INSTRUCTION BOOK

FOR
 NAVY MODELS RBL-3 AND RBL-4 RADIO RECEIVING EQUIPMENT

FREQUENCY RANGE

15-600 KILOCYCLES

Abstract

This document contains information affecting the National Defense of the United States within the meaning of the Espionage ACT (U.S.C. $50: 31,32$.) The tranamission of this document or the revelation of its contents in any manner to any unauthorized person is prohibited.

This Instruction Book is furnished for the information of commissioned, warranted, enlisted and civilian personnel of the Navy and persons authorized by the Bureau of Ships whose duties involve design, manufacture, instruction, operation, and installation of radio, radar, or underwater sound equipment. The word "Restricted," AS APPLIED to THIS instruction book signifies that it is to be read only by the above personnel and that the contents should not be made known to unauthorized persons not connected with the Navy.

MANUFACTURED FOR
U. S. NAVY DEPARTMENT

BUREAU OF SHIPS
BY
WELLS-GARDNER \& CO.
CHICAGO, ILLINOIS

CAUTION

Since the use of high voltages which are dangerous to human life is necessary to the successful operation of the equipment covered by these instructions, certain reasonable precautionary measures must be carefully observed by the operating personnel during the adjustment and operation of the equipment.

The attention of officers and operating personnel is directed to Bureau of Ships Manual of Engineering instructions, Chapter 31 (mimeographed form) or subsequent revisions thereof on the subject of 'Radio-Safety' Precautions to Be Observed.'
Page
SECTION I DESCRIPTION 1
1 General 1
2 Shipping Information 1
3 Circuit Description 1
a General 1
b Frequency Ranges 2
c Antenna Circuit 2
d Power Supply 2
e Tube Complement 2
4 Cabinet 2
5 Dial 2
6 Mounting Base 3
SECTION II UNPACKING AND OPERATING TEST 5
7 Equipment 5
8 Unpacking the Equipment 5
9 Inspection 5
10 Connections to Power Supply 6
a Connections for AC Operation 6
b Connections for Battery Operation 6
11 Controls 7
a Power 7
b Audio 7
c Output Limiter 7
d Output Level 8
e Gain 8
f Regen 8
g Antenna Compensator 8
h R-F Trimmer 8
i Osc. Test 8
j Tuning Knob 9
k Band Switch 9
12 Preliminary Operating Test 9
a Electrical Connections 9
(1) Power Connections 9
(2) Antenna and Ground Connections 9
(3) Output Connections 9
b Test Frequencies 9
c Test Procedure 9
SECTION III INSTALLATION AND OPERATION 11
13 Receiver Location 11
14 Electrical Connections 11
a Antenna and Ground 11
b Power Connections 11
15 Installation Inspection 12
16 Operation 12
a C-W Reception 12
b MCW Reception 12

TABLE OF CONTENTS-Continued

Page
SECTION IV CIRCUIT DESCRIPTION 13
17 Receiver Circuits 13
18 R-F Amplifier 13
19 Regenerative Detector 13
20 1st A-F Amplifier 13
21 Audio Filter 13
22 Audio Output Stage 13
23 Audio Limiter Stage 14
24 Power Rectifier 14
SECTION V MAINTENANCE 21
25 Periodic Inspections 21
26 Field Trouble Shooting 21
a Set Dead-Dial and Panel Lights Out 21
b Set Dead-Dial Lights On 21
27 General Trouble Location 21
28 Stage Gain Measurements 21
29 Voltage Measurements 22
a General 22
b Procedure 22
30 Resistance and Continuity Measurements 22
a General 22
b Procedure 22
31 Replacement of A Band Switch Section 22
32 Replacement of Sensitivity Control 22
33 Alignment 23
a General 23
b Preliminary Adjustments 23
c Equipment Necessary for Alignment 23
d Control Positions 24
e Alignment for D, E and F Bands 24
f Alignment for C Band 25
g Alignment for B Band 25
h Alignment for A Band 26
LIST OF ILLUSTRATIONS
Page
Fig. 1. Model RBL-3 Radio Receiving Equipment x
Fig. 2. Block Diagram of Type CWQ-46161-A Radio Receiver 2
Fig. 3. Type CWQ-10124-A Mounting Base 3
Fig. 4. Unpacking Procedure 5
Fig. 5. Tube Positions 6
Fig. 6. AC Connector Plug Connections 6
Fig. 7. Connections at Rear of Receiver 7
Fig. 8. Battery Cable Plug Connections 7
Fig. 9. AC Jumper Plug Connections 8
Fig. 10. Front Panel View. 8
Fig. 11. Concentric Plug Connections. 9
Fig. 12. Mounting the Radio Receiver 11
Fig. 13. Stage by Stage Functional Diagram 13
Fig. 14. Audio Response Characteristics 14
Fig. 15. Audio Limiter Circuit 15
Fig. 16. Output Limiter Curves 17
Fig. 17. Resonance Overload 18
Fig. 18. Selectivity Characteristics 19
Fig. 19. Trouble Location Chart 20
Fig. 20. Removal of Band Switch Section 22
Fig. 21. Replacement of Sensitivity Control 23
Fig. 22. Dial Pointer Adjustment 23
Fig. 23. Removal of Dial Cover Plate 24
Fig. 24. Alignment Connections 3
Fig. 25. Schematic Diagram, Standard RMA Dummy Antenna 25
Fig. 26. Trimmer Positions 26
Fig. 27. Bottom Socket View of Type CWQ-46161-A Radio Receiver 29
Fig. 28. Bottom Socket View of Type CWQ-46230 Radio Receiver 30
Fig. 29. Block Diagram Receiver Connections. 69
Fig. 30. Schematic Diagram, Type CWQ-46161-A and CWQ-46230 Radio Receivers 71
Fig. 31. Pictorial Diagram, Top View of Chassis 74
Fig. 32. Pictorial Diagram, Bottom View of Chassis 75
Fig. 33. Drilling Plan for Mounting Base Installation 76
Fig. 34. Outline Dimensions 77
Fig. 35. Rear View of Receiver 78
Fig. 36. Top View of Receiver 79
Fig. 37. Bottom View of Type CWQ-46161-A Radio Receiver 80
Fig. 38. Bottom View of Type CWQ-46230 Radio Receiver. 81
LIST OF TABLES
Page
Table A-Stage Gain Measurements 27
Table B-Socket Voltages 28
Table C-Coil Resistances 31
Table D-Cathode Currents 32
Table E-Color Coding 33
Table F-List of Major Units. 34
Table G-Parts List by Symbol Designation. 35
Table H-Equipment Spare Parts by Navy Type Number for RBL-3 55
Table I-Equipment Spare Parts by Navy Type Number for Navy Model RBL-4 60
Table J-Parts List by Navy Type Number 66
Table K-List of Manufacturers 68

GUARANTEE

The equipment including all parts and spare parts, except vacuum tubes, batteries, rubber and material normally consumed in operation, is guaranteed for a period of one year from the date of delivery of the equipment to and acceptance by the Government with the understanding that all such items found to be defective as to material, workmanship or manufacture will be repaired or replaced, f.o.b. any point within the continental limits of the United States designated by the Government, without delay and at no expense to the Government; provided that such guarantee will not obligate the Contractor to make repair or replacement of any such defective items unless the defect appears within the aforementioned period and the Contractor is notified thereof in writing within a reasonable time and the defect is not the result of normal expected shelf life deterioration.

To the extent the equipment, including all parts and spare parts, as defined above, is of the Contractor's design or is of a design selected by the Contractor, it is also guaranteed, subject to the foregoing conditions, against defects in design with the understanding that if ten per cent (10%) or more of any such said item, but not less than two of any such item, of the total quantity comprising such item furnished under the contract, are found to be defective as to design, such item will be conclusively presumed to be of defective design and subject to one hundred per cent (100%) correction or replacement by a suitably redesigned item.

All such defective items will be subject to ultimate return to the Contractor: In view of the fact that normal activities of the Naval Service may result in the use of equipment in such remote portions of the world or under such conditions as to preclude the return of the defective items for repair or replacement without jeopardizing the integrity of Naval communications, the exigencies of the Service, therefore, may necessitate expeditious repair of such items in order to prevent extended interruption of communications. In such cases the return of the defective items for examination by the Contractor prior to repair or replacement will not be mandatory. The report of a responsible authority including details of the conditions surrounding the failure, will be acceptable as a basis for affecting expeditious adjustment under the provisions of this contractual guarantee.

The above one year period will not include any portion of time the equipment fails to perform satisfactorily due to any such defects, and any items repaired or replaced by the Contractor will be guaranteed anew under this provision.

REPORT OF FAILURE

Report of failure of any part of this equipment, during its service life, shall be made to the Bureau of Ships in accordance with current instructions. The report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 31 (mimeographed form) of the Manual of Engineering Instructions, or Bureau of Ships Radio and Sound Bulletin Number 7, dated July 1, 1942, or superseding instructions.

PERTINENT DATES

Contract NXss 21446. Date of Contract, January 11, 1943.
Serial number of equipment
Date of acceptance by the Navy
Date of delivery to contract destination \qquad
Date of completion of installation
Date placed in service. \qquad
Blank spaces in this book shall be filled in at time of installation. Operating personnel shall also mark the "date placed in service" on the date plate located below the model nameplate on the equipment, using suitable methods and care to avoid damaging the equipment.

REQUESTS FOR REPLACEMENT MATERIAL

All requests or requisitions for replacement material should include complete descriptive data covering the part desired, in the following form:

1. Name of part desired.
2. Navy Type number (if assigned) including prefix and suffix as applicable.
3. Model designation (including suffix) "of equipment in which used.
4. Navy Type designation (including prefix and suffix where applicable) of major unit in which part is used.
5. Symbol designation of part.
6. (a) Navy Drawing Number.
(b) Manufacturer's Drawing Number
7. Rating or other descriptive data.
**
8. Commercial designation.

Fig. 1. The Model RBL-3 Radio Receiver

Fig. 1. The Model RBL-3 Radio Receiver

SECTION I DESCRIPTION
 SPECIAL NOTICE

The Models RBL-3 and RBL-4 Radio Receiving Equipments are essentially alike except for the required AC power supply voltages. The Model RBL-3 Radio Receiving Equipment is intended for operation on a 115 volt, $50-60$ cycle power supply and the Model RBL-4 Radio Receiving Equipment is intended for operation on either a 115 or 230 volt, 50-60 cycle power supply.

1 GENERAL

The Model \ddagger RBL-3 Radio Receiver employs seven tubes in a tuned radio frequency circuit with a regenerative type detector and covers in six bands the frequency range of $15-600 \mathrm{kc}$.
The receiver is suitable for the reception of either radio telephone (MCW) or radio telegraph (C-W or ICW) signals, and may be used either at Naval Shore Stations or aboard Naval Vessels.

The receiver is designed to operate on either a \dagger 105-125 volt $50-60$ cycle power supply, or a battery power supply. The approximate power consumption of the receiver is 45 watts when operating on a 115 volt supply and the B battery drain is approximately 27 milliamperes when operating on a 135 volt B battery power supply.

2 SHIPPING INFORMATION

The complete RBL-3 Radio Receiving Equipment is packed and shipped in a single wooden crate as follows:
Size_................-281/2" $\times 211 / 2^{\prime \prime} \times 171 / 2^{\prime \prime}$ High
Cubic Volume_-..................... 6.8 Cu. Ft.
Weight of Receiver with Mounting Base_ 84 Ibs.

\ddagger The Model RBL-4 Radio Receiving Equipment is essentially the same as the Model RBL-3, except where otherwise noted.
\dagger This operating voltage applies only to the Type CWQ-46161-A Radio Receiver.
The Type CWQ-46230 Radio Receiver is designed to operate on a power supply of either 115 or 230 volts, .50 to 60 Cycles AC.
Marking
Contract NXss 21446 Model RBL-3
Radio Receiving Equipment
with
Equipment Spare Parts

The complete RBL-4 Radio Receiving Equipment is packed and shipped in a single wooden crate as follows:

Size_...................-35" $\times 213 / 4^{\prime \prime} \times 171 / 4^{\prime \prime}$ High
Cubic Volume_..................... Cu .
Weight of Receiver with Mounting Base_ 84 lbs.

Marking
Contract NXsr 38492
Model RBL-4
Radio Receiving Equipment
with

3 CIRCUIT DESCRIPTION a General

The *Type CWQ-46161-A Radio Receiver uses two stages of R-F amplification, a regenerative detector, a stage of audio amplification, an audio limiter stage and an audio output stage. A self contained power supply provides the necessary DC voltages when the receiver is operated from a $\dagger 115 \mathrm{AC}$ power line.

[^0]All controls, as well as an audio output jack for headphones, are located on the front panel. Power, antenna, ground and output connections are made at the rear of the receiver.

b Frequency Ranges

The receiver covers the frequency range of 15-600 kc in six bands as follows:

Band	Frequency Range
A	$15-25 \mathrm{kc}$
B	$25-45 \mathrm{kc}$
C	$45-80 \mathrm{kc}$
D	$80-155 \mathrm{kc}$
E	$155-310 \mathrm{kc}$
F	$310-600 \mathrm{kc}$

c Anfenna Circuit

The antenna circuit is suitable for use with either a single wire or a relatively high impedance unbalanced feed-line antenna. A terminal board and jumper strip, located inside the cabinet near the right rear corner of the receiver, is provided for connecting the antenna input circuit for either a short or a long antenna. An antenna compensating control on the front panel permits adjusting the receiver very accurately to the length of antenna used. Static drain resistors, incorporated within the receiver, protect the antenna series capacitors from overloads.

d Power Supply

Although primarily intended for operation on either a $\dagger 105$ to 125 volt $50-60$ cycle power supply, provisions have been made for battery operation. For battery operation it is necessary to have a six volt A battery and a 135 volt B battery.
Connections for battery operation are given in Par. 10b, Connections for Battery Operation.
\dagger This operating voltage applies only to the Type CWQ-46161-A Radio Receiver.
The Type CWQ-46230 Radio Receiver is designed to ${ }^{\circ}$ operate on a power supply of either 115 or 230 volts, 50 to 60 Cycles AC .

e Tube Complement

The tubes used in the *Type CWQ-46161-A Radio Receiver and the circuit in which each is used are as follows:

CIRCUIT	TUBE TYPES
R-F Amplifier	6SK7
Second R-F Amplifier	6SK7
Regenerative Detector	6 SK7
First Audio Amplifier	$6 \mathrm{SG7}$
Audio Limiter	6 H 6
Audio Output	$6 \mathrm{~K} 6 \mathrm{GT} / \mathrm{G}$
Rectifier	$5 \mathrm{U4G}$

4 CABINET

A steel cabinet with a black wrinkle finish is used to house the *Type CWQ-46161-A Radio Receiver. The cabinet is $17 \frac{3}{18}$ inches wide, $10 \frac{\text { T }}{10}$ inches high, and $151 / 4$ inches deep. The top of the cabinet is hinged to give access to the tubes for servicing. A removable bottom plate enables the service man to reach the under side of the chassis.

5 DIAL

The main tuning dial is of the fixed scale moving pointer type, calibrated in six frequency bands. At the bottom of the main tuning dial is an additional small rotating dial that is divided into 100 divisions. This dial is of value when tuning in a station accurately. The drive ratio is such that the small dial revolves ten times while the tuning capacitor travels through the tuning range.

[^1]

Fig. 2. Block Diagram of Type CWQ-46161-A Radio Receiver

Fig. 3. Type CWQ-10124-A. Mounting Base

6 MOUNTING BASE

The Type CWQ-10124-A Mounting Base is a metal framework with four shock absorber feet. Holes in the shock absorbers allow the Mounting Base to be bolted securely to a table or bench.
At each corner of the Mounting Base are upright corner pieces. These corner pieces posi-
tion the receiver and hold slotted, knurled thumb screws that are used to fasten the receiver to the base.
Fig. 33, Drilling Plan for Mounting Base Installation (Page 76) shows the dimensions for a drilling template that may be made and used whenever a permanent receiver installation is to be made.

CAUTION

The paragraphs that appear on the following pages give instructions for connecting the seven prong connector plug for use with either an AC or a battery power supply. Operation and service information will also be found.

It is possible while performing these operations, to contact points in the equipment or ansociated power supplies that are above ground potential.

Since the use of high voltages which are dangerous to human life is necessary to the successful operation of the equipment covered by these instructions, certain reasonable precautionary measures must be carefully observed by the operating personnel during the adjustment and operation of the equipment.

The attention of officers and operating personnel is directed to Bureau of Ships Manual of Engineering Instructions, Chapter 31 (mimeographed form) or subsequent revisions thereof on the subject of "Radio-Safety Precautions to Be Observed."

SECTION II
 UNPACKING AND OPERATING TEST

7 EQUIPMENT

The Model RBL-3 Radio Receiving Equipment consists of the following:

1 Type CWQ-46161-A Radio Receiver
1 Type CWQ-10124-A Mounting Base
1 Set of Spare Parts and Tools
2 Preliminary Instruction Manuals
The Model RBL-4 Radio Receiving Equipment consists of the following:

1 Type CWQ-46230 Radio Receiver
1 Type CWQ-10124-A Mounting Base
1 Set of Spare Parts and Tools
2 Preliminary Instruction Manuals

8 UNPACKING THE EQUIPMENT

The *Model RBL-3 Radio Receiving Equipment is packed in a wooden box with the mounting base, spare parts and instruction manuals.
To unpack the equipment preparatory to installation, proceed as follows:

1. Clip the two metal bands binding the box.
2. Pull out the nails from the top of the box and remove the cover.
3. Remove the two cardboard fillers in the top of the packing box.
4. Tear open heavy waterproof paper.
5. Open the large cardboard box.
6. Remove the two fillers that will be seen in the top of the cardboard box.
7. Remove the one large cardboard filler.
8. Take out the two preliminary instruction manuals.
9. Pull up the handles on the top of the cabinet near each end and lift the receiver from the carton.
10. Remove the strip holding the spare parts box in place.
11. Remove the spare parts box from the packing case.

9 INSPECTION

After the *Type CWQ-46161-A Radio Receiver and spare parts have been uncrated and accounted for, check the receiver for broken dial glass, loose knobs, and other physical damage. Fig. 5, Tube Positions, shows the positions of each tube as well as the dial lights. A check should be made to ascertain that each tube and fuse is in the proper position and that the dial lights are correctly inserted. The tubes and dial lights are accessible after opening the hinged lid on the top of the cabinet.

[^2]

Fig. 4. Unpacking Procedure

Fig. 5. Tube Positions

10 CONNECTIONS TO POWER SUPPLY

a Connections for AC Operation

The Type CWQ-46161-A Radio Receiver is intended primarily for operation on an AC power supply of $105-125$ volts, 50 to 60 cycles. Before plugging the receiver into a power supply outlet, make certain that both the voltage and frequency available at the outlet are correct for the receiver.
The Type CWQ-46230 Radio Receiver may be operated on either a 115 or 230 volt power supply. Whenever it is desired to change over the receiver from 115 to 230 volt operation, it will be necessary to remove the receiver from the mounting base and the bottom cover from the receiver cabinet. Reconnect the power transformer terminal strip as shown in Fig. 28, Bottom Socket View of Type CWQ46230 Radio Receiver.
An AC Connector Plug is supplied with the

Fig. 6. AC Connector Plug Connactions
equipment. This plug is to be connected to a two-conductor cable as shown in Fig. 6, AC Connector Plug Connections. Each conductor in the cable should be of a size not smaller than \#18 wire.
For AC operation plug the AC Cord Connector Plug into the AC Power Socket, P-101, at the rear of the receiver. Make certain that the AC Jumper Plug is inserted in the Battery Cable and Jumper Plug Receptacle, J- 705.
The AC jumper plug is a seven prong connector plug with jumpers between terminals 1 and 2 and between terminals 3 and 7 as shown in Fig. 9.
Insert the two prong plug on the AC Cord into the $A C$ power supply outlet.

b Connections for Battery Operation

Connect a seven-prong Connector Plug to a six volt battery and a 135 volt B battery supply as follows:

Terminal No. 4, B -
Terminal No. 5, A +
Terminal No. 6. $\mathrm{B}^{+}+$
Terminal No. 7, A -
Terminals, 1,2 and 3 are to be left open.
See Fig. 8, Battery Cable Plug Connections, for a view of the Battery Cable Connector Plug showing the above connections.
To operate the receiver from a battery power supply, remove the AC Jumper Plug from the Battery Cable and Jumper Plug Receptacle, J-105, and insert the Battery Cable Connector Plug.

Fig. 7. Connections at Rear of Receiver

If no seven-prong plug is available for the battery cable connection, remove the AC Jumper Plug; pry off the top, remove the jumper leads and rewire as instructed above.
For AC operation it will be necessary to disconnect the Jumper Plug from the battery cable and make the original connections as shown in Fig. 9, AC Jumper Plug Connections.

11 CONTROLS

After the equipment has been inspected, the operator should become familiar with the rereceiver controls. This step should be followed by a preliminary operating test.

a Power

The Power ON-OFF control is located near the upper left corner of the front panel. This control operates two, two-position switches that turn the receiver on or off. Although the receiver is primarily intended for operation on an AC supply, the function of the power switch will be the same when the receiver is operated from a battery power supply.

b Audio

This control selects the audio band width passed by the audio filters in the receiver. When the control is in the BROAD position,
the audio band width will be approximately 3000 cycles at 20 db down with peak response at 1000 cycles. A band width of 600 cycles at 20 db down may be obtained yhen the control is turned to the SHARP position. In this position, peak response occurs at approximately 750 cycles per second.

c Output Limiter

When this control is turned to the ON position, all peak audio voltages may be limited to a desired level by means of the Output Level control.

Fig. 8. Battery Cable Plug Connections

PRY METAL COVẺR OFF CONNECTOR WITH SCREWDRIVER. INSERT DRIVER UNDER COVE AT THIS POINT.

Fig. 9. AC Jumper Plug Connections

d Output Level

When the Output Limiter control is turned to ON, the Output Level control may be adjusted to limit the peak voltages and noise pulses to a level that will facilitate reception of the desired signals.
Turning the control counter-clockwise increases the limiter action. For C-W reception an automatic volume control action may be obtained by advancing the Gain control and turning the Output Level control to a position that will
cause the peaks of the desired signals to be cut off slightly when the signal has faded to the lowest usable level.

Gain

The setting of the Gain control determines the amplification of the first and second R-F stages and the sensitivity of the receiver.
Advancing the control clockwise increases the R-F amplification.

f Regen

The amount of regeneration present in the detector stage is controlled with this knob.
Advancing the control clockwise increases the regeneration. When the control is advanced approximately $1 / 3$ of its total rotation, the detector stage will oscillate and produce a heterodyne signal suitable for the reception of C-W signals.

g Antenna Compensator

This control is a manually operated trimmer capacitor used to adjust the first R-F stage to maximum signal strength after the desired signal is tuned in.

h R-F Trimmer

This control is a manually operated trimmer capacitor used to adjust the second R-F stage to maximum signal strength after the station has been tuned in.

1 Osc. Test

The Osc. Test button is for use at times when no signal is being received, in order to deter-

Fig. 10. Front Panel View
mine whether or not the detector is oscillating. The detector is oscillating if a click is heard in the headphones when the button is depressed and a second click heard as the button is released.

| Tuning Knob

The tuning knob is located at the center of the front panel directly below the dial. Reception is accomplished by turning this knob until the receiver is tuned to the desired signal.

k Band Switch

The Band Switch control is in the center of the lower portion of the front panel. The receiver may be adjusted for reception in any of the six frequency bands by turning this knob until the detent mechanism is felt to click into position as the pointer on the control indicates the letter identifying the desired frequency band.

12 PREIIMINARY OPERATING TEST

A preliminary operating test may be made at the time the equipment is inspected in order to determine if the receiver is in good operating condition.

a Electrical Connections

(i) POWER CONNECTIONS

Connections for AC or battery operation are to be made as instructed in Par. 10, Connections To Power Supply.
(2) ANTENNA AND GROUND CONNECTIONS At the rear of the receiver is the antenna jack for the antenna connection and a flat head screw for the ground connection.
A ground wire need not be connected under the screw head if a concentric cable with grounded shield is used.
A Concentric Plug connector is supplied with the receiving equipment. This Connector is to be attached to the Antenna Lead-in Cable as shown in Fig. 11, Concentric Plug Connections.
Inside the cabinet near the right rear corner of the chassis (as viewed from the front of the receiver) is a terminal board and jumper strip. The jumper strip is to be connected between the center and right terminal when the receiver is to be used with a long antenna and between the center and left terminal when a short antenna is used.

(3) OUTPUT CONNECTIONS

If headphones are to be used for the preliminary operating test, they may be inserted into the phone jack on the front panel. An amplifier or additional sets of headphones may be connected to the output terminals at the rear of the receiver.
The correct inpedance for the total output load is 600 ohms.

Fig. 11. Concentric Plug Connections

b Test Frequencies

An operating test should be made or each of the six frequency ranges. For this purpose both unmodulated and modulated signals should be used. Test signals may be derived from a signal generator or some station signal may be used.

c Test Procedure

Use an unmodulated test signal for the operating test as follows:
(1) Turn the receiver on by turning the Power control to the ON position.
(2) Turn the Band Switch to the band in which the test signals are transmitted.
(3) Advance the Gain control to a fairly high level (in the absence of the signal this may be judged by the loudness of the background noise).
(4) Turn the Audio control to the BROAD position.
(5) Turn the Output Limiter control to the OFF position.
(6) Advance the Regen control to a position where oscillation takes place (about No. 4 on the Regen dial or slightly beyond).
If the receiver is tuned near the test signal frequency, a beat note will be heard if the detector is oscillating.
If the receiver is not tuned to the teat signal frequency, use the Osc. Test button to determine if the detector is oscillating. (A click will be heard as the Osc. Test button is depressed if the detector stage is oscillating.)
(7) Tune receiver accurately to the test frequency. As the receiver is tuned across a station, a beat note will be heard. This beat note will first be heard as a high pitched note and will gradually drop to zero beat as the receiver is tuned closer to the station.
When the receiver is tuned exactly to the station frequency, a zero beat condition will exist. As the receiver is tuned away
from the station, either above or below the signal frequency, the beat note will start at a low pitch and gradually increase to a higher frequency.
(8) Tune the receiver to the high frequency side of the zero beat point. (A beat note will be heard if the receiver is not tuned too far from the station frequency.)
(9) Adjust the Antenna Compensator and R-F Trimmer for maximum output.
(10) If the frequency of the beat note is changed when the Antenna Compensator and R-F Trimmer are adjusted, re-tune the receiver with the tuning knob in order to obtain the original beat frequency.
(11). Turn the Audio control to the SHARP position. The receiver will now tune more critically and the beat note will cut off at 900 cycles per second.
A slight retuning of the receiver may be necessary when the Audio control is turned to the SHARP position.
(12) Turn the Output Limiter control to ON.
(13) Adjust the Output Level control. As the Output Level control is turned in a clockwise direction, the level of the signal peaks will be increased in proportion to the setting of the control. (This action will be best seen if the receiver is detuned from the test frequency and the Output Level control used to control the level of noise peaks.)
(14) Turn signal generator modulation on or select a station transmitting a modulated carrier wave.
(15) Turn the Audio control to the BROAD position.
(16) Advance the Regen control to a position just short of the point where oscillation takes place.
(17) Use the Osc. Test button to determine if the detector stage is oscillating, (if oscillating, a click will be heard in the headphones as the button is depressed and again as the button is released). If the detector stage is oscillating, retard the Regen control to a point just short of where oscillation takes place.
(18) Tune the receiver with the tuning knob to the approximate frequency (as indicated on the dial) of the test signal. Rotate the Tuning control slowly back and forth until the position is found at which the signal comes in with maximum volume.
(19) Adjust the Gain control to a suitable level.
(20) Adjust the Antenna Compensator for maximum volume.
(21) Adjust the R-F Trimmer for maximum volume. (Note: When the Antenna Capacitor and R-F Trimmer are adjusted for maximum volume, it may be necessary to decrease the setting of the Gain control.)
(22) Repeat steps one through ten on each frequency band.

SECTION III

INSTALLATION AND OPERATION

13 RECEIVER LOCATION

The *Type CWQ-46161-A Radio Receiver is to be fastened to the type CWQ-10124-A Mounting Base at the time of installation. The Mounting Base may be mounted on any flat surface that is near the antenna lead-in and power supply outlet. If a permanent or secure mounting is desired, the Mounting Base may be bolted to the table or bench with four $3 / 8^{\prime \prime}$ dia. bolts. The Mounting Base may be installed from the dimensions given in Fig. 33. Drilling Plan for Mounting Base Installation.
Sufficient clearance must be allowed between the rear of the receiver and the wall to allow for the Concentric Plug and the curvature of the Antenna Lead-in Cable. The amount of space to be allowed will depend upon the type of Antenna Lead-in Cable used.
The receiver is to be placed on the Mounting Base and then fastened securely by means of the four slotted thumbscrews near the corners of the Mounting Base.

[^3]
14 Electrical Connections

a Antenna and Ground

Connect the antenna lead-in to the antenna jack and connect the jumper on the antenna terminal board to the proper terminal.
In order to determine the correct terminal to use with a particular antenna, proceed as follows: Connect the antenna to the antenna jack and connect the jumper on the antenna terminal board to either terminal. Tune in a station as instructed in Par. 12c, Test Procedure. Adjust the Antenna Compensator for maximum signal strength.
A point should be found where a definite increase in signal strength will be noted. Repeat this procedure on each frequency band. Should it be impossible to find a point of maximum signal strength on all bands, connect the Jumper on the antenna terminal board to the other terminal and repeat the check. Use the terminal on the antenna terminal board that allows the Antenna Compensator to tune the 1st R-F stage to resonance on all bands.
Connect the receiver to a good ground such as a cold water pipe or a pipe driven into the gröund.

b Power Connections

The receiver may be operated from either a 105-125 \dagger volt $50-60$ cycle AC supply, or

Fig. 12. Mounting the Radia Receiver
trom a battery power supply. Information concerning the proper connections at the receiver for either type power supply is given in Par. 10, Connections To Power Supply.
Do not connect the receiver to a power supply outlet unless certain that the voltage and frequency available are correct for the operation of the receiver.

15 INSTALLATION INSPECTION

After the completion of the receiver and antenna installation, a thorough check of the installation should be made in order to insure the proper and secure fastening of the receiver and electrical connections.

16 OPERATION

- C-W Reception

The procedure for operating the *Type CWQ-46161-A Radio Receiver is similar to that described for the operating test in Par. 12, Preliminary Operating Test.
To receive C-W signals turn the Power control to ON. Turn the Audio switch to the BROAD position. Tum the Band Switch to the proper frequency range. Advance the Gain control to a suitable level. This may be determined by the loudness of the background noise. Set the Regen control to a point where the detector will oscillate. (In the absence of a signal, the Osc. Test button may be used to determine if the detector atage is oscillating. A click will be heard in the headphones when the Osc. Test button is depressed and released if the detector is oscillating.)
Set the Antenna Compensator and R-F Trimmer for maximum background noise. Tune the desired station in by means of the tuning knob.
As the receiver is tuned across a station with the detector stage oscillating, a beat note will be heard both above and below the station frequency. This beat note will first be heard as a high pitched note and will gradually drop to zero beat as the receiver is tuned closer to the station.
Tune the receiver to the point of maximum signal strength at the high frequency side of the station frequency. Adjust the Antenna Compensator and R-F Trimmer for maximum

[^4]signal strength. Readjust the Tuning, Antenna Compensator and R-F Trimmer controls.
If sharp tuning is necessary to cut thru interference, the Audio control may be turned to the SHARP position. The receiver will now tune more sharply and may have to be retuned to the signal.
The Antenna Compensator and R-F Trimmer controls should be readjusted whenever the position of the Tuning control is changed.
If objectionable noise interference is encountered while attempting to receive transmissions, the Output Limiter control may be turned to the ON position and the level of the noise peaks may be lowered by turning the Output Level control counter-clockwise until the interfering noise is lowered to a level that will permit reception.

An automatic volume control action may be obtained by advancing the Gain control and adjusting the Output Level control until the peaks of the Audio Signals are cut off slightly when the signal has faded to its lowest useable level. This will result in a slight decrease in the quality of the received signal.

b MCW Reception

To receive MCW Signals set the controls as follows: Turn the Audio control to the BROAD position and turn the Band Switch to the frequency range in which the signals are transmitted. Advance the Gain control to a suitable position as determined by the background noise. Set the Regen control to a point just short of where oscillation starts (this point may be determined by the use of the Qsc. Test button; see Par. 11-i). Adjust both the Antenna Compensator and the R-F Trimmer for maximum background noise. The receiver may now be tuned to the frequency of the transmitting station with the tuning knob. Adjust the Antenna Compensator and R-F Trimmer for maximum signal strength.
Normally, the Output Limiter control will be left in the OFF position; however, if undesirable noise interference is encountered, this control may be turned on and the Output Level control used to suppress the noise peaks.
The Output Limiter control cannot be used to provide an AVC action for voice reception, as excessive distortion will result.

SECTION IV CIRCUIT DESCRIPTION

17 RECEIVER CIRCUITS

The circuite incorporated in the Type *CWQ-46161-A Radio Receiver are as follows: R-F Amplifier, Regenerative Detector, 1st Audio Frequency Amplifier, Audio Limiter, Audio Output Stage.

18 R-F AMPLIFIER

Two R-F amplifier stages incorporating 6SK7 tubes are used to provide amplification of R-F signals in the frequency range of 15 to 600 kc. The amplification of the R-F stages and the consequent gain of the receiver is manually controlled from the front panel by varying the grid bias of the two stages simultaneously. A potentiometer in the cathode circuit of these two tubes provides this action.
The sensitivity of the receiver is maintained fairly constant across each band by means of a second potentiometer that is ganged to the variable tuning capacitor.

19 REGENERATIVE DETECTOR

The detector circuit is of the regenerative type and incorporates a 6SK7 tube. Control of the regeneration in this circuit is obtained by varying the screen voltage. A push button switch is connected between the cathode and ground.

[^5]This switch is provided as a means of determining whether or not the circuit is oscillating at times when no signal is being received. If the detector circuit is oscillating, a click will be heard in the headphones as the OSC. Test button is depressed and released.

20 IST A-F AMPLIFIER

The lat audio amplifier stage uses a 6SG7 tube in a resistance coupled circuit. This tube is self-biased by means of a 500 ohm resistor connected between the cathode and chassis ground. A 1 mf . capacitor is used to bypass the bias resistor.

21 AUDIO FILTER

Following the first stage of audie amplification are two audio filters. These filters allow a choice of two band widths, 600 or 3000 cycles at 20 db down with peak response occurring at 750 and 1000 cycles per second respectively. The effect of these filters may be seen in ${ }^{\circ}$ Fig. 14, Audio Response Characteristics.

22 AUDIO OUTPUT STAGE

A single 6K6GT power output tube is used in the output stage. This tube is self-biased by means of a 500 ohm resistor connected between the cathode and the-ground.

Fig. 13. Stage-by-Stage Functional Diagram

A phone jack is provided on the front panel for connecting headphones to the receiver's output stage. A terminal strip at the rear of the receiver provides an additional output connection in parallel with the jack on the front panel. The correct total output load impedance is 600 ohms.

23 AUDIO LIMITER STAGE

A 6H6 is used as a dual diode audio frequency limiter. This stage follows the audio filters and precedes the audio output stage.
When the Output Limiter switch S-103, is turned to the OFF position, the positive potential applied to the diode plates is high enough to permit the passage of Audio frequency signals through the stage without a reduction of amplitude. When the output limiter switch is turned to the ON position, the diode plates are connected to the movable arm of the Output Level control R-147. This control provides a means of varying the diode plate voltages.
When the voltage applied to the diode plates is reduced by means of the Output Level control to a certain potential, an audio frequency signal of a certain amplitude or greater will be reduced in the diode circuit. That is, a maximum audio signal level is established and signals of a high amplitude are reduced to this level. Noise peaks which would ordinarily be reproduced as interference in the form of
pops or crackles, will be greatly reduced in amplitude. The amount of reduction is, of course, dependent upon the setting of the level control.
In addition to the reduction of interference, this stage may also be used to provide an automatic volume control action when C-W signals are received.

24 POWER RECTIFIER

A 5U4G full wave rectifier tube is used in the AC power supply to provide DC voltages for the operation of the receiver circuits. The Power Transformer T-101 in the Type CWQ-46161-A Radio Receiver is designed for operation on only a $105-125$ volt, $50-60$ cycle power supply.
In the Type CWQ-46230 Radio Receiver a power transformer of the universal type is used. Jumper strips are provided on the transformer terminal board for changing the receiver to operate on either a 115 or 230 volt supply.
Whenever it is desired to change over the receiver from 115 to 230 volt operation, it will be necessary to remove the receiver from the mounting base and the bottom cover from the receiver cabinet. Reconnect the power transformer jumper strips as shown in Fig. 28, Bottom Socket View of Type CWQ-46230 Receiver.

Fig. 14. Audio Response Characteristics

Fig. 15. Audio Limiter Circuit

LIST OF TERMS

These terms are referred to in Figures 16, 17 and 18

TERMS	DESCRIPTION OF TERMS
Standard Output Level	The Standard Output Level is 6 milliwatts with respect to a standard output impedance of 600 ohms.
Standard Noise Level	The Standard Noise Level is 60 microwatts with respect to a standard output impedance of 600 ohms measured with the Regen control set for standard oscillations.
Optimum Oscillation	
The condition of detector circuit oscillation, with a C-W input,	
obtained by rotating the Regen control to the point of maximum	
sensitivity.	

OUTPUT LIMITER CHARACTERISTICS.

Output Limiter Characteristics measured under the following conditions:
Connect Signal Generator to Receiver through Standard RMA Dummy Antenna. Use 600 Ohm output load.
Input Signal-35 Kc.
Output Reference Level-6 Milliwatts.
Band Switch-Band B.
Tuning Knob- 35 Kc .
Audio-Broad.
Power-ON.
Antenna Compensator-Adjust for maximum signal strength.
R-F Trimmer-Adjust for maximum signal strength.
Gain-Set for Standard Gain (C-W).
Regen-Set for Standard Oscillation.
Output Limiter-ON.
Output Level-Set as follows:

Fig. 16. Output Limiter Curves

Resonance Overload Measured Under Following Conditions:

Signal Generator connected to Receiver through Standard RMA Dummy Antenna. 600 Ohm output load.
Signal Input-C-W at frequencies shown in charts.
Band Switch-Turn to band of measurement.
Tuning Knob- Adjust to frequency shown in charts.
Audio-Broad.
Power-ON.
Antenna Compensator-Adjust for maximum signal strength on each band.
R-F Trimmer-Adjust for maximum signal strength on each band.
Gain-Set for Standard Gain (C-W).
Regen-Set for Standard Oscillation.
Output Limiter-OFF.
Output Level-Any position.
Fig. 17. Resonance Overload

$(-)$ PER CENT OFF RESONANCE (+)
BANDS A AND B

$(-)$ PER CENT OFF RESONANCE (+)
BANDS C AND D

Selectivity Measured Under Following Conditions:

Signal Generator connected to Receiver through Standard RMA Dummy Antenna. 600 Ohms output load.
Signal Input-See table shown below.
Band Switch-Turn to band of measurement.
Tuning Knob-Adjust to frequency shown below.
Audio-Broad.
Power-ON.
Gain-Set for Standard Gain (Modulated Input).
Regen-Set for Standard Regeneration.
Output Limiter-OFF.
Output Level-Any position.
Bond Measurement Medulation Special Conditions Frequency Frequency for Measurement

A	19 kc	100 cps	None
B	34 kc	100 cps	Jumper across high pass filter
C	60 kc	100 cps	Jumper across high pass filter
D	111 kc	100 cps	Jumper across high pass filter
E	219 kc	750 cps	None
F	435 kc	750 cps	None

Fig. 18. Selectivity Characteristics

Fig. 19. Trouble Location Chart

SECTION V

maintenance

NOTR: Service, either electrical or mechanical, should be attempted only by qualified personnet authorized for such work.
Operation of this equipment involves the use of high voltages. Operating personnel must at all times observe all safety regulations.
Always disconnect equipment from power supply before changing tubes or attempting service.

25 PERIODIC INSPECTIONS

To insure the proper operation of the equipment, periodic inspections should be made as follows:
Daily; Check operation. Turn on the receiver and tune in a station on each frequency band.
Weekly; Repeat above. Check the antenna and power connections.
Tube Testing: The tubes should be removed for checking only when the operation of the receiver causes doubt concerning their condition. When replacing a tube that has been removed, be certain that it is reinserted in the socket in which it was originally. This will prevent possible mis-alignment and poor operation of the receiver.

26 FIELD TROUBLE SHOOTING

Trouble-free reception resulting from the proper installation and operation of the *Type CWQ-46161-A Radio Receiver will usually be insured by the periodic inspections detailed in Par. 25, Periodic Inspections. Troubles developing suddenly during operation are usually of a minor nature that may be corrected as follows:

a Set Dead-Dial and Panel Lights Out

(1) Check the power cord connections at the receiver and outlet box.
(2) Check the fuses located at the rear of the receiver cabinet.

b Set Dead—DIal Llights On

(1) Check for burned out tubes.

Live glass tubes will glow faintly and live metal tubes will be warm when touched. If in doubt concerning the condition of a tube, replace it with a known good tube and note any change in the receiver's operation.
(2) Check headphone connections. Make certain that the headphone plug is properly
*Information concerning the Type CWQ-46161-A Radio Receiver is applicable aleo to the Type CWQ-46230
Radio Receiver except where otherwise atated.
inserted and that the leads in the flexible cord are unbroken.
The headphone leads may be checked for continuity by momentarily touching the cord tips across a $11 / 2$ volt flashlight battery while listening for a click in the headphones.

27 GENERAL TROUBLE LOCATION

When servicing a receiver, as a rule the first step should be a careful check for defective tubes. To do this, turn on the receiver and replace the tubes one at a time with known good tubes. Be certain that all good tubes are returned to the sockets that they originally occupied.
If no defective tubes are found, visual inspection of the parts and connections should follow.
Resistors or other parts with charred or discolored surfaces indicate a part that has been overheated due to excessive current passing through it.
This condition is often caused by shorted bypass or filter capacitors. All associated capacitors should be checked for shorts or low resistance.
Open filter or bypass capacitors will often cause oscillation, a loss of sensitivity or other troubles. Suspected capacitors may be quickly checked by shunting them temporarily with a known good capacitor of the same size:
Unsoldered terminals, loose wires or grounds caused by hidden solder may also be found and quickly corrected.
Should such an inspection disclose no faults, the next step should be to tap the various parts, pull the wires at the connections, jar the chassis, etc. This procedure will often result in crackles, squeals, fading or distortion that will show in which circuit or part the trouble lies. If nothing is found by this procedure, voltage and current measurements followed by resistance and continuity measurements should be made as described in the following paragraphs:

28 STAGE GAIN MEASUREMENTS

The approximate gain of each stage is shown in Table A, Stage Gain Measurements. To make measurements of this type, it will be necessary to have a signal generator and output meter. The signal generator must be accurately calibrated and must have an attenuator network capable of providing a signal of the order of one microvolt.

29 VOLTAGE MEASUREMENTS a General

Table B, Socket Voltages, shows voltage measurements made from the chassis ground to the more important tube socket terminals. These measurements are made with a 1000 ohm per volt meter and are readings that will be obtained when using a similar meter on receivers in good condition.

b Procedure

(1) Remove the bottom plate from the cabinet. Supply power to the Radio Receiver and turn the Radio Receiver on. Place the controls in the positions indicated in Table B, Socket Voltages.
(2) Use the voltmeter ranges indicated in the table and make the desired readings between the terminals shown on the voltage table and ground.

30 RESISTANCE AND CONTINUITY MEASUREMENTS

a General

In Table C, Coil Resistances, are shown the resistance readings of the coils and transformers. These measurements are to be made with test prods at the coil terminals or other points shown in the table. Whenever possible, use an ohmmeter range that will allow the readings to be made on the 0 to 50 portion of the ohmmeter scale.

b Procedure

(1) Remove the bottom plate from the cabinet and disconnect the power cord from the power supply.
(2) Use the proper ohmmeter scale and adjust the meter to zero ohms. Proceed to make the desired readings.

31 REPLACEMENT OF A BAND SWITCH SECTION

A defective section of the band switch may be changed without changing the entire band switch assembly. Fig. 20, Removal of Band Switch Section, shows the procedure to follow for such a replacement. Care must be taken, when rewiring the replaced switch section, that the wires are correctly connected to the terminal lugs.
When replacing the switch section, do not tighten the mounting screws securely until after the switch shaft has been reconnected and the band switch operated several times. This action will position the switch correctly and prevent binding during operation.

32 REPLACEMENT OF SENSITIVITY CONTROL

The Sensitivity Control, R-145, is ganged to the tuning capacitor. Should it be necessary to replace this part, follow the procedure shown in Fig. 21, Replacement of Sensitivity Control.

Fig. 20. Removal of Band Switch Section

Fig. 21. Replacement of Sensitivity Control

33 ALIGNMENT

a General

Correct alignment is extremely important for the proper operation of the receiver. However, re-alignment should not be attempted unless it is certain that the receiver is misaligned and then, only after all other possible causes of faulty operation have been fully investigated.
The correct step-by-step alignment procedure is given here and should be followed whenever aligning the receiver. Fig. 26, Trimmer Positions, shows the position of each Trimmer Capacitor. Also see Fig. 24.

b Preliminary Adjusfments

Before beginning the alignment of the *Type CWQ-46161-A Radio Receiver, the position of the dial pointer should be checked with reference to the tuning capacitor.
The dial pointer should indicate zero on the $0-1000$ scale of the main dial when the corners of the stator and rotor plates of the tuning capacitor (the corners farthest from the shaft) line up, with the plates in the meshed position. If the pointer is incorrectly positioned, the knobs, cover plate and dial glass may be removed and the pointer bent slightly in order to correct the calibration.

[^6]First remove the Audio, Output Level, Output Limiter and power supply knobs by loosening the two set screws in each of the knobs with a No. 6 Allen Head Wrench. Insert the wrench in each of the tapped holes, and turn until the set screw is loosened. Pull the knob off the shaft. Follow the same procedure for rempving the tuning knob, only use the No. 8 wrenich. There are six screws and lockwizshers on the dial opening plate that secure it to the front panel of the receiver. Unscrew these screws and pull the dial plate away from the receiver.

c Equipment Necessary for Alignment:

A standard 600 ohm output meter and a signal generator capable of providing unmodulated signals between 15 and 600 kc is necessary when aligning the receiver. This equipment is to be connected to the receiver as shown in Fig. 24, Alignment Connections.

Fig. 22. Dial Pointer Adjustment

Fig. 23. Removal of Dial Cover Plate

d Control Positions

When aligning the receiver, the controls on the front panel should be positioned as follows:

CONTROLS

POSITION
Power
Audio
On Broad
Output Limiter Off
Gain
Regen
Antenna
Compensator
R-F Trimmer
Band Switch
Tuning Knob

- Allignment for D, E and F Bands

1. Turn the receiver's band switch to the F band.
2. Connect a 600 ohm output meter to the receiver output terminals at the rear of the receiver or the phone jack on the front panel. Do not have headphones or any other loads connected across the output.
3. Connect the R-F signal generator thru a standard RMA dummy antenna to the antenna and ground terminals on the receiver.
4. Adjust the receiver Gain control to approximately 8 or 9 . Turn the Regen control to a point where the detector stage will oscillate. Use the OSC Test button on the front panel to determine if the detector stage is oscillating. (See Par. Ili, OSC Test.)
5. Set the signal generator for an unmodulated output at 600 kc . IMPORTANT: The level of the signal fed into the receiver should be, at all times, the lowest that will give a usable indication on the output meter.
6. Tune the receiver until the dial pointer indicates 600 kc on the receiver's dial. Set both the Antenna Compensator and R-F Trimmer controls to zero.
7. By means of the detector stage trimmer capacitor, C-106, tune the receiver thru the signal. Note that there are 2 points of peak response with a point of zero response in the center. Leave the trimmer capacitor, $\mathrm{C}-106$, set so that the receiver is tuned to the point of zero response.
8. Detune the receiver slightly by means of the tuning knob, towards the high frequency end of the dial. Locate the point of maximum response.
9. Adjust the 2nd R-F trimmer capacitor, C-102, for maximum indication on the output meter.
10. Set the Antenna Compensator for maximum output. Adjust the signal generator output for approximately 6 milliwatts on the output meter. The D, E and F bands will be correctly aligned when this output reading is obtained with an R-F input of less than 10 microvolts.

Fig. 24. Alignment C̣onnections

f Alignment for C Band

1. Turn the receiver's band switch to the C band.
2. Adjust the receiver Gain control to approximately 8 or 9 . Turn the Regen control to a point where the detector stage will oscillate. Use the OSC Test button on the front panel to determine if the detector stage is oscillating. (See Par. 1li, OSC. Test.)
3. Set the signal generator for an unmodulated output at 80 kc . IMPORTANT: The level of the signal fed into the receiver should be, at all times, the lowest that will give a usable indication on the output meter.
4. Tune the receiver until the dial pointer indicates 80 kc on the receiver's dial. Set

Fig. 25. Schematic Diagram, Standard rMA Dummy Antenna
both the Antenna Compensator and R-F Trimmer controls to zero.
5. By means of the detector stage trimmer capacitor, C-110, tune the receiver thru the signal. Note that there are 2 points of peak response with a point of zero response in the center. Leave the trimmer capacitor, $\mathrm{C}-110$, set so that the receiver is tuned to the point of zero response.
6. Detune the receiver slightly by means of the tuning knob, towards the high frequency end of the dial. Locate the point of maximum response.
7. Adjust the 2nd R-F trimmer capacitor, C-105, for maximum indication on the output meter.
8. Set the Antenna Compensator for maximum output. Adjust the signal generator output for approximately 6 milliwatts on the output meter. The C band will be correctly aligned when this output reading is obtained with an $R F$ input of less than 10 microvolts.

g Alignment for B Band

1. Turn the receiver's band switch to the B band.
2. Adjust the receiver Gain control to approximately 8 or 9 . Turn the Regen control to a point where the detector stage will oscillate. Use the OSC Test button on the front panel to determine if the detector stage is oscillating. See Par. Mli, OSC. Test.)
3. Set the signal generator for an unmodulated output at 43 kc . IMPORTANT: The level of the signal fed into the receiver should be, at all times, the lowest that will give a usable indication on the output meter.
4. Tune the receiver until the dial pointer indicates 43 kc on the receiver's dial. Set both the Antenna Compensator and R-F Trimmer controls to zero.
5. By means of the detector stage trimmer capacitor, C-107, tune the receiver thru the signal. Note that there are 2 points of peak response with a point of zero response in the center. Leave the trimmer capacitor, $\mathrm{C}-107$, set so that the receiver is tuned to the point of zero response.
6. Detune the receiver slightly by means of the tuning knob, towards the high frequency end of the dial. Locate the point of maximum response.
7. Adjust the 2nd R-F trimmer capacitor, C-109, for maximum indication on the S. 3 output meter.
8. Set the Antenna Compensator for maxiimum output. Adjust the signal gener-
Trator output for approximately 6 milliwatts on the output meter. The B band will be 5.tecorrectly aligned when this output readang is obtained with an R-F input of less the than 10 microvolts.

It Allgnment for A Band

ifjown the receiver's band switch to the A band.
2 ef.Adjust the receiver Gain control to ap2. proximately 8 or 9 . Turn the Regen control to a point where the detector stage will oscillate. Use the OSC Test button frivon the front panel to determine if the o. detector stage is oscillating. See Par. lli, OSC Test.)
3. Set the signal generator for an unmodu-- io lated output at 25 kc . IMPORTANT: ans The level of the signal fed into the re-

Fig. 26. Trimmer Positions
ceiver should be, at all times, the lowest that will give a usable indication on the output meter.
4. Tune the receiver until the dial pointer indicates 25 kc on the receiver's dial. Set both the Antenna Compensator and R-F Trimmer controls to zero.
5. By means of the detector stage trimmer capacitor, $\mathrm{C}-103$, tune the receiver thru the signal. Note that there are 2 points of peak response with a point of zero response in the center. Leave the trimmer capacitor, $\mathrm{C}-103$, set so that the receiver is tuned to the point of zero response.
6. Detune the receiver slightly by means of the tuning knob, towards the high frequency end of the dial. Locate the point of maximum response.
7. Adjust the R-F Trimmer control on the front panel for maximum indication on the output meter.
8. Set the Antenna Compensator for maximum indication on the output meter. Adjust the signal generator output for approximately 6 milliwatts on the output meter. The A band will be correctly aligned when this output reading is obtained with an R-F input of less than 10 microvolts.
2. Adjust the receiver Gain control to approximately 8 or 9 . Turn the Regen control to a point where the detector stage will oscillate. Use the OSC Test button on the front panel to determine if the detector stage is oscillating. See Par. 1li, OSC. Test.)
3. Set the signal generator for an unmodulated output at 43 kc . IMPORTANT: The level of the signal fed into the receiver should be, at all times, the lowest that will give a usable indication on the output meter.
4. Tune the receiver until the dial pointer indicates 43 kc on the receiver's dial. Set both the Antenna Compensator and R-F Trimmer controls to zero.
5. By means of the detector stage trimmer capacitor, $\mathrm{C}-107$, tune the receiver thru the signal. Note that there are 2 points of peak response with a point of zero response in the center. Leave the trimmer capacitor, $\mathrm{C}-107$, set so that the receiver is tuned to the point of zero response.
6. Detune the receiver slightly by means of the tuning knob, towards the high frequency end of the dial. Locate the point of maximum response.
7. Adjust the 2 nd R-F trimmer capacitor, C-109, for maximum indication on the output meter.
8. Set the Antenna Compensator for maxiimum output. Adjust the signal generator output for approximately 6 milliwatts on the output meter. The B band will be cofrectly aligned when this output read-
ing is obtained with an R-F input of less *sthan 10 microvolts.

Ai Alignment for A Band

fruTn the receiver's band switch to the A band.
2. Adjust the receiver Gain control to approximately 8 or 9 . Turn the Regen control to a point where the detector stage will oscillate. Use the OSC Test button
 detector stage is oscillating. See Par. lli, OSC. Test.)
3. Set the signal generator for an unmoduPis lated output at 25 kc . IMPORTANT: as The level of the signal fed into the re-

Fig. 26. Trimmer Positions
ceiver should be, at all times, the lowest that will give a usable indication on the output meter.
4. Tune the receiver until the dial pointer indicates 25 kc on the receiver's dial. Set both the Antenna Compensator and R-F Trimmer controls to zero.
5. By means of the detector stage trimmer capacitor, C-103, tune the receiver thru the signal. Note that there are 2 points of peak response with a point of zero response in the center. Leave the trimmer capacitor, $\mathrm{C}-103$, set so that the receiver is tuned to the point of zero response.
6. Detune the receiver slightly by means of the tuning knob, towards the high frequency end of the dial. Locate the point of maximum response.
7. Adjust the R-F Trimmer control on the front panel for maximum indication on the output meter.
8. Set the Antenna Compensator for maximum indication on the output meter. Adjust the signal generator output for approximately 6 milliwatts on the output meter. The A band will be correctly aligned when this output reading is obtained with an R-F input of less than 10 microvolts.
2. Adjust the receiver Gain control to approximately 8 or 9 . Turn the Regen control to a point where the detector stage will oscillate. Use the OSC Test button on the front panel to determine if the detector stage is oscillating. See Par. Mli, OSC. Test.)
3. Set the signal generator for an unmodulated output at 43 kc . IMPORTANT: The level of the signal fed into the receiver should be, at all times, the lowest that will give a usable indication on the output meter.
4. Tune the receiver until the dial pointer indicates 43 kc on the receiver's dial. Set both the Antenna Compensator and R-F Trimmer controls to zero.
5. By means of the detector stage trimmer capacitor, $\mathrm{C}-107$, tune the receiver thru the signal. Note that there are 2 points of peak response with a point of zero response in the center. Leave the trimmer capacitor, $\mathrm{C}-107$, set so that the receiver is tuned to the point of zero response.
6. Detune the receiver slightly by means of the tuning knob, towards the high frequency end of the dial. Locate the point of maximum response.
7. Adjust the $2 n d$ R-F trimmer capacitor, C-109, for maximum indication on the output meter.
8. Set the Antenna Compensator for maxiimum output. Adjust the signal generator output for approximately 6 milliwatts on the output meter. The B band will be correctly aligned when this output reading is obtained with an R-F input of less than 10 microvolts.

Alignment for A Band

the Turn the receiver's band switch to the A band.
2.-Adjust the receiver Gain control to approximately 8 or 9 . Turn the Regen control to a point where the detector stage will oscillate. Use the OSC Test button \therefore on the front panel to determine if the detector stage is oscillating. See Par. lli, OSC. Test.)
3. Set the signal generator for an unmodu-
lated output at 25 kc . IMPORTANT:
4) The level of the signal fed into the re-

Fig. 26. Trimmer Positions
ceiver should be, at all times, the lowest that will give a usable indication on the output meter.
4. Tune the receiver until the dial pointer indicates 25 kc on the receiver's dial. Set both the Antenna Compensator and R-F Trimmer controls to zero.
5. By means of the detector stage trimmer capacitor, $\mathrm{C}-103$, tune the receiver thru the signal. Note that there are 2 points of peak response with a point of zero response in the center. Leave the trimmer capacitor, $\mathrm{C}-103$, set so that the receiver is tuned to the point of zero response.
6. Detune the receiver slightly by means of the tuning knob, towards the high frequency end of the dial. Locate the point of maximum response.
7. Adjust the R-F Trimmer control on the front panel for maximum indication on the output meter.
8. Set the Antenna Compensator for maximum indication on the output meter. Adjust the signal generator output for approximately 6 milliwatts on the output meter. The A band will be correctly aligned when this output reading is obtained with an R-F input of less than 10 microvolts.

TABLLE A-STAGE GAIN MEASUREMENTS

A-F GAIN MEASUREMENTS

Audio Oscillator-Frequency 750 Cycles

Control Positions

Power \qquad ON Gain \qquad 10 Regen \qquad Feed colum ing until taine	into Detector grid (see blow for connections durTurn control clockwise Milliwatt output is ob-	Audio \qquad Output Limiter Band Switch \qquad Tuning Knob \qquad R-F Trimmer \qquad Antenna Compen	Broad \qquad OFF \qquad Any position \qquad Any position \qquad Any position \qquad Any position
Connection between Audio Oscillator and Receiver	Audio Oscillator Connection to Receiver	Volts Input	Output Milliwatts
. 1 mf . .1 mf . . 1 mf .	Detector Grid Ist A.F Grid Output Grid	$\begin{array}{r} .01 \\ .2 \\ 2.7 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \end{aligned}$

R-F GAIN MEASUREMENTS

Signal Generator-Frequency 450 KC.
Signal Generator Modulation-750 Cycles, 30\%

		Control Positions	
Power	ON	Band Switch.	_F
Gain	-. 10	Tuning Knob	Adjust dial to 450 KC .
Regen	- 0	R-F Trimmer	Adjust for max. signal
Audio	Broad	Antenna Compensato	Adjust for max. signal

Output

200
200
200

Connection Between Signal Generator and Receiver	Signal Generator Connection to Receiver	Microvolts Input	Output Milliwatts
Standard RMA Dummy Antenna . 1 mf . . 1 mf. . 1 mf.	Antenna Terminal Ist R-F Grid 2nd R-F Grid Detector Grid	$\begin{array}{r} 14 \\ 200 \\ 6,200 \\ 120,000 \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$

TABLE B-SOCKET VOLTAGES

All voltages are approximate and are read between the socket terminals and ground with a 1,000 ohm-pervolt meter under the following conditions:
Line Voltage 115 Volts
Plate and Screen Voltages Read on 250 Volt Scale
Cathode Voltage Read on Highest Scale That Per-
mits Value to Be Read Easily
Power Contro-ON
Tuning Knob-Dial Pointer at Extreme Left of Dial
Gain Contro-See Column Heading
Regen Contro-See Column Heading
Audio Contro-BROAD
Output Limiter-OFF
Band Switch-F Band
R-F Trimmer Control-0
Antenna Compensator Control-0

	Voltages Read With Gain Control Set at 10 Regen Control at 0.			Voltages Read With Gain Control Set at 0 , Regen Control at 10.		
$\begin{gathered} \text { Tube } \\ \& \end{gathered}$ Function		Screen Volts $\&$ Term. No.	$\begin{gathered} \text { Cathode } \\ \text { Volts } \\ \text { Rorm. No. } \end{gathered}$	Plate Volts 8 Torm. No.		Cathode Voits 8 Torm. No.
$\begin{aligned} & \text { 6SK7 } \\ & \text { Ist R-F } \end{aligned}$	$\begin{gathered} 155 \\ \text { No. } 8 \end{gathered}$	$\begin{array}{r} 77.5 \\ \text { No. } 6 \end{array}$	$\begin{gathered} 5.5 \\ \text { No. } 5 \end{gathered}$	$\begin{gathered} 187 \\ \text { No. } 8 \end{gathered}$	$\begin{gathered} 93 \\ \text { No. } 6 \end{gathered}$	$\begin{aligned} & 46.0 \\ & \text { No. } 5 \end{aligned}$
$\begin{aligned} & \text { 6SK7 } \\ & \text { 2nd R-F } \end{aligned}$	$\begin{gathered} 118 \\ \text { No. } 8 \end{gathered}$	$\begin{gathered} 78 \\ \text { No. } 6 \end{gathered}$	4.75 No. 5	170 $\text { No. } 8$	$\begin{gathered} 92 \\ \text { No. } 6 \end{gathered}$	$\begin{aligned} & 47.5 \\ & \text { No. } 5 \end{aligned}$
6SK7 Det.	$\begin{gathered} 110 \\ \text { No. } 8 \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{No.} 6 \end{gathered}$	$\begin{gathered} 0 \\ \text { No. } 5 \end{gathered}$	$\begin{aligned} & * 50 \\ & \text { No. } 8 \end{aligned}$	$\begin{gathered} * 25 \\ \text { No. } 6 \end{gathered}$	$\begin{gathered} 0 \\ \quad \text { No. } 5 \end{gathered}$
$\begin{aligned} & \text { 6SG7 } \\ & \text { Ist A-F } \end{aligned}$	$\begin{gathered} 62 \\ \text { No. } 8 \end{gathered}$	$\begin{gathered} 22 \\ \text { No. } 6 \end{gathered}$	$\begin{gathered} 0.4 \\ \text { Nos. } 3 \& 5 \end{gathered}$			
$6 \mathrm{H}_{6}$ Limiter	$\begin{array}{r} 37.5 \\ \text { Nos. } 3 \& 5 \end{array}$		$\begin{gathered} 37.5 \\ \text { Nos. } 4 \& 8 \end{gathered}$			
6K6GT Output	$\begin{gathered} 180 \\ \text { No. } 3 \end{gathered}$	$\begin{gathered} 190 \\ \text { No. } 4 \end{gathered}$	$\begin{gathered} 12.2 \\ \text { No. } 8 \end{gathered}$			
5U4G Rect.	Filament - 203 Volts Nos. $2 \& 8$					

*Voltages read with tube in oscillating condition. Readings may be found to vary with tube age.

OCTAL SOCKET
BOTTOM TERMINAL NUMBERING

Fig. 27. Bottom Socket View of Type CWQ-46161-A Radio Receiver

For 115 Volt operation, the jumper terminal board must be mounted so that the 115 Volt marking is visible.

For 230 Volt operation, the jumper terminal board must be mounted so that the 230 Volt marking is visible.

Fig. 28. Bottom Socket View of Type CWQ-46230 Radio Receiver

TABLE C-COIL RESISTANCES
Resistances shown are approximate resisfance value of coils and transformers.
Colors shown in the column "Terminals Resistance is Measured Across" are colors appearing on the coil lugs.

Symbol Desig.	Name of Part	Winding	Terminals Resistance Is Measured Across	\qquad
L-101	Low Pass Filter Assembly	Three Chokes in Series	$1-3$	800.
L-102	High Pass Filter Assembly	Resistance	Not Measurable at External	Terminals
L-103	Cathode Filter Choke			500.
L-104	B+ Filter Choke			300.
*T-101	Power Transformer RBL-3	Primary	1-4	9.05
		H.V. Secondary	7-9	439.
		6.3 V. Secondary	3-6	. 075
		5 V. Secondary	2-5	. 101
*T-101	Power Transformer RBL-4	Primary	$1-11$	15.
		Primary	4-10	15.
T-102	Output Transformer	Primary	7-9	438.
		Secondary	$1-3$	18.
Z-101	1st R-F Coil, Low Frequency	No. 1	Black-Red	110.
		No. 2	Red-Yellow	62.
		No. 3 .	Yellow-Blue	50.
Z-102	2nd R-F Coil, Low Frequency	No. 1	Black-Red	110.
		No. 2	Red-Yellow	62.
		No. 3	Yellow-Blue	50.
Z-103	Detector Coil, Low Frequency	No. 1	Red, Blue-Slate -	5.
		No. 2	Black-Red	102.
		No. 3	Red-Yellow	62.
		No. 4	Yellow-Blue	50.
		No. 5	Red, Blue-Red, Black	1.4
Z-104	Ist R-F Coil, High Frequency	No. 1 \& No. 2	Black-Red	17.
		No. 3	Red-Yellow	8.
		No. 4	Yellow-mlue	6.
Z-105	2nd R-F Coil, High Frequency	No. $1 \&$ No. 2	Black-Red	17.
		No. 3	Red-Yellow	8.
		No. 4	Yellow-Blue	6.
Z-106	Detector Coil, High Frequency	No. 1 \& No. 2	Black-Red	17.0
		No. 3	Red-Yellow	8.0
		No. 4	Yellow-Blue	6.0
		No. 5	Red, Blue-Slate	. 7

*The information given on the secondary windings of the Power Tranaformer T-IOI used in the RBL-3, also applies to the secondaries of the Transformer T-IOl used in the RBL-4.

TABLE D-CATHODE CURRENT'S

TABLE E-COLOR CODING

TABLE F-LIST OF MAJOR UNITS

MODEL RBL-3

NAVY TYPE DESIGNATION	NAME OF MAJOR UNIT	SYMBOL GROUP	MFR'S. ASSEMBLY DRAWING NUMBER
CWQ-46161-A	Radio Receiver	101 and up	25A543
CWQ-10124-A	Mounting Base	301 and up	25A558
MODEL RBL-4			
CWQ-46230	Radio Receiver	101 and up	25A717
CWQ-10124-A	Mounting Base	301 and up	25A719

TABLE G—PARTS LIST BY SYMBOL DESIGNATION

*One asterisk in the Symbol Designation column identifies parts NOT included in the Stock Spare Parts for the Model RBL-3.
**Two asterisks in the Symbol Designation column identifies parts NOT included in the Stock Spare Parts for the Model RBL-4.
(The Stock Spare Parts are those supplied as spare parts but not shipped to the same destination as the receiving equipment.)
\ddagger One Double Dagger in the Contractor's Drwg. \& Part No. column indicates a part that is applicable to the Model RBL-3 only.
$\ddagger \ddagger$ Two Double Daggers in the Contractor's Drwg. \& Part No. column indicates a part that is applicable to the Model RBL-4 only.

Where there is no Double Dagger symbol, the part is directly interchangeable in both Models.

The alphabetical portion of the symbol designations included in the parts list are assigned
to cover certain classes of parts. The letter and the parts group to which each is assigned is as follows:
(A) Structural parts, panels, frames, castings, etc.
(C) Capacitors of all types.
(E) Miscellaneous electrícal parts: Insulators, knobs, brushes, etc.
(F) Fuses.
(H) Hardware, screws, bolts, studs, pins, etc. (Also see "O" group.)
(I) Indicating devices (except meters and thermometers, pilot lamps, etc.
(J) Jacks and receptacles (Stationary).
(L) Inductors. R-F and A-F.
(N) Nameplates, dials, charts, etc.
(O) Mechanical parts and larger hardware.
(P) Plugs.
(R) Resistors, fixed and variable, potentiometers, etc.
(S) Switches.
(T) Transformers, A-F and power.
(V) Vacuum tubes.
(X) Sockets.
(Z) Filters, I-F transformers, compound tuned circuit assemblies, etc., in a common container.

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Nayy Type Number	Navy Speclicicator or Drawing Number	Mr.	Mf. Desig.	Special Toletoñce Rating or Modflication	Contractor's Drawling and Part No.
STRUCTURAL PARTS								
*A-101	Chassis Mounting and Protection	CABINET, C.R. Steel. Overall, 17.597" $\times 15.045^{\prime \prime} \times 10.468^{\prime \prime}$, Front and Side Panels. Black Wrinkle Finlsh.			21			34×386
*A. 102	Cabinet Back Cover Plate	BACK COVER, C.R. Steel. $17.109^{\prime \prime} \times 10.468^{\prime \prime} \times .045^{\prime \prime}$ Thick, with Cutouts. Black Wrinkle Finish			21			34×387
$* A .103$ $* *$	Cabinet Top Cover Plate	TOP COVER, C.R. Steel, $15.781^{\prime \prime} \times 13.672^{\prime} \times .045^{\prime \prime}$ Thick, with 3 Hinges Spotwelded to Rear of Plate. Black Wrinkle Finlsh			47			$34 \times 403{ }^{\text {a }}$
$* * A-104$ $* *$	Dlal Opening Cover Plate	ESCUTCHEON, ${ }^{032^{\prime}}$ C.R. Steel. $11.750^{\prime} \times 6.687^{\prime \prime}$. Dial Opening $6.625^{\prime} \times 3.500^{\prime \prime} .1 .312^{\prime \prime}$ R. Arc at Bottom Center, with 1.950° Dia. Drive Shaft Opening at Center. Two, $.500^{\prime \prime}$ Dla., Control Openings Each Side. Black Wrinkle Finish			16			4X769
**-105	Dial Window	DIAL WINDOW, Cellulose Acelate, Water Clear. 7.000" x $4.000^{\prime \prime} \times .093^{\prime \prime} .1 .000^{\prime \prime}$ R. Arc Cutout, Bottom Center			8			17×79
*A-106	Dial Scale, $\mathrm{N}-101$, Mounting	DIAL BRACKET, $031^{\prime} 1 / 4$ Hard C.R. Steel, Z Type Angle. Cadmium Plated and Clear Lacquer Finish			39			25×1274
*A-108	Capacitor, C-108, Mounting	BRACKET, 078' C.R. Steel. $2.265^{\prime \prime} \times 1.500^{\prime \prime}$ Width at Base 6 $.625^{\prime \prime}$ Top Width. 2 Openings $.500^{\prime \prime}$ Dia, Centered 1.140^{6} and $1.890^{\prime \prime}$ from Base. Base Flange $.515^{\prime}$. 2 ExtrudIng 6-32 Tap Mig. Holes in Base, Each . 500^{\prime} from Center. Cadmium Plated		\cdots	39			25×1191
*A-109	Same as A-110 and A-111	BOTTOM PLATE ASSEMBLY, Includes A-110 and A-111 thru A-114			47			$25 A 674$
**-110	Recelver Bottom Cover	BOTTOM PLATE, C.R. Steel. $17.000^{\prime \prime} \times 14.875^{\prime \prime} \times .069^{\prime \prime}$. Cadmium Plated and Clear Lacquer Finish			1			34×390
$\begin{gathered} * \text { A-111 } \\ \text { thru } \\ \text { * }{ }^{\text {A }} \text { A-114 } \end{gathered}$	Receiver foot	GLIDER, StaInless Steel. Overall .312" x .750" Dia.; .562" R. Base. . $109^{\prime \prime} \times .375^{\prime \prime}$ Dia. Mtg. Stud			43			20×1013
$\begin{aligned} & \text { A-115 } \\ & \text { thru } \end{aligned}$	Band Switch Wafer Mounting	ROTARY SWITCH BRACKET, Half Hard Brass, Overal $1.819^{\prime \prime} \times .875^{\prime \prime} \times .0641^{\prime \prime}$ Thick. $.375^{\circ}$ Dia. Center Hole, One 4-40 Tap Hole Near Each End. 4° Angle Cutoff Two Comers. Two $312^{\prime \prime} \times .250^{\prime \prime}$ Mis. Flanges with No. 31 D.S. Hole. Dull White Nickel Finish			39			25×1204
A-129	Rectifier Tube'Clamping Ring	TUBE CLAMP, $.015^{\prime \prime}$ High Čarbon Tempered Steel. Overall $2.156^{\prime \prime} \times 1.569^{\prime} \times .437^{\prime}$ High. Cadmium Plated and Clear Lacquer Finish			12	8597		30×494
	Cradle Mounting	LORD MOUNT, C.R. Steel Frame, $3.000^{\prime \prime}$ Square, Cadmium Plated. Rubber Floating Mount with Metal Insert. Mig. Opening ${ }^{391 " ~ D i a . ~}$.	30	200PH-20		8×145
*A-305	Recelver Mounting	CRADLE ASSEMBLY, Includes Symbol Designations A301 thru A-304. A-306, H-301 thru H-304 and Hardware.			47			$\begin{array}{r} \ddagger 25 A 558 \\ +\ddagger 25 A 719 \\ \hline \end{array}$

TABLE G--PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Nary Type Number	Navy楼 Specification or Drawing Number	Mfr.	Mfr. Desig.	Special Tolerance Rating or Modification	Contractor's Drawing and Part No.
***.306	Same as A-305	CRADLE, C.R. Steel. Overall, $17.686^{\circ} \times 16.186^{\prime \prime}$. Reinforced Corners with 4 Mig. Hubs .093" Thick. Black Wrinkle Finish			47	-		22×404

CAPACITORS

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Ney Type Number	$\begin{gathered} \text { Navy } \\ \text { Specification } \\ \text { or Drawing } \\ \text { Number } \\ \hline \end{gathered}$	Mf.	Mit. Desig.	\qquad	\qquad
C-116	Short Ant. Cireult	CAPACITOR, Molded Mice, $300 \mathrm{mmf} .=10 \%, 500$ VDC Working. Low Loss Case	48854		40	K-1330		47X334
$\begin{gathered} \mathrm{C}-117 \\ \text { and } \mathrm{C}-118 \end{gathered}$	Low Pasa Filter Circuit	CAPACITOR, Molded Mica, $\mathbf{3 5 0} \mathrm{mmf} . \pm 10 \%, 500$ VDC Working. Low Loss Cose. Part of L-101	48676		40	K-1335		47X336
C-119	R-F Grid Coupling	CAPACITOR, Molded Mica, $500 \mathrm{mmf} . \pm 10 \%, 500$ VDC Working. Low Loss Case	48691		40	K-1350		47×335
C-120	Det. Grid Coupling	CAPACITOR, Same as C-119						
C-121	Ant Coupling, A Band	CAPACITOR, Molded Mica, 800 mmf . $\pm 10 \%, 500$ VDC Working. Low Loss Case	481428		40	C-1380		47×339
C-122	Det Compensating Copacitor, E Bend	CAPACITOR, Molded Mica, $900 \mathrm{mmf} . \pm 10 \%$, 500 VDC Working. Low Loss Case	481098		40	C. 1390		47X344
	Same as C-117.	CAPACITOR, Same as C-122. Part of L-101						
C-125	Ant. Coupling, B Bond	CAPACITOR, Molded Mien, $1000 \mathrm{mmf} . \pm 10 \%, 500$ VDC Working. Low Loss Case	48983		40	C-1210		47×340
C-126	2nd R-F Filament Filter	CAPACITOR, Some as C-125						
$\begin{gathered} \text { C-127 } \\ \text { and C-128 } \end{gathered}$	Det. Plate Filter Circuit	CAPACITOR, Same as C-125						
C-129	Output Transformes Filter	CAPACITOR, Molded Mice, $2500 \mathrm{mmf} . \pm 10 \%$, 500 VDC. Working Low Loss Case	481089		40	C-1295		47×347
$\begin{gathered} \text { C-130 } \\ \text { and C-131 } \end{gathered}$	Some as C-117	CAPACITOR, Molded Mice, $4000 \mathrm{mmf} .=10 \%$, 300 VDC Working. Low Loss Cose. Part of L-101	48999		40	C-1240		47×342
$\begin{gathered} \mathrm{C}-132 \\ \text { and C-133 } \end{gathered}$	Some as C-117	CAPACITOR, Molded Mice, $5000 \mathrm{mmf} .10 \%$, 300 VDC Working. Low Low Case. Part of L-101	481037		40	C-1250		47×343
$\begin{gathered} \mathrm{C}-134 \\ \text { and } \mathrm{C}-135 \end{gathered}$	High Pasw Filter Clrevit	CAPACITOR, Same as C-132, Except Pait of L-102						
$\begin{gathered} C-136 \\ \text { and } \mathrm{C}-137 \end{gathered}$	Some as C-134	CAPACITOR, Molded Mice, $6000 \mathrm{mmf} . \pm 10 \%$, 300 VDC Working. Low Loss Case. Part of L-102	48847	-	40	C-1260		47×345
$\begin{gathered} \mathrm{C}-138 \\ \text { and } \mathrm{C}-139 \end{gathered}$	Some as C-134	CAPACITOR, Molded Mica, $8000 \mathrm{mmf} . \pm 10 \%, 300$ VDC Working. Low Loss Case. Part of L-102	481560		40	C.06280		47X346

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig:	FUNCTION	DESCRIPTION	Nery Type Number	Navy Specification or Drewing Number	Mr.	MF. Desig.	Special Tolerance Roting or Modification	Contrector's Drewing and Part No.
*C-143	1st Audio Grid Coupling	CAPACIOR, Tubular, Foil Paper Dielectic. 01 mf . $\pm 10 \%$, 400 VDC Working. $.937^{\circ} \times .437^{\prime \prime}$ Dia. Metal Case ${ }_{6}$ Covered with Transparent Vinylite Tubing. Two 9.000^{2} Pigtail Type Leads		RE-13A-488	19	7707		46×366
*C-144	Audio Output Grid Coupling	CAPACITOR, Same as C-143						
$\begin{aligned} & { }^{* C-145} \\ & \text { and } C-146 \end{aligned}$	Same as C-117	CAPACITOR, Same as C-143, Except . 013 mf .		RE-13A-488	19	7708		46×365
${ }^{*} \mathrm{C}-147$	Cathode Filter, R-F Stage	CAPACITOR, Tubular, Foil Paper Dielectic. 0.1 mf . $\pm 10 \%, 400$ VDC Working. $1.687^{\prime \prime} \times .703^{\prime \prime}$ Dia. Metal Case Covered with Impregnated Kraft Tubing. Two 2.375" Pigtail Type Leads	481073	RE-13A-488	19	7653		46×364
${ }^{*} \mathrm{C}-148$	Output Limiter Filter	CAPACITOR, Same as C-147						
*-149	1 st R-F Cothode Resistor Bypast	CAPACITOR Paper Dielectric, Oil Filled. Metal Cose, $1.187^{\prime} \times .687^{\prime} \times 2.062^{\prime \prime}$ High. $0.5 \mathrm{mf} . \pm 10 \%, 600 \mathrm{VDC}$ Working. Two Lug Terminals. Mitg. Flanges Seme End as Terminals	481549	RE-1 3A-488	19	7667		48×250
*C-150	1at R-F Sereen Recistor Bypass	CAPACITOR, Same as C-149						
${ }^{*} \mathrm{C}-151$	Ind R-F Cathode Rexistor Вуразs	CAPACITOR, Same as C-149						
${ }^{*}$ C-152	2nd R-F Screen Resistor Bypass	CAPACITOR, Same as C-149						
*C-153	Filter Coupling	CAPACITOR, Same as C-149						
C-154	Output Limiter Filter	CAPACITOR, Same as C-149						
$\begin{gathered} \text { *-155 } \\ \text { and } C-156 \end{gathered}$	ACLine Filter	CAPACITOR, Same as C-149						
*C-157	2nd R-F Plate Bypasm	CAPACITOR, Same as C-149, Except 0.8 mf , and Mtg. Flanges on Opposite End from Terminals		RE-13A-488	19	7669		48×252
${ }^{*} \mathrm{C}-158$	1at Audio Plate Filter	CAPACITOR, Same as C-157,						
${ }^{*} \mathrm{C}-159$	R-F Plate Bypass	CAPACITOR, Same as Canep, Except 1.0 mf . and Case, 2.625" High	481550	RE-13A-488	19	7668		48×251
${ }^{*} \mathrm{C}-160$	2nd R-F Plate Bypase	CAPACITOR, Same as C-159						
$\begin{gathered} \text { *-161 } \\ \text { and C-169 } \end{gathered}$	Det. Screen Bypass	CAPACITOR, Same as C-159	6 ${ }^{\circ}$					
${ }^{*} \mathrm{C}-163$	Det. Plate Hum Filter Creult	CAPACITOR, Same as C-159						
*C.164	1st Audio Cathode Bypass	CAPACITOR, Same as C-159						

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Navy Type Number	Navy Specification or Drowing Number	Mr.	Mf. Detig.	Special Tolerance Roung or Modification	Contractor's Drawing and Part No.
*-165	1st Audio Sareen Bypass	CAPACITOR, Same as C-159						
${ }^{*} \mathrm{C}-166$	Audio Output Cathode Bypass	CAPACITOR, Same as C-159						
$\begin{gathered} { }^{*} \mathrm{C} \text { C-167 } \\ \hline \end{gathered}$	Power Supply Filter	CAPACITOR, Paper Dielectric, Oll Filled. Metal Case, $4.500^{\prime} \times 1.500^{\prime \prime}$ Dia., 4.0 mf . $\pm 10 \%, 600$ VDC Working. Two Terminal Lugs and One Grounding Lug. Includes Mig. Hardware	481080	RE-13A-488	$\begin{aligned} & 19 \\ & \text { or } \\ & 52 \end{aligned}$	$\begin{gathered} 7670 \\ \text { or } \\ \text { A. } 1004 \end{gathered}$		48×249
MISCELLANEOUS ELECTRICAL PARTS								
*E-101 thru E-103	Connections Insulator	TERMINAL BOARD ASSEMBLY, Bakelite. Two Terminals. . $750^{\prime \prime} \times .3^{\prime 2} \times .069^{\prime}$. Right Lus Mis. Extension. Wax Impregnated. All Parts to Withstand 200 Hr . Solt Spray Test			12.	6464W1		4 A277
*E-104	Same as E-101	TERMINAL BOARD ASSEMBLY, Same as E-101, Except Left Lug Mtg. Extenslon			12	6465W1		4 A278
*E-105	Reslistor, R-136, Mounting	TERMINAL BOARD ASSEMBLY, Some as E-104						
$\begin{gathered} \text { *E-106 } \\ \text { and } E-107 \end{gathered}$	Same as E-101	TERMINAL BOARD ASSEMBLY, Same as E-104						
*E-108	Resistor, R-115, Mounting	TERMINAL BOARD ASSEMBLY, Bakelite. Three Terminal. $1.125^{\prime \prime} \times .375^{\prime \prime} \times .062^{\prime}$. Center Lug Mits. Extension. Wex Impregnated. All Parts to Withstand 200 Hr . Salt Spray Test			12	6468W1		4 A276
$\begin{aligned} & \text { *E-109 } \\ & \text { and E-110 } \end{aligned}$	Same as E-101	TERMINAL BOARD ASSEMBLY, Same as E-108						
$\begin{aligned} & \text { * } \mathrm{E}-111 \\ & \text { and } \mathrm{E}-112 \end{aligned}$	Some as E-101	TERMINAL BOARD ASSEMBLY, Same as E-108, Except Right Lug Mtg. Extension			12			4 A281
*E-114 thru E-117	Same as E-101	TERMINAL BOARD ASSEMBLY, Same as E-108, Except Left Lug Mtg. Extension			12			4 A282
*E-146	Speaker Connections	TERMINAL PANEL, Bakelitie. Two Screw and Lug Type Terminals. $9.000^{\prime} \times .687^{\prime} \times .062^{\prime \prime}$. Two $.140^{\circ}$ Dia. Mis. Holes. Rounded Ends. Lettering Above Screws to be OUIPUT. All Part to Withstand 200 Hr . Solt Spriay Test			12	1780	Marked OUTPUT	4 A273
$\begin{gathered} \text { *E-147 throu } \\ E-150 \end{gathered}$	Tuning Capactior, C-101 and Selectivity Control, R-145, Leads Protection	INSULATING PANEL, L.E. Bakelite, Overall $1.374^{\prime \prime} \times$ $.562^{\prime} \times .062^{\prime \prime} .562^{\prime \prime}$ Dia. Cutout in Center. Two $.144^{\prime \prime}$ Dia. Mtg. Holes. Syncera or Cerese Mineral Wax Finish	-		47			1×239

table G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Navy Type Number	Navy Specification or Drawing Number	Mfr.	Mir. Desig.	Special Tolerance Rating or Modification	Contractor's Drawing and Part No.
$\begin{aligned} & \text { *E-151 } \\ & \text { and E-152 } \end{aligned}$	Capacitor, C-108, Mounting Insulator	INSULATING PANEL, L.E. Bakelite, $1.500^{\prime \prime} \times .750^{\prime \prime} \times$.062". Two $.149^{\prime \prime}$ Dia. Mis. Holes with Cutout at Side of Hole. Syncera or Cerese Mineral Wax Finish			47			1×236
$\begin{gathered} \text { *E-153 thru } \\ E-158 \end{gathered}$	Coll Leads Insulation	INSULATING PANEL, L.E. Bakelite, Overall $2.125^{\prime \prime} \times$ ${ }^{750^{\prime \prime}} \times .062^{\prime \prime}$. Two $.375^{\prime \prime}$ Dia. Openings and Two $144^{\prime \prime}$ Dia. Mig. Holes. Syncera or Cerese Mineral Wax Finish			47			1×240
**-159	Tuning Capacitor Rear Mounting Insulator	GROMMET, Rubber, ${ }^{312^{\prime \prime}}$ Thick, .625" O.D., .265" I.D. Groove . $062^{\frac{\prime}{2}} \times .468^{\prime}$ Dia.			7	1240		6×41
$\begin{aligned} & \text { *E-160 thru } \\ & \text { E-162 } \end{aligned}$	High Frequency Coil Mounting Insulator	SPACER, Hard Maple, $312^{\prime \prime}$ High, .375" O.D., . $180^{\prime \prime}$ I.D. Impregnated with Light Oil			36			2×399
*E-163 thru E-165	Low Frequency Coil Mounting Insulator	SPACER. Same as E-160, Except .375" High			36			2×420
*E-166 thro E-193	Band Switch Leafs Mounting Insulator	SPACER, Fibre, .062' Thick, . $250^{\prime \prime}$ O.D., $125^{\prime \prime}$ I.D.			45			2×396
*E-194	Phone Jack Mounting Insulator	SHOULDER WASHER Hard Black Fibre. Shoulder .051" Thick, $875^{\prime \prime}$ O.D., Washer $.042^{\prime \prime}$ Thick, .495" O.D., .380 ${ }^{\prime}$ I.D.			27	.		2×394
$\begin{gathered} \text { "E-195 } \\ \text { and } E-196 \end{gathered}$	Panels, E-151 and E-152, Spacer	LOCATING WASHER, L.E. Bakelite, $.046^{\prime \prime}$ Thick, .468" O.D., $144^{\prime \prime}$ I.D. Syncera or Cerese Mineral Wax Finish			45			2×398
*E-197	Phone Jack Mounting Insulator	WASHER, Hard Black Fibre, .032" Thick, .695" O.D., . $380^{\prime \prime}$ I.D.			27			2×395
*E-198	Ant. Lead-in Connector	TERMINAL STRIP ASSEMBLY, L.E. Bakelite, 3 Screw and Lug Type Terminals, $9.500^{\prime \prime} \times .750^{\prime \prime} \times .093^{\prime \prime}$. Movable Connector on Center Lug. Wax Impregnated. All Parts to Withstand, 200 Hr . Salt Spray Test			47			4 A296
$\begin{gathered} \text { *E-199 thru } \\ \mathrm{E}-201 \end{gathered}$	H-F Coils Z-104, Z-105 and Z-106, Shield	SHIELD CAN, $.019^{\prime \prime}$ Copper, $3.000^{\prime \prime} \times 4.000^{\prime}$ O.D. Closed End with Four .187" Dia. Vents Equidistant 1.250" from Center. Other End with 3 Full Mig. Thds., 10 Thds. per Inch, Cadmium Plated			4	W-04431		32X314
$\stackrel{\text { E-202 thru }}{\text { E-204 }}$	L-F Coils, Z-101, Z-102 $\text { and } \mathrm{Z}-103 \text {, Shield }$	SHIELD CAN, Same as E-199, Except 5.250" Long and Clear Lacquer Finish			4	W-04429		32×312
$\begin{gathered} \text { *E-205 thru } \\ E-910 \end{gathered}$	Cover and Mitg. for Shields, E-199 thru E-204	SHIELD CAN COVER, $018^{\prime \prime}$ Copper, $750^{\prime \prime} \times 4.125^{\prime \prime}$ O.D. 3 Complete Thds., 10 Thds. per Inch. Clear Lacquer Finish			4	W-04430		32X313
*E-211	Power OfF-ON Control	BAR KNOB AND POINTER, Black Bakelite, $1.250^{\prime \prime} \times$ $.500^{\prime \prime} \times .625^{\prime \prime}$ High, with $.375^{\prime \prime}$ R. at Long Side Centers. Pointer Plate Attached to Bottom. Two 6-32 Tap Mtg. Holes			47			10A487
*E-912	Audio Band Width Contol	BAR KNOB, Same as E-211						
*E-213	R-F Gain Control	BAR KNOB, Seme as E-211						

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Deslg.	FUNCTION	DESCRIPTION	Nayy Type Number	Navy Specification of Drawing Number	Mf.	Mr. Desig.	Special Tolerance Roting or Modification	Contractor's Drawing and Part No.
${ }_{* *}^{*} \mathrm{E}$-214	Regeneration Control	BAR KNOB, Same as E-211						
**-215	Output Level Control	BAR KNOB, Some as E-211						
**-216	Oupput Limiter Control	BAR KNOB, Same as E-211						
*E-217	Ant. Compensator Control	BAR KNOB, Same as E-211						
E-218	Ant. Trimmer Control	BAR KNOB, Same as E-211						*
*E-819	Tuning Contol	KNOB, Black Bakelite Fluted Edge, Rounded Front Orerall Dia. $2.375^{\prime} \times .187^{\prime}$ thick. Two 8-3'2 Tap, Mounting Holes			10			10A485
"E-920	Bend Switch Control	KNOB ASSEMBLY, Same as E-219, Except with Pointar Plafe Attached			47			10 A491
*E-921	Voluage Changeover Strip for Power Transformer, T-101. Model RBL-4'Only	VOLTAGE CHANGEOVER BOARD, Bekelite, $2.125^{\circ} \times$ $1.375^{\prime} \times .062^{\prime}$ Thick. 4 Terminals; Two Each Connected by $.031^{\prime \prime}$ Thick Brass Strips. Wax Impregnated, Used With Model RBL-4 Only			47			$\ddagger \ddagger 4 \wedge 300$
*E-222	Protects Sensiltvity Control, R-145, Contacts from Grounding	SHIELD, Fibre, Overall, $3.000^{\prime \prime} \times 9.250^{\prime \prime} \times .010^{\prime \prime}$ Thick. One Side 1.500' Long, One End 1.500" Wide			49			11×113
*E-223	Ant. Lead-in Connector	TERMINAL STRIP, Same as E-198, Except Less Mavable Connector.			25	3-6		4 A295
FUSES								
*F-101 and F-102	Receiver Protection, One Each Side of AC Line	FUSE, 2 Ampa. 250 V $_{\text {I }}$ Type 3 AG, $1.187^{\prime \prime} \times .250^{\circ}$ Dia. All Parts to Withstend $\mathbf{2 0 0} \mathrm{Hr}$. Salt Spray Test			29	1042		16×87
HARDWARE								
${ }^{*} \mathrm{H}-101$ **	Phone Jack Mounting	HEX NUT, Brass, .375"-32, . $500^{\prime \prime}$ across Flats. Dull White Nickel Finish			9			20×520
*H-102	Orc. Test Switich Mounting	HEX NUT, Same as H-101					*	
*H-103	Potentiometer, R-145, Mounting	HEX NUT, Same as H-101						
"H-105	Monual Gain Control, R-146, Mounting	HEX NUT, Some as H-101						
*H-106	Outpur Level Control, R-147, Mounting	HEX NUT, Same as H-101						

TABLE G-PARTS LIST BY SYMBOL DESIGNATION *

Symbol Desig.	FUNCTION	DESCRIPTION	Nary Type Number	\qquad	Mfr.	$\underset{\text { Mesig. }}{\text { Mr. }}$		Contractor's Drawing and Part No.
*-107	Regeneration Control, R-148, Mounting	HEX NUT, Same as H-101						
*H-108	Audio Band Width Control. S-107, Mounting	HEX NUT, Same as H-101						
*H-109	Same as H-103	LOCKWASHER, Steel, . $375^{\prime \prime}$, Int. Teeth, Cadmium Plated			42			20X556
$\text { * }+110$	Same as H-105	LOCKW ASHER, Same as H-109						-
*H-111	Same as H-106	LOCKW ASHER, Same as H-109						
*H-112	Same as H-107	LOCKW/ASHER, Same as H-109						
*H-113	-Same as H-108	LOCKW ASHER, Same as H-109						
象 *H-114 and H-115	Detent Mechanism, O-102, to Shaft, O-109, Mits.	SET SCREW, Allen Hd., Cup Point. Steel, 6-32 x .187' (.062' across Flats of Hex)			41			20×903
*H-116 and H-117	Detent Mechanism, O-102, to Shaft, O-109, Mitg.	SET SCREW, Same as H-114						
*H-118 and H-1 19	Collar, O-120, Mtg.	SET SCREW, Same as H-114						
$\begin{gathered} \text { *H-180 } \\ \underset{* *}{\text { Hru }} \mathrm{H}-127 \end{gathered}$	Bar Knobs Mitg. (Side)	SET SCREW, Same as H-114						
$\begin{aligned} & \text { "H-128 } \\ & \text { and } \mathrm{H}-129 \end{aligned}$	Drive Gear, O-105, Mtg.	SET SCREW, Allen Hd., Cup Point. Steel, 8-32 $\times .250^{\circ}$ (.078' across Flats of Hex)			41			20×933
$\begin{aligned} & \text { "H-130 } \\ & \text { and } \mathrm{H}-131 \\ & \text { ** } \end{aligned}$	Drive Gear, O-106, Mtg.	SET SCREW, Same as H-128						
$\begin{gathered} \text { *H-1 } 32 \\ \text { and } \mathrm{H}-133 \end{gathered}$	Drive Gear, O-103, Mtg.	SET SCREW, Same as H-128						
$\begin{gathered} \text { *H-1 } 34 \\ \text { thru } \mathrm{H}-141 \end{gathered}$	Bar Knobs Mtg., at End	SET SCREW, Same as H-114, Except .500' Length			41			20×1002
$\begin{aligned} & \text { *H-142 } \\ & \text { and } \mathrm{H}-143 \end{aligned}$	Tuning Knob Mitg.	SET SCREW, Same as H-128, Except .500' Length			41			20×1003
$\begin{aligned} & \text { *H-144 } \\ & \text { and H-145 } \end{aligned}$	Bend Switch Knob Mtg.	SET SCREW, Same as H-142						

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Nayy Type Number	Navy Specificition or Drawing Number	Mr.	Mfr. Desig.	Special Tolerance Reting or Modificition	$\begin{gathered} \text { Contractor's } \\ \text { Drawing } \\ \text { and } \\ \text { Port No. } \end{gathered}$
+ *H-146 and H-147 ** *H-148 and H-149 * *H-301 thru H-304	Ant. Compensator, $\mathrm{C}-108$, Mts. Same as H-146 Recelver to Cradle Mounting	MACHINE SCREW, Binding Head, Bress, 6-32 x $312^{\prime \prime}$. Dull White Nickel Finish LOCKWASHER, Steel, Ext. Teeth, Ho, Cadmium Plated SPECIAL SCREW, Stainless Steel, Overall Length 1.062*; $.312^{\prime \prime} \times \# 12-24$ Thd. at End. Remainder Stem $.50^{\prime \prime} \times .162^{\prime \prime}$ Dia. Head: . $250^{\prime \prime} \times .500^{\prime}$ Dia., Slotted Knurled Edge	-		$\begin{aligned} & 32 \\ & 42 \\ & 23 \end{aligned}$.		20X545 20X550 20×851
INDICATING DEVICES								
$\begin{aligned} & \begin{array}{c} \mathrm{l}-101 \\ \text { and } \mathrm{l}-102 \\ * * \\ *-103 \end{array} \\ & { }^{*}{ }^{*} \mathrm{I}-104 \end{aligned}$	Dial Illumination Frequency Indicator Vernier Dial Indicator	DIAL LAMP, 6.3 V, 15 Amp. POINTER, $025^{\prime \prime}$ C.R. Steel. Overall Length, 3.125", Mtg; Section, $.980^{\prime \prime}$ Dia., with $.116^{\circ}$ Dia. Mitg. Hole, $.078^{\prime}$ Width to $1.110^{\prime \prime}$ fom Mtg. Section. Remainder 90° Twist, Tapering to .046" Width at Tip. Smooth Black Finish POINTER, $015^{\prime \prime}$ C.R. Steel. Overall Length $1,218^{\prime \prime}$. Pointer $.569^{\prime} \times .062^{\prime \prime}, 90^{\circ}$ Twist from Mts. Section, $.625^{\circ} \times$ $.375^{\circ}$, with One 099^{\prime} and One 126^{\prime} Dia. Mig. Hole. Smooth Black Finish			48 24 24	$\begin{gathered} \text { Mazda } \\ 47 \end{gathered}$,	7 A103 15X210 15×209
JACKS AND RECEPTACLES								
*J-101	Headphone Connector	TELEPHONE JACK, Single Circuit. All Parts to Withstand $\mathbf{2 0 0} \mathbf{~ H r}$. Salt Spray Test			46	IJ-101		3A365
$\begin{aligned} & \text { J-102 } \\ & \text { and J-103 } \end{aligned}$	Fuse Receptacle	FUSE EXTRACTOR POST Screwdriver Operated Plug Knob. All Parts to Withstand $\mathbf{2 0 0} \mathrm{Hr}$. Salt Spray Test			29	1075		16X84
*J-104	Ant. Connector	CONCENTRIC JACK, Single' Male Pin. $.812^{\prime \prime} \times .750^{\circ}-20$ Thd., $500^{\prime \prime} \times .875^{\prime \prime}$ Dia. Int, Locking Teeth. Includes Mitg. Hex Nut	49120	RA-49F-215	37			3A375
-105	Power Supply Connector	SOCKET, 7 Prong Ceramic. Two Large Prongs. 1.187 Deep. All Parts to Withstand 200 Hr . Sale Spray Test	49201		5	61 CP75		3 A363
*J-106	ACPower Cord Connector	CORD CONNECTOR, Bakelite, 1.187" x .968" Dia. with Steel Clamp Cord Grip		.	22	7464 Twist-lock Midget with Cord Grip		3 A374

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Dealg.	FUNCTION	DESCRIPTION	Nayy Type Number	Nary Specification or Drawing Number	Mfr.	Mr. Desig.	Special Tolerance Rating or Modification	Contrector's Drawing and Part No.
${ }^{* *} \mathrm{~N}-105$	Radio Recelver Identification	NAME PLATE, Same as N-104, Except for Size, 3.062' x 2.062" $\times .040^{\prime \prime}$, and Printing			34			$\begin{array}{r} \ddagger 4 \times 798 \\ \ddagger \ddagger 4 \times 827 \end{array}$
${ }_{* *}^{* N-106}$	Complete Unit Identification	NAME PLATE, Same as N-104, Except for Size, 4.062' x 3.312' x $.040^{\prime \prime}$, and Printing			34			$\begin{array}{r} \ddagger 4 \times 797 \\ 4 \pm 4 \times 896 \end{array}$
*N-107	R-F Gain Control Identification	CONTROL PLATE, Zinc, 1.750° Dla., $.030^{\circ}$ Thick. Center Opening $500^{\circ} \mathrm{Dle}$. Calibrated $300^{\circ} 0$ to 10 . Lettering to be GAIN. Clear Lacquer Finish			18	17533	Leftered GAIN	4X755
${ }^{* *} \mathrm{~N}-108$	Regeneration Control Identification	CONTROL PLATE, Same as N-107, Except Lettering to be REGEN.			18	17533	Lettered REGEN.	4×776*
${ }^{*} \mathrm{~N}-109$	R-F Trimmer Control Identfication	CONTROL PLATE, Some as N-107, Except Colibrations to be 180 ${ }^{\circ}$ 10-0-10 and Lettering to be R-F TRIMMER			18	17532	Leftered R-F TRIMMER	4×778
* N-110 $* *$	Ant. Compensator Identification	CONTROL PLATE, Same as $\mathrm{N}-109$, Except Lettering to be ANTENNA COMPENSATOR		- .	18	17532	Lettered ANTENNA COMPENSATOR	4×777
*N-111	Osc. Test Button Identification	OSC. TEST PLATE, Zinc, . $875^{\prime \prime}$ Dia., $030^{\circ \prime}$ Thick. Center Opening . 380^{\prime} Dia., Lettering at Top to be OSC. TEST. Clear Lacquer Finish			18	17531	Leftered OSC. TEST	4×781
*N-112	Head Phone Jack Indicator	PHONE PLATE, Same as $\mathrm{N}-111$, Except Lettering to be PHONES			18	17531	Lettered PHONES	4×782
* $\mathrm{N}-113$	Band and Range Indicator	RANGE INDICATOR PLATE, Zinc, 3.000° Dla., .030 ${ }^{\circ}$ Thick. Center Opening $.750^{\prime}$. Clear Locquer Finish			18	17536		4X780
$* N-114$ $* *$	Power Switch and Audio Control Identification	CONTROL PLATE, ZInc, $5.125^{\prime \prime} \times 1.83^{\prime \prime} \times .093^{\prime \prime}$ Thick. Two $.500^{\prime}$ Dia. Openings Centered $.921^{\prime \prime}$ and $2.671^{\prime \prime}$ from Bottom. Lettering Below Top Opening, POWER, Above, OFF. on Lowet Opening, Above, BROAD SHARP', Below, AUDIO. Clear Lacquer Finish.			20			4X771
**-115	Output Level and LImiter Control Identification	CONTROL PLATE, Same as N-114, Except Lettering Below Top Opening, OUIPUT LEVEL, Below Lower Opening, OUIPUT LIMITER			20			4×772
*N-301	Mounting Bose Identification	NAME PLATE, Same as N -104, Except $.562^{\prime \prime}$ Width and Lettering			34			$\ddagger 4 \times 800$ $\ddagger \ddagger 4 \times 828$
M MECHANICAL PARTS								
$\begin{aligned} & * * \\ & * \mathrm{O}-101 \\ & \mathrm{md}-\mathrm{O}-102 \end{aligned}$	Bend Switch Setting	DETENT MECHANISM, 6 Positions, $.437^{\prime \prime} \times .250^{\circ}$ Dla. Shaft. Must Withstand $\mathbf{2 0 0} \mathrm{Hr}$. Selt Spray Test			38			25A555
0-103	Band Change Gear Drive	DRIVE GEAR, Doler Zinc 43, 1.083' O.D. 24 Teeth, 24 Pitch, Plitch Dia. $1.000^{\prime} 1416^{\circ}$ Pressure Angle, Involute Tooth Form. Hub $.500^{\circ}$ O.D., .251' I.D. with Two 8-32 Tap Holes. Chromate Dip Finish			17			24×525

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Novy Type Number	Nary Specification of Drawing Number	Mr.	$\underset{S \text { Desig. }}{ }$	Special Tolerance Rating or Modification	Contractor's Drawing and Port No.
PLUGS								
*P-101	AC Power Connector	FLUSH MOTOR PLUG, Twist Lock Type, Mole Base. Length Under Panel . $875^{\prime \prime}$. Mtg. Flange, 1.625' O.D. with Two . ${ }^{156}{ }^{\prime \prime}$ Dia. Mtg. Holes			29	7466		6A266
*P-109	AC Jumper Plug	PLUG WITH CAP 7 Contact, Female Type, Overall $1.093^{\prime \prime} \times 1.187^{\prime \prime}$ O.D. Wired by W-G \& Co. as Follows: Terms. 1 to 2 and 3 to 7 with \#18 Bare Copper Wire. All Parts to Withstand 200 Hr . Solt Spray Test	49202		5	PF7S		3A369
*P-103	Ant. Connector	CONCENTRIC PLUG, Female Contact, Single Pin, Overal! 9.875 $\times .812^{\prime \prime}$ O.D.	49121	RA-49F-216	37			6 A267
RESISTORS								
*R-101	1st R-F Cathode Blas Renistor	RESISTOR, Carbon, 350 Ohms $\pm 10 \%$, 0.5 W., Pigtail Type Terminals	63360		3	Type E Type EB		$\begin{gathered} \ddagger 894351 \\ \ddagger \ddagger 884351 \end{gathered}$
*R-102	2nd R-F Cathode Bias Resistor	RESISTOR, Same as R-101						
*R-103	1st Audio Cathode Resistor	RESISTOR, Carbon, 500 Ohms $\pm 10 \%$, 0.5 W., Pigtall Type Terminals	63360		3	Type E Type EB		$\begin{gathered} \ddagger 894501 \\ \ddagger \ddagger 884501 \end{gathered}$
*R-104	1st R-F Screen Limiting Resithor	RESISTOR, Carbon, 10,000 Ohms $\pm 10 \%$, 0.5 W., Pigtall Type Terminals	63360		3	Type E Type EB		$\begin{array}{r} \ddagger B 94103 \\ \ddagger \ddagger B 84103 \end{array}$
*R-105	1st R-F Plate Limitung Resistor	RESISTOR, Same as R-104						
*R-106	2nd R-F Screen Resistor	RESISTOR, Same as R-104						
*R-107	2nd R-F Plate Limiting Resistor	RESISTOR, Same as R-104						
*R-108	Det. Screen Resistor	RESISTOR, Same as R-104		.				
*R-109	Det. Plate Filter Circuit	RESISTOR, Same as R-104						
*R-110	1st Audio Plate Filter	RESISTOR, Carbon, $\mathbf{2 0 , 0 0 0}$ Ohms $\pm 10 \%, 0.5$ W., Plgtail Type Terminals	63360		3	Type E Type EB		$\begin{array}{r} \ddagger 894903 \\ \ddagger \ddagger B 84203 \end{array}$
*R-111	Output-LImiter Filter	RESISTOR, Same as R-110 \%						
*R-112	Det. Plate Filter Circuit	RESISIOR, Carbon, $\mathbf{2 5 , 0 0 0}$ Ohms $\pm 10 \%$, 0.5 W., Pigtail Type Terminals	63360		3	Type E Type EB		$\begin{array}{r} \ddagger \text { B94953 } \\ \ddagger \ddagger B 84253 \end{array}$
*R-113	Low Pass Filter Circuit	RESISTOR, Same as R-112, Part of L-101						
$\begin{gathered} \text { R-114 } \\ \text { and R-115 } \end{gathered}$	Output Limiter Circuit	RESISTOR, Carbon, 50,000 Ohms $\pm 10 \%$, 0.5 W., Pigtail Type Terminals	63360		3	Type E Type EB		$\begin{array}{r} \ddagger 894503 \\ \ddagger \ddagger B 84503 \end{array}$

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Navy Type Number	Navy Speclfication or Drawing Number	Mr.	Mf. Desig.		Contractor's Drawing and Part No.
*R-116	Det Plate Hum Filter Circuit	RESISTOR, Carbon, 70,000 Ohms $\pm 10 \%$, 0.5 W., Pigtail Type Terminals	63360	.	3	Type E Type EB		$\begin{gathered} \ddagger 894703 \\ \ddagger \ddagger B 84703 \end{gathered}$
*R-117	1st Audio Plate	RESISTOR, Carbon, 100,000 Ohms $\pm 10 \%$, $0.5 W_{0}$, Pigtail Type Terminals	63360		3	Type E Type EB		$\begin{gathered} \ddagger B 94104 \\ \ddagger \ddagger B 84104 \end{gathered}$
*R-118	Limiter Plate Resistor	RESISTOR, Same as R-117						
*R-119	Limiter Cathode Resistor	-RESISTOR, Same as R-117						-
*R-120	Short Ant. CIrcuit	RESISTOR, Carbon, 250,000 Ohms $\pm 10 \%$, 0.5 W., Pigtail Type Terminals	63360		3	Type E Type EB		$\begin{gathered} \ddagger 894854 \\ \ddagger \ddagger B 84254 \end{gathered}$
*R-121	Limiter Plate Resistor	RESISTOR, Same as R-120						
*R-122	Short Ant. Circuit	RESISTOR, Carbon 500,000 Ohms $\pm 10 \%, 0.5$ W., Pigtail Type Terminals	63360		3	Type E Type EB		$\begin{array}{r} \text { \$894504 } \\ \ddagger \ddagger 884504 \end{array}$
*R-123	1st Audio Screen	RESISTOR, Same as R-129						
*R-124	1st Audio Grid	RESISTOR, Same as R-122						
*R-125	Audio Output Grid	RESISTOR, Same as R-129						
*R-126	Grid Resistor, Det. Slage	RESISTOR, Carbon, 2.5 Megohms $\pm 10 \%$, 0.5 W., Piģtail Type Terminals	63360		3	Type E Type EB	-	$\begin{array}{r} \ddagger 894955 \\ \ddagger \ddagger B 84255 \end{array}$
*R-127	2nd R-F Grid	RESISTOR, Carbon, 5.0 Megohms $\pm 10 \%$, 0.5 W., Pigtail Type Terminals	63360	-	3	Type E Type EB		$\begin{array}{r} \ddagger 894505 \\ \ddagger \ddagger B 84505 \end{array}$
*R-135	Audio Output Cathode	RESISTOR, Carbon, 500 Ohms $\pm 10 \%, q$ W., Pigtail Type Terminals	63474		3	Type F		D94501
*R-136	Bleeder Resistor	RESISTOR, Carbon, 5000 Ohms $\pm 10 \%$, 2 W., Pigtail Type Terminals	63474		3	Type F		D94509
*R-137	Plate Limiting Retistor	RESISTOR, Carbon, 10,000 Ohms $\pm 10 \%$, 2 W., Pigtail Type Terminals	63474		3	Type F		D94103
*R-138	Regeneration Control Limiting	RESISTOR, Carbon, 100,000 Ohms $\pm 10 \%$, 2 W., Pigtall Type Terminals	63474		3	Type F		D94104
*R-140	Bleeder Resistor	RESISTOR, Carbon, 10,000 . Ohms $\pm 10 \%, 3$ W., Pigtail Type Termínals	63289		3			E94103
*R-145	Sensitivity Control	POTENTIOMETER, Wire Wound, Total Resistance 750 Ohms $\pm 10 \%$. Linear Taper. Screw, Driver Adjustment. All Parts to Withstand 200 Hr . Salt Spray Test	631284	RE-13A-492	11	25, Wire Wound		43×154
*R-146	Manual Gain Contol	RESISTOR, Variable, Wire Wound. Resistance 5000 Ohms $\pm 10 \%$, 4 W. Linear Taper. Knob Shaft $.500^{\prime \prime} \times .250^{\prime \prime}$ Dia., All Parts to Withstand 200 Hr . Salt Spray Test	631285	RE-13A-492	11	25, Wire Wound		43×155

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Dealg.	FUNCTION	DESCRIPTION	Navy Type Number	Navy Specification or Drawing Number	Mr.	Mf. Desig.	Special Tolerance Rating or Modification	Contractor's Drawing and Part No.
*R-147	Output Level Control	RESISTOR, Varisble, Wire Wound. 10,000 Ohms $\pm 10 \%$, Split Winding Element Redstance, First 50% Clockwise RotaHion, 7800 Ohms $\pm 10 \%$ Ratins 4 W . Approx. Linear Taper. $500^{\prime \prime} \times .250^{\prime \prime}$ Dla. Shaft All Parts to Withstand 200 Hr. Salt Spray Tiest	631286	RE-13A-492	11	$\begin{aligned} & \text { 25, Wire } \\ & \text { Wound } \end{aligned}$		43×157
*R-148	Regeneration Control	RESISTOR, Variable, Wire Wound, Resistance 25,000 Ohms $=10 \%$ (4 ., Linear Taper. Knob Shaft. . 500° $.250^{\circ}$ Dis. All Parts to Withstand 200 Hr . Solt Spray Test	631287	RE-13A-492	13			43×156
SWITCHES								
*S-101	AC Power Control	TOGGLE SWITCH, S.P.S.T.,One Break Per Circuit. 3 Amps., 125 V. All Parts to Withstand 200 Hr. Selt Spray Test	24146		6	80993	E	2A279
*-102	DC Power Control	TOGGLE SWITCH, D.P.S.T., 3 Amps., 125 V. All Parts to WIthstand 900 Hr . Salt Spray Test	24147		6	81009	$A B$	2 2980
**	Output Audio Limiter Control	TOGGLE SWITCH, S.P.D.T., 3 Amps., 125 V. All Part to WIthstand 200 HI . Salt Spray Test	24148	-	6	81091	AE	2 A 281
*S-104	AC and DC Power Control	POWER SUPPLY SWITCH ASSEMBLY Includes S-101 and S-109, Both Simultaneously Thrown by Operation of Rotary Shaft. All Parts to Withstand $\mathbf{2 0 0} \mathrm{Hr}$. Solt Spray Test			6	1570	$N P$	2 A278
*-105	Same as S-103	LIMITER SWITCH ASSEMBLY, Includes S-103 Thrown by Operation of Rotary Shoft. All Parts to Withstand 200 H . Solt Spray Test			6	81021	VA	2A275
*-106	Orc. Test	PUSH BUTTON SWITCH, S.P., Make Contact Contacts Normally Open. All Parts to Withstand 200 Hr . Solt Spray Test	24047		31	$\begin{aligned} & \text { B-116291 } \\ & \text { Special } \\ & \text { 2001 } \end{aligned}$	Steel Parts Cadmium Plated	2A277
*-107	Audio Band Width Switch	SWIICH, Rofary, Ceramic, Wafer Type. One Section, Two Position, 4 Pole. All Parts to Withstand 200 Hr . Salt Spray Test			38			2A276
$\begin{gathered} \text { *S-108 thru } \\ \mathrm{S}-181 \end{gathered}$	Band Change Switch	SWITCH, Rotary, S.P., Six Position. Wiping Contacts. Rolled Silver, Spring Brass Contacts			38	$\begin{gathered} \text { 22511- } \\ \text { H7C } \end{gathered}$		2A274
TRANSFORMERS								
T-101 (Mode RBL-3	Powet Transformer	TRANSFORMER, 9 Terminals, 4 Windings. Exciting Current, 075° Amp.I Exciting Pơ̈wer, 3 Watts. Primarys (Terms. 1-4), 115 V. $50-60$ Cycles, 600 T. 4 25 E. Wires DC Resistance, 9.05 Ohms, S. Shield 1 T. . $002^{\prime \prime}$ Cop. Secondary \#1: (Terms. 7-9) 424 V. Total AC Voltage, 045 Amp., 295 VDC with 5 U4G Rectifler Tube $2,350 \mathrm{~T}$. \#35 E. Wire', DC Resistance, 439 Ohms, Center Tapped (Term. 8). Secondary \#2: (Terms. 3-6), 6.3 V., 2.2 Amps., 28 T. \#16 E Wires DC Resistance, .075 Ohms. Secondary "3: (Terms. 2-5), 5.0 V. 3 Amps., 35 T. \#16 E. Wire, DC Resistance, .101 Ohms. Primary Rated 48 Wats	30930		33	P-1954		$\ddagger 53 \times 270$

table g-parts list by symbol designation

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Nary Type Number	Navy Specification or Drawing Number	Mr.	Mfr. Desig.	Special Tolerance Roting or Modification	Contractor's Drawing and Part No.
SOCKETS								
$\begin{gathered} * X-101 \text { thru } \\ X-107 \end{gathered}$	Tube Mounting	VACUUM TUBE SOCKET, Recelving Type, Octal, Ceramic. Assembled with Mounting Plate and Retaining Ring. All Parts to Withstand 200 Hr . Salt Spray Test	49373	RE-49A-300B	5			3A364
* X -108	Dial Lamp Sockets and Leads	PILOT LAMP LEAD ASSEMBLY. Miniature Bayonet Type Socket with External Fibre Insulation and Spring Mtg; Clamp. Leads, \#29 Stranded, Insulated WIre. 12.750 Black Lead to Center Contact, 12.250' Yellow Lead to Socket Shell. All Parts to Withstand 200 Hr . Salt Spray Tent			2	85UL		7 7171
${ }^{*} \mathrm{X}$-109	Same as X-108	PILOT LAMP LEAD ASSEMBLY, Same as X-108, Except Black Lead 6.500", Yellow Lead 12.250"			2	85UL		7 1172

R-F TRANSFORMERS

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

TABLE G-PARTS LIST BY SYMBOL DESIGNATION

Symbol Desig.	FUNCTION	DESCRIPTION	Nary Type Number	Navy Specification or Drawing Number	Mfr.	Mfr. Desig.	Special Tolerance Rating or Modification	Contractor's Drawing and Part No.
Z-106	Same as Z-103	DETECTOR COIL, High Frequency. 5 Windings, Connected in Series, 125" Apart, Wound in Same Direction. Windings \#1 and 42 (Black to Red), Each 171 T., Winding \%1, Tapped at 54 T. (Brown), Winding ${ }^{3} 3$ (Red to Yellow), 166 T., Tapped at 54 T. (Orange), Winding 44 (Yellow to Blue), 119 T., Tapped at 54 T. (Green), $10-41$ D.S.E. Litz Wire. Winding, 55 (Red-Blue to Slate), 20 T. Tapped at 10 T (Red-Yellow) and 15 T . (Red-Black), 330 S.S.E. Wire, Ali Windings on 2.625" $\times 1.000^{\prime}$ O.D. ${ }^{\prime \prime} 750^{\prime \prime}$ I.D. Bakelite Coil Form. Inductance, Measured at Black and Blue, Shorting Black and Yellow, .543 MH , Shorting Black and Red, 2.28 Red-Blue, Shorting Slate and Red-Yellow, 0.0060 MH , Shorting Slate and Red-Black, 0.0120 MH , No Lugs Shorted, 0.0194 MH. All Msasurements at 1000 Cycles Tolerance $\pm 0.5 \%$. DC Resstance, Measured at Black and Red, 17.0 Ohms, Red and Yellow, 8.0 Ohms, Yellow and Blue, 6.0 Ohms, Black and Brown, 2.0 Ohms, Red and Orange, 2.0 Ohms, Yellow and Green, 2.0 Ohms, Slate and Red-Blue, 0.7 Ohms, Red-Black and Red-Blue, 0.53 Ohms, Red-Yellow and Red-Blue, 0.35 Ohms. DC Resistance Tolerance $\pm 10 \%$. Wax Coating	47946		44			9A1670
MISCELLANEOUS								
*	Replacement Contacts for Tube Sockets	CONTACT LUG, Phosphor Bronze. Overall Length, .750² Silver Plated to Withstand $\mathbf{2 0 0} \mathrm{Hr}$. Salt Spray Test			5	9-17F		30×378
*	Maintenance Tool	WRENCH, Allen Type. Steel. $1.750^{\prime \prime} \times .562^{\prime \prime} \times .062^{\prime \prime}$ Across Flats, to Fit Allen Hd. Set Screw \#6. Cadmium Plated			41			67X8
*	Maintenance Tool	WRENCH, Allen Type. Steel. $9.125^{\prime \prime} \times .750^{\prime \prime} \times .078^{\prime \prime}$ across Flats, to Fit Allen Hd. Set Screw \#8. Cadmium Plated			41			67×9
*	Maintenance Tool	WRENCH, Coil Can, .250" Dia. C.R. Steel. U-Shaped. 2.500 ${ }^{\prime \prime}$ Spread U Ends. Length $2.062^{\prime \prime}$ with $.652^{\prime \prime} \times .156^{\prime \prime}$ Dia. Ends			15			67×6
$\stackrel{*}{*}$	Equipment Spare Parts Packing Container. Also Stock Spare Parts	SPARE PARTS BOX, 069" C.R. Steel. Overall Size of Box $18.374^{\prime \prime} \times .9374^{\prime \prime} \times 6.124^{\prime \prime}$ High. Hinged Top Lid and Metal Hasp Lid Retainer. One Handie Each End. Gray Enamel Finish		42B9 (lnt)	50			\$34X402
**	Equipment Spare Parts Packing Container	SPARE PARTS BOX, $062^{\prime \prime}$ C.R. Steel. Overall Size of Box $18.124^{\prime \prime} \times 12.374^{\prime \prime} \times 9.124^{\circ}$ High. Hinged Top Lid and Metal Hasp Lid Retainer. One Handle Each End. Gray Enamel Finish		$42 \mathrm{B9}$ (Int)	50		,	$\ddagger \ddagger 34 \times 433$
**	Equipment Spare Parts Listing Covering. Also Used in Slock Spares Container	WINDOW. Cellulose Acetate, Water Clear, 6.000" $\times 4.695^{\prime \prime}$ x .031" Thick			8			\#17881
**	Equipment Spare Parts Listing Covering	WINDOW. Cellulose Acetate, Water Clear, $10.625^{\text {² }} \times$ 8.125" x $0.031^{\prime \prime}$ Thick			8			$\ddagger \ddagger 17 \times 84$

TABLE H-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR RBL-3

Box No.	Qty.	Navy Type Number	All Symbol Desigs, Involved	DESCRIPTION	Navy Drawing or Specification	Mfr.	Mfr. Desig.	Special Tolerance or Modification	Contractor's Drawing and Part Number

STRUCTURAL PARTS

TABLE H-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR RBL-3

TABLE H-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR RBL-3

Box No.	Oty.	Now Type Number	All Symbol Desigs. Involved	DESCRIPTION	Navy Drawing or Specification	Mf.	Mfr. Desig	Special Tolerance or Modification	Contrector's Drowing and Part Number

RESISTORS (Class 63)

TABLE H-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR BBL-3

TABLE H-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR RBL-3

Box	Oty.	Navy Type Number	All Symbol Desigs. Involved	DESCRIPTION	Nayy Drawing or Specification	Mr.	Mr. Desig.	Special Tolerance or Modification	Contractor's Drawing and Part Number

MISCELLANEOUS

TABLE I-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR NAVY MODEL RBL-4

Oty.	Nary Type Number	All Symbol Desigs. Involved	DESCRIPTION	Nary Drawing or Specification	Mfr.	Mr. Desig.	Spectal Tolerance or Modification	Contractor's Drawing and Part Number
STRUCTURAL PARTS								
1		A. 129	TUBE CLAMP		12	8597		30X424
1		A. 301 thru A-304	LORD MOUNT		30	200PH-20		8×145

CAPACITORS (Class 48)

TABLE I-EQUPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR NAVY MODEL RBL-4

Oty.	Nary Type Number	All Symbol Desigs. Involved	DESCRIPTION	Navy Drawing or Specification	Mrr.	Mfr. Desig.	Special Tolerance or Modification	Contractor's Drawing and Part Number

CAPACITORS (Class 48-Continued)

4	481549	C-149 thru C-156	CAPACITOR, Paper, Oil Filled. $0.5 \mathrm{mf} . \pm 10 \%$, 600 VDC Working	RE-13A-488	19	7667		48×250
4	481550	C-159 thru C-166	CAPACITOR, Paper, Oil Filled. $1.0 \mathrm{mf} . \pm 10 \%$, 600 VDC Working	RE-13A-488	19	7668		48×251
1	481559	C-111	CAPACITOR, Molded Mica. $45 \mathrm{mmf} . \pm 5 \%, 500$ VDC Working		40	K-1445		47×358*
1	481560	C-138, C-139	CAPACITOR, Molded Mica. $8000 \mathrm{mmf} . \pm 10 \%$, 300 VDC Working		40	C.06280		47×346
1		C-143, C-144	CAPACITOR, Tubular. . $01 \mathrm{mf} . \pm 10 \%, 400$ VDC Working with Trensparent Vinylite Tubing	RE-13A-488	19	7707	*	46X366
1		C-145, C-146	Same as C-143, Except . 013 mf .	RE-13A-488	19	7708		46X365
1		C-157, C-158	CAPACITOR, Paper, Oil Filled. $0.8 \mathrm{mf} . \pm 10 \%$, 600 VDC Working	RE-13A-488	19	7669		48×252

MISCELLANEOUS ELECTRICAL PARTS

TABLE L-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR NAVY MODEL RBL-4

Oty.	Navy Type Number	All Symbol Desigs Involved	DESCRIPIION	Navy Drawing or Specification	Mrt.	Mf. Desig.	Special Tolerance or Modificution	Contractor's Drawing and Part Number
MISCELLANEOUS ELECTRICAL PARTS-(Continued)								
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		E-195, E-196 E-197 E-291 E-292 E-223	LOCATING WASHER, L. E. Bakelite WASHER, Hard Black Fibre VOLTAGE CHANGEOVER BOARD, Bakelite SHIELD, Fibre TERMINAL STRIP ASSEMBLY, L. E. Bakelite, 3 Serews and Lug Type Terminals, $2.500 \times .750^{\prime} \times .093^{\prime \prime}$. Wax Impregnated.		$\begin{aligned} & 45 \\ & 27 \\ & 47 \\ & 49 \\ & 25 \end{aligned}$	3-6		$\begin{aligned} & 2 \times 398 \\ & 2 \times 395 \\ & 4 \text { A } 300 \\ & 11 \times 113^{*} \\ & \text { 4A295 } \end{aligned}$
FUSES								
20		F-101, F-102	FUSE, 2 Amps., 250 V., Type 3 AG		29	1042		16X87
INDICATING DEVICES								
4		I-101, I-102	DIAL LAMP, 6.3V.,. 15 Amp.		48	Mazde 47		7 1103
JACKS AND RECEPTACLES								
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 49180 \\ & 49201 \end{aligned}$	$\begin{aligned} & \mathrm{J}-104 \\ & \mathrm{~J}-105 \\ & \mathrm{~J}-101 \\ & \mathrm{~J}-102, \mathrm{~J}-103 \\ & \mathrm{~J}-106 \end{aligned}$	CONCENTRIC JACK SOCKET, 7 Prong TELEPHONE JACK, Single Circu:t FUSE EXIRACTOR POST, Screwdriver Operated Plug Knob CORD CONNECTOR, Bakelite	RA-49F-215	37 5 46 29 22	61CP75 1J-101 1075 7464 Twist-lock Midget with Cord Grip	,	3A375 3A363 3A365 16×84 3A374
INDUCTORS								
$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	30931 47259 53108 53109	$\begin{aligned} & \text { L-104 } \\ & \text { L-103 } \\ & \text { L-101 } \\ & \text { L-102 } \end{aligned}$	FILTER CHOKE, B+ Filter FILTER CHOKE, R-F Cathode Filter LOW PASS FILTER HIGH PASS FILTER	\%	33 33 33 33	$\begin{aligned} & \text { C1955 } \\ & \text { C1958 } \\ & \text { C1953 } \\ & \text { C1952 } \end{aligned}$		52×62 52×63 52×65 52×64

TABLE I-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR NAVY MODEL RBL-4

TABLE I-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR NAVY MODEI RBL-4

Oty.	Navy Type Number	All Symbol Desigs. Involved	DESCRIPTION	Navy Drawing or Specification	Mfr.	Mf. Desig.	Special Tolerance or Modification	Contractor's Drawing and Part Number
RESISTORS-(Continued)								
1	631285	R-146	RESISTOR, Variable, Wire Wound. Resistance, 5000 Ohms $\pm 10 \%$	RE-13A-492	11	25. Wire		43×155
1	631286	R-147	RESISTOR, Variable, Wire Wound. 10,000 Ohms $\pm 10 \%$, Resistance, First 50% Clockwise Rotation, 7800 Ohms $\pm 10 \%$, Rating 4 W. Approx.	RE-13A-492	11	25. Wire Wound		43×157
1	631287	R-1 48	RESISTOR, Variable, Wire Wound. Resistance 25,000 Ohms $\pm 10 \%, 4 \mathrm{~W}$.	RE-13A-492	13			43×156 ${ }^{*}$
SWITCHES (Class 24)								
1	24047	S-106	PUSH BUTTON SWITCH, S. P., Make Contact		31	$\begin{aligned} & \text { B-1 } 16291 \\ & \text { Special } \\ & \text { 2001 } \end{aligned}$	Steel Parts Cadmium Plated	2A277
1	24146	S-101	TOGGLE SWITCH, S.P.S.T., 3 Amps., 125 V.		6	80993	E	2A279
1	24147	S-102	TOGGLE SWITCH, D.P.S.T., 3 Amps., 125 V.		6	81009	AB	2A280
1	24148	S-103	TOGGLE SWITCH, S.P.D.T., 3 Amps., 125 V.		6	81081	AE	2A281
1		S-107	SWITCH, Rotary, One Section Two Position, 4 Pole		38			2 2276
4		S-108 thru S-121	SWITCH, Rotary Type, S.P., Six Position		38	22511. H7C		2A274
TRANSFORMERS								
1	30392	T-102	TRANSFORMER, Source Imp., 36,000 Ohms. Load Imp., 600 Ohms		33	A-1957		51×110
1		T-101	POWER TRANSFORMER, 11 Termnals, 5 Windings. Primary Windings, Jumper Terminals for 115 V. (Term. 1 to 10 and 11 to 14) or 230 V. (Term. 10-11), 50-60 Cycle Operation. Secondary ${ }^{\text {t1 }}$ (Term. 7-9) Center Tapped (Term. 8) 225 VDC, 045 Amp. DC; Secondary \#2 (3-6) 6.3 V ., 2.2 Amp.) Secondary \#3 (2-5) 5.0 V., 3.0 Amps.		33	P2093		53×276
4 VACUUM TUBES								
6	6SK7	V-101 thru V-103	VACUUM TUBE, Metal. Heater 6.3 Volts, 0.30 Amp.	RE-13A-600E	26	6SK7		6SK7
2	6SG7	V-104	VACUUM TUBE, Metal. Heater 6.3 Volts, 0.30 Amp.	RE-13A-600E	26	6SG7		6SG7
2	6H6	V-105	VACUUM TUBE, Metal. Heater 6.3 Volts, 0.30 Amp.	RE-13A-600E	26	6H6		6H6
2	6K6GT	V-106	VACUUM TUBE, Glass. Heater 6.3 Volts, 0.40 Amp.	RE-13A-600E	26	6K6GT		6K6GT
2	5U4G	V-107	VACUUM TUBE, Glass. Heater, 5.0 Volts, 0.30 Amp.	RE-13A-600E	26	5U4G		5U4G

TABLE I-EQUIPMENT SPARE PARTS BY NAVY TYPE NUMBER FOR NAVY MODEL RBL-4

Oty.	Navy Type Number	All Symbol Desigs. Involved	DESCRIPTION	Navy Drawing or Specification	Mfr.	Mir. Desig.	Special Tolerance or Modification	Contractor's Drawing and Part Number
SOCKETS (Class 49)								
4	49373	X-101 thru X-107	VACUUM TUBE SOCKETS, Octal, Ceramic	RE-49A-300B	5			3A364
1		X-108	PILOT LAMP LEAD ASSEMBLY, with Socket		2	85UL		7 A171
1		X-109	PILOT LAMP LEAD ASSEMBLY, Same as X-108, Except Lead Lengths		2	85UL		7 A172

R-F TRANSFORMERS

MISCELLANEOUS

TABLE J-PARTS LIST BY NAVY TYPE NUMBER

TYPE J-PARTS LIST BY NAVY TYPE NUMBER

table k-List of manufacturers

Code No.	Mf. Prefix	Name	Address
1		Acme Mefel Products Corp.	1845 W. 74th, Chicago, lll.
2		Alden Products Co.	Brockton, Mass.
3	CBZ	Allen-Bradley Co.	Milwaukee, Wisc.
4		AlumInum Goods Mig. Co.	Manitowoc, Wisc.
5	CPH	American Phenolic Corporation	1830 S. 54th Ave. (Cicero P.O.) Chleago, Ill.
6		Arow Electric Divislon, The Arow-Hart \& Hegeman Electric Co.	103 Hawthorn St, Harford, Conn.
7		Atlantic India Rubber Works, Inc.	1453 W. Van Buren St, Chicago, III.
8		J. B. Carroll Co..	Carroll \& Albeny Aves, Chicago, Ill.
9		Central Serew Company.	3501 Shields Are., Chieago, Ill.
10		Chicago Die Mold Mig. Co	4001 W. Wrightwood Ave., Chleago, Ill.
11	CTC	Chicago Telephone Supply Co.	Ellkhart, Ind.
12		Cinch Manufacturing Corporation.	2335-47 W. Van Buren St, Chleago, III.
13	CMC	Clarostat Manufacturing Company, Inc.	285 N. Slxth St, Brooklyn, N. Y.
14		Crescent Tool \& Die Co.	4140-50 Belmont Are., Chicego, Ill.
15		C. Creton \& Co. .	Cermak Road \& Jefferson St, Chleago, III.
16		Crowe Name Plate \& Manufacturing Co.	3701 Ravenswood Ave., Chicago, III.
17		Doehler Die Costing Co.	386 Fourth Ave., New York 16, N. Y.
18		Etching Company of America	1520 Montans St, Chleago, III.
19	CBV	John E, Fast \& Co..	3123، N. Crawford Ave., Chiceso, Ill.
20		General Etching \& Mfg. Co.	3070-82 W. Grand Are., Chleago, III.
21.		Grand Sheet Metal Works.	2501 W. 24th St, Chicago, lll.
22		Harvey Hubbell, Inc.	1930 Thomas St, Bridgsport, Conn.
23		Hudson Serew Machine Products Co.	4500 W. Augusta Bivd., Chicago, III.
24		Intemational Spring Company	222 N. Weshtenaw Ave., Chicego, III.
25		Howard B. Jones.	2300 Wabansia Ave., Chicago, Ill.
26	CKR	- Ken-Rad Tube a Lamp Corporation	Owensboro, Kentucky
27		Lamicold Fabricators, Inc.	3600-10 Potomec Ave., Chlengo, Ill.
29		Lemke Screw Products Company.	1913 N. LeClaire Ave., Chleago, Ill.
29	CLF	Littefuse Incorporated.	4757 Ravenswood Ave., Chicigo, III.
30		Lord Manufacturing Company.	Erie, Pa. -
31	CMA	P. R. Mallory \& Co., Inc.	3029 E. Washingtorist, Indlanapolis, Ind.
32		Manufacturers Serew Products.	216-292 W. Hubberd St, Chleago, III.
33		Merit Coil \& Transformer Corp.	311 N. DesPlaines Ave., Chicago, III.
34		Metal Decorating \& Mig. Co.	4633 Gladys Ave., Chleago, III.
35		Metal \& Glass Products Company	165 N. Morgan St, Chicego, III.
36		Harry Meyer's Wood Products.	1652 W. Hubbard St., Chicago, III.
37		National Electrical Machine Shops, Inc.	2014 Fifth St., N.E., Washington, D.C.
38	COC	Oak Manufacturing Company.	1260 Clybourn Ave., Chicago, III.
39		Olson Manufacturing Co. .	1820-22 W. Grand Ave., Chicago, III.
40	CAN	Sangamo Electric Company.	Springfield, III.
41		Set Serew \& Mfg. Company	Bensenville, III.
42		Shakeproof, Inc.	2501 N. Keeler Ave., Chicago, Ill.
43		Slingerland Banjo \& Drum Co.	1325 Belden Ave., Chicago, Ill.
4		Sonora Radio \& Television Corporation.	325 N. Hoyne Ave., Chlcago,'Ill.
45		Spaulding Fibre Company, Inc..	4757 Ravenswood Ave., Chicago, III.
46	CRA	Utah Radio Products Co. .	812-20 Orleans St, Chicago, III.
47	CWO	Wells-Gardner \& Co. .	2701 N. Kildare Ave., Chicago, Ill.
48	CAY	Westinghouse Electric Mfg. Co., Lamp Division	20 N. Waeker Drive, Chicago, Ill.
49		Rhopac, Inc.. .	168-172 N. Clinton St, Chicago, III.
50 51		Invincible Metal Furniture Co.	Manltowoc, Wis.
51 59		American Steel Package Co. Capacitrons, Inc.	Defiance, Ohio 318 W. Sehiller Are., Chicago, III.

TO ANTENNA

Fig. 29. Block Diagram, Receiver Connections

NOTES

se

Fig. 30. Schematic Diagram, Type CWQ-46161-A and CWQ-46 Radio Receivers

Fig. 31. Pictorial Diagram, Top View of Chassis

Fig. 32. Pictorial Diagram, Bottom View of Chassis

SEE SCHEMATIC DIAGRAM FOR INTERNAL

TRANSFORMER CONNECTIONS.

POWER TRANSFORMER CONNECTIONS ON RBL-4 T-IOI

SEE SCHEMATIC DIAGRAM FOR INTERNAL
TRANSFORMER CONNECTIONS.

Fig. 33. Drilling Plan for Mounting Base Installation

Fig. 34. Outline Dimensions

Fig. 35. Rear View of Receiver

Fig. 36. Top View of Receiver

Fig. 37. Bottom View of Type CWQ-46161-A Radio Receiver

Fig. 38. Bottom View of Type CWQ-46230 Radio Receiver

MEMORANDUM

[^0]: *Information concerning the Type CWQ-46161-A Radio Receiver is applicable also to the Type CWQ-46230 Radio Receiver except where otherwise stated.

[^1]: Information concerning the Type CWQ-46161-A Radio Receiver is applicable also to the Type CWQ-46230 Radio Receiver except where otherwise stated.

[^2]: "Information concerning the Type CWQ-46161-A Radio Receiver is applicable also to the Type CWQ-46230 Radio Receiver except where otherwise stated.

[^3]: \#Information concerning the Type CWQ-46161-A Radio Receiver is applicable also to the Type CWQ-46230 Radio Receiver except where otherwise atated.
 \dagger This operating voltage applies only to the Type CWQ-46161-A Radio Receiver.
 The Type CWQ-46230 Radio Receiver is designed to operate on a power supply of either 115 or 230 volts, 50 to 60 Cycles AC.

[^4]: *Information concerning the Type CWQ-46161-A Radio Receiver is applicable also to the Type CWQ-46230
 Radio Receiver except where otherwise stated.

[^5]: *Information concerning the Type CWQ-46161-A Radio Receiver is applicable also to the Type CWQ-46230 Radio Receiver except where otherwise atated.

[^6]: "Information concerning the Type CWQ-46161-A Radio Receiver is applicable aleo to the Type CWQ-46230 Radio Receiver except where otherwise stated.

