PROGRAMMER'S UTILITIES GUIDE

FOR CONCURRENT'™ DOS 86 EXPANDED MEMORY (XM)

First Edition: November 1986

1065-2043-001

COPYRIGHT

Copylighl©l986 Digital Research Al nghts reserved No part of this pubhcation may
be reproduced. transmitted, transcribed, stored 1n a retrieval system. or translated nto
any language or computer language, n any form or by any means. electronic
mechanical, magnetic. optical, chemical manual. or otherwise. without the prior written
permission of Digital Research. 60 Garden Court, Box DRI Monterey. California 93942

DISCLAIMER

DIGITAL RESEARCH MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE Further,. Digitat
Research Inc reserves the right to revise this publication and to make changes from
time to time in the content hereol without obligation of Digital Research Inc to notify
any person ol such revision or changes

NOTICE TO USER

This manual should not be construed as any representation ur wadrranty with respect to
the sofiware named herein Occasionally changes or variations exist in the software
that are not reflected in the manual Generally. it such changes or variations are
known to exist and to affect the product sigmificantly, a release note or README DOC
file accompanies the manual and distribution diskis) In that event, be sure to read the
release note or README DOC file before using the product

TRADEMARKS

Digital Research, CP/M-86. and the Digial Research logo are registered trademarks of
Digital Research Inc Concurrent. and Concurrent DOS 86, LIB-86, LINK-86, MP/M- 86,
PL/1-86, RASM-86, SID-286. and XREF-86 are trademarks of Digital Research We Make
Computers Work is a service mark of Digital Research Inc Intel is a registered
trademark of Intel Corporation MCS-86 is a trademark of Intel Corporation

Foreword

The Programmer’'s Utilities Guide for Concurrent™ DOS 86 (cited as
the Programmer’s Utilities Guide) assumes that you are familiar with
the Concurrent environment. It also assumes that you are familiar
with the basic elements of 8086 and 80286 assembly language
programming. .
The Programmer’s Utilities Guide describes the operation of the
following Concurrent DOS 86 native mode (CMD files) and PC DOS
mode (EXE files) utilities:

RASM-86TM Assembler for 8086, 80186, and 80286 assembly
language that produces relocatable code in the
Intel® Object Module Format.

XREF-86™ Utility used with RASM-86 to produce a cross
reference listing of the symbols used in a program.

LINK-86™ Linkage editor that combines relocatable object
modules and libraries to create executable files.

LiB-86™ Utility that creates and maintains libraries of object
modules for use with LINK-86

SID-86™ Symbolic Instruction Debugger used to test ‘and
debug object module code.

The operation of the native mode and PC DOS mode versions of each
utility are nearly identical; any specific differences are clearly
documented. Since Concurrent DOS 86 supports both its native mode
operating system calls, and PC DOS system calls, it is imperative that
you not intermix the two modes in an executable module. That is, a
PC DOS program (.EXE file) should not contain any calls to Concurrent
DOS 86 native mode system calls Likewise, a program written for the
native mode (.CMD file) should not contain any PC DOS system calls.

Typographical Conventions
This guide uses the following notation to describe commands:

command parameter [option]

A command is any of the commands described in this guide. A
parameter can be a filename, an address location, or any specifier that
is particular to the command. Optional items, such as command
options or additional filenames, appear inside square brackets.

Words joined by an underscore (_) represent a single command item or
field.

Examples of specific usage of a command are preceded by an A>
prompt, and the user’s input appears in bold print. For example:

A>rasm86 test
illustates a specific usage of the RASM86 command.

Characters used to represent values or variables in a command or
instruction syntax may also appear in bold print in the text in which
they are described.

Contents

1 The RASM-86 Assembler

Introduction 1-1
RASM=-86 Operationt 1-1
RASM-86 Command Syntax 1-1
1.3.1 . RASM-86 Run-Time Parameters 1-2
1.3.2 RASM-86 Command Line Examples. 1-4
1.4 Stopping RASM=-86. 1-6
2 Elements of RASM-86 Assembly Language
2.1 Introduction 2-1
2.2 RASM-86 Character Set 2-1
2.3 Tokens and Separators 2-2
2.4 Delimiters. 2-2
25 Constants. 2-3
25.1 Numeric Constants 2+4
2.5.2 Character String Constants 2-5
2.6 ldentifiers. 2-6
2.6.1 Keyword Identifiers 2-6
2.6.2 Symbol ldentifiers. 2-8
2.6.3 Example Identifiers 2-10
2.7 0OPerators 2-10
2.7.1 Arithmetic Operators. 2-12
2.7.2 Logical Operators 2-14
2.7.3 Relational Operators 2-14
2.7.4 Segment Override Operator. 2-15
2.7.5 Variable Manipulation Operators 2-16
2.7.6 Variable Creation Operators. 2-17
2.7.7 Operator Precedence. 2-18
2.8 EXpressions e 2-20

Contents

2.9 Statements. 2-21
2.9.1 Instruction Statements 2-21
2.9.2 Directive Statements. 2-22

3 RASM-86 Directives

3.1
3.2
33

34

35

36

3.7

38

Introduction 3-1
Assembler Directive Syntax.'., 3-1
Segment Control Directives 3-2
3.3.1 The 8086/80286 Segmented Architecture 3-2
3.3.2 CSEG, DSEG, ESEG, and SSEG Directives. 3-3
3.3.3 GROUP Directive., 3-8
Linkage Control Directives 3-8
3.4.1 END Directive 3-9
3.4.2 NAME Directive 3-9
3.4.3 PUBLIC Directive 3-9
3.4.4 EXTRN Directive 3-10
Conditional Assembly Directives. 3-10
3.5.1 IF, ELSE, and ENDIF Directives. 3-11
Symbol Definition Directive. 3-12
3.6.1 EQU Directive 3-12
Data and Memory Directives. 3-13
3.7.1 DB Directive 3-13
3.7.2 DW Directive. 3-14
3.7.3 DD Directive 3-14
3.7.4 RS Directive 3-15
375 RB Directive 3-15
3.7.6 RW Directive. e 3-15
3.7.7 RD Directive 3-16
Qutput Listing Control Directives 3-16
3.8.1 EJECT Directive. 3-16
3.8.2 NOIFLIST/IFLIST Directives. 3-17
3.8.3 NOLIST and LIST Directives 3-17
3.8.4 PAGESIZE Directive, 3-17
3.85 PAGEWIDTH Directive 3-17
3.86 SIMFORM Directive 3-17
3.87 TITLE Directive 3-18

vi

Contents

3.9 8087 Control Directives
3.9.1 HARDS8087 Directive
3.2 AUTOB8087 Directive

3.10 Miscellaneous Directives.
3.10.1 INCLUDE Directive.
3.10.2 ORG Directive

4 RASM-86 Instruction Set

4.1 Introduction . ..
4.2 RASM-86 Instruction Set Summary.
4.3 Instruction-definition Tables.
431 Symbol Conventions.
432 Flag Registers
4.3.3 8086 Data Transfer Instructions.
4.3.4 8086 Arithmetic, Logical, and Shift Instructions. . . .
4.3.5 8086 String Instructions
436 8086 Control Transfer Instructions
4.3.7 8086 Processor Control Instructions
4.3.8 8087 Instruction Set
4.3.9 Additional 186 and 286 Instructions
4.3.10 Additional 286 Instructions

5 RASM-86 Code-macro Facilities

5.1 Introduction
5.2 Invoking Code-macros
5.3 Defining Code-macros
5.3.1 Formal Parameter List.
532 Code-macro Directives
5 3.3 Example Code-Macro Definitions.

Vil

Contents

6 XREF-86 Cross-Reference Utility

6.1 Introduction 6-1
6.2 XREF-86 Command Syntax 6-1
7 LINK-86 Linkage Editor
7.1 Introduction 7-1
7.2 LINK-86 Operation 7-1
7.3 LINK-86 Command Syntax. 7-2
7.4 Stopping LINK-86 7-3
7.5 LINK-86 Command Options. 7-4
7.6 Command File Options 7-7
7.6.1 Command File Formats 7-7
76.2 FILL/ NOFILL. 7-10
7.6.3 HARD8087. 7-10
7.6.4 CODESHARED (Native-mode only). 7-1
7.7 SYM File Options, 7-11
7.7.1 LOCALS / NOLOCALS 7-11
7.7.2 LIBSYMS / NOLIBSYMS 7-11
7.8 MAP File Option 7-12
7.9 SEARCH Option. 7-13
7.10 Input File Options 7-13
7.11 170 Option. 7-14
7.11.1 $C (Command) Option. 7-15
7.11.2 $L (Library) Option. 7-15
7.11.3 $M (Map) Option 7-16
7.11.4 $0 (Object) Option 7-16
7.11.5 8S Symbol Option. 7-16
7.12 The Link Process. 7-17
7.12.1 Phase 1 - Collection o 7-18
7.12.2 Phase 2 - Create Command File L 7-23

Vil

Contents

8 LIB-86 Library Utility

8.1 Introduction 8-1
8.2 LIB-86 Operation 8-1
8.3 LIB-86 Command Syntax. 8-2
8.4 Stopping LIB-86 8-2
8.5 LIB-86 Command Options. LT 8-3
8.6 Creating and Updating Libraries 8-3

8.6.1 Creating a New Library 8-4

86.2 Addingtoalibrary............. 8-4

8.6.3 Replacing a Module. 8-4

86.4 Deletinga Module.......... 8-5

8.6.5 SelectingaModule.............. 8-6
8.7 Displaying Library Information. 8-6

8.7.1 Cross-reference File. 8-6

8.7.2 Library Module Map. 8-7

8.7.3 Partial Library Maps. 8-7
8.8 LIB-86 Commands on Disk 8-8
8.9 Redirecting I/0 L e 8-9

9 SID-86 Operation
9.1 Introduction 9-1,
9.2 Typographical Conventions. 9-1
9.3 Starting SID-86. 9-2
9.4 Exiting SID-86 9-3
10 SID-86 Expressions

10.1 Introduction 10-1
10.2 Literal Hexadecimal Numbers 10-1
10.3 Literal Decimal Numbers. 10-2
10.4 Literal Character Values 10-2
10.5 Register Values. 10-3
10.6 Stack References 10-4
10.7 Symbolic References. 10-5
10.8 Qualitied Symbols. 10-6

Contents

109 Expression Operators 10-7
10.10 Sample Symbolic Expressions 10-8

11 SID-86 Commands

11.1 Command Structure 11-1
11.2 Specifying an Address 11-1
11.3 Line Editing Functions. 11-2
114 SID-86 Commands 11-2
11.4.1 A (Assemble) Command 11-2
1142 B (Block Compare) Command 11-3
11.43 D (Display) Command 11-4
11.4.4 E (Load Program, Symbols for Execution) Command 11-6
1145 F (Fill) Command. o 11-8
1146 G (Go) Command 11-9
11.4.7 H (Hexadecimal Math) Command. 11-10
11.48 | (Input Command Tail) Command 11-12
11.49 L (List) Command o 11-13
11.4.10 M (Move) Command L 11-15
11411 P (Permanent Breakpoint) Command 11-15
11.4.12 Ql, QO (Query I10) Command 11-17
11413 R (Read) Command . . L 11-18
11.414 S (Set) Command L 11-19
11.4.15 SR (Search for String) Command. 11-20
11416 T (Trace) Command 11-21
11417 U Command o 11-24
11.4.18 V (Value) Command 11-25
11.419 W (Write) Command 11-25
11.420 X (Examine CPU State) Comman. 11-26
11421 Z (Print 8087/80287 Registers) Command. 11-28
11.4.22 ? (List Commands) Command o 11-29
11.4.23 ?? (List Commands Format) Command. 11-29
11.4.24 : (Define Macro) command. o 11-30
11425 = (Use Macro) Command 11-30

Contents

12 Default Segment Values

12.1 Introduction
12.2 Type-1 Segment Value
12.3 Type-2 Segment Value

13 Assembly Language Syntax for A and L Commands

13.1 Assembly Language Exceptions.

14 SID-86 Sample Session

A RASM-86 Example Source File
B Mnemonic Differences from the Intel Assembler.
C Reserved Words ittt ittt e
D Code-Macro Definition Syntax
E RASM-86 Error Messages,
F XREF-86 Error Messages.uuuviuueenunin.
G LINK-86 Error Messagesty
H LIB-86 Error Messagest
I SID-86 Error MessSagest
Figures
7-1 Combining Segments with the Public Combine Type
7-2 Combining Segments with the Common Combine Type. .
7-3 Combining Segments with Stack Combination
7-4 Paragraph Alignment
7-5 The Effect of Grouping Segments

14.1 Introduction L

x|

7-18
7-19

Contents

Tables
1-1 RASM-86 Run-time Parameters. 1-2
2-1 Separators and Delimiters 2-2
2-2 Radix Indicators for Constants. S 2-4
2-3 String Constant Examples 2-5
2-4 Register Keywords. 2-7
2-5 RASM-86 Operator Summary. 2-10
2-6 Precedence of Operations in RASM-86 2-19
3-1 Default Segment Names 3-4
3-2 Default Align Types 3-5
3-3 Default Class Name for Segments 3-7
4-1 RASM-86 Instruction Summary 4-2
4-2 Operand Type Symbols 4-10
4-3 Flag Register Symbols. 4-12
4-4 8086 Data Transfer Instructions. 4-13
4-5 Eftfects of Arithmetic Instructions on Flags. 4-16
4-6 8086 Arithmetic Instructions 4-17
4-7 8086 Logical and Shift Instructions 4-20
4-8 8086 String Instructions., 4-25
4-9 8086 Prefix Instructions. 4-27
4-10 8086 Control Transfer Instructions. 4-28
4-11 8086 Processor Control Instructions 4-33
4-12 8087 Data Transfer Instructions 4-36
4-13 8087 Arithmetic Instructions 4-38
4-14 8087 Comparison Instructions 4-43
4-15 8087 Transcendental Instructions. 4-44
4-16 8087 Constant Instructions 4-44
4-17 8087 Processor Control Instructions 4-45
4-18 Additional 186 and 286 Instructions 4-46
4-19 Additional 286 Instructions. L 4-46
5-1 Code-macro Operand Specifiers L 5-3
5-2 Code-macro Operand Modifiers. . . . 5-4
7-1 LINK-86 Command Options S . 7-5
7-2 Command File Option Parameters 7-8
7-3 Default Values for Command File Options and Parameters 7-10
7-4 LINK-86 Usage of Class Names L . 7-24

Xt

Contents

8-1 LIB-86 Filetypes. 8-1
8-2 LIB-86 Command Line Options. 8-3
11-1 Flag Name Abbreviations 11-27
11-2 SID-86 Command Summary. 11-31
12-1 SID-86 Default Segment Values. 12-3
B-1 RASM-86/Intel Mnemonic Differences B-1
B-2 Memory Operands for 8087 Instruction B-2
C-1 Reserved Words - C-1
E-1 RASM-86 Non-recoverable Errors S R o
E-2 RASM-86 Diagnostic Error Messages. E-3
F-1 XREF-86 Error Messagesu.u... F-1
G-1 LINK-86 Error Messages G-1
H-1 LIB-86 Error Messageso.. ... H-1
I-1 SID-86 Error Messages.t -1

xiii

SECTION1

The RASM-86 Assembler

1.1 Introduction

This section describes RASM-86 operation and its command syntax.
Sections 2 through 5 detail the characteristics and uses of the
RASM-86 components. A sample RASM-86 source file is provided in

Appendix A.

1.2 RASM-86 Operation

The RASM-86 assembler converts source files containing 8086, 8087,
80186, 80286, and 80287 instructions into machine language object
files. RASM-86 processes an assembly language source file in three
passes and can produce three output files from one source file. The
three files have the same filename as the source file. For example, if
the name of the source file is BIOS88.A86, RASM-86 produces the files
BI0S88.0BJ, BIOS88.LST, and BIOS88.SYM.

The LST list file contains the assembly language listing with any error
messages. The OBJ object file contains the object code in Intel 8086
and 80286 relocatable object format. The SYM symbol file lists any
user-defined symbols.

1.3 RASM-86 Command Syntax :
Invoke RASM-86 with the following command form:

RASMB86 [d:]filename[.typ] [$ run-time parameters]

where filename is the name of the source file. The filename can be
any valid filename of 1 to 8 characters.

The d: is an optional drive specification denoting the source file’s
location. The drive specification is not needed if the source is on the

current drive.

1-1

1.3 RASM-86 Command Syntax Programmer’s Utilities Guide

The typ is the optional filetype, which can be any valid filetype of | to
3 characters. If no filetype is specified, filetype A86 is assumed. The
run-time parameters are described below in Section 1.3.1.

1.3.1 RASM-86 Run-Time Parameters

The dollar sign character, $, denotes an optional string of run-time
parameters. A run-time parameter is followed by a device or file
specification.

Table 1-1 contains a summary of the RASM-86 run-time parameters,
described in detail in the following sections.

Table 1-1. RASM-86 Run-time Parameters

Parameter Specifies Valid Arguments

A Source file device A, B C,..P
IFILENAME Include filename into assembly
at beginning of module

L Local symbols in object file (0]
(0] Object file device A..P Z
NC No case conversion
P List file device AP XY, Z
S Symbol file device AP XY, Z
186 Permit 186 opcodes
286 Permit 286 opcodes

All run-time parameters are optional, and you can enter them in the
command line in any order. Enter the dollar sign only once at the
beginning of the parameter string. Spaces can separate parameters,
but are not required. However, no space is permitted between a
parameter and its device name.

1-2

Programmer’s Utilities Guide 1.3 RASM-86 Command Syntax

If you specify an invalid parameter in the parameter list, RASM-86
displays
SYNTAX ERROR

and echoes the command tail up to the point where the error occurs,
then prints a question mark. (Appendix E contains the complete list of

RASM-86 error messages.) -

A, O, P, and S Parameters

These run-time parameters associate a filetype with a device. The file
parameters: A, O, P, and S specify the type of file. Each of these
parameters is followed by a device specifier: A - P, X, Y, Z For

example:
$ AA
specifies the source file on drive A.
The A, O, P, and S parameters have the following definitions:

specifies the Source File
specifies the Object File
specifies the List File

specifies the Symbol File

A device name must follow each of these parameters. The devices are
defined as follows:

»wovO0>

A - P Specify disk drives A through P, respectively.

X specifies the user console, CON:
Y specifies the list device, LST:
Z suppresses output, NUL:

If you direct the output to the console, you can temporarily stop the
display by typing CTRL-S, then restart it by typing CTRL-Q.

IFILENAME Parameter

If a filename is preceded by an upper case |, RASM-86 includes the
contents of the file at the beginning of the module being assembled.
If no filename extension is specified, RASM-86 assumes an extension

of A86.

1-3

1.3 RASM-86 Command Syntax ’ Programmer’s Utilities Guide

L Parameter
The L parameter directs RASM-86 to include local symbols in the
object file so that they appear in the SYM file created by LINK-86.

Otherwise, only public symbols appear in the SYM file. You can use
the SYM file with the Symbolic Instruction Debugger, SID-86™, to

simplify program debugging.

NC Parameter

The NC parameter directs RASM-86 to distinquish between uppercase
and lowercase in symbol names. Thus, when you specify the NC
parameter, the symbols ABC and abc are treated as two unique
symbols. If the NC parameter is not specified, RASM-86 would
consider ABC and abc to be the same symbol. This parameter is
useful when writing programs to be linked with other programs whose
symbols might contain lowercase characters, such as "c".

186 and 286 Parameters
The 186 parameter specifies that 80186 opcodes are to be assembled.

The 286 parameter specifies that 80286 opcodes-are to be assembled.

1.3.2 RASM-86 Command Line Examples
The following are some examples of valid RASM-86 commands:

Command Line Result

A>rasm86 io Assembles file I0.A86 and produces 10.0BJ, I0OLST,
and 10.SYM, all on the default drive.

A>rasm86 io.asm $ ad sz
Assembles file I0.ASM on drive D and produces
10.LST and 10.0BJ. Suppresses the symbol file.

A>rasm86 io $§ py sx
Assembles file 10.A86, produces 10.0BJ, and sends

listing directly to printer. Also outputs symbols on
console.

1-4

rroyrammer s vunues guide 1.3 RASM-86 Command Syntax

Command Line Result

A>rasm86 io $ Ifirst
Assembles file 10.A86 with the contents of the file,

first.a86, appearing at the beginning of the ‘module.
Then produces 10.0BJ, I0.LST, and 10.SYM, all on the

default drive.

A>rasm86 io $ 1lo
Includes local symbols in 10.08J.

Once you invoke RASM-86, it displays a sign-on message and then
attempts to open the source file. If the file does not exist on the
designated drive or does not have the correct filetype, RASM-86

displays:
NO FILE

and stops processing

By default, RASM-86 creates the output files on the current disk drive.
However, you can redirect the output files by using the optional
parameters, or by a drive specification in the source filename. In the
latter case, RASM-86 directs the output files to the drive specified in

the source filename.
When the assembly is complete, RASM-86 displays the message:
END OF ASSEMBLY. NUMBER OF ERRORS. n USE FACTOR: pp%

where n represents the number of errors encountered during
assembly. The Use Factor indicates how much of the available
Symbol Table space was actudlly used during the assembly. The Use
Factor is expressed as a decimal percentage ranging from 0 to 99.

1-5

1.4 Stopping RASM-86 Programmer’s Utilities Guide

14 Stopping RASM-86

You can halt both the native mode and PC DOS mode assembler by
pressing Ctrl-C. You can also stop the native-mode assembler, by
pressing any key on the console keyboard. When you press a key,

RASM-86 responds:

STOP RASM-86 (Y/N)?

If you type Y, RASM-86 immediately stops processing, and returns
control to the operating system. Type N to resume processing.

End of Section 1

1-6

SECTION 2

Elements of RASM-86
Assembly Language

L.

2.1 Introduction

This section describes the following elements of RASM-86 assembly
language:

® RASM-86 Character Set
® Tokens and Separators
® Delimiters

® Constants

® |dentifiers

® QOperators

® Expressions

® Statements

2.2 RASM-86 Character Set

i

RASM-86 recognizes a subset of the ASCIl character set. Valid
RASM-86 characters are the letters A through Z (both uppercase and
lowercase) and the numerals 0-9.

Valid special characters are:

+ - * /= () () .0, : $?

Valid nonprinting characters are:

space, tab, carriage return, and line-feed

Usually RASM-86 treats lowercase letters as uppercase, except within
strings. You can use the NC parameter described in Section 1.3.1 to
make RASM-86 distinguish between lower and upper case. Only
alphanumerics, special characters, and spaces can appear in a string.

2.3 Tokens and Separators Programmer’s Utilities Guide

2.3 Tokens and Separators

A token is the smallest meaningful unit of a RASM-86 source program,
much as a word is the smallest meaningful unit of a sentence.
Adjacent tokens within the source are commonly separated by a blank
character or space. Any sequence of spaces can appear wherever a
single space is allowed. RASM-86 recognizes horizontal tabs as
separators and interprets them as spaces. RASM-86 expands tabs to
spaces in the list file. The tab stops are at each eighth column.

24 Delimiters

Delimiters mark the end of a token and add special meaning to the
instruction; separators merely mark the end of a token. When a
delimiter is present, separators need not be used. However, using
separators after delimiters can make your program easier to read.

Table 2-1 describes RASM-86 separators and delimiters. Some
delimiters are also operators. Operators are described in Section 2.7.

Table 2-1. Separators and Delimiters

Character Name Use

20H space separator

09H tab legal in source files, expanded in
list files

CR carriage return terminates source lines

LF line-feed legal after CR; if in source lines, it
is interpreted as a space

; semicolon starts comment field

colon identifies a label; used in segment

override specification

2-2

Programmer’s Utilities Guide 2.4 Dalimiters

Table 2-1. (continued)

Character Name Use
period forms variables from numbers

$ dollar sign notation for present value of
location counter; legal, but
ignored in identifiers or numbers

+ plus arithmetic operator for addition

- minus arithmetic operator for
subtraction

* asterisk arithmetic operator for
multiplication -

/ slash . arithmetic operator for division

@ at sign legal in identifiers

_ underscore legal in identifiers

| exclamation point logically terminates a statement,

allowing multiple statements on a
single source line

! apostrophe delimits string constants

2.5 Constants

A constant is a value known at assembly time that does not change
while the assembled program is running. A constant can be either a
numeric value or a character string.

2-3

2.5 Constants Programmer’s Utilities Guide

2.5.1 Numeric Constants
|

A numeric constant is a 16-bit integer value expressed in one of
several bases. The base, called the radix of the constant, is denoted
by a trailing radix indicator. Table 2-2 shows the radix indicators.

Table 2-2. Radix Indicators for Constants

Indicator Constant Type Base

binary

octal

octal
decimal
hexadecimal

- = O ON

ITIOPDOw™
(o) N]

RASM-86 assumes that any numeric constant not terminating with a
radix indicator is a decimal constant. Radix indicators can be
uppercase or lowercase.

A constant is thus a sequence of digits followed by an optional radix
indicator, where the digits are in the range for the radix. Binary
constants must be composed of zeros and ones. Octal digits range
from 0 to 7, decimal digits range from 0 to 9. Hexadecimal constants
contain decimal digits and the hexadecimal digits A (10D), B (11D), C
(12D), D (13D), E (14D), and F (15D). The leading character of a
hexadecimal constant must be a decimal digit so RASM-86 cannot
confuse a hex constant with an identifier. The following are valid
numeric constants:

1234 1234D 1100B 1111000011110000B "

1234H OFFEH 33770 13772Q
33770 OFE3H 12344 Offffh

Programmer’s Utilities Guide 2.5 Constants

2.5.2 Character String Constants

A character string constant is a string of ASCIl characters delimited by
apostrophes. All RASM-86 instructions allowing numeric constants as
arguments accept only one- or two-character constants as valid
arguments. All instructions treat a one-character string as an 8-bit
number, and a two-character string as a 16-bit number. The value of
the second character is in the low-order byte, and the value of the
first character is in the high-order byte.

The numeric value of a character is its ASCIl code. RASM-86 does not
translate case in character strings, so you can use both uppercase and
lowercase letters. Note that RASM-86 allows only alphanumerics,
special characters, and spaces in character strings.

A DB directive is the only RASM-86 statement that can contain strings
longer than two characters (see Section 3.7.1). The string cannot
exceed 255 bytes. If you want to include an apostrophe in the string,
you must enter it twice. RASM-86 interprets two apostrophes
together as a single apostrophe. Table 2-3 shows valid character
strings and how they appear after processing.

Table 2-3. String Constant Examples

String in source text As processed by RASM-86
‘a’ a

‘Ab”"Cd’ Ab’Cd

‘I like CP/M’ | like CP/M

‘'ONLY UPPER CASE’ ONLY UPPER CASE

‘only lower case’ only lower case

2-5

2.6 Identifiers Programmer’s Utilities Guide

2.6 ldentifiers
The following rules apply to all identifiers:

® |dentifiers can be up to 80 characters long

® The first character must be alphabetic or one of these special
characters: ?, @, or _.

® Any subsequent characters can be either alphabetic, numeric, or
one of these special characters: ?, @, , or $. RASM-86 ignores
the special character $ in identifiers, so that you can use it to
improve readability in long identifiers For example, RASM-86
treats the identifier interrupt$flag as interruptflag.

There are two types of identifiers:

Keywords

Symbols

Keywords have predefined meanings to RASM-86. Symbols are
identifiers you define yourself.

2.6.1 Keyword ldentifiers

Keywords are reserved for use by RASM-86; you cannot define an
identifier identical to a keyword Appendix C lists the keywords.

RASM-86 recognizes five types of keywords:

@ instructions

@ directives

@ operators

® registers

® predefined numbers

Section 4 defines the 8086, 8087, 80186, 80286, and 80287 instruction
mnemonic keywords and the actions they initiate, Section 3 discusses
RASNI-86 directives, and Section 2 7 defines operators. Table 2-4 lists
the RASM-86 keywords that identify the processor registers.

2-6

Programmer's Utilities Guide 2.6 Identifiers

Three keywords, BYTE, WORD, and DWORD, are predefined numbers.
The values of these numbers are 1, 2, and 4, respectively. RASM-86
also associates a Type attribute with each of these numbers. The
keyword's Type attribute is equal to the keyword’s numeric value.

Table 2-4. Register Keywords

Register Size Numeric

Symbol (bytes) Value Meaning
AH 1 100 B Accumulator High Byte
BH 1 1118 Base Register High Byte
CH 1 101 B Count Register High Byte
DH 1 110 B Data Register High Byte
AL 1 000 B Accumulator Low Byte
BL 1 011 8B Base Register Low Byte
CL 1 001 B Count Register Low Byte
DL 1 o088 Data Register Low Byte
AX 2 000 B Accumulator (full word)
BX 2 011 B Base Register (full word)
CX 2 001 8B Count Register (full word)
DX 2 o010 B Data Register (full word)
BP 2 101 B Base Pointer
SP 2 100 B Stack Pointer
Y 2 1108 Source Index
DI 2 111 8 Destination Index
CS 2 01 B Code Segment Register
DS 2 118 Data Segment Register
SS 2 108 Stack Segment Register
ES 2 00 B Extra Segment Register
ST 10 000 B 8087 stack top register
STO 10 000 B 8087 stack top register
ST1 10 001 8B 8087 stack top - 1 is stack top
ST7 10 111 B 8087 stack top - 7 is stack top

2.6 Identifiers Programmer’'s Utilities Guide

2.6.2 Symbol Identifiers

A symbol is a user-defined identifier with attributes specifying the kind
of information the symbol represents. Symbols fall into three
categories:

® variables
® |abels
® numbers

Variables

Variables identify data stored at a particular location in memory. All

variables have the following three attributes:

Segment tells which segment was being assembled when the
variable was defined.

Offset tells how many bytes are between the beginning of
the segment and the location of this variable.

Type tells how many bytes of data are manipulated when
this variable is referenced.

A segment can be a code segment, a data segment, a stack segment,

or an extra segment, depending on its contents and the register
containing its starting address (see “Segment Control Directives” in
Section 3.3). The segment’s starting address is a number between 0
and OFFFFH (65,535D). This number indicates the paragraph in memory
to which the current segment is assigned, either when the program is
assembled, linked, or loaded

The offset of a variable is the address of the variable relative to the
starting address of the segment. The offset can be any number
between 0 and OFFFFH.

A variable has one of the following type attributes:

BYTE one-byte variable
WORD two-byte variable
DWORD four-byte variable

2-8

Programmer’s Utilities Guide 2.6 Identifiers

The data definition directives: DB, DW, and DD, define a variable as one
of these three types (see Section 3). For example, the variable,
my variable, is defined when it appears as the name for a data
definition directive:

my_variable db 0

You can also define a variable as the name for an EQU directive
referencing another variable, as shown in the following example:

another_variable equ my_variable

Labels

Labels identify locations in memory containing instruction statements.
They are referenced with jumps or calls. All labels have two
attributes, segment and offset.

Label segment and offset attributes are essentially the same as
variable segment and offset attributes. A label is defined when it
precedes an instruction. A colon separates the label from instruction.

For example,

my_label: add axbx

A label can also appear as the name for an EQU directive referencing
another label. For example,

another_label equ my_label

Numbers

You can also define numbers as symbols. RASM-86 treats a number
symbol as though you have explicitly coded the number it represents.
For example,

number_five equ 5
mov al,Number_five

is equivalent to the following:

mov al5

Section 2.7 describes operators and their effects on numbers and
number symbols.

2.6 Identifiers Programmer’s Utilities Guide

2.6.3 Example Identifiers
The following are valid identifiers:

NOLIST
« WORD
AH
Mean_streets
crashed
variable number 1234567890

2.7 Operators

This section describes the available RASM-86 operators. RASM-86
operators define the operations forming the values used in the final
assembly instruction.

RASM-86 operators fall into the following categories:

® arithmaetic

® logical

® relational

® segment override

® variable manipulation
® variable creation

Table 2-5 summarizes the available RASM-86 operators and the
number of the section where each operator is explained in detail.

Table 2-5. RASM-86 Operator Summary

Operator Description Section
+ addition or unary positive 271
- subtraction or unary negative 271
* multiplication 2.7.1
/ unsigned division 2.7.1

Programmer’s Utilities Guide 2.7 Operators

Table 2-5. (Continued)

Operator Description Section
) create variable, assign offset 2.7.6
$ create label, offset = location counter 2.7.6
AND logical AND 27.2
EQ Equal to 273
GE Greater than or equal to 273
GT Greater than 273
LAST compare LENGTH of variable to 0 275
LE Less than or equal to 273
LENGTH create number from variable length 275
LT Less than 273
MOD return remainder of division 271
NE Not Equal to 273
NOT logical NOT 2.7.2
OFFSET create number from variable offset 275
OR logical OR 2.7.2
PTR create variable or label, assign type 2.7.6
seg:addr override segment register 274
SEG create number from variable segment 275
SHR shift right 2.7.1
SHL shift left 271
TYPE create number from variable type 2.7.5
XOR logical eXclusive OR 2.7.2

The following sections define the RASM-86 operators in detail. Where
the syntax of the operator is illustrated, a and b represent two
elements of the expression. Unless otherwise specified, a and b
represent absolute numbers, such as numeric constants, whose value
is known at assembly-time. A relocatable number, on the other hand,
is a number whose value is unknown at assembly-time, because it can
change during the linking process. For example, the offset. of a
variable located in a segment that will be combined with some other
segments at link-time is a relocatable number.

2.7 Operators Programmer’s Utilities Guide

2.7.1 Arithmetic Operators

Addition and Subtraction

Addition and-subtraction operators compute the arithmetic sum and
difference of two operands. The first operand (a) can be a variable,
label, an absolute number, or a relocatable number. For addition, the
second operand (b) must be a number. For subtraction, the second
operand can be a number, or it can be a variable or label in the same
segment as the first operand.

When a number is added to a variable or label, the result is a variable
or label with an offset whose numeric value is the second operand
plus the offset of the first operand. Subtraction from a variable or
label returns a variable or label whose offset is the first operand’s
offset, decremented by the number specified in the second operand.

Syntax:
a+b returns the sum of a and b. Where a is a variable,
label, absolute number, or relocatable number.
a-b returns the difference of a and b. Where a and b
. are variables, labels, absolute numbers, or
relocatable numbers in the same segment.
Example:
0002 count equ 2
0005 displ equ 5
000A FF flag db offh
000B 2EA00BOO mov al,flag+l
000F 2E8AQEOF00 mov cl,flag+displ
0014 B303 mov bl,displ-count

Programmer’s Utilities Guide 2.7 Operators

Multiplication and Division

The multiplication and division operators * /, MOD, SHL, and SHR
accept only numbers as operands. * and / treat all operators as
unsigned numbers.

Syntax:
a*b unsigned multiplication of a and b
a’/b unsigned division of a and b
a MOD b return remainder of a/ b
a SHLb returns the value resulting from shifting a to left by
the amount specified by b :
a SHR b returns the value resulting from shifting a to the
right by an the amount specified by b
Example:
0016 BES500 mov si,256/3
0019 B310 mov bl,64/4
0050 buffersize equ 80
001B B8AQOOO mov ax,buffersize * 2
Unary

Unary operators specify a number as either positive or negative.
RASM-86 unary operators accept both signed and unsigned numbers.

Syntax:
+ 3 gives a
-a gives 0 - a

2.7 Operators Programmer’s Utilities Guide

Example:
001E B123 mov cl,+35
0020 BOO7 mov al,2--5
0022 B2F4 mov dl,-12

2.7.2 Logical Operators

Logical operators accept only numbers as operands. They perform the
Boolean logic operations AND, OR, XOR, and NOT.

Syntax:
a XOR b bit-by-bit logical EXCLUSIVE OR of a and b
aORb bit-by-bit logical OR of a and b
a AND b bit-by-bit logical AND of a and b
NOT a logical inverse of a: all Os become 1s, 1s become
0s. (a is a 16-bit number.)
Example:
00FC mask equ Ofch
0080 signbit equ 80h
0000 B180 mov cl,mask and signbit
0002 BOO3 mov al,not mask

2.7.3 Relational Operators

Relational operators treat all operands as unsigned numbers. The
relational operators are EQ (equal), LT (less than), LE (less than or
equal), GT (greater than), GE (greater than or equal), and NE (not
equal). Each operator compares two operands and returns all ones
(OFFFFH) if the specified relation is true, and all zeros if it is not.

Programmer’s Utilities Guide 2.7 Operators

Syntax:

In all of the operators below, a and b are unsigned numbers; or they
are labels, variables, or relocatable numbers defined in the same

segment.

aEQb returns OFFFFH if a = b otherwise 0

alTb returns OFFFFH if a < b, otherwise 0

alEDb returns OFFFFH if a <= b, otherwise 0

aGTb ‘ returns OFFFFH if a > b, otherwise 0

aGEb returns OFFFFH if a >= b, otherwise 0

aNEDb returns OFFFFH if a<> b, otherwise 0
Example:

000A limitl equ 10

0019 limit2 equ 25

. |

0004 BSFFFF mov ax,limitl 1t limit?2
0007 B80000O mov ax,limitl gt limit2

274 Segment Override Operator

When manipulating variables, RASM-86 decides which segment
register to use. You can override this choice by specifying a different
register with the segment override operator.

In the syntax below, seg:addr represents the segment register (seg)
and the address of the expression (addr).

Syntax:

seg:addr overrides segment register selected by assembler.
seg can be: CS, DS, SS, or ES

2.7 Operators Programmer’'s Utilities Guide

Example:

0024 368B472D mov ax,ss:wordbuffer(bx]
0028 268BOESB00 mov Cx,es:array

002D 26A4 movs byte ptr [di),es:[si]

2.7.5 Variable Manipulation Operators

A variable manipulator creates a number equal to one attribute of its
variable operand. SEG extracts the variable’s segment value; OFFSET,
its offset value; TYPE, its type value (1, 2, or 4), and LENGTH, the
number of bytes associated with the variable. LAST compares the
variable’s LENGTH with zero. If LENGTH is greater than zero, LAST
decrements LENGTH by one. |f LENGTH equals zero, LAST leaves it
unchanged. Variable manipulators accept only variables as operators.

Syntax:
" SEG a creates a number whose value is the segment value
of the variable or label a.

OFFSET a creates a number whose value is the offset value of
the variable or label a.

TYPE a creates a number. If the variable a is of type BYTE,
WORD or DWORD, the value of the number created
is 1, 2, or 4, respectively.

LENGTH a creates a number whose value is the length

attribute of the variable a. The length attribute is
the number of bytes associated with the variable.

LAST a if LENGTH a > 0, then LAST a = LENGTH a - 1 if
LENGTH a = 0, then LAST a = 0.

Programmer’s Utilities Guide 2.7 Operators

Example:

002D 000000000000 wordbuffer dw 0,0,0

0033 0102030405 buffer db 1,2,3,4,5
0038 B80500 mov ax,length buffer
003B B80400 mov ax,last buffer
003E B80100 mov ax, type buffer
0041 B80200 mov ax,type wordbuffer

2.7.6 Variable Creation Operators

Three RASM-86 operators are used to create variables. These are the
PTR, period, and dollar sign operators described below.

The PTR operator creates a virtual variable or label valid only- during
the execution of the instruction. PTR makes no changes to either of
its operands. The temporary symbol has the same Type attribute as
the left operator, and all other attributes of the right operator.

The period operator (.) creates a variable in the current Data Segment.
The new variable has a segment attribute equal to the current Data
Segment and an offset attribute equal to its operand.

The dollar sign operator ($) creates a label with an offset attribute
equal to the current value of the location counter. The label segment
value is the same as the current segment. This operator takes no

operand.
Syntax:

aPTR b creates virtual variable or label with type of a and
attributes of b. a can be a BYTE, WORD, or DWORD;

b is the address of the expression.

.a creates variable with an offset attribute of a.’
Segment attribute is current data segment.

2.7 Operators Programmer’s Utilities Guide

$ creates label with offset equal to current value of
location counter; segment attribute is current
segment.
Examples:
0044 C60705 mov byte ptr (bx], 5
0047 8A07 mov al,byte ptr [bx]
0049 FFO04 inc word ptr [si]
004B A10000 mov ax, .0
004E 268B1E0040 mov bx, es:.4000h
0053 ESFDFF jmp $
0056 EBFE jmps $
. 0058 E9FD2F jmp $+3000h

2.7.7 Operator Precedence

Expressions combine variables, labels, or numbers with operators.
RASM-86 allows several kinds of expressions (see Section 2.8). This
section defines the order that RASM-86 performs operations if more
than one operator appear in an expression.

RASM-86 evaluates expressions from left to right, but evaluates
operators with higher precedence before operators with lower
precedence. When two operators have equal precedence, RASM-86
evaluates the leftmost operator first. Table 2-6 shows RASM-86
operators in order of increasing precedence

You can use parentheses to override the precedence rules. RASM-86
first evaluates the part of an expression enclosed in parentheses If
you nest parentheses, RASM-86 evaluates the innermost expressions
first.

Programmer’s Utilities Guide

2.7 Operators

For example,

15/3 + 18/9 =
15/(3 + 18/9) =
(20%4) + ((27/9 - 4/2)

S + 2 =
15/(3

7
+2) =
) =

15/5 = 3
(20%4)+(3-2) =

80+1 = 81

Note that RASM-86 allows five levels of nested parentheses.

Table 2-6. Precedence of Operations in RASM-86

Order Operator Type Operators
1 Logical XOR, OR
2 Logical AND
3 Logical NOT
4 Relational EQ, LT, LE, GT, GE, NE
5 Addition/subtraction + -
6 Multiplication/division * / MOD, SHL, SHR
7 Unary + -
8 Segment override segment_override:
9 Variable manipulators/creators SEG, OFFSET, PTR, TYPE,
LENGTH, LAST
10 Parentheses/brackets () (1]

11

Period and Dollar

$

2.8 Expressions Programmer’s Utilities Guide

2.8 Expressions

RASM-86 allows address, numeric, and bracketed expressions. An
address expression evaluates to a memory address and has three
components:

® segment value
©® offset value
® type

Both variables and labels are address expressions. An address
expression is not a number, but its components are numbers. You can
combine numbers with operators such as PTR to make an address
expression.

A numeric expression evaluates to a number. It contains no variables
. or labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes.
The base registers are BX and BP, and the index registers are DI and
SI. A bracketed expression can consist of a base register, an index
register, or both.

Use the + operator between a base register and an index register to
specify both base- and index-register addressing. For example,

mov variable[bx],0
mov ax,[bx+di)
mov ax,[si]

mov bl [si)

Since all of the above instructions are memory references, the current
DS Segment Selector is implied. The first instruction moves the value
of 0 hex into the word location specified by the sum of the base
register BX and the displacement VARIABLE. The second instruction
moves "the word found at the location specified by the sum of the
base register BX and the index register DI into the location specified
by the word register AX. The third instruction moves the word found
at the location specified by index register Sl into the location specified
by the word register AX. The last instruction moves the byte found at
the location specified by the index register Sl into the location
specified by the byte register BL.

2-20

Programmer’s Utilities Guide 2.9 Statements

29 Statements

Statements can be instructions or directives. RASM-86 translates
instructions into 8086 and 80286 machine language instructions.
RASM-86 does not translate directives into machine code. Directives
tell RASM-86 to perform certain functions.

You must terminate each assembly language statement with a carriage
return (CR) and line-feed (LF), or exclamation point. RASM-86 treats
these as an end-of-line. You €an write multiple assembly language
statements without comments on the same physical line and separate

them with exclamation points. Only the last statement on a line can
have a comment because the comment field extends to the physical

end of the line.

29.1 Instruction Statements

The following is the syntax for ar instruction statement: i
[1abel:] [prefix] mnemonic [operand(s)] [[comment]

The fields are defined as follows:

label A symbol followed by a colon defines a label at the
current value of the location counter in the current

segment. This field is optional.

prefix Certain machine instructions such as LOCK and REP
can prefix other instructions. This field is optional.
muemonic A symbol defined as a machine instruction, either by

RASM-86 or by an EQU directive. This field is
optional unless preceded by a prefix instruction. |If
you omit this field, no operands can be present,
although the other fields can appear. Section 4
describes the RASM-86 mnemonics.

operand(s) An instruction mnemonic can require other symbols
to represent operands to the instruction.
Instructions can have zero, one, or two operands.

2-21

cy =
2.9 Statements Programmer’s Utilities Gui

comment Any semicolon appearing outside a character stri
begins a comment. A comment ends with
carriage return. This field is optional, but vy
should wuse comments to facilitate progra
maintenance and debugging.

Section 3 describes the RASM-86 directives.

2.9.2 Directive Statements
The following is the syntax for a directive statement:

[name] directive operand(s) [;comment]

The fields are defined as follows:

name Names are legal for CSEG, DSEG, ESEG, SSEG
GROUP, DB, DW, DD, RB, RW, RD, RS, and EQL
directives. The name is required for the EQU anc
GROUP directives, but it is optional for the other
directives. Unlike the label field of an instruction,
the name field of a directive is never terminated
with a colon.

directive One of the directive keywords defined in Section 3.

operand(s) Analogous to the operands for instruction
mnemonics. Some directives, such as DB and DW
allow any operand; others have special
requirements.

comment Exactly as defined for instruction statements in
Section 2 9.1.

End of Section 2

2-22

N\ T IN/IY W

RASM-86 Directives

3.1 Introduction

RASM-86 directives control the assembly process by performing
functions such as assigning portions of code to logical segments,

requesting condit

ional assembly, defining data items, allocating

memory, specifying listing file format, and including source text from

external files.

RASM-86 directives are grouped into the following categories:

® segment control

output listing
8087 control
miscellaneous

linkage control

conditional assembly

symbol definition

data definition and memory allocation

control

3.2 Assembler Directive Syntax

The following is the general syntax for a directive statement:

[name] directive operand(s) [;comment]

The fields are defined as follows:

name

Is a symbol that retains the value assigned by the
directive. A name is required for the EQU and
GROUP directives, but it is optional for the other
directives. Unlike the label field of an instruction,
the name field of a directive is never terminated
with a colon. Names can be used with the CSEG,
DSEG, ESEG, SSEG, GROUP, DB, DW, DD, RB, RW, RD,
RS, and EQU directives.

3.2 Assembler Diraective Syntax Programmer’'s Utilities Guir

directive One of the directive keywords defined in Sectiol
3.3 through 3.10.

operand(s) Analogous to the operands for instructic
mnemonics. Some directives, such as DB and D'
allow any operand; others have speci
requirements.

comment Exactly as defined for instruction statements i
Section 29.1.

The following sections describe each RASM-86 directive. The synta
for each directive follows each section heading.

3.3 Segment Control Directives

This section describes the RASM-86 directives used to assign specific
attributes to segments. These attributes affect the way the segments
are handled during the link process. The available segment contro
directives are:

CSEG
DSEG
ESEG
SSEG
GROuUP

In order to utilize these directives, you must understand the
segmented architecture of the 8086 and 80286 processors. The
following section summarizes the general characteristics of the
8086/80286 segmented architecture.

3.3.1 The 8086/80286 Segmented Architecture

The address space of an 8086 or an 80286 processor can be
subdivided into an arbitrary number of units called segments. Each
segment is comprised of contiguous memory locations, up to 64k
bytes in length, making up logically independent and seperately
addressable units.

3-2

Programmer’s Utilities Guide 3.3 Segment Control Directives

Each segment must have a base address specifying its starting
location in the memory space. Each segment base address must
begin on a paragraph boundary, a boundary divisible by 16.

Every location in the memory space has a physical address and a
logical address. A physical address is a value specifying a unique byte
location within the memory space. A logical address is the
combination of a segment base value and an offset value. The offset
value is the address relative to the base of the segment. At run-time,
every memory reference is the combination of a segment base value
and an offset value that produces a physical address. A physical
address can be contained in more than one logical segment.

The CPU can access four segments at a time. The base address of
each segment is contained in a segment register. The CS register
points to the current code segment that contains instructions. The DS
register points to the current data segment usually containing program
variables. The SS register points to the current stack segment where
stack operations such as temporary storage or parameter passing are
performed. The ES register points to the current Extra Segment that

typically also contains data.

RASM-86 segment directives allow you to divide your assembly
language source program into segments corresponding to the memory
segments where the resulting object code is loaded at run-time.

The size, type, and number of segments required by a program defines
which memory model the operating system should use to allocate
memory. Depending on which model you use, you can intermix all of
the code and data in a single 64K segment, or you can have separate
Code and Data Segments, each up to 64K in length. The RASM-86
segment directives described below, allow you to create an arbitrary
number of Code, Data, Stack, and Extra Segments to more fully use the
address space of the processor. You can have more than 64K of code
or data by using several segments and managing the segments with
the assembler directives.

3.3.2 CSEG, DSEG, ESEG, and SSEG Directives

Every instruction and variable in a program must be contained in a
segment. Segment directives allow you to specify the attributes of a
segment or a group of segments of the same type.

3-3

3.3 Segment Control Directives Programmer’s Utilities Guide

Create a segment and name it by using the segment directive syntax:

[seg_name] seg_directive [align_type] [combine_type] [‘class_name’]

where seg_directive is one of the following:

CSEG (Code Segment)
DSEG (Data Segment)
ESEG (Extra Segment)
SSEG (Stack Segment)

The optional parameters are described below; note that class-name is
applicable only to native mode programs. Examples illustrating how
segment directives are used are provided at the end of this section.

seg_name

The segment name can be any valid RASM-86 identifier. If you do not
specify a segment name, RASM-86 supplies a default name, as shown
in Table 3-1.

Table 3-1. Default Segment Names

Segment Directive Default Segment Name
CSEG CODE
DSEG DATA
ESEG EXTRA
SSEG STACK

Once you use a segment directive, RASM-86 assigns statements to the
specified segment until it encounters another segment directive.
RASM-86 combines all segments with the same segment name even if
they are not contiguous in the source code

3-4

Programmer’s Utilities Guide 3.3 Segment Control Directives

align_type

The align type allows you to specify to the linkage editor a particular
boundary for the segment. The linkage editor uses this alignment
information when combining segments to produce an executable file.
You can specify one of four different align types:

® BYTE (byte alignment)

® WORD (word alignment)

® PARA (paragraph alignment)

© PAGE (page alignment)
If you specify an align type, it must be with the first definition of the
segment. You can omit the align type on subsequent segment
directives that name the same segment, but you cannot change the
original value. If you do not specify an align type, RASM-86 supplies a
default value based on the type of segment directive used. Table 3-2
shows the default values.

Table 3-2. Default Align Types

Segment Directive Default Align Type
CSEG BYTE
DSEG WORD
ESEG WORD
SSEG WORD

BYTE alignment means that the segment begins at the next byte
following the previous segment.

WORD alignment means that the segment begins on an even
boundary. An even boundary is a hexadecimal address ending in 0, 2,
4, 6, 8 A, C, or E. In certain cases, WORD alignment can increase
execution speed because the CPU takes only one memory cycle when
accessing word-length variables within a segment aligned on an even
boundary. Two cycles are needed if the boundary is odd.

3-5

3.3 Segment Control Directives Programmer’s Utilities Guide

PARA (paragraph) alignment means that the segment begins on a
paragraph boundary, that is, an address whose four low-order bits are

2ero.

PAGE alignment means that the segment begins on a page boundary,
an address whose low order byte is zero.

combine_type

The combine type determines how the linkage editor can combine the
segment] with other segments with the same segment name. You can
specify one of five different combine types:

® PUBLIC

¢ COMMON

® STACK

® LOCAL

® nnnn (absolute segment)

If you specify a combine type, it must be in the first segment directive
for that segment type. You can omit the combine type on subsequent
segment directives for the same segment type, but you cannot change
the original combine type. If you do not specify a combine type,
RASM-86 supplies the PUBLIC combine type by default; except for
SSEG, which uses the STACK combine type by default.

The RASM-86 combine types are defined as follows:

PUBLIC means that the linkage editor can combine the
segment with other segments having the same
name. All such segments with combine type PUBLIC
are concatenated in the order they are encountered
by the linkage editor, with gaps, if any, determined
by the align type of the segment.

COMMON means that the segment shares identical memory
locations with other segments of the same name.
Offsets inside a COMMON segment are absolute
unless the segment is contained in a GROUP (see
“"Group Directive” in this section).

3-6

Programmer’s Utilities Guide 3.3 Segment Control Directives

STACK is similar to PUBLIC, in that the storage allocated for
STACK segments is the sum of the STACK segments
from each module. However, instead of
concatenating segments with the same name, the
linkage editor overlays STACK segments against
high memory, because stacks grow downward from
high addresses to low addresses when the program
runs.

LOCAL means that the segment is local to the program
being assembled, and the linkage editor will nat
combine it with any other segments.

ABSOLUTE SEGMENT
causes RASM-86 to determine the load-time

position of the segment during assembly, rather
than allowing its position to be determined by the
linkage editor, or at load time.

class_name (native-mode only)

The class name can be any valid RASM-86 identifier. The class name
identifies segments to be placed in the same section of the CMD file
created by LINK-86. Unless overridden by a GROUP directive or an
explicit command in the LINK-86 command line, LINK-86 places
segments into the CMD file it creates as shown in Table 3-3.

Table 3-3. Default Class Name for Segments

Segment Directive Default Class Name Section of CMD file
CSEG CODE CODE
DSEG DATA DATA
ESEG EXTRA EXTRA
SSEG STACK STACK

3.3 Segment Control Directives Programmer’s Utilities Guide

Examples:
The following are examples of segment directives:

CSEG

DSEG

CSEG PAGE

DATASEG DSEG PARA 'DATA'
CODE1 CSEG BYTE

XYZ DSEG WORD COMMON

The example RASM-86 source file in Appendix A illustrates how
segment directives are used.

3.3.3 GROUP Directive

group_name GROUP segment_namel, segment_name2, ..

The GROUP directive instructs RASM-86 to combine the named
segments into a collection called a group whose length can be up to
64K bytes. When segments are grouped together, LINK-86 treats the
group as it would a single segment by making the offsets within the
segments of a-group relative to the beginning of the group rather than
to the beginning of the individual segments.

The order of the segment names in the directive is the order that
LINK-86 arranges the segments in the executable file.

Use of groups can result in more efficient code, because a number of
segments can be addressed from a single segment register without
having to change the contents of the segment register.

See Section 7.12 for more information on the grouping and other link
processes.
3.4 Linkage Control Directives

Linkage control directives modify the link process. The available
linkage control directives are:

Programmer’s Utilities Guide 3.4 Linkage Control Directives

END
NAME
PUBLIC
EXTRN

3.4.1 END Directive

END [start_label]

The END directive marks the end of a source file. RASM-86 ignores
any subsequent lines. The END directive is optional, and if omitted,
RASM-86 processes the source file until it finds an end-of-file
character (1AH).

The optional start label serves two purposes. First it defines the
current module as the main program. When LINK-86 links modules
together, only one can be a main program. Second, start label
indicates where the program is to start executing after it is loaded. If
start label is omitted, program execution begins at the beginning of
the first CSEG from the files linked.

3.4.2 NAME Directive

NAME module_name

The NAME directive assigns a name to the object module generated by
RASM-86. The module name can be any valid identifier based on the
guidelines described in Section 2.6. If you do not specify a module
name with the NAME directive, RASM-86 assigns the source filename
to the object module. Both LINK-86 and LIB-86 use NAME directives

to identify object modules.

3.4.3 PUBLIC Directive

PUBLIC name [, name, ...]

The PUBLIC directive instructs RASM-86 that the names defined as
PUBLIC can be referenced by other programs linked together. Each
name must be a label, variable, or a number defined within the

program being assembled.

3.4 Linkage Control Directives Programmer’s Utilities Guide

3.4.4 EXTRN Directive

EXTRN external_id [external_id, ..]

The EXTRN directive tells RASM-86 that each external id can be
referenced in the program being assembled but is defined in some
other program. The external id consists of two parts: a symbol and a
type.

The external id uses the form:

symbol:type

where “symbol” is a variable, label, or number and “type” is one of the
following:

® Variables: BYTE, WORD, or DWORD
® Labels: NEAR or FAR
® Numbers: ABS

For examples,

EXTRN FCB:BYTE,BUFFER:WORD,INIT:FAR,MAX:ABS

RASM-86 determines the Segment attribute of external variables and
labels from the segment containing the EXTRN directive. Thus, an
EXTRN directive for a given symbol must appear within the same
segment as the module in which the symbol is defined.

3.5 Conditional Assembly Directives

Conditional assembly directives are used to set up conditions
controlling -the . instruction sequence. The available conditional

assembly directives are:

IF
ELSE
ENDIF

Programmer’s Utilities Guide 3.5 Conditional Assembly Directives

3.5.1 IF, ELSE, and ENDIF Directives

IF - numeric expression
source line 1
source line 2

source line n

ELSE
alternate source line 1
alternate source line 2
alternate source line n
ENDIF

The IF and ENDIF directives allow you to conditionally include or
exclude a group of source lines from the assembly. The optional ELSE
directive allows you to specify an alternative set of source lines. You
can use these conditional directives to assemble several different
versions of a single source program. You can nest IF directives to five

levels.

When RASM-86 encounters an IF directive, it evaluates the numeric
expression following the IF keyword. You must define all elements in
the numeric expression before you use them in the IF directive. If the
value of the expression is nonzero, then RASM-86 assembles source
line 1 through source line n. If the value of the expression is zero,
then RASM-86 lists all the lines, but does not assemble them.

If the value of the expression is zero, and you specify an ELSE
directive between the IF and ENDIF directives, RASM-86 assembles
alternative source lines 1 through alternative source lines n.

1

w
i

'3.6 Symbol Definition Directive Programmer’s Utilities Guide

3.6 Symbol Definition Directive
The available symbol definition directive is:

EQuU

3.6.1 EQU Directive

symbol_name EQU numeric_expression
symbol_name EQU address_expression
symbol_name EQU register
symbol_name EQU instruction_mnemonic

The EQU (equate) directive assigns values and attributes to user-
defined symbols. Do not put a colon after the symbol name. Once
you define a symbol, you cannot redefine the symbol with a
subsequent EQU or another directive. You must also define any
elements used in numeric expressions or an address expression before
using the EQU directive.

The first form of the EQU directive assigns a numeric value to the
symbol. The second form assigns a memory address. The third form
assigns a new name to an 8086 or 80286 register. The fourth form
defines a new instruction (sub)set. The following are examples of
these four EQU forms.

0005 FIVE EQU 2%2+1
0033 NEXT EQU BUFFER
0001 COUNTER EQU cxX
MOVVV EQU MOV
005p 8BC3 MOVVV AX,BX

Programmer’s Utilities Guide 3.7 Data and Memory Directives

3.7 Data and Memory Directives

Data definition and memory allocation directives define the storage
format used for a specified expression or constant. The available data
definition and memory allocation directives are:

DB
bw
DD
RS
RB
RW
RD

3.7.1 DB Directive

[symbol] DB numeric_expression [,numeric_expression..]
[symbol] DB string_constant [,string_constant...]

The DB directive defines initialized storage areas in byte format.
RASM-86 evaluates numeric expressions to 8-bit values and
sequentially places them in the object file. RASM-86 places string
constants in the object file according to the rules defined in Section
2.5.2. Note that RASM-86 does not perform translation from lower- to
uppercase within strings.

The DB directive is the only RASM-86 statement that accepts a string
constant longer than two bytes. You can add multiple expressions or
constants, separated by commas, to the definition if it does not exceed
the physical line length.

Use an optional symbol to reference the defined data area throughout
the program. The symbol has four attributes:

® segment
® offset

® type

® length

The segment and offset attributes determine the symbol's memory
reference;, the type attribute specifies single bytes, and the length
attribute tells the number of bytes reserved.

3.7 Data and Memory Directives Programmer’s Utilities Guide

The following listing shows examples of DB directives and the
resulting hexadecimal values:

00SF 43502F4D2073 TEXT DB 'CP/M system',0
797374656D00 '

006B El AA DB 'a' + 80H

006C 0102030405 X DB 1,2,3,4,5

0071 B90CO00 MOV CX,LENGTH TEXT

3.7.2 DW Directive

[symbol] DW numeric_expression [,numeric_expression...]
[symbol] DW string_constant [,string_constant..]

The DW directive initializes two-byte words of storage. The DW
directive initializes storage the same way as the DB directive, except
that each numeric expression, or string constant initializes two bytes
of memory with the low-order byte stored firstt The DW directive
does not accept string constants longer than two characters.

The following are examples of DW directives:

0074 0000 CNTR DW 0

0076 63C166C169C1 IJMPTAB DW SUBR1,SUBR2, SUBR3

007C 010002000300 DW 1,2,3,4,5,6
040005000600

3.7.3 DD Directive

[symbol] DD address _expression [,address _expression..]

The DD directive initializes four bytes of storage. DD follows the same
procedure as DB, except that the offset attribute of the address
expression is stored in the two lower bytes and the segment attribute
Is stored in the two upper bytes. For example,

rioygrdainmer > vunues vuiue J./ vatla ana memory virecuves

CSEG

0000 6CC100006FC1 LONG_JMPTAB DD ROUT1,ROUT2

0000
0008 72C1000075C1 DD ROUT3,ROUT4

0000

3.7.4 RS Directive

[symbol] RS numeric_expression

The RS directive allocates storage in memory but does not initialize it.
The numeric expression gives the number of bytes to reserve. Note
that the RS directive just allocates memory without specifying byte,
word, or long attributes. For example,

0010 BUF RS 80
0060 RS 4000H
4060 RS 1

3.7.5 RB Directive

[symbol] RB numeric_expression
The RB directive allocates byte storage in memory without any
initialization. The RB directive is identical to the RS directive except
that it gives the byte attribute. For example,

4061 BUF RB 48
4161 RB 4000H
Clel RB 1

3.7.6 RW Directive

[symbol] RW numeric_expression

The RW directive allocates two-byte word storage in memory but does
not initialize it. The numeric expression gives the number of words to

be reserved. For example,

3.7 Data and Memory Directives A Programmer’s Utilities Guide

4061 BUFF RW 128
4161 RW 4000H
Clel RW 1

3.7.7 RD Directive

[symbol] RD numeric_expression

The RD directive reserves a double word (four bytes) of storage but
does not initialize it. For example,

Clé63 DWTAB RD 4
Cl173 RD 1

38 O_q]tpyg Listing Control Directives

Output listing control, directives modify the list file format. The
available output listing control directives are:

EJECT
IFLIST
NOIFLIST
LIST

NOLIST
PAGESIZE
PAGEWIDTH
SIMFORM
TITLE

3.8.1 EJECT Directive

EJECT

The EJECT directive performs a page eject during printout. The EJECT
directive is printed on the first line of the next page

Programmer’s Utilities Guide 3.8 Output Listing Control Directives

3.8.2 NOIFLIST/IFLIST Directives
NOIFLIST
IFLIST

The NOIFLIST directive suppresses the printout of the contents of
conditional assembly blocks that are not assembled. -The IFLIST
directive resumes printout of these blocks. - b

3.8.3 NOLIST and LIST Directives
NOLIST
LIST

The NOLIST directive suppresses the printout of lines following the
directive. The LIST directive restarts the listing.

3.8.4 PAGESIZE Directive

PAGESIZE numeric_expression

The PAGESIZE directive defines the number of lines on each printout
page. The default page size is 66 lines.

3.8.5 PAGEWIDTH Directive

PAGEWIDTH numeric_expression

The PAGEWIDTH directive defines the number of columns printed
across the page of the listing file. The default page width is 120
unless the listing is routed directly to the console; then the default

page width is 79.

3.8.6 SIMFORM Directive

SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the list
file with the correct number of line-feeds (LF). Use this directive when
directing a list file to a printer unable to interpret the form-feed

character.

3.8 Output Listing Control Directives Programmer’'s Utilities Guide

3.8.7 TITLE Directive

TITLE string_constant

RASM-86 prints the string constant defined by a TITLE directive
statement at the top of each printout page in the listing file. The title
character string can be up to 30 characters in length. For example,

TITLE ‘CP/M monitor’

3.9 8087 Control Directives

An Intel 8087 coprocessor is not available on all systems. When
writing programs using 8087 opcodes, you can use the 8087 control
directives to instruct RASM-86 to either generate actual 8087 opcodes
or to emulate the 8087 routines in software. The available 8087
control directives are:

HARD8087
AUTO8087

3.9.1 HARD8087 Directive

HARD8087

When an 8087 processor is available on your system and you do not
want to emulate the 8087 routines in software, you can use the
HARDS8087 directive to instruct RASM-86 to generate 8087 opcodes.
Using this option saves about 16K bytes of space that would otherwise
be used by the emulation routines.

3.9.2 AUTO8087 Directive

AUTO8087

You can use the AUTO8087 option to create programs that decide at
runtime whether or not to use the 8087 processor. AUTOB8087 is the
default option. When you use this option, LINK-86 includes in the
command file the 8087 emulation routines and a table of fixup records
that point to the 8087 opcodes.

Programmer’s Utilities Guide 3.9 8087 Control Directives

If you use the AUTO8087 option and the system has an 8087, the 8087
fixup table is ignored and the space occupied by the emulation
routines is released to the program for heap space. If the system
does not have an 8087, the initialization routine replaces all the 8087
opcodes with interrupts that vector into the 8087 emulation routines.

Note that, in order to emulate 8087 routines, you must have a runtime
library from a Digital Reasearch high-level language, such as DR C or
CBASIC present on your disk and it must be specified on the LINK-86

command line.

3.10 Miscellaneous Directives
Additional RASM-86 directives are: S -

INCLUDE
ORG

3.10.1 INCLUDE Directive

INCLUDE filename
The INCLUDE directive includes another RASM-86 source file in the
source text. For example, to include the file EQUALS in your text, you
would enter:

INCLUDE EQUALS.A86

You can use the INCLUDE directive when the source program is large
and resides in several files. Note that you cannot nest INCLUDE
directives; a source file called by an INCLUDE directive cannot contain

another INCLUDE directive.
If the file named in the INCLUDE directive does not have a filetype,

RASM-86 assumes the filetype to be A86. If you do not specify a
drive name with the file, RASM-86 uses the drive containing the

source file.

3.10 Miscellaneous Directives Prograrnmer’s Utilities Guide

3.10.2 ORG Directive

ORG numeric_expression

The ORG directive sets the offset of the location counter in the current
segment to a value specified by the numeric expression. You must
define all elements of the expression before using the ORG directive,
and the expression must evaluate to an absolute number.

The offset specified by the numeric expression is relative to the offset
specified by the location counter within the segment at load-time.
Thus, if you use an ORG statement in a segment that the linkage
editor does not combine with other segments at link-time, such as
LOCAL or absolute segments, then the numeric expression indicates
the actual offset within the segment.

If the segment is combined with others at link-time, such as PUBLIC
segments, then numeric expression is not an absolute offset. It is
relative to the beginning address of the segment, from the program

being assembled.

When using the ORG directive, never assume the align type. The
desired align type should always be explicitly declared. For example, if
you use the command:

ORG 0

The segments must be aligned on a paragraph boundary. Therefore,
the PARAGRAPH align type must have been specifically declared.

End of Section 3

3-20

SECTION 4

RASM-86 Instruction Set

4.1 Introduction

The RASM-86 instruction set includes all 8086, 8087, 80186, and 80286
machine instructions. The general syntax for instruction statements is
described in Section 2.9. This section defines the specific syntax and
required operand types for each instruction without reference to labels
or comments. The instruction definitions are presented in tables for

easy reference.

For a more detailed description of each instruction, see the Intel
assembly language reference manual for the processor you are using.
For descriptions of the instruction bit patterns and operations, see the
Intel user’'s manual for the processor you are using.

The instruction-definition tables present RASM-86 instruction
statements as combinations of mnemonics and operands. A
mnemonic is a symbolic representation for an instruction; its operands
are its required parameters. Instructions can take zero, one, or two
operands. When two operands are specified, the left operand is the
instruction’s destination operand, and the two operands are separated

by a comma.

4.2 RASM-86 Instruction Set Summary

Table 4-1 summarizes the complete RASM-86 instruction set in
alphabetical order. The following tables categorize these instructions
into functional groups in which each instruction is defined in detail.

4.2 RASM-86 Instruction Set Summary Programmer’s Utilities Guide

Table 4-1. RASM-86 Instruction Summary

Mnemonic Description Section
AAA ASCIHl adjust for Addition 4.3.4
AAD ASCII adjust for Division 434
AAM ASCII adjust for Multiplication 434
AAS ASCII adjust for Subtraction 434
ADC Add with Carry 434
ADD Add 434
AND And 434
ARPL Adjust Priviledge level 4.3.10
BOUND Check Array Index Against Bounds 439
CALL Call (intra segment) 436
CALLF Call (inter segment) 4.3.6
csw Convert Byte to Word 434
CcLC Clear Carry 437
CLD Clear Direction 437
cu Clear Interrupt 437
cMmC Complement Carry 437
CMP Compare 434
CMPS Compare Byte or Word (of string) 435
CMPSB Compare Byte (of string) 435
CMPSW Compare Word (of string) 435
CTS Clear Task Switched Flag 4.3.10
CWD Convert Word to Double Word 434
DAA Decimal Adjust for Addition 434
DAS Decimal Adjust for Subtraction 434
DEC Decrement 434
DIV Divide 434
ENTER Procedure Entry 439
ESC Escape 43.7
F2XM1 2*-1 438
FABS Absolute Value 438
FADD Add Real 438
FADD32 Add Real, 32-bit 438
FADDG64 Add Real, 64-bit 4.3.8

4-2

Programmer’s Utilities Guide

4.2 RASM-86 Instruction Set Summary

Table 4-1. (Continued)

Mnemonic Description Section
FADDP Add Real and Pop 438
FBLD Packed Decimal Load 438
FBSTP Packed Decimal Store and Pop 438
FCHS Change Sign 438
FCLEX/FNCLEX Clear Exceptions 438
FCOM Compare Real 43.8
FCOM32 Compare Real, 32-bit 438
FCOM64 Compare Real, 64-bit 438
FCOMP Compare Real and Pop 438
FCOM32P Compare Real and Pop, 32-bit 43.8
FCOM64P Compare Real and Pop, 64-bit 43.8
FCOMPP Compare Real and Pop Twice 438
FDECSTP Decrement Stack Pointer 438
FDISI/FNDISI Disable Interrupts 4.3.8
FDIV Divide Real 43.8
FDIV32 Divide Real, 32-bit 43.8
FDIV64 Divide Real, 64-bit 4.3.8
FDIVR Divide Real Reversed 438
FDIVR32 Divide Real Reversed, 32-bit 43.8
FDIVR64 Divide Real Reversed, 64-bit 4.3.8
FDIVRP Divide Real Reversed and Pop 438
FDUP Duplicate Top of Stack 4.3.8
FENI/FNENI Enable Interrupts 438
FFREE Free Register 438
FIADD16 Integer Add, 16-bit 438
FIADD32 Integer Add, 32-bit 438
FICOM16 Integer Compare, 16-bit 438
FICOM32 Integer Compare, 32-bit 438
FICOM16P Integer Compare and Pop, 16-bit 438
FICOM32P Integer Compare and Pop, 32-bit 4.3.8
FIDIV16 Integer Divide, 16-bit 43.8
FIDIV32 Integer Divide, 32-bit 438
FIDIVR16 Integer Divide Reversed, 16-bit 43.8

4-3

4.2 RASM-86 Instruction Set Summary

Programmer’s Utilities Guide

Table 4-1. (Continued)

Mnemonic Description Section
FIDIVR32 Integer Divide Reversed, 32-bit 438
FILD16 Integer Load, 16-bit 438
FILD32 Integer Load, 32-bit 438
FILD64 Integer Load, 64-bit 438
FIMUL16 Integer Multiply, 16-bit 438
FIMUL32 Integer Multiply, 32-bit 438
FINCSTP Increment Stack Pointer 438
FINIT/FNINIT Initialize Processor 438
FIST16 Integer Store, 16-bit 438
FIST32 Integer Store, 32-bit 438
FIST16P Interger Store and Pop, 16-bit 438
FIST32P Interger Store and Pop, 32-bit 438
FIST64P Interger Store and Pop, 64-bit 438
FISUB16 Integer Subtract, 16-bit 438
FISUB32 Integer Subtract, 32-bit 43.8
FISUBR16 Integer Subtract Reversed, 16-bit 4.3.8
" FISUBR32 Integer Subtract Reversed, 32-bit 4.3.8
FLD Load Real 438
FLD32 Load Real, 32-bit 438
FLD64 Load Real, 64-bit 43.8
FLD80 Load Real, 80-bit 438
FLDCW Load Control Word 438
FLDENV Load Environment 438
FLDZ Load + 0.0 438
FLD1 Load + 1.0 4.3.8
FLDPI Load 80-bit value for pi. 4.3.8
FLDL2T Load log,10 438
FLDL2E Load log,e 438
FLDLG2 Load log,,2 438
FLDLN2 Load log 3 438
FMUL Multiply Real 438
FMUL32 Multiply Real, 32-bit 438
FMUL6G4 Multiply Real, 64-bit 4.3.8

riuyranungt 5 vuntligs vuiue

S.4 NAOWITOU HIdLTULLIUIL OQUl Oultlitialy

Table 4-1. (Continued)

Mnemonic Description Section
FMULP Multiply Real and Pop 438 -
FNOP No Operation 438
FPATAN Partial Arctangent 438
FPOP same as FSTP STO 438
FPREM Partial Remainder 438
FPTAN Partial Tangent 438
FRNDINT Round to Integer 4.3.8
FRSTOR Restore State 43.8
FSAVE/FNSAVE Save State 438
FSCALE Scale 438
FST Store Real 438
FST32 Store Real, 32-bit 43.8
FST64 Store Real, 64-bit 438
FSTP Store Real and Pop 43.8
FST32P Store Real and Pop, 32-bit 438
FST64P Store Real and Pop, 64-bit 438
FSTENV/FNSTENV Store Environment 438
FSTCW/FNSTCW Store Control Word 438
FSTSW/FNSTSW Store Status Word 438
FSQRT Square Root 438
FSuB Subtract Real 438
FSUB32 Subtract Real, 32-bit 438
FSuB64 Subtract Real, 64-bit 438
FSUBP Subtract Real and Pop 438
FSUBR Subtract Real Reversed 438
FSUBR32 Subtract Real Reversed, 32-bit 4.3.8
FSUBR64 Subtract Real Reversed, 64-bit 43.8
FSUBRP Subtract Real Reversed and Pop 438
FTST Test 438
FWAIT CPU Wait 438
FXAM Examine 43.8
FXCH Exchange Registers 438
FXCHG same as FXCH ST1 438

4-5

4.2 RASM-86 Instruction Set Summary

Programmer’s Utilities Guide

Table 4-1. (Continued)

Mnemonic Description Section
FXTRACT Extract Exponent and Significand 438
FyL2X Y * log,X 4.3.8
FYL2XP1 Y * log,(X + 1) 438
HLT Halt 43.7
IDIV Integer Divide 434
IMUL Integer Multiply 434
IN Input Byte or Word 433
INC Increment 434
INSB Input Byte from Port to String 439
INSW Input Word from Port to String 4.39
INT Interrupt 4.3.6
INTO Interrupt on Overflow 4.3.6
IRET Interrupt Return 4.36
JA Jump on Above 436
JAE Jump on Above or Equal 436
JB Jump on Below 436
JBE Jump on Below or Equal 436
Je 1 - Jump on Carry 436
JCXZ Jump on CX Zero 436
JE Jump on Equal 436
JG Jump on Greater 436
JGE Jump on Greater or Equal 436
JL Jump on Less 436
JLE Jump on Less or Equal 4.36
JMP Jump (intra segment) 4.3.6
JMPF Jump (inter segment) 436
JMPS Jump (8 bit dispiacement) 436
JNA Jump on Not Above 436
JNAE Jump on Not Above or Equal 436
JNB Jump on Not Below 436
JNBE Jump on Not Below or Equal 436
JNC Jump on Not Carry 43.6
JNE Jump on Not Equal 4.3.6

4-6

DIGITAL
RESEARCH?

NOTICE TO USER

From time to time changes are made in the file names
and in the files actually included with the
distribution disk. This manual should not . be
construed as a representation or warranty that such
files or facilities exist on the distribution disk
or as part of the materials and programs
distributed. Most distribution disks include a
"READ.ME" file, which explains variations from the
manual and which do constitute modification of the
manual and the items included therewith. Be sure to
read that file before using the software.

0000-1038

4.2 RASM-86 Instruction Set Summary

Programmer’s Utilities Guide

Table 4-1. (Continued)

Mnemonic Description Section
LSL Load Segment Limit 4.3.10
LTR Load Task Register 43.10
MOV Move 433
MOVS Move Byte or Word (of string) 435
Movss Move Byte (of string) 435
MOvVSw Move Word (of string) 435
MUL Multiply 434
NEG Negate 434
NOP No Operation 4.3.7
NOT Not 434
OR Or 434
ouT Output Byte or Word 433
ouTss Output Byte Pointer [si] to DX 439
ouTSwW Output Word Pointer [si] to DX 439
POP Pop 433
POPA Pop all General Registers 439
POPF Pop Flags 433
PUSH Push 433
PUSHA Push all General Registers 439
PUSHF Push Flags 433
RCL Rotate through Carry Left 434
RCR Rotate through Carry Right 43.4
REP Repeat 435
REPE Repeat While Equal 435
REPNE Repeat While Not Equal 435
REPNZ Repeat While Not Zero 435
REPZ Repeat While Zero 4.35
RET Return (intra segment) 436
RETF Return (inter segment) 436
ROL] - Rotate Left 434
ROR Rotate Right 4.34
SAHF Store AH into Flags 433
SAL Shift Arithmetic Left 434

4-8

PROGRAMMER'S UTILITIES GUIDE

FOR CONCURRENT™ DOS 86 EXPANDED MEMORY (XM)

First Edition:. November 1986

1065-2043-001

4.3 Instruction-definition Tables Programmer’s Utilities Guide

4.3 Instruction-definition Tables

4.3.1 Symbol Conventions

The instruction-definition tables organize RASM-86 instructions into
functional groups. In each table, the instructions are listed
alphabetically. Table 4-2 shows the symbols used in the instruction-
definition tables to define operand types.

Table 4-2. Operand Type Symbols

Symbol Operand Type
numb any numeric expression
numb8 any numeric expression that evaluates

to an 8-bit number

acc accumulator register, AX or AL

reg any general purpose register
not a segment register

reg16 a 16-bit general purpose register
not a segment register

segreg any segment register: CS, DS, SS,
or ES

Foreword

the Programmer’s Utilities Guide) assumes that you are familiar with
the Concurrent environment. It also assumes that you are familiar
with the basic elements of 8086 and 80286 assembly language
programming. .
The Programmer’'s Utilities Guide describes the operation of the
following Concurrent DOS 86 native mode (CMD files) and PC DOS
mode (EXE files) utilities:

The Programmer’s Utilities Guide for Concurrent™ DOS 86 (cited as

RASM-86™™ Assembler for 8086, 80186, and 80286 assembly
language that produces relocatable code in the
Intel® Object Module Format.

XREF-86™ Utility used with RASM-86 to produce a cross
reference listing of the symbols used in a program.

LINK-86™ Linkage editor that combines relocatable object
modules and libraries to create executable files.

LIB-86™ Utility that creates and maintains libraries of object
modules for use with LINK-86

SID-86™ Symbolic Instruction Debugger used to test and
debug object module code.

The operation of the native mode and PC DOS mode versions of each
utility are nearly identical; any specific differences are clearly
documented. Since Concurrent DOS 86 supports both its native mode
operating system calls, and PC DOS system calls, it is imperative that
you not intermix the two modes in an executable module. That is, a
PC DOS program (.EXE file) should not contain any calls to Concurrent
DOS 86 native mode system calls Likewise, a program written for the
native mode (.CMD file) should not contain any PC DOS system calls.

4.3 Instruction-definition Tables Programmer’s Utilities Guide

4.3.2 Flag Registers

The 8086 and 80286 CPUs have nine single-bit Flag registers that can
be displayed to reflect the state of the processor. You cannot access
these registers directly, but you can test them to determine the effects
of an executed instruction upon an operand or register. The effects of
instructions on Flag registers are also described in the instruction-
definition tables, using the symbols shown in Table 4-3 to represent
the nine Flag registers.

Table 4-3. Flag Register Symbols

Symbol Meaning
AF Auxiliary Carry Flag
CF Carry Flag
DF Direction Flag
IF Interrupt Enable Flag
OF Overflow Flag
PF Parity Flag
SF Sign Flag
TF Trap Flag
ZF Zero Flag

4.3.3 8086 Data Transfer Instructions
There.qre_four classes of data transfer operations:

® general purpose

® accumulator specific
® address-object

® flag

Only SAHF and POPF affect flag settings. Note in Table 4-4 that if acc
= AL, a byte is transferred, but if acc = AX, a word is transferred.

Contents

1 The RASM-86 Assembler
Introduction L 1-1
RASM-86 Operation 1-1
RASM-86 Command Syntax 1-1
1.3.1 RASM-86 Run-Time Parameters 1-2
1.3.2 RASM-86 Command Line Examples. 1-4
1.4 Stopping RASM=-86. 1-6
2 Elements of RASM-86 Assembly Language
2.1 Introduction 2-1
2.2 RASM-86 Character Set 2-1
23 Tokens and Separators. 2-2
2.4 Delimiters. 2-2
25 ConsStantsS. oot 2-3
251 Numeric Constants 2-4
2.5.2 Character String Constants 2-5
2.6 Identifiers. 2-6
2.6.1 Keyword ldentifiers 2-6
2.6.2 Symbol Identifiers. 2-8
2.6.3 Example Identifiers 2-10
2.7 Operators 2-10
2.7.1 Arithmetic Operators. 2-12
2.7.2 Logical Operators 2-14
2.7.3 Relational Operators 2-14
2.7.4 Segment Override Operator. 2-15
2.7.5 Variable Manipulation Operators 2-16
2.7.6 Variable Creation Operators. 2-17
2.7.7 Operator Precedence. 2-18
2.8 EXpressions 2-20

4.3 Instruction-definition Tables

Programmer’s Utilities Guide

Table 4-4. (Continued)

Syntax

Result

Mov
MoV
MOV

ouT
ouT

POP

POP

POPF
PUSH

PUSH

memj|reg,.numb
segreg,memjreg 16
mem|reg16,segreg

numb8,acc

DX,acc

mem|reg 16

segreg

mem|reg16

segreg

move immediate data to memory
or register

move memory or register to
segment register

move segment register to
memory or register

transfer data from accumulator to
output port (0-255) given by
numb8

transfer data from accumulator to
output port (0-0FFFFH) given by
DX register

move top stack element to
memory or register

move top stack element to
segment register; note that CS
segment register is not allowed

transfer top stack element to
flags

move memory or registér to top
stack element

move segment register to top
stack element

Contents

3.9 8087 Control Directives 3-18
3.9.1 HARDS8087 Directive 3-18
3.9.2 AUTOB8087 Directive 3-18

3.10 Miscellaneous Directives. 3-19
3.10.1 INCLUDE Directive 3-19
3.10.2 ORG Directive 3-20

4 RASM-86 Instruction Set

4.1 Introduction . . e 4-1
4.2 RASM-86 Instruction Set Summary. 4-1
4.3 Instruction-definition Tables 4-10
43.1 Symbol Conventions., 4-10
432 Flag Registers 4-12
4.3.3 8086 Data Transfer Instructions. 4-12
4.3.4 8086 Arithmetic, Logical, and Shift Instructions. ... 4-15
4.35 8086 String INStructions 4-24
436 8086 Control Transfer Instructions 4-27
437 8086 Processor Control Instructions 4-32
438 8087 Instruction Set 4-34
4.3.9 Additional 186 and 286 Instructions 4-45
4310 Additional 286 Instructions 4-46

5 RASM-86 Code-macro Facilities

5.1 Introduction L 5
5.2 Invoking Code-macros 5
5.3 Defining Code-macros 5
53.1 Formal Parameter List 5
532 Code-macro Directives 5
533 Example Code-Macro Definitions. 5-

v

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-5.

Effects of Arithmetic Instructions on Flags

Flag Bit

Result

CF

AF

ZF

SF

OF

is set if the operation results in a carry out of (from
addition) or a borrow into (from subtraction) the
high-order bit of the result; otherwise CF is cleared.

is set if the operation results in a carry out of (from
addition) or a borrow into (from subtraction) the
low-order four bits of the result; otherwise AF is

cleared.

is set if the result of the operation is zero;
otherwise ZF is cleared.

is set if the result is negative.

is set if the modulo 2 sum of the low-order eight
bits of the result of the operation is 0 (even parity);
otherwise PF is cleared (odd parity).

is set if the operation results in an overflow; the
size of the result exceeds the capacity of its
destination.

Contents

8 LIB-86 Library Utility

8.1 Introduction 8-1
8.2 LIB-86 Operation 8-1
8.3 LIB-86 Command Syntax. 8-2
84 Stopping LIB-86 8-2
8.5 LIB-86 Command Options. LT 8-3
8.6 Creating and Updating Libraries 8-3
8.6.1 Creating a New Library 8-4
8.6.2 Adding to a Llibrary. 8-4
8.6.3 Replacing a Module., 8-4
8.6.4 Deletinga Module. 8-5
86.5 SelectingaModule......................... 8-6
8.7 Displaying Library Information. 8-6
8.7.1 Cross-reference File. 8-6
8.7.2 Library Module Map. 8-7
8.7.3 Partial Library Maps. 8-7
8.8 LIB-86 Commands on Disk 8-8
8.9 Redirecting I/0. e 8-9
9 SID-86 Operation
9.1 Introduction e 9-1,
9.2 Typographical Conventions. 9-1
9.3 Starting SID-86. 9-2
9.4 Exiting SID-86 9-3

10 SID-86 Expressions

10.1 Introduction L 10-1
10.2 Literal Hexadecimal Numbers 10-1
10.3 Literal Decimal Numbers. 10-2
10.4 Literal Character Values 10-2
- 105 Register Values. 10-3
10.6 Stack References 10-4
10.7 Symbolic References. 10-5
10.8 Qualified Symbols. 10-6

43 Inétruction-definition Tables Programmer’s Utilities Guide

Table 4-6. (Continued)

Syntax Result
CMP reg,mem|reg compare memory or register with
- register

CMP memjreg,reg compare register with memory or
register

CMP memjreg,numb compare data constant with
memory or register

CWD convert word in AX to double
word in DX/AX by sign extension

DAA decimal adjust for addition,
adjusts AL

DAS decimal adjust for subtraction,
adjusts AL

DEC mem|reg subtract 1 from memory or
register

DIV memjreg divide (unsigned) accumulator (AX

or AL) by memory or register. |If
byte results, AL = quotient, AH
remainder. If word resulits, AX
quotient, DX = remainder

IDIV memjreg divide (signed) accumulator (AX
or AL) by memory or register -
quotient and remainder stored as
in DIV

Contents

12 Default Segment Values

121 Introduction
122 Type-1 Segment Value
12.3 Type-2 Segment Value

13 Assembly Language Syntax for A and L Commands

13.1 Assembly Language Exceptions.

14 SID-86 Sample Session

14.1 Introduction
RASM-86 Example Source File
Mnemonic Differences from the Intel Assembler.
Reserved Words i
Code-Macro Definition Syntax
RASM-86 Error Messages
XREF-86 Error Messages.,

LINK-86 Error Messages,

I 6 ™ m o O O >

LIB-86 Error Messagesty

| SID-86 Error Messagesc.uiveeeio..

Figures

Paragraph Alignment

7-1
7-2
7-3 Combining Segments with Stack Combination
7-4
7-5 The Effect of Grouping Segments

X1

Combining Segments with the Public Combine Type
Combining Segments with the Common Combine Type. .

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-7. 8086 Logical and Shift instructions

Syntax Result

AND reg.memjreg perform bitwise logical AND of a
register and memory or register

AND memjreg.reg perform bitwise logical AND of
memory or register and register

AND memjreg,numb perform bitwise logical AND of
memory or register and data
constant

NOT memjreg form one’s complement of

memory or register

OR reg,memjreg perform bitwise logical OR of a
register and memory or register

OR memjreg,reg perform bitwise logical OR of
memory or register and register

OR memjreg,numb perform bitwise logical OR of
memory or register and data
constant

RCL memjreg,1 rotate memory or register 1 bit

left through carry flag

RCL memjreg,CL rotate memory or register left
through carry flag, number of bits
given by CL register

4-20

Contents

8-1 LIB-86 Filetypes. 8-1
8-2 LIB-86 Command Line Options. 8-3
11-1 Flag Name Abbreviations 11-27
11-2 SID-86 Command Summary. 11-31
"12-1 SID-86 Default Segment Values. 12-3
B-1 RASM-86/Intel Mnemonic Differences B-1
B-2 Memory Operands for 8087 Instruction B-2
C-1 Reserved Words €A
E-1 RASM-86 Non-recoverable Errors: oo E-
E-2 RASM-86 Diagnostic Error Messages. E-3
F-1 XREF-86 Error Messagescvuivu .. F-1
G-1 LINK-86 Error Messagesc.vvv ... G-1
H-1 LIB-86 Error Messages H-1

-1

!
-—

SID-86 Error Messages.

Xiii

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-7. (Continued)

Syntax Result

SAR mem|reg,1 shift memory or register 1 bit
right, shift in high-order bit equal
to the original high-order bit

SAR memjreg,CL shift memory or register right,

' number of bits given by CL
register, shift in high-order bits
equal to the original high-order
bit

SHL memjreg,1 shift memory or register 1 bit left,
shift in low-order zero bit. Note
that SHL is a different mnemonic
for SAL.

SHL memjreg,CL shift memory or register left,
number of bits given by CL
register, shift in low-order zero
bits. Note that SHL is a different
mnemonic for SAL.

SHR memjreg,1 shift memory or register 1 bit
right, shift in high-order zero bit

SHR memjreg,CL shift memory or register right,
number of bits given by CL
register, shift in high-order zero
bits

4-22

SECTION1

The RASM-86 Assembler

1.1 Introduction

This section describes RASM-86 operation and its command syntax.
Sections 2 through 5 detail the characteristics and uses of the
RASM-86 components. A sample RASM-86 source file is provided in

Appendix A.

1.2 RASM-86 Operation

The RASM-86 assembler converts source files containing 8086, 8087,
80186, 80286, and 80287 instructions into machine language object
files. RASM-86 processes an assembly language source file in three
passes and can produce three output files from one source file. The
three files have the same filename as the source file. For example, if
the name of the source file is BIOS88.A86, RASM-86 produces the files

BIOS88.0BJ, BIOS88.LST, and BIOS88.SYM.

The LST list file contains the assembly language listing with any error
messages. The OBJ object file contains the object code in Intel 8086
and 80286 relocatable object format. The SYM symbol file lists any
user-defined symbols.

1.3 RASM-86 Command Syntax \
Invoke RASM-86 with the following command form:

RASMS86 [d:]filenamel.typ] [$ run-time parameters]
where filename is the name of the source file. The filename can be
any valid filename of 1 to 8 characters.

The d: is an optional drive specification denoting the source file's
location. The drive specification is not needed if the source is on the

current drive.

4.3 Instruction-definition Tables Programmer’'s Utilities Guide

4.3.5 8086 String Instructions

String instructions take zero, one, or two operands. The operands
specify only the operand type, determining whether the operation is on
bytes or words. If there are two operands, the source operand is
addressed by the Sl register and the destination operand is addressed
by the DI register. The DI and S| registers are always used for
addressing. Note that for string operations, destination operands
addressed by DI must reside in the Extra Segment (ES) and sourqe
operands addressed by S| must reside in the Data Segment (DS). |

The source operand is normally addressed by the DS regnstef
However, you can designate a different register by using a segment
override. For example, ¥

MOVS WORD PTR[DI], CS:WORD PTR[SI]

1§
it

writes the contents of the address at CS:[St] into ES:[DI]. "

4-24

Programmer’s Utilities Guide 1.3 RASM-86 Command Syntax

If you specify an invalid parameter in the parameter list, RASM-86
displays
SYNTAX ERROR

and echoes the command tail up to the point where the error occurs,
then prints a question mark. (Appendix E contains the complete list of

RASM-86 error messages.) -

A, O, P, and S Parameters

These run-time parameters associate a filetype with a device. The file
parameters: A, O, P, and S specify the type of file. Each of these
parameters is followed by a device specifier: A - P, X, Y, Z. For

example:
$ AA
specifies the source file on drive A.
The A, O, P, and S parameters have the following definitions:

A specifies the Source File

O specifies the Object File

P specifies the List File

S specifies the Symbol File
A device name must follow each of these parameters. The devices are
defined as follows: ‘

A - P Specify disk drives A through P, respectively.

X specifies the user console, CON:
Y specifies the list device, LST:
z suppresses output, NUL:

If you direct the output to the console, you can temporarily stop the
display by typing CTRL-S, then restart it by typing CTRL-Q.

IFILENAME Parameter

If a filename is preceded by an upper case |, RASM-86 includes the
contents of the file at the beginning of the module being assembled.
If no filename extension is specified, RASM-86 assumes an extension

of A86.

1-3

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-8. (Continued)

Syntax Result

SCAS memjreg subtract destination operand from
accumulator (AX or AL), affect
flags, but do not return result

SCASB an alternate mnemonic for SCAS
that assumes a byte operand

SCASW
an alternate mnemonic for SCAS
that assumes a word operand

STOS memijreg transfer a byte or word from
accumulator to the destination
operand

sSTOSB an alternate mnemonic for STOS
that assumes a byte operand

STOSW

an alternate mnemonic for STOS
that assumes a word operand

Table 4-9 defines prefixes for string instructions. A prefix repeats its
string instruction the number of times contained in the CX register,
which is decremented by 1 for each iteration. Prefix mnemonics
precede the string instruction mnemonic in the statement line.

4-26

Programmer’s Utilities Guide 4.3 Instruction-definition Tables

Table 4-9. 8086 Prefix Instructions

Syntax Result
REP repeat until CX register is zero
REPE repeat until CX register is zero,

or zero flag (ZF) is not zero

REPNE repeat until CX register is zero,
or zero flag (ZF) is zero

REPNZ equal to REPNE

REPZ equal to REPE

4.3.6 8086 Control Transfer Instructions
There are four classes of control transfer instructions:

@ calls, jumps, and returns
® conditional jumps

® iterational control

@ interrupts

All control transfer instructions cause program execution to continue
at some new location in memory, possibly in a new code segment.
The transfer can be absolute, or can depend upon a certain condition.
Table 4-10 defines control transfer instructions. In the definitions of
conditional jumps, above and below refer to the relationship between
unsigned values. Greater than and less than refer to the relationship
between signed values. :

4-27

4.3 Instruction-definition Tables

Programmer’s Utilities Guide

Table 4-10. 8086 Control Transfer Instructions

Syntax

Result

CALL label

CALL memj|reg16

CALLF label

CALLF mem

INT numb8

push the offset address of the
next instruction on the stack,
jump to the target label

push the offset address of the
next instruction on the stack,
jump to location indicated by
contents of specified memory or
register

push CS segment register on the
stack, push the offset address of
the next instruction on the stack
(after CS), jump to the target
label

push CS register on the stack,
push the offset address of the
next instruction on the stack,
jump to location indicated by
contents of specified double word
in memory

push the flag registers (as in
PUSHF), clear TF and IF flags,
transfer control with an indirect
call through any one of the 256
interrupt-vector elements - uses
three levels of stack

4-28

Programmer’s Utilities Guide

4.3 Instruction-definition Tables

Table 4-10.

(Continued)

Syntax

Result

INTO

IRET

JA

JAE

JB

JBE

JC
JCXZ

JE

lab8

lab8

lab8

1ab8T

lab8
lab8

lab8

if OF (the overflow flag) is set,
push the flag registers (as in
PUSHF), clear TF and IF flags,
transfer control with an indirect
call through interrupt-vector
element 4 (location 10H). If the
OF flag is cleared, no operation
takes place

transfer control to the return
address saved by a previous
interrupt operation, restore saved
flag registers, as well as CS and
IP. Pops three levels of stack

jump if “not below or equal” or
“above” ((CF or ZF)=0)

jump if “not below” or “above or
equal” (CF=0)

jump if “below” or “not above or
equal” (CF=1)

jump if “below or equal” or "not
above” ((CF or ZF)=1)

same as JB

jump to target label if CX register
is zero

jump if “equal” or “zero” (ZF=1)

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-10. (Continued)

Syntax Result

JG lab8 jump if “not less or equal” or
“greater” (((SF xor OF) or ZF)=0)

JGE lab8 jump if “not less” or “greater or
equal” ((SF xor OF)=0)

JL lab8 jump if “less” or “not greater or
equal” ((SF xor OF)=1)

JLE lab8 jump if “less or equal” or "not
greater” (((SF xor OF) or ZF)=1)

JMP label jump to the target label

JMP memj|reg16 jump to location indicated by
contents of specified memory or
register

JMPF label jump to the target label possibly
in another code segment

JMPS |ab8 jump to the target label within
+/- 128 bytes from instruction

JNA lab8 same as JBE

JNAE Iab8 same as JB

JNB 1ab8 same as JAE

JNBE 1ab8 same as JA

JNC lab8 same as JNB

JNE lab8 jump if “not equal” or "not zero” (
ZF=0)

4-30

Programmer’s Utilities Guide

4.3 Instruction-definition Tables

Table 4-10. (Continued)
Syntax Result .
JNG lab8 same as JLE
JNGE lab8 same as JL
JNL 1ab8 same as JGE
JNLE lab8 same as JG
JNO Iab8 jump if “not overflow” (OF=0)
JNP |ab8 jump if “not parity” or “parity odd”
(PF=0)
JNS lab8 jump if “not sign” (SF=0)
JNZ lab8 same as JNE
JO lab8 jump if “overflow” (OF=1)
JP lab8 jump if “parity” or “parity even” (
PF=1)
JPE lab8 same as JP
JPO lab8 same as JNP
JS lab8 jump if "sign” (SF=1)
JZ lab8 same as JE
LOOP 1ab8 decrement CX register by one,
jump to target label if CX is not
zero
LOOPE 1ab8 decrement CX fegister by one,

jump to target label if CX is not
zero and the ZF flag is set - "loop
while zero” or “loop while equal”

4

3

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-10. (Continued)

Syntax Result

LOOPNE lab8
decrement CX register by one,
jump to target label if CX is not
zero and ZF flag is cleared -
“loop while not zero” or “loop
while not equal”

LOOPNZ lab8
same as LOOPNE

LOOPZ lab8 same as LOOPE

RET .. _ return to the address pushed by a
previous CALL instruction,
increment stack pointer by 2

RET numb return to the address pushed by a
previous CALL, increment stack
pointer by 2+numb

RETF return to the address pushed by a
previous CALLF instruction,
increment stack pointer by 4

RETF numb return to the address pushed by a
: previous CALLF instruction,
increment stack pointer by
4+numb

4.3.7 8086 Processor Control Instructions

Processor control instructions manipulate the flag registers. Moreover,
some of these instructions synchronize the CPU with external

hardware.

4-32

Programmer’s Utilities Guide

4.3 Instruction-definition Tables

Table 4-11. 8086 Processor Control Instructions

Syntax Result

cLC clear CF flag

CLD clear DF flag, causing string
instructions to auto-increment
the operand registers

cu clear IF flag, disabling maskable
external interrupts

CMC complement CF flag

ESC numb8mem|reg

HLT

LOCK

do no operation other than
compute the effective address
and place it on the address bus
(ESC is used by the 8087 numeric
coprocessor) numb8 must be in
the range 0 - 63

cause 8086 processor to enter
halt state until an interrupt is
recognized

PREFIX instruction, cause the
8086 processor to assert the bus-
lock signal for the duration of the
operation caused by the following
instruction. The LOCK prefix
instruction can precede any other
instruction. Bus_lock prevents
coprocessors from gaining the
bus; this is useful for shared-
resource semaphores

4-33

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-11. (Continued)

Syntax Result
NOP no operation is performed
STC set CF flag
STD set DF flag, causing string

instructions to auto-decrement
the operand registers

STI set |IF flag, enabling maskable
external interrupts

WAIT cause the 8086 processor to
enter a wait state if the signal on
its TEST pin is not asserted

438 8087 Instruction Set

RASM-86 supports 8087 opcodes. However, RASM-86 only allows
8087 opcodes in byte, word, and double word format. The form of the
RASM-86 instructions differ slightly from the Intel convention to
support 8087 instructions.

All 8087 memory reference instructons have two characters appended
to the end of the opcode name. The two characters represent the
number of bits referenced by the instruction. For example:

FADD64 byte ptr my_var

This instruction assumes MY _VAR contains 64 bits (8 bytes). This
convention applies to all 8087 instructions referencing user memory,
except those that always reference the same number of bits, as is the
FSTCW instruction, for example.

4-34

Programmer’s Utilities Guide 43 Instruction-definition Tables

Another difference between RASM-86 and the standard Intel
convention is that the number of bits referenced by the instruction is
placed before the "P” on instructions in which the stack is to be

popped. For example:
FSUBBOP byte ptr my_var:; sub and pop temp rea!

Many of the following 8087 operations are described in terms of the
stack registers: STO, ST1, ... STi (where "“i” represents any register on
the stack). The stack register where the resulting value is stored is
also described for many operations. It is important to remember that
when a POP occurs at the end of an 8087 operation, the stack register
containing the value is decremented by 1.

For example, if, during an 8087 operation, the result is put in ST3 and
a POP occurs at the end of the operation, the result ends up in ST2.

4-35

4.3 Instruction-definition Tables

Programmer’s Utilities Guide

Table 4-12. 8087 Data Transfer Instructions
Syntax Result
Real Transfers

FLD Load a number in IEEE floating point
format into 8087 top stack element STO

FLD32 Load a number in IEEE 32-bit floating point

format into 8087 top stack element STO

FLD64 Load a number in IEEE 64-bit floating point
format into 8087 top stack element STO

FLD80 Load a number in IEEE 80-bit floating point
format into 8087 top stack element STO

FOUP Duplicate top of stack (FLD STO)

FST Store Real

FST32 Store Real (32-bit operands)

FST64 Store Real (64-bit operands)

FSTP Store Real and Pop

FST32P Store Real and Pop (32-bit operands)

FST64P Store Real and Pop (64-bit operands)

FPOP same as FSTP STO

FXCH Exchange Registers

FXCHG same as FXCH ST1

4-36

Programmer’s Utilities Guide 4.3 Instruction-definition Tables

Table 4-12. (Continued)

Syntax Result

Integer Transfers

FILD16 Integer Load (16-bit operands)
FILD32 Integer Load (32-bit operands)
FILD64 Integer Load (64-bit operands)
FIST16 Integer Store (16-bit operands)
FIST32 Integer Store (32-bit operands)
FIST16P Interger Store and Pop (16-bit operands)
FIST32P Interger Store and Pop (32-bit operands)
FIST64P Interger Store and Pop (64-bit operands)

Packed Decimal Transfers

FBLD Packed Decimal (BCD) Load
FBSTP Packed Decimal (BCD) Store 10 bytes
and Pop

4-37

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-13. 8087 Arithmetic Instructions

Syntax Operands Result
Addition

FADD Add Real STO to ST1, store resuit
in ST1 and Pop

FADD STi,STO Add Real STO to STi, store result
in STi

FADD32 mem Add Real mem to STO, store
result in STO (32-bit operands)

FADD64 mem Add Real mem to STO, store
result in STO (64-bit operands)

FADDP STi,STO Add Real STO to STi, store result
in STi and Pop

FIADD16 mem Integer Add mem to STO, store
resuft in STO (16 bit-operands)

FIADD32 mem Integer Add mem to STO, store
result in STO (32 bit-operands)

Subtraction

FSus Subtract Real STO from ST1, store
result in ST1 and Pop

FSuB STi,STO Subtract Real STO from STi, store
result in STi

FSuB STO,STi Subtract Real STi from éTO, store

result in STO

Programmer’s Utilities Guide 4.3 Instruction-definition Tables

Table 4-13. (Continued) -

Syntax Operands Result

FSUB32 mem Subtract Real mem from STO,
store result in STO (32-bit
operands)

FSUB64 mem Subtract Real mem from STO,
store result in STO .(64-bit
ooerands)

FSuBP STi,STO Subtract Real STO from STi, store
result in STi and Pop

FISUB16 mem Integer Subtract mem from STO,
store result in STO (16-bit
operands)

FISUB32 mem Integer Subtract mem from STO,
store result in STO (32-bit
operands)

FSUBR Subtract Real ST1 from STO, store
result in ST1 and Pop

FSUBR STi,STO Subtract Real STi from STO, store
result in STi

FSUBR STO,STi Subtract Real STO from STi, store
result in STO

FSUBR32 mem Subtract Real mem from STO,
store result in STO (32-bit
operands)

FSUBR64 mem Subtract Real mem .from STO,
store result in STO (64-bit
operands)

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-13. (Continued)

Syntax Operands Result

FSUBRP STi,STO Subtract Real STi from STO, store
result in STi and Pop

FISUBR16 mem Integer Subtract STO from mem,
store result in STO (16-bit
operands)

FISUBR32 mem Integer Subtract STO from mem,
store result in STO (32-bit
operands)

Multiplication

FMUL Multiply Real ST1 by STO0, store
result in ST1 and Pop

FMUL ~ - "STi,STO Multiply Real STi by STO, store
result in STi

FMUL STO0.STi Multiply Real STO by STi, store
result in STO

FMUL32 mem Multiply Real STO by mem, store
result in STO (32-bit operands)

FMULG64 mem Multiply Real STO by mem, store
result in STO (64-bit operands)

FMULP STi,STO Multiply Real STi by STO0, store
result in STi and Pop

FIMUL16 mem Integer Multiply STO by mem,

- store result in STO (16-bit

operands)

4-40

Programmer’s Utilities Guide 4.3 Instruction-definition Tables

Table 4-13. (Continued)

Syntax Operands Result

FIMUL32 mem Integer Mu‘ltiply‘STQ by mem,
store result in STO (32-bit
operands)

Division

FDIV Divide Real ST1 by STO, store
result in ST1 and Pop

FDIV STi,STO Divide Real STi by STO, store
result in STi

FDIV STO,STi Divide Real STO by STi, store
result in STO

FDIV32 mem Divide Real STO by mem, store
result in STO (32-bit operands)

FDIV64 mem Divide Real STO by mem, store
result in STO (64-bit operands)

FDIVP STi,STO Divide Real STi by STO, store
result in STi and Pop

FIDIV16 mem Integer Divide STO by mem, store
result in STO (16-bit operands)

FIDIV32 mem Integer Divide STO by mem, store
result in STO (32-bit operands)

FDIVR Divide Real STO by ST1, store
result in ST1 and Pop

FDIVR STi,STO Divide Real STO by STi, store
result in STi

FDIVR STO,STi Divide Real STi by STO, store
result in STO

4-41

4.3 Instruction-definition Tables

Programmer’s Utilities Guide

Table 4-13. (Continued)

Syntax Operands Result

FDIVR32 mem Divide Real mem by STO, store
result in STO (32-bit operands)

FDIVR64 mem Divide Real mem by STO, store
result in STO (64-bit operands)

FDIVRP STi,STO Divide Real STi by STO0, store
result in STi and Pop

FIDIVR16 mem Integer Divide mem by STO, store
result in STO (16-bit operands)

FIDIVR32 mem Integer Divide mem by STO, store
result in STO (32-bit operands)

Other Operations

FSQRT Square Root

FSCALE Interpret ST1 as an integer and
add to exponent of STO

FPREM Partial Remainder

FRNDINT Round to Integer

FXTRACT Extract Exponent and Significand

FABS Absolute Value

FCHS Change Sign

4-42

Programmer’s Utilities Guide 4.3 Instruction-definition Tables

Table 4-14. 8087 Comparison Instructions

Syntax Operands Result

FCOM Compare Real STO and ST1

FCOM32 mem Compare Real mem and STO (32-
bit operands)

FCOM64 mem Compare Real mem and STO (64-
bit operands)

FCOMP Compare Real STO and ST1 and
Pop i

FCOM32pP mem Compare Real mem and STO and
Pop (32-bit operands)

FCOMG64P mem Compare Real mem and STO and
Pop (64-bit operands)

FCOMPP Compare Real STO and ST1, then
Pop STO and ST1

FICOM16 mem Integer Compare mem and STO
(16-bit operands)

FICOM32 mem Integer Compare mem and STO
(32-bit operands)

FICOM16P mem Integer Compare mem and STO
and Pop (16-bit operands)

FICOM32P mem Integer Compare mem and ST0
and Pop (32-bit operands)

FTST Test STO by comparing it to zero

FXAM Report STO as either positive or

negative

4-43

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-15. 8087 Transcendental Instructions

Syntax Result

FPTAN Partial Tangent
FPATAN Partial Arctangent
F2xXM1 2*-1

FyL2x Y * log,X
FYL2XP1 Y *logy(X + 1)

Table 4-16. 8087 Constant Instructions

Syntax Resuit

FLDZ Load + 0.0

FLD1 Load + 1.0

FLDPI Load 80-bit value for pi.
FLDL2T Load log,10

FLDL2E Load log,e

FLDLG2 Load log,,2

FLDLN2 Load log,2

4-44

Programmer’s Utilities Guide

4.3 Instruction-definition Tables

Table 4-17. 8087 Processor Control Instructions
Syntax Operands Result
FINIT/FNINIT Initialize Processor
FDISI/FNDISI Disable Interrupts
FENI/FNENI Enable Interrupts
FLOCW mem Load Control Word
FSTCW/FNSTCW mem Store Control Word
FSTSW/FNSTSW mem Store Status Word
FCLEX/FNCLEX Clear Exceptions
FSTENV/FNSTENV ~ mem Store Environment
FLDENV mem Load Environment
FSAVE/FNSAVE Save State
FRSTOR Restore State
FINCSTP Increment Stack Pointer
FDECSTP Decrement Stack Pointer
FFREE Free Register
FNOP No Operation
FWAIT CPU Wait

4.3.9 Additional 186 and 286 Instructions

The following Instructions are specific to both the 80186 and 80286
processors. In addition to the instructions below, other 80186 and
80286 instructions are the same as 8086 instructions except they allow
a rotate or shift. These instructions are: SAR, SAL, SHR. SHL, ROR, and

ROL.

4.3 Instruction-definition Tables Programmer’s Utilities Guide

Table 4-18. Additional 186 and 286 Instructions

Syntax Result

BOUND Check Array Index Against Bounds

ENTER Make Stack Frame for Procedure Parameters
INSB input Byte from Port to String

INSW Input Word from Port to String

LEAVE High Level Procedure Exit

ouTss Output Byte Pointer [si] to DX

ouTsSw Output Word Pointer [si] to DX

POPA Pop all General Registers

PUSHA Push all General Registers

4.3.10 Additional 286 Instructions
The following instructions are specific to the 80286 processor.

Table 4-19. Additional 286 Instructions

Syntax Result

CTS Clear Task Switched Flag

ARPL Adjust Priviledge level

LGDT Load Global Descriptor Table Register

4-46

Programmer’s Utilities Guide 4.3 Instruction-definition Tables

Table 4-19. (Continued)

Syntax Result
SGDT Store Global Descriptor Table Register
LIOT Load Interrupt Descriptor Table Register
SIDT Store Interrupt Descriptor Table Register
LLDT Load Local Descriptor Table Register
from Register/Memory
SLDT Store Local Descriptor Table Register
to Register/Memory
LTR Load Task Register from Register/Memory
STR Store Task Register to Register/Memory
LMSW Load Machine Status Word from Register/Memory
SMSw Store Machine Status Word
LAR Load Access Rights from Register/Memory
LSL Load Segment Limit from Register/Memory
ARPL Adjust Required Privilege Level from
Register/Memory
VERR Verify Read Access; Register/Memory
VERW Verify Write Access

End of Section 4

4-47

SECTION 5

RASM-86 Code-Macro
Facilities

5.1 Introduction

RASM-86 allows you to define your own instructions using the Code-
macro directive. RASM-86 code-macros differ from traditional
assembly-language macros in the following ways:

® Traditional assembly-language macros contain assembly-language
instructions, but a RASM-86 code-macro contains only code-

macro directives.
® Traditional assembly-language macros are usually defined in the

Symbol Table, while RASM-86 code-macros are defined in the
assembler’s internal Symbol Table.

® A traditional macro simplifies the repeated use of the same block
of instructions throughout a program, but a code-macro sends a
bit stream to the output file, and in effect, adds a new instruction

to the assembler.

5.2 Invoking Code-macros

RASM-86 treats a code-macro as an instruction, so you can invoke
code-macros by using them as instructions in your program. The
following example shows how to invoke MYCODE, an instruction

defined by a code-macro.
MYCODE PARM1,PARM2

Note that MYCODE accepts two operands as formal parameters. When
you define MYCODE, RASM-86 classifies these two operands according

to type, size, and so forth.

5.3 Invoking Code-macros Programmer’s Utilities Guide

5.3 Defining Code-macros
A code-macro definition takes the general form:

CodeMacro name [formal parameter list]

[list of code-macro directives]

EndM
where name is any string of characters you select to represent the
code-macro. The optional formal parameter and code-macro directive
lists are described in the following sections. Example code-macro
definitions are provided in Section 5.3.3

5.3.1 Formal Parameter List

When you define a code macro, you can specify one or more optional
formal parameter lists. The parameters specified in the formal
parameter list are used as placeholders to indicate where and how the
operands are to be used. The formal parameter list is created using

the following syntax:

formal_name : specifier_letter [modifier_letter] [range]

formal name

You can specify any formal_name to represent the formal parameters
in your list. RASM-86 replaces the formal_names with the names or
values supplied as operands when you invoke the code-macro.

specifier_letter

Every formal parameter must have a specifier letter to indicate what
type of operand is needed to match the formal parameter Table 5-1
defines the eight possuble specifier letters.

5-2

Programmer’s Utilities Guide 5.3 Defining Code-macros

Table 5-1. Code-macro Operand Specifiers

Letter Operand Type

A Accumulator register, AX or AL.

Cc Code, a label expression only.

D Data, a number used as an immediate value.

E Effective address, either an M (memory address)
or an R (register).

M Memory address. This can be either a variable
or a bracketed register expression.

R General register only.

S Segment register only.

X " Direct memory reference.

modifier_letter

The optional modifier_letter in a code-macro definition is a further
requirement on the operand. The meaning of the modifier letter
depends on the type of the operand. For variables, the modifier

requires the operand be a certain type:

® b for byte

® w for word

® d for double-word

® sb for signed byte)
For numbers, the modifiers require the number be a certain size: b for
-256 to 255 and w for other numbers. Table 5-2 summarizes code-

macro modifiers.

5-3

5.3 Defining Code-macros Programmer’s Utilities Guide

Table 5-2. Code-macro Operand Modifiers

Variables Numbers
Modifier Type Modifier Size
b byte b -256 to 255
w word w anything else
d dword
sb signed
byte

range

The optional range in a code-macro definition is specified within
parentheses by either one expression or two expressions separated by
a comma. The following are valid formats:

, (numberb)
(register)
(numberb,numberb)
(numberb,register)
(register,numberb)
(register,register)

Numberb is an 8-bit number, not an address.

5.3.2 Code-macro Directives

Code-macro directives define the bit pattern and make further
requirements on how the operand is to be treated. Directives are
reserved words, and those that appear to duplicate assembly language
instructions have different meanings within a code-macro definition.

The following are legal code-macro directives:

5-4

Programmer’s Utilities Guide 5.3 Detfining Code-macros

SEGFIX DW
NOSEGFIX DD
MODRM DBIT
RELB IF
RELW ELSE
DB ENDIF

These directives are unique to code-macros. The code-macro
directives DB, DW, and DD that appear to duplicate the RASM-86
directives of the same names have different meanings in code-macro
context. These directives are discussed in greater detail in Section

3.7.1.

CodeMacro, EndM, and the code-macro directives are all reserved
words. The formal definition syntax for a code-macro is defined in’
Backus-Naur-like form in Appendix D.

SEGFIX

SEGFIX instructs RASM-86 to determine whether a segment-override
prefix byte is needed to access a given memory location. If so, it is’
output as the first byte of the instruction. If not, RASM-86 takes no

action. SEGFIX has the following form:

SEGFIX formal_name

The formal_name is the name of a formal parameter representing the
memory address. Because it represents a memory address, the formal
parameter must have one of the specifiers E, M, or X.

NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES
register for that operand. This applies only to the destination operand
of these instructions: CMPS, MOVS, SCAS, STOS. NOSEGFIX has the

following form:

NOSEGFIX segreg, form name

The segreg is one of the segment registers ES, CS, SS, or DS, and
form_name is the name of the memory-address formal parameter that
must have a specifier E, M, or X. No code is generated from this
directive, but an error check is performed

5-5

5.3 Defining Code-macros Programmer’s Utilities Guide

The following is an example of NOSEGFIX in a code-macro directive:

CodeMacro MOVS si_ptr:Ew,di_ptr:Ew
NOSEGFIX ES,di_ptr

SEGFIX si_ptr
DB OASH
EndM
MODRM

This directive instructs RASM-86 to generate the MODRM byte
following the opcode byte in many of the 8086 and 80286 instructions.
The MODRM byte contains either the indexing type or the register
number to be used in the instruction. It also specifies which register
Is to be used, or gives more information to specify an instruction.

The MODRM byte carries the information in three fields:

fields: mod reg reg_mem

MODRM byte: - __

The mod field occupies the two most significant bits of t_he byte, and

combines with the register memory field to form 32 possible values: 8
registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It
specifies either a register number or three more bits of opcode
information. The meaning of the reg field is determined by the

opcode byte.

The reg_mem, or register memory, field occupies the last three bits of
the byte. It specifies a register as the location of an operand, or
forms a part of the address-mode in combination with the mod field
described earlier.

For further information about 8086 and 80286 instructions and their bit

patterns, see the Intel assembly language programming manual and
the Intel user’'s manual for your processor.

Programmer’s Utilities Guide 5.3 Defining Code-macros

MODRM has the forms:
MODRM form_name,form_name
MODRM NUMBER?7.form_name

NUMBER? is a value 0 to 7 inclusive, and form_name is the name of a
formal parameter. The following examples show how MODRM is used
in a code-macro directive:

CodeMacro RCR dst:Ew,count:Rb(CL)

SEGFIX dst
DB OD3H
MODRM 3,dst
EndM
CodeMacro OR dst:Rw,src:Ew
SEGFIX src
DB 0BH
MODRM dst,src
EndM

RELB and RELW

These directives, used in IP-relative branch instructions, instruct
RASM-86 to generate a displacement between the end of the
instruction and the label supplied as an operand. RELB generates one
byte and RELW two bytes of displacement. The directives have the
following forms:

RELB form_name
RELW form_name

The form name is the name of a formal parameter with a C (code)
specifier. For example,

CodeMacro LOOP place:Cb

DB 0E2H
RELB place
EndM

5-7

5.3 Defining Code-macros Programmer’s Utilities Guide

DB, DW and DD

These directives define a number, or a parameter as either a byte,
word, or double-word. These directives differ from those occuring

outside code-macros.
The directives have the following forms:
DB form _name | NUMBERB

DW form_name | NUMBERW
DD form_name

NUMBERB is a single-byte number, NUMBERW is a two-byte number,
and form_name is a name of a formal parameter. For example,

CodeMacro XOR dst:Ew,src:Db

SEGFIX dst

DB 81H

MODRM 6,dst

DW] src
EndM

DBIT

This directive manipulates bits in combinations of a byte or less. The
form is as follows:

DBIT field_description [field_description]

The field_description has two forms:

number combination

number (form_name (rshift))
The number ranges from 1 to 16, and specifies the number of bits to
be set. The combination specifies the desired bit combination. The
total of all the numbers listed in the field descriptions must not
exceed 16.
The second form shown contains form_name, a formal parameter name
that instructs the assembler to put a certain number in the specified

position. This number normally refers to the register specified in the
first line of the code-macro. The numbers used in this special case

for each register are the following:

5-8

Programmer’s Utilities Guide 5.3 Defining Code-macros

AL:
CL:
DL:
BL:
AH:
CH:
DH:
BH:
AX:
CX:
DX:
BX:
SP:
BP:
SI:
DI:
ES:
CS:
SS:
DS:

The rshift, contained in the innermost parentheses, specifies a number
of right shifts. For example, 0 specifies no shift; 1 shifts right one bit;
2 shifts right two bits, and so on. The following definition uses this

form:
CodeMacro DEC dst:Rw

DBIT 5(9H),3(dst(0))
EndM

The first five bits of the byte have the value 9H. If the remaining bits
are zero, the hex value of the byte is 48H. If the instruction

wNI—‘O\lG'\U'InPwN’—‘O\JO\U‘IquNO—‘O

DEC DX

is assembled, and DX has a value of 2H, then 48H + 2H = 4AH, the final
value of the byte for execution. |If this sequence is present in the

definition
DBIT 5(9H),3(dst (1))

then the register number is shifted right once, and the erroneous
result is 48H + 1H = 49H.

5-9

5.3 Defining Code-macros Programmer’s Utilities Guide

IF, ELSE, and ENDIF

The IF and ENDIF directives allow you to conditionally include or
exclude a group of source lines from the assembly. The optional ELSE
directive allows you to specify an alternative set of source lines.
These code-macro directive operate in the same manner as the
RASM-86 conditional assembly directives described in Section 3.5.1.

5.3.3 Example Code-Macro Definitions

.In order to clearly distinguish specifiers from modifiers, the examples
in this section show specifiers in uppercase and modifiers in
lowercase.

CodeMacro IN dst:Aw,port:Rw(DX)

_Defines a code-macro, named IN, specifying that the input port must
be identified by the DX register.

CodeMacro ROR dst:Ew,count:Rb(CL)

Defines a code-macro, named ROR, specifying that the CL register is
to contain the count of rotation.

CodeMacro ESC opcode:Db(0,63),adds:Eb

Defines a code macro named ESC, specifying that the value
represented by the opcode parameter is to be. immediate data, with a
range from 0 to 63 bytes. ESC also specifies that the value
represented by the adds parameter is a byte to be used as an effective
address.

CodeMacro AAA
DB 37H
EndM

Defines a code macro, named AAA, as the value 37H. (This is the
normal opcode value of the AAA instruction))

CodeMacro NESC opcode:Db(0,63),src:Eb
SEGFIX src
DBIT 5(1BH),3(opcode(3))
MODRM opcode,src

EndM

Programmer’s Utilities Guide 5.3 Defining Code-macros

Defines a code macro, named NESC. The value represented by the
opcode parameter is defined as data, with a range from-0 to 63 bytes.
The value represented by the src parameter is defined as a byte to
represent either a memory address or a register.

The SEGFIX directive checks to see if src is in the current segment
(data segment) and, if not, to override with the correct segment.

The DBIT directive creates a byte. the upper five bits of this byte
contain 1BH; the lower 3 bits are derived from the value of opcode,

shifted right by 3.

The MODRM directive generates modrm bytes, based on the values of
the opcode and src parameters.

End of Section 5

5-11

SECTION 6

XREF-86 Cross-Reference
Utility

6.1 Introduction

XREF-86 is an assembly language cross-reference utility program that
creates a cross-reference file showing the use of symbols throughout
the program. XREF-86 accepts two input files created by RASM-86.
XREF-86 assumes these input files have filetypes of LST and SYM
respectively, and they both reside on the same disk drive. XREF-86
creates one output file with the filetype XRF.

6.2 XREF-86 Command Syntax
XREF-86 is invoked using the command form:

XREF86 [drive:] filename

XREF-86 reads FILENAME.LST line by line, attaches a line number prefix
to each line, and writes each prefixed line to the output file,
FILENAME.XRF. During this process, XREF-86 scans each line for any
symbols existing in the file FILENAME SYM.

After completing this copy operation, XREF-86 appends to
FILENAME.XRF a cross-reference report listing all the line numbers
where each symbol in FILENAME SYM appears. XREF-86 flags with a #
character each line number reference where the referenced symbol is
the first token on the line.

XREF-86 also lists the value of each symbol, as determined by
RASM-86 and placed in the Symbol Table file, FILENAME.SYM.

When you invoke XREF-86, you can include an optional DRIVE:
specification with the filename. When you invoke XREF-86 with a
DRIVE: name preceding the FILENAME, XREF-86 searches for the input
files and create the output file on the specified drive. If DRIVE: is not
specified, XREF-86 associates the files with the default drive.

6.2 XREF-86 Command Syntax Programmer’s Utilities Guide

For example, to search for the file BIOS on the Drive C, enter:

xref86 c:bios

XREF-86 also allows you to direct the output file to the default list
device instead of to FILENAME. XRF. To redirect the output, add the
string $p to the command line. For example,

A>xref86 bios $p

End of Section 6

6-2

SECTION 7

LINK-86 Linkage Editor

7.1 Introduction

LINK-86 is the linkage editor that combines relocatable object files to
form either a native-mode (CMD) or PC DOS mode (EXE) command file
that runs under Concurrent DOS 86. The object files can be produced
by any 8086 or 80286 language translators that produce object files
using a compatible subset of the Intel 8086/80286 object module

format.

7.2 LINK-86 Operation

LINK-86 accepts three types of files.

Object (OBJ) File A language source file processed by the language
translator into the relocatable object code used by
- the microprocessor. This type of file contains one

or more object modules.

Library (L86) File An indexed library of commonly used object
modules. A library file is generated by the library
manager, LIB-86, in the processor's relocatable
object format.

Input (INP) File A file consisting of filenames and options like a
command line entered from the console. For a
detailed explanation of the input file, see Section
7.10.

LINK-86 produces the following types of files:

Command (CMD or EXE) File
Contains executable code loadable by Concurrent.

The filetype depends on which version of the linker
you use (native mode or PC DOS mode).

7.2 LINK-86 Operation Programmer’s Utilities Guide

For simplicity, examples in this guide use the CMD filetype.

Symbol Table (SYM) File
Contains a list of symbols from the object files and

their offsets. This file is suitable for use with
SID-86.

Line Number (LIN) File
Contains line number symbols, which can be used

by SID-86 for debugging. This file is created only if
' the compiler puts line number information into the

object files being linked.

Map (MAP) File Contains segment information about the layout of
the command file.

During processing, LINK-86 displays any unresolved symbols at the
console. Unresolved symbols are symbols referenced but not defined
in the files being linked. Such symbols must be resolved before the

program can run.

Upon completion of processing, LINK-86 displays the size of each
saction of the command file and the Use Factor, which is a decimal
percentage indicating the amount of available memory used by

LINK-86.
See Section 7.12 for a complete explanation of the link process.

7.3 LINK-86 Command Syntax

You invoke LINK-86 with a command of the form:

LINK86 [filespec =] filespec_1 [filespec_2.. filespec_n]

where filespec is a Concurrent file specification, consisting of an
optional drive specification and a filename with optional filetype.

Note: The PC DOS version does not support pathnames in the
command line.

7-2

Programmer’s Utilities Guide 7.3 LINK-86 Command Syntax

Each filespec can be followed by one or more of the command
options described in Section 7.5. If you enter a filename to the left of
the equal sign, LINK-86 creates the output files with that name and the
appropriate filetypes. For example, if the files PARTA, PARTB, and
PARTC are written in 8086 or 80286 assembly code, the command:

A>1ink86 myfile = parta,partb,partc

creates MYFILE.CMD and MYFILESYM. The files PARTA, PARTB, and
PARTC can be a combination of object files and library files. If no
filetype is specified, the linker assumes a filetype of OBJ.

If you do not specify an output filename, LINK-86 creates the output
files using the first filename in the command line. For example, the

command

A>1ink86 parta,partb,partc

creates the files PARTA.CMD and PARTA.SYM. If you specify a library
file in your link command, do not enter the library file as the first file

in the command line.

You can also instruct LINK-86 to read its command line from a file,
thus making it possible to store long or commonly used link
commands on disk (see Section 7.10).

The following are examples of LINK-86 commands:
A>1ink86 myfile = parta,partb
A>1ink86 a:myfile.286 = parta,partbh,transvec

A>1ink86 b:myfile.cmd = parta,parth

The available LINK-86 command options are described in Section 7.5.

7.4 Stopping LINK-86

To stop LINK-86 during processing, press the console interrupt
character, usually Control-C.

7-3

7.5 LINK-86 Command Options Programmer’s Utilities Guide

7.5 LINK-86 Command Options

When you invoke LINK-86, you can specify command options that
control the link operation.

When specifying command options, enclose them in square brackets
immediately following a filename. A command option is specified
using the following command form:

A>1ink86 file[option]

For example, to specify the command option MAP for the file TEST1
and the NOLOCALS option for the file TEST2, enter:

A>1ink86 test1[map],test2[nolocals]

You can use spaces to improve the readability of the command line,
and you can put more than one option in square brackets by
separating them with commas. For example:

A>1ink86 testl [map, nolocals], test2 [locals]

specifies that the MAP and NOLOCALS options be used for the TEST1
file and the option LOCALS for the TEST2 file.

LINK-86 command options are grouped into the following categories:

® Command File Options
® SYM File Options

@ LIN File Options

® MAP File Options

©® L86 File Options

® INPUT File Options

® |/0 File Options

Table 7-1 summarizes the available LINK-86 command options. The
following sections describe the function and syntax in detail for each
command option.

Programmer’s Utilities Guide

7.5 LINK-86 Command Options

Table 7-1. LINK-86 Command Options

Option Abbreviation Meaning

CODE C controls contents of CODE
section of command file

DATA D controls contents of DATA
section of command file

EXTRA E controls contents of EXTRA
section of command file

STACK ST controls contents of STACK
section of command file

FILL F zero fill and include uninitialized
data in command file

NOFILL NOF do not include uninitialized data
in command file

HARDB8087 HA create a command file requiring
an 8087 coprocessor.

LIBSYMS L include symbols from library files
in SYM file

NOLIBSYMS NOLI do not include symbols from
library files in SYM file

LOCALS LO include local symbols in SYM file

NOLOCALS NOLO do not include local symbols in
SYM file

LINES LIN create LIN file with line number

symbols

7-5

7.5 LINK-86 Command Options

Programmer’s Utilities Guide

Table 7-1. (Continued)

Option Abbreviation Meaning

NOLINES NOLIN do not create LIN file

MAP M create a MAP file

SEARCH S search library and only link
referenced modules

INPUT | read command line from disk file

ECHO ECHO echo contents of INP file on
console

x1* X1 controls contents of X1 section of
CMD file

x1* X1 controls contents of X1 section of
CMD file

x1* X1 controls contents of X1 section of
CMD file

x1" X1 controls contents of X1 section of
CMD tile

CODESHARED® CODES mark group as shared in CMD file
header

NO PREFIX"" NOP Do not generate prefix code at

* Native mode only
** PC DOS mode only

beginning of EXE file

7-6

Programmer’s Utilities Guide 7.6 Command File Options

7.6 Command File Options

Most command file options can appear after any filename in the
command line. The only exception is the HARD8087 option which if

used, must appear after the first filename.

7.6.1 Command File Formats

A native-mode command file consists of a 128-byte header record
followed by up to eight sections, each of which can be up to 64K in
length. These sections are called CODE, DATA, STACK, EXTRA, X1, X2,
X3, and X4. Each of these sections correspond to a LINK-86 command
option of the same name. The header contains information such as
the length of each section of the command file, its minimum and
maximum memory requirements, and its load address. Concurrent
uses this information to properly load the file.

A PC DOS mode command file contains two part: a header and an
executable code module. The header contains 28 bytes of control
information, if required. The executable code module begins on a
sector boundary immediately following the header in the memory
image created by LINK-86. PC DOS mode command files can contain
up to four sections, each of which can be up to 64K in length. Each of
these four sections (CODE, DATA, STACK, and EXTRA), correspond to a
LINK-86 command option, which allows you to identify a section in a
command file. The parameters described below allow you to alter the
information in that section.

File Section Option Parameters

Each of the options identifying the command file sections must be
followed by one or more parameters enclosed in square brackets.

LINK-86 option parameters are specified using the form:

1ink86 file [option [parameter])

Table 7-2 shows the file section option parameters, their
abbreviations, and their meanings.

7-7

7.6 Command File Options Programmer’s Utilities Guide

Table 7-2. Command File Option Parameters

Parameter. . Abbreviation Meaning

GROUP G groups to be included in
command file section

CLASS C classes to be included in
command file section

SEGMENT S segments to be included in
command file section

ABSOLUTE AB absolute load address for
command file section

ADDITIONAL AD additional memory allocation for
the command file section

MAXIMUM M maximum memory allocation for
command file section

ORIGIN o . origin of first segment in
command file section

GROUP, CLASS, SEGMENT

The GROUP, CLASS, and SEGMENT parameters each contain a list of
groups, classes, or segments that you want LINK-86 to put into the
indicated section of the command file. For example, the command

A>1ink86 test [code [segment [codel, code2], group [xyz]l]

instructs LINK-86 to put the segments CODE1, CODE2, and all the
segments in group XYZ into the CODE section of the file TEST.CMD (or
TEST.EXE).

Programmer’s Utilities Guide 7.6 Command File Options

ABSOLUTE, ADDITIONAL, MAXIMUM

The ABSOLUTE, ADDITIONAL, and MAXIMUM parameters tell LINK-86
the values to put in the command file header. These parameters
override the default values normally used by LINK-86. Table 7-3
shows the default values. . N

Each parameter is a hexadecimal number enclosed in square brackets.
The ABSOLUTE parameter indicates the absolute paragraph address

where the operating system loads the indicated section of the
command file at runtime. A paragraph consists of 16 bytes.

The ADDITIONAL parameter indicates the amount of additional memory,
in paragraphs, required by the indicated section of the command file.
The program can use this memory for Symbol Tables or 1/0 buffers at

runtime.

The MAXIMUM parameter indicates the maximum amount of memory
needed by the indicated section of the command file.

For example, the command

A>1ink86 test [data [add [100], max [1000]), code [abs[40]]]

creates the file TEST.CMD whose header contains the following
information:

® The DATA section requires at least 100H paragraphs in addition to
the data in the command file.

® The DATA section can use up to 1000H paragraphs of memory.
® The CODE section must load at absolute paragraph address 40H.

ORIGIN

The ORIGIN parameter is a hexadecimal value that indicates the byte
offset where the indicated section of the command file should begin.
LINK-86 assumes a default ORIGIN value of 0 for each section except
the DATA section, which has a default value of 100H to reserve space
for the Base Page in a native-mode program or the Program Segment
Prefix (PSP) in a PC DOS mode program.

Table 7-3 summarizes the default values for each of the command
options and parameters.

7.6 Command File Options Programmer’s Utilities Guide

Table 7-3. Default Values

for Command File Options and Parameters

OPTION GROUP CLASS SEGMENT ABS ADD MAX ORG
CODE CGROUP CODE CODE 0 0 0o o0
DATA DGROUP DATA DATA 0 0 1000H" 100H
STACK - STACK STACK 0 0 0 0
EXTRA - EXTRA EXTRA 0 0 0 0,
X1 - X1 X1 0 0 0 o’
X2 - X2 X2 0 0 0 o’
X3 - X3 X3 0 0 0 0
X4 - x4 X4 0 0 0 0"

* |If there is a DGROUP; otherwise OH.
** Native-mode only

7.6.2 FILL / NOFILL

The FILL and NOFILL options tell LINK-86 what to do with any
uninitialized data at the end of a section of the command file. The
FILL option, which is active by default, directs LINK-86 to include this
uninitialized data in the command file and fill it with 2eros. The
NOFILL option directs LINK-86 to omit the uninitialized data from the
command file. Note that these options apply only to uninitialized data
at the end of a section of the command file. Uninitialized data that is
not at the end of a section is always zero filled and included in the
command file. :

7.6.3 HARD8087

You must use the HARDB8087 option if the program contains 8087
instructions. There are no 8087 software emulation routines provided
with LINK-86. A program that contains 8087 instructions must always
run on a system with an 8087 coprocessor.

Programmer’s Utilities Guide 7.6 Command File Options

7.6.4 CODESHARED (Native-mode only)

The CODESHARED option marks the group in the CMD ftile header with
a group descriptor type 09H (shared code). The default code group

descriptor is 01H (non-shared code).

7.7 SYM File Options

The following command options affect the contents of the SYM file
created by LINK-86:

® LOCALS
® NOLOCALS
® LIBSYMS
® NOLIBSYMS

These options must appear in the command line after the specific file
or files to which they apply. When you specify one of these options, it
remains in effect until you specify another. Therefore, if a command
line contains two options, the leftmost option affects all of the
specified files until the second option is encountered, which affects all
of the remaining files specified on the command line.

7.7.1 LOCALS / NOLOCALS

The LOCALS option directs LINK-86 to include local symbols in the
SYM file if they are present in the object files being linked. The
NOLOCALS option directs LINK-86 to ignore local symbols in the
object files. The default is LOCALS. For example, the command

A>1ink86 testl [nolocals], test2 [locals], test3

creates a SYM file containing local symbols from TEST2.0B8J and
TEST3.08BJ, but not from TEST1.08J

7.7.2 LIBSYMS / NOLIBSYMS

The LIBSYMS option directs LINK-86 to include in the SYM file any
symbols coming from a library searched during the link operation. The
NOLIBSYMS option directs LINK-86 not to include those symbols in the

SYM file.

7.7 SYM File Options Programmer’s Utilities Guide

Typically, such a library search involves the runtime subroutine library
of a high-level language such as C. Because the symbols in such a
library are usually of no interest to the programmer, the default is
NOLIBSYMS.

7.8 MAP File Option

The MAP option directs LINK-86 to create a MAP file containing
information about the segments in the command file. The amount of
information LINK-86 puts into the MAP file is controlled by the
following optional parameters

OBJMAP NOOBJMAP
L86MAP NOL86MAP
ALL NOCOMMON

These parameters are enclosed in brackets following the MAP option.
The OBJMAP parameter directs LINK-86 to put segment information
about OBJ files into the MAP file. The NOOBJMAP parameter
suppresses this information. Similarly, the L86MAP switch directs
LINK-86 to put segment information from L86 files into the MAP file.
The NOL86MAP parameter suppresses this information. The ALL
parameter directs LINK-86 to put all the information into the MAP file.
The NOCOMMON parameter suppresses all common segments from
the MAP file.

Once you instruct LINK-86 to create a MAP file, you can change the
parameters to the MAP option at different points in the command line.
For example, the command

A>1ink86 finance [maplallll,screen.I186,graph.i86[maplnol86map]]

directs LINK-86 to create a map file containing segment information
from FINANCE.OBJ and SCREEN.L86; segment information for
GRAPH.L86 is suppressed by the NOISB6MAP option.

If you specify the MAP option with no parameters, LINK-86 uses
OBJMAP and NOL86MAP as defaults.

Programmer’s Utilities Guide 7.9 SEARCH Option

7.9 SEARCH Option

The SEARCH option directs LINK-86 to search the preceding library and
include in the command file only those modules satisfying external
references from other modules. Note that LINK-86 does not search
L86 files automatically. If you do not use the SEARCH option after a
library file name, LINK-86 includes all the modules in the library file
when creating the command file. For example, the command

A>1ink86 testl, test2, math.I86 [search]

creates the native-mode file TEST1.CMD by combining the object files
TEST1.0BJ, TEST2.0B8J, and any modules from MATH.L86 referenced
directly or indirectly from TEST1.0BJ or TEST2.08J.

The modules in the library file do not have to be in any special order.
LINK-86 makes multiple passes through the library index when
attempting to resolve references from other modules.

LINK-86 automatically uses the SEARCH option when linking compiler-
requested libraries.

7.10 Input File Options

The following command options determine how LINK-86 uses the input
file:

INPUT
ECHO -

The INPUT option directs LINK-86 to obtain further command line input
from the indicated file. Other files can appear in the command line
before the input file, but the input file must be the last filename on the
command line. When LINK-86 encounters the INPUT option, it stops
scanning the command line, entered from the console. Note that you
cannot nest command input files. That is, a command input file

cannot contain the input option.
The input file consists of filenames and options just like a command

line entered from the console. An input file can contain up to 2048
characters, including spaces. For example, the file TEST.INP might

include the lines.

7.11 1/0 Option Programmer’s Utilities Guide

MEMTEST=TEST1,TEST2,TEST3,
IOLIB.L86[S],MATH.L82[S],
TEST4, TESTS[LOCALS]

To direct LINK-86 to use this file for input, enter the command

A>1ink86 testlinput]
If no file type is specified for an input file, LINK-86 assumes INP.

The ECHO option causes LINK-86 to display the contents of the INP
file on the console as it is read.

7.11 170 Option

The $ option controls the source and destination devices under
LINK-86. The general form of the $ option is:

$Tdrive
where T is a file type and drive is a single-letter drive specifier.

File Types
LINK-86 recognizes five file types:

C - Command File (CMD or EXE)
L - Library File (L86)

M - Map File (MAP)

O - Object File (OBJ or L86)

S - Symbol File (SYM)

Drive Specifications

The drive specifier can be a letter in the range A through P,
corresponding to one of sixteen logical drives Alternatively, it can be

one of the following special characters

. -14

rrogrammer's Utilities Guide 7.11 1/0 Option

X - Console
Y - Printer
Z - No Output

When you use the $ option, you cannot separate the Tdrive ctharacter
pair with commas. You must use a comma to set off any $ options
from other options. For example, the three command lines shown

below are equivalent:

A>1ink86 part1[$sz,$0d.$ib],part2
A>1ink86 part1[$szodib].part2

A>1ink86 part1[$sz od Ib],part2

The value of a $ option remains in effect until LINK-86 encounters a
countermanding option as it processes the command line from left to

right.

7.11.1 $C (Command) Option
The $C option uses the form:

$Cdrive

LINK-86 normally generates the command file on the same drive as
the first object file in the command line. The $C option instructs
LINK-86 to place the command file on the drive specified by the drive
character following the $C ($CZ suppresses the generation of a

command file).

7.11.2 $L (Library) Option
The $L option uses the form:

$Ldrive
LINK-86 normally searches on the default drive for runtime subroutine
libraries linked automatically. The $L option directs LINK-86 to search
—~ the specified drive for these library files.

7.11 1/0 Option Programmer’s Utilities Guide

7.11.3 $M (Map) Option
The $M option uses the form:

$Mdrive

LINK-86 normally generates the Map file on the same drive as the
command file. The $M option instructs LINK-86 to place the Map file
on the drive specified by the drive character following the $M.
Specify $MX to send the Map file to the console or $MY to send the
MAP file to the printer.

7.11.4 $0O (Object) Option
The $0 option uses the form:

$O0drive

LINK-86 normally searches for the OBJ or L86 files that you specify in
the command line on the default drive, unless such files have explicit
drive prefixes. The $0 option allows you to specify the drive location
of multiple OBJ or L86 files without adding an explicit drive prefix to
each filename. For example, the command

A>1ink86 p[$od].q.r,s,t,u.186,b:v

tells LINK-86 that all the object files except the last one are located on
drive D. Note that this does not apply to libraries linked automatically
(see Section 7.11.2).

7.11.5 $S Symbol Option
The $S option uses the form:

$Sdrive

LINK-86 normally generates Symbol files on the same drive as the
command file. The $S option directs LINK-86 to place these files on
the drive specified by the drive character following the $S. Specifying
$SZ directs LINK-86 not to generate the files

Programmer’s Utilities Guide 7.12 1/0 Option

7.12 The Link Process

The link process involves two distinct phases: collecting the segments
in the object files, and then positioning them in the command file.

The following terms are used in this section to describe how LINK-86
processes object files and creates the command file.

Segment A collection of code or data bytes whose length is
less than 64K. A segment is the smallest unit that
LINK-86 manipulates.

Segment name Any valid RASM-86 identifier. LINK-86 combines all
segments with the same segment name from
separate object files. -

Class name Any valid RASM-86 identifier. LINK-86 uses the

class name to position the segment in the correct
.section of the command file.

Align type Indicates the type of boundary where the segm'ent
begins. The Align types are byte, word, paragraph
and page.

Combine type Determines how LINK-86 combines segments with

the same name from different files into a single
segment. The Combine types are: public, common,
stack, absolute, and local.

Group A collection of segments with different names
grouped into a single segment. By grouping
segments, you can combine library modules and
other modules of similiar type with your object file
modules into a single segment By combining the
contents of individual segments into one large
segment, the pointer need only be a 16-bit offset
into a single segment. This results in shorter and
faster code than addressing individual segments
with 32-bit pointers.

7.12 The Link Process Programmer’'s Utilities Guide

If your program is written in a high-level language, the compiler
automatically assigns the Segment name, Class name, Group, Align
type, and Combine type. If your program is written in assembly
language, refer to Section 3 for a description of how to assign these
attributes.

7.12.1 Phase 1 - Collection

In Phase 1, LINK-86 first collects all segments from the separate files
being linked, and then combines them into the output file according to
the combine type, align type, and group type specified in the object
module.

Combine Types

The combine type determines how the data and code segments of the
individual object files are combined together into segments in the final
executable file. There are 5 combine types:

® Public

® Common

® Stack

® Local

® nnnn (absolute segment)

When the Public Combine type is used, LINK-86 combines segments by
concatenating them together, leaving the appropriate space between
the segments as indicated by the Align type (see below). Public is the
most common Combine type, and RASM-86, as well as most high-
level language compilers, use it by default.

For example, suppose there are three object files: FILEA.OBJ, FILEB.OBJ,
and FILEC.OBJ, and each file defines a data segment, named Dataseg,
with the public combine type. Figure 7-1 illustrates how LINK-86
combines this segment using the default combine type. public.

Programmer’s Utilities Guide 7.12 The Link Process

Dataseg (C) 150H

450H
Dataseg (B) 200H
Dataseg (A) 100H

Figure 7-1. Combining Segments with the Public Combine Type

Figure 7-2 illustrates the Common Combine type. Suppose the three
files: FILEA.OBJ, FILEB.OBJ, and FILEC.OBJ each contain a data segment,
named Dataseg, with the Common Combine type. LINK-86 combines
these data segments so all parts of the segments from the separate
files being linked have the same low address in memory. The
Common Combine type overlays the data or code from the various
object files, making it common to all of the linked routines in the
executable file. Note that this corresponds to a common block in high-
level languages.

Dataseg (A.B.C) 200H . _

Figure 7-2. Combining Segments with the Common Combine Type

LINK-86 combines segments with the Stack Combine type so the total
length of the resulting stack segment is the sum of the input stack
segments, including any intersegment gaps specified by the align type.

7.12 The Link Process Programmer’s Utilities Guide

For example, suppose the three files FILEA.OBJ, FILEB.OBJ, and
FILEC.OBJ each contain a segment named Stkseg with the Stack
Combine type. Figure 7-3 illustrates how they are combined by
LINK-86.

SP Starts High
Here | stkseg (A)] (100H)

Stkseg (C)]| (150H)
Stkseg (B) | (200H)

450H

SS: Low

'Figure 7-3. Combining Segments with Stack Combination

Segments with the local or absolute combine type cannot be
combined. LINK-86 displays an error message if the files being linked
contain multiple local segments with the same name.

Align Type

The Align type indicates on what type of boundary the segment
begins, and thus determines the amount of space LINK-86 leaves
between segments of the same name. When you specify an align
type, you determine whether the base address of a segment is to start
on a byte, word, paragraph, or page boundary. Four align types can be
specified in LINK-86:

@ Byte alignment (multiple of 1 byte)

® Word alignment (multiple of 2 bytes)

® Paragraph alignment (multiple of 16 bytes)
® Page alignment (multiple of 256 bytes)

Byte alignment produces the most compact code. When segments are
byte aligned, no gap is left between the segments

7-20

Programmer’s Utilities Guide 7.12 The Link Process

If the segments are word aligned, LINK-86 adds a one-byte gap, if
necessary, to ensure that the next part of the segment begins on a
word boundary. Word is the default Align type for Data segments,
since the 8086 and 80286 processors perform faster memory accesses
for word-aligned data. Word alignment is useful for saving space
when a large number of small segments are used. However, the offset
of the base of the segment may not be zero.

The gap between paragraph-aligned segments can be up to 15 bytes.
Paragraph alignment is used when the offset of the base of the
segment must be zero .

Page-aligned segments have up to 255-byte gaps between them. Page
alignment is used when creating system applications where the code
or data must start on a page boundary. .
Suppose the data segment, Dataseg, has the paragraph Align type and
has a length of 129H in FILEA, 10EH in FILEB, and 13AH in FILEC. As
shown, LINK-86 combines the segments to ensure that each segment
begins on a paragraph boundary.

Resulting dataseg is
37AH bytes long
13AH

240H

2H byte gap

10EH
130H
7H byte gap
129H
100H

Figure 7-4. Paragraph Alignment

7-21

7.12 The Link Process Programmer’s Utilities Guide

LINK-86 does not align segments having an Absolute combine type
because these segments have their load-time memory location
determined at translation time.

Gl:ouping

LINK-86 combines segments into groups. When segments are
grouped, intersegment gaps are determined using the same Align
types as those used to combine segments. Figure 7-5 illustrates how
LINK-86 combines segments into groups.

N+45:1FF N 64F
Dataseg 3 (200H) VAR50 Dataseg 3 (VAR:500)

N+450 N:450

N+10:34F N44F
Dataseg 2 (350H) Dataseg 2

N+10:0 N:100

N:FF N:FF
Dataseg 1 (100H) Dataseg 1

N:0 N:0

a. Segments Without Groups b. Segments Within A Group
Figure 7-5. The Effect of Grouping Segments

In Figure 7-5, N:0 is the base address where the segments are loaded
at run-time (paragraph N, offset 0). Figure 7-5a shows that each
segment not contained in a group begins at offset zero, and thus can
be up to 64K long. The offset of any given location, in this case the
variable VAR, is relative to the base of the segment. Thus, in order to
access VAR at run-time, the program must load a segment register
with the base address of the data segment Dataseg3 and point to an
offset of 50H.

7-22

Programmer’s Utilities Guide 7.12 The Link Process

In Figure 7-5b, the same segments are combined in a group. The
offsets of the segments are now cumulative and thus cannot extend
past 64k-bytes (FFFFH). The offset of VAR is 500H relative to the base
of the group. At run-time, the program does not need to reload a
segment register to point to the base of Dataseg3, but can access VAR
directly by pointing to an offset of 500H.

7.12.2 Phase 2 - Create Command File

In Phase 2, LINK-86 assigns each group and segment to a section of
the command file as follows:

1. LINK-86 first processes any segments, groups or classes the user
placed in a specific section by means of the command line

options described in Section 7.5.

2. Segments belonging to the group CGROUP are placed in the
CODE section of the command file.

3. Segments belonging to the group DGROUP are placed in the
DATA section of the command file. Note that the group names
CGROUP and DGROUP are automatically generated by PL/I-86,
CB86, and other high-level language compilers.

4. If there are any segments not processed according to (1), (2), and
(3), LINK-86 places them in the command file according to their
class name, as shown in Table 7-3. This table also shows the
RASM-86 segment directives that produce the class names as

defaults. .

5. Segments not processed by any of the above means are omitted
from the command file because LINK-86 does not have sufficient

information to position them.

7-23

7.12 The Link Process Programmer’s Utilities Guide

Table 7-4. LINK-86 Usage of Class Names

Class Name Command File Section Segment Directive
CODE CODE CSEG
DATA DATA DSEG
EXTRA EXTRA ESEG
STACK STACK SSEG
X1 X1
x2' X2
X3 X3
x4 X4

* Native-mode only. There is no segment directive in RASM-86
producing this class name as a default; you must supply it
explicitly.

See Appendix G for a list of LINK-86 error messages.

End of Section 7

7-24

SECTION 8

LIB-86 Library Utility

8.1 Introduction

LIB-86 is a utility program for creating and maintaining library files
containing 8086 or 80286 object modules. These modules can be
produced by any language translator that produces modules in Intel's
8086 or 80286 object module format. o

You can use LIB-86 to create libraries, as well as append, replace,

select, or delete modules from an existing library. You can also use
LIB-86 to obtain information about the contents of library files.

8.2 LIB-86 Operation

When you invoke LIB-86, it reads the indicated files and produces a
Library file, a Cross-reference file, or a Module map file as indicated
by the command line. When LIB-86 finishes processing, it displays the
Use Factor, a decimal number indicating the percent of available
memory LIB-86 uses during processing.

Table 8-1 shows the filetypes recognized by LIB-86.

Table 8-1. LIB-86 Filetypes

Type Usage

INP Input Command File
L86 Library File

MAP Module Map File
OBJ Object File

XRF Cross-reference File

8.3 LIB-86 Command Syntax Programmer’s Utilities Guide

8.3 LIB-86 Command Syntax

LIB-86 uses the command form:

LIB86 libraryfile = file1 [options] file2, filen

LIB-86 creates a Library file with the filename given by LIBRARYFILE. If
you omit the filetype, LIB-86 creates the Library file with filetype L86.

LIB-86 reads the files specified by FILE1 through FILEN and produces
the library file. If FILE1 through FILEN do not have a specified filetype,
LIB-86 assumes a default filetype of OBJ. The files to be included can
contain one or more modules; they can be OBJ or L86 files, or a
combination of the two.

Modules in a library need not be arranged in any particular order,
because LINK-86 searches the library as many times as necessary to
resolve references. However, LINK-86 runs much faster if the order of
modules in the library is optimized. To do this, remove as many
backward references as possible (modules which reference public
symbols declared in earlier modules in the library) so LINK-86 can
search the library in a single pass.

Module names are assigned by language translators. The method for
assigning module names varies from translator to translator, but is
generally either the filename or the name of the main procedure.

8.4 Stopping LIB-86

With the native-mode version, you can press any console key to halt
LIB-86, which then displays the message.

STOP LIB-86 (Y/N)?

If you type Y, LIB-86 immediately stops processing and returns control
to the operating system. Typing N causes LIB-86 to resume
processing.

You can stop both the native-mode and PC DOS mode versions by
typing Ctri-C.

8-2

Programmer’s Utilities Guide 8.5 LIB-86 Command Options

8.5 LIB-86 Command Options

When you invoke LIB-86, you can specify optional parameters in the
command line controlling the operation. Table 8-2 shows the LIB-86
command options. You can abbreviate each option keyword by
truncating on the right, as long as you include enough characters to
prevent ambiguity. Thus, EXTERNALS can be abbreviated EXTERN, EXT,
EX, or simply, E. The following sub-sections describe the function of

each command option.

Table 8-2. LIB-86 Command Line Options

Option Purpose Abbreviation
DELETE Delete a Module from a Library file D
EXTERNALS Show EXTERNALS in a Library file E
ECHO Echo contents of INP file on console
INPUT Read commands from Input file |
MAP Create a Module Map MA
MODULES Show Modules in a Library file MO
NOALPHA Show Modules in order of occurrence N
PUBLICS Show PUBLICS in a Library file P
REPLACE Replace a Module in a Library file R
SEGMENTS Show Segments in a Module SEG
SELECT Select a Module from a Library file SEL
XREF Create a Cross-reference file X

8.6 Creating and Updatipg Libraries

The following sections describe how you create new libraries and
update existing libraries.

8.6 Creating and Updating Libraries Programmer's Utilities Guide

8.6.1 Creating a New Library

To create a new library, enter the name of the library, then an equal
sign followed by the list of the files you want to include, separated by
commas. For example,

A>1ib86 newlib = a,b,c
A>1ib86 newlib.186 = a.obj,b.obj,c.obj

A>1ib86 math = add,sub,mul,div

The first two examples are equivalent.

8.6.2 Adding to a Library

To add a module or modules to an existing library, specify the library
name on both sides of the equal sign in the command line. The
library name appears on the left of the equal sign as the name of the
library you are creating. The name also appears on the right of the
equal sign, with the names of the other file or files to be appended.

For example,

math.186,sin,cos,tan

A>1ib86 math

sqrt,math.186

A>1ib86 math

8.6.3 Replacing a Module

LIB-86 allows you to replace one or more modules without rebuilding
the entire library from the individual object files. The command for
replacing a rpodqle or modules in a library has the general form:

LIB86 newilibrary = oldlibrary [REPLACE [replace list]]

where NEWLIBRARY is the name of the new library file you wish to
create; OLDLIBRARY is the name of the existing library file (that can be
the same as NEWLIBRARY) containing the module you want to replace;
and REPLACE LIST contains one or more module names of the form:

modulename = filename

For example, the command:

8-4

Programmer’s Utilities Guide 8.6 Creating and Updating Librar

ies

A>1ib86 math = math.I86 [replace [sqrt=newsqrt]]

directs LIB-86 to create a new file MATHL86 using the existing
MATH.L86 as the source, replacing the module SQRT with the file
NEWSQRT.OBJ. If the name of the module being replaced is the same
as the file replacing it, you need to enter the name only once. For

example, the command:

A>1ib86 math = math.I186 [replace [sqrt]]
replaces the module SQRT with the file SQRT.OBJ in the Library file
MATH.L86.
You can effect multiple replaces in a single command by using
commas to separate the names. For example,

A>1ib86 new = math.I86 [replace [sin=newsin,cos=newcos]]
Note that you cannot use the command options DELETE and SELECT in
conjunction with REPLACE.

LIB-86 displays an error message if it cannot find any of the specified
modules or files. See Appendix H for a complete list of LIB-86 error

messages.

8.6.4 Deleting a Module

The command for deleting a module or modules from a library has the
general form:

LIB86 newlibrary = oldlibrary [DELETE [module specifiers]]

where MODULE SPECIFIERS can contain either the names of single

modules, or a collection of modules, which are specified using the
name of the first and the last modules of the group, separated by a

hyphen. For example,

math.186 [delete [sqrt]]

A>1ib86 math

A>1ib86 math = math.i86 [delete [add, sub, mul, div]]

A>1ib86 math = math.I186 [delete [add - div]]

You cannot use the command options REPLACE and SELECT in
conjunction with DELETE.

8.6 Creating and Updating Libraries Programmer’s Utilities Guide

LIB-86 displays an error message if it cannot find any of the specified
modules in the library (see Appendix H).

8.6.5 Selecting a Module

The command for selecting a module or modules from a library has
the general form:

LIB86 newlibrary = oldlibrary [SELECT [module specitiers]]

where MODULE SPECIFIERS can contain either the names of single

modules, or groups of modules, which are specified using the name of
the first and the last modules of the group, separated by a hyphen.

For example,

math.186 [select [add, sub, mul, div]]

A>1ib86 arith

A>1ib86 arith = math.I186 [select [add - div]]

You cannot use the command options DELETE and REPLACE in
conjunction with SELECT.

LIB-86 displays an error message if it cannot find any of the specified
modules in the library (see Appendix H).

8.7 Displaying Library Information

You can use LIB-86 to obtain information about the contents of a
library. LIB-86 can produce two types of listing files: a Cross-
reference file and a Library Module Map. Normally, LIB-86 creates
these listing files on the default drive, but you can route them directly
to the console or the printer by using the command options described

in Section 8.5.

8.7.1 Cross-reference File
You can create a file containing the Cross-reference listing of a library
with the command:

LIB86 libraryname [XREF]

LIB-86 produces the file LIBRARYNAME.XRF on the default drive, or you
can redirect the listing to the console or the printer.

8-6

Programmer’s Utilities Guide 8.7 Displaying Library Information

The Cross-reference file contains an alphabetized list of all Public,
External, and Segment name symbols encountered in the library.
Following each symbol is a list of the modules in which the symbol
occurs. LIB-86 marks the module or modules in which the symbol is
defined with a pound sign, #, after the module name. Segment names
are enclosed in slashes, as in /CODE/. At the end of the cross-
reference listing, LIB-86 indicates the number of modules processed.

8.7.2 Library Module Map
You can create a Module Map of a library using the command:

LIB86 libraryname [MAP]

LIB-86 produces the file LIBRARYNAME.MAP on the default drive, or
you can redirect the listing to the console or the printer.

The Module Map contains an alphabetized list of the modules in the
Library file. Following each module name is a list of the segments in
the module and their lengths. The Module Map also includes a list of
the Public symbols defined in the module, and a list of the External
symbols referenced in the module. At the end of the Module Map
listing, LIB-86 indicates the number of modules processed.

LIB-86 normally alphabetizes the names of the modules in the Module
Map listing. You can use the NOALPHA switch to produce a map
listing the modules in the order in which they occur in the library. For
example,

A>1ib86 math.I186 [map.noalpha]l

8.7.3 Partial Library Maps

You can use LIB-86 to create partial library maps in two ways. First,
you can create a map with only module names, Segment names,
Public names, or External names using one of the commands:

LIB86 libraryname [MODULES]
LIB86 libraryname [SEGMENTS]
L1B86 libraryname [PUBLICS]
LIB86 libraryname [EXTERNALS]

8-7

8.7 Displaying Library Information Programmer’s Utilities Guide

You can also combine the SELECT command with any of the map-
producing commands described above, or the XREF command. For
example,

" A>1ib86 math.186 [map.noalpha,select [sin,cos.tan]]

A>1ib86 math.186 [xref,select [sin,cos,tan]]

8.8 LIB-86 Commands on Disk

For convenience, LIB-86 allows you to put long or commonly used
LIB-86 command lines in a disk file. Then when you invoke LIB-86, a
single command line directs LIB-86 to read the rest of its command
line from a file. The file can contain any number of lines consisting of
the names of files to be processed and the appropriate LIB-86
command options. The last character in the file must be a normal
end-of-file character (1AH).

To direct LIB-86 to read commands from a disk file, use a command of
the general form:

LIB86 filename [INPUT]
If FILENAME does not include a filetype, LIB-86 assumes filetype INP.
As an example, the file MATH.INP might contain the following:

MATH = ADD [$0OC],SUB,MUL,DIV,

SIN,COS,TAN,
SQRT,LOG

Then the command:

A>1ib86 math [input]
directs LIB-86 to read the file MATH.INP as its command line. You can
include other command options with INPUT, but no other filenames
can appear in the command line after the INP file. For example,
A>1ib86 math [input,xref,map]

The ECHO option causes LIB-86 to display the contents of the INP file
on the console as it is read.

8-8

Programmar’s Utilities Guide 8.9 Redirecting 1/0

8.9 Redirecting I/0

LIB-86 assumes that all the files it processes are on the default drive,
so you must specify the drive name for any file not on the default
drive. LIB-86 creates the L86 file on the default drive unless you

specify a drive name. For example,

A>1ib86 e:math = math.186,d:sin,d:cos.,d:tan
LIB-86 also creates the MAP and XRF files on the same drive as the
L86 file it creates, or the same drive as the first object file in the
command line if no library is created.

You can override the LIB-86 defaults by using the following command
options: .
$M<drive> - MAP file destination drive

$0<drive> - source OBJ or L86 file location
$X <drive> - XRF file destination drive

where <drive> is a drive name (A-P). For the MAP and XRF files,
<drive> can be X or Y, indicating console or printer output,
respectively. You can also put multiple I/0 options after the dollar

sign. For example,
A>1ib86 trig [map.xref,.$ocmyxy] = sin,cos,tan

The $0 switch remains in effect as LIB-86 processess the command
line from left to right, until it encounters a new $0 switch. This
feature can be useful if you are creating a library from a number of
files, the first group of which is on one drive, and the remainder on

another drive. For example,

A>1ib86 biglib = a1 [$oc],a2, ..a50 [$od],a51, ..a100

End of Section 8

8-9

—

OLEUIIUNY

SID-86 Operation

9.1 Introduction

SID-86 is a symbolic debugger designed for use with the Concurrent
DOS 86 operating system. SID-86 features:

® Symbolic assembly and disassembly

® Expressions involving hexadecimal, decimal, ASCIl, and symbolic
values

® Permanent breakpoints with pass counts

® Trace without call

To use SID-86, you should be familiar with the Intel 8088/8086/80286
microprocessor architecture, and Concurrent DOS 86 as described in
the Concurrent DOS 86 System Guide and the Concurrent DOS 86
Programmer’s Guide.

9.2 Typographical Conventions

The following typographical conventions are used to illustrate SID-86's
command and output structures:

® Commands appear in UPPERCASE characters and their arguments
appear in lower case characters. This convention is used to
distinguish the command from its arguments. Typically, you enter
all SID-86 command characters in lower case.

® When an example of a SID-86 command is guven user mput is
displayed in bold print.

® Some of the examples of SID-86 output use horizontal and/or
vertical elipses (...) to illustrate the continuation of an output

pattern.

9.2 Typographical Conventions Programmer’s Utilities Guide

® A <ctrl> sign is used to illustrate the CONTROL (or CTRL) key on
your keyboard. For example, <ctrl>-D instructs you to press and
hold down the CONTROL key while you press the "D” key.

® [] are used to signify an optional parameter

9.3 Starting SID-86

You start SID-86 by entering a command in one of the following
forms:)

SID
SID filespec [symfilespec]

The first form loads and executes SID-86. After displaying its sign-on
message and prompt character (#) SID-86 is ready to accept
commands..

In the second form, filespec specifies the name of the file to be
debugged. If you do not enter a filetype, SID-86 assumes a CMD
filetype (in native mode) or an EXE filetype (in PC DOS mode).
Symfilespec specifies the optional symbol (SYM) file, with or without
file extension.

The following are examples of valid SID-86 command lines:

A>sid Start SID-86

A>sid hello.cmd Start SID-86 and load the command file hello.cmd
as the debug process.

A>sid b:hello b:hello
Start SID-86 and load the command file, hello, along
with the symbol table file, hello.sym, from the B

drive.

Programmer’s Utilities Guide 9.4 Exiting SID-86

9.4 Exiting SID-86

SID-86 does not automatically save any files upon exit. Therefore, to
save the modified version of your file, write the file to disk using the
W (write) Command described in Section 11.4.19 before exiting SiD-86.

You can exit SID-86 by typing Ctrl-C in response to the # prompt (see
Section 11.4.12). This returns control to the operating system.

End of Section 9

9-3

SECTION 10

SID-86 Expressions

10.1 Introduction

SID-86 can reference absolute machine addresses through expressions.
Expressions can use names from the program’'s SYM file, which is
created when the program is linked using LINK-86. Expressions can
also be literal values in hexadecimal, decimal, or ASCIl character string
form. You can combine these literal values with arithmetic operators
to provide access to subscripted and indirectly-addressed data or

program areas.

10.2 Literal Hexadecimal Numbers

SID-86 normally accepts and displays values in hexadecimal. Valid
hexadecimal digits consist of the decimal digits 0 through 9 and the
hexadecimal digits A, B, C, D, E, and F, which correspond to the
decimal values 10 through 15, respectively.

A literal hexadecimal number in SID-86 consists of one or more
contiguous hexadecimal digits. If you type four digits, the leftmost
digit is most significant and the rightmost digit is least significant. If
the number contains more than four digits, the rightmost four are
recognized as significant, and the remaining leftmost digits are
discarded. The following examples show the hexadecimal and the
decimal equivalents of the corresponding input values.

Input Value Hexaceacimal Decimal
1 0001 1
100 . 0100 256
fffe FFFE 65534
10000 0000 0
38001 8001 32769

10-1

10.3 Literal Decimal Numbers Programmer's Utilities Guide

10.3 Literal Decimal Numbers

Enter decimal numbers by preceding the number with the # symbol.
The number following the # symbol must consist of one or more
decimal digits (0 through 9), with the most significant digit on the left
and the least significant digit on the right. Decimal values are padded
or truncated according to the rules of hexadecimal numbers when
converted to the equivalent hexadecimal value.

in the following examples, the input values on the left produce the
internal hexadecimal values on the right:

Input Value Hexadecimal Value
#9 0009
#10 000A
#256 0100
#65535 FFFF
#65545 0009

104 Literal Character Values

SID-86 accepts one or two printable ASCIl characters enclosed in
apostrophes as literal values in expressions. Characters remain as
typed within the apostrophes (that is, no case translation occurs). The
leftmost character is the most significant, and the rightmost character
is the least significant. Single character strings are padded on the left
with zeros. Strings having more than two characters are not allowed
in expressions, except in the S command, as described in Section
11.4.14,

Note that the enclosing apostrophes are not included in the character
string, nor are they included in the character count. The only
exception is when a pair of contiguous apostrophes is reduced to a
single apostrophe and included in the string as a normal graphic
character (see examples below).

10-2

Programmer’'s Utilities Guide 10.4 Literal Character Values

In the following examples, the strings to the left produce the
hexadecimal values to the right. Note that uppercase ASCI
alphabetics begin at the encoded hexadecimal value 41; lowercase
alphabetics begin at 61; a space is hexadecimal 20 and an apostrophe
is hexadecimal 27. #

Input String Hexadecimal Value

‘A’ 0041

‘AB’ , 4142

‘aA’ - 6141

0027
2727

A 2041

‘A’ 4120

10.5 Register Values

You can use the contents of a debug program’s register set by
specifying a register name wherever a 16-bit number is valid. For
example, if you know that at a certain point in the program the BX
register points to a data area you want to see, the command

DDS:BX
displays the desired area of memory. If the current default address
segment is DS, you can display the desired area of memory by
entering an index register:

DBX

Note that when assembling instructions using the A command, register
names are treated differently than in other expressions. In particular, a
register name in an assembly language statement entered in the A
(Assemble) command refers to the name of a register, and not its
contents.

10-3

o

10.6 Stack References Programmer’s Utilities Guide

10.6 Stack References

Elements in the stack can be included in expressions. A caret sign (")
refers to the 16-bit value at the top of the stack, pointed to by the SS
and SP registers (SS:SP) in the user's CPU state. A sequence of n
carets refers to the nth 16-bit value on the stack. For example, a
command having the form:

command *

uses the value stored at the top of the stack as its parameter. If two
carets are given, the second value stored on the stack is used; three
carets specifies the third value on the stack, and so on.

For example, if you wish to display the value located on the top of the
stack, you could enter:

Dss:»
If the address of a segment and the address of a particular offset
within that segment are both stored on the stack, carets can be used
to specifty a complete address. For example, if the third value on the
stack is used as a segment address and the first value on the stack is
used as the offset within that segment, you can display the complete
address using the following command:

DAA A.A

You can use a stack reference to set a breakpoint on return from a
subroutine, even though the actual value is not known.

For example, when callf pushes the current code segment address (CS)
onto the stack, followed by the address of the next program
instruction (IP), the command

G, A A : A
transfers control to the program and sets breakpoints at the address
contained in the CS and IP registers. This command is the same as:

G.CS:IP

Programmer’s Utilities Guide 10.7 Symbolic References

10.7 Symbolic References

If a symbol table is present during debugging, you can reference
values associated with symbols using the following three symbol

reference forms:

K
@s

=s

where s represents a sequence of 1 to 31 characters matching a
symbol in the table.

The .s form gives the 32-bit value associated with the symbol s in the
symbol table. The @s form gives the 16-bit value contained in the
word locations pointed to by s. The =s form gives the 8-bit value at s
in memory.

For example, given the following excerpt from a SYM table with a
segment address of CBO:

0000 Variables
0000 Data
0100 Gamma
0102 Delta

and given the following memory values:

CB0:0100 contains 02
CB0:0101 contains 3E
CB0:0102 contains 4D
CB0:0103 contains 22

then the symbol references shcuwil below on the left gives the
hexadecimal values shown on the right. Recall that 16-bit 80286
memory values are stored with the least significant byte first.
Therefore, the word values at 0100 and 0102 are 3E02 and 224D,

respectively.

-5

10

10.7 Symbolic References Programmer’s Utilities Guide

SYMBOL REFERENCE HEXADECIMAL VALUE
.GAMMA CB0:0100
.DELTA CB0:0102
@GAMMA 3E02
- @DELTA 224D
=GAMMA 0002
=DELTA 004D

10.8 Qualified Symbols

Duplicate symbols can occur in the symbol table due to separately
assembled or compiled modules that independently use the same
name for different subroutines or data areas. Block structured
languages allow nested name definitions that are identical, but
nonconflicting. Thus, SID-86 allows reference to “qualified symbols”
that take the form:

$1/82/ .../8n

where S1 through Sn represent symbols present in the table during a
particular session.

SID-86 always searches the symbol table from the first to last symbol
in the order the symbols appear in the symbol file. For a qualified
symbol, SID-86 begins by matching the first S1 symbol, then searches
for a match with symbol S2, continuing until symbol Sn is matched If
this search and match procedure is not successful, SID-86 prints a ?
to the console. Suppose, for example, that part of the symbol table
has a segment address of D00 appearing in the symbol file as follows:

0100 A 0300B 0200 A 3EO0OC 20F0 A 0102 A

Then the unqualified and qualified symbol references shown below on
the left produce the hexadecimal values shown on the right.

10-6

Programmer’s Utilities Guide 10.8 Qualified Symbols

Symbol Reference Hexadecimal Value
A D00:0100
@A 2D04
A/A D00:0200
.C/A/A D00:0102
=C/A/A 005E
.B/A/A D00:20F0

109 Expression Operators

Literal numbers, strings, and symbol references can be combined into
symbolic expressions using unary and binary “+” and “-" operators.
SID-86 evaluates the expression from left to right, producing a 32-bit
address at each step. Overflow and underflow are ignored as the
evaluation proceeds. The final value becomes the command
parameter, whose interpretation depends upon the particular command
letter preceding it.

When placed between two operands, the + indicates addition to the
previously accumulated value. The sum becomes the new
accumulated value in the evaluation.

The - symbol causes SID-86 to subtract the literal number or symbol
reference from the 16-bit value accumulated thus far in the symbolic
expression. If the expression begins with a minus sign, then the initial
accumulated value is taken as zero. That is,

-x is computed as 0-x

where x is any valid symbolic expression. For example, the address

0700-100

is the same as the address

0600

10-7

10.9 Expression Operators Programmer’s Utilities Guide

In commands specifying a range of addresses (i.e, B, D, L. F, M and W),
the ending address of the range can be indicated as an offset from the
starting address. To do this, you can precede the desired offset with a
plus sign. For example, the command

DFDO00,+#512

displays the memory from offset address FDOO to FF00. SID-86 does
not allow use of the unary plus operator at other times.

10.10 Sample Symbolic Expressions

Frequently, the formulation of symbolic expressions is closely related
to the program structures in the program being tested. Suppose you
want to debug a sorting program containing the following data items:

LIST . . Names the base of a table (or array) of byte values
to sort, assuming there are no more than 255
elements, denoted by LIST(0), LIST(1), ..., LIST(254).

N A byte variable that gives the actual number of
items in LIST, where the value of N is less than 256.
The items to sort are stored in LIST(0) through
LIST(N-1).

| The byte subscript that indicates the next item to
compare in the sorting process. LIST(l) is the next
item to place in sequence, where | is in the range 0
through N-1.
Given these data areas, the command

D.LIST,+#254
displays the entire area reserved for sorting as follows:

LIST(0), LIST(1), . . ., LIST(254)

10-8

rrogrammers uuiites uuiae 1U.1U Sample SymbpolC expressions

The command

D.LIST,+=I

displays the LIST vector up to and including the next item to sort as
follows:

LIST(0), LIST(1), ..., LIST(I)
The command

D.LIST+=1,+0
displays only LIST(l).
Finally, the command

D.LIST,+=N-1
displays only the area of LIST holding active items to sort as follows:

LIST(0), LIST(1), . .., LIST(N-1)

End of Section 10

10-9

OEVIIUN 11

SID-86 Commands

11.1 Command Structure

When SID-86 is ready to accept a command, it prompts you with a
pound sign (#), after which you can enter one of the commands
described in this section, or type a CTRL-C to end the debugging

sassion.

A valid SID-86 command can have up to 256 characters and must be
terminated with a carriage return. A SID-86 command can be followed
by one or more arguments. The arguments can be symbolic
expressions, filenames, or other Iinformation, depending on the
command. Arguments are separated from each other by commas or
spaces. Several commands (D, G, N, P, S, T, and U) can be preceded
by a minus sign. The effect of the minus sign varies among
commands. See the commands in Section 11.4.25 for explanations of
the effects of the minus sign on each command.

11.2 Specifying an Address

Most SID-86 commands require one or more addresses as operands.
Enter an address as follows:

$sss:0000

where ssss represents an optional 16-bit segment number and 0000 is
a 16-bit offset. If you omit the segment value, SID-86 uses a defauit
value appropriate to the command being executed, as described in
Section 11.4.4.

It is not possible to have a debugged process (read in by the E
command or command line) and a file (read in by the R command)
simultaneously resident in SID-86. (See Sections 11.4.4 and 11.4.13 for
descriptions of the E and R commands.)

11-1

e sa e oa———aiatas

11.4 SID-86 Commands Programmer’s Utilities Guide

11.3 Line Editing Functions

When you enter a command, use standard Concurrent line-editing
functions to correct typing errors. These line-editing functions are:

CTRL-X erase from beginning of line to cursor
CTRL-S move cursor to left
CTRL-D move cursor to right

SID-86 does not process the command line until you enter a carriage
return.

114 SID-86 Commands

This section describes each SID-86 command in alphabetic order.
Table 11-2 at the end of this chapter summarizes SID-86 commands.

11.4.1 A (Assemble) Command

The A command assembles 8086/80286 mnemonics directly into
memory. It has the form:

As

where s is the address where assembly begins. SID-86 responds to
the A command by displaying the address of the memory location
where assembly begins. At this point, you can enter assembly
language statements as described in Section 4. When you enter a
statement, SID-86 converts it to binary, places the value(s) in memory,
and displays the address of the next available memory location. This
process continues until you press the carriage return without entering
any statement or after entering only a period.

SID-86 responds to invalid statements by displaying the message:
Bad command or parameter; press ? for help
and redisplaying the current assembly address.

rFroyrdiniigr 5> vulued vuiug 1 1. Ul UU vuininniuniue

Note that wherever a numeric value is valid in an assembly language
statement, you can also enter an expression. There is one difference
between expressions in assembly language statements and those
appearing elsewhere in SID-86: under the A command, references to
registers refer to the names of the registers, while elsewhere they
refer to the contents of the registers. When you use the A command,
you cannot reference the contents of a register in an expression.

The following is an example of the A command:

#a213 Assemble at offset 213 of the current default CS
value.

nnnn:0213 mov ax,#128
Set AX register to decimal 128.

nnnn:0216 push ax
Push AX register on stack.

nnnn:0217 call .proc1
Call procedure whose address is the value of the
symbol PROC1.

nnnn:021A test byte [.i/i], 80
Test the most significant bit of the byte whose

address is the value of the second occurrence of
the symbol |

nnnn:021E jz .done
Jump if zero flag set to the location whose address

is the value of the symbol DONE.

nnnn:0220 . stop assemble process.

11.4.2 B (Block Compare) Command

The B command compares and displays the difference between two
blocks of memory loaded by either an R command, E command, or
command line. The B command has the form:

Bs1,f1,s2

—
-
1
w

11.4 SID-86 Commands Programmer’s Utilities Guide

where s1 is the address of the start of the first block; f1 is the offset
address that specifies the last byte of the first block, and s2 is the
address of the start of the second block. If the segment is not
specified in s2, the same value used for sl is assumed.

SID-86 displays any differences in the two blocks in the form:

al bl a2 b2
where the a1l and the a2 are the addresses in the blocks; b1 and b2
are the. values at the indicated addresses. If no differences are
displayed, the blocks are identical.

The following are examples of the B command:

#b40:0,111,60:0 Compare 512 (200H) bytes of memory starting at
40:0 and ending at 40:1FF with the block of memory

starting at 60:0.

#bes:.arrayl,+ff,.array2
Compare a 256-byte array starting at offset ARRAY1

in the extra segment with ARRAY2 in the extra
segment.

11.4.3 D (Display) Command

The D command displays the contents of memory as 8-bit or 16-bit
hexadecimal values and in ASCIl characters. The D command has the

following forms:
1.D

Ds

. Ds.f

DW

DWs

DWs, f

N o o0 s 0N

Programmer’s Utilities Guide 11.4 SID-86 Commands

where s is the starting address of the display, and f is the ending
address. If no segment value is given for f, then the segment
specified by s is assumed and the value of f is used as the offset
within that segment.

Memory is displayed on one or more lines. Each line shows the
values of up to 16 memory locations. For the first three forms, the
display line appears as:

ssss:0000 bbbb .. .bbaa ... a

where ssss is the segment being displayed, and 0000 is the offset
within segment ssss. The bb’s represent the 8-bit contents of the
memory locations in hexadecimal, and the a’s represent the contents
of memory in ASCIl. A period represents any nonprintable ASCII

character.

Form 1 displays memory from the current display address for 12
display lines. Form 2 is similar to form 1, except the default display
address is changed to address s. Form 3 displays the memory block
between locations s and f. Forms 4,5 and 6 are identical to forms 1,2
and 3 except that the contents of memory are displayed as 16-bit
words, rather than 8-bit bytes, as follows:

$s5s:0000 wwww wwww . .. Wwww aaaa ... aa
where wwww represents a 16-bit word in hexadecimal.

You can use CtrI-S and Ctrl-Q to control scrolling during a long
display. In native mode, you can stop the display by typing any key at
the console; in PC DOS mode, type Ctrl-Break.

The last address displayed becomes the default starting address for
the next display unless another starting address is specified.

By default, the D command displays 176 bytes of memory. Form 7
form changes the default number to n, which can be any number
between 0 and 65535.
If the number of bytes left in the debugged process is less than the
established default value, then only those bytes remaining in the
process are displayed.

-—
-
|
(3]

11.4 SID-86 Commands ' Programmer’s Utilities Guide

The following are examples of the D command:

#d100,123 Display memory bytes from offset FOOH through
F23H in the current data segment.

#d.array+=i,+#10 Display 10 bytes starting at location ARRAY (i).
#dwss:sp Display the value at the top of stack in word format.
#d~ Display the value at the top of stack in byte format.
#dw#128,#255 Display memory words from offset 80H through FFH.
#-d10 Set the default number of bytes displayed to 16.

1144 E (Load Program, Symbols for Execution) Command

The E command loads a file into memory so a subsequent G, T, or U
command can begin program execution. The E command can also
load a symbol table file. The E command has the following forms:

1. [-] Efilespec
2. [-] Efilespec symfilespec
3. E*symfilespec[,symfilespec..]

4. E

Form 1 loads the command file specified by filespec. If you do not
enter a filetype for the file, SID-86 assumes either a CMD or EXE
filetype, depending on which version you are using. SID-86 alters the
contents of the CS, DS, ES, and IP registers according to the
information in the header of the file loaded. When the file is
completely loaded, SID-86 displays the start and end addresses of
each segment in the file. You can use the V command to redisplay
this information later. See the V Command in Section 11.4.18.

Form 2 loads the command file specified by filespec as described
above, and then loads a symbol file as specified in symfilespec. The
default filetype for a symbol file is SYM. SID-86 displays the message:

SYMBOLS

Programmaer’s Utllities Guide 11.4 SID-86 Commands

when it begins loading the symbol file. If SID-86 detects an invalid
hexadecimal digit or an invalid symbol name, it displays an error
message and stops loading the symbol file.” You can use the H
command to display the symbols loaded when the error occurred to
determine the exact location of the error in the SYM file. 64K bytes of
memory is available for symbol table storage.

The PC DOS version of SID-86 loads symbols at the top of memory,
and adjusts the memory word size in the Program Segment Prefix

accordingly.

Form 3 does not load a program but simply loads the specified
symbols files. The form E releases all memory being used for symbol
table files.

When using the PC DOS version, forms 1 and 2 have an optional -
parameter When LINK-86 creates an object file, by default it inserts
some prefix code at the beginning of the file to set up the
environment in which the program runs. SID-86 automatically
executes this prefix code. You cam use the - parameter to direct
SID-86 not to execute the prefix code. You can then proceed to the
point where the prefix code transfers control to the main program
using the following commands:

G,102
T

When loading a program file with the E command, SID-86 releases any
blocks of memory allocated by any previous E or R command or by
programs executed under SID-86. Therefore, only one file at a time
can be loaded for execution and that file should be loaded beiore any
symbol tables are read. Do not load any symbol files after program

executign begins.

SID-86 issues an error messsage if a file does not exist or cannot be
successfully loaded in the available memory.

The symbol table file is produced by LINK-86 in the format:

]
~N

n

11.4 SID-86 Commands Programmer’s Utilities Guide

nnnn symboll nnnn symbol2

where nnnn is a four digit hexadecimal number, and spaces, tabs,
carriage returns, and line-feeds serve as delimiters between
hexadecimal.values and symbol names. Symbol names can be up to
31 characters in length.

The following are examples of the E command (in the native mode):

#etest Load file TEST.CMD

#etest.cmd test.sym
Load file TEST.CMD and symbol table file TEST.SYM
#etest test io Load file TEST.CMD and symbol table files TEST.SYM
and 10.SYM

1145 F (Fill) Command

The F command fills an area of memory read into SID-86 using an E
command, or R command with a byte or word constant. The F
command has the following forms:

1. Fs,fb

2. FWs f,.w

where s is a starting address of the block to be filled and f is the
address of the final byte of the block. If no segment value is specified
by f, then the segment value of s is used by default. Similarly, if no
segment value is specified by s, then the current display address is
used by default.

Form 1 stores the 8-bit value b in locations s through f. Form 2
stores the 16-bit value w in locations s through f in standard form,
the low eight bits first followed by the high eight bits.

If s is greater than f, or the value b is greater than 255 SID-86
responds with the message:

Programmer’s Utilities Guide 11.4 SID-86 Commands

Bad command or parameter; press ? for help

The following are examples of the F command:

#1100,131,0 Fill memory at the current default display segment
from offsets 100H through 13FH with 0.

#f.array,+255,ff Fill the 256-byte block starting at ARRAY with the
constant FFH. ‘

1146 G (Go) Command

The G command transfers control to the program being tested and
optionally sets one or two breakpoints. The G command has the

following forms:
1.G

. G,b1

. G,.b1,b2

Gs

Gs.b1

. Gs,b1,b2

7. -G (with all of the above forms)

where s is an address where program execution is to start, and b1 and
b2 are addresses of breakpoints. If you do not supply a segment
value for any of these three addresses, the segment value defaults to

the contents of the CS register.

For forms 1,2, and 3, no starting address is specified, so SID-86 gives
the address from the CS and IP registers. Form 1 transfers control to
your program without setting any breakpoints. Forms 2 and 3 set one
and two breakpoints respectively before passing control to your
program. Forms 4,5 and 6 are identical to 1,2 and 3, except the CS
and IP registers are first set to s.

If you precede any form of the G command with a minus sign, the
intermediate permanent breakpoints set by the P command are not

displayed.

o o os wowN

11.4 SID-86 Commands Programmer’s Utilities Guide

Once SID-86 transfers control to the program under test, it executes in
real time until a breakpoint is encountered. At this point, SID-86
regains control, clears the breakpoints set by the G command, and
displays the address where the executing program is interrupted. This
is done using the format:

*ssss:0000 .symbol

where ssss corresponds to the CS register, 0000 corresponds to the IP
register where the break occurs, and .symbol is the symbol whose
value is equal to 0000, if such a symbol exists. When a breakpoint
returns control to SID-86, the instruction at the breakpoint address has
not yet been executed.

The following are examples of the G command:

#g Begin program execution at address given by the CS
and IP registers with no breakpoints set.

#g.start,.error Begin program execution at label START in the code
segment, setting a breakpoint at label ERROR.

#g..error,* Continue program execution address given by the
CS and IP registers, with breakpoints at label ERROR
and at the address at the top of the stack.

#-9,34f Begin execution with a breakpoint at offset 34FH to
the current segment value of CS, suppressing
intermediate pass point display.

11.4.7 H (Hexadecimal Math) Command

The H command provides several useful arithmetic functions. The H
command has the following forms:

1. Ha,b

2. Ha

3 H

4. H .symbol

11-10

PIVYIUNIIINIGE O WALV D WUIuY TLLTY Wl UV wVITniaginiug

Form 1 form computes the sum (ssss), difference (dddd), product
(pppppppp), and quotient (qqqq) with the remainder (rrrr) of two 16-bit
values. The results are displayed in hexadecimal notation as follows:

+ ssss - dddd * pppppppp / qqqq (rrrr)
Underflow and overflow are ignored in addition and subtraction.

Form 2 displays the value of the expression a in hexadecimal, decimal,
and ASCII (if the value has a graphic ASCIl equivalent) in the following

format:

hhhh #ddddd ‘c’

Form 3 displays the symbols currently loaded in the SID-86 symbol
table. Each symbol is displayed in the following form:

nnnn symbolname

You can stop the display by pressing any key at the console (in the
native mode version) or Ctri-Break (in the PC DOS version).

Form 4 allows you to display the address where the specified symbol
is defined in the symbol table.
If the symbol is found in the symbol table, SID-86 responds:

$555:0000 #dddd ‘¢’ .symbol

where ssss:0000 is the address, #dddd is the decimal equivalent of
0000, and ¢ is the ASCIl value of #dddd. If the symbol is not found,

SID-86 displays the message:
Bad command or parameter; press ? for help

The H command uses 16-bit arithmetic with no overflow handling,
except for the product in form 1 above. Without overflow handling,

the value:

ffff + 2
equals 1.
The following are examples of the H command:

#h List all symbols and values loaded with the E
command(s).

11-1

11.4 SID-86 Corpmands Programmer’s Utilities Guide

#h@index Show the word contents of the memory location at
INDEX in hexadecimal and decimal.
#h5c28,80 Show sum, difference, product, and quotient of

5C28H and 80H.

1148 | (Input Command Tail) Command

In the native-mode version, the | command prepares a File Control
Block (FCB) and command tail buffer in SID-86's Base Page and copies
this information into the Base Page of the last file loaded with the E
command.

In the PC DOS version, the | command prepares a Program Segment
Prefix (PSP) and copies this information into the PSP of the last file
loaded with the E command.

The | command has the form:

I<command tail>

where <command tail> is a character string that usually contains
one or more filenames. The first filename is parsed into the default
FCB at 005CH. The optional second filename is parsed into the second
part of the default FCB at 006CH. The characters in the command tail
are also copied into the default command buffer at 0080H. The
command tail's length is stored at 0080H, followed by the character
string terminated with a binary zero.

If a file has been loaded with the E command, SID-86 copies the FCB
and command buffer from the Base Page (or PSP) to the Base Page (or
PSP) of the loaded program. The location of SID-86's PSP can be
obtained from the 16-bit value at location O:6. The location of the
Base Page (or PSP) of a program loaded with the E command is the
value displayed for DS on completion of the program load

Examples (PC DOS version)

#ifilel.exe Set up a File Control Block at 05CH for FILE1.EXE
‘ and put the string “filel.exe” in the buffer at 80H (in
the PSP of the last file loaded with the E command).

11-12

Programmer’s Utilities Guide 11.4 SID-86 Commands

#la:tile1 b:file2 c:tile3 $px
Set up FCB’s at 5CH and 6CH for the files A:FILEY

and B:FILE2, and copy the string following the | into
the buffer at 80H.

1149 L (List) Command

The L command lists the contents of memory read into SID-86 using
the R command, the E command, or the command line in assembly
language. The L command has the following forms: .

1. L
2. Ls
3. Lsf

4. -L (with all of the above forms)

where s is the address where the list starts and f is the address
where the list finishes. If no segment value is given for f, then the
segment value specified by s is assumed and the value of f is used as

the offset within that segment.
Each disassembled instruction takes the form:

label:
$s55:0000 prefixes opcode operands .symbol = memory value

where label is the symbol whose value is equal to the offset 0000, if
such a symbol exists; prefixes are segment override, lock, and repeat
prefixes; opcode is the mnemonic for the instruction; operands is a
field containing 0, 1, or 2 operands, as required by the instruction; snd
.symbol is the symbol whose value is equal to the numeric operand, if
there is one and such a symbol exists. If the instruction references a
memory location, the L command displays the contents of the location
in the memory value field as a byte, word, or double word, as
indicated by the instruction.

Form 1 lists 12 disassembled instructions from the current list address.
Form 2 sets the list address to s and then lists 12 instructions. Form
3 form lists disassembled code from s through f. If you precede any
of the L command forms with a minus sign, no symbolic information is
displayed (the labels and symbol fields are omitted).

11-13

B

SO S S B

A let il bl e h e

11.4 SID-86 Commands Programmer’s Utilities Guide

This speeds up the listing if many symbols are present and you have
no need to display them.

In all forms, the list address is set to the next unlisted location in
preparation for a subsequent L command. When SID-86 regains
control from a program being tested (see G, T, and U commands), the
list address is set to the current value of the CS and IP registers.

You can control display scrolling with Ctrl-S and Ctrl-Q. In native
mode, you can stop the list by typing any key; in PC DOS mode, type
Ctri-Break.

The syntax of the assembly language statements produced by the L

- command is described in Section 5.

If the memory location being disassembled is not a valid 8086/80286
instruction, SID-86 displays:

7= nn
where nn is the hexadecimal value of the contents of the memory
location.
The following are examples of the L command:

#1 Disassemble 12 instructions from the current default
list address.
#-1 Disassemble 12 instructions, without symbols, from

the current default list address.

#1243c,244e Disassemble instructions from 243CH through
_ 244EH.
#1.find,+20 Disassemble 20H bytes from the label FIND.
#l.err+3 Disassemble 12 lines of code from the label ERR
plus 3.
#lerr,.err Disassemble from label err to label errl.

11-14

Programmer’s Utilities Guide 11.4 SIU-00 LulInanus

11410 M (Move) Command

The M command copies a block of data values read into SID-86 using
an E command, R command, or command line from one area of
memory to another. The M command has the form:

Ms.f.d

where s is the starting address of the block to be moved; f is the
offset of the final byte within the segment; and d is the address of the
first byte of the area to receive the data. If you do not specify the
segment in d, the M command uses the same value used for s.
Therefore, the data found between the s and f is copied to a location

starting at d.
The following are examples of the M command:

#m20:2400,+9,30:100
Move 10 bytes from 20:2400 to 30:100.

#m.arréy,;#63,.array2
Move 64 bytes from ARRAY to ARRAY2.

11.4.11 P (Permanent Breakpoint) Command
The P command sets, clears, and displays “permanent” breakpoints.
The P command has the following forms:

1. Pa,n
2. Pa
3. -Pa
4. -P
5 P

A permanent breakpoint remains in effect until you explicitly remove it,
as opposed to breakpoints set with the G command that must be
reentered with each G command. Pass points have associated pass
counts ranging from 1 to OFFFFH. The pass count indicates how many
times the instruction at the pass point executes before the control
returns to the console SID-86 can set up to 30 permanent

breakpoints at a time.

11-15

11.4 SID-86 Commands Programmer’s Utilities Guide

Forms 1 and 2 are used to set pass points. Form 1 sets a pass point
at address a with a pass count of n, where a is the address of the
pass point, and n is the pass count from 1 to OFFFFH. If a pass point
is already active at a, the pass count is changed to n. SID-86
responds with a question mark if there are already 16 active pass

points.
Form 2 sets a pass point at a with a pass count of 1. If a pass point

is already active at a, the pass count is changed to 1. |f there are
already 16 active pass points, SID-86 responds with the message:

Bad command or parameter; press ? for help

Forms 3 and 4 are used to clear pass points. Form 3 clears the pass
point at location a. SID-86 responds with a question mark if there is
no pass point set at a. Form 4 clears all the pass points.

Form 5 displays all the active pass points using the form:

nnnn ssss:0000 .symbol

where nnnn is the current pass count for the pass point; ssss:0000 is
the segment and offset of the pass point location, and .symbol is the
symbolic name of the offset of the pass point, if such a symbol exists.
When a pass point is encountered, SID-86 displays the permanent
breakpoint information in the form:

nnnn PASS ssss:0000 .symbol

where nnnn, ssss:0000, and .symbol are as previously described.
Next, SID-86 displays the CPU state before the instruction at the
permanent breakpoint is executed. SID-86 then executes the
instruction at the permanent breakpoint. If the pass count is greater
than 1, SID-86 decrements the pass count and transfers control back
to the program under test. '

When the pass count reaches 1, SID-86 displays the break address
(that of the next instruction to be executed) in the following form:
*ssss:0000 .symbol

Once the pass count reaches 1, it remains at 1 until the permanent
breakpoint is cleared or the pass count is changed with another P
command.

11-16

Programmer’s Utllities Guide 11.4 SID-86 Commands

You can suppress the intermediate pass point display with the -G'
command (see the G Command in Section 11.46). When the -G
command is used, only the final pass points (when the pass count = 1)

are displayed.

You can use permanent breakpoints in conjunction with breakpoints
set with the G command.

Normally, SID-86 does not display the segment registers at pass

points. You can use the S and -S commands to enable and disable
the segment register display (see the S Command in Section 11.4.14).

The following are examples of the P command:

#p Display active permanent breakpoints.

#p.error Set permanent breakpoint at label ERROR.

#p.print,17 Set permanent breakpoint at label PRINT with count
of 17H.

#-p Cléar all permanent breakpoints.

#-p.error Clear permanent breakpoint at label ERROR.

11.4.12 Ql, QO (Query I/0) Command

The QI and QO commands allow access to any of the 65536
input/output ports. The Ql command reads data from a port; the QO

command writes data to a port.
The QI command has two forms:

Qin
Qlwn

where n is the 16-bit port number. The first form displays the 8-bit
value read from port n. The second form displays the 16-bit value

read from port n.
The QO command has two forms:

QOn,v
QOWn,v

11-17

11.4 SID-86 Commands Programmer’s Utilities Guide

where n is the 16-bit port number, and v is the value to output. The
first form writes the 8-bit value v to port n. If v is greater than 255,
SID-86 responds with a question. The second form writes the 16-bit

value v to the port n.

Examples

#qiw20 Displays the 16-bit value of input port 20H.
#qi1024 Displays the 8-bit value of input port 1024.
#qow20,ff7e Sets the 16-bit output port number 20H to OFF7EH.
qo#1025,2 Sets the 8-bit output port number 1025 to 2.

11.4.13 R (Read) Command

The R command reads a file into a contiguous block of memory. The
form is:

Rfilespec

where filespec is the name of the file you want to read. When you
use the R command, SID-86 automatically determines the memory
location into which the file is read.

When you enter the R command after a process is loaded with the E
command, or from the command line during the debugging process,
the process being debugged is stopped. Similarly, entering an E
command erases the buffered information formed by the R command.

When you enter the R command, SID-86 reads the file into memory,
computes, allocates, and displays the start and end addresses of the
block of memory occupied by the file. You can use the V command to
redisplay this information at a later time. SID-86 sets the default
display pointer for subsequent D commands to the start of the block
occupied by the file.

The R command does not free any memory previously allocated by
another R command. Therefore, you can read a number of files into

memory without them overlapping. When the R command is used.
files are concatenated together in memory in the same order in which

they were read in.

11-18

Programmer’s Utilities Guide 11.4 SID-86 Commands

SID-86 issues an error message if the file does not exist or there is
not enough memory to load the file.

The following are examples of the R command:

#rbanner.exe Read file BANNER.EXE into memory.
#rtest Read file TEST into memory.

11.4.14 S (Set) Command

The S command changes the contents of bytes or words of memory
read into SID-86 with the E command, R command, or command line.
The forms are as follows:

1. Ss

2. SWs

3.S

4. -S
where s is the address where the change occurs.
SID-86 displays the memory address and its current contents on the
following line. In response to form 1, the display is:

$5ss:0000 bb
where bb is the contents of memory in byte format. In response to
form 2, the display is:

$555:0000 wwww
where wwww is the contents of miemory in word format.

You can choose to alter the memory location or to leave it unchanged.
If you enter a valid expression, the contents of the byte (or word) in
memory is replaced with the value of the expression. If you do not
enter a value, the contents of memory are unaffected and the contents
of the next address are displayed. In either case, SID-86 continues to
display successive memory addresses and values until you enter a
period on a line by itself or until SID-86 detects an invalid expression.

11-19

11.4 SID-86 Commands Programmer’s Utilities Guide

With form 1, you can enter a string of ASCIl characters, beginning with
a quotation mark and ending with a carriage return. The characters
between the quotation mark and the carriage return are placed in
memory starting at the address displayed. No case conversion takes
place. The next address displayed is the address following the
character string.’

SID-86 issues an error message if the value stored in memory cannot
be read back successfully, indicating faulty or nonexistent memory at
thé location indicated.

Forms 3 and 4 control the display of the segment registers when the
CPU state is displayed with the T (Trace) command and at pass points.
Form 3 turns on the segment register display and form 4 turns it off.
You can turn off the segment register display while debugging to
allow the CPU state display to fit on one line.

The following are examples of the S command.

#s.array+3 Begin set at ARRAY (3)

nnnn:1234 55 0 Set byte to 0.

nnnn:1235 55 ‘abc’ Set three bytes to a, b, c.

nnnn:1238 55 #75 Set byte to decimal 75.

nnnn:1239 55 . Terminate set command.

#s Enable segment register display in CPU
x state display.

#-s Disable segment register display in CPU

state display.

11.4.15 SR (Search for String) Command

The SR command searches for a string of characters of values within
memory. The SR command has two forms:

SRs,f,“string”
SRs,f,valuel,value]

11-20

Programmer’s Utilities Guide 11.4 SID-86 Commands

where s is the starting address to begin searching_ and f is the
finishing address to end searching.

Form 1 searches for a string of 1 to 30 printable ASCHl characters.
The “string” parameter specifies the string to search for. Note that
string can use either single (') or double (”) quotes.

Form 2 searches for a numerical hex value between 0 and FFH (one
byte) in size. The value parameter must be a hexadecimal number
within the range specified above (leading 0's do not need to be
specified). To search for a multiple byte (up to 16 bytes) pattern,
separate each byte value with a comma.

Both forms of the SR command can search for the same things, since
a numerical value also equals an ASCII value.

The following are examples of the SR command:

#SR56:00,56:111,00,0A
search memory starting at 56:00 and ending at

56:1FF for a two-byte value consisting of 0Dh
(Carriage Return) and 0Ah (line feed).

#SR56:111,56:d0ff,”ABCD"
search memory starting at 56:1FF and ending at

56:d0ff for the character string: ABCD.

#SR56:iff,56:d0ff,41,42,43,44
search memory starting at 56:1FF and ending at

56:d0ff for a four-byte value consisting of 41 (A), 42
(B), 43 (C), and 44 (D).

11.4.16 T (Trace) Command

The T command traces program execution for 1 to OFFFFH program
steps. After each trace, SID-86 displays the current state of the CPU
and the next disassembled instruction to be executed. You must read
programs into SID-86 with the E command or command line. The T
command has the following forms:

11-21

11.4 SID-86 Commands Programmer’s Utilities Guide

1.7

2. Tn
3. TW
4. TWn

5. -T (with all of the above forms)

where n is the number of program steps to execute before returning
control to the console. If you do not specify the number of program
steps, SID-86 executes a single program step. To stop the trace,
pressing any key (in native mode), or Ctrl-Break (in PC DOS mode).

A program step is generally a single instruction, with the following
exceptions:

® |f a system interrupt instruction (either a native-mode BDOS or PC
DOS mode DOS interrupt) is traced, the entire function is treated
as one program step and executed in real time. This is because
SID-86 makes its own function calls and the parts of Concurrent
are not reentrant.

® If the traced instruction is a MOV or POP whose destination is a
segment register, the CPU executes the next instruction
immediately. This is due to a feature of the microprocessor that
disables interrupts, including the Trace Interrupt, for one
instruction after a MOV or POP loads a segment register. This
allows a sequence such as:

MOV SS, STACKSEGMENT
MOV SP, STACKOFFSET

" to be executed with no chance of an interrupt occurring between
the two instructions, at which time the stack is undefined. Such a
sequence of MOV or POP instructions, plus one instruction after
the sequence is considered one program step

® If you use forms 3 or 4 and the traced instruction is a CALL,
CALLF, or INT, the entire called subroutine or interrupt handler
(and any subroutines called therein) is treated as one program
step and executes in real time.

11-22

Frogrammer s vulues uuiue LY Ut e e oo

After each program step is executed, SID-86 displays the current CPU
state, the next disassembled instruction to be executed, the symbolic
name of the instruction operand (if any), and the contents of the
memory location(s) referenced by the instruction (if appropriate). See
the X Command in Section 11.4.20 for a detailed description of the
CPU state display.

If a symbol has a value equal to the instruction pointer (IP), the symbol
name followed by a colon is displayed on the line preceding the CPU
state display. The segment registers are normally not displayed with
the T command, which allows the entire CPU state to be displayed on
one line. Use the S command, as described in Section 11.4.14, to
enable the segment register display. With the segment register
display enabled, the display of the CPU state is identical to that of the

X command.

In all of the forms, control transfers to the program under test at the
address indicated by the CS and IP registers. If you do not specify the
number of program steps, as in form 1, one program step is executed.
Otherwise, SID-86 executes n program steps and displays the CPU
state before each step, as in form 2. You can stop a long trace before
n steps are executed by typing any character (in native mode) or Ctrl-
Break (in PC DOS mode)

After n steps are executed, SID-86 displays the address of the next
instruction to be executed, along with the symbolic value of the IP
register (if there is such a symbol) in the following form:

*ssss:0000 .symbol

Forms 3 and 4 trace execution without breaking for calls to
subroutines. The entire subroutine called from the program being
traced is treated as a single program step and executed in real time.
This allows tracing at a high leve! of the program, ignoring subroutines
already debugged.

If you precede the command with a minus sign, SID-86 omits symbolic
labels and symbolic operands from the CPU state display. This can
speed up the display by skipping the symbol table lookup when large
symbol tables are loaded.

When a single instruction is being traced, interrupts are disabled for
the duration of the instruction

11-23

11.4 SID-86 Commands Programmer’s Utilities Guide

This prevents SID-86 from tracing through interrupt handlers when
debugging on systems in which interrupts occur frequently.

After a T command, SID-86 sets the list address used in the L
command at the address of the next instruction to be executed.
SID-86 also sets the default segment values to the CS and DS register
values.

The following are examples of the T command:

#t _ Trace one program step.

#Ltfef Trace 65535 steps.

#-t#500 Trace 500 program steps with symbolic lookup
: disabled.

11.4.17 U Command

The U command, like the T command, is used to trace program
execution. The U command functions in the same way as the T
command, except that the CPU state is displayed after the last set of
program steps have executed, rather than after every step.

The U command works only with programs loaded by the E command
of from the command line. The U command has the following forms:

1. U

2. Un
3. uw
4. UWn

5. -U (with all of the above forms)

where n is the number of instructions to execute before returning
control to the console. You can stop the U command before n steps
are executed by pressing any key (in native mode) or Ctri-Break (in PC
DOS mode).

Forms 3 and 4 trace execution without calls to subroutines. The entire
subroutine called from the program being traced is treated as a single
program step and executed in real time. This allows tracing at a high
level of the program, ignoring subroutines already debugged

11-24

Programmaer’s Utilities Guide 11.4 SID-86 Commands

Preceding any of the U command forms with a minus sign causes
SID-86 not to print any symbolic reference information. This allows

the program to execute faster.
The following are examples of the U command:

#u200 Trace without display 200H steps. ?r #-u200
Trace without display 200H steps, suppressing the
intermediate pass point display.

11.4.18 V (Value) Command

The V command displays information about the last file loaded with
the E or R commands, excluding symbol tables loaded with the E
command. The form is:

v

If you load the last file with the R command (or the E command in PC
DOS mode), the V command displays the start and end addresses of
the file. In native mode, if you read the last file with the E command,
the V command displays the start and length in bytes for the code,

data, and heap segments.
If an R or E command have not have been used, SID-86 responds to
the V command with the message:

Bad command or parameter; press ? for help

11.4.19 W (Write) Command

The W command writes the contents of a contiguous block of memory
to disk. This command requires you to first use the R command to
read the data into SID-86. The W command has two forms:

Wfilespec
Wfilespec,s.f

where filespec is an optional pathname and the name of the file you
want to receive the data. The s and f arguments are the first and last
addresses of the block to be written. If you do not specify the
segment in f, SID-86 uses the same value used for s.

11-25

11.4 SID-86 Commands Programmer’s Utilities Guide

When you use form 1, SID-86 assumes the first and last addresses
from the files read with an R command. This causes all of the files
read with the R command to be written. If no file is read with an R
command, SID-86 responds with the message:

Bad command or parameter; press ? for help

Use form 1 for writing out files after patches are installed, assuming
the overall length of the file is unchanged.

Form 2 allows you to write the contents of a specific memory block.
The first address of the memory block is specified by s and the last
address of the memory block is specified by f.

If a file with the name specified in the W command already exists,
SID-86 deletes it before writing a new file.

The following are examples of the W command:

#wtest.cmd Write to the file TEST.CMD the contents of the
memory block read into by the most recent R
command.

#wb:test.exe,40:0,3fff
Write the contents of the memory block 40:0

through 40:3FFF to the file TEST.EXE on drive B.

11.4.20 X (Examine CPU State) Command

The X command allows you to examine and alter the CPU state of the
program under test. The X command has the following forms:

1. X
2. Xr

3. Xf

where r is the name of one of the CPU registers and f is the
abbreviation of one of the CPU flags. The X form displays the CPU
state in the following format:

11-26

Programmer’'s Utilities Guide 11.4 SID-86 Commands

AX BX CX o SS ES IP
‘‘‘‘‘‘‘‘ XXX XXXX XXXX R KXXX XXXX XXXX
instruction symbol name memory value

The nine hyphens at the beginning of the line indicate the state of the
nine CPU flags. Each position can be either a hyphen, indicating that
the corresponding flag is not set (0), or a single-character abbreviation
of the flag name, indicating that the flag is set (1). The abbreviations
of the flag names are shown in Table 11-2.

Table 11-1. Flag Name Abbreviations

Character Name

Overflow
Direction
Interrupt Enable .
Trap
Sign
Zero
Auxiliary Carry
Parity
Carry

OVPNOVWA—-—0O0O

instruction is the disassembled instruction at the next location to be
executed, which is indicated by the CS and IP registers. If the symbol
table contains a symbol whose value is equal to one of the operands
in instruction, the symbol name appears in the symbol name field,
preceded by a period. If instruction references memory, the contents
of the referenced location(s) appear in the memory value field,
preceded by an equal sign. Either a byte, word, or double word value
is shown, depending on the instruction. In addition to displaying the
machine state, form 1 changes the values of the default segments
back to the CS and DS register values, and the default offset for the L
command to the IP register value.

11-27

11.4 SID-86 Commands Programmer’s Utilities Guide

Form 2 allows you to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one of the
16-bit CPU registers. SID-86 responds by displaying the name of the
register followed by its current value. If you type a carriage return,
the value of the register does not change. If you type a valid
expression, the contents of the register change to the value of the
expression. In either case, the next register is then displayed. This
process continues until you enter a period or an invalid expression, or
the last register is displayed.

Form 3 allows you to alter one of the flags in the CPU state of the
program being tested. SID-86 responds by displaying the name of the
flag followed by its current state. If you type a carriage return, the
state of the flag does not change. If you type a valid value, the state
of the flag. changes to that value. You can examine or alter only one
flag with each Xf command. You set or reset flags by entering a value
of 1 or 0.

The following are examples of the X command.

#xbp Change registers starting with BP.
BP=1000 2b64 Change BP to hex 2B64.

SI=2000 #12345 Change S| to decimal 12345.
CS=0040 . Terminate X command.

11.4.21 Z (Print 8087/80287 Registers) Command

The Z command prints out the contents of 8087 and 80287 registers.
The form is:

z
The output generated by the Z command looks like the following:

11-28

Programmer’s Utilities Guide 11.4 SID-86 Commands

CW SW TW IP OP
037F 4100 FFFF FFEF O07FF FFFF 0000

0 EECO A6B6 B5396 EBBA BADS
1 EECO0 A6B6 BS5S5E EB8B BADS
2 EECO A6A6 BS5D6 EBBA BADS
3 EEC0O A6B6 BS55E EB8B BADS
4 EECO A6B6 BSSE EB8B BADS
5 EECO A6B6 BSS5E EB8B BADS
6 EECO A6B6 BS5S5E EB8B BADS
7 EECO A6B6 BSS5E EB8B BADS
Where:

CW = Control Word Format

SW = Status Word Format (indicates physical register 0)

TW = Tag Word

IP = 8087 or 80287 Instruction Pointer
OP = Pointer for last operand fetched

An error message appears if no 8087 or 80287 processor is present
when the Z command is given.

11.4.22 ? (List Commands) Command

The ? command prints a list of available SID-86 commands, similar to
the list appearing in Table 1-1. The form is:

?

11.4.23 ?? (List Commands Format) Command

The ?? command prints a detailed command list that includes the
SID-86 commands, and the available command options. The form is:

??

11-29

11.4 SID-86 Commands Programmer’s Utilities Guide

11.4.24 : (Define Macro) command

The : command defines or redefines a macro. The form is:

:name
where name is the name of the macro. SID-86 responds with the
message:

"Enter commands one to a line;
terminate with an empty line"

Enter the commands you want to execute immediately following the
message.

For example, if you wish to create a macro named “s” that, when
invoked, prints out the contents of the stack, you would define the

macro as follows:

#:s
dw ss:sp <cr>
<cr>

11.4.25 = (Use Macro) Command

The = command causes SID-86 to use a previously defined macro.
The forms are:

=
= name

The first form prints out the list of existing SID-86 macros and their
definitions (values).
The .second form executes the command associated with name.

For example, to invoke the “s” macro defined in the example for the :
command, enter:

#=s
and the contents of the stack will print.

11-30

Programmer's Utihities Guide

1.4 DIUT00 Lonundnud

Table 11-2. SID-86 Command Summary

Command

Action

>

"‘NX§<C—4%U):DD‘U§F—IOT!QO

~J
-~

enter assembly language statements
compare blocks of memory

display memory in hexadecimal and ASCII
load program and symbols for execution
fill memory block with a constant

begin execution with optional breakpomts

hexadecimal arithmetic

set up program arguments

list memory using 8086 mnemonics
move memory block

set, clear, display pass points

direct 1/0 request

read disk file into memory

set memory to new values

search for string within memory

trace program execution

untraced program monitoring

show memory layout of disk file read
write contents of memory block to disk
examine and modify CPU state

dump 80287 register.

print list of SID commands

print list of SID commands with options
use a previously defined macro

define a macro

End of Section 11

11-31

SECTION 12

Default Segment Values

12.1 Introduction

SID-86 has an internal mechanism that keeps track of the current
segment value, making segment specification optional when entering a
SID-86 command. SID-86 divides the command set into two types
according to which segment a command defaults if you do not specify
a segment value in the command line.

12.2 Type-1 Segment Value

The A (Assemble), L (List Mnemonics), P (Pass Points), and R (Read)
commands use the internal type-1 segment value if you do not specify
a segment value in the command.

When started, SID-86 sets the type-1 segment value to 0 and changes
it when one of the following actions is taken:

® When an E command loads a file, SID-86 sets the type-1 segment
value to the value of the CS:IP register.

® When an R command reads a file, SID-86 sets the type-1 segment
value to the base segment where the file was read.

® When an X command changes the value of the CS:IP register,
SID-86 changes the type-1 segment value to the new value of the

CS:IP register.

® When SID-86 regains control from a user program after a G, T, or
U command, it sets the type-1 segment value to the value of the

CS:IP register.

® When an A or L command explicitly specifies a segment value,
SID-86 sets the type-1 segment value to the segment value
specified.

12-1

12.3 Type-2 Segment Value Programmer’s Utilities Guide

12.3 Type-2 Segment Value

The D (Display), F (Fill), M (Move), S (Set), (and SR (Search) in native
mode) commands use the internal type-2 segment value if you do not
specify a segment value in the command.

When invoked, SID-86 sets the type-2 segment value to 0 and
changes it when one of the following actions is taken:

® When an E command loads a file, SID-86 sets the type-2 segment
value to the value of the DS register.

® When an R command reads a file, SID-86 sets the type-2 segment
value to the base segment where the file was read.

® When a D, F, M, S or SR command explicitly specifies a segment
value, SID-86 sets the type-2 segment value to the segment
value specified.

When evaluating programs with identical values in the CS and DS
registers, all SID-86 commands default to the same segment value

unless explicitly overridden.
Table 13-1 summarizes the SID-86 default segment values.

12

2

Programmer’'s Utilities Guide

12.3 lype-Z Segment vaiue

Table 12-1. SID-86 Default Segment Values

Command Default Segment Value

YOuIOVZIr-IOTMOD>

N<xs<c-

woo

Current CS:IP of debugged process
Current display address

Current display address

No default values assumed

Current display address

Current CS:IP of debugged process

No default values assumed

No default values assumed

Current list address

Current display address

Current CS:IP of debugged process

No default values assumed

Default is beginning address of the file
Current display address

Current display address in native mode;
no default value assumed for PC DOS- mode
Current CS:IP of debugged process
Current CS:IP of debugged process

No default values assumed

Default is beginning address of the file
No default values assumed

No default values assumed

No default values assumed

No default values assumed

No default values assumed

End of Section 12

12-3

SECTION 13

Assembly Language Syntax
for A and L Commands

13.1 Assembly Language Exceptions

In general, the SID-86 A and L commands use standard 8086/80286
assembly language syntax. Several minor exceptions are listed below.

® Up to three prefixes (LOCK, repeat, segment override) can appear
in one statement, but they all must precede the opcode of the
statement. Alternately, a prefix can appear on a line by itself.

® The distinction between byte and word string instructions is as
follows:

Byte Word

LODSB LODSW
STOSB STOSW
SCASB SCASW
Movss MOVSW
CMPSB CMPSW

® The mnemonics for near and far control transfer instructions are

as follows:
Short Normal Far
JMPS JMP JMPF
CALL CALLF
RET RETF

13-1

13.1 Assembly Language Exceptions Programmer’s Utilities Guide
® |f the operand of a CALLF or JMPIL' instruction is an absolute
address, you enter it in the form:
. sss;S:OOOO
where ssss is the segment and 0000 is the offset of the address.
® Operands that can refer to either a byte or word are ambiguous
and must be preceded either by the prefix “BYTE” or "WORD".
These prefixes can be abbreviated to "BY” and "WO" For
example:
INC BYTE [BP]
NOT WORD [1234]
Failure to supply a necessary prefix results in an error message.
® Operands addressing memory directly are enclosed in square
brackets to distinguish them from immediate values. For example:
ADD AX,5 ;add 5 to register AX
ADD AX,[5] ;add contents of location 5 to AX
® The forms of register indirect memory operands are:

13-2

[pointer register]

[index register]

[pointer register + index register]
where the pointer registers are BX and BP, and the index registers
are Sl and DI. Any of these forms can be preceded by a numeric
offset. For example:

ADD BX, [BP+S1]
ADD BX,3[BP+S1]
ADD BX,1D47([BP+SI]

End of Section 13

SECTION 14

SID-86 Sample Session

14.1 Introduction
The following sample session illustrates the commands and
procedures used to interactively debug a simple program.

Begin the session by entering the following source file, TYP.A86. Then
assemble and link the sample file to create an executable file.

RASM-86 sample for Concurrent DOS 26

display the contents of an ASCII file at the console
fco equ Sch
eof equ tah
bdosi equ 224
conoutc equ 2
openc equ 15
readc equ 20
setdmac equ 26
start: mov ax,fcb
call open
loop: call getchr
cmp al,eof
jz done
cal) conout
jmps loop
done: mov al,o0 ;reset function
mov cl.,0
jmp tbdos
getchr: cmp bptr,bsize ;see if ~e need a new buffer full
jc get!
call filbuf ;refill pbuffer from file
get . mov bx,offset buffer
mov al.buffer(bx; :get nex«t cha-acter from buffer
inc bptr :increment buffer pointer
ret

14-1

14.1 Introduction Programmer’s Utilities Guide

filbuf: mov dx,offset buffer
call setdma
mov dx.S5ch
call read
mov bptr,0
ret
open: mov cl,openc
call bdos
cmp al,offn
jnz err
ret
setdma: mov cl,setdmac
jmps bdos
read: mov cl,readc
call boos
cmp al.o
inz err
ret
conout: mov cl,conoutc
jmps bdos
printm: mov cl.9
jmps bdos
bdos: int bdos i
ret
err: mov dx,offset errorm
call printm
jmp done
dseg
org 100N
errorm db ‘ERROR’ ,008h,0ah, " %"’
bsize equ 80h
buffer rs bsize
bptr db bsize
end
14-2

Programmer’'s Utilities Guide 14.1 Introduction

Type symbol table file produced by RASM-86.
A>type typ.sym

0000 VARIABLES

0188 BPTR 0108 BUFFER 0100 ERRORM

0000 NUMBERS

00EO BDOSI 0080 BSIZE 0002 CONOUTC 001A EOF 005C FCB
000F OPENC 0014 READC 001A SETOMAC

0000 LABELS

0061 BDOS 0059 CONOUT 0012 DOONE 0064 ERR 002F FILBUF
0023 GET! 0019 GETCHR 0006 LOOP 0041 OPEN 0050 PRINTM

004F READ 004B SETDMA 0000 START

Try executing the program with the file TYP.A86 as data.
A>typ typ.a86

ERROR

The program doesn’'t work correctly, so load the executable program
and symbol table file to find out why.

A>sid86 typ.cmd typ.sym
SID-86 shows the start and end addresses of each segment from the
file:

START END
CS 06DA:0000 06DA:006F
DS 06E!:0000 06E1:018F
SYMBOLS

Display all the symbols that SID-86 loaded.

#h

0000 VARIABLES
0188 BPTR
0108 BUFFER
0100 ERRORM
0000 NUMBERS
00ED BDOOSI
0080 BSIZE
0002 CONOUTC
001A EOF
005C F(CB
000F OPENC

14-3

14.1 Introduction Programmer’s Utilities Guide

0014 READC
O01A SETDMAC
0000 LABELS
0061 BDOS
0059 CONOUT
0012 DONE
0064 ERR
002F FILBUF
0023 GET1
0019 GETCHR
0006 LOOP
0041 OPEN
0050 PRINTM
004F READ
0048 SETOMA
0000 START

Disassemble the beginning of the code segment.

x)

START:
06DA: 0000 MOV Dx,005C .FCB
06DA:0003 CALL 0041 .OPEN
LOOP:
060A:0006 CALL 0019 .GETCHR
06DA:0009 CMP AL,1'A _EOF
060DA:0008 JZ 0012 .DOONE

06DA:0000 CALL 0059 .CONOUT
06DA:0010 JMPS 0006 .LOOP

DONE :
060A:0012 MOV OL .00 .vARIABLES
060A:0014 MOV CL,00 .vYARIABLES
06DA:0016 JUMP 006 .BDOS

GETCHR:
060A:0019 CMP BYTE (0188).80 .8PTR
06DA:001'E JuB 0023 .GET!

Set up the default file control block at 5CH with the name of the file
to process:
#ityp.aB6

Trace the first two instructions of the program

AX BX Cx Ox SP 3P S1 O! P
--------- 0000 0000 00CO 0000 092C 0000 0000 0000 0000 MOV DX .005C .FCB
————————— 0000 0000 C000 COS: 092C 0000 0090 0G00 0003 ~ALL 0041 .OPEN

Programmer’s Utilities Guide 14.1 Introduction

*06DA: 0041 .QOPEN
SID-86 stops execution after two instructions, at the label OPEN.

Display the contents of the default fcb, to make sure it's set up right.

#d.fcb,+#35
06E1:005C 00 5S4 59 50 20 20 20 20 20 41 38 36 00 00 00 00
06E1:006C 00 20 20 20 20 20 20 20 20 20 20 20 00 0O 0O 00

06E1:007C 00 00 00 0O
The fcb looks ok. Disassemble the next few instructions.

.Tvyp AB6. ...

#1

OPEN:
060A : 0041 MOV CL,0F .OPENC
06DA:0043 CALL 006! .BDOS
06DA: 0046 CMP AL, FF
060A :0048 JUNZ 0064 .ERR
06DA:004A RET

SETOMA ;
060A : 0048 MOV CL.'A [EOF
060A: 0040 JMPS 0061 .BDOS

READ:
060DA : 004F MOV CL,14 _READC
06DA: 0051 CALL 0061 .B8DOS
06DA : 0054 CMP AL .00 .VARIABLES
060A: 0056 JUNZ 0064 .ERR

060DA: 0058 RET
Continue program execution with a break point after the open function.

#g,46
*4B0O0D: 0046

Disptay the CPU registers.

AX Bx Cx DX SP BP SI (o} ¢ Ccs DS SS ES 1P
0000 0000 0900 COOF 00SA 0000 0000 0000 4BDD 4BE4 38iA 4BE4 0046

CMpP AL . FF

Registers look ok; trace a few more instructions.

ot

A X BX CX DX SP 8P SI D1 e
R S - 0000 0000 0000 0000 COSA 000G 00CO COOO 0048 CMP AL FF
--1---a-C 0000 00CON VONDO 0000 00SA COOO0 0000 000D 0048 JUNZ 0064 .ERR

*4800:0064 . ERR

14-5

14.1 Introduction Programmer’s Utilities Guide

The code shouldn’'t be getting to the ERR label - the jump instruction
seems to be of the wrong flavor. It should be a JZ. Rather than
editing the source, just install a patch, which is easy because the new
instruction is the same length as the old one. Read the file into
memory (including the header).

#rtyp.cmd
START END
4C1B:0000 4C1B:02FF

The file was read into memory starting at paragraph 4C1B. That is
where the header is - the code starts 8 paragraphs later.

#xcCs

CS 480D 4c1b+8
DS 4BE4 cs

SS 381A

The code starts in paragraph 4C23. Using that as the base for the L
command, all the symbol values will be correct.

#10
START
4C23:0000 MOV O0x,005C .FCB
4C23:0003 CaLL 0041 .OQOPEN
LOOP: ’

4C23:0006 CALL 0019 .GETCHR
4C23:0009 CMP AL,VA .EOF
4C23:0008 JUZ 0012 .DONE
4C23:0000 CALL 0059 .CONOuUT
4C23:0010 JUMPS 0006 .LOOP

DONE :
4C23:0012 MOV OL,00 .VARIABLES
4C23:0014 MOV CL,00 .VARIABLES
4C23:0016 JmpP 0061 .8DO0S

GETCHR:
4C23:0019 CMP BYTE (0188).,80 .BPTR
4C23:001E JB 0023 .GET1

Disassemble the OPEN routine.

»14)

OPEN:
4C23:0041 MOV CL,OF .OPENC
4C23:0043 CALL 0061 .BDOS
4C23:0046 CMP AL .FF
4C23:0048 UNZ 0064 .ERR

14-6

Programmer's Utilities Guide 14.1 Introduction

4C23:004A RET
Assemble patch instruction.
#ad8
4C23:0048 jz 0064

4C23:004A

Write the patched file back to disk. The start and end addresses need
not be included in the W command, since the overall length of the file

did not change.

#wtyp.cmd
Reload the patched file and symbols. This is needed since the R
command doesn’t set up registers.
#etyp.cmd typ.sym
START END
CS 4BDD:0000 4BDD:006F

DS 4BE4:0000 4BE4:018F
SYMBOLS

#ityp.aBé6

Execute the program with a break point at DONE.
#9,.done ‘
ERROR

*4BDD: 0012 . DONE
#AC

Still not correct. Invoke SID-86 again, leaving off the file types, since
SID-86 uses the appropriate defaults.
A>sid86 typ typ ' .

START END
CS 48D0:0000 4BDO:006F
DS 4BEA4:0000 4BEA4:018F
SyYMBOLS

Set up default file control block. .
#ityp.aB6

Disassemble start of code segment.

14-7

14.1 Introduction Programmer’s Utilities Guide

LA

START
4BDD: 0000 MOV DX ,005C .F(CB
4800:0003 CALL 0041 .OPEN
LOOP :
4BDD: 0006 CALL 0019 .GETCHR
4BD0O: 0009 CmP AL,V1A _EOF
4800:0008 J2Z 0012 .DONE

4BDD:0000 CALL 0059 .CONOUT
4BDD:0010 JMPS 0006 .LOOP

OONE :
4800:0012 MCv DL ,00 .VARIABLES
4800:0014 MOV CL.00 .VARIABLES
48D00:0016 JUMP 0061 .BDOS

GETCHR:
4BDD: 0019 CMP BYTE [0188].80 .BPTR
4800:001€ JB 0023 .GeT

Trace without call, so SID-86 doesn’t trace the OPEN routine, which
should be fixed.

ftw2

AX BX Cx ox SP SpP S1 01 1P
==l-=----- 0000 0000 0000 0000 00S5C 0000 Q000 0000 0000 MOV DX ,005C .F(CB
-=l--=-=-- 0000 0000 0000 0GSC 0C5C 0000 0000 0000 0003 CALL 0041 .OPEN

*4BDD:0006 .LOOP

Disassemble next few instructions.

”1
LOOP:
4BDD:0006 CALL 0019 .GETCHR
48DD:0009 CMmP AL,1A _EOF
4800:0008 JZ 0012 .DONE
4BD0:0000 CALL 0059 .CONOUT
48D00:0010 JUMPS 0006 .LOOP
DONE ;
4B0DD:0012 MOV DL.00 .VARIABLES
480D0:0014 MOV CL,00 .VARIABLES
4800:0016 JUmMP 006' .BDOS
GETCHR :
4800:0019 CMP BYTE (0188].80 .BPTR
4800:001'€ JB 0023 .GET)
4800:0020 CALL 002F .FILBUF
GET:
4800:0023 MOV BX,0108 .BUFFER

Trace without call next three instructions. to see if this sequence is
working.

14-8

Programmer’s Utilities Guide 14.1 Introduction

#tw3
AX BX cXx DX SpP B8P S1 DI P

--1---A-C 0000 0000 0000 0000 0Q0S5C 0000 0000 0000 0006 CALL 0019 .GETCHR

-=l------ OQOED 0108 0000 0000 00SC 0000 0000 0000 0009 CmP AL ,1A _EOF
--1-S-A-C 0000 0108 0000 0000 00SC 0000 0000 000O 0OOB JZ 0012 .DONE
*4BDD: 0000

GETCHR is returning a 000H - something must be wrong there. Use
the E command to bring in a fresh copy of the program.

¥etyp typ
START END

CS 4BDD:0000 4BOD:006F
DS 4BE4:0000 4BE4:018F
SYMBOLS

Disassemble code segment.

#1

START
4BDD:0000 MOV OX,005C .FCB
480D:0003 CALL 0041 .OPEN
LOOP: .
4BD0:0006 CALL 0019 .GETCHR
4800:0009 CMP AL,1A EOF
4800:0008 JZ 0012 .DONE

4B80D:0000 CALL 0059 .CONOUT
480D : 0010 JUMPS 0006 .LOOP

DONE :
4800:001'2 MOV OL,.00 .VARIABLES
48D00:0014 MOV CL,00 .VARIABLES
4800:0016 JUMP 006! .BDOS

GETCHR:
4BDD:0019 CMP BYTE (0188).80 .BPTR
4B00:001'€E uUB 0023 .GET1

Disassemble GETCHR routine.

#

GETCHR :
48D0D0:0019 CMmP BYTE (0'88].80 .BPTR
4B0D:001€E uB 0023 .GET)
4800:0020 CALL 002F .FILBUF
GETI:
48D0:0023 MOV BX,0108 .BUFFER
4800:0026 MOV AL,0108(BX| .BUFFER -
4BDD:002A INC BYTE (0188] .BPTR

4B0D:002E RET

14-9

14.1 Introduction

Programmer’s Utilities Guide

FILBUF:
4800:002F MOV DX.0108 .BUFFER
4B00:0032 CALL 0048 .SETOMA
480D:0035 MOV 0X,005C .FCB
4800:0038 CALL 0O04F .READ
4800:0038 MOV BYTE (0188).00 .BPTR
Trace first few instructions. Note that SID-86 shows the contents of
BPTR as is it being compared.
2
AXx BXx Cx Ox SP BP SI OI P
--I---aA-C 0000 0000 2000 0000 005a4 0000 0000 0000 Q019 CMP BYTE [C185:.3C
--1--Z-P- 0000 0000 0000 0000 00Sa 0000 0000 0000 001E JB 0023 .3E7H
*4800:9020
The compare worked ok; keep going.
LAd
AX BX Cx Dx SP 8P SI DOI e
--1--Z-p- 0000 0000 0000 0000 OCSA 0000 0000 0000 0020 CALL Q02F 7l 3uF

*4800:002F
See what FILBUF looks like.

.FILBUF

s

FILBUF:
4800:002F MOV Ox.0108 .BUFFER
4800:0032 CALL 0048 .SETOMA
4800:0035 MmOV 0x.008C .FcB
4800:0038 CALL 004F _READ
4900:0038 MOV BYTE (0188].C0 BPTR
4800:0040 RET

OPEN;
4800:004t MOV CL.OF .OPENC
4B00:0043 CALL 0061 .B0OS
4800:0046 CmP AL . FF
4800:0048 J2Z 0064 €31
4800:004A RET

SETOMA :
4800:0048 MOV Ci.'a g0F

See what's in the buffer before

#0.0uffer

48EA4:0108 00 00 00 00 00 00 OC 20 <0 >C 00
4BE4:01'3 00 J0 00 00 00 00 00 20 <O 9C 20
48E4:0128 00 90 00 90 00 00 0O <0 <O 20 0C
48€4:0138 00 00 00 00 00 00 OC 2O c0 20 JC

14-10

the disk read takes place

23

W

]
20 3¢
29 a0
b

OO O
[WiNeN o)

P

gerp

m

Programmer’s Utilities Guide 14.1 Introduction

4BEa:0148 00 00 00 CO 00 OC CSC 230 0C GC OC OC 0C CO 0O 02
4BE4:0158 00 00 00 CO 00 OC CO 20 00 0C OC OC OG GO OO 02
4BE4:C168 00 OC 00 Cu U0 OC OC 00 CC OC OC OC OC GO GO CO
4BE4:0178 00 OC 0V 0O 00 OC 6O CC 20 90 &C OC 0L €O 00 00
4aBEa4:.0188 OC OC 00 CO 00 0OG 00U GC O3C GC OC OC OC CO 00 O
4BE4:0198 20 0C OU CU OC OC OC 00 00 OC 0GC 0OC 0O CC 00 O
4BE4:-014E 0OC 00 0D 00 00 OC 00 30 0OC 0OC 00 OC 00 GO CO O3
4BE4:C1BE OC CC GO CO OC 00 00 00 OG OC 0C OC OG GG CO O3

Trace the FILBUF routine

stk

AX Bx Cx o 50 8e Sl o1 ie
--1--2-P- 2000 0000 0000 000C 0058 000G 00CGC COOO OQ2F MOV Ox.0106 .BUFTER
--1--2-P- 0000 0000 0000 0108 0GS558 0000 0CCU Q03C 0032 CaLL 0048 . SETOMa

""" Z-»- 000C 000C N'0€ 0106 0053 0J0C 0COG 0OCC 0G3S MTv Ox.00SC .FCS8
---- 2-pP- 0000 COQO0 0COU 0GSC 0058 000C 0COO 0000 0038 Ca_t 004F _RELD
----- 2-p- Q000 0000 0COOC 0000 0058 0000 0000 0000 0038 MOV BYTE {0188).00 .BPTR =

---- Z-P- J00C 0000 0000 000U OCS8 0000 0000 0030 0040 R:Z™
*4B00:0023 .GE™!

See what's in the buffer after the read

#d.ou‘fer

48€4:0106 00 04 38 20 0% 52z <¢° 52 €D 20 36 3€ 20 73 €' 60 ..: .RASM-86 sam
aBE4 0115 7C 60 65 20 66 6F 7 20 43 6F 6E 62 5 72 72 65 ole for Concurre
4BEA: Q128 & 7¢& 20 ¢4 4F 53 20 36 36 0D 0a 36 20 10 20 23 nt DOS B€..: -
aBEA:0138 2C 20 27 €4 €2 "3 70 BC 6: 79 2C 74 65 €5 20 63 oisplay tne ¢
a8E4.0148 6F 6E 74 £S5 €E 74 73 I0 6F 66 20 €% 6E 20 4' S3 ontents of an AS
4BEZ 0158 43 49 42 0 €6 €9 6C 65 20 63 7¢ 2L 7<¢ 68 €5 23 CI! file at the
a8EG: D168 53 6F 63 73 €F 6l €5 CD GA 0D O« 6€& 62 92 C9 65 console....fco.e
ABE- Q176 7° 75 09 35 63 68 0D OA 65 6F B6E O0C 65 7' 75 C3 qu.S5ch. .eof eau.
aBE<:0185 00 OC 00 20 GO OC 00 920 30 02 CO OC 00 CO Q0 OC

48%a.6198 OC OC GO CO 00 OC OC 0G 00 OC OC OC 00 00 Q00 03
48€4.0143 00 00 CO CO OC 0OC 00 00 00 OC 0C OC 00 CO GC €I
4BE4.01B8 00 GO0 00 SO0 00 OGC 0OC 3C 2C OC 0OC CC GG €O 00 02

Looks like good data in the buffer. See what's next

T3l

ST

4800:0023 MOV 8x.0'38 .3uF*F

£800:0026 MOV AL .0:08(Bx"
00:0C2a INC avie 1018¢.

42DD:000¢ RE”

FiLBuUF

aBO0 - 0C2F MOV ox.0Ce BLfFFER

4300:0032 TaLs 2048 SE T Om:

430D:0035 MOV Cx,0CscC =C8

14-11

14.1 Introduction

rogrammer’s Utilities Guide

48D00:0038 CALL
4800:0038 MOV

OPEN:

4BDD: 0041 MOV
4800:0043 CaALL

004F

.READ

BYTE (0188].00

CL.0OF
006

.OPNEC

.80D0S

.BPTR

Trace the code getting the next character from the buffer.

2t 4

aXx
--1--2-P- 600G
--1--2-2- 0000
--1--z-p- 000C

Seleeoeo- 0000

*4800: 0009

BXx

Cx

Dx

Se

0000 000C 0000 0054
0108 000G 2000 005a
0108 000G 0000 0054
0108 000G 0000 0054

14 S1
9002 0000
00006 0000
0000 €000
000G 0000

0!
0000
0000
0000
0000

1P
0Cc23
0G2¢e
0024
002¢

MC\
MOV
INC
RET

e».0108

£..0108(8Bx!

BVTE

(0183,

It's getting the wrong data. because BX should have the contents of
Leave SID-86 and

BPTR in it, rather than the address of the buffer
edit the file (be sure to include the fix that was patched earlier)

editing. reassemble and relink

#°C

Try it again.

After

A>typ typ.a86 ffHEfftteffefterefaeetereeeterteteriereeeeteeeereeoeseeroeeeeeeaerteereeeeee
P E et f e EEEEEEEEefererrerrereererereeesrereereerearerereeoerereees
FHEEEEEEEEEEEREerEereerereereerereerereeeaereareeeeeeereree

Still no good.

A>sid86 typ typ

48D0:006F
0S 42E¢:000C 4BE4:018F

CS 4200:000C

SYMEZLS

#ityc.a86

)

START
4800:0000
4800:0003

LOOP:

4800 :000€
4800:000¢
4800:0008
4800:0000
4e00:001C

14-12

MOV
CaLe

caLL
cme
JZ
CALL
JMPS

Ox.0052 .¢C8B

00¢44a

0019
AL, A
QG2
005¢C
000€

.OPEN

.GETCHR
EGF
.DONE

.CONOUT
-0oP

.BUFER

.BUFFER =ED
.BPTR =00

Programmer’s Utilities Guide

14.1 Introduction

DONE :
4800 :
4800 :
4800 :

GETCHR:
4800 :
480D

0012
0014
0016

MOV
MOV
JMP

0019
001E

CMP
JB

Trace at the top level

2t wS
A X B x

--1- --- 0000 0000
--l---- 0000 0000
LOOP

--1---A-C 0000 0000
R G J000 J00oo0
--1-S--PC 0000 0000
+4800:0000

Got the right data f

210
48D00:0000 CALL
4B0DD: 0010 JMPS

OONE :
4800:
4800:
4800

GETCHR:
4800:
4BDO:
4800 :

GETL :
480D :
4800 :
4800
4800

0012
0014
0016

MOV
MOV
JMP

0019
001E
0020

cMP
JB8
CALL

MOV
MOV
MOV
INC

0023
0027
0029
0020

1t

AX B8x
~C 0000 D000
.CONOUT

-
>

-
caRO0 - N0SC

2]

COHGU T
4800 :Q05C MOV
40D 0CSE UMPS

DL,00 .VARIABLES
C..00 .VARIABLES
0064 .800S
BvTE (0!881.80 .BPTR
0023 .GETL
Cx Ox SP BP Sl [0 1P
0000 D000 00SC 0000 0000 0000 0000 MOV DX,005C .FCB
0000 005C 005C 0000 0000 0000 0003 CALL 0044 .OPEN
3000 0000 005C 0000 0000 0000 0006 CALL 0019 .GETCHR
JOOO 0000 00SC 0000 0000 0000 0009 CmpP AL,1A .EOF
0000 0000 005C 0000 0000 0000 CO00B JZ 0012 .DONE
rom GETCHR.
005C .CONOUT
0006 .LOOP
DL.00 .VARIABLES
C.,00 .VARIABLES
0064 .BDOS
BYTE [(01'88].80 .8PTR
0023 .GET)
0932 .FILBUF
BL.|[0'88] .BPTR
BH.00 .VARIABLES
AL.0108[Bx] .BUFFER
BYTE (0'88] .BPTR
cx Ox N 8P St o} P
2000 0000 005C J0V0 NCOD CCOO 000D CALL 005C .CONOUT

.CONOUTC
.30CS

co.02
0C64

14-13

14.1 Introduction Programmer’s Utilities Guide

PRINTM:
4800:0060 MOV CL.09
4BDD: 0062 JUMPS 0064 .BDOS
B800S:
4BD00:0064 INT EO .BDOSI
4B0D: 0066 RET
ERR:
48DD0:0067 MOV DX,0100 .ERRORM
4B0D:006A CALL 0060 .PRINTM
4800:0060 JMP 0012 .DONE
4800:0070 ?7= 6F
4800:0071 ADD [BXx+S1]).AL
4BDD: 0073 ESC 10, [8F00)

At this point, the data to output to the console should be in DL but
it’'s not. Edit the file again, then reassemble and relink.

#°C
Now try one more time.

A>typ typ.a86

RASM-86 sample for Concurrent DOS 86
display the contents of an ASCII file at the console

fcb equ Sch
eof equ lah
bdosi equ 224
conoutc equ 2
openc equ 15
readc equ 20
setdmac equ 26
start: mov dx,fcb
call open
loop: call getchr
cmp al ,eof
jz done
mov dl,al :prepare for conout
call conout
jmps loop
done: mov dl,0 ;reset function
mov cl.,0
jmp bdos

14-14

Programmer’s Utilities Guide

14.1 Introduction

getchr: cmp
jc

call
getl: mov
mov
mov
inc
ret
filbuf: mov
call
mov
call
mov
ret

mov
call
cmp
Jjz
ret

open:

setdma: mov

jmps

mov
call
cmp
jnz
ret

read:

mov
jmps

conout:

printm: mov

jmps

int
ret

bdos:

mov
call
jmp

dseg

bptr bsize

get!
filbuf

bl ,bptr

bn. 0

al . .pbuffer{box]
bptr

dx.offset pbuffer
setdma

dx,5cn

read

bptr .0

cl,openc
bdos
al ,0ffnh
err

cl,setdmac
bdos

cl,readc
bdos
al,0

err

cl,conoutc
bdos

cl!.9
bdos

bdos i

dx,offset errorm
printm

done

if we need a
full

i1see
inew buffer

;refill buffer from file

;get next character from buffer
;increment buffer pointer

14-15

14.1 Introduction

Programmer’s Utilities Guide

errorm db

bsize equ

buffer rs
bptr db
end

Seems to work now.

‘ERROR’ ,0dh,0an, 3%~

80n

bsize
bsize

Just out of curiosity, let's find out how many

characters are in the file by setting a pass point with a high count at

CONOUT.

A>sid86 typ typ

CS 48B0D:0000 4BDD:007F
DS 4BES:0000 4BES:018F

#ityp.a86

Hopefully there -re fewer than 65535 characters!

#p.conout,

Begin execution, with a break point

#g9, .done

FFFF PASS
--1-5--PC
FFFE PASS
--1-5--pPC

FFFD PASS
--]----P-
FFFC PASS
--1---AP-
FFFB PASS
--1-S-A-C
FFFA PASS
-_l-_-A--
FFF9 PASS
--1---AP-
FFF8 PASS
--1---AP-
FFF7 PASS
~I---p-
FFF6 PASS

FFFB6 PASS
--1---AP-

Stop commang?

14-16

ffff

4800:
0000
4800 :
100A

4800
1038
4B00:
1020
4800 :
1009
4800
1052
4B00:
1041
4800
1053
4B0D0:
1040
4800:
1020
4800 :
1038

00SE
0000
00SE
0001

:005¢

0002
00SE
0003
00SE
0004
00SE
0005
00SE
0006

:005E

0007
00SE
0008
00SE
0009
00SE
000A

.CONOUT
0000 000D
.CONOQUT
0000 000A

.CONOQUT
0000 0038
.CONOUT
0000 0020
.CONOUT
0000 0009
.CONQuUT
000G 0052
.CONQUT
C000 0041
.CONIUT
000 0053
.CONCUT
0000 004D
.CONOQUT
0000 2020
.CONOUT
0000 0038

(Y/N) y

C05A

005A

0054

00sA

0054

0054

Cosa

at DONE.

0000

0000

0000

0000

0000

0000

0000

0000

0000

N000

Q000

0000

0000

0000

0000

0000

0000

0000

0000

[S10IN

[Jehld]

0000

0000

0000

0000

0000

0000

0009

0000

2000

T

2009

200D

005E

005¢€

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOv

CL.02

cL.02

CcL.02

cL.02

CL.02

CL.,02

cL.,02

cL,02

CL.02

cL.02

CL.02

.CONOUTC

.CONOUTC

.CONOQUTC;

.CONOUTC

.CONOQUTC

.CONQUTCF

.CONOQUTCA

.CONQUTCS

.CONOQUTCN

.CONOUTC-

.CONOUTB

rrogrammer s vuiiues vuiue

1.1 mnmuvuuLuvne

This is too messy. Using the -G command suppresses the display of

the CPU registers until the pass count is 1.

#-g,.done

display

fcb equ
eof equ
bdos i equ
conoutc equ
openc equ
readc equ

setdmac equ

start: mov

call

loop: call

cmp
jz
mov

call

jmps

done: mo v
mov
jmp

getchr: cmp

jc
cal

getl: mov
ov
mov
inc
ret

filbuf: mov
cal
mov
cal
mov
ret

the contents of an ASCII file at the console

Sch
lah
224
2
15
20
26

dx.fcb
open

getchr
al.,eof
done
al,al
conout
loop

dal,o
cl.0
bdos

bptr bsize

getl
fitbuf

bl bet-

bn .0

al .buffer|bx]
bptr-

ax,ofrset buffer

setdmra
a«.5ch
read

bptr,0

;prepare for conout

;reset function

:see if we need a
;new buffer full

crefill buffer from file

;get next character from buffer
;ivncrement buffer pointer

14-17

14.1 Introduction Programmer’s Utilities Guide

open: mov cl,openc
call bdos
cmp al ,0ffh
jz err
ret
setdma: mov cl.setdmac
jmps bdos
read: mov cl,readac
call bdos
cmp al.o
jnz - err
ret
conout: mov cl,conoutc
jmps bdos
printm: mov c!.9
jmps bdos
bdos: int bdos i
ret
err: mov dx,offset errorm
call printm
jmp done
dseg
errorm db ‘ERROR’ ,0dn,0an, "%
bsize equ 80h
buffer rs bsize
bptr db bsize
end

Reached the break point at DONE
+4BDD:0014 .DONE
Display the currently active pass points.

#p
FB67 Pass 4BDD:005E .CONOUT

The pass count went from FFFF to FB67, so the difference is the
number of times CONOUT was called, or the number of characters in

14-18

Programmer’s Utilities Guide 14.1 Introduction

the file. The H command performs the subtraction, and displays the
result in decimal.
#hffff-fob7

4800:0498 #1167
»

Thus, there are 1176 characters in the file.

#~C

End of Section 14

14-19

AFFENUIA A

RASM-86 Example Source
File

This example RASM-86 source files is provided to illustrate some of
the characteristics unique to RASM-86.

RASM-86 Sample (for Concurrent DOS 86

fcb
eof
bdos i
conoutc
openc
readc
setdmac
bsize

cseg

start:

loop:

done:

getchr:

display the contents of an ASCII file at the console

equ
equ
equ
equ
equ
equ
equ
equ

mov
call

call
cmp
jz
call
jmps

mov
mov
jmp
cmp

Jjc
call

Sch
lah
224
2
15
20
26
80h

dx,fcb
open

getchr
d!.eof
done
conout
loop

dl.o ;reset function
ct,0
bdos

bptr ,bsize ;see {f we need a
inew buffer full

get!
filbuf ;refill buffer from file

A RASM-86 Example

getl:

filbuf:

open:

setdma:

read:

conout:

printm:

bdos:

err:

mov
mov
mov
inc
ret

mov
call
mov
call
mov
ret

mov
call
cmp
jz
ret

mov
jmps

mov
call
cmp
jnz
ret

mov
jmps

mov
jmps

int
ret

mov
call
jmp

bx,offset buffer

si,bptr ;get next character trom buffer
dl,byte ptr{bx+si]
bptr

dx,orfset puffer
setdma

dx,fco

read

bptr,0

cl,openc
bdos
al,0ffh
err

cl,setdmac
bdos

cl,readc
bdos
al,o

err

cl,conoutc
bdos

ct.9
bdos

bdos i
dx,orfset errorm

printm
done

Programmer’s Utilities Guide

Programmer’s Utilities Guide

A RASM-86 Example

bptr
errorm
buffer

dseg
dw
db
rb

end

bsize

"ERROR’ ,0dh,0ah, '$"’

bsize

End of Appendix A

APPENDIX B

Mnemonic Differences from
the Intel Assembler

RASM-86 uses the same instruction mnemonics as the Intel 8086
assembler except for explicitly specifying far and short jumps, calls,
and returns. Table B-1 shows the four differences:

Table B-1. RASM-86/Intel Mnemonic Differences

Mnemonic Function RASM-86 Intel
Intra-segment short jump: JMPS JMP SHORT
Inter-segment jump: JMPF JMP
Inter-segment return: RETF RET
Inter-segment call: CALLF CALL

RASM-86 also uses a different method than Intel for specifying the
size of memory operands for 8087 instructions. Intel associates the
size with the operand, RASM-86 places it in the instruction. Table B-2
shows the differences:

B Mnemonic Differences Programmer’s Utilities Guide

Table B-2. Memory Operands for 8087 Instruction

RASM-86 Intel

FLD32 FLD SYM 32
FLD64 FLD SYM 64
FLD80 FLD SYM 80
'FST32 FST

FST64 FST

FST80 FST

FILD16 FILD

FILD32 FILD

FILD64 FILD

FIST16 FIST

FIST32 FIST

FIST64 FIST

End of Appendix B

B-2

AFFENDIX U

Reserved Words

Table C-1.

Reserved Words

Predefined Numbers

BYTE
Operators

AND
EQ
GE
GT

WORD

LAST

LE
LENGTH
LT

Assembler Directives

AUTO8087
RD

RS

RW
SIMFORM
bw

EJECT

Code-macro Directives

DB
DBIT

CODEMACRO

ENDIF
DB

DD
DSEG
ESEG
EXTRN

DD
DW

8086 Registers

AH
AL
AX
BH

BL
BP
BX
CH

DWORD

MOD
NE

NOT
OFFSET

ELSE
END
ENDIF
ENDM
EQuU
LIST
NAME

MODRM
NOSEGFIX

CL
CS
CX
DH

OR

PTR
SEG
SHL

GROuUP
HARD8087
IF

IFLIST
INCLUDE
puBLIC

RB

RELB
RELW

0]]

DL
DS
DX

SHR

TYPE
XOR

NOIFLIST
NOLIST

ORG
PAGESIZE
PAGEWIDTH
SSEG

TITLE

SEGFIX

ES
Si

SP
SS

C Reserved Words Programmer’s Utilities Guide

Table C-1. (Continued)

8087 Registers

ST STO ST ST2 ST3
ST4 ST5 ST6 ST7

Default Segment Names

CODE DATA EXTRA STACK
Segment Descriptors

BYTE LOCAL PARA STACK
COMMON PAGE PUBLIC WORD
External Descriptors

ABS DWORD NEAR

BYTE FAR WORD

Instruction Mnemonics - See Section 13

End of Appendix C

APPENDIX D

Code-Macro Definition
Syntax

<codemacro> ::= CODEMACRO <name> [<formal$list>])
[<listofmacro$directives>]
ENDM

<name> ::= IDENTIFIER

<formal$list> ::= <parameter$descr>|(,<parameter$descr>)]

<parameter$descr> ::= <form§name>:<specifierSletter>
<modifierSletter>((<range>)]

<specifiergletter> ::= A | C |l O] E|IM]R| S| X
<modifier$letter; ::=b | w | d | sb

<range> ::= <single$range>|<double$range>
<single$range> ::= REGISTER | NUMBERSB

<double$range> ::= NUMBERB ,NUMBERB | NUMBERB,REGISTER |
REGISTER,NUMBERB | REGISTER,REGISTER

<list$of¥macro$girectives> ::= <macro$directive>
(<macro$directive>)

<macro$directive> ::= <db> | <dw> | <dd> | <segfix>
<nosegfix> | <modrm> | <relb> |
<relw> | <dbirt>

<db> ::= DB NUMBERB | DB <form$name>

<dw> ::= DW NUMBERW | Dw <form$name>

<dd> ::= DD <form$name>

<segfix> ::= SEGFIX <form$name>

<nosegfix> ;:= NOSEGFIX <form$name>

<modrm> ::= MODRM NUMBER7, <form$rname> |

MODRM <form$name> <form$name>

D Code-Macro Systax Programmer’s Utilities Guide

<relb> ::= RELB <form$name>

<relw> ::= RELW <form$%name>

<dgbit> ::= DBIT <field%descr>(,<field%descr>)
<field$descr> ::= NUMBER1S (NUMBERB) |

NUMBER1S (<form$name> (NUMBERB))

<form$name> ::= [DENTIFIER

NUMBERB is B8-oits

NUMBERW is 16-bits

NUMBER7 are the values 0, V,. . .7
NUMBER1S are the values 0, 1,. . .15

End of Appendix D

APPENDIX E

RASM-86 Error Messages

RASM-86 displays two kinds of error messages:

® nonrecoverable errors

® diagnostics

Nonrecoverable errors occur when RASM-86 is unable to continue
assembling. Table E-1 lists the non-recoverable errors RASM-86 can

encounter during assembly.

Table E-1. RASM-86 Non-recoverable Errors

Error Message

Cause

NO FILE

DISK FULL

DIRECTORY FULL

RASM-86 cannot find the indicated source or
INCLUDE file on the indicated drive.

There is not enough disk space for the output files.
You should either erase some unnecessary files or
get another disk with more room and run RASM-86

again.

There is not enough directory space for the output
files. You should either erase some unnecessary
files or get another disk with more directory space

and run RASM-86 again.

E RASM-86 Error Messages Programmer’s Utilities Guide

Table E-1. (Continued)

Error Message Cause

DISK READ ERROR

RASM-86 cannot properly read a source or INCLUDE
file. This is usually the result of an unexpected
end-of-file. Correct the problem in your source file.

CANNOT CLOSE

RASM-86 cannot close an output file. You should
take appropriate action after checking to see if the
correct disk is in the drive and the disk is not write-

protected.
SYMBOL TABLE OVERFLOW

There is not enough memory for the Symbol Table.
Either reduce the length or number of symbols, or
reassemble on a system with more memory.

SYNTAX ERROR

A parameter in the command tail of the RASM-86
command was specified incorrectly.

Diagnostic messages report problems with the syntax and semantics
of the program being assembled. When RASM-86 detects an error in
the source file, it places a numbered ASCIl error message in the listing
file in front of the line containing the error. If there is more than one
error in the line, only the first one is reported. Table E-2 shows the
RASM-86 diagnostic error messages by number and gives a brief
explanation of the error.

E-2

Programmer's Utilities Guide E RASM-86 Error Messages

Table E-2. RASM-86 Diagnostic Error Messages

Error Message

Cause

ERROR NO: 0
ERI.OR NO: 1
ERROR NO: 2
ERROR NO: 3

ILLEGAL FIRST ITEM

The first item on a source line is not a valid
identifier, directive, or mnemonic. For example,

1234H

MISSING PSEUDO INSTRUCTION

The first item on a source line is a valid identifier,
and the second item is not a valid directive that can
be preceded by an identifier. For example,

THIS IS A MISTAKE

ILLEGAL PSEUDO INSTRUCTION

Either a required identifier in front of a pseudo
instruction is missing, or an identifier appears
before a pseudo instruction that does not allow an
identifier.

DOUBLE DEFINED VARIABLE

An identifier used as the name of a variable is used
elsewhere in the program as the name of a variable
or label. For example,

X DB 5

X DB 123H

E-3

.

E RASM-86 Error Messages Programmer’s Utilities Guide

Table E-2. (Continued)

Error Message

Cause

ERROR NO: 4

ERROR NO: 5

ERROR NO: 6

ERROR NO: 7

DOUBLE DEFINED LABEL

An identifier used as a label is used elsewhere In
the program as a label or variable name For
example,

LAB3: MOV BX,5

LAB3: CALL MOVE
UNDEFINED INSTRUCTION

The item following a label on a source line is not a
valid instruction. For example,

DONE: BAD INSTR
GARBAGE AT END OF LINE - IGNORED

Additional items were encountered on a line when

- RASM-86 was expecting an end of line. For

example,
NOLIST ¢4
MOV AX,4 RET

OPERAND(S) MISMATCH INSTRUCTION

Either an instruction has the wrong number of
operands, or the types of the operands do not
match. For example,

MOV CX,1,2
X DB 0
MOV AX,X

E-4

Programmer’s Utilities Guide

E RASM-86 Error Messages

Table E-2. (Continued)

Error Message

Cause

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

8

9

10

1

12

ILLEGAL INSTRUCTION OPERANDS

An instruction operand is improperly formed. For
example,

MOV [BP+SP],1234
CALL BX+1

MISSING INSTRUCTION

A prefix on a source line is not followed by an
instruction. For example,

REPNZ
UNDEFINED ELEMENT OF EXPRESSION

An identifier used as an operand is not defined or
has been illegally forward referenced. For example,

JMP X
A EQU B
B EQU 5
MOV AL,B

ILLEGAL PSEUDO OPERAND
The operand in a directive is invalid. For example,

X EQU OAGH
TITLE UNQUOTED STRING

NESTED IF ILLEGAL - IF IGNORED

The maximum nesting leve! for IF statements has
been exceeded.

E RASM-86 Error Messages

Programmer’s Utilities Guide

Table E-2. (Continued)

Error Message.

Cause

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

13

14

16

17

18

19

ILLEGAL IF OPERAND - IF IGNORED

Either the expression in an IF statement is not
numeric, or it contains a forward reference.

NO MATCHING IF FOR ENDIF

An ENDIF statement was encountered without a
matching IF statement.

SYMBOL ILLEGALLY FORWARD REFERENCED -
NEGLECTED

The indicated symbol was illegally forward
referenced in an ORG, RS, EQU or IF statement.
DOUBLE DEFINED SYMBOL - TREATED AS
UNDEFINED

The identifier used as the name of an EQU directive
is used as a name elsewhere in the program.

INSTRUCTION NOT IN CODE SEGMENT

An instruction appears in a segment other than a
CSEG.

FILE NAME SYNTAX ERROR

The filename in an INCLUDE directive is improperly
formed. For example,

INCLUDE FILE.A86X
NESTED INC'.UDE NOT ALLOWED

An INCLUDE directive was encountered within a file
already being included.

E-6

Programmer's Utihties Guiae

£ HADIVI-BD trror iviessages

Table E-2. (Continued)

Error Message

Cause

ERROR NO: 20

ERROR NO: 21

ERROR NO: 22

ERROR NO: 23

ILLEGAL EXPRESSION ELEMENT

An expression is improperly forrned. For example,

X DB 12X
DW (4 *)

MISSING TYPE INFORMATION IN OPERAND(S)

Neither instruction operand contains sufficient type
information. For example,

MOV [BX],10
LABEL OUT OF RANGE

The label referred to in a call, jump, or loop
instruction is out of range. The label can be defined
in a segment other than the segment containing the
instruction. In the case of short instructions (JMPS,
conditional jumps, and loops), the label is more than
128 bytes from the location of the following

instruction.
MISSING SEGMENT INFORMATION IN OPERAND

The operand in a CALLF or JMPF instruction (or an
expression in a DD directive) does not contain
segment information. The required segment
information can be supplied by including a numeric
field in the segment directive as shown:

CSEG 1000H

X:
JMPF X
DD X

E RASM-86 Error Messages

Programmer’s Utilities Guide

Table E-2. (Continued)

Error Message

Cause

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

ERROR NO:

24

25

26

27

28

29

ERROR IN CODEMACRO BUILDING

Either a code-macro contains invalid statements, or
a code-macro directive was encountered outside a

code-macro.
NO MATCHING IF FOR ELSE

An ELSE statement was encountered without a
matching IF statement.

NO MATCHING ENDIF FOR IF

An IF statement was encountered without a
matching ENDIF statement.

“"HARD8087" USED AFTER FLOATING INSTRUCTION
The HARDS8087 directive cannot be specified after a
floating point instruction.

ATTEMPT TO USE 186/286 INSTRUCTIONS
WITHOUT SWITCH

80186 or 80286 instructions were encountered and
the corresponding RASM-86 run-time parameter
(186 or 286) was not specified on the RASM-86
command line.

Command included not used in source file

The command defined in the file included, via the
INCLUDE command, in the RASM-86 source file is
not used by the source file.

E-8

End of Appendix E

APPENDIX F

XREF-86 Error Messages

During the course of operation, XREF-86 can display error messages.
Table F-1 shows the error messages and a brief explanation of their

cause.

Table F-1. XREF-86 Error Messages.

Error Message

Meaning

CANNOT CLOSE

DIRECTORY FULL

DISK FULL

NO FILE

XREF-86 cannot close an output file. You should
take appropriate action after checking to see if the
correct disk is in the drive and the disk is not write-
protected.

There is not enough directory space for the output
files, You should either erase some unnecessary
files or get another disk with more directory space
and run XREF-86 again.

There is not enough disk space for the output files.
You should either erase some unnecessary files or
get another disk with more room and run XREF-86

again.

XREF-86 cannot find the indicated file on the
indicated drive.

F XREF-86 Error Messages Programmer’s Utilities Guide

Table F-1. (Continued)

Error Message Meaning

SYMBOL FILE ERROR

XREF-86 issues this message when it reads an
invalid SYM file. Specifically, a line in the SYM file
not terminated with a carriage return line-feed
causes this error message.

SYMBOL TABLE OVERFLOW

XREF-86 ran out of Symbol Table space. Either
reduce the number or length of symbols in the
program, or rerun on a system with more memory.

LATER CP/M OR MP/M VERSION REQUIRED

XREF-86 requires a more recent version of the
operating system.

End of Appendix F

F-2

AFFENUVIA Q

LINK-86 Error Messages

During the course of operation, LINK-86 can display error messages.
The error messages and a brief explanation of their cause are listed

below.

Table G-1. LINK-86 Error Messages

Message Meaning

ALIGN TYPE NOT IMPLEMENTED
The object file contains a segment align type not

implemented in LINK-86.

CANNOT CLOSE LINK-86 cannot close an output file. Check to see if
the correct disk is in the drive and the disk is not
write-protected or full.

CLASS NOT FOUND
The class name specified in the command line does

not appear in any of the files linked.

COMBINE TYPE NOT IMPLEMENTED
The object file contains a segment align type not

implemented in LINK-86.

COMMAND TOO LONG
The total length of input to LINK-86, including the

input file, cannot exceed 2048 characters.

G LINK-86 Error Messages Programmer's Utilities Guide

Table G-1. (Continued)

Message Meaning

DIRECTORY FULL There is not enough directory space for the output
files. You should either erase some unnecessary
files or get another disk with more directory space
and run LINK-86 again.

DISK READ ERROR
LINK-86 cannot properly read a source or object file

This is usually the result of an unexpected end-of-
file character. Correct the problem in your source
file.

DISK WRITE ERROR
A file cannot be written properly; the disk is

probably full.

FIXUP TYPE NOT IMPLEMENTED
The object file uses a fixup type not implemented in
LINK-86. Make sure the object file has not been

corrupted.

GROUP NOT FOUND
The group name specified in the command line does

not appear in any of the files linked.

GROUP OVER 64K
The group listed must be made smaller than 64k

before relinking. Either delete segments from the
group, split it up into 2 or more groups or do not
use groups.

GROUP TYPE NOT IMPLEMENTED
LINK-86 only supports segments as elements of a

group.

Programmer’s Utilities Guide G LINK-86 Error Messages

Table G-1. (Continued)

Message Meaning

INVALID LIBRARY-REQUESTED SUFFIX
The command file suffix requested- by a library is
not supported. Verify that the correct library is

being used.

LINK-86 ERROR 1 This error indicates an inconsistency in the LINK-86
internal tables, and should never be emitted.

MULTIPLE DEFINITION
The indicated symbol is defined as PUBLIC in more

than one module. Correct the problem in the
source file, and try again.

MORE THAN ONE MAIN PROGRAM
A program linked by LINK-86 may have at most one

main program.

NO FILE LINK-86 cannot find the indicated source or object
file on the indicated drive.

OBJECT FILE ERROR
LINK-86 detected an error in the object file. This is

caused by a translator error or by a bad disk file.
Try regenerating the file.

RECORD TYPE NOT IMPLEMENTED
The object file contains a record type not
implemented in LINK-86. Make sure the object file
has not been corrupted by regenerating it and
linking again.

SEGMENT OVER 64K
The segment listed after the error message has a

total length greater than 64k bytes. Make the
segment smaller, or do not combine it with other
PUBLIC segments of the same name.

G LINK-86 Error Messages Programmer’s Utilities Guide

Table G-1. (Continued)

Message Meaning

SEGMENT CLASS ERROR
The class of a segment must be CODE, DATA,

STACK, EXTRA, X1, X2°, x3°, or x4

SEGMENT ATTRIBUTE ERROR
The Combine type of the indicated segment is not

the same as the type of the segment in a previously
linked file. Regenerate the object file after changing
the segment attributes as needed

SEGMENT COMBINATION ERROR
An attempt is made to combine segments that

cannot be combined, such as LOCAL segments.
Change the segment attributes and relink.

SEGMENT NOT FOUND
The segment name specified in the command line

does not appear in any of the files linked.

SYMBOL TABLE OVERFLOW
LINK-86 ran out of Symbol Table space. Either

reduce the number or length of symbols in the
program, or relink on a system with more memory.

SYNTAX ERROR LINK-86 detected a syntax error in the command
line; the error is probably an improper: filename or
an invalid command option. LINK-86 echoes the
command line up to the point where it found the
error. Retype the command line or edit the INP file.

T native-mode only

Programmer’s Utilities Guide G LINK-86 Error Messages

Table G-1. (continued)

Message Meaning

TARGET OUT OF RANGE
The target of a fixup cannot be reached from the

location of the fixup.

TOO MANY MODULES IN LIBRARY
The library contains more modules than LINK-86 can

handle. Split the library up into 2 or more libraries
and relink.

TOO MANY MODULES LINKED FROM LIBRARY
A library may supply a maximum of 256 modules

during 1 execution of LINK-86. Split the library up
into 2 or more smaller libraries.

UNDEFINED SYMBOLS
The symbols following this message are referenced

but not defined in any of the modules being linked.

VERSION 2 REQUIRED
LINK-86 needs a version 2 or later file system

because its uses random disk 1/0 functions.

End of Appendix G

APPENDIX H

LIB-86 Error Messages

LIB-86 can produce the following error messages during processing.
With each message, LIB-86 displays additional information appropriate
to the error, such as the filename or module name, to help isolate the

location of the problem.

Table H-1. LIB-86 Error Messages

Message

Meaning

CANNOT CLOSE

DIRECTORY FULL

DISK FULL

LIB-86 cannot close an output file. You should take
appropriate action after checking to see if the
correct disk is in the drive and the disk is not write-

protected.

There is not enough directory space for the output
files. You should either erase some unnecessary
files or get another disk with more directory space
and run LIB-86 again.

There is not enough disk space for the output files.
You should either erase some unnecessary files or
get another disk with more room and run LIB-86

again.

H LIB-86 Error Messages Programmaer’s Utilities Guide

Table H-1. (Continued)

Message Meaning

DISK READ ERROR
LIB-86 cannot properly read a source or object file.
This is usually the result of an unexpected end-of-
file. Correct the problem in your source file.
INVALID COMMAND OPTION

LIB-86 encountered an unrecognized option in the
command line. Retype the command line or edit the

INP file.
MODULE NOT FOUND
The indicated module name, which appeared in a
REPLACE, SELECT, or DELETE switch, cannot be
found. Retype the command line or edit the INP file.
MULTIPLE DEFINITION
The indicated symbol! is defined as PUBLIC in more
than one module. Correct the problem in the
source file, and try again.
NO FILE
LIB-86 cannot find the indicated file.

OBJECT FILE ERROR

LIB-86 detected an error in the object file. This is
caused by a translator error or a bad disk file. Try

regenerating the file.

RENAME ERROR

LIB-86 cannot rename a file Check that the disk is
not write-protected.

Programmer’s Utilities Guide H LIB-86 Error Messages

Table H-1. (Continued)

Message Meaning

SYMBOL TABLE OVERFLOW
There is not enough memory for the Symbol Table.
Reduce the number of options in the command line
(MAP and XREF each use Symbol Table space), or
use a system with more memory.

SYNTAX ERROR

LIB-86 detected a syntax error in the command line,
probably due to an improper filename or an invalid
command option. LIB-86 echoes the command line
up to the point where it found the error. Retype the
command line or edit the INP file.

VERSION 2 REQUIRED
LIB-86 requires a version 2 file system or later.

End of Appendix H

H-3

APPENDIX |

SID-86 Error Messages

Table I-1. SID-86 Error Messages

Error Message Meaning

AMBIGUOUS OPERAND
An attempt was made to assemble a command with
an ambiguous operand. Precede the operand with
the prefix "BYTE” or "WORD",

BAD COMMAND OR PARAMETER; PRESS ? FOR HELP
The command, or parameters for a command were
not entered correctly.

BAD FILE NAME
A filename in an E, R, or W command is incorrectly
specified.

BAD HEX DIGIT
A SYM file being loaded with an E command has an
invalid hexadecimal digit.

CANNOT CLOSE
The disk file written by a W command cannot be
closed.

DISK READ ERROR

The disk file specified in an R command could not
be read properly.

| SID-86 Error Messages Programmer’s Utilities Guide

Table I-1. (Continued)

Error Message Meaning

DISK WRITE ERROR

A disk write operation could not be successfully
performed during a W command, probably due to a
full disk.

EMPTY FILE
The file specified in an R command has length 0.

INSUFFICIENT MEMORY

There is not enough memory to load the file
specified in an R or E command.

MACRO ALREADY EXISTS
An attempt was made to define a macro with a
name already in use Verify defined macro names
with the = command

MACRO NAME NOT FOUND
An attempt was made to use a macro that has not

been defined. Verify defined macros with the =
command.

MACRO OVERFLOW ERROR
The macro definition is too long.

MEMORY REQUEST DENIED

A request for memory during an R command could
not be fulfilled either because the maximum number
of memory locations has already been made, or the
memory at the specified address is not available.
Up to eight blocks of memory can be can be
allocated at a given time under Concurrent.

Programmer’s Utilities Guide | SID-86 Error Messages

Table I-1. (Continued)

Error Message Meaning

NESTING MACROS NOT ALLOWED

CONTINUE ENTERING COMMANDS
Macro definitions cannot include macros; definition

ignored.

NO FILE
The file specified in an R or E command could not
be found on the disk.

NO SPACE

There is no space in the direétory for the file being
written by a W command.

PROGRAM TERMINATED NORMALLY (PC DOS ONLY)
The program running under SID-86 completed, or
was terminated by a Ctri-Break.
SYMBOL LENGTH ERROR
A symbol in a SYM file being loaded with an E
command has more than thirty-one characters.
SYMBOL TABLE FULL
There is no more space in SID-86's symbol table.

| SID-86 Error Messages Programmer’s Utilities Guide

Table I-1. (Continued)

Error Message

Meaning

VERIFY ERROR AT s:o

The value placed in memory by a Fill, Set, Move, or
Assemble command could not be read back
correctly, indicating bad RAM, or attempting to write
to ROM or non-existent memory at the indicated
location.

End of Appendix |

Index

$ operator RASM-86, 2-11, 2-18
$C option LINK-86, 7-15
$L option LINK-86, 7-15
$M option LINK-86, 7-16
$0 option LINK-86, 7-16
$S option LINK-86, 7-16

* operator RASM-86, 2-10, 2-13
+ operator RASM-86, 2-10,

2-12, 2-13
+ sign, 10-7

operator RASM-86, 2-10,
2-12, 2-13
sign, 10-7

. operator RASM-86, 2-11, 2-17
/ operator RASM-86, 2-10, 2-13
186 parameter, 1-4
286 parameter, 1-4

80286 instruction mnemonic,
2-6

80286 object module format,
7-1

8086 Arithmetic Instructions,
4-17, 4-18, 4-19

8086 Control Transfer

Instructions, 4-27

8086 Data Transfer Instructions,
4-12, 4-14, 4-15

8086 instruction mnemonic, 2-6

8086 Logical and Shift
Instructions, 4-20, 4-21,
4-22, 4-23

8086 object module, 8-1

8086 Prefix Instructions, 4-26

8086 Processor Control
Instructions, 4-32

8086 Registers, C-1

8086 String Instructions, 4-25

8087 Arithmetic Instructions,
4-38

8087 comparison instructions,
4-43

8087 constant instructions, 4-44

8087 control directives, 3-18

8087 data transfer instructions,
4-36, 4-37

8087 math coprocessor, 7-10

8087 processor control
instructions, 4-44

8087 Registers, C-2

8087 transcendental
instructions, 4-43

: Command SID-86, 11-30

= Command SID-86, 11-30

Index-1

? Command SID-86, 11-29 7-18

?? Command SID-86, 11-29 Align attributes, 7-18
Align type, 3-5, 7-17, 7-22
Allocate storage, 3-15

A Altering CPU state, 11-26
AND, 4-20
: command, 11(1_33' 1-2 AND operator, 2-11, 2-14
parameter, Arithmetic functions, 11-10
AAA, 4-17 . L .
Arithmetic instructions, 4-15
AAD, 4-17 . .
Arithmetic operators, 2-10, 2-12
AAM, 4-17
ARPL, 4-46, 4-47
AAS, 4-17
Absol i 7-22 ASCIl character set, 2-1
Abso'ute a lgnbtvp;, 1 Assembler directives, 3-1, C-1
solute number, Assembling 80286 mnemonics,
Absolute paragraph address, 11-2
7-9
Assembly-language macros, 5-1
:‘ESC:LUTE parameter, 7—,7' 7-9 Attributes of labels, 2-9
solute se%r-!.\:nst_c?ombme Attributes of variables, 2-8
ADC 4‘V1°7°' ' AUTO8087 directive, 3-18
o AUT08087 option, 7-10
ADD, 4-17 Pl
Adding to a library, 8-4
Addition and subtraction B
operators, 2-12
Additional 186 and 286 B8 Command, 11-3
instructions, 4-45 Base address, 3-3
Additional 286 instructions, Base, or radix of a constant, 2-4
4-46 Base-addressing modes, 2-20
ADDITIONAL parameter, 7-7, 7-9 BDOS interrupt instruction,
Address conventions in 11-22
RASM-86, 3-3 Between byte and word string
Address expression, 2-20 instructions, 13-1
Address expression Binary constants, 2-4
components, 2-20 Binary delimiters, 10-7
Address memory directly, 13-2 Bit patterns, 4-1
AF, 4-16 Block structured languages,
Align and combine attributes, 10-6
Index-2

BOUND, 4-45

Bracketed expression, 2-20
Breakpoints, 11-9, 11-15
BYTE align type, 3-5, 7-20
Byte alignment, 3-5

BYTE attribute, 2-8

(o

CALL, 4-27

CANNOT CLOSE error, E-2

Caret symbol, 10-4

cB86, 7-1, 7-23

cBw, 4-17

CF, 4-16

Changing memory, 11-19

Character string, 2-5

Character string constant, 2-5

Character strings, 10-2

CLASS, 7-8

Class name, 3-7, 7-17, 7-18

CLASS parameter, 7-7

CLC, 4-32

CLD, 4-32

CLl, 4-32

CMC, 4-32

CMD file, 7-2, 11-6

CMP, 4-18

CMPS, 4-25

Code macro directives, 5-4

CODE option, 7-4, 7-7

CODE section, 7-23

Code segment, 2-8, 12-1

Code-macro definition syntax,
D-1

Code-macro directives, 5-1,

5-4, 5-8, C-1
Code-macro operand modifiers,
5-3
Code-macro operand specifiers,
5-2
Code-macros, 5-1
CODESHARED option, 7-11
Collecting segments, 7-18
Combine attributes, 7-18
Combine type, 3-6, 7-17
Combine type, COMMON, 3-6
Combine type, LOCAL, 3-6
Combine type, PUBLIC, 3-6
Combine type, STACK, 3-6
Command (CMD or 286) file,
7-17
Command (CMD) file, 7-2
Command (EXE) file, 7-2
Command file, 7-15
Command file header, 7-9
Command file option
parameters, 7-7
Command file options, 7-7
Command file section, 7-23
Command list, 11-29
Command tail, E-2
Comment field, 2-2, 2-21
Comments, 2-21
Common block, 7-19
COMMON combine type, 3-6,
7-19
Comparing memory blocks,
11-3
Conditional assembly, 3-11,
5-10
Conditional assembly directives,
3-1

Index-3

Console output, 1-3

Constants, 2-3

Control transfer instructions,
4-27

Copying data, 11-15

CPU flags, 11-26, 11-28

CPU state, 11-24, 11-26, 11-27

Creating a new library, 8-4

Creating an INPUT file, 7-13

Creating and updating libraries,
8-2

Creating libraries with LIB-86,
8-2

Creation of output files, 1-5

Cross-reference file, 6-1, 8-1,
8-6, 8-7

CS register, 3-3, 11-9

CSEG (code segment), 3-4

CTS, 4-46

Current cata segment, 3-3

Current code segment, 3-3

Current extra segment, 3-3

Current stack segment, 3-3

CwD, 4-18

D

D Command, 11-4

DAA, 4-18

DAS, 4-18

Data definition directives, 3-1
DATA option, 7-4, 7-7

DATA section, 7-23

Data segment, 2-8, 12-1

Data transfer, 4-12

Data transfer instructions, 4-12

Index-4

DB directive, 2-5, 2-8, 3-13, 5-4

DB, DW, and DD directives, 5-8

DBIT directive, 5-4, 5-8

DD directive, 2-8, 3-14, 5-4

DEC, 4-18

Decimal constant, 2-4

Default, 8-7, 8-9

Default align types, 3-5

Default class name, 3-7

Default drive, 6-1, 8-6

Default list device, 6-2

Default segment names, 3-4,
C-2

Default values, command
options, 7-9

Default values, command
parameters, 7-9

Define data area, 3-13

Defining code-macros, 5-2

Defining macros, 11-30

DELETE option, 8-3

Deleting a module, 8-5

Delimiters, 2-2, 11-8

Device name, 1-2

Device names, RASM-86, 1-3

Diagnostic error messages, E-2

Directive statement, 2-22, 3-1

Directive statement syntax,
2-22, 3-1

Directory, E-1

DIRECTORY FULL error, E-1

Disassembled instruction, 11-13

Disk drive names, 1-3

DISK FULL error, E-1

DISK READ ERROR, E-2

Displaying library information,
8-6

Displaying memory, 11-4

DIV, 4-18

Division operators, 2-13

Dollar-sign operator, 2-18

Drive specification, 1-1

DS register, 3-3

DSEG (data segment), 3-4

Dumping 8087/80287 registers,
11-28

Duplicate symbols, 10-6

DW directive, 2-8, 3-14, 5-4

DWORD attribute, 2-8

E

E Command, 11-6, 11-8, 11-25,
12-1

ECHO option, 7-6

Effects of Arithmetic
Instructions on Flags,
4-16

EJECT directive, 3-16

ELSE directive, 3-11, 5-4, 5-10

END directive, 3-9

End-of-file character (1AH), 3-9

End-of-line, 2-21

ENDIF directive, 3-11, 5-4, 5-10

ENTER, 4-45

EQ operator, 2-11, 2-15

EQU directive, 3-12

Error message, 13-2

Error messages, 11-7, 11-9,

11-18, 11-20
ES register, 3-3
ESC, 4-32

ESEG (extra segment), 3-4 -

Even boundary, 3-5
Examining CPU state, 11-26
EXE file, 7-2

Executing macros, 11-30
Executing program, 11-6
Expression Operators, 10-7
Expressions, 2-18, 2-20, 10-1
External Descriptors, C-2
External name symbols, 8-6
External symbols, 8-7
EXTERNALS option, 8-3
EXTRA option, 7-4, 7-7
Extra segment, 2-8

EXTRN directive, 3-10

F

F Command, 11-8
F2XM1, 4-43

FABS, 4-42

FADD, 4-38

Far control transfer, 13-1
FBLD, 4-37

FBSTP, 4-37

FCHS, 4-42
FCLEX/FNCLEX, 4-44
FCOM, 4-43

FCOMP, 4-43
FCOMPP, 4-43
FDECSTP, 4-44
FDISI/FNDISI, 4-44
FDIV, 4-41

FDIVP, 4-41

FDIVR, 4-41

FDIVRP, 4-42

FDUP, 4-36

Index-5

FENI/FNENI, 4-44

FFREE, 4-44

FIADD 16, 4-38

FICOM16, 4-43
FICOM16P, 4-43

FIDIV16, 4-41

FIDIVR16, 4-42

FILD16, 4-37

File name extensions, 1-2
File section options, 7-7
Filetype, 1-1

FILL option, 7-4

Filling memory blocks, 11-8
FIMUL16, 4-40

FINCSTP, 4-44
FINIT/FNINIT, 4-44
FIST16, 4-37

FIST16P, 4-37

FISUB16, 4-39
FISUBR16, 4-40

Flag bits, 4-12, 4-15
Flag register symbols, 4-12
Flag registers, 4-12

FLD, 4-36

FLD1, 4-44

FLDCW, 4-44

FLDENV, 4-44

FLDL2E, 4-44

FLDL2T, 4-44

FLDLG2, 4-44

FLDLN2, 4-44

FLDPI, 4-44

FLDZ, 4-44

FMUL, 4-40

FMULP, 4-40

FNOP, 4-44

Formal parameters, 5-1

Index-6

Forward reference, E-6
FPATAN, 4-43

FPOP, 4-36

FPREM, 4-42

FPTAN, 4-43

FRNDINT, 4-42
FRSTOR, 4-44
FSAVE/FNSAVE, 4-44
FSCALE, 4-42

FSQRT, 4-42

FST, 4-36
FSTCW/FNSTCW, 4-44
FSTENV/FNSTENV, 4-44
FSTSW/FNSTSW, 4-44
FSuUB, 4-38

FSUBP, 4-39

FSUBR, 4-39

FSUBRP, 4-40

FTST, 4-43

FWAIT, 4-44

FXAM, 4-43

FXCH, 4-36

FXCHG, 4-36
FXTRACT, 4-42
FYL2X, 4-43

FYL2XP1, 4-43

G

G Command, 11-9, 11-15, 12-2

GE operator, 2-11, 2-15
GROuUP, 7-8, 7-17
GROUP directive, 3-8
GROUP parameter, 7-7
Group type, 7-18
Group, CGROUP, 7-23

Group, DGROUP, 7-23
GT operator, 2-11, 2-15

H

H Command, 11-10

Halting RASM-86, 1-6
HARDB8087 directive, 3-18
HARD8087 option, 7-4, 7-10
Hexadecimal constants, 2-4
HLT, 4-32

| Command, 11-12

170 buffers, 7-9

170 option, 7-14

Identifiers, 2-2

IDIV, 4-18

IF directive, 3-11, 5-4, 5-10
Ifilename parameter, 1-3
IFLIST directive, 3-17

IMUL, 4-19

IN, 4-12

INC, 4-19

INCLUDE directive, 3-19, E-6
INCLUDE file, E-1

Index registers, 2-20
Index-addressing modes, 2-20
Indexed library, 7-1

Indirect memory operands, 13-2
Initialized storage, 3-13

INP files, 7-1

INP filetype, 8-1

Input command file, 8-1

Input file options, 7-13

INPUT option, 7-6, 7-13, 8-3

INSB, 4-45

Instruction statement syntax,
2-21 :

INSW, 4-45

INT, 4-27

Intel 8086 relocatable object
format, 1-1, 7-1, 8-1

Intermediate pass points, 11-9,
11-24

INTO, 4-29

Invalid hex digit, 11-7

Invalid statements, 11-2

Invalid symbol name, 11-7

Invoking LINK-86, 7-2

Invoking RASM-86, 1-1

Invoking XREF-86, 6-1

IP register, 11-9

IRET, 4-29

J

JA, 4-29
JB, 4-29
JC, 4-29
JE, 4-29
JG, 4-30
JL, 4-30
JLE, 4-30
JMP, 4-30
JNA, 4-30
JNB, 4-30
JNC, 4-30
JNE, 4-30
JNG, 4-31

Index-7

JNL, 4-31
JNO, 4-31
JNP, 4-31
JNS, 4-31
JNZ, 4-31
JO, 4-31
JP, 4-31
JS, 4-31
JZ, 4-31

K

Keyword identifiers, 2-10
Keywords, 2-6

L

L Command, 11-13

L parameter, 1-4

L86 file, 7-1, 8-1, 8-9

Label, 11-13

Label offset attributes, 2-9
Label segment attributes, 2-9
Label, out of range, E-7
Labels, 2-8, 2-9

LAHF, 4-12

Language translators, 7-1
LAR, 4-47

LAST operator, 2-11, 2-16
LDS, 4-12

LE operator, 2-11, 2-15

LEA, 4-12

LEAVE, 4-45

LENGTH operator, 2-11, 2-16
LES, 4-12

Index-8

LGDT, 4-46

LIB error messages, H-1

LIB-86, 3-9, 7-1

LIB-86 command options, 8-3

LIB-86 commands on disk, 8-8

LIB-86 error message, 8-6

LIB-86 errors, Table H-1, H-1

LIB-86, adding to a library, 8-4

LIB-86, command line, 8-1

LIB-86. command option INPUT,
8-8

LIB-86, command option MAP,
8-7

LIB-86, command option XREF,
8-6

LIB-86, creating a cross-
reference file , 8-6

LIB-86, creating a Library
Module Map, 8-7

LIB-86, creating partial library
maps, 8-7

LIB-86, deleting a module, 8-5

LIB-86, displaying library
information, 8-6

LIB-86, error message, 8-5

LIB-86, halting processing, 8-2

LIB-86, invoking, 8-1

LIB-86, librarian utility, 8-1

LIB-86, redirecting 1/0, 8-9

LIB-86, replacing a module, 8-4

LIB-86, selecting a module, 8-6

LIB-86, use factor, 8-1

Libraries, 7-15

Library file (L86), 7-15

Library file, 8-1, 8-2

Library module map, 8-6

LIBSYMS option, 7-4, 7-11

LIDT, 4-47

LIN file, 7-2

Line number (LIN) file, 7-2

Line-editing functions, 11-2

LINES option, 7-4

LINK 86, 11-7

Link process, 7-17, 7-22

LINK-86, 3-9, 7-1

LINK-86 command line, 7-3,
7-13

LINK-86 command options, 7-4

LINK-86 errors, Table G-1, G-1

Linkage control directives, 3-1

Linkage editor, 3-5, 3-6, 3-8,
7-1

List address, 11-13

List device name, 1-3

LIST directive, 3-17

List files, 6-1

Listing command options, 11-29

Listing commands, 11-29

Listing file, 1-1, E-3

Listing memory contents, 11-13

Literal character values, 10-2

Literal decimal numbers, 10-2

Literal hexadecimal numbers ,
10-1

LLDT, 4-47

LMSW, 4-47

Loading program file, 11-6

Loading the command file, 7-9

Local combine type, 3-6, 3-7,
7-22

Local symbols, 7-11

LOCALS option, 7-4, 7-11

Location counter, 2-18, 2-21,
3-20

Location pointer, 2-2
LOCK, 4-32

LODS, 4-25

Logical address, 3-3
Logical instructions, 4-15
Logical operators, 2-10, 2-14
LOOP, 4-31

LSL, 4-47

LST file, 6-1

LST files, 6-1

LT operator, 2-11, 2-15
LTR, 4-47 '

M

M Command, 11-15

Machine state, 11-27

Macros, 11-30

Map (MAP) File, 7-1

Map file (MAP), 7-15

MAP file, 7-2, 7-12, 8-9

MAP filetype, 8-1

MAP option, 7-4, 7-6, 7-12, 8-3

Maximum length of a character
string, 2-5

MAXIMUM parameter, 7-7, 7-9

Memory address, 11-19

Memory allocation directives,
3-1

Memory execution, 3-3

Memory models, 3-3

Memory value, 11-13

Minus sign, 10-7

Mnemonic keywords, 2-6

Mnemonics, 4-1

MOD operator, 2-11, 2-13

Index-9

Modifiers, 5-3, 5-6

MODRM directive, 5-4, 5-6
Module map, 8-7

Module map file, 8-1, 8-6
MODULES option, 8-3
Modules, alphabetized list, 8-7
MOV, 4-12, 11-22

Moving data, 11-15

MOVS, 4-25

MUL, 4-19

Multiple replaces, 8-5
Multiplication operators, 2-13

N

NAME' directive, 3-9

Name field, 2-22, 3-1

NC parameter, 1-4

NE operator, 2-11, 2-15

Near control transfer, 13-1

NEG, 4-19

Nesting IF directives, 3-11

Nesting level, E-5

Nesting parentheses in
expressions, 2-19

NO FILE error, E-1

NOALPHA option, 8-3, 8-7

NOFILL option, 7-4

NOIFLIST directive, 3-17

NOLIBSYMS option, 7-4, 7-11

NOLINES option, 7-6

NOLIST directive, 3-17

NOLOCALS option, 7-4, 7-11

NOMAP option, 7-12

Nonprinting characters, 2-1

NOSEGFIX directive, 5-4, 5-5

Index-10

NOT, 4-20

NOT operator, 2-11, 2-14
Number of errors message, 1-5
Number symbols, 2-9
Numbers, 2-9

Numeric constant, 2-4

Numeric constants, 2-4
Numeric expression, 2-20

(0]

O parameter, 1-3

0oBJ files, 7-1

08J filetype, 8-1

Object file (OBJ or L86), 7-15

Object file, 1-1, 7-16, 8-1

Octal constant, 2-4

0dd boundary, 3-5

OF, 4-16

Offset, 2-8, 10-8

Offset of a variable, 2-8

OFFSET operator, 2-11, 2-16

Offset value, 3-3

Offsets within a segment, 7-22

Offsets within a segment,
intersegment, 3-3

Opcode, 11-13

Operands, 4-1, 11-13, E-4

Operator precedence, 2-18

Operators, 2-2, 2-6, 2-10, C-1

Operators in expressions, 10-7

Optional run-time parameters,
1-2

OR, 4-20

OR operator, 2-11, 2-14

Order of operations, 2-18

ORG directive, 3-20

ORIGIN parameter, 7-7, 7-9

OuUT, 4-14

Output files, 1-5, E-1

Output listing control directives,
3-1

OUTSB, 4-45

OUTSW, 4-45

Overflow, 10-7

Overlays, 7-1

Overriding LINK-86 positioning,
7-24

Overriding operator precedence,
2-19

[

P Command, 11-15

P parameter, 1-3

PAGE align type, 3-5, 7-21

Page alignment, 3-5

PAGESIZE directive, 3-17

PAGEWIDTH directive, 3-17

PARA (paragraph), 3-6

PARA align type, 3-5, 3-6

PARAGRAPH align type, 3-20,
7-21

Paragraph alignment, 3-5

Parameter list, 1-2

Partial library maps, 8-7

Pass counts, 11-15

Pass points, 11-15, 11-16

Pass points and breakpoints-
difference between,
11-156

Pass points clearing, 11-15,

11-16

Pass points displaying, 11-15,
11-16

Pass points with G, T, and U
commands, 11-16

Patches, 11-26

Patching a file, 9-3

Period operator, 2-11, 2-17,
2-18

PF, 4-16

Physical address, 3-3

PL/1-86, 7-23

Plus sign, 10-7

POP, 4-14, 11-22

POPA, 4-45

POPF, 4-14

Positioning, 7-22

Pound sign, 11-1

Predefined numbers, 2-6, C-1

Prefix, 4-26

Prefixes, 11-13

Printer output, 1-3

Printing macro list, 11-30

Processor control instructions,
4-32

Program execution, 11-6

Pseudo instruction, E-3

PTR operator, 2-11, 2-17, 2-18

PUBLIC combine type, 3-6, 7-18

PUBLIC directive, 3-9

Public name symbols, 8-6

Public symbols, 8-7

Public symbols, defined in the
module, 8-7

PUBLICS option, 8-3

PUSH, 4-14

PUSHA, 4-45

Index-1-

PUSHF, 4-15

Q

Q Command, 11-17
Qualified symbols, 10-6

R

R Command, 11-18, 11-25,
12-1, 12-2

"~ Radix indicators, 2-4

Range specifiers, 5-4

RASM-86, 6-1

RASM-86 character set, 2-1

RASM-86 command examples,
1-4

RASM-86 command line, 1-2

RASM-86 command syntax, 1-1

RASM-86 delimiters, 2-2

RASM-86 device names, 1-3

RASM-86 directives, 2-6, 3-1

RASM-86 error messages, E-1

RASM-86 identifier, 7-17

RASM-86 identifiers, 2-6

RASM-86 instruction
mnemonics, B-1

RASM-86 instruction set, 4-1

RASM-86 nonrecoverable errors,
E-1

RASM-86 operators, 2-10

RASM-86 run-time parameters,
1-2

RASM-86 segment directives,
7-23

Index-12

RASM-86 separators, 2-2

RASM-86 tokens, 2-2

RASM-86, invalid parameter,
1-3

RASM-86. redirecting output,
1-5

RASM-86, use factor, 1-5

RB directive, 3-15

RCL, 4-20

RCR, 4-21

RD directive, 3-16

Reading command line from

disk file, 7-13
Reading files into memory,
11-18

Reading from disk file, 7-3

Reading LIB-86 commands from
disk file, 8-8

Redefining macros, 11-30

Redirecting 170, 8-9

Register keywords, 2-6

Register name, 10-3

Registers, 2-6, 11-6, 11-26

Relational operators, 2-10, 2-14

RELB and RELW directives, 5-7

RELB -directive, 5-4

Relocatable number, 2-11

Relocatable object files, 7-1

RELW directive, 5-4

REP, 4-26

REPLACE option, 8-3

Replacing a module, 8-4

Reserved words, 5-5, C-1

RET, 4-32

ROL, 4-21

ROR, 4-21

RS directive, 3-15

Run-time options, i-2
Run-time parameter , E-2
Run-time parameters, 1-2
RW directive, 3-15

S

S Command, 11-19
S parameter, 1-3
SAHF, 4-15

SAL, 4-21

SAR, 4-22

SBB, 4-19

SCAS, 4-26

Search and match procedure,

10-6
SEARCH option, 7-6, 7-13
Searching memory, 11-20
Section, 7-17
SEG operator, 2-11, 2-16
SEGFIX directive, 5-5
SEGIFX directive, 5-4
Segment, 2-8, 7-8, 7-17
Segment attribute, 2-8
Segment base address, 3-3
Segment base values, 3-2
Segment boundaries, 7-21

Segment control directives, 3-1,

3-2
Segment Descriptors, C-2
Segment directives, 3-3

Segment name, 3-4, 7-17, 7-18

Segment name symbols, 8-6,
8-7

Segment offset, 7-12

Segment override, 2-2

Segment override operator,
2-11, 2-15

Segment override operators,
2-10

Segment override prefix, 3-3

SEGMENT parameter, 7-7

Segment register, 3-8, 7-22

Segment registers, 3-3

Segment specification, 12-1

Segment starting address, 2-8

Segment-override prefix, 5-5

Segmented architecture, 3-2

SEGMENTS option, 8-3

SELECT option, 8-3

Selecting a module, 8-5

Setting breakpoints, 10-4

Setting pass points, 11-15

SF, 4-16

SGODT, 4-47

Shift instructions, 4-15

SHL, 4-22

SHL operator, 2-11, 2-13

SHR, 4-22

SHR operator, 2-11, 2-13

SID-86 Commands, 11-31

SID-86 Error Messages, I-1

SIDT, 4-47

Sign-on message, 1-5

S'M8087 option, 7-10

SIMFORM directive, 3-17

SLDT, 4-47

SMSW, 4-47

Source file, 1-1, E-3

Special characters, 2-1

Specifiers, 5-2 .

Specifying 8087 operand size,
B-1

Index-13

SR Command, 11-20 Symbol table, 5-1, 10-5, E-2

SS register points, 3-3 Symbol table file, 6-1, 11-6

SSEG (stack segment), 3-4 Symbol table file format, 11-7

STACK combine type, 3-6, 3-7, Symbol table space , 7-9
7-19 Symbol variables, 2-8

STACK option, 7-4, 7-7 Symbolic expressions, 10-7

Stack segment, 2-8 Symbolic references, 10-5

Statements, 2-21 Symbols, 11-13

STC, 4-34 SYNTAX ERROR, E-2

STD, 4-34

STI, 4-34

Stopping LIB-86, 8-2 T

Stopping LINK-86, 7-3

Stopping RASM-86, 1-6 T Command, 11-21

STOS, 4-26 TEST, 4-23

STR "3_47 Testing flag registers, 4-11

String constant, 2-5 PTLEdd:‘rectuve,.3-1?]-22

String instructions, 4-24 racg Instruction, |
Tracing program execution,

String length, 10-2

String operations, 4-24 11-21,11-24
Transferring program control,

SUB, 4-19 11-9

Subroutine calls, 11-23 Type, 2-8

S ressing RASM-86 output, '

upp 1_:'3 g utpu Type attribute, 2-6, 2-8

TYPE operator, 2-11, 2-16

SYM file, 6-1, 7-2

SYM file options, 7-11 Type-1 segment value, 12-1

Type-2 segment value, 12-2

SYM files, 6-1

Symbol, 2-8, 3-12

Symbol attributes, 2-8 U

Symbol definition directives, 3-1

Symbol file (SYM), 7-15 U Command, 11-24

Symbol file, 1-1, 7-16 Unary delimiters, 10-7

Symbol labels, 2-8 Unary operators, 2-13

Symbol numbers, 2-8 Underflow, 10-7

SYMBOL TABLE OVERFLOW Unresolved symbols, 7-2
error, E-2 Unsigned numbers, 2-14

Symbol table (SYM) file, 7-2

'

Index-14

Updating libraries with LIB-86,
8-2

Use factor, 7-1, 8-1

Use factor message, 1-5

Use factor, RASM-86, 1-5

User console name, 1-3

User-defined symbols , 2-10

User-defined symbols, 3-12

Using macros, 11-30

\

V command, 11-6, 11-25

Valid RASM-86 characters, 2-1

Variable creation operators,
2-10

Variable manipulation operators,
2-10

Variable manipulator, 2-16

Variable offset attributes, 2-9

Variable segment attributes, 2-9

VERR, 4-47

VERW, 4-47

w

W Command, 11-25

WAIT, 4-34

WORD align type. 3-5, 7-20
Word alignment, 3-5

WORD attribute, 2-8

Writing memory to disk, 11-25

X Command, 11-26, 12-1

X1 option, 7-7

X2 option, 7-7

X3 option, 7-7

X4 option, 7-7

XCHG, 4-15

XLAT, 4-15

XOR, 4-23

XOR operator, 2-11, 2-14

XREF option, 8-3

XREF-86, 6-1

XREF-86 command syntax, 6-1

XREF-86 errors, Table F-1, F-1

XREF-86 output files, 6-1

XREF-86. command line, 6-1

XREF-86, cross-reference utility,
6-1

XREF-86. input files, 6-1

XREF-86, output file, 6-1

XRF file, 6-1, 8-9

XRF files, 6-1

XRF filetype, 8-1

Z

Z Command, 11-28
ZF, 4-16

Index-15

