FEBRUARY 1978 40p
Microwavehybridics Radio telescope

Thebetter value box formobile radio servicing:

By combining all mobile radio servicing instruments in one portable unit, Marconi Instruments' Mobile Radio Test Set, TF 2950, streamlines your testing and servicing operation. And it is realistically priced.

Signal generator, a.f. voltmeter, modulation monitor, power meter (in-line and absorption) and a.f. oscillator are housed in a compact and robust cabinet - measuring only 315 mm high, 420 mm wide and 230 mm deep, and weighing only 16 kg .

TF 2950 is suitable for all a.m./f.m.mobile radio equipment and is available in a number
of versions to cover a wide frequency range.
For maximum convenience, the equipment operates from internal, rechargeable batteries or mains. A battery state meter is incorporated.

Marconi Instruments' TF 2950 gives you single-handed portability to meet all your mobile test needs.

Put it to the test.
Write or telephone for a full technical description and, if this whets your appetite further, we will be happy to arrange a demonstration.

mi MARCONI INSTRUMENTS

Front cover shows 7 wos-N. an adtanced environmental satiliten die. signed and constructed by RCA at Princeton. NJ. USA.

IN OUR NEXT ISSUE

Precision pickup arm design. Practical analysis of parameters such as tracking and tracing errors, cartridge resonance, skating force, lateral balancing and arm length.
Semiconductor memaries, a survey of types on the market used in microcomputers and other digital systems.

Colouration in loudspeakers, discusses sources of unwanted resonances and methods of eliminating them.

Current issue price $40 p$. back ssue (if avallable) 50 p. at Retal and Trade Counter Paris Gardan, London SE1
By post, ourrent issue 55p, back issuas if availabiol 50 p , order and payments to Roorn 11 , Dorset House. London SE1 BLU.
Editorial \& Advertising offices: Dorset House, Stamford Street, Lontan SE1 9LU.
Telephanes: Editarial 01-261 8620. Advertising 01.2618338. Telegrams/Telex: Wiworld Bisnespres 25137 BISPFS G Cables. Ethawoild. Loncon SET.
Subscription rates: 1 year: £ 7,00 UK and overseas ($\$ 18.20$ USA and Canada)
Student rate: 1 year, £3.50 UK and ovarseas ($\$ 9.10$ USA and Ca nodat.
Distribution: 40 Euwling Green Lanc. Loridon ECIR ONE Telephone 0t-837 3636. Subscriptions: Qakfield House, Perrymount Road. Haywards Heath. Sussex. RHTG 3DH Tolophone 0444 B 9188 . Subscribers ate requested to notify a change of address.
USA mailing agents: Expediters of the Printed Word litd. 527 Mad ison Avenuo. Suite 1217. New Yorki NY 10022 2nd-class postage pad et New York.
IPC Businoss Press Lid, 1978 ISSN 00436052

wireless world

ELECTRONICS/TELEVISION/RADIO/AUḊIO FEBRUARY 1978 VOL 84 NO 1506

25 Viewdata needs encouragement

26 A basic radio telescope

by J. R. Smith
31 News of the month
BS9000 and protectionism FEEA plan for CB/ Turntable war
35 Low-noise cassette deck - postscript
by J. L. Linsley Hood

41 Reliability
 by H. R. Henly

46 Microwave hybrid integrated circuit technology
by R. Davies and B. H. Newton

51 Letters to the editor

Amateurs' power levels/p.m.r. spectrum utilisation/amplifier distortion

55 Radio on the flight deck - 2
by A . Bramson
58 Circuit ideas
Precision timer/variable-speed radio control motor/ Triple voltage power supply
63 P.c.b. layout for high-speed Schottky t.t.l.
by D. Walton

66 Microcomputer design - 4
by C. D. Shelton

68 World of amateur radio/77 New Products/80 Sidebands by "Mixer"

69 Automatic impedance plotter
 by T. F. North

73 Further topics from Radar 77 conference

75 Single-sideband transceiver design
by B. A. Austin

124 Appointments vacant

General Instrument Microelectronics Limited are the leaders in microcircuits for consumer/telecommunications and other applications.
Our distributors form a direct pipeline from us to you. For easy access to the widest range of advanced microelectronics call them and ask for a free copy of our latest shortform catalogue.

UK DISTRIBUTORS: Semiconductor Specialists Ltd., Premier House, Fairfield Road, Yiewsley, West Drayton, Middlesex. Tel West Drayton (08954) 46415 Telex: 21958 Semicomps Ltd., Wellington Road, London Colney, St. Albans, Herls. Tel: Bowmans Green 24522 Telex: 21108 Semicomps Northern Ltd., Ingrow Lane, Keighley. W. Yorks. Tel: Keighley 65191 Telex: 517343 Semicomps Northern Ltd., East Bowmont Street, Kelso, Roxburghshire. Tel: Kelso 2366 Telex: 72692 Semicomps Ltd., 3 Warwick House, Station Road, Kenilworth, Warwickshire, Tel: 092659411 Telex: 312212 Crellon Electronics Ltd. 380 Bath Road, Slough SLI 6 JE . Tel Burnham (06286) 4434 Telex: 847571 Crellon Electronics Ltd., 24 Broughtan Street, Cheetham Hill, Manchester. Tel: 061-831 7471 Telex: 668304 Crellon Electronics Ltd., 192 Moulsham Street, Chelmsford, Essex CM2 OLG Tel:0245 69545 Telex: 99443
S.D.S. Components Ltd., Jubilee Unit, The Airport,

Eastern Road, Portsmouth. Hants.
Tel: 070565311 Telex: $861 \ddagger 9$
S.D.S. Components Ltd., 111 Alexandra House.

East Kilbride. Glasgow G74 1LX
Tel 055248617 Telex: 778044

GENERAL INSTRUMENT MICROELECTRONICS LTD
57-61 Mortimer Street, London W1N TTD England
Telephone: 01-636 2022 Telex: 23272

120 BASIC RANGES

$A C V, 1 \& \$ B$
DCV, $1 \&$ NULL
RESISTANCE
LEAKAGE of $3 V$
VOLT DROP at 10 mA
$50 \mu \mathrm{~V} / 500 \mathrm{~V}$ fsd, $50 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, $-90 \mathrm{~dB} /+50 \mathrm{HB}$ mid scale. Acc. $\pm 1.5 \%$ fsd above $500 \mu \mathrm{~V}$ \& 500 pA . Response $3 \mathrm{~Hz} / 200 \mathrm{kHz}$ above $500 \mu \mathrm{~V}$ and 500 nA . Input $\mathrm{R}=100 \mathrm{MS}$ an volts.
: $150 \mathrm{pV} / 500 \mathrm{~V}$ fsd, $150 \mathrm{pA} / 500 \mathrm{~mA}$ fsd, polority reversible. Acc. $+1.5 \%$ fsd obove $500 \mu \mathrm{~V}$ \& 500 pA . Input $R=100 \mathrm{M} \Omega$ on volts. 5 Null ronges have centre zero iin / \log scale covering +4 decudes.
: $0.22 / 10 \mathrm{G} \Omega$ in 7 ronges, polarity reversible. Low test voltoge for solid state circuits.

1. Uses 3 V source with current tonges to, test capacitas, diodes and resistance up to $100 \mathrm{G} \Omega$.
: Uses 10 mA source with voltage ranges to fest diodes, LED's and resistance down to $10 \mathrm{~m} \Omega$.

30 OPTIONAL RANGES

RF VOLTS
: $0.5 \mathrm{~V} / 500 \mathrm{~V}$ Fsd, $10 \mathrm{kHz} / 1 \mathrm{GHz}$, using RF Probe. Price $£ 22$, VAT.
HIGH VOLTS
HIGH CURPENT TEMPERATURE
: $1,5 \mathrm{kV} / 50 \mathrm{kV}$ fsd, $\mathrm{AC} / \mathrm{DC}$, using HV Probe. Price $\mathrm{f} 16+$ VAT,
: $1.5 \mathrm{~A} / 50 \mathrm{~A}$ fsd, $A C / D C$, using Current Shunt. Price $\mathrm{E} 15+$ VAT.

The instrument operates from a 9 volt battery, life 1000 hrs ., $\alpha, A C$ mains whan optioncl Power Supply Unit is fitted.
Size is $240 \mathrm{~mm} \times 150 \mathrm{~mm} \times 80 \mathrm{~mm}$. Weight is $1,75 \mathrm{~kg}$. Meter scale length is. 140 mmrr . Leather cosc is availoble at E 13 + VAT,

TUNE IN TO THE WORLD OF

 MICROPROCESSORS

Give your friends a warm welcome

Here's the Chroma Chime -a perfect example of British scientific achievement brought right to your own front door. Now -you can be among the first enthusiasts in the world to build your own electronic musical door chime -a door chime with no moving parts There are 24 of the world's favourite and best known tunes pre-programmed onto the microcomputer chip so that all you have to do is to set the Chroma Chime's builtin selector switches to a code to index the "tune of the day" from the repertoire:

Build this Door Chime for

Greensisevr;

Goo Sovertro
Rule Antonia
ind of Howe ant Clam ancon Hope arcadians Or andes arid Lemons Westminster Chimes Baton 's Hornompt

Sexthovn!"s"Fateknacking The Marseillaise Murat!
Wedding March Cook House Door Thiestars e Str pest Beethoven's Ode to Nov Wi lath lem Overbite

Solider's Chutes
I winkle Twink e Litriostio Great Gate of Kier teat Gate
t Maryland
Deulscmand user danes Durst
Bis.
Cols ne) Bogie
Thetorithe

Since everything is done by precise mathematics, it carrot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume. tempo and envelope decay rate to change the sound according to taste.

Nat only visitors to the front dor will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step construefiona details together with a fault finding guide, circuit description. installat on details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built ABS carmel
e Easy to build and instal
- Uses Texas instruments TMSiDOO mimocomputer
- Absolutely all parts supplied including IC. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with fall circuit details
- No previous microcomputer experience necessary
- All programming permanently retained s inch ROM
- Can be builinabout 3 hours
- Runsoll 2 PP3 typehatteries.

- Fully Guaranteed

The CHROMA -CHIME is exclusively designed by

CHROMATRONICS

กinplin
 in a modern world of electronics

AUDIO MIXER

A superb stereo audio mixer. It can be equipped with up to 16 input modules of your choice and its performance malches that of the very best tape-recorders and hi-fi equipment. It meats the requirements of professional recording studios. FM radia stations. concert halls and theatres. Fall construction delails in our calalogue. A component schedule is
rifle kit only $£ 10.60$.

INTEGRATED CIRCUITS

Over 35 pages in our catalogue devoted to hundreds of usotul I.C.s. All with data, pin connections and many with applications circuits and projects to build. Post the coupon now!

THE "DRUMSETTE" RHYTH: GENERATOR

 Orgonists, pianists, guitarists, drum set tu accompany youl hine highly realistic instruments play lifteen eitierent rhythass. Fitteen thytinm-select touch switches and a touch plate for stop/starl winour roymm ctange gives absolute kace ap araion, amart it yourself Tor un or is and hear it in out tean-ethect cor tull construction details now: MES 49. Price 25p.
PLASTIC FASTENERS FOR ELECTRONICS

SELF-ADHESIVE CABLE CLIPS are a quick and simple means of securing cables, cords and small looms to flat surfaces. No drilling or fixing screws necessary. The peel-off backing is removed immediately before placing the clip. The coating adheres to most clean, flat surfaces and withstands a wide range of humidity and temperature. Cable clips are moulded in natural nylon and have rounded edges to prevent damage to the cables.

CABLE STRAPS are semi-permanent fasteners for strapping wires and cables into tight, compact looms. The ratchet fastener is adjustable and can be released by pinching-in the sides of the fastener head. Cable straps are made from black nylon.

WIRE TIES are a flexible means of fastening wires and small cables into orderly, compact looms. They are quick and easy to fit and can be re-used, greatly reducing re-Iooming fimes. Wire ties are made from nylon and are available in various sizes each determined by a different colour.
The P.C. BOARD GUIDE is a self-retaining edge support for printed circuit boards. It has good panel retention and orips p.c. boards firmly and securely. The ouide is available in two types of material - yellow acetal or crey Noryl, for high temperature and voltage applications.

P.C. BOARD SPACERS are simple to fit, oneplece mouldings for use with p.c. boards. They have a self retaining shank for fastening into panels and a T-shaped anchor for securing p.c. boards of $0.062^{\prime \prime}$ thickness. They have good resistance to vibration and are sultable for board-to-board or board-tochassis use.
P.C. BOARD STAND-OFFS are quickly assembled, self-retaining panel supports for p.c. boards. Made from natural (off white) nylon and have good resistance to vibration. Suitable for panels up to 0.079° thickness. Stand-Otfs accept a No. 4 self-tapping screw.

\qquad

PLASTIC RIVETS fasten panels, fittings and name plates to metal plastic and wood. Resilient enough to fix into brittle materials like fibreglass, hardboard and glass. 'Shank, head and pin are one plece. Fixing is by driving the pin through the head into the space between the legs, aripping the work.
DRIVE FASTENERS hold two or more panels together. Easily fixed, normally by thumb pressure. No special tools required. Boatshaped DRIVE Fasteners are for panels of thin and medium thickness and are remavable, Ribbed Drive Fasteners are used in blind holes where hole length exceeds lergth of shank.

PLASTIC HOLE PLUGS are quick, inexpensive means of plugging unwanted holes. Hole Plugs keep out dust, dirt and moisture. Attractively shaped heads olve a neat finish. The snap action grip of the Hole Plug makes a vibration resistant seal. Hole Plugs are made from nylon and are non-corrosive.
LOKUT ANCHORS are used to strengthen holes by providing additional-screw thread engagement in materials where self-tapping screws would be unsatisfactory. Made from high strength nylon and used in insulation, and electrical chassis work. Easily litted by hand.

> 10OD's DF DTHER TYPES OF PLASTIC AND METAL FASTENERS LEAFLETS ON REQUEST
> HARMSWORTH

HARMSWORTH, TOWNLEY \& CO. LTD. HAREHILL TODMORDEN LANCS OL14 5JY
Phone TODMORDEN 2601 (STD 070-681 2601)

For fast, competitive service, contact:
Bob Bowles, Eimac Division,
Varian AG, P O. Box, 6300 Zug, Switzerland
Tel. 042 /316655
Telex 78789 or 78841
Sales offices in:
Zug, Switzerland and
Paris, London, Munich, Torino, Amsterdam, Brusseis, Stockholm.

WW-045 FOR FURTHER DETAILS

F.M. TUNERS, MODULES \& KITS by
 Con
 Design

Tuner
T2 TOUCH TUNED T3 DIGITAL (AS SHOWN)
$£ 121.00$
$£ 149.00$

Kit
$£ 109.00$
£139.00

MAIN RECEIVER MODULE M1

We have claimed before that this F.M. systom is the must advanced on the market. and affor nearly three years we repeat our claim. Some have borrowed ideas, some have not. but no other tumer gives you all the leatures of this unit. How many turgers mute the spurious tuming ellects found at either side of a correctly tured station? How matly suners fade the sound out as you tune too correctly tured stasion? How maty fation for good quality soum? How many tuners kill the tuning indicator so that it does not indicate when there is no station there? How marty oftet you so that th does not indicate when yore if you went a turee that has been well dritt free tuning? We could go on. If you want a
thought out and engincergd, start with this module
 do you want?

NEW TOUCH TUNE MODULE M5 Mk. 2

This new module includes several'now teaturas for no increase in price Improved sensitivity with "touch to earth" mode is coupled with remote stepping and changeable "power up" solection. Brighter lampsare algo added and 20 turn cermit pre-sats provide reliable pro-selection of stations.

FULL CABINET/METALWORK KIT

(Including all Nuts and Bolts, Plugs and Sockets, etc.)
$£ 28.16$
OTHER MODULES etc.

ALL PRICES $+\mathbf{1 2 . 5} \%$ VAT, U.K. ONLY

Overseas: Sales by Pro Forma Invoite send no mongy

This tunor must surely providta the best value for monoy avialable today. Combining the best of the modules shown below. it incluides a full digital readout of Trequency to a resolution of 0.1 MHz . so that exact station identification can be made In addition, six pre-set stations may bat selected by touch cortitols heving internal sol d state lamps, while marnal turning alows easy searching for distant stations under the guidance of the digital meter.
A switchable mute systern allows reception of the weakest stations while muting inter-station noise and spurious resporises. Perfect reception is assured by not permitting any station to be heard which is far enough out of ture to causc. distortion. The turing indeator lamp provides a means of vety fine tuning, and is automarically extinguished between stations: A powartal A.F.C. system is also incorporated which holds all stations in tune, while not preventing mantal tuning. Good sterea reception is assured by the use of 8 phase locked decoder with full bircie' and sparidus outpur filterimg.
Finally, but not loast, the external appearance and styling bring a frosh new look to Hi-Fi. The sturdy wooden cabinet is finishod in trat teak veneer, housing on attractive gold and brovin anodisad afurnimum front panal, which carries black controls and inscriptions. The indicator lamps and digital displays ate in reci, giving the finishing touches to a tuner you will be proud to

DIGITAL FREQUENCY METER M6

We are very proud of this one, We don't have so say it's the best, as far as we know it s the only onel On a boerd less than $4^{\prime \prime}$ square is al the electronics of a stable counter with i.j. offset दadded) and a stabilized power supplyl With the aid of a small daughter board tpot shown) which fits neatly into the above module (M 1), the exact station frequency is displeyed to the rearest 0.1 MHz , It's a tuning scale 20° long with accurate calibrations every 0.1"1. You get the transformer, diaughtar board (ready wirech in). polarizod filter, and a list of station frequencies. What more

TO ICON DESIGN 33 Restron View Purton, Wilts., SN5 9DG

Please supply data on ;Circle as required)
M1 M2 M4 MSMK. 2 ME ALL

[^0]Slock letters
\qquad
\qquad

Mini-priced breadboards for

 maxi-sized projects.Experimentor* low-cost solderless breadboards are the first in the world specially designed for $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ pitch DIP's.
They clip together by an exclusive interlocking system in any configuration. (just like dominoes), so you arrange the breadboards to suit your circuit. not vice-versa.
They are precision moulded from durable, flame-retardant plastic, and feature alphanumeric coding for easy circuit bullding, and non-corrosive, pre-stressed nickel-silver alloy contactsreliable for well over 10,000 insertions:

Contact resistance is a mere $0.4 \mathrm{~m} \Omega$ and interterminal capacitance is typically less than 5 pF . The Experimentor is usable to over 100 MHz .
Experimentor 600 and 650 models are ideal for RAM's ROM's and PROM's (0.6^{4} centre IC's) while the 300 and 350 models are for smaller DIP's ($0.3^{\prime \prime}$ centres). All tour models, of course, also take all standard components, the 0.1 "grid being compatible with transistors, diodes, LED's. capacitors, resistors, pots - in fact any component with lead sizes between $0.015^{\prime \prime}$ and 0.032 ."

A useful quad bus strip (EXP4B) further

Model	Length'	Width ${ }^{\prime \prime}$	Centre channe!'	5-way tie points	Bus	Price All unitsare 0.330 deen
ExP300	6.0	21	0.3	$94(4 \mathrm{~V} 0)$	$2(80)$	86.77 Prices include VAT f 5% and 080 for
EXP350	3.6	2.1	0.3	$46,230)$	$\begin{aligned} & 2(40) \\ & 2(40) \end{aligned}$	£3.69 UK Orders.
ExP600	6.0	2.4	0.6	$94(470)$	2 (80)	£735 Add 5x to all orders outside Uk
ExP650	3.6	2.4	0.6	46(230)	$2(40)$	£3.99 All prices and specilustions norreot
Exp4E	6.0	1.0	N. A	N.A	4(160)	£2.83 at the time of going topress.

expands the versatility of the system for the MPU user.
Experimentor breadboards can be used alone or mounted on any convenient flat surface, thanks to moulded-in mounting holes and vinyl insulation backing that prevents short circuits. Mount them from the tront with 4 -40 flathead screws or from the rear with 6.32 self tapping screws.
But however you use them, Experimentor breadiboards are the quickest and easiest way to build and test circuits.
If you're working on IC's, MPU's, memories.
displays or any other circuits, buy the breadboards that are designed for you. Ring us ($01-8900782$) with your Access, Barclaycard or American Express number and your order will be in the post that night.
Alternatively, send a cheque, or postal order (don't send credit cards!) and it still only takes a few days. Otherwise ask for our complete catalogue.

[^1]
The Industrial Tube Guide

RCA offer the definitive guide to industrial tube products. A collection of literature, full of information on a vast range from camera tubes to digital display tubes. Lasers to photomultipliers. Power devices to

receiving tubes. LEDs to CCD Image Sensors. It can save time, trouble and money, yet it's free on request.

The brochures set out clearly and conveniently, data on a wide and diverse range of product groups. Apart from initially grouping products into types and outlining major parameters, there are expanded catalogues on most products.

These include selection, replacement, equivalents and characteristics tables to help you narrow your choice.

If your business involves industrial tubes, this is one guide you should not be without.

Just call or send the coupon.

WW-048 FOR FURTHER DETAILS

Type 130 is a compact $2 / 3$ inch camera with an unusually high specification for a camera of this size. It is a sturdy, rellable camera of great versatility.
Type 113 is an extremely rugged camera designed for critical applications of a very wide nature. Resolution is better than 800 lines.
Type 118 is a day and night camera based on Type 113 but with many unique features to enhance its performance in difficult light conditions. KGM cameras and monitors are backed by KGM's many years' experience of designing and building CCTV equipment for large industrial users and leading public authorities. Send for your data sheets now.

HETVH胃 ELECTRONICS

Clock Tower Road, Isleworth, Middlesex TW7 6DU Tel: 01-568 0151. Telex: 934120

WHY SETTLE FOR LESS－

THAN A 6800 SYSTEM

MEMORY－

All static memory with selected 2102 1C＇s al－ lows processor to run at its maximum speed at all times．No refresh system is needed and no time is lost in me－ mory refresh cycles．Each board holds 4.096 words of this proven reliable and trouble \longrightarrow free memory．Cost－ only $£ 80.00$ for each full 4 K memory．

INTERFACE－

Serial control interface connects to any RS－232，or 20 Ma ．TTY control terminal．Connectors pro－ vided for expansion of up to eight interfaces． Unique programmable interface circuits allow you to match the interface to al． most any possible combination of polarity and control signal ar－ fangements．Baud rate seiec－ tion can be made on each individual interface．All this at a sensible cost of only $£ 30.00$ for either．serial，or parallel type

PROCESSOR－

＂Motorola＂M6800 processor with Mikbug ${ }^{\circledR}$ ROM operating system．Automatic reset and load－ ing，plus full compatability with Motorola evaluation set software，Crystal controlled oscillator provides the clock signal for the processor and is divided down by the MC14411 to provide the various Baud rate outputs for the interface circuits．Full buffering on all data and address busses insures＂glitch＂free operation with full expansion of memory and interfaces．

DOCUMENTATION－

Probably the most extensive and complete set of data available for any microprocessor system is supplied with our 6800 computer．This includes the Motorola programming manual，out own very complete assembly in structions，plus a notebook full of information that we have compiled on the system hardware and programming．This includes diagnostic programs， sample programs and even a Tic Tac Toe listing．

PRICE EFFECTIVE Ist OCTOBER， 1977

POWER SUPPLY－

Heavy duty 10.0 Amp power supply capable of powering a fully expanged system of memory and interface boards．Note 25 Amp rectifier bridge and $91,000 \mathrm{mfd}$ compurer grade f lter capacitor．

Mihbug ${ }^{(8)}$ is a registered trudemark of Motorola Inc．

Computer System

with serial interface and 4，096 words of memory．．．．．．．．．．．．£275．00
（Kit form only）

Please send me details of your full range of computer equipment and software．

Name
Address \qquad
\qquad
\qquad

Southwest Technical Products Co． 174 Ifield Road，London，SWV10

Prices quoted do not inclurde VAT

WW - HAG FOR FURTHER DETAILS

A. A. D. BAYLISS Behind this name there's a lot of real POWER!

Illustrated right is a TITAN DRILL

TITAN DRILL \& STAND
titan priti anty
RELIANT DRILL \& STAND
rellant ball only
TITAN MINI KIT DRILL
Plis 70 Tool
£19.50

RELIANT MINI KIT DRILL
Pas 20 todit
TRANSFORMER UNIT

\& SON LTD.

These ste examples of the Cxtensive netigy of power toois designad to theyt the teeus at
 Toctuction sida
To tack Lp the powe tools, Expo offer a comproncnsive selherisit of Drilts Guinding Foints and SENII SIAMP foe Mull detsils to main distronaiers

A. D. BAYLISS \& SON LTD., Pfera Works. Redmarley, Glos, GL19 3JU

Stockists: Righards Flectric, Worcester and Glcucestor, Hoopers of Lodbury. Hobbs of Ledisury. D\& Models, Heretord; Bartelia, Gloucester

Stayahead-follow this sign

GOULD ADVANCE INSTRUMENTS HAVEAWORLDWIDE REPUTATION. BUT THEY NEED NOT COST YOU THE EARTH.

OS245A AND OS250B OSCILLOSCOPES

Two dual trace oscilloscopes, with sensitivity of $5 \mathrm{mV} / \mathrm{div} .$, and $2 \mathrm{mV} / \mathrm{cm}$ respectively. The OS250B offers variable trigger level with or without bright line. The OS245A has a bandwidth of 10 MHz , the OS250B offers 15 MHz . Fully portable, these are the ideal instruments for servicing, educational and general purpose applications.

ALPHA III DICITAL MULTIMETER

A tough, attractive, $3 \frac{1}{2}$ digit multimeter with 25 ranges and a basic accuracy of $\pm 0.2 \%$. A bright red LED display gives a clear reading even in high ambient light conditions, and yet power consumption is low enough for extensive field applications.

A purpose built CMOS chip incorporates all analogue and digital circuitry, giving a low component count and increased realiability.

TC 320 TIMER COUNTER

This new, tough, 5 -digit unit has an operating frequency of 35 MHz . Plated through hole PCB construction keeps the component count down, for exceptional reliability. Frequency measurements up to at least 35 MHz can be easily read from the clear 7 -segment display. The TC320 offers outstanding performance including "disciplined" triggering - at a remarkably modest price.

BETA DICITAL MULTIMETER

A general-purpose multimeter, offering 29 ranges, including temperature (optional), and a basic accuracy figure of $\pm 0.2 \%$. A clear, $3 \frac{1}{2}$ digit Liquid Crystal Display, $\overline{0.5}$ high, gives a high-contrast read-out. Fully portable, with a minimum of 300 hours' battery life, the Beta has already established a reputation for accuracy and reliability.

For details of any of these instruments and the Gould Advance 2 year guarantee, write or phone today. Gould Advance Ltd., Instruments Division, Roebuck Road, Hainault, Essex IG6 3UE. Telephone:01-5001000 Telex:263785.

INSIST ON
 VERSATOWER
 BY PROFESSIONALSFOR PROFESSIONALS

Designed for Wind Speeds from 85 m.p.h. to 117 m.p.h., conforming with CP3 Chapter V, part II.

First in the field with a fully interchangeable (versatile) telescopic, tilt over, tower system. Acclaimed as the world leader in the field of communications and lighting, both static and mobile.

Since the launching of the Versatower system early in 1968 we have operated a continuous development and applications programme. Consequently from inception right through to the present day, detail design, materials used and production techniques employed are continually updated. This coupled with our quality assurance scheme onsures that we maintain the leader position we enjoy today.

With many thousands of satisfied users throughout the world, coupled with our no nonsense guarantee and immediate spares availability, it makes little sense to settle for an alternative product.
stralimech

SYSTEM
WW- 039 FOR FURTHER DETALLS

ELECTRONIC INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Ait. Metals, Liquids, Machinery, atc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied with carrying case, Frobe and internal $11 / 2$. yolt standard size battery.
Model ${ }^{+}$Mini-Z $1^{\prime \prime}$ measures from-40 C to $+70^{\circ} \mathrm{G}$. Price $£ 25.00$ Model "Mini-Z $2^{2 \prime}$ measures from- $5^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Price $£ 25.00$ (Madel "Mini-Z Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$ §27.50 (VAT B\% EXTRA)
Write for further details to ${ }^{-}$
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD. LONDON, WC $1 \times 8 A X$ (Phone 01-8377937)
WW-028 FOR FURTHER DETAILS

Get your copy of the Proline Professional tape recorder leaflet.

SOPHISTICATION WITHOUT COMPLICATION

Fill in the reader enquiry card or write to: TONY COSTELLO OR JOHN ROBINSON LEEVERS-RICH EQUIPMENT LTD 319 TRINITY ROAD LONDON SW18 3SL 01-8749054

FAST RESPONSE STRIP CHART RECORDERS

Made in USSR

Series H3020

Basic ertor 2.5%
Sensitivity 8 mA F.S.D Response 0.2 sec , Width of pach channelSingle and threepen recorders: 80 mm Five-pen recorders 50 mm

Chart speeds. selected by push buttons; 0.1-0.2-0.5-1.0. 2. 5-5.0-12.5-25 mm/sec.

Chart drive $200-250 \mathrm{~V} 50 \mathrm{~Hz}$
Recording Syphon pen directly attached to moving coil frames. Curvilinear co-ordinates.
Equipment: Marker pen, timer pen paper footage indicator, 10 rolls of paper, connectors, etc.

H3020-1 (Single pen): 285 mm wide $\times 384 \mathrm{~mm}$ deep $\times 165 \mathrm{~mm}$

Series H327

Polarized moving iron movements with syphon pens oincotly attached. Buit-in solid state amplifier (one gar channell provides 8 calibrated sensitivity steps. Two marker pens are provided
Basic. error 4% Frequency tesponse from $D C$ to 100 Hz 2 dB .

Sensitivity 0.02-0.05-0.1-0.2-0.5-1-2-5 volts/cm Width of each recording chancel 40 mm
Chart drive $220-250 \mathrm{~V} 50 \mathrm{~Hz}$
Chart speeds $1-2 \cdot 5-10-50-125-250 \mathrm{~mm} / \mathrm{sec}$
Type H3271-1. Single pen: Dimensions $259 \times 384 \times 165 \mathrm{~mm}$ Weight 15 kilos

PRICE $£ 265.00$ Type H327-3. Three pen: Dimensians $335 \times 384 \times 165 \mathrm{~mm}$ Weight 20 kilos

PRICE $£ 520.00$
Type H327-5. Five pen. Dimensions $425 \times 395 \times 165 \mathrm{~mm}$. Weight 25 kilos

PRICE $£ 770.00$.

Note Pricus are exclusive of VAT
Available for immediate delivery

Z \& I AERO SERVICES LTD. 44A WVESTBOURNE GROVE, LONDON W2 5SF

WW-014 FOR FURTHER DETAILS

the indispensable

THRULINE WATTMETER

$0.45-2300 \mathrm{MHz} / 0.1-10,000$ watts
The Standard of the Industry What more need we say...

Exclusive UK representative

E 5 -

2 KILDARE CLOSE, EASTCOTE, MIDDX. HA4 GUW TELEPHONE: 01-868 1188 - TELEX 8812727 WW-021 FOR FURTHER DETAIIS

HIGH POWER DC-COUPLED AMPLIFIER
 \star UP TO 500 WATTS RMS FROM ONE CHANNEL
 * DC-COUPLED THROUGHOUT
 * OPERATES INTO LOADS AS LOW AS 1 OHM * FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.

* 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this.country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet. or a demonstration of this fine equipment please let us know.

Slewing Rate Load impedance input sensitivity Input impedance Protection Power supoly Dimensians D150A - 180 watts per channel
Other models available from 100 watts to 3000 watts

KONTAKT 60

FOR INACGESSIBLE CONTAGTS

-More than just a cleaner. KONTAKT 60 guarantees perfect cleaning of contacts chemically in accordance with todays technology.
KONTAKT offers the following advantages:

1. Dissolves oxides and sulphides the sato way without attacking cantact sub2. Contains
which do carefully selected solvents they do not atrack plastics wheress greases and dirt.
2. Contains no sificons.
3. Contsins s light lubricant in order to 5 Proid the contact paths being corroded 5 Prevants further oxidation setting in. 6. Pravents creep currents.

Because of these ourstanding properties Kontakt 60 is and of the best and most papular contact cleansing agents in tha worid.

Used by major industrial companies

OTHER KONTAKT PRODUCTS ARE:

70 Protective Lacquer.
72 Insulating Spray.
75 Cold Spray for Fault Location.

80 Special Siliconized Polish.
100 Antistatic Agent for Plastics.
101 Dehydration Fluid.

Write for full details of above complete range of Kontakt products to:

SPECIAL PRODUCTS DISTRIBUTERS LIMITED

81 Piccadilly, London. W1V OHL. 01-629 9556.

Four Good Reasons for using Zettler Relays:

Zettler Relays are first class quality. We have about 50 years experience in producing relays. Zettler Relays are readily available. Most are available ex stock Harrow Zettler Relays are proved in practical applications. Millions are used in ourown electronic systems and products. Zettler has the right relay for most applications, e.g.

Hybrid Relays AZ 1435... 1442 whe electronic mbut ano contact outpot A 71435 Voltage monitot (9. 30 V) AZ 1436 Pick .p retarder 1. 30 si AZ 1437 Drop out elarcer [1] 30 si AZ 1438 Pulse time liniter (50.1500 ms !
AZ 1439 Monoflop $/ 50.1500 \mathrm{~ms}$ AZ 1440 Nalifilion (01.1 30:3) AZ 1441 1 IID - tlop $124 \mathrm{x}-10 \%-15 \%$ apporox 30 mA max, .
AZ 1442 And-gats
Knput cuments 7 MA max.:

Let us help you with your switching problems.

est. 1877
Zettler UK Division
Brember Road Harrow, Middx. HA2 8AS Tel. (01) 4220061
Zettler offers more than technology

Eiviceiges $=5$

ABS \& DIECAST BMBBOXES

5 sizes, in either ABS or Dincast Aluminium ABS moulded in Orange, Blue, Grey or Black Diacest Aluminium svailable in Grey Hammertone or Natural

MINI DESK BIMCONSOLES Moulded in Orange, Blue, Black or Grey ABS and incorporating guides on ail sides for holding 1.5 mm thick pcb's. 1 mm Grey Aluminium panel sits recessed into front of console and held by screws running into integral brass bushes, Stand-off bosses in baso for supporting small sub-assemblies atc. 4 self adhesive rubber feet also in. cluded.
$(161 \times 96 \times 58 \mathrm{~mm})$ £2.12* B1M1006 $(215 \times 130 \times 75 \mathrm{~mm})$ E2,94*

LOW PROFILE BIMCONSOLES 1 mm Grey Aluminium panel sits recessed into front of console base, which is moulded in Orange, Blue, Black or Grey ABS and sits on 4 self adhe
sive rubber feet. Incorporating guides for holding 1.5 mm thick pcb, the base also has stand-off bosses for supporting small sub-assemblies etc, and ventilation slots. Front panel is held by 4 screws which fun into integral brass bushes,
BIM6005 ($143 \times 105 \times 55,5(31,5] \mathrm{mm}) £ 2,32{ }^{*}$ B $1 \mathrm{M} 6006\left(143 \times 170 \times 55.5[31.5) \mathrm{mm} \mathrm{E} .3 .08^{*}\right.$ 81 M6007 (214×170×82[31.5) mml E4.127)

All boxes incorporate guides on all sides for holding 1.5 mm thick pob's and stand-off bossus in base for supporting small sub-assemblies etc. Close fitting flanged tids held by screws running into integral brass bushes (ABS) or tapped hales (Diecast).
$(100 \times 50 \times 25 \mathrm{~mm})$ $(112 \times 62 \times 31 \mathrm{~mm})$ $(120 \times 65 \times 40 \mathrm{~mm}$ $(150 \times 80 \times 50 \mathrm{~mm})$ $1190 \times 110 \times 60 \mathrm{~mm}$

Also available in Grey Polystyrene ($112 \times 61 \times 31 \mathrm{~mm})$ with no slots and self tapping screws B1M2007/117 £0,88;

ABS
Diecast
BIM2002/12 £0.95* BIM5002/12 BlM2003/13 £1.05 BIM5003/13 BIM2004/14 £1.15* BIM5004/14 BLM2005/15 £1.30* B1M5005/15 £2.04 BIM5006:16

Hammertone E1.20*
£1.50*
E1.86*
£2.38*
$£ 3.41$. no slots and self tapping

ALL METAL BIMCONSOLES

MULTI-PURPOSE BIMBOXES
Moulded in Orange, Blue, Black or Grey ABS with 1 mm thick Grey aluminium recessect fropt cover which is retained by 4 screws runaing into integral brass bushess. 1.5 mm peb puidas are incorporated on all sides and as with all ABS boxes they are $85^{\circ} \mathrm{C}$ rated. 4 self achenive rubber feet also included.
BIM 4003 ($85 \times 56 \times 28.5 \mathrm{~mm}$) £1.24* BIM $4004(111 \times 71 \times 41.5 \mathrm{~mm})$ E 1.56^{-} BIM $4005(161 \times 96 \times 52.5 \mathrm{~mm}) £ 2.08{ }^{*}$

All aluminium, 2 piece desk consoles with either 15° or 30° sloping fronts, sit on 4 self-adhesive, non slip rubber feet. Ventilation slots in base and rear panels permit efficient cooling.

Colour Code A B C		Base Bilue Green Gold	15° Sloping Panel				
		BIM7151	1102×140×51 [28]	mm	f. $9.43{ }^{\circ}$		
		BIM7152	$1165 \times 140 \times 51[28]$	mm)	£10.43*		
		BIM7153	$1165 \times 216 \times 51$ [28]	$\mathrm{mm})$	£11.42*		
			BIM7154	$(165 \times 211 \times 76[33]$	$\mathrm{mm})$	£12.39*	
			B1M7155	$1254 \times 211 \times 76[33]$	mm)	£13.66*	
			B1M7156	(254×287×76[33]	$\mathrm{mm})$	E14.65*	
			BIM7157	$1356 \times 211 \times 76[331$	mm)	£15.80*	
			BIM7158	$1356 \times 287 \times 76[33]$	$\mathrm{mm})$	E16.78*	
				30° Slopin	3 Panel		
				B1M7301	[102×140×76[28]	mmi)	E 9.43*
				BIM7302	(165x140x76[28]	num)	E10,43*
			BIM7303	$1165 \times 183 \times 102[25$] mml	£11.42*	
			BIM7304	$1254 \times 140 \times 76[281$	mm)	£12.39*	
			B1M7305	$1254 \times 183 \times 102[28$	1 mm	£13.66*	
			81M7306	$1254 \times 259 \times 102[28$	1 mm !	£14.65*	
			B1M7307	$1356 \times 183 \times 10228$	7mml	E15.80*	
			B1M7308	$1358 \times 259 \times 102 \ 28$	(mm	f.16.78*	

DIL COMPATIBLE BIMBOARDS

MAINS BIMDRILL Operates directly from $220-240 \mathrm{Vac}$ and supplied with 2 metres long cable fitted with 2 pin DiN plag. Will crill brass, steel and aluminium as well as pob's etc. Has integral biased-off switch and accepts 10015 with 1,2 and 3.2 mm dia shanks $£ 9.72^{*}$
Accessory Kit including $1 \mathrm{~mm}, 2 \mathrm{~mm}_{\text {, }} .125^{*}$ twist drills, 5 burrs and 2.4 mm collet E2.20*

12 VOLT BIMDRILLS

2 small but pawerful 12 V de drills, easily heid in hand or used with lathe/stand adapton. Both drills have integral on/off switches and 1 metre fong cable.
Mini Bimdrill with 2 collets up to 2.4 mm capscity $5.7 .56^{\circ}$
Major Bimdrill with 3 collets up to 3 mm capracity E12.96* Mains to 12 Volts adaptor. lathe, stand and accessory kits also available, details on request.

Bimboards accept all sizes of DIL packages as weil as resistors, diodes, capacitors and LED's etc. They have integral Bus Strips running up each side for carrying $V c c$ and ground as well as Component Support Brackets for holding lamps, fuses and switches etc. Available as either single or multiple units, the latter mounted on 1.5 mm thick, mott black aluminium back plates which stand on non slib rubber feet and have 4 screw terminals for incoming power.
Bimboard 1 contains 500 individual sockets whereas the multiple units containing 2 , 3 or 4 Bimboards incorporate $1,100,1,650$ or 2,200 individual sockets, all arranged on a $2.5 \mathrm{~mm}\left(0.1^{\prime \prime}\right)$ matrix.
Bimboard 1 £ 9.72^{*} Bimbourd 2 £ 22.68^{*} Bimboard 3 £ 32.40^{*} Bimboard 4 £ 42.12^{*}

BIMDICATORS

Remamber we are also one of Europe's iargest manufacturers of Filament, Neon and LED indicators. Send for our EIMDICATOR DATA

=10ss

IIDUSTRAIAL MOULDINGS LIWITED
2 Herne Hill Road, London SE24 0AU
Telephone: 01.737 2383
Telex: 919693 Answar Back 'LITZEN G' Cables \& Telegrams: 'LITZEN LONDON SE24'
*All quoted prices are 1 ofi and include Postage, Packing and VAT. Termis are strictly cash with order unless you have authorised BOSS account. For individual data sheets on all BOSS products send stamped, self addressed envelope

1

Preamplifier

HY30

15 Watts into 8Ω

HY50

25 Watts into 8Ω

 Fidplity modifics in the weid
 APPIICATIONS

 1 kFt
SIGNAL/NOISE AATIO 750 B . FAEQUENCV RESPONSE $70 \mathrm{~Hz}-46 \mathrm{kHz}$ - 3dE SIPPRYVOLTAGE +25 V , SIZE 1055025 mm
Price $\mathrm{FG} \mathrm{BZ}+85 \mathrm{p}$ VAT P\&P tree
HY120
60 Watts into 8Ω
The HY120 a the hatay of iL P is new tigh pawer range designad to mot the mast exacting

 FEATURES; Very low dstorton - Intogral Haatsuns - I iad line neotestion - Thermal protection -
 argar SPECIFICATIONS: INPUT SENSITIVIT 500 mV
 SIGNALINOISE RATIO 90 B . FREDLENEY RESFONSE 104 Hz 45 kHz -3dB SUPPLY VOLTAGE GIO $1+4 \times 50=85 \mathrm{~mm}$ Price £15.84 $+£ 1.27$ VAT P\& P tree.
HY200
120 Watts into 8Ω

 APPLICATIONS: H1-Fi - Drgep - Monitor - Pbwir Staon - Intiratial - Puhbe address SPECIFICATIONS:
INPU SENSTTIVITY 500 mV .
 SGNAL NOISE RATIQ 960 FAEQUENGY RESPQNSF $10 \mathrm{~Hz}-45 \mathrm{kHe}$ - 3AB. SUPPIY VOLTAGF SIZE $114 \times 100 \times 85 \mathrm{~mm}$

HY400

240 Watts into 4Ω Pree $223,32+21.87$ VAT PEAP free.

 FEATURES: Thermal shudriwn -Vory low itstorting -
components
APPLICATIONS: Public sedress - Usisco - Power slave - indusitial
SPECIFICATION:
SPECIFICATIONS

 Price f 32.17 + 82.57 VAT P\&\& flees.
POWER SUPPLIES
 Thag Cartidge, funer etc 1) ane catened for internaly, the desirod funftian is acinuyed sither by a mu ti-way switch or direct connction to the sparopriate pins the intornal volume and tone circuits merely require fomnectingto extemat potentionieters (nat inclucad) The HY5 is compatilio with all LIP, power amplatiors and power supp iss To cosc canstruction and mounting a PC.C spnagceor \& SEAplied with cach pre-ampliter
 APPLICATIONS: H-FI - $\overline{\mathrm{V}}$ - wo simply combined for sterte
SPECIFICATIONS: - Vinats - Daco - Culè anq Organ - Fublic sodtess
(NPY'S Magnetic Pickup3my. Ceramic Pickup 30 mV Tumet 100 nV . Nirraphone 1 Cm

DUTPUTS THpe 100 mV , Ms n מutput 500 miV R M S
ACTIVE TONE CONTROLS Treble +12 dB at 1.0 kHg Eass - ot 100 Hz
DISTORTION $0,1 \mathrm{k}$ at 7 kHzt Signat/ Noise Fatio 6 eda
DVERL OAD $38 d B$ on Nagnetic Pick up: SUPPLY VGLTAGE ± 16 ScV
Price E5.22 $+65 p$ VATPEP free
Price E5.22 + 65p VAT P\&P free

 nouming at logether with essy so tolow construction and opershing insiructians. Inis amplier is FEATURES: Campleto kit - Low Distertion - Shent Opan and Timmal Protgetign - Easy to Build
 cgellator SPECIFICATIONS:
OUTFUT POWER $15 W$ RM S into an DISTORT CN 0 Tm at $16 W$
NPUT SENSITMITY EOOmV FREOUENCY RESPONSE TOHz, GikHz - 3ak
SUPPLY VOLTAGE $=189$

240 Watts!

TWO YEARS GUARANTEF ON ALL OF OUR PRODUCTS

1.L.P. Electronics Ltd
Crossland House Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

का ARpacs ci $+\ldots$

Please Supply
Total Purchase Price
1 Enctase Cheque \square Postal Orders \square Money Ordur \square
Please diehit my Access account Barclaycard account \square
Account number
Name \& Addresis.
Siqnature

IF YOU NEED JACKFIELDS WHY NOT TALK TO THE SPECIALISTS?

PANELS AND ASSEMBLIES
No supplier offers a wider range of panels, inserts and accessoties for just about any configuration. And you can get them in any stage of assembly individual components, sub-assemblies, or complete pre-wired and connectorised assemblies ready to install. Our Bantarn range gives a space saving of up to 50 per cent.

JACKS AND PLUGS

C.A.E. LIMITED

70/82 Akeman Street
Tring, Herts. HP23 6AJ
Tel. (044 242) 4011
Telex: 82362 BATECO G

\mid

| NAME
COMPANY
positton
ADDRESS

Join the Digital Revolution

Understand the latest developments in calculators,

computers, watches, telephones, television, automotive instrumentation . . .

Each of the 6 volumes of this self-instruction course measures $1.134^{\prime \prime} \times 8 / 4^{" \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra. to memories, counters and smple anthmetic dircuits and on to a complete understanding of the design and operation of calculators and computers
Vesign of Dipital Systems.

$£ 7.10$
plus 90p packing and surface post anywhere in the world.
Overseas customers should send for Proforma invoice. Quantity discounts available on request.
VAT zero rated.

Also avalable - a more elementary course assuming no prior knowledge except s mple arithmetic
Digital Computer Logic and Electronics.
in 4 valumes

1. Basic Computer Logic

2 Logical Circuit Elements
3. Designing Circuts to Carry Out Logical Funic-
tions
4. Flipfiops and Registers
$£ 4.60$
plus 90p P. \& P

Offer Order both courses for the bargain price $£ 11.10$ plus 90 p P \& P.
A saving of $£ 1.50$.

These courses were winter so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your awn speod and must respond by answering questions on each new piece of information before proceeding to the next.

NEVV from Cambridge Learning Enterprises:
FLOW CHARTS \& ALGORITHMS
$£ 2.95$
use. design \& layout: vital for computing.
plus 45 p
training, wall charts. etc.

Guarantee - If you are not entirely satisfied your money will be refunded.

[^2]
THE baker
 QUALITY
 150 watt mixer amplifier

- All purpose Bass, Lead, Rhythm Gutars, Discotheque, Vocal, Public Address, etc.
- Amplifier "Mains switch" for instant sound or muting - Three loudspeaker outiets for 4 . B or 16 ohms operation Four high gain inputs, each 28 mv , 50 K ohm for full output.
Individual volume contiors with "Four channel" mixing facilitios.
- 150 watts into 8 ohms. R.M.S. Music Power
- Distortion less ttran 1 15 G at full output
- Slave output 500 M.V. 25 K.ohm.
- Accepts loudspeakers from 4 shms upwards. Standard jack sockets.
- Frequency Response $25 \mathrm{~Hz}-20 \mathrm{kHz}=3 \mathrm{~dB}$ integral Hi Fi preamp
- 32 dB Variation on wide range separate Bass a Treble contros
- Fully Short and Open circuit proof, electronic and fusect.
- Compact $-16^{\prime \prime} \times 8^{\prime \prime} \times 52^{\prime \prime}$ spproximately

Lightweight - Only 141b. - approximately Blae wording on Black facia.

- Made in England. 12 moaths' guaranteo $200 / 250 \mathrm{v}$ A.C. mains or 120 V to order.
- All transistor and solid state devices

Distributors required

 in certain countries and parts of UK.

NEW! Star sound

A high power full range quality loudspeaker produced to give exceptional reproduction. Ideal for electronic guitars, organs, public address or

discotheques. This

 loudspeaker is recammended where high power handiling is required with quality results. The high flux ceramic magnet assembly ensures clear treble response so necessary for today's musician.
GROUP 50/12 inch

Voice Coil Impedanee 4 ot 8 or 16 ohms
Voice Coil mpedance 4 or 8 of 16 ohms
Maximum Power $\quad 60$ watts (120 watts U.S.A.) Bass Resonance Useful Response Flux Donsity voice Coil Overall diamster Overall depth Fixing holes diagonal Baiffe aperture Baifle apertu
Nett weight

$30-16,000$ c.p.s. 15.000 lines $11 / 11 / 38$ tim $121 / 2 / 310 \mathrm{~mm}$ $121 / 2 / 310 \mathrm{~mm}$ $43 / 4 / 120 \mathrm{~mm}$ $13^{\prime \prime} / 330 \mathrm{~mm}$ $1111 / 280 \mathrm{~mm}$

GROUP 2512 inch

Voict Coil Impedance 4 or 8 or 16 ohms Maximum Power 30 watts (60 watts U.S.A.) Bass rescnance … $50 . \mathrm{c} . \mathrm{p}$ Useful Response $\quad 30 \cdot 13.000$ ep.p.s. Flux cfersity . Voice coll Overall diameter 12.000 lines Overall depth $11 / 2^{\prime \prime} / 38 \mathrm{~mm}$ $44^{n} / 120 \mathrm{~mm}$ Fxing holes diagonal Netr weight 3.320 mm 5 lbs .12 .3 kg

GROUP 3512 inch

Voice Coil Impedance Maximum Power Sass Resonance Useful Response Flux Density Voice coil
Overall diameter
Overall depth
Fixing foles diagonal Fixing holes diago
Bafile aperture Safle apert0
Nett weight

4 or 8 or 16 ohms
40 wats (80 watts U.S.A.)
55 c.p.s
$30-13.000$ e.p.s.
14.000 lines $1 \% / 2^{\prime \prime} 138 \mathrm{~mm}$
$12 \%^{\prime \prime} / 310 \mathrm{~mm}$ 4\%/"/120 mm $13^{\prime \prime} / 330 \mathrm{~mm}$ $11^{\prime \prime} / 280 \mathrm{~mm}$ 6 lb .812 .7 kg .

GROUP 5015 inch

Voice Coil Impedance , $6, \ldots, \ldots$ or 16 ohms
Maximum Power $\quad 75$ watts 150 watts U.S.A.) Bass Rosonance $45 \mathrm{c.p.s}$ Uselut Resporise30-13,000 c.p.sFlux Density 15.000 lines Voice coil $2^{\prime \prime} / 51 \mathrm{~mm}$ Overall diameter $151 / 2 / 390 \mathrm{~mm}$ Overall diamete $151 / 2 / 390 \mathrm{~mm}$
Fixing holes diagomal Baitle eperture Nett weght
$16)^{\circ}$ $163 / 2 / 417 \mathrm{~mm}$
$11^{\prime \prime} / 280 \mathrm{~mm}$ $15 \mathrm{bs} . / 6.8 \mathrm{~kg}$.

Baker Loudspeakers Limited

337 Whitehorse Road, Croydon, Surrey, England
 Telephone: 01-684 1665

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for 10-14 days delivery Other Ranges and special scales can be made to order.

Full Information from:

HARRIS ELECTRONICS (London)

Standand features include:- 18 alectronically controlled chart speeds with forward/reverse and remate operation. Chart foed and take up for Z fold or roll chart paper. Two separate channels with full pern averlap, selt catibrate stepped range attenuators and spai controls, 1000% precisnly calibrated zerco suppression. Remote operated event marker, pen lift and chart control. Both recorcters arg suitable for man nis or battery operation and may be mounted horizontaliz or vertically.
Write today for full illustrated specification.

J.J. LLOYD INSTRUMENTS LIMITED Brook Avenue, Warsash, Southempton $\mathrm{SO}^{3} 6 \mathrm{HP}$, Ereland. Tel: Lucks Heath 4221 (STD 04895) Telex: 477042 - JAY JAY - SOTON
Cablet Eddymes, Southampton

dIgital CASSETTE RECORDERS
Low power analogue or digital input data loggers and terminal readers. Cassettes compatible with TI Silent 700 , Wang 2200 or ECMAB4,
Read/write units for data storage or programme ioadidump applications up to $32.000 \mathrm{bits} / \mathrm{sec}$.
Continous and incremental transport and complete systems for OEM and end user applications.
WW-064 FOR FURTHER INFORMATION

DATA ACQUISITION SYSTEMS

Modules and cards which plug into NOVA, PDP8, PDP11, LS111, SBC80 and MDS800 computers, scan 64 analogue channels. includes 12 bit ADC and programme interrupt logic plus analogue obtputs Also, complete intelligent mains powersd systems with analogue and digital input/output used for sland alone or front end data acquisition and control
WWV-065 FOR FURTHER INFORMATION

DIGITAL PANEL METERS
Mains or 5VDC powered. scalelengths trom 999 to 49999 with resolution down to one microvalt.
DIN or NEMA case sizes, 0.5 or 0.8 inch LED Beckman gas discharge or liquid crystal displays.
WW-0G6 FOR FURTHER INFORMATION

AMPLICON ELECTRONICS LTD.,
Lion Mews, Hove BN3 5RA.
Tel: Brighton (0273) 720716
Telex: 87323 Amplicon

AUDIBLY SUPERIOR AMPLIFICATION

HIGH DEFINITION - 'MUSICAL' - POWER AMP MODULES

* T.H.D. TYPIGALLY .007\%
@ $10 \mathrm{~W}, 500 \mathrm{~Hz}$
* ZERO T.I.D. [SLEW-RATE LIMIT $16 \mathrm{~V} / \mu \mathrm{S}$)

Module size:

$120 \times 80 \times 25 \mathrm{~mm}$, asing
glass fibre pet with ident
anf solder resist.
illustrated with light Juty
heatsink

 A- fiumbs

POWER AMP MOQeuts

 POWER SUPPLIES

 wtatsings ctatsincs lige bey

CRIMSON

 ELEKTRIK[WW] 14 STAMFORD 8TAEET LEEESTER Tel: F5:531 597722
 fROMVEROSPFED HOTUIIE

- Battery Wire Wrapping Tool Standard Toggle Switches - Sub Min Toggle Switches Cyanoacrylate Adhesive - Nyleze Enamelled Wire Thumbwheel Switches Filament Indicators Crystal Oscillators Precision Resistors P.C. Terminal Blocks Keyboard Switches Potting Compound - Rocker Switches Neon Indicators Cermet Trimmers - Circuit Lacquer Micro Switches Epoxy Adhesive LED Indicators Label Holders Foot Switches Mini Shears. AVAILABLE EX STOCK BY RETURN
For your new catalogue write to:-
VEROSPEED, Barton Park Industriai Est., Eastleigh, Hants, or phone 0703618525

WE KNOW OF ONLY ONE OTHER POWER AMPLIFIER MODULE SUPERIOR TO OUR JPS 100 - The JPS 150
 For sianers. JPS Powser Ampl lier Modules are Uusigned. manufactured and tested in Eng/and, yet sold throughaut the world.
 Incorporating eomprehensive protection circuts including mismatch, short and ogen circuits, impedance and thotmal protection, these Modules will enstre a high standard at bett reliability and top performanee.
 Unlike other models they offer an indefinte bfe-spant Should they ever roquire siy sttention or repar, ail somponents on both Modules are cosing rapiaceable. And, what's mare, they both also carry a full two-year guarantec. That's contidence for yod!
 Powar Dutpai Frazuancy Raspanse Pawer Burdwodt Sowig Rala Total Harsurtic Datornar Han an Hoist Oampig Facior "trod Sensilvity
 ${ }^{\text {Tongut }}$ Inpatate Fower fistirmeals Trensisiar Campitaten | 478 |
| :--- |
| -15 Vaths |
 12 tratialits. 1 inlegrated aircait $4^{\prime \prime} \mathrm{Ex} \times \mathrm{S}^{-} \mathrm{W}$ \& 2° Fuat 2 year
 JPS IS0 E33.30
 170 watts RMS 8 atms
 $10.3 \mathrm{k} \mathrm{kg}+2 \mathrm{dz}-\mathbf{6 2 \mathrm { cE }}$ 10 $2 \mathrm{zkht}+1 \mathrm{MB}-02 \mathrm{AB}$ 800 velts par niertsetsat 0.04 \& 1 k 115 dk telew 150 walls Eraler than 405 to 1 kHz 086 pi.776 valis 150 walts 47
 12 transishors. 1 inaticiat tiratil
 foll ž year
 Trest paranters nis ba charete to sut airtiealar requirensats.

 For insestrial asage fravaric ratpotsd
ANNOUNCING THE $m / 1 / c / R / o / s$

* Includes CPU, ROM, RAM, TV and Audio cassette interface, UHF modulator, ASCII keyboard, power supplies and cabinet.
* Connect to domestic TV or video monitor to complete the system.
* 48×16 character video matrix
* Hard copy on teletype
* Also available in kit form $£ 470$, or 5 kitpacks at $£ 95$ each

THE MICRONICS COMPANY
1, STATION ROAD TWICKENHAM MIDDLESEX

WW-0. 22 FOR FURTHER DETAILS

WW-019 FOR FURTHER DETAIS

professionals

Including: EMI, Decca (UK), BBC, Pink Floyd, Hawker Sidley, Metropolitan Police, The Who, Queen, Thames TV, ITN, Capital Radio, Decca (France), Ministry of Defence, Birds Eye, Rolls Royce, Crown Agents, Madame Tussaud's, Island Music, Chappells, Dick James Music, Neve, Alice, Israel Defence Ministry, Yes Music, University of Bucharest, Pye TVT, Avon Health Authority, Government of Seychelles, Philippines Radio, London Broadcasting, Rolling Stones, Thin Lizzie, British Railways, Natural History Museum, Virgin Records, Kirilo Savic Institute of Belgrade, all British Universities, London Weekend TV, BOC, Wings, IBM, every Local Radio Station, Post Office Research, Rank Organisation, and many others.

a C O O Q Q

That ITA has more to offer:
Location. In Central London - easy parking.
Delivery. Large stockholding covering 500 versions for immediate delivery.

- Servicing by ITA factory trained staff. Quickest turnaround time. Machines supplied or rebuilt for special requirements.
- Pricing. Check our prices - you will find them lowest ALWAYS.

REVOX
4 wide rompe of two chanhel ceronders. from this famows manufactorer, winh tape speeds from $15 / 16$ ips to 30 ips Opsions include volroble speed and sel-sygc, Alodels include 477 B7? and 377 with 3 spseds and editing fdesigned find modition by ITA soecifically for professional applications)

TEAC
Recouders for fogging and studio pse tope spee ofs from 1 th to 15 ins. 2.4 or \& channel: A range of mixers is elio. avaitable

TTAM
4 ind 9 chamel recordess for stodio use Any lige speed from 1% ips lig logging and data recording

Duplicating equipmens for hugh speod cassette copting inchuding the $0 P 4050$ movif - the wond's finest: ith-cassetto coover, with 6 slave units

$$
\begin{aligned}
& \text { (wh-orı For further betalls. } \\
& \begin{array}{l}
\text { 1-7 Harewood Avenue. Marylebone Road, London NW1. Tel: } 01-7242497 \text {. } \\
\text { Telex: } 21879 .
\end{array}
\end{aligned}
$$

At the end of the test session the communications engineer sang the praises of our filters.

"What performance" he said, referring to the

EF3 Variable Filter System
Designed on a modular basis to give flexibility in use and to match your budget. A plug-in system developed for use in labs., test departments, anywhere where signal conditioning is required.

Filter units can be used separately or combined to give a wide variety of functions from low-pass to band-separate.

The current pass-band capacity is from d.c. to 10 MHz .

Active Filter Modules

The ready-to-use convenience of small, encapsulated filter units, tach with a basic function.

No filter knowledge required to set up enula
for specific characteristic or cut-off
frequency. These filters are equally suited to the one-off lab, application and the
large quantity production requirement. ©
Available in low-pass, high-pass, universal and notch designs with a range of cut-off frequencies and attenuation rates.

Custom-Built Filters

The basis of our filter activity, this service has for 20 years provided solutions to customers specific requirements. Based on in-house computer facilities and an extensive programme library we can design and manufacture the filters not provided in our standard tange.

Designs can be passive or active with cut-off rates up to several hundred dB per octave in a frequency range up

Barr \& Stroud Add us to your resources

wireless world

Viewdata needs encouragement

Editor:
TOM IVALL, M.I.E.R.E.
Deputy Editor:
PHILIP DARRINGTON
Phone 01-261 8435
Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Projacts Editor:

MIKE SAGIN
Phone: 01-2618429
Communications Editor:
RAY ASHMORE, B, Sc., G8KYY
Phone 01-261. 8043
News Editor:
JOHN DWYER
Phone 01-261 8620

Production:

D. R. BRAY

Advertisement Controller:

G. BENTON ROWELL

Advortisement Manager:

BOB NIBBS
Phone 01-2618622
CHRIS PRIER
Phone 01-261 8037
Classified Manager:
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
EDDIE FARRELL (Classified Advertisements)
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-2618353
Publishing Director:
GORDON HENDERSON

DURING THE Coming months
Viewdata, the Post Office's experimental information system, will be undergoing market trials, and by this time next year we may be getting some idea of the extent and nature of the demand for such a service. One thing is certain, There's no use in waiting hopefully for as yet unknown applications to reveal themselves magically like buds responding to the sun. Viewdata is a new type of service and it has got to be sold. From an engineering and economic point of view it is obviously a good system, giving greater utilisation of the existing public telephone network by means of established television and computer technology, but this alone will not impress the man who has to pay the bill, It will be a great pity if Viewdata does not attract sufficient demand to make it a commercial success. If the Post Office is left in sole charge of it there is a strong chance it will not.

This is not to criticize the able Post Office executives who have the marketing job to do, but the nature of the organization itself. The Post Office is a public corporation that is also a monopoly. However great its capital resources, however competent its engineering and skilful its marketing, it will always lack one vital element - an awareness of the possibility of failure. By definition it cannot fail because, whatever it does, there is no other comparable organization against which to measure its performance (cf. the BBC before the arrival of independent broadcasting). In principle - it is accountable to the publie, but this only means explaining aloofly what profits or losses are made on the basis of charges it fixes for itself. In the event of losses the people concerned are unlikely to lose their jobs or
reputations or suffer a reduction of income.

Last year the National Association of Radio Communication Services issued a manifesto declaring that the Post Office should not monopolise the very services that stimulate the use of the telecommunications network if these services can be provided as cheaply and as efficiently by private industry. It listed nine areas of activity and services including Viewdata, car radiotelephones, radio paging, facsimile and conference television, and claimed that private companies could have provided some of them far earlier than the Post Office has andi at competitive prices. It also asserted that the monopoly "has been self defeating in that the Post Office has lost revenue from the lack of expansion of these services."

There is much good sense in these claims, even if some of the facts are in dispute, and NARCS's call for an Act of Parliament to remove the Post Office's monopoly powers deserves the support of everyone who wants to see our communication services developed fully and effectively. As for Viewdata in particular, there is no reason why such a service should not be run by competing private operators using the Post Office network and with nationally agreed technical standards but with their own data bases, computers, software and competing types of service. At such an early stage it is still not too late for the Government to allow at least an experiment with private operation, without necessarily affecting the Post Office's monopoly in any formal sense. If the experiment failed the losses would be borne by private investors, who are prepared for financial risks, and not by the taxpayer.

A basic radio telescope

Portable two aerial system for detecting the sun, milky way, and sources beyond the solar system.

by J. R. Smith

This radio telescope is a general purpose instrument that can be used for demonstration purposes, or adapted for specific observations as required. The units making up the receiver, excluding the pen recorder, can be carried in a briefcase and two aerials can be folded to pack on a car roofrack.

THE BASIC system operates as a phase-switched interferometer between 160 and 190 MHz where a clear space in
the band can be found, It can also be used in the full power, Dicke, drift interferometer and beam switching systems which are described separately, Components preceding the i.f. amplifier can be replaced for operation on other frequencies as required. The instrument consists of several self-contained blocks which can be adapted for specific experiments. A single positive 12 V supply is used to simplify portable operation, and a car battery will provide a stable
supply voltage for two or three weeks. The total load current is about 55 mA .

Both aerials were designed for 178 MHz , although at present they are being used at 182 MHz . In each aerial the reflector surfaces are of a cylindrical parabolic form consisting of parallel plastic-covered steel wires spaced at approximately 0.1 of a wavelength as shown in Fig. 1. Four flat panels of the reflector are placed to within 0.1入 of a parabola where $y=x \cdot / 1.68 \mathrm{~m}$.

R.f. switching is performed by series diodes as shown in Fig. 2. The coaxial plug arrangement permits the switch to be used as a selector between two signal inputs, or by the addition of a $\lambda / 2$ length of coaxial cable, as a phase reversing switch. The two-pole, four-way switch permits phase reversal of the switching square wave, or locking of the diodes to assist in tuning and testing the complete system.

The aerial amplifiers in Fig. 3 are located as close to the aerials as possible to avoid degradation of the signal. A dual gate m.o.s.f.e.t. which is equivalent to a cascoded pair of transistors is used, and is resistant to cross modulation. Because these devices are susceptible to damage by voltage surges the input and output transformers are double wound and a zener diode is placed across the

Fig. 2. Aeriai amplifier and dipole matching system

Fig. 3. Aerial switch.
Fig. 4. R.f. amplifier, oscillator and mixer.

Fig. 5. Narrow band if. filter.
The r.f. section in Fig. 4 is similar to the aerial amplifiers. A separate oscillator is used in the frequency changer, and mixing is performed by a dual gate m.o.s.f.e.t. Although a radio telescope for general purposes should have the widest bandwidth possible, it is difficult to find a clear space in the band. For this reason a narrow band filter consisting of three well-isolated parallel LC tuned circuits is used as shown in Fig. 5 . Coupling is by capacitors of about 0.2 pF made from two short pieces of wire twisted together. A single transistor amplifier is included to partly compensate for the insertion loss. The bandwidth is about 0.5 MHz and the net

Fig. 6. I.f. amplifier and detector:

Fig. 7. L.f. amplifier, phase sensitive detector, and d.c, amplifier. Oscilloscope waveforms from point D: (a) Normal signals at aerial switch unequal - d.c. output proportional to the difference, (b) Normah both inputs equal - zero d.c, output, (c) Overload. (d) L.f. phase shift in the system, and spikes also leaking from the square wave generator.
insertion loss is about 10 dB . The i.f. amplifier and detector in Fig. 6 consists of two cascode pairs followed by a single transistor stage to give up to 2 V from a 1000Ω output impedance. The original measured power gain was about 92 dB , but this was reduced to 70 dB by the inclusion of resistor R_{1} across the input terminal, and some retuning to improve stability.

Construction

The aerial framework is constructed from $25 \times 25 \mathrm{~mm}$ timber, and the two main panels are joined by removeable wire pegs to permit easy dismantling. A full wave dipole is used as this conveniently fills the aperture. The dipole high impedence is transformed to a low impedance to match the balun by a short circuited $\lambda / 4$ line. The position of the tap to the balun is found by trial and error. The dipole and $\lambda / 4$ matching stub is made from one piece of 3.18 mm diameter aluminium or copper wire and the insultors are cut from perspex sheet with holes at 25 mm spacing. Brass connectors to the aluminium, and soldered connections to the balun are greased to prevent corrosion.

Each balun consists of a $\mathrm{N} / 2$ section of 50 是 coaxial cable which gives a 4 to 1 impedance transformation as shown in Fig. 2. The coax and feed-through connections are housed in a 35 mm film can which is subsequently filled with candle wax to form a hermetic seal. Similar baluns made eleven years ago and exposed to the weather are still working satisfactorily. The components are mounted on p.t.f.e. insulated studs or ceramic stand off tags attached to copper clad insulating board. The boards are bolted to the inside of diecast-box lids. All external connections pass through holes in the boards and lids. This method permits easier access for construction and maintenance. The transistors are located in holes which are drilled in the boards, and their screen leads are cut a short as possible and soldered to the copper cladding. All leads are kept as short as possible. particularly for the decoupling capacitors. Vertical screens cut from copper clad board are placed between stages, and where possible they are cut to bridge the transistors to provide electrostatic and electromagnetic isolation between the bases and collectors or gates and drains. The coils are wound on 4 or 6 mm diameter formers with ferrite slugs. In the r.f. circuits the number of turns required is affected by the circuit layout and variations in the transistors.

* As the detector output level is fairly high the If. amplifier in Fig. 7 is very simple. For some observations it can be omitted. In the phase sensitive detector of the same circuit the f.e.t. acts as a simple switch driven by the square wave generator.

To be concluded.

Radio telescope systems

Most natural signals from space are in the form of white nolse and are similar in character to the noise generated in a receiver. Factors affecting the overall sensitivity of a radlo telescope are receiver system noise, gain fluctuations, aerial collecting area, aerial efficiency, aerial feeder loss, receiver bandwidth B, and receiver output time constant T. The minimum detectable signal at the receiver is roughly equivalent to the noise recorded on the pen recorder. The system noise fluctuations and hence the minimum detectable signal level can be reduced by using a wide bandwidth and a long time constant which produces an improvement proportional to $\sqrt{ } B T$. Bandwidths greater than 1 MHz and time constants greater than 10 seconds are desirable but unfortunately the bandwidth often has to be reduced to find part of the spectrum clear of man-made transmissions. This causes a loss of sensitivity. The output time constant needs to be between 0.1 and 2.5 seconds for recording rapid bursts from the sun, and from about ten seconds to several hours for galactic sources. This choice often depends upon the presence and type of interference.
The full power system consists of a single aerial connected directiy to the receiver. The detector output is measured by a d.c. amplifier and a pen recorder. Often the d.c. component due to receiver noise is backed off by a stable bias supply. The full power system is very susceptible to receiver gain variations due to changes of temperature, supply voltage and component characteristics. These changes vary the output due to receiver noise and mask the output due to the signal. In the case of the Crab Nebula. the signal seen by the receiver is only $10^{-3 /}$ watts/ Hz and will be lost in the smallest of receiver gain variations. In the Dicke system the signal is continuously compared with the thermal noise produced by a high quality resistor that has been matched to the system input impedance. The receiver is switched alternately to the aerial and the resistor at about 500 Hz and the detector output polarity is also switched synchronously so that over a complete cycle the system output is

$$
\frac{(s+n)-(r+n)}{2} \times \times \frac{s-r}{2}
$$

where s is the signal, r is the resistor noise and n is the receiver noise. Because s, r, and n are all randomly varying quantities, the output still needs to be averaged by the output time constant and wide bandwidth.

A disadvantage of the Dicke system is that the temperature of the reference resistor is different to the equivalent temperature of most celestial sources. and therefore these signals can differ considerably. Any variations of system gain will be modified by this difference and show up as drift on the pen recorderThe cold sky reference is a simpler system where the resistor is replaced by
an aerial pointing at a cold part of the sky which will have an equivalent temperature of a few degrees above absolute zero. If the aerial is pointing to the celestial pole, it will always see the same portion of the sky in spite of the Earth's rotation.
In the drift interferometer two aerials are set up on an East West base line facing a selected point in the sky on the meridian. The aerials are connected in parallel through two equal lengths of feeder and the rotation of the Earth scans the aerial beams across the sky at a fixed declination. When a radio source is on the meridian, the path lengths through each aerial to the receiver are equal and the signals collected by each aerial add together. The pen recorder responds to the sum of the signals plus the receiver noise. When the Earth has rotated so that the path length through the West aerial has shortened by a quarter of a wavelength. and increased through the East aerial by a quarter of a wavelength, the signals will be 180° out of phase and will therefore cancel. At this point the pen recorder trace will fall to the receiver noise level, After the path lengths have each changed by half a wavelength the signals are again in step and add together.
A sinusoidally varying multi-lobe or fringe pattern is recorded above the receiver noise bounded by an envelope corresponding to the overall beam-width of the two aerials.
One advantage of this system is that the signals from a celestial' source can often be distinguished from unwanted signals.
In the phase switched interferometer the advantages of the Dicke, drift
interferometer and cold sky reterence systems can be combined. If the connections to one of the aerials of the drift interferometer system are reversed the fringe pattern is shifted sideways by half of a fringe width. A source located at a fringe maximum will then be located at a fringe minimum. Therefore, at any one moment the system is seeing the source. and in the next moment the cold sky alongside it. Reversal of the aerial polarity can be by two germanium diodes acting as r.f, switches to alternately insert or remove half a wavelength of the aerial feeder. Separation of the signal from the receiver noise is accomplished by feeding the receiver output to a synchronous detector as in the Dieke system.

When the source is on the meridian, the output is

$$
\frac{(2 s+n)-n}{2} \infty-s
$$

wheres is the signal due to one aerial and n is the receiver noise. When the source has moved by half a fringe, the output is

$$
\frac{n-2 s+n_{x}}{2}-s
$$

Unwanted signals reaching one zerial only or both aerials incoherently are treated as receiver noise unless there is gross overloading.
-SEMA, whose gas detection equipment we described in December (P.42), have moved to Unit 32. Dundonald Camp, Itvine. Ayrshire. KA11 5BJ. The telephone number is irvine 311252 .

- Millbank Electronics have been awarded an Export Year Award by the Federation of Sussex industries for overseas sales of industrial sound equipment. The scheme was judged by the British Overseas Trade Board and the prize was presented by Sir Derek Ezta in November.

A new 25,000 line local telephone exchange and expansion of existing exchanges by 42,000 lines are planned for Hong Kong. The largest exchange at Kwai Chung will be expanded form 54,000 to 69,000 lines. In the centre of Hong Kong 13 out of every 100 subscribers are on the phone at once in peak periods, each call lasting just over a minute. In Germany the figures are 7 and $21 / 2$ minutes. The work will be done by Siemens.

The Spanish Goverment is to build 28 h.f. communications transmitters to US Defense Communications Agency standards. Twenty-three will be $10,000 \mathrm{~W}$ and the rest 40.000 W , all supplied by Communications Electronics of Dallas, Texas.

Mr P. F. Fenton is to succeed Sir Edward Fennessy as managing director, Post Orfice Telecommunications. Sir Edward re. tired in July, since when the acting managing director has been Mr Kenneth Cadbury, who is to become deputy managing director.

The German magazine Funkschəu teports that Bogen, the makers of magnetic heads, are in financial difficulties. Wolfgang Bogen has left the company and a minority shareholder. Dr Heimut Becker, is now manager. The property of the company, as well as that of Bogen himself. has been taken over by the Berlin Senate.

New TXE4 exchanges will be installed in Birmingham and Bristol early this year. The $£ 35$ million Bristol contract will increase the city centre exchange's capacity from 16,000 to 28,000 lines. and the $£ 25$ million for two exchanges in the Midland exchange building near Birmingham's New Street Station will begin by replacing 19,000 lines of Strowger equipment

Radio London have sent us a letter they have received from a South African listener requesting a QSL card. For about seven minutes at around 10 pm on November $17 \mathrm{Mr} V$. Korinek recoived the allegedly local radio broadcast on 1,457 kHz .

A basic radio telescope - 2

Construction, performance and testing

by J. R. Smith

WHEN NO SIGNAL coherent with the square-wave generator is present the noise blocks are symmetriccal about the zero line and the mean d.c. output is zero. If the signal and the square-wave are coherent the noise blocks are not symmetrical about the zero line and the d.c. output appears with a polarity dependent upon the phase of the noise blocks with respect the square wave, Integration of the output signal is carried out by a RC circuit. The time constant is adjusted by a variable 2 MQ resistor and the capacitor is selected for low leakage. The maximum time constant obtainable is 20 seconds. The d.c. amplifier consists of a bootstrapped pair of transistors with some carefully matched devices to provide an acceptable temperature stability. Field effect transistors are used for the input stage to provide a high input impedance which permits a long time constant. To obtain an equal mark-to-space ratio, an asymmetrical astable multivibrator is used to drive a divide-by-two monostable multivibrator, see Fig. 8. Buffer transistors provide low impedance outputs, and normal or inverted square-wave outputs at 1 kHz

Fig 8. Square-wave generator
are available as required. Early trials showed that these outputs require filtering to prevent radiation of r, f. fields. Values for r.f. chokes and capacitors are best found by trial and error, but excessive filtering degrades the shape of the square wave. The 12 V power supply must be stable to within 5 mV . As the total load current is about. 55 mA dry batteries can be used for short periods or a car battery for longer periods. With the last mentioned the
voltage should be stable, after a charge, if it is partially discharged before use by about 5%.
The values of most of the components are not critical although high stability resistors are used in potential divider circuits and the d.c. amplifier. Radio frequency chokes are made by winding between twenty and thirty turns of enamelled wire on polythene tubing of 5 mm in diameter. The i.f. chokes consist of twenty to thirty turns

Measured performance of various stages

* A 3 N140 Le.t. should achisve a noise ligure of 40 B . Seme improvement in gain should also be possille.
L_{4} is the diode anode current. The diode resistor is 50% and the voltage gain of lhe t.c. amplifier is 18.5 jabsolute).
$V_{\text {, }}$ is the detector voitage. Dutput powar is assumed to be proportional to V_{t} because a square law detector is usad.

84
wound and glued onto OBA ferrite slugs. A 1 mA recorder that can be centred or end-of-scale zeroed is used with a chart speed of one inch per hour for most observations.

Noise diode

A valuable piece of test equipment is the valve noise diode, Fig. 9, which produces signals of a similar character and strength to a celestial radio source. The diode is modulated by supplying 240 V a.c. to the anode while the detector output is fed to the Y plates of an oscilloscope. The X plates are fed from 240 V a.c. through a phase adjuster. With the diode connected to the input of the correctly tuned aerial amplifier or i.f. amplifier a display similar to that shown in Fig. 9 is obtained. The left side of the trace corresponds to the receiver noise, and the right side to the receiver and diode noise. The system is adjusted to produce the largest difference between the two. The noise diode can also be connected to a dipole aerial which in turn can be placed near an aerial which requires adjustment for best performance. In this case, a pair of headphones is connected to the detector. The modulated noise can then be heard and adjustments made to produce the loudest buzz.

Because the noise diode operates at a high voltage, all exposed metal, including the dipole, must be correctly

Fig. 10. Pen recordings from the telescope used in the phase switched interferometer mode. Portion (a) shows Virgo A, galaxy M87. (b) Hercules A, a galaxy 1500 million light years distant. (c) Taurus A, Crab Nebula. (d) Cassiopeia A, a super nova reminent. (e) Cygnus A, a galaxy 600 million light years distant. (f) active sun.

WIRELESS WORLD, MARCH 1978

Fig. 9. Noise diode test circuit and
typical oscilloscope display of a,c.
modulated noise.
earthed. As the centre point of the folded dipole is at an r.f. voltage node, this point can be bonded to the earthed box without affecting the r.f. performance. All mains earthing leads must be made as secure as possible, and a one amp fuse should be placed in the mains line lead. Similar precautions are necessary for the transistor equipment when running from a mains operated
power supply. Fig. 10 shows some typical results. The voltages given in the circuit diagrams were measured with a meter having a $100 \mathrm{k} \Omega$ resistance. The i.f. amplifier gain was determined from the noise diode output corrected for the difference of the i.f. 4 MHz bandwidth and the 0.5 MHz filter bandwidth, divided into the change of the detector output power.

(d)

EEA conditions for CB

The Electronic Engineering Assoctation's working party on citizens' band, set up a year ago, recommends that the service should operate in a frequency band "between 60 MHz and 500 MHz ". The system should avoid "the worst aspects of the 27 MHz systems now operating in the US and some 15 other countries," should provide work here, and should provide an outlet in overseas markets, especially Europe.
The working party's view that the service should be priced so as to be attractive to a iarge number of people - it recommends a unit price of no greater than $£ 150$ and a licence fee of E 5 to E 10 - indicates that the EEA is now in favour of the introduction of some form of c.b. They estimate that between two and ton million domestic and small business users would welcome a c.b. service in the UK.

The report also recommends that equipment should be approved to an agreed Home Office standard, and that all units should have a "unique and continuously transmitted identity", which should be stamped on the licence form supplied with the unit. This echoes a view of the Citizens' Band Association.

Hand-held transmitters should not exceed a power of 100 mW er.p. and vehicle and fixed units should not exceed $1 W$ e.r.p. in any direction. Distances should not exceed 8 km . normally 2 to 3 km ,

There should be 40 channels with a maximum of 12.5 kHz . Spurious emissions should be no more than 200 nW , depending on the band chosen. "It may be prudent that the service be opened with approximately ten channels in the middle of this block with the remainder held in reserve." Aeriais should be no higher than 10 m above the ground.
Users should not regard the service as reliable for emergency, security or business use, and action should be taken "to obtain European (EEC) agreement to a future c.b. service which would eventuaily replace the existing service".
The EEA working party will continue to examine developments in attitudes to c.b. The report had to obtain approval from the EEA mobile radio committee before it could be disseminated.
The Home Office told us they had no comment to make other than that they had already made clear their position about the shortage of frequencies and the dangers of interference to existing users. \square

Hitachi update

Hitachi's announcement of their intention to withdraw an application to build a ty factory in the North-East came after our last issue went to press (January, p.34). The government has not been pleased by the result of the lobbying by the set makers, though it is difficult to believe that they were not relieved to have the decision taken off their hands.

In a radio interview the minister responsible, Mr Alan Williams, said it was his impression that Jack Akerman and Sir Richard Cave, the chiefs of Mullard and Thorn, were first of all asking for guarantees from Hitachi if the factory were built. "Having got the guarantees they then said. 'Well we don't care what guarantees you have because we don't believe them anyway':.

John Hobbs of the North-East Development Council described it as "A campaign of

figures which have been wrong, of racial arguments.... It has been a disgraceful episode for the country as a whole." His reference to racial arguments concerned a remarkable lapse from World in Action's usually-high standards in which a film clip showed a ferocious sword-wielding Samurai,
The Financia! Times devoted considerable space to the decision on December 8, A leading article said the decision had made the government the laughing stock of the international business community. "It is an fronic commentary on the so-called industrial strategy that a decisive role in persuading
the government to give in to the protectionist pressure has apparently been played by two of the sector working parties, It is well known that the main role of these bodies is to serve as lobbying instruments for the industry concerned, but up to now they have not been noted for getting things done. The National Economic Development Office, which often finds difficulty in explaining the work of the sector working parties, can now point to a concrete achievement; they have protected a domestic industry from a new source of competition and dealt a damaging blow to the government's stated policy of encouraging inward investment.,"

Elsewhere the paper points out that the government's embarrassment is due to their having promised Hitachi a year ago that permission to come to Britain would be granted under certain conditions. The embarrassment is compounded by the fact that one of the main planks in the opposition case was that Hitachi could not be trusted.

It may be, however, that Hitachi can turn the present hangover from the protectionist binge to their own advantage. It is too early to consider their decision final.

- US restrictions on tv imports from Japan have caused Hitachi to form a joint tv company with General Electric. The new company, to be called General Television of America Inc, will have headquarters in Portsmouth, Virginia, provided government approval is obtained. \square

CEI counter-attack

Last year was a tough one for the Council of Engineering Institutions. There were times, just before the Finniston committee was announced, when it seemed the CEI didn't have anyone to speak up for it. But it begins to look as though the CEI is taking account of the criticism. even if only to ensure its own survival. Commons science and technology committee chairman Arthur Palmer has been a persistent critic of the council yet, referring to the CEI's offer to hold regional conferences as we reported last month. he told us he thought it was "extraordinary" how completely the CEI had turned over a new leaf.

In mid-October there was a declaration on trade union recognition the vehemence of which would normally be considered astonishing from what the civil service calis a quasi-autonomous, non-governmental organisation, or quango.

The CEI's view is that professional engineers should join an appropriate trade union in their own interests. When, therefore. W. H. Allen of Bradford refused to grant recognition to the United Kingdom Association of Professional Engineers, and ACAS, despire a 79% vote in favour of trade union membership by those at Allens, failed to recommend such union recognition, the CEI, issued a statement condemning ACAS. "The conclusion reached ... is totally opposed to the overwhelming weight of evidence submitted by the negotiating parties," said the CEI. The decision "makes a mockery of the democratic process and poses a serious threat to the interests not only of professional engineers but all those to whom freedom of personal choice remains important." Strong stuff. Now the CEI have published a 20 page booklet summarising all the industrial relations legislation of the past few years and its effects on the engineer's working life. It costs 50p.

On top of all this comes the latest survey of
professional engineers, the CEI's sixth since 1966. It shows that an engineer's income has fallen even further behind that of his colleagues since the last survey in 1975. According to the CEI, this is attributable to incomes policy and inflation. The median income of an engineer, adjusted to allow for the increasing cost of living, actually fell for the first time since the surveys began, from $£ 2,315$ to $£ 2,180$, Taking the year $1965 / 6$ as 100. the angineer is now getting 112 , compared with 119 last year, and the real average earnings index of all industries is 131 compared with 135 . The chairman of the committee which produced the survey, Mr Brian Hildrew, described the figures as "rather alarming."

The report shows that Engineers in the East Midlands earn less than anywhere else, and that the lowest pay is earned by those working for firms of consultants. If you live in the Irish Republic, however, you're probably well-off, especially if you're a selfemployed man; the self-employed, contrary to their own propaganda, earn a median income of $£ 8,000$, their nearest rivals being university teachers at $£ 6,650$. If you take into account that consultants are mostly selfemployed, the picture is of a group who earn more but are prepared to pay less than anyone else.

Another feature to emerge from the survey is that there has been a steady decline in the number of engineers who work in commercial or industrial companies (44% compared with 46% in 1975) and a corresponding increase in the number of engineers who work in the public sector (42% and 39.5%). This may be because salaries are better for the engineer in the public sector, especially if he belongs to a trade union.

This may account for an increase in trade union membership from 41 to 44% in the last year. \square

BS9000, the hidden face of protectionism

If a recent symposium at British Standards Institution headquarters is anything to go by, users of electronics components are firmly in favour of the universal adoption of BS9000. Questions centred on problems of implementation rather than doubt about the scheme itself. Over 1,100 approvals have now been granted for various components.
In the past component makers had to contend with a number of similar but distinct standards according to whom they were supplying. These have included CV and DEF military standards, and Post Office. CEGB, BS and commercial specifications.
Now, a supplier who has won BS9000 approval for his products can guarantee, if the scheme works properly, that his components can meet consistently any standard he agrees with his customer and this saves the customer the trouble of having to check the components at goods in. 1 t also means he can use any BS9000 supplier he likes, and it may also result in more uniform finished products.
Nevertheless, acceptance of the scheme has been slow. The component manufacturers were in favour but the users, fearing that it would not be flexible enough to meet their particular requirements, dragged their feet. The Post Office seemed particularly slow to come into the fold.
When BS9000 surfaced ten years ago it met almost universal indifference. In the first five years the number of approvals applied for and granted was only 270 , roughly a quarter of the present total. A year ago the figure was

651, so that nearly half the approvals have been granted in the last year.

There have been various explanations for the sudden rush or enthusiasm. The BSI attribute it to the wider range of components which can now gain approval and the wider publicity the BS 9000 has received of late. But two other reasons, one national, the other international, lurk behind the snowballing growth of the scheme.
In the first place there is no doubt that the Ministry of Defence has been putting pressure on component makers to come into the system. This may be because, as the defence purse strings are pulled tighter, the MOD wants to shed itself of costly peripheral activities like component approval, though the MOD's Electrical Quality Assurance Directorate (EQD) is supervising all the approvals on behalf of the BSI.
BSI officials admit that suspicion of the scheme so far has been based on the (unjustified) notion of a plot between MOD and the component makers to force users to accept only military spec components.
But the international implications are what make BS9000 so attractive, and go a long way to explaining why most of the enthusiasm for the system has come from the component makers.
BS9000 is but the first stage towards the international standardisation of components. A standard will first be drawn up for Western Europe under the auspices of the CECC, the Electronic Component Committee of the European Electrical Standards Committee.

Based upon experience in Western Europe the world regulating body, the International Electrotechnical Commission (IEC) will draw up a standard which will make components made according to it saleable anywhere in the world. In theory it is this that the BS9000 advocates are working towards.
But the real game was given away several times at the BSI symposium. It looks very much as though BS9000 will be the basis of the CECC standard - in many cases the corresponding CECC and BS9000 documents are the same but for the name - and hence of the IEC standard.
This is more than a matter of national prestige, they think. In their minds it means that British companies who have already been conforming to BS9000 standards will have an advantage when the other countries, especially America and Japan, are still catching up on the necessary procedures.
Thus the talk was not so much of how quickly the world standard could be adopted as of how far behind those dreadful foreigners were. The official reason given for excluding Hong Kong from the scheme, for example, was that the distance involved would make the crown colony difficult to administer within the scheme. Behind that, however, might lie concern about the level of electronic imports from the Far East.
In truth the foreigners no longer seem behind at all. Two years ago a Japanese team visited this country to find out all about BS9000. A system based on BS9000 is now operating in Japan. In January last year legislation was introduced into the American Congress to overcome the legal difficulties, caused by the anti-trust laws, of American manufacturers banding together to bring about component standardisation.

Anyone imagining, therefore, that BS9000 is going to give the British components industry any kind of advantage in world markets is deluding himself. \square

Gatwick to manage without ground radar

It may be another five years before Gatwick airport is equipped with ground radar, according to a House of Lords answer in midDecember, The installation, to cost about $\varepsilon^{1 / 2}$ million at current prices, is awaiting the building of an elevated control room in the terminal area.
The answer came in response to a question from Conservative Peer Lord Braye, who suggested that there might be a serjous accident at Gatwick before the equipment goes in which could be avoided if the authorities acted sooner. The Lord in Waiting, Lord Oram, replied that "Expenditure on ground radar could only be justified where traffic levels and the complexities of the taxiway system are such that real dividends would accrue in terms of safety and expedition."

- Lord Braye's question may have been prompted by the Tenerife disaster in March, the worst in aviation history, when 577 people were killed as two jets collided on the ground. Ground radar could have helped to avoid the disaster.

Heathrow is the only British airport, and one of the few in the world, which has radar-monitored movements of aircraft on the ground, though until recently the equipment, Decta's airfield surface movement indicator (ASMI) was better suited to use at night. One reason for its installation is the large number of passengers the airport
handles; at 24 million a year this makes it the busiest airport in the world. Gatwick handles a mere 6.4 million a year.

In addition, the ground movement control cabin where the equipment would go, now in Gatwick's told office block', is to move to

Airfield surface movement indicator (ASMI) screen at Hearhrow airport, See 'Gat wick to manage withouf ground radar.:
a new position above a block on which work began in December. Since, however, the old and new buildings are at right angles, part of the apron will be hidden. The finishing date for this new block is 1979, according to a Gatwick spokesman, but Lord Oram gave the likely finishing date as 1981 to 1982. At that time another building, called the North Pier development, is planned for completion as part of a f 100 million improvement plan, so it could even be that any ground radar instal. lation may be put there,

A spokesman for the Civil Aviation Authority, which is responsible for safety at Britain's airports, told Wireless Worid: "If we find it is going to be of value there then we will do something about it, but so far it hasn't
been proved." been proved."
A Gatwick spokesman said that, while it would be foolish to say there was no chance of an accident happening in the next five years which ground radar might have avoided, "we would like to think that we're better
off than Tenerife," A larger worry at the off than Tenerife." A larger worry at the moment was the movement of passengers through the building work.
But it seems likely that a case will eventually be made for Gatwick's having the equipment. The airport is now taking an even greater share of Heathrow traffic. It will take ten million passengers in 1980 and 16 million five years later, most of the increase attributable to the use of larger aircraft. \square

Investment plans look to Viewdata/ teletext

Mullard has spent 83.5 million in the last two years on the l.s.i. plant at Southampton and a further $£ 4.5$ million is planned for the next two or three years. At a recent press conference the director of Mullard's industrial division. Bill Everder, said that at present the consumer ic. market was around $£ 12$ million, but that by 1982 the figure would exceed $£ 30$ million, of which Mullard expect to take a healthy E 18 million.

One of Mullard's main products is a remote controlled teletext/Viewdata package which is currently being prepared for market trials. This system comprises a set of four, recently-announced L.si chips for teletext, a video processor i.c., data acquisition and control i.c, digital timing chain i.c, and a character generator i.c. These devices are used together with seven 1 k rams, two synchronous counters, and an adder. Mullard expect to have complete teletext units in production at Southampton later this year.
The Viewdata section at present consists of two modules. A line coupling unit (l.e.u.) which enables a standard telephone line to be connected via a jack socket, and provides all of the necessary interface for the microprocessor-based Viewdata acquisition/control section which itself acts as an interface between the L.c.u. and the teletext decoder. The v.a.c. module receives information from the Viewdata computer and feeds it to the teletext display circuit. Also, it transmits requests for new information from the remote control to the computer. The automatic user-identifier and password generator is included and uses a p.r.o.m. for the number storage.

The Viewdata modules can be added to the teletext system without any modification. Although the modules at present use standard components supplied on two printedwiring boards measuring about $165 \times 305 \mathrm{~mm}$ and $150 \times 230 \mathrm{~mm}$, Mullard say that l.s.i. chips for Viewdata should be available in 1979.

The cordless remote control end of the package is based on the SAA5000 and SAA5010 i.cs which have recently been available to the Industry. These devices have been designed to operate with a colour television recelver and teletext decoded. while a Viewdata mode of operation allows the control of an additional viewdataterminal.

Mullard are also working on video games again based on the 2650 microprocessor together with the 2636 programmable video interface. Their system uses the object oriented approach where r.a.m.s contain the object description specified by the microprocessor. Each ra.m. has its own co-ordinate register with which the position of the object is controlled. During a game the 2650 transfers each object pattern into a ra.m. and sends out the appropriate location codes to the corresponding co-ordinate registers. This system, say Mullard, simplifies the software requirement as compared with the alternative r.a.m. mapping system. The hardware for the vided games will be the cartridge format which enables the system to be easily expanded.
Digital tuning is another area where Mullard have recently produced i.c.s. Called

In the background Mullard's microprocessor-based Viewdata acquisition/control unit. Botrom left shows their teletext module based on four L.s.i. chips, and bottom right shows an infra-red remote control transmitter and receiver.
digital channel selection, this system operates by storing the frequency of each t, v. channel in a r.o.m. The t.v. receiver is tuned to the selected frequency by comparing the tuned frequency with an internal quartzcontrolled oscillator. With this system, presetting can be carried out without any channels on the air. Because each channel number is stored in a r.o.m. the number can be displayed to identify a station. \square

Meteosat: no hitches, almost

The first white light and infra-red pictures of the earth's surface and cloud cover have come back from Meteosat, Europe's first weather sarellite. To NASA's immense relief the Thor Delta 2914 rocket took off at 1.45 GMT on November 23, and went into geostationary orbit over the equator at 0° longitude at quarter past six the following evening. There had been three postponements, one from November 15 to 17, another to November 21 , and then to the 23 rd.

Meteosat is one of five equally-spaced weather satellites which will be taking part in a world wide programme. There will also be two American, one Japanese and one Russian craft. Additional information will be gained from platforms, buoys, balloons and other sources. Together they will provide a continuously-changing picture of the world's weather, offering advance warning of typhoons, hurricanes and torrential rain. World Weather Watch involves 145 countries apart from those sending up satellites and the first collective observation period is due to start no later than December 1978.

Meteosat ravolves 100 times a minute, building up its pictures by tilting its telescope. One line by line scan picture is taken every 30 minutes, the visible image being of 5,000 lines and the infra-red 2,500 lines. Resolution is 2.5 km in daylight on the visible picture and 5 km on the infra-red. The picture includes Europe, Africa, and parts of the Middle East and South America.

Another part of the payload transmits data and relays meteorological information to ten ground stations operated by those taking part in the programme. It collects and retransmits information from the remote weather stations and from other satellites.

Users can receive the Meteosat pictures direct or, via Meteosat, from Darmstadt in West Germany, where the pictures are improved by computer processing. \square

"Instrument makers prospering"

Britain's makers of electronic instruments have held on to their share of the export market despite recent rises in the value of sterling, according to the managing director of Jordan Dataquest financial analysts. Mr Roger Coghill, speaking on publication of Jordan's survey of the instruments and cammunications industry, said that although the sterling rise had eroded British competitiveness slightly this had not been reflected in the volume of exports, and had resulted in increased profits for those in the industry. He pointed out, however, that this had not been reflected in wages and salaries, Even American subsidiaries. who paid higher wages than British companies, still paid less than could be obtained in other industries.
The instrument companies could expect. even better profts this year as the recent dramatic improvement in the sterling rate worked its way through. "This is likely to be a boom year." Last year's survey had shown 19% of companies were loss-making, but this year the figure had dropped by 6%.

In the first half of the 1970 s, says Coghull. the companies went all out for exports. largely because of depressed home demand, This led them to set up dealer networks in a great many foreign countries but the cost of this combined with changing trade condi-
tions meant that at one point about three years ago Jordan were able to demonstrate that there was an inverse relationship between profits and the amount of production exported.
Now the picture has changed to such an extent that not only are British companies making "acceptable profits", but they are buying into companies in the US in quite a large way, Jordan attribute this to low US company profits, high UK company liquidity as a result of earlier write-offs, and a reluctance to invest in new plant and machinery because of the low volume, specialised nature of the product.
The survey covers 376 companies and costs E38. In the last couple of months Jordan have also published surveys on computers and data processing, electronic component distributors, and component manufacturers. The ten largest private component manufacturers are making profits or around 3.6%, while the largest public companies, at nearly 11%, "remain one of the most profitable and growing sectors of British industry." In component distribution the number of loss-making companies has gone up from 10.3% to 16.1%, and there are only a few which have shown exceptional growth. These three reports cost $£ 32$ each. \square

British hi-fi scene drama

A curiously bitter storm has been raging in the hi-fi teacup, Some audio manufacturers feel so strongly about equipment reviews now appearing in the hi-fi magazines that they have grouped together to agree not to submit equipment for review. So far the group includes KEF, Quad, Armstrong and B \& W.
There appear to be two reasons for their strong feelings. One, they say, is that the writers are not truly independent and may, as consultants, be working for a company whose equipment is being reviewed or, worse, for one of its competitors. A more widely-held source of friction, however. is that they believe the tests and measurements aren't being properly conducted.
Although there have been rumblings of this kind for some time the row first emerged over the compilation of the second Hi Fi Choice on loudspeakers, due to be published this spring. There had been a violent reaction to the first, written in 1976 by Angus McKenzie. One remark about an American speaker had attracted threats of legal action. This time Hi Fi Choice hoped to review 60 loudspeakers, written by Martin Colloms.
Curiously, in view of their action in refusing to submit equipment for review, the manufacturers appear to have a high opinion of Martin Colloms, and mean to imply no crificism of his abilities. What they object to is that on the one hand he did a considerable amount of work for speaker makers Monitor Audio and, on the other, that the equipment he has at his disposal does not meet the standards of the equipment they have in their expensively-equipped laboratories. They do not agree with the methods of measurement, and say that in any case you cannot carry out a serious comparative study of as many as 60 speakers, especially if you have to work to a deadline.
Martin Colloms told us that as he had done a number of these large reviews he had come to realise what the pitfalls were and how to avoid them. He was not using entirely his own resources but had been given or was paying for whatever was necessary to do the job properly, including some equipment or facilities loaned by other manufacturers, or at independent laboratories and he had hired the largest anechoic chamber in Europe at Watford. The panel would consist of members of his regular team as well as others who would be paid for their time. The source material would be of studio standard, and the results would be based on measurements as good as anything the manufacturers could obtain, with the possible exception of those makers who had their own computers. This would not affect the value of the results. He said that most projects had to be done to a timetable in any activity, and you merely planned accordingly.
What really irks the manufacturers, however, is that the younger reviewers cannot be relied upon to see things the manufacturers' way. Before hi-fi became a huge industry the relationship between manufacturers and the writers for such magazines as there were was so close as to be almost cosy.
Now all that has changed. The audio consumer boom attracted new manufacturers and more magazines. More to the point, the confused buyer of equipment often has no patience with long rambling pieces of text sprayed with distortion figures and dBs.
especially when they come to no conclusion for fear of giving offence.
With the arrival of the consumer move. ment it was inevitable that someone would apply similar ideas to the audio industry, and that journals would appear which attempted to speak the consumer's language, even if they sometimes used it to say the wrong thing, and often scaled new heights of inarticulacy with each issue. The audio punter cannot understand why it is necessary to hear speakers in dimensionless rooms when his front room isn't like that, and he doesn't see why a group of people who take an interest in sound quality shouldn't listen to a lot of different speakers and publish what they think.

It was equally inevitable that manufacturers used to having magazines run for their benefit should look round for a scapegoat when the cold wind of competition blew in from the East.
The manufacturers now feel beleaguered. They resent the pressure exerted on them to co-operate with what they regard as a parasitic reviewing industry that has grown on the back of their own enterprise. They also feel that if a reviewer makes totally unjustified criticisms of their products a legal remedy is ineffective because the damage to their business has already been done, and they, unlike the reviewers, have employees to consider.
Hi Fi Choice reacted to the initial threat by inviting speaker makers to a lunch at a London restaurant, at which an agreed method of testing the speakers could be hammered out. The magazine said that KEF and the other three manufacturers did not take the opportunity to come. Raymond Cooke of KEF told us that he had not been invited, but that, having been to such occasions before, it would have been a waste of his time.
Hi Fi Choice aren't too worried. They're going to go out and buy the missing speakers anyway,
Peter Walker, of Acnustical Manufacturing, who make Quad equipment, and Chris Rogers, one of the newer school of audio reviewers are to take part in a debate on "Musicality, fact or fiction?" at the IEE. The date? St Valentine's Day- \square

Post Office replies to Carter

The Post Office disagrees with the Carter committee's recommendation that there should be a Telecommunications Advisory Council. "Improvements will not be obtained by having layer upon layer of advice and monitoring for the new boards. In fact performance could be adversely affected if top management had to spend time servicing ant additional body."
The Post Office welcomed the recommendation to split the Post Office into two corporations, one each for posts and telecommunications, but said it thought the Carter committee's assessment of the progress of System X (WW September 1977, p.51) under-estimated the extent of the preparatory work which had already been completed and the scale of the Post Office commitment. Contracts worth $£ 30$ million had already been placed. \square

Tough next stage for optical fibre

If the optical fibre market reaches even a fifth of the $£ 500$ million a year predicted for it in 1985 then it will be well worth going into, according to Mr Raiph Baskett, head of STC's optical communications unit at Harlow. STC would hope to get a one-third market share.

In the year during which the unit has been operating it has made sales of $\mathrm{C} / 2$ million, say STC. They refused to discuss individual contracts or orders, but say that telecommunications, military and industrial customers have bought optical fibre, fibre made up into cable, and optical systems such as terminal equipment, repeaters and muitiplex equipment. Some customers are beginning to order optical equipment to solve problems, though most has been bought for evaluation.

Eighteen months ago the unit was a one man operation - Baskett himself - who was deputed to investigate optical fibre as a potential threat to STC's well-established coaxial cable business, By Christmas 1976 the number of people involved had reached ten, and now stands at 25 . In a year, he estimates, it will be around 40 , though recruiting the right people to manage the transition from a research to a supervisory and production operation will be hard.

Telecommunications will form 20% of the market in 1980, and lot of interest will centre on it because it is a familiar market. STC expect that telecommunications will take a bigger share of sales as time goes on, but not until well into the 1980s. Home sales will be depressed by the existing investment in copper conductors and only new links or "troublesome areas" will attract the use of optical fibre technology.
A strong point in optical's favour, however, is that it is, for the moment, virtually eavesdrop-proof, and our authorities are becoming ever more obsessed with security.
Similar considerations make the military market an accessible one. especially when added to optical's much smaller size for the same carrying capacity, lighter weight and rapidly improving ruggedness. But the military market is subject to political pressures.
A large home market may develop, how. ever, among public utilities, such as the CEGB - wha could use optical fibre communications without difficulty in the most electrically-noisy conditions that exist - and the Post Office, who have to connect to those electrically-nasty CEGB installations.

Optical fibres also make it possible to see directly into hazardous environments, such as those in ovens, areas of toxic or flammable gases or at nuclear plants, without the intervention of a camera. It would also be surprising if STC did not press the knowledge they have gained in submarine repeaters into service to advocate the use of fibre-optics under water. Baskett expects sales to reach Cl million in 1978. "The hard work will come next year. That first $\& 1$ million will show whether there's any market there or not.".

- The BBC has sent colour tv pictures over 12 miles of optical cable and five repeaters spaced every two miles. The experiments began in November. The pictures were sent from Hitehin to Stevenage ovet the optical fibre link opened in June last year and then. via a loop at the Stevenage exchange. back to Hitchin. Some minor changes to the BBC's equipment were necessary to change its bit rate Irom $120 \mathrm{Mbit} / \mathrm{s}$ to the uptical link's 140Mbit/s. \square

Low-noise cassette deck - postscript

Further details of circuit design and methods of obtaining an even better \sin ratio

by J. L. Linsley Hood

Nearly two years has elapsed since the publication of this design, and while the basic circuit design still appears, in retrospect, to have been satisfactory, without many unforeseen snags, there are one or two areas where some improvements can be made, and where some additional information can, usefully, be given. Also, because of the enormous amount of development activity in tape recording. particularly in respect of cassette tape coatings, it seems useful to take a fresh look at the potential of this medium.

REDUCTIONS in the background noise level in both recording and replay processes are possible, giving a worthwhile improvement in signal-to-noise ratio.

Replay noise level

in the basic design of the replay amplifier an attempt was made to design a circuit in which the inherent noise level was as low as currently available devices would permit and, while in general this aim was achieved, the integrated-circuit amplifier in the output stage was overlooked as a new source of noise. This is because the relatively limited slew-rate of the 741 leads to intermodulation-type effects when it is fed with signals which are
outside its effective Inear pass-band. Since the input amplifying stage has a bandwidth in the MHz region, as designed, and the impedance (and hence circuit noise) of the replay coil increases with frequency, the input of the 741 is presented, quite unnecessarily, with a substantial amount of noise energy well above the required audio passband, and some of this is heterodyned down into the audible region.
Fortunately, the solution to this problem is a simple one - to ensure that the input circuit impedance does not increase too greatly with increasing frequency, which can be done by putting a small capacitor, in the range $680-$ 820 pF , across the input to the replay amplifier, and to limit the bandwidth of the input stages of the replay amplifier to a value which does not greatly exceed the required pass-band. This can be done by putting a small capacitor ($150-$ 220 pF) in parallel with the $47 \mathrm{k} \Omega$ feedback resistor (R). An amended circuit diagram. Fig, 1 , for the replay amplifier is
*Wireless Worid, May, June and August. 1976. High Fidelity Designs, 2nd edition.

Fig. 1. Suggested amendments to replay amplifier. Altered component values for 1.5 micron head-gap shown in brackets.
given, showing these changes. The total improvement in CCIR weighted noise level of the replay amplifier, due to these changes, is about 2 dB , and on the prototype and two other units so modified, one of which was made from a commercial kit, the replay amplifier noise level was $8-10 \mathrm{~dB}$ better than that of the tape background - an adequate safety margin. This performance, however, also depends on the head type, and this is discussed later.

Zero-recorded-level noise background

In view of the good signal-to-noise ratios which had been achieved with the modified replay amplifiers, the major residual source of background noise on the final recording, ignoring that associated with the incoming signal, was that apparently impressed on the tape during the recording process. Since some of the recent tape types have an impressively low inherent tape noise level (the Pyral Maxima is particularly noteworthy in this respect) an investigation was made to identify the separate contributions to this.
Since the tape, as received, is bulk erased, while that following recording has passed the cassette recorder erase head, it seemed possible that this re-

erasure was 'wiping it dirty', However, using a separate, though identical, bias oscillator, so that the on-cassette erase head could be disconnected, made no improvement in this respect. Indeed, the off-line oscillator was somewhat worse than the on-line one. Disconnecting the record amplifier also made no measurable improvement, while leaving the erase head in use but disconnecting the bias circuit from the record head left a tape noise level which was closely similar to that of the tape as received.

It was at this stage that the reason finally became clear. Typically, during recording, the magnitude of the h.f. bias waveform applied to the recording head in parallel with the signal is some 40 50 dB greater than that of the signal. If the signal-to-noise ratio of the incoming signal is not to be impaired in the recording process, since the head is not able to discern the source of the signals which it receives, the s / n ratio of the bias waveform must be at least 60 dB better than that of the record amplifier and signal source. It is probably this fact which has given rise to the widespread belief that good bias waveform purity is essential to low recorded noise level, Experimentally, it seems perfectly feasible to record with triangular and square-wave bias voltages (of the possible options a square-wave bias seems to have many advantages), nonsinusoidality seeming to be important only when this leads to bias waveform asymmetry and consequent evenharmonic distortion of the recorded signal. This arises because the recorded signal amplitude - in either direction is bias voltage dependent.

Two steps can be taken to improve the oscillator signal-to-noise ratio: to improve its efficiency in terms of output-voltage swing for a given input power, and to reduce the proportion of wide-band noise generated by the oscillator which is transmitted to the record head along with the bias waveform. Improvement in the efficiency of the erase oscillator is effective in improving its s / n ratio because the

Fig. 2. Alternative higher efficiency bias/erase oscillator. (Note: Output voltage can be increased, to 80 V r.m.s., by increasing C_{22} and reducing R_{500}, R_{300} if needed for future tape types),
transistor collector current is the major source of wide-band noise, assuming that the losses in the LC network containing the erase coil are small. An alternative oscillator circuit giving about 35 V r.m.s. for about $12-15 \mathrm{~mA}$ h.t. supply is shown in Fig. 2. The original circuit requires some $100-120 \mathrm{~mA}$ for 30 V r.m.s. Although the waveform purity of the two oscillator circuits is very similar, there is a small s / n improvement in the use of the later one.
The second possibility, that of reducing the component of oscillator noise within the audio pass-band which is fed to the record coil along with the 50 kHz bias waveform, can be accomplished very simply by reducing the value of the coupling capacitor in the bias circuit $\left(\mathrm{C}_{30}\right)$ to the smallest value which will give adequate bias voltage: $33-47 \mathrm{pF}$ is suitable. This change is more effective in reducing zero-recordedlevel noise than the improvement to the oscillator, and for those who have already built this cassette recorder, this is the only recommended change. Together, these modifications lead to about $1.5 \cdot 2 \mathrm{~dB}$ improvement in tape background noise level.
Although each of the changes suggested above will, in normal circumstances, lead only to a small, and perhaps imperceptible improvement in overall s / n ratio, taken together the improvement can be $2-3 \mathrm{~dB}$, which is worthwhile.

Factors affecting signal-to-noise ratio

In the earlier article, attention was drawn to the need to avoid excessive caution in the recording process, in that the overall quality of a recording in which the recording-level meter needles
were occasionally driven 'into the red' would be likely to be much better than one in which, in the interests of low recorded distortion levels, the overload zone was always given a wide berth, and this point is worth restating.
However, it was expected, at the time of the earlier article, and this has been borne out by later experience, that the performance of the record/replay heads themselves would have a dominant effect upon the performance of the recorder. It seems, alas, to be a general rule that if a circuit design or process is evolved around some readily-available piece of commercial equipment or material, the publication of an article describing this will coincide with the discontinuation of the item upon which it was based.
Fortunately, in the case of the cassette deck, the Lenco cassette mechanism is identical mechanically, and at least as well made, as the Garrard unit upon which the prototype was based. However, the Garrard deck used the National Panasonic (Matsushita) recordreplay head, type WY 435 Z , which has a higher output and better h.f. response, and also a lower motor-noise pick-up, than some of the alternative types fitted in the Lenco unit. Luckily. it is a relatively simple matter to replace head units and to check the azimuth setting. Both the original head type and a superior unit of the same make are easily available so, in this particular instance, it is still practicable to copy the characteristics of the prototype if this is wished.
In view of the confusion which still seems to surround the design of cassette recording heads, and the relative merits of the materials used, it seems worthwhile to consider how these things will affect performance, and the basic characteristics of three different type record/replay heads are shown in Fig. 3. It can be seen from this that the use of a smaller head gap leads to a reduction in output at lower frequencies, but allows the increase in output with frequency to continue to a higher turn-over
frequency. The use of 'hot-pressed' (polycrystalline) ferrite, which has lower eddy-current losses, gives an even better h.f. response for the same gap width than laminated Permalloy, but the lower magnetic permeability of the ferrite material leads to a further lowering of output at lower frequencies. Materials such as Super Permalloy and Sendust offer, respectively, improvements in wear resistance for the same permeability, and improvements in permeability for the same low level of eddy-current loss, with respect to ferrite. However, with available materials, there is a general trend towards lower output and less good s / n ratio as the h.f. performance of the heads is improved.
An additional factor, in the head design, which affects the output from the head is the extent of the magnetic shunt provided by the proximity of the internal pole faces within the head. As can be seen from the schematic representation in Fig. 4, the narrower this internal face is the better will be the head output and also the more quickly the wear on the head face, due to tape abrasion, will impair the gap integrity. Happily, developments in tape coating technology (reductions in ferric particle size and improvements in particle size uniformity) have markedly reduced the abrasiveness of the tapes marketed during the last few years. Measurements made on the prototype unit over the last two and a half years and 1000-1200 hours of use, have shown little significant change in performance after the initial, fairly rapid, improvement in output presumably due to an improvement in tape to head contact as the head is lapped in.
The two remaining important factors affecting s / n ratio are bias level and head magnetism. Taking the last point first, it cannot be stressed too strongly that inadvertent magnetism of the record/replay head - which can occur for a variety of reasons, and will most certainly arise if it is handled or remounted - will lead to a most substantial degradation of performance, both in respect of sensitivity and in respect of h.f. response, so that common prudence suggests periodic head demagnetisation, just to be on the safe side.
So far as the effect of bias is concerned, this was dealt with in the original article (Part 2) and the effects of changing bias voltage levels were shown graphically in the original Fig. 9. It can be seen from this that the use of too high a value of h.f. bias has a bad effect on the h.f. recording levels, due probably to partial re-erasure. While many of the modern tape types, such as ferro-chrome and cobalt-doped materials, benefit from somewhat higher levels (typically 7V r.m.s., measured across the record coil with a low capacitance h.f. probe), the several cases which I have encountered in which the record/replay performance was much below par were due either to

Fig. 3. Record/replay head characteristics.
undemagnetised heads or to excessive bias levels (in the $10-15 \mathrm{~V}$ range!).
Since the actual output from the oscillator depends on the Q of the erase coil oscillatory circuit, there can be variations from manufacturer to manufacturer, and the coils fitted to the Lenco mechanisms tend to give a higher bias and erase voltage than that of the Garrard unit used in the prototype. This all to the good, but it is recommended that the bias adjustment pots $\left(\mathrm{VR}_{3}\right)$ be increased to $100 \mathrm{k} \Omega$ from $47 \mathrm{k} \Omega$ to give a wider adjustment range. It is appreciated that many constructors may not have access to suitable h.f. voltmeters for on-coil voltage measurements, but some simple practical experiments in recording a steady tone, using a prearranged programme of bias potentiometer adjustments, and choosing the setting which gives the highest output on the replay recording level meters for a tone in the $300-1 \mathrm{kHz}$ range - will take one close to the optimum level, and such a test will compensate for variations in the bias requirements of differing types of record heads.

Head replacement procedure. Many horrifying tales of gross head wear, due to the use of cheap tapes, chromium dioxide formulations, Permalloy heads,

Fig. 4. Schematic drawing of tape record/replay head, showing flux linkage in head and tape.

or excessive use of the recorder, have gained currency during the growth of popularity of the cassette medium, and many users must entertain some apprehensions about the inevitability of head wear incapacitating or impairing their machines, with the consequent need for specialist skills in head replacement. While the availability of a calibration tape, and a double-beam oscilloscope, makes this task a bit easier, simple alternatives will suffice.
Since many users will have built up their own library of tapes, recorded on their own instruments it will be more important when the time for head replacement approaches, that a replacement head should be in the same position as its predecessor, with respect to the tape, than that it should be in accurate 'azimuth' (gap verticality) and height conformity to the notional standard. A standard cassette recorded on their own machines will meet their needs. It is suggested that a range of frequencies from 300 Hz to 10 kHz should be recorded, with both channel inputs in parallel, at ' 0 VU '. $(300,1 \mathrm{k}, 3 \mathrm{k}$, 6 k and 10 kHz for two minutes each will be adequate.) If the replacement head is in the same position as the head with which the test cassette has been recorded, the output of this tape will be of identical magnitude in each channel and the outputs will be in phase. Output magnitude can be checked from the recording level meters, and phase equality can be checked by a headphone or a.c. voltmeter across the two 'livet outputs of the recorder or subsequent amplifier. When the two signals are in phase, the voltage difference between the ' R ' and ' L ' channels will be at its least.

This test becomes more critical as the recorded frequency is increased, and as the higher frequencies are approached errors in azimuth also become apparent. If the gap between the replay head polepieces is not truly perpendicular to the direction of motion of the tape, the h.f. output will be diminished. If the condition of phase coherence between the two channels does not correspond
to the maximum h.f. output, the original record head azimuth setting was probably in error. If phase coherence between channels does not correspond to amplitude equality between them, the replacement head centre height is incorrect, which can be remedied by the addition or removal of washers from the non-adjustable end of the head mounting. For the record, a relative positional (angular) error of less than 0.05° can be seen by phase coherence checks at 10 kHz , which is well within the azimuth accuracy requirements for optimum h.f. output.

The dimensions and agreed heights for the EIA.I (lapanese) ' Y ' type, and Lenco/Garrard, 'Z' type, heads are shown in Fig. 5, together with the mounting system employed on the Staar type mechanisms. National Panasonic (Matsushita Co., Ltd.) offer two heads, WY 435 Z (2 micron gap Permalloy) and WY 436 AZ (1.5 micron gap, long-life Permalloy) which are of a suitable type for the Garrard and Lenco mechanisms. The latter head is of a superior construction, having a somewhat higher specific output, which compensates in part for the loss in sensitivity due to the narrower head gap, and allows the record/replay frequency response to be extended to at least 15 kHz with suitable tape types. If the changes noted above are carried out, the approximately 2 dB loss in output due to the use of the narrower head gap can be accepted with a final s / n ratio no worse than that of the original specification and the advantage of a better overall frequency response. It may well be that there are other head

Fig. 5. Specified dimensions for cassette record/replay heads and method of mounting used on Staar mechanisms.
units, either now or in the future, which will be superior in performance to the National Panasonic. units referred to above, since this, like that of tape composition improvements, is a field in which intensive development work will certainly continue.

Some adjustments to circuit component values are desirable if the 2 micron gap record/replay head is replaced with a unit having a 1.5 micron gap width, and these suggested changes are indicated by the values shown in brackets in Fig. 1 and 6. In the prototype, with square-wave response adjusted to give minimal overshoot, the h.f. response with the 1.5 micron WY 436 AZ head is -5 dB at 15 kHz , ref.

300 Hz , using Fuji FX tape. There is little doubt that the system could be made to yield a more uniform h.f. response than this, if required, by accepting a iess well damped response to a square-wave signals, but earlier experiments indicate that the subjective response of the system is not improved by the attempt to obtain optimal flatness of steady state frequency response by sacrificing accuracy of transient waveform reproduction.

It seems probable that this is because the tape recording mechanism is truly a 'slew-rate-limited' one, in that there is a minimum and readily calculable time which is required for a point on the tape. travelling at $4.75 \mathrm{~cm} / \mathrm{s}(17 / \mathrm{in} / \mathrm{s})$ to pass the 1.5 or 2 micron (0.000059 or 0.000078 in) head gap. This implies that, for an ideally perfect tape impressed with a recorded square-wave, the output from the system cannot 'slew' at a greater rate than the replay head

geometry will allow, so that, if a greater input signal is impressed on the system, in the attempt to achieve improved h.f. response, the only likely effect will be to convert waveforms into a triangular shape, with a consequent increase in h.f. intermodulation distortion.
Hart Electronics of Oswestry have agreed to stock equivalent units to the Matsushita WY 436 AZ 1.5 micron head for those constructors interested in making the substitution.

Choice of h.f. bias frequency

The original choice of bias frequency $(50 \mathrm{kHz})$ was simply that of the recommendations of Garrard Ltd, the manufacturers of the original cassette mechanism. There is a considerable tradition in the high-quality tape recorder field that the bias frequency should be at least five times greater than the highest intended recording frequency. This arises because the action of the bias waveform is effectively to sample the signal waveform at the bias frequency, and it is plausible that the desired waveform cannot be reconstructed accurately unless there is an adequate number of samples within one cycle of the highest required frequency.
However, experimental results obtained with differing bias frequencies - obtained by using differing values of C_{23} - show that on the tapes used the remanent recorded flux and hence the s / n ratio for a given recording level, decreases significantly as the bias frequency is increased to 60 or 75 kHz , so that even though a wider bandwidth can be obtained with alternative head units a change in bias oscillator values is not recommended. Some support for retaining the original 50 kHz bias frequency is given by the observation that some very high quality audio systems are based on sampling rates which are lower than this. For example, the current BBC f.m. stereo radio transmissions have an $\mathrm{L}-\mathrm{R}$ sampling frequency of 38 kHz ; the digital encoding process, by which the p.c.m. signal is transmitted over cross-country land-lines, uses a 32 kHz sample rate; and the very highly regarded Denon p.c.m. encoded gramophone recordings employ a sample rate of 47.25 kHz . I accept the qualification that squarewave sampling and sine-wave biassing may not be equivalent and since a square bias waveform (in effect, a triangular current waveform) appears to work quite well I intend also to explore this approach.

Dubbing

If it is desired to 'over-dub' an existing recording, without erasing the existing material, this can be done by the use of a coil other than the existing erase head in the bias oscillator circuit, so that the erase head can be switched out of circuit. Although, in principle, any coil of suitable Q and an inductance of 1 mH could be used for this purpose, the simplest approach is to use another,
similar, erase head, mounted in a convenient position remote from the deck and connected to a change-over switch.

Miscellaneous design oversights

It is, I suppose, inevitable, following the contemplation of a design for a couple of years, even without the benefit of criticism in print, that the designer will feel that there are certain aspects which could have been done better.

Gain adjustments. Apart from the changes in bias oscillator, feed capacitor and adjustment potentiometer value noted above, and the modifications to the replay circuit noise bandwidth limiting components, I feel I should have provided some means for adjustment of the relative channel sensitivities in the record and replay amplifiers, in order that the effects of component value errors could be removed. This can be done by making the lower feedback resistor, R_{7}, in the replay amplifier variable over the range $820-1 \mathrm{k} 8$ ohms, in either one or both channels, which can be done conveniently by altering the value of R_{7} to 820 ohms, and putting a $1 \mathrm{k} \Omega$ preset pot. in series with this. A good quality unit such as a cermet type, should be used for this duty to avoid worsening the input noise level.

A similar relative gain adjustment can be made in the record amplifier if the value of R_{22} is reduced to 2 k 2 , and a $1 \mathrm{k} \Omega$ pot. is placed in series with it at the earthy end. This can then be used to set the relative record levels to equality at the l.f. (say 300 Hz) end of the spectrum, as indicated on the meters - assuming that these have already been correctly calibrated - while the h.f. pre-emphasis trimmer pot., VR_{2}, can be used to achieve record level balance between channels at the h.f. end (say 10 kHz). These suggested changes are shown in Fig. 1 and Fig. 6.

Bias oscillator. In the bias oscillator circuit (the original Fig. 7) the lower potential divider capacitor in the Clapp oscillator $\left(\mathrm{C}_{21}\right)$ was shown as $2.2 \mu \mathrm{~F}$. With some erase heads, this did not give enough circuit gain to ensure that the oscillator would always operate. A $1 \mu \mathrm{~F}$ capacitor in this position gives a greater tolerance of erase coil characteristics variations. This change was shown in the reprint ${ }^{+}$and is recommended for adoption in future units employing the original oscillator circuit design.

Meters. Some justified criticism has been received concerning the tendency of the recorded level meter needles to hit their limit stops on switch-on. This type of behaviour is difficult to avoid entirely, but it can be minimised, if necessary, by reducing the slightly over-generous value of the rectifier circuit series capacitor (C_{26}) from $10 \mu \mathrm{~F}$ to $2 \mu 2 \mathrm{~F}$.

Headphone amplifier. I also regret that

Fig. 7. Effect of recording pre-emphasis 'time-constants'.
the input $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor in the Class A headphone amplifier was incorrectly labelled BC182L instead of BC212L. Any small-signal $p-n-p$ device will serve, since its application is a very uncritical one.

Replay equalisation

Not entirely unexpectedly, 1 have come in for a certain amount of 'stick', both in correspondence and in the Letters columns, for my advocacy of the 70μ s record/replay characteristic for general use. I note, however (with a certain amount of inward satisfaction, since it is nice occasionally to be right) that much of this has stemmed from a failure to understand just what the record/replay equalisation compensations are introduced for, or how they are derived. To shed a certain amount of extra light on what is obviously a somewhat shadowy area, I have appended a simplified analysis of the situation below, which can be omitted by those familiar with the subject.

In an ideal world of perfect magnetic tapes, and replay heads with complete external flux linkage and infinitesimally small pole-piece gaps, a tape could be recorded at all desired frequencies at a constant magnetic flux level, at some. convenient value a little below the tape, or head, saturation level, and this would be found, on replay, to have generated an electrical output which increased linearly with increasing frequency, in such a manner that a doubling of frequency would cause a doubling of output, as defined by the classical laws of electromagnetic induction. A replay output which was constant, independent of frequency, could be obtained by a simple replay equalisation circuit which gave an output, starting at some conveniently low frequency, which decreased at a rate of -6 dB /octave.
However, because of shortcomings in the tape and head characteristics, at the h.f. end of the recorded spectrum, it is customary to incorporate a degree of recording h.f. pre-emphasis, starting, in the case of the Phillips cassette system,

- Higit Fidelity Designs - a book of reprinted Wircless World articles on audio equipment construction.
at $1-2 \mathrm{kHz}$. The actual pre-emphasis characteristics are defined by a specified time-constant, having the agreed values of 70 and $120 \mu \mathrm{~s}$. This can be converted into a known $\pm 3 \mathrm{~dB}$ point by the relationship $f=1 / 2 \pi C R=1 / 2 \pi \times$ time const. which gives +3 dB values for the 70 and $120 \mu \mathrm{~s}$ characteristics of 2273 and 1326 Hz respectively, leading to the type of recording pre-emphasis characteristics shown in Fig. 7(a). If it is assumed that during recording the recorded signal levels are adjusted so that the recording level meters achieve the same recorded levels on peaks, and if it is assumed that this is mainly influenced by the greater signal level of the pre-emphasised region, the effective recorded level will, in reality, be that of Fig. 7(b). In the case of the $70 \mu \mathrm{~s}$ characteristic, this assumes that the h.f. losses will be less, requiring less correction, and permits the recording of all frequencies below the 2.2 kHz turnover point at about 3 dB higher leve! than is the case for the $120 \mu \mathrm{~s}$ characteristic.

If a similar characteristic were to be adopted on replay, the effect would be to arrest the downward slope of the replay characteristic at a turn-over point of 2273 or 1326 Hz , beyond which the response would be level. In practice, however, the equalisation adopted is the recording one, and the replay characteristics are then corrected in the light of the experimentally derived replay-head/tape characteristics, so that the final record-replay frequency response is acceptably level. This usually involves some additional replay treble lift, to compensate for the finite replay-head gap width. The overall residual advantage is, therefore, due to the greater signal level in the mid-range frequency band, on the 70μ s equalisation, due to the decision to adopt a lesser degree of h.f. boost, which gives about a 3 dB benefit in terms of signal to noise ratio. Since tapes, and heads, are no less able to accept a given magnetic flux density at 300 Hz than at 10 kHz (in fact rather the converse), the imputation of a less satisfactory recorded distortion level due to this technique appears ill-conceived.

Technical inaccuracies

It is a matter of genuine concern in the preparation and publication of technical articles that inaccuracies of fact or terminology should be avoided. With the best will in the world, however, inadvertent errors do creep in, and, in the case of the original articles, there are three corrections I would like to make concerning the 'VU' nomenclature.
'VU' levels. If one constructs a piece of equipment which has signal level indicating instruments, which have calibrations ranging from -20 to +3 , and which their manufacturers have labelled 'VU', then, so far as the signal levels indicated by these instruments are con-

cerned, one is rather in the position of Humpty Dumpty - ${ }^{4}$... 'when I use a word,' Humpty Dumpty said in a rather scornful tone, 'it means just what I choose it to mean, neither more nor less' +.." - so that although '0 VU' has a precise and specific meaning in the recording studio and sound engineering field (that of a signal level equivalent to 1 milliwatt in a 600 ohm load, or 0.775 volts r.m.s.) the ' 0 ' level on one's own instruments may, for practical reasons, be quite different from this.

Since I intended to redefine this level, for the purposes of this design, as being a level of 2.25 volts r.m.s., at 600 Hz , as measured at the output of IC_{3} in the record amplifier, it had been my intention, in the original article, to refer to VU levels, in this context, only within inverted commas, in order to indicate my temporary misuse of the definition. However, this I found, in print, that I had failed to do, and for this I apologise.*

Mr. Warren, writing from Australia, ${ }^{1}$ did indeed reproach both Wireless World and me, respectively, for permitting and committing the solecism of referring to the recording level instruments as VU meters at all, in that this term should only be applied to instruments having certain, internationally agreed, standards of impedance, sensitivity and ballistic response, which the simple instruments 1 had described did not, and were not intended to, meet. I accept this rebuke, and am happy to substitute the somewhat more lengthy term 'recording level meter' for these display instruments, However, these strictures could be more widely spread, in that there are a large number of commercially available instruments which have signal level meters referred to as VU meters, which also fall a long way short of the international standards. While it is obviously desirable to prevent the corruption of specific descriptions by their careless use, 1 suspect that this particular case is

- Eximination of the argimal shaws that Mr Linsley Hood did use quates. It an oxcess of editoral zeal they were deleted - we ste sorry for this - PRD.
going to prove a difficuit battle to win.
Finally, in describing the technique which I had adopted to generate the desired recording pre-emphasis characteristic, I showed a family of curves in my Fig. 15, as being typical of the type of response which would be generated by the use of an under-damped secondorder low-pass filter, for various values of ' Q '. Although the mathematical derivation of the transmission characteristics of such filters is relatively straightforward, and in the case of the circuit which I used, is shown eisewhere, ${ }^{2}$ the plotting of the frequency response, for various values of Q and frequency, is a laborious task in the absence of a suitable computer programme, so, since an illustration was required, I used that of the active lead + lag system, for which I had previously determined the frequency response characteristics, and which are similar to those of the system I had actually used, though not identical. It had been my intention, in the text, to make clear the fact that the curves were typical rather than actual. Mr Goot ${ }^{3}$ has drawn my attention to my error in this, so, by way of penance, 1 have calculated the actual performance characteristics, and show these in Fig. 8. For convenience in calculation I define Q and $1 / a$ in these graphs.

Because of the influence of the lag network, $\left(\mathrm{VR}_{2}, \mathrm{R}_{\mathrm{i2}}\right.$ and $\left.\mathrm{C}_{15}\right)$, on the operation of the circuit, the actual resonant frequency of the circuit is lower than the value calculated from $\mathrm{R}_{16}, \mathrm{R}_{17}, \mathrm{C}_{12}$ and C_{13}, and decreases in frequency as well as increasing in magnitude, as the value of $V R_{2}+R_{12}$ is reduced. This is a convenient characteristic from the point, of view of suiting the h.f. equalisation peak response frequency to the characteristics of the heads in use, and is an additional reason for choosing this type of circuit in preference to the more conventional inductor based systems.

References

1. Warren, E. G., Wireloss World, "Letters". p.46. Jan 1977.
2. Linsley Hood. J. L., Electronic Ertgineering, July 1976, pp. 35 -के8.
3. Good, E. F, Private comphuinication.

Reliability

Principles of reliability prediction and factors affecting the life of components

by H. R. Henly M.I.E.R.E.

Reliability is the responsibility of the engineer concerned with the design of a system or a sub-system, yet it seems to be one of the least understood concepts which he has to use. Engineers in general seem to prefer not to get involved in any calculations of the reliability of the equipment which they are designing. The reasons for this are probably a lack of understanding of the techniques involved - considered to be bordering on the
"Black Arts" by some, and is probably largely due to the fact that the data used in reliability prediction has been derived statistically - and prediction infers crystal balls. But those who shudder at the thought of anything statistical should be reminded that even the value of a resistor is really a statistical statement and not an exact value.

MANY dESIGNERS will say " 1 don't need to do all those calculations. 1 design reliable equipment by using the best components". On the face of it this argument is quite sound, but it can only be at all valid in a situation where cost is of no consequence, Cost and reliability are closely related, and cost can be of equal, if not greater importance. There is also another aspect to be considered. The user of an equipment also has to maintain it. Nothing, however reliable, will work for ever and a prediction of failure rate is a useful indication of future maintenance effort required and likely store's holdings (today's components will not be available for ever, particularly in the rapidly developing world of electronics). These considerations may be of no importance where Grandma's portable telly is concerned, but it is a different story where a data-processing installation or a telephone exchange is concerned.

Certain aspects of reliability calculations can be a little involved. The object of this article is to present some of the fundamental ideas, Excellent works are available on the subject, of which references 1 and 2 are considered by the author to be the best.

What is reliability?

Every component, whether electronic, electro-mechanical or purely mechanical, has a finite life. After a certain period of operation there will be signs of deterioration in its performance until a point is reached where it no
longer performs satisfactorily. We then say that it has reached the end of its life. These last two sentences should pose some questions in the reader's mind. Such a definition is rather loose. Unless the device ceases to function completely, that which means failure for one application may not be so for another. Again, in a test situation where a device's parameters are being measured, the end-point of its life may be different to an application where negative feedback might mask the falloff in performance to give an extended life. We can escape this quandary by recognising that the test situation has the advantage that it yields the more pessimistic estimate of device life and furthermore, that it is applicationindependent.
Reliability information comes from two main sources; the component manufacturer and the user. Firstly from the component manufacturer, and this applies mainly to active electronic. components, e.g., semi-conductors. Batches of components are taken from the output of the production line according to a pre-determined sampling scheme. These components are placed on life-test during which they are exposed to various types and levels of stress. according to the specification of the device, and key parameters are monitored. When any of these parameters fall outside prescribed limits the component is deemed to have failed. The cause of failure is determined in order that the mechanism of failure can be better understood. In most cases this simple picture of life testing would be impracticable due to the length of life of most electronic components; reliability data would not be available in time for it to be of any use to the designer. For this reason, accelerated life testing is used. Considerable knowledge of the relationship between the life of a component and the temperature of operation, particularly in the case of semi-conductor components, has been accumulated. Thus by testing components at a suitably elevated temperature the life can be reduced to a lower, measurable value, and the component's life at other lower temperatures may be computed.

As stated above, the type of life testing conducted by component manufacturers is application-independent.

Furthermore, the test environment is closely controlled and the results which have been obtained over many thousands of device hours, enable the designer to predict the behaviour of his system even under different environmental and operational conditions. One possible draw-back with the reliability data produced by component manufacturers is that for economic reasons the number of devices of any one type that can be tested at a time is limited. Thus, it still requires a considerable length of time for the number of device-hours of testing for any particular component to reach the level required for the data to be statistically 'reliable'.

The second main source of reliability information comes from component users. In general most large organisations in the electronic and electromechanical sphere keep some record of the reliability of the components which they use. Some of the information may have been accumulated over many device-years and is therefore 'reliable', These data are, however, extremely application-dependent and in the general case the published information drawn from these sources does not give details of environment, levels of stress, etc, under which the device concerned was operated. Indeed, the published information may in fact be the grand average of many different applications, etc.

This information is, in fact, very valuable. Because it is drawn from a very wide range of applications and operating conditions, it tends to present an average value and because in most cases the environment is not defined, the net result is very much more pessimistic than the data obtained from the manufacturer, Furthermore, because of the very much greater number of device-years encompassed in this type of information one may have more (statistical) confidence in it. Although the method of derivation of this information is the very antithesis of the scientific approach adopted by the manufacturer's quality control organization, t.e.. it does not set out to separate and control or limit the many factors which affect reliability, this is, of course, far more typical of many industrial applications where little control can be exercised over, for example, environment. In many cases, particu-
larly with electro-mechanical components, this may be the only source of information.
Before pursuing the subject of component life data further and its application to the prediction of equipment life we should now look more closely at some of the terms used and how they are related. We have spoken, thus far rather loosely, of reliability, when most published data tends to be in terms of 'failure rate' and 'mean time between failures' (m.t.b.f.).
Since the behaviour of most physical systems follows some sort of exponential law it will come as no surprise to the reader that the probability of a failure occurring is also an exponential function of time. Reliability is the probability that a component will perform its function correctly for a given period of time under the specified operating conditions. The term probability is used here in its mathematical sense, where complete certainty that an event will occur is given the probability value 1 and complete certainty that the event will not occur is given the value zero. The probability of an event occurring must therefore always be between 0 and 1^{3}.
We cannot simply consider the failure of a single component, since this is a single event in time; instead, we must. consider what happens in the general case where a number of a given type of component operates in an equipment. If we plot the number of failures against time we get a curve similar to that of Fig 1 - often referred to as the 'bath-tub' curve. This curve has three distinct areas, the first being known as the burn-in period. During this time the number of failures is high and these are due to infant mortalities caused by component weaknesses, for example fragile leads, leakages in case seals, high leakage currents, etc. For electronic equipment this period is typically of the order of 200-300 hours and is not amenable to mathematical prediction.

At the end of the burn-in period the number of failures will have fallen to a low level and the failure rate - the number of failures per unit time - then remains sensibly constant for a very much longer period of time until the components near the end of their life,

Fig. 2. Effect of junction temperature and voltage on m.t.b.f. for silicon thyristors.
the third area where the failure rate rises due to 'wear-out' failures.

In this article we are concerned primarily with electrical applications and of the above period that represents the useful life period. Failure studies have shown that in this period components tend to fail randomly with time and that the number of failures after a given operating time is exponentially related to time and the number of components in service. Thus: $N_{\mathrm{f}}=N_{\mathrm{T}} e^{-l / m}$ number of failure. (1) where $N_{i}=$ number of failures after time t
$N_{\mathrm{T}}=$ total number of the component in service and $e=2.71828$, the base of Naperian logarithms.
The constant m was found to be the arithmetic average of the time to failure for the component concerned or m.t.b.f. Equation (1) can be rewritten in the more useful form:

$R(t)=N / N_{t}=e^{-t m}$ where $R(t)$ is the probability that the component will not fail within time t. (the probability of survival). In this form $R(t)$ ranges in value from 0 (zero probability of survival) for $t=\infty$ to 1 (complete certainty of survival) for $t=$ 0 . From the above equation, it will be seen that, in a similar fashion to the charge/discharge curve for a capacitor resistor circuit the controlling parameter is the 'time-constant' m. For example, for $t=m, R(t)=0.37$. That is, the probability of survival for a time equal to the m.t.b.f. m is 0.37 (or 37%). The probability of survival for a time of $t=0.2 m$ is $R(t)=e^{-0.2 m \cdot m}=e^{-0.2}=0.82$ or 82%. Conversely, we can find the value of t for which the probability of survival is, say, 98%. By taking logarithms we can rearrange the equation to give:
$t=m \log _{e}(1 / R)=m \log _{e}(1 / 0.98)=0.02 m$ That is to say we can be 98% certain that the component or equipment will operate without failure for 0.02 m hours. Alternatively one can use the last form of the equation in a similar way to find what the equipment m.t.b.f. must be to achieve a given survival time with the required level of confidence.

It is seen from the above that the probability of survival, that is, of operation without failure is determined by the parameter m, the m.t.b.f. It must be remembered that m.t.b.f. is, as the term implies, an average value - which in turn implies that there will be components whose time to failure will

WIRELESS WORLD FEBRUARY 1978
be less than m and also those whose time to failure will be greater than m. It is a common misconception that the m.t.b.f. m. when quoted for an equipment, is the life which one can expect before a failure occurs. As one can see from the survival equation, one can only be 37% certain that such a life will be achieved.

Failure rate, which we have already mentioned, is related to m.t.b.f. The average failure rate of a component is λ $=1 / \mathrm{m} . \mathrm{t} . \mathrm{b} . \mathrm{f}$, or $1 \mathrm{/m}$ per unit time. If m is in hours then λ is failure rate/hour. Failure rate is usually expressed as the percentage component failures per 1000 hours. For example, in a dataprocessing installation, 500 integrated circuits of a particular type were in service for five years. In this time only two failures were recorded. The percentage failure was, therefore, $(2 / 500)$ $\times 100=0.4 \%$. The total number of operating hours was 43680 (5 yrs). Thus, failure rate $=(0.4 / 43680) \times 1000=$ $0,0092 \% / 1000$ hours. This form is useful when comparing the performance of components, but must be converted to failures per unit time when performing failures rate calculations.

Equipment reliability

So far we have only considered what happens in the life of a single component or equipment. In practice we are concerned more with the reliability of equipment which contains numbers of different components and systems which comprise more than one equipment. These two cases are in many respects the same and what follows can be applied to both. However, the reliability of a system can be complicated by the presence of duplicate elements (redundancy) such that the fail. ure of a single one of these elements will not result in fatilure of the equipment.

Since an equipment will contain numbers of components of varying types and individual reliabilities we would expect the overall reliability to be lower than that of the worst (least reliable) component. The relationship above gives the probability of a component's life extending to time t. If we have two components with individual probabilities of survival of $R_{1}(t)$ and $R_{2}(t)$ respectively, their joint probability of survival to time t will be $R_{E}(t)=R_{1}(t) \times R_{2}(l)$. If we substitute in this expression the exponential relationship for $R(t)$ we get;
$R_{E}(t)=\exp \left(-\lambda_{1} t\right) \times \exp \left(-\lambda_{0} t\right)$ where λ_{1} and λ_{2} are the failure rates of the two components.
Then $R_{z}(t)=\exp -\left(\lambda_{1}+\lambda_{2}\right) t=\exp$ $\left(-\lambda_{E} t\right)$ Clearly $E=\lambda_{1}+\lambda_{2}$, and the m.t.b.f. of the combination is $1 / \lambda E=1 /\left(\lambda_{1}+\lambda_{3}\right)$. This leads to a very simple rule; to find the failure rate of an equipment in which fallure of the equipment results from the failure of any one of the constituent components we simply add cogether the individual failure rates of all the components. For

Table 1. Component list of typical phato-electnc system discus5ed as an exsmple.

Component list for Photo-electric Beam Control Unit

Section	Component	Quantity	Unit Failure Rate $\% / 1000$ hours	Joint Failure Rate $\% / 1000$ hours
1. Amplifier	Resrstors / / w composition	20	0021	0.0042
	Capacitors: polystyrene electrolytic	9 5	00008 3.33	$\begin{aligned} & 0.0001 \\ & 0.1665 \end{aligned}$
	Transistors low power			
	150 mW	6	0.017	0.001
	Doodes signal GoAs	1	0.008	0.00008
	light source	2	0.02	0.0004
	Soldered joints	120	0.18	0.216
	Printed cirouit board	1	0.01	0.0001
	Output transformer	1	0.1	0.001
2. Relay Driver	Resistors composition $1 / 4 \mathrm{we}$	6	0021	0.0013
	Capacitors polystyrene	3	0.0008	0.00002
	Transistors medium power	1	0.6	0.016
	Diodes Zener	2	0.7	0.034
	Soldered Joints	30	0.18 0.01	0.054 0.0001
	Printed circuit board	$!$	0.01 1.57	0.0001 0.0157
	Relay (2 e/o contacts)	1	1.57	
3. Pawer Supply	Power Transformet 100 VA	1	0.2	0.002
	Diodes power	4	0.7	0.028
	Capacitors electrolytic	2	3.333	0066
	Power connector	1	0.005	000005
	Soldered Joints	30	0.18	0.054

example, let us consider the case of a simple photo-electric system in which a beam of modulated infra-red radiation is generated by a gallium arsenide diode and is detected by a silicon diode. A typical system with a self-contained mains power supply might contain the components shown in Table I.
Summing the joint failure rates in the right-hand column of Table 1 yields the overall failure rates of $0.6605 / 1000$ hours. The-m,t.b.f. will therefore be $1000 / 0.6605=1514$ hours. Using the survival equation we see that we could only expect around 160 hours (with 90% confidence) of fault-free operation and this ignores, for example, failures due to the build-up of dust on the optical system. If this equipment were in use in a process-control installation with, say. nine other identical equipments and a failure of any one equipment would mean failure of the installation, then the overall failure rate would be ten times greater. The m.t.b.f. is therefore reduced to 151.4 hours. We could expect, with 90% confidence, a period of fault-free operation of only 16 hours.
Suppose that it is essential that the installation shall operate with 90% certainty for a minimum period of 22 hours without a failure. We can use the survival equation to find what overall m.t.b.f. is required; in this example we get m.t.b. $\mathrm{C}=22 / \log _{e}(1 / 0.9)=208.83$, say 209 hours. This requires that the m.t.b.f. of the individual equipments must be at least ten times this value - 2090 hours.

At this stage we might reasonably question the design of this unit and consider what improvements, if any, we can make to its reliability. The first step is to examine Table 1 to see how the failure rates are distributed over the different parts of the equipment. There are three distinct parts to this equipment; the photo cell, light source and amplifier, the relay driver and the power supply. The joint failure rates and m.t.b.fs for each are shown in Table 2.

TABLE 2
Approximate Distribution of Failure Rates

Item	Failure rate	mtbf hours
photo-cell	0.3894	2568
light source and amplifier relay driver paiver supply	0.1217	8258

In this case the photo-cell, light source and amplifier contributes most to the unreliability of the system. One now has to decide whether any worthwhile improvements can be made.
The m.t.b.f. of the relay driver and power supply together is 3687 hours and this represents the highest m.t.b.f. which can be achieved - by reducing the failure rate of the amplifier to zero. Although this is not possible, this calculation does enable one to answer the question is any improvement likely to be significant?', In this case, if the
amplifier failure rate were zero the m.t.b.f. of the system would be increased by a factor of 2.5 . In practice, of course, we cannot expect to achieve such a vast improvement, but at least the scope is there. Had the ratio been much smaller, it is doubtful whether any practical improvement could be made which would be significant when compared with the rest of the system.
The two components with the highest failure rates are the electrolytic capacitors and the soldered joints. Provided the required values are not high the electrolytics can be replaced by Mylar film types with a unit failure of $0,0008 \% / 1000$ hours. This results in an overall m.t.b.f. for the amplifier of 4485 . The overall m.t.b.f. for the equipment becomes 2023 hours; an improvement of 34%. The likely cost of this modification would be small, so a worthwhile improvement would be obtained.
As far as the other high failure rate component is concerned - the soldered joints - a significant reduction could only be achieved by a pro-rata reduction in the number of components. For example, if the amplifier could be replaced by two operational amplifiers in dual-in-line integrated packages, then the number of soldered joints would be reduced to about 60, but there would be a considerable reduction in the other components also. An estimate of theresulting failure rate (assuming the integrated circuits to each have failure rates of $0.0005 \% / 1000$ hours) is $0.1097 / 1000$ hours. The resulting m.t.b.f. of the amplifier is therefore 9115 hours, and the overall m.t.b.f. of the equipment becomes 2625 hours, making the overall improvement due to both modifications about $1.7: 1$. This second modification is quite drastic however and would only be considered at the design stage of the equipment.
The time for which we could expect fault-free operation of ten units (with 90% confidence) is now increased to 27.7 hours. Clearly this is a considerable improvement but it is still hardly a satisfactory situation. In the original example we quote the case of ten such units, the failure of any one unit causing system failure. In such a situation we would be justified in looking for further improvements, but some of these may affect the design of the rest of the installation and would require careful consideration. Redesigning the relay driver to eliminate the relay, for example; although it would increase its intrinsic reliability, it, would mean a drastic change in the interface with the rest of the system. Undoubtedly the power supply is another high failure rate area with its electrolytic capacitors and high power level devices. If the overall system design would permit. since 10 such photo-electric units are used, the use of a common power supply would make a significant change to the overall reliability. The joint m.t.b.f. for 10 units would become (assuming the improvements to the amplifier dis-
cussed above) 422 hours, nearly a $3: 1$ improvement over the original situation,

The above example serves to bring out one or two important points. The overall failure rate of an equipment will be greater, sometimes very much greater than that of any of the components used. Whether or not this overall failure rate is acceptable depends upon the system in which it is being used. Failure implies maintenance and calculation of the expected annual maintenance cost is often the best criterion for determining whether the expected failure rate is acceptable or not. It may seem a defeatist attitude to even consider that a failure rate could be acceptable but we must not lose sight of another factor - that the capital cost and the failure rates of components are closely related. For example, in the case of t.t.1. integrated circuits, when the costs and reliabilities of different packages are compared it is seen that by using Class A devices the cost is increased by a factor of $3: 1$ over that of industrial devices, whilst the m.t.b.f. is increased by a factor of 5 .

Unfortunately there is no easy solution to this problem. A process of trial and error must invariably be used, employing a table similar to that of Table 1, but with an additional column giving the cost of each type of component, so that each component change will enable not only the effect upon reliability but also upon cost to be calculated. This table is inspected to identify those components which significantly affect the overall failure rate and alternative components and/or circuit redesign considered to improve the reliability bearing in mind the effect this might have on the overall capital cost. It may well pay to trade-off increased capital cost against reduced maintenance costs since the former is a 'once only' cost whereas the latter is a continuing cost.

It has already been remarked that failure rate of an equipment is not always due to complete failure of a component but instead is due to parameters varying with age and falling outside acceptable limits. It follows therefore that a positive contribution to reliability can be made by proper attention to equipment design. Electronic circuits should be designed to be as tolerant of component parameter variation as possible. Computer programmes are available which enable circuits to be simulated and the effect of component parameter variations to be accurately determined as well as power dissipations and stress levels. As well as making for a more reliable equipment these design techniques can lead to cheaper designs using wider tolerance components. The design of circuits which are tolerant of component parameter degradation is also very dependent upon the equipment performance specification. Performance specifications should not be unnecessarily tight
since this is immediately reflected in component tolerances.

Choice of components

The reliability of a component is determined by various factors and the degree to which these factors are operative in a given equipment must be decided by the equipment designer before an accurate assessment of reliability can be made. Some of the factors which affect the reliability of a component are:
-- component quality and type of construction
-- temperature
--vibration
-- humidity

- electrical stress level.

Component manufacturers aim their products at various application fieids and often have separate product lines for each - military and aero-space, industrial, domestic consumer, etc. Particularly in the semi-conductor industry the specifications for each of these fields are well defined. For example, in the case of t.t.l. integrated circuits the military product line differs from the industrial version in packaging as well as the performance testing to which the finished product is exposed (on a batch-sampling basis). There are significant differences in the reliability obtained but there are also equally significant differences in cost.

Capacitors are another example of a component field in which there are many types of construction. Here the constraints on the designer are not only cost and reliability but also physical size, maybe weight, and electrical performance. One may for example be faced with the quandary of requiring a silver-mica construction from stability considerations, a polystyrene in order to meet space requirements, etc.

The effect of temperature upon the life of a component may be judged in a qualitative fashion by remembering that the rate at which a chemical reaction takes place doubles for every $10^{\circ} \mathrm{C}$ rise in temperature. In general, electrical components show an increase in their useful life as their operating temperature is reduced. Fig. 2 shows the relationship between junction temperature and m.t.b.f. for silicon transistors.

At high temperatures other effects come into play which affect the mechanical structure of the device in addition to affecting its electrical operation; for example, thermo-plastics soften and distort at temperatures around $95^{\circ} \mathrm{C}$, metal-glass seals rupture due to differential expansion and dielectrics change their characteristics. Under these conditions it is difficult also to maintain stable temperature levels and thermal run-away often occurs. For these reasons electronic equipment should be designed so that it operates well within the temperature ratings of its components with adequate ventilat-

WIRELESS WORLD. FEBRUAFY 1978
ion to remove excess heat. In calculating the expected operating temperature of an equipment the effect of external sources of energy such as solar radiation should also be considered in addition to the expected range of ambient temperatures.

At the other extreme, operation of equipments at low temperatures can also adversely affect the life expectancy. For example, differential contraction of materials in seals, hardening of oils and grease in bearings. Complete failure of electrolytic capacitors, primary and secondary cells (except the Nickel-Cadmium type) in which the electrolyte has a very much lower freezing point than the lead-acid type.

Associated with the effects of operating temperature is the electrical stress level at which a component is operated. In the case of semtconductors, reduction of the applied bias and operating current and voltage levels results in a significant increase in useful life. Tungsten filament tamps which typically have useful lives of some 2,000 hours at full rating, show an increase of up to five times this value for a derating of only 10%.

Closely associated with temperature is humidity. The absolute humidity is determined primarily by the air temperature and is highest at high temperatures and generally decreases with the temperature. Of all the various environmental factors humidity has probably the greatest effect upon component life, and performance. Absorption of moisture by a material used as a dielectric or just as an insulant causes an increase in loss angle with consequent local generation of heat and reduction in performance. Absorption also leads to dimensional changes, lowering of flexural strength and, over a period of time, corrosion of metallic parts, which is exacerbated by galvanic action where the contact of dissimilar metals is involved.

Any equipment which moves or in which there are moving parts will suffer vibration. The design of mechanical structures to minimise the effects of induced vibration upon the components is a complex exercise. To be carried out effectively the precise nature of the induced vibration in individual components must be known. In certain cases the effects of vibration may be alleviated by the use of anti-vibration mounts. Joints of all kinds and connectors are particularly vulnerable, as also are potentiometers, variable capacitors, switches, lamps and lamp-holders.
In this context particularly one must also consider the effects of maintenance work. This is one of many aspects of reliability where there is intersection with the subject of maintainability. In this particular case any component which may be moved in the course of testing may be subjected to damage.
For example, it is often necessary to remove printed circuit boards in order to mount them on extender boards or to
effect a repair. Apart from affecting the electrical contact between the mating contacts of the edge connector due to disturbance of dirt and oxidation layers - which should be cleared anyway before re-insertion - physical damage may also occur during the removal/replacement process. Careful selection of board connectors and design of their mounting plays an important part here. Similar problems arise where it is necessary to replace components. The quality of soldered joints must be controlled and the damaging effects to printed-circuit tracks and the board minimised.

It is, of course, an intractable problem as far as reliability is concerned to include the above and similar effects in any reliability equations at the design stage, unless one has available historical records for similar equipment operated and maintained under similar conditions. However, one is able at the design stage to design with the maintainability of the equipment in mind. The process whereby a faulty component is located should be made as direct as possible thus minimising the amount of speculative board removal and replacement for testing which otherwise occurs in practice.

It is not possible to consider these and other topics which affect reliability in greater detail within the scope of this paper. The subject is very adequately and explicitly dealt with in reference 2 , which also goes a long way towards formulating the whole process of reliability calculations.

System reliability

Much of the foregoing discussion on equipment reliability applies also to system reliability. The system designer will be concerned with integrating a number of equipments into a complete system. When he has some control over the design of the individual equipments also, he will have the necessary data from which to assess the overall system reliability. A difficulty arises, however, with proprietary equipment, for example, a digital processor, where the system designer must rely to a large extent upon the information provided by the equipment supplier, weighted by any previous experience.

The system designer's work does not start when all the separate equipments comprising the system have been der signed, it must start, before any detailed design can begin, with the complete specification of the system for which he must state the required minimum overall system performance objectives. These objectives must include minimum reliability and maximum cost boundaries. It would be super-idealistic to suggest that such boundaries can be fixed absolutely at this early point in the design but an initial feasibility study would indicate where they should be.

The overall design of a system from a reliability point of view requires more than the simple integration of a number
of component equipments and the calculation of the overall reliabilities. In the earlier example of a photo-electric system the reliability which was calculated referred only, in this case, to its electrical performance. In practice the system designer must consider the overall operation of the system. In this example, experience shows that in most industrial applications of photo-electric systems an important contributory factor to the un-reliability of the system, is the accumulation of dust on to the exposed optical surfaces. Prior knowledge of this factor could be taken into account in the design of the optical system and any recorded data relating to failure due to this cause used when calculating the expected m.t.b.f.

Furthermore, the remarks made above regarding the effects of maintenance work on the reliability of an equipment apply equally to a complete system. It is, therefore, equally imperative that the quality control of maintenance work should be at least, as vigorous as that employed at the manufacturing stage. This consideration together with the rising cost of maintenance for complex electronic systems has made the employment of centralised repair depots economically viable. First-line servicing is thus reduced to the task of identifying and replacing a faulty module.

References

1. Military Standardisation Handbook, Reliability Prediction of Electronic Equipment, MIL HDBK 217B, US Dept, of Defence.
2. Electronics Reliability - Calculation and Design, G W A Dummer, and N B Griffin, Pergamon Press 1966.
3. Probability and Statistics for Engineers, Miller \& Freund,'Prentice Hall.

Paris components show travel arrangements

Readers of Wireless World can take advantage of special air travel and accommodation arrangements for the International Electronic Components Exhibition, Paris, April 3-8, made by our publishers, IPC Electrical-Electronic Press Ltd. Itinerary is : depart from London (Heathrow) Airport morning of April 3; return to London evening of April 5; stay in Hotel Meridien (de luxe) at Porte Maillot. Price, including breakfast, entrance to exhibition, services of tour manager and coach transport in Paris, is El20 per person (sharing twinbedded room, single room supplement £23). Send to us for a booking form, which gives complete information.

Microwave hybrid integrated circuit technology

A review of microwave circuitry and systems progress

by R. Davies, Ph.D. and B. H. Newton, Ph.D., Mullard Research Laboratories, Redhill, Surrey

This article describes some of the processes and devices used in microwave hybrid integrated circuit (mic) technology and considers example mi.c. subassemblies which are currently in use, Since m.i.c. technology has influenced only the lower portion of the microwave section of the electromagnetic frequency spectrum. which extends from 1 to 300 GHz (30 cm to 1 mm wavelength), the following text is concerned only with circuits for frequencies between 1 and 40 GHz .

While initially aimost dedicated to a radar role, microwaves now find applications in communications, scientific, industrial and even consumer activities. The attractions of microwaves are many and include broad bandwidth potential, spectrum availability, simple aerials with high gain and directivity and the existence of low sky noise at these frequencies. However, they were initially excluded from most applications as a result of the cost and complexity of the basic components. With the advent of solid state devices, capable of generation and amplification at microwave frequencies, the potential was very much increased. The devices were accompanied by basic technical advantages as well as the well known advantages of improved cost, size, weight and lifetime. For example, the complex global satellite communication systems now in existence depend for their viability on solid state, low-noise amplifiers.

Solid state microwave devices thus enabled microwaves to find new applications. The potential of microwave techniques was further enhanced when these solid state devices were combined with microwave components in hybrid m.i.c. sub. assemblies. These subassemblies are now making an impact at the production stage and we are finding that microwaye techniques are becoming increasingly competitive in certain new fields. Traffic control, for example, is already an established area for microwave devices and systems, as illustrated by the traffic-light radar unit in Fig. 1. In the communications field, new subassemblies include those used in the experimental television receiver
systems which have been employed in Canada recently to receive 12 GHz satellite transmissions. Another example mi.c. assembly is the 12 GHz to 400 MHz frequency converter shown in Fig. 2.

It is the object of this article to review the current status of subassemblies such as these in the light of device and circuit progress.

Developments and trends in microwave electronics

Microwave technology developed around vacuum tube devices such as triodes, klystrons, magnetrons and travelling wave tubes, Waveguide and coaxial techniques were fully compatible with these devices but resulted in large and expensive systems. The advent of microwave solid state devices offered the passibility of reliable, cheap and small components
for the generation, amplification and detection of microwave energy, However, solid state devices were incompatible with waveguide components and consequently their potential was reduced. The Gunn diode. for example, has dimensions of the order of microns, but until fairly recently it was packaged and mounted in a 3 cm waveguide. Furthermore, waveguides have proved an unsatisfactory basis for miniaturisation.

The alternative, the coaxial transmission line, has an impedance level more compatible with that of semiconductor devices, but unfortunately it is not suitable for integration with semiconductor devices. A planar structure is desirable for this purpose. By distorting the coaxial line or the open transmission line, as indicated in Fig. 3. a range of miniaturised, open systems has evolved.

Examples are triplate, coplanar waveguide and microslot, suspended microstrip and trapped inverted microstrip (t.i.m.), Lumped elements have also found applications in the microwave frequency range ${ }^{1,2}$. Although microstrip is often encountered, in combination with one of the other techniques, in subassemblies, we will concentrate on the microstrip technique since it is playing the major role at this time.

The microstrip structure supports a hybrid mode but it is permissible, at low microwave frequencies, to approximate its field configuration to that of a transverse electromagnetic (t.e.m.) mode. At these frequencies the transmission line properties can be derived by calculating the effective capacitance and inductance per unit length of the line by conformal mapping of the strip geometry ${ }^{3}$. Recently, microstrip structures have been constructed at frequencies beyond 12 GHz where dispersion effects are significant ${ }^{4}$ and the t.e.m. representation is inadequate. Here the situation is far more complex and the hybrid structure must be solved. This problem has been the subject of substantial research effort and as a consequence it is now possible to design a complete range of passive circuit elements including impedance transformers, cavities, filters and directional couplers.

The microstrip configuration is sutable for accommodating semiconductor device chips either directly or on the supporting ground plane immediately adjacent to the substrate. Thus we have the possibility of hybrid, microwave integrated-circuit subassemblies. The realisation and performance of these components will

Table. Electrical properties of commonly used substrates

Material	Dielectric constant	Loss tangent
alumina fused quartz sapphire	9.6	1.0×10^{-3}
	3.78	1.2×10^{-4}
	9.3*	0.3×10^{-4}
	11.5^{*}	0.9×10^{-4}
tparallel to A axis		
${ }^{+}$parallel to C axis		
ferrite	14.8	2.0×10^{-4}
(e.g. Trans.		
Tech. G1021)		

be discussed in the remainder of this article.

Technology

As indicated in the introduction, a hybrid microwave integrated circuit consists of a number of semiconductor devices mounted either directly on or adjacent to a planar circuit. The planar circuit, commonly microstrip, consists of a metallic pattern, which defines the passive circuit elements on one surface of a dielectric substrate, the other side being completely covered by a metallic sheet.

Microstrip circuit patterns are commonly defined on 0.020 in or 0.025 in thick dielectric substrates. At frequencies in excess of 12 GHz thinner substrates are sometimes used to suppress "surface wave" modes and

Fig. 3. Miniaturised microwave systems have evolved, as the drawings show, from coaxial or open transmission lines which have been distorted.

over-moding effects. However, careful circuit design can prevent the excitation of such modes on 0.025 in alumina, even at 30 GHz .
The basic process for manufacturing mi.i.c.s consists of the following steps:
(a) substrate selection and processing
(b) complete metallisation of the substrate surfaces
(c) defining the circuit pattern
(d) a plating process to produce conductors of the correct thickness
(e) etching to remove the metallisation from the appropriate areas of the substrate
(f) mounting the semiconductor chips
(g) bonding and etching chips
(h) trimming the circuit components as required
(i) packaging
(i) passivation

It should be noted that processes (b). (c), (d) and (e) depend upon whether a thick or thin film metallisation is used. This will be discussed more fully later in the article.

The substrate

The substrate is selected on the basis of its low loss and high dielectric constant. A fine surface finish is also required to provide close circuit tolerances. A further significant parameter is the temperature dependence of the dielectric constant. The parameters of the basic substrate materials are summarised in the table shown.
Alumina is the most widely used substrate material. However, fused quartz is encountered where either fine definition or high frequency operation is required. Sapphire is sometimes employed, because of its high dielectric constant, to minimise the surface area. Ferrite substrates are used when nonreciprocal elements such as isolators and circulators are required, though the ferrite is often used in the form of a puck inserted in a dielectric substrate. Teflon and beryllia are also suitable for low loss substrates, and the latter is sometimes used to provide a high thermal conductivity $\left(2.5 \mathrm{~W} / \mathrm{cm}^{\circ} \mathrm{C}\right)$. The use of beryllia, however, is very much restricted by its toxicity.

Alumina can be used in the "as fred" state and can be cut into appropriate sizes using a diamond saw or laser. Ultrasonic drilling can be used to drill holes in the substrate, and substrates can be thinned by a grinding process using diamond pastes.

Before metallisation, quartz and ferrite have to be polished using methods similar to those used for thinning alumina, Ferrite, however. requires some care, because intergranular holes may be formed

Fig. 4. This display of drawings shows the sequence of operations for forming a microwave circuit on a substrate.
(3)

$\mathrm{Al}_{2} \mathrm{O}_{3}$ substrate
(b)

(c)

(d)

Nichrerre (about $50 \AA^{\circ}$)
(e)

(f)

(9)

Apply photo resis:

(h)

(i)

(k)

(m)

(n)

Remove resist

J100 Stripper

lodine and gotasslum lodide
(a)

during this process. Holes in the substrate of the order of $1 \mu \mathrm{~m}$ to $2 \mu \mathrm{~m}$ diameter would preclude circuits requiring fine geometry ${ }^{6}$.

Metallisation

The metallisation should provide low loss conductors which are firmly attached to the substrate. The conductors should resist corrosion and should be capable of receiving a bond wire attachment from semiconductor devices.

Two basic processes, thick-film and thin-film, are employed for metallising the substrate and producing the required conductor pattern. The thick film technique is simpler and potentially cheaper and consists essentially of a printing process. The conductors, in the form of ceramic inks, are extruded onto the ceramic substrate through fine silk or metal screens on which the required pattern is defined. The pattern is subsequently sintered at a high temperature $\left(800^{\circ} \mathrm{C}\right)$. Circuits processed in this manner, however, lack definition and often have a loss which is too high for many applications ${ }^{7,8}$.

The thin film process is most commonly encountered today because of the precision and low loss it offers.

Gold is generally used as the conducting metal because of its low electrical resistivity ($2.3 \mu \Omega-\mathrm{cm}$), high resistance to corrosion and compatibility with thermo-compression bonding. However, gold makes a weak bond to the substrate and a thin seed layer (about 200 A) of chromium, nichrome, titanium or tantalum is used to improve the adhesion. When resistive elements are required the nichrome-gold system is very attractive since resistors can be produced by exposing the nichrome seed layer.
Alternative conductor systems involving copper and aluminium have the advantage that they do not require a seed layer. Both metals, however, corrode rapidly to produce a mainly oxide layer which has to be removed before semiconductors can be attached. The metal layers are deposited, either by a vacuum evaporation or sputtering process, to a thickness of about 2000 A .

Resistive elements which are based on the nichrome-gold system and made by the evaporation technique, have improved stability due to the oxidation of the nichrome. This oxidation inhibits the diffusion of nichrome into the gold layer.

In dual metallisation systems the seed layer can diffuse into the gold layer, especially at elevated temperatures, and a barrier layer is often included. Platinum is most commonly used for this purpose but molybdenum and palladium are also employed.

Circuit definition

The required circuit is magnified twenty times and defined on a "cut and strip" film. The film consists of two layers of material, one optically transparent, the other opaque. A positive (or negative) of the pattern can be prepared by removing the appropriate section of the opaque layer. A mask is then prepared by photographic reduction, Computer aided design (c.a.d.) techniques are commonly applied to this part of the process. A computer, fed with the basic
component specification, generates a punched tape representing the circuit configuration. This tape is used to drive an automatic cutting machine to produce the desired pattern on the film material. The circuit pattern is transferred to the metallised substrate by the photolithographic process summarised in Fig. 4.

Devices

Currently, most semiconductor devices used in mi.c. subassemblies are based on either silicon or gallium arsenide material. These devices are available for power generation and low noise amplification. As an example, state-of-the-art performance curves are given in Fig. 5.

Varactors, limiters, switching diodes, impatt and trapatt diodes and bipolar transistors are commonly constructed using silicon technology. Chips of these devices are mounted on the circuit and wire bonds are made to the various contacts. The chip is often mounted on the circuit by heating under ultrasonic abrasion. For this purpose it is not

(d)

(c)
necessary to metallise the silicon if the surface of the mount is gold. A low resistance silicon-gold eutectic alloy is formed. The contacts on the other surface of the chip are suitable for thermocompression wire bonds.

Gunn and impatt diodes, fee.ts and high quality varactors are all based on gallium arsenide technology. Chips are usually mounted using a preformed gold-germanium alloy, and for this purpose the chip is metallised with gold, The upper contact is again compatible with thermocompression bonding and it is often gold metalised at the end of the process.
'The process of alloying the semiconductor devices into microstrip circuits is very important. Poor alloying or contacting appears as a loss resistance in series with the device. Since the resistance of microwave devices is often very low, even a small loss can result in a considerably degraded performance. For example, an additional contact resistance of only 0.5Ω can double the noise temperature in a parametric amplifier application and reduce the efficiency from 40% to about 25% for an S-band trapatt oscillator.

The upper limit on the chip temperature is commonly taken to be $200^{\circ} \mathrm{C}$. Chips for oscillators and amplifiers should therefore be connected to the heat reservoir via a low resistance path. Since the substrate is usually a poor thermal conductor, device chips are mounted directly on a gold-plated copper stud. Typical values of thermal resistance are in the range 10 to $100^{\circ} \mathrm{C} / \mathrm{W}$.

Packaging and protection

Semiconductor devices were initially mounted in sealed packages which were designed to minimise parasitic reactances and thermal resistances. They were small and expensive. Now unencapsulated semiconductor devices are, where possible, mounted directly in the circuit. Careful attention to the contact design and the use of silicon rubber compounds for passivation can result in simple, reliable subassemblies which can survive the environments applicable to the consumer market. For applications involving a wide temperature range the complete circuit is sealed. This involves the use of seated r.f. connectors.

Examples of microwave integrated circuits

Five hybrid mi.c. subassemblies, which employ the technology described above, are shown in Figs, 6 to 10. These examples are selected to demonstrate that simple circuits can perform adequately for systems applications. They extend from simple oscillators to fairly complex subassemblies.

Figure 6 shows an X-band varactortuned Gunn oscillator. The circuit is constructed on a ferrite substrate and

Fig. 6. An X-band Gunn oscillator on a ferrite substrate.

Fig. 7. An X-band Doppler module on a ferrite substrate.

Fig. 8. An X-band parametric amplifier.
includes a circulator to provide output isolation. The Gunn diode chip is mounted on a gold tab to minimise the thermal resistance. It is series resonated by the wire which connects between the chip contact and the circuit and a varactor diode chip. The necessary temperature stability is achieved by coupling the circuit to a microstrip resonator.

The performance figures for the oscillator are as follows. The power, voltage and current ratings are 10 mW , 8 V and 100 mA respectively. It has a centre frequency of 9.4 GHz , an electronic tuning range (e.t.r.) of 100 MHz and it requires a tuning voltage from 2 to 6 V . Over the e.t.r. the temperature stability is $1 \mathrm{MHz} /{ }^{\circ} \mathrm{C}$.

Figure 7 is a simple Doppler radar module which is essentially an extension of the varactor funed oscillator. A detector diode is mounted on the third port of the circulator and the transmitted and received frequencles are permitted to mix within this device. The unit shown is in the final stages of development and indicates the practicality of the m.i.c. approach.

Figure 8 is a photograph of a parametric amplifiers. This unit indicates the problems of applying hybrid techniques to components which involve a wide frequency range. Under such conditions it is necessary to use multiple substrates, and these may still be combined with waveguide technology at frequencies around 40 GHz .

Figure 9 illustrates a subassembly which combines the microwave circuit (consisting of a Gunn local-oscillator, similar to that in Fig. 6, and a double balanced mixer, on alumina) with two i.f. amplifiers. Chip capacitors and integrated resistors are used in this assembly. Figure 10, however, shows a 900 MHz transistor amplifier in which all components are fully integrated on the
continued on page 67

CITIZENS' BAND

IN response to correspondence on the subject of the allocation of a small part of the radio spectrum for citizen use I received a reply from the Radio Regulatory Department of the Home Office which stated that, "the Government has announced that the disadvantages outweigh the advantages and that it has no intention of introducing citizens' radio in the UK."

It would seem that the official attitude has now hardened and the Government and its advisers have been unimpressed by arguments based on possible uses in accidents and disasters and more impressed by reports of misuse in USA, problems of regulation, interference to other users and services and possible frustration of law enforcement efforts. The citizens' band lobby appears to have failed and supporters will now have to consider whether to accept the official line or to increase political pressure upon MP5.
W. G. C. Austin

Newcastle upon Tyne
Editor's note: At least the electronics industry has not given up hope. A working party of the Electronic Engineering Association (March 1976 issue, letters, p. 61) has recently made an interim report on the possible introduction of CB in the UK, and in this has considered the scope of the service, how it will be licensed. how the equipment will be approved for use, and the standards to which the equipment will be designed and manufactured. It seems the manufacturers are ready if and when the Government changes its mind.

AMATEURS POWER LEVELS

1 REALLY must take issue with the greatly over-estimated power levels quoted by your correspondent Pat. Hawker int his December issue "World of Amateur Radio". I am at a loss to understand how he can possibly infer powers of $50-100 \mathrm{~kW}$ er.p. as being typical of those used on 432 MHz . Even if an amateur does manage to achieve 400 W output at this frequency, which is doubtful, he will have to face at least 2 dB , and probably more, loss in the coaxial cable feeding the antenna. This will bring his power at the antenna to around 200W. Many antemnae have over-estimated gain figures and a fair estimate of the highest gain aerial being used regulariy in the London area would have approximately 17 dB gain. The er.p, would, thus, be about 10 kW . To infer an output power of 100 kW would suggest an installation having 27 dB gain which, frankly, is preposterous at this frequency.

The limitation of British amateurs to an input of 150 W d.e. power is highly misleading sinee, assuming a class C efficiency producing an uttput of 100 W carrier, when fully modulated with a.m. the output, in fact, becomes 400 W p.e.p., identical to the maximum equivalent peak envelope power allowed for $\mathrm{s}, \mathrm{s}, \mathrm{b}$. In many countries there is far greater legislation against manufacturers forcing them to produce adequate filtering to stop domestic ty sets from picking up frequencies that they are not theoretically licensed to recerve. I must insist that domestic ty and radio equipment must have the same components fitted as are supplied in sets mroduced for the German market, for

example. Whilst 11 agree with a, m. and f.m. being limited in the way that it is already. 1 see no reason why the rating for c.w. should not be the same as for s.s.b.

I will admit that I have gone to extremes in my own v.h.f./uth.f. installation and by using cable that is extremely expensive can produce an absolute maximum of around 12 kW t.r.p. on 432 MHz . While being a long way short of Pat Hawker's 100 kW . this is adequate for my purposes but only just sufficient for spectalised DX working, which is my primary interest.

As Public Relations Officer of the UK EM Group (London) I wish to state categorically that there has never been any decision by any committee member or by the commtitee in general even to consider closing down the London GB3L.O 2 m repeater. I must assume that Mr Hawker had foreknowledge of a forged letter sent ta the RSGB and not to him. I must criticise his making use of information in a letter which was not authenticated. The Nuvember issue of the RSGB magazine Radio Communication deals with the matter at length, but please rest assured that the opinions of the UK FM Group (Lon(don') are most certainly to press for more repeaters on 2 m in the London area, preferably a further three.
Finally, as far as aerial heights are concerned, many tests have been made at different power levels and heights and it is clear that for repeaters to have an adequate coverage when used by mobile stations, hushts of $100-300 \mathrm{ft}$ above ground level are essential if transmissions are to be received adequately under all trafiic and obstacle conditions. The present heights employed by repeaters are ideal for the purpose and in no way are they causing interference other than relaying that produced by unlicensed pirate operators whom the Post Office seem to be either unprepared or unable to locate and prosecute. Over 99^{n} n of regular users of repeaters behave as one would expect of them, and it is most undemocratic to think of closing down any forms of amateur radio transmissions because of the extremely small minority of vandal operators. Perhaps next, someone might suggest doing away with telephone boxes, in order to stop financial losses through their vandalisation.
Angus A. Mckenzie G30SS
Angus McKenzie Facilities Lid
London, N3
Pat Hawker comments: Tokeep it short: 1 did not say a maximum of $50 \cdot 100 \mathrm{~kW}$ e.r.p. Was "typicat" on u.h.fi; nor did 1 infer it was even feasible in the UK with logally-rated transmatters. I agree that only a few amateurs
currently exceed about 10 kW e.r.p. on 432 MHz . But does Angus McKenzie deny that some amplifiers in current use are capable under two-tone or speech conditions of up to say 800 W p.e.p. (not average) output? A transmission line loss of $1-2$ dB may be difficult to achieve at u.h.f. but is feasible: similarly an aerial power gain of 20 or 21 dB. I make that a maximum of about 50 to 80 kW (peak) e.r.p. So is " 50.100 kW " greatly overestimated?

I find it difficuit to take sertously the suggestion that I had "foreknowledge" of, or used unethically, that forged letter. I. like others, was misled - but, then, only a few months before I had reported a statement by the chairman of the UK FM Group London that "some of the things I hear through GB3LO make me ashamed to be associated with it. There have been suggestions that GB3LO should be closed down completely, and more specifically that it should be closed in the evenings". That hardly squares with Angus McKenzie's categorical statement. Through no fault of the UK FM Group for the RSGB) GB3LO has undoubtedly gravoly damaged the reputation of amateur radio in this country. If it cannot be cleaned up, it will peventually be closed down, Pairly or unfairly.

GEOMAGNETIC SENSE IN BIRDS

MR WHATWORTH'S proposal (December. 1977, letters) that wing movement may be a basis for geomagnetuc sense in birds is most interesting However, any general model of such a magnetic sense should consider two facts. First is the relatively large current flows praduced in tissues by muscular activity and second is the remarkable behaviour of the Emperor Penguin.

Co-ordinated muscular activity may pro duce potential arradients in the skin of more than 100 microvolts per millimetre due to current flow from the active muscles into the tissues around them. Some mechansm would need to be postulated, therefore capable of separating any signals produced by wing movement in a magnetic fleld from the potential difference produced by the muscles which move the wings. The currents associated with muscular contraction are several orders of magnitude larger than those generated in Mr Whatworth's model and both would be highly correlated with wing movement.

The Emperor Penguin breeds mileralia fn th rookery near Halley Bay in Antarctica. The position of the rookery appears to be con stantly related to a major geomagnetic ansmaly. The location is on the winter sea tre close to the cliffs of the Brant ice shelf. The topography of the cliffs and their distance from the anomaly is vartable from year to year as icebergs caive during the summet months. The birds have no constant visual feforence for the annual relocation of the rookery.

When breeding, one of the patr trayels from the rookery to the edge of the ice, about 100 miles away, to feed on tish. It thent returns to the rookery to feed the chek on the products of the stored foud. This remarkable journey is made by walking or sliding but never by flying. The pemguint fore limbs are highly adapted for swimming but are useless for flying

If, as seems passible, the Emperar Penguit natrigates to its rookery by a magnetic sense
and the local peculiarities of the earth's magnetic field, then it must pither have an extraordinary differential sensitivity to any e.m.f. produced by movement of its small flippers, or some different type of mechanism must be considered.
J. D. Dawson

British Medical Association
and
G. D. Dawson

University College, London

DISTORTION IN LOWNOISE AMPLIFIERS

IN his otherwise informative article on distortion in transistor amplifiers (August 1977 issue), Mr Taylor is incorrect in stating that the equation
$\exp \left|\frac{e V}{K T} \cos \omega t\right|=\alpha_{0}+\epsilon_{1} \cos \omega t+$

$$
\begin{equation*}
\alpha_{\gamma} \cos 2 \omega t+ \tag{1}
\end{equation*}
$$

cannot be solved analytically. The required mathematical identity is (1.21
$\exp (\lambda \cos \theta)=I_{0}(\lambda)+2 \sum_{i=1}^{2} 1_{n}(\lambda) \cos (n \theta)$ where the coefficients $I_{n}(\lambda)$ are $n^{\prime=}$ order, modified Bessel functions whose values may be found in standard tables ${ }^{12}$ a/ Thus the amplitude of the $n^{\text {th }}$ harmonic relative to the fundamentat is given by
$A_{n} / A_{1}=I_{n}\left(\frac{e V}{K T}\right) / I_{1}\left(\frac{\mathrm{eV}}{K T}\right)-\frac{1}{n!}\left(\frac{\mathrm{eV}}{2 K T}\right)^{+-I}$
where the last expression is an approximation, correct for small values of eV/KT. The exact value of t.h.d. may be easily calculated since successive coefficients are of rapidly decreasing value.

However, for approximate calculations neither tables not computers are required. Equation (3) shows that the second harmonic distortion level in per-cent is roughly given by
$D_{2}=\frac{100}{2}\left(\frac{e V}{2 K T}\right)=25 \frac{e V}{K T}$ (\%)
Further, since the L.h.d. is predominantly second harmonic, and since KT/e is 0.025 volts at room termperature, we find the remarkably simple rumerical approximation.

$$
\begin{equation*}
D=V \tag{5}
\end{equation*}
$$

where D is the t.h.d. in percent and V the base drive in millivolts. As Mr Taylor noticed from his numerical calculations, the distortion is 1% at 1 mV drive and is 10% at 10 mV !

To see the degree of approximation involved, the accompanying figure compares

the approximate and exact values of the second and third harmonic components D_{2} and D_{s} (note different scales) using equation (3). One can show numerically that the th.d. curve lies between the exact and approximate D_{2} curves, Thus equation (5) is accurate to 1% up to 15 mV base drive and is less than 3% high at 25 mV .
P. D. Edgley

Department of Engireering Science
University of Oxford

References

1. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., 1958, (Cambridge University Press).
2. M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions (Dover Publications).
3. British Associates for the Advancement of Science, Bessel functions, Mathematical Tables Vol. VI (1950) and Vol. X (1952), Cambridge University Press.

Dr Taylor replies:

It is evident from Mr Edgley's letter that I should have been more cautious in my choice of words when I stated that the Fourier Series expansion for the exponential baseemitter characteristic of a transistor could not be solved analytically, Mr Edgley is qquite correct in pointing out that a table of modified Bessel Functions allows an analytical solution. Unfortiunately it is normally necessary to resort to recurrence relations to determine the higher order functions (see for example Mr Edgley's ref. 2) and again the solution becomes laborious. The repetitive nature of the calculations to determine th.d. as a function of input signal amplitude is ideally suited to a numerical computing technique which, with a minor programme modification, also allows the distortion performance of the long tailed pair input stage to be calculated.
I would now like to reply to the comments made by Mr Dytch and Mr Bishop in their letter in the November 1977 issue.
When the design of this pre-amplifier was initiated some time ago I consulted a well known cartridge manufacturer to determine whether the input bias current would damage the cartridge and was informed that it would not. It seems unlikely that 100 nA of bias current will have any effect on the performance of a magnetic cartridge and recently Shure have been kind enough to conduct tests with their V15 Mk III cartridge and confirm that this in in fact so. If however the amplifier is adapted for use with a moving-coil cartridge it would perhaps be advisable to a.c. couple the input to prevent damage to the cartridge.

I have received some correspondence concerning the accuracy of the RIAA equalisation, typically -2.5 dB at 20 Hz and +2.5 dB at 20 kHz with my original circuit. The discrepancy at low frequencies is primarily due to the $10 \mu \mathrm{~F}$ capacitor and $1 \mathrm{k} \Omega$ resistor in the input circuitry giving a low frequency roll off at 16 Hz . Increasing the capacitor to $47 \mu \mathrm{~F}$ brings the equalisation to within 1.0ciB of the RIAA characteristic with the preferred values of components used in the equaltsation network. Correct high frequency equalisation of a series feedback pre-amplifier presents certain problems because it is not possible to obtain a gain of less than unity. These problems become more severe as the sensitivity is reduced and therefore, for a particular amplifier design, the accuracy of equalisation is related to the
overload capability. The high frequency equalisation of my original circuit can be improved, however, to within $1,0 \mathrm{~dB}$ of the RIAA characteristic at 20 kHz by shorting out R_{d} and increasing C , to 75 pF to maintain closed loop stability. As yet 1 have not made any measurements with this circuit modification but cannot see any reason why it should significantly effect the distortion performance of the amplifier.
Eric F. Taylor.

DIRECT SENSING OF RADIO WAVES?

MR DONALD WOOD, who writes in the December issue concerning the direct perception of electromagnetic waves, might be interested to learn of some experiments carried out by A. F. Collins in I902. These were aimed at verifying "the casual observations long since made that approaching electrical storms manifested their presence in persons afflicted with certain forms of nervousness and other pathological conditions, though the storm influencing them might be many miles beyond, or even below, the horizon. To accomplish this task it was necessary, of course, to decide conclusively that electric waves exercised some behaviour or produced a change, molecular or otherwise, on the brain cells."
Collinst technique was to insert two electrodes into the brain to see if it would act as a "coherer" - i.e. to search for a decrease in resistance under the influence of electromagnetic radiation. He experimented initially with a dead mammalian brain obtained from a slaughter-house, and with the brain of a live cat which, in Collins' own words, "willingly lent itself to the subject for the investigations to be made on brain matter in the living state". Coherence was obtained, and also some twitching of the base of the brain was seen in response to the application of the electromagnetic stimulus.
Encouraged by these results, he repeated the experiments on a human brain from a recently deceased person, and found that the rust-red material in the cerebellum showed the greatest response. Finally, he carried out some measurements of resistance to determine the effect of 24 hours brain deterioration, but found that his instruments were behaving very erratically, the galvanometer needle jumping all over the scale. "This state continued for a few minutes, when a peal of thunder awaked me to the actual cause. A storm was approaching.... As the storm approached, the deflections grew more and more pronounced, the needle quivering at either end of the scale alternately as though endowed with life. The very phenomenon I sought to verify with a 2 cm spark coil was here produced by the lightning itself......1ti these tests I was favoured with circumstances which, with me, might, never occur again, for the reason that a fresh human brain was necessary, and that an electrical storm should be in progress when all was in readiness was quite remarkable".
Some other relevant remarks were made by the editor of the journal The Electrician in 1913. He was commenting on the experiments performed by Prof. Lefeuvre of Rennes, ${ }^{\text {kit }}$ and verified by H, R, B. Hickman." In these, the sciatic nerve of a frog's leg was connected to an aerial (via a rectifier) and to earth. The incoming c.w, telegraphy signals were then read from the Galvanic twitchings
of the frog's leg. The editor wrote, "Perhaps those who write 'scientific' articles for our daily contemporaries will see in this an explanation of the twitchings which some folk feel at the approach of a thunderstorm. But it occurs to us that oscillatory current cannot in fact affect nerves and muscles, for it if could, then in spite of the 'skin effect' the neighbourhood of a large wireless telegraph station would be full of votaries of $S t$ Vitus during the despatch of a message."
V. J. Phillips

Sketty
Swansea

References

1. A. F. Collins Electrical World and Engineer, vol $39, \mathrm{No} .8$. Feb. 22. 1902, p. 335.
2. Electrician, vol. 71, 1913, p. 93.
3. J. A. Fleming, "Principles of electric wave telegraphy and telephony", (Longmans), 3rd ed. 1916, p. 540.
4. A. Gradenwitz, Electrical Review, vol. 71, No, 1826, Nov. 22, 1912, p. 820.
S.H. R. B. Hickman, Electrician, vol. 71, 1913, p. 143.
5. Electrician, vol. 71, 1913, p. 81 .

MOBILE RADIO SPECTRUM UTILISATION

YOUR article "Home Office sifts WARC Evidence" in the October 1977 issue high. lights a number of interesting points. Prominent among them are the views of an American manufacturer in which (a) they see mobile radio development moving towards the use of digital techniques and (b) they consider any channel bandwidth of less than 25 kHz as a backward step. One infers from the text that the Iwo points are linked.

Undoubtediy trends in the evolution of mobile radio indicate that certain types of user, in particular those asers requiring security and speed of communication on a large scale, will, during the next decade. move towards the use of new techinques in which digital methods will form a major role. Three points, however, emerge:

- Conventional speech methods will undoubtedly still remain the prime mode of communication for many years to come - in particular with the small user.
- The fransmission by radio of high speed data, digital speech etc, is still in a relatively tearly stage of development.
- Indications are that the digital methods are currently wasteful in the use of frequency spectram. Consequently doubt must be expressed as to the wisdom of allocating a common channel bandwidth standard, fdequate to accommodate today's digital communication systems, but considerably in excess of that accepted as adequate for transmitting speech or slow speed data intelligence.

It seems likely that future developments of digital techniques will produce methods capable of operation in reduced bandwidths; it may however be wrong to base all charuiel allocutions at this time on such a possibility. However, I believe that a more realistic approach would be to divide the available spectrum into channel units suitable for conventional speech communication 1212 kHz for example - and, where a need for a channel of wider bandwicth is Justified, to combine the use of two or more adjacent channel units for the purpose. By this method, subsequent changes to spectrum
planning, brought about by a reduction in bandwidth needs as development proceeds, could be implemented by merely adding ather users in the vacated slots.

Certainly the use of digital techniques high speed data, digital speech etc, - will grow, but it is anticipated that by the time more users, large or small, need to employ such techniques, the state of the art may well be sufficiently advanced as to require a totally different approach to spectrum planning.
W: M. Pannell
Stapleford
Cambridgeshire
Editar's note: Mr Pannell is the principal author of the "Pannell report" on private mobile radio issued by Pye Telecommunications last year (5ee February 1977 issue, p.31).

TUMOUR ERADICATION BY R.F.

THE paragraph in Pat Hawker's column in the November, 1977, issue reminded the of some experiments I conducted when working on the fonophone project at Plessey in the early 'fifties. As readers of Wireless World will remember ("Loudspeaker without diaphragm," January, 1952) the ionophone is a loudspeaker in which the conventional diaphragm is replaced by a column of ionised air located at the throat of an exponential horn. The excitation is provided by an amplitude modulated r.f. arc. The power for this was provided by two EL38s operating in class C at 20 MHz . coupled to a self-resonant inductance. Power input was about 40 watts.

Having tried unsuccessfully to eliminate a large wart near my knuckle with silver nitrate, trichloracetic acid and finally a soldering iron, 1 concerved the motion of employing r.f. energy from the ionophone oscillator. About five seconds treatment with a stub tapping, a few turns up the selfresonam secondary, generated enough heat in the wart to kill it, and healing was complete in two weeks.

J. A. Carder

Wrecclesham
Surrey
Editor's note: Mr Carder's experience is interesting, but we would not like to encourage readers in self-treatment of this kind.

SYNTHESIZED F.M. TRANSCEIVER

IT was good to see an article aimed at the amateur fraternity but using current technology, viz, the c.m.o.s, variable divider chain in the synthesizer (November and December. 1977 issues). Whtle not wishing to criticise in any way Mr Forrester's article. which obviously relates to a Irunsceiver now glving him excellent service, I feel the following comments may be helpful to other potential constructors:

1. The 4059 divider. used here to 6.08 MHz , is guaranteed by the manufacturer to operate to 3.0 MHz (at 10 V). 6 MHz being only a typical figure. Since the 4059 costs about E 6 , selection of a suitable sample could be risky or expensive.
2. The set of 4059 plus 3 -off $4560 \mathrm{c} . \mathrm{m}$.d.s. l.cs forming the variable dividet chain cost
about E12. A v.h.f. prescaler is relatively inexpensive - the Plessey SP8655 is guaranteed to $200 \mathrm{MHz}(\div 32)$, interfaces directly with t.t.1. or c.rt.o.s., draws 50 mW (typical) and costs about £s. By using such a device the y.c.o. could be operated at final frequency, avoiding spurious signals from the usual multiplication process, thus saving two muttipliers in the transmitter chain; two multipliers in the receiver chain, and the existing 44 prescaler. Moreover, the reference frequency would be $25 / 32 \mathrm{kHz}$ and the maximum input to the 4059 reduced to 4.56 MHz . (still outside the guaranteed figure, but more acceptable than 6.08 MHz),
3. When changing frequency in a synthesizer there is always a period prior to locking when the v.c.o, is sweeping towards the new frequency, Although this may exist only for about 100 ms in a system such as this with a reference frequency around 1 kHz , it wili occur every time the transmitter is energised. The transmitter would be capable of deLivering full power while its output is swept from receiver $T .0$, frequency to transmitter frequency, i.e, over 10.7 MHz . The block diagram given does not indicate the presence of a suitable "inhibit until locked" circuit for the transmitter, and so operation could certainly cause interference to other users, apart from the operator unwittingly contravening the terms of the amateur licence.
4. It is essential to provide an adjustment for pulling the reference crystal to precisely the correct frequency, since the typical manufacturing tolerance of $\pm 0.005 \%$ an crystal frequency represents $\pm 7.25 \mathrm{kHz}$ at 145 MHz .

J. A. Short

Farmbonough
Hants

EXPERIMENTS ON PHASE AUDIBILITY

SEVERAL readers have asked for further clarification of two points in my article on phase audibility (October 1977 issue, pp. 79-81). I would therefore like to add a few comments to the record, as follows. Question: Were the Bose 901 loudspeaker tests done "up close", and were they "blind"? Answer. The singie Bose speaker, and also the crossed-over pair of Bose speakers, were compared with the live performance "up close", that is, at a distance of ten feet from the listening jury. The tests were run blind, through a lit-up gauze curtain. Listeners could not be fooled at this distance, but a rank ordering of quality (best, equal, worst) was attempted. The essentially phasecoherent playback was not any more like the live performance than was the phase. distorted playback.

When the tests were run indoors, in a typical household environment, the Bose speakers were able to fool listeners at a distance of 35 feet (through a large, open doorway), but not any closer. The Magrrepan speakers fooled the listeners at 25 feet indoors and 15 feet outdoors, but not at ten feet.
Daniel Shanefield
Princeton; N.J.
USA

Editor's note: The following corrections should be made to Dr Shanefield's article. On page 79, middle column, the final six lines of the column should have been printed before
the penultimate line of the first column (after the word "But,..""). On page 80, first column, line 27 should read" don't have perfect enough transducers to do the, ..." On page 81, first column, line 5 should read " did produce essentially coherent.... *. Also on page 81 "Magnapan" should be spelt "Magnepan", reference 13 should be deleted, and there should be a note stating that the article was based on a paper presented to the Boston Audia Society (USA) in July 1976. Apologies for these errors.

LONG DISTANCE U.H.F. RECEPTION

I AM one of a number of enthusiasts, both professional and unconnected with radio communication. who are experimenting with consistent long distance u.h.f. reception particularly of television signals and using very high gain receiving systems. We have experimented with arrays of high gain Yagi aerials and have now begurn to investigate the characteristics of parabolic reflectors. Unfortunately we are finding it almost impossible to find practical down-to-earth articles on the subject in print and wonder if any of your many thousands of readers around the globe would like to exchange details of experiments, among which are optimum size of dish, optimum focus to diameter ratio, height above ground level, optimum low noise amplifier configuration, etc-
So far with a temporary 25 ft diameter dish at few feet above ground we have confirmed the precise focusing effect and very high gain of a parabola but it has been a matter of many hours of tedious experiment. Also tried was diversity at separated sites of reception over a 180 mile path, with the resule that the further the separation of aerials the better, at least up to 3 miles so far. Along the coast where we have been experimenting the signal levels of the distant 500 kW television transmitter in Cornwall vary tremendously depending on the tropospheric propagation, ranging from a couple of microvolts to tens of millivolts over even short periods of recep. tion, i,e. 24 hours. We would like to hear of similar attempts at long distance reception of u,h.f. signals on the busis of exchange of ideas and results. Someone somewhere must be spending countless hours experimenting on a similar basis.
Des Waish E15CD
Ballylynch
Carrick on Suir
Co. Tipperary
Rep. of Ireiand

USEFUL CALCULATOR TRICKS

BEING an owner of the CBM 4190 electronic calculator, 1 have discovered a couple of useful tricks which this excellent machine will do and which are not mentioned in the rather brief CBM handbook.

1. The "integration" function can be used not only to find the area under a curve, but also the area inside a loop, i.e. a cyclic integral can be evaluated.
This is done simply by entering in the x and y co-ordinates of a number of points round the loop, in the same way as in the area-under-
the-curve method. However, the first point entered must be entered again at the end of the sequence, to complete the loop. The first point can be anywhere on the loop, and the points can be entered either clockwise or anti-clockwise,

This facility will be found extremely useful for calculating the "work done" in pressurevolume diagrams, and for finding the hysteresis loss from B-H and similar curves.
2. A conversion from decimal to degrees-minutes-seconds format is normally performed by entering the decimal number and using $\dot{F}, 8$. However, even when many numbers need to be converted, the F,8 only needs to be used once, at the beginning of the sequence. This is done as follows: Enter the first number and press F.S. This converts the first number. Now simply enter the other numbers, pressing only the $=$ key after each one.

The only apparent problems with this method are that numbers like 25 must be entered as 0.25 , and negative numbers are not permissible at all.

It is worth mentioning that converting 34-24-36 (degrees-minutes-seconds format) into degrees Centigrade gives an interesting answer of the order of 10°. This is of course completely useless for most applications. Peter Holy Worthing
Sussex

AUDIBLE AMPLIFIER DISTORTION

PETER BAXANDALL and Peter walker clearly set much store by transfer distortion assessments of an amplifier's audible performance. ("Audible amplifier distortion is not a mystery", November 1977 issue). But. despite the subjective experiments Mr Baxandall has devised to ascertain, to his satisfaction, that interaction of sub-threshold distortion with signal does not take place as a result of the complex (and poorly-understood) process of the auditory response, the validity of this technique (in terms of listening to the difference signal as opposed to measuring it) rests firmly on the assumption that such interaction dges not occur:
The study of binaural beats has ciearly shown. however, that this can indeed take place. The threshold of hearing is a psychological rather than physical phenomenon: binaural beat research has indicated that our brains can detect and process sounds down to at least 20 dB below threshold. Consequently we have to be careful to define precisely what we mean by "hearing" a sound. It's altogether safer, perhaps, to talk in terms of perceiving sounds when we are conscious of them (which is the meaning in which we normally use "hearing") and monitoring sounds (for want of a better term) when we detecr and process them at levels below threshold.

Of course, the fact that we do "monitor" sound and that under certain circumstances it can interact with super-threshold sounds such that their perception is altered does not necessarily mean that sub-threshold distortion in audio amplifiers produces audible degradation of music signals. What it does do. however, is throw a somewhat jaundiced light on Mr Baxandall's conclusion that the True significance" of amplifiers producing
total silence in transfer distortion tests is, "quite inescapably, that such amplifiers are subjectively perfect." You may well believe this to be so. Mr Baxandafl, and time may prove you correct but, as yet, the response to your flat assertions can only be - "non sequitur."
K. D. Howard

Oxford

Reference

1. Oster, G. "Auditory Beats in the Brain," Scientific Americar. 229. No. 4 (October 1973). pp 94-102. Offprint No .1282.

AUDIO is a prolific breeder of folkiore, so a reminder of the need for rationalism is slways timely; we stand on the slippery slope of superstition once we abandon our belief that audio phenomena are matters of physics, not magic. Mr Peter Baxandall (November 1977, p.63) provides just such a necessary reminder, but unfortunately throws out the baby with the bath water.
The wires going to an electric bell are part of an oscillation-determining circuit involving milli-microsecond transients (they cause radio interference) and it is by no means obviously absurd to suppose that the highfrequency impedence of the wires could affect the action of the bell to an extent that can be heard. On the contrary, it needs calculation based on the mechanisms supposed to be acting before it can be concluded whether or not a significant effect is likely; and even then the conclusion is vulnerable to whether all relevant mechanisms have been correctly identified.

Moreover in audio we are largely deprived of quantitative limits until we have a comprehensive theory of how the ear and brain act. If such a theory exists I have yet to hear of it, and the history of audio might be described as a century of underestimating the sensitivity of perception by the human ear.

It is of course tautologically correct that if linerarity and frequency response are the sole significant properties, then all amplifters will sound alike if they have identical frequency response and are tested under conditions which include "avoidance of overloading". The difficulty is to define, without logical circularity, when all forms of "overload" (i.e. non-linearity) have been avoided, as they were not in early class-B transistor amplifiers, or more recent slewrate limited ones, that passed all the distortion tests that were initially thought suffictent. In each case our ears told us what we only afterwards learnt how to measure.
Leinonen and Otala! have reported measurements on a power amplifier which passed with flying colours total harmonic distortion, SMPTE and CCIF intermodulation and dynamic intermodulation tests but showed unexpectedly large frequency-transierence of energy in the noise-intermodulation test. This finding may be connected with the opinion of some listeners, accused in consequence of claiming to have "golden ears". that the subjective performance of this amplifier leaves something to be desired.
Peter Fellgett
Department of Cybernetics
University of Reading

Reference

1. Leinonen, E., and Otala, M., "Correlations of Audio Distortion", AES 56 th Convention, preprint 1223 (G-1), March 1-4, 1977; Fig. 9.

WRELESS WORLD, FEBRUARY +976
MOST OF THE radio aids so far described are situated within the airways where they can be of utmost use to aircraft flying within the system. It is not, however, generally realised that business and private aircraft movements outweigh those of the scheduled airlines, and pilots of these smaller aircraft often cover routes not served by conveniently situated v.o.r/d.m.e. facilities or even suitable n.d.bs for use with the radio compass.

Area navigation, as opposed to hopping from beacon to beacon within the airways, entails planning the route using pre-selected turning points, or waypoints, for the purpose, most of them not served by a radio aid. Since the weather may preclude recognition of these waypoints by map reading, other means have to be provided. One such method is known as RNav. It makes use of v.o.r. and d.m.e. information which is fed to a computer provided with the means of off-setting a convenient v.o.r./d.m.e. station from its existing position to where you want it to be. Thus a pilot may "move" the nearest v.o.r./d.m.e. station to, for example, a farmer's field. In its simplest form RNav makes use of the aircraft's existing v.o.r./d.m.e. equipment to which is added a computer with setting knobs for entering the bearing and distance of the shift from the existing to the "ghost" position of the ground facilities. More advanced versions have a readout, with keyboard entry and the ability to store a number of waypoints. At any time the pilot may ascertain distance to run and time to go for the next waypoint. This remarkable navigation aid is, of course, very convenient to use but in moving the v.o.r. (d.m.e. facility to a place of the pilot's choosing it takes with it all the errors associated with voor.

Decca Navigator. More accurate than RNav but heavier and far costlier is the Decca Navigator, a system invented by an American who, believe it or not, came to Britain and set up a company to develop it because there was no support for him in the USA. Like v, orr, the Decea Navigator is a phase comparison aid but here the similarity ends. It operates in the 70.130 kHz band and the ground arrangement consists of a master transmitter and three slave stations positioned some $50-100 \mathrm{~nm}$ from it at roughly 120° intervals (Fig. 4). The complete installation is known as a

Fig 4. Decca chain showing the Master station. $M_{\text {, }}$, and the Red, Green and Purple (R, G P) slave stations. In the inierest of clarily only the hyperbolic phase paflert generated by the Purple/Master baseline is shown. Simitur patterns are generated byRed/Master and Green/Master baselines.
by Alan Bramson M.R.Ae.S

Radio on the flight deck-2

Concluding with area navigation systems and landing aids

Decca chain and a number of them cover certain areas of the world.

The method of operation is as follows. The carrier waves of the master and its three slaves are phase-locked and if one imagines wave relationships along the baseline between the master and one
slave it will be realised that a number of intersections will exist at half-wave intervals. A phase comparison meter equipped with some form of counter would be able to determine position along the baseline. Looking at the system in plan form the half waves can be imagined as concentric circles based upon each of the four transmitters. This is shown in Fig. 4. The three slave stations are named Red, Green and Purple and the intersection of Red/Master, Green/Master and Purple/Master half-waves creates three hyperbolic patterns in the sense that each hyperbola is the locus of all points with a constant phase difference. ${ }^{\text {* }}$ The patterns are known respectively as Red, Green and Purple, and the complete hyperbolic lattice covers a considerable area.

In the aircraft is a receiver capable of accepting transmissions from the three slave stations and their master. Phase comparison units determine the position of the aircraft on the Red, Green and Purple lattice lines so that a fix can be obtained from the intersection of these lines, and the rest of the story is a matter of presentation.

In its earlier forms the information was conveyed on three Decca Meters and readings from them had to be related to special maps overprinted with the Red, Green and Purple hyperbolic patterns in those colours. Now the entire system is automatic, there is a

- For a full explanation see "Hyperbollic radio navigation systems" by F. S, Stringer. Wireless World, August 1969, pp. 353-357

moving map display and the charts are made up in rolls like a large film cassette some 12 in wide.

Decca is very accurate, some of the equipment being capable of providing a position to within a few hundred yards. However, it has been a long time attaining its present state of near perfection and events have tended to overtake the aid. Furthermore, there are not many Decca chains, so its coverage is limited.

Doppler. Unlike most of the other aids this equipment requires no ground stations. It measures forward and sideways speed by directing radio signals to the surface, receiving them at the aircraft and computing the resultant frequency shift, which is proportional to speed. The measurements are fed into a computer and displayed as miles flown and drift to port or starboard. The equipment, which for some time found favour with the airlines, is accurate in distance but rather less so when measuring sideways displacement resulting from wind effect. Also it can be troublesome when operating over smooth water. Now inertial navigators are being carried by the larger jet aircraft (two of them at $£ 60,000$ each) but these are not radio aids, being based upon accurate measurement of acceleration and deceleration on a gyrostabilised platform.

Omega. The latest fashion in fong range radio navigation is Ornega, a v.l.f. hyperbolic aid ${ }^{*}$ comparable with Decca which operates simultaneously on 10.2 , 11.33 and 13.6 kHz . Eight phase locked stations are situated all over the world and they provide time-synchronised transmissions corrected for ionosphere diurnal changes. Not all stations are available at once but at least three of them may be received in any part of the world. Apart from inserting the time and date into the equipment there is little else a pilot need do. A multi-position switch allows him to obtain more or less instant readouts for such parameters as distance from a particular point, bearing to or from that point, time to run for next waypoint, ground speed, wind velocity, position expressed as a latitude and longitude and so forth. Unlike most other aids Omega does not suffer from cumulative errors with time. It was originally developed jointly by Britain and the USA for long range submarine navigation but since it weighs considerably less than inertial navigation equipment and costs about one fifth of its price, Omega would appear to have a bright future. Marconi have recently won a contract from Pan Am for 105 sets.

Landing aids

At the end of the flight, assuming it is instrument flying weather, comes the moment of truth: the landing, perhaps at a time when cloud base is but a few
hundred feet from the ground and visibility might be reduced to 600 metres, a distance covered in about seven seconds at passenger jet approach speeds, Even when aircraft approached at 60.70 knots an instrument landing demanded some radio equipment and the earliest bad weather landings were conducted by flying overhead the airfield using the direction finding service when a lad in the control tower (and I am quite serious about this) stuck his head out of the window and shouted "engines overhead" at the appropriate moment. This being confirmed to the pilot he would fly a timed downwind leg before turning back towards the airfield and setting up a gentle rate of descent. On the way in frequent bearings were obtained by a frantically keying radio operator but fortunately these were the days of 60 knot approaches and there was time to think. V.d.f. (the v.h.f homer already described) has allowed the bearing procedure to be speeded up, although it is only regarded as a cloud break as opposed to a precision landing aid. Very accurate are radar approaches as pioneered by the wartime GCA and developed to today's precision radar. The charm of radar approaches is that nothing more than a v.h.f transceiver is required in the aircraft. The disadvantage is that radar procedures are relatively slow at the very time when the aim is to avoid stacking over the non-directional beacons and get the aircraft on the runway with a minimum of delay. The key to speed is a matter of moving away from ground monitored procedures and giving the man at the controls pilot-interpreted aids. One of the earliest was standard beam approach, an audio aid where the pilot strained to hear dots and dashes or, when on the beam, a steady note. It was demanding and could be something of a trial at the end of a long and tiring flight.
The present day landing aid in widespread use is instrument landing system (i.1.s.). The ground installation consists of a "localizer" transmitter operating in the $108-112 \mathrm{MHz}$ band with aerials situated upwind of the runway being served. The aerials produce two radiation patterns, on the right modulated at 150 Hz and on the left at 90 Hz . These patterns overlap to form a beam 5° wide centred on the runway. In the aircraft the "nav" receiver (used for v.o.r. reception) feeds the signals to an instrument which is often combined with the v.or. indicator except that, in the i.1.s. mode, it senses the tone modulation as opposed to phase differences, Using the vertical needle shown in Fig. 2, this part of the equipment will with great precision guide the pilot along the runway extended centre line, full deflection of the needle left or right representing only $2 \%^{\circ}$.

Situated within a few hundred metres

 of the runway threshold is the glide pathtransmitter operating in the 329.3 to 335 MHz band, its frequencies being paired with those of the localizer so that selection of the i.1.s. for a particular runway automatically sets up the glidepath receiver in the aircraft. The glidepath aerial system radiates two patterns, the upper lobe modulated at 90 Hz and the lower one at 150 Hz . They overlap to form a beam little more than 1° in depth which is directed down the approach path to the runway like a guiding searchlight inclined at an angle with the horizontal of $21 / 2^{\circ}$ to $31 / 2^{\circ}$ according to local terrain. Signals from the glidepath transmitter are received in the aircraft and displayed by a horizontal needle which crosses the left/right deviation needle of the v.o.r. indicator when i.I.s. is fitted. If he is above the glidepath the needle will give a "fly down" command to the pilot and so forth. So that he might be aware of his progress towards the runway the ground installation includes two marker beacons transmitting narrow vertical beams on 75 MHz . They operate a blue "outer marker" light on the instrument panel at about 4 nm from the runway threshold followed by an amber "middle marker" light, the middle marker being at a distance of 3500 ft (distances vary slightly from airport to airport). Localizer indications are similar to v.o.r. i.e. "fly left", "on heading" and "fly right" commands are given by the deviation needle or, to use its name when operating in the i.I.s mode, localizer needle. Glidepath arrangements, marker beacons and some of the indications provided are shown in Fig. 5.
The aid is very accurate and relatively simple to use, particularly when the information is presented to the pilot on one of the pictorial displays that these days form part of a modern flight system.

Flight director systems

The flight director is so closely related to radio that brief mention should be made here. Modern flight decks were becoming so cluttered with instruments it was not easy to find room for new radio equipment as it became available. But that was not the only problem. Pity the poor pilot - how much could he watch at any one time. So was evolved the integrated flight system presenting radio navigational information pictorially in conjunction with the gyro instruments that are essential for basic instrument flight, i.e., the control of aircraft attitude, balance and heading. But the scope of the equipment does not end here. The information may be linked via a computer to the autopilot which will then fly the aircraft from radio beacon to beacon and down the i.l.s. guidance system. Current flight systems are cleared to a decision height of only 100 ft above the runway while autoland, which incoporates a radio altimeter and

 Outer
marker marker

"Fiy up - Too low" 1 H— $\%$ 会

Fig 5. Instrument landing system transmission. Insert shows how the 90 Hz (upper lobe) and 150 Hz emissions overlap to form a 1.2° beam angled $21 / 2^{\circ}$ to $31 / 2^{\circ}$ from the horizontal. In the interest of clarity the vertical loculizer needle which provides runway centre-line information has been omitted. It is read ik conjunction with the horizontal dot scale on the instrument face (Fig 2. January).
autopilot throttle control, is a present day reality capable of landing an aircraft in visibility that makes taxying back to the passenger terminal a problem - but that is another story.

Price of equipment

What does it all cost? Starting with light aircraft, a 720 -channel communications set and a nav receiver with v.o.r. would vary in price from $£ 700$ to $£ 1,800$, while one can pay between $£ 750$ and $£ 2,400$ for a modern a.d.f. installation. D.m.e. is expensive at $£ 1,900$ to $£ 3,000$, and a transponder (without encoding altimeter) could add between $£ 400$ and $€ 1,800$. From personal experience 1 can tell you that the most reliable avionics are not always the dearest but, bearing in mind a well equipped touring aircraft, light single or twin-engined, would require the navigation and communications sets to be duplicated, one would think in terms of spending some $£ 6,500$ minimum. RNav would add another $£ 1,200$ to $£ 6,000$ according to scope and a good autopilot will set you back $£ 4,000$. All this represents a high proportion of the total cost of the aircraft. Higher up the scale large transport jets might carry $£ 200,000$ of radio equipment or even more.

* Whereas most of the radio designed for smaller aircraft is direct mounted with the cabinets and their controls
situated in the instrument panel, large aircraft banish the main installation to radio racks away from the flight deck and control it by indirect switching usually positioned on the central pedestal which carries the power levers and some of the other controls.

The future

It would be a very unwise man who claimed an intimate knowledge of what the future holds for aircraft radio. But certain facts are emerging. For example, there is a continued move away from things mechanical to electronics v.o.r. displays that dispense with moving needles and display a bearing, say, as a digital readout. 1.l.s, is likely to be replaced by a microwave landing system (see November 1977 News) which will allow the pilot a number of approach paths to the runway, not just one, And instruments as we know them, not just those relating to the radio but engine and flight instruments as well. may soon be replaced by cathode-ray displays. A joint Hawker Siddeley-BAC project has produced a very comprehensive VClo flight deck using seven c.r.t.s in place of all but a few standby instruments. If a c.r.t. fails in flight the display may be switched to one of the others while the tube is removed and replaced like an electric light bulb. The cathode-ray flight deck is lighter in weight and likely to be cheaper than present day instrumentation.
The moving map display and "head up" instrument projections, which appear on the windscreen, are at an advanced stage of development and navigation by satellite opens up exciting new possibilities. BuL having regard to the astonishing pace of aircraft radio development this past twenty years who is to say what the future holds.

ITERATURERECEMED

Publications catalogue of the Instructional Centre for Theoretical Physics (ICTP) now available from Division of Publications, IAEA: Karntner Ring 11, PO Box 590, A-1011 Vienna, Austria

WW 401
Load cells, pressure transducers and instruments in short brochure from Transducers (CEL) Ltd. Trafford Road, Reading, Berks RG18JH

WW 402
Connectors, cables. p.c.bs, wirs-wrapping and instruments described in o.e.m. catalogue from Carel Components Ltd, PO Box 654 40/44 The Broadway, Wimbledon, London SW19 1SO

WW403
Vibration testing equpment in generally descriptive leaflet (not catalogue) from Derfitron Electronics Ltd. Sediescombe Road North. Hastings, East Sussex TN34 3XB , WW/ 404

Microwave alternators. including rotary stepped and programmable types, in catalogue from Telonic Berkely UK Ltd, 2 Castle Hill Terrace, Maidenhead, Berks \$16 4JR

WW 405
Opto-isolator applications outlined in 20 page handbook from 23 Churchgate. Hitchin. Herts SG5 1DN

WW 406
Telephone call logging (time, number called and duration) is explained in an article in TR Technical, Winter 77 edition, from Telephone Rentals Lid. TR House, Bletchley, Mitton Keynes, MK3 5JL

WW 407
Reliability of small-signal, metal-can transistors is the subject of a report from Motorola Ltd, Semiconductor Products Division, York House. Empire Way, Wembley, Middlesex HA9 OPR

WW 408
Solid-state relays from 1.R are detailed in data sheer E2730A from international Rectifier Co $\langle\mathrm{GB})$ Ltd, Hurst Green, Oxted. Surrey

WW 409

CIRCUIT IDEAS

Precision timer

THIS circuit gives an audible tone lasting half a second at pre-selected times of 2 , $4,8,16,32$ and 64 seconds. Two gates of the first i.c, are used as a square wave generator. A variable resistor of $500 \mathrm{k} \$$ enables the generator to be set precisely against a known frequency. Where gates are being used as inverters the inputs are connected together. The
square wave, via a spare inverter, clocks the binary counter which is advanced one count on the negative going transition of each input pulse. The six outputs of the counter go to the selector switch, the output of which is used to trigger a flip-flop on the positive going edge.

The flip-flop is used to reset the counter to zero and is set itself by the next positive going clocking pulse.

Counting from zero then resumes at the next negative going clocking pulse. Two gates of the second i.c. are used as an audio frequency oscillator which drives a crystal earpiece through a spare inverter. The oscillator is normally off and is switched on for the half second that the counter is being reset.
J. M. Osborne,

London S.E. 15.

Non linear a-to-d conversion

THE Ferranti ZN425E has become a popular device for low cost analogue to digital conversion. A simple modification to the usual circuit enables the i.c. to perform non-linearly as though preceded by a compression amplifier.
If the internal fixed reference voltage is not used and an external source is connected to the $V_{\text {REFF }}$ input whose voltage rises linearly from zero at the start of each conversion, the digital output will be proportional to the square root of the analogue input voltages as shown in (a). If the reference voltage reaches a plateau during the conversion period, a

linear response will be obtained from that point (b). Either an analogue ramp generator or a second ZN425E can be used with its clock and reset inputs in parallel with those of the main i.c.
J. P. FitzGerald,

London W.5.

Variable-speed radio control motor

PROPORHIONAT radio control systems produce control pulses every 20 ms whose length can be varied from $1-t o-2 \mathrm{~ms}$. This circuit removes the first 1 ms and expands the remaining $0-t 0-1 \mathrm{~ms}$ to produce 0 -to- 20 ms pulses which drive the motor The motor may therefore be driven all of the time, none of the time, or any amount between. Pulsing the motor in this way is more efficient than adjusting series resistors, and gives smoother control, especially at very low speeds.

The rising edge of an incoming pulse turns Tr_{1} on via the $0.1 \mu \mathrm{~F}$ capacitor. This holds Tr_{2} off for the first 1 ms . The remainder of the pulse turns on Tr_{2} which acts as a current source and removes a controlled amount of charge from the $1 \mu F$ capacitor. Transistors Tr_{3} and Tr_{4} turn off allowing Tr_{5} to drive the motor until the $100 \mathrm{k} \Omega$ resistor has recharged the $1 /$ F capacitor and Tr_{B} re-saturates. This cuts off the motor drive after a time proportional to the width of the input pulse. The circuit is
then ready for the next input pulse. The output circuit includes fold back current/voltage protection as well as limited base drive to the output transistor. These may be adjusted to suit the motor and output transistor by altering the components marked with an asterisk. If full protection is not required the dotted component may be left out. The semiconductor types are not critical: in the prototype an OC28 was used for Tr_{5}.
M. Weston.

Epsom.
Surrey.

Simplified multiplexing

A sImpLe method of multiplexing three or more displays is to gate a 7490 . counter output via a 7401 , and then wire OR the outputs. The 7401s are switched on in rotation by the positive enable signal which also switches the displays on in turn. If common cathode displays are used the segment and display enable signals must be inverted. The use of 7400 s is cheaper than using HEX inverters. If the displays are individual units the segments must be paralleled together.
G. A. Bobker,

Bury,
Lanes.

Universal matrix decoder

AN inconvenience when experimenting with matrix surround-sound is that a separate decoder is normally used for each system. However, the decoding is always done by a matrix of the following form,

$$
\left[\begin{array}{l}
\mathrm{L}_{F} \\
\mathrm{R}_{F} \\
\mathrm{~L}_{2} \\
\mathrm{R}_{\mathrm{B}}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{array}\right]\left[\begin{array}{l}
\mathrm{L} \\
\mathrm{R}
\end{array}\right]
$$

where the coefficients α_{11} to $\alpha_{s 2}$ vary in amplitude from 0 to 1 and in phase from 0° to 360°. Rewriting them in the form $a_{\mathrm{rc}}=b_{\mathrm{rc}}+i c_{\mathrm{rc}}$ the decoding equation becomes,

$$
\left[\begin{array}{l}
\mathrm{L}_{\mathrm{F}} \\
\mathrm{R}_{\mathrm{F}} \\
\mathrm{~L}_{\mathrm{B}} \\
\mathrm{R}_{\mathrm{B}}
\end{array}\right]=\left[\begin{array}{llll}
b_{11} & c_{11} & b_{42} & c_{12} \\
b_{21} & c_{21} & b_{22} & c_{22} \\
b_{31} & c_{31} & b_{32} & c_{32} \\
b_{41} & c_{41} & b_{42} & c_{42}
\end{array}\right]\left[\begin{array}{c}
\mathrm{L} \\
\mathrm{j} \\
\mathrm{R} \\
\mathrm{jR}
\end{array}\right]
$$

If the b and c coefficients are made variable between -1 and +1 , any required decode matrix can be set up. The ϕ and $\phi+90^{\circ}$ quadrature signals are derived by the well known all pass networks used in commercial decoders.

If required, several sets of coefficient potentiometers or fixed resistor dividers can be made on plug-in boards.
D. Hamill,

Hamill Electronics Ltd,
London SW20.

Triple-voltage power supply

Logic systems frequently require ancillary analogue circuitry which cannot be fed from a 5 V power supply. This simple circuit is suitable for obtaining $\pm 12 \mathrm{~V}$ and +5 V regulated supplies from a single transformer.

A standard Douglas MT3AT transformer has been modified by isolating half of the secondary winding. This is achieved by unsoldering the ends of the windings at the 15 V tapping and connecting them to separate tags.

Three d.c. outputs are provided which are suitable for use with series stabilisers. The current ratings have been selected with a practical circuit in mind, but within the limitations of the transformer they may be apportioned to suit individual applications.

Because the connection of the +18 V rectifier is unconventional it is worth noting that purists may wish to isolate the windings at the 24 V tapping, and to use bridge rectifiers throughout.
J. A. Hardcastle,

Huyton,
Liverpool.

TESTOURSTRENGTH Accuracy and Simplicity
 All packed into one remarkable, lightweight tester.

Engineered with a light touch to simplify your task on site, the new Plessey Telegdata Telegraph Circuit Tester - TCT10 makes light work of testing your circuits and machines.
Look at the unique advantages offered by this new very comprehensive tester, designed to the high standards of accuracy and reliability demanded by modern telegraph and telex administrations.Well laid out controls. Simple clear marking 50/330 bauds. Crystal or variable control Codes selection by switch, 5 or 8 unit and parity
Output compatible with V28
Full range of double and single current telegraph signals
"Fox" and Q9S test messagesSwitch selection of any 5 or 8 unit characters
LED Display
Speed synchronisation, bias, start/stop and peak distortion measurementsMeasurements in 1% or 2% steps Don't delay - send today for a complete specification of the Telegraph Circuit Tester, TCT10

Plessey Controls Limited Sopers Lane, Poole, Dorset United Kingdom BH17 7ER Tel: Poole (02013) 5161 Telex: 41272

Valves from

THE
HOUSE OF POWER

Pinnacle Electronic Components, Electron House, Cray Avenue, St. Mary Cray, Orpington, Kent BR5 30J. Phone: Orpington 71531 Telex: 896141 Northern/Midlands Sales Qffice: 11 Palmyra Square, Warrington. Phone: Warrington 50145. Telex: 627349

P.c.b. layout for high-speed Schottky t.t.I.

Requirements of printed-board design for low inductance and effective decoupling

by D. Walton, B.Sc. (Hons), Ph.D.

A great deal has been written on the subject of logic design and quite comprehensive books appear almost monthly. In general, however, the published material neglects an extremely important area and one which probably gives the most trouble to practising engineers. This area, which is dealt with ${ }^{*}$ in the present article, is concerned with the layout of logic on printed circuit boards in order to ensure reliable operation. The impetus for writing this article comes from the author's own experience of the lamentable lack of understanding of these basic considerations.

IT SHOULD not be concluded from the preamble that the subject is a difficult one; indeed the mathematics employed in the present paper is extremely elementary. The problems are caused rather by the historical progression from analogue to digital techniques with the consequent carrying out of well-tried analogue practices into the digital environment. Unfortunately, the requirements for digital circuitry are frequently opposite to those needed by the analogue variety and hence there is a need for a complete reconsideration of the requirements.

Low inductance bussing

To understand the criteria which determine how the supply and GND lines should be distributed to the t.t.1., first take the case of a t.t.l. gate driving its output line from low to high. For the gate to drive the output line high it must pass current into it. The output line must be considered as a transmission line of impedance Z_{o} if its length exceeds 10 cm . In practice, Z_{0} will be in the region of 100Ω and for a single logic signal changing from low to high the instantaneous output current will be given by $I_{0}=5 / 100=50 \mathrm{~mA}$. This current must be obtained from the supply rails in a time comparable to the risetime of the signal. If, for Schottky t.t.1., $t_{\text {rmin }} \simeq 1.5 \mathrm{~ns}$, then charge must be transferred from the decoupling capacitor to the gate and hence to the output tine in this time. Remember that charge is obstructed from flowing into the gate by the inductance. L. of the loop ABCD in Fig. 1. If this is approximately 2 cm

Fig 1. Example of gate, with decoupling, producing a low-to-high transition.
square with reasonable track width then, using the formula for parallel wires, $L=\ln (\alpha / r) \mu_{0} / 4 \pi . \approx 30 \mathrm{nH}$. The e.m.f. dropped across L will then be given by $E=-L \mathrm{~d} i / \mathrm{d} t$. Therefore,

$$
\begin{aligned}
E & =\frac{30 \times 10^{-3} \times 50 \times 10^{-3}}{1.5 \times 10^{-3}} \\
& =1 \text { volt }
\end{aligned}
$$

This is a considerable voltage and it should be remembered that it is the result of a single gate switching. If all four gates in a pack switch together the currents will be additive and the rail will fall by 4 volts.

The first requirement of a power distribution system must therefore be low inductance between the i.c. and the decoupling capacitor. This is achieved by the track layout shown in Fig. 2(b), where a low inductance path from C to the I.c. is provided by keeping the $V_{C C}$ and GND tracks close together.

Fig. 2. Two ways of laying out supply lines. Preferred method, giving lower inductance is at (b).

Manufacturers of i.cs usually specify one decoupling capacitor for every $5-10$ i.cs which, with the track layout of Fig 2(a) results in prohibitively high inductance between the capacitor and the
worst-case positioned i.c. The safest course is to provide the track layout as in Fig. 2(b) but also to put one capacitor adjacent to each i.c. Clearly, this can be achieved by having one capacitor for each pair of i.cs.

Decoupling capacitors

The foregoing argument shows that the capacitor is better thought of as a reservoir capacitor which supplies the local, instantaneous current demands as i.cs switch. This means that the important parameter for such a capacitor is the instantaneous current which it can supply. Some manufacturers specify capacitors for i.c. decoupling by giving the maximum pulse risetime, which corresponds to a maximum current for a given size of capacitor, For instance, a 47 nF capactior specified at $50 \mathrm{~V} / \mu \mathrm{s}$ can supply a current given by

$$
\begin{aligned}
\tau & =\mathrm{C} \frac{\mathrm{~d} v}{\mathrm{dt}}=47 \times 10^{-9} \times \frac{50}{10^{-6}} \\
& =2.5 \mathrm{~A} .
\end{aligned}
$$

which is adequate in the context of the previous calculation.
The other check to make is that the current drawn from the capacitor does not cause its voltage and hence the rail voltage to fall excessively. If the local demand is equal to 10 gates switching, the current demand will be 500 mA ; to be safe, assume that this demand lasts for 10 ns , and design for a voltage drop at the capacitor of 50 mV .

Thus,

$$
\begin{aligned}
i & =C \cdot \frac{d v}{d t} \\
0,5 & =C \frac{50 \times 10^{-3}}{10 \times 10^{-9}} \\
C & =100 \mathrm{nF}
\end{aligned}
$$

This suggests that we should provide approximately, 100 rF for each pair of packages.

It might be thought that radio frequency type capacitors are necessary for t.t.1. decoupling, but this is not so. To show why requires more space than can be spared in an article of this type but essentially it is because the frequently adopted model of a capacitor, which
proposes that it possesses a lumped series inductance, breaks down in the case of a single applied step. There is therefore no reason for the designer to be afraid to employ non-ceramic capacitors provided they have adequate $V / \mu s$ ability. In the author's experience $l_{\mu \mathrm{F}}$ tantalum beads perform well as decoupling capacitors.

Transmission-line model

The best way to think of the power distribution system is as a transmission line, with each package connected to an ideal voltage source via an impedance equal to the transmission line impedance*. This impedance must be sufficiently low for negligible voltage transients to be produced on the line by gates switching within the package. The impedance of a transmission line is given by $Z_{0}=\sqrt{L / C}$, where L and C are the inductance and capacitance per unit length respectively. To calculate $Z_{s j}$ for the case of two tracks close together:

$$
L=\frac{\mu_{0}}{4 \pi} \ln \frac{a}{r}
$$

where μ_{0} is 5 . A and r are taken as 2 mm and 0.5 mm . Therefore

$$
L=0.6 \mu \mathrm{H} / \mathrm{m}
$$

If a 100 nF capacitor is placed every 5 cm along this line, then:

$$
\begin{gathered}
\mathrm{C}=100 \times 20 \mathrm{nF} \mathrm{~m}^{-1}=2 \mu \mathrm{~F} \mathrm{~m}^{-1} \\
\text { Therefore } \mathrm{Z} \approx 0.52
\end{gathered}
$$

An instantaneous current demand of 200 mA - corresponding to 4 gates switching - will produce a voltage transient of 100 mV . This is only just acceptable and suggests that the value of C should be increased. Note however, that laying out the tracks with wider spacing and using smaller capacitors 10 nF for every few i.cs, which is not uncommon, will create a situation much worse than this.

Auto-decoupling in t.t.l.

In the context of the preceding remarks some readers may wonder how systems which they have seen or have worked with managed to function at all, since it is common to see most or all of the above design guidelines violated. To see the answer to this, consider the structure of the t.t.J. gate output circuit, when this is driving the following gate input low, as in Fig. 3.

Fig. 3. Totem-pole t.t.l, output stage. driving succeeding gate low.

According to the specification for, say, a 7400 the typical values of i and R are 1.0 mA and $4 \mathrm{k} \Omega$ respectively. When the gate output is low it sinks a current i, given by $i=\left(V_{c r}-V_{b e}-V_{\text {c: }(s a t)}\right) / R$, where $V_{b e}$ is the base-emitter voltage of Tr_{s} and $V_{\mathrm{CE} \mid \text { sat }}$ is the collector saturation voltage of Tr_{1}.
If $V_{\text {he }}$ and $V_{\text {CEsan }}=0.7$ volts, to take a worst-case example, and $V_{\mathrm{cc}}=5$ volts

$$
\text { then } i=\frac{3.6}{R}
$$

Now consider what happens if the rail voltage drops, due to a transient load imposed by the output of another gate switching. When $\mathrm{V}_{\text {cc }}$ drops there is no change (to a good approximation) in the $V_{b e}$ drops. Suppose the rail drops by 10% then:

$$
\begin{aligned}
& i_{1}=\frac{5-1.4}{R} \\
& i_{2}=\frac{4.5-1.4}{R}
\end{aligned}
$$

Therefore

$$
\frac{i_{1}-i_{2}}{i_{t}}=\frac{0.5}{3.6}=14 \% .
$$

In other words a 10% change in V_{ch} produces a 14% change in the current load placed on the rail. In effect what is happening is that each gate output which is holding another input low acts as a 'reservoir' of current and when the rail voltage drops as another gate drives its output high all the other gates give up some of their current to assist. This is what I would call the good neighbourliness effect' in t.t.1. In general, some gates on a voltage bus will be low and so act as current supplies. The problem arises when none or only a few are in this state - a critical situation for a badly designed system and one which could cause a failure. It should be remembered that a logic system should work for all possible combinations of states which can occur in practice and a hazard of this type could have serious consequences. It is therefore insufficient to demonstrate that a system 'works' because if the power distribution system is badly designed there is always the chance of an untested situation bringing about a failure of the system. It is assumed that in a logic system of reasonable size it is impossible to test all possible combinational situations, and doubly impossible to test all possible changes of situation!

The problem with Schottky t.t.1. is that the increase in speed does not allow time for the 'good neighbourliness effect' to act. consequently one is many

- A package at the centre of a power bus will see two lines in parallel and taence thall the impedance. We will udopt the worse ftgure for the purphase of this argument.
times worse off with Schottky than with ordinary t.t.l. Schottky is a less forgiving family than conventional t.t.t. and much more care must therefore be taken with power distribution to ensure reliable performance.

The current spike

As just described, the main cause of transient current demands in a Schottky t.t.I. system is the initial current surge when a gate switches into its transmission line load. The manufacturers' data overlooks the mechanism entirely. There is another cause of transient current demand which results from the 'push-pull' design of the t.t.1. output stage shown in Fig. 4. The cur-

Fig. 4. T.t.i. output configuration leads to current spike at transmission.
rent spike is produced because, on the 0 to 1 transition, the upper transistor turns on while the lower transistor is still turning off. This leads to a current surge of 10 mA with duration of about. 10 ns 1. Provided the design guidelines laid down in the earlier sections with regard to power supply bussing and decoupling have been followed, this small additional hazard will be taken care of. In fact, since a logic gate is driving a transmission line which is a resistive rather than a capacitive load, there is no need to provide a totem pole output and this must be regarded as one of the bad features of the t,t,l. family.

Interconnexions

To implement a system successfully using the b.t.l family it is necessary to interconnect correctly between logic gates.
Transmission lines. The correct model to use for interconnexion between logic, gates is a two-wire transmission line. It is impossible to understand how a signal travels from gate to gate without taking the return path into consideration. Indeed it is impossible for a signal to travel without a return path! Consider the two-wire transmission line shown in Fig. 5 , in which a zero rise-time is pro-

Fig. 5. Two-wire transmission line.
pagating to the right with velocity c . Ahead of the step there is no current in the wires and no voltage differences between them. Behind the step there is a current i in the direction of AB and a current -1 in the direction of $D C$ with a voltage difference V between the wires. It can be shown ${ }^{2}$ that $V=i Z_{o}$, where Z_{B} $=\sqrt{L / C}=\sqrt{\mu / \epsilon}$ where $Z_{0} \stackrel{0}{=}$ characteristic impedance of line, $L=$ induct ance per unit length of line, $C=$ capacitance per unit length of line, $\mu=$ permeability of medium between wires, c permittivity of medium between wires. The velocity of propagation $c=1 / \sqrt{L C}$ $=1 / \sqrt{\mu e}$.
These equations are true for any two-conductor system where the resistance of the conductors can be neglected and the medium between the conductors is well-behaved. These conditions are met by tracks on a printed circuit board for any track width which can be manufactured. The step which we have just described is a transverse electromagnetic disturbance. Since the equation relating current and voltage on a transmission line is $V=i Z_{0}$, it follows that the effect of a transmission line on the driving circuit can be considered in terms of a resistance $R=Z$. connected in place of the line. This was the procedure followed earlier in calculating the current drawn from the supply rail by a gate as it switches.

The impedance Z_{a} depends on the cross-sectional geometry of the conductors employed and its calculation is extremely difficult except for very simple cases. It is, however, a relatively slowly varying function of the geometry^{3} (usually logarithmic) and therefore this need not worry us too much. For a track on a printed circuit board laid out according to the design rules evolved in this paper a value of Z_{6} of around 150Ω can be assumed.
One key feature of a board of logic which distinguishes it from most anal-
ogue systems is that there are a multiplicity of signal paths from various points scattered about the board to various other similar points. It is essential that each of these signal routes has an adjacent return path. The simplest way, conceptually, to achieve this is to provide a ground plane on one side of the board. In practice this is difficult since it usually requires multi-iayer construction, with the increased cost and complexity which this entails, in order to accommodate the signal interconnexions. With Schottky t.t.1, it is not necessary to go to this extreme; all that is required is a ground grid laid out so that a signal line is never more than one inch away from fis return path.

Ground loops. It might be argued that this scheme leads to ground loops which, from our experience with analogue systems (e.g. audio equipment) are to be avoided. The plain fact is though, that on a logic board. ground loops are of no importance. The reasons for this are somewhat complex but it is probably useful to note one simple argument. In a high-gain amplifier, induction of a few millivolts at the input due to ground loop pickup can lead to an output of the same order as the signal. In logic this is not the case; a few millivolts into a gate input make no difference whatsoever. Hundreds of millivolts of noise are required before we will significantly degrade the noise immunity of a t.t.l. system.
It is probably valuable to examine a situation where a logic board has been laid out in order to avoid ground loops. A possible layout of power and ground connexions, which is quite commonly adopted in the industry, is shown in Fig. 6. Now, if circuit A sends a step to circuit B there is no adjacent return path. In practice, since a fast step requires a return path it will simply use adjacent signal lines as returns, resulting in the induction of transient noise
on these other signal lines. A further consequence is that the input to B will take a longer time to settle with a consequent reduction in the speed of the system. As was explained earlier, the layout of Fig 6 is also bad from the point of view of placing excessive inductance in the way of charge travelling between i.cs and decoupling capacitors.

Recommended layout

A recommended scheme for laying out a printed circuit board is shown in Fig. 7. The power rails are run as close together as possible along the columns of integrated circuit packages and are interconnected at the top and bottom of the board. These provide return paths for logic signals travelling parallel to them. To provide return paths for signals travelling across the board the ground pins of the packages are connected together from left to right. Thin track, of the same thickness used for signal interconnexions can be used for this. A tantulum bead $10 \mu \mathrm{~F}$ decoupling capacitor is provided between each pair of i.cs. Notice also that ground connexions are brought out at regular intervals across the edge connector. These provide return paths for signals travelling on and off the board.

If all these design rules are followed a reliable system will result and the consequent savings in servicing and testing will amply repay a little consideration given to board layout at the design stage.

References

1. Bonham, B. Schottky t.t.I., T.I. application report B93.
2. Catt, 1, 'Crosstalk (noise) in digital sys. tems', I.E.E.E. Transactions on Electric Components', EC. 16, 743-763 (1967).
3. Gunston, M. A. R. Microwave transmission live impedance data'. Van Nostrand Reinhold.

Fig. 6. A bad tayout giving high indiuctance and few adjacent signal return paths, which leads to cross-talk.

Fig. 7. Recommended layout.

Microcomputer design - 4

Practical realisation of a microcomputer system

by C. D. Shelton, B.Sc.(Eng.). ACGI, M.Phil. Ph.D
in association with Shelton Instruments Ltd and NASCO Ltd

THIS MONTH the description of thase peripherals of the microcomputer system outlined in the January issue is completed by a circuit diagram of the universal asynchronous receivertransmitter (u.a,r.t.). As explained last month, the purpose of the u.a.r.t. is to provide a transformation between the 8-bit parallel data within the computing system and the type of serial digital information which can be handled by peripheral devices such as the audio cassette recorder. The u.a.r.t. is shown in Fig. 1, and it will be seen that this has connections to the 8 -bit data bus of the computer system on the right (labelled $D B_{0}$ to $D B_{7}$) and connections for the serial input and output information on the left (labelled SI and SO, negated),

Clock arrangements

As also mentioned last month, the rate at which the data is shifted into and out of the u.a.r.t. is determined by a clock pulse signal applied to the receiver and transmitter clock connections on the u.a.r.t. (pin 17, labelled RCP, and pin 40 . labelled TCP). There are in fact three clock pulse generators available to the system. The first of these is provided elsewhere in the computer by a crystal oscillator and divider chain, which produces a 5 kHz clock signal, and this is fed to the u.a.r.t. by a link as shown at the bottom of the diagram. The second clock generator is a circuit at the bottom left of Fig. 1. This is a simple oscillator based on a 555 i.c. which can be adjusted to operate at 1760 Hz and as shown this signal can be fed to pins 17 and 40 on the uia.r.t. by means of the link. The third clock generator is any external source the user may care to apply, and this again is fed into pins 17 and 40 on the u.a.r.t. by the link as shown at the bottom right.

As already mentioned, since a stop bit and a start bit are added to the byte. there are 10 bits in each word transmitted. This, however, can be increased to 11 bits by adding another stop bit, which can be done by applying +5 V to pin 36 on the u, a.r.t. by means of the 10 k ? resistor and removable link.
Serial digital information is recorded on the audio cassette recorder in the form of a modulated tone. This tone is provided by the 5 kHz clock signal shown in Fig. 1, which is modulated by gating it with the serial data emerging from $\overline{S O}$ on the u.a.r.t. The resulting modulated 5 kHz signal goes to the "cassette out" terminal. The playback signal from the cassette recorder (applied to the terminal "cassette in") is therefore a series of bursts of 5 kHz tone corresponding to the serial data stream, To convert these tone bursts back to conventional logic levels there is a tone detector circuit. This is shown at the top of Fig. 1, and is made up from a 555 i.c. and associated components.

The serial input to the $\mathrm{u}, \mathrm{a}, \mathrm{r} . \mathrm{t}$, is connected by a link to whichever soarce is chosen by the user.

Peripheral 4-visual display

In any computer system of this type it is required that the user be presented with data from the machine. For programme development this may mean the presentation of several hundred characters. At the same time the cost of displaying alphanumeric characters should be minimised. The method chosen for this project is a "memory plane peripheral" and is not sited on ports as conventional i/o but consists of logic which shares a section of the memory. This logic is designed to pre-
sent a composite yideo signal to a domestic television receiver in such a way that the contents of this memory section are interpreted as characters. Any possible conflict of access to the memory between the processor and the logic has been resolved by giving the processor absolute priority. As a concession to appearance the video signal is blanked during c.p.u. access. It is as though a section of memory is exactly mapped on to a visible plane.
(To be continued)

continued from page 50

one alumina substrate. Anodised aluminium capacitors ranging from 2 to 400 pF , and nichrome resistors ranging from 4 to 2008, are used.

Acknowledgements

The authors would like to thank their colleagues at the Mullard Research Laboratories, whose work has been illustrated in this article. Particular thanks are due in this respect to Mr P. L. Booth, Mr L. W. Chua, Mr K. Holford, Mr R. E. Pearson, Mr S. K. Salmon, DrH, Sewell and Dr J. C. Williams. The work on the parametric amplifier and the microwave receiver was supported by the Procurement Executive, Ministry of Defence.

Fig. 10. A 900 MHz transistor amplifer.

References

1. Caulton, M., Knight, S. P., Daly. D. A., Hybrid integrated lumped element microwave amplifiers, IEEE Trans Electron Devices, Vol ED-15, July 1968, pp- 459-466.
2. Aitchison, C. S., Davies, R,, Higgins, I. D., Longley, S. R., Newton, B. H., Wells, J. F. Williams, I. C. Lumped-circuit elements at microwave frequencies, IEE Trans. Microwave Theory and Techniques, Vol MTT-19, Number 12. Dec, 1971, pp, 928-937,
3. Wheeler, H. A.. Transmission-line properties of parallel strips separated by a thin sheet, IEEE Trans. Vol. MTT-13, 1965, pp. 172-185.
4. Schneider, M, V., Microstrip dispersion, Proc. LEEE (special issue on computers in (iesign) (letter) Vol. 60, Jan 1972, pp, 144-146, 5. Harvey, A. F., Microwave Engitreering, Academic Press, 1963, p. 445.
5. Newton, B. H., Pearson, R. E., Williams, J. C. The design and realisation of mi.c. subassemblies on ferrite substrates, IEEE Trans Magnetics, Sept. 1975.
6. Caulton. M, Film technology in microwave integrated circuits. Proc. IEEE, Vol, 59, 1971, p. 1481-1489.
7. Funk. W., Shiltz. W, Thick film techniques for hybrid integrated microwave circuits, Proc. of conference on hybrid microelectronics, University of Kent, England, Sept. 1973, p. 129
8. Pearson, R. E., A cheap, low noise ($2,5 \mathrm{~dB}$) X-band amplifier, Proc. of AGARD Conference. The Hague, June 1976, p. 2-1.

Fig. 9. An integrated X-band Doppler recelver.

Mysteries of Sporadic E

IUST why and when those curious clouds of ionization form some 100 km above the Earth - the Sporadic E (Es) phenomenon - is still one of the unsolved mysteries of radio physics, In the UK, there is a pronounced Es "season", in other countries nearer the Tropics, such as India, the Es paths can open almost daily. Such conditions provide v.h.f. paths up to almost 2000 km and very occasionally "two-hop" paths can double this maximum distance. Amateur exploitation of Sporadic E dates back to the 1930s and I remember the sensation when E. Menzies, G5MQ, in Liverpool first worked an Italian station on 56 MHz on July 2, 1938 shattering previous conceptions of v.h.f. distances. Today such contacts are accepted as a normal part of the Es and tropospheric scene. But if more was known of the basic mechanisms that give rise to the ionized clouds, it might be possible to predict in advance just when they are likely to occur.

Regular observations made over a number of years by Ron Ham at Storrington, Sussex show that although the 1977 Es season was a little shorter (May 4 to August 5) than in 1976, it was observed more frequently (in the range 65 to 73 MHz) than in any of the previous four years. June 1977 showed 16 disturbances, representing more than half the days of the month. But Ron Ham is still unable to prove or disprove any direct connection between surispot activity and Es disturbances.

Martin Harrison, G3USF, however, believes there may be a connection between the onset of an Es disturbance and the strange phenomenon of "sweepers"; atmospherics that are observed to sweep rapidly over a frequency spectrum several megahertz wide in a matter of seconds and are heard most frequently between about 25 and 30 MHz (though occasionally as high as 150 MHz or as low as 2 MHz). Sweepers were first reported by the Americans N. C. Gerson and W. H. Gossard in 1958 and more recent observations have been made by A. K. Sen and S. K. Trehan of the University of Calcutta aided by a number of observers including VU2KX at Berhampore and VU2SA at New Delhi. Both these studies have suggested a firm link between "sweepers" and the sun; but the possible link with the onset of Sporadic E conditions appears to have been suggested for the first time by Professor Harrison, G3USF.

Three European 50 MHz beacon stations, ZB2VHF (50.090 MHz) in Gibraltar, FX3VHF (50.100 MHz) in France and $5 \mathrm{~B} 4 \mathrm{CY}(50.140 \mathrm{MHz})$ in Cyprus should all be in operation by the time these notes are published and should provide an excellent opportunity, particularly for amateurs in southern Africa, for transequatorial propagation.

News and views

"Oscar 6 is dead. Long live Oscar 7" that. is the gist of the latest communique from the University of Surrey AMSAT Telecommand. Martin Sweeting, G3YJO reports that following cell failure in the Nicad battery of Oscar 6 last June, the spacecraft was shut down indefinitely. Soon afterwards the downlink telemetry became garbled and the satellite failed to respond to ground command, the transponder falling silent a week later. Although the telecommand station continued to track Oscar 6 it was heard only briefly on two occasions and now, after some $41 / 2$ years of operation, must be considered dead. Oscar 7 continues to function well although more orbits are being switched to Mode B where the battery drain is greater, so easing the problem of almost total sunlight at this time of the year. Unfortunately some operators continue to use excessive uplink powers on 432 MHz : 100 W e.r.p. is recommended, 10 W may be enough.

In several West European countries, including Germany and Holland, a number of amateur stations are now using rejuvenated Hellschreiber ("Feldfernschreiber") machines on 3.5 MHz producing curious matrix-type tapes of written messages. The Hellschreiber system, which produces a distinctive thythmic "grinding" signal, was used by the Germans in World War 2 and subsequently by news agencies.

Almost fifty repeater stations are now operational in the UK. The UK FM Group (Western) recently brought two more u.h.f. repeaters into operation on $433 \mathrm{MHz}, \mathrm{GB} 3 \mathrm{CR}$ operates from Pont-yBodkin, Mold, Chester, serving Chester and parts of the Wirral; GB3LI operates from Seaforth serving the City of Liverpool and the whole of Merseyside. It is also hoped to build an amateur tv repeater for the 1.3 GHz band and the r.f. equipment for this is already being assembled. The Group secretary is Gordon Adams, G3LEQ (2 Ash Grove, Knutsford, Cheshire WA16 8BB). A man was recently successfully prosecuted in Corwen Magistrates' Court by the

Home Office in a case which arose out of jamming and abuse of the Moel-y. Parc repeater. Local amateurs located by direction-finding the unauthorised transmitter. The report (WoAR, December) that the UK FM Group were considering closing down GB3LO is wrong; it appears to have originated in the "dirty tricks department" of an anti-repeater group.

The gigahertz president

ON Saturday, January 21, Lord Wallace of Coslany will install as his successor, the 44 th president of the RSGB, Dain Evans, Ph, D., G3RPE.
Dr Evans is known and respected for his tremendous enthusiasm for encouraging more amateur operation in the microwave bands above 1 GHz , with the 10 GHz band as his own special interest. In October 1970 he launched the first regular monthly column to appear in any amateur journal specifically devoted to the world of the gigahertz. As a result, he has seen interest and activity grow steadily in the UK, and more recently in many countries throughout the world.
But his first experiments with radio, though showing the same ingenuity that led him to examine dozens of different dustbin lids to test their suitability for use as microwave reflectors, was on far more mundane frequencies. As a ten-year-old schoolboy he invested 6 d in a pair of government-surplus headphones and made a crystal set using the "blue" on a Blue Gillette razor blade as the detector.
In September 1969 he first contacted a French 10 GHz station across the English Channel on Cape Griz Nez while using 15 mW s.h.f. power to a 10 -inch dish aerial. But he recalls as his most interesting operation "sitting on a beach in Holland chatting to English amateurs while using only 2 mW on 10 GHz ." His ambition is to make some 1000 km contacts on this band.

In brief

The ITU has allotted the callsign series P4A to P4Z to Netherlands Antilles . . Eric Hubbard, G50X, often known as "Oxo." has died; he was one of the amateurs who in the early 1920s were allowed to operate on 440 metres Another old-timer who has joined, the "silent keys" is Reg Radford. G21M, who began his many years with BBC Engineering in the days of 2LO television receiver designed to operate without interference in strong r.f. fields has been built for the FCC by Texas Instruments and is attracting considerable interest \qquad The Home Office has resumed the issue of "special event" licences, including GB3MSA for the Poldhu station participating in the KM1CC 75th anniversary until January 22.

PAT HAWKER, G3VA

Automatic impedance plotter

Finding impedance variations at 20 MHz in surface wave transducers

by T. F. North, Physics Department, Chelsea College, University of London

A problem that often arises in electro-acoustical work is the need to know the electrical impedance of a component under specific operating conditions and its variation with frequency. In stimulating nematic liquid crystals with mechanical surface waves in particular. I needed to know how the impedance of an inter-digital surface-wave transducer varied with frequency in the range 18 to 70 MHz .

Measuring impedance variations of a component is a straightforward procedure using a standard radio frequency bridge. But a large change within a narrow frequency range makes an automatic plotting system more appropriate. In the circuit of Fig. 1 R is a standard resistor of negligible inductance and peak-to-peak potentials V_{1} and V_{2} at both terminals of the resistor are measured. Provided the phase change across the componemt under test is small, it follows that its impedance is $|Z|=V_{2} R /\left(V_{1}-V_{2}\right)$. As an initial step a method was sought of varying the signal strength to maintain $\left(V_{1}-V_{2}\right)$ constant. The use of f.e.t, attenuators introduced distortion into the waveform and so an alternative procedure was adopted of attenuating the average signal level by chopping the contin-uous-wave signal with a variable mark-to-space ratio.

The wideband gate employed to chop the r.f. signal is given in Fig. 2. With the gating input in the up position, the diodes are all. reverse-biased and 50 there is no signal transmission. On putting the gate input down, the diodes become conducting so that the input and output potentials must now both be one diode-voltage drop above and below the respective junctions between the diodes and resistors; hence the gate will allow the passage of the signal.

Such a system of gating the r.f. signal worked satisfactorily but a simpler procedure is to measure V_{1} and V_{2} and then attenuate both by the same proportionality factor a so that $\mathrm{a}\left(\mathrm{V}_{1}-V_{Z}\right)$ remains constant; Z is now proportional to $\mathrm{\alpha V}_{2}$. This proportional attenuation is achieved by chopping both voltages with a variable markspace ratio of $\alpha(1-\alpha)$ and integrating
the resulting wave to produce the voltages αV_{1} and αV_{2}, Fig. 3 .

Negative voltages $-V_{1}$ and $-V_{2}$ are measured by detection in D_{1} and D_{2} and the outputs from these diodes fed into voltage follower operational amplifiers IC_{t} and IC_{2} to provide a high input impedance to the system. There is no need to smooth the detected signal. The frequency range under study being well outside the frequency range of the 741 op-amp. Diodes D_{3} and D_{5} introduce an offset in the voltages between the mputs and outputs of these voltage followers equal and opposite to the voltage drops across D_{1} and D_{2}. Potentials at the outputs of IC_{1} and IC_{2} are thus equal to $-V_{1}$ and $-V_{2}$.
When the output of IC, is saturated negatively diodes D_{5} and D_{6} are reverse biased and the voltages at points A_{1} and A_{2} will be $-V_{1}$ and $-V_{2}$ respectively. However, when the output of IC_{5} is saturated positively D_{5} and D_{6} will raise the potentials at A and B until D_{7} and D_{5}
conduct. The voltage drops across these diodes are balanced by that across D_{9} so that points A_{1} and A_{2} will now be at zero potential. The voltages at points A_{1} and A_{2} are integrated by R_{9} and C_{1} and R_{10} and C_{2} respectively to give voltages $a V_{t}$ and $\mathrm{aV} V_{2}$. The last-mentioned voltage $\mathrm{A} V_{2}$ is amplified in the unity-gain voltage follower IC_{4} to provide a low impedance output. A constant voltage of 2.7 V is added to it by the zener diode, fed by constant-current source, and the resulting voltage compared with $2 V_{1}$ in the differential amplifier IC_{4}. Capacitive negative feedback across this amplifier limits its frequency response to well below the chopping frequency and renders the system stable. The output of this amplifier is used to vary the chopping mark-to-space ratio, α. $(1-\alpha)$.
Positive feedback through R_{14} causes IC_{B} to oscillate at a frequency of approximately 10 kHz . Capacitor C_{4} is continually charging or discharging through R_{15} so there is a triangular

Fig. 1. Impedance of component is plotted by attenuating average signal level through it. A chopped e.w. signal with variable mark-space ratio can achieve this.

Fig. 2. A variable amount of r.f. signal can be passed through a standard resistance using a single wideband chopper, avoiding the distortion of an f.e.t. attenuator-

wave at their junction, which is fed into one input of the saturating ampliffer IC_{5}. The points at which the voltage level at its other input cut this triangular wave determine the moments at which it changes from saturating at one polarity to the other, Accordingly this voltage level determines the mark-tospace ratio of its output.

Procedure for plotting the impedance of the transducers in question is to slowly sweep through the frequency range of interest by changing the

Fig. 3. Same attenuation of V1 and V2 is obtained by chopping both with a variable mark-space ratio of $\alpha(1-\alpha)$ and integrating to produce αV_{1} and αV_{2}.
output frequency of the signal generators by hand. The X imput of an $X Y$ plotter is driven by a frequency-to-voltage converter consisting of a commercial $1: 100$ frequency divider, which
triggered a $1 \mu \mathrm{~s}$ monostable unit (SN74121), The integrated output of this is proportional to frequency. The Y input of the recorder is driven by the output of $I C_{3}$, and point A_{1} of the circuit monitored with an oscilloscope. This enables both the detected signal level V_{1} and the mark-to-space ratio of the chopping to be seen. In practice the signal level can be set so as to maintain this ratio at about unity. The system is calibrated by using carbon resistors of known value.

Turntable war, first casualties

Garrard and Strathearn are in trouble Strathearn's autocratic chief executive, Graham Bish, has been relieved of his duties as executive chairman, though he remains a director. The reason given was of ill-health. The company has now swallowed at least $\mathrm{e7}$ million of taxpayers' money, and as the rest of the turntable industry produces ever newer models the Strathearn units are as they were four years ago.

Recently Strathearn asked the Northern Ireland Development Agency for further funds "to develop its marketing operation and future production capacity," according to a spokesman. The NIDA declined, and called for an examination of Strathearn's viability. The subsequent report showed that the company could not survive, and it appears that the Minister of State for Northern Ireland is not prepared to intervene to keep the firm going. However, the directors have been given a period of grace to prepare a case for keeping Strathearn open.
Garrard, by comparison. look like paragons of efficiency. All the same, 480 jobs are to be lost of which 335 are indirect labour, such as cleaners and clerical staff, and 145 are directly employed in making turntables. Of the 145 , a large number are working shifts, so the total of direct labour redundancies could be as high as 290 . The total workforce is 2,000 .
There are several reasons for Garrard's plight. One is the depressed home market.

According to BREMA. "There is little sign of the anticipated seasonal pickup." Any disposable income people have left after inflation and wage freezes have taken their toll is being spent on something other than hi-fi.
Even if there had been a normal preChristmas rush, however. Garrard say they would not have been ready. Production of the new range. for which they would have had to start taking trade orders at Harrogate at the beginning of September, didn't start until the end of October, two months behind schedule. They blame poor deliveries of components. including some from Japan, and, privately, poor latour relations.
However, there seems to have been very little labour trouble at Garrard's, which the local union representatives say has better wages and working conditions than most factories in the district. The local organiser of the AUEW told Wireless World that in the four years he had been in swindon he could only remember having to go there once, and that was over a small matter that was casily resolved. The unions add that, as soon as Christmas is over they will want to look at the books. but they have tittle doubt that they will find the main cause of the lay-pffs was lack of consumer demand.
That does not appear to have affected the Japanese makers, who, Garrard complain, went on the offensive, taking large ads in the colour supplements. One wonders what was to prevent Garrard doing the same.

Last July Garrard held a press lunch at which they previewed the new range. Managing director Derek Moon made clear his attitude to Japanese imports: "This industry used to employ 48.000 people more than it does now ... Protect your home industries, I ,say to government, and if that means tariffs for a while then let's have a tariff barrier. I do want a breathing space from Japan Inc. Give us a couple of years and we'll beat the hell out of them too."
Garrard has suffered quite a bit at the hands of the Tapanese. In 1972 they had $171 / 2 \%$ of the world turntable market. By 1976 that had dropped to $7: 5 \%$, though they say they have managed to hold their share this year. Together Garrard and Plessey had invested £2.5 million in new products in $21 / 2$ yeass, though they admitted to mistakes. At the July preview they said, "Cosmetically last year's range didn't match up,"
There are signs, as we pointed out in our Harrogate report (November 1977, p.57) that this year's don't match up either. The collapse of the home market hardily explains the troubles of a company that exports $70-80 \%$ of its production. The European and American markets have not been so depressed. A company that wants relief from the pressures of competition is in trouble, whether it knows it or not. BSR's Roger Allan, who lived in Japan for many years, told us in an interview last year "I'm totally for free trade. If the world went protectionist it would be a disaster."

Our comprehensive range is sure to meet your need.

Please senct the following .

Please send the ANTEX colour brochure

Dual trace 15MHz Oscilloscodel Sensitivity 1mV (max) Full $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ display Finger tip SY NC, TV, YA, YB mains external
Precision Instrument Laboratories have rapidly become the most comprehensive instrument stockist in the U.K. Shown above are just 5 of the instruments that we have available for the radio and television engineer.

Our full range includes Field Strength Meters, Valve Testers, Logic Probes and generators function, signal, cross hatch and colour bar.

Instruments Electrical Co. Ltd., the repair associate company of PIL offer a complete repair service on all electrical and electronic measuring instruments, Precision Instrument Laboratories, Instruments Electrical Co. Ltd, Instrument House, 212 IIderton Road, London SE15 1NT. Tel: 01-639 0155.
 items illustrated may be purchased by enclosing a cheque for amount shown.

Products are alsc available
from PIL Lid., North London 01-965 2352 and Smith \& Cookson, Liverpool 0517093154

Topics from Radar 77-2

Further extracts from the IEE conference

by Ray Ashmore

The last issue summarized six papers from the international radar conference. Radar 77, which this year was organised by the IEE. The papers included descriptions of a man-portable radar, and radar systems for automatic collision avoidance and the detection of sea states and oceanic winds. The following text is also based on extracts selected from the conterence papers.

AT A WAVELENGTH of $10 \mu \mathrm{~m}$, one has the option in radar of using either photodetection or radio-frequency detection using metal-oxide-metal point contact diodes, Comparisons by the Royal Signals and Radar Establishment at Malvern have shown that, assuming all radiation entering these detectors is 'signal', for heterodyne detection the signal-to-noise ratio performance with rf. detection is 'everywhere better' than with photodetection. For photodetection the signal noise is proportional to the incident field, but for r.f. detection it is proportional to the power. For both systems, pertormance is greatly improved by using heterodyne detection at the receiver. In practice one can achieve a receiver performance in which background fluctuations are the dominant noise source in the receiver system.

Harmonic radar detection

Plessey Radar Research Centre have been investigating systems using harmonic radar detections . The difference between harmonic radar and conventional radar is that the receiver detects radiation generated by the target at frequencies which are harmonios of the incident radiation frequency, Many man-made objects generate harmonic frequencies when illuminated by a radiation flux, but most natural objects such as vegetation, the ground and the sea do not. However, the frequency conversion efficiency from the manmade objects usually restricts applications to relatively short range detection systems.

The main advartage with harmonic radar is that it is free from environmental clutter. Harmonic generation arises from non-linearities in the electromagnetic transfer characteristics in objects such as semiconductors, and metal-to-
metal junctions, Further information regarding the theory of harmonic radiation can be obtained from the May and June 1974 issues of Wireless Worid.

For a semiconductor diode the transfer characteristic is exponential and results in a rich harmonic spectrum. Since it has been found that the conversion loss is less for low harmonics, for the most favourable range law, a second-harmonic receiver should be used. For a typical metallic target, because the transfer characteristics are symmetrical and the power series contains only odd-order terms, the receiver must be a third harmonic type. Results confirm that the third harmonics received from metallic targets are much lower than the second harmonics from electronic targets.

Non-linearity in metal junctions is thought to arise from, among other things, electron tunnelling through the oxide barrier existing at the metal surfaces. This non-linearity, however, is sensitive to small movements of the contact surfaces. This causes the harmonic signals to fiuctuate and make it impossible to give a fixed value of harmonic 'cross-section' to the objects, except by using a statistical definition. The observed cross-sections have been found to vary considerably for different types of object.

Applications for harmonic radar include collision avoidance, locating targets close to the surface of the sea and non-destructive testing, to locate the presence of cracks in metal structures.

Radar in geophysical prospecting

The use of radar for delecting and locating subsurface geological strata and man-made artefacts has recently received considerable attention in technical reports, particularly in the USA. For this application, conventional a.m./c.w. has been found to be the most suitable for long range prospecting. For short range prospecting, f.m./c.w. was found to require highly complex receivers, especially at frequencies below about 1 GHz , and consequently other modulation techniques had to be developed.

One of these techniques, pseudobaseband pulse radar, was the subject of a paper ${ }^{10}$ presented by the Plessey Radar Research Centre. There are two
methods of generating pseudobaseband pulses. One method transmits a discrete harmonically-related spectrum related to a pulse train, and depends upon a computer processor to reconstruct the received information into the time domain. The other nethod, which is suitable for portable radars, uses a pulse generator providing a real time pulse train. The latter method was used by the Plessey team investigating subsurface interfaces between strata, and has resuited in a number of short-range high-resolution radars being developed.

In general, the pulse generator produces a cosine squared function having a time duration between 0.5 and 10 ns , depending on the application. The return signals from the interfaces are passed through a sampling head and translated from the nanosecond time region to the millisecond time region.
The antenna is a critical element in the design because clutter greatly reduces the system dynamic range, Most applications require the antenna to be operated well clear of the front surface of the radar. The radar is then physically moved to scan the target and the signal return is stored for analysis.

In the field trials a series of laboratory measurements were carried out at frequencies from 100 MHz to 15 GHz on coal and slate samples from South Derbyshire. From these measurements it was concluded that the attenuation characteristics of UK geological materials tend to be significantly higher than those reported by other authors and that, as expected, water content and impurity level are the functions of material attenuation. In addition the results showed that the antenna design feature used, a successive subtraction technique, has enabled a significant improvement in the dynamic range which can be achieved.

Detection of buried objects

One paper ${ }^{1 \text { f }}$ from the Queen Mary College, University of London, proposed the use of f.m./c.w. radar for the detection of buried objects such as pipes and cables, some of which may be plastics. In the latter case conventional metal detectors fail. A prototype radar developed by the investigators at the College operated in a linearly-swept frequency band from 2 to 4 GHz . With
this system, which is potentially manportable, small plastic objects were detected at depths of about 25 cm in wet. sand. For polystyrene foam buried in sand vertical and horizontal resolutions of about 4 and 20 cm respectively have been achieved.
The choice of operating frequency was a compromise. A low microwaye frequency improves ground penetration but limits resolution because, for a constant-aperture antenna, the ground illumination increases as the frequency increases, and for a constant percentage swept bandwidth the range resolution decreases as the centre frequency decreases.
The antenna needed to have a radiation pattern with a relatively narrow beam width at the ground surface, and one that remains relatively independent of frequency over the swept band. It also had to have a low input v.s.w.r. which was either frequency independent over the band or exhibited a desired variation. In addition, the antenna pattern needed to have low side-lobes and the antenna had to be compact.

It was concluded that improvements in system performance should be achieved by using a bistatic system having a microwave amplifier following the receiver antenna. Signal processing techniques could also be used to further reduce range side-lobes associated with the ground returns, and, where the antenna is at a constant height above the ground, cancellation techniques could be attempted. These features would certainly be required if the radar is to detect objects buried in clay soil at depths in excess of 20 cm .

The detection of electricity pylons and cables

The potential hazard of light aircraft and rotary-wing aircraft striking electricity cables has long been the concern of military aviation authorities in many countries. As a result, the role of such aircraft is severely restricted, particularly in darkness or bad weather conditions. Line cables may be detected by the interference generated by them, but if the cables are not current-carrying they will not be seen by the aircraft. The Research Laboratory of Marconi-Eliiot Avionics Systems Limited, on behalf of the Royal Signals and Radar Establishment, has been investigating the possibilities of detecting pylon cables by radar ${ }^{12}$. It is possible by using a simple pulsed radar, generating at short centimetric or millimetric wavelengths for example, to detect a straight power cable at several points along its length. The detection points will be a main return (broadside flash), which is normal to the cable and is due to the cable acting as a cylindrical rod, and a secondary return which is detected on either side of the broadside flash, and is due to the wrapped construction. Tertiary detection points could also be detected at an angle of approximately 40° to nor-

Hughes' US Army Firefinder radar AN/TPQ-36 can locate artillery after only one firing and predict target location before impact.
mal, but these could be observed only at very short ranges. It was decided that a Q-band, experimental pulsed radar should be used, operating at approximately 35 GHz . The radar used a high powered magnetron transmitter with a pulse length of 100 ns and a p.r.f. of 200 pulses per second. The aerial system had a flat plate Cassegrain scanner with a 3 dB bandwidth of approximately 1^{b} and it could be mechanically scanned over several degrees in both elevation and azimuth planes. Using this radar, targets as close as 150 m could easily be detected.

The field trials showed that it is possible to detect power cables by using pulsed Q-band radar equipment, and that the magnitude of the broadside return is similar to that produced by the supporting pylon. The fact that, in a plan presentation, the secondary returns all lie on the same straight line as the broadside return and the two adjacent pylons, is considered an advantage to a pilot in discriminating between cable returns and those from trees and other more randomly spaced obstacles.

Radar on the battlefield

A radar system has been developed by the US army to determine automatically the location of bostile artillery after it has fired only once ${ }^{13}$,

The system, called Firefinder, is designed to locate simultaneous fire from numerous weapons on a battlefield. It employs two different radars, types $\mathrm{AN} / \mathrm{TPQ}-37$ and $\mathrm{AN} / \mathrm{TPQ}-36$, which both employ electronic scanning antennas enabling rapid repositioning of the antenna beam anywhere over a 90° azimuth sector, They will also scan a few degrees in elevation.

The AN/TPQ-37 has successfully located artillery in live fire tests at ranges beyond 30 km . Phase shifter devices in its phase scan system are integrated into modular arrays that include stripline power dividers and dipole radiating elements. The final power
amplifier in the system's transmitter is a travelling wave tube controlled by a shadow grid and, in each position, the transmitter is pulsed at a fixed p.r.f. to form a train of coherent pulses. The radar receiver uses a gallium-arsenide, f.e.t. preamplifier for each of the pulse channels. After frequency conversion, the channels are time-multiplexed into a single channel by using s.a,w. delay lines. The train of pulses is then coded by frequency modulation and the f.m. signal transmitted to the operations shelter over coaxial cable at its intermediate frequency.

The AN/TPQ-36, which also scans in azimuth and elevation, has a range approximately half that of the AN/TPQ-37. It used a series end-feed to distribute the r.f. power in the horizontal plane and ferrite phase shifters to electronically scan in azimuth. For elevation scanning, r.f. power is disturbed through individual waveguides which have radiating elements in the form of slots cut in the narrow walls. Electronic scanning is carried out using the frequency dispersive characteristics of the waveguides by changing the radiated frequency. The transmitter and receiver systems are similar to those in the $\mathrm{AN} / \mathrm{TPQ}-37$.

Each radar scans the horizon of the surveillance sector, with a single row of beams searching the sector a few times each second. Targets are tracked by updating measurements of range, azimuth, elevation, doppler and amplitude several times each second. When there are multiple targets, each target is tracked for a few seconds and time-related to the search process. The system discriminates between returns to reject those done to birds, aircraft and other sources of clutter.

The weapon-locating process is so rapid that the position of the hostile artillery is usually determined before the projectile impacts. The radar system computer can also extrapolate forward along the trajectory to indicate to the operator the expected impact point as well as the artillery position.

References

All to Radar 77, IEE Conference Publication 155.
8. Oliver, C. J., Royal Signals and Radar Establishment.
9. Fleming, M. A., Mullins, F. H., Watson, A. W. D., Plessey Radar Research Centre, Harmonic radar detection systems.
10. Daniels, D. J., Plessey Radar Research Centre, The use of radar in geophysical prospecting.
11. Clarricoats, P. J. B., Queen Mary College, University of London, Portable radar for the detection of buried objects.
12. Harris, D. S., Marconi-Elliot Avionic Systems Limited. The detection of electricity pylons and cables by radar.
13. Ethington, D. A. Hughes Aircraft Company, Ground Systems Group. Fullerton, California, The AN/TPQ-36 and AN/TPQ-37 Firefinder radars.

Single-sideband transceiver design

Underground application uses simple ceramic sideband filter

by B. A. Austin, B. Sc. (Eng.)
Research Laboratories, Chamber of Mines. Johannesburg

An investigation of underground radio communication showed the need for a transceiver operating at around 1 MHz and with an ref. power capability of 1 W . The requirements of such a transceiver are considered and certain circuit details discussed

For underground use, a suppressedcarrier modulation system must be used to obtain maximum usable transmitter power, and a double-sideband suppressed carrier transmitter is simple to design, adjust and manufacture. Recepion of d.s.b. sc. signals with fairly simple detectors, however, presents a problem. Use of a single sideband, on the other hand, does not require such complication in the receiver but does require a more complex transmitter. Of three commonly-used s.s.t. generation systems, only the filter method does not require careful circuit adjustment. Because filter-type s.s.b. generators are expensive it was necessary to examine other possibilities, particularly in view of the environment.

Transceiver requirements

The transceiver was required for operation in deep gold mines, shielded from surface noise by a mass of rock impervious to electromagnetic propagation. There is no channel congestion in this environment, and this makes it possible to accept transmitter characteristics which would be non-ideal elsewhere. Most important of these is the generation of an s,s.b. signal by the filter method which is of sufficient quality to simplify the receiving circuitry, but does not require excessive rejection of the unwanted sideband. Acceptance of this immediately simplifies the requirements of the sideband filter.
A ceramic filter element appeared to be suitable and the manufacturer's specification for a single-section filter type SFD-455B is shown in Table I.

Table 1. Single-section SFD-455B filter

Center frequency kHz	Bandwidth $(-3 \mathrm{~dB})$	Loss
455 ± 2	kHz	dB
45 ± 1	$9(\max)$	

To obtain a reference against which various filter combinations may be compared it is necessary to define the filter shape factor in terms of two

meaningful and measurable bandwidths. For this filter, with skirts that are not particularly steep, the shape factor is defined as -30 dB bandwith divided by -3 dB bandwith. Coupling the two sections of the filter via a 68 pF capacitor gave a shape factor of 6,35 . Because the shape factor is a measure of attenuation for the unwanted sideband, it enables an assessment to be made of various filter configurations.

To improve skirt selectivity of the ceramic filter it is necessary to cascade sections with suitable coupling as show in Fig.1. The results of this are shown in Table 2. Six filter elements designated A to F were selected at random and measurements were made as detailed in the table. The centre frequency is $f c=\sqrt{f(-3 d B)_{\text {upper }}-x f(-3 \mathrm{~dB})_{\text {lower }}}$ and the bandwidth (measured 3 dB down) is given by $B W=f(-3 \mathrm{~dB})_{\text {upper }}-f$ $(-3 \mathrm{~dB})_{\text {lower }}$ Comparison between three cascaded filters all coupled by 56 pF

Fig. 1. Two cascaded 455 kHz ceramic fitters. This arrangement improves selectivity but increases the insertion loss.

Fig. 2. 903.10 kHz s.s.b. module. An oscillator frequency of 451.55 kHz was found to provide optimum lower sideband suppression for 1 kHz .

shows slight variation in bandwidth and insertion loss, both of which are within acceptable limits. Decreasing c to obtain a narrower bandwidth achieves this but at the expense of the filter shape factor which increases rapidly.

Transceiver

The systern was designed to operate at $I \mathrm{MHz} \pm 100 \mathrm{kHz}$. A block diagram is shown in Fig.3. A crystal oscillator frequency of 451.55 kHz was found to produce optimum lower sideband suppression for 1 kHz , and also gave acceptable performance when the 1 kHz was replaced by speech, band-limited between 300 Hz and 3 kHz . Lower sideband attenuation is between 20 and 24 dB at 1 kHz in and varies either side of this frequency, decreasing as the 300 Hz limit is approached. The signal at the output of the filter is upper sideband at 451.55 kHz . This is mixed with 451.55 kHz from the crystal oscillator in the second balanced modulator to produce u.s.b. at 903.10 kHz and the original audio frequency components which are easily filtered out. The 903.10 kHz signal is then linearly amplified in the following stages.

In the receive mode the incoming u.s.b. signal is fed through the system in the same direction. No switching of signal or oscillator lines is necessary in this generator-detector stage. To provide suitable signal routing around the s.s.b. module a multi-pole push-button switch was used which provided the push-to-talk facility. All circuitry was of standard design with Motorola MC1496 balanced modulators being used in the s.s.b. module. Because low power consumption is important in portable equipment these devices were used in preference to the Plessey SL640, which

Fig. 3. Block diagram of transceiver which uses standard units throughout.
dissipates approximately twice as much power.

A simple but effective s.s.b. transceiver was designed to fulfil a particular experimental role. This unit, though not generating high-quality s.s.b. has been proved capable of producing excellent results, and has shown that inexpensive ceramic filters have characteristics suitable for this type of application.

Table 2. Two SFD-455B filters in cascade

 Centre| C
 CF | frequency
 kHz | Bandwidth
 kHz | Loss
 JB | Shape
 factor | Sample |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 56 | 455.60 | 3.94 | 18 | 2.54 | $\mathrm{~A} \& \mathrm{~B}$ |
| 36 | 455.20 | 3.90 | 11 | 2.47 | $\mathrm{C} \& \mathrm{D}$ |
| 56 | 455.41 | 4.20 | 12 | 2.50 | $\mathrm{E} \mathrm{\& FF}$ |
| 47 | 455.61 | 3.67 | 12 | 2.65 | $\mathrm{E} \mathrm{\& F}$ |
| 33 | 455.87 | 3.14 | 11.5 | 3.84 | $\mathrm{E} \& \mathrm{~F}$ |
| 22 | 456.42 | 1.87 | 13 | 4.05 | $\mathrm{E} \& F$ |

Maximum stopband atlenuation was around 40 dB , which could be improved by cascading three or more filter sections at the expense of increased imsertion loss. \square

Vtr out in the cold

An American study says that the home video tape recorder industry will grow from $\$ 90$ million in 1976 to $\$ 318$ million in 1981. According to Steve Cottrell of Creative Strategies Inc. "Unlike others who have been very optimistic about potential consumer sales, our research indicates that substantial penetration of the home market is still years away." Bearing in mind that the market started from zero, a compound annual growth rate of 28% is rather less than might have been expected. Reasons include high prices and competition from other forms of entertainment.

DMLS succeeds again

The list of successful trials of Plessey's Doppler microwave landing system (DMLS) now includes those carried out at Bern (Belp) airport. Landing systems currently in use are almost useless at Bern, which is surrounded by mountainous country and is said to offer the greatest challenge of any scenario so far investigated. In spite of the fact that the runway under test is only about one third the size of the average rurway, 50 automatic landings were made and a further 50 tracked flights. More flying confirmed that the required coverage was obtained and a 30° offset was found to be practicable.

The next set of DML. 5 trials is scheduled for January at Tehran.

The year's hi fi and other shows

Before current efforts to put some order into the annual hi-fi exhibition chaos have even begun, several show organisers have announced dates for the coming year. The first will take place at the Excelsior Hotel near Manchester Airport between January 19 and 22 . There will, according to the organisers, be 40 exhibitors and lectures and film shows. On the first day the hours from $11 \mathrm{a} . \mathrm{m}$. to $4 \mathrm{p} . \mathrm{m}$. will be for the trade, and the show will be open to $9 \mathrm{p} . \mathrm{m}$, on that and the next two days, closing at $7 \mathrm{p} . \mathrm{m}$. on the Sunday.

From May 2 to 6 the Spring High Fidelity Exhibition will be held at the Cunard Hotel, Hammersmith, the last two days being open to the public.

The Harrogate autumn show will be at the exhibition complex instead of the local hotels as in previous years, from August 19 to 22, the first two days open to the public.

The Audio Fair at Olympia will be held between September 12 and 18.

The 59th AES convention goes to Hamburg between February 28 and March 3.

A three day seminar and exhibition on the use of microprocessors will take place at the West Centre Hotel, London, from February 8 sponsored by eight journals run by IPC Business Press, including Wireless World.

The All-electronics Show at Grosvenor House, Park Lane, London, is from February 14 to 16 , and will be opened by Clive Sinclair, of pocket ty fame. Over 200 stands have been sold.
Another microprocessor show, this time organised by the IERE, will be held at the Old Swan Hotel, Harrogate, on April 11 and 12. The IERE is calling for papers.

At the Metropole Convention Centre. Brighton, the Electrical Research Association is holding a science and security conference between September 12 and 14 . It will deal with the application of technology to preventing fire, flood, technical failure, burglary, theft and sabotage.

In 1979 there will be a seven day exhibition starting on September 20 alongside the Worid Administrative Radio Conference in Geneva. It will be the Third World Telecommunication Exhibition, sponsored by the Swiss Government, The Electronic Ergineering Association would like to hear from any British firms wishing to participate in the exhibition as a joint venture.

In November, 1979, the first Electronics Components Industry Fair will be held at Olympia from the 20 th to the 23 rd, sponsored by the newly formed Electronic Components Industry Federation. This replaces the International London Electronic components Show (ILECS). \square

Absorption wattmeter

The TE-7 absorption wattmeter introduced by All-M Products Ltd is designed for radio use in the frequency range I to 500 MHz . It houses a convection-cooled terminating load of 500 and allows continuous dissipation up to 15 W and intermittent dissipation up to 25 W . At 150 MHz it has a s.w.r. of

WW301

better than $1,2: 1$. The unit uses a peak-reading detector and displays f.m.s. power in ranges of 0 to 5 W and 2 to 25 W . It has a BNC input connector but other types may be fitted. Provision exists for sampling the r.f. for use with frequency meters and in these cases it gives a signal attenuation of 33 dB . The case is of rabust metal construction and measures only $65 \times 120 \times 50 \mathrm{~mm}$. Price is $\ddagger 24.65$. All-M Products Limited, 3 Westhill Close, Highworth. Swindon. Wiltshire, SN6 7BY. WW301

Distribution blocks

Rail-mounted terminals, in a range from Highland Electronics Limited, fit the DIN rail 46277/1 and are avatlable in grey, brown or green/yellow colours. Half of the range comprises a 6 mm pitch block with a 60A busbar, an 8 mm block with a 102 A bushar and a 10 mm block with a 142 A busbar. Cable sizes for these terminals are 4,10 and $16 \mathrm{~mm}^{2}$ respectively. The rest of the range enables the user to connect onto one or two M8 studs with 1 by $70 \mathrm{~mm}^{2}$ or 2 by 70 mm cables with either $2,4,6$ or 8 ways, each way to a maximum cable clamp facility of 16 mm . An insulated cover,
which is supplied as standard. fits over the main cable stud and bllows the cable to be connected in either direction. Highland Electronics Limited, Highland House, 8 Old Steine, Brighton, East Sussex BN1 1EJ.
WW302

Impatt diode bias supplies

Constant-current power supplies, in a series from Avtech Electrosystems, are intended for biasing impatt-diode oscillator and amplifier circuits in low and medium power applications. The outputs from the Model AV-100 may be adjusted from 10 to 50 mA for load voltages in the range 0 to 100 V . Model AV-100P has an additional facility providing a pulsed output for pulsed-mode impatt diode operation. Model AV-101 is identical to the AV-100 except that it requires a direct input voltage of 15 V , instead of a mains supply. These models, which all have meters and short-
circuit protection, measure $4.2 \times$ $3 \times 2.75 \mathrm{in}$ and weigh 1.5 lb . Madel AV-102 is a smaller. low-cost unit without a meter. It requires a direct input voltage of 115 V but otherwise has simblar specifications to the other models. The AV-102 measures only $2.25 \times$ 1.38×1.13 in and weighs only 0.5 lb , Prices, without v.a.t. and duty, range from E 67 to $£ 198$. Lyons Instruments Limited. Hoddesdon. Herts.
WW303

Matched quad op-amps

The OP-09 quad operational amplifier, from Bourns (Trimpot) Ltd, has an input offset voltage of 500 uV maximum and a c.m.r.r. of 100 dB minimum. It also has a guaranteed matched c.m.r.r. of 94 dB minimum and an input offset voltage match of $750 \mu \mathrm{~V}$ maximum. The individual amplifiers in the OP-Og are claimed to be as reliable as the OP-02 op-amp, which is in com-

WW302
mon use. To optimise performance in active filter applica. tions positive-going and negative-going slew rates are equal. Bourns (Trimpot) Limited, Holdford House, 17/27 High Street, Hounslow, Middlesex. TW31TE.
WW304

Service tool set

A twenty-piece precision tool sut. from Jonard Industries Corp.. includes the major tools essential for the production, service and repair of electronic equipment.

WW305

The set includes three types of t plier, four screw drivers, including a Phflips type, two tweezers and two needle files. In addition there is a soldering iron and core, a magnifier, a burnisher an alignment tool and two nut drivers, The complete set is contained in a leather case measuring eleven inches long by six inches wide. The case, including the tools, weighs only 2 Ib . Jonard Industries Corp.. Precision Tools Diviston, 134 Marbledale Road, Tuckahoe, New York 10707. USA.
WW305

Low-cost cermet trimmer

The Sertes 8035 cermel trimmer. from Greenwood Electronics, is a 3_{4} in-long reetangular, mult-turn device having a height of only $0,25 \mathrm{in}$. Reststance values available range from 109 to 5 M 8 with a resistance tolerance of $\pm 10 \%$. A fifteen-turn slider adjustment enables the trimmer to provide adjustment within 20.05% of the
full scale. The 8035 is fully sealed and will withstand automated soldering and all known industrial cleaning solvents. Contact resistance is 1% maximum with a varlation of less than 0.25%. The temperature coefficient of resistance is ± 100 for an operating range of -55 to $+125^{\circ} \mathrm{C}$. At $25^{\circ} \mathrm{C}$ the trimmer has a power rating of 0.75 W and its maximum input voltage is 300 V , Price is 36 p in large quantities, Greenwood Electronics Limited, Portman Road, Reading, Berks RG3 INE. WW306

D.i.I. ceramic capacitors

Low-profile, multi-layer ceramic capacitors introduced by Sprague are available in 2-4-, 8-, 14- and

16-pin di.i. packages. The packages, registered as Multi-Comp Monolythic Ceramic Capacitors, permit closer stacking of p.c.bs. Complete details are given in a document Engineering Bulletin No. 6242B which is avallable on request from Sprague Electric (UK) Limited, 159 High Street, Yiewsley, W. Drayton, Mtddlesex.
WW307

F.m. tuner head

The first f.m. varactor tuner head from a range to be introduced by Astec Europe Ltd is the UM1171. It is a compact, fully shielded device intended for f.m. radio applications. The device will cover a frequency range from 88 to 108 MHz by applying a tuning voltage of 2 to 20 V . Matn specifications are 12 mA current consumption, 20 dB power gain and a noise figure of 7 dB maximum. The UM1171 measures only $20 \times 37 \times 71 \mathrm{~mm}$ and may be provided with automatic frequency control. Astec Europe Limited, 4A Sheet Street. Windsor, Berks.

WW308

L.c.d. multimeter

Full-scale readings of 19999 on a Ifquid-crystal display, with a maximum error of 0.05% are provided by the Advance DMM9
maltimeter alternating and direct voltage and current from $10 \mu \mathrm{~V}$ and 10 nA , resistance from 100 m 2 and a separate range of 10a. The a-tod converter is a true r.m.s. type which can cope with erest factors of 4 at full scale. Additional measurements are possible by the use of a temperature probe for use between $20^{\circ} \mathrm{C}$ and $120^{\circ} \mathrm{C}$, a r.f. probe with detector and a 40 kV probe. A printer interface provides a parallel b.c.d output. Gould Advance Limited, Roebuck Road, Hainault, Essex. WW309

Paper tape reader

A portable, photoelectric papertape reader, available from Data Precision (Equipment) Ltd, has been designed to be used by service engineers for fault diagnosis. The unit, which is based on the recently announced DP203 tape reader, is capable of reading any known five, six or eight-track. punched-paper tapes, including typesetting and advanced sprocket types. Reading speeds are up to 250 characters per second and the feed is bidirectional. Plug-in c.mo.s. i.cs enable output changes to be made, and input changes are implemented by adding or removing soldered bars between p.c.b. tracks. The unit is ruggedly built and the infrared le.ds and photosensors

WW 308

WW 309
are unaffected by ambient tight. Datit Precision (Equipment) Limited, 81 Goldsmith Road, Woking, Surrey.
WW310

Close tolerance capacitors

A range of metallised-film polycarbonate capacitors manufactured by Wingrove \& Rogers Ltd, have capacitance value tolerances of $\pm 0.5 \%$. Capacitor values down to 50 pF are available in several axial and radial formats. The axial capacitors can be supplied with nylon or sleeved metal cases, sleeved metal cases with glass end seals, or in wrap and end sealed forms. The radial eapacitors, which have nylon cases and are epoxy-resin filled. may be of the standard or low proftle type. Polar Capacitors Limited, Domville Road, Liverpool L134AT.
WW311

Infrared illuminator

The Type RT5A infrared illuminator, from 1TT Components, is capable of sharp focus and a very small minimum spot size. Its adjustable lens system allows a focus range giving "spot sizes" from a 0.2 m line to a 1.2 m diameter circle at 100 m range

(N.B. for a sharp focus the "spot" is a line). At a small spot size, the maximum useful range is 1500 m . The unit employs a pulsed. double-heterostructure laser and operates in the near infrared wavelength region of the frequency spectrum. Consequently its beam is virtually in. visible. In night viston applications the RT5A may be used to illuminate areas which are shielded from natural Ifght sources such as the stars or the moon. ITT Components Group Eurupe, Electron Device Product Group, Brixham Road, Paignton, Devon.
WW312

Pocket cable stripper

The AB MK02 pocker tool, in addition to its prime function of stripping cables, can also be used for slitting cable insulations longitudinally. It has an adjustable cutting blade which can be set by turning a knurled screw to match the precise thickness of insulation to be stripped. The cable is retained by a springloaded clamp such that, by rotating the tool around the cable, the blade cuts through the insulation. The MK02 is suitable for round cable from 4.5 to 28.5 mm in diameter. To slit the cable longitudinally the cutting blade is turned through 90°. by depressing a knob on the side of the tool, and the tool is pushed along the cable instead of around it. To assist in peeling off the more-difficult-to-remove insulations, a retracing ripping blade is housed in the handle. $A B$ Engintering Co., Apem Works, St. Albans Road, Watford WD2 4AN. WW313

Static r.a.ms

A range of in-channel. m.ons. static r.a.ms in plastic d.i.l. packages has been announced by NEC Electronics (Europe). The 22 -pin IPD2101 is a 256 -word by 4 -bit device having an access time ranging from 450 to 250 ns . The r.a.m, which is compatible with the Intel 2101 family, has a power dissipation of 220 mW and requires a 5 V power supply. The 16 -pin μ PD2101 is a 1 K by 1 -bit r.a.m. having the same access time range and supply require-
ment but its power dissipation is 150 mW . This device is compatIble with the Intel 2102AL family: The 18 -pin μ PD2111 is also a 256 word by 4 -bit device which is compatible with the Intel 2111 family. It has the same access time range and power requirements as the other devices but its power dissipation is typically 200 mW . The 22 -pin μ PD4110 family is compatible with 22 -pin dynamic ra.ms and they have power requirements of +12 V , +5 V and -5 V and power dissipations of 470 mW . They have a storage capacity of 4 K by 1 -bit. NEC Electronics (Europe), 43 Civic Square, Motherwell. MLI 17H, Scotland.

WW314

Dual-trace oscilloscope

The D12 oscilloscope, manufactured by Dartron Instruments Ltd, is a 17 MHz instrument which operates automatically in the chopped or alternate sweep modes according to the sweep speed. The D12 has a sensitivity from $10 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$ or, with cascaded amplifiers. $1 \mathrm{mV} /$ cm with a bandwidth from 2 Hz ta 10 MHz . The Y amplifier performance is up to 1 MHz on both channels and these are calibrated from $10 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Trig. gering is also available on both channels. The c.r.o. has a fiveinch, helical post deflection accelerator and is used at an overall operating voltage of 3.6 kV , ITT Instrument Services, Edinburgh Way, Harlow, Essex. WW315

Photovoltaic cells

A family of silicon photovoltaic cells, introduced by National Semtconductors Ltd, comprises high-stability, high-efficiency de-

WW 316

WW 315

WW 317

vices which, it is claimed, have excellent short-circuit current linearities over a wide range of illumination Devices in the range have low leakage currents ($10 \mu \mathrm{~A}$ maximum when reverse biased by only 1.5 V) and response rates of typically $8 \mu \mathrm{~s}$. The cells are normally of n-on-p construction, but reverse polarity p-n cells can be provided with a choice of either a low-capacitance, highspeed 800 -type material or a 700 type material giving higher open-circuit voltages. National Semiconductors of Cansda, Stamford House, Stamford New Road, Altrincham. Cheshire WAl4 IDR.
WW316

D.i.I. switches for p.c.bs

The Bos\& (binary option selection switch) family of low-cost p.c.b. switches, from Molex Electronics Limited, has been designed for applications where manual programming of electronic equipment is required. When p.c.b.mounted, ribs on the switch bases raise them from the board to allow flux residues to be removed. A double-lever design
enables the switch to make lowstress, high-force contacts. Brief electrical specifications include a switching rating at 30 V d.c. (open circuit) of 50 mA maximum, and a non-switching rating of 100 mA r.m.s. at 50 V d.c. maximum. Contact resistance, measured with a current flow of 10 mA , is $100 \mathrm{~m} \Omega$. Single-pole, double-throw and double-pole, single-throw versions are available, Molex Electronies Limited, 1 Holder Road, Aldershot, Hants GU12 4RH. WW317

Heat-pipe power semiconductor

A range of power semiconductors known as "transcalent" devices has been introduced by RCA Electro-Optics \& Devices, a division of RCA Solid State Europe. The devices have heat pipes bonded directly to large silicon wafers which are capable of handling currents up to at least 400 A . These heat pipes minimize the thermal resistance and increase the radiator fim efficiency, thereby allowing the devices to be signifteantly smaller and lighter than conventional devices
having similar power ratings. Typically, size reduction is by a factor of four and weight reduction by a factor of seven. In addition the devices offer improved resistance against overioads and high-current surges. The first "transcalent" devices available from RCA are the P95000EB series of $250 \mathrm{~A}, 500 \mathrm{~W}$ rectifiers, which have blocking voltages up to 1200 V , the P 95400 EB series of $400 \mathrm{~A}, 500 \mathrm{~W}$ thyristors, having blocking voltages up to 1200 V , and the P95200EE4 100A, 500 W n-p-n transistor. All of these devices can be supplied with radiator structures to accommodate air or liquid cooling. Thermal resistances are about 0.1 to $0.2^{\circ} \mathrm{C} / \mathrm{W}$ and the operating ambient temperatures at full ratings range up to $50^{\circ} \mathrm{C}, \mathrm{RCA}$ Limited, Solid State Europe, Sunbury-on-Thames, Middlesex TW16 7HW.
WW318

T.t.I. latch and flip-flop

Two devices just announced by Texas instruments are a lowpower Schottky t.t.I, latch and a flip-flop. The SN54LS/74LS373 comprises eight transparent Dtype latches such that when its enable is high the Q outputs will follow its data inputs. When the enable is low the output will be latched at the level of the data (D) that was set up. The SN54LS/74LS374 has eight edgetriggered D-type flip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs. Integrated Circuit Department, Texas Instruments Limited, Manton Lane. Bedford. MK41 7PA.
WW319

Closed-circuit tv tubes

Two camera tubes, Newvieon types XQ1276 and XQ1442 from Mullard, have high sensitivities and will enable closed-circuit tv cameras to work in dim twilight (1 lumen/metre). Type XQ1276 has a spectral response in the near infrared region and a screen diameter of $2 / 3 \mathrm{in}$. It is interchangeable with vidicons such as the XQ1271. The XQ1442 is fitted with a fibre-optic faceplate to enable high efficiency coupling to be achieved when the tube is used with a similarly coupled image intensifier. This tube is mechanically interchangeable with the Newvicon type XQ1440. Mullard Limited, Mullard House, Torrington Place. London WCIE 7HD.
WW320

A Jaguar in my boot

No, it's nothing to do with a tiger in the tank or even a nodding dog on the rear window ledge. The Jag in question was a four-wheeled conveyance, not the motorway equivalent of a set of plaster ducks, and it was desperately trying to get into the boot of my car. It seemed like that, anyway, although since I was blinded by spray from the truck in front and blinded by the Jag's main beam headlights from behind I wouldn't want to swear to it. All I really wanted to do at that moment was to extend a pair of wings and get out of it.

There really ought to be some way of helping incompetents such as the aforementioned Jag. driver to achieve their own, personal set of wings. accompanied by a harp, but since that approach is frowned upon by the De partment of Environment samebody must come up with some kind of gadget to repel attack from the rear on wet, foggy days. And, since lunatics often harbour delusions to the effect that they are Napoleon, Albert Einstein or, worse, Stirling Moss, it is no good lighting up a lot of signs saying, "Careful" or even "Watch it, buster." At best they will think you guilty of lese majeste, or, at worst, think it only applies to the other, bad, drivers.

As a matter of fact, you may be surprised to learn that I have already come up with the answer. There are any number of devices which tell you when there is ice or fog about (though I find I can usually see the fog for myself, thanks very much) but very little has been proposed to actually do anything about it when spotted. The only development to help in a case like this is the car-borne radar connected to the accelerator and brakes, so that if one approaches the car in front too closely and too fast, your anchors are automatically thrown overboard. Sounds fine, but its's not likely to be cheap and most drivers don't like their cars being taken over by machines.

As I said earlier, it isn't a bit of good just warning people. You can do that until you're blue in the face and still have maniacs charging about at 90 m.p.h. in dense fog. So what you've got to do is make it impossible. All you need is a fog and ice detector (photoelectric for fog - temperature and humidity for ice) and something to make the road surface come up like a lot of little molehills when you want to slow people down a bit. Inflatable tubes, like aircraft de-icers, would to the trick, but the details of how to make them and how to justify the cost I will have to leave to someone else. I can't be expected to do everything for the D.o.E.

What's in a name?

At an impressionable age, I watched the march of television northwards from Ally Pally, via Sutton Coldfield, to Holme Moss. From S.C., I was able to

receive a fairly poor picture (80 miles 4 -stage t.r.f.) but from H.M. the face of Leslie Mitchell was displayed in all its monochrome glory. I went to Holme Moss, which is really the name of a Pennine hill, not a transmitter, and gazed at this new monument to man's progress. There it stood, 750 ft tall, on the top of a small mountain near Holmfirth. I could only see the top by lying on my back, a position which was mandatory anyway after pushing my bike up the road to the top.

The names given to these early transmitters were evocative of grand. eur - Wenvoe, Pontop Pike, Rowridge, The Wrekin. Caradon Hill and so it remained until the smaller stations were built, with names like North Oldham and Halifax. But the final stage in the debasement of the image is now upon us. A Press Statement from Auntie Beeb last week informs us that a relay station at Wincobank in Sheffield is now on the air. What a sad decline! And how far from the ringing names of yesteryear. Would Kubla Khan have decreed his stately pleasure dome at Wapping Broadstairs or Penge? Of course not. And the screw is turned by the description of the service area which, we are told, encompasses not the plains of East Yorkshire or the mountains of Wales. but Standon Drive, Woodbury Road and Fife Street. If further proof of the BBC's possession of feet of clay is needed, the last sentence of the press release gives it: "The station is at Barrow Road, adjacent to the gasworks."

Remote control

In common with the majority of offices in the Smoke, and probably everywhere else in the country, we're in the middle of the annual rash of days off, on account of a number of variations on the theme of respiratory malfunction. Colds, even.

I've been so afflicted myself, albeit less drastically and for a shorter time than my more vulnerable colleagues, and while I was languishing there at home, pining for the office and supported only by the thought that they were able to go to the canteen for lunch.
while I had to content myself with rough, homely fare such as game soup. chicken and the kind of pudding people might commit murder for, it struck me (if I can remember what I was talking about at the start of this sentence) that the day of the commuter must nearly be over. Every dog has his day, so they say. and British Rail has nearly had its.

It's all so illogical. In a period when communication and easy access to computer terminals can be provided, it's a nonsense that all those thousands of official troglodytes should wear their individual little grooves deeper every day to get to the office, simply because the 'paperwork' is there, or because they have to attend a sales meeting. If eyeball-to-eyeball confrontation is essential, then a television method of some sort should suffice.

Think of the rates the big companies could save, too. Instead of a couple of million a year in Central London, a few thousand a year for the hire of the terminals and a suite at Claridge's for the M.D. - he's still got to have somewhere for the drinks cupboard and four walls for his Stubbs-surrogate horses.

Computers $+10^{-5}$?

It all depends on where you start from, I suppose. If the little ones had come first, they would now be called computers and the Swansea-type giants megacomputers. It seems rather a shame that, although "Micro" has a precise meaning in electronics, it is often used as a rather vague prefix meaning 'very small', which can change its meaning as time passes. A microcomputer of today could very well be classified as a minicomputer in a couple of years' time without anything about it being changed at all. "It's all a matter of relatives," as someone I know used to say, but then he has some very peculiar relatives indeed. (His Uncle Arthur has been known to eat coal - and he's the bright one.)

Where was I? Oh, yes - computers. Yes, well what I was coming to was the difference between processors and computers - a distinction which seems to become more blurred with every bit of paper that crosses my desk. I tend not to delay these bits of paper very long on their way across, but I have noticed as I pass them on to more technical colleagues that 'computert seems to hold more attraction as a name than 'processor. As 1 see it, a microprocessor can be the central processing unit of a microcomputer and, in the computing field, is incomplete without its programme memory, read/write memory, input/output buffers and latches, input keyboard or whatever and some kind of output display or recorder. Of course, it is usable without some of the peripheral equipment in the process control application, for which it was originally intended, but used in that way it is a controller, not a computer.

Communications 78

Communications Equipment and Systems

National Exhibition Centre, Birmingham, England. Tuesday 4-Friday 7 April 1978

You are invited to Communications 78

Communications 78 is the world's leading exposition for selling communications equipment and systems, providing an international focal point for the latest technological advances in the fields of PTT telecommunications, fixed and mobile radio communications and defence communications.

Active backing

Trebled in size since the last event in 1976, Communications 78 is being supported by more than 200 international exhibitors and has the active backing of the International Telecommunication Union (ITU), representing the interests of 153 governments; the British government through the Ministry of Defence, the Home Office and the British Overseas Trade Board; Post Office Telecommunications; the Electronic Engineering Association (EEA) and the Telecommunication Engineexing and Manufacturing Association (TEMLA),

Integral conference

The integral conference is being organised by The Institution of Electrical Engineers (IEE) in association with the Institution of Electronic and Radio Engineers (IERE), the UKRI section of the Institute of Electrical and Electronics Engineers (IEEE) and the IEEE Communications Society. Communications $\mathbf{7 8}$ is being held for the first time at the National Exhibition Centre, Birminghamthe UK's premier exhibition complex-from Tuesday 4 April to Friday 7 April 1978. The exhibition will be open daily from $09.30-18.00 \mathrm{hrs}$. (17.00 hrs . on last day).
Admission to the exhibition is free to bona fide users and specifiers of communications equipment and systems. The coupon below may be presented as an admission ticket to Communications 78 ox, if you require more detailed information, please complete and send it to: Tony Davies Communications, c/o Industrial and Trade Fairs Ltd., Radcliffe House, Blenheim Court, Solihull, West Midlands B91 2BG, England.

* STYLES - Chipss 12 rectangular 4 discoidal - Radial Lead: 3 moulded

9 dipped - Axial Lead; 2 moulded 2 glass encesed * DIELECTRICS - COG,X7R,ZSU

* VOLTAGES - 200, 100,50
* APPROVALS - BS 9075 N023, N 024 , N025 BS 9075 FC05, F022
* * NEw catalogue available

Send for your copy now

> | UK DISTRIBUTORS: |
| :--- |
| im Electrocic Senices: 027926777 |
| Intel Electranits Lt+0.0062812 505 |
| Compatock. 026827722 |

ITT Components Group Europe

MULTILAYER CERAMICS DIVISION South Denes, Great Yarmouth, Norfolk NR30 3PX. Tel: 049356122 . Telex: 97421 . Cables: Resistor.

WW - UTS FOR FURTHER DETAILS

FREQUENCY COUNTERS

$1 / 10 \mathrm{~Hz}$ to 1.2 GHz
High perfarmance instruments measuring traquency, period, fime, Freq./ratio and calibrated output facility. Fast delivery. Specials by arrangement.

CRYSTALDVES
CRHATNGMANUAL
TWOTONE BLIECASE
£280 250 MHz
Sensitivity 10 mV . Stability 5 parts 10 . ${ }^{\text {¹ }}$ Resolution ± 1 Count

Type 1011 MHz 100KHz 10 KHz Crystal Standard $£ 98$
Type 103 Dif/Air Standard £98
Type 203 Low Fraquency Generator $\mathrm{E78}$
sÜPLLIERS TO. Ministry of Dafence, G.P.O., B.B.C.G Governmant Depti., Crystaf Manutacturera and Electronic Labarateries wbrld-wide

CIRCUIT DESIGNS - 2 £12.50 inc.

The second collection of ten of Wireless World's highty stuceessful Circards-previously published by the journal-giving selected circuits and other cirenit data.
inclutes: Basic logic gates Wideband amplifiers Alarm eircuits Digital counters Puls. modutators
Cd.as-signal processing C.tias-signal generation C das-measurement and defection
Monostadle circuits Transistors pairs

HI-FI YEAR BOOK $1978 £ 3.40$ inc.

Your comprehensive quide to the maior categorics of hi-fi equipment, with pictures. descriptions. specifications. prices-everything you need to help you in vour choice of equipment-backed by authoritative articles on choosing and tisimg.

HIGH FIDELITY DESIGNS - $1 £ 1.35$ inc.

This book is the first collection of popular audio constructional articles formerly publisised in Wireless World If covers the whole range of equipment, from signal sources to speakors and headplones. and from it ean be selected a system suitable for most requirements:

Includes:

Fromt Hacksaw to Haydn High-quality tape recorder Turntable construtution Pick-up arm construction FM. stereo taner
Phase-locked stereo decoder Bailey-Burrows preamplifier 301 watt high fidelity amplifier 30 -watt amplifier modification

HIGH FIDELITY DESIGNS $-2 £ 2.75$ inc.

Published to mee the continued demand for reprints of Wircless World construetional proiects. this book contains twenty five more of the most requested" articles which reaters have asked for
F.M. tuner design

Novel stereo f.mit tuner Low-noise, low-cost eassette deek Wireless World Dolby noise reducer

Wideband compander design High guality compressor//imiter An automatic nolise limiter Modular integrated sivmit audio mixer The "wallethat
Electronic piano designs Advanced prcamplifier design Iligh quality tone control Mult-channel tone coniral Bailey Burrows preamplifier 30 -watt higir fidelity amplifier 30 wat amplifier modification

Modelar preamplifier design Simple class A amplitier New approath to class B amplifier dessign A non-resomant loudspeaker enclosure
[aw-cost hight-quality loudspeaker design Flectrostatic headphone desigh An ic. peak programme meter

Baxantall tonc control revisited Actise crossover networks Flectrostatic headphoneamplifier
Class A power amplifier Ati i.e. peak programme meter Horn loudspeaker design Horn loudsntaker The transmission:line loudspeaker enclosure Commercial quadraphonic systems

ORDER FORM

Fo: General Sales Department.
IPC Business Press Ltd
Room CP34, Dorset House.
StanfordStreet. London SEL 9LU
Please send me publications as indicated helow: (please state quạntity) Circuit Designs-2 (4) $\$ 12.50$ inc.

Hi-Fi Year Book 1978 (2) 33.40 inc. -

High Fidelity Designs-1
\# $£ 1.35$ inc...............
High Fidelity Designs-2
(2) $£ 2,75$ inc.

I enclose remittance
value S
(cheques payable to 1 PC
Business Press 1.td.).
NAME
puaseivain
ADDRESS

WW/7A/77
Company registered in Englund No. 677128 . Registered offies: Dorset House. Stamiond Street, London SE 19 LU .

Produce instruments with a high specification at a low price - put them in steel cases for rugged reliability and guarantee the results.
The G 5 is a low distortion 10 Hx to 1 MHz sine'square signal generator with a 600 ohm swilched attenuator and a low impedance output of up to 3 watts.
Coupled with the M2B millivoltmeter, with its 1.2 mV full scale maximum sensitivity, you have the ideal test set, Calibrated in true RMS on the a.c, ranges it will measare up to 400 volts ac or dc and has a db range from -70 db to +54 db .
Send your Order now to Linstead Manufacturing Co. Ltd., Raslyn Road, London N15 5 JB .

Telephone:01-802 5144
WW - 071 FOR FURTHER DETAILS

HAVE YOU DONE IT LATELY!

日24-RP stereo cassette gless/ferrite record/playback $\mathbf{£ 9 . 8 4}$
812-01 mona cass. playbk. £1.60 B24-01 steroo cass, playbk. £2.80 A28-05 stareo 8tk cartridge $£ 1.80$ E12-09 starao/mono Csss. arase $£ 1.80$

5/7 Church St, Crewkerne, Som. Tel. (0460) 74321
WW-063 FOR FURTHER DETAILS

> Gas filled indicator tubes always available

character heights $8-135 \mathrm{~mm}$ MEMA Electronics
Clock Tower Road, Isleworth, Middlesex TW7 6DU
 Tel: 01.5680151. Telex. 934120

WW-007 FOR FURTHER DETAILS

After the introduction of the CQ 110 E and CQ 301. NEC have compieted their CQ-Line with the CQ 201 Digital VFO, the SP 110 Speaker and the M110 SSB Microphone. The NEC CQ-Line represents highest technical standard, with regard to design, quality, reliability and price which is available to the modern radio communicator today.

NEC CQ 110 E, 300 watts Digital transceiver Modes: FSK/ USB/LSB/CW/AM, 100-240V AC/13.5DC handmike. Control speaker, VOX Sidetone, 3 Xtal filters. Blower, RCA 7360 RX Mixer, 22 fix-channels, 60 Page Manual. $160-10$ meter, 11 Ranges of 500 Khz ,

NEC CO 301 2-3 KW SSB/AM Linear Amplifier 160-10 meter. 2 EIMAC 3-500Z. Handbook, $100-240$ V AC. High Speed Blower. incorp. Power Supply.
NEC CQ 201 Digital Additional VFO for Split-Frequency Operation containing 3 VFO systems, usable as frequency counter. $100-240 \mathrm{~V} \mathrm{AC} / 13.5 \mathrm{VDC}$. Handbook.

NEC SP 110 Communication Speaker with Electronical Digital
Clock. timer, etc handbook $100-240$ VAC.
NEC M 110 SSB Communications Microphone, designed for CQ - Line

Colour of CQ line brown military sand-touch

* Dealer inquiries welcome
* ASK ABOUT OUR UP TO 120 DAYS FINANCING FACILITIES
* ASK FOR OUR COLOUR CATALOGUE against payment of SFR 16 - or any other equivalent currency.
* Shipments to EVERYWHERE

Sole distributor in Europe:
CEC Corn., via Valdani 1-CH 6830 CHIASSO-SWITZERLAND Phone: (091) 442651 Telex: 79959 CH

We have been earning an enviable reputation as one of Britain's leading used equipment houses. Industrial, Research and Educational establishments, both large and small, have come to regard us as their first source of secondhand instrumentation at extremely competitive prices. With the ever increasing cost of equipment, it makes sound economic sense to take a long look at the advantages of either buying or hiring competitively priced used instrumentation from us.

MARTIN ASSOCIATES

34, Gtawn Sureet
Readiag, Burks. RG1 2SE
Tele: Reading (0734) 51074

You'll do better at Martin Associates we guarantee it!
To support these activities we have a Repair \& Calibration Laboratory who also provide a tast, keen priced service. with traceability to National Standard, for companies and individuals.
TEKTRONIX 491 Sperfortil Agalyser IOMH2 - $50 \mathrm{GH} / \mathrm{E} 3750.00$ HEWLETT-PACKARD 141 T Speritrum Aralysen POMHP 40GH/
£7500,00 HEWLETT.PACKARD 84n3A Trackiri Gertatur $£ 1850,00$ SOLATRON AIOC D.al Beam Osemllusonge DC - $30 \mathrm{MHz} £ 350.00$
 SOLARTRON 7040 Multmeter with R, Prabe \& Case £275.00 WAVETEK 154 Proarammats/e Waveform Generator coovithr TOMH:
£950.00
RADIOMETER MS 7 g AM/FM Generator $0.3 \mathrm{MHz}-240 \mathrm{MHz}$
£550.00
CHESSEL 30t 3 Pen full weselap ping Recorder $£ 250.00$ STATIM B8 Hot/Gole Over $10^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C} . \quad £ 450.00$

[^3](kown
wate in
cratay.

WIRELESS TIME ： に こ ご

 National＇s MA alarm unit 1012 LED digital clock modula is a complete clock \＆ features you operating from 50 of 60 Hz mains，and offering all the with es you would expect：Hours－minutes display in bright $0.5^{\prime \prime}$ leds M／PM inal seconds，sleep and snooze alarms，fast and slow setting， Thus the MAlor，switehed alarm outputs－but best of all no RFl． Thus the MA1012 is suitable for use in any radioftuner applications， and requires just $1.75 \times 3.75 \times 0.7^{\prime \prime}$ total．（Ex．transformer）． $£ 9.45$ per module，isolating mains transformer $£ 1.50$ each．（ $* 8 \%$ vat） Two modules，and two transformers for $£ 20,00(+8 \%$ vat）chokes，
In the latest Ambit calalogue：more TOKO coils，chokes， filters etc．，data on the short wave coil sets，a revised price list，micro－microphone inserts，special offer lines ete，

DETECKNOWLEDGEY

Metal locator principles and practise，including some of the facts and information manufacturers of $\mathrm{E} 100+$ detectors would rather you didn＇t know．$£ 1.00$ each．
The Bionic Ferrat 4000－a VCD metal locator based on the PW seekit，including all parts，plasticwork，ready wound coil etc．Inc． free copy of datecknowledgey．$£ 34,26$ in pp and VAT at 8% ． Specisl announcement The Bionic Aadiameter metal lecator is at last to be releasoci．A foll VLF discriminator，with simutaneous display of ferrous， non－ferrous ano foii dejects．With a 1 tile practise，you can actually lind

COMPONENTS

Herewith the list of first quality parts and modules for wireless，ine． Europe＇s largest range of signal coils and inductors．Y／m in stock！

 ve753 fmgrin 180 BD535 G0v／60w 0.52 EF5801 15800 Fosc opl 17.45

 LM381 preamp 1.81 MEM614 1408221 O．38＊ 030 linear phase im if 10.95
 thastons \％NAF 1.08 BA102 wht varic $0.30 \quad 91196$ Napl96 deander 12.99

 $\begin{array}{ll}78 \mathrm{M} 24 \\ \text { U8723en } & 24 \mathrm{v} / \mathrm{/kA} 1.20^{\circ} \\ \text { variabie } 0.80^{\circ}\end{array}$ TOKO Coils \＆Filters All mpx cecosters feature

 NEESEK if al 2.50^{*} KACSK586HM
 1c90 650mh 14．00＊LLCA827 Lmm 0.33 FX115 beacs 10025 ZTX107 $50 \mathrm{w} / 3 \mathrm{w} 0.14 \quad \mathrm{CF} 510.7 \mathrm{ceramic} 0.350 \mathrm{~min}$ ，foil trimmars iseepll
 2TX109 $30 \mathrm{~V} / 3 w 0.14$ 日BR3132 6pole im 2.25 RFchokes：luH to 120 mH VAT is extra at $12 \% \%$ ，except where otherwise shown（ $\% 8 \%$ ）．PP now $25 p$ per order．Catalogue 45 p（inc）．Pse send A5 or larger SAE with
enquiries．Price lists free with an SAE．Full range of components enquiries．Price lists free with an SAE．Full range of components etc available to callers at our new sasy－to－get－to premises．

ambit INTERNATIONAL

[^4]WW－053 FOR FURTHER DETAILS

RADFORD HD250
High Definition Stereo Amplifier

新 $1+$＋ 1 ：
 A new standard

 for sound reproduction in the home！We believe that no other amplifier in the world can match the overall specification of the HD250．Rated powar ourput： 50 watts av，continuous per channel into any Impedance from 4 to 8 ohms，both channals driven．

Maximum power oufput： 90 warta ak．por channel inta 5 ohnes．
Distortion，proamplifier；Virtually zaro（cannot be idantified or massured as it is below inherent circuit noise．）
Distortion，power amplifier：Typically 0.006% at 25 watts，lest than 0.02% at rated ourput（Typically 0.01% at 1 Khz ）
Hum and noise：Diev，-83 d PV meanured tlat with nolse hand width 23 Khz （ref $5 \mathrm{mV}) ;-88 d B V$＂$A$＂weighted（ref，5mv）

Line－85 dBV menaured flat（ref 100v）
Hear the HD250 at

SWVIFT OF WILIMSLOW
 Dept．WWV， 5 Swan Street，Wiilmslow，Cheshire （Tel：26213）

Malt Order and Personat Export enquirios：Wilmalow Audio，＇Swan Works，Eank̄k 5quare，Wilmslow（Tri，29599）
Now available ZD 100 power amplifier and ZD22 pre－amplifier
WW－044 FOR FURTHER DETAILS

SVVANLEY ELECTRONICS
DEPT．WW，PO BOX EB， 32 GOLDSEL MD．，SWANLEY，KENT BRB STO

33% OFF

BH-PAK
 \squareD)

THYRISTORS

TRANSISTORS
BRAND NEW - FULLY GUARANTEED WE NEED THE SPACE

DIODES

									cis

T

LINEAR I.C.s

TRANSISTOR SOCKETS

MOUNTING PADS
TRANSISTOR HEATSINK
20 meporno ives To1 PAK
Dupena 5/5 Our Mix sop

MATCHED PAIRS OF GERMANIUM
PNP MED. POWER TRANS

POTENTIOMETERS
 Slider 40 MM. Travel

HEAVY GAUGE

BLACK PLASTIC BOX
With aluminium lid and fixing screws Size $6 y^{\prime \prime} \times 34_{4}^{\prime \prime} * 2^{\prime \prime}$
Order No 516 Only 75p

74 SERIES TTL ICs

CMOS ICs

type	Prita	Typt	ic8	Typt	Priet	Typs	Prite
CDACDO	E0.14	C04015	c.0.35	c04035	51.40	c24035	$\underline{51.15}$
cota01	E0.15	c.04019	£0,45	c9403T	c0,78	cat05s	¢0,32
CDt002	E0, 15	504820	E0,95	CS4045	c0.78	604070	${ }_{50.32}$
cpapa	E0.80	c0402	50,85	cotosi	¢0.68	c04071	co. 20
coatep	E0.17	${ }^{\text {cas }} 4622$	E0.80	c04042	E0.68	545072	ce. 20
[0:006	C0.80	${ }_{6}^{604023}$	E0.18	cas 13	¢0.78	C04051	E0.20
504009	¢0.50	[04024	[0.64	cotica	[0.78	C0SOES	${ }^{\text {E }} 0.20$
c04010	¢0.50	c04025	c0.18	C6H04s	$\underline{11.15}$	cos 510	E1.11
cosoti	E0.18	c04025	E1.85	C24045	£0.95	c04511	¢1.25
C04012	E0.17	C04027	ع0,48	c5404T	E0.75	504515	E1.10
604:13	co.42.	c0402a	¢0.80	c04049	E0.45	c04518	E1.se
C04015	c0.80	c04029	E0,95	cosos0	E0.46	204520	£1.10
c0401E	¢0,42	c04038	[0.46	cose54	£0.95		
604017	¢0.80	cot034	[1.80	604055	£1.60		

AUDIO MODULE SALE

Type	Dascriptiori Nurmal Puce	Sale Prica
AL30A	10\% नMS Power AMF EF6a'	£2.95*
ALEO	25W RMS Cower AMP -E4 ${ }^{\text {ata }}$	£.3.55*
A180	35 W RMS Power AMF - Efter	¢5.95
AL250	125W RMS Power AMP [1595-	¢14.45
SPM80	15 V Power Supply	C3.10'
PS12	20.30 V Power Supoly for Al30A E-7\%	E1.15
PA12		E5.95
PA100		¢12.45'
S450	Sterco FM. Tuner eno	¢18.65'
MPA30		¢2.55
Sterea 30	Compiste Audie Chassis 7W + 7W TV. 5	¢14.95

LOOK \& LISTEN!

GE 100 NINE CHANNEL MONO-GRAPHIC EQUALIZER MODULE E19.50

 Ess than 10 K Frequencot rasponse 20 Hz 20 KHz i3dg
 ested gain contrals are 10 K LIN slidersinot supplied with the modutal Sive Paks $\$ 3!$ and 1 B1 92 SG30 POWFF SUPPLY BOARD FQR GFIOD $160-15$ VOLT
$£ 4.50$
FFND SAF FOR THCHNITAL GATAONALL AUDICI MORLLES

B/-PAK

Orde No 55310 for $£ 2.50^{*}$
BIB GROOVE CLEAN

$$
\begin{aligned}
& \text { Model } 50 \text { Chrome finsh Plastic } \\
& \text { Orcer No } 829 \text { £1.40 }
\end{aligned}
$$

HOT OFFER

ANTEX SOLDERING IRONS

Order No

193: $\times 25$ 25watt LOW LEAKAGE
Usually s.4日 Sale Price E2.95 1948 ModerC 15 wart GENERAL PURPOSE Usually
1239 ST3 Soldering fron Stand suitable for either from
£1.20

NEW Siren Alarm Module
 Ametican Police screamer powered from any 12

 volt supply into 4 or 8 ohm speaker, leeal for car butglar alarm, freazer breakdown and other security purposes. Order No, S15 Only $£ 3.50$
AVDEL BOND

It rderfive 143 55p per 2 gm. phial
ORDERING
Please word your orders exactly as printed, not forgetting to include out part number.

VAT

Add $121 / 2 \%$ to prices marked Add 8% to others excepting those marked t. These are zero.

As atsese prouts are capabio of suet at excetuent aerformance wh teet tiat is is designirg a at down en Dis peruntai by thatstate semet y lithe mare on pulfessertal tartware ailowing tos to design a very advanoed madular system This coabies a mare anislaciby electr Es! layout to be schieved particulaty angund the very chtical mput wiras of the Tepley preamps incqe arn toinl y stople stabu sing camputiento tary othe pavanesges hist evoths from the systert which has sepsrate recurd and realay umps for aset zhannel zlugging in to a trester boald with patd-platent sbokels The most abvicus is the reffuet is of arossiak sind intarashion whech copld zausc troubla on if single plane vosta Wh cat madilat syssem the-bydut is
congan hu there so comporont copomil hul there no comporion canwaiti testing is vecy easy wh
 pancent irstruations is efo diskly simble out tan fre ohed tezult is it upit des gaper not to tuamal domestic standards fie. lothe bett arpfossional practiciof
Al proted bercuts are of thascyibth
 for easy arst raliablu soldetity Corivon ent locanams ane primets on the reverse sitic of the hare sthd are arrangeo zo that all dentifteat-on rumbers are still visinia ate sasembit
71x Comulete set at marts for Master Beare, traludes has asc has teay.
contrals, ore $6583+E 123$ VAT $78 \times$ Parts for Motar Srecd and Solemen Contrs for Soncan CRV dece This is
 the articles $C^{3} 52$ - A4u VAT
23. Eorolecs ze: of parts tor stamo
 ± 812 - 玉t.CZ VA
74x Camplate ses for staree Feccid Amps $£ 674$ - 94nVA
75x Comatole set of parts ion Stabulsed
 feit indrstormar winn tener ch ill ternster then the commanily uses.

rockz irdividue Hgh Tuality vb

$700 \mathrm{C} / 2$ High Cualizy Cusion muit aimel Cacto Comptete wish-Brubhes - aminizm fiont plate resums skitet recud microswiter surroed focore ievel knob plastic cabund leet al
 all ratessary hrees are purnched and all suffaces are elecsobmiatid Completg step-by step tssiombly
 Cfackity surfoct E16.50- 2206

[^5]Spectial ctier tor Kampaita Kite 5 51. 50 £ 0.19 VA1

Opitional patra solid taak ono oriceks. fis DAit + 3BR VAT

Avphits at 3 Ithevey-head Castotho

Wh aist supply cornatete fits tit neeky fully riegroted 302 watt steres amplfien usith that Bancy Power Aimp ter cirrit: and the Buins, Burtaws Pramp lies whth the Quller Tona comial Modifita-
fal
Finted circuits and comfiomerts, sty

 tram iss ; ilict 40p. Pust Frec inovat.

ALL PARTS ARE POST FREE
Fleasen send 9×4 SAE for fists giving tuller tetials and Price breakdowns
Penylan Mill, Oswestry, Salop
but please note we are closed all cay Satorday

There are times when trade information can make or break your business - and then this is the book to have around. It brings you a proprietary names directory, buyers' guide, Trade addresses, Electricity Board addresses, Trade organisations, radio and electrical wholesalers, service depots and agents - plus a really comprehensive legal guide that covers just about everything you'll ever need to know.

Get it and there's one question you'll ask yourself: "What did I do without it?"

ELECTRICAL AND ELECTRONIC TRADER YEAR BOOK 1978/79

[^6]
NEW PRODUCTS!

NRDC-AMBISONIC 45J

SURROUND SOUND DECODER

The first ever kit specially produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years research by the Ambisonic team. W,W, July, Aug. 77.
The unit is designed to decode not only 45\rfloor but virtually all other 'quadrophonic' systems (Not CD 4). including the new BBC Matrix H. 10 input selections.
The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6 output signals are provided in this most versutile unit. Complete with mains power supply, wooden cabinct panel, knobs, etc

Complete kit, including licence fee $£ 45.00$ + VAT or ready built and tested $\mathbf{£ 6 1 . 5 0}+$ VAT

INTRUDER 1 RADAR ALARM

With Home Office Type approval

As in "Witelass World", designed by Mike Hosking. 240V ac mains operated and disguised as a hardbacked book Detection cange up to 30 feet.

Complete exclusive designer approved kit $\mathbf{£ 6 . 0 0}+$ VAT or ready built and tested, $£ 54.00$ + VAT

Wireless World Dolby ${ }^{(3)}$ noise reducer

Featuring.

- switching for both encoding (low-lovel h.f. compression) and decoding

Q a switchable f.m. stereo multiplex and vias fitter
orovision for decoding Dolby f.m. radio transmissions (as in USA) - nó equipment needed for alignment.

- suitability for both open-reel and cassette tape machines.
- check tape switch for encoded monitoring in three-head machines,

Also available ready built and tested

Typical performance

Noise reduation bentur than 9 dB weighted
Clipping levet 16.50 dB above Dolby lavel (measured at Tha thind hatmartic to ontent)

Hatmonit distortion 0 Th at Dotoy level zypualy 005% over mosi of band rising :o a maximum of 0.12%

Calibration tapes are available for open-reel use and for cassette (specify which)
Signal to tobse ratio. 75 ch 120 Hz to 20 kHz signal at Dolby level) at Monitor Dutgut
Dynamic Renge $=90 \mathrm{db}$
30 mV sensitvisy
Complete Kit PRICE: $£ \mathbf{3 9 . 9 0 + V A T}$

Single channel plug-in Dolby PROCESSOR BOARDS $192 \times 87 \mathrm{~mm} /$ with gold plated contacts are available with all components

Single channel board with selected fet
Gold Plated edge connector .
Selected FETs 60p each+VAT, 100p + VAT for two, $\mathbf{£ 1 , 9 0}+$ VAT for tour
Please add VAT @ $121 / 2 \%$ unless marked thus . when 8% applies (or current rates)
We guarantee full aiter-sales technical and servicing tachlles on all our kits. have you checked that these services are available from ather supplierst

Price $£ 8.20+V A T$
Price $£ 2.50$ +VAT
Price $£ 1.50+$ VAT*
Price $£ 54.00+$ VAT
Price $£ 2.20+$ VAT

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET

A high-quality push-button FM Varicap Stereo Tuner combined with a 24 W r.m.s. per channel Stereo
 Amplifier.
Brief Spec. Amplifier Low field Toroidal transformer. Mag, input, Tape In/Out facility (for noise reduction unit, etc.). THD less than 0.1% at 20W into 8 ohms, Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF, INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz} .30 \mathrm{~dB}$ mono S/N @ 1.2. V V. THD 0.3\%. Pre-decoder 'birdy' filter.

PRICE: $£ 58.95+$ VAT

NELSON-JONES STEREO FM TUNER KIT

A very high performance tuner with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70 dB . IF rejection -85 dB . THD typically 0.4%.
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Chaice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice the price.

Sens. 30dB S/N mono@ $1.2 \mu \mathrm{~V}$
THD typically 0.3%
Tuning range $88-104 \mathrm{MHz}$
LED sig, strength and stereo indicator

Mono £32.40+VAT
With ICPL Decoder $£ 36.67+$ VAT
With Portus-Haywood Decoder
$\mathbf{£ 3 9 . 2 0 + V A T}$

STEREO MODULE TUNER KIT

A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic filter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo $£ 31.95+$ VAT

S-2020A AMPLIFIER KIT

 Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, switches, sockets and fuses are used for ease of assembly and to minimize wiringPower 'on/off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input S/N 60 dB . Radio input S / N 72 dB . Headphone output. Tape In/Out facility (for noise reduction unit, etc.). Toroidal mains transformer,

PRICE: $£ 33.95+$ VAT

[^7]| BASIC NELSON-JONES TUNER KIT | $£ 14.28+$ VAT | PHASE-LOCKED IC DECODER KIT $\ldots . . £ 4.47+$ VAT | |
| :--- | :--- | :--- | :--- |
| BASIC MODULE TUNER KIT (stereo) | $£ 16.75+$ VAT | PUSH-BUTTON UNIT $\ldots \ldots \ldots, \ldots$ | $\ldots 5.00+$ VAT |

U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

STEREO AND MONO
£21.50
 $200 / 250 \mathrm{~V}$ Sace $131 / 1 / 51 / 1 / 1 / \mathrm{H}$

 B.S.R. P128 with magnosic Cartridge Balancond a/m PORTABLE PLAYER CABINET
Modern design Rexine covered

HEAVY METAL PLINTHS

ELAC HI-FI SPEAKER 8in. TWIN CONE
 15 watrs RMS
£5.95

SMITH'S CLOCKWORK 15 AMP
$0 \rightarrow 6$ HOURS $£ 3.30$ port $35 \square$
Single pole two-way Surface mounting
with foing screws. Will tep ece ztesting
 garage automstic anti, bu glar lights ete. intermatatcactings Brand nuw
baird Saze $101 / 2 \times 7$ Kin -45 p.
R.C.S. "MINOR" 10 watt AMPLIFIER KIT
 avosiole: Mono, $£ 11.25$; Sroteo $£ 18$. Poss 45p. Spucification Wow per channce irput 100 my size 9 is $\times 3 \times 2 \mathrm{in}$, iporax

VOLUME CONTROLS $5 \mathrm{k} 0 \mathrm{\omega} 24 \mathrm{M} ~ L 00 \mathrm{og}$ 35p, D. P 60p. STEREOL/S B5p, D, P, E1. Edge fik. S. P. Transstor 45p.	80 Ohm Coax 8p yd. FRINGE LON LOSS 15 p yd OUTLET BOXES 50p.
ELAC 9×5 in SPEAKER TYPE fris latous untrfow	1-FI E3.45 $\text { ste } 10 \text { wats. } 8 \text { otm }$

E.M.I. $131 / 2 \times 8 \mathrm{in}$. SPEAKER SALE!

R.C.S. SOUND TO LIGHT KIT
$E 17$
Lasy to tould Fall ingtructans supthed Cabinet $\mathrm{ES}^{1.000}$.
R.C.S. LOW VOLTAGE STABILISED POWVER PACK KITS
$£ 2.95$
printad crobut matiteos mund dowhe diode wind

9 ce 12 Vac , p to 100 mAD .
R.C.S. POWVER PACK KIT
£3.35

R.C.S. GENERAL PURPOSE TRANSISTOR PRE-AMPLIFIER - BRITISH MADE

RCS DRILL SPEED CONTROLLER/LGGT DIMMER KIT. Fasc to tuild kit Witl CoNTROLL £3.25 Post 36 p

abueld thus proamp
Inputs to thith, mediump or low irmp pur duapmen with volume
£2.95 eos: 35 n

R.C.S.

BOOKSHELF SPEAKERS
50 m 14.000 ctg
3 watroms. 4 or 16 omms
E16

GLOBAL SPEAKERS £3.95 ea.

These litife msryels of medern sound eqpioductan Bis weylly suited for teday s dornestic audiu set-up. Twe of these smart
sptetes cach with 5 watt deop throated cordt mognos. will produce suparb sterco rispracluction
The ghabe shaped soses in high gloss mblaitimps at red and

metros of strong lead
already linad with phono
pluy is suppliud.
pluy is supplied
Frequency Response
10020000 Hz
impedarce: 8 otim
Power Capstety 5 watts

LOW VOLTAGE ELECTAOLYTICS
$1,2,4,5$ a $16,25,30,50,100.200 \mathrm{~m}=15 v 10 \mathrm{p}$
$1000 \mathrm{mF} 12 \mathrm{VV} 17 \mathrm{p} ; 25 \mathrm{~V} 35 \mathrm{p} ; 50 \mathrm{~V} 47 \mathrm{p} ; 100 \mathrm{~V} 70 \mathrm{p}$.
$2000 \mathrm{mF} 6 \mathrm{~V} 25 \mathrm{p} ; 25 \mathrm{~V} 42 \mathrm{p} ; 420 \mathrm{mF}, 50 \mathrm{~V} £ 1.30$
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mF} 25 \mathrm{~V} 47 \mathrm{p} ; 50 \mathrm{~V} 55 \mathrm{ps}$.
$2500 \mathrm{mF} 50 \mathrm{~V} 62 \mathrm{p} ; 3000 \mathrm{mi} 25 \mathrm{~V} 47 \mathrm{pi} 50 \mathrm{v} .65 \mathrm{p}$.
 MANY OTHER ELECTROLYTICS IN 5 TOCK
TRIMMERS 10pF 30pF 50 pF sp . 100 pF .150 pF .15 p CERAMIC, 1 pF to $0.01 \mathrm{mF}, 5 \mathrm{p}$. Spar Mica 2 to 5000 pF , 5 p PAPER 35DV:0. $17 \mathrm{p}: 0.513 \mathrm{p}: 1 \mathrm{~m}=140 \mathrm{~V}$ 20p; $2 \mathrm{mF}+50$
 MICRO SWITCH SIWGLE POLE CHANGEOVER 20 p . SUg MIN MICRO SWITCH, 25p. Single pale charijk ow
TWIN GANG, $785+385 \mathrm{~F} 50 \mathrm{p} ; 500$ FF stardaro 75 p TWIN GANG, $785+3850 \mathrm{FF} 50 \mathrm{p} ; 5002 \mathrm{~F}$ standars 75 p 125 F TWIN GANG. 50 p ; 365 p F TWIN GANG, 50 p . NEON PANEL INDICATOAS 250 V , Amber Dr tet 30p.

ELECTRO MAGNETIC

 PENDULUM MECHANISM teachiig eleatro magnetsm of for 950 Post 30

BAKER MAJOR $12^{\prime \prime} £ 15.00$

$\begin{aligned} & \text { BAKER BIG-SO } \\ & \text { GIroup } 25^{\circ} \\ & 12 \mathrm{H} \text { £ } 12.00 \\ & 3 \text { or } 8 \text { o } 16 \mathrm{okm} \end{aligned}$	
GAKER LOUDSPEA GROUP 50/12. FULL RANGE PROFE RESPONSE 30.15, MASSWE CERAMIC A UMINIUM PAESEM ALUMINIUM PAESEM	AKER, 12 INCH, 60 WATT. OR 80 O 160 HM HIGH POWF essional ouality poo CPS MAJENET WITH $£ 21.00$ Past f1, i 6 ENCE CENTAE DOME.
	HI-FI SPEARERS AND CABINETS
SPEAKER COVERI LOUDSPEAKER CA	NG MATERIALS. Samples Large 5.A ABINET WADDING 187, wide 20p ft

R.C.S. 100 watt

VALVE
AMPLIFIER
CHASSIS

Four inputs tour way mexing, masser valumb, beble ज्ञात has controis. Suts all spmatiers this acotessional quality amplitier

 output secket. Produted by detisnd far a quality valve amplitier. toovtine ourput to orter, Aerand fara qualiz Solve somplier for lesfiet | Siatable carrying aab $£ 16.50$ poce $\mathbf{5 9 4}$ carr 1250.50 |
| :--- |

£1.90. 3 wisy 950 epsy 9000 eps. $£ 2.20$.
LOUDSPEAKERSP,M. 3 OHM $7 \times 4 \pi$ £1.50; 6% in, $£ 1.80$;

SPECIAL OFFER: $80 \mathrm{chm} 21 / 4 \mathrm{~s}, 24 \mathrm{sin}, 35 \mathrm{ohm}, 3 \mathrm{in}, 25$

3 ohm, $2 \% \mathrm{kin}, 3 \mathrm{yin}, 5 \mathrm{~A}$ ©A. CT. 50 ssah.
PHILIPS LOUDSPEAKER, I 7 , 4 shms 4 watts, E1,95 RICHARD ALLAN TWIN CONE LOUDSPEAKEHS
Oin dismuter $4 \mathrm{~W} E 2.50$, 1 Din diamprar $5 \mathrm{~W} £ 2.95$; ain disurnter $4 W \mathrm{~W}$ 2.50, 1 Din diamerer $5 W £ 2.95$; PIEZO ELECTRIC HORN TWEETER. Handles up 10100 Tweeter Valume Cantion 15 erms 40 w with one inch Iong threadsa hish to word parel megrating thin saind/t. G5p.

£75 1.50 car
100° WATT DISCO AMPLIFIER

ALUMINIUM HEAT SINKS. FINNED TYPE
 BALANCED TWIN RIBBON FEEDER 300 ohms, 5 p yd. JACK SOCKET Stti oper-circuit 20p, clased circuit 25 p: Chrome Lead-Socket 45p. Mono or Sterio. Phono Plugs 8 p. Phono socker 8 p

Pigatic $25 \mathrm{p}: 3.5 \mathrm{~mm} 15 \mathrm{p}$ STEREO JACK PLUG 30p. SOCKET 25p.
DIN SOCKETS FREE 3-pin 25p, 5-pin 25p. DIN PLUGS 3-pin 25p: 5-pin 25p. VALVE HOLDERS. 10p; CANS $10 p$. TV CONVERGENCE POTS
Values $=6.7 .10 \quad 20.50 \quad 100,200,250,470.7000$ oftry

MONO PRE-AMPLIFIEA. MEIns aperated
solid state pe-amplifier unif des gned 10 comp tote ingon stages. Thiry frus-atspting in obe inporat stages. This freeratarnding cabmet nocipordes citruitey for automstic R.I.A.A
 ampare on the ternt pancel; ptonoos socket input
-
£4.50 ench or E8 pair. Post 50 p.

LYNX ELEETRONIBS［LORDDM］LTD．
92 Broad Street，Chesham，Bucks．Tel（02405） 75154
$\begin{array}{ll}\text { VAT } 8 \% \text { except＊which are } 121 / 2 \% & \text { Relurn Post Servics } \\ \text { P\＆P 30p．Overseas } 90 \text { p．Matching 20p per pair } & \text { Hew Price List 20p }\end{array}$
P\＆P 30p．Overseas 90 p．Matching 20p per pair Hew Price List 20p
Prices correct at 31st October 1977．

ACCESS \＆BARCLAYCARD WELCOME

TRANSISTORS

TRANSISTORS												TTL 7400	
AC125	0,15	娭192	0.11^{\prime}	3 cyc	1.70	3ul33	1，60 ${ }^{\circ}$	2N29250	0．00\％				
AC12	0,16	颠䯏	$0.12{ }^{\text {c }}$	3DY51	1.55	30204	$1,60^{\circ}$	2N2926H	$0.10{ }^{-1}$				
Ac128	0．1F	ECta3	0.10	30×62	1.15	su20	$1,90^{+}$	20725\％	0.90	PLA		3400	0.16
AC128k	025	861935	0,10	8pres	2.14	810206	2.40°	2N20．66	0.10^{\prime}	4000日E	0.20	7401	0,16
actis：	0.22	ECi04	0.11	cars	4.98	31208	2.60°	2×3033	0.20	403ter	0,20	7402	0.75
ACtalk	234	0，184	0.12^{\prime}	80\％97	2.45	M， 4 430	0，80	2N3055	0.50	400285	0，20	14.40	0.18
AC142	0.18	8 ct 185	0.20	日 $=179$	030	M．44t	1.05	243：3．	1，10	400588	5.05	7404	0.18
ACH20	0.32	Sclas	$0.24{ }^{-12}$	日＝	030	M－490	0.90	$2 \mathrm{Na440}$	0.56	40078E	8.70	7405	${ }^{0.18}$
AC， 175	016	3croja	0.12	（13）2	0.30	M491	1.15	2r43442	1.20	40 ctit	0.03	2404	0.18
ACIJOK	0.32	300212	$0.11{ }^{+}$	13＋82	0.30	M，	0.40°	2 N 3670	3，60	40998E	0.52	） 409	0.19
actaz	0,18	3×2171	0.12	8＊183	0.30	M	045	2N3：07	0.10	401088	0.52	2410	0.18
Ac，a ${ }^{\text {a }}$	0.38	4 C 213	0.12	日 7184	020	NJEDCl	0.15	7N3700	$0.10{ }^{\circ}$	401128	0.20	2412	0.25
ACtas	0.18	3．2132	0.14	$8=185$	0.20	8秉3	0.85	2N3704	0.10°	401285	0.20	7413	0.40
2ctask	0.32	3C29	$0.14{ }^{-}$	1F19a	$0.10{ }^{*}$	0c12	0.32	2N3705	0，10	4013 ge	0.50	7414	0.72
ADIf？	0.80	3C2：41	0.15	B＋195	$0,12{ }^{\text {－}}$	9015	0.32	2N3705	0.10	40140	1.00	1417	0.43
ADIt	0.35	90237	0.16^{*}	B1 317	0.12 ．	CCL5	0.20	2143707	0，1］	401585	0.05	2420	0.16
AD162	038	36， 3 ¢	${ }_{0}^{0.34}$	Ex＞24	$0.1{ }^{\text {a }}$	cofy	0．39	203706	0,02 ．	40168	0.54	74.3	0.30
31114	0.20	36300	0,34	H＝242	0.17	OCII	0.38.	2N3JOS	0.05	40178	00	7427	0310
A＋115	020	calo	0.32	89257	030	$0{ }^{2}$	022	2nazta	0.10	40198	15	4．30	
AFMG	－ 0.20	Sc．303	0.46	¢8336	0.35	DEP 39	130	2Na7ts	170	402888	＋1，56		－8．28
2F118	0,50	46－sta	0.55	曆333	${ }_{0}^{0,32}$	0ft4a	＋．30	2N3715	1．ab	4021 ez	1.03	$744+45$	0.76
AF126	0.25	ecr31	0.55	uFwia	1.25	90．130	0.23.	2Ny2J	1.60	4022 EE	0.95	7442	0.65
A1 125	0.25	砍32	0.69	afw5	0.30	Tipron		2N3／32	1.90	402368	0.20	7445	0，80
AF939	0.25		0.55	BFWal	0.96	Tuploa	0.32°	2 N 3733	2.10	402485	0.88	74475	
2）139		CCOP3	0.50	$4 \mathrm{4} \times 25$	0.26	T19ア22	0.54	20ast9	0.75	40259 \％	0.20	14，19	0.81
AR 2	145	SC． 39	1.15	BEx30	030	Tipala		204347	1.10	40268	1．55	547%	0.32 0.25
AL． 03	130	BCM40	0，75		0.23		0.72	2N0．875	0.75	4028 BE	0.91	3473	0.30
Autor	3.30°	acru？	0.30	85×85	0.25	2N，404	0.40	2Nat＞1	0． 25 ＇	402988	1.10	3474	0.32
suyto	$1.75{ }^{\circ}$	3CY54	1.60	B5x\％？	0.20	2×696	0.20	36428	0.680°	403088	0.58	1435	0.4
	1.60	BCY70	0，12	日exdo	0.20	2N03\％	0．20	2N4	0.7	404188 4042 EE	0.80	7476	0.36
－Citis	0.12	3cyle	0,12		0，90	2N1İ：	0.15			403482	1.00		
9，	0.12	80115	0.65			201132	0,16	$2 \mathrm{Nag23}$	0.48	40L6ge	0.94		
801088	0.12	20131	0.36	8FF40	0.50	7N13D2	0,40			494685	1.32		NE
8 Cl	0.12	918192	0.40	EYA	0	$2 \mathrm{~N}+303$	0.40			404951	0.54		
ECIOGB	0,12	HD135	0，35．		020	2N1304	0.45	Aunis		406034	0.54		
80117	0，15．	30136 $8 D+37$	${ }_{0}^{0.390^{+}}$	Eevol	018	$2 N 13 C 5$ $2 N 1308$	0.45	E24		1089 \＃	0.30		0.55
9 Cl 15	0.25	B0138	0.48		0.19 0.25	2vice	0，50	Oonm－i		40．70as	0.25		0.00
BC135	0，18－	1.1919	0.58	Eret	0.35	2v1308	0.80		2．6p	40723 E	0.25		1． 1.80
0．126	0.20°	3D144	2．20	政90	0.90	3 N 13	0.60		2.0	4．0al 13E	0.29	10	0.35
Sctal	0.28	3015？	0.98	ask 12	0,16	2×210	0.24			（6atz ${ }^{\text {a }}$	0.25	74.	0.35
SClar	0.23	\＄0762	0.92	59x30	0,18	7n201	0.30			4510 He	1.42	746	0，35
	0.23	8D1as	0.97	E5x2	0,20	2N236S	0.14				1.35	NESOS	0．45
0 Clay	O．98：	30184	1，20	${ }^{41} \times 5 \times 5$	0.28	2N3．654	0.14			4513 BE ，	175		
	0．09：	80233	0.60 0.48			2 N 2 Caz	0，20	Progr	am－	45204	1.26	NE507	200
\％C149	$\frac{0.09}{0.09}$	80239t	0.48	esyst	0.74	2N2tu4		m				Ct3045	989
Hicis ${ }^{\text {d }}$	0.69	BD238	0.60	125\％ss	0.30	－N3：11	0.20					0，3046	a30
$8 \mathrm{BC159}$	$0.09{ }^{\text {a }}$	30415	0.80	65YS54	0.15	2v2712	0.15					c，	
日C123	0.32	DDE3：3	2，30	sutos	1，70	2Nz30aA	－0．20	Only E	3.50	Popule		WClizorp	185
	0．93	6D ${ }^{\text {cha }}$	1.50 2.09	TU105	1,20 3.00^{+}		0.22	Post		硡		WE13	85
BC169	0.12	B0才20	0.80	atroe	2.50°	272306	0.18			and sloc	aics	WClisio	
5616yt	0，14，	$3{ }^{\text {3033 }}$	0，60	3U126	1.60	2N1924	0.14 ：						

0.14 ：
 $\begin{array}{ll}7 & 0 \\ 2 & 0 \\ 3 & 0\end{array}$

CLOCK LHIPS	DISPLAYS	
	casis．11	
AAR（5．1224A3．25	94	0.98
IC SOCKETS	740	1.10
8 Fmor 0.13	150	
14 Fm		0.20
${ }^{14}$	2 Cvas	0.10
	Tit209	0.70

REGULATORS		SUPER SAVERS	
${ }_{3}^{329}$	－ 0.45	\＄6309k	0.95
2317	1.50	MM5314	3.25
7818	1.80	MM5316	3.85 0.10
（MO9\％	0.95	2 CLLEAF	0.10
L4340－5	${ }^{1.35}$	MC1310P	0.95 ．
［ 4343015	${ }^{1.39}$	FCSE000 3／\％cipil display	E2．95
¢M3ant	191	FCSaO24 4 digit display	E3，50

Displays

DIY HiF

THE AUDIO AMATEUR magazine，now eight years old，is totally dedicated to good sound for the do－lt－yourself audiophile．TAA＇s thoroughly tested construction articles range from simple overioad indicators to hand－made electrostatic speakers with thir own direct drive power amplifiers to mixers and much，much more．Our authors include Reg Williamson，B．
J．Webb，and Alan Watling．

， 1 ReADY For May 1978 ？

The E．E．C，Directive 76／889，covering radio interference caused by electrical housthold appliances， gortable tools and $^{\text {ond }}$ similar equipment，will become law in 1978.
Toassist manufacturers to comply with these regulations we have not onfy established a fully equipped suppression laboratory for undertaking R．F．I．testing，but have also developed a wide range of components to perform this suppression function．
Serd for our brochure on R．F．I，and dicouss your problems with our Engineets．

ITT Components Group Europe

RESISTOR DIVISION，

South Denes，Great Yarmouth，Norfolk NR30 3PX Tel： 049356122 Telex： 97421

ELECTRONICS (LONDON) LTD.

NASCOM 1

Microcomputer for the Hobbyist

HARDVARE FEATURES:

* SUPPLIED IN KIT FORM FOR SELF-ASSEMBLY
* FULL DOCUMENTATION SUPPLIED
* INCLUDES PRINTED CIRCUIT BOARD
* FULL KEYBOARD INCLUDED
* INTERFACES TO KEYBOARD, CASSETTE RECORDER \& T.V.
* $2 \mathrm{~K} \times 8 \mathrm{RAM}$
* $1 \mathrm{~K} \times 8$ EPROM MONITOR PROGRAM
* POWERFUL Z80 CPU
* 16 LINE x 48 CHARACTER DISPLAY INTERFACE TO STANDARD, UNMODIFIEDT.V. SET
\star ON BOARD EXPANSION TO $2 K \times 8$ EPROM
* ON BOARD EXPANSION FACILITY FOR ADDITIONAL 16 LINES I/O
* TOTAL EXPANSIONTO $64 \mathrm{~K} \times 8$ MEMORY
* TOTAL EXPANSION TO 256 INPUT PORTS AND 256 OUTPUT PORTS

SOFTWARE FEATURES:

* $1 \mathrm{~K} \times 8$ 'NASBUG' PROGRAM IN EPROM
* PROVIDES 8 BASIC OPERATOR COMMANDS INCLUDING SINGLE STEP
* EXPANDABLE SOFTWARE SYSTEM VIA ADDITIONAL USER PROGRAMS IN RAM OF EPROM

ACCESS $£ 197.50$ (ex VAT)

BARCLAYCARD Phone or write for details:
92 BROAD STREET, CHESHAM, BUCKS. TELEPHONE (02405) 75154

WW-024 FOR FURTHER DETAIL,S

Audio Connectors
Broadcast pattem jackfields. jackcords. plugs and jacks.
Quick disconnect microphone conneetors Amphenol (Tuchel) miniature connectors with coupling nut.
Hirschmanin Banana plugs and test probes XLR compatible in-line attenwators, and ceversers.
Low cost slider fauers by Ruf.
Future Film Developments Ltd. 36-38 Lexington Street London W1R 3HR
01-437 1892/3

T20＋ 20 and T30＋ 30 20W，30W AMPLIFIERS

＊＊

Pask	120	130	Patk	120	130
1．Sel at lew mise resisars	21，50	51.70	9．Fitroquas PCB	£3．50	E3．90
2．Setal smsl capaitur	12．50	E3．40	10．Set an metalwark，fixpy farts	¢5．20	E6．20
3．Set al prater supply tapasitars	6220	¢2．50	15．Sol at catis．mana had	En． 40	E0．40
4．इer at nistelantors pirts	E3． 50	c3．so	12．＊hathouk	$\underline{0.25}$	$\underline{50.25}$
5．381 af sifie meins．P．B．suitthit	81.50	E．1．50	13．Teak thite	4.50	\＆4．50
5．Soll al pats．，stetelar mith	1280	¢2．80			
7．Set al tanicandaciars，iks．akts．	27．25	\＄7．75	Cos zachot Fack 1－13 art raguira		
2．Teroidail tratarner－240\％prim．			amplilits．Tetat cast of lise		

Cos 3ach af Feck $1-13$ art requirat tar sumplate sitreo P06k T20 +20 E 40.90 ， $139+30 \mathrm{E} .45 .60$

SPECIAL PRICES FOR COMPLETE KITS

T20＋20 KIT PRICE $£ \mathbf{3 3 . 1 0}$ T30＋30 KIT PRICE $£ \mathbf{\$ 8} .40$

WVVII TUNER
＊＊

Following tre success of out Wireless Wordd FM Tuner Kit this zust reducuti avodil was csugged to compement the $\mathrm{T} 20+20 \mathrm{a}$ danel formas and efoctucal characterstics make the tuner oumpatible with sither The irequency thatet of the mork advanced Touel has oegn ym ted enty the muctuncs simpurfed

SPECIAL PRICE FOR COMPLETE KIT E47．70 AVALABLEA5 SEPAMATE PACKS－PRIGES IN OUR FREE GATALOGUE

POWERTRAN SFMT TUNER

＊＊

 Nut very pepuaz amp fiess bt eny otree high cuas ty audio equipment Nat finding a sulable ataratones and this runger whichul was mel ty despo sid wevel－pment wotk in ourt wh gid of nofting moen sophist cated than a rulti－Terer．A phase－locked laop is used for sterted

 and $130+20$ amplifers．

PRICE FOR COMPLETE KIT $£ \mathbf{~} \mathbf{3 5 . 9 0}$ AVALABLEAS COMPLETE KIT ONCY

30W Earar Anpurlee

```
AEP2 2 Reboske. S
```


aw Lirdiv,
HABPk It Cass PCA

vie, Durons Sicco Dy fe fimp

80.95
$E 2,20$
IGERIA

SEMICONDUCTORS

（figa	50.20	3C593	60.10	13－257	20．40	Mijalis	co． 20	TiP3tic	20.60
2N305G	60．45	8 C 108	60.18	$8+255$	10.47	Mrsal	［0．35	17ヶ\％	E0．70
2N3A12	E1．20	BC109	co．th	ERค3\％	10．30	MFsA 52	E0． 25	11 P 42 A	50，ab
7N3：1	E0．09	Sc．09C	to． 12	3Fかり年	¢0 30	MPEA65	20.35	TIPLIE	50.75
2N3944	E0．17	化を	E0．15	［1505	［0，20	M63sち5	E0，40	Tipaza	E0．90
2T43006	c0．20	ViP	E0．15	110：32	r0． 20	日f5u0	E0． 50	1．N2：9	E0，07
2105027	ca． 25	\＃ct 182	EO， 19	1．83046	20.70	514	E1．90	209\％它	［0，b）
2N5089	co． 25	日く21）	Co 17	［9301494	20.55	56901	［1，20	1 $\ddagger 820$	［0．70
$2 \mathrm{H545}$	E0．45	－6182	E0．10	LP＋135	66，50	21．30tt	ז1．20		
2N5459	E0．45	ECTEAC	c0． 11	MCİ10	E2．20	3032tav	c0，49		
2N5AEC	E0．50	EC2！2L	50.12	14．318	E 5，05		c0．40		
2 NSAET	E0．50	昭142	0.14	mov7atics	60，65	STCPO3	E2，40		
2Nsuay	E0．35	环以72	¢0．13	\％FCtati	E0．95	Till 09	E0． 20		
40：36	E0，4a	日2s24	E0．65	\％） 51	f1．20	71P24A	［0， 40		
$4 \mathrm{EP952}$	50.45	EDS30	E0．55	M－491	$\underline{51.45}$	21930．	80.45	594	11.60
74004	E0．35	ED	E1．60	－ 42 E\％	¢ 0.60	Tr 2196	E0，5s	Sxit	¢1． 50

NEW PROJECTS

LINSLEY－HOOD LOVV DISTORTION OSCILLATOR

Wuraless World September．Oftober 1377
Fack I Filveglass PCB
Pack 2 Capaciors， 2% motal ondo rosistor
Pack 3 Transistors IC，IC sacket，thermegter
Pack 4 Potentionbeters and sw tches
E1．65
$\mathbf{E 2}, 60$

ERIC F．TAYLOR PRE－AMPLIFIER
 enuatization）
Pock ！Fibreglass PC，（Siemo）
Pack 2 Metal op－fe esustors．rapac tors（Stereol
E 1.45

 \checkmark Fun legie dorntite
3A Fathligut cmasar nith tambily therul

$\mathrm{BQ}+30$ amplter 540.75

Value Added Tax not included in prices UK Carriage FREE

PRICE STABILITY：Orfer with confidence．icrespective of anly price ehanges we wil hanpur al prites in this advertise tent Luil maret 31 si 978．Itis month s soverusement is mentioned whith your order．Errors IK ORDERS Sobiuted
U．K．ORDERS：Sobject to $12 y_{2}$ 2＋surtharge for VAT it e．add pricel Na cllatpe as mady for carrisge，＂ir at curtent rato it changed SECURICOR DELIVERYt For this aptoral service［U K maintend unly？ SALES COUNTER If
 Thurscay．

AFTER－SALES BACK－UP；Servigng tacurnos ivery ravaly sofured for gur kitg aik availabie tor all we amplete kits．Further details wall bersent on than inst

FOR FURTHER INFORMATION PLEASE WVRITE OR telephone for our FREE CATALOGUE


```
PACK PRICES FOR STANDARD KIT
|.fixatamy ariated cirtat buard lar quwar Prise
*)
3mp
S&& al sevicanductors fur power 2ap EE,50
Buir t/2 dillot tirnethen sink + EE, $0
5. Fitrepism pratec cirsait taart tor preamp El,10
```



```
    Sel of DWN nuist. tigh ymis stmiconductocn for
    grtsta ................... E2.40
    4. Sel al potertonsters finclutiag yain swilea|
9. 38cal 4 pab-bitta switctes. ralary nude sumst
10. Trroda! #rastarmer complets WiVh mspntlis
    sres/ susin}\mathrm{ pritay. 0 117.234 y
```


STANDARD LINSLEY-HOOD 75W AMPLIFIER

SPECIAL PRICE FOR COMPLETE KIT $£ 79.80$

LINSLEY-HOOD CASSETTE DECK

* *

SPECLAL PRICE For complete kir $£ 79.60$

 puterlibnateci lor ators poleriaraters far atous …........ 57.95 4. Minizure relay mitt socka! 82.90 5 PGB. all campentents for stienit, sated ceseiral Drtals $£ 3.80$

 Sel tr tagacars, reaniers, is, vaingt raplales
 mither texis istercinasciog wits, its 53.40 2. Set at sathem beteditn tik tarened basia

Oes ase of pack $1-14$ hatizhe ars rapirsi for serfatale sleras sasselis tack. Tatel cest at infiritualiy perttanad pathe

 and tha LingleyeHood 75 Watt Amplifier

1. Fibroghas printed toard har trati tot Prich tane pith tord hal bat tr sirij. 2. 8 st zt melal zafle fasitlats, thernitist
 ?
2. Sal of irazisters, tiges, ito, inttrith
 Pra-alignos trast and nacila sail neseribl Thes sectige ceramit titer....... 88.50
. fargiass primet nirgut 39art for sterat
 presit tor oecotet ...7.......... $\sum 2 . \mathrm{Ee}$ Sil af trintears [E0. alteraiat stredt tor Set al etrpiteit io............. $£ 2.50$

 resef 3 gusters. kl . farcliat zwileh. in tart terigy patenlisulis. nols wher $\$ 5.80$

Forl
Frapaesty meler. metet orite Prica

 Sel of capacitart, ratifiers, yotizat regitite tar tewer sindy 5at of macthanges fets itelotity scithty

if 50t of methletrk wits inslatiog all sores

 Exisp parts, zts:
5. Coutricilion astas

Ora sach af patis t -15 helliqus ant riguirat lof tonglete starat EM tutst, Tolal cest at

SpEcial price for complete kit $£ 70.20$

Sesigned in response to domann toe a thuner to fomplentent the world wide aceal men Lirslay Hond 75 W Ampulie, this kil provides tie wetfect mateh Iha Wirolass SVarl! Skingley and Thompsony thabismed peiginal orevit tos boen deveioped liuther to

EXPORT A SPECIALITY!

Ont Expart Defiartmert car roondr despatelt ockers od any siac io any catwaty itr the
 pocks and kiti Thia will ber sert Tree on request. Dy sirnsit, topsther with ati Expoit eastal Guide whict gives turrent postage fricet

Ytatanatatal fan Marshall's

A. MARSHALL (LONDON) LTD., Dept W. W

LONDON - 40-42 Cricklewond Broadway. NW2 3ET Tel: 01-4520161/2. Telex: 21492
LONDON - 325 Edgware Road. W2. Tel. 01-723 $4242 / 3$
GLASGOW - 85 West Regent Si., G2 20D. Tel: 041-332.4133
BRISTOL - 1 Straits Parade, Fishponds Rd., BS 162 LX Tel: 0272654201

NEVV CATALOGUE 77
2 nd editio
to cationz)

Dur range covers over 8,000 items. The largest selection in Britain. Top 200 IGs, TTL, CMOS \& LINEARS.

'WHAT IS A MIGROPROCESSOR?" A COMPLETE TEACH YOURSEELF COURSE WITH CASSETTES + BROCHURE - $£ 9.95$ ING. OF VAT \& P\&P

POPULAR SEMICONDUGTORS [A very small selection from our vast stocks, please enquire about devices not listed.]

[^8]
INHITIDUS

 TRAMPU ELECTHONGSLTD, SEEGORROVE ROAD, WINDSOR, CALLERS WELCOME MON.SAT. 2 A MK.SP.M.

All price of 1.c.: 72380umes (24) ocapin
 74 E C. B B N
tow Ton or to
 - Y5: 2224 CLOCK M301DLL4 Mjor out M309k To3 5y
M3a M387, LM3 33
 VCIJTOMPX DF Es55 Tmor

LEDS T_{0} A $2^{\prime} \mathrm{DL}$
LEDS Nocap 2. 205 sCup NHWURLIDS ALL
NEO COVER

DISPLAYS REDLFO:

 - 6^{-1} D. 7472 Tas 303072 as 0 $34001 T y+a C 2$ TUTPEX RS TVPE Ma tych PE ShK FERAICTUE ECBETCHKT
VNETERS

TUNER SALE
MNJIN \& IM
 STREO Twave

WW-069 FOR FURTHER DETAILS

Better instruments. Better service.

we have established a nationwide network of approved service organisations to deal with the repair and maintenance of our instruments. Every repair is backed by a full 12 month guarantee. Here's where to find them.

ENGLAND London instrument Repair Centre, Acton Lane, Chiswick Loncon W4 5H1 Trade Receotion: Curnington Street Te: 01-995 9212 Lonato Instrument: Repair Centre, Archcliffe Read, Dover, Kent Tel: Dover (0304) 202620
Farnell internationainstruments Ltd Sandbeck Wax. Wetherby,
West Yorkshire LS224DH Tel: Wetherby 109371 3541
TER R instrumernits Ltc. Peel Lane. Astlev. Manchester M297.JH. Tel: Atherton $105230: 2275$ or 5611
Miclands Instrument Repair Centre, Thorn Automation ita
Armitage Road, Rugelev, Staffs Tel Rugelay 10889415151
ScotLan Falcon flectronics, 92 High Street.Johnstone. Scotland
Tel. Johnstone 10505:23377
WaLES Electro Services 25 Chepstow Road. Newoort. Gwent NPT 88X Tel: Newport iO6331211243

The manufacturers loint service organisation WW-035 FOR FURTHER DETAILS

TRANSFORMERS
ALL EX-STOCK - SAME-DAY DESPATCH
MAINS ISOLATING VAT $8 \% 12$ and/or 24-VOLTT
PRI $120 / 24 \mathrm{eV}$ SEC $120 / 240 \mathrm{~V}$

50VOLTRANGE
SEC. PAPS O-20.25.33.40-50

Ref.	Arapo	
102	0.5	3.41
103	1.0	4.57
104	20	5.98
105	3.0	8.45
106	40	10.70
107	6.0	14.62
118	8.0	17.05
118	10.0	21.70

Barrie Electronics Ltd.
 3,THE MINORIES,LONDONEC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS:ALDGATE \& LIVERPOOLST.

$1 /$ YAESU MUSEN
 vasy FOR THE FINEST VALUE IN THE WORLD
 THEFRG7 $\begin{aligned} & \text { Synthesised General Coverage } \\ & \text { Communications Receiver }\end{aligned}$

The FRG7 is a solid state mains and 12 v . receiver
offering continuous coverage $0.5-30 \mathrm{MHz}$ with
specifications unparalleled in its price range.
Its advanced circuitry provides superb performance for professional or amveteur alike. seacch. monitor, test, amateur or broadcast band spplications.

The use of a Wacley loop jusing the same VHF oscillator to mix up. then after pre-mixing with a stable crystal source down again this cancelling all drift from the variable oscilator) It provides equivalent performance to 30 crystal controlled converters feeing a low IF, but without the image problems of such an arrangement.
The signal path starts with the choice of 3 antenns connectors: for 1.6 .30 MHz ; $50 / 75 \mathrm{ohm}$ feed ;to a SO239 (UHF) coax socket and a binding post) and for 0.5-1.6 MHz (medium wave) a separate high impedance binding post. A 3 position 0-40dB switchable attenuator aids reception of very strong signals and reduces adjacent channel interference. The low noise MOSFET RF amplifier provides a SSB sensitivity of $0.25 i \mathrm{~V}$ (for $10 \mathrm{~dB} \mathrm{~N}+5 / \mathrm{N}$ at 10.5 MHz) and is sharply tuned by a well calibrated "pre-selector" capacitor with 4 band switched coils. Lis output is low pass filtered ($\mathrm{f}=35 \mathrm{MHz}$) removing VHE image problems from the following mixer. This comprises a pair of JFETS, driven by the " MHz set ${ }^{-} 55.5-84.5 \mathrm{MHz}$. oscilator, which upconverts the signal to the band pass first IF to $55 \mathrm{MHz} \pm 500 \mathrm{KHz}$ where it is MOSFET amplified The second IF of $2-3 \mathrm{MHz}$ is produced by a FFT mixer by hetrodyning with the synthesiser derived 52.5 MHz signal. A I MHz crystal oscillator and dode harmonic generator produces a 3.32 MHz comb spectrum). This, with the first hetrodyne oscillator (MHz set) is fed to a dual balanced Lc. pre-mixer. The output is expurged by a multiple stage salect ve amplifier producing the 52.5 MHz second oscillator. A small fraction of this is rectified. DC amplified and lights the 'Tock' LED (saving power) when the MHz oscilator is malset The 2-3 MHz signal is MOSFET amplified and fed to the third mixer (a JFET whose input and output are turned by capacitors ganged to the main tuning control) where it is hatrodyned to the final IF by the main VFO which covers a 1 MHz tange $(2,455-3.455)$, is clearly calibrated, to 5 kHz (or better), well buffered and highly stable. The third (455 kHz) if starts with the cerarnic selectivity element and is followed by two stages of bipolar (the first in the signal path) amplification before the choice of detectors; twin diodes for AM , or a 4 diode product detector, with well buffared switched frequeney (for seleetable sidebands) B.F.O. A diode rectifies. a fraction of the output from the final IFT, this is boosted to drive the illuminated " S ' meter and automatically gain control the MOSFET amplifier in the RF. second and third IF stages. reducing fading and distortion. Immediately following the demodulator is an automatic noise limiter. highly effective in suppressing pulse type inierference on AM signals, and a three position "tone" switch a (high. low or band pass) audio filter, reducing the bandwidth to that required. A transtomerless AF amplifier delivers a generous 2 VV to the internal $5^{\prime \prime} \mathrm{x}$ $3^{\prime \prime}$ or external speaker, drives a phone jack, and a "volume" independent output for tape recorder. The receiver is. mains (234VAC). external (12 V DC) or internat dry cell powered, the most economic source being automatioally chosen. This is reduced to a stable fegulated 10 v (or 9 v . for oscillator and the harmonic generator). A dial lamp switch is provided to conserve power on battery operation

PERFORMANCE WITH ECONOMY WORLD WIDE VVIRELESS

CONSERVATIVE SPECIFICATIONS

FREQUENCY RANGE 0.5 .30 MHz
General coverage in 4 bands
AUDIO OISTORTION less then 10% at 2 W autput
AUDHO OUTPUT more than 莶
ANTENNA IMPEDANCE $50-75$ ohems. Urbatanced for 16.30 MHz . High impedence for $0.5-1.6 \mathrm{MHz}$

MODES SSB iselectable USB\& LSB) AM. AM/ANL. MODES
or CW
CIRCUITRY 13 bipolar and 9 field effect transistors 21 Cs and 16 diodes
SIZE $13 / 2{ }^{\circ}$ W $\mathrm{W} 6^{\prime \prime} \mathrm{H} \times 11 \%{ }^{\prime \prime} \mathrm{D}$
POWER REQUIREMENTS 13.5 V DC NED
ground or E off HP11 or $100: 110 / 117 / 220$. 234 V AC $50 / 60 \mathrm{~Hz}$

FREQUENCY SIABILTY withir 500 Hz cturing any 30 mins atter warm up, SELECTVIVY -3 KHzat 6 dB (nominal) and $\pm 7 \mathrm{kHz}$ ar -60 dB down
WEIGHT $15 \mathrm{~V} / \mathrm{Ims}$ without batenies.
SENSITMVITY 025 uy lor $10 \mathrm{~dB} \mathrm{~N}+\mathrm{S} ; \mathrm{N}$ ratio for SSE and CW. U. JuV for 30 多 modulated $A M$ ar 10.5 MHz .

Amateur Electronics
508-514 Alum Rock Road
Alum Rock
Birmingham BB .3 HX

Soutr Midiants Communications Ltd.
\$ M. House, Osborne Road
Totton
Southampton Hampshire SOA 4DN

Western Electronics (UK) Lito Fairfield Estate
Louth
Lincolnshire LN1 1 OUH

Tlagnum Tladules
 ENCAPSULATED HI-FI MODULES FOR THE DISCERNING ENTHUSIAST

MAGNUM BOARDS - FOR THE PROFESSIONAL TOUCH

Take a Magnum CP-MC1 board a CP-P1 pre-amp module, one switch plus 4 pots and you have the basis of a quality pre-amp. Add a CP-TM1 if you wish to monitor peak loads. For comprehensive Hi \& Lo Filtering and control of stereo separation (Image Width) mount a CP-FG1 2 switches and 3 pots on a Magnum CP-MC2 board. A combination of these two gives 3 mV sensitivity with $>70 \mathrm{db} \mathrm{S} / \mathrm{N}$ ratio and $>40 \mathrm{db}$ overload margin. Distortion is a low 0.02%. Magnum boards aren't essential - just an easy way to build the Magnum system of your choice you still retain all the options.

NOISE-FREE CASSETTE RECORDINGS
The limited dynamic range of most tape recorders. particularly cassette recorders, means noise over the quiet passages and clipping and distortion of peak levels. The CP.DR1 lets you record almost double the dynamic fange and tecover the programme free of these defects,

These active crossovers contribute zero phase error and are thus a 'must for that ultimate speaker system They are so easy to use just 2 resistors to set each crossover point) that you may choose to use them instead of those chokes and capacitors. Try the CP-LX1 in the WW Bookshelf speaker (Oct. 77 p.42).

It can also be used for dynamic
range control to compensate
for programme material
and/or listening conditions.

15-40 WATT AMPLIFICATION

Each CP2-15/20 heatsink contains two 15/20 watt amplifiers One unit will give 15 W . channel stero into 80 hm (20W into 4 Ohm). Add another unit and you get $40 \mathrm{~W} /$ channel.
These amplifiers are protected against overload and short circuit conditions and also feature thermal and reverse connection protection. Transient performance is virtually unaffected by loading and free from overshoot and TIM distortion. THD is typically $<0.03 \%$ @ 1 KHz . All this adds up to a versatile and robust amplifier of extremely 'clean' and 'musical' performance.

Backed by first application dinta and information service, 2 yoar guarantee: fully inclusive prices (U.K.)
Send Jarge SAE for details of all MagNum Aublu modules

CP-P1 Stereo Pre-Antplifier ... E14.96
CP-FG1 Audio Function Moduie E13.22
CP-TMI Peak Programme Minitor c8. 60
CP-DR1 Dyamic fiange Controller/Tape Noise Eliminator 41.40
CP-LX1 Single Point Linear Phase Active Cressover Network $\mathbf{~ E 1 4 , 6 0}$
GP-LX1-P CP-LX1 sel to your choice of frequency \qquad CP-LX2 Two Point Linear Phase Active Crossover Network£10.86

Benelux Agent: L.A.T.A. pvia, Keristraat 16, B3020 Leuven-Wijgmall. Belpium,

CP-LX2-P CP. LX2 se1 to your choice of frequancies $£ 16.29$
CP2-15/20 Stereo Amplifier Module . E14.46
CP-AR1 Voliage Stabiliser Modula E7.57
CP-PS 18/2D Power \$upply Module $£ 7.31$ CP-MC1 Printed Circult Board for CP-PI and CP-TMI (optional and controls £6.86 CP-MC2 Printed Circuit Board lor CP-FGI and CP-ABI (optional) and controls
£6.75 Barclaycard and Access facilities available

MISCELLANEOUS

Lloyd XY Plotter Type PL	
S. E. Labs. UV Recorder Type 3006DL	£600
Grubb Parsons Type IRG A20 Analyser	£480
6v 25 Amp. Power Supply Units	£25
D.M. Digital Voltmeter. Type 2022S	$£ 240$
Electro Scientific Industries Portametric	
	£180
Stanley Lab. Counter Timer SL111	£10

OSCILLOSCOPES

HEVVLETT PACKARD

Type 180A with 1801A Dual Channel Vert Amp. 18205 Time Base

 Getup to date at IEA-ELECTREX 13-17th MARCH 1978

IEA Flectrex, the International Electrical. Eletromic and Instrument Exhibition, which returns to the National Exhibiton Centre. Birmingham. from 13-17 Mturch 1978 following is most suiccessful debut there in 1976 will be the first major event in its field in the Europem 1978 calendar: -8IEA will have three impressive sections for electronic components prexess control instrumentsanda general classfricationand will include prolessional and industrial electronics, active and passive components process control and scientific instrumentation. machine tool wontrol and automation, computer technigutes and data handling.

(27)ELECTREX will feature power proditction and transtormation. power applications, transmission and distribution. safety and control equipment, emergency and stand-hy pimt, industrial and conmercial lighting and installationt equipment and components. Its sponsorsarejuined for the first time by the Lighting Industry Federation and a lighting section will be featured.
IFHEX, the Indernotional Preumatice and Hydrowitcs Exhiontion incorporrating Compresars and Pouer Thalsmission Equipmath, will be staked al the NFC concurrently with IEA Eloctrex.

The International Electrical, Electronic and Instrument Exhibition.

 National Exhibition Centre, Birmingham, England.
IEAELECTREX

Keaseneri me furthr delails \square Kegbstanion cards \square
\qquad
\square
\qquad

Latest transistorised Telephone A mplifice is complately automatic with detachable plug-in speaker. Placing the tecelver on to the crads activates a switen for immediate two-way conversation without halding the hand-set, Many peopir
can istan at a lime. Increase efficiency can istar at a lime. increbse efficiency
in office. stop wotkshop. Pertect for In office. stop wotkshop. Pertect for
"conference" talls: uaves the use's Hands tree to make notes, consult Mies No long warting. On/Off switch, volumte control. Model with tapo-recording focily $£ 1695+$ VAT 51.36 . P \& P. 89 p focivy $£ 16.95$ + VAT fl.a6. P. a P. 89
cwo. 10 cay price telind guaranton

Made to lugh Salary and Telpeumimunics. tans Standards. The modern way of instant 2-way sommamications Supplied with

 swilch Voume tontmol. Useful as effice ittercom, surgary and homes. betweer afticic and watthoess Fuls price returg il
 guarantoe. P \& $=39 \mathrm{p}$.

WEST LONDON DIRECT SUPPLIES (W/W) 169 Kensington High Street, London W. 8

STEREO DISC AMPLIFIER 2 FOR QROADCASTING DISC MONHORIVG AND TRANSFER WITH THE HIGHEST

 LuALIF, steran Disc. Amplitier 2 is al selficontamed moins powerof whit which
 TKIz (ayyy set for Oag. 7 output losted 600 oams Total Farmontic Distortion
$\begin{array}{ll}\text { Duteut }+ \text { t0dBV } 7 & 30 \mathrm{~Hz}-20 \mathrm{KHz} \text { bslow norse } \\ \text { Output }+20 \mathrm{dgV} 7 & 1 \mathrm{~Hz}-88 d \mathrm{~dB}, 0004 \%, 30 \mathrm{~Hz}-20 \mathrm{kHz}-32 \mathrm{~dB} \quad 0.008 \%\end{array}$ Dutput $+20 \mathrm{dRV} 71 \mathrm{KHz}-89 \mathrm{~dB}, 0004 \%, 30 \mathrm{~Hz}$ Static Intarmodulation Distortion $50 \mathrm{~Hz}+7 \mathrm{KH}=4$. 1
 Dynsenic Intermodufation Distortion $3.18 \mathrm{KV}(z$ square wave isingle po Preemphasisod impat $+V$ pk.pk $\quad 7008,0.03 \geqslant \mathrm{~m} 1$ of messurement Cartridge impedanca intoraction on frequency responise. Higt inductapes sarringig 1H Less that 020 B
Clipping Polnt Compiamsontary to HIAA Curve. 1 KH errns at + 24 adv. 7 output $30 \mathrm{He}-20 \mathrm{KHz}$ Within 1 dB clipoing demarmirsal by onast of peaky dstiortion products of THD exameding-gods Diffarential Phase Shift batwaon left and right channata $50 \mathrm{~Hz}-20 \mathrm{KHz}$ Wht channiats
Within 0.5 Worst etro: Withins

Crosstalk

SURREY ELECTRONICS 200

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

QLiVETTO Model 31 \& Teletype - comparbio ASCil mimmala. Conpiele ASA fopsity wity tape mesdef/puinch Folly refurvistien artit wih stand n5c e:295.00.

TELETYPEMOdO ASA 33 avaçba now E425,00, KSR 35, £195.00,
FLEXOWRITER ASA Tyanwtrar termirals $£ 100-\mathrm{E} 250$.
CASSETYPER 18M Galtoal with dual Philips csisetse station. E1225.00.
CASE Recenc. Drly VDUs withbord, Momary cte Du: needsext cack £95,00. memory Daind $74 y^{\prime} 75, ~ £ 75.00$.
ANNE ARESOR VDU, HS 232 to 9600 Bsud. st win $\mathrm{C} 275,00$.
SAGEM Elpetronc Talapmser. 7 unit cede. 60 mA meterise $£ 45.00$ REDIFON VDU Conceoller, koybourd and çve E65,00.
FACIT 4021300 cps Tape Reader will TI Mmertace as now E225.00. ICL Madel 250 300apg ape fester, L78,00.
 TELETYPE Model BRPE 110 High Spand Purch. $£ 95.00$.
SINGER 35 cos P funth ew speoling, TTL intertacn mans a s.u, £68.00. ICL Modiel 7020 High Speed Pape Tape Tatmina with as 232 intertacy switchable $600 / 1200$ Eoud. 8375.00 .

CASE MO
DEC MOde! DF 32 I 12 metroplit dise ust Wim
MOHAWK MOS 1102 kepwosrd-to-rtagtape unity, c95,00.
PERTEC 6×40 7.track magrape unit, $£ 275.00$. Ansther, esss electurncs. $\mathbf{E 1 2 5 . 0 0}$. HYTECH Modet 8114 Dats Lgger Compaet Unt with al elatronges $£ 65.00$.
GENERAL AUTOMATION SPEL2 MNI with $\angle \mathrm{K}$ \& TTY Gaterface, $£ 85.00$.
AMD Am 2900 M. CAOPROCESSOR Evaluargh KI £65.00.
MEMORY Cards $4 \mathrm{~K} \times 12$ with TTL interrace and al dacumantanion E75.00
TEKTRONIX Model $5 B 5$ oscillascops, DC 10 EOMHz. With zweep selay. $\mathrm{C} 275,00$.
TELEEQUIPMENT D 31 Ospilosccpe dustbeam, E68.00.

NATIONAL CCTV Sysiem comprang meniter and cameta tw lend, £98.50.

ELECTRONIC ASSOCIATES Gamma Spetrometer with Not probe ind incorder, £120,00.
EMI-EITHON EMI'EBITHON' TMEge Intensifior vidicor, p,o,a,

ASPECIAL FREE OFFER FROM DORAM

Buy either of these superb-value new Doramunts, either ready built or in kit form, and well enclose this free digital desk thermometer complete with perpetual calendar and pencil holder, beautifully finished in anodisect aluminium.

But hurry! Offer closes March 10th 1978

LOW DISTORTION ACIDIO OSCILLATOR

Attractive styling in satin finish avocado and black. Ready built and tested, only $£ 99.95$ plus 8\% VAT
 KEY DATA $10 \mathrm{H}_{2}-100 \mathrm{KH} 2 \mathrm{it} 4$ denaches $<0.005 \%$ at 1 KHz $1 m \mathrm{~V}-3 \mathrm{~V}$ pp plus $0-10 \mathrm{D}$ shate wave Mains $115 / 240 \mathrm{v} 50 / 60 \mathrm{~Hz}$

Range
Sinewave distortion
Output
Supply

DRAKE'S SUPERB TRANSCEIVER TR-4CV

S.A.E. for details please.

AE WELL AS DRAKE EUUTPMENT, WE ARE THE DRECT MMPORTERS OF HAL RTY AVO MLCROPROCESSORS ATIAS NYE MORSE SEYS, PAESTE VHF UAT PROFESSIDNAL FIFID STRENGTH MEITAS, HAM RADIO, CIR ASTRO 200 HYCFAIN CDR FOTORS, HU5TEE OMEGAT SYSTLMS VF FILERS AND SPEFCH PROCESSORS. SUPETEX WE ALSO STOCK SHURE MICROPHONES YAESU. MICROWAVE MODULES SOLID STATE MODULES ICOM COPAI CLOCKS. G.WHIPS, BANFEX. MOSLIY OAWA ASAHI JAYBEAM DECCA AND
THE USUALACCISSRIES -COAX CONNECTIRS INEUULATORS VALVES. ETC SENO FOR A COFY DF OUR PREE LISF FStamps plessi)

 DRAKE * SALES * SERVICE
RADIO SHACK LTD.
188 BROADHURST GARDENS, LONDON NWG 3AY Gira Account No, 588 7151. Telephone: 01-624 7174. Cables: Radio Shack.

Landon, N.W.E. Telex: 23718
WW-036 FOR FURTHER DETAILS

BUDEET HI-FIDEPARTMENT
You can now purchase this fantastic Hi-Fi system complete for only £152.00 at what must be a fraction of its value today. System consists of:-the famous MATSI TFS60 Tuner/AMP, a really lop quality receiver from one of Japan's leading manufacturers, 15 watts per channel FM/MW/LW. two LH6 speakers fitted with AR units and a Goldring bell-drive turnable with magnetic cartridge complete with an altractive plinth \& cover of ultra modern design. Leads, etc. supplied free.
LION PRICE: Complete MATSI System $£ 152.00$ or purchased individually:
TF60 Receiver: £69.90. LH6 Twin Speakers £55. Goldring Turntable (cartridge Plinth \& Cover) £29.95

 TCTMal
 $b=$ क $日$

MICROPROCESSORS

A SELF-CONTAINEO MICROCOMPUTER KIT: THE MEKG800D2. KHyboard Data Ertry 60 git Hex Dispiay integral Cassette Intertach. 256 Words or RAM. Single $+5 V$ rowe Sapnly
Order as MEK 6800 D 2

Oro			5190.00
MC6800	C15.97	AC6320	02
	¢28.44	200ACPU 14MH21	C38.98
280-0TC	£12.80	280.810	E12.80

COMPONENTS									
Sbutican		cuecx paps		dispues		chrstals		mesespma	(199.00
PIWS		Aspaz				2936040	352	HCSM ${ }^{\text {a }}$	13.97
100		${ }^{\text {ans }}$		noswle	$1.30{ }^{+}$	518 Ne	164	vata	1.08
$\frac{1000}{3000}$		-6.513s				urmonics		72000	20.44
3000				\#1396t	4.49	\%irit	205	zauch	35.90

CMOS		co	1.0			[10	0,68		0.23		1.13
		C040	1. 58	mants	1.48	C04050	0.58	cout	0.23	C04502	1.80
			1.04	cotasa	1.97	COS	0.94	[020	0.23	Cos 5	1.41
		E040	1.93	1240as	1.22	C000	0.94	-0at	1.34	C046	1.72
		coser	0.5B	CDA036	3.29	[0s	0.95	Cosor	0.45	[174	2.84
Acco	0.17	f0se2e	1.21	COa01	0.88	Crab	1,20	crovia	0.27	foss	1,24
costo	0,18	C04021	1.04	costole	1,10	cı40	1,35	cistomat	0.22	C045	1.40
cDatm	0.17	C04022	0.94	concag	3.20	CO405	1.36	c. 0 acaz	0.25	C045	1.25
(040,9\%	1,20	प04523	0.23	Contsa	1.21	C0405	4.93	CDO2as	0.74	CD4520	1.12
124005	0.18	¢0acte	0.80	54024	0.86	coat	1.15	20408	0.74	thtsj	1.64
Caspos	1.00	Cb +295	0.23	C14042	0.85	C, 949	1,13	cotols	1.60	C045,32	1.39
Coscos.	D. 58	CD4028	1.72	Cosal	1.01	家dut	058	-5003	0.82	CLi4S	0.90
CJAOHO	0. 5	CL4027	0.58	c2404	0.95	catas	3.35	ç	1,24	CD4556	0,2
cracht	0.20	CD4228	0.92	CD4045	1.45	ctace	0,23	cotasa	1.08	NCI4528	1.22
condir	0.23	CD4C29	1.18	CD4046	1.37	Cr406	0.23	cotase	1.0a	MC145	4.88
cond 3	. 58	c0403	0.5	404	1.0	CO40	0.51	$12+09$		M050s	

SINTEL RET Oiart

CLOCK KITS

6 Rnd Dipit ALARM CLOCK w. $205 \mathrm{~mm}+7.40 \mathrm{~mm}$ F. 30 mm A Red Digit DESK CLOCK w 154 mm if 40 mm \& A Imm 4 Gron Dog DESK CLOCKK n 154 mm n 40 mm d 45 mm
 SOH2 CRYSTAL TIME日ASEXIT

ARANGE OF SINTEL INDUSTRIAL MODULE KITS

 KOTS FOR LATCHED COUNTER MODULES

Digizz	TIL		cmos	
	Part No	Priot	Pirt Nu	Price
$\begin{aligned} & 2 \mathrm{xign} \\ & 4 \mathrm{zg} \\ & 6=0 \mathrm{~g} \end{aligned}$	525.412 $857-412$ 721-412	$\begin{aligned} & 516.32 \\ & 617.98 \\ & 625.56 \end{aligned}$	$548-470$ $191-470$ 849.470	510.42 E18.11 C25

Our offices are at 209 Cowley Road, Oxford, but please do not use this as a pestal adorags ALL PRICES ARE VALID UNTIL 30 APRIL 1978
OFFICIAL ORDERS ARE WELCOME from Companias, Gavt, Dapts, Natn. Inde., Univa., Polyw, , 0te,
ORDERS; C. WO dóv VAT ar $8 \%+35 p$ A\&p. TELERHONE and CNEOIT finvaicpl Orders add
 SERVICE EXPORT Onders weicome. no VAT Sut sold 10% (Eurapoj. $15 \% /$ Vverseas/ for AN ORDERS TO: SINTEL
PO BOX 75C, OXFORD Telः 086549791

TELERADIO SPECIALISTS INDESIGNS by John Linsley Hood
Exampie: 25 to 75 watt Very Low Distortion HIGH FIDELITY STEREO AMPLIFIER D.C. Coupled. T.H.D hardly measurable, $£ 73$ in kt fatm $i+12 \% \%$ VAI!

Supplied as a Kit of parts or in reary assembtad module form.
Also availabie: Phase Lorked Loop. F.M. Tuner, Miliwoltmeter. Audio Signa Generators, TiH Analyser, FM. Signal Generator/Wobbulator.
Send SAE for comprohensive illustrated lists and up-ta-date prices
TELERADIO ELECTRONICS
325 Fare Street, Edmonton, London N9 OPE
Telephone, 01-8073719
Closed Thursdays

carbon film RESISTORS

ON BANDOLIERS OR PREFORMED 12.5 mm

42-44A-46 Westbourne Grove London W2 5SF
Tel. 01-727564

THE DYMaMIC DUO

The C15/15 is a unique Power Amplifiet providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radic/tape unn it is simply wired inseries with the existing speaker leads and in conjunction with our speakers 515 produces a systert of moreutble porformance
A novel feature is that the amplifier is automatically switched on or aff by sensing the power line of the radio/tape unit hence alleviating the need for an on off switch
Thu amplifer is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.
The $\$ 15$ has been specially desfgned for car use and produces periomance equal to domestic speakers yet retaining high power thandling and compact size

C15/15

15 Watts per channel into 4Ω Distortion 0.2 H at 1 KHz at 15 watts
Frequency tesponse 50 H$\}-30 \mathrm{KHz}$
input Impedance 89 nominal
Imput sensitivity. 2 volts R.M 5 . for 15 watts ourput
Power line $10-18$ volts
Open and Short rircuit protection
Thermal protection
Size $4 \times 4 \times 1$ inches

Data on S 15
$6^{\prime \prime}$ Diameter
5告" Air Suspension
$2^{\prime \prime}$ Active Tweeter
200c Ceramic magnet
15 Watts R.M.S. handling
$50 \mathrm{HZ}-15 \mathrm{KHz}$ frequency fesponse 4Ω Impedance

S15 Price per pait £1774 +£2.21 VAT P \& Pfree

TWO YEARS GUARANTEF ON ALL OF OUR PRODUCITS

I.L.P. Electronics Ltd Crossland House Nackington, Canterbury Kent CT4 7AD
 Tel (0227) 63218

Pledse Simpty -
Total Puichase Frice
1 Entsase Chemp: Postal Orters 1 Money Order 17
Plase dent my Acianss atcount Batclaycard acoount [I
Accesant number
Name \& Actress

> Signature

BUY A CASE FROM A SMALL RANGE，YOU GET A CASE－BUY A CASE FROM A BIG RANGE，YOU GET A SOLUTION

										$\begin{aligned} & \text { p.100 } \\ & \hline 1.00 \\ & 0.90 \\ & 0.80 \end{aligned}$
				${ }_{4}^{2} 200$						5
		5190 0.50				${ }_{0}^{0.60}$			85.32	
	O．50	EL9		2．00		0.75		0.45	7234 ， 18	9，00
		1139 ${ }^{\text {c }} 0.80$		2.50	Eakil	${ }_{0.40}^{0.45}$		0.45		\％i．0．
	${ }_{8.80}$	$\begin{array}{ll}\text { E1821 } \\ \text { EM3 } & 3.00 \\ 0.75\end{array}$	${ }_{3}$	4．00		0.30		0.95		1，00
		EMVO 0.55		0．35		${ }_{1}^{0.65}$		0．65		${ }^{6.50}$
		194） 0.80		8．50		0.65	T0\％	n．ta	3a	4.50
		EM884 0.40		1.00		0.15		0.80		
	0．45	EY	427	8.85						0
				0.75		0.85		1.95	504	0.50
				50		0.65	129，	v．eo	967	0.90
	3.	Ey88 0.50	（1）	0.75		0.4		10.70	1625	1.00
	0	1291 0．75	Lect	0.60	24	8.2		0.		109
					54.561	1.0		Q．	5703	0
	a．	62320	（1）	Q 3		0.75				
		2.	选	1.00	seas	0.40	122	0.40	3057	0，95
	0.		Mel2	0.75		0.4	128			
	1.	Nut	Uप780	0.80		1.0	硡			5
	0.4	M．h 4.00	UEM2	0 0．si		${ }_{0}^{\text {a．7 }}$	12 Cl	060		20
都83	0.4	0.45	（1）	080		2.30		4.25	6080	3.50
	0.	\bigcirc	UCLI	0.70		2.8	12.1801			
	0.4	${ }^{56856} 0.85$	ivf		20	0.40	12kect	0.70		10
		C88 0.6		0.50	GCE	0.55	12070	0.50	3020	50
	0.	Pc	UFE9	050	cicac				，	a
	0.45	PCCBG 0.5	ए41	0.75	－	0.7		0.55		10
	1.25	PCCss 0.8		0.55		4．				0
ECCHas	0.80	1¢CH2 0.46		0．50			10	1.00	CA．	－
	0．45	10， $0_{55} 0.65$		0.6		．	－	0		
	0.85	Ac	र61M	1.5		0.4	7tes	\％o		
	0．45	${ }_{\text {Pr }}$		0.75 3.00	6．4W0	1.	zar．	1.10	）ip	
	，			3.50	Ad	12	$1 / 2$	for	V．A．	
	0.4	$\bigcirc{ }^{\text {CHI }}$－ 0.60		0.60						
	0.55			${ }^{0.30}$		0.35	＋206	1,16		
	＋．00	－50	54	0.40		－0．70	3055			
	0．	－	4	O．40		0.55		．$\times 1$		
	0.35		${ }^{\text {xp }}$	0.8	6ssor	0.85	迷	1.06		
	9．42	P） 230	108	0.55	c．			0	cieves	
		55				0，45	30p	110	3	
		P182 0.50	3E20	5.5	E5AT	0.5	70．114	1.10		
	0.75	${ }^{1}$	305	0.40	5 F	0.6	j5104	80	（xach	17．50
	0.4	plept 0.95	N，	\％．85		0．30	3545			
	do	ptsos 280				0.85	couse		5036	
	2.09	Flapz 2,50	58	5.50			TPY			
	0.75	${ }^{4} 4.3180 .60$			30 Cl 5	1.00	AB）	9.00	\＃32 pl	
［13）	0.80	par 80.065	$5 \mathrm{~L}+$	0	POST	AGE：	E1－E2	20p	E2 E3	30p．
	2.20	－	Fvas		E	40p	5－£10	60p	ver F 10	Itee．
	0.30	P． $38 \quad 0.50$	4.3	＋．00	VID	CO	TUB	TYP	E P86	
82	0.50 0.60		22act	870		En	sh Ele	ri	20	

TF motdin／s sitanal centhator．Hangy 18 － sernces tew antig teth	
triga insignal gentratdz High riequency spectrum analysin， 	
TFI370 स．C OSCILLATOR TOR SOUARL Z SINE wave．－30 -31 EV ITI TH1066 FM／AM sigkal genemaros．	
135， 25 ， 65 cth m	
AVO CT 4 go valve tester LOW RISIStance MEADDUONES TYPL CLI AREW A	
［1．50－$=4{ }^{\circ}$ TELEPHONETYPE＂ 1 － \qquad O IVE YAGNETO SWUTC－HSOAROS CABLE LAYING APPARATNS No． 11 Nmo ptodion trot Po ta	
FOR EXPORT ONLY TRANSMITTER RECEIVER ＝	
THETH 2310° \qquad	
whis atd pest warl to to nen slact xhen vie	VALVES AND
	RANSIST0R

RHODE \＆SCHWARZ 2e dubrap
 EREGUENCY SYNTHESIZEN TYME XUA
 UHF SIONAL SENERATOR TYPE SMLM
 ThEOUENCY iNDICATOR TYPE FKM TOM：

TEKTRONIX
570 CHARACTERISYIC CURVE TRACE

 OANA＇EXAGT FUNCTION GENEAATOR MODEL IEMD misclet Ia

 EDDYSTONE COMMUNICATIONS RECEIVER

 UNIVERSAL WIRELESS TRAINING SET NO 1 MK

VAT FOR TEST EQUIPMENT
PLEASE ADD 8%

COLOMIOR

170 Goldhawk Rd．，London．W． 12
Tel．01－743 0899
Open Monday to Friday
9－12．30．1．30－5．30 p．m．

TEN GOOD REASONS FOR BUYING THE NEW FLUKE 8020A DMM.

1. 26 ranges of $A C / D C$ volts and amps, ohms and conductance.
$2.0 .25 \%$ vdc accuracy over $10^{\circ} \mathrm{C}$ tange for 1 year.
2. High power' ohms for diode testing. 4. Low power ohms for in-circuitresistance measurement.
3. Conductance ranges allow leakage measurement to $10.000 \mathrm{M} \Omega$
4. $9 v$ battery gives typically 200 hrs , life,
5. Protected to 250 v dc or mm on any range, any function.
6. Protects to 6 kv for $10 \mu 5$ on any range, any function.
7. 2 year warranty or parts and labour. 10. Large liquid crystal display.

Harlow(0279)29522

ITI instrument services
Edinburgh Way Harlow Essex. CM20 2DF. Telex. 81525
The only way to buy.

To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue，please complete one or more of the attached cards entering the reference number（s）． Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course．Cards posted from abroad require a stamp． These Service Cards are valid for six months from the date of publication．
Please Use Capital Letters

If you are way down on the circulation list，you may not be getting the information you require from the journal as soon as you should．Why not have your own copy？

To start a one year＇s subscription you may apply direct to us by using the card at the bottom of this page．You may also apply to the agent nearest to you，their address is shown below．

OVERSEAS SUBSGRIPTION AGENTS
 380 Lonstale Stiect， Malboutrie 3000，Victozia Messagei es dela Prosse 1 Puqdela Patite－1LE Eriussels 7

Caneda－Dakis CIcciation Aduncy 153 St Clair Avenue West．Tororito 195 Ontario

Cypros：G8naisi Piess AQuncy Lid． 131 Pro－ dromad Sitase P．O．Box 4028，Nicosia
Denmark：Densk Bladdistribution，
Havedvagtsosde8． Hovedvagtsaade8，

Finland：Hautskige OY． Koivivararankula 2，
01640 Vantan 64 ，Finland．

France：Dawson－Ftance \＄A．B，P，40，F－91121． Palalse日u
Gormany；W，E，5seroech GmblA， 5 Kola 1,
Foflerstrassa 2 Follerstrassa 2
Greece ：Hollenic Distribution Agiency，
PD．Box 315,245 Synarach Avanue． Nes Smymil Grgece．

Hollgad：Van OftmarN．V． Oosterijke Hamdelskado 11 ． Amstardam 1004
IndiazInterriational Book House，indlan Morcentile Mansion Ext，Madam， Cams Road，Bombay 1

Iran：A．D．A－1Bt Khiaban Soraya，Tahran
｜sraol：Steimarziky＇a Agency Lid，Cltrus House． P．O．目ox 828 ，Tel Aviy

Italy：Infarcontunanty 5．8．5．Via Vetacinl 9 ，
20124 Mitano

Japan t Western Pubilca． Hons Distubutioal Agency． 170 Nisn－Okabo 4－shome，Shinjuku：Ku Tokyal 16
Labrnon：Levant Dism． Labmhon：Levant Disil－
butors Co．FO Bos 1181 butors Co，Ro 日os
Mektes Suret．Galim Hanna Bldg，Beirut

Malaysif：Times Destributors Sdrt．ahd． Times House． 390 Xim Sena Hond． Singapoin 9，Malaysia．
Malts：W．H．Smith 18 S Scots Stieut．Valifata

Now Zanland I Gordon \＆ Goten（New Zepland）Ltd． 102 Adalaide Road， Wallington 2
Nloerla：Daily Times of Nlaenia Lid． 3 Kakawa
Straet，PO Box 139 Straet，PR Box 139 ． Legos

Norway：N／S Nawasenk Kioskompani，Bartrant Narvesens Vas 2，Oxto 6
Portugel：Livaria Bertaind $8,8,6,1$ Apartade 37，Amiadola

South Atricat Conttsl South Africat Contrsl
Nows Agency Lid，P．O： Aox 1033 ，Johannesburg

Spainz Comercial Athensumis－e．Consplo do Clento．130－135 Batchlona 15
SWeden：Wennegran Willimis A B．Fack S－104， 25 Stockholin 30 Svitzerland：Navils \＆ Cla SA，Rue Levier 5－7， CH－1211 Gonave ！ Schmidi AgenceAG． Savorelstioser 34． 4002 Easle

U．S．A．＝John Bralios， 1PC Buriness Pieqs， Now York，N．Y． 10017

BUSINESS REPLY SERVICE Licence No． 12045
WIRELESS WORLD， PRODUCT REPLY SERVICE， 429 BRIGHTON ROAD， SOUTH GROYDON， SURREY CR2 9PS

Enquiry Service for Professional Readers

WW．．．．	WW．．．．	WW，．．．
WWW．．．．	WW．．．	WW．
WW．	WW．	Ww
WW ．．．．	WW．	WW
WW	WW．．．．	Ww
WW．．．．	WW．．．．	WW
WW．	wit．．．	WW
WW．	WW．	WW．
WW	WW．	WW
WW	WW	WW
WW．	WW．．．	WW
WW．．．．	ww．	Ww
WW，．．．	WW ．．．．	WW．
WW．．．．	WW＋．．．	WW．
WW ．．．．	WW．．	WW．．
WW．．．．	WW．．．．．	WWW．．．．

WIRELESS WORLD Wireless World，February 1978 WW 862

Please arrange for me to recelve further detalla of the prodiacts listed the appropriate reference numbers of which have been entered in the space provided．

Name

Name of Company．

Audaress

Telephone fivmber

PUBLISHEAS USE ONLY			AJE			

Position in Company
Nature of Company／Business
No．at emplaybes at this establishment．
IWish to subsaribe to Wireless World
VALID FOF SIX MONTHS ONLY

Wireless World： Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to：

Subscription Manager， IPC Business Press， Oakfield House，Perrymount Road， Haywards Heath，Sussex RH16 3DH， England

Enquiry Service for Professional Readers ONLY.

WW....	WW....	WW....
WW,	WW...	WW. .
WW. . . .	WW. . .	ww
WW....	WW....	WW.
WW.	WW....	ww
WW	WW.	ww
WW.	WW.	WW
WW. . .	WW...	WW
WW.	WW....	WW
WW.	WW.	WW.
WW.	WW....	WW.
ww . .	WW..	WW.
WW	WW....	ww.
WW	WW....	WW.
WW. . . .	WW....	WW. .
WW	WW....	ww....

WIRELESS WORLD Wireless World, February 1978 WW 862
Please artange for the ro receive further details of the products listod, the sppropriate reference numbers of which have bean entered in the space provided.
Name
Position in Company
Name of Company
Address . .

Telephone Number

Nature of Company/Business
No. of employees bi this establishment

VALID FOR SIX MONTHS ONLY

Do not affix Postage Stamps if posted in
Gt, Britain. Channol islands or N. Ireland
Postage will
be paid by Licensec

BUSINESS REPLY SERVICE
Licence No. 12045
WIRELESS WORLD, PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH GROYDON, SURREY

CR2 9PS

Wireless World Subseription Order Form
Wireless World, February 1978 WW 862

UK subscription rates
USA \& Canada subscription rates 1 year: $\$ 18.20$
1 year: $£ 7.00$

Please enter my subscription to Wireless World for 1 year
I enclose remittance value made payable to
IPC BUSINESS PRESS Ltd.

Name

Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV,
Varosliget-Telephone: 225008 -
Telex: Budapest 22-4525iNTFOIRE

Italy Sig. C. Epis, Etas-Kompass, S.p.a,-
Servizio Estero, Via Mantegna 6,
20154 Milan - Telephone 347051 -
Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA
(Japan), B212 Azabu Heights, 1-5-10
Roppongi, Minato-ku, Tokyo 106-
Telephone: (03) 585-0581

United States of America Ray Barnes, *1PC Business Press, 205 East 42 ad Street, New York, NY 10017 -Telephone:
(212) 6895961 - Telex 421710

Mr. Jack Farley Jnir. The Farley Co.,
Suite 1548, 35 East Wacker Drive. Chicago, Illinois 60601 - Telephone: (312) 63074

Mr. Richard Sands, Scott, Marshall. Sands \& Latta Inc., 5th Floor, 85 Post Street. San Francisco. California 94104 Telephone : (415) 4217950 -
Telegrams: Dascottco, San Francisco Mr. William Marshall, Scott. Marshall, Sands \& Latta Inc., 1830 West Eighth Street, Los Angelos, California 90057 Telephone: (213) 3826346 -
Telegrams: Dascottco.. Los Angeles
Mr. Jack Mentel, The Farley Co., Suite 605. Ranna Building, Cleveland, Ohio 4415 -
Telephone: (216) 6211919
Mr, Ray Rickjes, Ray Rickles $\mathrm{s}_{2} \mathrm{Co}_{4}$. P.O. Box 2008, Miami Besch, Fforids 33140 -Telephone : (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co., 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: (404) 2377432 Mike Loughin. IRC Business Press, 15055 Memorisl, Ste 119. Houston. Texas 77079 - Telephone: (713) 7838673

[^9]
'UL6 the best budget loudspeakers live heard'says Philip Mount

bass dutput might be. say, soft and distant whilst treble is bright and torward

This spit in quatity and relative revels is, as usual fairly well compensated for by the brain after a short learning and adjustment process Since it 15 so common the effect is also tolerated and one does expect to adjust to a speaker's own peculiar sound quality. The most immediately striking teature of the UL6 and the one that caused it to sounci supertor to atl ohers on that group listening test described earher is the fact that adjustment hardly seems necessary or calied for. Thete arent splits. suck-outs or intalarnes. The trebla doesnit leap out or shisappear and you dion't have to cecide whether you like such-anct-such an etfect of not At a broad turdamental levet the UL. 6 Hust sounds unusuatly sight I cannot say that hehnod this overall feehing detan erttcisms are impossibie but the Ul-6 certanly transcends is price category anct cannot be approached I feel, by most speakers costing around E200 ar bess.

If you want la hetar a speaker with the whote of the aud.o fange present and lransmitted as a smocth coherent whote, listen tothe Ut 6. It's as thetatled as any of the best speakets but coesn't achieve this by talse upper modtange or treble prominence An ABR (Auxifary Bass Radiator) is used to augrnent bass response and for the lirst time I can recall if coesn't produce sogay indetimte bass qualty. The mant weakness 1 fet was some wooden nasality invoeas out this was the onty form of cibloration easily identifiable.
Petcussicin ustruments were astortishingly powerfur and reaists for a spoaker of the size and perhaps just a smal amount of resonant hoom contobutedtoths very largeand excelcent performanvo whoch wili I assure you make a maionty of tuochet equivatents sound the neutered cats fwhon they are in spite of oetrit oy some that real Dass can be wrougnt from a tatted up shae box)

Extremely ga ${ }^{1}$

It was the loudsp temn arourd from se lent that's my 19 mediocte to a who tems of tat greate: cartidge and amo sound balance te and as /said at ings became price the cesul Extremelv gof Theretore in

We don't expect you to take everything you see in the hi-fimagazines about speakers as read. Relying on someone else'scars-even when they are as expert and sensitive as Philip Mount's - isn't quite the same as getting the "message" irst hand! But we're more than conlident that you will find very little to disagree with once you've heard the UL6 demonstrated.

Rola Celestion Ltd, Ditton Works,

NOW FOR THE MICRO－PROCESSOR USER A LINE PRINTER YOU CAN AFFORD THE I．C．L． 667 BARREL PRINTER

150 pm x 96 charactets； 64 ASCII Character repertoirer Format control．IFL input to hammers and TTL outputs from character and index infra red sansors．Standant 240 V Single Phase，motors．Atiractive Fibreglass case．Size only $28 \times 291 / 2 \times 12 \mathrm{~V} / 2$

GOOD CONDITION－ $\mathbf{£ 6 2 . 5 0}$ each As New £95 each．

EX－MINISTRY OSCILLO－ SCOPE CT436

Double Beam DC－6 MHZ £120
MARCONI TF801D／8／s SIGNAL GENERATOR E425 onch

PICK－A－PACK－ 50 PENCE A POUND

From our＂Pick－A．Pack＂area

 weigh up your own components． No restrictions on what you take．

 TELEPHONE EXCMANGES，E fronge oriey treme95．

BURPLUS－BRAND NEW－REPLACEMENT TUAES
FOR DYNAMCO 7100 BEKIES OSCILOSCDPESTYPE OOR PYNAMCO 7100 SERIES OSCILLOSCOPES TYPE
BRIMAR DT3．510H MESh PD A Trasisto SKy Wou

PAPST PHOTO

 LAMGR RANGE OF ELECTROBTATIC VOLTMETERS．
 DONT FOREE YOUR MANUALS \＆ $4 E$ with wast
E．H．T．TRANSFORMERS $30 \times V 2 K Y A$ E70 No

＊SEMICONDUCTQR PACK
Ouarantecd tuit spec devices make up the poek
（No largequantuties warrans ind vianal advetlising
50 deyces for ET FEP 40
＊I．C．BOARD PACK
501 C． 4 and nther bselul comporens tor eq＂BP

MULLARD \＆BRIMAR OSCILLOSCOPE TUBES

 BRAMD NEW BOXED－ALL RECTANGULAR E35 ea．D10－210GH／32 E40 en．Cart－8gy al tubes E1．75 7 ma ．

COSSOR OSCILLOSCDPE CAMERAS
Erand New Boxed with 4 thim packs \＆Montul 12

SOLID STATE TIMEBASES

Dy LARGE BRITISH MANUFACTLIRERS． These ang a Ploytio Modular Tmenate coveratgo a Tunnat Diode mifpering \＆Frant Panat Contrels 37 Transisters？FETs atl piugen Silver aroeised trant pare Size 4×5 友 $\times 10 \mathrm{~S}^{\prime \prime}$ tienp Guaranted
susufutely brand naw in ungimat manufacturet 8 susuately brand naw in ungimal manufacturer \＆ packag ng．Campiete wht extremicly comprenen！
vecopy of manual $£ 17.50$ es．P\＆F？

FURZEHILL EX－MINISTRY AUDIO GENERATOR $0-20 \mathrm{KHZ}$
Sinewave output．Metered． 600 Ohms． Size $16 \times 10 \times 9^{\prime \prime}$ deep．Standard mains now at $£ 15$ ea．

At $5 p$ each

 Atiop aser

 ${ }^{20} 538$ Como

FINNED HEATSINK

عa）－ 8 P 万 5 p
DESKS will Purch Reader Pertier कand Kepbery Some ASC11 Varicus mcdels from $£ 200$.
$1 / 2^{11}$ MAG TAPE
NOW 25p 2 ， 275
FOR THE VDU BUILDER 和的 type CME $122074 \times 15 \mathrm{~cm}$ at $£ 9$ ea Fase
Ficats tor PERDEC 6000／7000－pncuiries
VDU BDARD ASSEMBLY
nepghord sppror 10 ． cursor 32 contral hutictions．adjustable judulf rate：kequazd inpoti ceral inputioutput：requ res +5 V and -12 V and any modtied дıcturs．Supplied in kit form ial companants sappliedi E95． Assnmbind and lested $£ 147,50$ ．P\＆P E1．75
TELETYPE ASR 33 fart C450
TELETYPE KSR33 E325
TELETYPE KSR33 £325
NON－STANDARD KSR33
NON－STANDARD KSR33 eg basic ASCI C － 20 NA Iona－but sitra locatted，$£ 250$ ．
TELETYPE 35RO－no eases $£ 120$ cacn
TELETYPE 35RD
TELETYPE 36RD cashd C180 each
TELETYPE $35 R 0$ cosed with mon
VITRON PROCESSOR Genaisting of VCLU thin eassette infor MELCOM 83 ．Son ninly
LITTON SYSTEM Must go－ $\mathbf{~ E} 375$ or effor

BACK IN STOCK－
 CREED 7B TELEPRINTERS

THE CHEAPEST WAY OF GETTING A FULL ALPHAINUMERIC PRINTOUT FROM YOUR MICRO
Large Ministry purchase enables us to offer these at

£25 each

 Thmse units amp Froosssu testert betore dispatich guthuifo inctusted

Supplica lesa hud C6 bach．
BROOKFIELD VISCOMETER Model RVT eomplete with 7 spincto
\＆siand For 230 V 50 HZ As new $\mathrm{EZ75}$

A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR－CHASSIS UNITS，ETC．．on view at LOW COST

[^10]\square Cun （nconcur 7／9 ARTHUR ROAD，READING，BERKS（near Tech，Collogo，King＇s Road）．Tel．Reading 532605

Flectronic Brokers ittd

MARCONI INSTRUMENTS TF2333

M.F. TRANSMISSION MEASURING SET

Frey renge $30 \mathrm{~Hz}-550 \mathrm{KHz} 5$ Attentatue Range 70as in to dB and 1 te steps. Level Messurament +75 to
-10 tEn $-10 \mathrm{uBm}$ Measures tesponie of aclive
and puss and passeve transmission

MARCONI INSTS TF893A

A.F. POWER

 METER 5 power ranges 1 mW to 10 K . tmpedarice 2.5 ohms to 20 Koms. in 48 steps. Balanced or in wats and dem inputs. Direct calibration in wat
REFURBISHED AND APEC. REC NEW LIL LST PRICE $E 260.00 £ 155.00$

BRAND NEW FUNCTION GENERATORS

forcial Low Prices for Limited Period
while Stocks last
5.430

MHz outaut Sme
wave, a-1OV f.mes
 Wave 0200 p .0 from
600.0 .60 ad step NORMAL PRICE £95.00 E59.50 NORMAL PRICE £ 115.00

$£ 79.50$

6 MONTH WARRANTY
DYNAMCO MODEL 7100 PORTABLE DUAL CHANNEL

Alse Time $<12 \mathrm{~ns}$
 (5MHz)
Fompretiers
Lyy timetase
Lil spec on request
TODAY'S VALUE £500 PLUS UNUSED
£350.00

RACAL RA117
 H.F. COMMUNICATIONS RECEIVER

FREQ . 30 NH ,

 Intemuculution
means of a sele
TODAY'S VALUE AT LEAST €600.00
TODAPERB CONDITION $£ \mathbf{3 5 0 . 0 0}$
HEWLETT PACKARD 332A DISTORTION ANALYSER
Fundamenta! Froguzncy Range 5 Hx .600 KHz , full scate it 7 rangews Distertion leverion
REFURBISHED AND
RECALIBRA our price $£ \mathbf{\$ 9 5 . 0 0}$

FLUKE MULTIFUNCTION COUNTER

ELECTRONIC BROKERS LIMITED 49-53 Pancras Road, London NVV1 2QB vat ADD 8\% Tel. 01-837 7781. Telex: 298694

Brokers Itd
 E49-53 Pancras Road, London NW12QB Tel: O1-837 7781
 New Catalogue just out. Send for your copy now - POST FREE

Kere NoLiting Scope S54AR Fitted whth 27 ang persistence CRT Siagle trace DC.1DMHE $10 \mathrm{mV} / \mathrm{cm}$ Urused consis
tion
E205.00

TRANSMISSION TEST EQUIPMENT

AIRMEC/RACAL

 Vavo Araysor 24 B Freq tange 5 MHz $300 \mathrm{MHz} \quad$ E145.00 Modulation Meser 409 ... E295.00 Type Mh2, AM Fange D-100\% FM Range
 GENERAL RADIO
ype 1900A Wiace Analyser i/ /w Graphic evel Recordar 1521 F
Spec 1900A $20 \mathrm{~Hz} \cdot 50 \mathrm{KHz} \quad 3$ hand. widths 3.10 and $50 \mathrm{~h} / 2$ T racking averagea 30 mV 300V F.S.D. inpia impedance i M ohm 3 meter speeds
spec. 1521 E 2.5 Hz -200KHz 1 try sensitivity Linaar os plot of r.m $\$$. acvoliage
tevel 20.40 or 80 dB range $\mathbf{£ 2 , 0 0 0 . 0 0}$ HEWLETY PACKARD
Swerping Lncal Oscllator 35954 Flug-n
 MARCONI INSTRUMENTS Distortion Fasto Meter TFT 42 F Fun. tamenta Freq Range 100 Hz .8 KHz Dist. mossuring ranges 8.45 s 0.505 Mess.

BRIDGES

WAYNE KERA
COMPONENT BAIDGE BE21 (CT 375). hogstance 10 rangas tram 1 AA ohm io tom 50 kgF to 500 pF . Inductance 10 ranges toon 1, Fta 500 KH . Capable of measuring ecmponents in situ $£ 105.00$ Universal Brides B221A (CT5302 of 17% Accuracy. Messures R. G, C \& .. Mains operated ….......275.00 ow Impedince Adaptor 9221 a for use

FREQUENCY COUNTERS

ADVANCE
Countse TCl 5 Hz -8OMHz 5 digit starage. DC $\quad 250 \mathrm{MHz}$. Fime limits sciectable $0.1 \mu=100 \mathrm{~s}$. Multimle penod averoge 10.10, Sensitivity 10 mV : Temer Conatise TC15 9 digit with storagte and pugin canabilisy. $D C \quad 250 \mathrm{MHz}$ Spec smilar te TC14 E585.00 plog-in Unat reis pt 1 MHz 500 MHz . $10 \mathrm{mV}-1 \mathrm{~V}$ Full 500 MHz display wigh Hz
resolation is only 2 sets. $\quad 200.0 \mathrm{a}$ resolution in on y 2 segs 5 ig 2200,00
 cade steps Senstivity 25 mV it $\mathrm{m} . \mathrm{s}$) sine wawe. Ovnrload prosocind $\mathrm{EZ290.00}$ fiequency DC- 100 MHz , 6 digit. fime, potiod, penod avarago, spunt totaisen. Typu TC18 Time Countrer Fruu Tret TOHz.512MHz 6 ot isit CED display
UNLSED CONDITION. $\mathbf{£ 2 7 5 . 0 0}$

Carriage and packing

 charge extra on all items unless otherwise statedLUKE
LukE
Momitro Counter Totaliser 1341 A. 5 HV urement - \quad £150.00 Communications Counter 1920 A 5 Hz 620WHz 15 mV sersitivity 9 digit LED
Display. Display. AACAL Fequency Perind Mater $5 \mathrm{~Hz}-10 \mathrm{MH}$, 9520 Pariod Average medsuramerits $E 110.00$
Inversat Coumer Timer 9838, Mes Inwersal Counter - Frecruency Single And mull perriod Rata and Multipla ratio. Time intervel - single line and double tins. totalising. 10 Hz to 100 MHz Frequency 10 Hz to 5 MHz Period 1 is S to 10 sec time charige

VOLTMETERS

BOONTON

$R=$ Volimeter $31 C$ Mussavernent range miV to 3 V Frequency range 20 KHz to
200 MHz fwith T^{\prime} Acapter supp iod 1200 MHz iwith -T Acspter suppiod).
Supples also with AF grobe and tip and 509 termination Weight 127 bs £ 555.00 BRUELK KJOER
1456.00 Efectronic Voltmeter 2409. Trup R.M.S. Average and Pakik. 2 Hz to 200 KHz , Sen-
stivity $10 \mathrm{mv}-1 \mathrm{kV} \quad \mathbf{~} \mathbf{2 5 0 . 0 0}$ FLUwity $10 \mathrm{mv}-1 \mathrm{kV}$ FLUKE

Type MSC Stersccoder EN4 132/2 RECORD
Ciart Reporter - $500 \mu \mathrm{~A}$ Movement 1 in 8 6in. perbpuT £70.00 WAVETEK Programinante Prase Moter 775

ع795.00

CALIBRATORS \& STANDARDS

fluke

Werber Calibrater 760A Spec for DC Vols-meters- 0.001 V ta 1 KV Accurscy 01 K
Resolution $100, \mathrm{~V} .0 \mathrm{CC}$ Ammaters 1 th 10 A . Acci-racy $=0.25 \%$ Resolution ${ }^{1}$ A AC Voltmeters - D.DOIV to 1 KV 60 Hz and 400 Hz Accurasy $\pm 025 \%$ Resolation 100 H AC Ammeters $-1 \mu \mathrm{~A}$ to 10 A .600 Hz \& 400 Hz Accuracy
$=0.75 \%$ Onmeters -0 to 10 M ohms $=0.25 \%$ Onmesers - 0 to 10 M ohms
-0.1% of sytting +0.5 M ohms Resolu. lien 1 otm Fult spec an reoums
£2,150.00

Hoterencer Divider 750A. Used tor cal opfabon at precis on DC Valometers. Voiboxis DC Cahbrators, stc the enuipmant is a $10 \mathrm{ppm} 10.001 \%$ divider with switched input tags ranging from 1500 to IV \& switched output taps ranging from
E980.00
100 V tod 1 V 10% overangian intinite ingut DC wistance 10% overanging intipite input resistance
0.1100 V Absolute accuracy $=0.018$ of GENERAL RADIO HEWLETT PACKARD RHODE \& SCHWARZ

agVANCE

 BIRDCOA2 GENERAL RADIO THODE B SCHWARZ
ingut 1 mil ful scale Nall Sensitivity. Re glution 1 pum of range $\quad £ 395.00$

Electronic Voltmoter 1 ROBA AC DC I
Resistance $=2 \%$ ancurach. Wide fequency range - up to 1500 MHz Wide
£175.00 A F Voitmeler $3406 \mathrm{~A} 20 \mu \mathrm{~V}$ sensitivity average rosoonsc. 1 mV sensitivity. 1 mV
$-3 V \mathrm{~F}$
-3 ranges. $10 \mathrm{KHz}-12 \mathrm{GHz}$ 8485.00

521 Ner Microvoltineter USVH EN sd at lawestrangi iV MARCONI INSTRUMENTS TF2600 Seragitive Valve Voltmeter 1 mV 300 K i12 rangest 176 Accuracy up to $500 \mathrm{KHz} \quad E 175.00$ TF2604 R.F, Eisctronic Voltmeter
$300 \mathrm{mV}-300 \mathrm{~V} / 7 \mathrm{ranges} 20 \mathrm{~Hz}-15 \mathrm{GHz}$ $300 \mathrm{mV}-1 \mathrm{KV}$ DC $500 \mathrm{ohms}-500 \mathrm{MOhms}$

E226.00

MISCELLANEOUS

Digtal Panal Noters DPM 102. 103 343 Price and tpecs. on application

Coasa Reststet s053 10W FF evoxal lase tessatr, $\$ 20.00$ Watsmbter Termaling 68353 rangea 0.120 /0600/0.1200W 30.500 MHz Wetrmeter Termalise 67,3 ranges E265.00 Random No se Generator $1402 £ 250.00$ Alasomats= Vitratich Exciter 1018 £485,00 frandard Frequency Mulipier 1112A Prica \& specs on application Standard Frequency MLitiplier $\uparrow 1128$
Prica \& specs. on application MARCONI INSTRUMENTS $\quad \mathbf{8 0 . 0 0}$ orer Gain and Delay Test Set $\frac{\text { E82,00 }}{52904}$ 625 line $\quad . \quad \pm 505.00$ AF. Power Mete- TF2502 3 and 10 watt anges DC 1 GHz TMG4 $£ 355.00$ OA 1094A soncs E200.00
 Type MSDC Stardard Siereodecoder
$30 \mathrm{~Hz}-15 \mathrm{KHz}$
E850.00

Null Defector 345 ad All anild state. De signed for extrennely high input impedan. of, sersifivily and isoliation. Operates from either line of from buit-in rechargeabic crale in 19 ranees taing $\times 1$ and $\times 3$ pro Wressior Full spec on request $\mathrm{C475.00}$

High Voltaga Dinder goE.10. Prondes a highly brable. socurate means of mea suring vorages up 10 IOKV in conjunction wht ditterentia saltmeters. d.v.m.s. and conventional potentiometers. Accursey

FREQUENCY

 SYNTHESISERS
FLUKE

Frequency Synthesiser 6017A. Performs functons of an ascilator, counter and 0 imve 5 V (m m.s. $) 7$ digit tED disolar Aocuraty $=3$ psits in tot for one yoat Freq. starage. Fult Specification on requ.
es.
$\mathbf{£ 2 , 6 5 0 . 0 0}$ *

Frequency Sytuherger 15160A/DX $4 \mathrm{MHz}-30 \mathrm{MHz}$ in 1 Hz Steps Dutpul 1 V
into 50 olvms Statility $=1$ part in to into 50 olvms Stsbily +1 part in 10^{2} in USED, EARGAINPRICE. EELUEst. E675.00

Please note: All instruments offered are secondhand and tested and guaranteed 12 months unless otherwise stated

Hours of business: 9a.m.-5p.m. Mon.-Fri. Closed lunch 1-2p.m.
WW-OSD FOR FURTHER DETAILS

OLSON

MINICASES

Type	Overall Dimension Width Height Depth			Case no vents	Case with vents	Chroma leg
21	$61 /{ }^{\prime \prime}$	$41 / 2^{\text {¹ }}$	$41 / 2^{\prime \prime}$	-	4.75	1.00
22	81/2"	$51 / 2^{\prime \prime}$	$51 / 2^{\prime \prime}$	-	5.35	1.00
23	101/2"	61/2"	$61 / 2^{\prime \prime}$	-	6.35	1.05
24	$121 \%^{\prime \prime}$	$71 / 2^{\prime \prime}$	$71 /{ }^{\prime \prime}{ }^{\prime \prime}$	-	6.95	1.05
25 A	$61 / 2^{\prime \prime}$	$41 / 2^{\prime \prime}$	$41 / 2^{\prime \prime}$	4.60	5.15	1.05
$25 B$	B1/2 ${ }^{\prime \prime}$	$41 / 2^{\prime \prime}$	$61 / 4^{\prime \prime}$	4.85	5.40	1.05
26A	83/4/2	$53 / 4$ "	$61 / 4{ }^{\prime \prime}$	6.50	7.05	1.05
268	83/ ${ }^{\prime \prime}$	53/4"	$81 / 4^{\prime 2}$	6.83	7.38	1.05
27A	121/4'	$71 / 2^{\prime \prime}$	$51 / 2^{\prime \prime}$	7.10	7.75	1.05
27 B	121/4	$71 / 2^{\prime \prime}$	$8^{\prime \prime}$	7.70	8.35	1.05
28A	141	10\% ${ }^{\prime \prime}$	$61 / 2^{\prime \prime}$	8.40	9.05	1.05
288	$14^{\prime \prime}$	101/24	$81 / 2^{\prime \prime}$	9.13	9.78	-
29A	$10^{\prime \prime}$	$4^{\prime \prime}$	$6^{\prime \prime}$	5.88	6.43	1.05
29B	10'1	$4^{\prime \prime}$	$8{ }^{2 \prime}$	6.20	6.75	1.05
30A	$12^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$	6.40	7.05	1.05
30 B	$12^{\prime \prime}$	$5^{\prime \prime}$	$8^{\prime \prime}$	6.70	7.35	1.05
31 A	$14^{\prime \prime}$	$6^{\prime \prime}$	$6^{\prime \prime}$	7.00	7.65	1.05
31 B	$14^{\prime \prime}$	$6^{\prime \prime}$	$8^{\prime \prime}$	7.35	8.00	1.05
61	$15^{1 / 2}{ }^{\prime \prime}$	$71 / 2^{\prime \prime}$	$91 / 2{ }^{\prime \prime}$		10.60	-
62	171/2"	$81 /{ }^{\prime \prime}$	$91 / 2^{\prime \prime}$	\square	12.35	-
63	$161 / 2{ }^{\prime \prime}$	91/2'H	91/2"'	-	12.35	-
64	$151 /{ }^{\prime \prime}$	71/2',	$121 / 2^{\prime \prime}$,	-	12.35	-
65	171/2"	$81 /{ }^{\prime \prime}$	$1212^{\prime \prime}{ }^{\prime \prime}$	-	14.00	-
66	$161 / 2^{\prime \prime}$	$91 / 2^{\prime \prime}$	$121 / 2^{\prime \prime}$	-	14.00	-

C.R.T. TESTER/REAGTIVATOR

Suitable for Monochrome or Colour Tests, emission and inter electrode leakage. A three step reactivation facility to boost worn tubes.
$\boldsymbol{£ 6 6}+\mathrm{V} \cdot \mathrm{A} . \mathrm{Y}$

INSTANT TRUNKING SYSTEM!

Feady to use
Price $\mathbf{2 1} \mathbf{2 1 . 5 0}+\mathrm{P}$ \& P. \& V.AT Internal wiring suitable for 30 amp

PORTABLE POWER DISTRIBUTION
 FOR INSTANT MAINS!

 COMPLETE WITH 6FT CABLE ANO 13 AMP FUSED PLUG
 4 soekets 13 A
 6 sockets 13A
 4 sockets 13A switched
 6 sockets 13 A switched
 ALL DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS \& PLUG ALL ITEMS + P \&P + 8\% Y A.T
 OLSON ELECTRONICS LTD.. FACTORYNO. B, 5-7 LONG ST, LONDON E2 BH, TEL: 01-7392343

Design Development

 Prototype or quantity production
Wound components sub-assemblies

Professional or consumer applications

Designonour capability

Probably the best-equipped - and most experienced coil-windings specialists in Europe, Plessey Windings invites enquiries for all types of wound components and sub-assemblies.

Vicarage Lane, Miford. Essex, England IG1 4AO Telephone (01) 4783040 Telex 23166 .

Flectronic Brokers The Computer People

STOP PRESS

ELLIOTT/ICL Photoelectric PAPER TAPE READERS

250 cps uperation, Compact table-miounting units consisting of lamp, iriving motor, clutch electromagnet assemity, optical systemt photosensor assembly and amplifier circuits.
Power requirements Lamp 9.5 V , photosensors and amplifier circuits $6-10 \mathrm{~V}$.
PRICE: £165
Also available - high-speed models - $500 \mathrm{cps} £ 200-1.000 \mathrm{cps}$ £275

KB̈ R REED-SWITCH KEYBOARD

* 78 Stetion ASC1 keyboard including separate numetioctastet, cursor tontel keva and 5 special fanction kers
* Power retuirements +5 V @ $100 \mathrm{mAand}-12 \mathrm{~V}$ Q
* 4 ma .bit ascit codal ncluar ng parity
proveding tue 86 .character set with uppar anc lower case oulpuas
 with full techohical data sond tircuit disgrams.
PRICE $865+€ 1.25$ p $8 \mathrm{p}+8 \%$ VAT (Serd ± 60.75).

FACIT PAPER TAPE PUNCHES
Spscial purchase of trana new surplus at big
FACIT 407075 CPS PUNCH
Scitccnte ned table mounting unit with
integral dinvo clectronics plas tape supply and intogral trive el
FACIT 4060150 CPS PUNCH
wha imapgral supply spood. complete with
OUR BARGAIN PRICE FOR THESE TOP
QUALITY PUNCHES - £950 EACH
Also available - FACIT High-soeed papat rape ceader Medel 4001 Resding soend up to 1000 tas inlegral
ARGE STOC
LARGE STOCKS OF ASR33 AND
KSR33 TELETYPE TERMINALS

* ASClIKerboard
* Hard-cegy unit itriction or sprocket paperfeedi
* Pspec Tope purch and mater \{ASR33 orly)
* Line Unit!20mA/EVigov

Overhauled in out owft workgtops to the hignest standards Procks from $£ 425$ (KSR 33) and £625 (A5R33)
DIABLO Histype 1 das-sy-whont printer 30 eps (BRANO NEW, apd offerect complene with interlace mosule for Data
IBM 731 and 735 INPUT/OUTPUT
WRITERS
10 pitch polfeall BCD ar itoriespondence coding 13 in . or 157 . platen Mlas cospesa 14 chas, PRICE 5 FROM 27500

SAVE up to 45% on HAZELTINE

HAZELTINE 1000

conpeat carmana pra

New List Price $£ 900$
NEW LOW PRICE $£ 495$

HAZELTINE 1200 all tho taitures
 Lusso
New List Price $£ 941$
OUR PRICE £725

HONEYWELL KEYBOARDS
4-bark ziphanumeric exequipment keyboards. 50
 100 mA Lerout similar to 1 BM 029 . Price $\mathrm{C} 25+\mathrm{Cl}$ P\$ ${ }^{2}$ $+8 \%$ VAT 5 epa \{28.09
Telatype companible $ 12^{\prime \prime}$ Diagonal Screan *TTY Firmat Keyboard 664 ASCII Charactar 5 et $* 5 \times 7$ Dot Matria Switch-Solectable Tranamission Rate up 20.16

HAZELTINE 2000 supen butteced ientinal

 kyy cursor Solectoble New List Price E1649 transmission, tuli/halt OUR PRICE E895

ALL UNITS FACTORY-REFURBISHED TO AS-NEW STANDARD AND COVERED BY 9O-day warranty ELEGTRONIG BRDKERS LIMITED

ADD 8% VAT TO ALL PRICES

Carriage \& Packing charge extra on all items unless otherwise stated

PA GROUP \& DISCO UNITS

Audax HD 12.9025 Audax HD20825J4 Audax HD11 P25EBC Baker Superb
Castle 8RS/DD
Coles 4001
Coles 3000
Celestion HF1300 II
Celestion HF2000
Dalesford $020 / 1054^{\circ}$
Dalestord $030 / 115^{\circ}$
Dalesford D50/513 61/2* Dalestord D50 $2008^{\prime \prime}$ Dalesford 070/250 $10^{\prime \prime}$ Dalesford D100/310 $12^{\prime \prime}$ Decca London
Decca CO 1000 If
Decea DK30
Eloc TN3/04
Eloc TN3/04
Elec 6RM171
Elec 6RM171
Ence 6NC204
Elac $8 N C 298$ dic
Elec ENC245 boss
E4ce BNC245 bo5s
E.M.1. $14 A, 77018^{\prime \prime} \times 9^{i 1}$ EMI $8^{\prime \prime} \times 5^{\prime \prime} d / C 10$ watt Goodmans Tvinaxiom $10^{\wedge} 8$ Isoohon KKIO/B isophon KK8,8 Jordan Watts Module Jordan 50 mm Unit Jordan CB
KEFT27
KEFT15
KEFT15
KFF B1 10
KEF B200
KEF B139
KEF DN 13
Lowther PME
Lowther PMB MKI
Lowther PM 7
Peorless DT10HFC
Peerless K0100T
Peariess K040MRF
Radford ED2 5 II
Radtord MD9
Radterd MDG
Badiord FN8/FN831
Richard Alan CGET
Richard Allan CGE12T Super
Richard Allan HPBE
Richard Allan LPBB
Fichard Alan HP12B Richard Allan DT 20 Richard Allan DT30 Tannoy HPD 295A Tannoy HPD 295A
Tannoy HPD $315 A$ Tannoy HPD $315 A$
Tannoy HFD $385 A$.

$\varepsilon 7.50$ £ 10.95 56.95 £22.50 $€ 9.95$ $E 5.90$ £6. 25 E7.50 £9.75 E9.95 $€ 9.95$ E10.95 $€ 10.95$ E 24.95 | E 24.95 |
| :--- |
| $£ 30.95$ | $£ 30.95$

$\mathbf{6} 77.25$ $€ 37.25$ $\begin{array}{r}67.95 \\ \hline 24.50\end{array}$ $£ 24.50$ E2.95 £4.35 £6.50 £6.75 £5.65 £12.50 £3.95 €8.50 € 8.50
10.95 E10.95 68.25 $\begin{array}{r}\text { E } 7.50 \\ \text { ¢ } \\ \hline\end{array}$ £17.95 $£ 22.50$ $£ 22.50$ $\uparrow 8.50$ $£ 10.75$ E10.95 £11.95 E24.95 $£ 24.95$
$£ 4.95$ E7.25 $£ 39.95$ £42.95 $\begin{array}{r}\text { £ } 78.95 \\ \\ \hline\end{array}$ $\begin{array}{r}£ 78.95 \\ £ 9.50 \\ \hline\end{array}$ $£ 8.50$
$£ 8.25$ £ 10,50 $£ 10.50$
$£ 26.95$ £14.50 £17,95 £19.95 £8.95 £19.50 £13.50 $\begin{array}{r}£ 9.25 \\ £ 62150 \\ \hline\end{array}$ £ 21.50 $£ 6.25$
f6.95 f6.95 $£ 83.00$
$£ 93.00$ $\uparrow 93.00$ $£ 110.00$

Prices per pair. Carriage $£ 2.50$
Dalesford System 1 Dalesford System 2 Dalasfora System 3 Dalesford System 4 Dalesford System 5 Dalasford System 6
Eagle SK210 Eagle SK215 Eagle SK320 Engle SK325 Eagle SK 335
Goctmans DIN 20 Gocdmans Mezzo Twinkit
Luwther PM6 Kit Lowther PMG MKI Kis

Peerless 1060 Peerless 1070 Peeriess 1120 Popriess 2050 Pearless 2060

Radfard Studio 90 Radiord Montor 270 Radford Studic 270 Radford Studic 360 Richard Allen Twin Fichard Allan Triple 8 Richard Al an Triple 12 Richard Allan Super Triple Richard Allan RAB Richard Allan RAB2 Richard Allan RA821.
Seas Mini
Seas 203
Seas 302
Seas 303
Scas 503
Wharfodale Denton $2 \times \mathrm{PF}$ Whartedale Linton 3XP Wharfectale Glendale 3xp

$\$ 41.95$

 ¢56.95
Everything in slock for the

 speaker constructar! BAF, long fibre wool foem, ctossovers. lelt paneis somponents oicLarge selection of grille fabrics. (5end 15 p stamps for samplos) (Priciss correct af 3:11/77)

E51.50 £53.75 e99.75 £106.00 £131.00 ± 91.00
E13.80 £23.50 E33.50 $£ 51.00$ E65.90 ع31.50 $\$ 51.95$ €81.75 £86.95 £61.50 £109.90 £123.00 $£ 43.85$ $£ 58.50$
£154.00 £208.00 £275.00 6390,00 £29.90 £ 45.50 55.90 $\begin{array}{r}555.90 \\ \\ \hline 65.90\end{array}$ £65.90 € 42.75 £67.75
$£ 73.50$
£21.95
$£ 35.50$ $E 43.90$ $£ 73.90$ £111.90 construction details of any of above designs.

CARRIAGE \& INSURANCE Twesters/Crossovers 40 p cach Speakers up to $10^{\prime \prime} \quad 75 \mathrm{p}$ each Speakers $12^{\circ \prime} \quad £ 1.25$ each Speakers $15^{\prime \prime} \quad £ 2.00$ each Speakers $18^{\prime \prime} \quad . \quad$.. $£ 2.95$ each Speaker Kits \quad E2.50 pair Mag design kits . . £3.60 pair
$\rightarrow \begin{aligned} & \text { OFWILMSLOW }\end{aligned}$
The firm for $\mathrm{Hi}-\mathrm{Fi}$ 5 Swan Street.
Wilmslow. Cheshire.

Send 15p stamp for free 38 page catalogue Choosing a Speaker*

Telephone: Speakers, Mail Order and Export: Wilmslow 29599 Hi-Fi: Wilmslow 26213
Lightning service on telephoned credit cardorders!

Swan Works, Bank Square,
Wilmslow, Cheshire.

DIY SPEAKER KITS

15．WATT KIT IM CHASSIS FORM When you are looking for a pood sjeaket，waty not build your own from thiskit． It＇sthe unit which we supply with the entlosures illustrated helawsize 13，3－peprox．］ W：ofer（EMM），wweeter，and matching crossover compongnts． Power hand ling capacity 15 watts ress． 30 watts pask．
£1700 PER STEREO FA

EASY－TO－BUILD WITH ENCLOSURE

Spacially designari by RT VC for cost－50ertious thifi Etthusiasts，17ese kits incorparate twa tegk－ simplate enciosivess，twe EMM 13 －\＆－［spprox．） woofers，two theeters and a jair pif mathing sfossovers．Easily constucted，using a few basic tabls．Supplied romplete with ai essz－to－follow citcuit diagram．and tuessover coneponeonts．Irput 15 watts m ． 30 watte prak eath wit． $\pm 28^{00}$ Dakinet size 20 － 11^{+}, g－ $2-$ PER STEFEO PAIR （approx．）
＋p与pE5．50

COMPACT ${ }^{+}$FOR TOP VALUE

How about this for iocted dile bookshaif vala： Trame fit－VC！A pair of hish efficiency units lor gaty E ह． 50 －just what you need lor low－ power arimpifters．These infitite haftle Enclosuras come to you ready mitred and prolessionally finished Each cabiset measures $12-9^{+}-5$（apeces．） Ieep，and is in whuf siftilate．Complete with two 3－lapprox．／speakers
for mas．power sendifing of 7 watts．

SPEAKERS Twa mudels－Dun lid．teak eneer． 12 watis rms， 24 watts pratk．
$185^{\circ}-13 \sum^{-}-75^{\prime}$
（2agirox．）．
E17 PER PAIR
$177_{+p \delta p}^{1+6.50}$
D．o lll． 20 wats rms ． 40 watts peak．
27 13－115（approx．）
C52 PER PAA

 finithed cabinot work．Dutn 4 wat put chaul fl，phones surket apd recens iteplay socket

CAR

RADIO－ 7 ） KIT
Completo witt speaker，taflle and forsh strig．
The Tourist IV tor the expetienced constt itot the loutrstivior the expertenceu consic： tour meddum band and one fortsny wave bant The tunsisg traie is il uminated and atractive The tun sg tare is mumitated anc amactive

 Liot into a standard car ratio apprtione． Size apprax．7－ $7=45^{\circ}, 12$ xatits poser reg earth taltered intentally p \＆ $\mathrm{p}\left[1.50 \mathrm{E} 12^{50}\right.$ Uutput 4 watts inct 4 uthus．

－FREE TO PEASONAL SHOPPLRS BUYING CAF RADIO KIT EIECTHDMATE Rest virdex taven

TO PERSONAL SHOPPERS See Below

20×20 WATT STEREO AMPLIFIER

Superb Viscquat IV unit in teak－tirastes tasinet．Silver fascia with al imuniue
 Function switth for mic：magotitars arystal pirk－153 tape．tufter．and zuxiliary Rear panel featurgs two mains outlots．DiN spraker and imput \quad a \quad \＆ f 2.59 \＄0ckets．plos fuse． $2 u-20$ watts rms． $40+40$ watts pras．
－FREE To cash or cheque personal shoppers
A 4 channel Stereo Adaptor to all buyers of the Visicount 20×20
Amplifier at $£ 29^{90}$ temiters offer．Avaliable sepatately at \mathbf{f}^{95}

personal Shoppers only

 STERED CASSETTE recard／teplay fully built PC．hoard incarperating 41.6 s ，used without g＇tibe．E155 PAIR STERFD \＆WATT SPEAKERS 2055 anis with si＂spatm toestors pywe landling ${ }^{5} 12^{35}$ SUEUNE RECDRD PLATER PLINTH．accoptr ESR Tarstab
 LP 118

$$
\begin{aligned}
& 20 \\
& 10
\end{aligned}
$$

 ${ }^{5} 1.00$

ADD－ON STERE 0 CASSETTE TAPE DECK KIT
Lesigned tor the exparienced D．Y，Y，man This kit comprisos of a tape tranuport mechanism，ready huils and tested stordirfolay elestronics with twin V．I．watels and level tentrol teady for mating together with the metianism．
Specilications．Sensitivity－M $\mathrm{c} .085 \mathrm{my}, 20 \mathrm{~K}$ UHMS． Din $40 \Rightarrow V$ ． $400 \mathrm{COHMS}: 0.1$ out -300 mV FMS per
 Tapa Counter－ 3 Diqt ficsettable，Fitatuency Response－
 slectspric szeed requations：K8y Functions 841.95 Recors．Rewisti，Fast Furward，Play．Stop \＆£pect p \＆ 0.52 .50
 Dotional extess：Mainstranslormer $\mathrm{E} 2.50+6 \dagger .00 \mathrm{p} \& \mathrm{p}$ ．

BSR TURNTABLES
 BSR MPGO TYFE
 Single play record player

 （Chassisterm）$£ 15,95$ less cartridge．Pa PE2 DU Cartididges to suit above acos macnetic\qquad

| CERAMIC STEFED |
| :--- | :--- |
| fl |
| 1.35 |

BSR sutomatic record Blayer deck（Chassis lorm） with tuting device and sterea

sterea
ceranit
£

hesd．P\＆PE2．55．
TURNTA日LE Alles．diamone stylus，and Papalat BSR MP 60 deluxe plinthand
${ }^{\text {£ } 29 ~}$ typa camplete with cover．
 CERAMIC STERTD £1．35 magostit cartridg？．Ready wited
30×30 WATT AMPLIFIER KIT
Specially designed by FT－VC for tha axparienced canstructor，this kit comes complete in wesy detail．Sanle faciaties as Viscount 1 V amplifier． thassis is ready punched，drilled en tomes Catinet is finisbed is teak yarer．Silver lascia and adsy－to－ handela aluminium kacbs：
 Notpot $30+30$ watts tms， $60+50$ peak．

DECCA 20 WATTS STEREO SPEAKER

This riatthing lourispeaket system is hand mase． kit comprises at wa 8 ＇diameter sppros． base dive unct．with hazw dia cast chassis laminated rones with reled P PN：C sutrovends． twa 32^{-}drameter spprox．domed tweeter tainp with bussovar networks

$$
\begin{aligned}
& \begin{array}{l}
\text { ssovat petwarks } \\
400
\end{array} \\
& { }^{2} 20^{00}
\end{aligned}
$$

112.7
\qquad

[^11]envelspe for fortherdotails．

PORTABLE MONO DISCO
with built－in pre－amplifiers
Here＇s the big－valu＊portabla disto tensule tran RTVCI It Leateres a pair of SSR MP 60 twpe nefo retern，sinqle play greléssional serles retere decks Plus all the controls and falalate you need to give
 Sioply cosnects into yaut
${ }^{5} 64^{00}$

45 WATT MONO DISCO AMP

 ${ }^{5} 355^{00}$$+0.40$
Sian anovex－国
$3 z^{2}-52^{2} .6 \frac{2}{2}$
Here＇s the mann unit you need tn start oft with Gives you a good solit 45 watts ress，SD watts peak Gutrat，Big lastures inclute tido disc inguts，hotb far ceramic cartuitges．tape infut sad mictophore impti．Leval mixiog zatitisls fitted with integral Tarh pull switches．lodepentent harss sad treble contrals and mastor ynlume．

70 \＆ 100

WAITMONO
DISCO AMP
$\begin{gathered}\text { Size approx．} \\ 14\end{gathered} 4^{-}=105$
Sloping facia．you tam use the contruls without fess or botber．Brushed atumimium fascias ats ratary curtitols．Five speoth atcling，vertically moanted slid＝cantiols－Mastar volume tase level miclorel．deck level．FLUS INTER－DECK FADER for perfact gradeated thangs lram record datk No $\frac{1}{}$ to Na．2，of ate versa．Pre－fade ieral nantal｜PFl｜rf Igts You hsar next discbalere fading 70 wat1 57 itim．VU mater mositors putpus leval， 100 watt ${ }^{\mathrm{E}} 65$ Qitpet 100 watts RMS 200 watts Deak．p 1 p 154.00

BSR BD 995 TYPE
Belt ztrive turntable anit， Z speed，semi autematic bperaticts
${ }^{5} 24^{95}$
$-78 \geqslant 72.55$

PRACTICE GUITAB AMPLIFIER WITH BUILT－IN SPEAKER
 This butige！pactics amplifior，has bent scecialir desigced＇tit ：ile
 amateat，wop requires a sual ty

stil camtamed Loit with all Saciliqies． 2 illsuts－ for mic pr guitar．3hs 2 oil for cetors playet ol cassette dach it also cas be used for cine－scoun amplitieation． 2 velume tanttals， 1 ter Eech iodut also tase and trethe controls．Power dialput with tilefnal soenkar 10 wats HNS with rempte speaket Inus supplied 20 watts E3 2^{50}
AMS．Sirealptox． 1 ？－ 3 11 i д\＆bES．00

HOME \＆TRACK

 CARTRIDGE PLAYERA．tomatically 5 withes pragrammes manitored by iulicatars． with menual ovarride track tsiertion，This unit will watch with the Unisound madalas and Is compatable wits the Viscount IV a ingaifier with Sim toat

PYE STEREO

GBAM CHASSIS
（Compiete with
cincuit dragrams）

Compizte teaze to instal－Wave pands LM．SHF SIEREO．YHF MONO COnvols fot tuniog aqlume balauce bass and treble．Powet output 7 watts F．M．S per athanel 14 watts peak 3 atms

8 apprar crasss sppakers and
3SR suto tecels olayar dech．
Pefsomat shoperss only ${ }^{\text {f }} 35^{00}$

STUNI TV MAN
 4 EXCITING MOTORBIKE TV GAMES

Normal and Super Rider Modes at the flick of a switoh.
Realistic Throttle and Crash sound effects from the TV Loudspeaker.
A GAME YOU'LL NEVER BE TIRED OF PLAYING
 $\left.\begin{array}{cc}0 & 00 \\ \vdots & \vdots\end{array}\right]$
Super Stunt Cycte Dreg Rase Stunt Cycre
Stunt Gycle
CAN YOU JUMP?
This simple to assemble (1 hour) TV Game Kit comes complete
(No extras needed) - just simple soldering. Expected retail
price (when available in shops) - puer
ES5.00, SAVE 50\% by building it
yourself, Be one of the first in
Europe with this new stunt cyclo croze
at E28.50 |inc. VAT $)+25 p$ P \& P.

Make ail cheques or postal orders payable to Teleplay.
Mail Orders: 53 Warwick Road, New Barnet, Herts. EN5 5 EO. Rerail Shop and Demonstrations 14 Station Road, New Barnet, Herts.
For further Details and Technical Help - phene 01-441 2922.
For extra speed phane your order on Barclay-ar-Access Curds.
(French and
Garnan spoken)

MARCONI TEST EQUIPMENT

TF329Gcircuit magnification meter $£ 125$ TF455E Wave arialyser. New. £135 TF1101 RC oscillators. E65
TF 109920 MHz sweep generators TF1041B \& C VT Voltmeters
TF1 102 Amplitude modulator 500 MHz TF 1020 A Power meter, $100 \mathrm{~W} 250 \mathrm{MHz}, £ 85$ TF1152A: 1 Power meter 25 W .500 MHz . $£ 75$ TF890A/1 RF test set. E425
TF8018/3S Signal generatar. $£ 175$ IF 14.17200 MHz counter (imperfect). TF 1400 Pulse generator
TF675F Pulse generator
TF1370 Wide-range RC oscillator $\mathbf{£ 1 2 5}$ TF2904 Colour gain delay test set TF1058 UHF/SHF signal generator
Zenith 8 Amp variacs. $£ 28.50$ (carr 150p)

ADVANCE CONSTANT VOLTAGE TRANS-

FORMERS

Input 190-260V AC. Output constant
220 Velts 250 W . $£ 25$ ($£ 2$ carriage)

POLARAD TYPE TSA. SPECTRUM ANALYSER. C/w type STU/2M plug-in unit covering from 950 to 4500 MHz .

EVER-READY

BATTERIES

NICKEL CAOIUM Size F. 7 IOAH. 124 Volts. $£ 2.75$ (post 25p) SONNENSCHEIN DRYFIT BATTERIES 12 Volts 7.5 A.H. £ 4.50 (post 50 p) \# Volts 57 A H 2700 legost 50pi

APT POWER SUPPLIES, Stabilised and regulated 6 V (variable) at 3 A . Brand new E25.

BEGKMAN TURNS COUNTER DIALS
 Miniature type (22 mm diam) Counting uc to

 16 turn Helipots Brand new with moanting instuctions. Only $£ 2.50$ eachWandel \& Gotterman Equipment Lavel Meter 0.2 .1500 KHz Level Oscillator 0 $2-1600 \mathrm{KHz}$ Level Tranamitter . 3-1350 KHz Carrier Frequency Level Meter

P. F. RALFE ELECTRONICS
 10 CHAPEL STREET, LONDON, NVV1 TEL: 01-723 8753
 TEST EQUIPMENT
 LEADER TV FM Sweep and marker generator SOLARTRON CD1400 DC-15MHx osciloscope AIRMEC 254 High-power oscillator/amplifier BOONTON 80 Signal generator. 2.400 MHz . BOONTON 230A RF Power Ampl fier
 BPL Capacitance decade (5) CD $133,100 \mathrm{pf}-1$ HF GERTSCH Frequency metor and deviation meter $20-1000 \mathrm{MHz}$
 GR Standard sweep generator. $400 \mathrm{KH}_{2}-230 \mathrm{MHz}$ HEWLEIT PACKARD 693D sweep oscillator OERRITRON. Digital Wheatstore Bridge MUIRHEAD K-134 A Battery op wave analyser PYE EHT scalamp voltmeter 0.40 KV

 RADIO CORPS PB1 pulse \& bar generato SIEMENS Level oscillator 12.160 KHz
 SCHNEIDER type ci 252100 MHz counter (red) SCHOMANDL type FDI frequency meter HEWLETT-PACKARD $180 A 50 \mathrm{MHz}$ DB Oscilloscope

 Bruel \& Kijer type 3301 Automatic Frequency Resoonse Recorder $200 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$Airmoc 201 A Signal Generator $30 \mathrm{KHz}-30 \mathrm{MHz}$.
MURHEAD.PAMETRADA D489EM Wave Analyser
TEKTRONIX 555 scope with plugins rypes CA (2 off), 21 and
TEKTRONIX 545 main frames. 2210 . Choice of plug-in unit exira
TEKTRONX 585A ascilloscópe with 82 P I DC-80MH2
TEKTRONIX 哲品 525 Voctorscope
IEXTRONIX Iype 180A Time-mark generator
E.580 WANDEL \& GOTTERMAN Signal Gen $10 \mathrm{~Hz}-30 \mathrm{MHz}$ NOTICE. Al the pre-owned equipment shown ras been carefully tested in out workshop and reconditioned where necossary it is sold in first-class operational condition and most atems carty our three months guarantee-Calibration and certifitates can be artanged at cost Overseas enquiries

ROHDE \& SCHWARZ EQUIPMENT
HUZ Field Strength Meter. 47.225 MHz AMF TV. Demodulator $470-790 \mathrm{MHz}$ Selective UHF V/meter, bands 485 . USVF Solectomat. RF Voltmeter: USWV BN 15221 £450
Standard attenustor $0.100 \mathrm{db}, 0.300 \mathrm{mHz}$. DPR. UHF Sig gen type SDR $0.3-1 \mathrm{GHz}$, $\mathbb{\text { E }} 750$
UHF Signal generator type SCH, £175
UHF Test receivor type USVO. E325 POLYSKOP SWOBI.
PAPER TAPE READERS
Tally moder 1806. E150
NCR with sound-proof case £55

TEXTRONIX TYPE 56TA
 OSCILLOSCOPES

Supplied in first-class condition complate with types 3AT and 3B3 plug-in units. DC-10MHz double-beam 10 mV /div. Calibrated sweep delay and single-shot. Time-base 0.5 us /div. E350.00

MUFFIN INSTRUMENT COOLING FANS

Made by Fotion Holland. These are vary high gaality, qui at rurving fans, specialy designed for the cooling of all types of electronic squipment. Measures $45 \times 4 \quad 5 \times 1.5^{\prime \prime}$ $115 \mathrm{~V} . \mathrm{AC} .11$ Witts The tiat price of hese is over Elo each We have a guantify avaisibug trand new for only $\mathbf{E 4 , 5 0}$ nech

500V TRANSISTORISED INSULATION

TESTER

Lightweight, small size ($13 \times 7 \times 4$ emss). Reads insulemion

TELEVISION MONITORS

PACE ELECTRONICS VARIPLOTTER
Type 1100 E
E175,
MUIRHEAD DECADE OSCILLATORS
type 890A.
$1 \mathrm{~Hz}-110 \mathrm{kHz}$ in four decade ranges. Scope monitored output for high accuracy of frequency. Excellent generator.

Appointments

Advertisements accepted up to 12 noon Monday, January 30, for the March issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 7,50$ per single col centimetre (min .3 cm). LINE advertisements (run on): $£ 1.10$ per line, minimum three lines.
BOX NUMBERS: 50 p extra, (Replies should be addressed to the Box Number in the advertisement. c/a Wireless World, Dorset House. Stamford Street, London SE1 9LU.) PHONE: Eddie Farrell on 01-261 8508
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Land a goodjob

Radio Officer's qualifications can mean a lot here on shore

(
If you're thirking of a shore-based job. here's where you'll find interesting work, job security, good money, and the opportunity to enjoy all the comforts of fome where you appreciate them most -athome!
The Post Office Maritime Service has vacancies at Portishead Radio and some of ifs oh her coast stations for qualified Radio Officers to undertake a Wide variety of duties, from Morse and teleprinter operating to traffic circulation and radio telephone: operating.
To apply you must have a United Kingdom Martime Radio Cornmurication Operator's General Certificate or First Class Certificate of Proficiency in Racio-telegraphy or an equivalent certificate issued by a

Commonwealth Administration or the lrish Republic. And, ideally, you should nave some sea-going exper ence. The starting pay at 25 or over works put at around $£ 4093$; atter tivee years' service this figure rises to arcund f5093. li you are betweer 19 and 24 your pay on entry will vary between approximately $£ 3222$ and $£ 3732$). Overtime is accitional, and there is a good pension scheme, sick pay benelits, at least 4 weeks' holiday a year, and excellent prospects of promotion to serior management.

For further information, please telephone Andree Trionfi on 01-432 4869 or write to her at the following address: ETE Maritime Radio Services Division (L690), ET17.1.2, Room 643 Union House, St. Martins-le-Grand, London EC1A IAB.

Electronics Maintenance Technician

(Male or female) for a department responsible for the repair of the Laboratories' professional electronic equipment, This involves the maintenance of oscilloscopes, precision high power magnet controllers, digital equipment such as D.V.M.'s, counters, puise generators and analysers of various kinds.
Experience of servicing this type of equipment is required and it is hoped to gradually
extend the maintenance capability to include microprocessors, computers and associated peripherals.

Please apply for an application form to: Mr. M. L. Malpass, Personnel Manager, Philips Research Laboratories. Cross Oak Lane, Salfords, Redhill, Surrey. Tel: Horley 5544. Quoting reference: 102.

DEPARTMENT OF PHYSICS
ELECTRONICS AND ELEGTRICAL ENGINEERING

M.Sc./DIPLOMA COURSE IN ELECTRONICS

 MSc /Diploraa course in Electronics, commencing 27 September 1978Further details and application forms (returnable as soon as possible) may be obtained from the Academic Registrar. UWIST. Cardiff CF1 3NU.

DESIGN/DEVELOPMENT EMCINEERS

 Ferranti wins Army contract.

 Ferranti wins Army contract.} FERRANTI EXPANS 200 ordergoes to Ferranti.

Come and make

 headlines with us.Headlines like these are only possible when you're acknowledged internationally as one of the world's leaders in avionics. To keep us at the forefront we need highly motivated design/development engineers keen to make their mark. And at Ferranti there's plenty of opportunity to do just that. On projects like the Tornado, Sea Harrier, Jaguar and Lynx.

And headlines like these also mean expansion. Which explains why we're looking for more graduate mechanical and electronic engineers to join our airborne radar and inertial navigation teams. They must have the design development experience to spearhead the progress of equipment from drawing board through to production.

We are particularly interested in talking to engineers with backgrounds in the design of:-

Digital/analogue circuitry.
Microwave and laser techniques.
Small digital computers.

Advanced instruments.

Optics.
So if you're keen to make your mark on our wavelength.

Think about it. Then ask the family how theyd like living in Edinburgh, freely acknowledged as one of Europe's finest cities,

Salaries are negotiable and, of course, we operate a contributory pension and life assurance scheme and pay realistic relocation expenses.

For an application form, write to John McPhee at the address below:

Ferranti Limited

Ferry Road

EDINBURGH EH5 2×3

Tel: 031-332 2411.
These posts are open to both male and female candidates.

Challenging Opportunities in Brunei's
 New Colour Television Service

Radio Television. Brunei commenced operations in 1975 as the first all colour television service in South East Asia. During 1978 it is expected that a completely new purpose-built 3 studio colour

Take your pick of the permanent postsin:

MISSILES - MEDICAL COMPUTERS - COMMS MICROWAVE - MARINE HARDWARE - SOFTWARE

For expert advice and immedi ate action on career improwe. meat. phone, or write to television complex will be brought into operation, Television standards are PAL, System S. To assist with the additional staffing requirements for this complex, applications for the following posts in the television studio centre in Bandar Seri Begawan are invited from candidates with at least 6 years' experience working professionally in a television service in a senior capacity. Relevant engineering qualifications are desirable but not essential.

Technomark

II Westboune Grove -anoon W2. 01.2299239

Supervisory Engineer

Candidates should have a wide experience of video systems engineering and preferably be farmiliar with EM1 type 2005 cameras, AVR2 Ampex recorders and Rank Cintel film scanning equipment Working to the Superintendent Engineer, he will be responsible for the general supervision of all television studio operations.

Two Training Officers

One officer will be required to train tocal staff in all aspects of audio operations in both radio and television, while the other will be responsible for video operations. In addition to wide experience in tefevision technical operations, candidates with some teaching experience will be given proference,

Salaries are in a scale equivalent to $£ 8870-£ 9505 \mathrm{pa}$, tax free including special allowance, and attract 25\% gratuity.
Benefits include first-ciass ait travel for the officer and his family, subsidised housing, generous paid leave, education allowances, outhit allowance, interest free car loan and tree medical attention. Appointment is on contract terms for 2 or 3 years.

For full details and application form write quoting MT /832/WD

Crown Agenis (A)

The Crown Agents for Oversea Governments and Administrations, Appointments Division. 4 Millbank, London SW1P 3JD.

BRIGHTON POLYTECHNIC

learning hesources

VIDEO RECORDING \& STUDIO ENGINEER

23,678-£4,407 p.a. plus up to £17.38 a month supplament
To supervise work in new recording and editing area witn colour tele-cing and V,T,R s, spme to broadeas: standard and to assist with opera. tions in two adjoinung studias which toons in two adjomung studias which
indude it vided 80 colour system and inglude it vided 80 colour system and
a post production area witt maltia post prod
srack sound.
Operational experimnen of sound and colour video systems. preferably in a broadcasting or educational institution, and an HNC or aquivalent educationat qualification are desif: able.
Application forms and cotails from thr Personnel Oificer. Brighton Polytech. nin. Moulsecoomb, Brighton BN2 4GJ. Tel: Btn. 693655. Ext. 2536 Clasing date. 27 th January, 1978

174251

ThePolytechnic of NorthLondon

(Readvertisement)

ELECTRONICS TECHNICIAN

We sre iooking for a well qualified electronics technicisn with a ketn interest in video. audin and audia-visuat As a member of the Educational Development Service, the technician would be responsible for:

* establishing servicing routines and recorcs.
* establishing technical standards and assisting praduction staff an video and audio recordings.
* 'traiting and supervising tochnical staff,
* * developing and bulding ancilary oquipmont

HNC or equivalent qualifications recquired and mirumum of nune years relovant exporience.
Salary Scale £3621-£4227 (including Loncfon Waighting) plus 5% aarnings supplement (minimum E2.50 per week, maximum £4 per week).
Application form from Educational Devalopment Service, Polytechnic of North London, Holloway Road, N7 8DB.

NEWCASTLE AREA HEALTH AUTHORITY (TEACHING) Aren Supplien Division

EQUIPMENT FOR DISPOSAL

Eight U.E.L. Cub hand-portable sets (1968) , 0.5 watt. 171.35 MHz . with base-station and antenna: in working order (new batteries only requirec). order Snew batteries anly required). ticence neesied. Technics Vuenes io
Chiet Physicist, Royal Victoria In Chiet Physicist, Royal Victoria In-
firmary. Newcastle-upon-Tyne ITel firmary, Newcastie-upon-1 yne irel
063231577 Offers. in writing to 063231577 Offers. in writing to
Area Supplies Officer, $11-12$ North Area Supplies Oificer, 11-12 North
Terrace. Newcastle-upon-Tyne. NE2, 4 AD .
(7852)

ST. GEORGE'S HOSPITAL
 MEDICAL PHYSICS TECHNICIAN

Grade IV
is raquired to teip in the dresognem and nanazacher
 Kasy bith
techeiges.
Tha persat appainlat mi jain a sarail grosp warking in tos electrosiss settion of the defartines of Merical Pheits.
Mrinum qaalifications are sac ar tquivaitat was
 litciasive at al allowatess).
Formal application tet request far jot deteriptian struld at made is wrilist w:
Wiss E. Fuirchovgh. Parkaval! Departaent. 3t Gearge's Haspital, Z'achshon Foni. SWIT. Tet. 018721255 ext. 4121.

Ceting tate: 3rd Fatruary, 1978.
$7 \mathrm{ES}:$

UNIVERSITY OF WARWICK
 ELECTRONICS TEGHNICIAN [Psychoiogy]

ATetracign a requires itt a wde ratge at electrinies tevilipnent werk is the sazanfing Departiatst of Psyctalogy. There is a particalar quyhasis on
 preted fo tuve mant axperisets of logic ciraviry Dialiteatians to HKC leval of equirelast ralereal
 experianet are desirate. The puat in paratestalt
 Furthat parlitulers ars avalate tron the secritary-

 sent io ths Rcatenic Bepisitrat. Unikers高 if Wevick, Coveatry CH 7al gasileg fel. Nat. 18.7/72. Clasing talt for rectipl of ipplealiaes is 301 t Janary. 1978 .

Electronic Test Engineers

The reliable name in radio communications

Pye Telecommunications are a well established company, involved in the field of radio communications, both at home and overseas. The Pye trademark is synonymous with systems that are highly reliable. To ensure that reliability, we need test engineers to check our VHF/UHF systems to very exacting specifications prior to delivery.
We are looking for skilled men and women with experience of fault diagnosis, alignment and testing of electronic equipment, preferably communications equipment. Formal qualifications are desirable, but less important than sound practical ability. Armed Forces experience would be particularly acceptable.

We can offer you job security and long term employment prospects.

We have openings at Haverhill in Suffolk (where there is the possibility of local authority housing) and at Cambridge, both being attractive places in which to live. Relocation expenses are available.
Write or phone (reversing charges if necessary) to: Catherine Dawe, Pye Telecommunications Ltd, Colne Valley Road, Haverhill, Suffolk CB9 8DU Tel: Haverhill 4422 or Clare Barton, Pye Telecommunications Ltd, Elizabeth Way, Cambridge. Tel: Cambridge 58985.

Pye Telecommunications Ltd

UNIVERSITY OF KENT AT CANTER日URY
 RESEARCH FELLOW IN NETWORK DESIGN

Abplicatipns sre invited fot a Fost-doctacal Fesearch Felowsthy to wark on 8n SAC supponted project involving the application
of state-spacy tectniquest to the sinslysis and at stale-space tectriques to the sinalysis and
synchesis of microwave circuts and degural
 matical models and compater-aided prosed utes for the des gn of distr butect-persmeter ratworks. Candidater shoulde have a Ph.D Desires in Camputing. Electronics. Paysics or a rested subpect and relevart oxperience in complatr-aided dessan sectrn ques wow it be an advaptage Sylary w be in the cange
f333-24403 f3333-24403

Application foems and perticulars may te obtaited from sha Sirior Assstant Regtstrat, faculty of Nstaral Sciences Chemiod Kent CT27NH Clochers tye for apmerbury. 31 St January 197 E. \#ase quote ret

(7B51)

UNIVERSITY OF EAST ANGLIA NORWICH

TECHNICIAN

Fegattedi in the Busic Centet trom as suon es pussible. The siccessfall applicant evill assist the Scund Engineer at the operation end maintenance of the soshe-refording and stectranic music equiprient which inaludes a Synthi 100 syrithes sep, and pratessionalquisify mikges and zage recorefers siane whperinete with minimmpt tess wivald be an attiantage Salary oir tite Grade 4 stale
f 2689 fo 3087 f2689 to 53087
Applicstions, giving tetails of age and experience, and the names of two inferees. of Fine Alts and Muste Univerairy of Eas Anglio. Norwich NkA 713 not zater han 31 st Jaruary, 1970.

Don't keep it to yourself

We need your knowledge and experience

With sound commercial or industrial experience and the necessary qualifications - degree, diploma, professional qualifications. HND, HNC, FTC etc., depending on your speciallsation - you can train as a lecturer in Further and Higher Education. We offer a one year, grant-aided course to train as a lecturer in one of a range of subject areas such as:

ELECTRICAL ENGINEERING SUBJECTS

Courses start in September 1978. For further detals, ring or fill in the coupon and send it to the Principal of any of the following colleges: Garnett College, Downshire House, Roehampton Lane, Loncon SW154HR. Tel:01-7896533; Bolton College of Education (Technical), Chadwick Street, Bollon BL2 1JW. Tel:0204 22132; The Polytechnic. Huddersfield, Holly Bank Road, Lindey, Huddersfield HD33BP. Tel:048425611; Wolverhampton Polytechnic, Faculty of Education, Compton Rcad West, Wolverhampton WV3 9DX, Tel; 090224286.

Please send me turther details and an application form tor your one year course o train as a lecturer.

Name
Address

Appointments

$12 B$

We have a number of opportunities for instructors to train our customer engineers to service and maintain data processing equipment including the latest 370 Systems and Software.

If you're an experienced or potential instructor with a background in software and or electronics, educated to HNC, C \& G standard or perhaps you've had similar Service's experience-now's the chance to find out more about these secure, well paid positions based in N.W. London, offering excellent salaries, career development prospects and in depth training.

If you are interested, please write with full career details or phone for an application form to: Anne Dare, IBM United Kingdom Limited, 389 Chiswick High Road, London W4 4AL. Tel:01-995 1441.
Ext.4786. Quoting ref: Ww/93452

GAPTAL
APPONTWENIS LTD.

FREE JOBS LIST

for

FIELD SERVICE ENGINEERS BASIC SALARIES TO $65,000+$ CAR

[7027]

30 Windmill Street. Londan. W1 81-6375551

If sou aly inkity for a phangh Fomm Bruedcast TV and would like to employ you skills in 0 dillerent ctapectry with a rapody expandivy tacisties tamearty then we wauld like fol theet and talk to you
We can affer exciting opportunwes to Engineets who can operate and meintain A.C.A. Ampex. Quad Machinces and all types of Helical Scan tas well as $\mp B . C s$. and colour Telecines
Ring us now on 01-580 7161

SOUND ENGINEER

Tha Royal Opera House Govent Gan den cequires Assistant Sourd Engith eer Thie pust will ptobebly suit someone sith a stud o or broadcas: ing uackground who a prepared to work unsociable Rous the work is Yory varied and raquives an ent yineering bias and some musica knowledge
Replies to: Phil Leaver, Rayal Opera House, Flopal Streot, Landon WCRE 7aA.

THE OPEN UNIVERSITY
Faniulty of Technology
RESEARCH TECHNICIAN

(Elastioncs anda Telecommanicatians)

A Tectraician is required to join the Eies tronics Disc pline his or ter main duties will ta to Sontrinute to the Dise planc s resparte programthe in telecommuriestions, digita
grosessing insthumentation and controt. Tha will ifvolve the construction shd lesting of experimental Bed aratatype electron olivpment the maittertance and quedating of dopumertation and drawings and the general maintimanoe of the suctroical tach ities th the eiectrancs feseanch laberatory.
The renared qualificetion of ONC in elet 3anics 15 , ar equivetent, with, oretarably.

The peraso appointed will be expected to lve withen 20 miles of the bniweraity We do offer segistaniot with removerl experses to moke th s passityle There sa a wide variety e zarporat on srid brivale nolsing, and we tawe an Accarmmedation Otficer to advise and hilf new apporitees
The aposintment is at fechncal Grade 3. to stupt the selary scalc is $£ 2455-E 2788 \mathrm{per}$ annum lander review with defett from excellent serial and sparting facditisk

Applipstion forits are avoilable. by possteart equicst pesse, irem the perannel Manseof 1121. The Open University, P.O gox 76 Whton Hall Mitton Keynes, MK7 GAC, orb tetephane fram Mition Keznes 83468 Clasing stam for apptications: 301 78

THE UNIVERSITY OF LEEDS

A vacancy exists in the School of Chemistry Electronics Workshop for in

ELEGTRONICS TECHNICIAN

(Grade 5)
The successful applicant will develop. construct and matiota an a wide varioty of erestranic equipment. Experience is modern analcgue and digital circuit techniques and in tho use of tes equipment is essestrial Minimum qualifications HNC or equivalent plus 7 years experience. Salaty on the scate €31日6-£3720 Da (uncter reviewl Applications giving age, ex perionce, qualifications. state of tiealth and the names and acdresses of two raterees 10 Mr , G. Spink, School of Chemistry. The University, Leeds 152 9JT.
(7822)

MAINTENANCE ENGINEER
 A joung petsurn rs inguten fo ashist in the Tramteranct of fucordel\# Stoity= Aud Visua Airl Eņ ament
 इtastry experente, pleast apply so
 Nigel Adama
 Sound Developmants Limited
 Spenger Court, 7 Chalcet Read, London

ELECTRONICS TECHNICIAN GFAdC \& required for an establishmen engaged in research and teachiny based on a muclear research re actor. Must be capable of cun structing and maintidining a vaplet of electronic equipment to be found in a nuclear establishment. Applicants should have at least eight years experience and a qualification to ONC level is desirable. A knowledge of iligital circuitry would bo an advantage. Salary in range asist-rura per ancum. Excolient conditions, superamniation cuy plis atiditional days at Christ mas and Easter. Applifentions by I4 Gebruar: 1975 to: The Menctor Supervisar Inlverstiy of London Reactar Centre, Silwnad Park Sut ninghilt, Ascot, Burkshire. SL5 7PY Telephone Ascot 23911, ext 272

ELECTRONIC TECHNICIANS

Opportunities for the experienced and sometimes inexperienced in St. Albans and Luton. Work situations range from fault finding on PCB's and components, to batch product testing of equipment that utilise very advanced techniques including microprocessors and the repair/ calibration of all manner and types of test instruments.
Attractive salaries and, where appropriate, relocation are offered for the right candidates. Further information may be obtained in confidence from John Prodger
Marconi Instruments Limited,
Longacres, St. Albans, Herts.tet St. Albans, 59292

WIRELESS TECHNICIANS

There are a imited number of vacancies at the lollowing Home Olfite Depots: Andover and Hannirgton Hants, Bridgend Mid Glamorgan, Guildford Surrey. Hinchingbrook Hunts, Lewes East Sussmex and Romsley West Midlands for Wireless Sussex and Romsiey West Miclands for Wireless
Technicians to assist with the installation and Technicians io assist with the in
maintenance of VHF and UHF systems
Applicants must be zble 10 drive a car and be it possession of a currest UK driving Ficence.

Salary

is $£ 2,010$ (at 17). $£ 2.450$ (at 21) and $£ 2,905$ (at 25) fising to 23.385 , plus a 1976 pay supplement of C313.20 a year and at 1977 pay supplement of 5% of total aarnings, subject to a minimum of E 10179 a year and a maximum of f208.80 a year-

A Secure Future

with a non-contributory pension scheme, good prospects of promotion and a generous leave allowance. There are opportunitina for day release to gain higlier qualifications.

Qualifications

Candidatos, male or female, must foid a City and Guilds Intermediate Telecommunioations Certiticate or oquivalent and have practical experience of maintenarice and construction of VHF and UHF wireless equipment and a working knowledge of workshop techniques.
Applicanons fram Registered Disabled Persons will bo considered.

Interested?

Then waite or tolaphone for turther details and an application form: to Mr C E Constable. Directorate of telecommunications, Horsoferry House, Dean Ryle Straet, London SW1 2AW Telephone: 01-2116420

7803

RADIO TECHNICIANS

The Home Qffice has vacancies for Radio Technicians to carry out maintemancs, modiflcation and construcfion of spocialised equipment including mechanical construction. Applicants must have a good undersfanding of radio fundamentals and be familiar with commonly used radio components and test equipment The vacancies will be located at Stanmore, Middlesex, Central London (near Waterloo Stition) and Baldock. Herts.

Qualifications and Experience

Applicants must possess either a City and Guidds Intermediate Telecommunications Technicians Cortificate, a relevant ONC of equivalent qualification plus 1 year's practical workshop experience.
Applications from Registered Disabled Persons witt be consideted.

Salary

is $£ 2,010$ a year at $17, £ 2,450$ at 25 or over on entry. rising to a maximum of $£ 3,385$, plus a 1976 pay supplement of $£ 313.20$ and \& 1977 pay supplement of 5\% of fotal earnings, sublect to a minimum of f 101.79 a year and a maximum of E208 80 a year. A London Werghting Allowance of E465 a year is payable in Central London and E275 a year at Stanmore

A Secure Future

with a non-contributory pension scheme, prospects of promotion, generons leave allowance, further education facilities and a. 5 -day woek of $4 \uparrow$ hours it Lundon and 42 cisewhere.

Interested?

Then wrile or telephone for application forms (for return by 8 th Febreuaty 1978) 10: Mr $1+$ Willis. ceturn by 8 th Februaty 1978$)$ 10: Mr I Willist
Directorate of Randio Technology. Foom 514 . Directorate of Radio Technology. Room 514.
Watetlac Bridge House. Waterloo Road, London SE1 RUA. Teltpphone:01-275 3006 .

Project Engineers Electronic Control Systems

Johnson Marthey \& Co. Ltdi, world leaders in refining and fabricating precious metals have vacancies for experienced Electronic. Engineers to join our small. specialist team at Wembley. With an HNC/HND or degree level qualification. you'll be involved in the design, production and installation of electronic control systems to the individual requirements of our manulacturing centres.

Systems Engineer

Drawing on your management abilities, you'll detail the systems and equipment design and organise their manufacture and installation. There will be some travel involved and a clean driving licence is essential.

Electronic Engineer

You'il need to be able to think creatively for you will design the analogue and digital circuits to their pre-production stage from stated functional requirements and assist in the design of production equipment.
We are offering competitive salaries, according to age and experience, for a 37 ! hour week. In addition, we offer free lunches, 4 weeks' annual holiday and a contributory pension scheme.

Dadio Ingineers

Opporturities exist for several additional experienced radio engineers to join this leading firm of Consulting Engneers.

Vacancles exist both in our Brighton Offices and for engineers to serve on contract in the Middle East.

Chartered Engineers who have experience in several of the following fields are invited to apply; h.t. transmitters and receivers, sound broadcasting, m.t., and h.f. antennas, mif. and h.f. propagation.

Salaries for engineers based in Brighton will be in the range $\Sigma 5,500$ to $£ 7,500$ p.a with the usual fringe benefits including assistance with removals.

Salar es for engineers contracted abroad will be about double the above range and these salaries are normally payable tax-iree usually with free traveling and local accormmodation.

Degree Engineers with extensive experience who are not Chartered may also be considered.

Please write or telephone:
G. E. Tedder, Group Personnel Manager, PCR Service Company, Paston House,
$165 / 167$ Preston Road. Brighton, Sussex.
(0273) 507131

To apply, please write or telephone I.I. Middeton-Stewart. Staff Officer.

JOHNSON MATTHEY
100 HIGH STREET ©SOUTHGATE LONDONN14 6ET •O1-8826111

Flectronics Engineer

We require an Electronics Engineer at our Research Laboratories at Alderley Park to strengthen a team involved in the design and development of Biological and Research instruments.
Ideally candidates, male or female, should be qualified to HNC/HND or equivalent standard and have had four or more years experience of electronic design.A good knowledge of anologue and digital circuit design using the latest componenttechnology is essential.
Age: 25 years plus.
Please apply in writing to:
Mr M. J. Higgins Personnel Department ICI Pharmaceuticals Division Mereside Alderley Park Macclesfield Cheshire

The Polytechnic of NorthLondon

Department of Electronic
 and Communications Engineering

TECHNICIAN GRADE IV or V

Applications are invited for the appointment of a Grade IV or V Technician In the Department of Electronic Communications Engineering.
This interesting post involves the operation and maintenance of high grade test equipment, togother with the general responsibility for students' day-to-day requirements with experiments and projects in the laboratory. Important participation in research work in liaison with academic staff for the right applicant, leading to promotion prospects.
Educational level for Grade IV ONC/OND and Grade V HNC/HND in appropriate subjects,
Expertence: Grade IV at least 7 years (including training period). $G r a d e \mathrm{~V}$ at least 8 years (including training period).
Salary Scales: (inclusive of London Weighting).
Grade VE3216-E3672 plus 5\% earnings supplement
Grade IV £ 3024 - $E 3450$ (Maximum EA per week)
Application forms obtainable from the Establlshment Officer, Polytechnic of North London, Holloway Road N7 8DB. Further detalls from the Departmental Laboratory Superintendent Mr. S. Elliott 6072789 extn. 2176.

BRUSSELS

the Techn est Cunter of the Furcocan Braadcasting Union is Sebiking an

EDITORIAL ASSISTANT

for duties entailing the processing of Engibh adisions of the F E E U is tachnicai perionteals from source matenia to publestion
Thes post wauld sut an Enginear of Tachinclan of Englohh trolher-astigunt with trammen and experiance in tolacemmuntrations - pieferably brosocasting - and the abilty to produce documents ia fauthess Eng alv bort English and Franch matertal, ss wes as pracise varslations o G svidently fissomal

Tre salary will ne a the whinity of 550 D00 Helgan trancs par annum tepenting upen ape and exampience, with good prospects of advancemant

Condidates should write giviog detads of edaçation and cxperience to
The Diractor, Tachnical Cantra of the European Broadcasting Union Avenue Albert, Lancastar 32, B-1180 Eruxalles (Belglum)

BBC Recording

BBC requires an engineer with special responsibllity for audio recording in its Designs Department in central London. Much of the work is uppraising or modifying commercial audio recording equipment and advising those responsible for audio operations and installations. There is also a substantial amount of original design, both mechanical and electronic, for auxiliary equipments and specialised recordingsystems.
Preference will be given to upplicants having an appropriate University degree of professiunal qualification. The successiul candidate is likely to have a substantial knowledge of the theory of magnetic recording, a wide experience of types of recorders: media and formats, and be skilled in operational alignment and laboratory mcasurement of audio recording systems. He/she will be experienced in the design of electronic circuits and mechanical devices, and familiar with digital teciniques, logic and process control. and the use of time codesignals for editing.
The post involves 「eaison with a wide range of engineers and managers in Radio, Television and External Broadcasting, and in industry. The post-hoider must be able to establish effective communication with them and provide expert advice including technical reports and the recommendation of alternatives.
Salaryaccording to experience in the range 55050 - 65430 rising th £6000., opportunities for promotion, Pensionablepost.
Write for application form to The Engineering Recruitment Officer, BBC, Broadcasting House, London, W1A 1AA, quoting reference $77 . \mathrm{E} .4094 / \mathrm{WW}$ and enclosing a sell addriessod envelope
it least 9 " $44^{\prime \prime}$ it least 9 " 4 "
Closing date for completed application forms is 14 davs ifter publication.

AMPEX

Ampex International recherche un ingénieur bilingue experimenté pour l'élaboration de systèmes de télévision destinés à la France. la Belgique et aux pays d'Afrique francophone.

Sa fonction consistera en l'élaboration d'offres techniques en français, au sein d'une équipe depuis longtemps implantée sur les marchés internationaux. La connaissance des deux langues est indispensable.

Please reply, in French or English, to:

D. J. Lambert
AMPEX ELECTRONICS LTD. Acre Road Reading RG2 OQR

LINK

CHECK OUT NEXT GENERATION'S colour tv cameras

Just about to go into production is our multi-mode colour camera which supplements our well known type 110 studio/OB version, now selling in increasing quantities.
Test Engineers are needed who can cope with high technology designs covering the whole spectrum of studio broadcast equipment. A background of circuit theory up to $\mathrm{HNC} / \mathrm{D} /$ degree standard is essential, although knowledge is more important than a piece of paper.

You must have spent at least a year or two in industry and the experience you have will dictate the complexity of equipment you can work on initially. Domestic TV experience alone is, regrettably, insufficient.
You would be joining a young team in a successful operation, offering salary and benefits normally associated with a much larger company, plus financial help in relocation, where necessary.
Our modern factory in Andover is well placed for a good selection of housing and there is easy access to London and many major towns in the south and Midlands.
Please phone Jean Smith at 0264 . 61345 for an application form or write to Mic Comber at the address below, giving enough detail of qualifications, experience and salary progression, to make a form unnecessary.

Nont War, Anasover Hampshire, England

Telephone:
Andover (0264) 61345

RADIO TECHNICIANS

Government Communieations Headquarters has vacancies for Radio Technicians. Applicants should be 19 or over.
Standards required call for a sound knowledge of the principles of electricity and radio, together with 2 years experience of using and maintaining radio and electronic test gear
Duties cover highly skilled Telecommunications/electronic work, including the construction, installation, maintenance and testing of radio and radar telecommunications equipment and advanced computer an analytic machinery
Qualifications: Candidates must hold either the City and Guilds Telecommunications Part I (Intermediate) Certificate or equivalent HM Forces qualification.
Salary scale from $£ 2.230$ at 19 to $£ 2.905$ at 25 亻highest pay on entry), rising to $£ 3,385$ with opportunity for advancement to higher grades up to $£ 3,780$ with a few posts carrying still higher salaries. Pay supplements total between £443 and £522 per annum.
Annual Leave allowance is 4 weeks rising to 6 weoks after 27 years service.
Opportunities for service overseas.
Candidates must be UK residents.

Further particulars and Application forms available from;

> Recruitment Officer
> Government Communications Headquarters Oakley, Priors Road
> CHELTENHAM, GIos GL52 5AJ Tel. Cheltenham 21491 Ext. 2270
> (STD 0242-21401)
dEVELOPMENT ASSISTANT. Rank Video centre is a fast expandlag broadcast television facilities house, located in the centre of London, operating state-of-the-art technology. A vacancy has occurred Within the Research and Develop: ment Department for an enthusiastic Engineor having a good TV system and who is conversant with the latest anslogue and digital techniques. The guecessfut applicant will be responsible to the $R \& D$ Supervisor for manufacture and testing of prototype equipment for final installation and operation within the various facilities departments of the company. This post offers a unique opportunity for an Engineer, dieally aged $22-28$, having an aptitude for dosign and construction work, to join a small active toam providing specialist back-up mercially orlented company, starting salary will be cs 4,000 plus p .a. with automatic progression over 5 years. Application, in the first instance should be in writing to:Chief Engineer. Rank Video Centre Fim House, 142 Wardour Street London, WIV 4BU. 7850

THE UNIVERSITY OF LEEDS, A

 Vacancy exists in the Department of Electrical and Plectronic Engineering for an Electronic Technician (Grade 5) to work in theElectronics Workshop This workshop undertakes the development and construction of prototype electronic equipment used in teaching and research together
with the modification testing sind With the modification testing snd of electronic equipment used in of electronic equipment used in laboratories. The minimum quallfiestions required are ONC, OND or City and Gultds certificates in
Electronic Engineering together Electronic Engineering together
with at least 7 years relevant ex with at least 7 years relevant ext
perience. Salary on the seale ©3,18B-E3,720 a year Applications should be sent to Mr, C.S. Petch. Department of Elcetricel and Elec

THE UNIVERSITY OF LEEDS, Electronics Technician Grade IIIE requlred. Will be responsible. under the head of the Department and the Departmentat Electronics Enginear, for the construction, electronic and maintenance or With research and teaching of biological studies. Must be capable of working from precise instructlons. circuit diagrams, sketches and manuals. Applicants should hold ONC or equivatent quallfications in relevant subjects. Salary on the scale $£ 2,688-53,060$ according to qualifications and experience, Applieatioris stating age, qualificathons and full experience together With the names and addresses of
 Mr E Finctich Departmental
Superintendent Department of Physiology, Medical Multipurpase Fuilding, Mount Preston Street. Leeds LSz BNQ.

ARTICLES FOR SALE

NEOPRENE SHEET, RUBBER AND PLASTIC EDGING. WINDOW RUBBERS. Write or Phone List MELFLEX, 934 Wimborne Road, Bournemouth Tel: 0202527934

IERMYN INVERTER CHARGES 24 volt battery from mains supply and when this supply 1ails automatieally provides 300 watt 240 voit 30 cycle square wave, s60. Valtadio di24/200s transverter provides 200 watt 240 valt 50 cycle sine wave from 24 volt battery fllo. Both units in excellent condition and in working order buyer 40 collect Kingston upon Thame area. Telephone 01-942 1250. 7819

BROADCAST V.T.R.ENGINEERS

Due to expansion vacancies exist for experienced engineers with suitable qualifications. Depending on the successful applicants' experience, the posts will be substantive enginears or senior engineer (ACTT/ITCA salary grades). Duties will involve operation + Maintenance of TR70c + AVR 2 machines together with a (CDL timecode) editing suite, so knowiedge of these would be an advantage.
Please write: Graham Saych, Ewart \& Co. (Studio) Ltd., Wandsworth Plain SW18 1 ET.

78361

ARTICLES FOR SALE

MORSE CODE RECEIVING AND SENDING

Receiving:
CASSETTEA
CASSETTE日

Imeluding international protedure signs and symbo Intiuding international procedure signs and symbols and their intorporation into mossages.

Sending: end Unit for sencing pratice ang
Morse Key and Buzzer Unit for sentair
Own Tape preparation. Phone output.
Prices: each cassette. including booklets, E4.50
Prices: each cassette. including bo
Morse kry and huzzer ant. $£ 4.50$
Prices inctude VAT postage, etc. Overseas Airmail El extra
M. H. ELECTRONICS

12 LONGSHORE WAY, MILTON, PORTSMOUTH PO4 8LS

COMMUNAL TELEVISION EQUIPMENT
 Offers ate itwind for the following equipment which nas been mande rectundant by the
 Offers ate thainet the Counc/'s Commumal Thlovisidn System.
 Toengineeting of the Launc/ s Commuma Thevisidn System. VHF Distribution Equipmont conscting of a complete heade end with AGC Amolities 12 Repenet ATplifiers of veling type 630 Eommunal Iolevision Mast and Acrals.
 All enauiries shoold we adoressed to
 H. Davies, A.R.I.C.S.r Valuer to the Council, Borough of Milton Kaynes, Sherwood H. Davias, A.R.1.C.S.r Valuer Sherwond Drive, Bletehtay, Mitton Kevnes MK3 BaE.
 Tol: Miltor Keynas (0903) 71171 Ex 1.427.

VALVES RADIO - T.V.-IndustrialTransmitting. We dispatch valves to all parts of the wortd by return of post air or sea ma!. 2.700 types in stock, 1930 to 1978 . Obsolete types a speciality, List 20 p . Qubtation S.A.E. Open to callers Mronday to Saturday
Wednesday 1.00 . We wish to purWednesday 1.10 . We wish to pur-
chase all types of new and boxed chase alit cypes of new and boxed
valves. Cox Radio (Sussex) Lidd. Dept WW, The Parade, Esst Witter inp, Sussex PO20 SBN West ing. Sussex Poring 2023 (STD code 024368).

VHF/UHF MONITOR RECEIVERS, air, martne and business bands, ali crystal controiled, from es50. Send
13 PO not stamps. Radio Com15 D PO not stamps. Radio Com-
munications Lta. St Sampsons. munications, Ltd. St Sampsons,
Guernsey, C.I.

WE IWVITE ENQUIRIES from anywhers in the world, we have in stock several million carbon resiswire wound resistors 5 and 10 watt -1 million capacitars -1 million electrolytic condensers - 4 million transistors and dlodes, thousands of potentiometers, mind hosts of of potentiometers, Whit, hostse of call at our warehouse. - Broad. fields and Mayco Disposals Rtd., 21 Lodge Lane, North Finchley Landon, N.12. 01 -445 07d4, 1452713.
(5907)

300,000 MULLARD C 280 \& C 281 for sale, valves rrom 01uF to above 1 UF $250 / 400$ V/W price per mixed pack, $100 / \Omega 150$. $500 / 57.00 \mathrm{P} \mathrm{\& P}$ (export 50 p). Electronic Mallorde: Ltd., Ramsbottom, Bury, Lancs,

E.F.MILWARD — ELECTRDNIC CDIMPDNENTS

 RESIST COATED FIBRE-GLASS BOARD
Singlesided
Plain Copper-clad Fibre-Giass

12 Volt Fluwreseane Lighting

Curnaleta
rantarme's
83.75
65.00

Inverter franatarme:s
E1.00

Ayptax ? 1 fmathise

 Widely acceptot by incustry as the peffect madium for ali praterype wark

Apgrox 2 50Dent shick
Aaprax 1 Simta thick

To cioar
$\$ 00,000$ mentitols
 Wixind Convorgance zite Maxed bass of 100 very
hardy 53.00 ine

(1040

LAMPS

SWITCH, TELEPHONE, MICRO-MIDGET, ANO SMALL INDICATOAS. COMPONENT SERVICES LTD., South St. Hertord Herts. Tal: Hertford 57785

RECHARGEABLE BATTERIES

Hel Owar to SANDWELL PLANT LTD 201
 Mus
calles io T.L.C., 32 Craven Strext, Charing

GAUSSMETER WESSEX 750, 01 to 50 K sig gen advimee b4 $30 \mathrm{k}-30 \mathrm{mk}$ 2 Marcont sweep gen TF 109920 Mkz Harcont sweep gen TF 109920 MKZ
Heatlikit VVM $0.1 .5 K V, 12-100$ Mat + R.F. Probes, Te, Hornchurch 51630 . Leeds (0532) 691044.
(7812.

TEKTRONIX OSCILLOSCOPES TYPU 545A with type CA plag in pre-simp tested and calibrated 8225 Alsa Tektronix RM15 tested and calibrated E1s0. Professional communtcation equipment considered for part exchange. Ian Austin (G4FLN) Mondaya Lane, Orford, Woodbridge. Sulfolk. Tel 039 45 325 . 7842

ELECTRONIC INSTRUMENTATION, or selling of good int the buying or selling of good quality used heading 51074 , Martin Associates and converse with our Shella Hatch who will deat promptly with your enquiry. deal prompty

QUARTZ CRYSTAL UNITS from
 - 2.4-siog unar
 - FAst geluvent
 - MiEM ITkEnTr

 Whire for
 McKNIGHT CRYSTAL Co. LId.
 sanputerimpustria ESTAPY HRTVE SOUTHAMPION S5e ctr 16044)

FOR SALE

För itcoy cage in aluminum. Manulectureat
by Halam. Sieigh and Chaston 6tt wide wit Ain long. 7ts 6in. Fipt Compert time

GRENSON ELECTRONICS LTD H gh Marge, Davenny NN1 4 HC

Tries 3 $1 / 245$ 7429

TV TUAE REBUILDING? specialise in REEUILDING7, we range of slectron Guns, Parts ind Tube comppnents backed by the fullest Technical advice on all aspects of Rebtailding. Ask for our literature, for competitive prices. widest range best service. Griftronic Emission Ltd 4 Bishop| Warks. TPhone 0789 -66831. |
| :--- |
| (7693 |

FOR SALE: Wireless world 21 year sequence, Jamuary 1850 to Decem. ber 1970 inclusive. QST January 1950 to December and January 1965 to December 1971 both Inclusive. All unbound, very good condition. Buyer collects Kingston upon Thames area. What offers?
Tot $01-942$ 12s0.

17818

[^12]| TTL AND CMOS DISCOUNTS! | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | Cumes hatan
 |
| | |
| C. N. STEVENSON (WW4) 22 Tiverton Drive, London SE9 2BY, England | |

AUDIO The firm for Speakers	
AUDAX	
HD129D25	7.50 8.95
HD13D34H	12.50
HD13D37	12.25
HD10D25AV	7.50
HD11P25BC	6．95
HD17B37	17.50
HD21837	18.50
HD2082534	10.95
HD20826H4	14.65
HIF13E $5^{\prime \prime}$	5.25
HIF21E8 ${ }^{\prime \prime}$	6.85
CELESTION	
HF1300 II	7.50
HF2000	9.75
COLES	
4001	5． 180
3000	6.25
EMI	
350.4 OHM	7.95
$12^{\prime \prime} 14 A / 1200$	14.95
$14^{\prime \prime} \times 9^{\prime \prime} 14 A 770$ $13^{\prime \prime} \times 8^{\prime \prime}$ BASS	12.50 8.95
DALESFORD	
D20／105 4＂MiD	9.95
D30／110 $5^{\prime \prime}$ BASS	9.95
D50／163 61／2 BASS	10.95
D50／200 $8^{\prime \prime}$ BASS	10.95
D70／200 ${ }^{\prime \prime}$ 明ASS	21.75
D100／2008 ${ }^{\prime \prime}$ BASS	23.50
D70／250 $10^{\prime \prime}$ BASS	24.95
D100／310 12＂BASS	30.95
FANE	
	U．95
	17.95
JORDAN WATTS H QUENCY KIT	$\begin{aligned} & 11 \text { FRE- } \\ & 7.85 \end{aligned}$
KEF	
T27	8.50
T15	10.75
B110	10.95
B200	11.95
8139	24.95
DN12	7.25
DN13 SP 1106	4.85
DN13 SP＇1017	4.95
DN22（104AB）	36.00
MOTOROLA	
TANNOY	
HPD295A	83.00
HPD315A）	93.00
HPD385A	110.00
Everything in stock for the speaker constructor！BAF， long fibre wool，foam，flet panels，crossovers and components．Large selec： tion of grile fabrics．Send 15 p stamps for samples．	

Send $15 p$ stamps for free 38－page catalogue＂choos－ ing a speaker

17612．

SEMICONDUCTOR CIRCUIT DESIGN

by Texas
Price $£ 9$
ACTIVE FILTER COOK BOOK by D．Lancaster． £10．85．

I．C．TIMER COOK BOOK bY

 W．G Jung．Price £7．50 HANDBOOK OF LINEAR INTEGRATED ELEC－ TRONICS FOR RESEARCH by T．Hamilton．Price £15． BUILT YOUR OWN WOR－ KING ROBOT by D．L．Heiser－ man．Price £3．70MICROPROCESSORS \＆ SMALL DIGITAL COM－ PUTER SYSTEMS by G．A Korn．Price $£ 18.90$
LOGIC DESIGN PROJECTS USING STANDARD I．C．s by J．S．Wakerley，£5，00
TOWER＇S INTERNATIO－
NAL TRANSISTOR SELEC－
TOR by T．D．Towers 1977. Price £5．00
HYBRID MICROELEC－ TRONICS by T．D Towers． $£ 8.00$
＊Prices include postage＊
THE MODERN BOOK CO．
SPECIALISTS IN SCIENTIFIC
\＆TECHNICAL BOOKS
19－21 PRAED STREET LONDON W2 TNP
Phone 7234785
Closed Sat 1 p．m

4

ENAMELLED COPPER WIRE

2 w．g．	13 rod	析（68）
10 te 19	E2，85	E1．80
20 to 29.	183.15	E1．80
30 ta 34	¢3．45	£1．80

$\begin{array}{lll}35 & \text { to } 40 & £ 3.65\end{array}$
All the above prices are inclusive ot postage nd pocking inUK
COPPER SUPPLIES
102 P
Parrawood Hoad，Withington
Tolophona 051.44587

ENAMELLED COPPER WIRE

$s w g$	1 lb	402.	$20 z$
$14-19$	2.40	.69	.50
20.29	2.45	-82	.59
$30-34$	2.60	.89	.64
35.40	2.85	1.04	.75
inclusive of $p \& \mathrm{~g}$ and VAT			

SAE brings Catalogue of copper and resistancerwires in all coverings THE SCIENTIFIC WIRE COMPANY PO Box 30 ，London E4 9BW $17347 k$

ELECTRONIC TIMESAVER LEARN－ ING AID．Unique，practical，h－ speed learning．Ideat beginners Normal price 59.00 ，Sliding intra－ duetory offer e4．75 until February 2sth．Dept．WW，TECHNOCENTRE， PO Box 33，Acklam，MIddlesbrough．

[^13]COLOUR，UHF AND TV SPARES． TELETEXT 77 IN COLOUR．MANOR SUPPLIES＂EASY TO ASSEMBLE＂ KIT Inciuding TEXAS Decoder． Aerial Input，completely external unit，no further conneotions to set． Full facifities，mixed Ty pro－ gramme and Teletext，Newspash Update，and many special features not found in other units．Demon stration model in operation at 172 Write for further informatian BAR GENERATOR PLUS CROS5 HATCH KIT（MKA）UHF Aerial input type Bight vertical colour bars Dlus i．Y． $\mathrm{B}-\mathrm{Y}$ ．Luminance combinatlons，Gres seale etc，Push button controls， Batsory operated． 435° ，Case $£ 2,40^{\circ}$ Battery Holders $78 \mathrm{FD}^{\circ}$ ，p／p 21 ． CROSS HATCH KiT，UHF Aerial input type，also gives peak white and black Ievels，Battery aperated， f11：$p / \mathrm{p} 45 \mathrm{p}$ ．Add－on Grey Scale kit $62,90^{\circ}$ p／p 36 p ．Add－0n Colour Bar Kit（oik 3） 225° ，Cases 81.40° p／p 95p，Cross Hatch Unil，com－ plete and lested in De Luxe case
玉18．00＊ $\mathrm{p} / \mathrm{p} \mathrm{E}$. wrires projects Y Tuncr and FM Tuner Projects byi．D．C．Read．
Kits of parts avallable．CRT test kits of parts avalable．colour and mono $818.80^{\circ} \mathrm{p} / \mathrm{p}$ I1．20．UHF Signal Strength Meter kit e18．p／p 90 p ． 625 TV IF Unit for Hi－fi amps or tape recording f6． $80 \mathrm{p} / \mathrm{p} 70 \mathrm{p}$ ．Decca Unit，inel．H．T．，L．T．，etc．Incl．elr． caIts ES， $80 \mathrm{p} / \mathrm{p}$ E120 Bush CTV 25 Power Supply Unit incl H．T．，L．T．． etc．$£ 3.20 \mathrm{p} / \mathrm{p}$ E1．20．Bush CTV 25
Convergence Panel plus yoke，blue Convergence Panel plus Yoke，biue
lateral $83.80 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$ ．Philips Single Standard Convergence Units com－ plete，incl． 16 controls $93.75 \mathrm{p} / \mathrm{p}$ $85 p$ ．Colour Scan Coils，Mullard or
plessey，$f 6 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$ Mullard AT Plessey，E6 p／p，Poke $£ 2.50$ D／p
$1023 / 05$ Converg， 75p．Mullurd or Plessey Blue Later－
 25 Scan Coils fe． $20 \mathrm{p} / \mathrm{p} 90 \mathrm{p}$ Deliay： Lines：DL20 $£ 3.56$ ，DLi 10 E1．50， DLIE，DL1 85 p p／p 45 p ．Lum．Ae－ Th．BRC 300 Tripler $16.60 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$ ． others avallable，Philips G8 De－ coder part－complete， $\mathrm{E2}, 50 \mathrm{p} / \mathrm{p} 75 \mathrm{p}$.
GEC 2040 Ex－Rental Pancis，De， coder $£ 5.00$ ．Time Base $£ 5.00$ ．p／p 90p．VARICAP TUNEHS UHF：ELC 1043 24．50，ELC $1043 / 05$ e5．50，VHF； ELC 1042 E4．80，Philips VHF E3．80． Salvaged UHF \＆VHE Varicaps
i1．50 p／p 35p．SPECLAL OFPERS：
 B Psn Varicap Control Unit $£ 2.50$ ，
Psn De Luxe Control Unit $\mathrm{p} / \mathrm{p} 35 \mathrm{p}, \mathrm{UHF}$ Transd．Tuners incl． slow motion drive 83.80 ．4 Psn and
6 Psn Push button transd．$£ 4.20$ 6 psa p 95 p Helical Pots $100 \mathrm{~K}, 4$ for p / p
$\mathrm{E} .20 \mathrm{p} / \mathrm{p}$
p
30 p F ．Thorn 850 Dual std． Time Base pantls 50 p ．Philips 625 IF panel incl，cct 50 p p／p 70 p ．
VHb Turret Tuners AT 7650 for KB VHb Turret Tuners AT 7650 ior KB
Featherlight，Philips $19 \mathrm{TGl} \mathrm{K}^{\prime 2}$ ，GEC Featherne．e2．56，Firebalt Tuners， Ferguson，HMV，Marconi 80 p ． p / p all tuners sop．Mullard Mono Scan Coils for Philips，Stella，Pye．Ekeo Ferranti，Invictia 69.00 p／D $85 p$ ． Large sefection lopis EOPI ayatiable for most popular makes． MANOR SUPPLIES， 172 WEST END LANE，LONDON，N．W．6．Shop premises，Callers welcome ands of additional items avallable not normally advertised．（Nos， 28 ， 159 Buses or West Hampstead Bakerloo Line and British Rail） Mail Oraer： 64 Golders Manor Drive London N．W．1L．Tel： 01 － 7948751 V．A．T Please ADD 121\％
TO ALI PRICES（EXCEPT WHERE MARKED＊V，A．T $8 \%)$

GRUEL \＆KJAER Iow noise measur ing amplifier type 2607．Precisio． sound vibration measurement 10 文V to 300 V ．List $£ 2000$ plus sel for $\$ 1450$ ． $0 \$ 27$ \＄32878．
For SALE．Several hundred coples of the Wireless World from 193s－ 18s9．P，E，Briooks． 7 Belgard Road Prole，Dorset．
EC1t transistored communications recetver bittery／mains，used twice． Offers still in original packing．
Phone evenings 7690212 ． 7839

PERSONAL

 SPEAK TO THE WORLD with－out Licence！Woridwide Tapetalk， 35 The Gardens，Harrow，Britain＇s largest Tape－X－Change．

EXCLUSIVE OFFER

HIGHEST QUALITY 19＇
RACK MOUNTING CABINETS

AUDIO AND INSTRUMENTATION－ TAPE RECORDER－REPRODUCERS

 Prices of above $£ 70$ to $£ 500$
 We haw a bige c．untily at＂Jes and Deeces＂ine cantan lad－iease norfus your dequirteren con pmbib；hep－il visuliss znswered

All our aerial equipment is professional MOD quality

MANUAL．S We town a huspility of Tectinicht Murtals of 1560．Briten and Americat．No lists lingoriex ishted．

 Be no Le 100 Amp lnterfervace Flices Aurand Fi2Sja．Gen Si 350kCS 8．2．67ower Supply Tnits Obeloscoge Tranyy forn 13 M Vdea Dealay Umes 4 ant Austobon vit iticrives 20120 mm Solantum CD S2tOstivigugeo AvovT Voimetersct－421A Ranal MAlsib pre－sidretors Cuthes D0 wart 2118 moss．Transmifetios C（ilins KW／6SSR 50SW Iransteciver Co $-k N / 66200$ 万h $A v 1$ rankiciters STC Rx52．25 ma taspivas Difersmy Rock Moumting Ojertact Tables Gaumiont Kalup 354 Flutter Mesera Hiwher Jbekat G G1sB Sig Com， 3.817 .2 GHz kithn ofll isasts vatiry 12 wacs 3ir Lattike Most 14 sedes 15 Li Lartice ctas sactiens， 12^{-2} sides 12 Mt Latico Mases． 15° sidis ［5 Sots Scy Foners self－supparting Heavy Adrial Rosetors ＊ 351 Aluruciumi Lampe Mlans s， 25 xdes －Iargv Actial Turnine Lrmb －EJtiet Us radiat Cun 50 ohms ＊Motes 8 Ttact Tape Phother

Haret kN－63 SSB Adptors min

，

H20．08

PLEASE ADD CARRIAGE AND

P．HARRIS

ORGANFORD DORSET BH16 6BR
BOURNEMOUTH（0202） 765051

WANTED IN LARGE QUANTITIES

Electronic componients, resistors. capacitors potentiometers, ohass:s oudspeakers, semi-conductors
diocips. TV tubes. esperially colours. diocips. TV lubes. esperially colours,
etc., etc. etc. First or second graces. etc., etic, etc. First or second graces. Finished or incomplete products. record players, amplifiers, radios. tuners, tape recorders, enclosuros. etc, otc. etc.
We will buy complate lactories and pay cash.

CEL 01-4914636 $360 / 366$ OXFORD STREET LONDON, W. 4

WE PURCHASE ALL FORMS OF ELEGTRONIC EQUIPMENT AND COMPONENTS, ETC.

CHILTMEAD LTD
7, 9, 11 Arthur Road
Reading, Berks.

A.R. Sinclair

Electronic Stockholders Stevenage 812193
We purchase all types of Mechanical and Electronic Equipment and Surplus stocks.

WANTED, all types of communticathons recelvers and test equipment Details to R. T. \& I. Electronic Ltd., Ashville old Hall, Ashville

COSSOR CDU 120. Wanted, plug in or whole scope. Any condition, king GA.S, on 01-853 1812,
WILL BUY ANYTHING, any quantity if price is right, king stan Willetts, West Bromwich. $021-553$

ARTICLES FOR SALE

60 KHz MSF Rugby Receiver. BCD TIME OF DAY OUTPUT, High performance, phase locked doop radio
recenver, second LED indicatton. Kit complete with tuned ferrite rod aerial E14.08 (Including postage and VAT), Assembled circuit and cased.
up version also available. Send $\operatorname{up}_{\text {for }}$ version also available Send 14359), Derset

SOLARTRON CT436 oscilloscope 0723 s70.684

TEKTRONIX 545B C/W CA plug in.

 mmaculate, e350. $56 t \mathrm{~A}$ maintrame sual trace $£ 50$: S54 pulke geriera tor 6110 ; sweep trequency converter fea: constant amplitude signal generator $\delta 65$. Hewlett Packard $175 A \mathrm{C} / \mathrm{W} 1755 \mathrm{~A}$ dual trace 50 MHZ and 1781 delaying time base 5200 . 6931 Sweep oscillator A-S GHZ, E200. Terrold 707 D sweep oscillatar$10-1-\mathrm{MHZ}$ E70 Wayme Kerr B521 10.1-MHZ, E70, Wayne Kerr B521 $\begin{array}{ll}\mathrm{CDR} & \text { Bridge t80; B221 LCR bridge } \\ 0.1 \% & \text { E110. Sulzer frequency stan }\end{array}$
 receiver for stability fecision frequenc recelver for precision Irequency Road, Peterborough, 17804 OFFERS INVITEO IOF PDP9 16K computer with 2 decwriters, 2 tape ransports. Dec PDPSL, 4 K memory.
T.V. TURE REBUILDING PLANT. Western-Whybrow Engineering can supply all ttems of plant tor quality rebuilding of Colour Tubes complete installation, training
and ail assoclated supplies. and all associated supplies WECO Works praa sinds Crbss Penzance. Tel: 1073 ह76) 2265.

WANTED
for immediate cash ALL MAKES OF old radios and GRAMOPHONES PRIOR TO 1940

Offars with dotails and

Watliass. PD, Boor 1244
0- 4050 Mosnchengladbern V Germany

* MINICOMPUTERS PERIPHERALS * INSTRUMENTATION

For lastust. best CASH offer, phome COMPUTER APPRECIATION Godetone (088 334) 3221

MINICOMPUTERS PERIPHERALS INSTRUMENTATION

For fastest, better CASH offor

CHILTMEAD LTD. Reading (0734) 586419

TURN YOUR SUPLUS Capacitors transistors, etc, into cash, Contac COLESHARDING \& Ca. 103 Sowth Brink, Wisbech, Cambs. 0945-418s. Itmmediate schlement. We also wel. come the opportunity to quote for complete factory clearance, (7439) STORAGE SPACE is expensive, why store redundant and obsolete equipment? For fast and ellicient
dlearance of all test pear. power supplies, PC boards, components, etc. regardiess of condition or quantity call 01-7719413.
E.D. ELECTRONICS offer prompt settiamen for surplus electronie components, t, v //audio spares are of particular interest, Contact Miss Hughes, g Westhawe
Peterborough. Tel 265219, WE PURCHASE, FOR CASH the Collowing: R. P. Power Transistors. components normally ased special UHF Transmituinf used in VHF MODULAR ELEETRONICS 95 High Street. Selsey Sussex. PO20-00L.
SOLARTRON ET 436 uscilloseupe mains transtormer wanted. Phone $0723 \quad 870684$.

EQUIPMENT

BROADFIELDS AND

 MAYCO DISPOSALS 21 Lodge Lane, N. Finchley London, N12 8JG Telephone: $01-4450749^{\text {01-958 7624 }}$MAY WE ASSIST YOU TO DISPOSE OF YOUR SURPLUS AND REDUNDANI STCCKS. We will call anywhere in the British Isles, and pay SPOT CASH for Electronic Components and Equipment.

RECEIVERS AND AMPLIFIERS
 stock ik. T. \& I. Electronles. Ltu Ashville oid Hal, Ashville Hi
London. Ell. Tiey 4886 .
SIGNAL Gencratars Oschioscopes. Dutput Meters, Wave voltmeters
Frequency Meters Multi-ranke Meter etc. etc.. in stock. range \& 1. Electronies Lid. Ashville old Hall Ashville Rd. London E. 11. 17781

The Decca College

Microminiature Electronics Courses in Practical Techniques

Short courses on the microminiature practical techniques required in the Aviation Industry are available.
The standard course lasts for three days (Tuesday to Thursday) and is approved by the Civil Aviation Authority. The course is designed for experienced avionics or electronics personnel and aims to train them to carry out practical repairs, modifications and overhauls on microminiature equipment.
Details of these and other courses from: The Principal, The Decca College, New Road, Brixham, Devon TQ5 8NQ. Telephone: 08045-3409.

LADELS, NAMEPLATES, FASCIAS on aluminium or plastic, Speedy delivery G.s.M. Graphic Arts Lid., $1-5$ Rectory Lane, Guis-
borough (02873-4443). Yorks. U.K.

CAPACITY AVAILABLE

AIRTRONICS LTD. for coil winding Bobbin - Layer - Wrave - Bifilar - Ministure Toroidals Aurtranics Limited. Gardner Industrial Estate Kent House Lane. Beckenham
Kent BR3 1UG: Tel. 01.65911 .77
\qquad
PCBS/WIRING/ASSEMBLY. Design. artwark, manufacture assembly, panels ete. to high standards. puick turnround and competitive prices. Contact us firs: HAMILL ELECTRONICS LTD, 492 Kingston Hoad, Londan SW20. 01.5429203.

Batch Production Wiring and As sembly to sample or drawings MeDeane Electricals 19 B Station Parade, Ealing Common. Landon Wi5. Tel: $01-892$ 8978.

CITRONICS for design, manufacture and assembly of P.C.B. we ture and assembly of P.C.B. we are ssed io the wanted yester bateh quantities. We have pother services available. Contact us first: Cambridge. (7788)

HIGHWAY ELECTRONICS, Lugie design, PCB Artwark, Assembly Testing Custom buit electrontes, Ind., Est., Pontypool, Gwent. NP4
\qquad

PRINTED CIRCUITS, Small catehFring, electrical testing, minicomputers undertaken by Wandtrontes phene or write tor detalls: Wand ronics bimited, Wandly Whard Frogmore Wandsworth London
Sw18 1HW Tel SW1s 1HW. Tel. $01+870$ 6585.

SMALL BATCH PRODUCTIDNS WIT ing assembly to sample or draw ings. Kpecialist in printed circuits | assembly, Rock Rlectronics Har- |
| :--- |
| low. Essex. 0279 (33018 , 7674 |

ELECTRONIC ASSEMBLY AND WIRING CAPACITY AVAILABLE

J.N. Electronic Supplies

Osiers Road, London, SW18 Tel. 01-874 6162

Printed CIRCUITS. Ulitra fast turnaround. Very competitive prices paper of glass. punched or drilled. Single, or double sided Also prototypes, artwork photo Graphy Kibmore circuits Lid., 120 Garlands Road Redhill, Surrey RH1 6NZ. Phone Redhill 6ss50 ${ }_{7285}$

SPARE CABACITY - Quick Turn around speciatist wiring assembly of large and small items cable
forms. $\mathrm{P}, \mathrm{C}, \mathrm{B}$. Wire wrapping panels, vtc. Lewco, Wellingमorgudi
(09a3) 677 FI .

RAMTEK LTD for PCB assembly using fiow soldering techniques. against your own internal costs No job too sman, rantd turn around. Capacity also available for vire cutting stripping and lonm manufacture. Call us today on 0248 38658 Lansdown Industrial Estate. Cheltenham, Glos) (7812
ONE MAN WORKSHOP has capacity for wiring assembly etc. Anything considered Contact, tolyon Havinden. Market Place, Lechlade. Glos.
$10367) 52267$.

[^14]
I.C.E. MULTIMETERS
 IWICE the information in HALF the size

The L.C.E. range of multimetors providen an
unrivalled combination af maximum performance within minimum dimensions, at a truly
low cost. Plus, a complete range of add-on accessories for more ranges, more functions.
All I.C.E. multimeters ave supplied complete with unbreakable plastic carrying case, test leads. ctc, and a 50 -plas oege fuly detailed and ulustratod Operating and Mairtarnance Manual.
Now svaidele from selccte
(illustrated)
20kilov. $+1 \%$ fad on ac So Ranges - 10 Fincticins 30 Ranjes -10 Functighs £25.25 + VAT
(For Mof Qroar add B0p Ps?

Supertester 680G

$4 \mathrm{k} 2 \mathrm{~V}=2 \mathrm{~F}=\mathrm{Fse}$ ory
$4 \mathrm{~B} \mathrm{Pangn}-10$ runctions $109 \times 113 \times 37 \mathrm{mT}$
$£ 19.95$ + VAT
FFo: Mall Octer add BOp P\&P
Electronic Brokers Ltd. 49-53 Pancras Road, London NW1 2OB Tel 01-837 7781

Microtest 80

 Comalate with cose (x) $133 \times 95 \times 23 \mathrm{~cm}$ £ 14.95 + VAT For Mail Order adir 900 PS P

WW-082 FOR FURTHER DETAIL.S

INDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 124-135

	PAGE 22
Amateur Components	87
Ambit International	86
Amplicott Led	
Antex	71
Aspen Electronics Ltd.	15
Astra-Pak 94
Audio Amateur	96
Audix Ltd.	81
Baker L.oudspeakers Ittd.	20
Barr \& Stroud Ltd.	24
Barrie Electronics Lid.	101
Bayliss, A. D. \& Sons Ltd.	12
Bentles Acoustic Corp, Ltd,	122
Bi-Pak Semiconductors Led.	88, 89
Boss Industrial Mouldings L.to.	17
C.A.E Ltd.	-1 19
Cambradge Learning	. 19
Catronics	. 97
CEC. Corporation	+85
Chiltmead Ltd.	114
Chromasonics	4
Communications 78	82
Colomior (Electronics) Ltd.	110
Computer Appreciation	105
Continental Specialities Corp.	
Crellon	
Crimson Elektrik	21
Datong Electronics Lid.	
Doram Electronics	106
Drake Transformers Ltcl.	- 10
Edicrot	123
E.L. Instruments	+ 94
Electro/Eurotech	- 104
Electronic Brokers Lta.	117,136
Electronic Brokers Ltd. (Seco (Div.)	$\begin{aligned} & \text { rer } \\ & \therefore+8 \\ & \hline 19 \end{aligned}$
Elec. \& E/Trader Y/Book	
Erie Electronics Ltd.	82.96
4 Bonks from W. World	83
Feedback Insts, L,td, Future Film Developments	94 97

OVERSEAS ADVERTISEMENT

AGENTS:

[^15]
Unitad Stutea al Amaricas: Hay Earnes.

IPC Business Fress. 205 Fist 42 nd Strac: Finw York, NY t0017 Telephone: (212) 689 596) - Telex. 421210 . Mr. Jack Farley Jni. The Farlyy Co Sure 1584, 35 East Wacker Drwe, Chicago, illines 50601 - ielephonse (312) ह 3074
Mr Rié
 Telephone: $(4+5) 4217950$ - Teleghonar Dascotico, San Franciseo.
Mr Whan Marstryll Suet Marahall. Sands \& Letra inc. 1230 West Eintth Sireyt, Los Angeles. Califorria 1005) teephane: $+213 / 3826346$-Telegrams: Dascottico tos Angules

PAGF:
General Inst. Microelectronits Ltd. Gould Advance

H/H Electronics
Harmsworth Towniey \& Co. Ltd,
Hartis Electronics (Landinn) Lid.
Hart Electronics
Icon Designs co Lta.
Industrial Tape Applications
Trdustrial T/Fair
mdustrial $1 /$
it

Interpori Mains-Store Ltd
Interport Instrument Services
JPS Assuciates
KGM Electronics
Keithley Instruments Ltd.
Langrex Supplios Ltd.
ocvers-Rich Equipment Ltd.
Level! Electronics Ltd,
Light Suidering Developments Lid
Linstead Mfg. Co. Ltd.
Linstead Me
Lion House
まloyd, I. I. Insts. Ltd.
Logic Leisure
............................ 10
Londor 1net Repair Service 122
Lynx (Electronics) Service

McKnight Crystals
Macinnes Laboraturtes Ltd.
Macinnes Laborator
Magnum Audio Ltd.
Magnum Audio Ltd.
Maplin Electronic Supplies
Marconi Instruments Ltd,
Marshall, A. (London) Ltd.
Martin Associates.
Micronics, The, Co
Mills W,
Mociern Book, The
Monolith Electrunies Co. Ltd.
Multicore Solders Ltd

. 84

Nexus
122
Olson Electronics
2
13
84

Radio Components Specialists

Radio Shack Ltd.
Ralfe P, Electronics
R.C.S. Electronics

Rela Celestion Lta.
R.S.'T. Valves Ltd
R.s.2. Valves Ltd. 113

111
Service Trading Co, ...
Shure Electronics Ltd.+...+............. Cover it
Sintel ... 107
SMC. (Yaesu Musen)
Southwost Technical Prods Lid 102
Sowter, E A Prods. Ltd.
Special Products 1.4.
........ 16
Sumen Engineering Ltd
Surroy, E. \& Co. Ltd
Surrey Electronies Ltd.
Swanley Electronies Lid.
102
86
Swift of Wilmslow 86

Technomatic Lid+.+.+...+.+................... 108

Teleradio Hi Fi 108
Trampus Ejectrontes 101

$\begin{array}{ll}\text { Vero Electronics Ltd. .. } & 15 \\ \text { Vero-Verospeed Ltd. }\end{array}$

West Hyde Developments 1.td. 110
West London Supplies
120
Wilmsiow Audio
$15,104,108$
Z. \& L. Atero Services I.td

Zettler (UK) Division

Mri Jock Ment-1, The Farley Co Suite 650, Ranna Bulding Mr. woek Ment-1. The Farley Co Suite 650, Ranna Bu
Clevelard Olio 4415 - Telephove: (216) 621197 g Clevelaris, Oha 4415 - Telephone: (216) 6211 g19 Ar. Ray A ckies. Ray Ricklus \& CU, P O Bux 2008. Mi Ar Jim Parics Ray Rickles \& Ce. 31 16 M spie Orive N Artonts. Georgis 30305 Telephornu (404) 2377432 . Mose Loughtirt IFC Businesss Pcess. 35055 Memoriat, Ste 119. Huvator, Texac 77079 - Telephone 17131783 8673
Cansda: M+ Colratt MacCullech, Intemational Advertising Corraltants Lid. 915 Catten Tuwer 2 Cartior Street. Torgnto 2 - Telephone: $44+612642269$

[^16]

Quick and accurare adjustment of sound sysrem frequency response is finally within the reach of most budgets. The Shure M615AS Equalization Analyzer System is a revolutionary breakthrough thar lets you "see" room response rrouble spors in sound reinforcement and hi-fi systems-without bulky equipment, and at a froction of the cost of conventional anolyzers.

The partable, 11-pound system (which includes the analyzer, special microphone, accessories, and carrying case) puts an equal-energy-per-octave "pink noise" rest signal
inro your sound system. You place the microphone in the listening area and simply odjust the filters of an ocrove equalizer (such as the Shure SR107 or M610) until the M615 display indicares thar each of 10 octaves are properly balanced. You can ochieve accuracy within $\pm 1 \mathrm{~dB}$. withour having to "play it by ear."

Send for complere descriptive brochure.

Shure Electronics Limited Eccleston Road Maidstone ME15 6AU Telephone: Maidsrone (0622) 59881

TECHNICORNER

The Mo15 Analyzer's display conroins 20 LEDs that indicore frequency response level in each of 10 ocrave bandsfom 32 Hz to $16,000 \mathrm{~Hz}$.
Arororyh/lo envelope conrrol adjusts the HI LED threshold relorive to the LO LED threstold. Ar minimurn serting, the resulting frequency response is correct wishin $\pm 1 \mathrm{CB}$, Includes input and microphone preamplifier overioad LEDs. A front pone/switch selects either flor or house curve' equalization.
The ES615 Omniditrectional Anolyzer Mirrophone (also availoble separarely) is designed specifically for equalization analyzer systems.

$\underline{4}$	

${ }^{66}$ There's allot more to Multicore...

Multicore Solid Solders. In Bars, Ingots, Sticks, Wire or Pellets. For all dip and wave-soldering. For microcircuits and P.C.'s. Also a wide variety of pre-forms for
 repetitive soldering operations.

Multicore now solders the 'impossible'. ALU-SOL 45D solders most types of aluminium and has a good corrosion resistance. Arax 96S for difficult stainless steels, being non-toxic and bright.

[^0]: Addrass labe:

[^1]:
 WW - 018 EOR FURTHER DETAILS

[^2]: Ia Reg. Ottice: Cambndge Leanning Enterarises Dep COM FREEPOST Riverme Housu. St tugs. Huntingdon Gambs. PE17 4ar
 Froprieters Dränidge too Regisleten in Eraland No 13287

 incluated
 Be setisi of Digital Computer Logiv and Electronics at 5550 each, of p
 included
 (of comberad setis) at $\ddagger 12.00$ each, α \& p inchequt
 The Algpeithm'Woter's Guce at E3 40 each D \& p included
 Narne
 Address

[^3]:

[^4]: Number 2，Gresham Rad，Brentwoad，Essex．CM14 4HN telephone（0277） 216029
 Our new premises are only 200 yards from Erentwood
 station－with parking facilifies outside the door II

[^5]: LENCO CRV CASSETTE MECHAN ISM
 Highl thinlity, wotur wassotie tramsport for firging.Hoot reotrdet Features fas torward, fost tewnd, cecord, pause ane tatiitios fitied with Rocond alat cit grase hadeds stid supplied termplaty wit Dile and Hxtry cassatte electian spting tor
 EZ CZ 70 Vat
 Tata cost of mil starts CS3 5E

[^6]: MAIL THIS COUPON NOW
 To: IPC Electrical-Electronic Press LId.
 General Sales Department, C.P. 34 Dorset House,
 Stamford Street, London SE1 9LU
 Please send me.............copy ies of the Electrical and Electronic Trader Year Book 1978 9. I enclose cheque p.o. number... to the value of $\mathrm{E}(E 5.50$ per copy inclusive). Cheques payable to IPC Business Press Lud.
 Name (please prant)

 Address

[^7]: ALL THE ABOVE KITS ARE SUPPLIED COMPLETE VVITH ALL METALWORK, SOCKETS, FUSES,
 NUTS AND BOLTS, KNOBS, FRONT PANELS, SOLID MAHOGANY CABINETS AND COMPREHENSIVE INSTRUCTIONS

[^8]:
 ROTARY INVERTERS TYPE PE-218E: Input $24-28 v$. d.c. 80 amps, $4,800 \mathrm{rpm}$. Output 115 y . a.c. $13 \mathrm{mmp} 400 \mathrm{c} / \mathrm{s}$. 1 Ph . P.F. $9 \mathrm{E} 21.60+\mathrm{E} 3.00 \mathrm{carf}$.
 FREQUENCY METER BC-221: $125-20,000 \mathrm{kz} / \mathrm{s}$ complete with original calib. ration charts. Checked out. working order $£ 22.70+£ 2,00$ carr
 RECTIFIER UNIT: $200-250 \mathrm{v}$. a.c. input, 24 v , d.c. at 26 amps output contiruous rating. $\mathbf{e 3 7 . 8 0}$, carr. $£ 5.00$.
 PAPER TAPE: $1 \mathbf{l}^{\prime \prime}$ roil (teleprinters, eto.) Box of ten rolls $\mathrm{f} 1.50+81.00$ poss CREED TELEPRINIER TABLE: $\mathbf{E 2 5 , 0 0}+\mathrm{E} 5$ carr.
 ATTENUATOR UNITS STC: Impedance 75 ohms. Two different types. (A) Push button 0-0.9 decibels in steps of 0.1 dB and (B) Push button 0-90 decibels in step of 10 dB . Both types price $£ 5.40$, post 70 p.
 MARCONI SIGNAL GENERATOR $801 / D S: 10-480 \mathrm{mHz}$. $£ 31 \mathrm{R} .60$.
 ROTARY CONVERTER: 24 volts d.e. input. 230 valts. 100 watts output. E27.50. carriage 54.00 .
 SIEMENS POWER METER Imw to $500 \mathrm{mw}, 6$ ranges 0.17 dB 50 ohms. ES5.00, carriage $£ 3.00$
 RADIO TELETYPE TERMINAL SEI SGIA 115 volts a e E17.50, carriage 63.00 TELEGRAPH DISTORTION TEST SET TYPE 5CBV 230 volts anc E25.00, carriage E3.00
 RESONATOR PERFORMANCE CT. 4248.5 to $9.0 \mathrm{kme} / \mathrm{s} 3 \mathrm{~cm}$. E75.00, past $£ 2.000$. ALUMINIUM TRIPOD (extra strong) will sugport 50.b. Extends to $56 . \mathrm{in}$. $£ 10.00$, tarriage E3.00.
 INVERTER 24 volts d.c. input 400 cycles IpH 6600 t.p.m. 200 voits peak. $\mathbf{£ 7 . 5 0 ,}$ EI 50 post.
 OXYGEN BOTTLE $1800 \mathrm{l}^{\mathrm{b}}$. w.p. $£ 10.00$, eartiage $£ 3.00$.
 VOITAGE REGULATOR 120 volts 62 amps. $£ 17.50$ warh or two for $£ 32.50$, carriage $£ 4.00$ esch.

 ## BARGAIN MAPS

 Large stocks of unused U.S.A.F, surplus maps, weather charts, ete, including:-
 ONC.EI - U.K. in fulland part N W, Europe, Scale 1.2.000.000,
 N. 9N - Furope E K Scandinavia Scaie 1-2000,n00
 in.21N - Europe (Mediterranean). Scale 12.000 0010.
 SIZF: $58^{\circ} \times 42^{\prime}$.colour. Many blhers. Please send S.A E for list
 Prlce each 70 p (inc. $\mathrm{p} \div \mathrm{p}$)
 $25 \times$ Maps (either same ty pe OR assorted) $£ 10,00+f 1,00 p-p$ $10 \times$ Maps (either same type OR assurted) 26.00 (inc $p=p$).

 Abave prices include VAT at 85 (except where stated) Carriage quotes given are for 50 -mile radius of Herts.

 3 \& 3a BALDOCK STREET, WARE, HERTS. SG12 9DT WARE 66312 (STD 0920)

[^9]: Canada Mr. Colin H. MacCulloch. International Advertising Consultants Ltd. 915 Carlton Tower, 2 Cariton Street, Toronto 2 -Telephone (416) 3642269

[^10]: Mimmum Ma，Oruer E2．Excess postage refunded Unless statod－please add $£ 2.75$ carriage to all units VALUE ADDED TAX not included in prices－Goods marked with $\star 121 / 2 \%$ VAT，otherwise 8%

[^11]: Send stemped adoressed

[^12]: TELEPHONE ANSWERING Machines TELEPHONE ANSWERING Machines
 for Sale, NOW f120. Answers and for Sale, Now f120. Answers and
 Hecords, Plus 2-way Conversations and Dictation. Free Arcossories and guaranteed 1 year. Callsaver. C.R.V. Electronics Ltd., $01-249$ 0416, dons. W.1.
 don 30 Goodge Street, $\frac{\text { Lon- }}{17096}$

[^13]: LAB CLEARANCE：Signal Generg
 tars；Bridges：Waveform，transistor Inalysers；calibrators；standards： millivoltmeters；dynamomoters： KV meters；oscilloscopes；record－ crs：Thermal，sweep，low distor－ tion，true RMS，audio， FR_{i} devia－
 （10n，Tel： $040-376236$.

 RUB－ON ETCH RESISTANT SYM－ BOLS for 1 off Printed Circuits． Large range of lines，pads．Ietters． etc．available $27 \mathrm{p} / \mathrm{shect}$ SAE cata－ logue and sample，PKG ELEC． TRONICS，Oak Lodge，Tansley，
 Derbyshire，

[^14]: A COMPLETE and efficient PCB
 Service from layout through to as-
 sembly sembiy, Incorparating, quatity re. Hardily and price. No order to0 dotalling is undertaken. For de. talls ind free estimates please contact: J. S. Hoberts an 01-553 2577 H.R.C. Artwork Design 45 High Street, Maldun Essex.

[^15]: Hungary: Mry. Eet Dajusz. Huagexpo Advertising Agency Bucspest xiv Varashight
 Teleplione 225008 - Tetex Butapest 22-4525 INTFOIFE
 Italy: Sig. C Epis Etas Kompass S p.a- - Sorvizio Estero Via Mantegna B, 20154 Milar
 Teleptocie 34704 T - Telex: 37342 Kompass.
 Japan; Mr Inarsleu, Trade Media - BPPA Japani, B 212 Tgiephone: -03j 585.0581

[^16]: London. SEI SEU telephone 01-2G1 \$000. Wireless World can be ubtaing abraad trom the folpwing: AUSIRALA and NEW AEALAND: Gordon \& Gotch Ltd. INDIA A II UNTIED STATES: Eastern News Distributors Inc., 14th Floor. 111 Eighth Averve, New York, N.Y TO01!.

