
Battery-Aware Transformations in Mobile Applications

Jürgen Cito
University of Zurich
Zurich, Switzerland
cito@ifi.uzh.ch

Julia Rubin
MIT

Cambridge, MA, USA
mjulia@mit.edu

Phillip Stanley-Marbell
MIT

Cambridge, MA, USA
psm@mit.edu

Martin Rinard
MIT

Cambridge, MA, USA
rinard@mit.edu

ABSTRACT
We present an adaptive binary transformation system for
reducing the energy impact of advertisements and analytics
in mobile applications. Our approach accommodates both
the needs of mobile app developers to obtain income from
advertisements and the desire of mobile device users for
longer battery life. Our technique automatically identifies
recurrent advertisement and analytics requests and throttles
these requests based on a mobile device’s battery status. Of
the Android applications we analyzed, 75% have at least one
connection that exhibits such recurrent requests. Our auto-
mated detection scheme classifies these requests with 100%
precision and 80.5% recall. Applying the proposed battery-
aware transformations to a representative mobile applica-
tion reduces the power consumption of the mobile device
by 5.8%, without the negative effect of completely removing
advertisements.

CCS Concepts
•Software and its engineering → Software perfor-
mance; •General and reference → Metrics;

Keywords
Energy efficiency, battery lifetime, mobile advertisements,
program analysis.

1. INTRODUCTION
Mobile devices have limited battery capacity, which re-

stricts their utility for users. Prior research has identified
mobile advertisement and analytics (A&A) services as a sig-
nificant contributor to battery drain [11, 12]. Removing
A&A services completely can reduce the energy usage of
a mobile device by up to 16% [8].

However, A&A services are an important part of the app
ecosystem: they are a popular way for mobile app develop-
ers to earn revenue (advertisements) and to gain insight into
user behavior (analytics). Thus, existing approaches, which

remove ads altogether, are insufficient. To balance the de-
sire of developers to include numerous A&A requests in their
apps with the desire of the users to maximize the battery
lifetimes of their devices, we propose an approach that dy-
namically adapts the rate of A&A requests according to the
state of a mobile device’s battery.

Battery-Aware Transformations. We present an ap-
proach to balance the interests of mobile app developers with
the interests of mobile device users. The main idea behind
our approach is to automatically identify recurrent A&A re-
quests in existing applications, detect their frequency and
modify application binaries so that applications can adapt
the A&A frequency to the current battery state.

Our initial results show that at least 75% of the A&A
requests in Android applications are recurrent. These re-
current requests can be detected in an automated manner:
the detection scheme proposed in this work classifies the re-
current requests with 100% precision and 80.5% recall. Our
preliminary experiments applying the battery-aware trans-
formation to a representative Android application from the
Google Play Store reduce the average whole-system power
dissipation on a Nexus 4 mobile phone by 5.8%, without the
effect of removing ads completely, which is undesirable for
developers.

Looking forward, there are several possible models of ap-
plying the proposed approach. One option is to decrease the
rate of recurrent requests in a linear manner as the battery
discharges. Another option is to activate the rate reduction
when the phone enters a low power mode: in most modern
mobile operating systems, such as Android and iOS, low-
power modes are activated when the battery status reaches
a prescribed level, say, 20%. These modes are designed to
reduce energy consumption in exchange for reduced func-
tionality [3, 13]. For example, on iOS 9, the low-power
mode user interface states that when active, “mail fetch,
background app refresh, automatic downloads, and some vi-
sual effects are reduced or disabled.” [3]. Our approach is
thus aligned with the vision and intentions of mobile oper-
ating system designers.

Contributions. This paper introduces a technique for
improving energy consumption in apps that use A&A ser-
vices. The proposed techniques balance the interests of both
the mobile app developer (ads and analytics) and the mobile
device user (longer battery life). Our initial implementation
and results make four contributions to the state of the art:

1. Empirical evidence for recurrent requests in An-
droid apps: our analysis shows that 75% of the apps
we studied have at least one recurrent request.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...$15.00

http://dx.doi.org/10.1145/2970276.2970324

702

2. An algorithm for detecting recurrent requests
in Android apps through dynamic analysis: our algo-
rithm determines the period of recurrent requests and
achieves 100% precision and 80.5% recall.

3. A battery-aware transformation for dynamically
transforming Android binaries to throttle recurrent re-
quests based on the current battery status.

4. Initial evaluation for savings achieved by the battery-
aware transformation: our experiments show that ap-
plying the proposed transformation on a single appli-
cation can reduce the power consumption of a device
by 5.8%.

These contributions demonstrate the feasibility and use-
fulness of this novel type of approach: unlike earlier work,
it is designed to strike the balance between the needs of mo-
bile application users and the financial incentives of mobile
application developers.

Structure of the paper. The rest of the paper is or-
ganized as follows. Section 2 presents an empirical study
to determine the prevalence of recurrent A&A requests in
Android apps. Section 3 elaborates our proposed approach,
divided into profiling, frequency analysis, and battery-aware
transformation. In Section 4, we apply our approach to a
use case application and report on the energy savings. Sec-
tion 5 positions this paper within the related work. Section
6 describes the limitations of our work with an outlook to
the future. We conclude with a summary in Section 7.

2. FREQUENCY OF REQUESTS
We first conduct an empirical study to investigate the fre-

quency of recurrent A&A requests in Android applications.

2.1 Study Design
As the subjects of our study, we downloaded the 30 most-

popular applications available on the Google Play store as of
February 2016. We instrumented application binaries to log
information about A&A connection statements that these
applications make. We used the dex2jar1 toolsuite to ex-
tract the jar file from the apps’ apks and Soot [9] (as imple-
mented in FlowDroid [4]) to create instrumented versions of
the original applications.

Our study considered as a connection any statement listed
in Table 1.

Table 1: Connection statements.
Class/Interface Method
java.net.URL openConnection
java.net.URLConnection connect
org.apache.http.client.HttpClient execute
org.jsoup.helper.HttpConnection connect
java.net.HttpURLConnection getOutputStream
java.net.Socket getOutputStream

We also included all sub-classes of those listed in the table.
We further analyzed package names of each class that issues
a connection statement to identify those that belong to the
known A&A libraries.

For each of the identified A&A connection statements we
inserted a corresponding print statement whose output is

1https://github.com/pxb1988/dex2jar

captured by the Android system logging facilities. We logged
the outgoing request’s type and time of occurrence.

We then transformed the jar file back into an apk using
the dex2jar toolsuite and signed this apk using the standard
jarsigner tool from the Java JDK.

We installed the instrumented applications on a Nexus 4
mobile device running Android 4.4.4, excluding applications
where the Soot-based binary transformations failed. We be-
lieve that these failures occur because the apps in question
might use language constructs that are not supported by
the current version of Soot. We also excluded applications
that required user-specific input such as login credentials
and chat partners. The remaining eight applications are
listed in the first column of Table 2.

We ran each application for 30 minutes while connected to
WiFi with the device stationary. We did not interact with
the applications. At the end of the run, we obtained a file
which logs all connection issued by the application. We refer
to that file as a connection log.

2.2 Study Results
We manually analyzed the produced connection logs for

each application to classify requests as recurrent or non-
recurrent. The results of this analysis are summarized in
columns 3 and 4 of Table 2.

Our study shows that 75% of the analyzed applications
have at least one recurrent A&A connection that is acti-
vated without the user interacting with the application. We
also observed that one application has six such connections.
On average, applications have 6.25 A&A connections, out of
which 1.7 are recurrently activated without any user inter-
action.

Additionally, we manually extracted the intervals between
recurrent requests by carefully inspecting the connection log
for each request. On average, recurrent requests occur every
49.6 seconds (column 5 in Table 2).

Summary: Our empirical study shows that 75% of ap-
plications have at least one recurrent request that is ac-
tivated without any user interaction with an application.
On average, applications have 1.7 such requests, which
occur every 49.6 seconds.

3. PROPOSED APPROACH
Inspired by the study described in Section 2, we propose

an automated approach for modifying application binaries
to adjust the frequency of recurrent A&A request according
to the battery state. Our approach consists of three main
steps shown in Figure 1: Profiling, frequency analysis, and
battery-aware transformation. These steps are described in
Sections 3.2, 3.3 and 3.4. Before that, we give a more formal
definition of recurrent requests.

3.1 Recurrent Requests
We denote outgoing connection statements in an app’s

bytecode with c1, . . . , cn. Table 1 lists the types of connec-
tion statement we consider. Whenever one of the connection
statements cause a request at runtime, the identity of the
connection statement along with a timestamp t is recorded.
We assume that there is an observation at every possible
timestamp t ∈ N. As such, there is a binary sequence

703

Table 2: Recurrent A&A requests in Android applications.
Manual Analysis Automated Analysis

APK Name Size # AA # Rec. ρ Precision Recall

com.amazon.mShop.android.shopping 27M 12 1 43 100% (0/0) 0% (0/1)
com.vlcforandroid.vlcdirectprofree 1.8M 2 1 30 100% (1/1) 100% (1/1)
com.socialping.lifequotes 4.9M 1 1 60 100% (1/1) 100% (1/1)
com.surpax.ledflashlight.panel 5.8M 13 0 - - -
net.zedge.android 9.4M 11 6 45 100% (5/5) 83% (5/6)
com.lionmobi.powerclean 3.4M 6 0 - - -
com.cynomusic.mp3downloader 3.2M 3 1 60 100% (1/1) 100% (1/1)
com.vysionapps.faceswap 5.5M 2 1 60 100% (1/1) 100% (1/1)

Average 7.6M 6.25 1.7 49.6 100% 80.5%

Xci = {(t, x(t)) : t ∈ N} for every connection statement
ci. For a given connection statement ci, x(t) = 1 if the con-
nection issued a request at some point in time t, and x(t) = 0
if the connection statement issued no request at time t.

Definition 1. (Recurrent Request) A time series Xci =
{x(t)} for a connection statement ci is said to be recurrent
if there exists some ρ ∈ N such that x(t+ ρ) = x(t) for all t
of Xci . ρ is called the period of Xci .

We define a subset T +
ci = {t : x(t) = 1} as the collection

of timestamps of positive events, i.e., when connections have
issued requests in Xci . Given two consecutive timestamps ti
and ti+1 in the set T +

ci , we consider a series to be recurrent
with a period ρ with respect to a threshold τ ∈ [0..1], if

|(ti+1 − ti)− ρ|
ρ

< τ.

3.2 Profiling
For the profiling step, we follow the procedure described

in detail in Section 2.1. The input for this step is an apk

file. We instrument the bytecode and annotate all connec-
tion statements listed in Table 1 (including its sub-classes).
We exercise the application for 30 minutes without any in-
teraction. The output is a connection log that specifies type
and time-stamps of the A&A connection statements made
by the application.

3.3 Frequency Analysis
For frequency analysis, we develop an automated algo-

rithm that identifies recurrent requests by analyzing connec-
tion logs. We detect recurrent requests using the procedure
outlined in Algorithm 1. The algorithm takes as input the
series of timestamps when a request has been issued for a
connection ti, . . . , tn in T +

ci . From this series, the algorithm
computes a new series of deltas between each timestamp,
δ+
ci = {ti+1 − ti | 0 > i > n}.
The algorithm first generates the request series by com-

puting a moving average of request timestamps using a win-
dow size w, to group subsequent requests together. Next,
the algorithm calculates the deltas, δ+

ci , between subsequent

requests. From this distribution of δ+
ci values, the algorithm

uses a maximum-likelihood estimator (MLE) to estimate the
distribution’s parameters. The algorithm then computes
the relative standard deviation (rsddeltas) and compares it
against a threshold τ . If the rsddeltas is below the threshold,
the algorithm considers the series as containing recurrent
requests and return the estimated mean µdeltas.

Deltas

Fr
eq

ue
nc

y

30.8 31.0 31.2 31.4

0
10

20

Figure 2: Distribution of deltas (differences between
two consecutive timestamps) between requests. The
line is a fitted normal distribution parameterized
by values retrieved through maximum-likelihood-
estimation (MLE) in R package fitdist.

Figure 2 shows a real-life example of such a series of deltas
between requests of the connection statements, residing in
the package com.google.android.gms.b.os, in the VLC Direct
Android app. We observed that the distribution of deltas as-
sociated with connections having recurrent requests in many
of our subject applications was similar to the distribution
observed in Figure 2.

Algorithm 1 Detecting Recurrent Requests.

1: procedure DetectRecurrentRequest(series, w, τ)
2: series← movingAverage(series, w)
3: deltas← calculateDeltas(series)
4: (µdeltas, σdeltas)← MLE(deltas)

5: rsddeltas ←
σdeltas

µdeltas

6: if rsddeltas < τ then
7: return µdeltas

8: else
9: return -1

3.3.1 Evaluation
We assess the quality of our frequency analysis by apply-

ing the procedure of Algorithm 1 to all connection logs from
our subject applications, using a moving average window of
w = 5 seconds and a threshold τ = 0.25. We compare the
results against the ground truth established in the manual
analysis described in Section 2.

Columns 6 and 7 in Table 2 present the resulting precision
and recall for the comparison. Precision refers to the fraction
of connections correctly identified as recurrent among those

704

Bytecode
Instrumentation

Run
 apk' for 30

minutes

1. Profiling

apk File

Annotated
apk'

2. Frequency Analysis

Connection
Logs

Automated Detection

Parameter !
(period)

3. Battery-Aware Transformation

Transformed
apk''

A&A Request Rate Throttling
Based on f(b, !)

Figure 1: Approach overview illustrating all stages from original apk to Battery-Aware Transformed version
of the apk

reported by the automated analysis. Recall refers to the
fraction of connections correctly identified as recurrent from
the expected ground truth set. On average, the algorithm
achieves 100% precision and 80.5% recall.

There were only a small number of cases where the algo-
rithm could not correctly classify connections. Manual in-
spection of request traces led us to believe that these cases
were the result of more than one process in an app executing
the same statement (e.g., a statement in a library), and as
a result generating requests. The resulting time series from
such a process does not correspond to our current notion
of recurrent requests. More in-depth analysis is required
to either adjust the definition or detection mechanism for
recurrent requests.

Summary: Our automated mechanism for detecting re-
current A&A requests was able to achieve 100% precision
and 80.5% recall with respect to the ground truth estab-
lished in manual analysis.

3.4 Battery-Aware Transformation
The idea behind our battery-aware transformation is to

transparently modify apps to limit the rate at which they
perform recurrent A&A requests. Our goal in performing
these modifications is to reduce the number of times a mobile
device’s network interface is activated. Because the network
interface is an important contributor to power dissipation in
mobile devices [15], reducing communication should improve
whole-system energy-efficiency.

As we want to balance the interests of app developers
against those of mobile device users, we modulate the frac-
tion of recurrent requests that we remove, based on the de-
vice’s battery level. We modify apps so that, at full battery
charge, the code we insert into app bytecode permits all
recurrent requests. Near complete battery depletion, the
inserted code permits no recurrent requests.

3.4.1 Transformation Models
We consider a series of recurrent requestsRci,∆t = {ri, . . . ,

rn} in connection ci within a time span ∆t. The series
Rc′i,∆t of a transformed connection c′i is a subset Rc′i,∆t ⊆
Rci,∆t of the recurrent requests in the original connection
over the same time span ∆t. There are two ways one could
achieve this request rate limiting. The first option would be
to skip (every N) requests to achieve a lower number of re-
quests over the time span ∆t. The other option is to insert

a delay before or after every connection. We investigate the
delay option, as it allows for more fine-grained control over
controlling the rate of requests.

We introduce a delay that is a function f(b, ρ) of battery
status b and the period of the recurrent request ρ. We use
a transformation model that linearly increases the delay as
battery status decreases (Equation 1). We include the con-
stant factor c to allow for adjustment in linear increase or
decrease of the delay:

flinear(b, ρ) =
1

c ∗ b ∗ ρ (1)

Following the notion of a low power mode we discussed
in the introduction, a possible transformation model would
be to throttle resource consumption when hitting a specific
lower battery status, e.g., 20% (see Equation 2, c again, is a
constant factor applied to the period ρ).

fLowPowerMode(b, ρ) =

{
ρ ∗ c, if b ≤ 0.2

0, otherwise
(2)

3.4.2 Application Transformation
We again use Soot to instrument the application binaries

and insert a delay following a transformation model. In the
following, we outline the method BatteryAwareTransformer:

• The transformation is implemented through a Body-
Transformer in Soot, in which all methods in a binary
are iterated.

• The method provides a collection of units, which roughly
correspond to a line of bytecode (i.e., invocations, as-
signments, etc.).

• Given a map of detected connections paired with their
periods ρ as parameters, the transformer checks whether
(a) the unit contains an invocation that is a connec-
tion, and (b) it is contained in the map of detected
connections.

• If a given unit is identified as one of the detected con-
nections, we inject a Thread.sleep() invocation2 with a
chosen transformation model f(b, ρ) as its parameter.

• Since Thread.sleep() may cause a InterruptedException,
we also inject a trap with this exception that does
nothing.

2More specifically: <java.lang.Thread: void sleep(long)>

705

4. CASE STUDY: ENERGY SAVINGS
We apply the battery-aware transformation on the use

case application VLC Direct to demonstrate potential en-
ergy savings. Since energy models on mobile devices suffer
from limited accuracy [5], we assume a constant delay at a
particular lower battery level. We thus apply Equation 2 as
our battery saving transformation model.

To determine the difference in consumed energy, we mea-
sured the energy consumption of the application before and
after battery-aware transformation. We ran each experiment
for 30 minutes. We repeated the measurement five times
for each version to minimize the possible impact of back-
ground noise. For this initial evaluation, we sampled energy
consumption information from the device’s fuel gauge [1,
2] at 1Hz. That is, we polled the /sys/class/power_supply/

battery/uevent interface (fuel gauge) for the voltage and cur-
rent, which was sufficient for an initial investigation of the
energy consumption. We intent to look into more sophisti-
cated measures of energy as part of future work.

Table 3: Energy Consumption (average power dissi-
pation) of VLC Direct before and after transforma-
tion

Before Approach After Approach

(mW = Milli-Watts) (ρ = 30) (ρ = 60)
Run 1 1138 mW 1056.87 mW
Run 2 1147.87 mW 1098.4 mW
Run 3 1085.26 mW 1067.57 mW
Run 4 1198 mW 1088.79 mW
Run 5 1200.99 mW 1120.99 mW
Average 1154 mW 1086.52 mW
StdDev 47.88 25.36
RSD 4.14% 2.33%
Energy Absolute Savings Savings in %
Saving 67.48 mW 5.86%

The results of the energy evaluation case study are pre-
sented in Table 3. The values shown for each run represent
the average power dissipation (total power consumption di-
vided by time of measurement). We can see that the ap-
plication after the battery-aware transformation was able
to decrease energy consumption by 5.86%. This result has
to be seen relative to the potential power savings: remov-
ing ads completely yields 16% of average power savings [8],
while our approach strikes the balance between the needs
of mobile application developers and users. Furthermore,
in lower power mode (i.e., low battery status, around 20%)
even smaller savings in energy consumption can make a dif-
ference. We thus view this initial result as promising and
expect even larger saving when the approach is applied to
all applications running on the same device.

Summary: Applying the battery-aware transformation
to a use case application yielded 5.86% of savings in en-
ergy consumption.

5. RELATED WORK
There has been a multitude of work researching energy

consumption in mobile applications. In the following, we
focus on work that has investigated the impact of adver-
tisement on mobile applications and approaches of program
analysis and transformation to reduce energy consumption.

Impact of Advertisment on Mobile Applications:
Work by Gui et al. investigated the impact of ads on differ-
ent resources, including energy consumption [8]. In a study
considering similar aspects, Pathak et al. examined where
the energy is consumed in different apps, and found that
third-party advertisement APIs is a large factor [11]. Work
by Prochkova et al. specifically explores the impact of ads
in mobile games, and found that applications that request
information on ad servers more frequently consume more en-
ergy [12]. Work by Chen et al. investigates the upper bound
of energy savings by prefetching ads [6]. Previous work by
Rubin et al. studied the occurrence of requests that have no
effect on user-observable functionality, and found that ads
are a substantial part of these “covert communications” [14].

Program Analysis and Transformation to Reduce Energy
Consumption: Li et al. use static analysis to reduce the
energy consumption of apps by automatically bundling sub-
sequent HTTP requests [10]. Recent work by Gui et al.
explores methods for measuring and predicting ad related
energy consumption based on static analysis [7]. While these
approaches remove ads completely to analyze the impact of
ads on mobile resources, in this paper, we propose to throttle
the rate at which the ads are retrieved based on the current
battery status.

Other works in the area of program analysis and transfor-
mation have looked at improving display energy consumed
by apps [17, 16]. In contrast, the focus of our work is on re-
current requests, regardless of whether they are manifested
in display updates or not.

6. LIMITATIONS AND FUTURE WORK
Empirical Study: Using only eight subject applications

might limit the generalizability of our study if the selected
applications are not representative. We try to mitigate this
problem by choosing an unbiased sample. We selected our
subject applications from the most popular applications from
the app store.

We did not interact with applications when investigating
connection patterns during the dynamic analysis. This lim-
its the potential findings of further recurrent request pat-
terns. Furthermore, we did not include apps that require
any kind of user interaction (especially logins) to become
fully usable. Thus, if anything, we are likely underreporting
the prevalence of recurrent requests. As a follow up to these
explorations, we plan to investigate how the phenomenon of
recurrent requests manifests in more diverse types of appli-
cations and possible sequence of user interactions.

Energy Analysis: We chose one use case application to
demonstrate the potential energy savings of the novel ap-
proach. The result of this early investigation is the basis for
further exploration in this area. In a future study we plan
to evaluate the approach with more applications to see how
much energy can possibly be saved for applications from dif-
ferent categories (e.g., games and utility apps), different ad-
frameworks (e.g., Google AdMob3 or Unity Ads4), different
ad-types (just text, photos or animations) and connection
types (phone connected via 3G, 4G, or Wi-Fi).

3https://www.google.com/admob/
4https://unity3d.com/services/ads

706

Modifying the binaries to introduce print statements might
affect the energy footprint of the studied application.

However, these modified statements were present in both
versions (before and after transformation) of the application.
If anything, we are underestimating the potential energy
savings.

To avoid unexpected results, we performed all experiments
of dynamic nature on the same device (Nexus 4 with Android
4.4.4) and at the same location. To demonstrate energy sav-
ings, we also ran the experiment five times to reduce possi-
ble background noise. We use the fuel gauge of the phone
to retrieve the necessary energy information at 1Hz. Since
our energy analysis is comparative, we believe the accuracy
provided by this method suffices. However, for future explo-
rations of this space, we intend to use a more fine-grained
and accurate approach such as the Monsoon Power Meter5.

Future Explorations: In general, we want to continue
studying the compromise between the usage of advertise-
ment and analytics and energy consumption more in-depth.
One possible route of investigation is Gamification (for in-
stance assigning“Energy Badges”) to motivate developers to
enable our approach. Another possible route of study would
be to investigate game-theoretical considerations with mo-
bile developers and users as actors within the mobile market
space. Furthermore, the study of this compromise in itself
could inform the design of future battery-aware APIs.

7. CONCLUSION
We presented early work on an automated approach that

addresses the trade-off of using advertisement and analytics
services in mobile applications (to increase the revenue of de-
velopers and provide them with insights into user behavior)
and reducing energy consumption (to increase the usabil-
ity of the device). Our approach identifies advertisement
and analytics connections that contain recurrent requests
to outgoing servers and throttles the number of requests
over time, based on the current battery state. The results
presented in this paper show potential for further research.
Our proposed approach is intended to start a conversation
about the conflict between the objectives of mobile develop-
ers and mobile users. The next steps in this exploration
will include a more fine-grained view on the energy sav-
ing potential, as well as game-theoretical considerations to
find a Pareto-optimal solution of our aforementioned multi-
objective optimization problem. We could imagine the end
result of our investigation to be implemented by controlling
authorities (e.g., application stores) in the form of gamifica-
tion (“Energy Badge”) or to inform ecosystem developers to
build battery-aware APIs.

8. ACKNOWLEDGMENTS
The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 610802
(CloudWave) and the CHOOSE Forum.

9. REFERENCES
[1] Measuring Device Power, 2016 (accessed April 29,

2016). https://source.android.com/devices/tech/
power/device.html.

5http://www.msoon.com/LabEquipment/PowerMonitor

[2] Android Fuel Gauge Analysis Tool, 2016 (accessed July
15, 2016). https://github.com/phillipstanleymarbell/
android-fuel-gauge-uevent-analysis.

[3] Apple, Inc. iOS 9 low power mode. (accessed July 15,
2016). https://support.apple.com/en-us/HT205234.

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’14, New York, NY, USA,
2014. ACM.

[5] J. Bornholt, T. Mytkowicz, and K. S. McKinley. The
model is not enough: Understanding energy
consumption in mobile devices. In Hot Chips 24, 2012.

[6] X. Chen, A. Jindal, and Y. C. Hu. How much energy
can we save from prefetching ads?: energy drain
analysis of top 100 apps. In Proceedings of the
Workshop on Power-Aware Computing and Systems.
ACM, 2013.

[7] J. Gui, D. Li, M. Wan, and W. G. Halfond.
Lightweight measurement and estimation of mobile ad
energy consumption.

[8] J. Gui, S. Mcilroy, M. Nagappan, and W. G. Halfond.
Truth in advertising: The hidden cost of mobile ads
for software developers. In Proceedings of the 37th
International Conference on Software Engineering.
IEEE Press, 2015.

[9] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The
soot framework for java program analysis: a
retrospective. 2011.

[10] D. Li, Y. Lyu, J. Gui, and W. Halfond. Automated
energy optimization of http requests for mobile
applications. In Proceedings of the 38th International
Conference on Software Engineering (ICSE), 2016.

[11] A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: fine grained energy
accounting on smartphones with eprof. In Proceedings
of the 7th ACM European Conference on Computer
Systems. ACM, 2012.

[12] I. Prochkova, V. Singh, and J. K. Nurminen. Energy
cost of advertisements in mobile games on the android
platform. In 6th International Conference on Next
Generation Mobile Applications, Services and
Technologies (NGMAST), 2012.

[13] Qualcomm. Snapdragon BatteryGuru. (accessed July
15, 2016). https://qualcomm.com/products/
snapdragon/power-efficiency.

[14] J. Rubin, M. I. Gordon, N. Nguyen, and M. Rinard.
Covert communication in mobile applications (t). In
Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering
(ASE). IEEE, 2015.

[15] A. Shye, B. Scholbrock, and G. Memik. Into the wild:
Studying real user activity patterns to guide power
optimizations for mobile architectures. In Proceedings
of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages
168–178, New York, NY, USA, 2009. ACM.

[16] P. Stanley-Marbell, V. Estellers, and M. C. Rinard.
Crayon: saving power through shape and color
approximation on next-generation displays. In
Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys 2016, London, United
Kingdom, April 18-21, 2016, page 11, 2016.

[17] M. L. Vásquez, G. Bavota, C. E. Bernal-Cárdenas,
R. Oliveto, M. D. Penta, and D. Poshyvanyk.
Optimizing energy consumption of GUIs in Android
apps: a multi-objective approach. In Proceedings of
the 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, 2015.

707

