6CB6. | 3rd Picture I-F Amplifier |
| (6) RCA 12AU7 Picture 2n | ctor and Vert. Sync. Sep. |
| 7) RCA 6AG7 (6AC7, 6CL6) | Video Amplifier |
| ( 8) RCA 6AU6 | 1st Sound I-F Amplifier |
| 9) RCA 6AU6 | 2nd Sound I-F Amplifier |
| (10) RCA 6AL5 | Ratio Detector |
| (11) RCA 6AV6 | 1st Audio Amplifier |
| (12) RCA 6K6GT | Audio Output |
| (13) RCA 6AU6 | AGC Amplitier |
| (14) RCA 6SN7GT . Horizont | c. Sep. and Sync. Output |
| (15) RCA 6J5. | Vertical Sweep Oscillator |
| (16) RCA 6K6GT | Vertical Sweep Output |
| (17) RCA 6SN7GT H | ep Oscillator and Control |
| (18) RCA 6BQ6GT | Horizontal Sweep Output |
| (19) RCA 6W 4GT | Damper |
| (20) RCA lB3-GT /8016 | High Voltage Rectifier |
| (21) RCA 21 AP 4 (21EP4) | Kinescope |
| (22) RCA 5U4G | Rectifier |
| (23) RCA 5Y3GT | Rectifier |

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

(Continued)

| PICTURE INTERMEDIATE FREQUENCIES | OPERATING CONTROLS (Front Panel) |
| :---: | :---: |
| Picture Carrier Frequency .................... 25.50 mc . | $\left.\begin{array}{l}\text { Channel Selector } \\ \text { Fine Tuning }\end{array}\right\} \ldots . . . . . . . .$. ......... Dual Control Knobs |
| Adjacent Channel Sound Trap................ 27.00 mc . | $\left.\begin{array}{l}\text { Picture } \\ \text { Brightness }\end{array}\right\} \ldots . . . . . . . . . . . . . . . . . . . . . D u a l ~ C o n t r o l ~ K n o b s ~$ |
| SOUND INTERMEDIATE FREQUENCIES |  |
| Sound Carrier Frequency . . . . . . . . . . . . . . . . . 21.00 mc. | Sound Volume and On-Off Switch |
| Sound I.F. Frequency ........................ 4.5 mc. |  |
| VIDEO RESPONSE ........................ To 3.2 mc . | NON-OPERATING CONTROLS (not including r-f and i-f adjustments) |
| FOCUS ........................................ Magnetic |  |
| SWEEP DEFLECTION ..................... Magnetic | Horizontal Linearity ....rear chassis screwdriver adjustment Vertical Linearity................... rear chassis adjustment |
| SCANNING ........................ Interlaced, 525 line | Horizontal Drive .......rear chassis screwdriver adjustment Horizontal Oscillator Frequency . . rear chassis adjustment |
| HORIZONTAL SWEEP FREQUENCY ........15,750 cps | Horizontal Oscillator Waveform . .bottom chassis adjustment Horizontal Locking Range . ...........rear chassis adjustment Focus top chassis adjustment |
| VERTICAL SWEEP FREQUENCY............. 60 cps | Ion Trap Magnet . . . . . . . . . . . . . . top chassis adjustmen Deflection Coil. ........... top chassis wing nut adjustment |
| FRAME FREQUENCY (Picture Repetition Rate). 30 cps | AGC Control........................ear chassis adjustment Pin Cushion Correction Magnets (21T207G only) |
|  | top chassis adjustment |

## high Voltage warning

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

[^9]The following adjustments are necessary when turning the receiver on for the first time.

1. See that the TV-PH switch is in the "TV" position.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best pix and the SOUND VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a light pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.

8. Adjust the CONTRAST and BRIGHTNESS controls for suitable picture contrast and brightness.
9. In switching from one channel to another, it may be necessary to repeat steps 4 and 8.
10. When the set is turned on again after an idle period it should not be necessary to repeat the adjustment if the positions of the controls have not been changed. If any adjustment is necessary, step number 4 is generally sufficient.
11. If the positions of the controls have been changed, it may be necessary to repeat steps 2 through 8 .
12. To use a record player, plug the record-player output cable into the PHONO jack on the rear apron, and set the TV-PH switch to "PH"

Figure 1-Receiver Operating Controls

## INSTALLATION INSTRUCTIONS

UNPACKING. - These receivers are shipped complete in cardboard cartons. The kinescope is shipped in place in the receiver.

Take the receiver out of the carton and remove all packing material.

Make sure that all tubes are in place and are firmly seated in their sockets.

Check to see that the kinescope high voltage lead clip is in place.

Plug a power cord into the 115 volt a-c power source and into the receiver interlock receptacle. Turn the receiver power switch to the "on" position, the brightness control fully clockwise, and the picture control counter-clockwise.

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap magnet approximately in the position shown in Figure 2. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown in Figure 2) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.

DEFLECTION YOKE ADJUSTMENT.-If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS. - It will now be necessary to obtain a test pattern picture in order to make further adjustments. Connect the antenna transmission line to the receiver.

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn Rl49 on the rear apron (see Figure 3) counter-clockwise until the set operates normally and the picture can be synced.
CHECK OF HORIZONTAL OSCILLATOR ALIGN. MENT.-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 or 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90

degrees of additional clockwise rotation of the control. At the extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR.-If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in point, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the TllO horizontal frequency adjustment at the rear of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster. Then turn the Tllo core until the bar moves out of the picture leaving it in sync.

Horizontal Locking Range Adjustment.-Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tllo rear core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Ci61A slightly clockwise. If less than 2 bars are present, adjust C161A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specified under each are fultilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the $A G C$ system is in proper adiustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page 11: For field purposes paragraph " $B^{\prime \prime}$ under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENT.-The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the center of the opening.

PIN-CUSHION CORRECTION.-Two pin-cushion correction magnets are employed to correct a small amount of pin-cushion of the raster due to the lens effect of the face of the kinescope. These magnets are mounted on small arms, one on each side of the kinescope as shown in Figure 2. The arms hinge in one plane on self tapping screws which act both as a hinge and an adjustment locking screw. When the magnets are swung towards the tube, maximum correction is obtained. Minimum correction is obtained when the arms are swung away from the tube. To adjust the magnets, loosen the two self tapping screws and position the magnets until the sides of the raster appear straight. Tighten the screws without shifting the position of the magnets. In some cases it may be necessary to twist or bend the magnet support arms to obtain the appearance of straight raster edges.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. The centering plates include a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.

WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive trimmer Cl61B counter-clockwise until the picture begins to "wrinkle" in the middle then clockwise until the "wrinkle" disappears.

Turn the horizontal linearity control L108 clockwise until the picture begins to "wrinkle" on the right and then counterclockwise until the "wrinkle" disappears and best linearity is obtained.

Adjust the width control Ll06 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the best linearity.

Adjustments of the horizontal drive control affect horizontal ascillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R173 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R18l on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS.-Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.



Figure 4-R-F Oscillator Adjustments
CHECK OF R-F OSCILLATOR ADJUSTMENTS. -
Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 9 . The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 4. Adjustment for channel 13 is on top of the chassis.

AGC THRESHOLD CONTROL.-The AGC threshold control R149 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R149. If the picture requires an appreciable portion of a second to reappear, or bends excessively, Rl49 should be readjusted.

Turn Rl49 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn Rl49 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn R149 counter-clockwise just sufficiently to remove this bend or change of bend.

If the signal is weak, the above method may not work as it may be impossible to get the picture to bend. In this case, turn Rl49 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received.

FM TRAP ADJUSTMENT. - In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L203 core on top of the antenna matching transformer for minimum interference in the picture.

CAUTION. - In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5 . Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

KINESCOPE SCREEN CLEANING.-The kinescope safety glass is held in place by four spring clips which may be removed from the back of the front panel. This permits removing the safety glass for cleaning without the necessity of removing the chassis and kinescope.

CHASSIS REMOVAL. - To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the yoke and high voltage cable. Take out the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

KINESCOPE HANDLING PRECAUTION.-Do not install, remove, or handle the kinescope in any manner, unless shatterproof goggles and heavy gloves are worn. People not so equipped should be kept away while handling the kinescope. Keep the kinescope away from the body while handling.

REMOVAL OF KINESCOPE.-To remove the kinescope from the cabinet, loosen the two nuts and disengage the rods alongside the kinescope. Remove the screw which holds the yoke frame to the cabinet. Remove the kinescope, the yoke frame with yoke and focus magnet as an assembly.

Handle this tube by the portion at the edge of the screen. Do not cover the glass bell of the tube with fingermarks as it will produce leakage paths which may interfere with reception. If this portion of the tube has inadvertently been handled, wipe it clean with a soft cloth moistened with "dry" carbon tetrachloride.

INSTALLATION OF KiNESCOPE.-Wipe the kinescope screen surface and front panel safety glass clean of all dust and fingermarks with a soft cloth moistened with "Windex" or similar cleaning agent.

Replace the kinescope and chassis by reversal of the removing process. The kinescope should be installed so that the high voltage contact is to the right when looking at it from the rear of the cabinet. The magnet of the ion trap magnet should be to the left.

CABINET ANTENNA. - A cabinet antenna is provided in some receiver models and the leads are brought out near the antenna terminal board. The cabinet antenna may be employed in place of the outdoor antenna in areas where the signals are stronq and no reflections are experienced.

ANTENNAS. - The finest television receiver built may be said to be only as good as the antenna design and installation. It is therefore important to select the proper antenna to suit the particular local conditions, to install it properly and orient it correctly.

If two or more stations are available and the two stations are in different directions, it may be possible to make a compromise orientation which will provide a satisfactory signal on all such channels.

If it is impossible to obtain satisfactory results on one or more channels, it may become necessary either to provide means for turning the antenna when switching channels or to install a separate antenna for one or more channels and to switch antennas when switching channels.
In some cases, the antenna should not be installed permanently until the quality of the picture reception has been observed on a television receiver. A temporary transmission line can be run between receiver and the antenna, allowing sufficient slack to permit moving the antenna. Then, with a telephone system connecting an observer at the receiver and an assistant at the antenna, the antenna can be positioned to give the most satisfactory results on the received signal. A shift of direction or a few feet in antenna position may effect a tremendous difference in picture reception.

REFLECTIONS. - Multiple images sometimes known as echoes or ghosts, are caused by the signal arriving at the antenna by two or more routes. The second or subsequent image occurs when a signal arrives at the antenna after being reflected off a building, a hill or other object. In severe cases of reflections, even the sound may be distorted. In less severe cases, reflections may occur that are not noticeable as reflections but that will instead cause a loss of definition in the picture.
Under certain extremely unusual conditions, it may be possible to rotate or position the antenna so that it receives the cleanest picture over a reflected path. If such is the case, the antenna should be so positioned. However, such a position may give variable results as the nature of reflecting surfaces may vary with weather conditions. Wet surfaces have been known to have different reflecting characteristics than dry surfaces.

Depending upon the circumstances, it may be possible to eliminate the reflections by rotating the antenna or by moving it to a new location. In extreme cases, it may be impossible to eliminate the reflection.

INTERFERENCE. - Auto ignition, street cars, electrical machinery and diathermy apparatus may cause interference which spoils the picture. Whenever possible, the antenna location should be removed as far as possible from highways, hospitals, doctors' offices and similar sources of interference. In mounting the antenna, care must be taken to keep the antenna rods at least $1 / 4$ wave length (at least 6 feet) away from other antennas, metal roofs, gutters or other metal objects.

Short-wave radio transmitting and receiving equipment may cause interference in the picture in the form of moving ripples. In some instances it may be possible to eliminate the interference by the use of a trap in the antenna transmission line. However, if the interfering signal is on the same frequency as the television station, a trap will provide no improvement.

WEAK PICTURE. - When the installation is near the limit of the area served by the transmitting station, the picture may be speckled, having a "snow" effect, and may not hold steady on the screen. This condition is due to lack of signal strength from the transmitter.

RECEIVER LOCATION. - The owner should be advised of the importance of placing the receiver in the proper location in the room.

The location should be chosen-

- Away from bright windows and so that no bright light will fall directly on the screen. (Some illumination in the room is desirable, however.)
-To give easy access for operation and comfortable viewing.
-To permit convenient connection to the antenna.
-Convenient to an electrical outlet.
-To allow adequate ventilation.


CHASSIS BOTTOM VIEW
21T207, 21T207G, 21T208, 21T217, 21T218, 21T227, 21T228, 21T229


## ALIGNMENT PROCEDURE

TEST EQUIPMENT.-To properly service the television chassis of this receiver, it is recommended that the following test equipment be available:

R-F Sweep Generator meeting the following requirements:
(a) Frequency Ranges

20 to 30 mc .1 mc . and 10 mc . sweep width
50 to $90 \mathrm{mc} ., 10 \mathrm{mc}$. sweep width
170 to 225 mc ., 10 mc . sweep width
(b) Output adjustable with at least 11 volt maximum.
(c) Output constant on all ranges.
(d) "Flat" output on all attenuator positions.

Cathode-Ray Oscilloscope.-For alignment purposes, the oscilloscope employed must have excellent low frequency and phase response, and should be capable of passing a 60 -cycle square wave without appreciable distortion.

For video and sync waveform observations, the oscilloscope must have excellent frequency and phase response from 10 cycles to at least two megacycles in all positions of the gain control.

Signal Generator to provide the following frequencies with crystal accuracy.
(a) Intermediate frequencies
22.25 and 25.5 mc . conv. and first pix i-f trans.
22.75 mc . second picture i-f transformer
24.25 mc . fourth picture i-f transformer
25.5 mc . third picture i-f transformer
25.50 mc . picture carrier
27.00 mc . adjacent channel sound trap
(b) Radio frequencies

| Channel | Picture Carrier | Sound Carrier |
| :---: | :---: | :---: |
| Number | Freq. Mc. | Freq. Mc |
| 2 | 55.25 | 59.75 |
| 3 | 61.25 | 65.75 |
| 4 | 67.25 | 71.75 |
| 5 | 77.25 | 81.75 |
| 6 | 83.25 | 87.75 |
| 7 | 175.25 | 179.75 |
| 8 | 181.25 | 185.75 |
| 9 | 187.25 | 191.75 |
| 10 | 193.25 | 197.75 |
| 11 | 199.25 | 203.75 |
| 12 | 205.25 | 209.75 |
| 13 | 211.25 | 215.75 |

(c) Output of these ranges should be adjustable and at least.$l$ volt maximum.

Heterodyne Frequency Meter with crystal calibrator which covers the frequency range from 80 mc . to 109 mc . and from 200 mc . to 237 mc .

Electronic Voltmeter of Junior or Senior "VoltOhmyst" type and a high voltage multiplier probe for use with this meter to permit $m$ asurements up to 15 kv .

Service Precautions.-If possible, the chassis should be serviced without the kinescope. However, if it is necessary to view the raster during servicing, it would be a great convenience to have a bench mounted kinescope and speaker complete with a set of extension cables.

CAUTION : Do not short the kinescope second anode lead. Its short circuit current presents a considerable overload on the high voltage rectifier VIl7.

Adjustments Required.-Normally, only the r-f ascillator and mixer lines will require the attention of the service technician. All other circuits are either broad or very stable and hence will seldom require readjustment.

ORDER OF ALIGNMENT.-When a complete receiver alignment is necessary, it can be most conveniently performed in the following order:

| (1) R-F unit | ( 6) Sound i-f alignment |
| :--- | :--- |
| (2) Picture i-f transformers | ( 7) 4.5 Mc Trap Adjustment |
| (3) Picture i-f trap | ( 8) Check of overall response |
| (4) Sweep of picture i-f | (9) AGC control adjustment |
| (5) Ratio detector | (10) Horizontal oscillator |
| alignment | alignment |

R-F UNIT ALIGNMENT.-Disconnect the co-ax link from terminal 2 of the r-f unit terminal board and connect a 39 ohm composition resistor between lugs 1 and 2 .

Detune Tl by backing the core all the way out of the coil.
Back the L44 core all the way out. Back the L203 core all the way out.

In order to align the r-f tuner, it will first be necessary to set the channel-13 oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments.

The oscillator may be aligned by adjusting it to beat with a crystal-calibrated heterodyne frequency meter. Couple the meter probe loosely to the receiver oscillator.

Set the channel selector switch to 13 .
Adjust the heterodyne frequency meter to the correct frequency ( 236.75 mc ).

Set the fine tuning control 30 degrees clockwise from the mechanical center of its range.

Adjust Cl for an audible beat on the heterodyne frequency meter.

Now that the channel-13 oscillator is set to frequency, we may proceed with the r-f alignment.

Turn the AGC control fully clockwise.
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a 1,000 ohm potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to terminal 3 of the r-f unit. Adjust the bias box potentiometer to produce -3.5 volts of bias at the r-f unit terminal board.

Connect the oscilloscope to the test point TPl on top of the r-f unit.

Connect the r-f sweep oscillator to the receiver antenna terminals. The method of connection depends upon the output impedance of the sweep. The P300 connections for 300 -ohm balanced or 72 -ohm single-ended input are shown in the circuit schematic diagram. If the sweep oscillator has a 50 -ohm or 72 -ohm single-ended output, 300 -ohm balanced output can be obtained by connecting as shown in Figure 9.

Connect the signal generator loosely to the receiver antenna terminals.

Set the receiver channel switch to channel 8.
Set the sweep oscillator to cover channel 8.
Insert markers of channel 8 picture carrier and sound carrier, 181.25 mc . and 185.75 mc .

Adjust C9, Cll, Cl6 and C22 for approximately correct curve shape, frequency, and band width as shown in Figure 11.

The correct adjustment of C22 is indicated by maximum amplitude of the curve midway between the markers. Cl6 tunes the r-f amplifier plate circuit and affects the frequency of the curve most noticeably. C9 tunes the converter grid circuit and affects the tilt of the curve most noticeably (assuming that C22 has been properly adjusted). Cll is the coupling adjustment and hence primarily affects the response band width.

Set the receiver channel switch to channel 6.
Adjust the heterodyne frequency meter to the correct frequency ( 108.75 mc .)

Set the fine tuning control 30 degrees clockwise from the mechanical center of its range.

Adjust L5 for an audible beat on the heterodyne frequency meter.

## ALIGNMENT PROCEDURE

Set the sweep generator to channel 6 .
From the signal generator, insert channel 6 sound and picture carrier markers, 83.25 mc . and 87.75 mc .
Adjust L42, L45 and L49 for proper response as shown in Figure 12.
L42 is adjusted to give maximum amplitude of the curve between the markers. L45 primarily affects the tilt of the curye. L49 primarily affects the frequency of response.

Connect the "VoltOhmyst" to the r-f unit test point TP1. Adjust C7 for -3.0 volts at the test point.
Retouch L42, L45 and L49 for proper response if necessary. If necessary, retouch Cll for proper band width on channel 6. Continue these retouching adjustments until proper response is obtained and -3.0 volts of oscillator injection are present at the test point, TP1

Set the receiver channel selector switch to channel 8 and readjust Cl for proper oscillator frequency.

Set the sweep oscillator and signal generator to channel 8 .
Readjust C9, C16 and C22 for correct curve shape, frequency and band width. Readjust Cll only if necessary.

Switch the receiver, the sweep oscillator and signal generator to channel 13.

Adjust L52 for maximum amplitude of the curve midway between markers and then overshoot the adjustment by turning the slug in the same direction from the initial setting a little more than the amount of turning required to reach maximum amplitude of response.

Adjust C22 for maximum amplitude of response.
Turn off the sweep generator. Adjust the L43 core for correct channel 13 oscillator frequency, then overshoot the adjustment by turning the slug a little more in the same direction from the initial setting. Reset the oscillator to proper frequency by adjustment of Cl .

Turn the sweep oscillator back on.
Check the response of channels 7 through 13 by switching the receiver channel switch, sweep oscillator and marker oscillator to each of these channels and observing the response and oscillator injection obtained. See Figure 11 for typical response curves. It should be found that all these channels have the proper shaped response with the markers above $80 \%$ response.

If the markers do not fall within this requirement, switch to channel 8 and readjust $\mathrm{C} 9, \mathrm{Cl1}$,Cl 6 and C 22 as necessary. If C22 required adjustment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. The antenna circuit (L52, C22) is broad so that tracking is not particularly critical.
If the valley in the top of the selectivity curves for the high channels is deeper than normal, the curve can be flattened somewhat by decreasing the inductance of L44 by turning the core stud in. Be sure to check for undesirable resonant suckouts on channels 7 and 8 if this is done.
Turn the sweep oscillator off and check the receiver channel 8 r-f oscillator frequency. If the oscillator is off frequency overshoot the adjustment of Cl and correct by adjusting L43.
Turn the receiver channel selector switch to channel 6. Adjust L5 for correct oscillator frequency.
Turn the sweep oscillator on and to channel 6 and observe the response curve. If necessary readjust L42, L45 and L49. It should not be necessary to touch Cll.

Check the oscillator injection voltage at the test point TPI. If necessary adjust C7 to give -3 volts injection. If C7 is adjusted, switch to channel 8, and readjust C9 for proper curve shape, then recheck channel 6 .
Switch the receiver through channel 6 down through channel 2 and check for normal response curve shapes and oscillator injection voltage.

Likewise check channels 7 through 13, stopping on 13 for the next step.
With the receiver on channel 13 , check the receiver oscillator frequency. Correct by adjustment of Cl if necessary.

Adjust the oscillator to frequency on all channels by switching the receiver and the heterodyne frequency meter to each channel and adjusting the appropriate oscillator trimmer to obtain a beat on the freq. meter. It should be possible to adjust the oscillator to the correct frequency on all channels with the fine tuning control 30 degrees clockwise from the mechanical center of its range.

| Channel Number | Picture <br> Carrier <br> Freq. Mc. | Sound Carrier Freq. Mc. | Receiver R-F Osc. Freq. Mc. | Channel Oscillator Adjustmen |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 55.25 | 59.75 | 80.750 | Ll |
| 3 | 61.25 | 65.75 | 86.750 | L2 |
| 4 | 67.25 | 71.75 | 92.750 | L3 |
| 5 | 77.25 | 81.75 | 102.750 | L4 |
| 6 | 83.25 | 87.75 | 108.750 | L5 |
| 7 | 175.25 | 179.75 | 200.750 | L6 |
| 8 | 181.25 | 185.75 | 206.750 | L7 |
| 9 | 187.25 | 191.75 | 212.750 | L8 |
| 10 | 193.25 | 197.75 | 218.750 | L9 |
| 11 | 199.25 | 203.75 | 224.750 | L10 |
| 12 | 205.25 | 209.75 | 230.750 | Lll |
| 13 | 211.25 | 215.75 | 236.750 | Cl |

Switch to channel 8 and observe the response.
Adjust Tl clockwise while watching the change in response. When Tl is properly adjusted, the selectivity curve will be slightly wider with a slightly deeper valley in its top.
Switch through all channels and observe response, oscillator injection and $x$-f oscillator frequency. Minor touch-ups of adjustments may be made at this time. However, if C7 or C9 are changed appreciably, then a recheck of the oscillator frequency on all channels should be made.
Reconnect the link from TlOI to terminal 2 of the r-f unit terminal board.
Since Tl was adjusted during the r -f unit alignment it will be necessary to sweep the overall i-f response.

R-F UNIT TUBE CHANGES.-Since most of the circuits are low capacitance circuits the r-f unit may require readjustments when the tubes are changed.
If the 6 CB6 r-f amplifier tube is changed, it may be necessary to readjust Cl 6 and C 22 .
If the 6J6 oscillator and mixer tube is changed, then more extensive adjustments are required.
For good conversion efficiency, the oscillator injection to a triode mixer must be held reasonably close to the optimum value. Although there is some latitude in this level, it is nearly expended in the normal variation in injection from channel to channel. Consequently, the adjustment of C 7 is limited primarily to establishing the conditions for good conversion. Since changes in oscillator injection affect conversion gain, it also affects the input capacity of the mixer, thus also affecting tracking of the mixer grid circuit. These tube variations with their consequent effect on circuit alignment thereby require readjustment of the r-f unit if maximum conversion efficiency is to be retained after the 6J6 tube is changed. It may be possible, however, to try several 6 J 6 tubes and select one which gives satisfactory performance without realignment.

PICTURE I-F TRANSFORMER ADJUSTMENTS.Connect the "VoltOhmyst" to the junction of Rl42 and Ri43.
Turn the AGC control fully clockwise.
Obtain a 7.5 volt battery capable of withstanding appreciable current drain and connect the ends of a $1,000 \mathrm{ohm}$ potentiometer across it. Connect the battery positive terminal to chassis and the potentiometer arm to the junction Rl 42 and R143. Adjust the potentiometer for -5.0 volts indication on the "VoltOhmyst".

Set the channel switch to channel number 9, 10 or 11 .
Connect the "VoltOhmyst" to pin 4 of V110 (pin 2 if 6CL6 is used) and to ground.

Connect the output of the signal generator to the mixer grid test point TP2 in series with a 1500 mmf ceramic capacitor.

Connect a separate -5 volt bias supply to TP1 with the positive terminal to ground

Set the generator to each of the following frequencies and with a thin fiber screwdriver tune the specified adjustment for maximum indication on the "VoltOhmyst". In each instance the generator should be checked against a crystal calibrator to insure that the generator is on frequency.

## ALIGNMENT PROCEDURE

Adjust the signal generator output to give 3 volts on the "VoltOhmyst" as the final adjustment is made.
(1) $24.25 \mathrm{mc} .-\mathrm{TlO7}$
(3) $22.75 \mathrm{mc}-\mathrm{Tl} 05$
(2) 25.5 mc - -Tl 06

PICTURE I-F TRAP ADJUSTMENT.-With the same connections as above, tune the generator to 27.00 mc . and adjust the T104 top core for minimum d-c on the "VoltOhmyst". Set the generator output so that this minimum is about 3 volts when final adjustment is made. If necessary, the i-f bias may be reduced in order to obtain the 3 volt reading on the "VoltOhmyst".
SWEEP ALIGNMENT OF PIX I-F.-To align Tl and T104, connect the sweep generator to the mixer grid test point TP2. In series with a 1500 mmf ceramic capacitor use the shortest leads possible, with not more than one inch of unshielded lead at the end of the sweep cable. Connect the sweep ground lead to the r-f unit outer shield.

Connect a separate -5.0 volt bias supply to TPl with the positive terminal connected to ground and by-pass TPI to ground with a 1500 mmf . ceramic capacitor.

Set the channel selector switch between channels 2 and 13 .
Clip 330 ohm resistors across terminals A and B of T106 and Tl07.

Preset Cll5 to minimum capacity.
Adjust the bias box potentiometer to obtain -5.0 volts of bias as measured by a "VoltOhmyst" at the junction of R142 and R143. Leave the AGC control fully clockwise.

Connect a 180 ohm composition resistor from pin 5 of V106 to terminal A of TlO5. Connect the oscilloscope diode probe to pin 5 of V106 and to ground.

Couple the signal generator loosely to the diode probe in order to obtain markers.

Adjust Tl (top) and TlO4 (bottom) for maximum gain and with 25.5 mc . at $70 \%$ of maximum response.

Set the sweep output to give 0.3 volt peak-to-peak on the oscilloscope when making the final touch on the above adjustment.

Adjust Cll5 until 22.25 mc . is at $70 \%$ response with respect to the low frequency shoulder of the curve as shown in Figure 12.

Disconnect the diode probe, the 180 ohm and two 330 ohm resistors.
Connect the oscilloscope to pin 4 (pin 2 if 6CL6 is used) of V110 socket.

Leave the sweep generator connected to the mixer grid test point TP2 with the shortest leads possible.

Adjust the output of the sweep generator to obtain 3.0 volts peak-to-peak on the oscilloscope.

Couple the signal generator loosely to the grid of the first pix i.f a mplifier. Adjust the output of the signal generator to produce small markers on the response curve.

Retouch T105, T106 and T107 to obtain the response shown in Figure 13.
It is especially important that the 22.4 mc . marker should fall at $55 \%$ on the overall i-f response curve. If the marker should fall appreciably higher than $55 \%$, trouble may be experienced with sound in the picture. If the marker should fall appreciably below $55 \%$ response, the sound sensitivity may be reduced and may cause the sound to be noisy in weak signal areas.

RATIO DETECTOR ALIGNMENT.-Set the signal gen. erator at 4.5 mc . and connect it to the first sound i-f grid, pin 1 of V1O1.
As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed. In such a case, connect the calibrator to the grid of the third pix i-f amplifier, pin 1 of V108.

Set the frequency of the calibrator to 25.50 mc . (pix carrier) and modulate with 4.5 mc . crystal. The 4.5 mc . signal will be picked off at L102 and amplified through the sound i-f amplifier.

Connect the "VoltOhmyst" to pin 2 of Vlo3.
Tune the ratio detector primary, T102 top core for maximum d-c output on the "VoltOhmyst". Adjust the signal level from the signal generator for 6 volts on the "VoltOhmyst" when finally peaked. This is approximately the operating level of the ratio detector for average signals.

Connect the "VoltOhmyst" to the junction of Rl06 and ClO8.
Tune the ratio detector secondary TlO2 bottom core for zero d-c on the "VoltOhmyst".
Repeat adjustments of Tl02 top for maximum d-c at pin 2 of V103 and T102 bottom for zero d.c at the junction of R106 and Cl 08 . Make the final adjustments with the signal input level adjusted to produce 6 volts $d-c$ on the "VoltOhmyst" at pin 2 of Vlo3.
SOUND I-F ALIGNMENT.-Connect the signal generator to the first sound i-f amplifier grid, pinl of ViOl.
As an alternate source of signal, the RCA WR39B or WR39C calibrator may be employed as above.
Connect the "VoltOhmyst" to pin 2 of Vio3.
Tune the TlOl top core for maximum $\mathrm{d}-\mathrm{c}$ on the "VoltOhmyst".
The output from the signal generator should be set to produce approximately 6.0 volts on the "VoltOhmyst" when the final touches on the above adjustment are made.
4.5 MC. TRAP ADJUSTMENT. - Connect the signal generator in series with a 1,000 ohm resistor to pin 2 of Vlo9. Set the generator to 4.5 mc . and modulate it $30^{\prime}$, with 400 cycles. Set the output to approximately 0.5 volts.
Short the third pix i-f grid to ground, pin $1, \mathrm{VlO8}$, to prevent noise from masking the output indication.
Connect the crystal diode probe of an oscilloscope to the plate of the video amplifier, pin 8 (pin 6 if 6CL6 is used) of V110.
Adjust the core of $\mathrm{LlO3}$ for minimum output on the oscilloscope.
Remove the short from pin 1, V108 to ground.
As an alternate method, this step may be omitted at this point in the alignment procedure and the adjustment made "on the air" after the alignment is completed.
If this is done, tune in a station and observe the picture on the kinescope. If no 4.5 mc . beat is present in the picture, when the fine tuning control is set for proper oscillator-frequency, then L 103 requires no adjustment. If a 4.5 mc . beat is present, turn the fine tuning control slightly clockwise so as to exaggerate the beat and then adjust L103 for minimum beat.
CHECK OF OVERALL RESPONSE-If desired, the overall response of the receiver can be checked on each channel.

Connect the r-f sweep generator to the receiver antenna input terminals. IF necessary, employ one of the pads shown in Figure 9 to match the sweep output cable to the r-f unit.

Connect the signal generator loosely to the first pix i-f amplifier grid.
Adjust the bias potentiometer to obtain -5.0 volts of bias as measured by a "VoltOhmyst" at the junction of R142 and R143.
Connect the oscilloscope to pin 4 (pin 2 if 6CL6 is used) of V110.

Check the response of channels 2 through 13 by switching the receiver channel switch and sweep oscillator to each of these channels and observing the response obtained. On each channel, adjust the output of the sweep generator to obtain 3.0 volts peak-to-peak on the oscilloscope.

I-F markers at $22.4 \mathrm{mc} ., 24.75 \mathrm{mc}$. and 25.5 mc . should be provided by the signal generator.
The response obtained in this manner should be very similar to that shown in Figure 13.

Some curves may show a $10 \%$ sag in the top between 22.75 mc and 24.75 mc . while others may show a $10 \%$ peak in this region. This may be considered normal.

If the picture carrier is consistently high or low on all channels, T106 may be adjusted slightly. Do not adjust T105

AGC CONTROL ADJUSTMENT.-Discoinnect all test equipment except the oscilloscope which should be connected to pin 8 (pin 6 if 6CL6 is used) of V110.

Connect an antenna to the receiver antenna terminals. Turn the AGC control fully counter-clockwise.
Tune in a strong signal and adjust the oscilloscope to see the video waveform.

Turn the AGC control clockwise until the tips of sync begin to be compressed, then counter-clockwise until no compression is obtained.

## ALIGNMENT PROCEDURE

HORIZONTAL OSCILLATOR ADJUSTMENT.-NO. mally the adjustment of the horizontal oscillator is not considered to be a part of the alignment procedure, but since the oscillator waveform adjustment may require the use of an oscilloscope, it can not be done conveniently in the field. The waveform adjustment is made at the factory and normally should not require readjustment in the field. However, the waveform adjustment should be checked whenever the receiver is aligned or whenever the horizontal oscillator operation is improper.

Horizontal Frequency Adjustment.-Tune in a station and sync the picture. If the picture cannot be synchronized with the horizontal hold control R170B, then adjust the Tllo frequency core on the rear apron until the picture will synchronize. If the picture still will not sync, turn the TliO waveform adjustment core (under the chassis) out of the coil several turns from its original position and readjust the TllO frequency core until the picture is synchronized.

Examine the width and linearity of the picture. If picture width or linearity is incorrect, adjust the horizontal drive control Cl61B, the width control L106 and the linearity control L108 until the picture is correct.

Horizontal Oscillator Waveform Adjustment.-The horizontal oscillator waveform may be adjusted by either of two methods. The method outlined in paragraph A below may be employed in the field when an oscilloscope is not available. The service shop method outlined in paragraph $B$ below requires the use of an oscilloscope.
A.-Turn the horizontal hold control completely clockwise. Place adjustment tools on both cores of TH1O and be prepared to make simultaneous adjustments while watching the picture on the screen. First, turn the TllO frequency core (on the rear apron) until the picture falls out of sync and three or four diagonal black bars sloping down to the right appear on the screen. Then, turn the waveform adjustment core (under the chassis) into the coil while at the same time adjusting the irequency core so as to maintain three or four diagonal black bars on the screen. Continue this procedure until the oscillator begins to motorboat, then turn the waveform adjustment core out until the motorboating just stops. As a check, turn the T110 frequency core until the picture is synchronized then reverse the direction of rotation of the core until the picture falls out of sync with the diagonal bars sloping down to the right. Continue to turn the frequency core in the same direction! No more than three or four bars should appear on the screen. Instead, the horizontal oscillator should begin the motorboat. Retouch the adjustment of the TllO waveform adjustment core if necessary until this condition is obtained.
B.-Connect the low capacity probe of an oscilloscope to terminal C of Tllo. Turn the horizontal hold control onequarter turn from the clockwise position so that the picture is in sync. The pattern on the oscilloscope should be as shown in Figure 14. Adjust the waveform adjustment core of TllO until the two peaks are at the same height. During this adjustment, the picture must be kept in sync by readjusting the hold control if necessary.

This adjustment is very important for correct operation of the circuit. If the broad peak of the wave on the oscilloscope is lower than the sharp peak, the noise immunity becomes poorer, the stabilizing effect of the tuned circuit is reduced and drift of the oscillator becomes more serious. On the other hand, if the broad peak is higher than the sharp peak, the oscillator is overstabilized, the pull-in range becomes inadequate and the broad peak can cause double triggering of the oscillator when the hold control approaches the clockwise position.

Remove the oscilloscope upon completion of this adjustment.
Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tllo frequency core slightly and momentarily switch off channel.

Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl61A slightly clockwise. If less than 2 bars are present, adjust Cl61A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Turn the horizontal hold control to the maximum clockwise position. Adjust the Tllo frequency core so that the diagonal bar sloping down to the right appears on the screen and then reverse the direction of adjustment so that bar just moves to the left side of the screen leaving the picture in synchronization.

SENSITIVITY CHECK.-A comparative sensitivity check can be made by operating the receiver on a weak signal from a television station and comparing the picture and sound obtained to that obtained on other receivers under the same conditions.

This weak signal can be obtained by connecting the shop antenna to the receiver through a ladder type attenuator pad. The number of stages in the pad depends upon the signal strength available at the antenna. A sufficient number of stages should be inserted so that a somewhat less than normal contrast picture is obtained when the picture control is at the maximum clockwise position. Only carbon type resistors should be used to construct the pad.

RESPONSE CURVES.-The response curves shown on page 14 and referred to throughout the alignment procedure were taken from a production set. Although these curves are typical, some variations can be expected.

The response curves are shown in the classical manner of presentation, that is with "response up" and low frequency to the left. The manner in which they will be seen in a given test set-up will depend upon the characteristics of the oscilloscope and the sweep generator. The curves may be seen inverted and/or switched from left to right depending on the deflection polarity of the oscilloscope and the phasing of the sweep generator.

NOTE ON R-F UNIT ALIGNMENT.-Because of the frequency spectrum involved and the nature of the device, many of the r-f unit leads and components are critical in some respects. Even the power supply leads form loops which couple to the tuned circuits, and if resonant at any of the frequencies involved in the performance of the tuner, may cause serious departures from the desired characteristics. In the design of the receiver these undesirable resonant loops have been shifted far enough away in frequency to allow reasonable latitude in their components and physical arrangement without being troublesome. When the r-f unit is aligned in the receiver, no trouble from resonant loops should be experienced. However, if the unit is aligned in a jig separate from the receiver, attention should be paid to insure that unwanted resonances do not exist which might present a faulty representation of r-f unit alignment.

A resonant circuit exists between the r-f tuner chassis and the outer shield box, which couples into the antenna and r-f plate circuits. The frequency of this resonance depends on the physical structure of the shield box, and the capacitance between the tuner chassis and the front plate. In the KRK8 units, this resonance should fall between 120 and 135 mc . and is controlled in the design by using insulating washers of different thicknesses (in the front plate to tuner chassis mounting) to compensate for differences in the shield boxes of different models of receivers. The performance of the tuner, particularly on channels 7 and 8 will be impaired if the proper washers for the particular shield box involved are not used. Obviously then, if the r-f unit is removed for service, the washers should be replaced in the correct order when the unit is replaced.

## ALIGNMENT TABLE

THE DETAILED ALIGNMENT PROCEDURE BEGINNING ON PAGE 8 SHOULD BE READ BEFORE ALIGNMENT BY USE OF THE TABLE IS ATTEMPTED

| $\begin{aligned} & \text { STEP. } \\ & \text { No. } \end{aligned}$ | $\begin{gathered} \text { CONNECT } \\ \text { SIGNAL } \\ \text { GENERATOR } \\ \text { TO } \end{gathered}$ | $\begin{aligned} & \text { SIGNAL } \\ & \text { GEN. } \\ & \text { FREO. } \\ & \text { MC. } \end{aligned}$ | CONNECT SWEEP GENERATOR TO |  | CONNECT HETERODYNE FREQ.METER TO | $\begin{gathered} \text { HET. } \\ \text { METER } \\ \text { FREQ. } \\ \text { MC. } \end{gathered}$ | CONNECT 'VOLTOHMYST" то | MISCELLANEOUS CONNECTIONS AND INSTRUCTIONS | ADJUST | $\underset{\text { TO }}{\substack{\text { REFER }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | R-F UNIT ALIGNMENT |  |  |  |  |  |  |  |  |  |
| 1 | Disconnect the co-ax link from terminal 2 of the $r$-f unit terminal board and connect a 39 ohm composition resistor between lugs 1 and 2 , Detune Tl by backing the core all the way out of the coil. Back the L44 core all the way out. Back the L203 core all the way out. In order to align the $r$ - $f$ tuner, it will first be necessary to set the channel 13 oscillator to frequency. The shield over the bottom of the r-f unit must be in place when making any adjustments. |  |  |  |  |  |  |  |  |  |
| 2 | Not used |  | Not used |  | Loosely coupled to $r$-f oscillator | $\begin{aligned} & 236.75 \\ & \text { MC. } \end{aligned}$ | Not used | Fine tuning 30 degrees clockwise from machanical center of its range. Receiver on channel 13. | Clforanaudiblebeat on het. freq. meter | Fig. 7 |
| 3 | " |  | ' |  |  |  | Connect "VoltOhmyst' to terminal 3 of the $r$-funitterminal board | Turn AGC control fully clock wise. Connect bias box to terminal 3 of $r$ - unit term. board | Adjust the bias box potentiometer for -3.5 volts. |  |
| 4 | Antenna terminal (loosely) | $\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$ | Antenna terminals (see text for precaution) | $\begin{gathered} \text { Sweep- } \\ \text { ing } \\ \text { channel } \\ 8 \end{gathered}$ | Not used | - | Not used | Rec. on chan. 8. Conn Adjust C9, C11, C16 an shape, frequency an adjusted to give max markers. C9 affects frequency of respons sponse band width. | act oscilloscope to TP1. <br> C22 for correct curve <br> d band width. C22 is <br> amplitude between <br> lt and C16 affects the <br> e. Cll affects the re- | $\begin{array}{ll} \text { Fig. } \\ \text { Fig. } \end{array}$ |
| 5 | Not used |  | Not used | Not used | Loosely coupled to $r$-f oscillator | 108.75 | " | Rec. on channel 6 | LS for audible beat on het. freq. meter. | Fig. 8 |
| 6 | Antenna terminal (loosely) | $\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$ | Antenna terminals (see text for precaution) | $\begin{gathered} \text { Channel } \\ 6 \end{gathered}$ | Not used | - | ' | Rec. on chan. 6. Adju proper response, L42 i amplitude between m affects tilt and L49 pri response. If necessc proper width. | L L42, L45 and L49 for adj usted to give max. arkers. L45 primarily marily affects freq. of ry, retouch Cll for | Fig. 12 |
| 7 | Not used | - | Not used | - N | Not used | - |  | Rec. on channel 6 | Adjust C7 for -3.0 volts at the test point | Fig. <br> Fig. |
| 8 | Repeat above steps until the specified conditions are obtained. |  |  |  |  |  |  |  |  |  |
| 9 | Not used |  | Not used | - - | Loosely coupled to $r$-f oscillator | 206.75 |  | Rec. on chan. 8 | Cl for audible beat on het. freq. meter | Fig. 7 |
| 10 | Antenna terminal (loosely) | $\begin{aligned} & 181.25 \\ & 185.75 \end{aligned}$ | Antenna terminals (see te $\cdot+$ for precaution) | Sweeping channel 8 8 | Not used | - | Not used | Rec. on chan. 8. Reodjust C9, C16 and C22 for correct curve shape, frequency and band width. Readjust Cll only if necessary. |  | $\begin{aligned} & \text { Fig. }{ }^{7}{ }^{\text {Figig. }} 12 \\ & (8) \end{aligned}$ |
| 11 | ' | $\begin{aligned} & 211.25 \\ & 215.75 \end{aligned}$ | ' | $\begin{gathered} \text { Sweep- } \\ \text { ing } \\ \text { channel } \\ 13 \end{gathered}$ | Not used | - | Not used | Rec, on chan. 13, Adjust L52 for max. amplitude between markers, overshoot a little more than required to reach max. response. Adjust C22 to regain max. amplitude of response. |  | $\underset{(13)}{\text { Fig. }}$ |
| 12 | " | 215.75 | Not used | - | Loosely coupled to r-f oscillator | 236.75 |  | Receiver on chan. 13. Adjust L43 for correct channel 13 osc. freq. then overshoot. Reset the osc. to proper freq. by adjustment of Cl . |  | $\begin{array}{ll} \hline \text { Fig. } \\ \text { Fig. } & \mathbf{7} \end{array}$ |
| 13 | " | $\begin{aligned} & 205.25 \\ & 209.75 \end{aligned}$ | Antenna ter.ninals | ${ }_{12}$ | Not used | - | Connect "Volt- Ohmyst" to $\mathrm{r}-\mathrm{f}$ unit test point TP1 | Rec. on chan. 12 | Check to see that response is correct and 3.0 volts of osc. injection is present | $\begin{aligned} & \text { Fig. } 8 \\ & \text { Fig. } 12 \end{aligned}$ |
| 14 | '' | 199.25 203.75 | (see text for precaution) | ${ }_{11}^{\text {channel }}$ | " | - | '" | Rec. on chan. 11 | " | $\mathrm{Fig.}_{\text {(i) }}{ }^{12}$ |
| 15 | " | $\begin{aligned} & 193.25 \\ & 197.75 \end{aligned}$ | " | ${ }_{\text {channel }}^{10}$ | " | - | " | Rec. on chan. 10 | " | $\underset{(10)}{\text { Fig. }^{12}}$ |
| 16 | $\cdots$ | $\begin{aligned} & 187.25 \\ & 191.75 \end{aligned}$ | " | $\underset{9}{\text { channel }}$ | $\cdots$ | - | ' | Rec. on chan. 9 | ' | $\underset{(9)}{\text { Fig. }_{\text {( }}} 12$ |
| 17 | $\cdots$ | 181.25 185.75 | " | $\underset{8}{\text { channel }}$ | $1{ }^{\prime}$ | - | " | Rec. on chan. 8 | " | $\underset{(8)}{\text { Fig. }_{\text {( }}} 12$ |
| 18 | $\because$ | 175.25 179.75 | $\cdots$ | ${ }_{7}^{\text {channel }}$ | 1 " | - | " | Rec. on chan. 7 | " | $\underset{(\mathrm{F})}{ } 12$ |
| 19 | If the response of any channel (steps 13 through 18) is below $80 \%$ at either marker, repeat step 10 and adjust C9, C11, C16 and C22 os necessary to pull response up on the low channel yet maintain correct response on channel 8. If C22 required adjugtment, the adjustment should be overshot a small amount and corrected by adjustment of L52 to give maximum amplitude of response between the sound and picture carrier markers. |  |  |  |  |  |  |  |  |  |
| 20 | Repeat step 9. If the oscillator is off frequency overshoot the adjustment of Cl and correct by adjusting L43. |  |  |  |  |  |  |  |  |  |
| 21 | Repeat steps 13 through 20 until all requirements are obtained. |  |  |  |  |  |  |  |  |  |
| 22 | Not used | [- | Not used | - | Woosely coupled to $r-f$ oscillator | [ 108.75 |  | Rec. on chan. 6 | LS for zero beat on hat. freq. meter | Fig. 8 |
| 23 | Antenna terminals (loosely) | $\begin{aligned} & 83.25 \\ & 87.75 \end{aligned}$ | Ant terminals (see text for precaution | $\begin{gathered} \text { Sweeping } \\ \text { channel } \\ 6 \end{gathered}$ | 1 Not used | - | Not used | Observe response. If L45 and L49. It shou touch Cll. | necessary readjust L42, uld not be necessary to | $\begin{aligned} & \text { Fig. } \\ & \text { Fig. } 12 \end{aligned}$ |
| 24 | Not used | - | Not used | - | Not used | - | Connect "VoltOhmyst' to the r-funit test point TP1 | Check osc, injection to give -3 volts. If $C$ channel 8, and read spotise then repeat st | If necessary adjust C7 7 is adjusted, switch to just C9 for propar raep 23. | $\begin{aligned} & \text { Fig. }{ }^{7} \\ & \text { Fig. } 12 \end{aligned}$ |
| 25 | Antenna tarminals (loosely) | $\begin{aligned} & 77.25 \\ & 81.75 \end{aligned}$ | Ant. terminals (see text for precaution | channel | * " | - | * | Rec, on chan. 5 | Check to see that response is correct and -3.0 volts of osc. injection is present | ${ }_{(\mathrm{Fig})} 12$ |



Figure 15-Top Chassis Adjustments


Figure 16-Bottom Chassis Adjustments

Figure 17-Normal Picture

Figure 18-Focus Magnet and
Ion Trap Magnet Misadjusted
$\rightarrow$


Figure 19-Horzzontal Linearity
Control Misad

Cramped insted (Picturte | Cramped in Middle) |
| :--- |

Figure
Misadjusted


Figure 21-Horizontal Drive
Control Misadjusted
Figure 22-Transients


Figure 23-Test Pattern Show.
igure
ing OUt of Synct Condtition When
Horizontal Hold Contol Is in a Horizontal Hold Controt is in
Counter-colkwise Postion-Jusu
Before Pulling Into Sync $\longleftarrow<$
Figure 24-Test Pattern Showing out of Sync Condition When Horizontal Hold Control Is
the Maximum Clockwise Position $\Longrightarrow$

ALIGNMENT TABLE 21T207,21T207G, 21T208, 21 T217 21T218, 21 T227, 21T228, 21 T229

| $\underset{\substack{\text { STEP } \\ \text { No. }}}{ }$ | CONNECT SIG <br> SIINAL  <br> GENERATOR GR <br> TR M <br> M  | $\begin{aligned} & \text { SIGNAL } \\ & \text { SENL } \\ & \text { FRED. } \\ & \text { MC. } \end{aligned}$ | $\begin{aligned} & \text { CONNECT } \\ & \text { SWEEP } \\ & \text { GENERATOR } \\ & \text { TO } \end{aligned}$ | $\begin{gathered} \text { SWEEP } \\ \text { SWENE } \\ \text { FRCO. } \\ \text { MC. } \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { CONNECT } \\ \text { HREORODYNE } \\ \text { FREO. METER } \end{array}$ |  | $\begin{gathered} \text { HET } \\ \left.\begin{array}{c} \text { FRETO } \\ \text { METTR } \\ \text { MC. } \end{array} \right\rvert\, \end{gathered}$ | $\begin{gathered} \text { CONNFCT } \\ \text { VOLTOHMYST } \\ \text { TO } \end{gathered}$ | MISCELLANEOUS <br> CONNECTONS <br> INSTRUCTIONS | adjust |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{26}$ | Artenna 6 <br> teminals 7 <br> (loosely)  |  | $\begin{gathered} \text { Ant. termi } \\ \text { nals (see text } \\ \text { forprecaution) } \end{gathered}$ | ${ }_{4}^{\text {channal }}$ | Not used |  | - |  | Rec. on chan. 4 |  jection is presen |  |
| 27 | ${ }_{6} 6$ |  | . | ${ }_{\text {channel }}$ | 1 |  | - | " | Rec. on chan. 3 | - | $\mathrm{Figiq}_{\text {(3) }}{ }^{12}$ |
| ${ }^{28}$ | ${ }_{5}^{5}$ | $\underset{\substack{55.25 \\ 59.75}}{ }$ | " | $\underset{2}{\text { channel }}$ | 1 |  | - | " | Rec. on chan. 2 | " | $\mathrm{Fiq}_{(2)} \mathrm{L}^{12}$ |
| 29 | Likewise check channels |  | 1 l 7 through 13. | as outlin | ined in st | tops 18 back | ck through | stopping on | nel 13 for next top. |  |  |
| 30 | Antenna <br> terminals 21 | 215.75 | Not used | - |  | $\underset{\substack{\text { y couplod } \\ \text { oscillator }}}{ }$ | 236.75 | Not used |  its range channel 13 | C1 for zero beat on het. froq. meter | Fig. |
| 31 | 20 | 209.75 | " | - | " |  | 230.75 | " | Rec. on chan. 12 | L11 as above | Fig. |
| 32 | 203 | 203.75 | " | - | . |  | 224.75 | " | Rec. on chan. 11 | L10 as above | Fig. |
| 33 | 197 | 197.75 | " | - | * |  | 218.75 | " | Rec. on chan. 10 | L9 as above | Fig. |
| 34 | 191 | 191.75 | " | - | " |  | 212.75 | " | Rec. on chan. 9 | L8 as above | Fig. 8 |
| 35 | 185 | 185.75 | " | - | , |  | 206.75 | $\cdots$ | Rec. on chan. 8 | L7 as above | Fig. |
| 36 | 179 | 179.75 | " | - | " |  | 200.75 | $"$ | Rec. on chan. 7 | L6 as above | Fig. 8 |
| 37 | 87 | 87.75 | " | - | " |  | 108.75 | " | Rec. on chan. 6 | L5 as above | Fig. |
| 38 | 81 | 81.75 | " | - | " |  | 102.75 | " | Rec. on chan. 5 | L4 as above | Fig. 8 |
| 39 | 71 | 71.75 | " | - | " |  | 92.75 | " | Rec. on chan. 4 | L3 as above | Fig. 8 |
| 40 | 65 | 65.75 | " | - |  |  | 86.75 | " | Rec. on chan. 3 | L2 as above | Fig. 8 |
| 41 | 59 | 59.75 | " | - |  |  | 80.75 | $\cdots$ | Rec. on chan. 2 | Il as above | Fig. |
| 42 | Repeat steps 30 th | 30 through 4 | h 41 as a chock. |  |  |  |  |  |  |  |  |
| ${ }^{43}$ | Antannal <br> torminals | $\underset{\substack{188.25 \\ 185}}{1.75}$ | Antenna | $\begin{gathered} \text { Swopp } \\ \text { ing } \mathrm{ingman} \\ 8 \end{gathered}$ | ${ }^{\text {Not use }}$ |  | - |  |  adjusted. .curve will b slightly deaper valley | cilloscope at test point an slightly wider with a in top. | ${ }_{(8 i g)}{ }^{12}$ |
| 44 | Switch through <br> at this time. Hown |  | nnels and obs |  | nseososci |  | ion and | foscillator fregu $f$ the oscillator fre | nency. Minor touch equency on all cha | of adjustments may should be made. |  |
| 45 | Ramove 39 ohm r | $m$ resistor and | and reconnect | link from | T T101 to | o terminal | 12 of r-f ur | unit terminal board. |  |  |  |
|  |  |  |  |  | pictur | E I-F And | d trap a | adjustment |  |  |  |
| $\underset{\substack{\text { STEP } \\ \text { No. }}}{\text { coser }}$ | $\begin{gathered} \text { CONNECT } \\ \text { SENGNALL } \\ \text { GETOTOR } \end{gathered}$ | $\begin{gathered} \text { SIGNAL } \\ \text { GENEL } \\ \text { FREO. } \\ \hline \end{gathered}$ |  |  | $\begin{aligned} & \text { SWEEP } \\ & \text { GENEP. } \\ & \text { FRC. } \end{aligned}$ | $\underset{\substack{\mathrm{CONS} \\ \text { OsCILL } \\ \hline}}{ }$ |  |  | MISCELLANEOUS $\mathrm{connections}_{\text {AND }}$ instructions | adjust | ${ }_{\text {ReFER }}^{\text {To }}$ |
| 46 | Not used |  | Not used |  | - | Not used |  | $\underbrace{\text { of R142 }}_{\substack{\text { Junction } \\ \text { R143 }}}$ |  | $\begin{gathered} \text { Adjust potentiomator } \\ \text { for } \\ \text { motar. } \\ \text { mot } \end{gathered}$ | Fig. 3 |
| 47 | " |  | * |  | - | " |  | Test point TP1 | Connect bias box to TPI and to ground | " | Fig. 7 |
| 48 | Mixer grid tast point P2 in sari 1500 mmf . |  | " |  | - | " |  |  | Pian boxess con- nected as above | T107 (top) for max. | Fig. 9 |
| 49 | .. | 25.5 | . |  | - | . |  | $\cdots$ | . | T106 (top) for max. | Fig. 9 |
| 50 | . | 22.7 | - |  | - | . |  | . | " | Tlos (top) for max. | Fig. 9 |
| 51 | -" | 27.00 | - " |  | - | - " |  | - " | - | T104 (top) for min. | Fig. 9 |
| 52 | Connected loosely o diode probe | $\text { 1y } \begin{gathered} \text { Various } \\ \text { Fig. } \\ \text { Fig. } 13 \end{gathered}$ |  | $d \text { test }$ $\begin{aligned} & \mathrm{n} \text { series } \\ & \mathrm{nmf}^{2} \mathrm{~s} \end{aligned}$ imf. | ${ }^{20} 20$ to |  |  |  |  |  | ${ }_{\text {Fig. }}^{\text {Fig. }} 10$ |
| 53 | Connoctod loosely <br> togrid of lat pixi i-f Adjust for smail <br> marker indicatio |  | 4 |  | " |  |  |  |  |  | Fig. 14 |
|  |  |  | Rat | Io dete | ECTOR, | SOUND I- | I-F AND 4 | 5 Mc trap al | MENT |  |  |
| 54 |  |  | c\|ly |  | - | Not usad |  | Pin 2 of V103 | Sot gignal gen. to give 6 V on meter | $\begin{aligned} & \text { T102 top core for max. } \\ & \text { d-c on meter } \end{aligned}$ | Fig. 9 |
| 55 | " | - | " |  | - | " |  | " | "Voliohmyst" to ju ${ }_{\text {Adjust }}$ meter. Repat stop conditions are satis | netion R106 and C108. <br> core for zero DC on <br> fied. | ${ }_{\text {Fig. }}^{\text {Fig. }} 10$ |
| 56 |  | 碞 4.5 mc. | . |  | - | " |  | " | Signal generator provide 6 von mete provide 6 von meter | T101 top cora for max. DC on meter | Fig. 9 |
| 57 | Sig. Ger. in series pir 2 of V109 |  | \% |  | - | ${ }_{\text {Piode }}^{\text {pin }}$ | 9be to | Not used | Short pin 1 of V108 to ground |  | Fig. 9 |

Figure 8-R-F Oscillator Adjustments

Figure 10-Antemna Matching Unit Respons


Figure II-R-F Response


Figure 12
Tland T104
Response


Figure 13
ver-all I-F
Response


Figure 14-Horizontal Oscillator Wave Forms


Following is a list of symptoms of possible failures and an indication of some of the possible faults:

## NO RASTER ON KINESCOPE:

(1) Incorrect adjustment of ion trap magnet. Magnet reversed either front to back or top to bottom
(2) Vll5 or Vll6 inoperative. Check waveforms on grids and plates.
(3) No high voltage-if horizontal deflection is operating as evidenced by the correct waveform on terminal l of high voltage transformer, the trouble can be isolated to the 1B3GT circuit. Either the Tlll high voltage winding is open, the 1B3GT tube is defective or its filament circuit is open.
(4) Vllo circuit, inoperative-Refer to schematic and waveform chart.
(5) Damper tube (V118) inoperative.
(6) Defective kinescope.
(7) R184 open.
(8) No receiver plate valtage-filter capacitor shorted-or filter choke open.

## NO VERTICAL DEFLECTION :

(1) V1l3 or Vll4 inoperative. Check voltage and waveforms on grids and plates.
(2) Tl08 open.
(3) Vertical deflection coils open.

## SMALL RASTER:

(1) Low Plus B or low line voltage.
(2) V116, V120 or V12l delective.

POOR VERTICAL LINEARITY:
(1) If adjustments cannot correct, change Vll4
(2) Vertical output transformer T 108 defective.
(3) V113 defective-check voltage and waveforms on grid and plate.
(4) C151, Cl53, Cl52, C155, or Cl56 defective.
(5) Low plate voltage-check rectifiers and capacitors in supply circuits.
(6) If height is insufficient, try changing V1l3.

## POOR HORIZONTAL LINEARITY:

(1) If adjustments do not correct, change Vll6, or V118.
(2) T108 or Ll08 defective.
(3) Cl76 or Cl77 defective.

WRINKLES ON SIDE OF RASTER:
(1) Cl8l defective.
(2) Defective yoke.

## PICTURE OUT OF SYNC HORIZONTALLY:

(1) Tllo incorrectly tuned.
(2) R192, Rl93 or Rl70B defective.

## TRAPEZOIDAL OR NON SYMMETRICAL RASTER:

(1) Improper adjustment of centering of focus magnet or ion trap magnet.
(2) Defective yoke.

## RASTER AND SIGNAL ON KINESCOPE BUT NO SOUND:

(1) LlO 2 defective.
(2) Sound i-f, ratio detector or audio amplifier inoperativecheck V101, V102, V1O3 and their socket voltages.
(3) Audio system defective
(4) Speaker defective.

SIGNAL AT KINESCOPE GRID BUT NO SYNC:
(1) AGC control R149 misadjusted.
(2) Vlll, inoperative. Check voltage and waveforms at its grid and plate.

SIGNAL ON KINESCOPE GRID BUT NO VERTICAL SYNC:
(1) Check V113 and associated circuit.
(2) Integrating network inoperative-Check.
(3) V109B or V112B defective or associated circuit defective.
(4) Gas current grid emission or grid cathode leakage in V112. Replace.

## SIGNAL ON KINESCOPE GRID BUT NO HORIZONTAL SYNC:

(1) Tll0 misadjusted-readjust as instructed on page 11.
(2) Vll2 inoperative-check socket voltages and waveforms.
(3) Tllo defective.
(4) Cl42, Cl61A, Cl63, Cl65, Cl67, Cl66, Cl68, Cl87 or Cl88 defective.
(5) If horizontal speed is completely off and cannot be adjusted check R192, R193, R170B, R196, R195 and R198.

SOUND AND RASTER BUT NO PICTURE OR SYNC:
(1) Picture, detector or video amplifier defective-check V109A and V110-check socket voltages.
(2) Bad contact to kinescope cathode.

## PICTURE STABLE BUT POOR RESOLUTION:

(1) V109A or V110 defective.
(2) Peaking coils defective-check resistance.
(3) Make sure that the focus control operates on both sides of proper focus.
(4) R-F and I-F circuits misaligned.

## PICTURE SMEAR.

(1) R-F or I-F circuits misaligned.
(2) Open peaking coil.
(3) This trouble can originate at the transmitter-check on another station.

## PICTURE JITTER:

(1) AGC control Rl49 misadjusted.
(2) If regular sections at the left picture are displaced change V1l6.
(3) Vertical instability may be due to loose connections or noise.
(4) Horizontal instability may be due to unstable trans. mitted sync.

## RASTER BUT NO SOUND, PICTURE OR SYNC:

(1) Defective antenna or transmission line.
(2) R-F oscillator off frequency.
(3) R-F unit inoperative-check V1, V2.

## DARK VERTICAL LINE ON LEFT OF PICTURE:

(1) Reduce horizontal drive and readjust width and horizontal linearity.
(2) Replace V116.

## LIGHT VERTICAL LINE ON LEFT OF PICTURE:

(1) V118 defective.

21T207, 21T207G, 21T208, 21T217, 21T218, 21T227, 21T228, 21T229


WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

Figure 25-Overall Pix I-F Response
$\longleftarrow \leftarrow$

Figure 26-Response of T1-T104 Pix I-F Transformers
$\Rightarrow$

Figure 27-Response of T105 Pix I-F Transformer
$\qquad$

Figure 28-Response of T106 Pix I-F Transformer

$$
\rightarrow
$$

Figure 29-Response of T107 Pix I-F Transformer


Figure 30-Video Response at Average Contrast

```
\longrightarrow
```

Grid of Viden Amplifier (Pin 2 of V110) (6CL6) Volrage Depends on Picture
Figure 31-Vertical (Oscilloscope Synced to $1 / 2$ of Vertical Sweep Rate) ( 1.5 Volts PP)
$\longleftarrow \ll$
Figure 32-Horizontal (Oscilloscope Synced $101 / 2$ of Horizontal Sweep Rate) (1.5 Volts PP)
$\rightarrow$


Plate of Video Amplifier (Pin 6 of V110) (6CL6)
Voltage depends on picture Figure 33-Vertical (85 Volts PP)

$$
\leftrightarrow \leftarrow
$$

Figure 34-Horizontal (85 Volts PP)


WAVEFORM PHOTOGRAPHS
zaken from RCA WO58A Oscilloscope


Grid of Vertical Sync Sep. (Pin 7 of V109B) (12AU7)

Figure 41-Vertical (55 Volts PP)


Figure 42-Horizontal (55 Volts PP)
Plate of Horizontal Sync Separator (Pin 2 of V112A) ( $6 S N 7$ )

Figure 39-Vertical (45 Volts PP)


Figure 40 -Horizontal ( 45 Volts PP)
Cathode of Horizontal Sync Sep.
$($ Pin 3 of V112A) $(6 S N 7)$

Figure 37-Vertical (7.5 Volts PP)
$\qquad$

Figure 38-Horizontal (5 Volts PP)

Plate of Vertical Sync Sep. (Pin 6 of V109B) (12AU7)

Figure 43-Vertical ( 65 Volts PP)


Figure 44-Horizontal (65 Volts PP)
$\qquad$

21T207, $21 \mathrm{~T} 207 \mathrm{G}, 21 \mathrm{~T} 208,21 \mathrm{~T} 217$, 21T218, 21T227, 21T228, 21 T 229


21T207, 21T207G, 21T208, 21 T217, 21T218, 21T227, 21 T228, 21 T229


Cathode of Kinescope
(Pin 11 of V119) (17QP4)
Voltage depends on picture
Figure 53-Vertical

$$
\longleftarrow \leftarrow
$$

Figure 54-Horizontal

$$
\rightarrow
$$

WAVEFORM PHOTOGRAPHS
Taken from RCA WO58A Oscilloscope

Grid of Sync Output (Pin 4 V112B) (6SN7)

Figure 45-Vertical (40 Volts PP)

## $\leftrightarrow \lll$

Figure 46-Horizontal (40 Volts PP)

$\rightarrow$

Plate of Sync Output (Pin 5 of V112) (GSN7)

Figure 47-Vertical (47 Volts PP)
$\longleftrightarrow 4$

Figure 48-Horizontal (47 Volts PP)


Figure 49-Grid of Vertical Sweep Osc. (Pin 5 of V113) (6J5) ( 30 Volts PP)
$\longleftarrow+4$

Figure 50-Plate of Vertical Sweep Osc. (Pin 3 of V113) ( 100 Volts PP)
$\rightarrow>$


Figure 51-Grid of Vertical Sweep Output (Pin 5 of V114) (6K6) ( 100 Volts PP)


Figure 52-Plate of Vertical Sweep Output (Pin 3 of V114) (6K6) (715 Volts PP)
$\rightarrow$


## WAVEFORM PHOTOGRAPHS

Taken from RCA WO58A Oscilloscope


Figure 55-Grid of Horizontal Oscitlator Control (Pin 1 of V115) (6SN7GT) (19 Volts PP)
$\longleftarrow<4$

Figure 56-Cathode of Horizontal Oscillator Control (Pin 3 of V115) (6SN7GT) (1.2 Volts PP)


Figure 57-Grid of Horizontal Oscillator (Pin 4 of V115) ( 6 SN7GT) ( 330 Volts PP)
$\longleftarrow<4$

Figure 58-Plate of Horizontal Oscillator (Pin 5 of V115) ( $6 S N 7 G T$ ) ( 140 Volts PP)

Figure 61-Plate of Horizontal Output (Approx. 4000 Volts PP) (Measured Through a Capacity Voltage Divider Connected from Top Cap of V116 to Ground)


Figure 62-Cathode of Damper (Pin 3 of V118) ( $6 W 4 G T$ ) (2350 Volts PP)
$\rightarrow$

Figure 63-Plate of Damper (Pin 5 of V118) (6W4GT) (160 Volts PP)
$\leftrightarrow 4$

Figure 64-Plate of AGC Amplifier (Pin 5 of V111) (6AUG) (560 Volts PP)

21T207, 21T207G, 21T208, 21T217, 21T218, 21T227, 21T228, 21 T229



The following measurements represent two sets of conditions. In the first condition, a 15000 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "VoltOhmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a.c. The symbol $<$ means less than.

| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | Pin No. | Volts | Pin No. | Volts |  |
| Vl | 616 | Mixer | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 2 | 153 | - | - | 7 | 0 | 5 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
|  |  |  | No | 2 | 135 | - | - | 7 | 0 | 5 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
| V1 | 6 J 6 | R-F <br> Oscillator | 15000 Mu . V. Signal | 1 | 100 | '- | - | 7 | 0 | 6 | $\begin{gathered} *-3 \\ \text { to }-5 \end{gathered}$ | *Depending on channel |
|  |  |  | No Signal | 1 | 85 | - | - | 7 | 0 | 6 | $\begin{gathered} *-3 \\ \text { to }-5 \end{gathered}$ | *Depending on channel |
| V2 | 6CB6 | R-F <br> Amplifier | $15000 \mathrm{Mu} . \mathrm{V} .$ Signal | 5 | 260 | 6 | 150 | 2 | . 1 | 1 | -5.8 | - . |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 220 | 6 | 100 | 2 | 1.0 | 1 | -0.1 |  |
| V101 | 6AU6 | lst Sound I-F Amp. | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 5 | - 130 | 6 | 142 | 7 | 0.8 | 1 | 0 |  |
|  |  |  | No Signal | 5 | 116 | 6 | 129 | 7 | 0.6 | 1 | 0 |  |
| V102 | 6AU6 | 2d Sound I-F Amp. | $15000 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal | 5 | 131 | 6 | 148 | 7 | 0 | 1 | -5.1 |  |
|  |  |  | No Signal | 5 | 110 | 6 | 120 | 7 | 0 | 1 | *-0.3 | *Unreliable measuring point. <br> Voltage depends on noise. |
| V103 | 6AL5 | Ratio <br> Detector | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 7 | 0 | - | - | 1 | 12 | - | - | 7.5 kc deviation at 1000 cycles |
|  |  |  | No Signal | 7 | 0.7 | - | - | 1 | *5.1 | - | - | *Unreliable measuring point. <br> Voltage depends on noise. |
| V104 | 6AV6 | lst Audio Amplifier | $15000 \mathrm{Mu} . \mathrm{V} .$ Signal | 7 | 87 | - | - | 2 | 0 | 1 | $-0.7$ | At min. volume |
|  |  |  | No Signal | 7 | 76 | - | - | 2 | 0 | 1 | $-0.6$ | At min. volume |
| V105 | 6K6GT | Audio Output | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 3 | 260 | 4 | 263 | 8 | 19 | 5 | $-0.7$ | At min. volume |
|  | . |  | No Signal | 3 | 250 | 4 | 251 | 8 | 18.5 | 5 | $-0.7$ | At min. volume |
| V106 | 6CB6 | lst Pix. I-F Amplifier | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 5 | 246 | 6 | 258 | 2 | $<0.1$ | 1 | $-8.6$ |  |
|  |  |  | No Signal | 5 | 108 | 6 | 108 | 2 | 0.7 | 1 | *-0.2 | *Unreliable measuring point. Make measurement at T104-B |
| V107 | 6CB6 | 2nd Pix. I-F <br> Amplifier | $\underset{\text { Signal }}{15000 \mathrm{Mu}}$ | 5 | 242 | 6 | 255 | 2 | $<0.1$ | 1 | -8.6 |  |
|  |  |  | No Signal | 5 | 108 | 6 | 108 | 2 | 0.5 | 1 | $-0.2$ |  |
| V108 | 6CB6 | 3rd Pix. I-F Amplifier | $15000 \mathrm{Mu} . \mathrm{V}$ Signal | 5 | 133 | 6 | 172 | 2 | 2.1 | 1 | 0 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 115 | 6 | 162 | 2 | 1.9 | 1 | 0 |  |
| V109A | 12AU7 | Picture 2d Det. | $\underset{\text { Signal }}{15000 \mathrm{Mu} \text { V. }}$ | 1 | -8.4 | - | - | 3 | 0 | 2 | $-1.3$ |  |
|  |  |  | No Signal | 1 | $-1.8$ | - | - | 3 | 0 | 2 | -0.6 | , |
| V109B | 12AU7 | Vert. Sync Separator | $15000 \mathrm{Mu} . \mathrm{V}$ Signal | 6 | 71 | - | - | 8 | 0 | 7 | -40 |  |
|  |  |  | No Signal | 6 | $\begin{aligned} & * 50 \\ & \text { to } 100 \end{aligned}$ | - | - | 8. | 0 | 7 | *-15 | *Unreliable depends on noise |


| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\operatorname{Pin}$ No. | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | Pin No. | Volts |  |
| V110 | $\begin{aligned} & \text { 6AG7 } \\ & \text { (6AC7, } \\ & \text { 6CL6) } \end{aligned}$ | Video <br> Amplifier | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 6 | 130 | 8 | 149 | 1 | 0.2 | 4 | -1.3 | AGC control set for normal operation |
| * | Refer to schematic for pin connections |  | No Signal | 6 | 110 | 8 | 130 | 1 | 0.5 | 4 | -0.6 | *Refer to Fig. 67 for socket connections |
| V111 | 6AU6 | AGC <br> Amplifier | 15000 Mu . V. Signal | 5 | -40 | 6 | 250 | 7 | 153 | 1 | 151 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Nignal } \end{aligned}$ | 5 | +2.3 | 6 | 258 | 7 | 135 | 1 | 105 |  |
| V112A | 6SN7GT | Hor. Sync Separator | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 2 | 263 | - | - | 3 | 190 | 1 | 130 |  |
|  |  |  | No Signal | 2 | 258 | - | - | 3 | 138 | 1 | 110 |  |
| V112B | 6SN7GT | Sync Output | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 5 | 58 | - | - | 6 | 0 | 4 | $-2.1$ |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 48 | - | - | 6 | 0 | 4 | $+0.6$ | *Depends on noise |
| V113 | 6 J 5 | Vertical Oscillator | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 3 | 70 | - | - | 8 | 0 | 5 | -15 | *Depends on setting of Vert. hold control |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 3 | 68 | - | - | 8 | 0 | 5 | -14 | Voltages shown are synced pix adjustment |
| V114 | 6K6GT | Vertical Output | $\underset{\substack{15000 \mathrm{Mu} . \mathrm{V} \\ \text { Signal }}}{ }$ | 3 | 265 | 4 | 270 | 8 | 30 | 5 | -5 |  |
|  |  |  | No Signal | 3 | 253 | 4 | 260 | 8 | 28 | 5 | -5 |  |
| V115 | 6SN7GT | Horizontal Osc. Contro | 15000 Mu . V. Signal | 2 | 165 | - | - | 3 | +1.5 | 1 | -21 |  |
|  |  |  | No Signal | 2 | 160 | - | -- | 3 | -10 | 1 | -24 |  |
| V115 | 6SN7GT | Horizontal Oscillator | 15000 Mu . V. Signal | 5 | 185 | - | - | 6 | 0 | 4 | -80 |  |
|  |  |  | No Signal | 5 | 170 | - | - | 6 | 0 | 4 | -88 |  |
| V116 | 6BQ6GT | Horizontal Output | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | Cap | * | 4 | 180 | 8 | 21.2 | 5 | -13 | *High Voltage Pulse Present |
|  |  |  | No Signal | Cap | * | 4 | 170 | 8 | 21.0 | 5 | -13 | *High Voltage <br> Pulse Present |
| V117 | $\begin{gathered} \text { 1B3GT } \\ 8016 \end{gathered}$ | H. V. Rectifier | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | Cap | * | - | - | 2 \& 7 | 14,000 | - | - | *High Voltage <br> Pulse Present |
|  |  |  | No Signal | Cap | * | - | - | 2 \& 7 | 13,600 | - | - | *High Voltage <br> Pulse Present |
| V118 | 6W4GT | Damper | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} \\ \text { Signal } \end{gathered}$ | 5 | 270 | - | - | 3 | * | - | - | *High Voltage <br> Pulse Present |
|  |  |  | No Signal | 5 | 260 | - | - | 3 | * | - | - | *High Voltage <br> Pulse Present |
| V119 | 21AP4 | Kinescope | $15000 \mathrm{Mu} . \mathrm{V} .$ Signal | Cap | 14,000 | 10 | 400 | 11 | 170 | 2 | 120 | At average Brightness |
|  |  |  | No Signal | Cap | 13,600 | 10 | 385 | 11 | 150 | 2 | 115 | At average Brightness |
| $\begin{aligned} & \text { V120 } \\ & \text { V121 } \end{aligned}$ | 5U4G 5Y3GT | Rectifiers | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | $4 \& 6$ | - | - | - | 2 \& 8 | 285 | - | - |  |
|  |  |  | No Signal | 4 \& 6 | - | - | - | 2\&8 | 275 | - | - |  |

## R-F UNIT WIRING DIAGRAM



Figure 65-KRK-8D R-F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. Keep all wiring in the pix i-f, sound i-f and video circuits as short as possible.
2. Keep the leads on $\mathrm{Cll8}, \mathrm{Cl20}, \mathrm{Cl} 22, \mathrm{Cl} 24, \mathrm{Cl} 26, \mathrm{Rll4}$, R121 and R123 as short and direct as possible.
3. Do not run any leads under Cll5 trimmer capacitor
4. Dress Cll8 vertically parallel to terminals $A$ and $B$ of T104. Dress Cl35 parallel to terminals A and B of T104 close to the chassis.
5. Keep Cl27 away from chassis with no more than $1 / 4$ inch leads at each end.
6. Dress the lead from $T 105(C)$ to the terminal board, close to the chassis.
7. Keep all filament leads dressed close to the chassis.
8. Ground filaments of V106, V107 and V108 independently of tube shields (pin 8). Use ground lances provided near pins of each socket.
9. Dress lead from pin 5 of V11O to J102.2 close to the chassis.
10. Keep leads to LlO3 as short as possible.
11. Dress Ll02, Ll04, LlO5, Ll14, Cl30, R131, R133, R135, R139 and Cl32 away from the chassis.
12. Do not tape kinescope cathode lead in with other kinescope leads.
13. Do not change the bus wire connections to pin 2 of VlOl and V1O2. Sleeving is used to insure length and to prevent shorting.
14. Keep leads on Cl36 short and direct. Dress the lead from Cl36 to pin 5 of Vlll as shown in wiring diagram.
15. Do not dress Cl 70 in such a position that adjustment of Tllo is inaccessible.
16. Keep the leads on R2O1 as short and direct as possible.
17. Dress the lead from pin 3 of V113 to Cl53 as shown in the wiring diagram.
18. Mount Cl 83 directly on the terminal board provided keeping it as far away from Tl09 as possible.
19. Dress all leads in the high voltage compartment away from each other and away from the high voltage transformer.


|  | 䧲 |
| :---: | :---: |
|  |  |
|  | ${ }^{\text {名 }}$ |
|  |  |








 $\qquad$



|  | 部亳 |
| :---: | :---: |
|  | \％ |
|  | 咢槀 |
|  |  |

\footnotetext{



| $\begin{aligned} & \text { ab } \\ & \frac{\partial}{3} \text { b } \end{aligned}$ |  |  |
| :---: | :---: | :---: |
|  |  | ${ }_{\text {骂骂 }}$ |
|  |  |  |



Model 21-T-242
"Westland"
Mabogany,
Blonde Mabogany PHONOGRAPH COMBINATION Models 21-T-242, 21-T-244

Chassis No. KCS72D-1 or KCS72D-2 930409 and RC1117B or RC1111B and RS141C -Mfr. No. 274-
Service Data

- 1952 No. $T 9$

PREPARED BY RCA SERVICE CO., INC. FOR
RADIO CORPORATION OF AMERICA
RCA VICTOR DIVISION
CAMDEN, N. J., U. S. A.
GENERAL DESCRIPTION
Models 21-T-242 and 21-T-244 are 21 inch television, radio, phonograph combinations. Model 21-T-242 features an AM radio and Model $21-\mathrm{T}-244$ features an AM, FM radio. Both models employ a three speed record changer and a $12^{\prime \prime}$ PM dynamic speaker.

## ELECTRICAL AND MECHANICAL SPECIFICATIONS

PICTURE SIZE. . . 227 square inches on a 21 AP4 Kinescope

## TELEVISION R-F FREQUENCY RANGE

All 12 television channels, 54 mc . to $88 \mathrm{mc} ., 174 \mathrm{mc}$. to 216 mc .
Picture I-F Carrier Frequency
25.50 mc .

Sound I-F Carrier Frequency
21.00 mc . and 4.5 mc .

VIDEO RESPONSE
To 3.2 mc .
SWEEP DEFLECTION
Magnetic
FOCUS
Magnetic
POWER SUPPLY RATING
21-T-242
21-T. 244

## CHASSIS DESIGNATIONS

In Model 21-T-242 . . Television Chassis KCS72D-1, Radio Chassis RC1117B and Record Changer 930409-5 or -10.

In Model 21-T-244 . . Television Chassis KCS72D-2, Radio Chassis RClll1B, Audio Amplifier RS141C and Record Changer 930409.5 (mah.).
See Service Data 930409 for Record Changer information.
AUDIO POWER OUTPUT RATING. KCS72D, 4 watts max. RCl117B..... 2.4 watts max., RS141C ..... 10 watts max.
LOUDSPEAKER ... (92569-12) 12" PM Dynamic, 3.2 ohms WEIGHT

Model
21.T. 242 .

21-T-244
RECEIVER ANTENNA INPUT IMPEDANCE
Choice: 300 ohms balanced or 72 ohms unbalanced.

RCA TUBE COMPLEMENT

## Tube Used Television Chassis Function

(1) RCA 6CB6 ............................. R-F Amplifier
(2) RCA 6J6...................... Oscillator and Mixer
(3) RCA 6CB6.................. 1st Picture I-F Amplifier
(4) RCA 6CB6 ................. 2nd Picture I-F Amplifier
(5) RCA 6CB6 ...................3rd Picture I-F Amplifier
(6) RCA 12AU7 . Picture 2nd Detector and Vert. Sync. Sep.
( 7) RCA 6AG7 ........................ Video Amplifier
(8) RCA 6AU6..................... lst Sound I-F Amplifier
(9) RCA 6AU6....................2nd Sound I-F Amplifier
(10) RCA 6AL5 . . . . . . . . . . . . . . . . . . . Ratio Detector
(11) RCA 6AV6...................... 1st Audio Amplifier
(12) RCA 6K6GT .............................Audio Output
(13) RCA 6AU6..........................AGC Amplifier
(14) RCA 6SN7GT . Horizontal Sync. Sep. and Sync. Output
(15) RCA 6I5................... Vertical Sweep Oscillator
(16) RCA 6K6GT ................... Vertical Sweep Output
(17) RCA 6SN7GT Horizontal Sweep Oscillator and Control
(18) RCA 6BQ6GT ................ Horizontal Sweep Output
(19) RCA 6W4GT ............................... Damper
(20) RCA 1B3-GT/8016 ............... High Voltage Rectifier
(21) RCA 21AP4 ................................. Kinescope
(22) RCA 5U4G .............................................. Recier
(23) RCA 5Y3GT.................................... Rectifier

Radio Chassis RC1111B

| (1) RCA 6CB6 | R-F Amplifier |
| :---: | :---: |
| (2) RCA 6J6 | Oscillator and Mixer |
| (3) RCA 6BA6 | I-F Amplifier |
| (4) RCA 6AU6 | FM Driver |
| (5) RCA 6AL5 | Ratio Detector |
| (6) RCA 6AV6 | and lst Audio Am |

(1) RCA 6CB6

Oscillator and Mixer
I-F Amplifier
Ratio Detector
(6) RCA 6AV6

AM 2nd Det. and lst Audio Amp.

RCA TUBE COMPLEMENT
Tube Used Radio Chassis 1117B Function
(1) RCA 12BE6 . . . . . . . . . . . . .............. Converter
(2) RCA 12BA6....................................... Amplifier
(3) RCA 6AQ6
(4) RCA $6 A Q 6$
(5) RCA 35C5

## 2nd Det. and Audio Amp.

Phase Inverter
Audio Output (2 tubes)
Audio Chassis RSI41C

| (1) RCA 6 C 4 | Phase Inverter |
| :---: | :---: |
| (2) RCA 6V6GT ................... | Audio Output (2 tubes) |
| (3) RCA 5Ẏ3GT | Rectifier |
| HORIZONTAL SWEEP FREQUENCY | CY . . . . . . 15,750 cps |
| VERTICAL SWEEP FREQUENCY | 60 cps |
| FRAME FREQUENCY (Picture Repeti | petition Rate). 30 cps |
| SCANNING | Interlaced, 525 line |

OPERATING CONTROLS (Front)

| Channel Selector Fine Tuning | Dual Control Knobs |
| :---: | :---: |
| $\left.\begin{array}{l} \text { Picture } \\ \text { Brightness } \end{array}\right\}$ | Dual Control Knobs |
| $\left.\begin{array}{l}\text { Picture Horizontal Hold } \\ \text { Picture Vertical Hold }\end{array}\right\}$ | Dual Control Knobs |
| Sound Volume and On-Off Switch TV Tone Switch | Dual Control Knobs |

NON-OPERATING CONTROLS (not including R-F and I-F adjustments)
Picture Centering
top chassis adjustment Width rear chassis adjustment Height . . . . ..................... rear chassis adjustment Vertical Linearity .................. rear chassis adjustment Horizontal Drive rear chassis adjustment Horizontal Oscillator Frequency ..... rear chassis adjustment Horizontal Oscillator Waveform . bottom chassis adjustment Horizontal Locking Range ......... rear chassis adjustment Focus ............................ top chassis adjustment Ion Trap Magnet ................. top chassis adjustment Deflection Coil. AGC Control
top chassis wing nut adjustment rear chassis adjustment

## HIGH VOLTAGE WARNING

OPERATION OF THIS RECEIVER OUTSIDE THE CABINET OR WITH THE COVERS REMOVED, INVOLVES A SHOCK HAZARD FROM THE RECEIVER POWER SUPPLIES. WORK ON THE RECEIVER SHOULD NOT BE ATTEMPTED BY ANYONE WHO IS NOT THOROUGHLY FAMILIAR WITH THE PRECAUTIONS NECESSARY WHEN WORKING ON HIGH VOLTAGE EQUIPMENT. DO NOT OPERATE THE RECEIVER WITH THE HIGH VOLTAGE COMPARTMENT SHIELD REMOVED. BE SURE THE GROUND STRAP, BETWEEN THE YOKE ASSEMBLY AND THE CHASSIS, IS SECURELY FASTENED BEFORE TURNING THE RECEIVER ON.

## KINESCOPE HANDLING PRECAUTIONS

DO NOT REMOVE THE RECEIVER CHASSIS, INSTALL, REMOVE OR HANDLE THE KINESCOPE IN ANY MANNER UNLESS SHATTERPROOF GOGGLES ARE WORN. PEOPLE NOT SO EQUIPPED SHOULD BE KEPT AWAY WHILE HANDLING KINESCOPES. KEEP THE KINESCOPE AWAY FROM THE BODY WHILE HANDLING.

The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, the kinescope must be handled with more care than ordinary receiving tubes.

[^10]The following adjustments are necessary when turning the receiver on for the first time:

1. Turn the radio FUNCTION switch to TV.
2. Turn the receiver "ON" and advance the SOUND VOLUME control to approximately mid-position.
3. Set the STATION SELECTOR to the desired channel.
4. Adjust the FINE TUNING control for best sound fidelity and the VOLUME control for suitable volume.
5. Turn the BRIGHTNESS control fully counter-clockwise, then clockwise until a pattern appears on the screen.
6. Adjust the VERTICAL hold control until the pattern stops vertical movement.
7. Adjust the HORIZONTAL hold control until a picture is obtained and centered.
8. Adjust the PICTURE and BRIGHTNESS controls for suitable picture contrast and brightness.
9. In switching from one channel to another, it may be necessary to repeat steps 4 and 8 .
10. When the set is turned on again after an idle period it should not be necessary to repeat the adjustments if the positions of the controls have not been changed. If any adjustment is necessary, step No. 4 is generally sufficient.
11. If the positions of the controls have been changed, it may be necessary to repeat steps 1 through 8 .


Figure 1-2IT242 Operating Controls

## RADIO OPERATION

Model 21 T242

1. Turn the RADIO TRANSFER switch to RADIO-PHONO position.
2. Turn the RADIO-PHONO tone switch to a radio position.
3. Tune in the desired station with the TUNING control.
4. Adjust tone as desired.

## Model 21 T244

1. Turn the television TRANSFER switch to the RADIO position.
2. Turn the radio FUNCTION switch to AM or FM position.
3. Tune in the desired station with the TUNING control.
4. Adjust BASS and TREBLE controls for desired tone. Normal tone is with the BASS control fully counter-clockwise and the TREBLE control fully clockwise.

## PHONOGRAPH OPERATION

1. Turn the radio FUNCTION switch to the PHONO position.
2. Set speed control on changer to the desired speed.
3. Set stylus on tone arm to proper position for record to be used. (For 45 RPM records place 45 RPM centerpost over center spindle.)
4., Place a record on the changer and turn the changer power switch to " $\mathrm{ON}^{\prime}$ position.


Figure 2-21T244 Operating Controls

# REFER TO PAGES 236 TO 249 FOR TELEVISION ALIGNMENT PROCEDURE AND WAVE FORM PHOTOGRAPHS 

## INSTALLATION INSTRUCTIONS

ION TRAP MAGNET ADJUSTMENT. - Set the ion trap magnet approximately in the position shown in Figure 3. Starting from this position immediately adjust the magnet by moving it forward or backward at the same time rotating it slightly around the neck of the kinescope for the brightest raster on the screen. Reduce the brightness control setting until the raster is slightly above average brilliance. Turn the focus control (shown'in Figure 3) until the line structure of the raster is clearly visible. Readjust the ion trap magnet for maximum raster brilliance. The final touches of this adjustment should be made with the brightness control at the maximum clockwise position with which good line focus can be maintained.


Figure 3-Yoke and Focus Magnet Adjustments

DEFLECTION YOKE ADJUSTMENT.--If the lines of the raster are not horizontal or squared with the picture mask, rotate the deflection yoke until this condition is obtained. Tighten the yoke adjustment wing screw.

PICTURE ADJUSTMENTS.-It will now be necessary to obtain a test pattern picture in order to make further adjustments. Connect the antenna transmission line to the receiver

If the Horizontal Oscillator and AGC System are operating properly, it should be possible to sync the picture at this point. However, if the AGC control is misadjusted, and the receiver is overloading, it may be impossible to sync the picture.

If the receiver is overloading, turn Rl49 on the rear apron (see Figure 4) counter-clockwise until the set operates normally and the picture can be synced.

CHECK OF HORIZONTAL OSCILLATOR ALIGN-MENT.-Turn the horizontal hold control to the extreme counter-clockwise position. The picture should remain in horizontal sync. Momentarily remove the signal by switching off channel then back. Normally the picture will be out of sync. Turn the control clockwise slowly. The number of diagonal black bars will be gradually reduced and when only 2 or 3 bars sloping downward to the left are obtained, the picture will pull into sync upon slight additional clockwise rotation of the control. Pull-in should occur before the control has been turned 120 degrees from the extreme counter-clockwise position. The picture should remain in sync for approximately 90 degrees of additional clockwise rotation of the control. At the


Figure 4-Rear Chassis Adjustments
extreme clockwise position, the picture should remain in sync and should not show a black bar in the picture.

If the receiver passes the above checks and the picture is normal and stable, the horizontal oscillator is properly aligned. Skip "Alignment of Horizontal Oscillator" and proceed with "Focus Magnet Adjustment."

ALIGNMENT OF HORIZONTAL OSCILLATOR. - If in the above check the receiver failed to hold sync with the hold control at the extreme counter-clockwise position or failed to hold sync over 90 degrees of clockwise rotation of the control from the pull-in foint, it will be necessary to make the following adjustments.

Horizontal Frequency Adjustment. - Turn the horizontal hold control to the extreme clockwise position. Tune in a television station and adjust the TllO horizontal frequency adjustment at the rear of the chassis until the picture is just out of sync and the horizontal blanking appears as a vertical or diagonal black bar in the raster. Then turn the Tllo core until the bar moves out of the picture leaving it in sync.

Horizontal Locking Range Adjustment. - Set the horizontal hold control to the full counter-clockwise position. Momentarily remove the signal by switching off channel then back. The picture may remain in sync. If so turn the Tll 10 rear core slightly and momentarily switch off channel. Repeat until the picture falls out of sync with the diagonal lines sloping down to the left. Slowly turn the horizontal hold control clockwise and note the least number of diagonal bars obtained just before the picture pulls into sync.

If more than 3 bars are present just before the picture pulls into sync, adjust the horizontal locking range trimmer Cl61A slightly clockwise. If less than 2 bars are present, adjust Cl61A slightly counter-clockwise. Turn the horizontal hold control counter-clockwise, momentarily remove the signal and recheck the number of bars present at the pull-in point. Repeat this procedure until 2 or 3 bars are present.

Repeat the adjustments under "Horizontal Frequency Adjustment" and "Horizontal Locking Range Adjustment" until the conditions specitied under each are fulfilled. When the horizontal hold operates as outlined under "Check of Horizontal Oscillator Alignment" the oscillator is properly adjusted.

If it is impossible to sync the picture at this point and the AGC system is in proper adjustment it will be necessary to adjust the Horizontal Oscillator by the method outlined in the alignment procedure on page ll. For field purposes paragraph "B" under Horizontal Oscillator Waveform Adjustment may be omitted.

FOCUS MAGNET ADJUSTMENT. - The focus magnet should be adjusted so that there is approximately three-eighths inch of space between the rear cardboard shell of the yoke and the flat of the front face of the focus magnet. This spacing gives best average focus over the face of the tube.

The axis of the hole through the magnet should be parallel with the axis of the kinescope neck with the kinescope neck through the center of the opening.

CENTERING ADJUSTMENT.-No electrical centering controls are provided. Centering is accomplished by means of a separate plate on the focus magnet. The centering plates include a locking screw which must be loosened before centering. Up and down adjustment of the plate moves the picture side to side and sidewise adjustment moves the picture up and down.

If a corner of the raster is shadowed, check the position of the ion trap magnet. Reposition the magnet within the range of maximum raster brightness to eliminate the shadow and recenter the picture by adjustment of the focus magnet plate. In no case should the magnet be adjusted to cause any loss of brightness since such operation may cause immediate or eventual damage to the tube. In some cases it may be necessary to shift the position of the focus magnet in order to eliminate a corner shadow.
WIDTH, DRIVE AND HORIZONTAL LINEARITY ADJUSTMENTS. - Adjustment of the horizontal drive control affects the high voltage applied to the kinescope. In order to obtain the highest possible voltage hence the brightest and best focused picture, adjust horizontal drive trimmer Cl6lB counter-clockwise until the picture begins to "wrinkle" in the middle then clockwise until the "wrinkle" disappears.

Turn the horizontal linearity control L 108 clockwise until the picture begins to "wrinkle" on the right and then counterclockwise until the "wrinkle" disappears and best linearity is obtained.

Adjust the width control Ll06 to obtain correct picture width.
A slight readjustment of these three controls may be necessary to obtain the best linearity.

Adjustments of the horizontal drive control affect horizontal oscillator hold and locking range. If the drive control was adjusted, recheck the oscillator alignment.

HEIGHT AND VERTICAL LINEARITY ADJUSTMENTS. - Adjust the height control (R173 on chassis rear apron) until the picture fills the mask vertically. Adjust vertical linearity (R181 on rear apron), until the test pattern is symmetrical from top to bottom. Adjustment of either control will require a readjustment of the other. Adjust centering to align the picture with the mask.

FOCUS. - Adjust the focus magnet for maximum definition in the test pattern vertical "wedge" and best focus in the white areas of the pattern.

Recheck the position of the ion trap magnet to make sure that maximum brightness is obtained.

Check to see that the yoke thumbscrew and the focus magnet mounting screws are tight.

CHECK OF R-F OSCILLATOR ADJUSTMENTS.Tune in all available stations to see if the receiver r-f oscillator is adjusted to the proper frequency on all channels. If adjustments are required, these should be made by the method outlined in the alignment procedure on page 9. The adjustments for channels 2 through 12 are available from the front of the cabinet by removing the station selector escutcheon as shown in Figure 5. Adjustment for channel 13 is on top of the $e^{\text {hassis. }}$


Figure 5-R-F Oscillator Adjustments
AGC THRESHOLD CONTROL.-The AGC threshold control R149 is adjusted at the factory and normally should not require readjustment in the field.

To check the adjustment of the AGC Threshold Control, tune in a strong signal and sync the picture. Momentarily remove the signal by switching off channel and then back. If the picture reappears immediately, the receiver is not overloading due to improper setting of R149. It the picture requires an appreciable portion of a second to reappear, or bends excessively, R149 should be readjusted.

Turn R149 fully counter-clockwise. The raster may be bent slightly. This should be disregarded. Turn Rl49 clockwise until there is a very, very slight bend or change of bend in the picture. Then turn Rl49 counter-clockwise just sufficiently to remove this bend or change of bend.

If the signal is weak the above method may not work as it may be impossible to get the picture to bend. In this case, turn Rl49 clockwise until the snow in the picture becomes more pronounced, then counter-clockwise until the best signal to noise ratio is obtained.


Figure 6-Model 21T242 Cable Diagram

The AGC control adjustment should be made on a strong signal if possible. If the control is set too far clockwise on a weak signal, then the receiver may overload when a strong signal is received

FM TRAP ADJUSTMENT.-In some instances interference may be encountered from a strong FM station signal. A trap is provided to eliminate this type of interference. To adjust the trap tune in the station on which the interference is observed and adjust the L203 core on top of the ontenna matching transformer for minimum interference in the picture.'

CAUTION. - In some receivers, the FM trap L203 will tune down into channel 6 or even into channel 5. Needless to say, such an adjustment will cause greatly reduced sensitivity on these channels. If channels 5 or 6 are to be received, check L203 to make sure that it does not affect sensitivity on these two channels.

Replace the cabinet back and connect the receiver antenna leads to the cabinet back. Make sure that the screws holding it are up tight, otherwise it may rattle or buzz when the receiver is operated at high volume.

KINESCOPE SCREEN CLEANING.-The kinescope safety glass is held in place by four spring clips which may be removed from the back of the front panel. This permits removing the safety glass for cleaning without the necessity of removing the chassis and kinescope.

CHASSIS REMOVAL.-To remove the chassis from the cabinet for repair or installation of a new kinescope, remove the control knobs, the cabinet back, unplug the speaker cable, the kinescope socket, the antenna cable, the yoke and high voltage cable. Take out the chassis bolts under the cabinet. Withdraw the chassis from the back of the cabinet.

## RADIO OPERATION

## Model 21 T242

Turn the RADIO-TV TRANSFER switch to radio. Turn the radio function switch to RADIO and check radio for proper operation.

## Model 21 T244

Turn the TELEVISION TRANSFER switch to the RADIO position. Turn the radio function switch to the AM and FM positions and check the radio for proper operation.


Figure 7-Model 21 T244 Cable Diagram

TELEVISION CHASSIS TOP VIEW


Figure 8-Television Chassis Tnp View


Figure 9-Television Chassis Bottom View

Critical Lead Dress
4. Connect outside foil of all capacitors as indicated in schematic diagram 5. Dress output plate bypasses, C19 and C20, as near

1. Dress Cl5 (. 022 mfd . at grid of phase inverter) over 2. Keep all filament leads close to chassis.
2. Keep leads of R26 ( 270 ohms at I-F amplifier cath-

RADIO DATA
21 T242
Dial Pointer Adjustment. - Rotate tuning condenser fully counter-clockwise (plates fully meshed). Adjust indicator pointer so that it is $3^{15}$. $\mathrm{ic}^{\prime \prime}$ from the left hand edge of the dial back plate.


Figure 11-Dial Cord and Drive


Figure 12-Chassis Top View

## Alignment Procedure

Output Meter.-Connect meter across speaker voice coil. Turn volume control to maximum.

Test Oscillator.-Connect low side of test oscillator to common wiring in series with a .1 mf . capacitor. If the test oscillator is a-c operated it may be necessary to use an isolation transformer for the receiver during alignment and the low side of the test oscillator connected directly to common wiring at the electrolytic capacitor. Keep the oscillator output low to prevent a-v-c action.

| Steps | Connect the high side of test-oscillator to- | $\begin{aligned} & \text { Tune } \\ & \text { test-osc. } \\ & \text { to- } \end{aligned}$ | $\begin{aligned} & \text { Turn } \\ & \text { radio dial } \\ & \text { to- } \end{aligned}$ | Adjust the following for max. output |
| :---: | :---: | :---: | :---: | :---: |
| 1 | I-F grid, in series with .1 mid . | 455 kc | Quiet point 1,600 kc end of dial | Pri. \& Sec. 2nd I-F transformer |
| 2 | Converter grid in series with .1 mid . |  |  | Pri. \& Sec. 1st I-F transformer |
| NOTE. - ANTENNA LOOP AND RECORD CHANGER MUST BE IN CABINET FOR THE FOLLOWING |  |  |  |  |
| 3 | Short wire placed near loop for radiated signal | $1,620 \mathrm{kc}$ | Extreme <br> R. H. end (gang open) | ClB-T (osc.) |
| 4 |  |  | $1,400 \mathrm{kc}$ | C5 (ant.) |
| 5 | Repeat steps 3 \& 4 if necessary |  |  |  |

RADIO DATA
21 T244


Figure 13-RC1111A Chassis Top View


Figure 14-RS141C Chassis Top View

Figure 15-
Dial Cord


## CRITICAL LEAD DRESS

1. The lst FM i-f plate lead should be dressed away from the r-f amp plate.
2. Dress the lst AM i-f plate lead to the $S 2$ wafer away from the AM r-f coil.
3. Dress the $a-c$ power switch wires away from all audio components.
4. Dress C26 down toward the base between the terminal board and the side apron.
5. The Cl8 bypass ground should be as close to the r-f shelf ground strap as possible.
6. Dress C25 away from the arm contact of the volume control.
7. All leads from the r-f shelf leaving through the shields must be kept as short as possible.
8. Dress the a-c leads in the RSl4l chassis away from the audio input leads and components.

## RADIO ALIGNMENT PROCEDURE

Before aligning set，completely mesh the gang and set the dial pointer to the mechanical max．calibration point at extreme left end of dial．When making a complete alignment follow the table below in sequence．Connect the output meter across the speaker voice coil，and turn the receiver volume control to max．Turn tone controls for maximum highs and maximum lows．
＂AM＂＇I－F ALIGNMENT
Test－Oscillator．－connect low side of the test－osc．to the chassis，and keep the output as low as possible to avoid a－v－c action．

| Steps | Connect the High Side of <br> the Test Osc．to－ | Tune Test Osc． <br> to－ | Function <br> Switch | Turn Radio <br> Dial to－ | Adjust the following |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Pin No．l of（43）in series <br> with ．0l mfd． | 455 kc. <br> Modulated | AM | Low Freq．end <br> of Dial | $\dagger$ Top and bot．cores of T4 <br> For max．voltage across voice coil． |
| 2 | Stator of Cl－D <br> in series with .01 mfd. | 455 kc. <br> Modulated | AM | Low Freq．end <br> of Dial | $\dagger$ Top and bot．cores of T2 <br> For max．voltage across voice coil． |

$\dagger$ For proper adjustment of the i－f cores start with the cores all the way out．The first peak obtained will be the correct one．

## FM ALIGNMENT PROCEDURE

Connect probe of＂VoltOhmyst＂to negative side of C39 and low side to chassis．Top shield must be on and the bottom shield off．

| Steps | Connect the High Side of the Test Osc．to－ | Tune Test Osc． to－ | Function Switch | Radio Dial <br> Tuned to－ | Adjust |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | Pin No． 1 of V4 in series with 01 mfd ． | 10.7 mc． | FM | －－－ | Top of Ratio d－c $\dagger$ Trans．TS for maximum DC on＂VoltOhmyst．＂ |
| 4 | Pin No． 1 of V4 in series with 01 mid ． | $30 \% \mathrm{AM}$ Modulated | FM | －ーー | Bottom of Ratio d－c† Trans．T5 for minimum audio output on meter． |
| 5 | Repeat steps 3 and 4 as necessary making final adjustment with input set to give approx．-4.0 v ．on＂VoltOhmyst．＂ |  |  |  |  |
| 6 | Pin No．l of V3 in series with .01 mid ． | 10.7 mc ． | FM | 88 mc ． | $\dagger$ Top and bottom cores of T3 for maximum d－c across C39． |
| 7 | Stator of $\mathrm{Cl}-\mathrm{C}$ in series with .01 mfd ． | 10.7 mc ． | FM | 88 mc ． | $\dagger$ Top and bottom cores of Tl for maximum d－a across C39． |
| 8 | Connect sweep generator cable to antenna termi－ | $\begin{gathered} 90 \mathrm{mc} . \\ 22.5 \mathrm{kc} . \mathrm{FM} \text { mod. } \end{gathered}$ | FM | 88 mc ． | $\ddagger$ OSC，L8 for max．audio output． |
| 9 | nals through 120 ohms in each side of line． | 106 mc ． <br> 22.5 kc ．FM mod | FM | Tune to signal | ANT， $\mathrm{Cl}-\mathrm{FT}$ and R－FCl－CT for max． voltage across C39． |
| 10 |  | 90 mc ． <br> 22.5 kc．FM mod． | FM | Tune to signal | $\ddagger$ ANT，L1 and R－F L2 for max．voltage across C39． |
| 11 | Repeat steps 8,9 and 10 as required． |  |  |  |  |
| 12 | Connect a scope to junction R33 and C35，check response and linearity．Peak separation should be at least 180 kc ． |  |  |  |  |

$\dagger$ For proper adjustment of the i．f cores start with the cores all the way out．The first peak obtained is the correct one．
$\ddagger$ Adjustable by increasing or decreasing spacing between turns．
＂AM＂R－F ALIGNMENT

| Steps | Connect the High Side of <br> the Test Osc．to－ | Tune Test Osc． <br> to－ | Function <br> Switch | Turn Radio <br> Dial to－ | Adjust the following |
| :---: | :---: | :---: | :---: | :---: | :---: |

${ }_{* * *} \ddagger$ Clip a 10,000 ohm resistor across Cl－D when making this adjustment．
＊All R－F shields must be in place．

## RADIO VOLTAGE CHART

Voltages shown are as read with＂VoltOhmyst＂between indicated terminal and chassis，with receiver operating on 117 volts， and with no signal input．

| Tube Type and Function | Tube Element | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | AM | FM | Phono | Tube Type and Function | Tube Element | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | AM | FM | Phono |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V1 6CB6 <br> R－F Amp | Plate Screen Cathode Grid | $\begin{aligned} & 5 \\ & 6 \\ & 2 \\ & 1 \end{aligned}$ | $\begin{array}{r} 215 \\ 74 \\ 0.4 \\ -0.8 \\ \hline \end{array}$ | $\begin{array}{r} 180 \\ 62 \\ 0.4 \\ 0.4 \\ \hline \end{array}$ | $\begin{aligned} & \text { 二 } \\ & \text { = } \end{aligned}$ | V5 6AL5 Ratio Det． | － |  | － | － | － |
|  |  |  |  |  |  | $\begin{aligned} & \text { V6 6AV6 } \\ & \text { Audio } \\ & \text { Amp. } \end{aligned}$ | Plate Grid | $\begin{array}{\|l\|} \hline 7 \\ 1 \\ \hline \end{array}$ | $\begin{array}{r} 88 \\ -0.7 \\ \hline \end{array}$ | $\begin{array}{r} 88 \\ -0.7 \end{array}$ | $\begin{array}{r} 104 \\ -0.8 \end{array}$ |
| $\text { V2 } 6 \mathrm{~J} 6$ | Plate | 2 5 | 55 -1.2 | 58 -1.3 | 二 |  |  |  |  |  |  |
| Osc．and Mixer | Plate Grid | $\stackrel{1}{6}$ |  | 46 -1.2 | － | Vl02 6C4 Phase Inverter | Plate Cathode Grid | $\begin{aligned} & 5 \\ & 7 \\ & 6 \end{aligned}$ | $\begin{array}{r} 87.5 \\ -11 \\ -16 \end{array}$ | $\begin{array}{r} 88 \\ -11 \\ -16 \end{array}$ | $\begin{array}{r} 120 \\ -13 \\ -19 \end{array}$ |
| V3 6BA6 | Plate | 5 | 210 | 210 | － |  |  |  |  |  |  |
|  | Screen | 6 | 126 | 115 | － | V103 6V6GTV104 6V6GTAudioPowerOutput | Plate <br> Screen Cathode Grid | $\begin{array}{\|l\|} \hline 3 \\ 4 \\ 8 \\ 5 \\ \hline \end{array}$ | $\begin{array}{r} 300 \\ 224 \\ 0 \\ -17 \\ \hline \end{array}$ | $\begin{array}{r} 300 \\ 224 \\ 0 \\ -17 \\ \hline \end{array}$ | $\begin{array}{r} 298 \\ 292 \\ 0 \\ -21 \end{array}$ |
| I－F Amp | Cathode | 7 | － 0.9 | 0.7 | － |  |  |  |  |  |  |
|  | Grid | 1 | －0．8 | －0．2 | － |  |  |  |  |  |  |
| V4 6AU6 | Plate | 5 6 | 216 150 | 216 150 | － |  |  |  |  |  |  |
| Driver | Cathode <br> Grid | $\begin{array}{\|l\|} \hline 7 \\ 1 \\ \hline \end{array}$ | $\begin{array}{r} 1.5 \\ 0 \end{array}$ | $\begin{array}{r} 1.5 \\ \hline \end{array}$ | － | V101 5Y3GT Rectifier | Fil． | 8 | 305 | 305 | 307 |
|  |  |  |  |  |  |  |  |  |  |  |  |



## TELEVISION VOLTAGE CHART

The following measurements represent two sets of conditions. In the first condition, a 15000 microvolt test pattern signal was fed into the receiver, the picture synced and the AGC control properly adjusted. The second condition was obtained by removing the antenna leads and short circuiting the receiver antenna terminals. Voltages shown are read with a type WV97A senior "Voltohmyst" between the indicated terminal and chassis ground and with the receiver operating on 117 volts, 60 cycles, a-c. The symbol $<$ means less than.

| Tube No. | Tube Type | Function | Operating Condition | E. Plate |  | E. Screen |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{array}{\|l} \text { Pin } \\ \text { No. } \\ \hline \end{array}$ | Volts | Pin No. | Volts | Pin No. | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts |  |
| V1 | 6J6 | Mixer | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 2 | 153 | - | - | 7 | 0 | 5 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
|  |  |  | No Signal | 2 | 135 | - | - | 7 | 0 | 5 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
| V1 | 6J6 | R-F Oscillator | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 1 | 100 | - | - | 7 | 0 | 6 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 1 | 85 | - | - | 7 | 0 | 6 | $\begin{aligned} & *-3 \\ & \text { to }-5 \end{aligned}$ | *Depending on channel |
| V2 | 6CB6 | R-F <br> Amplifier | $15000 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal | 5 | 260 | 6 | 150 | 2 | 1 | 1 | -5.8 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 5 | 220 | 6 | 100 | 2 | 1.0 | 1 | -0.1 |  |
| V101 | 6AU6 | 1st Sound I-F Amp. | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 5 | 130 | 6 | 142 | 7 | 0.8 | 1 | 0 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 116 | 6 | 129 | 7 | 0.6 | 1 | 0 |  |
| V102 | 6AU6 | $\begin{aligned} & \text { 2d Sound } \\ & \text { I-F Amp. } \end{aligned}$ | 15000 Mu . V. Signal | 5 | 131 | 6 | 148 | 7 | 0 | 1 | -5.1 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 110 | 6 | 120 | 7 | 0 | 1 | *-0.3 | *Unreliable measuring point. Voltage depends on noise. |
| V103 | 6AL5 | $\begin{array}{\|l\|} \hline \text { Ratio } \\ \text { Detector } \end{array}$ | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 7 | 0 | - | - | 1 | 12 | - | - | 7.5 kc deviation at 1000 cycles |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 7 | 0.7 | - | - | 1 | *5.1 | - | - | *Unreliable measuring point. Voltage depends on noise. |
| V104 | 6AV6 | 1st Audio Amplifier | $\begin{gathered} 15000 \mathrm{Mu} . \mathrm{V} . \\ \text { Signal } \end{gathered}$ | 7 | 87 | - | - | 2 | 0 | 1 | -0.7 | At min. volume |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 7 | 76 | - | - | 2 | 0 | 1 | -0.6 | At min. volume |
| V105 | 6K6GT | Audio Output | $15000 \mathrm{Mu} . \mathrm{V}$. Signal | 3 | 260 | 4 | 263 | 8 | 19 | 5 | -0.7 | At min. volume |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 3 | 250 | 4 | 251 | 8 | 18.5 | 5 | -0.7 | At min. volume |
| V106 | 6CB6 | $\begin{array}{\|l} \hline \text { 1st Pix. I-F } \\ \text { Amplifier } \end{array}$ | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 5 | 246 | 6 | 258 | 2 | $<0.1$ | 1 | -8.6 |  |
|  |  |  | $\begin{aligned} & \text { N○ } \\ & \text { Signal } \end{aligned}$ | 5 | 108 | 6 | 108 | 2 | 0.7 | 1 | *-0.2 | *Unreliable measuring point. Make measurement at Tl04.B |
| V107 | 6CB6 | $\begin{aligned} & \text { 2nd Pix. I-F } \\ & \text { Amplifier } \end{aligned}$ | $\underset{\substack{\text { Signal } \\ 15000 \mathrm{Mu} .}}{ }$ | 5 | 242 | 6 | 255 | 2 | $<0.1$ | 1 | -8.6 |  |
|  |  |  | No Signal | 5 | 108 | 6 | 108 | 2 | 0.5 | 1 | -0.2 |  |
| V108 | 6CB6 | 3rd Pix. I-F Amplifier | $15000 \mathrm{Mu} . \mathrm{V} \text {. }$ Signal | 5 | 133 | 6 | 172 | 2 | 2.1 | 1 | 0 |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 5 | 115 | 6 | 162 | 2 | 1.9 | 1 | 0 |  |
| V109A | 12AU7 | Picture <br> 2d Det. | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 1 | -8.4 | - | - | 3 | 0 | 2 | $-1.3$ |  |
|  |  |  | $\begin{aligned} & \text { No } \\ & \text { Signal } \end{aligned}$ | 1 | $-1.8$ | - | - | 3 | 0 | 2 | -0.6 |  |
| V109B | 12AU7 | Vert. Sync Separator | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 6 | 71 | - | - | 8 | 0 | 7 | -40 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 6 | $\begin{gathered} * 50 \\ \text { to } 100 \end{gathered}$ | - | - | 8 | 0 | 7 | *-15 | *Unreliable, depends on noise |



| Tube | $\begin{aligned} & \text { Tube } \\ & \text { Type } \end{aligned}$ | Function | Operating Condition | E. Plate |  | E. Screon |  | E. Cathode |  | E. Grid |  | Notes on Measurements |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$ | Volts | $\begin{aligned} & \text { Pin } \\ & \text { No. } \\ & \hline \end{aligned}$ | Volts |  |
| V110 | 6AG7 | Video <br> Amplifier | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 8 | 130 | 6 | 149 | 5 | 0.2 | 4 | -1.3 | AGC control set for normal operation |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 8 | 110 | 6 | 130 | 5 | 0.5 | 4 | -0.6 | AGC control set for normal operation |
| v111 | 6AU6 | AGC Amplifier | $\underset{\substack{15000 \mathrm{Mu} \\ \text { Signal } \\ \text { V. }}}{ }$ | 5 | -40 | 6 | 250 | 7 | 153 | 1 | 151 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | +2.3 | 6 | 258 | 7 | 135 | 1 | 105 |  |
| V112A | 6SN7GT | Hor. Sync Separator | $\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}$ | 2 | 263 | - | - | 3 | 190 | 1 | 130 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 2 | 258 | - | - | 3 | 138 | 1 | 110 |  |
| V112B | 6SN7GT | Sync Output | $\underset{\text { Signal }}{15000 \mathrm{Mu} .} \mathrm{V} .$ | 5 | 58 | - | - | 6 | 0 | 4 | -2.1 |  |
|  |  |  | $\stackrel{\text { No }}{\text { Signal }}$ | 5 | 48 | - | - | 6 | 0 | 4 | $\begin{gathered} * \\ +0.6 \end{gathered}$ | *Depends on noise |
| V113 | 615 | Vertical Oscillator | $\underset{\text { Signal }}{15000 \mathrm{Ma.V} .}$ | 3 | 70 | - | - | 8 | 0 | 5 | -15 | *Depends on setting of Vert. hold control |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 3 | 68 | - | - | 8 | 0 | 5 | -14 | Voltages shown are synced pix adjustment |
| V114 | 6K6GT | $\begin{aligned} & \text { Vertical } \\ & \text { Output } \end{aligned}$ | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 3 | 265 | 4 | 270 | 8 | 30 | 5 | -5 |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 3 | 253 | 4 | 260 | 8 | 28 | 5 | -5 |  |
| V115 | 6SN7GT | Horizontal Osc. Control | $\underset{\text { Signal }}{15000 \mathrm{Mu} . \mathrm{V} .}$ | 2 | 165 | - | - | 3 | +1.5 | 1 | -21 |  |
|  |  |  | $\stackrel{\text { No }}{\text { Signal }}$ | 2 | 160 | - | - | 3 | -10 | 1 | -24 |  |
| v115 | 6SN7GT | Horizontal Oscillator | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | 5 | 185 | - | - | 6 | 0 | 4 | -80 |  |
|  |  |  | $\begin{gathered} \mathrm{No} \\ \text { Signal } \end{gathered}$ | 5 | 170 | - | - | 6 | 0 | 4 | -88 |  |
| V116 | 6BQ6GT | $\begin{aligned} & \text { Horizontal } \\ & \text { Output } \end{aligned}$ | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | Cap | * | 4 | 180 | 8 | 21.2 | 5 | -13 | *High Voltage Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | Cap | * | 4 | 170 | 8 | 21.0 | 5 | -13 | *High Voltage Pulse Present |
| V117 | $\begin{aligned} & \text { 183GT } \\ & 18016 \end{aligned}$ | H. V Rectifier | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | Cap | * | - | - | 2 \& 7 | 14,000 | - | - | *High Voltage Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | Cap | * | - | - | 2 \& 7 | 13,600 | - | - | *High Voltage Pulse Present |
| v118 | 6W4GT | Damper | $\underset{\substack{15000 \mathrm{Mu} . \mathrm{V} \\ \text { Signal }}}{ }$ | 5 | 270 | - | - | 3 | * | - | - | *High Voltage Pulse Present |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | 5 | 260 | - | - | 3 | * | - | - | *High Voltage Pulse Present |
| V119 | 21AP4 | Kinescope | $\underset{\text { Signal }}{15000 \mathrm{Mu} .}$ | Cap | 14,000 | 10 | 400 | 11 | 170 | 2 | 120 | At average Brightness |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | Cap | 13,600 | 10 | 385 | 11 | 150 | 2 | 115 | At average Brightness |
| $\begin{aligned} & \text { V120 } \\ & \text { V121 } \end{aligned}$ | 5U4G 5Y3GT | Rectifiers | $\underset{\text { Signal }}{15000 \mathrm{Mu} .} .$ | $4 \& 6$ | - | - | - | 2 \& 8 | 285 | - | - |  |
|  |  |  | $\begin{gathered} \text { No } \\ \text { Signal } \end{gathered}$ | $4 \& 6$ | - | - | - | $2 \& 8$ | 275 | - | - |  |



Figure 17-R-F Unit Wiring Diagram

## CRITICAL LEAD DRESS:

1. Keep all wiring in the pix i-f, sound i.f and video circuits as short as possible.
2. Keep the leads on $\mathrm{C} 118, \mathrm{C} 120, \mathrm{Cl} 22, \mathrm{Cl} 24, \mathrm{C} 126, \mathrm{Rl14}$, R121 and 123 as short and direct as possible.
3. Do not run any leads under Cll5 trimmer capacitor.
4. Dress Cl18 vertically parallel to terminals A and B of T104. Dress Cl35 parallel to terminals A and B of T104 close to the chassis.
5. Keep Cl 27 away from chassis with no more than $1 / 4$ inch leads at each end.
6. Dress the lead from $\mathrm{TlO5}(\mathrm{C}$ ) to the terminal board, close to the chassis.
7. Keep all filament leads dressed close to the chassis.
8. Ground filaments of V106, V107 and V108 independently of tube shields (pin 8). Use ground lances provided near pins of each socket.
D. Dress lead from pin 5 of V110 to J102-2 close to the chassis.
9. Keep leads to L103 as short as possible
10. Dress Cl30, Cl32, L102, L104, L105, L114, R131, R133, R135 and R139 away from the chassis.
11. Do not tape kinescope cathode lead in with other kinescope leads.
12. Do not change the bus wire connections to pin 2 of ViOl and V102. Sleeving is used to insure length and to prevent shorting.
13. Keep leads on Cl 36 short and direct. Dress the lead from C 136 to pin 5 of V111 as shown in wiring diagram.
14. Do not dress C 170 in such a position that adjustment of T110 is inaccessible.
15. Keep the leads on R201 as short and direct as possible.
16. Dress the lead from pin 3 of V 113 to C 153 as shown in the wiring diagram.
17. Mount C183 directly on the terminal board provided keeping it as tar away from T109 as possible.
18. Dress all leads in the high voltage compartment awa from each other and away from the high voltage
transformer.




Chassis Nos. KRK 19, KRK 19A

- Mfr. No. 274 -

Service Data

- 1952 No. T6 -


## PREPARED BY RCA SERVICE CO., INC. FOR <br> RADIO CORPORATION OF AMERICA <br> rCA VICtor division <br> CAMDEN, N. J., U. S. A.

## GENERAL DESCRIPTION

UHF Selectors Models U1A and U1B permit the reception of any one UHF television station within receiving range when employed with a VHF television receiver.

The unit employs one tube and a crystal rectifier. Filament
and plate power is obtained from the receiver to which it is attached. The two models are identical except for power cables. The UHF Selector units may be mounted on the back of the receiver cabinet or other convenient location, as long as the selector switch is accessible.

## ELECTRICAL SPECIFICATIONS

TELEVISION R-F FREQUENCY RANGE<br>All 70 UHF television channels ....................... 470 mc . to 890 mc . I-F Output Frequency ING<br>\section*{POWER SUPPLY RATING}<br>Filament .......................................................... 6.3 volts, 225 amps.<br>Plate .........................Approx. $10 \mathrm{ma} \alpha \mathrm{t} 70$ to 370 volts (see text)

## ANTENNA INPUT IMPEDANCE

72 ohms unbalanced.
TUBE COMPLEMENT


## INSTALLATION INSTRUCTIONS

UHF Selector Ul $\AA$ is provided with a 52 inch power cable with a 7 pin miniature adapter socket for use with television receivers which employ a 6AQ5 audio output stage.

UHF Selector UlB is provided with a similar power cable except that it employs an octal adapter socket for use with television receivers which use a 6K6GT or 6V6 audio output tube.
Table No. 2 on pages 3 and 4 lists all RCA Victor television receivers to date and the UHF Selector to be employed. Consult the table and select the proper selector for the receiver.

Mount the UHF Selector on the back cover of the cabinet with the adjustment screw holes facing up. Be sure to locate the selector so that the selector switch may be reached conveniently from the top or side of the cabinet and so that the cables may be easily attached.
Mount the selector VHF terminal board on the back of the cabinet.

To install the UHF Selector power cable, remove the television receiver audio output tube and plug the adapter socket into the receiver audio tube socket. In all television-radio combinations, except models 21 T 242 and 21 T 244 plug the adapter into the radio's audio output tube socket. Insert the audio output tube into the adapter socket. Ground the black lead with the spade terminal under the most convenient screw on the chassis. Dress the power cable out the back of the cabinet in the most convenient and orderly manner. With the and of the power cable hanging out the back of the cabinet. fasten the receiver back cover in place making sure that the cable is not pinched under at any point. Connect the power cable to the selector.

Connect the UHF antenna to the UHF Selector UHF antenna terminals.

Connect the VHF antenna to the Selector's VHF antenna terminals.

Connect the UHF Selector output leads to the television receiver antenna terminals.

The UHF Selector is wired with a jumper across R6 as shown in the schematic diagram for receivers which provide 270 volts at the adapter socket. If the receíver provides 370 volts at the adapter socket, the jumper across R 6 should be removed. See Table 2 for recommendations for RCA Victor receivers.

## USE ON OTHER MAKES OF RECEIVERS

The UlA and UlB UHF Selectors will provide satisfactory UHF reception on other makes of receivers provided that the proper voltages for operation of the selector can be obtained from the receiver.
The U1A and UIB UHF Selectors were designed for use on receivers in which the tube filaments are fed in parallel from a 6.3 volt transformer winding. Since the black lead of the selector power cable is connected to the selector chassis, the Ul series selectors should not be employed with any receiver in which a direct connection exists between the a-c power line and the receiver $d-c$ power supply.

The plate voltage available from the receiver may not be optimum for operation of the selector as wired. It is very important that between 60 and 90 volts should be present at the junction of R2 and R6 in order to obtain optimum crystal cur. rent. The voltage at the junction of R2 and R6 should be measured with a "VoltOhmyst" and with the UHF Selector shield in place. To obtain proper voltage at R2 and R6, shunt R4, R5 and R6 as necessary with resistors of adequate wattage to obtain the desired voltage.

The television receiver operating voltages should not be materially altered by the installation of the UHF Selector.

In some makes of receivers it may be necessary to rewire the adapter socket and cable to suit the particular type of audio output tube. In some instances where filament wiring difficulties are encountered, it may be necessary to remove the adapter socket and wire the power cable into the television receiver.

## ADJUSTMENT INSTRUCTIONS

The 6AF4 oscillator coil is provided with shorting Jumper " $B$ " which is connected in place in a new UHF Selector unit. With this strap in place, the selector will tune from channel 45 through 83.
If the channel to be received is below channel 45, Jumper " $B$ " must be clipped out and removed. The selector will then tune from channel 14 through 44.

Turn the receiver on and to channel 5 or 6 , whichever is vacant in the operating area. Switch the UHF Selector switch to the UHF operating position. Set the television receiver fine tuning control to the middle of its range and the volume control clockwise until background noise is heard.

Adjust the UHF Selector Primary, Secondary and Oscillator adjustments to the approximate locations as indicated in Table 1.

Adjust the selector oscillator trimmer Cl3 until sound from the desired UHF station is heard. This adjustment must be made very slowly for it is easy to pass by the proper adjustment point without hearing the sound, particularly if the signal is weak.

Once the sound is obtained, adjust the primary trimmer Cl for the best sound and picture. Next, adjust the secondary trimmer C 3 for best sound and picture.

Readjust the UHF Selector oscillator trimmer so that the best sound and picture occur when the television receiver fine tuning control is in the middle of its range. Repeak CI and C3 for best sound and picture.

Note: In adjusting the UHF Selector oscillator, it may be possible to obtain sound in two positions of the oscillator trimmer. However, for proper reception of both sound and piciure, the oscillator should be lower in frequency than the station picture carrier. Therefore, if sound is heard in two positions of the trimmer, the most clockwise position is the correct one.

The input circuits to the UHF Selector tune very sharplyparticularly the primary. If the UHF signal is very weak, the primary and secondary trimmers Cl and C 3 must be in approximately the correct adjustment in order to be able to hear the sound upon adjusting the oscillator trimmer Cl3. If it is not possible to hear the sound by the method described above, preset the primary and secondary trimmers one-quarter turn in the same direction from their previous position and search for the sound by adjustment of oscillator trimmer Cl3. Repeat this procedure until the sound is obtained. If the above method should not work, try connecting one side of the transmission line to the crystal at L2 and the other side to the chassis.

Under some conditions interfering beats may be obtained between the UHF Selector oscillator and harmonics of the television receiver oscillator which show up as lines in the picture. In some cases these may be eliminated by adjusting the receiver fine tuning for elimination of the beat, then retuning the selector oscillator core for best sound and picture. As an alternate method switch the television receiver to any vacant channel between 2 and 6 and retune the UHF Selector oscillator trimmer Cl3 to obtain sound and picture.

Under some conditions, adjacent channel interference may be experienced if the VHF station is strong and the UHF signal is weak. In such cases, it may be desirablie to provide a
shielded cable between the UHF Selector unit and the television receiver r-f unit.
As a test for drift, turn the receiver off for five minutes then turn it on again. Within approximately one minute it should be possible to receive the UHF station by adjustment of the receiver fine tuning control and without the necessity of readjusting the UHF Selector oscillator.

When it is desired to receive a VHF station on the television receiver, switch the UHF selector switch to the VHF position and operate the receiver normally.
table l-adjustments versus channel number

| CHANNEL. | PRIMARY \& SECONDARY | OSCLLLATOR |
| :---: | :---: | :---: |
| 14 | 6.5 turns CW | 1 turn CW |
| 15-16 | 5.5 turns CW | 1 tum CCW |
| 17-19 | 5.0 turns CW | 2 tums CCW |
| 20-23 | 4.5 turns CW | 3 turns CCW |
| 24-27 | 3.5 tums CW | 4 tums CCW |
| 28-32 | 2.5 turns CW | 5 tums CCW |
| 33-37 | 2.0 turns CW | 6 tums CCW |
| 38-41 | 1.5 tums CW | 7 turns CCW |
| 42-44 | 1.0 tum CW | 8 turns CCW |
| 45.46 | . 5 tum CW | 1 tum CW |
| 47-50 | . 5 turn CCW | 1 turn CCW |
| 51.54 | 1.0 tum CCW | 2 turns CCW |
| 55.60 | 1.5 tums CCW | 3 turns CCW |
| 61-67 | 2.0 turns CCW | 4 tums CCW |
| 68-75 | 2.5 turns CCW | 5 turns CCW |
| 76-82 | 3.0 tums CCW | 6 tums CCW |
| 83 | 3.5 turns CCW | 7 turns CCW |

The above tabulation is based on the assumption that the Selector is aligned to 670 mc , the condition in which the unit leaves the factory. CW means clockwise. CCW means counter clockwise.




BALUN-In some cases it may be possible to employ the VHF antenna for UHF reception by connecting a balun to the selector VHF antenna terminal board and to Il. Check to insure that the permanently connected balun does not impair VHF reception.


TABLE The table below lists all RCA Victor television receivers NO. 2 to date and data regarding the selector to be employed. The voltages in the receiver and hence the voltage at the selecto may vary depending on the signal strength, the a-c line voltage and the particular chassis involved. In some cases, therefore, it may be necessary to employ slightly different values of resistors across F4 than that specified in the table below. In any event, the voltage at the junction of F2 and R6 should be between 60 and 90 volts as measured with a "Voltohmyst" with the selector shield in place, with the receiver operating and the desired UHF channel being received.

| $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: |
| 77275 | Adapter-7 pin miniature tube adapter for U1A |
| 77276 | Adapter-Standard octal tube adapter for UlB |
| 74104 | Board-"VHF Antenna" terminal board, less cable |
| 77273 | Capacitor-Tubular trimmer, $0.5-3 \mathrm{mml}$., complete with adjustable core (Cl3) |
| 77272 | Capacitor-Tubular trimmer, $05-5.0 \mathrm{mmi}$., complete with adjustable core (C1, C3) |
| 77277 | Capacitor-Ceramic, 3 mml . (C4) |
| 76557 | Capacitor-Ceramic, 22 mmf , (C5) |
| 77278 | Capacitor-Ceramic, disc, 47 mml ( ( $8, ~ \mathrm{C} 9$ ) |
| 77084 | Capacitor-Ceramic, feed-thru, 1000 mml (C10. Cll, Cl2) |
| 77280 | Coil-Cathode choke coil (L8, R3) |
| 77279 | Coil-Heater choke coil (L3, L6, L7) |
| 77281 | Coil-Oscillator coil (L9) |
| 77088 | Connector-Single contact, for antenna connection (JI) |
| 5040 | Connector-4 contact famale, for adapter cable (J2) |
| 5039 | Connector-4 contact male connector for power cable |
| 77271 | Printed Circuit-Input printed circuit comprising two inductances and one capacitance (L1, L2, C2) |
| 77282 | Rectifier-Germanium crystal rectifier (CR1) Resistor-Fixed, composition: |
| 503210 | 1000 ohms, $\pm 10 \%$, 1/2 watt (R2) |
| 523282 | 8200 ohms, $\pm 10 \%, 2$ watts (R6) |
| 503310 | 10.000 ohms, $\pm 10 \%$, $1 / 2$ watt (R1) |
| 523333 | 33,000 ohms, $\pm 10 \%, 2$ watts (R4, R5) |
| 75192 | Shield-Tube shield for V1 |
| 77274 | Socket-Tube sockel, 7 pin, miniature, steatite sad-dle-mounted for VI |
| 76961 | Spring-Retaining spring for tube shield |
| 46760 | Switch-'UHF-VHF" switch (S1, S2) |
| 77283 | Transformer-I.F transformer (T1) |


| RECEIVER MODELS | AUDIO OUTPUT |  | $\begin{gathered} \text { USE } \\ \text { SELECTOR } \end{gathered}$ | IIUMPER <br> ACROSS $\mathrm{H6}$ | JUMPER OR RESISTOR ACROSS R4 AND R5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | TUBE | VOLTS |  |  |  |
| 621 TS | 6K6GT | 200 | U1B | Leave In | 22K, 1 watt |
| 630TS, 630TCS | 6K6GT | 265 | U1B | Leave In | None |
| 641 TV | 6F6G | 270 | U1B | Leave In | None |
| 648PTK | 6F6G | 270 | U1B | Leave In | None |
| 648PV | 6F6G | 270 | U1B | Leave In | None |
| 721TS, 721TCS | 6K6GT | 200 | U1B | Leave In | 22K, 1 watt |
| 730TV1, 730TV2 | 6K6GT | 245 | U1B | Leave In | None |
| 741PCS | 6F6G | 250 | U1B | Leave In | None |
| 8PCS41 | 6F6G | 250 | U1B | Leave In | None |
| 8TS30 | 6K6GT | 245 | U1B | Leave In | None |
| 8TV41 | 6F6G | 270 | U1B | Leave In | None |
| 8T241, 8T243, 8T244 | 6K6GT | 80 | U1B | Leave In | Jumper across R4 |
| 8T270, 8TC270, 8TC271 | 6K6GT | 152 | U1B | Leave In | $6.8 \mathrm{~K}, 0.5$ watt |
| 8TR29, 8TK29 | 6K6GT | 80 | U1B | Leave In | Jumper across R4 |
| 8TK320 | 6V6GT | 152 | U1B | Leave In | $6.8 \mathrm{~K}, 0.5$ watt |
| 8TV321, 8TV323 | 6V6GT | 295 | U1B | - Leave In | None |
| 9PC41 | 6F6G | 250 | U1B | Leave In | None |
| 9T240, 9T240K, 9TC240 | 6K6GT | 80 | U1B | Leave In | Jumper across R4 |
| 9TC245, 9TS247, 9TC249 | 6K6GT | 80 | U1B | Leave In | Jumper across R4 |
| 9 T 246 | 6K6GT | 80 | U1B | Leave In | Jumper across R4 |
| 9T256 | 6K6GT | 80 | U1B | Leave In | Jumper across R4 |
| 9T270, 9TC272, 9TC275 | 6K6GT | 152 | U1B | Leave In | 6.8K, 0.5 watt |
| 9TW309 | 6V6GT | 80 | U1B | Leave In | Jumper across R4 |
| 9TW333 | 6V6GT | 217 | U1B | Leave In | 33K, l watt |

UIA. UIB
TABLE NO. 2-Continued

| RECEIVER MODELS | AUDIO OUTPUT |  | USE SELECTOR | JUMPER ACROSS R6 | JUMPER OR RESISTOR ACROSS R4 AND R5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | TUBE | VOLTS |  |  |  |
| 9TW390 | 6V6GT | 210 | U1B | Leave In | 27K, 1 watt |
| T100 | 6K6GT | 80 | U1B | Leave In |  |
| T120, T121 | 6K6GT | 80 | U1B | Leave in | Jumper actoss R4 |
| TCl24, TC125, TCl27 | 6K6GT | 80 | U1B | Leave In | Jumper across R4 |
| TA128 | 6K6GT | 80 | U1B | Leave In | Jumper across R4 |
| TA129 | 6V6GT | 80 | U1B | Leave In | Jumper across R4 |
| TA129 | 6V6GT | 80 | U1B | Leave In | Jumper across R4 |
| T164, TCl65, TCl66, TCl67, TCl68 | 6K6GT | 120 | U1B | Leave In | 5K, 1 watt |
| TA169 | 6V6GT | 85 | U1B |  | Jumper acros R4 |
| S1000 | 6V6GT | 210 | U1B | Leave In | Jumper across R4 |
| 2T51, 2T61 |  |  | U1 | Leave In | 27K, 1 watt |
| 2T81 | 6AQ5 | 268 | U1A | Leave In | None |
|  | 6V6GT | 210 | U1B | Leave In | 27K, 1 watt |
| 4 T 101 | 6AQS | 270 | U1A | Leave In | None |
| 4 T 141 | 6V6GT | 210 | U1B | Leave In | 27K |
| 6 T 72 | 6K6GT | 120 | U1B | Leave In | 27K, |
| 6T53, 6T54, 6T64, 6T65 | 6K6GT |  |  | Leave In | 5K, l watt |
| 6T71. 6T74, 6T75, 6T76 |  | 360 | U1B | Clip Out | None |
| 6 T 84 | 6K6GT | 360 | U1B | Clip Out | None |
| 6T86, 6T87 | 6V6GT | 210 | U1B | Leave In | 27K, 1 watt |
| 6T86, 6T87 | 6V6GT | 290 | U1B | Leave In | None |
| 7T103. 7T103B, 7T104, 7T104B | 6K6GT | 360 | U1B | Clip Out | None |
| 7T11B, 7T112, 7T112B, 7T122 | 6K6GT | 360 | U1B |  |  |
| 7T122B, 7T123, 7T123B, 7T124 | 6K6GT |  |  | Clip Out | None |
| 7T125B |  | 360 | U1B | Clip Out | None |
| 7 T 132 | 6K6GT | 360 | U1B | Clip Out | None |
| 7 T 143 | 6AQ5 | 360 | U1A | Leave In | None |
| 7 T 143 | 6V6GT | 290 | U1B | Leave In | None |
| 9T57, 9T77, 9T79 | 6K6GT | 360 | U1B | Clip Out | None |
| $9 \mathrm{T89}$ | 6V6GT | 290 | U1B | Leave In | None |
| 9T105, 9T126, 9T128 | 6K6GT | 360 | U1B | Clip Out | None |
| 9 T 147 | 6V6GT | 290 | U1B | Leave In |  |
| 16 T 152 | 6K6GT |  |  |  | None |
|  |  | 360 | U1B | Clip Out | None |
| 17T153, 17T154, 17T155, 17T100 | 6AQ5 | 250 | U1A | Leave In | None |
| 17T153, 17T154, 17T155, 17T160 | 6AQ5 | 250 | U1A | Leave In | None |
| 17T162, 17T172, 17T172K, 17T173 | 6AQ5 | 250 | U1A | Leave In | None |
| 17T173K, 17T174, 17T174K | 6AQ5 | 250 | U1A | Leave In | None |
| 17T200, 17T201. 17T202 | 6K6GT | 250 | U1B | Leave In | None |
| 17T211, 17T220 | 6K6GT | 250 | U1B | Leave In | None |
| 17T250DE, 17T261DE | 6AQ5 | 250 | U1A | Leave In | None |
| 21T159, 21T159DE, 21T165 | 6AQ5 | 356 | U1A | Clip Out | None |
| 21T174DE, 21T176, 21 T177 | 6AQ5 | 356 | U1A | Clip Out | None |
| 21T178, 21T178DE, 21T179, 21T179DE | 6AQ5 | 356 | U1A | Clip Out | None |
| 21T197DE | 6V6GT | 290 | U1B | Leave In | None |
| 21T208, 21T217, 21T218 | 6K6GT | 250 | U1B | Leave In | None |
| 21T227, 21T228, 21 T 229 | 6K6GT | 250 | U1B | Leave In | None |
| $21 T 242$ See note below | 6K6GT | 250 |  |  |  |
| 21 T244 See note below | 6K6GT |  | U1B | Leave In | None |
|  | 6K6GT | 250 | U1B | Leave In | None |

NOTE: Model $21 T 242$ and 21 T244 receivers have separate audio systems for radio and television operation. It is therefore necessary to plug the power cable adapter into the television audio output tube socket rather than into the radio audio system.


UHF Selectors
Models U2, U2A

## RCAVictor UHF SELECTORS Modes U2, U2A

 Chassis Nos. KCS 79 or KCS 79A - Mfr. No. 274 -
## Service Data

- 1952 No. 17 -

PREPARED BY RCA SERVICE CO., INC.
FOR

```
RADIO CORPORATION OF AMERICA
    RCA VICTOR DIVISION
    CAMDEN, N.J., U.S.A.
```


## GENERAL DESCRIPTION

UHF Selectors Models U2 and U2A permit the reception of any two UHF television stations within receiving range when employed with a VHF television receiver.

These units employ two tubes, a crystal rectifier and a selenium power rectifier. The units are housed in small metal cabinets and are operated by a single control knob.

## ELECTRICAL SPECIFICATIONS

## TELEVISION R-F FREQUENCY RANGE

All 70 UHF television channels
I-F Output Frequency
470 mc . to 890 mc . Channel 5 or 6
POWER SUPPLY RATING
WEIGHT AND DIMENSIONS

| Net | Shipping | Width | Height | Depth |
| :---: | :---: | :---: | :---: | :---: |
| Weight | Weight | Inches | Inches | Inches |
| 5 | $61 / 2$ | $85 / 4$ | $49 / 16$ | $73 / 1$ |

## ANTENNA INPUT IMPEDANCE

UHF- 300 ohms balanced (or 72 ohms unbalanced on U2).
VHF - 300 ohms balanced.

## TUBE COMPLEMENT

Tube Used Function
CK 710 ...
6BQ7 (U2), 6BQ7A (U2A)
6CB6.

Crystal Mixer R-F Oscillator I-F Amplifier

## INSTALLATION INSTRUCTIONS

Remove the UHF Selector from the shipping carton. Make sure that all tubes are in place and firmly seated in their sockets. Place the selector on top of or near the VHF television receiver in a position which will permit convenient operation.

The UHF Selectors have been designed to operate from either of two or three types of antenna installations. They will operate from the VHF antenna, or from a separate UHF antenna with 300 ohm transmission line (or with the U2, from a separate UHF antenna with 72 ohm co-ax transmission line).

In all cases, the VHF antenna transmission line must be disconnected from the VHF receiver and reconnected to the selector VHF antenna terminals. A short length of 300 ohm line must then be connected between the VHF receiver antenna terminals and the selector terminals marked "Receiver".

If the UHF signals from the VHF antenna are strong and free from reflections, the above connections are all that are required.

## Model U2

If a separate UHF antenna with 300 ohm transmission line is employed, connect the line to the terminal board marked "UHF". Then disconnect the 300 ohm line to the UHF terminal board TBI on the inside of the selector. Make sure that the balun is connected to the terminal board marked "UHF" and is also connected to the selector input jack Jl .

If a separate UHF antenna with 72 ohm co-ax transmission line is employed, remove the balun from Jl , attach a male co-ax fitting to the UHF antenna transmission line and plng it into the selector co-ax input Il. Dress or tape the co-ax line so that it cannot be pulled out if the customer moves the selector.

See figures 12 and 3 for proper connections of the different transmission lines.

## Model U2A

If a separate UHF antenna with 300 ohm transmission line is employed, connect the line to the terminal board marked "UHF ANT". Disconnect the 300 ohm jumper to the "UHF ANT" terminal board, at the UHF ANT terminal board TB4.

If desired a separate UHF antenna with 72 ohm co-ax transmission line may be employed. Remove the jumper from TB4 and connect the co-ax transmission line, through a "balun" to the "UHF ANT" terminal board.

See figures 4,5 and 6 for proper connections of the different transmission lines.
Plug the television receiver power cord into the a-c receptacle on the back of the selector, and plug the selector power cord into the nearest 110 volt $a \cdot c$ outlet. With this connection, if the VHF receiver "on-off" switch is left in the on position, both the receiver and the selector will be controlled by the selector switch.

With the selector switch in the VHF position, the receiver is turned on, the selector is on byt in standby condition and the VHF antenna is connected through to the receiver.

With the selector switch in the UHF 1 position, the selector is operating, the VHF antenna is disconnected from the receiver, the selector output is connected to the receiver and the antenna employed for UHF operation is connected to the selector input. A similar condition exists when the selector switch is in the UHF 2 position.

To receive a UHF station, switch the selector switch to UHF 1 or UHF 2 and the television receiver to channel 5 or 6, whichever is vacant in the receiving area. Tune the VHF receiver fine tuning control to obtain the best sound and picture.


Figure 3-Connection for Employing Separate UHF Antenna with 72 Ohm Co-ax Lead-1n


Figure 1-Connections for Employing VHF Antenna for UHF Reception


Figure 2-Connection for Employing Separate
gure 2-Connection for Employing Separat
UHF Antenna with 300 Obm Lead-In
Model U2A

Figure 5-Connection for Employing Separate
UHF Antenna with 300 Obm Lead-In



Figure 4-Connections for Employing VHF
4-Connections for Employing
Antenna for UHF Reception

To adjust the UHF selectors to the particular UHF stations to be received, connect the antenna, selector and VHF receiver as indicated in the installation instructions on page 1.

Tune the VHF receiver to channel 5 or 6 whichever is vacant in the receiving area.

Set the UHF selector switch to UHF 1. Preset the oscillator tank capacitor C15 and the harmonic tank capacitor C19 as indicated in the table.
Temporarily connect the UHF antenna directly to the crystal CRI as follows. Disconnect the balun matching stub from the input jack Jl (or the 300 ohm jumper on Model U2A from the UHF ANT terminal board). Connect a bus wire to the center conductor of the balun connector P1 (on U2A to right hand terminal of UHF ANT terminal board TB4). Insert the other end of the bus wire $11 / 2$ inches straight into the $1 / 4$ inch hole directly below J1 (or TB4) on the selector chassis rear apron. Make contact with the center of the black eyelet terminal.
Adjust C15 slightly until sound is heard, then retouch Cl5 and Cl9 for best sound and picture with minimum interference. The use of an insulated slotted tuning stick is recommended for these adjustments.

Remove the bus wire and reconnect the balun to Jl or jumper to TB4. Starting C2 and C4 at minimum capacity (maximum counterclockwise) turn both trimmers to obtain the best sound and picture.
To adjust the U2 UHF selector for a second channel, switch the selector switch to UHF 2. Preset the oscillator capacitor Cl4 and the harmonic tank capacitor Cl8 as indicated in the appropriate table.

Connect the antenna to the crystal as before.
Tune C14 slightly until sound is heard then adjust C14 and Cl8 until best sound and picture with minimum interference is obtained.

Then reconnect the antenna to Jl or TB 4 and tune Cl and C3 for best sound and picture.

## ADJUSTMENTS VERSUS CHANNEL NUMBER

## Model UZ

The turns listed in the table below are from the minimum capacity position of the trimmer-(maximum counterclcckwise position).

| UHF | OSC Tank | Harmonic Tank |
| :---: | :---: | :---: |
| Channel | Cl4 or Cl5 | C18 or C19 |
| 14-16 | 13.0 turns CW | 12.5 turns CW |
| 12-19 | 11.5 turns CW | 11.5 turns CW |
| 20-22 | 10.25 turns CW | 10.25 turns CW |
| 23-25 | 9.0 turns CW | 9.5 turns CW |


| UHF |
| :---: |
| Channel |
| 26-28 |
| 29-31 |
| 32-34 |
| 35-37. |
| 38-40 |
| 41-43 |
| 44.46 |
| 47-49 |
| 50-52. |
| 53-55 |
| 56-58 |
| 59.61 |
| 62-64 |
| 65-67 |
| 68-70 |
| 71-73 |
| 74-76 |
| 77.79 |
| 80-83 |

## ADJUSTMENTS VERSUS CHANNEL NUMBER <br> Model U2A

The turns listed in the table below are from the minimum capacity position of the trimmer-(maximum counterclockwise position).

| UHF | OSC Tank | Harmonic Tank |
| :---: | :---: | :---: |
| Channel | Cl 4 or Cl 5 | C18 or C19 |
| .14-16 | 16.25 turns CW | 11.0 turns CW |
| 17.19 | 14.75 turns CW | 9.75 turns CW |
| 20-22 | 13.25 turns CW | 8.75 turns CW |
| 23.25 | 11.75 turns CW | 8.0 turns CW |
| 26-28 | 10.5 turns CW | 7.25 turns CW |
| 29-31 | 9.25 turns CW | 6.5 turns CW |
| 32-34 | 8.0 turns CW | 5.75 turns CW |
| 35-37 | 7.0 turns CW | 5.25 turns CW |
| 38.40 | 6.0 turns CW | 4.75 turns CW |
| 41-43 | 5.0 turns CW | 4.5 turns CW |
| 44.46 | 3.75 turns CW | 4.0 turns CW |
| 47-49 | 16.25 turns CW | 3.75 turns CW |
| 50.52 | 15.5 turns CW | 3.5 turns CW |
| 53-55 | 14.5 turns CW | 3.25 turns CW |
| 56.58 | 13.5 turns CW | 3.0 turns CW |
| 59-61 | 12.5 turns CW | 2.75 turns CW |
| 62-64 | 11.5 turns CW | 2.5 turns CW |
| 65-67 | 10.75 turns CW | 2.25 turns CW |
| 68-70 | 9.75 turns CW | 2.0 turns CW |
| 71.73 | 9.0 turns CW | 1.75 turns CW |
| 74-76 | 8.25 turns CW |  |
| 77.79 | 7.5 turns CW | 1.25 turns CW |
| 80.83 | 5.5 turns CW | 1.0 turns CW |

Notes on Adjustments-For proper reception, the oscillator harmonic employed for conversion must be lower in frequency than the UHF station. If two slightly different positions of the oscillator core produce sound from the desired station, the most clockwise position is the correct one.
In tuning one oscillator it may occasionally happen that the oscillator tank of the circuit not in use may be tuned to the same frequency. If this occurs, the second oscillator tank may act as a trap absorbing energy from the first oscillator and causing poor operation. In such a case, detune the second oscillator tank until the first oscillator circuit is adjusted. Once adjusted for the proper channels no difficulty should be experienced from this source as it is extremely unlikeiy that both oscillators would be operating on the same frequency.

When properly aligned, the crystal current should be 0.75 for best noise figure. This current can be measured by disconnecting the test link on top of the chassis and inserting a $0-5$ milliampere meter between the link and ground.
Under some conditions interfering beats may be obtained between the UHF Selector oscillator and harmonics of the television receiver oscillator which show up as lines in the picture. In some cases these may be eliminated by adjusting the recejver fine tuning for elimination of the beat, then returning the selector oscillator core for best sound and picture.
The oscillators in the selectors operate in the 200 mc . to 300 mc . range. The oscillator signal applied to the crystal mixer is taken from a harmonic tank in the oscillator circuits. The usual practice as listed in the table is to employ the oscillator second harmonic for reception of channels 14 through 46, and the third harmonic for reception of channels 47 through 83. In rare cases where interference is obtained due to a beat between the UHF selector oscillator and a harmonic of the VHF receiver oscillator, it may be possible to eliminate it by tuning the oscillator to a different frequency and employing a different harmonic.
Under some conditions, adjacent channel interference may be experienced if the VHF station is strong and the UHF signal is weak. In such cases, it may be desirable to provide a shielded cable between the UHF Selector unit and the television receiver r-f unit.
As a test for drift, turn the selector off for five minutes then turn it on again. Within approximately one minute it should be possible to receive the UHF station by adjustment of the receiver fine tuning control and without the necessity of readjusting the UHF Selector oscillator.
When it is desired to receive a VHF station on the television receiver, switch the selector switch to the VHF position and operate the receiver normally.

## I-F ALIGNMENT

Construct a 300 ohm balanced detector as shown in figure 8 and connect it to the VHF selector terminal board marked "Receiver" (TB2).
Connect a high gain oscilloscope to the balanced detector and set the gain to maximum.
Connect an attenuator pad of the type shown in figure 9 to the output cable of the VHF sweep generator. Connect the output of the attenuator pad through a 470 mmf . ceramic capacitor to the cathode, pin 2 of Vl.

Set the sweep generator to sweep from 70 mc . to 95 mc . As an alternate method when using RCA type WR59 sweep generators, switch the generator to channel 5 to see the low frequency side of the response curve and to channel 6 to see the high frequency side of the response curve.
Insert markers from a VHF marker generator by loosely coupling the generator output cable to the cathode, pin 2 of Vl .
Adjust the primary and secondary cores of T2 until the response shown in figure 8 is obtained.

Check of R-F Circuits-Adjust the selector for the reception of 2 UHF stations as described in the adjustment instructions.

Connect a $0-5$ milliampere meter to the crystal by opening the test connection on top of the chassis and connecting the meter in series with the test connection and ground.

The crystal current should be 0.75 ma . on each channel. The oscillator injection trimmers were set at the factory to
produce this value of current. However if it should become necessary to readjust the oscillator injection, this may be done by adjusting capacitors C26 and/or C27. These capacitors consist of a large metal headed tack mounted in a feed through bushing in the wall of the oscillator compartment. Adjustment is affected by sliding the head towards or away from the harmonic tank capacitors Cl 8 or Cl 9 . To prevent the adjustment from changing, the body of the tack is then soldered in place.
The measurement of crystal current should be made with the selector adjusted for reception of a station but with no signal input and with the oscillator compartment bottom shield in place. Do not adjust the injection to compensate for a defective crystal or oscillator tube.


Figure 7-Chassis top view


Figure 8-300 Obm Balanced Detector


Figure 9-Attenuator Pad


Figure 10-Adjustment Locations
Figure 11-I-F Response


Figure 12-U2 Schematic Diagram, KCS79


Figure 13-U2A Schematic Diagram, KCS79A

| $\begin{gathered} \text { STOCK } \\ \text { No. } \end{gathered}$ | DESCRIPTION | $\begin{aligned} & \text { STOCK } \\ & \text { No. } \end{aligned}$ | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES | 11765 | Lamp-Pilot lamp-Mazda \#51 |
|  | KCS79, KCS79A | 77282 | Rectifier-Germanium rectifier (CR1) |
| 75039 | Board-"Antenna' terminal board | 77292 | Rectifier-Selenium rectifier (CR2) |
| 77290 | Capacitor-Tubular trimmer, $1-8 \mathrm{mmf}$. complete with adjustable core (C1, C2, C3, C4, C18, C19) | 513027 | Resistor-Fixed, composition:27 ohms, $\pm 10 \%$, 1 watt (R1, R2) |
| 77210 | Capacitor-Ceramic, 2 mmf ( (C16, C17) | 503068 | 68 ohms, $\pm 10 \%$, $1 / 2$ watt (R5) |
| 77277 | Capacitor-Ceramic, 3 mmf . (C5, C28) | 513210 | 1000 ohms, $\pm 10 \% .1$ watt (R9) |
| 77340 | Capacitor-Tubular trimmer, 1.0-10.0 mmf, complete with adjustable core (C14, C15, L16, L17) | $\begin{aligned} & 523.10 \\ & 503239 \end{aligned}$ | 1000 ohms, $\pm 10 \%$, 2 watts (R10) <br> 3900 ohms, $\pm 10 \%, 1 / 2$ watt (R6, R8) |
| 53511 | Capacitor-Ceramic, 10 mmf ( (C23) | 503410 | 100,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R11, R12, R13, R14) |
| 72570 | Capacitor-Ceramic, 27 mmin ( $\mathrm{C} 12, \mathrm{C} 13$ ) | 503456 | 560,000 ohms, $\pm 10 \%$, $1 / 2$ watt (R3, R4) |
| 70596 | Capacitor-Ceramic, 33 mmf ( $\mathbf{C} 24, \mathrm{C} 25$ ) | 77284 | Shield-Oscillator shield for Model U2A |
| 76347 | Capacitor-Ceramic, 120 mmf . (C6) | 77285 | Shield-r-f shield |
| 77293 | Capacitor-Ceramic, 470 mmf ( $\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 22$ ) | 76967 | Shield-Tube shield for V1 |
| 77084 | Capacitor-Ceramic, feed-thru, 1000 mmf (C7, Cl0. C11, C20) | $\begin{aligned} & 76534 \\ & 35574 \end{aligned}$ | Shield-Tube shield for V2 <br> Socket-Lamp socket |
| 77086 | Capacitor-Electrolytic comprising 1 section of 50 mfd ., | 77087 | Socket-Tube socket, 7 pin, miniature for Vl |
|  | 200 volts and 2 sections of 30 mfd ., 200 volts (C21A. C21B, C21C) | 76530 | Socket-Tube socket, 9 pin, miniature for V2 |
| 77298 | Coil-Choke coil (L13, R7) | 77289 | Switch-Selector switch (S1, S2) |
| 77296 | Coil-Fundamental oscillator coil (L9, L10) | 78578 77288 | Transformer-Antenna input transformer (T3) <br> Transformer-i-f transformer (T2) |
| 77297 | Coil-Harmonic tank coil (L11, L12) | 77287 | Transformer-Power transformer, 117 volt, 60 cycle (T1) |
| 77153 77279 | Coil-r-f choke coil (L5, L7, L8, L14, L15) Coil-r-f choke coil (L6) |  | MISCELLANEOUS |
| 77294 | Coil-r-f coil (primary and secondary) (L1, L2, L3, L4) | 77300 | Back-Cabinet back complete with power cord |
| 77088 | Connector-Single contact connector for UHF antenna (J1) for model U2 | 77212 | Connector-Single contact male connector for antenna matching assembly |
| 52131 | Connector-2 contact female connector for television power (J2) | $77033$ $74889$ | Emblem-'"RCA Victor'" emblem Foot-Felt foot |
| 74594 | Connector-2 contact male connector for power input | 77299 | Knob-Selector knob |
| 76460 | Contact-Test point contact | 77013 | Nut-Speed nut to fasteri emblem |
| 77286 | Cover-Oscillator section shielding Cover for Model U2A | 74734 | Spring-Spring clip for knob |

APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS


## GENERAL DESCRIPTION

UHF Selector Model U70 permits the reception of any UHF television station within receiving range when employed with a VHF television receiver. The unit employs three tubes plus rectifier and a crystal mixer.

## ELECTRICAL SPECIFICATIONS

## TELEVISION R-F FREQUENCY RANGE

All 70 UHF television channels . . . . . . . . . . . . . . . . Channel 570 or 6
I-F Output Frequency . . . . . . . . . . . . . . . 890
POWER SUPPLY RATING........ 115 volts, 60 cycles, 40 watts
WEIGHT AND DIMENSIONS

| All 70 I-F Out | elevision equency | S | $.470$ | $\begin{array}{r} 890 \mathrm{mc} . \\ 5 \text { or } 6 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| POWER | PLY RATI | . . 1 | . 60 cy | 0 watts |
| WEIGH | D DIMENS |  |  |  |
| Net | Shipping | Width | Height | Depth |
| Weight | Weight | Inches | Inches | Inches |
| 10 lbs . | 12 lbs . | $11^{1 / 8}$ | 81/4 | 921/32 |

# PREPARED BY RCA SERVICE CO., INC. FOR <br> RADIO CORPORATION OF AMERICA RCA VICTOR DIVISION CAMDEN, N. J., U. S. A. 

ANTENNA INPUT IMPEDANCE
UHF - Choice: 300 ohms balanced or 72 ohms unbalanced. VHF - 300 ohms balanced.
TUBE COMPLEMENT


INSTALLATION INSTRUCTIONS

The UHF Selector has been designed to operate from either of three types of antenna installations.

In all cases, the VHF antenna transmission line must be disconnected from the VHF receiver and reconnected to the selector VHF antenna terminals. A short length of 300 ohm line must then be connected between the VHF receiver antenna terminals and the selector terminals marked "Receiver."
If the UHF signals from the VHF antenna are strong and free from reflections, the above connections are all that are required. See Figure 1.
if a separate UHF antenna with 300 ohm transmission line is employed, connect the line to the selector terminal board marked UHF. Then, disconnect the 300 ohm line which runs over the fiber back and into the selector. Tape the ends of these leads so that they will not short other terminals on the back and cause trouble. See Figure 2.
If a separate UHF antenna with 72 ohm co-ax transmission line is employed, remove the balun, attach a male co-ax fitting to the antenna transmission line and plug it into the selector co-ax input at the lower left hand corner on the selector rear apron. Dress or tape the co-ax line so that it cannot be pulled out if the customer moves the selector. See Figure 3.

Plug the television receiver power cord into the a-c receptacle on the back of the selector and plug the selector power cord into the nearest 110 volt a-c outlet. With this connection, if the VHF receiver "on-off" switch is left in the "on" position, both the receiver and the selector will be controlled by the selector function switch.

With the selector function switch in the VHF position, the receiver is turned "on," the selector is "on" but in stand-by condition and the VHF antenna is connected through to the receiver.

With the selector function switch in the UHF position, the selector is operating, the VHF antenna is disconnected from the receiver, the selector output is connected to the receiver and the antenna employed for UHF operation is connected to the selector input.

To receive a UHF station, switch the selector function switch to UHF and the television receiver to channel 5 or 6 , whichever is vacant in the receiving area. Tune in the UHF station by adjusting the selector tuning knob. The selector dial is calibrated in channel numbers as an aid in locating the channel. Tune the selector for best sound and picture. In some instances interference may result if the receiver fine tuning control is not properly adjusted. If this should occur, adjust fine tuning until the interference is eliminated and retune the selector for the best sound and picture.


Figure 1-Selector Connections When VHF Antenna Is Employed For UHF Reception.


Figure 2-Selector Connections For Use of Separate UHF Anterna Wifh 300 Ohm Lead-In.


Figiure 3-Selector Connections For Use of Separate UHFAntenna With $72 \mathrm{Ohm} \mathrm{Co}-\mathrm{Ax}$.

TEST EQUIPMENT The following test equipment is required for alignment of the U70 UHF Selector:
A UHF sweep generator with a range of 470 mc . to 890 mc . A VHF sweep generator with a range of 70 mc . to 90 mc .
A UHF marker generator for locating 480, 630 and 840 mc .
A VHF marker generator capable of supplying 72.5 mc ., 76.5 mc . 82.5 mc ., 88.5 mc , and 92.5 mc . signals.

An oscilloscope with a high gain vertical amplifier.
A milliammeter with a $0-5 \mathrm{ma}$. range.
A resistive pad for terminating the sweep generator cable.
A 300 ohm balanced detector.
A small protractor.

## I-F ALIGNMENT

Second I-F Stage - Construct a 300 ohm balanced detector as shown in Figure 4 and connect it to terminal board TB3.

Connect a high gain oscilloscope to the balanced detector and set the gain to maximum.

Connect $\alpha$ jumper across terminals $A$ and $B$ of $T 1$.
Connect a 72 ohm attenuator pad of the type showr in Figure 5 to the output cable of the sweep and connect the output of the pad to the grid, pin 1 of V2 and to ground.

Set the sweep generator to sweep from 72 mc . to 90 mc . As an alternate, an RCA WR59 sweep generator may be employed and switched to channel 5 to see the low frequency side of the response curve and to channel 6 to see the high frequency side of the response curve.

Insert markers from the VHF marker generator by loosely coupling the generator output cable to the grid of V2.

Adjust the T2 pri. and sec. cores and the bandwidth trimmer C22 to obtain response as shown in Figure 9A.
The bandwidth capacitors C22 (and C21 in T1) consist of a short piece of wire soldered to terminal $A$ and the free end inserted into a ceramic tube capacitor. Adjustment is made by pushing the wire in further or pulling it out.

First I-F Stage - Remove the jumper from terminals $A$ and $B$ of Tl and reconnect it across terminals $A$ and $B$ of T2.

Connect the balanced detector across T 2 terminals C and D .
Connect the output cable of the sweep generator with the 72 ohm pad through a 1.500 mmf . capacitor to pin 2 of V .

Connect the VHF marker generator loosely to pin 2 of V1.
Adjust the Tl pri. and sec. cores and the bandwidth trimmer C21 to obtain the response shown in Figure 9B.

Overall I-F Response - Leave the sweep generator connected to the cathode of V .

Remove the jumper across terminals $A$ and $B$ of $T 2$.
Connect the balanced detector across terminal board TB3.
The overall i-f response should appear as shown in Figure 9C. The oscilloscope gain should be kept at maximum and the input kept low to prevent overloading the selector.

If excessive tilt of the curve is present, retouch the Tl and T2 pri. and sec. cores until the curve is reasonably flat.

## R-F ALIGNMENT

If the selector needs only touch-up adjustments, no presetting of the tuning cores is required. However, if the selector is completely out of alignment, the tuning cores should be preset as follows. With the dial drive mechanism $1^{1 / 1 / 4}$ turns from the low frequency stop (channel 14 end of the dial), set the Cl8 oscillator tuning core as shown in the Figure 6A. The cores of the r-f tuning capacitors Cl and C 2 should be set as shown in Figure 6B. The tapered end of the L9 core should be set about $3 / 4$ of an inch from the closest end of the L9 coil as shown in Figure 6C.

Turn the dial drive mechanism until it comes up against the stop at the low frequency (channel 14) end of the dial. Turn the dial pointer on its shaft until the pointer coincides with the end marker on the dial back plate.

Turn the dial drive mechanism until the pointer is 17 degrees to the left of center of the dial when the selector is sitting in an upright position. This position should be located with a protractor to insure accuracy. Make a small mark on the dial back plate so that the dial can be returned to this position quickly and accurately throughout the remainder of the alignment procedure. This is the 630 mc . calibration point.

Connect the 300 ohm balanced detector across terminals $A$ and $B$ of $T 1$ and shunt a 1,000 ohm resistor across terminals C and D of Tl .

Connect the UHF sweep generator through a 6 db pad to the 72 ohm co-ax input to the selector at Jl. It is necessary to
use the pad so that impedances will be matched. Otherwise standing waves on the sweep cable may become objectionable.

Connect the UHF marker gen. loosely to the selector input.
Connect a VHF marker generator loosely to the cathode of V1. Insert an 82.5 mc . marker into the selector.

630 Mc. Adjustments - Turn the dial drive mechanism until the dial pointer points to the 630 mc . calibration mark scribed on the dial back plate at 17 degrees left of center.

Insert a 630 mc . marker from the UHF marker generator.
Set the UHF sweep generator to sweep from 615 mc . to 645 mc . and observe the output on the oscilloscope. If the sweep generator is not sweeping the correct frequency range, it may be necessary to readjust the sweep in order to center the 630 mc . marker on the response curve.

The shields must be in place over the top and bottom of the $r-f$ section when making any adjustments.

Adjust the C18 oscillator core until the markers for 630 mc . and 82.5 mc . coincide on the sweep pattern.

Adjust the cores of the r-f tuning capacitors Cl and C 2 to obtain $\alpha$ maximum amplitude, symmetrical response curve centered about the 82.5 mc . marker.
Set the bandwidth adjustment L 2 until the response bandwidth is 20 mc . at $70 \%$ response.

Tune L5 for max. response at the center of the bandpass.
Repeat the adjustments of C1, C2, L2 and L5 if necessary.
Plug the 0-5 milliammeter into the crystal current jack J 2. The current should be between 0.8 ma . and 5 ma . If this current is not obtained, either the crystal is defective or the oscillator is not functioning properly. The bottom cover should be in place when measuring crystal current.
Turn off the sweep and marker generators. If the crystal current decreases by more than $10 \%$, it indicates that excessive input signals are being employed. Proper alignment cannot be obtained under such conditions.

490 Mc. Adjustments - Set the UHF marker gen. to 490 mc . Set the UHF sweep gen. to sweep 475 mc . to 505 mc .
Turn off the 82.5 mc . marker generator.
Turn the UHF selector toward the low frequency end of the band. Tune the selector and the sweep generator until the 490 mc. marker is centered in the bandpass.

Turn the 82.5 mc . marker back on.
Adjust C18 until the markers coincide. Then, overshoot the adjustment by an amount slightly less than the amount of adjustment required to get the markers to coincide. Then close or spread the turns on the L9 coil until the markers again coincide.
Repeat the adjustments in the section above labeled "630 Mc. Adjustments." C1, C2, L2 and L5 probably will not require retouching. Then repeat the adjustments in the section above labeled " 490 Mc. Adjustments." Continue the repetition of the 630 mc . and 490 mc . adjustments until no further adjustments are required. Make the final adjustment at 630 mc . before proceeding with the next section.

840 Mc . Adjustment - Set the UHF marker gen. to 840 mc .
Turn off the 82.5 mc . marker generator.
Adjust the UHF sweep gen. to sweep 825 mc . to 855 mc .
Turn the UHF selector dial drive and the sweep generator until the 840 mc . marker is centered in the bandpass of the response curve on the oscilloscope.

Turn the 82.5 mc . marker back on.
Adjust the L9 core until the two markers coincide.
Check of Tracking - Turn off the UHF marker generator.
Tune the sweep generator across the band in small steps.
Tune in the sweep generator with the selector.
The response on the oscilloscope should not fall below $70 \%$ response between the 76.5 mc . and 88.5 mc . markers obtained from the VHF marker generator.

The crystal current should be between 0.8 and 5 ma . at all points between 470 mc . and 890 mc . when measured with the bottom shield in place and with no signal input.

Overall Response Check - Leave the sweep and signal generators connected as for r-f alignment. Remove the 1,000 ohm resistor from terminals $C$ and D of T1. Connect the 300 ohm balanced detector across the output terminal board TB3 and observe the overall response which should be similar to that shown in Figure 9. If excessive tilt appears, it may cause the picture to be overpeaked or smeared depending on the direction of the tilt. The maximum tilt or sag of the curve should not exceed $30 \%$.

Air Check - As a final test, the selector should be tested on the air by receiving a known weak signal. If the picture obtained seems excessively snowy for a particular selector unit, it may be necessary to replace the mixer crystal CRl. If the crystal is changed, the if alignment should be retouched. A good erystal may perform no better than $\alpha$ defective one unless the r-f section is aligned for the good crystal.


Figure 4-300 Ohm Balanced Detector


Figure 5-Sweep Cable Attenuator


Figure 6-Preset for R-F Adjustments


Figure 7-Bottom Chassis Adjustments


Figure 8-Dial Cord and Drive

Figure 9-Sweep Response Curves


Figure 10 - Top Chassis Adjustments


| $\begin{gathered} \text { STOCR } \\ \text { No. } \end{gathered}$ | DESCRIPTION | STOCK No. | DESCRIPTION |
| :---: | :---: | :---: | :---: |
|  | CHASSIS ASSEMBLIES KCS70 | 503033 | Resistor-Fixed, composition: 33 ohms, $\pm 10 \%, 1 / 2$ watt (R1) |
| 77097 | Back-Back cover complete with three (3) terminal | 503047 | 47 ohms, $\pm 10 \%$, 1/2 watt (R4) |
|  | boards | 503068 | 68 ohms, $\pm 10 \%, 1 / 2$ watt (R5) |
| 76184 | Board-Terminal board for back cover | 503115 | 150 ohms, $\pm 10 \%$, 1/2 watt (R2) |
| 77069 | Bracket-Mounting bracket for r-f tuning assembly | 523133 | 330 ohms, $\pm 10 \%, 2$ watt (R13) |
|  | (includes L2 and part of L1, L3, C1, C2) less glass tubing | 503212 | 1,200 ohms, $\pm 10 \%$, 1/2 watt (R8) |
| 76522 | Bracket-Vertical bracket for tube shield for 6AF4 | 523215 | 1,500 ohms, $\pm 10 \%, 2$ watt (R10, R12) |
| 77072 | Bushing-Drive shaft bushing (in rear of coil spring) | 503222 | 2,200 ohms, $\pm 10 \%$, $1 / 2$ watt (R3) |
| 77210 | Capacitor-Ceramic, 2 mmi . (Cl6) | 503233 | $3.300 \mathrm{ohms}, \pm 10 \%, 1 / 2 \mathrm{watt}$ (R7) |
| 77108 | Capacitor-Ceramic, 9 mmf. (C11) | 503282 | 8.200 ohms, $\pm 10 \%, 1 / 2$ watt (R11) |
| 77085 | Capacitor-Ceramic, feed-thru, 10 mmf ( (C3) | 503310 | 10,000 ohms, $\pm 10 \%, 1 / 2$ watt (R6) |
| 45465 | Capacitor-Ceramic, 15 mmf ( (C20) | 513322 | 22,000 ohms, $\pm 10 \%, 1$ watt (R9) |
| 77209 | Capacitor-Ceramic, 18 mmf ( (C15) | 77078 | Shaft-Drive shaft |
| 70935 | Capacitor-Ceramic, 27 mmf ( (C12, C13) | 77092 | Shield-Shield assembly for oscillator tuning assembly |
| 70599 | Capacitor-Ceramic, 56 mmf ( C 5 ) | 77091 | Shield-Shield assembly for r-f tuning assembly |
| 75198 | Capacitor-Ceramic, 470 mmf ( $\mathrm{C} 4, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 9, \mathrm{Cl} 0$ ) | 77090 | Shield-Tube shield for 6AF4 |
| 77084 | Capacitor-Ceramic, feed-thru, 1,000 mmf. (C14, Cl7) | 76967 | Shield-Tube shield for 6CB6 |
| 77252 | Capacitor-Ceramic, $1,000 \mathrm{mmf}$. (C6) | 31251 | Socket-Tube socket, octal, wafer |
| 77086 | Capacitor-Electrolytic comprising 1 section of 50 <br> mfd, 200 volts and 2 sections of 30 mfd 200 | 31364 | Socket-Dial lamp socket |
| 771 | volts (C19A, C19B, C19C) | 77087 | Socket-Tube socket, 7 pin, miniature, moulded phenolic, saddle-mounted |
| 77102 | Clamp-Polystyrene clamp for oscillator tuning capacitor and coil (2 required) | 77207 | Socket-Tube socket, 7 pin, miniature, steatite, saddle-mounted |
| 77109 | Coil-Choke coil (L6, L7; L8, L10) | 77071 | Spring-Drive shaft spring |
| 77083 | Coil-Cathode peaking coil (L5) | 77096 | Spring-Drive cord spring |
| 77224 | Coil-Oscillator tuning coil (L9) | 12007 | Spring-Retaining spring |
| 72618 | Coil-Peaking coil (20 muh) (L4) | 75068 | Spring-Retaining spring for tube shield for 6AF4 |
| 77212 | Connector-Single contact male connector for antenna matching assembly (P1) | $\begin{aligned} & 75068 \\ & 77208 \end{aligned}$ | Spring-Retaining spring for tube shield for 6AF4 <br> Support-Oscillator tuning coil support (glass tube) |
| 75474 | Connector-Single contact male connector for W3. W4, W5 | 77099 | Support-Polystyrene support only for oscillator tuning coil and capacitor |
| 77088 | Connector-Single contact connector for 72 ohm antenna connection (Jl). | 77089 76463 | Switch-Function and power switch (S1, S2) Terminal-Screw type grounding terminal |
| 52131 72953 | Connector-2 contact female connector (J3) Cord-Drive cord (approx. 23 " overall) | 77080 | Transformer-Power transformer, 117 vults, 60 cycles (T3) |
| 72953 | Cord-Drive cord (approx. $38^{\prime \prime}$ overall) | 77081 | Transformer-First i-f transformer complete with ad justable cores (T1, C21) |
| 70392 | Cord-Power cord and plug <br> Core-Adjusting core assembly for r-f tuning assembly capacitors C 1 and C 2 | 77082 | Transformer-Second i-f transformer complete with adjustable cores (T2, C22) |
| 77075 | Core-Adjusting core assembly for oscillator tuning capacitor C18 | 77100 | Tubing-Capacitor tubing (glass) for oscillator tuning capacitor (Part of C18) |
| 77076 | Core-Adjusting core assembly for oscillator tuning coil L9 | 77070 | Tubing-Vapacitor tubing (glass) for r-f tuning assembly capacitors Cl and C 2 |
| 77093 | Cover-Bottom cover for oscillator tuning shield Crystal-See Rectifier | 2917 | Washer--"C" washer for drive shaft and drive cord pulleys |
| 77103 | Cushion-Rubber cushion for mounting oscillator tuning coil (2 required) or oscillator tuning capacitor (2 required) | 33726 77098 | Washer-"C" washer for plate and bushing retainer post <br> Washer-Spring washer for drive shaft |
| 74838 | Grommet-Power cord strain relief (l set) |  | MISCELLANEOUS |
| 77079 | Holder-Holder for crystal rectifier | 77111 | Clamp-Dial clamp (2 required) |
| 75482 | Jack-Test jack (J2) | 77110 | Dial-Glass dial scale |
| 11765 | Lamp--Dial lamp-Mazda 51 | 77033 | Emblem-'RCA Victor' emblem |
| 77106 | Plate-Dial back plate and bushing less dial and pulley | $77492$ | Foot-Rubber foot (4 required) |
| 77073 | Plate-Plate complete with five (S) bushings for drive shaft and adjusting cores | 77251 | Knob-Function and power switch knob-maroonfor mahogany and walnut instruments |
| 77095 | Pointer-Station selector pointer | 77844 | Knob-Function and power switch knob-beigefor blonde mahogany instruments |
| 77077 | Post-Retainer post for plate and bushing assembly Pulley-Drive cord pulley ( $13 / 8^{\prime \prime}$ dia.) and shaft | 77140 | Knob-Tuning control knob-maroon-for mahogany and walnut insiruments |
| 77094 | Pulley-Drive cord pulley ( $23 / 4^{\prime \prime}$ dia.) and shaft assembly | 77843 | Knob-Tuning control knob-beige-for blonde mahogany instruments |
| 77489 | Rectifier-Crystal rectifier 1N82 (CR1) | 77013 | Nut-Speednut to fasten emblem to cabinet |
| 30340 | Retainer-Retainer ring for drive shaft | 74734 | Spring-Spring clip for knobs |

The system of employing an asterisk before the stock number of new items has been discontinued.
APPLY TO YOUR RCA DISTRIBUTOR FOR PRICES OF REPLACEMENT PARTS.


[^0]:    RADIO CORPORATION OF AMERICA RCA Victor Division Harrison, N. J., U.S.A.

[^1]:    Models 2-R-51A and 2-R-52A differ from Models 2-R.51 and 2-R-52 only in the type of resistor used for R2. In 2-R-51 and 2-R-52 the resistor is a fixed composition type. In 2-R-51A and 2-R-52A it is a fuse type wire wound resistor. The fuse type resistor (Stock No. 77571) should be used for replacement in all models.

[^2]:    tube servicing by lowering loop back. They should to prevent touching gang plates. Dr R.F. leads to coils shoul
    $\dot{+}$ Dress other leads and components away from coils

[^3]:    R24 and R25 leads should be kept as short as possible on
    5. C27 should ground in hole near terminal 5 of V6 with short

    AM oscillator coil should not be tilted over toward function

[^4]:    

[^5]:    The kinescope bulb encloses a high vacuum and, due to its large surface area, is subjected to considerable air pressure. For this reason, the kinescope must be handled with more care than ordinary receiving tubes.

    The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

[^6]:    The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

[^7]:    The large and of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjecte 1 to more than moderate pressure at any time. During sarvice if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detalled instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

[^8]:    CRITICAL LEAD DRESS

    1. The 1st FM i-f plate lead should be dressed away from the $\mathrm{r}-\mathrm{f}$
    2. Dress the 1 st $A M$ i-f plate lead to the $S 2$ wafer away from the
    3. Dress the a-c power switch wires away from all audio components.
    4. Dress C26 down toward the base between the terminal board
    and the side apron.
    5. The Clis bypass ground should be as close to the r-f shelf ground
[^9]:    The kinescope bulb encloses a high vacuurn and, due to its large surface area, is subjected to considerable air pressure. For this reason, the hinescope must be handled with more care than ordinary receiving tubes.

    The large end of the kir ascope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on hinescope installation. All RCA replacernent kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

[^10]:    The large end of the kinescope bulb-particularly that part at the rim of the viewing surface-must not be struck, scratched or subjected to more than moderate pressure at any time. During service if the tube sticks or fails to slip smoothly into its socket, or deflecting yoke, investigate and remove the cause of the trouble. Do not force the tube. Refer to the Receiver Installation section for detailed instructions on kinescope installation. All RCA replacement kinescopes are shipped in special cartons and should be left in the cartons until ready for installation in the receiver.

