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UNDERSTANDING POWER MANAGEMENT
AND PROCESSOR PERFORMANCE DETERMINISM
Abstract—High-performance embedded systems crave the processing power of modern x86 processors, but current 
hardware architectures consistently prioritize peak performance over deterministic behavior. Advanced power 
management methods exploit inherent part-to-part variations, boosting core frequencies in unpredictable ways. 
Adding to this, PC architectures tend to target specific processor power constraints that can artificially clamp 
operating frequencies to maintain thermal and electrical specs. This creates scenarios where the power-density 
of the workload defines the effective operating frequency of the CPU, further reducing predictability. Real-time 
operating systems are there to help address determinism in the software domain but they cannot address it at the 
hardware level. Once these hardware implications are understood, designers will know what to look for when choosing 
processors for embedded systems where performance determinism is an important factor. Discover methods to 
disable features of modern processors that reduce hardware determinism.
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INTRODUCTION
Embedded system applications span a tremendous range of uses and some of these devices become mission 
critical equipment where performance behavior must be highly predictable. Embedded system designers in these 
markets are familiar with the use of real-time operating systems to improve determinism at the software level, 
but variations introduced by hardware are often overlooked. For this work, hardware determinism is defined 
as a guaranteed, predictable response time to an event, assuming a fixed sequence of code and input stimuli. 
Deterministic systems can replicate that predictability across all units. The increased demand for high-performance 
embedded systems has also driven a trend toward usage of PC-compatible x86 processors from desktop and 
notebook product lines, though their power and performance architecture are not designed with determinism in 
mind. Even product variants targeted at embedded markets tend to retain the favoritism toward performance 
prevalent in the PC models. Power management behavior in leading x86 processors has consistently striven to 
squeeze the last drop of performance out of every device, including exploitation of inherent part-to-part variations.
This paper will review the source of these variations, discuss common power management behaviors that exploit 
them, and review methods of mitigation. Focus will be on common desktop, notebook, and embedded processors 
in the 6-65W power range and may not be reflective of x86 server processors.

SILICON BASICS
DEFINING OPERATIONAL LIMITS
Before power management behaviors can be discussed, it is important to understand the fundamental limitations 
of silicon integrated circuits. In fact, the primary purpose for power management in such devices is to ensure these 
limitations are not exceeded so that device reliability and functionality are maintained. There are many factors 
that affect silicon-based transistor performance, but the focus here is to briefly familiarize readers with the most 
significant factors affecting x86 processors in their typical operating ranges.  

Processor frequency is possibly the most obvious of performance limiting factors. Even consumers have become 
quite familiar with equating frequency to performance. Frequency defines how fast the logic of the device is 
clocked, and thus how fast instructions are executed. Performance will not be equivalent when comparing two 
processors of equivalent frequency and different architecture, but it is generally true that increasing frequency 
will increase execution performance. Frequency in a processor can be limited by several underlying factors, but 
the most basic are voltage and current. Those familiar with transistor mechanics know that voltage has a key 
relationship to frequency. Faster switching of the transistors requires increasing voltage to overcome the resistive 
and capacitive elements of the transistor. However, higher voltage increases ageing effects (Gielen, 2013), putting 
practical limits on voltage application to ensure product longevity. Faster switching of transistors also generates 
higher currents as those capacitive elements are charged and discharged. While individual transistor currents may 
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be very small, modern processors can have several billion transistors (Cutress, 2017), so this current adds up quickly. 
The processor die is typically mounted on a package of some kind and there are also real, practical limitations 
to how much current can be delivered to the die effectively. Every digital IC must deal with the balancing act of 
transistor voltage and current to yield a useful frequency.  

The combination of Ohm's and Joule's laws teach us that all this voltage and current generates power, and that 
both parameters have a direct relationship with power. In fact, the reality is that most processor frequency 
limitations also boil down to power or current limits. Faster switching of transistors increases current and may 
also require increasing voltage, and doing either will increase power. Integrated circuits of every kind must 
provide designers with a maximum power consumption limit so that systems can be adequately designed to 
handle the current and cooling requirements. Power limits are often the most significant performance limiting 
factor, especially at the lower end of a device family’s power range. Modern processors based on the x86 
architecture tend to be power limited rather than frequency limited with heavy workloads. The reasons will be 
discussed in later sections.

Die temperature is a simple factor to consider, though not the most obvious. As the processor operates, consumed 
power is converted to heat. Heat affects transistor operating characteristics, as well as the rate of diffusion of the 
doping elements in the silicon that form the transistor junctions. Eventually, diffusion will change the electrical 
properties of the transistors until they fail to operate correctly and the processor will reach the end of its life. 
Limiting junction temperature in the device is critical for maintaining its expected longevity. Manufacturers will 
set maximum die temperatures for their products that must be followed. Maintaining this temperature limit is an 
important task for the power management entity in the processor.

LEAKAGE POWER
Another basic principle of silicon transistors is that they leak current across junctions and to the substrate 
(Kaushik, 2003). The amount of leakage current in a processor of a particular process type will vary largely by 
applied voltage and temperature and it can become quite significant in today's high-performance processors. This 
is because the same factors that are required to make transistors switch faster (i.e., achieve higher frequency) also 
increase leakage. All this leakage current creates additional power that must be counted as part of the device’s 
total power consumption. Naturally, leakage power effectively reduces the amount of the device’s total power 
envelope that can be consumed as active power (i.e., power used in transistor switching that does work). Figure 
1 below shows the leakage power distribution for a current, undisclosed AMD processor based on a 14nm FinFET 
process as a percentage of total processor power.  

Figure 1- Leakage power distribution for an undisclosed AMD product based on a 14nm FinFET process.
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Leakage power is exponentially related to die temperature, often doubling several times over the operating 
temperature of an integrated circuit (Wolpert & Ampadu, 2012). This means that device power will increase as the 
device temperature rises, even if the rest of the operating scenario is unchanged (i.e., fixed clock frequency, voltage, 
and workload). CPU manufactures must either leave enough headroom to accommodate this potential increase in 
power over the temperature range, or have a power management scheme that is dynamic with device temperature.  
Figure 2 below shows how leakage power is affected by temperature in that same AMD processor family. 

Figure 2 - Leakage power over temperature for a typical sample of an undisclosed AMD product based on a 14nm FinFET process.  

PART-TO-PART VARIATIONS
The silicon photolithography process used to create semiconductors has inherent imperfections that manifest as 
variations in transistor construction and thus affect their operational characteristics. These variations not only 
exist between batches of silicon wafers, but even across a single wafer. Such variations may require die in one area 
of the wafer to have a higher voltage to achieve the same frequency than its neighbors, or cause its leakage power 
to be greater. Figure 1 illustrates leakage power variations quite well. Since power is a key factor in determining 
achievable performance for a given device, performance variations follow suite.  

Processor manufacturers sort these die into groups targeting various product models with different specifications 
(e.g., 25W vs. 35W) to maximize yield. The amount of variation possible across units is defined by the specific 
model, and lower cost models will tend to allow wider variance. It is important to understand why these variations 
exist before discussing how power management exploits them.

WORKLOAD POWER DENSITY
Understanding power management behavior in complex microprocessors also requires understanding the 
concept of workload power density. This concept essentially means that different workloads (i.e., executed 
instruction sequences) will generate different amounts of power consumption in the processor, even at the 
same utilization level. This is to say that the central processing unit (CPU) core power incurred by two workloads 
can be significantly different even if the core is 100% utilized (i.e., consistently busy executing instructions) in 
both cases. This situation can occur because different instructions stimulate different amounts of transistor 
logic inside the core. As an example, one can image that a complex floating-point calculation will trigger more 
transistor activity in the CPU than a simple data movement operation. Data movement from one CPU general 
purpose register to another involves a minor number of gates while a complex AVX or SSE instruction to perform 
a multiply accumulate operation at 256 bits wide may activate many thousands of gates. Workloads may repeat 
such operations as part of an algorithm, compounding the power consumption increase. The potential difference 
in power between workloads becomes even larger when considering that nearly all x86 microprocessors sold 
today are multi-core, and most have integrated many other functions that were previously external. Integration 
of the graphics processing unit (GPU) is the most significant, as it is a very large processing core on its own. As 
consumer use-cases have become increasingly graphical, the GPU in some x86 processors can be even larger (i.e., 
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more transistors) than the CPU cores. This is especially true for companies like AMD, who specifically target high 
performance integrated graphics in their microprocessors. Mixed workloads that execute a combination of CPU and 
GPU instructions simultaneously can experience the effects of workload power density differences on both core 
types.  Allocation of the power budget to these various cores is one challenge of processor power management 
that will be explored further in later sections.

To illustrate the difference in workload power density, power consumption was measured with two different CPU-
only workloads on a random sample of an AMD embedded RX-421BD SoC based on the “Excavator” CPU core. Both 
workloads can saturate a single CPU core while sustaining max frequency, so utilization will stay at 100% for the 
core under test. The Prime95 workload represents an extreme case (often referred to as a “thermal virus”), and 
power values have been normalized to that level.

Figure 3 - Prime 95 v29.3 b1 Large FFT, Microsoft SysInternals CPU Stress v1.0

The data in Figure 3 show that the power consumption of the less power-dense workload was only 57% of Prime 95 
with a single CPU core active. When extrapolated across multiple physical cores, it is easy to see that power variation 
by workload can grow quite large. In this test case, the CPU was able to maintain maximum frequency (i.e., 3.5GHz) 
on the active core without reaching power or current throttling, so no frequency reduction was required.

The power density of GPU workloads can be compared in the same way. The graph below compares a simple 3D 
workload from the Microsoft DirectX 9 SDK (“blobs”) to Furmark, an extreme GPU workload falling in the thermal 
virus class. GPU frequency was artificially limited to 720MHz to avoid power limit throttling and expose the full 
potential power consumption difference. A comparison of the RX-421BD processor power for both workloads is 
shown in Figure 4.

Figure 4 - Furmark v1.18.2.0, Microsoft DirectX 9 SDK "Blobs"
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The GPU power data shows the Blobs application consumed only 82% of the power of Furmark, confirming a 
difference in power density. It is also worth noting that the increase in power dissipation with the heavier workload 
will raise die temperature in a given system environment. The higher temperature will increase leakage power, 
adding to the power difference. Truly comparing the power difference caused only by the workload would require 
tight control of the die temperature which was not attempted in this test. However, the few degrees of difference 
observed here do not significantly affect the results.

PROCESSOR POWER MANAGEMENT
Previous sections establish the key observation that power is inextricably linked to temperature, frequency and 
voltage/current. Power management in modern processors is all about controlling these parameters to control 
power consumption, while maximizing workload performance. Current processors from AMD and Intel contain 
dedicated microcontrollers that are independent of the x86 processor cores to administer power management.  
The firmware in the microcontroller is tailored in some ways for the product’s intended use case. For example, 
mobile products will be more aggressive in the use of power saving features like clock and power gating in the 
interest of improving battery life. Desktop and server processors that are always wall powered will tend to favor 
performance and only save power when it has minimal impacts on performance.

DEFINING POWER LIMITS
Definition of the maximum power consumption is a common starting point when defining processor models. 
Manufactures choose power levels to address various use-cases with differing power restrictions, and performance 
(i.e., frequency) is largely derived from that. X86 processors are largely marketed by their Thermal Design 
Power (TDP), even though it is a specification related to the thermal solution requirement and not a maximum 
electrical power that the device can consume. Maximum sustainable power levels will be equal to or greater than 
TDP, depending on the product. This paper will focus on the maximum sustained power of the processor when 
discussing it as a limit.

SCENARIO DEFINED PERFORMANCE
The power management controller of the processor monitors key parameters to ensure the processor specifications 
for maximum power, current and temperature are not exceeded. If changes in the operating scenario cause any 
one parameter to approach its limit, the controller must throttle the processor’s performance to compensate. This 
throttling usually takes the form of reducing operating frequency of the core(s) consuming the largest amounts 
of power (i.e., CPU and GPU), as they have the biggest impact. Reducing frequency often allows voltage reduction 
for additional power savings. Reductions in power consumption will reduce temperature and current, helping the 
processor to stay within these specifications. These adjustments can happen as much as every millisecond for 
very quick response to changes in the operating environment or even the workload (Howse, 2015). Previously, x86 
processors moved between discrete “performance states” (specific combinations of voltage and frequency at which 
cores can reliably operate) that differed by hundreds of megahertz and required suspension of execution during 
transitions. Newer Intel 7th Generation Core Processors and AMD Ryzen Processor architectures allow much more 
granular frequency changes for better efficiency and, at least in the Ryzen case, uninterrupted execution.

Since power consumption varies with the workload, one can recognize why achieving maximum frequency of a 
core may not always be possible. What if a very power dense workload is run on a CPU core at maximum frequency 
and causes the device to exceed its power limit? What if that workload is then run on multiple cores further 
exceeding the limit? What if a graphics workload is suddenly introduced on the integrated GPU simultaneously? 
In these cases, the power management controller has no choice but to throttle frequencies to maintain power 
and current limits. Many system designers erroneously assume that processor manufacturers configure their 
products to ensure that cores can sustain maximum frequency for any workload in all configurations. This is 
definitely not the case. Doing so would require these vendors to continuously search out the worst-case (i.e., most 
power dense) workload in existence, characterize the power usage on their architecture, and set the product’s 
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maximum frequency low enough to accommodate it safely across all units of that model (including their part-to-
part variations). This “fixed frequency” model is no longer used by most x86 processors in the PC and embedded 
spaces. Ignoring the fact that the worst-case workload could keep changing over time, the reality is that defining 
the max frequency in this way would be extremely limiting and easily reduce the operating frequency of a CPU 
core to a fraction of its potential because of the wide variance in workload power density. The consequence would 
be that lighter workloads with less power density would also be limited to this reduced frequency, even if it would 
have been safe to execute them much faster. An artificial performance limitation would be created to guarantee 
a predictable maximum frequency that is achievable for all workloads. A better approach for general-purpose 
processors is to define the max frequency by silicon capability and allow the power management controller to 
dynamically provide the best performance possible for the specific operating scenario in real-time.  

Designers should remember that the operating scenario not only includes the workload (i.e., the exact instruction 
sequences running on processor cores) but also its timing and usage of integrated peripheral functions and I/O. 
With high levels of integration in modern processors, I/O power cannot be ignored (in this instance, logic power 
for the I/O interfaces will be put in the same category as the power used by the physical I/O pins). Interfaces 
like system memory, Serial-ATA, Ethernet, PCI Express, audio, and USB are commonly integrated and they all 
consume power.  I/O power is largely dependent on the system configuration and usage model. For example, a 
network gateway device may not implement any SATA devices, while a network attached storage (NAS) system 
may have many. The NAS unit use-case will involve lots of ethernet activity (increasing power used in that logic), 
while a machine controller may have very little. The portion of the total power envelop consumed by I/O can’t be 
used by compute cores, so changes in configuration or usage model can impact achievable core performance when 
processors are power limited. Including the system configuration and I/O usage model in the workload definition is 
key when attempting to improve performance determinism.

EXPLOITING DEVICE VARIATIONS
The natural result for the power limited (versus fixed frequency) model is that performance is maximized for 
each workload, but frequency is not predictable with workload changes. Any scenario where the workload reaches 
temperature or power-limit throttling, performance can be degraded from the fixed-frequency model. System 
designers can avoid temperature throttling by developing enough headroom into the thermal solution to ensure 
maximum temperature is never reached. After all, the maximum sustained power level is a known quantity and 
airflow and ambient temperature limits can be specified for the final system. Power throttling is a more difficult 
challenge due to the part-to-part variations discussed earlier that affect power consumption. Two samples of the 
same processor model could have differences in their leakage power, causing one unit to reach its power limit at 
a lower average frequency even when running an identical workload under identical operating conditions. Vendors 
happily exploit this difference by allowing the lower leakage units to spend more time at higher frequency, yielding 
better performance. Earlier discussions of voltage dependencies reveal why different processor units of the same 
model can also have different voltage requirements to achieve a given clock frequency. This difference can be 
exploited by fusing unit-specific voltage vs. frequency curves into each part that enable the power management 
controller to minimize core voltage. Reductions like this to active power allows those units to further increase 
average frequencies before reaching power limits. Fortunately, lower leakage devices tend to also require higher 
voltages to reach the same frequency as a higher leakage device, so these two factors work to cancel each other 
out rather than compound. Despite this, material differences in the consumed power can remain.

Many real-world PC use-cases have been found to be bursty, where applications often sit idle waiting for user 
input and then perform some activity before waiting again. This could be a user starting a program or loading 
a new web page. Periods of inactivity will naturally coincide with low power and lower die temperature. Some 
processors take advantage of this situation by defining a maximum power limit that is greater than the sustained 
power limit. The processor can be allowed to reach this higher power consumption for a short amount of time that 
is “thermally insignificant”. Thermal solutions have a relatively large thermal inertia, meaning it takes a while for 
the processor to raise their temperature to a steady state value. Increasing the power limit in this way allows for 
short periods of increased performance benefiting bursty workloads, but at the cost of performance determinism. 
The operating environment now has another mechanism by which to affect performance, and workloads may have 
to run for several minutes to reach a steady state behavior.
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REGULATOR TELEMETRY
Since processor performance limitations boil down to power in so many ways, accurately determining power 
consumption is critical to maximizing performance. Measuring processor power in real time requires accurate 
current sensing which is not practical for implementation on high-speed digital process technologies. 
Until recently, processor power management technology relied on power curves derived from actual power 
measurements at manufacturing test time with a reference workload. Values were programmed into the 
processor and combined with run-time data from complex activity monitors in the logic. Management algorithms 
calculated power usage to ensure power limit adherence. This method allowed some exploitation of part-to-part 
variations but still required moderate guard-banding due to inaccuracies of the activity monitors to estimate 
power. Conservative estimations of power consumption leave performance headroom untapped. A recent change 
seen with AMD processors is use of power telemetry data from the regulators powering the primary voltage rails. 
Real-time voltage and current data allows the power management unit to be much more accurate in its total 
power calculation. Doing so enables every variation of the unit that affects power consumption to be factored in 
along with instantaneous environmental circumstances (i.e., temperature) and exploited for performance gain. 
Naturally, maximizing performance in this way increases non-determinism across units.

REDUCING EFFECTS OF POWER MANAGEMENT ON PERFORMANCE DETERMINISM
Maximization of performance at the cost of determinism works well for consumer use-cases where the user 
does not rely on repeatable performance across multiple systems. Enterprise and embedded systems can be 
quite different and may not be able to tolerate performance variations across units. However, it important to 
differentiate the need for a minimum performance versus true performance determinism. For digital signage 
or casino gaming machine examples, a minimum performance need likely applies. Functionality and user 
satisfaction are not affected if the frame processing time varies slightly across units as long as it is fast enough 
to meet the level of the content (e.g., 60fps) in all cases. Units that complete work faster may simply spend 
more time idle between frames, which would be unobservable to the user. Special cases like industrial machine 
controllers or military applications may require truly repeatable performance due to sensitive timing interactions. 
Even some datacenters desire such repeatability so that job execution time can be predicted regardless of which 
system it is scheduled on. It should be clarified that true hardware determinism is not possible with modern x86 
CPU architectures. Small timing variations can exist because of interactions between hardware and software, and 
hardware interrupts can occur with unpredictable timing. Some amount of variation will always exist, but there are 
ways to improve the situation, particularly for variations caused by power management. One thing that system 
designers can count on is that improving performance determinism will come with a cost to peak performance.

MINIMUM PERFORMANCE LEVEL
Ensuring a minimum performance level begins with testing in a worst-case environment. The specific workload 
of interest must be run on a worst-case processor sample operated at maximum temperature. The frequency 
behavior of the processor and the resulting performance of the workload should represent the lowest level of any 
sample in the distribution. If the performance is still acceptable, then the processor model choice is sufficient. 
System designers can have confidence that all samples of the chosen model will perform at this level or better. Of 
course, changing processor models or modifying the workload means testing must be repeated. Unfortunately, 
worst-case samples are rare and processor vendors don’t usually supply them upon request. Holding the processor 
die under tight temperature control while running an active workload can also be difficult, and usually requires 
a specialty thermal equipment like thermal stream blowers or oil baths. Many embedded designers will need an 
alternative method to ensure their minimum performance level.

Most x86 processors sold today specify a base and boost frequency for CPU cores. A few models even do the same 
for integrated GPUs. A good rule of thumb has been that base frequency should be sustainable for all processor 
samples, but designers must understand when this can be broken. Processor vendors generally do intend for base 
frequency to be sustainable on all cores of a CPU under “real world” workloads. Differentiation is made because 
worst-case power density of real versus synthetic applications can be very large. The example provided earlier used 
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two synthetic workloads for uniformity of power usage but it still illustrates the point. Real applications tend to 
have a mixture of compute, memory, and I/O operations while synthetic “power viruses” can intentionally loop on 
small, power dense instruction sequences. As previously discussed, defining base frequency with the most power 
dense workload available would be extremely conservative and would artificially limit performance of more typical 
workloads. The catch is that definition of “real-world” is subjective and varies by vendor and product. Vendors will 
choose reference workloads to represent the worst-case of the real-world, and then use it to define base frequency 
of the product. If the reference workload is known, both it and the custom workload can be compared on a random 
sample. If the power density of the custom workload is less than the reference workload, then it should be able 
to sustain base frequency across all units of the model distribution. To get an accurate measurement, testing 
should be performed on a specific sample/system in a fixed configuration and environmental conditions. CPU 
core frequency boost should be disabled to prevent reaching temperature or power/current limits (boost disable is 
commonly available in system BIOS1  firmware options of most x86 platforms). If either workload can reach these 
infrastructure limits then results will be skewed. Both AMD and Intel provide tools to log processor power, but they 
do not publicly disclose reference workloads. Such information must be obtained under non-disclosure agreements. 
If comparison is successful and the custom workload’s power density is less than the reference workload, then the 
performance of the boost-disabled scenario should be achievable across all units. Capping frequency in this way 
does reduce peak performance, but that is the sacrifice required for consistency.

If characterization of the custom workload reveals it is more power dense than the reference workload, then 
further frequency reduction is required to ensure minimum performance across units. In addition to disabling boost 
states, frequency should be reduced until power/current measurements are below those of the reference workload 
on the test unit. Once a suitable frequency limit is determined, performance can be evaluated for acceptability. 
A challenge with this case is that setting a CPU frequency limit below base frequency can require more invasive 
software modification. The Linux kernel supports a simple software daemon (e.g., cpufreqd) that can set core 
operation at a specific P-state and this mechanism can be used to limit CPU frequency with some processor 
architectures. For Windows operating systems, custom modifications must be made to the ACPI2 PSS table in BIOS 
that communicates supported CPU P-states to the operating system (OS) (Unified Extensible Firmware Interface 
Forum, 2017). Higher, unwanted frequency states can be removed, and the table rebuilt. The same method can be 
used for other operating systems that support the ACPI _PSS table. Modification of the table takes significant BIOS 
expertise and access to source code. Once a P-state is identified that brings power density of the custom workload 
below that of the reference workload, performance can again be evaluated for acceptance. It should be noted that 
this method of comparing power density is less exact than the ideal method of using a true worst-case sample. 
Including some reasonable margin into the operating point is wise.  

Mixed workloads that highly utilize both CPU and GPU cores simultaneously complicate the ability to confirm if 
a custom workload is more power dense than the reference workload. If a GPU base frequency is defined at all, 
reference workloads for CPU and GPU are likely measured independently so there is not significant interaction. 
Using the workload power density comparison method would also require tools to provide power data separately for 
each core type, which processor vendors do not typically provide. Workloads of this type cannot establish a reliable 
minimum performance operating point without assistance from the processor manufacturer. In cases where GPU 
performance is not critical, its maximum frequency could be set to a very low value in the interest of limiting its 
contribution to processor power and possibly avoid power/current throttling of CPU cores (AMD integrated GPUs 
use a vendor-specific “PowerPlay” table in BIOS to define frequency states for the GPU, much like the ACPI PSS 
table for CPUs; they can be edited, but this approach is not universal to other vendors). However, without a way to 
quantify the power usage to a reference point, ensuring repeatable performance requires adding a large, arbitrary 
guard-band to core frequencies. There will always be some uncertainty about coverage for worst-case samples.

DETERMINISTIC PERFORMANCE
Any system that desires performance determinism from the processor will need to start disabling power 
management features to get as close as possible to the old fixed-frequency model. The first to go are those 
features that provide temporary performance improvements based on real-time environmental factors. Examples 
discussed earlier include temperature-based boosting or time-based power excursions (e.g., AMD STAPM3 and 

1  Basic Input / Output System
2  Advanced Configuration and Power Interface Specification
3  Skin Temperature Aware Power Management
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sub-features of Intel DPTF4). These features often don’t provide value anyway for embedded use-cases where 
a workload is run continuously. The ability to disable them may not be exposed in off-the-shelf embedded 
platforms, but most can be turned off by the system BIOS developer. Review the processor documentation 
thoroughly to understand which of these features can be disabled.  

Frequency boosting is also scenario driven and therefore must be disabled. Even if a frequency in the boost 
range is sustainable for the custom workload on a worst-case sample, current processors do not allow fixed 
frequency operation in this range. Operating systems are unaware of boost frequencies, so there are no OS-level 
mechanisms to set them. To fix CPU frequency, a value at or below base must be used. From there, evaluation of 
the workload power density compared to the reference workload can be used to determine if CPU frequency must 
be further reduced below base frequency. The method described earlier still applies.

After the new maximum frequency has been established and set, states below this must also be eliminated to 
ensure fixed-frequency behavior of cores. Latency is increased when cores transition to low frequency during idle 
periods, reducing deterministic behavior. As described in the previous section, OS frequency governors can be used 
with Windows and Linux to set “performance” mode which will ensure hardware does not go below base frequency. 
This method has been verified on AMD Embedded R-series and G-series processors, as well as Intel 7th Generation 
Core processors. Excursions below base frequency can still occur if triggered by thermal throttling, but proper design, 
as outlined here, can prevent it. Despite being effective for Windows and Linux, designers requiring determinism will 
likely be running a real-time OS. RTOSs with support for ACPI PSS tables can still use that method. Others with no 
CPU P-state management must rely on the platform BIOS to set the desired state before the OS handoff.

If the workload is mixed for CPU and GPU, the same complications previously discussed apply. Extreme guard-
banding could ensure fixed frequency operation across all units of a model distribution, but there is no reliable 
method to confirm that without manufacturer support. For applications that are willing to go the extra mile to 
secure deterministic performance, custom screening can be implemented where each sample is pre-tested to 
ensure operation within specific limits. Obviously, this kind of screening is very costly in both infrastructure and 
labor but has found use in military markets where cost sensitivity is low.

VENDOR PROVIDED HARDWARE DETERMINISM
AMD has recognized the demand for improved determinism in some enterprise and high-end embedded 
applications and has introduced dual operating modes in their EPYC line of enterprise processors to address 
differing needs. A “Power Determinism Mode” offers higher performance by taking advantage of many of 
the mechanisms described earlier in this paper including part-to-part variations (Fruehe, 2017), though server 
processors are more conservative in this area. The processor will exploit some of these differences to reach a 
maximum (i.e., deterministic) power consumption for a given workload (at a given temperature) and thus maximize 
performance while maintaining infrastructure power limits. “Performance Determinism Mode” offers the unique 
ability to achieve the same performance with every processor of a given TDP. Creating repeatable performance 
requires part-specific power and frequency curve data to be fused into the device at production time. This data 
essentially provides a negative performance offset that can be used to make each individual unit replicate the 
performance of a worst-case unit of the entire model distribution. The power management controller also uses the 
predictable calculated-power method based on activity monitors instead of regulator telemetry data. Enablement 
of the feature is a simple compile-time option in the BIOS firmware. In performance determinism mode, part-to-
part variations will only result in differences in power consumption for a given workload (at a given temperature) 
while performance (derived from frequency behavior) is minimally impacted and remains consistent. This type of 
reliable hardware determinism can only be provided by the processor manufacturer and it ensures that only the 
minimum necessary performance sacrifice is made to achieve that determinism. The performance deterministic 
mode certainly simplifies system architecture for designers looking for improved performance determinism for 
enterprise applications and its existence is noteworthy given the topic of this paper. However, it is yet to be seen if 
this kind of feature will find its way into lower-power embedded processor products from AMD or Intel.

4 Dynamic Power and Thermal Framework



DISCLAIMER: THE FOREGOING GUIDANCE IS PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL 
PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. AMD CONTINUES TO INVESTIGATE THESE AND OTHER MITIGATION TECHNIQUES AND MAY MODIFY OR UPDATE THE INFORMATION IN THIS DOCUMENT WITHOUT 
NOTICE.  AMD, AND THE AMD LOGO, ARE TRADEMARKS OF AMD, INC. OR ITS SUBSIDIARIES IN THE U.S. AND OTHER COUNTRIES..

© 2018 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only 
and may be trademarks of their respective companies. July 2018. PID# 18140528-A

7.12.18

AMD.com/en/corporate/speculative-execution

REFERENCES
Cutress, I. (2017, February 22). AMD Launches Zen. Retrieved from Anandtech.com: http://www.anandtech.com/show/11143/
amd-launch-ryzen-52-more-ipc-eight-cores-for-under-330-preorder-today-on-sale-march-2nd

Fruehe, J. (2017). Power / Performance Determinism. Moor Insights and Strategy.

Gielen, E. M. (2013). Analog IC Reliability in Nanometer CMOS. Analog Circuits and Signal Processing, DOI: 10.1007/978-1-
4614-6163-0_2, 23-28.

Howse, B. (2015, Nov 26). Examining Intel's New Speed Shift Tech on Skylake: More Responsive Processors. Retrieved from 
Anandtech: https://www.anandtech.com/show/9751/examining-intel-skylake-speed-shift-more-responsive-processors

Kaushik, S. a.-M. (2003). Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS 
Circuits. IEEE.

Unified Extensible Firmware Interface Forum. (2017, May). Retrieved from Unified Extensible Firmware Interface Forum: 
http://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf

Wolpert, & Ampadu. (2012). Managing Temperature Effects in Nanoscale Adaptive Systems. In D. Wolpert, & P. Ampadu, 
Managing Temperature Effects in Nanoscale Adaptive Systems (pp. 22-24). Springer.


