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Preface

This concise guide to the differential geometry of curves and surfaces can be
recommended to first-year graduate students, strong senior students, and students
specializing in geometry. The material is given in two parallel streams.

The first stream contains the standard theoretical material on differential geom-
etry of curves and surfaces. It contains a small number of exercises and simple
problems of a local nature. It includes the whole of Chapter 1 except for the prob-
lems (Sections 1.5, 1.7, 1.10) and Section 1.11, about the phase length of a curve,
and the whole of Chapter 2 except for Section 2.6, about classes of surfaces, The-
orems 2.8.1–2.8.4, the problems (Sections 2.7.4, 2.8.3) and the appendix (Sec-
tion 2.9).

The second stream contains more difficult and additional material and formu-
lations of some complicated but important theorems, for example, a proof of A.D.
Aleksandrov’s comparison theorem about the angles of a triangle on a convex
surface,1 formulations of A.V. Pogorelov’s theorem about rigidity of convex sur-
faces, and S.N. Bernstein’s theorem about saddle surfaces. In the last case, the
formulations are discussed in detail.

A distinctive feature of the book is a large collection (80 to 90) of nonstandard
and original problems that introduce the student into the real world of geometry.
Most of these problems are new and are not to be found in other textbooks or
books of problems. The solutions to them require inventiveness and geometrical
intuition. In this respect, this book is not far from W. Blaschke’s well-known

1 A generalization of Aleksandrov’s global angle comparison theorem to Riemannian spaces of ar-
bitrary dimension is known as Toponogov’s theorem.



viii Preface

manuscript [Bl], but it contains a number of problems more contemporary in
theme. The key to these problems is the notion of curvature: the curvature of
a curve, principal curvatures, and the Gaussian curvature of a surface. Almost
all the problems are given with their solutions, although the hope of the author
is that an honest student will solve them without assistance, and only in excep-
tional cases will look at the text for a solution. Since the problems are given in
increasing order of difficulty, even the most difficult of them should be solvable
by a motivated reader. In some cases, only short instructions are given. In the au-
thor’s opinion, it is the large number of original problems that makes this textbook
interesting and useful.

Chapter 3, Intrinsic Geometry of a Surface, starts from the main notion of a
covariant derivative of a vector field along a curve. The definition is based on
extrinsic geometrical properties of a surface. Then it is proven that the covariant
derivative of a vector field is an object of the intrinsic geometry of a surface, and
the later training material is not related to an extrinsic geometry. So Chapter 3 can
be considered an introduction to n-dimensional Riemannian geometry that keeps
the simplicity and clarity of the 2-dimensional case.

The main theorems about geodesics and shortest paths are proven by methods
that can be easily extended to n-dimensional situations almost without alteration.
The Aleksandrov comparison theorem, Theorem 3.9.1, for the angles of a triangle
is the high point in Chapter 3.

The author is one of the founders of CAT(k)-spaces theory,2 where the com-
parison theorem for the angles of a triangle, or more exactly its generalization
by the author to multidimensional Riemannian manifolds, takes the place of the
basic property of CAT(k)-spaces.

Acknowledgments. The author gratefully thanks his student and colleagues who
have contributed to this volume. Essential help was given by E.D. Rodionov,
V.V. Slavski, V.Yu. Rovenski, V.V. Ivanov, V.A. Sharafutdinov, and V.K. Ionin.

2 The initials are in honor of E. Cartan, A.D. Aleksandrov, and V.A. Toponogov.
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1
Theory of Curves in
Three-dimensional Euclidean Space
and in the Plane

1.1 Preliminaries

An example of a vector space is Rn , the set of n-tuples (x1, . . . , xn) of real num-
bers. Three vectors �i = (1, 0, 0), �j = (0, 1, 0), �k = (0, 0, 1) form a basis of
the space R3. A ball in Rn with center P(x0

1 , . . . , x0
n) and radius ε > 0 is the set

B(P, ε) = {(x1, . . . , xn) ∈ Rn : ∑n
i=1(xi − x0

i )2 < ε2}. A set U ⊂ Rn is open if
for each P ∈ Rn there is a ball B(P, ε) ⊂ U .

Definition 1.1.1. If �a = a1�i + a2 �j + a3�k and �b = b1�i + b2 �j + b3�k are vectors in
R3, then their scalar product 〈�a, �b〉 and vector product �a × �b are

〈�a, �b〉 = a1b1 + a2b2 + a3b3, �a × �b = det

⎛⎝ �i �j �k
a1 a2 a3

b1 b2 b3

⎞⎠ .

The triple product of vectors �a, �b, and �c = c1�i + c2 �j + c3�k is

(�a · �b · �c) = det

⎛⎝a1 a2 a3

b1 b2 b3

c1 c2 c3

⎞⎠ .

Definition 1.1.2. A linear transformation is a function T : V → W of vector
spaces such that T (λ�a + µ�b) = λT (�a) + µT (�b) for all λ, µ ∈ R and �a, �b ∈ V .
An isomorphism is a one-to-one linear transformation. A real number λ is an
eigenvalue of a linear transformation T : V → V if there is a nonzero vector �a
(called an eigenvector) such that T (�a) = λ�a.
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Definition 1.1.3. If a map ϕ : M → N is continuous and bijective, and if its
inverse map ψ = ϕ−1 : N → M is also continuous, then ϕ is a homeomorphism
and M and N are said to be homeomorphic. The Jacobi matrix of a differentiable
map ϕ : Rn → Rm is

J =
⎛⎜⎝

∂ f1

∂x1
. . .

∂ f1

∂xn

...
. . .

...
∂ fm

∂x1
. . .

∂ fm

∂xn

⎞⎟⎠ .

A differentiable map ϕ : M → N is a diffeomorphism if there is a differentiable
map ψ : N → M such that ϕ◦ψ = I (where I is the identity map) and ψ ◦ϕ = I .

Theorem 1.1.1 (Inverse function theorem). Let U ⊂ Rn be an open set, P ∈ U,
and ϕ : U → Rn. If det J (P) �= 0, then there exist neighborhoods VP of P and
Vϕ(P) of ϕ(P) such that ϕ|VP : VP → Vϕ(P) is a diffeomorphism.

For y = (y1, . . . , yn) and fixed integer i ∈ [1, n], set ỹ = (y1, . . . , yi−1,
yi+1, . . . , yn). If W ⊂ Rn+1, then W̃ = {w̃ : w ∈ W } ⊂ Rn is a projection
along the i th coordinate axes.

Theorem 1.1.2 (Implicit function theorem). Let ϕ : Rn+1 → R be a Ck (k ≥ 1)

function, P ∈ Rn+1, and (∂ϕ/∂xi )(P) �= 0 for some fixed i . Then there is a
neighborhood W of P in Rn+1 and a Ck function f : W̃ → R such that for
y = (y1, . . . , yn+1) ∈ Rn+1, f (y1, . . . , yn+1) = 0 if and only if yi = f (ỹ).

Theorem 1.1.3 (Existence and uniqueness solution). Let a map f : Rn+1 → Rn

be continuous in a region D = {‖�x−�x0‖ ≤ b, |t−t0| ≤ a} and have bounded par-
tial derivatives with respect to the coordinates of �x ∈ Rn. Let M = sup ‖f(�x, t)‖
over D. Then the differential equation d �x/dt = f(�x, t) has a unique solution on
the interval |t − t0| ≤ min(T, b/M) satisfying �x(t0) = �x0.

1.2 Definition and Methods of Presentation of Curves

We assume that a rectangular Cartesian coordinate system (O; x, y, z) in three-
dimensional Euclidean space R3 has been introduced.

Definition 1.2.1. A connected set γ in the space R3 (in the plane R2) is a regular
k-fold continuously differentiable curve if there is a homeomorphism ϕ : G → γ ,
where G is a line segment [a, b] or a circle of radius 1, satisfying the following
conditions:

(1) ϕ ∈ Ck (k ≥ 1), (2) the rank of ϕ is maximal (equal to 1).

For k = 1 a curve γ is said to be smooth. Note that a regular curve γ of class
Ck (k ≥ 1) is diffeomorphic either to a line segment or to a circle. Since a rect-
angular Cartesian coordinate system x, y, z is given in the space R3, a map ϕ is
determined by a choice of the functions x(t), y(t), z(t), where t ∈ [a, b]. The
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condition (1) means that these functions belong to class Ck , and the condition
(2) means that the derivatives x ′(t), y′(t), z′(t) cannot simultaneously be zero for
any t .

Any regular curve in R3 (R2) may be determined by one map ϕ : x = x(t), y =
y(t), z = z(t), where t ∈ [a, b], and the equations x = x(t), y = y(t), z = z(t)
are called parametric equations of a curve γ . In the case that a regular curve is
diffeomorphic to a circle, the functions x(t), y(t), z(t) are periodic on R with
period b − a, and the curve itself is called a closed curve. If ϕ is bijective, ϕ is
called simple.

The Jordan curve theorem says that a simple closed plane curve has an interior
and an exterior.

It is often convenient to use the vector form of parametric equations of a curve:
�r = �r(t) = x(t)�i + y(t)�j + z(t)�k, where �i , �j , �k are unit vectors of the axes
O X, OY, O Z . If γ is a plane curve, then suppose z(t) ≡ 0.

The same curve (image) γ can be given by different parameterizations:

�r = �r1(t) = x1(t)�i + y1(t)�j + z1(t)�k, t ∈ (a, b),

�r = �r2(τ ) = x2(τ )�i + y2(τ )�j + z2(τ )�k, τ ∈ (c, d).

Then these vector functions �r1(t) and �r2(τ ) are related by a strictly monotonic
transformation of parameters t = t (τ ) : (c, d) → (a, b) such that

(1) �r1(t (τ )) = �r2(τ ),

(2) t ′(τ ) �= 0 for all τ ∈ (c, d).

The existence of a function t = t (τ ), its differentiability, and strong monotonic
character follow from the definition of a regular curve and from the inverse func-
tion theorem.

Example 1.2.1. The parameterized regular space curve x = a cos t , y = a sin t ,
z = bt lies on a cylinder x2 + y2 = a2 and is called a (right circular) helix of
pitch 2πb (Figure 2.17b). Here the parameter t measures the angle between the
O X axis and the line joining the origin to the projection of the point �r(t) over the
X OY plane.

The parameterized space curve x = at cos t , y = at sin t , z = bt lies on a cone
b2(x2 + y2) = a2z2 and is called a (circular) conic helix.

Definition 1.2.2. A continuous curve γ is called piecewise smooth (piecewise reg-
ular) if there exist a finite number of points Pi (i = 1, . . . , k) on γ such that each
connected component of the set γ \⋃

i
Pi is a smooth (regular) curve.

Example 1.2.2. The trajectory of a point on a circle of radius R rolling (without
sliding) in the plane along another circle of radius R′ is called a cycloidal curve.
If the circle moves along and inside of a fixed circle, then the curve is a hypocy-
cloid; if outside, then the curve is an epicycloid. Parameterizations of these plane
curves are
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x = R(m + 1) cos(mt) − Rm cos(mt + t),

y = R(m + 1) sin(mt) − Rm sin(mt + t) (1.1)

where m = R/R′ is the modulus. For m > 0 we have epicycloids, for m < 0,
hypocycloids.

All cycloidal curves are piecewise regular. They are closed (periodic) for m
rational only. A cardioid is an epicycloid with modulus m = 1; it has one sin-
gular point. An astroid is a hypocycloid with modulus m = − 1

4 , see also Exer-
cise 1.12.19. It has four singular points.

(a) cardioid (b) astroid

Figure 1.1. Cycloidal curves.

Besides the parametric presentation of a curve γ in R3 (R2) there also exist
other presentations.

Explicitly given curve. A particular case of the parametric presentation of a
curve is an explicit presentation of a curve, when the part of a parameter t is
played by either the variable x , y, or z; i.e., either x = x , y = f1(x), z =
f2(x); x = f1(y), y = y, z = f2(y); or x = f1(z), y = f2(z), z = z.
An explicit presentation is especially convenient for a plane curve. In this case a
curve coincides with a graph of some function f , and then the equation of the
curve may be written either in the form y = f (x) or x = f (y).

Example 1.2.3. A tractrix (see Figure 2.12 a) can be presented as a graph x =
a ln

a−
√

a2−y2

y + √
a2 − y2, 0 < y ≤ a. It has one singular point P(a, 0). For a

parameterization of this plane curve see Exercise 1.12.22.

Implicitly given curve. Let a differentiable map be given by

f : R3 → R2, f = [ f1(x, y, z), f2(x, y, z)].
Then from the implicit function theorem it follows that if (0, 0) is a regular value
of the map f, then each connected component of the set T = f−1(0, 0) is a smooth
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regular curve in R3. In other words, under the above given conditions a set of
points in R3 whose coordinates satisfy the system of equations

f1(x, y, z) = 0, f2(x, y, z) = 0, (1.2)

forms a smooth regular curve (more exactly, a finite number of smooth regular
curves). This method is called an implicit presentation of a curve, and the system
(1.2) is called the implicit equations of a curve. In the plane case, an implicit
presentation of a curve is based on a function f : R2 → R with the property that
0 is a regular value.

Recall that the value (0, 0) of a map f = ( f1, f2) : R3 → R2 is regular if the
rank of the Jacobi matrix

J =
(

∂ f1

∂x
∂ f1

∂y
∂ f1

∂z
∂ f2

∂x
∂ f2

∂y
∂ f2

∂z

)
is 2 (or det J �= 0) at every point of the solution set of (1.2) .

Obviously, an explicit presentation of a curve is at the same time a paramet-
ric presentation, where the role of a parameter t is played by the x-coordinate,
say. Conversely, if a regular curve is given by parametric equations, then in some
neighborhood of an arbitrary point, as follows from the converse function the-
orem, there an its explicit presentation. Analogously, if a curve is presented by
implicit equations, then in some neighborhood of an arbitrary point it admits an
explicit presentation. The last statement can be deduced from the implicit function
theorem.

Example 1.2.4. (a) The intersection of a sphere x2 + y2 + z2 = R2 of radius R
with a cylinder x2 + y2 = Rx of radius R

2 is a Viviani curve with one point of
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(b) cylinder
⋂

sphere

Figure 1.2. Viviani window.

self-intersection. One can verify that �r = [R cos2 t, R cos t sin t, R sin t], 0 ≤
t ≤ 2π , is a regular parameterization of the curve.
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(b) The intersection of two cylinders with orthogonal axes, x2 + z2 = R2
1 and

y2 + z2 = R2
2, of radii R1 ≥ R2 is a bicylinder curve. One can verify that for

R1 = R2 it degenerates to a pair of ellipses, and that

�r =
[

R1 cos t, ±
√

R2
1 − R2

2 sin2 t, R1 sin t
]
, 0 ≤ t ≤ 2π,

is a regular parameterization of the two curve components.

(a) curve (b) cylinder
⋂

cylinder

Figure 1.3. Bicylinder curve.

1.3 Tangent Line and Osculating Plane

Let a smooth curve γ be given by the parametric equations

�r = �r(t) = x(t)�i + y(t)�j + z(t)�k.

The velocity vector of �r(t) at t = t0 is the derivative �r ′
(t0) = x ′(t0)�i + y′(t0)�j +

z′(t0)�k. The velocity vector field is the vector function �r ′
(t). The speed of �r(t) at

t = t0 is the length |�r ′
(t0)| of the velocity vector.

Definition 1.3.1. The tangent line to a smooth curve γ at the point P = �r(t0) is
the straight line through the point P = �r(t0) ∈ γ in the direction of the velocity
vector �r ′

(t0).

One can easily deduce the equations of a tangent line directly from its defi-
nition. In the case of parametric equations of a curve we obtain �r = �R(u) =
�r(t0) + u�r ′

(t0), or in detail, ⎧⎨⎩
x = x(t0) + ux ′(t0),
y = y(t0) + uy′(t0),
z = z(t0) + uz′(t0),

(1.3)
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or in canonical form,

x − x(t0)

x ′(t0)
= y − y(t0)

y′(t0)
= z − z(t0)

z′(t0)
. (1.4)

In the case of explicit equations of a curve, y = ϕ1(x), z = ϕ2(x), the tangent
line is given by the following equations:

x − x0 = y − ϕ1(x0)

ϕ′
1(x0)

= z − ϕ2(x0)

ϕ′
2(x0)

. (1.5)

Finally, if a curve γ is given by implicit equations

f1(x, y, z) = 0, f2(x, y, z) = 0,

and P(x0, y0, z0) belongs to γ , then the rank of the Jacobi matrix

J =
(

∂ f1

∂x
∂ f1

∂y
∂ f1

∂z
∂ f2

∂x
∂ f2

∂y
∂ f2

∂z

)

is 2 at P (i.e., rows and columns of J are each linearly independent). Assume for
definiteness that the determinant ∣∣∣∣∣

∂ f1

∂x
∂ f1

∂y
∂ f2

∂x
∂ f2

∂y

∣∣∣∣∣
is nonzero. Then by the implicit function theorem there exist a real number ε > 0
and differentiable functions ϕ1(x), ϕ2(y) such that for |x − x0| < ε,

f1(x, ϕ1(x), ϕ2(x)) ≡ 0, f2(x, ϕ1(x), ϕ2(x)) ≡ 0.

Hence the equations of a tangent line to a curve γ at the point P(x0, y0, z0) are
presented by (1.5), where the numbers ϕ′

1(x0) and ϕ′
2(x0) are solutions of the

system of equations⎧⎨⎩
∂ f1

∂x + ∂ f1

∂y · ϕ′
1(x0) + ∂ f1

∂z · ϕ′
2(x0) = 0,

∂ f2

∂x + ∂ f2

∂y · ϕ′
1(x0) + ∂ f2

∂z · ϕ′
2(x0) = 0.

(1.6)

In the case of an implicit presentation of a plane curve γ : f (x, y) = 0, the equa-
tion of its tangent line can be written in the form

(∂ f /∂x)(x0, y0)(x − x0) + (∂ f /∂y)(x0, y0)(y − y0) = 0. (1.7)

1.3.1 Geometric Characterization of a Tangent Line

Denote by d the length of a chord of a curve joining the points P = γ (t0) and
P1 = γ (t1), and by h the length of a perpendicular dropped from P1 onto the
tangent line to γ at the point P .
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Theorem 1.3.1. lim
d→0

h

d
= lim

t1→t0

h

d
= 0.

Proof. From the definition of magnitudes d and h one may deduce their expres-
sions

d = |�r(t1) − �r(t0)|, h = |�r ′
(t0) × (�r(t1) − �r(t0))|

|�r ′
(t0)| .

Then

lim
d→0

h

d
= lim

t1→t0

|�r ′
(t0) × (�r(t1) − �r(t0)|

|�r ′
(t0)| · |�r(t1) − �r(t0)|

= lim
t1→t0

|�r ′
(t0) × �r(t1)−�r(t0)

t1−t0
|

|�r ′
(t0)| · | �r(t1)−�r(t0)

t1−t0
| = |�r ′

(t1) × �r ′
(t0)|

|�r ′
(t0)|2 = 0. �

Theorem 1.3.1 explains the geometric characterization of a tangent line.
First of all, the theorem shows us that the tangent line l to a curve γ at the

point P = γ (t0) is the limit of secants to γ that pass through P and an arbitrary
point P1 = γ (t1) for t1 → t0. In fact, if we denote by α an angle between l and
a secant P P1, then h

d = sin α, and from Theorem 1.3.1 it follows that sin α → 0
for t1 → t0. From this our statement follows.

Secondly, Theorem 1.3.1 estimates an error that we obtain from replacing a
curve γ by its tangent line l. Let BP(d) = {x ∈ R3 : |x − P| < d} be a ball
with center P and radius d . Replace an arc γ

⋂
BP(d) of a curve γ by the line

segment of l that belongs to BP(d). Then Theorem 1.3.1 claims that under such
a change we make an error of higher order than the radius d of a ball. Also, this
theorem allows us to give a geometric definition of a tangent line to a curve.

Denote by �τ (t0) a unit vector that is parallel to �r ′
(t0) : �τ (t0) = �r ′

(t0)
|�r ′

(t0)| . A straight
line through the point P = γ (t0) that is orthogonal to the tangent line is called a
normal line.

1.3.2 Osculating Plane

It is convenient to give a geometric definition of the osculating plane. Let a plane
α with a unit normal �β pass through a point P = �r(t0) of a curve γ . Denote by d
the length of the chord of γ joining the points P0 = �r(t0) and P1 = �r(t1), and by
h the length of the perpendicular dropped from P1 onto the plane α.

Definition 1.3.2. A plane α is called an osculating plane to a curve γ at a point
P = �r(t0) if

lim
d→0

h

d2
= lim

t1→t0

h

d2
= 0.

Theorem 1.3.2. At each point P = �r(t0) of a regular curve γ of class Ck (k ≥ 2)

there is an osculating plane α, and the vectors �r ′
(t0) and �r ′′

(t0) are orthogonal to
its normal vector �β.
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Figure 1.4. Osculating plane.

Proof. First, we shall prove the second statement, assuming the existence of an
osculating plane to γ at a point P = �r(t0). From the definition of the magnitudes
d and h it follows that

d = |�r(t1) − �r(t0)|, h = |〈�r(t1) − �r(t0), �β〉|.
By Taylor’s formula, �r(t1) − �r(t0) = �r ′

(t0)(t1 − t0) + 1
2 �r ′′

(t0)(t1 − t0)2 +
�o(|t1 − t0|2). Hence

lim
d→0

h

d2
= lim

t1→t0

∣∣〈�r ′
(t0)(t1 − t0) + 1

2 �r ′′
(t0)(t1 − t0)2 + �o((t1 − t0)2), �β〉∣∣

|�r(t1) − �r(t0)|2

= lim
t1→t0

∣∣∣ 〈�r ′
(t0),�β〉

t1−t0
+ 1

2 〈�r ′′
(t0), �β〉 + 〈�o(|t1−t0|2),�β〉

(t1−t0)2

∣∣∣∣∣ �r(t1)−�r(t0)
t1−t0

∣∣2 .

Since the limit of the denominator for t1 → t0 is equal to |�r ′
(t0)|2 and since by

the condition of the theorem it is nonzero, from the condition limt1→t0
h
d2 = 0 it

follows firstly that 〈�r ′
(t0), �β〉 = 0, and then 〈�r ′′

(t0), �β〉 = 0. To prove now the
existence of an osculating plane, consider two cases:

(1) �r ′
(t0) × �r ′′

(t0) �= 0, (2) �r ′
(t0) × �r ′′

(t0) = 0.

In the first case define a vector �β = �r ′
(t0)×�r ′′

(t0)
|�r ′

(t0)×�r ′′
(t0)| , and in the second case take for

�β an arbitrary unit vector orthogonal to �r ′
(t0). In both cases we have

〈�r ′
(t0), �β〉 = 〈�r ′′

(t0), �β〉 = 0.

Let α be the plane passing through the point P = �r(t0) and orthogonal to the
vector �β. Then

h = |〈�o(|t1 − t0|2), �β〉|, d = |�r ′
(t0)(t1 − t0) + �o(|t1 − t0|)|.

From this it follows that

lim
t1→t0

h

d2
= lim

t1→t0

∣∣∣ 〈�o(|t1−t0|2),�β〉
(t1−t0)2

∣∣∣∣∣∣ �r(t1)−�r(t0)
t1−t0

∣∣∣2 =
lim

t1→t0

〈
�o(|t1−t0|2)
|t1−t0|2 , �β

〉
|�r ′

(t0)|2 = 0.



10 1. Theory of Curves in Three-dimensional Euclidean Space and in the Plane

Consequently, α is an osculating plane. Besides, as we see, in the first case the
osculating plane is unique, and in the second case any plane containing a tangent
line to γ at P = �r(t0) is an osculating plane. For a plane curve, the osculating
plane is the plane containing ϕ. �

We now deduce the equation of the osculating plane for the case that a curve
is given by parametric equations and the vectors �r ′

(t0) and �r ′′
(t0) at a given point

P = �r(t0) are linearly independent. In this case the normal vector to the osculating
plane, �β, as follows from Theorem 1.3.2, may be taken as �r ′

(t0) × �r ′′
(t0),

�β = (ȳ′ z̄′′ − ȳ′′ z̄′)(t0)�i + (z̄′ x̄ ′′ − z̄′′ x̄ ′)(t0)�j + (x̄ ′ ȳ′′ − x̄ ′′ ȳ′)(t0)�k,

and we obtain the equation of an osculating plane α:

A(x − x(t0)) + B(y − y(t0)) + C(z − z(t0)) = 0,

where A = y′z′′ − y′′z′, B = z′x ′′ −z′′x ′, C = x ′y′′ −x ′′y′ are derived for t = t0.
Projecting γ orthogonally onto an osculating plane α, we obtain a plane curve γ

of “minimal deviation” from γ . The value of this deviation has order slightly more
than d2. In detail, the lengths of the curves γ and γ that belong to the ball BP(d)

(with center P and radius d) differ from each other by a value whose order is
slightly greater than d2.

At a point P = �r(t) of a curve, where an osculating plane is unique, one may
select among all normal directions a unique normal vector �ν by the conditions

(1) �ν is orthogonal to �r ′
(t0),

(2) �ν is parallel to an osculating plane,

(3) �ν forms an acute angle with the vector �r ′′
(t0),

(4) �ν has unit length: |�ν| = 1.

Such a vector �ν is the principal normal vector to a curve γ at a point P . It is
easy to see that �ν can be expressed by the formula

�ν = − 〈�r ′
, �r ′′〉

|�r ′| · |�r ′ × �r ′′| · �r ′ + |�r ′|
|�r ′ × �r ′′| · �r ′′

. (1.8)

A principal normal vector �ν is defined invariantly in the sense that its direction
does not depend on the choice of a curve γ parameterization. Let �r = �R(τ ) be
another parameterization of γ . Then, as we know, there is a function t = t (τ )

such that �r(t (τ )) = �R(τ ) and

�R′
τ = �r ′

t · t ′, �R′′
ττ = �r ′′

t t · (t ′)2 + �r ′
t · t ′′.

From these formulas it follows that 〈�ν, �R′
τ 〉 = 0 and 〈�ν, �R′′

ττ 〉 = 〈�ν, �r ′′
t t 〉 · (t ′)2,

and consequently, the vector �ν satisfies all four conditions with respect to the
parameterization �R(τ ). Using the vectors �τ = �r ′

|�r ′| and �ν, define a vector �β by
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the formula �β = �τ × �ν, and call it a binormal vector. The directions of �τ and �β
depend on the orientation of the curve and should be replaced by their opposites
when the orientation is reversed. The vector �ν, as was shown before, does not
depend on the orientation of the curve.

In practice, it is convenient to derive �τ , �ν, and �β in the following order: first,
the vector �τ = �r ′

|�r ′| , then the vector �β = �r ′×�r ′′
|�r ′×�r ′′| , and finally the vector �ν = �β × �τ .

Figure 1.5. Tangent, principal normal, and binormal vectors.

1.4 Length of a Curve

Let γ be a closed arc of some curve, and �r = �r(t) its parameterization; a ≤ t ≤ b.
Note that a polygonal line is a curve in R3 (R2) composed of line segments pass-
ing through adjacent points of some ordered finite set of points P1, P2, . . . , Pk . A
polygonal line σ is a regularly inscribed polygon in a curve γ if there is a partition
T of a line segment [a, b] by the points t1 < t2 < · · · < tk such that �O Pi = �r(ti ).
To each polygonal line there corresponds its length l(σ ) equal to

∑k−1
i=1 Pi Pi+1.

Denote by �(γ ) the set of all regularly inscribed polygonal lines in a curve γ .

Figure 1.6. Regularly inscribed polygonal lines in a curve.

Definition 1.4.1. A continuous curve γ is called rectifiable if supσ∈�(γ ) l(σ ) <

∞.

Definition 1.4.2. The length of a rectifiable curve γ is defined as the least up-
per bound of lengths of all regularly inscribed polygonal lines in a given curve
γ : l(γ ) = supσ∈�(γ ) l(σ ).
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The next theorem gives us a sufficient condition for the existence of the length
of a curve and the formula to calculate it.

Theorem 1.4.1. A closed arc of any smooth curve is rectifiable, and its length is

l(γ ) =
∫ b

a
|�r ′

(t)| dt.

Proof. Let �r = �r(t) = x(t)�i + y(t)�j + z(t)�k (t ∈ [a, b]) be a smooth param-
eterization of a closed arc γ of a given curve. Take an arbitrary polygonal line
σ : P1, P2, . . . , Pk from the set �(γ ). The length of the i th segment of the polyg-
onal line σ is equal to

Pi Pi+1 = |�r(ti+1) − �r(ti )|
=
√

[x(ti+1) − x(ti )]2 + [y(ti+1) − y(ti )]2 + [z(ti+1) − z(ti )]2.

Applying Lagrange’s formula to each of the functions x(t), y(t) and z(t), we
obtain

Pi Pi+1 =
√

[x ′(ξi )]2 + [y′(ηi )]2 + [z′(si )]2 �ti , (1.9)

where ti ≤ ξi ≤ ti+1, ti ≤ ηi ≤ ti+1, ti ≤ si ≤ ti+1, �ti = ti+1 − ti . Since
the functions x ′(t), y′(t) and z′(t) are continuous on a closed interval [a, b], by
Weierstrass’s first theorem they are bounded on this closed interval; i.e., there is
a real M such that |x ′(t)| < M, |y′(t)| < M , and |z′(t)| < M , for all t ∈ [a, b].
Using the last inequality we obtain

l(σ ) =
∑k−1

i=1
Pi Pi+1 ≤ √

3M
∑k−1

i=1
�ti = √

3M(b − a).

Since σ is an arbitrary polygonal line from the set �(γ ), it follows that

sup
σ∈�(γ )

l(σ ) ≤ √
3M(b − a) < ∞.

The proof of the first statement of the theorem is complete.
Now we shall prove the second statement of the theorem.
To each polygonal line σ : P1, P2, . . . , Pk regularly inscribed in γ there corre-

sponds some partition
T (σ ) : t1 < t2 < · · · < tk

of a closed interval [a, b], and conversely, to each partition T : t1 < t2 < · · · < tk
of a closed interval [a, b] there corresponds a polygonal line σ(T ) : P1, P2, . . . ,
Pk , where Pi is the endpoint of the vector �r(ti ). For each polygonal line σ(t)
define a number δ(T ) = maxi=1...k−1 �ti . We now prove that for any real ε > 0
there is a partition T : t1 < t2 < · · · < tk of the line segment [a, b] for which the
following inequalities hold simultaneously:
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|l(γ ) − l(σ (T ))| ≤ ε

3
, (1.10)∣∣∣l(σ (T )) −

∑k−1

i=1
|�r ′

(ti )|�ti
∣∣∣ ≤ ε

3
, (1.11)∣∣∣∣∑k−1

i=1
|�r ′

(t0)|�ti −
∫ b

a
|�r ′

(t)|dt

∣∣∣∣ ≤ ε

3
. (1.12)

Directly from the definition of the length of the curve γ and that it is rectifiable
follows the existence of a partition T1 of the line segment [a, b] such that inequal-
ity (1.10) holds. The sum ∑k−1

i=1
|�r ′

(ti )|�ti

is a Riemann integral sum for the integral
∫ b

a |�r ′
(t)|dt. Thus there is a real number

δ0 > 0 such that for every partition T of a line segment [a, b] with the property
δ(T ) < δ0, the inequality (1.12) holds. Now take a partition T2 of the line segment
[a, b] refining the partition T1 and satisfying the inequality (1.12). For the partition
T2, in view of the triangle inequality, the inequalities (1.10) and (1.12) hold. The
functions x ′(t), y′(t), and z′(t) are continuous and hence uniformly continuous
on [a, b]. Thus for any real ε1 > 0 there is a real number δ1 > 0 such that for
|t ′′ − t ′| < δ1, the inequalities

|x ′(t ′′) − x ′(t ′)| < ε1, |y′(t ′′) − y′(t ′)| < ε1, |z′(t ′′) − z′(t ′)| < ε1

hold. Now take a partition T3 of the line segment [a, b] refining the partition T2

and satisfying the inequality δ(T3) ≤ min{δ0, δ1}. For the i th segment Pi Pi+1 of
such a partition we have∣∣Pi Pi+1 − |�r ′

(ti )| · �ti
∣∣

=
∣∣∣√[x ′(ξi )]2 + [y′(ηi )]2 + [z′(ζi )]2 −

√
[x ′(ti )]2 + [y′(ti )]2 + [z′(ti )]2

∣∣∣�ti

≤
√

[x ′(ξi ) − x ′(ti )]2 + [y′(ηi ) − y′(ti )]2 + [z′(ζi ) − z′(ti )]2�ti ≤ √
3ε1�ti ,

where the next-to-last inequality holds in view of the triangle inequality. Summing
up these inequalities, we obtain∣∣∣l(σ (T3)) −

∑n(T3)−1

i=1
|�r ′

(ti )|�ti )
∣∣∣ ≤ √

3ε1(b − a),

where n(T3) is the number of segments of the partition T3. Select ε1 satisfying the
inequality

√
3ε1(b − a) < ε

3 . Thus, if we take the partition T3 in the role of the
partition T of the line segment [a, b], then the inequalities (1.10)–(1.12) will be
satisfied simultaneously. Thus, summing up these inequalities, we obtain∣∣∣∣l(γ ) −

∫ b

a
|�r ′

(t)| dt

∣∣∣∣ ≤ ε

3
+ ε

3
+ ε

3
= ε. (1.13)

Since ε > 0 is an arbitrary real number, the proof of second part of the theorem
is complete. �
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If a curve γ is piecewise smooth, then its length can be calculated as a sum of
lengths of its smooth parts. However, any piecewise regular curve has a smooth
(nonregular!) parameterization (prove).

An arbitrary curve is called rectifiable if every one of its closed arcs is rectifi-
able. For rectifiable curves one can define the so-called arc length parameteriza-
tion, which is based on the existence of the length of each closed arc. Let γ be an
oriented rectifiable curve. Take an arbitrary point P0 ∈ γ and associate with P0

the zero value of a parameter s. To any other point P ∈ γ there corresponds the
value of the parameter s that is equal to the arc length P0 P of the curve γ taken
with the sign (+) if P follows P0, and with the sign (−) if P precedes of P0. If
γ admits a smooth regular parameterization �r = �r(t), then its arc length parame-
terization is also smooth and regular. Indeed, by taking into account the sign, we
derive an arc length P0 P = s(t) = ∫ t

0 |�r(t)| dt . The function s(t) is differentiable
and ds

dt = |�r(t)| > 0. Hence, there is an inverse function t = t (s) and

dt

ds
= 1

|�r ′
(t (s))| . (1.14)

The arc length (or unit speed) parameterization of a curve γ : �r = �r(s) is
defined by the formula

�r(s) = �r(t (s)). (1.15)

From (1.15) follows the differentiability of the vector function �r(s) and

|�r ′
(s)| =

∣∣∣∣�r ′
(t) · dt

ds

∣∣∣∣ = |�r ′
(t)|

|�r ′
(t)| = 1. (1.16)

The last formula shows us that the given arc length parameterization is regular.
For the arc length parameterization �r = �r(s), the formulas for a tangent vector �τ ,
a principal normal vector �ν, and a binormal vector �β take the simplest form:

�τ (s) = �r ′
(s), �ν(s) = �r ′′

(s)

|�r ′′
(s)| ,

�β(s) = �r ′
(s) × �r ′′

(s)

|�r ′′
(s)| . (1.17)

In fact, the first formula follows from (1.16) and the second from the equality

〈�r ′
(s), �r ′

(s)〉′ = 2〈�r ′
(s), �r ′′

(s)〉 = 0.

From this it follows that �r ′′
(s) is orthogonal to the vector �r ′

(s), and finally, the
last formula follows from the definition of the vector �β(s).

1.4.1 Formulas for Calculations

1. If γ : �r = �r(t) = x(t)�i + y(t)�j + z(t)�k, a ≤ t ≤ b, then

l(γ ) =
∫ b

a
|�r ′

(t)| dt =
∫ b

a

√
x ′2 + y′2 + z2 dt.
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2. If γ : y = f1(x), z = f2(x), a ≤ x ≤ b, then

l(γ ) =
∫ b

a

√
1 + f ′

1
2 + f ′

2
2 dx .

3. If γ (t) : �r = �r(t) = x(t)�i + y(t)�j , a plane curve, then

l(γ ) =
∫ b

a

√
x ′2 + y′2 dt. (1.18)

4. If γ : y = f (x), a ≤ x ≤ b, then

l(γ ) =
∫ b

a

√
1 + f ′2 dx .

Example 1.4.1. (a) Consider a helix �r = [a cos t, a sin t, bt] with �r ′ = [−a sin t ,
a cos t, b], which in view of � (�r ′

(t), O Z) = const is also called a curve of a con-
stant slope. The speed is |�r ′

(t)| = √
a2 + b2 = c. Then s(t) = ∫ t

0 |�r ′
(t)| dt = ct .

So an arc length parameterization is given by �r1(s) = [a cos s
c , a sin s

c , b s
c ].

Finally, we compute the arc length of the helix period L = ∫ 2π

0 |�r ′
(t)| dt =

2π
√

a2 + b2. The length of the circle L = 2πa is the particular case b = 0.
(b) For a parabola �r = [t, t2/2] (a very simple curve geometrically) we obtain

s(t) = ∫ t
0

√
1 + t2 dt = (t

√
1 + t2 + ln(t +√

1 + t2))/2. However, it is a difficult
task to find t = t (s) from this equation.

1.5 Problems: Convex Plane Curves

We review some notions from the theory of convex plane curves. Recall that a
closed region D ⊂ R2 is convex if for every pair of its points A and B it contains
the entire line segment AB joining these points: A ∈ D, B ∈ D ⇒ AB ⊂ D.
A connected boundary component of a convex region is called a convex curve.
Another definition of a convex curve that is equivalent to above given can be
formulated as follows: a curve γ is convex if each of its points has a support line.
A straight line a through a point P of a curve γ is a support line to γ at P ∈ γ

if the curve is located entirely in one of the two half-planes determined by a.
A tangent line need not exist at each point of a convex curve, but for the points,
where the tangent line exists, it is also a support line.

Now we shall formulate and solve some problems about convex curves.

Problem 1.5.1. Every closed convex curve has length (i.e., it is a rectifiable
curve).

Solution. Let σ : P1, P2, . . . , Pk = P1 be an arbitrary closed polygonal line regu-
larly inscribed in a convex curve γ . If we pass a support line to γ through a point
Pi , then the points Pi−1 and Pi+1 are located on one side of this straight line, and
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hence the inner angle of a polygonal line σ at a vertex Pi is not greater than π .
Consequently, a polygonal line σ is convex. Since γ is a closed curve, then there
is a triangle � containing it, and hence containing σ , and from this follows the
inequality l(σ ) ≤ l(�). Since σ is an arbitrary regularly inscribed polygonal line
in γ , we have l(γ ) = supσ∈�(γ ) l(σ ) ≤ l(�). �

It turns out that the length of a closed convex curve can be calculated using
its orthogonal projections onto all straight lines through an arbitrary fixed point.
Denote by a(ϕ) the straight line through the coordinate system’s origin forming
an angle ϕ with the O X axis, and by dγ (ϕ) the length of the orthogonal projection
of the curve γ onto the straight line a(ϕ).

Problem 1.5.2. Deduce the formula l(γ ) = ∫ π

0 dγ (ϕ) dϕ.

Solution. Take an arbitrary line segment µ of length d . Without loss of generality
one may assume that it is located on the OY axis. Then dµ(ϕ) = d sin ϕ and∫ π

0
dµ(ϕ) dϕ =

∫ π

0
d sin ϕ dϕ = d(− cos ϕ)|π0 = 2d.

Now let σ : P1, P2, . . . , Pk = P1 be an arbitrary convex closed polygonal line.
Then dσ (ϕ) = 1

2

∑k−1
i=1 dPi Pi+1(ϕ) and∫ π

0
dσ (ϕ) dϕ = 1

2

∑k−1

i=1

∫ π

0
dPi Pi+1(ϕ) dϕ =

∑k−1

i=1
Pi Pi+1 = l(σ ).

By the way, we have proved our formula for polygonal lines. For an arbitrary
convex curve the formula of the problem follows from the previous formula and
from the definition of the length of a curve. �

Problem 1.5.3. Let γ1 : �r1 = �r1(s) and γ2 : �r2 = �r2(s) be smooth curves in R3, s
the arc length parameter. Denote by l(s) the length of a segment γ1(s)γ2(s). Then
we have the formula

dl

ds
= cos α1(s) + cos α2(s),

where α1(s) and α2(s) are the angles between the vector
−−−−−−→
γ2(s)γ1(s) and the vec-

tors �τ 1 = d�r1
ds ,

−−−−−−→
γ1(s)γ2(s), and �τ 2 = d�r2

ds , respectively.

Solution. If the equations of the curves γ1 and γ2 are written in the parametric
form x1 = x1(s), y1 = y1(s), z1 = z1(s) and x2 = x2(s), y2 = y2(s), z2 =
z2(s), respectively, then

l(s) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

and
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Figure 1.7. First variation of the distance l(s) = |γ1(s)γ2(s)|.

dl

ds
= (x2 − x1)(x ′

2 − x ′
1) + (y2 − y1)(y′

2 − y′
1) + (z2 − z1)(z′

2 − z′
1)√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

= (x1 − x2)x ′
1 + (y1 − y2)y′

1 + (z1 − z2)z′
1

l(s)

+ (x2 − x1)x ′
2 + (y2 − y1)y′

2 + (z2 − z1)z′
2

l(s)

=
〈 −−→γ2γ1

|γ2γ1| , �τ 1

〉
+
〈 −−→γ1γ2

|γ1γ2| , �τ 2

〉
= cos α1(s) + cos α2(s).

In the particular case that γ2 degenerates to a point, we have dl
ds = cos α1(s). If

the curves γ1 and γ2 are parameterized by an arbitrary parameter t , and l(t) =
γ1(t)γ2(t), then

dl

dt
= cos α1(t)

ds1

dt
+ cos α2(t)

ds2

dt
,

where s1(t) = ∫ t
0 |�r1(t)| dt and s2(t) = ∫ t

0 |�r2(t)| dt . �

Problem 1.5.4. Let γ be an arc of a smooth convex curve with endpoints A1 and
A2. Denote by l(h) the length of a chord A1(h)A2(h) on γ that is parallel to the
straight line A1 A2 and is located at distance h from it. Denote by α1(h) and α2(h)

the angles that the chord A1(h)A2(h) forms with γ . Then the following formula
holds:

dl

dh
= cot α1(h) + cot α2(h).

Figure 1.8. Derivative of the length of a chord A1(h)A2(h).
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Solution. Denote by B a point on γ where the tangent line is parallel to the
straight line A1 A2. The point B divides γ onto two arcs: γ1 from A1 to B and
γ2 from A2 to B. Let �r1 = �r1(s) and �r2 = �r2(s) be the arc length parameteriza-
tions of these arcs. Define two functions h1(s) and h2(s) on the curves γ1 and γ2

equal to the distances from the points �r1(s) and �r2(s), respectively, to the straight
line A1 A2. Then from the formula of Problem 1.5.3 it follows that dh1

ds = cos β1(s)
and dh2

ds = cos β2(s), where β1 = α1 − π
2 and β2 = α2 − π

2 or dh1
ds = sin α1(s),

dh2
ds = sin α2(s). From the formula of the same problem it follows that

dl

dh
= cos α1

ds

dh1
+ cos α2

ds

dh2
= cos α1

sin α1
+ cos α2

sin α2
= cot α1 + cot α2. �

In the rest of this section we will discuss the isoperimetric problem.

Problem 1.5.5 (Isoperimetric problem). Among all closed curves with fixed
length find one bounding a region of a maximal area.

This statement can be also reformulated in the following form: Let l be the
length of some closed curve γ , and let S be the area of a region D(γ ) bounded
by γ . Then any closed curve satisfies the isoperimetric inequality S ≤ l2/4π , and
equality holds if and only if γ is a circle.

Solution. Solve this problem under the assumption that an extremal curve exists.
Let γ be an extremal curve; i.e., a curve with length l, bounding a region of a
maximal area. Then it has the following properties:

(1) γ is a convex curve;
(2) if the points A1 and A2 divide γ into two arcs of equal lengths, then the chord

A1 A2 divides D(γ ) into two regions D1 and D2 of equal areas.

Proof of the first statement. Assume that the curve γ is not convex. Then there
exist two different points B1 and B2 on γ such that γ is entirely located on one
side of the straight line B1 B2, and the interior points of the line segment B1 B2 do
not belong to γ . The points B1 and B2 divide γ into two arcs γ1 and γ2. Together
with the line segment B1 B2 they form two closed curves σ1 and σ2, one of which,
say σ1, belongs to the region bounded by the other curve, σ2. Take a curve γ 1 that
is symmetric to γ1 with respect to the straight line B1 B2. Then γ = γ 1 ∪ γ2 is
a closed curve with the same length l that bounds a region D(γ ) ⊃ D(γ ), and
S(D(γ )) > S(D(γ )) holds, which contradicts the extremality of γ .

Proof of the second statement. Assume that the line segment A1 A2 divides
D(γ ) into two regions D1 and D2 with unequal areas. Suppose that S(D2) >

S(D1). Denote by D2 the region that is symmetric to D2 with respect to the
straight line A1 A2. The area of the region D = D2 + D2 is greater than the
area of D(γ ), and the length of its boundary curve is l, which again contradicts
the extremal property of γ .

We finish the solution of the problem with an elegant and beautiful argument
by E. Steinitz. Let A1 and A2 be two points dividing γ into two arcs with equal
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Figure 1.9. Isoperimetric problem solution.

lengths. Take an arbitrary point B �= A1, B �= A2. Then � A1 B A2 = 90◦. Actu-
ally, assume that there exists a point B ∈ γ such that � A1 B A2 �= 90◦. Denote by
δ1 the arc A1 B0 of γ , and by δ2 the arc B A2. The arc δ1 and the chord A1 B bound
a region K1, and the arc δ2 together with the chord B A2 bound a region K2.

Now construct a triangle � Ā1 B̄ Ā2 for which Ā1 B̄ = A1 B, Ā2 B̄ = A2 B, and
� Ā1 B̄ Ā2 = 90◦. Then the inequality S(� Ā1 B̄ Ā2) > S(�A1 B A2) holds. Now
construct a region D1 placing the regions K1, K2, respectively, along the legs of
� Ā1 B̄ Ā2, and a region D2 that is symmetric to it with respect to the straight line
A1 A2. The boundary of the region D = D1 ∪ D2 has the same length l, but its
area is greater than the area of D(γ ), which is a contradiction. Consequently, for
any point B ∈ γ with the property B �= A1, B �= A2 we have � A1 B A2 = 90◦,
but from this it follows that γ is a circle. The radius R of this circle is l/2π , and
its area is S(D(γ )) = l2/4π ; i.e., S = l2/4π . �

1.6 Curvature of a Curve

Let γ be a smooth curve in R3. Take on it a point P and another point P1. Denote
by �s the arc length P P1 on γ and by �θ the angle between tangent vectors �τ
and �τ 1 to γ at P and P1.

Definition 1.6.1. The limit

lim
P1→P

�θ

�s
= lim

�s→0

�θ

�s
,

if it exists, is called the curvature of the curve γ at the point P .

The curvature of a curve γ at a point γ (t) will be denoted by k(t).

Example 1.6.1. (a) Let γ be a straight line. Then �θ ≡ 0, and k = 0 holds at all
points of γ . (b) Let γ be a circle of radius R. Then �s = R�θ and lim�s→0

�θ

�s =
1
R ; i.e., the curvature of a circle is the same number 1

R at any of its points.

Later on, we shall prove that there are no plane curves of constant curvature
other than circles and straight lines. Definition 1.6.1 and Example 1.6.1 show us



20 1. Theory of Curves in Three-dimensional Euclidean Space and in the Plane

that the curvature of a curve is the measure of its deviation from a straight line in
a neighborhood of a given point, and that the curvature is greater as this deviation
is greater. The following theorem gives us sufficient conditions for the existence
of the curvature and a formula for its derivation.

Theorem 1.6.1. Let γ be a C2-regular curve. Then at each of its points there is a
curvature. If �r = �r(t) is a regular parameterization of γ , then k = |�r ′×�r ′′|

|�r ′|3 .

Figure 1.10. Triangle composed from the vectors �r ′(s1) and �r ′(s2).

Proof. Let �r = �r(s) be the arc length parameterization of γ , and let P1 =
�r(s1), P2 = �r(s2). Then �s = |s2 − s1|, and �θ is the angle between vectors
�r ′

(s1) and �r ′
(s2). Since |�r ′

(s1)| = |�r ′
(s2)| = 1, then 2 sin �θ

2 = |�r ′
(s1) − �r ′

(s2)|.
Thus

lim
s→0

�θ

�s
= lim

�θ→0

�θ

2 sin �θ

2

· lim
s→0

|�r ′
(s1) − �r ′

(s2)|
�s

= |�r ′′
(s1)|.

By these arguments, the first part of the theorem has been proved. Moreover, we
have the formula

k = |�r ′′
(s)| (1.19)

at a point γ (s). Now let �r = �r(t) be an arbitrary regular parameterization of γ .
Then

�r ′
s = �r ′

t

dt

ds
= �r ′

t (t)
1

|�r ′
(t)| ,

�r ′′
ss = �r ′′

t t

(
dt

ds

)2

+ �r ′
t

d2t

ds2
= �r ′′

t t

|�r ′
t |2

− �r ′
t

〈�r ′′
t t , �r ′

t 〉
|�r ′

t |4
,

and

k2 = |�r ′′
ss |2 = 〈�r ′′

t t , �r ′′
t t 〉

|�r ′|4 − 2〈�r ′′
t t , �r ′

t 〉2

|�r ′
t |6

+ 〈�r ′′
t t , �r ′

t 〉2

|�r ′
t |6

= |�r ′′
t t |2 · |�r ′

t |2 − 〈�r ′′
t t , �r ′

t 〉2

|�r ′
t |6

= |�r ′
t × �r ′′

t t |2
|�r ′

t |6
.
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From this follows

k = |�r ′′
t t × �r ′

t |
|�r ′

t |3
. �

The last formula shows us that the noncollinearity condition of the vectors �r ′
t

and �r ′′
t t has a geometrical sense; i.e., it does not depend on the choice of a pa-

rameterization. If at some point of γ the curvature is nonzero, then �r ′
t and �r ′′

t t are
nonparallel and conversely.

This remark allows us to give a geometric condition for the uniqueness of the
osculating plane to a curve γ at any of its points P , and to complete Theorem 1.3.2
by the following statement.

Theorem 1.6.2. A necessary and sufficient condition for the existence of a unique
osculating plane to a C2-regular curve γ at any of its points is that the curvature
of γ be nonzero at this point.

As we have just shown, a straight line has zero curvature at each of its points.
The converse statement is also true: if the curvature of a curve γ at each of its
point is zero, then γ is a straight line. Indeed, if k ≡ 0, then �r ′′

ss ≡ 0, from which
follows �r ′

s = �c1 and �r = �c1s + �c2.

1.6.1 Formulas for Calculations

(1) If γ : �r = �r(t) = x(t)�i + y(t)�j + z(t)�k, then

k =
√

(y′z′′ − z′y′′)2 + (z′x ′′ − x ′z′′)2 + (x ′y′′ − y′x ′′)2

(x ′2 + y′2 + z′2) 3
2

,

(2) If γ is a plane curve �r = �r(t) = x(t)�i + y(t)�j , then

k = |y′′x ′ − x ′′y′|
(x ′2 + y′2) 3

2

,

(3) If γ is a graph y = f (x), then

k = | f ′′(x)|
(1 + x ′2) 3

2

.

1.6.2 Plane Curves

The curvature of plane curves can be provided with a sign in the following way.
Draw an arbitrary continuous normal vector field �n(t) along a curve γ . Then the
curvature of γ at a point P = �r(t) is positive if the principal normal vector �ν(t)
of γ coincides with �n(t), and negative in the opposite case. For a closed simple
curve γ , the normal vector field �n(t) will be directed inside the region bounded
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Figure 1.11. The plane curve sign of curvature.

by γ . In this case, the curvature of a curve γ is positive at a point if the region is
convex “outwards,” and the curvature is negative if it is convex “inwards.”

In particular, by this definition of a curvature’s sign, a closed convex curve has
nonnegative curvature at each point. For oriented curves denote by α(t) the angle
between the vector �r ′

(t) and the direction of the O X axis, and define the cur-
vature’s sign as the rate at which the angle α(t) is changing, where we assume
signk = sign dα

dt . The value of the angle α(t) is defined by the following method:

the angle α(0) is equal to the angle measured from �i counterclockwise with sign
(+), or clockwise with sign (−). For other values of t the angle α(t) is defined
by continuity; it increases when the vector �r ′

(t) turns counterclockwise, and de-
creases otherwise.

In particular, if a plane curve γ is given explicitly as y = f (x), then it naturally
obtains an orientation (by increasing x-variable), and then the curvature’s sign
coincides with the sign of f ′′(x); i.e., in this case, k = f ′′

(1+ f ′2)3/2 . If a curve is

given by the arc length parameterization, then k(s) = dα
ds . If the curvature k of a

curve at any of its points is nonzero, then the real number 1/|k| is called the radius
of curvature of the curve at the given point and is denoted by R : R = 1/|k|. We
say that the radius of curvature is infinite if the curvature is zero; moreover, the
radius of curvature R can be is considered with the sign in correspondence with
the formula R = 1/k.

Plane curves are uniquely determined by their curvature k(s), given as a func-
tion of the arc length parameter s. But before we formulate this theorem, we shall
generalize the definition of a curve given above.

Due to Definition 1.2.1, we represent a regular curve as the differentiable im-
age of an open interval or a circle into R2 (or R3). Such a definition was suf-
ficient for studying the local properties of a curve. However, when one studies
the properties of a curve as a whole, inevitably there appear curves with points of
self-intersection. Moreover, curves defined by their geometrical properties also of-
ten have points of self-intersection, for example, elongated cycloids and hypocy-
cloids, lemniscates of Bernoulli, etc.

Thus, we shall hereinafter define a curve as a locally diffeomorphic image of
an open interval I or a circle S1 into R2 (or R3).

More precisely, two local diffeomorphisms ϕ1(t) and ϕ2(t) of an open interval
or a circle into R2 (or R3) are equivalent if there is a diffeomorphism t = t (τ ) of
an open interval or a circle onto itself such that ϕ1(t (τ )) ≡ ϕ2(t).
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The equivalency class of local diffeomorphisms of I or S1 will be called a
smooth regular curve. We shall treat a point of self-intersection of a smooth reg-
ular curve as two different points having two corresponding tangent vectors, two
main normal vectors, two values of the curvature, etc. If a curve γ has no points
of self-intersection, then it is simple.

Theorem 1.6.3. Let h(s) be an arbitrary continuous function on a line segment
[a, b]. Then there is a unique (up to a rigid motion) curve γ for which h(s) is the
curvature function and s is the arc length parameter.

Proof. Let the functions x(s), y(s), and α(s) satisfy the system of equations

dx

ds
= cos α(s),

dy

ds
= sin α(s),

dα

ds
= h(s).

Solving this system, we get

α(s) = α0 +
∫ s

0
h(s) ds, x(s) = x0 +

∫ s

0
cos α(s) ds, y(s) = y0 +

∫ s

0
sin α(s) ds.

The obtained curve γ : x = x(s), y = y(s) satisfies all the conditions of the
theorem. Prove that s is the arc length parameter. By formula (1.18) we have

l =
∫ s

a

√
(x ′)2 + (y′)2ds =

∫ s

a
ds = s − a.

Further, by formula (1.19),

|k(s)| = |x ′′(s)�i + y′′(s)�j | =
√

(x ′′)2 + (y′′)2 =
√

|α′|2 =
∣∣∣dα

ds

∣∣∣ = |h(s)|.

In view of the definition of the sign of curvature we obtain k(s) = dα
ds = h(s).

Finally, the coordinates of the initial point on the curve γ (s) are actually (x0, y0),
and the direction of the tangent vector �τ (0) forms the angle α0 with the O X axis.
Hence, if there exist two curves with equal curvatures, then a rigid motion that
matches their initial points and initial tangent vectors at this point also maps one
curve to the other. �

From Theorem 1.6.3 it immediately follows that if the curvature of a curve is
constant, then the curve is either a line segment or an arc of a circle. The equation
k = k(s) is called a natural equation of a curve. A simple analysis of the proof
of Theorem 1.6.3 shows that its statement remains true if a function h(s) is only
integrable. In particular, Theorem 1.6.3 holds if h(s) is a piecewise continuous
function with a finite number of discontinuity points of the first order. In this
case, γ with the above-mentioned function of curvature would be a smooth regular
curve having a finite number of arcs of class C2.

To a point at which two arcs of class C2 meet, correspond two values k− and
k+ that are the left- and right-hand limits of the curvature function. We say that
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the curvature of a curve γ at this point is not smaller than k0 (not greater than k0)
if min(k−, k+) ≥ k0 (max(k−, k+) ≤ k0).

In Section 1.7 if the opposite is not supposed, we shall refer to a curve γ from
this class; i.e., a smooth regular curve with a piecewise continuous curvature func-
tion k(s).

1.7 Problems: Curvature of Plane Curves

Let two plane curves γ1 and γ2 touch each other at a common point M , and let the
curvature sign of γ1 and γ2 be defined using the same normal vector �n. Denote by
k1 and k2 the curvatures of the curves γ1 and γ2 at M .

Problem 1.7.1. If k1 > k2, then there is a neighborhood U of a point M in which
a curve γ1 with the exception of the point M is located on one side of γ2 defined
by the direction of �n.

Figure 1.12. Curves with curvatures k1 > k2.

Solution. Introduce a rectangular coordinate system (x, y) on R2, locating its ori-
gin at M , and such that the direction of the OY axis coincides with �n. Then
in some neighborhood V of a point M the equations of γ1 and γ2 can be re-
duced to the explicit form y = f1(x) and y = f2(x). From the conditions of the
problem and the selection of a coordinate system it follows that f1(0) = f2(0),
f ′
1(0) = f ′

2(0) and k1(0) = f ′′
1 (0), k2(0) = f ′′

2 (0). We apply Taylor’s formula to
the function f (x) = f1(x) − f2(x). Since f (0) = f ′(0) = 0,

f (x) = 1

2
x2
[
(k1 − k2) + ō(x2)

x2

]
.

From the last formula follows the existence of a real ε > 0 such that for |x | < ε,
the expression (k1 − k2) + ō(x2)

x2 is positive. �

If a curve γ is closed, then it divides the plane into two parts, one of which is
compact. Denote this compact region by D(γ ).
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Problem 1.7.2. Let γ (s) : �r = �r(s) be an arc length parameterized plane curve of
class C2, and �(s) = |�r(s)|. Prove the formula

d2�

ds2

∣∣∣∣
s=0

= k cos α + cos2 α

�(0)
,

where k = k(0) is the curvature of the curve at γ (0), and α the angle between the
vector �r0 = �r(0)

|�r(0)| and the main normal �ν = �ν(0).

Figure 1.13. The second variation of l(s) = |�r(s)|.

Solution. Since � = �(s) = 〈�r, �r〉 1
2 , then d�

ds = 〈�r,�r ′〉
|�r| = 〈�r0, �r ′〉. From this we

obtain

d2�

ds2
= d

ds

( 〈�r, �r ′〉
|�r|

)
= 〈�r ′

, �r ′〉
|�r| + 〈�r, �r ′′〉

|�r| − 〈�r, �r ′〉2

|�r|3

= 1

�(0)
(1 − 〈�r0, �r ′〉2) + k〈�r0, �ν〉 = k cos α + cos2 α

�(0)
.

Note that the second variation formula is simplified if the origin of the coordi-
nate system is placed so that the vectors �r0 and �ν coincide. Then cos α = 1 and
d2�
ds2

∣∣
s=0 = k + 1

�(0)
. �

Problem 1.7.3 (Frenet formulas for plane curves). Prove that the formulas

dx

ds
= cos α(s),

dy

ds
= sin α(s),

dα

ds
= k

are equivalent to the equalities

d �τ
ds

= k(s)�ν,
d�ν
ds

= −k(s)�τ .

Solution. Since �τ = �τ (s) = cos α�i + sin α�j , but �ν = �ν(s) = − sin α�i + cos α�j ,
then

d �τ
ds

= α′(− sin α)�i + α′ cos α�j = α′�ν = k(s)�ν,

d�ν
ds

= −α′ cos α�i − α′ sin α�j = −α′ �τ = −k(s)�τ . �
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Problem 1.7.4. If a curve γ is closed, then there is a point on it where the curva-
ture is positive.

Solution. Let P be an arbitrary point in a region D(γ ). Take a sufficiently large
real R such that a disk with center at P and radius R contains γ . Decrease the
radius of this disk until the circle with center P and radius R0 is for the first time
tangent to γ at some point P1. The curvature of the circle is 1/R0, but at this point,
as follows from Problem 1.7.1, the curvature k(P1) of the curve γ is not smaller
than 1/R0. �

Problem 1.7.5. The curvature of a closed convex curve is nonnegative at each of
its points.

Solution. Follows from Problem 1.7.1. �

Problem 1.7.6. If a simple closed curve has a nonnegative curvature at each of its
points, then it is convex.

Figure 1.14. The curvature of a plane curve, Problem 1.7.6.

Solution. Assume that γ is not convex. Then there exist two points A and B on γ

such that the line segment AB lies outside of D(γ ), and γ is located on one side
of the straight line AB. The points A and B divide γ onto two arcs, γ1 and γ2.
One of the curves σ1 = γ1 ∪ AB and σ2 = γ2 ∪ AB contains D(γ ). Assume that
this curve is σ2. Find a point P on the arc γ1 with the maximal distance from the
straight line AB. Denote by Q the top of the perpendicular dropped from P onto
the straight line AB and let h = P Q, b = max(Q A, Q B). Let C(Q, R) be the
disk with center Q and radius R such that the inequality

R >
h2 + b2

2h
, (1.20)

holds and is sufficiently large that C(Q, R) contains σ1. Now move the cen-
ter O of this disk along the straight line P Q in the direction of the vector
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−→
P Q until C(Q, R) touches the curve σ1 at some point M . We shall prove that
M ∈ γ1 \ {A ∪ B}. In fact, if M = A or M = B, then O Q = O P − P Q < R −h,
and consequently, O Q2 + b2 < (R − h)2 + b2 < R2 in view of the inequality
(1.20). But O Q2 + b2 = R2, which is a contradiction. Hence M ∈ γ \ {A ∪ B}.
The curvature k1 of γ1 relative to σ1 at M , in view of Problem 1.7.1, is not smaller
than 1/R, but with respect to γ it is equal to −R1 < −1/k, contrary to the condi-
tion. �

Problem 1.7.7. If γ is a simple closed curve, then∫
γ

k(s) ds = 2π.

Solution. Inscribe in a curve γ a closed polygonal line σ with the vertices

A1, A2, . . . , An, An+1 (An+1 = A1)

such that the integral curvature of every arc γi = Âi Ai+1 of γ is not greater than
π . On each arc γi take a point Bi where the tangent line is parallel to the straight
line Ai Ai+1. Denote by αi the inner angle of the polygonal line σ at the vertex Ai .
Then

∫
γ̄i

k(s) ds = π −αi , where γ̄i is the arc of γ from Bi to Bi+1. Consequently,

∫
γ

k(s) ds =
n∑

i=1

∫
γ̄i

k(s) ds = nπ −
n∑

i=1

αi .

On the other hand,
∑n

i=1 αi = π(n − 2) = nπ − 2π . Hence∫
γ

k(s) ds = nπ − nπ + 2π = 2π. �

Problem 1.7.8. If γ is a closed curve whose curvature at each point is not smaller
than 1

a > 0, then

(1) l(γ ) ≤ 2πa, (2) the area S(D(γ )) ≤ πa2, (3) the diameter d ≤ 2a,

and equality holds for all the above cases if and only if γ is a circle of radius a.

Solution. From Problem 1.7.6 it follows that γ is convex. Let AB be the diameter
of γ . Find on γ two points C and D where the tangent lines are parallel to AB.
Drop perpendiculars C O1 and DO2 from the points C and D onto AB.

Prove statement (1). Take the arc BC and introduce the following coordinate
system: O1 is the origin, O1C is the O X axis, and O1 B is the OY axis. The
integral curvature of the arc C B is π/2, and hence

∫ l0

0 k(t) dt = π/2, where l0 is
the arc length of BC . Since k(t) ≥ 1/a, then l0

a ≤ π
2 or l0 ≤ πa/2, and equality

holds if and only if k(t) ≡ 1/a. Analogously, l(C A) ≤ πa/2, l(AD) ≤ πa/2,
and l(DB) ≤ πa/2. Hence l(γ ) ≤ 2πa.

The second statement of the problem follows from the isoperimetric inequality
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Figure 1.15. Solution of Problem 1.7.8.

S(D(γ )) ≤ l2

4π
≤ 4π2a2

4π
= πa2.

Prove the third statement of the problem. Write down the equation of the arc
C B of the curve γ in terms of its curvature k(t) (see Theorem 1.6.3) as

x = x0 +
∫ t

0
cos

[∫ s

0
k(t) dt − α0

]
ds,

y =
∫ t0

0
sin

[∫ s

0
k(t) dt − α0

]
ds.

From the definition of the coordinate system it follows that

α0 = π

2
, O1 B = y(l0) =

∫ l0

0
cos

[∫ s

0
k(t) dt

]
ds.

Since ∫ s

0
k(t) dt ≥ s

a

and

0 ≤ l0

a
≤
∫ l0

0
k(t) dt = π

2
,

then

cos
s

a
≥ cos

(∫ s

0
k(t) dt

)
and 0 < sin

l

a
≤ 1.

Thus

O1 B =
∫ l0

0
cos

(∫ s

0
k(t) dt

)
ds ≤

∫ l0

0
cos

s

a
ds = a sin

l0

a
< a.

Analogously, O1 A < a and AB = O1 A + O1 B < 2a. Here equality is possible
if and only if k(t) ≡ 1/a. �
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Formulate and solve the dual problem to Problem 1.7.8 for convex curves.

Problem 1.7.9 (Problem about a bent bow). Let the arcs of convex curves γ1

and γ2 have the same length l. Assume that their curvatures k1(t) and k2(t) obey
the inequality k1(t) ≥ k2(t) ≥ 0 and let

∫ l
0 k1(t) dt < π . Then γ1(0)γ1(l) ≤

γ2(0)γ2(l), and equality holds if and only if k1(t) ≡ k2(t).

Solution. Find a point γ1(s0) on the curve γ1 where the tangent line to γ1 is paral-
lel to the chord γ1(0)γ1(l). Draw an orthogonal coordinate system in the following
way: γ1(s0) is the origin, the O X axis coincides with a tangent line to γ1, and the
OY axis is orthogonal to the O X axis and directed to the chord γ1(0)γ1(l). Trans-
late γ2 so that the point γ2(s0) coincides with γ1(s0) and the tangent line to γ2 at a
point γ2(s0) coincides with the O X axis. Denote by B the point of intersection of
the OY axis with the chord γ1(0)γ1(l). The equations of the curves γ1 and γ2 in
our coordinate system have the form

γ1 :
{

x = x1(s) = ∫ s
s0

cos
[∫ s

s0
k1(t) dt

]
ds,

y = y1(s),

γ2 :
{

x = x2(s) = ∫ s
0 cos

[∫ s
s0

k2(t) dt
]

ds,
y = y2(s).

Then x1(l) = Bγ1(l), and x2(l) is equal to the orthogonal projection of the chord
γ1(s0)γ2(l) onto the O X axis. Prove that x1(l) ≤ x2(l). Since 0 <

∫ s
s0

k(t) dt < π

for s0 < s < l, then

x1(l) =
∫ l

s0

cos
[∫ s

s0

k1(t) dt
]

ds ≤
∫ l

s0

cos
[∫ s

s0

k2(t) dt
]

ds = x2(l).

Analogously, x1(0) = |Bγ (0)| is not greater than the projection of the chord
γ2(s0)x2(0) onto the O X axis. Thus γ1(0)γ1(l) is not greater than a sum of the
orthogonal projections of the chords γ2(0)γ2(s0) and γ2(s0)γ2(l), which at the
same time is not greater than γ2(0)γ2(l). Equality holds if and only if k1(s) ≡
k2(s). �

Problem 1.7.10. If γ is a closed curve whose curvature at each point is not
smaller than 1/a, then it can be rolled without sliding inside a disk of radius a.

Solution. First, consider the case k(t) > 1/a. Locate a circle C(a) of radius a
so that the origin O belongs to C(a) and the O X axis (through the point O) is
tangent to C(a). Take an arbitrary point P on γ and locate γ so that P = O and
the tangent line to γ at P coincides with the O X axis. Let P1 be a point on γ

such that the arcs γ1 and γ2 into which γ is divided by the point P have integral
curvature π .

Introduce the arc length parameter s (counted from P) on γ1 and C(a). Then
α(s) = ∫ s

0 k(t) dt is not greater than π . We show that γ1 ∩ C(a) = ∅. If not, let
P2 be the first point (starting from P) of intersection of γ1 with C(a). Write the
equations of the curves γ and C(a):
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Figure 1.16. Solution of Problem 1.7.10.

γ1 :
{

x = ∫ s
0 cos α(s) ds,

y = y1(s),
C(a) :

{
x = ∫ s

0 cos( s
a ) ds,

y = y2(s).

Then there exist numbers s2 and s1 such that∫ s2

0
cos α(s) ds =

∫ s1

0
cos

s

a
ds, P2 = γ (s2) = C(a)(s1).

Since α(s) = ∫ s
0 k(t) dt > s

a , then cos α(s) < cos s
a . Hence s2 > s1. But on

the other hand, the convex arc P P2 of γ1 lies entirely inside the arc P P2 of the
circle C(a) and the chord P P2. Thus s2 ≤ s1, which is a contradiction. Hence
γ1 ∩ C(a) = ∅.

Analogously, one can prove that γ2 ∩ C(a) = ∅. Now if k(t) ≥ 1/a, then from
the above, it follows that γ ∩ C(a + ε) = ∅ for every ε > 0. From this we get that
γ lies entirely inside of C(a). The problem is solved in view of the arbitrariness
of the point P . �

Formulate and solve the dual problem to Problem 1.7.10 for convex curves.

Problem 1.7.11. Let a curve γ touch the circle C(a) with center O and radius a
at the points A and B and lie entirely inside of C(a), and suppose � AO B < π .
Then the curvature at some point on γ is smaller than 1/a.

Solution. Consider a curve γ̄ , composed from the greater circular arc of C(a) and
of a curve γ . Assume that the curvature at all points of γ is not smaller than 1/a.

Figure 1.17. Solution of Problem 1.7.11.

Let P0 be a point on γ nearest to the center O of a circle C(a). Then O P0, by
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conditions of the problem, is smaller than a. Denote by O1 a center of a circle of
a radius a, which touches γ̄ at P0. Then this circle intersects γ , in contradiction
to the statement of Problem 1.7.10. �

Problem 1.7.12. Let a curve γ touch a circle C(a) of radius a at the points A and
B, located outside of C(a), and suppose � AO B < π . Prove that there is a point
on γ at which the curvature of γ is greater than 1/a.

Prove this problem on your own.

Figure 1.18. Solution of Problem 1.7.12.

In order to formulate the next problems, we give some definitions.

Let γ be any smooth closed convex curve. Denote by C(P, γ ) the circle satis-
fying the following conditions:

(1) C(P, γ ) touches γ at the point P ,

(2) C(P, γ ) ⊂ D(γ ),

(3) C(P, γ ) has the maximal radius for which conditions (1) and (2) hold.

Denote by C+(γ ) a circle of maximal radius contained in D(γ ). Let C−(γ )

be a circle of minimal radius satisfying the conditions (1)–(3) (for some P ∈ γ ).
Denote by R(P, γ ) the radius of C(P, γ ), and then write the radii of the circles
C+(γ ) and C−(γ ), respectively, as

R+(γ ) = sup
P∈γ

R(P, γ ), R−(γ ) = inf
P∈γ

R(P, γ ).

Problem 1.7.13. If C(P, γ ) ∩ γ = P , then the curvatures of γ and C(P, γ ) at
the point P are equal.

Solution. In view of Problem 1.7.1, the curvature kγ (P) of the curve γ at P is
not greater than 1/R(P, γ ). Assume that kγ (P) < 1/R(P, γ ). Take a monotonic
sequence of numbers Rn satisfying the conditions

kγ (P) <
1

Rn
<

1

R(P, γ )
, lim

n→∞ Rn = R(P, γ ).
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Figure 1.19. Solution of Problem 1.7.13.

Denote by C(P, γ, Rn) the circle of radius Rn that touches γ at P , in view of the
definition of C(P, γ ). Then C(P, γ, Rn) intersects γ at least at one more point
Pn �= P . Without loss of generality, assume that limn→∞ Pn = P̄ exists. In view
of Problem 1.7.1, the point P̄ cannot coincide with P . Consequently, P̄ �= P and
P̄ ∈ γ ∩ C(P, γ ), which contradicts the condition of the problem. �

Problem 1.7.14. On an arbitrary closed semicircle of a circle C+(γ ) there is a
point that belongs to γ .

Solution. If not, let C̄ be the closed semicircle of the circle C+(γ ) for which
C̄ ∩ γ = ∅ holds. Denote by O the center of C+(γ ), and by R+ its radius. Draw
the diameter a through the ends of C̄ . Denote by A1 and A2 the intersection points
of the straight line containing the diameter a with γ . The points A1 and A2 divide
γ into two arcs γ1 and γ2. Denote by γ1 one of these arcs satisfying the property
γ1 ∩ C+(γ ) = ∅. Let d0 = minγ (s)∈γ1(Oγ (s) − R+) > 0. Drop the perpendicular

Figure 1.20. Solution of Problem 1.7.14.

to the line a from the center O inside of the semicircle C̄ and then mark off the
line segment O O1 = d0/2 = δ on it. For γ (s) ∈ γ1.

O1γ (s) − R+ > Oγ (s) − d0

2
− R+ ≥ δ > 0.

For γ (s) ∈ γ2.

O1γ (s) − R+ =
√

(Oγ (s))2 + δ2 − 2Oγ (s) · δ cos α − R+,

where α(s) is the angle in �O O1γ (s) at the vertex O . From the definition of O1

it follows that α(s) ≥ π/2. Hence
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O1γ (s) − R+ ≥
√

(Oγ (s))2 + δ2 − R+ ≥
√

(R+)2 +δ2 − R+

= δ2√
(R+)2 + δ2 + R+

= δ1 > 0.

But then the circle with center at O1 and radius R = R++σ > R+ lies entirely in-
side of D(γ ), in contradiction to the definition of C+(γ ). Here σ = 1

2 min(δ, δ1).
The reader should consider the case in which C+(γ ) ∩ γ consists of exactly two
points. �

Problem 1.7.15. If γ is a closed convex curve of class C2, then the set C0 =
C−(γ ) ∩ γ is connected.

Solution. C0 is a closed set. Consequently, the set γ \ C0 is the union of open
arcs. If C0 is not connected, the number of these arcs γ1, γ2, . . . , γk is not smaller
than 2.

Two cases are possible:

(1) The integral curvature of one of these arcs is smaller than π .
(2) C0 consists of two diametrically opposite points P1 and P2 of the circle

C−(γ ).

In the first case there is a point P1 on the arc γ1 at which the curvature kγ (P1)

is greater than 1/R−(γ ), but then R(P1, γ ) < R−(γ ), in contradiction to the
definition of C−(γ ).

In the second case, for any point P ∈ γ, P �∈ C0, the value R(P, γ ) is not
greater than R−(γ ), because C(P, γ ) belongs, together with its curve γ , to the
strip of width 2R−(γ ) formed by the tangent lines to γ at the points P1 and P2.
Hence, in this case the equality R(P, γ ) = R−(γ ) holds for all P . But then
γ = C̄(γ ), in contradiction to the assumption of nonconnectedness. �

Formulate and solve the dual problems to Problems 1.7.14 and 1.7.15.

Problem 1.7.16 (The four-vertex theorem).1 Prove that for any closed convex
curve of class C2 the curvature function k(s) has at least two local minima and
two local maxima.

Note that a closed convex curve is sometimes called an oval. The converse of
the four-vertex theorem is also true (H. Gluck, 1971): a function on a circle can
be realized as the curvature of a closed plane curve exactly if it admits at least
two maxima separated by two minima.

Solution. If C+(γ ) �= γ , then C1 = C+(γ ) ∩ γ divides γ \ C1 into open arcs
γ1, γ2, . . . , γk , k ≥ 2. Moreover, either the integral curvature of at least two arcs,

1 There are various recent generalizations of four vertex theorem. See, for example, Sedykh, V.D.,
The four-vertex theorem of a plane curve and its generalizations. (Russian. English summary).
Soros. Obraz. Zh., Vol. 6, No. 9, 122–127, 2000; Tabachnikov, S. A four vertex theorem for poly-
gons. Am. Math. Mon., vol. 107, No. 9, 830–833, 2000.
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Figure 1.21. Four vertices on an ellipse.

say γ1 and γ2, is smaller than π , or C1 = {P1, P2}, where P1 and P2 are diametri-
cally opposite points on C+(γ ).

In the first case, on each of the arcs γ1 and γ2, in view of Problem 1.7.11, there
is at least one maximum, and between them there are at least two minima.

In the second case, consider the curve formed by the arc γ1 and the arc of
the circle C+(γ ). If for this curve C−(γ ) does not coincide with C+(γ ), then
at the point of tangency of C−(γ ) ⊂ γ1, the curvature of γ is greater than the
curvature of γ at the points P1 and P2. Consequently, there is a local maximum
of the curvature on the arc γ1. An analogous statement holds for the arc γ2. Again
we obtain at least two maxima and between them at least two minima. But if
C+(γ ) = C−(γ ), then γ is a circle. �

Another proof of the four-vertex theorem is based on Hurwitz’s theorem.

Theorem 1.7.1 (Hurwitz). Let a continuous function f (ϕ) have period 2π and
be orthogonal to cosine and sine in that∫ 2π

0
f (ϕ) sin ϕ dϕ = 0,

∫ 2π

0
f (ϕ) cos ϕ dϕ = 0.

Then on the closed interval [0, 2π ] it has at least two local minima and two local
maxima.

Proof (suggested by V.V. Ivanov). First, note that if on the interval of the period, a
function has, say, two points of local minimum, then it necessarily has two points
of local maximum. Indeed, two points of minimum marked on a circle divide it
into two arcs. Obviously, strictly inside of each of these arcs there is at least one
local maximum of f (ϕ). The same arguments provide that if a function has two
points of maximum, then it also has two points of minimum.

Owing to continuity and periodicity, the function f (ϕ) necessarily takes max-
imum and minimum values on this closed interval. Hence, we need to find in the
same interval only one more point of extremum. Assume the opposite; i.e., f (ϕ)

has no such points. Select the initial point on a circle so that for ϕ = 0, and
then also for ϕ = 2π , the function f (ϕ) reaches its maximum, and find a point
ϕ0 ∈ (0, 2π) where our function has a minimum. Then, obviously, it monotoni-
cally increases on the closed interval 0 ≤ ϕ ≤ ϕ0 and strongly decreases on the
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closed interval ϕ0 ≤ ϕ ≤ 2π . It is easy to see that under these circumstances the
integrals are negative:∫ ϕ0

0
f (ϕ) sin

(
ϕ − ϕ0

2

)
dϕ < 0,

∫ 2π

ϕ0

f (ϕ) sin
(
ϕ − ϕ0

2

)
dϕ < 0.

Indeed, the sine term figured in them is symmetric on both intervals of integration
relative to their midpoints ϕ0/2 and π + ϕ0/2; furthermore, on the region, where
the sine is positive the values of a function f (ϕ) are smaller than on the region,
where the sine is negative.

It is not difficult to translate these “geometric” arguments into the exact lan-
guage of formulas. For example, the first of above integrals can be written in the
form ∫ ϕ0/2

0

[
f
(
ϕ + ϕ0

2

)
− f

(
ϕ − ϕ0

2

)]
sin ϕ dϕ,

and we see clearly that it is negative. The second of the above integrals is trans-
formed analogously. Thus, the sum of above two integrals is also negative;∫ 2π

0
f (ϕ) sin

(
ϕ − ϕ0

2

)
dϕ < 0,

but by the condition it must be zero. �

Here is a second solution of Problem 1.7.16.

Proof (2). Assume without loss of generality that the curvature of the oval is
positive at each point. If L denotes the length of an oval and s is selected as an arc
length parameter, then in Cartesian coordinates (x, y) our curve can be described
by the equations

x = x(s), y = y(s), 0 ≤ s ≤ L .

From Theorem 1.6.3 it follows that

x ′(s) = cos ϕ(s), y′(s) = sin ϕ(s), 0 ≤ ϕ(s) < 2π,

and let ϕ(0) = 0. The curvature of the oval is k(s) = ϕ′(s) (see Theorem 1.6.3).
Since the curvature is positive, the angle ϕ = ϕ(s) is an increasing function of the
variable s, and hence an inverse function s = s(ϕ) exists. Writing for simplicity
k(ϕ) = k(s(ϕ)), we see that the curvature k is a continuous 2π -periodic function
of ϕ. Note also that a function s = s(ϕ) has a derivative at each point ϕ, which is
calculated by the formula

ds

dϕ
= 1

ϕ′(s(ϕ))
= 1

k(ϕ)
.

From this follows ds = dϕ

k(ϕ)
. Now we are ready to present the solution of Prob-

lem 1.7.16.
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The function 1/k(ϕ) is orthogonal (in the integral sense) to both the cosine and
the sine of ϕ. Indeed, an oval is a closed curve, and hence∫ L

0
x ′(s) ds =

∫ L

0
y′(s) ds = 0.

But on the other hand, these integrals are∫ L

0
cos ϕ(s) ds =

∫ 2π

0
cos ϕ

dϕ

k(ϕ)
and

∫ L

0
sin ϕ(s) ds =

∫ 2π

0
sin ϕ

dϕ

k(ϕ)
.

For finishing the proof, note that the functions k(ϕ) and 1/k(ϕ) have a common
extremum, and refer to Hurwitz’s theorem, Theorem 1.7.1. �

We shall formulate one more problem, whose solution (suggested by V.V.
Ivanov) is also based on Hurwitz’s theorem.

Imagine a convex polygon contained in a vertical plane. Call each of the sides
on which it can lean and remain on a horizontal straight line without overturning
under the action of gravity a base of the polygon. A base of a polygon is stable
if the polygon standing on it would not drop under small rotations in the vertical
plane in one or another direction. Clearly, at least one such base exists. But the
situation is much more interesting.

Problem 1.7.17 (The bases of a convex polygon). Any convex polygon has at
least two stable bases.

Proof. Introduce Cartesian coordinates (x, y) in the plane of a convex polygon
M , taking as origin the “center of mass” of our convex figure, which, obviously,
is located strictly inside of M . Note first that∫∫

M
x dx dy = 0,

∫∫
M

y dx dy = 0,

and second, we may describe the boundary of M in terms of corresponding polar
coordinates (ρ, ϕ) by an equation of the form ρ = ρ(ϕ), where the polar radius ρ

constitutes a positive continuous function of the angular variable ϕ running from
0 to 2π . Recomputing the above double integrals in polar coordinates, we easily
obtain two new equalities,∫ 2π

0
�3(ϕ) cos ϕ dϕ = 0,

∫ 2π

0
�3(ϕ) sin ϕ dϕ = 0.

Hence, by Hurwitz’s theorem, the cube of the polar radius, and so the polar radius
itself, has two minima. From elementary geometrical considerations it is clear that
these two values of the polar radius show us in what directions the rays from the
origin to the sides of a polygon must be drawn in order to intersect the interiors of
these sides exactly in a right angle. Such sides of the polygon will be the required
stable bases. �
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As we see from the solution of the problem, it remains true for arbitrary
bounded convex regions if together with “bases” we speak about stable “points
of support.”

Problem 1.7.18. Prove that if there is a circle intersecting an oval at 2n points,
then there exist 2n vertices on this oval.

Hint. Use Problems 1.7.16 and 1.7.17.

Problem 1.7.19. Let γ be a simple regular closed curve of class C2. Denote by
D(γ ) the region bounded by γ . Prove that if the curvature k(P) of γ at each point
P ∈ γ satisfies the inequality |k(P)| ≤ 1/a, then there is a disk of radius a lying
entirely in D(γ ).

Problem 1.7.19 was formulated by A. Fet and solved by V. Ionin.

Hint. For solving the problem one needs to consider and study the properties of
the “central” set of a curve γ . The central set M of the region D(γ ) (a curve γ )
consists of the points defined in the following way: Let Q ∈ γ . Denote by C(Q)

the disk of a maximal radius that touches γ at the point Q and inside D(γ ). The
set of the centers of the disks C(Q), when Q runs along the whole curve γ , forms
the set M .

Problem 1.7.20. The integral curvature of an infinite convex curve γ is not
greater than π .

Solution. Let γ (s) be the arc length parameterization of a curve γ , counted from
one of its points. We show that for any s1 and s2, the inequality

∫ s2

s1
k(s) ds ≤ π

holds.
If not, let s1 and s2 be numbers such that

∫ s2

s1
k(s) ds = ω1 > π . Draw the

straight lines a1 and a2 that touch γ at the points γ (s1) and γ (s2), respectively.
Since a1 and a2 are nonparallel, they intersect at some point A. Thus the region D
bounded by the line segments γ (s2)A, γ (s1)A, and the arc ̂γ (s1)γ (s2) of γ that is
defined by the inequalities s1 ≤ s ≤ s2 is a convex compact region containing the
whole curve γ , contradicts the condition of the problem. Consequently, for any s1

and s2, the inequality
∫ s2

s1
k(s) ds ≤ π holds. �

Problem 1.7.21. If the curvature function k(s) of a curve γ (s) (−∞ < s < ∞)

is a positive strictly increasing function, then γ has no points of self-intersection.
Here s is an arc length parameter starting from some point of γ .

Solution. If not, let s1 and s2 be real numbers such that γ (s1) = γ (s2) and the arc
σ = ̂γ (s1)γ (s2) of γ (s) has no other points of self-intersection for s1 ≤ s ≤ s2.
Then the curve σ bounds some convex region D. Let C(0, R) be a disk of a
maximal radius inscribed in D, the point O be its center, and R its radius.

From Problem 1.7.12 it follows that the circle C(0, R) touches σ at least at two
points γ (s3) and γ (s4), where s1 < s3 < s2 and s1 < s4 < s2, and � γ (s3)Oγ (s4)

is not greater than π . But then from Problems 1.7.1 and 1.7.10 it follows that at
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γ (s3) and γ (s4), the curvature of σ is not greater than 1/R, and there is an inner
point on the arc ̂γ (s3)γ (s4) of the curve σ for which the curvature is greater than
1/R. This is a contradiction, because k(s) is an increasing function. �

Problem 1.7.22. Under the conditions of Problem 1.7.19,

lim
s→∞ k(s) = a, lim

s→−∞ k(s) = b

(the cases a = 0 and b = ∞ are not excluded). Then there exist circles C1(1/b)

and C2(1/a) with radii 1/b and 1/a, respectively, such that a curve γ winds in a
spiral onto C1(1/b) from outside, and onto C2(1/a) from inside.

Hint. Solve on your own. Note that for a = 0 the curve γ has an asymptote,
and for b = ∞ it winds in a spiral onto a point.

1.7.1 Parallel Curves

Let γ (t) be a smooth regular parameterization of a curve γ , and let �e(t) be a
continuous vector field of unit normals along γ , a ≤ t ≤ b. Draw a set γd by
marking from each point γ (t) the line segment of length |d| in the direction of
�e(t) if d > 0, and in the direction −�e(t) if d < 0. A set γd is called a parallel curve
corresponding to the curve γ . This set is not necessarily a curve. For example, a
curve γa parallel to a circle of radius a is a point. Moreover, γd is not necessarily
a regular curve at all its points. The regularity conditions of γd are formulated
below, in Theorem 1.7.2. It is easy to obtain the equations of γd if the equations
of γ are known. Let x = x(t), y = y(t) be the equations of γ , and t an arc length
parameter, a ≤ t ≤ b. Then the equations of γd are{

x = xd(t) = x(t) ± y′(t)d,

y = yd(t) = y(t) ∓ x ′(t)d,
(1.21)

where the signs (+, −) or (−, +) depend on the choice of direction of the vector
field �e(t). Define the curvature signs of γ and γd with the help of the vector field
�e(t).
Theorem 1.7.2. If a curve γ with parameterization γ (t), a ≤ t ≤ b (a = −∞,
b = ∞ allowed), is regular of class C2, and for all t ∈ [a, b] the inequality
d �= 1/k(t) holds, then the parallel curve γd is regular, and its curvature kd(t) is
related to the curvature k(t) of γ by the formula

kd(t) = k(t)

1 − k(t)d
.

Proof. Let x = x(t) and y = y(t) be the equations of γ and assume that t is
the arc length parameter, and �e(t) coincides with the vector field (−y′(t), x ′(t)).
Then the equations of γd take the form
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Figure 1.22. Parallel curves.{
x = xd(t) = x(t) − y′(t)d,

y = yd(t) = y(t) + x ′(t)d.

Consequently, {
x ′

d(t) = x ′(t) − y′′(t)d,

y′
d(t) = y′(t) + x ′′(t)d.

From the rule for the choice of the sign of the curvature k(t) of γ , it follows that

x ′′(t) = −k(t)y′, y′′(t) = k(t)x ′(t).

Indeed, if the components �ν1(t) and �ν2(t) of the principal normal vector �ν of γ

are given by the equalities �ν1 = −y′, �ν2 = x ′, then the curvature k(t) of γ at the
point γ (t) is positive, and from Frenet formulas we obtain

x ′′ = −|k|y′ = −ky′, y′′ = |k|x ′ = kx ′.

If �ν1 = y′, �ν2 = −x ′ hold, then the curvature k(t) of γ at the point γ (t) is
negative, and again from the Frenet formulas we obtain

x ′′ = |k|y′ = −ky′, y′′ = −|k|x ′ = kx ′.

Finally, we have {
x ′

d = x ′ − y′′d = x ′(1 − kd),

y′
d = y′ + x ′′d = y′(1 − kd).

(1.22)

From this it follows that

(x ′
d)

2 + (y′
d)

2 = (1 − kd)2(x ′2 + y′2) = (1 − kd)2 �= 0

in view of condition of the theorem. The first statement of the theorem is proven.
Now find the curvature kd(t) of the parallel curve γd at a point γd(t). Take a

point γd(t + �t) and find the angle �ϕ(t) between the tangent lines to γd at the
points γd(t) and γd(t + �t). As is seen from formulas (1.22), the angle �ϕ(t)



40 1. Theory of Curves in Three-dimensional Euclidean Space and in the Plane

is equal to the angle �θ(t) between the tangent lines to γ at the points γ (t) and
γ (t + �t):

�ϕ(t) = �θ(t). (1.23)

The arc length �s of a curve γd between the points γd(t) and γd(t + �t) is given
by the formula

�s =
∫ t+�t

t
|1 − kd|dt. (1.24)

So from (1.23) and (1.24) it follows that

|kd(t)| = lim
�t→0

�ϕ(t)

�s
= lim

�t→0

�θ(t)

�t
· lim

�t→0

�t

�s
= |k(t)|

|1 − kd| . (1.25)

From the definition of the signs of the curvatures k(t) and kd(t) it is not difficult to
deduce that for 1−kd > 0 the signs of k(t) and kd(t) coincide, but for 1−kd < 0
these signs are opposite. Hence from (1.25) the second statement of the theorem
follows. �

Remark 1.7.1. If we define R(t) and Rd(t) by the formulas

R(t) = 1

k(t)
, Rd(t) = 1

kd(t)
,

then the last statement of Theorem 1.7.2 takes the form Rd = R − d .

Problem 1.7.23. Let γ (t) (−∞ < a ≤ t ≤ b < ∞) be a regular parameteriza-
tion of a curve γ of the class C2. Prove that if

|d| < inf
t∈[a,b]

1

k(t)
,

then γd ∪ γ−d can be defined as a set of points whose distances from γ are equal
to |d|.

Hint. If not, use Theorem 1.7.2 to obtain a contradiction.

Problem 1.7.24. Find a smooth regular curve, for which the parallel curves γd

have nonregular points for every d .

1.7.2 Evolutes and Evolvents

For regular curves of class C2 one may define a curve called an evolute of a given
curve γ .

Let γ (t) (a ≤ t ≤ b) have the property k(t) �= 0 for all t ∈ [a, b]. Then at each
point of γ the principal normal vector �ν(t) is defined. Mark off the line segment
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Figure 1.23. Evolute of a curve.

of the length R(t) = 1/k(t) from each point γ (t) in the direction of �ν(t). The
ends of these line segments form a set of points called the evolute of γ .

The evolute of a curve is not necessarily a curve. So for example, the evolute
of a circle is a point. From Theorem 1.7.2 it follows that the locus of singular (not
regular) points for the parallel curves is the evolute.

In the general case, when the condition k(t) �= 0 is not satisfied at all points
of γ , we may define the evolute of a curve γ independently for each of its arcs
where the condition k(t) �= 0 holds.

If the equations of a curve γ are given by the arc length parameterization x =
x(t), y = y(t), then the equations of the evolute are written in the following form:{

x = x̃(t) = x(t) + R(t)�ν1(t),

y = ỹ(t) = y(t) + R(t)�ν2(t),
(1.26)

where �ν1(t) and �ν2(t) are the components of the principal normal vector �ν(t).
Find the condition for a given parameterization of an evolute to be regular. Dif-
ferentiating (1.26) with respect to t , we obtain{

x̃ ′(t) = x ′(t) + R(t)�ν ′
1(t) + R′(t)�ν1(t),

ỹ′(t) = y′(t) + R(t)�ν ′
2(t) + R′(t)�ν2(t).

(1.27)

By the Frenet formulas, �ν1
′(t) = −kx ′(t), �ν ′

2(t) = ky′(t). Hence{
x̃ ′(t) = R′(t)�ν1(t),

ỹ′(t) = R′(t)�ν2(t).
(1.28)

From (1.28) it follows that (x̃ ′)2 + (ỹ′)2 = (R′)2. Consequently, if R′(t) �= 0,
then (x̃(t), ỹ(t)) is a regular point of the evolute. From equalities (1.28) the main
property of the evolute follows: a tangent line to the evolute at a point (x̃(t), ỹ(t))
is a normal line to the curve γ at the point (x(t), y(t)).

So, the following picture is obtained.

1. If along the arc γ (t) (a ≤ t ≤ b), k(t) �= 0 and k ′(t) �= 0 hold then an
evolute is a regular curve.

2. At a point γ (t0) where k(t0) = 0, a normal line to γ is the asymptote to both
branches of an evolute.
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3. If at a point γ (t0) we have k(t) �= 0, but k ′(t) = 0 and k ′′(t) �= 0, then
(x̃(t0), ỹ(t0)) is a singular point of an evolute. At this point both regular arcs
of the evolute meet: they have a common tangent line and are located in op-
posite half-planes from it.

The case k ′(t0) = k ′′(t0) = 0 requires further investigation and is not treated
here.

Now calculate the arc length s of the evolute between points with the parame-
ters t1 and t2,

s =
∫ t2

t1

√
x̃ ′2 + ỹ′2dt =

∫ t2

t1

R′(t) dt = R(t2) − R(t1);

i.e., the arc length is equal to the difference in the radii of curvature of γ at the
points γ (t2) and γ (t1).

Example 1.7.1. The evolute of the parabola x = t, y = at2 is the half-cubic
(Neil’s) parabola xev = −4a2t3, yev = 3at2+ 1

2a . Its implicit equation is 27x2 =
16a

(
y − 1

2a

)3
.

Definition 1.7.1. The evolvent of a curve γ is a curve γ̄ such that its evolute is γ .

Figure 1.24. Evolvent of a curve.

Let x = x(t), y = y(t) be the arc length parameterization of γ . Then the
equations of the evolvent γ̄ may be written in the form{

x = x̄(t) = x(t) + a(t)x ′(t),
y = ȳ(t) = y(t) + a(t)y′(t). (1.29)

Find the function a(t) from the orthogonality of the vectors (x ′(t), y′(t)) and
(x̃ ′(t), ỹ′(y)). Since

x̃ ′(t) = x ′(t) + a(t)x ′′(t) + a′(t)x ′(t), ỹ′(t) = y′(t) + a(t)y′′(t) + a′(t)y′(t),

we obtain
x ′2(1 + a′) + y′2(1 + a′) = 0,

or
a′(t) = −1,
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from which it follows that a(t) = −t + C . So, the equations of an evolvent γ̃ (t)
are the following:

x̃(t) = x(t) + x ′(t)(C − t), ỹ(t) = y(t) + y′(t)(C − t).

This means that for a given curve γ there is a whole family of evolvents depend-
ing on a constant C . Visually, the construction of an evolvent can be described
by the following method. First, let a nontensional thread wind around on a part
of a curve. If then the thread is unwound (maintaining tension), its endpoint’s
trajectory forms an evolute.

1.7.3 Curves of Constant Width

Let γ be a convex closed smooth curve. Draw a tangent line a to it through some
point Q ∈ γ . Since the curve γ is convex and closed, there is a unique straight
line ā that is parallel to a but different from it and that is tangent to γ . The whole
curve γ is located between these straight lines. Thus a real number d(a) equal to
the distance between a and ā is called the width of the curve γ in the direction of
the straight line a.

A convex closed smooth curve γ is called a curve of constant width d if its
width does not depend on the direction of the straight line a: d(a) = d. Here is
one example of a curve of constant width that differs from a circle.

Let �A1 A2 A3 be an equilateral triangle with a side a: A1 A2 = A1 A3 =
A2 A3 = a. Draw two circles with centers at A1, and radii r and r + a, and
then take their arcs σ1 and σ̄1 located outside of �A1 A2 A3 between the straight
lines A1 A3 and A1 A2. Analogously, the arcs σ2, σ̄2 and σ3, σ̄3 are defined. The

Figure 1.25. Curve of constant width.

union σ1σ̄2σ3σ̄1σ2σ̄3 of these arcs forms a smooth convex curve of constant width
a + 2r . It is also possible to define the notion of a curve of constant width for
piecewise smooth convex curves if the tangent lines are replaced by supported
lines. An example of such a curve is a Rello triangle.2

2 For recent investigations about curves and bodies of constant width see V. Boltyanski, H. Martini
and P.S. Soltan, Excursions into Combinatorial Geometry. Universitext. Berlin: Springer, 1997.
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It may be constructed by the following method: draw a circle of radius a with
the center at the vertex A1 of �A1 A2 A3, and take its smaller arc σ1 between A2

and A3. Analogously the arcs σ2 and σ3 are drawn. The union of arcs σ1σ2σ3

forms a convex closed curve of constant width a. The points A1, A2 and A3 are
the vertices of this curve, see Figure 1.26.

Figure 1.26. A Rello triangle.

Problem 1.7.25. Prove that the length of a curve of constant width a is πa.

Hint. Use the result of Problem 1.5.2.

Problem 1.7.26. Prove that if γ is a smooth curve of constant width b, and Q1

and Q2 are the points where the straight lines a1 and a2 touch γ , then the line
segment Q1 Q2 is orthogonal to a1 and a2, and consequently, Q1 Q2 = b.

Solution. Let P1 and P2 be the points of γ for which the length of the line segment
P1 P2 is equal to the diameter d of γ . Then the tangent lines to γ at the endpoints
of this diameter are orthogonal to the line segment P1 P2. Consequently, d = b.
Now let the points Q1 and Q2 have the properties given in the conditions of the
problem. Then

Q1 Q2 ≤ d = P1 P2 = b,

but also

Q1 Q2 ≥ b = d.

From these inequalities it follows that Q1 Q2 = b, and hence Q1 Q2 is orthogonal
to a1 and a2. �

From the statements of the last problem it follows that at each point Q ∈ γ there
is a unique point Q∗ such that the tangent lines to γ at Q and Q∗ are parallel. The
points Q and Q∗ are called diametrically opposite points on the curve γ .

Problem 1.7.27. If γ is a curve of class C2 of the constant width a and the cur-
vatures of γ at diametrically opposite points are equal, then γ is a circle of diam-
eter a.

Hint. Use the result of Theorem 1.7.2.
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Problem 1.7.28. Find analytic functions h such that the curve defined by the
equations

x = h(θ) cos θ − dh

dθ
sin θ, y = h(θ) sin θ + dh

dθ
cos θ,

is a curve of constant width.

Hint. One of these functions is h(θ) = a + b cos(3θ) (0 < 8b < a), where a and
b are real constants.

1.8 Torsion of a Curve

Let a curve γ be of class C2 and have nonzero curvature at a point P1. Then,
by continuity, the curvature of γ is nonzero on some neighborhood of P1. Take
an arbitrary point P2 in this neighborhood. By Theorem 1.6.2 there exist unique
osculating planes α1 and α2 at the points P1 and P2. Denote by �θ the angle
between them, and by �s the length of the arc P1 P2 of γ .

Definition 1.8.1. The value

κ = lim
P2→P1

�θ

�s
= lim

�s→0

�θ

�s
,

if it exists, is called the absolute torsion of the curve γ at the point P1.

If γ is a plane curve, then �θ ≡ 0 and the absolute torsion κ = 0. Below,
we shall also prove the converse statement: if a curve γ has nonzero curvature at
each of its points and it has zero torsion, then γ is a plane curve.

The following theorem gives us sufficient conditions of the existence of torsion
and a formula to derive it.

Theorem 1.8.1. If γ : �r = �r(t) is a regular curve of class C3, then at each of its
points with nonzero curvature there is an absolute torsion κ , and

κ = |(�r ′ · �r ′′ · �r ′′′
)|

|�r ′ × �r ′′| .

Proof. Let �r = �r(s) be the arc length parameterization of the curve. Assume that
the curvature of γ at the point P1 = �r(s1) is nonzero. Then there is a real number
ε > 0 such that for s ∈ (s1 − ε, s1 + ε) the curvature of γ at the points �r(s) is also
nonzero. The angle between the osculating planes at the points P1 = �r(s1) and
P2 = �r(s2) for s2 ∈ (s1 − ε, s1 + ε) is equal to the angle between the binormal
vectors �β1(s) and �β2(s). Thus, |�β2(s2) − �β(s1)| = 2 sin �θ

2 . From this it follows
that

lim
�s→0

�θ

�s
= lim

�θ→0

�θ

2 sin �θ

2

· lim
s2→s1

|�β(s2) − �β(s1)|
|s2 − s1| = |�β ′

(s1)|.
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It remains to prove the existence of �β ′
(s1), where �β(s) = �r ′×�r ′′

|�r ′×�r ′′| .
The denominator of this expression for s = s1 is nonzero, since k(s1) =

|�r ′×�r ′′|
|�r ′|3 �= 0. Thus from the conditions of the theorem and the differentiation rule

for quotients the existence of �β ′
(s1) follows. Transform the formula κ = |�β ′

(s1)|
to a more convenient form for calculations. By definition, �β(s) = �τ (s) × �ν(s).

Hence �β ′ = �τ ′ × �ν + �τ × �ν ′. Since �τ ′ = �r ′′
ss , but �ν = �r ′′

ss

|�r ′′
ss | , then �τ ′ × �ν = 0 and

�β ′ = �τ × �ν ′. From this it follows that �β ′⊥�τ , and also that �β ′⊥�β. Hence �β ′ = λ�ν,
where |λ| = |�β ′|. So, κ = |�β ′| = |〈�β ′

, �ν〉|, or κ = |〈�τ × �ν ′
, �ν〉| = |(�τ · �ν · �ν ′

)|.
Find �ν ′:

�ν = �r ′′
ss

|�r ′′
ss |

.

Hence �ν ′ = �r ′′′
sss

|�r ′′
ss | + A�r ′′, where A is some function of s. Substituting the expression

for �ν ′ into the formula for κ , we obtain

κ = (�τ · �ν · �ν ′
)

|�r ′′| = |(�r ′ · �r ′′ · �r ′′′
)|

|�r ′′| .

If �r = �r(t) is an arbitrary parameterization of class C3, then

�r ′
s = �r ′

t

|�r ′
t |

, �r ′′
ss = �r ′′

t t

|�r ′
t |2

+A�r ′
t , �r ′′′

sss = �r ′′′
t t t

|�r ′
t |3

+B�r ′′
t t+C�r ′

t , |�r ′′
ss | = |�r ′

t × �r ′′
t t |

|�r ′
t |3

,

where A, B, and C are some functions of t . Thus

κ = |(�r ′
t · �r ′′

t t · �r ′′′
t t t )|

|�r ′
t × �r ′′

t t |2
. �

One may define the sign of the torsion for curves γ ⊂ R3: as we saw before,
|�β ′| = |〈�β ′

, �ν〉|. Define the torsion by the formula κ = −〈�β ′
, �ν〉. Geometrically,

this means that the torsion is positive if while moving along a curve the basis
{�τ , �ν, �β} turns around �τ by the right-hand rule; i.e., clockwise as viewed from
the initial point of the vector �τ .

Exercise 1.8.1. Find all curves of nonzero curvature and of zero torsion at all their
points.

Solution. Let κ = 0. Since |�β ′| = κ for the arc length parameterization, then
�β ′ = 0. Consequently, �β(s) = �β0. Moreover, we already know that 〈�β, �τ 〉 = 0
or 〈�r ′

, �β0〉 = 0, from which it follows that 〈�r(s) − �r(s0), �β0〉 = const. Hence the
curve γ is located in a plane orthogonal to the vector �β0; i.e., γ is a plane curve.

Note that the condition k �= 0 is not superfluous. Consider a curve γ , consisting
of two arcs γ1 and γ2; γ1 is given by the equations y = x4, z = 0 (0 ≤ x <

∞), and γ2 is given by the equations y = 0, z = x4 (−∞ < x ≤ 0). The
curvature of the obtained curve γ is defined at all points and is zero only at the
point M0(0, 0, 0); the torsion is zero at every point where it is defined. Meanwhile,
this γ is not a plane curve. �
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1.8.1 Formulas for Calculations

κ = (�r ′ · �r ′′ · �r ′′′
)

|�r ′′|2 for the arc length parameterization �r = �r(s),

κ = (�r ′ · �r ′′ · �r ′′′
)

|�r ′ × �r ′′|2 for an arbitrary parameterization �r = �r(t).

1.9 The Frenet Formulas and the Natural Equation
of a Curve

For all points of a regular curve γ of class C3, where the curvature is nonzero,
three mutually orthogonal unit vectors �τ , �ν, and �β (forming a basis) are uniquely
defined. Hence, any vector can be presented as their linear combination. In par-
ticular, the vectors �τ ′, �ν ′, and �β ′

can be decomposed in terms of �τ , �ν, and �β. If
a parameterization of a curve is natural, then the coefficients of the decomposi-
tion have a geometrical sense, and they are expressed using the curvature and the
torsion. Indeed,

�τ (s) = �r ′
(s), �τ ′ = �r ′′ = |�r ′′| · �r ′′

|r ′′| = k�ν,

and �β ′ = λ�ν, but from the definition torsion sign it follows that λ = −κ . Hence,

�β ′ = −κ�ν.

The three vectors {�τ , �ν, �β} form an orthogonal frame. Hence,

�ν = �β × �τ , �β = �τ × �ν, �τ = �ν × �β,

�ν ′ = �β ′ × �τ + �β × �τ ′ = −κ(�ν × �τ ) + k(�β × �ν) = κ �β − k�τ .

In such a way, we obtain formulas that are called the Frenet formulas:⎧⎨⎩
�τ ′ = k�ν,

�ν ′ = −k�τ +κ �β,

�β ′ = −κ�ν,

(1.30)

or in matrix form, ⎛⎝ �τ ′

�ν ′

�β ′

⎞⎠ =
⎛⎝ 0 k 0

−k 0 κ

0 −κ 0

⎞⎠⎛⎝ �τ
�ν
�β

⎞⎠ .

Using the Frenet formulas, it is easy to find the orthogonal projections of a curve
onto the osculating plane (�τ , �ν), onto the normal plane (�ν, �β), and onto the rec-
tifying plane (�τ , �β). Introduce a Cartesian coordinate system with the origin at
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a given point P = �r(s0) and with the coordinate axes directed along �τ , �ν, and
�β; i.e., �τ = �i, �ν = �j , �β = �k. Apply Taylor’s formula to the vector function
�r = �r(s):

�r(s) = �r(s0)+�r ′
(s)(s −s0)+ 1

2
�r ′′

(s0)(s −s0)
2 + 1

6
�r ′′′

(s0)(s −s0)
3 +�o((s −s0)

3).

Since

�r(s0) = 0, �r ′
(s0) = �τ (s0)�i, �r ′′

(s0) = k�ν = k �j , (1.31)

�r ′′′
(s0) = k ′�ν(s0) + k�ν ′

(s0) = k ′�ν(s0) + k(−k�τ (s0) + κ �β(s0))

= −k2�i + k �j + kκ �k,

then ⎧⎪⎨⎪⎩
x(s) = −s0 − 1

6 k2(s − s0)
3 + ō1((s − s0)

3),

y(s) = 1
2 k(s − s0)

2 + 1
6 k ′(s − s0)

3 + ō2((s − s0)
3),

z(s) = 1
6 kκ(s − s0)

3 + ō3((s − s0)
3).

From the last formulas we obtain the equations of the orthogonal projections

(1) onto the osculating plane: y = 1
2 kx2 + ō(x3),

(2) onto the normal plane: z2 = Ay3 + ō(y3), where A = 2κ2

9k ,
(3) onto the rectifying plane: z = Bx3 + ō(x3), where B = 1

6 kκ .

From the deduced equations it follows that the curvature of the projection of a
curve onto the osculating plane is equal to the curvature of a given curve at this
point, and the curvature of the projection onto the normal plane (at this point) is
zero. This explains the notions of these planes.

For space curves there is a theorem analogous to the above theorem for the
plane curves.

Theorem 1.9.1 (Fundamental Theorem of Curves). Let k(s) be an arbitrary
continuous positive function, and κ(s) an arbitrary continuous function, 0 ≤ s ≤
a. Then there is a unique (up to position in space) oriented curve for which k(s)
is the curvature, and κ(s) is the torsion at the point corresponding to the end of
the arc with arc length s.

Proof. If a curve γ with the given functions of curvature k(s) and torsion κ(s)
exists, then the Frenet formulas (1.30) are satisfied for it. Hence to deduce the
equations of γ it is natural to consider the Frenet formulas as a linear system of
ODEs with the given functions k(s) and κ(s) as coefficients, in which we solve for
the vector functions �τ (s), �ν(s), and �β(s). One should also find the vector function
�r(s) using �τ (s).

Let the functions �τ (s), �ν(s), and �β(s) be the solution of the system (1.30) with
the initial conditions �τ (0) = �τ 0, �ν(0) = �ν0, and �β(0) = �β0, and
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〈�τ 0, �τ 0〉 = 〈�ν0, �ν0〉 = 〈�β0,
�β0〉 = 1,

〈�τ 0, �ν0〉 = 〈�τ 0, �β0〉 = 〈�ν0, �β0〉 = 0, (1.32)

(�τ 0 · �ν0 · �β0) = 1.

We wish to prove that the equalities (1.32) hold for any s. Introduce six new
functions,

ξ1 = 〈�τ (s), �τ (s)〉, ξ2 = 〈�ν(s), �ν(s)〉, ξ3 = 〈�β(s), �β(s)〉,
ξ4 = 〈�τ (s), �ν(s)〉, ξ5 = 〈�τ (s), �β(s)〉, ξ6 = 〈�ν(s), �β(s)〉,

and find the first derivatives of the functions ξi using the Frenet formulas:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ ′
1 = 〈�τ , �τ ′〉 = 2〈�τ ′

, �τ 〉 = 2kξ4,

ξ ′
2 = 2〈�ν ′

, �ν〉 = 2〈−k�τ + κ �β, �ν〉 = −2kξ4 + 2κξ6,

ξ ′
3 = 2〈�β ′

, �β〉 = 2〈−κ�ν, �β〉 = −2κξ6,

ξ ′
4 = 〈�τ ′

, �ν〉 + 〈�τ , �ν ′〉 = kξ2 − kξ1 + κξ5,

ξ ′
5 = 〈�τ ′

, �β〉 + 〈�τ , �β ′〉 = kξ6 − κξ4,

ξ ′
6 = 〈�ν ′

, �β〉 + 〈�ν, �β ′〉 = −κξ2 + κξ3 − kξ5.

(1.33)

Consider the above system of equalities as a linear system of ODEs for unknown
functions ξi , i = 1, . . . , 6, satisfying the initial conditions ξ1 = ξ2 = ξ3 =
1, ξ4 = ξ5 = ξ6 = 0. From the uniqueness theorem for linear systems of ODEs it
follows that

ξ1(s) = ξ2(s) = ξ3(s) ≡ 1, ξ4(s) = ξ5(s) = ξ6(s) ≡ 0, (1.34)

and hence (�τ (s) · �ν(s) · �β(s)) = 1 by continuity.
Now define the vector function �r(s) by the formula

�r(s) = �r0 +
∫ s

0
�τ (s) ds.

A curve γ given by this parameterization is required. Indeed, |�r ′
(s)| = |�τ (s)| = 1.

Thus s is an arc length parameter counted from the point γ (0) = �r(0). Hence, in
view of the Frenet formulas,

k(s) = |�r ′′
(s)| = |�τ ′

(s)| = |k�ν(s)| = k(s).

Finally, κ = −〈�β ′
, �ν〉 = −〈−κ�ν, �ν〉 = κ(s), again in view of the Frenet for-

mulas. Note that γ , generally speaking, is not a curve of class C3, but only of
class C2. Nevertheless, it has torsion at each point. Thus, we obtain the following
result:

Corollary 1.9.1. If the curvature of a curve γ is continuous, then γ belongs to
class C2, but from the continuity of the torsion it does not follow that γ belongs
to class C3.
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For example, an arbitrary plane curve of class C2 has zero torsion, but need not
belong to class C3.

Now study the uniqueness problem for a curve γ . As we just saw, γ is uniquely
defined by the given vectors �r0, �τ 0, �ν0, and �β0. Hence, if two curves γ1 and γ2 have
equal curvature and torsion, as functions of the arc length parameter s, then they
differ from each other only by initial conditions �r1(0), �r2(0) and initial direc-
tions of vectors from the triples {�τ 1(0), �ν1(0), �β1(0)} and {�τ 2(0), �ν2(0), �β2(0)}.
Moving the point �r2(0) to the point �r1(0) by parallel displacement, we can then
match the bases {�τ 2(0), �ν2(0), �β2(0)} with the bases {�τ 1(0), �ν1(0), �β1(0)} by a
rotation around this point, and γ1 and γ2 would coincide. �

If one drops in this theorem the requirement k > 0, and assumes only that
k(s) ≥ 0 and k(s) = 0 at a finite number of points s1, s2, . . . , sk , then it is pos-
sible to prove the existence of a curve γ whose curvature coincides with a given
function k(s), and the torsion coincides with the function κ(s) at all points, expect
the points s1, s2, . . . , sk . In fact, the torsion of γ is not defined for these points.
The uniqueness of γ does not hold in this case. The curve γ consists of the “rigid”
arcs between the points γ (si ) and γ (si+1) (i = 1, . . . , k − 1), but these arcs can
be rotated at the points γ (si ) around the vectors �τ (si ).

Example 1.9.1. At the end, derive the curvature and the torsion of a helix x =
a cos t, y = a sin t , z = bt , where a > 0 and b are real numbers. We have

�r = �r(t) = a cos t�i + a sin t �j + bt �k,

�r ′ = −a sin t�i + a cos t �j + b�k,

�r ′′ = −a cos t�i − a sin t �j ,
�r ′′′ = a sin t�i − a cos t �j ,

(1.35)

and

|�r ′| =
√

a2 + b2,

�r ′ × �r ′′ =
∣∣∣∣∣∣

�i �j �k
−a sin t a cos t b
−a cos t −a sin t 0

∣∣∣∣∣∣ = ab sin t�i − ab cos t �j + a2�k,

|�r ′ × �r ′′| = a
√

a2 + b2 ⇒ k(t) = a
√

a2 + b2

(a2 + b2)
3
2

= a

a2 + b2
,

(�r ′ · �r ′′ · �r ′′′
) =

∣∣∣∣∣∣
−a sin t a cos t b
−a cos t −a sin t 0
a sin t −a cos t 0

∣∣∣∣∣∣ = a2b,

κ(t) = a2b

a2(a2 + b2)
= b

a2 + b2
.
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We thus see that the curvature and the torsion of a helix are constants; i.e., do
not depend on the parameter t . From Theorem 1.9.1 it follows that any curve of
constant curvature k and constant torsion κ is a helix for which

a = k

k2 + κ2
, b = κ

k2 + κ2
.

1.10 Problems: Space Curves

In Section 1.10.1 we consider two problems about curves on a sphere. Then in
Section 1.10.2 we shall formulate and solve some problems about space curves.

1.10.1 Spherical Curves

First we give some facts about spherical geometry. Let SR be a sphere of radius R
in R3. If P is some point on SR , denote by P∗ the point diametrically opposite P .
If P and Q are arbitrary points on the sphere and Q �= P∗, then there is a unique
great circle C(P, Q) containing P and Q (this circle C(P, Q) is the intersection
of SR with the plane through the points P, Q and the center of the sphere SR). The
points P and Q divide C(P, Q) onto two arcs, the smaller one (by arc length) is
denoted by P Q. The length of this arc is denoted by ρ(P, Q) or simply by P Q
and is called the distance between the points P and Q on the sphere SR .

It turns out that the length of any other curve with endpoints P and Q is greater
than P Q. This statement will be proved in Chapter 3, but for now you should
accept it without proof. Thus a curve P Q is called a shortest path. Assume that
the distance between the points P and P∗ is equal to π R; we call any arc of the
great circle containing P and P∗ a shortest arc P P∗. It is clear that P and P∗
may be joined by a shortest arc not uniquely, but possibly by an infinite number
of such arcs. Clearly, a closed curve γ on the sphere SR divides it into two regions
D1(γ ) and D2(γ ), each of them homeomorphic to a disk.

Definition 1.10.1. A region D on a sphere SR is convex if for any two points P
and Q located in D there is the shortest path P Q that belongs to D. A curve γ on
a sphere SR is convex if one of the regions D1(γ ) or D2(γ ) is convex.

We now formulate a sequence of problems.

Problem 1.10.1. Prove that the length of any convex curve γ on the sphere SR is
not greater than 2π R, and that equality holds if and only if γ is a great circle, or
a biangle (lune) formed by two shortest paths between some points P and P∗.

Solution. Let D be a convex region bounded by the curve γ .
Consider the case that on γ there exist two diametrically opposite points P ,

P∗ ∈ γ . Draw one of the shortest paths (P P∗)1 that is located inside of D. The
existence of the shortest path (P P∗)1 follows from the definition of a convex
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region. The shortest path (P P∗)1 divides D into two regions D1 and D2, and the
points P and P∗ divide the curve γ into two arcs γ1 and γ2. Let γ1 belong to
the boundary of D1, and γ2 belong to the boundary of D2, and let l(γ1) ≥ l(γ2).
Among all shortest paths between P and P∗ and containing D1, take (P P∗)2 that
forms a maximal angle with (P P∗)1. (It is not excluded that (P P∗)2 = (P P∗)1.)

To prove that γ1 = (P P∗)2, assume that γ1 �= (P P∗)2. Introduce on γ1 a
parameterization γ1(t), where t is the arc length parameter, counting from the
point P, 0 ≤ t ≤ l1 = l(γ1).

Define a function α(t) on [0, l1] equal to the angle between the shortest paths
Pγ (t) and (P P∗)2 at the point P for t �= 0, and α(0) = limt→0 α(t). The last limit
exists in view of the monotonicity of α(t). Analogously define the function β(t) as
the angle between the shortest paths P∗γ (t) and (P∗ P)2 at the point P∗ for t < l
and β(l) = limt→l β(t). Since 0 = β(0) ≤ α(0) and β(l) > α(l) = 0, then there
is a t0 such that α(t0) = β(t0) �= 0. But this means that the curve P γ (t0)∪γ (t0)P∗
is the shortest path joining P with P∗ located inside of D and differing from
(P P∗)2, which contradicts the definition of (P P∗)2. So, γ1 = (P P∗)2, and hence
the length l1 of the curve γ is π R. But then the inequality

π R ≤ l(γ2) ≤ l(γ1) = π R

holds, from which it follows that γ2 is the shortest path joining P with P∗ and
that the length of γ is 2π R.

In the second case draw a polygonal line p(γ ) inscribed in a curve γ with
length different from the length of γ by a sufficiently small value. Denote its
vertices by A1, A2, . . . , An . In view of the convexity of γ , the polygonal line
p(γ ) is also convex, and the inner angle of every vertex in not greater than π :

� Ai , Ai+1 Ai+2 ≤ π, i = 1, . . . , n.

Extend the side A1 A2 to a great circle C(A1, A2). Since p(γ ) does not contain
the diametrically opposite points, there is a minimal natural number i0 such that
Ai0 /∈ C(A1, A2).

To prove that C(A1, A2) does not intersect the arc γ1 of a polygonal line p(γ )

taken from Ai0−1 to the point An+1 = A1, assume that C(A1, A2) ∩ γ1 �= ∅.
Denote by B1 the first point of the intersection, counting from Ai1−1, and by B2

the last point of intersection. Then the circular arcs Ai1−1 B1 and B2 A1 are lo-
cated outside of p(γ ). Neither of these arcs is the shortest path, and we obtain
contradiction with the convexity property of p(γ ). So, we have proved that the
polygonal line p(γ ) is located entirely inside a closed semisphere bounded by a
circle C(A1, A2). From this, by standard methods, one can deduce that the length
of p(γ ) is smaller than the length of C(A1, A2), which is equal to 2π R. Hence
the length of γ is also smaller than 2π R. �

Problem 1.10.2. Prove that if γ is a rectifiable closed curve on the sphere SR and
there is a great circle C on the sphere SR such that the intersection of any closed
semicircle C with γ is nonempty, then the length of γ is not smaller than 2π R.
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Solution. Let T = C ∩ γ . Take an arbitrary point A1 ∈ T . The points A1 and
A∗

1 divide C into two arcs, C1 and C2. Take a point A2 ∈ T on the arc C1 with
maximal distance from A1. In view of the conditions of the problem, such an A2

exists and differs from A1. If A2 = A∗
1, then the problem is solved, because the

length of each of the arcs γ1 and γ2 of γ bounded by the points A1 and A∗
1 is not

smaller than π R. If A2 �= A∗
1, then again in view of the conditions of our problem,

there is a point A3 ∈ T on the arc A∗
1 D ⊂ C2 of length π R − A2 A∗

1.
So, we have obtained three points A1, A2, A3 ∈ T . Each of the arcs A1 A2,

A2 A3, and A3 A1 of C is a shortest one, and the sum of their lengths is 2π R. But
the same points A1, A2, A3 divide γ into 3 arcs γ1 (from A1 to A2), γ2 (from A2

to A3), and γ3 (from A3 to A1), and their lengths are not smaller than the lengths
of certain arcs of C . Hence the length of γ is not smaller than 2π R. �

Problem 1.10.3. Prove that if a simple closed curve divides a sphere SR into two
regions with equal areas, then the length of γ is not smaller than 2π R.

Solution. Denote by D1 and D2 two regions into which γ divides SR . By the
condition of the problem, their areas are

S(D1) = S(D2). (1.36)

Let J be the map from a sphere SR onto itself transforming each point P into a
diametrically opposite point P∗; i.e., J (P) = P∗. We shall prove that the curves
γ ∗ = J (γ ) and γ have nonempty intersection. Indeed, if γ ∗ ∩ γ = ∅, then
either D∗

1 = J (D1) ⊂ D2 or D∗
2 = J (D2) ⊂ D1, which is impossible in view of

equality (1.36). Hence, γ ∩γ ∗ = T �= ∅. Let a point P ∈ T ; then the points P and
P∗ belong to γ . Indeed, P ∈ γ and P ∈ γ ∗. Hence, P∗ = J (P) ∈ J (γ ∗) = γ .
The points P and P∗ divide γ into two arcs γ1 and γ2, and each of them has length
smaller than π R. Thus the length of γ is not smaller than 2π R. �

Problem 1.10.4. Prove that if the length of a simple closed curve γ on the sphere
SR is smaller than 2π R, then there is an open hemisphere S′

R of the sphere SR that
contains γ .

Solution. A curve γ divides the sphere SR into two regions D1(γ ) and D2(γ ).
One of these regions, in view of Problem 1.10.3, has area smaller than 2π R2.
Let D1(γ ) be this region. Denote by K (P) the disk with center at a point P and
a radius π2/R. Denote by S(P) the area of the intersection of the disks D1(γ )

and K (P0) and let S0 = infP∈SR S(P). Let K (P0) be the disk with the property
S(P0) = S0. Let C(P) be a great circle, the boundary of the disk K (P), and let
M = γ ∩C(P0). If M = ∅, then γ sits inside the open disk K (P∗

0 ). If M �= ∅, then
M ∈ C ′(P0), where C ′(P0) is some open semicircle C(P0); see Problem 1.10.2.

Denote by Q1 and Q2 the endpoints of C ′(P0), and let a = min ρ(γ, C(P0) \
C ′(P0)). Now take a point P1 satisfying the following conditions:

(1) P1 is located in the region bounded by the arcs Q1 P0 ∪ P0 Q2 and C(P0) \
C ′(P0).
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(2) The disk K (P1) contains the points Q1 and Q2,
(3) π

2 R − a
4 < ρ(P1, C(P0) \ C ′(P0)) < π

4 R + a
4 .

Then the part of the disk K (P1) that is equal to K (P1) \ K (P) does not include
the points of D1(γ ), and the part of the disk K (P1) that is equal to K (P0)\ K (P1)

does not contain the points of D1(γ ), in view of the definition of the integer S0

and of the disk K (P0), because in the opposite case the area of the intersection of
D1(γ ) with K (P1) would be smaller than S0.

Consequently, S0 = 0 and D1(γ )∩ K (P0) = γ ∩C(P0) = ∅. But then the disk
K (P1) has no common points with γ . �

1.10.2 Space Curves

Let γ (t) be a regular space curve of class Ck (k ≥ 1); let t be its arc length param-
eter, and let �e be some unit vector. Draw a straight line a through the point γ (0)

in the direction of �e, and define the function p(t) as the length of the projection
of the vector

−−−−−→
γ (0)γ (t) onto the line a, by taking into account the sign; i.e., we

assume p(t) = 〈−−−−−→
γ (0)γ (t), �e〉.

Problem 1.10.5. Prove that
dp

dt
= 〈�τ , �e〉.

Solution. If �r = �r(t) is a vector function that defines a curve γ , then
−−−−−→
γ (0)γ (t) =

�r(t) − �r(0) and p(t) = 〈�r(t) − �r(0), �e〉. From these we obtain dp
dt = 〈 d�r

dt , �e〉 =
〈�τ , �e〉. �

Corollary 1.10.1. If γ is closed curve with the length l, then∫ l

0
〈�τ , �e〉 dt = 0 for any �e, |�e| = 1.

Corollary 1.10.2. Let d be the distance between the endpoints of a curve γ of
length l. Then

d = |γ (0)γ (l)| =
∫ l

0
〈�τ , �e〉 dt, where �e =

−−−−−→
γ (0)γ (l)

|γ (0)γ (l)| .

Theorem 1.10.1 (Fenchel’s problem). The integral curvature of an arbitrary
closed space curve γ is not smaller than 2π ; equality holds if and only if γ is
a convex plane curve.

Proof. Let γ (t) be an arc length parameterization of a curve γ with t (0 ≤ t ≤
l = l(γ )). Define a curve σ(t) on a sphere S1 by associating with each point
γ (t) the end of the vector �τ (t) = γ̇ (t) whose origin coincides with the center
of the sphere S1. The curve γ (t) is called the indicatrix of a tangent line to γ .
The integral curvature of γ , defined by

∫ l
0 k(t) dt , is equal to the length l1 of the

indicatrix of the tangent line σ(t). Indeed,



1.10 Problems: Space Curves 55

l1 = l(σ (t)) =
∫ l

0
|�τ ′| dt =

∫ l

0
|k| dt =

∫ l

0
k(t) dt

in view of the Frenet formulas. So, we must show that the length l1 of the indi-
catrix σ(t) is not smaller than 2π . Assume that l1 < 2π . Then, as was proven
in Problem 1.10.4, there is an open hemisphere S′

1 of the sphere S1 containing
σ . Let P be the center of this hemisphere, and let �e be the unit vector with
the origin at the center of S1 and with endpoint at P . Then

∫ l
0 〈�τ (t), �e〉 dt > 0

holds, since 〈�τ , �e〉 > 0 for all t , but on the other hand, from the corollary of
Problem 1.10.5 it follows that

∫ l
0 〈�τ (t), �e〉 dt = 0. This contradiction proves that

l1 = l(σ (t)) = ∫ l
0 k(t) dt is not smaller than 2π , and equality holds if and only if

σ(t) is a great circle on SR and consequently, γ is a convex plane curve. �

Consider two curves γ (t) and γ̃ (t), of which the first one is an arc of a con-
vex plane curve, and the second one is an arbitrary space curve. Let γ (t) have
endpoints A and B, and γ̃ (t) the endpoints Ã and B̃. Also assume that t is an
arc length parameter on both curves, counting from the point A and the point Ã,
respectively. Solve the following problem; see [Bl].

Problem 1.10.6 (The twist of a curve). If the lengths of the curves γ (t) and γ̃ (t)
are equal and their curvatures k(t) and k̃(t) satisfy the inequality k̃(t) ≤ k(t),
then AB ≤ Ã B̃, and equality holds if and only if γ and γ̃ are identified by a rigid
motion of space. If k̃(t) = k(t), then this problem can be formulated thus: twisting
a curve increases the distance between its endpoints. If γ̃ (t) is also a plane curve,
then in this case our problem is equivalent to Problem 1.7.9 about a bent bow.

Solution. Take a point γ (t0) on γ at which the tangent line is parallel to AB.
Place a curve γ̃ such that the point γ̃ (t0) coincides with γ (t0), and �̃τ (t0) = �τ (t0).
Denote by σ(t) and σ̃ (t) the indicatrices of the tangent line of the curves γ (t) and
γ̃ (t), respectively. Then first, the length m̃(t) of the arc σ̃ (t0)σ̃ (t) of the curve σ̃

is not greater than the length m(t) of the arc σ(t0)σ (t) of the curve σ . Indeed,
from the Frenet formulas we obtain

�̃τ ′ = k̃(t)�̃ν(t), �τ ′ = k(t)�ν(t), |�̃τ ′| = |k̃(t)| ≤ k(t) = |�τ ′|.
Thus

m̃(t) =
∫ t

t0

|�̃τ ′
(t)| dt ≤

∫ t

t0

|�τ ′| dt = m(t). (1.37)

Second, if we denote by α(t) and α̃(t) the angles � σ(t0)Oσ(t) and � σ̃ (t0)Oσ̃ (t),
respectively, then the functions α(t) and α̃(t) should satisfy the inequality

α̃(t) ≤ α(t). (1.38)

Indeed, the distance between the points σ(t0) and σ(t) on the sphere S1 is equal
to m(t), and the distance between the points σ̃ (t0) and σ̃ (t) on the same sphere
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S1 is not greater than m̃(t), and moreover, in view of (1.37), it is not greater than
m(t). Thus, the central angle � σ̃ (t0)Oσ̃ (t) is not greater than � σ(t0)Oσ(t), and
hence the inequality (1.38) is proved.

Note also that by the choice of the point γ (t0), the angle α(t) for t ≤ t0 and for
t > t0 varies between the values 0 and π . Hence, from the inequality (1.37) we
have

cos α̃(t) = 〈�̃τ ′
(t), �̃τ (t0)〉 ≥ cos α(t) = 〈�τ (t), �τ (t0)〉. (1.39)

Finally, as we already know (see Problem 1.10.5),

AB =
∫ t0

0
cos α(t) dt +

∫ l

t0

cos α(t) dt,

and the projection Ã ¯̃B of the line segment Ã B̃ onto the direction �τ (t0) is

Ã B̃ =
∫ t0

0
cos ᾱ(t) dt +

∫ l

t0

cos α̃(t) dt.

Hence, from the inequality (1.39) we obtain

Ã B̃ ≥ Ã B̃ ≥ AB,

and, as is seen from the text of the solution of the problem, equality in the last
inequalities holds if and only if the curves σ(t) and σ̃ (t) coincide. But then γ (t)
and γ̃ (t) also coincide. �

1.11 Phase Length of a Curve and the
Fenchel–Reshetnyak Inequality

It is interesting to understand the restrictions on the integral curvature of a non-
closed curve. Let a curve L join two different points A and B. Measure the angles
α and β formed by the chord AB with the tangent rays to our curve at its end-
points. If one closes the curve by adding a straight line segment almost parallel
to the chord, then the tangent vectors in neighborhoods of A and B are rotated
by the angles π − α and π − β, respectively. It is easy to ensure that practically
the whole integral curvature of a closed arc of a curve will be reduced to these
turnings, i.e., that it will be equal to 2π −α−β with arbitrary accuracy. Applying
Fenchel’s inequality, we now obtain an answer to the above question:∫

L
k(s)ds ≥ α + β.

This inequality with the above elegant argument is due to Y.G. Reshetnyak. This
also contains the previous statement, since one may apply it to both parts of a
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closed curve supported by a common chord. Thus, each of the above inequalities
is easily deduced from the other. The direct proof of either is much more compli-
cated.

Below we give a new proof of these inequalities suggested by V.V. Ivanov. It is
based on the notion of a phase distance between two vectors attached to different
points of the space. The idea of the construction given below is actually contained
in the second of the inequalities under discussion. Indeed, the sum α+β is defined
only by the two endpoints of the curve and by the two directions at which the curve
starts and finishes its movement; furthermore, the sum is not only a lower bound,
but also an exact lower bound for the integral curvatures of all curves satisfying
the same boundary conditions as the curve L; one may check this by repeating the
above arguments. From here it is clear that this sum, as a function of a pair related
vectors, must satisfy the triangle inequality, and thus the original notion of the
length of a smooth curve is naturally related to such a function; this is its phase
length. As we shall see, Reshetnyak’s inequality means that the phase length of a
curve is not smaller than the phase distance between its endpoints. But initially,
we prove that the integral curvature and the phase length are the same. This is a
matter of analysis.

1. The following discussion holds in Euclidean space of arbitrary dimension.

Definition 1.11.1. The phase distance from a vector �a at a point A to a vector �b
at a point B is the sum of the angles that the vector

−→
AB forms with the directions

of �a and �b.

Indeed, this definition makes sense only in the case that �a and �b are both
nonzero, and the points A and B are different. The properties of the phase dis-
tance are a little unusual, though if one takes into account its geometrical sense,
they become quite natural.

Lemma 1.11.1. First, the values of the phase distance are bounded:

0 ≤ ϕ(�a, �b) ≤ 2π.

Second, instead of symmetry, the following identity holds:

ϕ(�a, �b) + ϕ(�b, �a) = 2π.

And third, the triangle inequality can be written in the following form:

ϕ(�a, �b) + ϕ(�b, �c) + ϕ(�c, �a) ≥ 2π.

Proof. Only the last statement requires a short discussion. The configuration con-
sisting of three related vectors, generally speaking, is located in a five-dimensional
space, but the inequality corresponding to it reflects elementary properties of
a usual trihedral angle in ordinary three-dimensional space. For the proof it is
enough to consider the nondegenerate case, in which the points A, B, C at which
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vectors �a, �b, �c are attached do not lie on a straight line. Mark on the extensions
of the edges C A, AB, and BC of the triangle the points A′, B ′, and C ′. The least
value of the sum of the angles formed by the vector �a with the rays AA′ and AB
is equal to the value of � A′ AB and is attained only in the case that �a lies in the
plane of �ABC and varies within its specified exterior angle. In the same way,
� B ′ BC and � C ′C A bound from below the sums of the other angles with vertices
at B and C . From here it follows that the sum of the three phase distances under
discussion, which breaks up into the sum of six angles adjoining the vectors �a, �b,
�c, is not smaller than the sum of the exterior angles of �ABC , which is equal to
double the sum of its interior angles. �

Using the second statement of the lemma, the triangle inequality for phase dis-
tances can be written down by the usual method:

ϕ(�a, �c) ≤ ϕ(�a, �b) + ϕ(�b, �c).
Moreover as we have seen, this inequality turns into an exact equality only in the
case that the vectors �a, �b, �c lie in the corresponding exterior angles of �ABC .

2. Consider now a smooth curve L , determined by the arc length parameteriza-
tion �r = �r(s) with 0 ≤ s ≤ l. Let s1 < s2 < · · · < sn , where s1 = 0, sn = l
and to the consecutive values of the parameter there correspond different points
on L . Draw at each of these points �r(si ) the tangent vector �τ i = �r ′

(si ). The chain
thus obtained �τ 1, �τ 2, . . . , �τ n , is said to be a phase polygonal line inscribed in the
curve L , and its phase length is the sum

ϕ(�τ 1, �τ 2) + · · · + ϕ(�τ n−1, �τ n).

The phase length of the curve L should be defined as the infimum �(L) of the
phase lengths of phase polygonal lines inscribed in it.

Lemma 1.11.2. If a chord joining the endpoints of a nonclosed curve L forms
angles α and β with the tangent rays to the curve at its endpoints, then the phase
length of any phase polygonal line inscribed in L is not smaller than the sum of
the angles α and β. In particular,

�(L) ≥ α + β.

If the curve L is closed, then the phase length at any phase polygonal line in-
scribed in it is not smaller than 2π , so

�(L) ≥ 2π.

Proof. Indeed, in the first case, for every phase polygonal line �τ 1, �τ 2, . . . , �τ n

inscribed in L , the phase distance from �τ 1 up to �τ n is obviously equal to the sum
of the specified angles, so by the triangle inequality,

α + β = ϕ(�τ 1, �τ n) ≤ ϕ(�τ 1, �τ 2) + · · · + ϕ(�τ n−1, �τ n).
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In the case of a closed curve, when �τ 1 = �τ n , it is enough to apply the triangle
inequality to the pair of vectors �τ 1, �τ n−1 and to note that ϕ(�τ 1, �τ n−1) = 2π −
ϕ(�τ n−1, �τ n). �

By the way, if we take into account Section 1.9, it is easy to show that the
inequalities in Lemma 1.11.2 become exact if and only if the curve either is a line
segment or lies in some plane where the vertices of any polygonal line inscribed
in it serve as consecutive vertices of a convex polygon. This means that the curve
is convex as a whole.

3. For studying the relations between the integral curvature of a curve and its
phase length, we need some asymptotic formulas describing the local geometry
of a twice differentiable curve from the point of view of its curvature.

To simplify writing the expressions, use the symbol o(σ m) as the general des-
ignation of any function possessing the property that after division by σ m it ap-
proaches zero as σ → 0, uniformly with respect to other variables on which it
may depend.

For the arc length parameterization �r = �r(s) of a three-times differentiable
curve L , the tangent vector �τ (s) = �r ′

(s) has unit length and is orthogonal to
�τ ′

(s), whose length, as was noted, is taken as a measure of the curvature k(s) of
the curve L at the point with coordinate s.

Lemma 1.11.3. The following formulas hold:

〈�r(s + σ) − �r(s), �τ (s)〉 = σ − k2

6
σ 3 + o(σ 3),

|�h(s)| = σ − k2

4
σ 3 + o(σ 3),

〈�τ (s), �τ (s + σ)〉 = 1 − k2(s)

2
σ 2 + o(σ 2),

where �h(s) = �r(s + σ) − �r(s) and σ > 0.

Proof. Applying Taylor’s formula and the Frenet formulas, we have

�r(s + σ) − �r(s) = �τ (s)σ + 1

2
�τ ′

(s)σ 2+ 1

6
�τ ′′

(s)σ 3 + o(σ 4)

= �τ (s)σ + 1

2
k�ν(s)σ 2+ 1

6
[k ′�ν(s) − k2�τ (s) + κ �β(s)]σ 3+ o(σ 4).

From this and from the properties of the Frenet frame the first formula of the
lemma follows. Assume that �h(s) = �r(s +σ)−�r(s). Applying the above decom-
position for the vector �h(s), we have

|�h(s)|2 = σ 2 + 1

4
k2σ 4 − 1

3
k2σ 4 + o(σ 4) = σ 2 − 1

12
k2σ 4 + o(σ 4).

Taking the square root, we obtain the second equality of the lemma. The last
equality of the lemma can be proved analogously. �
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Remark 1.11.1. By elaborating the proof of the lemma, it is possible to obtain a
similar statement for a twice continuously differentiable curve.

4. Continuing considerations of a three-times differentiable curve, we return to
the question in which we are interested. First of all, write down the Taylor decom-
position of the cosine,

〈�τ (s), �τ (s + σ)〉 = cos ω = 1 − ω2

2
+ o(ω2),

where ω is the angle between the vectors �τ (s) and �τ (s + σ), and compare it
with the decomposition specified in Lemma 1.11.3. Indeed, we shall come to the
well-known equality

ω = k(s)σ + o(σ ),

characterizing the curvature as the velocity at which the angle ω grows as the
parameter σ varies. As we shall now see, the phase distance, which generally
differs from the usual angle between the vectors, is calculated for small parts of a
curve by the same formula.

Lemma 1.11.4. The phase distance ϕ from a vector �τ (s) up to a vector �τ (s +σ)

for small σ > 0 is almost proportional to the arc σ

ϕ = k(s)σ + o(σ ).

Proof. By definition, ϕ is a sum of two angles ϕ1 and ϕ2 formed by the chord
�h = �r(s + σ) − �r(σ ) with tangent vectors �τ (s) and �τ (s + σ). For calculating the
cosine of the first of these angles, divide the decompositions in Lemma 1.11.3:

cos ϕ1 = 〈�h, �τ (s)〉
|�h| = 1 − k2(s)

8
σ 2 + o(σ 2).

We have already seen how from here it is possible to obtain the asymptotic for-
mula

ϕ1 = k(s)

2
σ + o(σ ).

By reversing the direction of the curve (which was determined by the choice of
parameterization, but played a minor role) the previous equality will transform
to a similar expression for the cosine of the second angle ϕ2. One needs only to
replace k(s) by k(s+σ). However, it is possible to work without this replacement,
as the difference between the two values as a function of σ is infinitesimally small
uniformly with respect to s. Thus,

ϕ2 = k(s)

2
σ + o(σ ),

and it remains only to combine the two formulas into one. �
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The following theorem, an integral version of Lemma 1.11.4, summarizes the
discussion so far. Comparing it with Lemma 1.11.2 allows us to look at the
Fenchel–Reshetnyak inequality from a new point of view.

Theorem 1.11.1. The phase length of a twice differentiable curve is equal to its
integral curvature,

�(L) =
∫

L
k(s) ds.

Proof. Select s1 < s2 < · · · < sn , where s1 = 0 and sn = l, in a closed interval
0 ≤ s ≤ l. If all differences �si = si+1−si are small enough, then the neighboring
points �r(si ) and �r(si+1) cannot coincide, and we have an opportunity to compose
the sum

S =
n−1∑
i=1

ϕ(�τ (si ), �τ (si+1)).

The addition of new vertices to a phase polygonal line, in view of the triangle
inequality, does not decrease its phase length. Therefore, the phase length of the
initial curve is equal to the limit of the sums under discussion, provided that the
greatest of the arcs �si tends to zero. According to Lemma 1.11.4, the sum S is
expressed as

S =
n−1∑
i=1

k(si )�si +
n−1∑
i=1

εi�si ,

where all εi uniformly tend to zero and simultaneously with �si . Thus, the second
term of the last expression vanishes in the limit, and the first, as the integral sum
for the curvature, approaches its integral. �

1.12 Exercises to Chapter 1

Exercise 1.12.1. Let O be a point on a circle of radius a, and a ray intersecting
the circle at a varying point A rotates around O . Mark off two line segments
AM1 = AM2 = 2a on this ray on two sides of A. Deduce the equation of a curve
traced by the points M1 and M2.
Answer: a cardioid.

Exercise 1.12.2. A disk of radius a rolls along a straight line without sliding. De-
duce the parametric equations of the curve traced by the point M on the boundary
circle.
Answer: a cycloid.

Exercise 1.12.3. What curve is plotted by the parametric equations x = a log(t),
y = a

2 (t + 1
t )?

Exercise 1.12.4. Find the projections of the curve x = t, y = t2, z = t3 onto
the coordinate planes.
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Exercise 1.12.5. Prove that the projection onto the plane Y O Z of the intersection
curve of an elliptical paraboloid x = y2 + z2 with a plane x − 2y + 4z = 0 is a
circle of radius R = 3 centered at M(0, 1, −2).

Exercise 1.12.6. Find conditions for the existence of an asymptote to the space
curve x = x(t), y = y(t), z = z(t) as t goes to infinity.

Exercise 1.12.7. Deduce the equations of the normal line and the tangent plane to
the helix x = 2 cos t, y = 2 sin t, z = 4t at the point t = 0.

Exercise 1.12.8. Deduce the equation of the tangent line to the curve x =
cosh t, y = sinh t , z = ct .

Exercise 1.12.9. Deduce the equation of the main normal and binormal to the
curve

x = t, y = t2, z = t3, t = 1.

Exercise 1.12.10. Deduce the equation of the main normal and binormal to the
curve xy = z2, x2 + y2 = z2 + 1 at the point M(1, 1, 1).

Exercise 1.12.11. Deduce the equation of an osculating plane to the intersection
curve of the sphere x2 + y2 + z2 = 9 and the hyperbolic cylinder x2 − y2 = 3 at
the point M(2, 1, 2).

Exercise 1.12.12. Deduce the equation of the tangent line to the curve defined by
the equations x2 + y2 + z2 = 1, x2 + y2 = x at the point M(0, 0, 1).

Exercise 1.12.13. Mark off the line segments of fixed length on the binormals to
a simple helix. Find the equation of a curve that is traced by the endpoints of these
line segments.

Exercise 1.12.14. Prove the following generalizations of the well-known La-
grange intermediate value theorem for the case of a smooth space curve.

1. Let A and B be the endpoints of a smooth space curve γ (t), and let � be a
smooth family of tangent planes to γ . Then there is a value of the parameter
t0 such that the plane �(t0) is parallel to the line segment AB.

2. Let A and B be the endpoints of a smooth space curve γ (t) that belongs to a
closed convex surface. Then there is a value of the parameter t0 such that the
tangent plane at the point γ (t0) is parallel to the line segment AB.

Exercise 1.12.15. Find the curvature and the torsion of the following curves:

(a) x = exp(t), y = exp(−t), z = t
√

2,

(b) x = cos3 t, y = sin3 t, z = cos(2t).

Exercise 1.12.16. At what points of the curve x = a(t − sin t), y = a(1 − cos t),
z = 4a cos t

2 does the radius of curvature take its local maximum?
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Figure 1.27. Generalization of Lagrange’s intermediate value theorem.

Exercise 1.12.17. Prove that

(1) (�τ · �β · �β ′
) = κ,

(2) (�β ′ · �β ′′ · �β ′′′
) = κ2

(
k

κ

)′
,

(3) (�τ ′ · �τ ′′ · �τ ′′′
) = k3

(κ

k

)′
.

Exercise 1.12.18. Find the length of the curve x = a cosh t , y = a sinh t , z = at
between the points 0 and t .

Exercise 1.12.19. Find the length of the astroid x = a cos3 t , y = a sin3 t.

Exercise 1.12.20. Find the length of the cycloid x = a(t −sin t), y = a(1−cos t)
(0 ≤ t ≤ 2π).

Exercise 1.12.21. Find the curvature of the curve defined by the equations in im-
plicit form

x + sinh x = y + sinh y, z + exp z = x + log(1 + x) + 1

at the point M(0, 0, 0).

Exercise 1.12.22. Find an evolute of the tractrix x = −a
(
log tan t

2 + cos t
)
,

y = a sin t .

Exercise 1.12.23. Find the evolvent of the circle x2 + y2 = R2.

Exercise 1.12.24. Prove the constancy of the ratio of curvature to the torsion of
the curve

x = a
∫ t

t0

sin α(t) dt, y = a
∫ t

t0

cos α(t) dt, z = bt.

Exercise 1.12.25.∗ Prove that a smooth curve γ (s) lies on a unit sphere if and
only if the following equality holds:

(k ′)2 = k2κ2(k2 − 1)

and k ≥ 1, where k = k(s), κ = κ(s) are the curvature and the torsion of the
curve γ (s).



2
Extrinsic Geometry of Surfaces in
Three-dimensional Euclidean Space

2.1 Definition and Methods of Generating Surfaces

Definition 2.1.1. A connected set � in R3 is said to be a two-dimensional surface
if for an arbitrary point P ∈ � there exist an open ball UP in R3 with center at
P and a continuous injective map ψ : UP → R3 such that ψ maps W = � ∩ UP

onto an open disk D1 of radius 1 on some plane α in the space R3.

In this definition, a “little” disk D1 can be replaced by an arbitrary open set3 of
a plane α, diffeomorphic to a disk. See Section 2.6 with further discussion of the
notion of a surface.

Introduce in the plane α Cartesian orthogonal coordinates u, v with the origin
at the center of the disk D1. Denote by ϕP the inverse of the restriction of the
map ψ to D1. Then ϕP(D1) = W , and the map ϕP : D1 → R3 defines a vector
function �r = �r(u, v) = x(u, v)�i + y(u, v)�j + z(u, v)�k, where u2 + v2 < 1.
We thereby obtain that a surface � in some neighborhood of one of its (arbitrary)
points can be determined by three functions of two variables:

x = x(u, v), y = y(u, v), z = z(u, v).

These functions are called a parameterization of a surface. A parameterization
of a surface � is said to be k-fold continuously differentiable if the functions
x(u, v), y(u, v), and z(u, v) are actually k-fold continuously differentiable. The

3 A subset U ⊂ R
n is open if for every point x ∈ U there is a number ε > 0 such that y ∈ U

whenever ‖x − y‖ < ε.
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set W = ϕP(D1) is called a coordinate neighborhood of the point P on the
surface �.

Definition 2.1.2. A surface � is k-fold continuously differentiable if in some
neighborhood of each of its points there is a k-fold continuously differentiable
parameterization x = x(u, v), y = y(u, v), z = z(u, v). In this case, we say that
the surface � is of class Ck .

Definition 2.1.3. A surface � of class Ck (k ≥ 1) is regular if for each of its
points P there is a parameterization ϕP : D1 → R3 of class Ck with maximal
rank.4

The last condition can be written in the form �ru × �rv �= 0, where

�ru = xu(u, v)�i + yu(u, v)�j + zu(u, v)�k, �rv = xv(u, v)�i + yv(u, v)�j + zv(u, v)�k.

There are other presentations of a surface besides the parametric ones.

Explicitly given surface. Let f : D1 ⊂ R2 → R1 be a function of class Ck

(k ≥ 1). Then the set of points

{(x, y, f (x, y)) : (x, y) ∈ D1},
the graph of a function f (x, y), forms a regular surface of class Ck . The equation
of the surface in this case is usually written as x = x , y = y, z = f (x, y) or
simply as z = f (x, y), (x, y) ∈ D1.

Implicitly given surface. Let D be some open connected set of the space R3,
let H : D → R1 be a differentiable map of class Ck , and let zero be a regular
value of the map H . Then each connected component of the set � = H−1(0) is a
regular surface of class Ck . The equation of the surface in this case can be written
in the form H(x, y, z) = 0; it is called an implicit equation of the surface �. If a
regular surface � is given by parametric equations

x = x(u, v), y = y(u, v), z = z(u, v),

then for each point P ∈ � there is a neighborhood in which � can be presented by
an explicit equation. Indeed, since the rank of the map ϕP at the point P is 2, then
by the inverse function theorem the variables u and v can be expressed through
x, y; through x, z; or through y, z; and then the equation of � in a neighborhood
of P can be written in one of the following forms:

z = z(u(x, y), v(x, y)) = f1(x, y),

y = y(u(x, z), v(x, z)) = f2(x, z),

x = x(u(y, z), v(y, z)) = f3(y, z).

4 A Ck -coordinate patch for some k ≥ 1 is a one-to-one Ck -map x : D1 → R
3 with maximal rank.
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But if � is defined by the implicit equation H(x, y, z) = 0, then since zero is a
regular value of the map H , we obtain that one of derivatives Hx , Hy , Hz differs
from zero at every point P ∈ �. If, for instance, Hz �= 0, then by the implicit
function theorem there is a function f (x, y) such that H(x, y, f (x, y)) ≡ 0, and
consequently, a surface � in some neighborhood of the point P can be defined by
the explicit equation z = f (x, y).

Example 2.1.1. The one-sheeted cone given by z = √
x2 + y2 is not a regular

surface; (0, 0, 0) is its singular point. The ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 is a regular
surface. This follows from the fact that 0 is a regular value of the function H =
x2

a2 + y2

b2 + z2

c2 − 1.

Definition 2.1.4 (Local coordinate system). Let �r = �r(u, v) be parametric
equations of a surface � in some neighborhood of a point P ∈ �. Then to each
point of this neighborhood corresponds an ordered pair of real numbers (u, v),
which are said to be local coordinates of the point. An arbitrary curve γ on � can
be defined by equations in local coordinates u = u(t), v = v(t) (a ≤ t ≤ b). The
equations of γ in the space R3 take the form

x = x(u(t), v(t)) = x̃(t), y = y(u(t), v(t)) = ỹ(t), z = z(u(t), v(t)) = z̃(t).

The curves u = t , v = const and u = const, v = t are called the coordinate
curves, namely, u-curves and v-curves.

Figure 2.1. Local coordinate system.

2.1.1 Special Coordinate Systems

Let ϕ1 : D1 → � be some regular parameterization of a surface � of class Ck

(k ≥ 1), and let h : DP → D1 be an injective map of a disk DP in D1 of class
Ck (k ≥ 1) with nonzero Jacobian det J . Then composition of the maps ϕP =
ϕ1 ◦ h : DP → � is also a regular parameterization of � of the same class Ck .
Indeed, let ϕ1 be given by the functions x = x(u, v), y = y(u, v), z = z(u, v),
and h by the functions u = ϕ(α, β), v = ψ(α, β). Then ϕP is given by the
functions

x = x(u(α, β), v(α, β)), y = y(u(α, β), v(α, β)), z = z(u(α, β), v(α, β)),
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and in view of well-known theorems from analysis, ϕP belongs to class Ck .
To show the regularity of this parameterization, we have

�rα = �ruϕα + �rvψα, �rβ = �ruϕβ + �rvψβ.

Thus

|�rα × �rβ | = |�ru × �rv| · |ϕαψβ − ϕβψα| = |�ru × �rv| · det J �= 0,

which completes the proof.
Sometimes, it appears necessary to introduce new coordinates on a surface so

that the curves from a given family become the coordinate curves. Often, we arrive
at the following situation. In a given coordinate neighborhood W with coordinates
u, v, let two first-order differential equations are defined

A1(u, v) du + B1(u, v) dv = 0, A2(u, v) du + B2(u, v) dv = 0, (2.1)

and we wish to introduce a new coordinate system so that the integral curves of
equation (2.1) will become the coordinate curves. The following lemma gives us
a sufficient condition for the existence of such a parameterization.

Lemma 2.1.1. If at the point P0(u0, v0) the determinant

det J =
∣∣∣∣ A1(u0, v0) B1(u0, v0)

A2(u0, v0) B2(u0, v0)

∣∣∣∣
is nonzero, then in some neighborhood of P0 one can introduce coordinates such
that the integral curves of equation (2.1) will be the coordinate curves.

Proof. Rewrite (2.1) in the form of two systems of ordinary differential equations{
du
dt = −B1(u, v),

dv
dt = A1(u, v),

(2.2){
du
dt = −B2(u, v),

du
dt = A2(u, v).

(2.3)

Let γ0 be the integral curve of system (2.2) passing through P0, and let its equa-
tions be given by the functions u = ϕ1(t), v = ψ1(t). Then the functions ϕ1(t),
ψ1(t) satisfy the equations{

dϕ1

dt = −B1(ϕ1, ψ1),

dψ1

dt = A1(ϕ1, ψ1),
and ϕ1(0) = u0, ψ1(0) = v0. (2.4)

Analogously, let σ0 be the integral curve of system (2.3) passing through the point
P0, and let u = ϕ2(τ ) and v = ψ2(τ ) be its equations. Then
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dϕ2

dτ
= −B2(ϕ2, ψ2),

dψ2

dτ
= A2(ϕ2, ψ2)

and ϕ2(0) = u0, ψ2(0) = v0. (2.5)

Denote by γτ (α) the integral curve of (2.2) passing through the point σ0(τ ), and
by σt (β) the integral curve of (2.3) passing through γ0(t). Let P(t, τ ) be the point
of intersection of γτ (α) and σt (β). Since the coordinates of P(t, τ ) in W are u, v,
then we obtain a map u = u(t, τ ), v = v(t, τ ). First, we prove that for sufficiently
small t and τ the point P(t, τ ) is uniquely defined. This means that we must prove
the existence and uniqueness of a solution of the system of equations{

F1(α, β, t, τ ) = f1(α, τ ) − f2(β, t) = 0,

F2(α, β, t, τ ) = h1(α, τ ) − h2(β, t) = 0,
(2.6)

where u = f1(α, τ ), v = h1(α, τ ) are the equations of the curve γτ (α), and
u = f2(β, t), v = h2(β, t) are the equations of the curve σt (β). From the
definition of curves σ0, γ0, γτ (α), and σt (β) follow the equalities f1(0, 0) =
u0 ± f2(0, 0), h1(0, 0) = v0 ± h2(0, 0). These equalities show us that the so-
lution of the system (2.6) exists for t = τ = 0. We now calculate the determinant

det J1 =
∣∣∣∣ F1,α F1,β

F2,α F2,β

∣∣∣∣ �= 0 at the point (0, 0):

F1,α = ∂ f1

∂α
(0, 0) = ∂ f1

∂α
(α, 0)|α=0 = ∂ϕ1

∂α
|α=0 = −B1(u0, v0),

F1,β = −∂ f2

∂β
(0, 0) = −∂ f2

∂β
(β, 0)|β=0 = ∂ϕ2

∂β
|β=0 = −B2(u0, v0),

F2,α = ∂h1

∂α
(0, 0) = ∂h1

∂α
(α, 0)|α=0 = ∂ψ1

∂α
|α=0 = A1(u0, v0),

F2,β = −∂h2

∂β
(0, 0) = −∂h2

∂β
(β, 0)|β=0 = ∂ψ2

∂β
|β=0 = A2(u0, v0).

(2.7)

From (2.7) we obtain

det J1 = − det J �= 0. (2.8)

From (2.8) and the implicit function theorem, we deduce the existence of a real
δ > 0 such that for t2 + τ 2 < δ2 the functions α = α(t, τ ) and β = β(t, τ ) are
defined and differentiable. Note also that

α(t, 0) = t, β(0, τ ) = τ. (2.9)

The functions u = u(t, τ ) and v = v(t, τ ) are determined by the formulas

u = u(t, τ ) = f1(α(t, τ ), τ ) = f2(β(t, τ ), τ ),

v = v(t, τ ) = h1(α(t, τ ), τ ) = h2(β(t, τ ), τ ).
(2.10)
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The value of the determinant det J2 =
∣∣∣∣∣ ∂u

∂t
∂u
∂τ

∂v
∂t

∂v
∂τ

∣∣∣∣∣ at the point t = τ = 0 is equal to

− det J , and hence det J2 �= 0. In fact, from (2.10), (2.9), and (2.7) it follows that

∂u

∂t
= ∂ f1

∂α
(0, 0) · ∂α

∂t

∣∣∣
t=0

= −B1,
∂u

∂τ
= ∂ f2

∂β
(0, 0) · ∂β

∂τ

∣∣∣
τ=0

= −B2,

∂v

∂t
= ∂h1

∂α
(0, 0) · ∂α

∂t

∣∣∣
t=0

= A1,
∂v

∂τ
= ∂h2

∂β
(0, 0) · ∂β

∂τ

∣∣∣
τ=0

= A2.

We apply again the inverse function theorem and obtain that the map u = u(t, τ ),
v = v(t, τ ) induces new coordinates t and τ , for which t = const, τ = τ and
t = t , τ = const are integral curves of equations (2.2) and (2.3). �

We prove one more lemma.

Lemma 2.1.2. Let �λ = λ1�ru + λ2�rv and �µ = µ1�ru + µ2�rv be two nonparallel
vectors at the point P0(u0, v0). Then there is a coordinate system ξ, η such that P
is the point (0, 0) and �rξ = �λ, �rη = �µ.

Proof. Let the functions u = u(ξ, η) and v = v(ξ, η) be defined by the formulas

u = λ1ξ + µ1η + u0, v = λ2ξ + µ2η + v0.

Then the coordinates of the point P are (0, 0), and

�rξ = �ru
∂u

∂ξ
+ �rv

∂v

∂ξ
= λ1�ru + λ2�rv = �λ,

�rη = �ru
∂u

∂η
+ �rv

∂v

∂η
= µ1�ru + µ2�rv = �µ. �

2.2 The Tangent Plane

Let γ (t) : u = u(t), v = v(t) (a ≤ t ≤ b) be some curve through the point
P = γ (0) = (u(0), v(0)). A tangent vector γ̇ = �τ to γ at P can be written in
the form γ̇ = �r ′

t = �ruu′ + �rvv
′. From this formula we see that the tangent vector

to any curve on the surface � through the point P belongs to the plane of vectors
�ru(P) and �rv(P). This observation leads us to the following definition.

Definition 2.2.1. The plane through a point P of a regular surface � of class Ck

(k ≥ 1) that is parallel to the vectors �ru(P) and �rv(P) is called the tangent plane
to the surface � at P . The normal to the surface � is an orthogonal vector to the
tangent plane of the surface at the point P .

The normal to the surface � at the point P will be denoted by �n(P) and as-
sumed to be a unit vector: |�n(P)| = 1. In particular, the normal can be identified
with the vector �ru×�rv

|�ru×�rv | .
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Example 2.2.1. The Möbius strip is obtained when we twist a thin strip of paper
through a 180◦ angle and then glue its ends. Consider its regular parameterization

�r(u, v) =
[(

R − v sin
ν

2

)
sin u,

(
R − v sin

ν

2

)
cos u, v cos

ν

2

]
,

0 < u < 2π, |v| < 1,

where R > 1 and n = 1. The unit normal �n will coincide with its opposite
vector when one twists the path u = t , v = 0 from 0 to 2π . This surface is
nonorientable for odd n, and it has only one side. For even n we twist a thin
strip of paper through a 180◦n angle, and the surface obtained is orientable, is
homeomorphic to the cylinder, and has two sides. In other words, a regular surface
� in R3 is orientable if and only if there is a differentiable field of unit normals
�n : � → R3 on �. A differentiable field of unit normals on � is a differentiable
map �n : � → R3 that associates with each Q ∈ � a unit normal vector �n(Q) to
� at Q.

Figure 2.2. Möbius-type strips.

Let P be some point on the regular surface �, α the tangent plane to � at
P , and Q an arbitrary point on �. Denote by d the distance between P and Q,
and by h the distance from Q to the plane α. The following theorem contains the
geometrical characteristic of the tangent plane.

Theorem 2.2.1. If a regular surface � belongs to class C1, then

lim
Q→P

h

d
= lim

d→0

h

d
= 0.

Proof. Let �r = �r(u, v) be a parameterization of �, and let P have local coordi-
nates (u0, v0). Then d = |�r(u, v) − �r(u0, v0)|, and h = 〈�r(u, v) − �r(u0, v0), �n〉.
Set �u = u − u0, �v = v − v0. By Taylor’s formula we have

�r(u, v) = �r(u0, v0) + �ru(u0, v0)�u + �rv(u0, v0)�v + �o(
√

�u2 + �v2).
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Figure 2.3. Geometrical characteristic of a tangent plane.

Thus,

d = |�ru(u0, v0)�u + �rv(u0, v0)�v + �o(
√

�u2 + �v2)|,
h = 〈�ru(u0, v0)�u + �rv(u0, v0)�v + �o(

√
�u2 + �v2), �n〉

= |〈�o(
√

�u2 + �v2), �n〉| = �o1(
√

�u2 + �v2).

From the last formulas it follows that

lim
d→0

h

d
= lim

d→0

�o1(
√

�u2 + �v2)

|�ru(u0, v0)�u + �rv(u0, v0)�v + �o(
√

�u2 + �v2)| .

Divide the numerator and denominator of the above fraction by
√

�u2 + �v2.
We shall prove that the expression

|�ru(u0, v0)�u + �rv(u0, v0)�v + �o(
√

�u2 + �v2)|√
�u2 + �v2

is bounded from below by some positive number. For this, set ξ = �u√
�u2+�v2 ,

η = �v√
�u2+�v2 and note that ξ 2 + η2 = 1. We first estimate

|�ruξ + �rvη|2 = 〈�ru, �ru〉ξ 2 + 2〈�ru, �rv〉ξη + 〈�rv, �rv〉η2.

We shall introduce the notation

E = 〈�ru, �ru〉, F = 〈�ru, �rv〉, G = 〈�rv, �rv〉
and calculate

EG − F2 = |�ru |2 · |�rv|2 − |�ru |2 · |�rv|2 cos2 ϕ = |�ru |2 · |�rv|2 sin2 ϕ = |�ru × �rv|2.
Here ϕ represents the angle between the vectors �ru and �rv . Since the surface � is
regular, |�ru × �rv| �= 0 and consequently, EG − F2 > 0. Hence, the fundamental
form Eξ 2 + 2Fξη + Gη2 is positive definite. But then

min
ξ 2+η2=1

|Eξ 2 + 2Fξη + Gη2| = a2 > 0.

From the last inequality it follows that
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|�ru�u + �rv�v + �o(
√

�u2 + �v2)|√
�u2 + �v2

≥ a

2

if
√

�u2 + �v2 is sufficiently small. Thus, we have that the denominator of the
fraction is bounded from below by a positive number, and the numerator tends to
zero. Hence, limd→0

h
d = 0, which completes the proof. �

Next, denote by T �P the tangent plane to � at P . The vectors �ru , �rv are
linearly independent and hence form a vector space basis of T �P called a local
basis of a surface � at a point P .

Definition 2.2.2. Let α be some plane in the space R3, and �e be a unit vector
orthogonal to it. The pair (α, �e) is called an orientable plane.

This definition is motivated by the fact that an orientation on a plane α is de-
termined by a given orientation on R3 and a vector �e. And conversely, from an
orientation on α and on R3 we can reconstruct a vector �e. Each orientable plane
in the space generates in R3 a height function fα relative to a unit vector �e, defined
by the formula

fα(P) = 〈−−→P0 P, �e〉,
where P0 ∈ α is an arbitrary point. Obviously, fα does not depend on the choice
of P0.

Exercise 2.2.1. Prove that if Q is a critical point of the height function fα re-
stricted to a regular surface �, then the tangent plane T �Q is parallel to the plane
α.

Exercise 2.2.2. Prove that for almost every plane α that intersects a regular sur-
face � of class Ck , the intersection α ∩ � is a regular curve of class Ck .

2.2.1 Formulas for Calculations

The surface is given by parametric equations.

�r = �r(u, v) = x(u, v)�i + y(u, v)�j + z(u, v)�k.

Then
�ru = xu�i + yu �j + zu

�k, �rv = xv
�i + yv

�j + zv
�k.

Thus the equation of the tangent plane to a surface at the point (u0, v0) is written
in the form

(yuzv − zu yv) · (X − x(u0, v0)) + (zu xv − xuzv) · (Y − y(u0, v0))

+ (xu yv − yu xv) · (Z − z(u0, v0)) = 0,

where X, Y, Z are coordinates of an arbitrary point in the plane, and all derivatives
are calculated at the point (u0, v0).
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Explicitly given surface. x = x , y = y, z = f (x, y).

�r x = �i + fx
�k, �r y = �j + fy

�k, �r x × �r y = − fx�i − fy �j + �k.

Let the coordinates of the point of tangency be (x0, y0, z0) = f (x0, y0). Then the
equation of the tangent plane takes the form

Z − z0 = fx (x0, y0)(X − x0) + fy(x0, y0)(Y − y0).

Implicitly given surface. H(x, y, z) = 0. Let (x0, y0, z0) be the point on a
surface. The equation of the tangent plane to the surface at this point has the form

Hx (x0, y0, z0)(X − x0) + Hy(x0, y0, z0)(Y − y0) + Hz(x0, y0, z0)(Z − z0) = 0.

2.3 First Fundamental Form of a Surface

Let P be an arbitrary point on a regular surface �. In the tangent plane T �P we
take two vectors �λ and �µ. Let λ1, λ2 and µ1, µ2 be coordinates of these vectors �λ
and �µ in a local basis �ru(P) and �rv(P). Find a formula for calculation of a scalar
product of �λ and �µ in terms of coordinates of these vectors in a local basis. Using
our above notation E = 〈�ru, �ru〉, F = 〈�ru, �rv〉, G = 〈�rv, �rv〉, we obtain

〈�λ, �µ〉 = Eλ1µ1 + F(λ1µ2 + λ2µ1) + Gλ2µ2.

In this way a scalar product generates on the surface � (in each tangent plane to
�) a field of symmetric bilinear forms

I (�λ, �µ) = Eλ1µ1 + F(λ1µ2 + λ2µ1) + Gλ2µ2.

In particular, the first fundamental form of a surface is defined as

I (�λ) = I (�λ, �λ) = E(λ1)2 + 2Fλ1λ2 + G(λ2)2.

2.3.1 Length of a Curve on a Surface

Now let some smooth curve γ lie on a surface �, and let u = u(t), v = v(t)
(a ≤ t ≤ b) be its equations in local coordinates. Find a formula for the length
l(γ ) of γ . By the formula for the length of a curve, see Section 1.4, we have

l(γ ) =
∫ b

a
|�r ′| dt =

∫ b

a

√
I (�r ′

) dt =
∫ b

a

√
E(u′)2 + 2Fu′v′ + G(v′)2 dt. (2.11)

The formula (2.11) can be written in the form

l(γ ) =
∫ b

a

√
E du2 + 2F du dv + G dv2, (2.12)
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and the first fundamental form itself in the form

ds2 = E du2 + 2F du dv + G dv2.

In this case, ds is said to be an element of arc length. This type of notation for the
first fundamental form is classical. The formula (2.11) shows us that knowledge
of the coefficients of the first fundamental form and the equations of a curve in
local coordinates allow us to calculate the length of a curve.

Remark 2.3.1. If the equations of a surface are given, then in principle, we possess
complete knowledge about the surface and its geometric properties. If the equa-
tion of a surface is unknown, but only the first fundamental form is given, then
we of course do not possess all the information about the geometric properties
of the surface. However, knowing the first fundamental form of a surface yields
information about some geometric properties of the surface: we can define and
study such geometric notions as length of a curve, area of a region, shortest paths
and geodesics, and Gaussian curvature of a surface. Those geometric properties
and objects that can be determined only in terms of the first fundamental form of
a surface are called the intrinsic geometric properties, and the collection of these
geometric properties and objects forms the subject of intrinsic geometry of a sur-
face. In other words, one can say that the intrinsic geometry of a surface studies
such of its properties that do not depend on the shape of the surface, but depend
only on measurements that we can carry out while staying on a surface itself. The
intrinsic geometry of a surface is the subject of Chapter 3. Now we shall define
and study only the simplest notions related to the first fundamental form.

2.3.2 Metric on a Surface

The formula (2.11) was deduced for the case that a curve γ lies entirely in one
coordinate neighborhood. But if a curve γ (t) does not lie entirely in one coordi-
nate neighborhood, then we divide it into a finite number of arcs, each of them
lying in one coordinate neighborhood. Calculating the length of each of the arcs
obtained by the formula (2.11) and summing their values, we obtain the length of
the whole curve.

Lemma 2.3.1. If a regular surface � belongs to class C1, then every two of its
points can be joined by rectifiable (piecewise smooth) curve.

Proof. Let P and Q be two arbitrary points on the surface. In view of the con-
nectedness of �, there is a continuous curve σ(t) (0 ≤ t ≤ 1) with end-
points σ(0) = P and σ(1) = Q. Moreover, from the compactness of the
set σ(t) (0 ≤ t ≤ 1) there follows the existence of a finite number of arcs
σi (ti ≤ t ≤ ti+1), i = 1, . . . , n, t1 = 0, tn = 1 of the curve σ , and coordinate
neighborhoods Wi , i = 1, . . . , n, such that σi ⊂ Wi . Let (ui , vi ) and (ui+1, vi+1)

be coordinates of the points σ(ti ) and σ(ti+1) in Wi . Take the curve γi defined by
the equations
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ti+1−ti

(ui+1 − ui ),

v = vi + t−ti
ti+1−ti

(vi+1 − vi ),
ti ≤ t ≤ ti+1, i = 1, . . . , n,

and γ , composed of the arcs γi . Then γ is a piecewise smooth (rectifiable) curve
and γ (0) = P , γ (1) = Q. �

Lemma 2.3.1 gives us the possibility to introduce the following definition.

Definition 2.3.1. The distance ρ on a surface � between the points P and Q is
the greatest lower bound of the lengths of all curves on � with endpoints P and
Q.

In other words, if �(P, Q) is the set of all rectifiable curves on a surface �

with endpoints P and Q, then:

ρ(P, Q) = inf
γ∈�(P,Q P1)

l(γ ).

Lemma 2.3.1 says that �(P, Q) is nonempty, and that the nonnegative function
ρ(P, Q) is well-defined. The function ρ(P, Q) has all usual properties of the
distance function:

(1) ρ(P, Q) = ρ(Q, P),

(2) ρ(P, Q) + ρ(Q, R) ≥ ρ(P, R),

(3) ρ(P, Q) = 0 if and only if P = Q.

Note also that the topology induced by this metric coincides with the topology
induced from R3.

Introduction of such a metric on � allows us to give the following simple defi-
nitions.

Definition 2.3.2. A surface � is called complete if (�, ρ) is a complete metric
space.

Definition 2.3.3. A surface � is called closed (compact) if (�, ρ) is a compact
metric space.

2.3.3 Isometric Surfaces

Definition 2.3.4. Two regular surfaces �1 and �2 of class C1 are called isometric
if there is a map h : �1 → �2 preserving the length of every rectifiable curve. In
other words, if γ1 is a rectifiable curve on a surface �1, and γ2 = h(γ1) is also
rectifiable and l(γ1) = l(γ2) for every γ1 ⊂ �1, the map h is called an isometry,
and the surfaces �1 and �2 are called isometric to each other.

Obviously, we can state this more simply: Two surfaces �1 and �2 are iso-
metric if they are isometric (to each other) as the metric spaces (�1, ρ1) and
(�2, ρ2).

For isometric surfaces we have the following theorem:
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Theorem 2.3.1. If regular surfaces �1 and �2 can be parameterized so that their
first fundamental forms coincide, then these surfaces are isometric. The isometry
h is defined by a one-to-one correspondence of the points with equal coordinates.
Conversely, if �1 and �2 are isometric, then they can be parameterized so that
their first fundamental forms coincide.

Proof. The first part of the theorem’s statement is obvious, and its second part
will be proved in Chapter 3. �

Note also that isometric surfaces do not necessarily coincide under rigid mo-
tion. The simplest example is that a parabolic cylinder is isometric to a plane
(verify).

2.3.4 Angle between the Curves on a Surface

Let u = u1(t), v = v1(t) and u = u2(t), v = v2(t) be equations of two regular
curves γ1 and γ2 on a surface � of class C1, and let γ1 and γ2 have a common
point γ1(t0) = γ2(τ0). Then at this point it is possible to define the angle between
the curves γ1 and γ2 as the angle between their tangent vectors �τ 1 = γ ′

1 and
�τ 2 = γ ′

2. Since the coordinates of a vector �τ 1 are (u′
1(t0), v′

1(t0)), and those of
�τ 2 are (u′

1(τ0), v
′
1(τ0)), then

cos ϕ = I (�τ 1, �τ 2)√
I (�τ 1)

√
I (�τ 2)

= Eu′
1u′

2 + F(u′
1v

′
2 + v′

1u′
2) + Gv′

1v
′
2√

E
(
u′

1

)2 + 2Fu′
1v

′
1 + G(v′

1)
2
√

E
(
u′

2

)2 + 2Fu′
2v

′
2 + G(v′

2)
2
.

Note that the angle ϕ12 between coordinate curves is given by:

cos ϕ12 = Fu′
1v

′
2√

E
(
u′

1

)2
√

G
(
v′

2

)2
= F√

EG
.

In particular, the equality F = 0 means that the coordinate curves are orthogonal.

2.3.5 Area of a Region on a Surface

Let D be some region on a surface � that lies entirely in some coordinate neigh-
borhood. Define its area S(D) by the following formula:

S(D) =
∫∫

D

√
E(u, v)G(u, v) − F2(u, v) du dv. (2.13)

The expression d S = √
E (u, v) G(u, v) − F2(u, v) du dv is called an area ele-

ment of the surface �.
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It is very difficult to give a visual geometric definition of the area of a region,
and then, starting from it, to deduce (2.13), as was evidently done for the notion of
arc length. Thus we take (2.13) as the definition of area and make some remarks
explaining this formula. Take on the surface � the curvilinear “parallelogram”
σ : u0 ≤ u ≤ u0 + �u, v0 ≤ v ≤ v0 + �v, and on a plane T �(u0,v0) the
parallelogram σ̄ spanned by the vectors �ru(u0, v0)�u and �rv(u0, v0)�v. The area
σ̄ of the parallelogram is

S(σ̄ ) = |�ru × �rv|�u�v =
√

EG − F2�u�v.

From visual considerations, it seems to be true that the area of the “parallelogram”
σ is approximately equal to the area σ̄ , and the error, which we do, has a higher
order than �u�v. Thus, assuming

Figure 2.4. Area of a region on a surface.

S(D) = lim
∑

i
S(σi ) = lim

∑
i

(√
EG − F2�ui�vi + ōi (�ui�vi )

)
,

where the limit is taken for smaller and smaller subdivisions, we obtain (2.13).
If the whole region D does not lie in one coordinate neighborhood, then we di-
vide it into sufficiently small parts so that each of them lies in one coordinate
neighborhood, and define the area of D to be the sum of areas of its parts.

Example 2.3.1. A sphere of radius r , where ϕ and θ are geographical coordinates
u = ϕ, v = θ :⎧⎪⎨⎪⎩

x = r cos ϕ sin θ,

y = r sin ϕ sin θ,

z = r cos θ,

0 ≤ ϕ < 2π, 0 ≤ θ < π.

One can easily obtain

�ru = −r sin ϕ sin θ�i + r cos ϕ sin θ �j ,
�rv = r cos ϕ cos θ�i + r sin ϕ cos θ �j − r sin θ �k,

E = r2 sin2 θ, F = 0, G = r2 → I (�λ) = r2 sin2 θ(λ1)2 + r2(λ2)2.

Hence
√

EG − F2 = r2| sin θ |, and the area of the sphere is

S = 2πr2
∫ π

0
| sin θ | dθ = 4πr2.
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2.3.6 Formulas for Calculations

Surface given by the parametric equations. x = x(u, v), y = y(u, v), z =
z(u, v).

E = x2
u + y2

u + z2
u, F = xu xv + yu yv + zuzv, G = x2

v + y2
v + z2

v,

EG − F2 = (xu yv − xv yu)
2 + (xuzv − xvzu)

2 + (yuzv − yvzu)
2,

S =
∫∫

D

√
(xu yv − xv yu)2 + (xuzv − xvzu)2 + (yuzv − yvzu)2 du dv.

Explicitly given surface. z = f (x, y).

E = 1 + f 2
x , F = fx fy, G = 1 + f 2

y , EG − F2 = 1 + f 2
x + f 2

y ,

S =
∫∫

D

√
1 + f 2

x + f 2
y dx dy.

2.4 Second Fundamental Form of a Surface

2.4.1 Normal curvature

Let P be some point on a regular surface � of class Ck (k ≥ 2). Consider the
plane �(P, �λ) passing through a normal �n to � at P and a vector �λ ∈ T �P . The
intersection of this plane with � in some neighborhood of P is a regular curve γ

of class Ck (see Exercise 2.2.2).
Denote by k̃(P, �λ) its curvature at P , and if k̃(P, �λ) �= 0, then denote

by �ν(P, �λ) the principal normal vector of γ at P . Since γ lies in the plane
�(P, �λ), then �ν(P, �λ) = ±�n(P). Define the real number k(P, �λ) = 〈�ν(P, �λ),
�n(P)〉k̃(P, �λ), i.e., assume that

k(P, �λ) =

⎧⎪⎨⎪⎩
k̃(P, �λ) if �ν(P, �λ) = �n(P),

0 if k̃(P, �λ) = 0,

−k̃(P, �λ) if �ν(P, �λ) = −�n(P).

Definition 2.4.1. The normal curvature of a surface � at a point P and in the
direction �λ is the real number k(P, �λ).

Obviously, the sign of k(P, �λ) depends on the choice of the direction of the
normal �n(P), and it changes generally with varying this direction. Thus the sign
of k(P, �λ) itself has no geometric meaning. However, whether the sign varies or
remains the same as the direction o f�λ changes does have geometric significance.
So, if k(P, �λ) has constant sign for all �λ ∈ T �P , then � in some neighborhood
of P lies entirely on one side of its tangent plane T �P . But if k(P, �λ) changes
sign, then � lies on both sides of T �P . In the first case, the point P is said to
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Figure 2.5. The sign of k(P, �λ).

be elliptic or a point of convexity, and in the second case, a hyperbolic (saddle)
point. Thus the values of all normal curvatures at a point P on � allow us to form
an opinion of the shape of the surface � in a sufficiently small neighborhood of
P . Now let �r = �r(u, v) be the equation of �, let u = u(t), v = v(t) be equations
of a curve γ , and let t be a parameter, proportional to the arc length of the curve
γ : �r(t) = �r(u(t), v(t)), with the properties

γ (0) = P, �τ (0) = �λ = λ1�ru + λ2�rv, λ1 = du

dt
(0), λ2 = dv

dt
(0).

We derive k(P, �λ):

k(P, �λ) = k̃(P, �λ)〈�ν(P, �λ), �n(P)〉 =
∣∣∣∣d2�r

dt2

∣∣∣∣ · 1

|�λ|2 〈�ν(P, �λ), �n(P)〉, (2.14)

d2�r
dt2

= �ruu(λ
1)2 + 2�ruvλ

1λ2 + �rvv(λ
2)2 + �ru

d2u

dt2
+ �rv

d2v

dt2
. (2.15)

Substituting (2.15) in (2.14), we obtain

k(P, �λ) = 1

|�λ|2
[〈�ruu, �n〉(λ1)2 + 2〈�ruv, �n〉λ1λ2 + 〈�rvv, �n〉(λ2)2

]
.

Introducing the notation

L = 〈�ruu, �n〉, M = 〈�ruv, �n〉, N = 〈�rvv, �n〉,
we have

k(P, �λ) = L(λ1)2 + 2Mλ1λ2 + N (λ2)2

E(λ1)2 + 2Fλ1λ2 + G(λ2)2
= I I (�λ)

I (�λ)
, (2.16)

where L , M , and N are derived at P . The quadratic form I I (�λ) is called the
second fundamental form of the surface �. Since P can be arbitrarily selected,
I I (�λ) is defined at each point on �. More exactly, the second fundamental form
of � is defined on each of its tangent planes. Note that I I (�λ) induces a field of
symmetric bilinear forms

I I (�λ, �µ) = Lλ1µ1 + M(λ1µ2 + λ2µ1) + Nλ2µ2.
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2.4.2 Formulas for Calculations

Surface given by the parametric equations. x = x(u, v), y = y(u, v), z =
z(u, v):

L = 〈�ruu, �n〉 = (�ruu · �ru · �rv)

|�ru × �rv| = 1√
EG − F2

∣∣∣∣∣∣
xuu yuu zuu

xu yu zu

xv yv zv

∣∣∣∣∣∣ ,
M = 〈�ruv, �n〉 = (�ruv · �ru · �rv)

|�ru × �rv| = 1√
EG − F2

∣∣∣∣∣∣
xuv yuv zuv

xu yu zu

xv yv zv

∣∣∣∣∣∣ ,
N = 〈�rvv, �n〉 = (�rvv · �ru · �rv)

|�ru × �rv| = 1√
EG − F2

∣∣∣∣∣∣
xvv yvv zvv

xu yu zu

xv yv zv

∣∣∣∣∣∣ .
Sometimes, for calculating L , M , and N it is more convenient to use the following
formulas:

L = −〈�ru, �nu〉, M = −〈�ru, �nv〉, N = −〈�rv, �nv〉, (2.17)

which are obtained from the previous formulas by differentiation of the identities

〈�ru, �n〉 = 0, 〈�rv, �n〉 = 0.

From (2.16) it is seen that the second fundamental form admits the invariant defi-
nition

I I (�λ) = −
〈
�λ,

d �n
d�λ

〉
.

In classical notation, the second fundamental form is defined by the formula

I I (d�r) = −〈d�r, d �n〉,

where the direction d�r is defined by the ratio of differentials du : dv.

Explicitly given surface. z = f (x, y).

L = fxx√
1 + f 2

x + f 2
y

, M = fxy√
1 + f 2

x + f 2
y

, N = fyy√
1 + f 2

x + f 2
y

.

Example 2.4.1. We continue Example 2.3.1 with a sphere:
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�ruu = −r cos ϕ sin θ�i − r sin ϕ sin θ �j ,
�ruv = −r sin ϕ cos θ�i + r cos ϕ cos θ �j ,
�rvv = −r cos ϕ sin θ�i − r sin ϕ sin θ �j − r cos θ �k,

L = −r sin ϕ(r2 sin2 ϕ sin2 θ + r2 cos2 ϕ sin2 θ)

2 sin θ
= −r2 sin2 θ,

M = 0, N = −r2,

I I (�λ) = −r2
[
sin2 θ(λ1)2 + (λ2)2

]
.

Example 2.4.2. Cylinder:

⎧⎨⎩
x = r cos v

y = r sin v

z = u
, I I (�λ) = 1

r (λ1)2.

Example 2.4.3. Helicoid:

⎧⎨⎩
x = u cos v

y = u sin v

z = cv
, E = 1, F = 0, G = u2 + c2,

L = N = 0, M = c√
u2 + c2

, I I (�λ) = c√
u2 + c2

λ1λ2.

2.4.3 Meusnier’s Theorem

Let γ1 be an arbitrary C2-regular curve on a regular surface � of class C2 passing
through the point P in the direction of the vector �λ. If a curvature k1 of γ1 at P
differs from zero, then denote by �ν1 the principal normal vector of γ1 at P . Define
the sign of curvature k1 analogously to previous considerations: the sign of k1 is
assumed to be equal to the sign of 〈�ν1, �n(P)〉 if 〈�ν1, �n(P)〉 �= 0, and denote by θ

the angle between the vectors �n and �ν1.

Theorem 2.4.1 (Meusnier). The curvatures k1 and k(P, �λ) are related by the
formula

k(P, �λ) = k1 · cos θ.

Proof. Let u = u1(t), v = v1(t) be equations of the curve γ1; let t be a parameter
proportional to the arc length of γ1 : �r(t) = �r(u1(t), v1(t)) such that

γ̇ 1(0) = P,
du1

dt
(0) = λ1,

dv1

dt
(0) = λ2, �λ = λ1�ru + λ2�rv.

Since

d2�r
dt2

= �ruu(λ
1)2 + 2�ruvλ

1λ2 + �rvv(λ
2)2 + �ru

d2u

dt2
+ �rv

d2v

dt2
,

then
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〈d2�r
dt2

, �n
〉
= I I (�λ) = k(P, �λ) · I (�λ). (2.18)

On the other hand (see Section 1.6),

d2�r
dt2

= |k1| · |�λ|2 · �ν1. (2.19)

From (2.18), (2.19), and the definition of the sign of k1, it follows that

k(P, �λ) = |k1| · 〈�ν1, �n(P)〉 = k1 · cos θ (2.20)

and the theorem is proved. �

The formula (2.20) can be used to determine the normal curvature, as usual. In
fact, k(P, �λ) does not depend on the choice of the curve γ , but only on choices of
the vector �λ and the direction of the normal �n(P).

If k(P, �λ) �= 0, then Meusnier’s theorem has a beautiful geometric interpre-
tation. Let �(P, �λ, θ) be the plane through P that is parallel to �λ and forms an
angle θ (0 ≤ θ < π/2) with the plane �(P, �λ). Denote by γ (�λ, θ) the curve of
the intersection of �(P, �λ, θ) and �, and by k(�λ, θ) its curvature. From P in the
direction of the principal normal vector of the curve γ (�λ, θ), let us mark off a line
segment equal to the curvature radius R(�λ, θ) = 1/k(�λ, θ). Denote by C(�λ) the
geometric locus of the points obtained. From Meusnier’s theorem it follows that
C(�λ) is a circle with diameter d = 1/k1(P, �n); see Figure 2.6. Note that C(�λ) lies

Figure 2.6. Meusnier’s theorem: geometrical interpretation.

in the plane orthogonal to �(P, �λ, θ), and the ends of its diameter are located at
the points �r(P) and �r(P) + R(�λ, θ)�ν(P).

2.4.4 Principal Curvatures and Principal Vectors

Let P be an arbitrary point on a regular surface � of class C2. We shall study the
behavior of the normal curvature as a function of direction �λ:

k(P, �λ) = L(λ1)2 + 2Mλ1λ2 + N (λ2)2

E(λ1)2 + 2Fλ1λ2 + G(λ2)2
.

Since all directions in a tangent plane T �P form a compact set homeomorphic
to a circle, k(P, �λ) has at least one minimum and one maximum, i.e., at least two
extremal values.
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Definition 2.4.2. A principal curvature of a surface � at a point P is an extremal
value of a normal curvature function k(P, �λ) at a given point P on �. The direc-
tions (vectors) in T �P for which k(P, �λ) takes its extremal values are principal
vectors of the surface � at the point P .

We now derive the equations for deriving the principal curvatures and the prin-
cipal vectors. Let a0 be a principal curvature, �λ0 the corresponding principal vec-
tor, �λ0 = λ1

0�ru +λ2
0�rv , and �λ = λ1�ru +λ2�rv an arbitrary vector in the plane T �P .

Then the function

f (λ1, λ2, a0) = I I (�λ) − a0 · I (�λ)

and its derivatives ∂ f /∂λ1 and ∂ f /∂λ2 take zero values for λ1 = λ1
0, λ2 = λ2

0. In
this way, we obtain the following system of equations:⎧⎨⎩

I I (�λ0) − a0 · I (�λ0) = 0,

I Iλ1(�λ0) − a0 · Iλ1(�λ0) = 0,

I Iλ2(�λ0) − a0 · Iλ2(�λ0) = 0,

(2.21)

or, in more detailed form,{
(L − a0 E)λ1

0 + (M − a0 F)λ2
0 = 0

(M − a0 F)λ1
0 + (N − a0G)λ2

0 = 0.
(2.22)

Since �λ0 �= 0, the system (2.22) has nonzero solution λ1
0, λ

2
0, and hence∣∣∣∣ L − a0 E M − a0 F

M − a0 F N − a0G

∣∣∣∣ = 0,

or

(EG − F2)a2
0 − (E N + GL − 2M F)a0 + L N − M2 = 0. (2.23)

Thus, we see that there exist not more than two principal curvatures. But if (2.23)
has a unique solution, then min�λ k(P, �λ) = max�λ k(P, �λ), and k(P, �λ) does not
depend on �λ. In this case any �λ ∈ T �P is a principal vector. Denote by k1(P) and
k2(P) the principal curvatures of the surface � at the point P; k1(P) ≤ k2(P).
We now deduce the equation for deriving the principal vectors. The system (2.21)
has nonzero solution (1, −a0). Thus

I Iλ1(�λ0) · Iλ2(�λ0) − I Iλ2(�λ0) · Iλ1(�λ0) = 0,

or in more detailed form,

(Eλ1
0 + Fλ2

0)(Mλ1
0 + Nλ2

0) − (Fλ1
0 + Gλ2

0)(Lλ1
0 + Mλ2

0) = 0.

The last equation can be written in a form more convenient for applications and
memorization:
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−(λ2

0)
2 λ1

0λ
2
0 −(λ1

0)
2

E F G
L M N

∣∣∣∣∣∣∣ = 0. (2.24)

We return to (2.23), which defines the principal curvatures k1 and k2:

(EG − F2)k2 − (E N + GL − 2M F)k + L N − M2 = 0. (2.25)

In the theory of two-dimensional surfaces in three-dimensional Euclidean space
R3, the following invariants of a point P on a surface � are of great importance.

Definition 2.4.3. The Gaussian (or complete) curvature of a surface, K (P), is
defined by the formula

K (P) = k1(P) · k2(P),

and the mean curvature of a surface, H(P), is defined by the formula

H(P) = 1

2
(k1(P) + k2(P)).

Applying Viète’s theorem to (2.25), we obtain

K (P) = L N − M2

EG − F2
, H(P) = E N + GL − 2F M

2(EG − F2)
. (2.26)

From (2.26) we see that if the Gaussian curvature of a surface � is positive at some
point P , then the second fundamental form at this point is positive or negative
definite, and then the normal curvature k(P, �λ) of � does not change its sign
when �λ varies. In this case, as we know, a surface � in some neighborhood of P
lies entirely on one side of its tangent plane, and such a point is said to be elliptic
or a point of convexity. Examples are points on an ellipsoid or a sphere of radius
R: in the latter case, K = 1/R2.

If K (P) < 0, then k1(P) < 0 and k2(P) > 0, and P is called a hyperbolic
(saddle) point, and the surface lies on both sides of its tangent plane. The origin
of the terms elliptic or hyperbolic point is the fact that in a neighborhood of an
elliptic point the shape of the surface � is similar, to a high order of accuracy, to
an elliptic paraboloid, and in a neighborhood of a hyperbolic point to a hyperbolic
paraboloid.

A point where K (P) = 0 is said to be parabolic (or cylindrical), since in
this case one of the principal curvatures is zero, which occurs at any point of a
cylinder.

Figure 2.7. Elliptic, hyperbolic, and parabolic points on a surface.
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The mean curvature of a surface plays a less important role in the theory of
surfaces than Gaussian curvature. We make only one remark.

A surface � is minimal if the mean curvature vanishes at all points of �.
A minimal surface is characterized locally by the property of having minimal

area among all surfaces with the same boundary contour.

2.4.5 Umbilics

Definition 2.4.4. A point P on a surface � is called an umbilical point or umbilic
if the principal curvatures k1(P) and k2(P) are equal. If in addition the equality
k1(P) = k2(P) = 0 holds, then P is called a planar point.

The notion of these points is explained by the fact that on a sphere of radius R
the equality k1(P) = k2(P) = ±1/R holds at every point P , and at every point
on a plane, k1(P) = k2(P) = 0 holds. Later, we shall prove a theorem that if all
points on a surface � are umbilics, then � is a (open) domain of a sphere or a
plane.

The normal curvature at an umbilic does not depend on the direction, and thus
the second fundamental form is proportional to the first fundamental form, and
the coefficient of proportionality is the principal curvature of the surface � at this
point: L = k E , M = k F , N = kG, where k = k1 = k2. The opposite is also true:
if L

E = M
F = N

G , then P is an umbilic.
By the way, we have obtained the following theorem.

Theorem 2.4.2. A point P on a regular surface � of class Ck (k ≥ 2) is umbilic
if and only if the equalities L

E = M
F = N

G hold, and P is a planar point if and only
if the equalities L = M = N = 0 hold.

It can be shown that a connected surface consisting only of umbilical points is
part of a sphere. The general ellipsoid has four umbilics; see also Problem 2.7.2.
The Carathéodory conjecture that a surface homeomorphic to a sphere has at
least two umbilics is still open.5

2.4.6 Orthogonality of Principal Vectors

If a point P on a surface � is not umbilic, then there exist exactly two principal
vectors in the tangent plane T �P . It turns out that these directions are mutually
orthogonal, and adjoint with respect to the second fundamental form.

Theorem 2.4.3. If a point P on a regular surface � is not umbilic, and two
vectors �λ1, �λ2 ∈ T �P are parallel to the principal vectors of � at P, then
I (�λ1, �λ2) = I I (�λ1, �λ2) = 0.

5 A recent survey about umbilics on surfaces is Gutierrez, C. and Sotomayor, J., Lines of curvature,
umbilic points and Carathéodory conjecture. Resen. Inst. Mat. Estat. Univ. Sao Paulo, Vol. 3, No.
3, 291–322, 1998. The proof for the analytical case can be found in Ivanov, V.V., The analytic
conjecture of Carathéodory, Siberian Math. J., v. 43, 251–322, 2002.
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Proof. We write down (2.21), which defines the principal vectors:⎧⎨⎩I Iλ1
1
(�λ1) − k1 · Iλ1

1
(�λ1) = 0,

I Iλ2
1
(�λ1) − k1 · Iλ2

1
(�λ1) = 0,

(2.27)

⎧⎨⎩I Iλ1
2
(�λ2) − k2 · Iλ1

2
(�λ2) = 0,

I Iλ2
2
(�λ2) − k2 · Iλ2

2
(�λ2) = 0.

(2.28)

Multiplying the first equation of system (2.27) by λ1
2 and the second equation by

λ2
2 and summing them, we obtain

2 · I I (�λ1, �λ2) − 2k1 · I (�λ1, �λ2) = 0. (2.29)

Analogously, multiplying the first equation of system (2.28) by λ1
1 and the second

equation by λ2
1 and summing them, we obtain

2 · I I (�λ1, �λ2) − 2k2 · I (�λ1, �λ2) = 0. (2.30)

Now subtracting (2.30) from (2.29), and by taking into account that k2 − k1 �= 0,
we obtain

I (�λ1, �λ2) = 〈�λ1, �λ2〉 = 0. (2.31)

From (2.29) and (2.31) follows I I (�λ1, �λ2) = 0. �

2.4.7 Euler’s Formula

A formula first deduced by Euler allows us to derive the normal curvature of a
surface � at a given point P and in an arbitrary direction from the known principal
curvatures k1 and k2 of the surface at this point. Denote by �λ1 = λ1

1�ru + λ2
1�rv and

�λ2 = λ1
2�ru + λ2

2�rv two mutually orthogonal unit vectors going along the principal
directions. The existence of such vectors follows from Theorem 2.4.3 and the
remark before Theorem 2.4.2. Denote by �λ(ϕ) the vector that forms an angle ϕ

(0 ≤ ϕ ≤ 2π) with �λ1.

Theorem 2.4.4. For an arbitrary point P on a regular surface � of class Ck

(k ≥ 2), the following equality (called Euler’s formula) holds:

k(P, ϕ) = k(P, �λ(ϕ)) = k1 cos2 ϕ + k2 sin2 ϕ.

Proof. Introduce a coordinate system (u, v) in a neighborhood of P such that
P(0, 0) and �ru(0, 0) = �λ1, �rv(0, 0) = �λ2. The existence of such coordinates
follows from Lemma 2.1.2. In this coordinate system we have

λ1
1 = 1, λ2

1 = 0, λ1
2 = 0, λ2

2 = 1, λ1(ϕ) = cos ϕ, λ2(ϕ) = sin ϕ,

E(0, 0) = G(0, 0) = 1, F(0, 0) = M(0, 0) = 0.
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All these equalities follow from the definition of E , F , G, but the last equality
follows from Theorem 2.4.3, since I I (�λ1, �λ2) = M = 0. Furthermore,

k(P, ϕ) = L cos2 ϕ + N sin2 ϕ

cos2 ϕ + sin2 ϕ
= L cos2 ϕ + N sin2 ϕ.

On the other hand,

k1 = k(P, 0) = L , k2 = k
(

P,
π

2

)
= N .

Thus we obtain k(P, ϕ) = k1 cos2 ϕ + k2 sin2 ϕ. �

2.4.8 Rodrigues’s Theorem

Theorem 2.4.5 (Rodrigues). The derivative of a normal �n(P) to a regular sur-
face � of class Ck (k ≥ 2) along some direction is parallel to it if and only if
this direction is the principal vector of the surface at P and the coefficient of
proportionality is equal to −k, where k is the principal curvature of � at P cor-
responding to this principal vector.

Proof. Let �λ = λ1�ru + λ2�rv be the vector that defines the direction under discus-
sion. The derivative of the vector field �n(P) along the direction �λ, in view of the
definition of directional derivative, is written in the following form:

d �n
d�λ = λ1�nu + λ2�nv. (2.32)

Let �λ be a principal vector. Then by Theorem 2.4.3, there is a vector �µ = µ1�ru +
µ2�rv such that the following equalities are satisfied:

I (�λ, �µ) = I I (�λ, �µ) = 0.

The scalar product of (2.32) by the vector �µ gives us〈
d �n
d�λ , �µ

〉
= −I I (�λ, �µ) = 0. (2.33)

Consequently, d �n
d�λ is orthogonal to the vector �µ. Hence it is collinear with �λ, and

we have d �n
d�λ = a�λ. We now find the value of a. The scalar product of the last

equation by the vector �λ gives us −I I (�λ) = a · I (�λ), or a = − I I (�λ)

I (�λ)
= −k. Now

let the equality

d �n
d�λ = a�λ (2.34)

be given. As before, we obtain a = −k, and it remains to prove only that �λ is
parallel to the principal vector. From (2.32) and (2.34) follows the equality
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λ1�nu + λ2�nv = (λ1�ru + λ2�rv)(−k).

Its scalar product, first by �ru , and then by �rv , gives us a system of equations{−Lλ1 − Mλ2 = −k Eλ1 − k Fλ2,

−Mλ1 − Nλ2 = −k Fλ1 − kGλ2,

which coincides with the system (2.22), and hence �λ is a principal vector. The
theorem is proved. �

Consider one application of Rodrigues’s theorem. Solve the following problem.

Problem 2.4.1. If the normal curvature k(P, �λ) of a regular surface � of class Ck

(k ≥ 3) depends on neither P nor �λ, then � is an open connected domain on
either a sphere or a plane.

Solution. Take an arbitrary point P ∈ �. Select the direction of a normal �n at P
and on some neighborhood in such a way that the normal curvatures of the surface
are positive; i.e., assume that k(P, �λ) ≡ k0 > 0. Take an arbitrary direction
�λ ∈ T �P and denote by �(P, �λ) the plane through a point P that is parallel to
the vectors �n and �λ, and by γ (P, �λ) the curve that appears as the intersection of �

and a plane �(P, �λ). Introduce on γ (P, �λ) the arc length parameterization with
t counting from the point P . Denote by �τ (t), �ν(t), and �β(t) a tangent vector, the
principal normal vector and the binormal of γ (P, �λ). The curve γ (P, �λ) is a plane
curve, and its torsion is zero. Thus from the Frenet formulas (see Section 1.9) we
obtain

�τ ′
(t) = k�ν(t), �ν ′

(t) = −k�τ (t), �β ′
(t) = 0, (2.35)

where k(t) is the curvature of γ (P, �λ). On the other hand, from Rodrigues’s the-
orem we have

�n′
(t) = −k0�τ (t). (2.36)

Set �a(t) = �n(t) − �ν(t). Then �a(0) = 0, and since �a(t) is orthogonal to �τ (t), then

�a(t) = c1(t)�β(t) + c2(t)�ν(t), (2.37)

where c1(t) and c2(t) are some differentiable functions. Thus, on the one hand,
we have

d�a
dt

= d �n
dt

− d�ν
dt

= (k − k0)�τ , (2.38)

but on the other hand,

d�a
dt

= c′
1(t)�β + c′

2(t)�ν + c2(t)(−k�τ ). (2.39)
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From (2.38) and (2.39) we obtain

(k − k0)�τ = c′
1(t)�β + c′

2(t)�ν − c2(t)k�τ , (2.40)

or
k + c2k − k0 = 0, c′

1(t) = 0, c′
2(t) = 0,

and using (2.37): c1(t) = c2(t) = 0. Hence k(t) = k0. Consequently, γ (P, �λ) is
a circular arc of radius 1

k0
. Since P and �λ are arbitrarily chosen, the problem is

solved. �

Figure 2.8. Parallel surfaces.

The study of parallel surfaces in the next section is based in an essential way
on Rodrigues’s theorem.

2.4.9 Parallel Surfaces

Let � be a regular surface of class Ck (k ≥ 3), and �n(P) a normal vector field
on �. For arbitrary real a we shall construct a surface �(a) by marking off a line
segment of length |a| from each point P ∈ � in the direction of the normal �n(P)

if a > 0, and in the direction −�n(P) if a < 0. The surface �(a) is said to be a
parallel surface to the surface �. Obviously, the properties of a parallel surface
�(a) are determined by the properties of � and by the value of the real number a.

Let us formulate the main theorem. Denote by ϕ(P) the map from � to �(a)

induced by the construction of �(a), and by k1(P, a), k2(P, a), and �n(P, a) the
principal curvatures and the normal to �(a) at the point ϕ(P) ∈ �(a), and set

R1(P, a) = 1

k1(P, a)
, R2(P, a) = 1

k2(P, a)
.

Theorem 2.4.6. If 1
a �= k1(P) = k(P, 0), 1

a �= k2(P) = k(P, 0), then a surface
�(a) is regular at the point ϕ(P), the normal �n(P, a) coincides with �n(P), the
principal vectors of � at P are transformed to the principal vectors of �(a) at
the point ϕ(P), and the principal curvatures k1(P, a) and k2(P, a) are expressed
by the formulas

k1(P, a) = k1(P)

1 − ak1(P)
, k2(P, a) = k2(P)

1 − ak2(P)
(2.41)
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or

R1(P, a) = R1(P) − a, R2(P, a) = R2(P) − a. (2.42)

Proof. Introduce a parameterization �r = �ρ(u, v) of the surface � in a neigh-
borhood of P such that P has nonzero coordinates and the vectors �ρu(0, 0) and
�ρv(0, 0) are parallel to the principal vectors of � at P . The equation of the surface
�(a) can be written as

�r = �r(u, v) = �ρ(u, v) + a�n(u, v).

We derive �ru × �rv at P

�ru = �ρu + a�nu, �rv = �ρv + a�nv.

From Rodrigues’s theorem it follows that

�ru = (1 − ak1)�ρu, �rv = (1 − ak2)�ρv. (2.43)

From (2.43) and the conditions of the theorem we have

�ru × �rv = (1 − ak1)(1 − ak2)[�ρu × �ρv] �= 0.

From the last formula, the first and second statements of the theorem follow. Fur-
thermore, by Rodrigues’s theorem,

(�n(P, a))u = �nu = −k1 �ρu, (�n(P, a))v = �nv = −k2 �ρv.

From this and from (2.43) we obtain

(�n(P, a))u = −k1

1 − ak1
�ru, (�n(P, a))v = −k2

1 − ak2
�rv. (2.44)

From (2.44) and Rodrigues’s theorem we obtain

−k1(P, a)�ru = −k1

1 − ak1
�ru, −k2(P, a)�rv = −k2

1 − ak2
�rv. �

2.5 The Third Fundamental Form of a Surface

On a regular surface � of class Ck (k ≥ 3) one more fundamental form can be
defined: the third fundamental form. Let �λ = λ1�ru + λ2�rv be an arbitrary vector.
Then suppose

I I I (�λ) =
〈

d �n
d�λ ,

d �n
d�λ

〉
= 〈λ1�nu+λ2�nv, λ1�nu+λ2�nv〉 = e(λ1)2+2 f λ1λ2+g(λ2)2,

where e = 〈�nu, �nu〉, f = 〈�nu, �nv〉, g = 〈�nv, �nv〉.
Note that I I I (�λ) induces a field of symmetric bilinear forms

I I I (�λ, �µ) = eλ1µ1 + f (λ1µ2 + λ2µ1) + gλ2µ2.

It turns out that the three fundamental forms of a surface are linearly dependent.
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Theorem 2.5.1. At each point on a regular surface � of class Ck (k ≥ 3) the
following equality holds:

K · I (�λ) − 2H · I I (�λ) + I I I (�λ) = 0. (2.45)

Recall that K (P) is the Gaussian curvature of the surface at P , and H(P) the
mean curvature.

Proof. Let P be an arbitrary point on �. Introduce coordinates (u, v) in some
neighborhood of this point such that the vectors �ru and �rv at P become parallel
to the principal vectors. Then from Rodrigues’s theorem and Theorem 2.4.3 we
obtain, at the point P ,

〈�ru, �rv〉 = 0, (2.46)

�nu = −k1�ru, �nv = −k2�rv. (2.47)

From (2.46) and (2.47) follow

I (�λ) = E(λ1)2 + G(λ2)2,

I I (�λ) = −
〈
�λ,

d �n
d�λ

〉
= k1 E(λ1)2 + k2G(λ2)2, (2.48)

I I I (�λ) =
〈

d �n
d�λ ,

d �n
d�λ

〉
= k2

1 E(λ1)2 + k2
2 G(λ2)2.

From (2.48) we obtain

K · I (�λ) − 2H · I I (�λ) + I I I (�λ)

= k1k2
[
E(λ1)2 + G(λ2)2

]
− (k1 + k2)

[
k1 E(λ1)2 + k2G(λ2)2 + k2

1 E(λ1)2 + k2
2 G(λ2)2

]
= E(λ1)2[k1k2 − k1(k1 + k2) + k2

1]
+ G(λ2)2[k1k2 − k2(k1 + k2) + k2

2] = 0. �

Remark 2.5.1. The equality (2.45) was proved for a special coordinate system,
but since all characteristics in (2.45) are invariant, the equality is valid in any
coordinate system. We write down (2.45) in more detailed form for an arbitrary
coordinate system:

K E − 2H L + e = 0, K F − 2H M + f = 0, K G − 2H N + g = 0. (2.49)

From (2.45) it follows that the third fundamental form of a surface does not itself
play an essential role in the theory of surfaces. However, (2.45) or the equalities
(2.49) may be useful for solving some interesting problems.

We shall give one example where the equalities (2.49) are used for proving
Gauss’s theorem about the area of a spherical image. Let us introduce two new
notions.
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Definition 2.5.1. Let D be some region on a regular surface � of class C2. To
each point on this surface we associate a point on the sphere S2(1) of unit radius
by the following rule. Take a normal �n(P) to � at a point P , and translate it by
parallel displacement until the origin of the vector �n(P) coincides with the center
of the sphere S2(1). Then the endpoint of �n(P) will coincide with some point
ϕ(P) on S2(1). The map ϕ(P) : D → S2(1) thus constructed is called a Gauss
(spherical) map of the region D on the surface �.

Figure 2.9. Gauss (spherical) map.

Definition 2.5.2. If D is some region on a surface �, then the real number
ω(D) = ∫∫

D K d S is called the integral curvature of D. If D lies entirely in
some coordinate neighborhood (u, v), then

ω(D) =
∫∫

D
K (u, v)

√
E(u, v)G(u, v) − F2(u, v) du dv. (2.50)

Example 2.5.1. The Gauss (spherical) map of a sphere is a similarity. The spher-
ical image of a cylindrical surface is a part of a great circle (i.e., an intersection
with a plane containing the center of the sphere) on S2(1). The spherical image of
a plane is a point.

Assume now that some region D on the surface � is in one-to-one correspon-
dence with some region D∗ = ϕ(D) under the Gauss (spherical) map, and the
Gaussian curvature of � has the same sign at each point of D. Then the following
theorem holds.

Theorem 2.5.2 (Gauss theorem for a spherical map). The modulus of the inte-
gral curvature of a region D is equal to the area of its spherical image

|ω(D)| =
∫∫

D∗
d S1, (2.51)

where d S1 is an area element on a sphere.

Proof. Without loss of generality, assume that D lies inside a coordinate neigh-
borhood; otherwise, divide it into parts, each of which lies in some coordinate
neighborhood. Then prove the theorem separately for each such point and, in
view of the additive nature of (2.51), deduce it for the entire region. Under this
assumption the map ϕ is determined by the formula �r = �r1(u, v) = �n(u, v).
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Consequently, for this parameterization the first fundamental form of a sphere
coincides with the third fundamental form of �. But then

S(D∗) =
∫∫

D∗

√
e(u, v)g(u, v) − f 2(u, v) du dv. (2.52)

We find
√

eg − f 2, using (2.49), that

eg − f 2 = (2H L − K E)(2H N − K G) − (2H M − K F)2

= K 2(EG − F2) − 2H K (LG − E N − 2M F) + 4H 2(L N − M2)

= K 2(EG − F2) − 2H K · 2H(EG − F2) + 4H 2 · K (EG − F2)

= K 2(EG − F2).

Consequently,

S(D∗) =
∫∫

D

√
eg − f 2 du dv =

∫∫
D

|K |
√

EG − F2 du dv = |ω(D)|. �

Corollary 2.5.1. The ratio of the area of a spherical image of a region on a surface
to the area of this region tends to the modulus of the Gaussian curvature at a given
point P when a region ties up to this point and K (P) �= 0.

Proof. If the Gaussian curvature at P differs from zero, then there is a neigh-
borhood of P in which the Gaussian curvature has a fixed sign, and a Gauss
(spherical) map of this region onto a sphere is single-valued. Then

S(D∗)
S(D)

= ω(D)

S(D)
= | ∫∫ D K d S|

S(D)
= |K (Q)| ∫∫ D d S∫∫

D d S
= |K (Q)|,

where Q is some point in our region. If a region ties up to a point P , then Q → P;
thus lim S(D∗)

S(D)
= |K (P)|. �

The Gauss theorem on the area of a spherical image has a perspective gener-
alization. It is possible to add a clear geometrical sense to the formula (2.51):
without the requirement of single-valuedness of a Gauss (spherical) map and con-
stancy of the sign of Gaussian curvature, it can be written in the following form:

ω(D) =
∫∫

D
K d S =

∫∫
D∗

d S1.

To prove this formula and give it a geometric meaning, one needs a generalization
of a notion of the area of a spherical image, which we omit for lack of space.

An application of the Gauss theorem on the area of a spherical image:
Let O be some point in R3. Denote by P(O) the set of all orientable planes in

the space R3 passing through the point O . The set P(O) can be parameterized by
the points of the unit sphere S1(O) with center at the point O , by corresponding
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to each point Q ∈ S1(O) a pair: a plane α through the point O that is orthogonal
to the vector

−→
O Q, and the vector

−→
O Q itself. Obviously, this map has an inverse.

Now let � be a regular surface of class Ck (k ≥ 2). Denote by P(�, O) a
subset of all orientable planes of the set P(O), for which the function fα(P) has
at least one degenerate critical point on �.

Problem 2.5.1. Prove that the set P(�, O) is nowhere dense in the set P(O)

relative to the topology of the sphere S1(O).

Hint. Sketch of solution: It is not difficult to check that the point P0 on � is a
degenerate critical point of the function fα(P) if and only if T �P belongs to the
set P(�, O). Now, using Gauss’s theorem on spherical images, we see that the
set P(�, O) has zero measure on the sphere S1(O). From this, the statement of
the problem is deduced.

Problem 2.5.2. If the Gaussian curvature of a closed surface � is positive, then
|ω(�)| = 4π .

2.6 Classes of Surfaces

Before starting with the material of this section, let us return to a discussion of the
notion of a surface. The problem is that the definition given previously is rather
coarse; it excludes the surfaces with points of self-intersection, but such surfaces
often arise in natural geometric constructions, for instance, in the construction of
parallel surfaces.

A surface in the sense of Definition 2.1.1 is an embedded surface; the term
two-dimensional manifold embedded in R3 is also used. We introduce now a new
class of surfaces: the immersed surfaces.

Definition 2.6.1. A set �̃ is the immersed surface in R3 if there is an embedded
surface � and a map ϕ : � → �̃ that is a local diffeomorphism.

The difference between embedded and immersed surfaces is not essential when
we study the local properties of a surface. Indeed, if a point P on an immersed
surface �̃ is a point of self-intersection, then we take the points P1 and P2 on �

that are inverse images of P under the map ϕ. Select on the surface � the coor-
dinate neighborhoods W1 and W2 of these points, each taken sufficiently small so
that W1 ∩ W2 = ∅ holds. Define W̃1 = ϕ(W1) and W̃2 = ϕ(W2).

Thus P has two coordinate neighborhoods on �̃: a neighborhood W̃1 on one
“leaf” of a surface �̃ and a neighborhood W̃2 on a second “leaf ,” and local study
of geometrical properties of �̃ is reduced to local study of geometrical properties
of first and second “leaves” separately. It turns out that at a given point P ∈ �̃ we
obtain two collections of geometric characteristics, which correspond to first and
second “leaf ,” for instance, two values of the Gaussian curvature or two tangent
planes. Thus, for local investigation of immersed surfaces, it is more convenient to
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imagine a point of self-intersection as two different points. Indeed, it may happen
that there are not two, but three or more, “leaves” through a given point P ∈ �̃.

During the study of the properties of surfaces in the large the difference be-
tween immersed and embedded surfaces can be essential. However, in most cases,
a fact that holds for embedded surfaces is also true for immersed surfaces, but the
proof in the latter case is often substantially more difficult.

We shall give one more notion that is useful for solving problems “in the large.”

Definition 2.6.2. An immersion of a two-dimensional manifold (surface) � into
R3 is called proper if the intersection of any compact subset of the space R3 with
� is compact with respect to the intrinsic metric on �.

2.6.1 Surfaces of Revolution

Let a curve γ lie in the plane (x, z) and let its equation have the form z = f (x).
Assume that the function f (x) ∈ C2 is monotonic — for simplicity, strongly
monotonic. Denote by � the surface obtained by a rotation of γ about the axis
O Z . The equation of this surface can be written in the following form:

z = f (
√

x2 + y2) = f (r), r =
√

x2 + y2.

Using the formulas of Section 2.3, we find that

E = 1 +
( x

r
f ′
)2

, G = 1 +
( y

r
f ′
)2

, F = xy

r2
( f ′)2, EG − F2 = 1 + ( f ′)2.

Since our surface is a surface of revolution, it is sufficient to find these geometrical
characteristics at the points on some meridian of the surface, say y = 0. For points
of this meridian, F = 0, G = 1, and E = 1 + (

f ′)2
hold. For the coefficients

L , M, N of the second fundamental form we obtain

L = f ′′√
1 + ( f ′)2

, M = 0, N = f ′

x
√

1 + ( f ′)2
,

if a normal �n(P) of a surface � is directed from the axis O Z of rotation. Hence,
the Gaussian curvature is

K = f ′′ f ′

x[1 + ( f ′)2]2
.

From visual observations it follows that K must be negative if the convexity of
γ is directed along the axis O Z , and positive in the opposite case. In fact, if the
convexity of γ is directed along the axis O Z , then d2z

dx2 > 0, but d2z
dx2 = − f ′′

( f ′)3 .
Consequently, − f ′′ f ′ > 0 or − f ′′ f ′ < 0, and in the second case, − f ′′ f ′ < 0 or
− f ′′ f ′ > 0; and since x > 0, our computations confirm the visual observations.

We now find the principal vectors and the principal curvatures. Hence the di-
rections that are tangent to the meridian and parallels are the principal vectors.
Moreover, from (2.25) we obtain
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k1 = L

E
= f ′′

[1 + ( f ′)2]3/2
, k2 = N

G
= f ′

x
√

1 + ( f ′)2
.

So, we see that k1 is simply the curvature of γ , and the sign of k1 is defined by the
sign of f ′′.

We now clear up the geometrical sense of the principal curvature k2. Draw a
straight line through a point P(x, f (x)), which is orthogonal to the curve γ . The
equation of this straight line is written as (X − x) + f ′(x)(Z − f (x)) = 0, where
X and Z are coordinates of a point on the straight line. We find the intersection
of this straight line with the axis O Z . The point Q of intersection has coordinates
x = 0, z = (x + f f ′)/ f ′. Denote by R the distance between P and Q and obtain

R =
√

x2 +
(

x + f f ′

f ′ − f

)2

= x
√

1 + ( f ′)2

| f ′| .

Consequently, |k2| = 1/R.

Remark 2.6.1. For a surface of revolution there often exists such a parameteriza-
tion �r(u, v) such that the coefficients of the first fundamental form are expressed
as E = 1, F = 0, G = G(u). In fact, if the parameter u is taken equal to√

x2 + y2, and v equal to the rotation angle of the plane X O Z around the axis
O Z , then

x = u cos v, y = u sin v, z = f (u)

are actually the parametric equations of our surface of revolution �. For this pa-
rameterization we have

�ru = cos v�i + sin v�j + f ′ �k, �rv = −u sin v�i + u cos v�j .
Thus

E = 1 + ( f ′)2, F = 0, G = u2.

We introduce a new parameter

ū(u) =
∫ u

u0

√
1 + ( f ′)2 du

and let u = H(ū) be the inverse function. Then �r ū = �ru H ′, and hence we obtain

Ē = (�r ū)
2 = [

1 + ( f ′)2
]
(H ′)2 = 1 + ( f ′)2

1 + ( f ′)2
= 1, F = 0, G = H 2(ū),

which completes the proof of the remark.

Note finally that the parameter ū has an obvious geometric sense: it is the arc
length of the curve γ counting from a point (u0, f (u0)). In the case that γ cannot
be defined by a monotonic function f (x), it is more convenient to determine the
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equation of γ by a function of z : x = ϕ(z). In this case we obtain the following
equation of �:

�r = �r(u, v) = ϕ(u) cos v�i + ϕ(u) sin v�j + u�k.

We find the expression of the Gaussian curvature K of the surface �, using the
geometric sense of the principal curvatures k1 and k2. We have

k1 = − ϕ′′

[1 + (ϕ′)2]3/2

if the normal �n(P) to � is directed along the axis of rotation. In order to find k2,
we must find the length of the subnormal of γ . The equation of the straight line
through the point P(ϕ(z), z) that is orthogonal to γ has the form

ϕ′(x − z) + Z − z = 0.

The coordinates of the point Q are x = 0, Z = z+ϕ′ϕ, and R = √
ϕ2 + (ϕ′ϕ)2 =

ϕ
√

1 + (ϕ′)2. Consequently, k2 = 1
R = 1

ϕ
√

1+(ϕ′)2
and K = − ϕ′′

ϕ[1+(ϕ′)2]2 .

Problem 2.6.1. Find all surfaces of revolution with constant Gaussian curvature
equal to K0.

Solution. Obviously, this problem can be reduced to integration of the differential
equation

K0 = − ϕ′′

ϕ[1 + (ϕ′)2]2
. (2.53)

Multiplying (2.53) by ϕϕ′ and integrating, we obtain

−K0ϕ
2 = − 1

1 + (ϕ′)2
+ c. (2.54)

To find the constant c it is necessary to know the initial conditions.
Consider the case of K0 > 0. In this case the initial conditions are assumed to

be

ϕ(0) = x0, ϕ′(0) = 0. (2.55)

Then from (2.54) we obtain c = 1 − K0x2
0 . After this, we shall rewrite (2.54) in

the form

(ϕ′)2 = −K0(ϕ
2 − x2

0)

1 + K0(ϕ2 − x2
0)

. (2.56)

From (2.56) we see that its solution, the function ϕ, is an even function of the
variable z, or in other words, the curve γ is symmetric with respect to the axis
O X . Thus, consider (2.56) for z < 0, and then we can write it in the form
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ϕ′ =
√

K0(x2
0 − ϕ2)√

1 + K0(ϕ2 − x2
0)

, z < 0. (2.57)

Generally, (2.57) is not integrable in elementary functions, but it is possible to
present a parameterization of its solution as

x(ū) = x0 cos(
√

K0ū), z(ū) =
∫ ū

0

√
1 − x2

0 K0 sin2(
√

K0t)dt,

where the parameter ū, introduced above, is the arc length of the meridian. Con-
sider three cases:

(1) x0 = 1√
K0

, (2) x0 >
1√
K0

, (3) x0 <
1√
K0

.

(1) In the first case the integral can be easily taken, and the solution has the
form

x(ū) = x0 cos(
√

K0ū), z(ū) = x0 sin(
√

K0ū).

Hence, γ is a semicircle, and the surface � is a sphere of radius 1√
K0

. In the second
and third cases we can make some qualitative observations. From the positivity
of the expressions under the square roots in (2.57) we obtain a restriction on the
solution ϕ of this equation in the form of the following inequalities:

K0(x2
0 − ϕ2) > 0, (2.58a)

1 − K0(x2
0 − ϕ2) > 0. (2.58b)

From (2.58a) we obtain ϕ(z) ≤ x0, and from (2.58b) we obtain K0ϕ
2 > K0x2

0 −1.
These inequalities allow us to see the differences between the second and the third
cases on the one hand, and the first, on the other.

(2) x0 > 1√
K0

. In this case, K0x2
0 − 1 = a2 > 0 holds, and consequently, the

function ϕ satisfies ϕ(z) ≥ |a|, but z′(ū) at the point ū1 = 1√
K0

arcsin 1
x0

√
K0

is
zero. Also, we obtain that there is a real number

z1 =
∫ ū1

0

√
1 − x2

0 K0 sin2(
√

K0t) dt

such that the function ϕ(z) is defined only in the interval (−z1, z1), and in this
interval it satisfies the inequality 0 < |a| < ϕ < x0; see Figure 2.10. Thus, we
have obtained a nonclosed surface diffeomorphic to a cylinder.

(3) x0 < 1√
K0

. In this case, from the inequality (2.58a) we obtain the same
estimate for the function ϕ < x0. The second inequality (2.58b), in view of the
condition K0x2

0 − 1 < 0, shows us that there is some real number
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Figure 2.10. Case of x0 > 1√
K0

.

z2 =
∫ π

2
√

K0

0

√
1 − x2

0 K0 sin2(
√

K0t) dt

for which

ϕ(z2) = 0, ϕ′(z2) =
√

K0x0√
1 − K0x2

0

> 0.

Hence, in this case the surface is homeomorphic to a sphere, but with two sin-
gular points (0, z2) and (0, z1); see Figure 2.11. The results obtained above are

Figure 2.11. Case of x0 < 1√
K0

.

of course not fortuitous. We prove below that any regular complete surface of
constant positive Gaussian curvature is a sphere.

Now consider the case of K0 < 0. Assume c = 1 in (2.54). Then we obtain

K0ϕ
2 = − (ϕ′)2

1 + (ϕ′)2
.

For integration of this equation we pass to the parameterization of γ . Suppose
ϕ′ = tan t . Then K0ϕ

2 = − sin2 t , or
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ϕ = 1√−K0
sin t. (2.59)

From (2.59) it follows that dz = 1
ϕ′ dx = cot t . Consequently,

z = 1√−K0

(
cos t + log tan

t

2

)
+ c. (2.60)

So, the required curve γ has the following parameterization:

x = 1√−K0
sin t, z = 1√−K0

(
cos t + log tan

t

2

)
+ c. (2.61)

This curve is called a tractrix; see Figure 2.12. Its characteristic property is ex-

Figure 2.12. Tractrix and pseudosphere (z ≥ 0).

pressed in the fact that the length of a tangent line segment from a point of tan-
gency to the z-axis is constant. For c = 0 the length of this line segment is 1√−K0

.
The obtained surface of revolution is called a pseudosphere. Its equations are

x = 1√−K0
sin u cos v, y = 1√−K0

sin u sin v,

z = 1√−K0

(
cos u + log tan

u

2

)
.

The region of the parameters’ values is determined by the inequalities

0 < u <
π

2
, 0 ≤ v < 2π.

The equality z(u) = 0 holds if and only if u = π
2 , but then ϕ(0) = 1√−K0

, and

limz→0 ϕ′(z) = −∞. But if ϕ(0) �= 1√−K0
, which corresponds to the value of

the constant c in (2.58b) not equal to 1, then (2.54) is not integrable in elemen-
tary functions. Note that a pseudosphere is diffeomorphic to a cylinder. But there
does not exist a complete surface in R3 with constant negative curvature that is
diffeomorphic to a plane. This statement was proved by D. Hilbert at the end of
nineteenth century.
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Exercise 2.6.1. Find all minimal surfaces of revolution.

Another interesting subclass of surfaces of revolution is studied in Section 2.9.

2.6.2 Ruled and Developable Surfaces

Definition 2.6.3. A ruled surface is a one-parameter family of straight lines.

In general, the given definition of a ruled surface is not correct. It is not difficult
to find the cases in which only some part of this set of points forms a surface. It
is possible, of course, to assume in advance the regularity of a surface � and to
call it ruled if it can be represented in the form of (or contains) a 1-parameter
family of straight lines, for instance, a hyperboloid of one sheet or a hyperbolic
paraboloid. However, such a definition is not always convenient for applications.
Sometimes, it is better to use the classical point of view, according to which we
always assume conditions that are necessary to us.

Any ruled surface can be obtained in the following way. Let γ (t) be an arbitrary
regular curve in R3 of class Ck (k ≥ 2) and let �a(t) be some vector field along
γ (t), also of class Ck (k ≥ 2), and �a(t) �= 0 for all t ∈ (a, b). Construct a straight
line through every point γ (t) of the curve γ (called the directrix or base curve)
in the direction of �a(t) (called the director curve). A family of these straight lines
(rulings), u → �r1(u) + v�a(u), generally forms some ruled surface �. If �r1(u) is
the parameterization of a base curve γ , then the equation �r(u, v) = �r1(u)+v�a(u)

determines �. The answer to the question, what part of a set of points determined
by this equation forms a regular surface depends on the vector functions �r1(u)

and �a(u). We shall not investigate this question in detail, but assume simply that
on some region in the plane (u, v) this equation defines a regular surface. In every
case, if |�a(u)| = 1 and (�a · �a′ · �r) �= 0 for all u ∈ (a, b), the obtained ruled surface
� is regular at each of its points.

Definition 2.6.4. A ruled surface with the condition �a′
(u) �= 0 is called noncylin-

drical. A noncylindrical ruled surface whose rulings are parallel to some fixed
directrix plane is a Catalan surface. A Catalan surface is a conoid if all of its
rulings intersect a constant straight line, called the axis of the conoid. A conoid is
right if its axis is orthogonal to the directix plane.

Note that a right conoid is formed by a straight line that moves, guided on
a fixed straight line orthogonal to it (the axis of conoid), and at the same time
rotates about this straight line. If the velocity of rotation is proportional to the
lifting velocity of the ruling, then the conoid is a right helicoid.

Example 2.6.1. The simplest conoid is the hyperbolic paraboloid. It is defined by
moving a straight line that is parallel to a fixed plane and is guided by two fixed
helices (two axes!). Conversely, every conoid that differs from a plane and has
two axes is a hyperbolic paraboloid. The more complicated examples, generalized
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Plücker’s conoids (having n ≥ 2 folds; see Figure 2.136 with n = 2, 5) are
obtained by rotation of a ray about the axis O Z and with simultaneous oscillatory
motion (with period 2πn) along the segment [−1, 1] of the axis:

�r = [0, 0, sin(nu)] + v[cos u, sin u, 0] = [v cos u, v sin u, sin(nu)].

(a) n = 2. (b) n = 5.

Figure 2.13. Generalized Plücker’s conoids.

We now find an expression for the Gaussian curvature of a ruled surface

�ru = �r1
′ + �a′

v, �rv = �a, �ruu = �r1
′′ + �a′′

v, �ruv = �a′
, �rvv = 0.

From the last equality it follows that the coefficient N of the second fundamental
form is zero. Thus the Gaussian curvature of � is expressed by the formula

K = − M2

EG − F2
. (2.62)

Formula (2.62) shows us that the Gaussian curvature of any ruled surface is non-
positive, which of course does not surprise us, because at each point P ∈ � in the
direction of the vector �a the normal curvature is zero, and consequently, either the
principal curvatures are of opposite signs or at least one of them is zero.

Consider in detail the case that the Gaussian curvature of a ruled surface is
identically zero. We calculate the coefficient M to be

M = (�ru · �rv · �ruv)√
EG − F2

= ((�r1
′ + v�a′

) · �a · �a′
)√

EG − F2
,

and consequently, the equality K = 0 means that

(�r1
′(u) · �a(u) · �a′

(u)) = 0. (2.63)

Equality (2.63) holds in the following obvious cases:

6 For other examples of ruled surface modeling with Maple, see Figures 2.2, 2.14 and [Rov1].
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1. �r1
′(u) ≡ 0. Hence the base curve γ is a point, and � is a cone (without the

vertex).
2. �a′

(u) ≡ 0. Hence �a(u) = const and � is a cylinder.
3. �r1

′(u) × �a(u) = 0. A surface � is generated by lines tangent to the base
curve γ .

Example 2.6.2. Consider a four-leafed rose curve γ1 : ρ = cos(2ϕ), or in Carte-
sian coordinates of the z = 1 plane, �r1(u) = [cos(2u) sin(u), cos(2u) cos(u), 1].
Then the cylinder with base curve γ = γ1 and the z-axis is given by �r(u, v) =
�r1(u) + v[0, 0, 1] = [cos(2u) cos(u), cos(2u) sin(u), 1]. The cone with director
curve �a = γ1 and vertex S(0, 0, 0) is given by �r(u, v) = v�r1(u). These surfaces,
drawn with Maple, are shown in Figure 2.14.

(a) Cylinder. (b) Cone.

Figure 2.14. Cylinder and cone over a four-leafed rose.

Consider now the general case. From equality (2.63) it follows that

�r1
′(u) = λ1(u)�a(u) + λ2(u)�a′

(u),

where λ1 and λ2 are some functions of the variable u. Note further that since
�r1

′(u) × �a′
(u) �= 0, the function λ2(u) is nonzero and

�a × �a′ �= 0. (2.64)

Take the curve γ̃ on a surface � defined by the equation v = v(u) or �r2(u) =
�r1(u) + v(u)�a(u). We can select the function v(u) such that �r2

′(u) × �a ≡ 0. We
obtain the equation for function v = v(u),

(�r1
′(u) + v′(u)�a(u) + v(u)�a′

(u)) × �a(u) = 0,

or
(λ1(u)�a(u) + λ2(u)�a′

(u) + v′(u)�a(u) + v(u)�a′
(u)) × �a(u) = 0,

or
(λ2(u) + v(u)) · (�a′

(u) × �a(u)) = 0
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and from (2.64) it follows that v(u) = −λ2(u). So for the curve γ̃ and the vector
field �a(u) we obtain case 3. Consequently, for any ruled surface � with zero
Gaussian curvature that is not a cone or a cylinder, there is a curve such that
� is generated by the family of tangent lines to this curve. Surfaces with zero
Gaussian curvature are called developable. In the next section we shall prove that
any developable surface is ruled.

We now study the behavior of a tangent plane along generators of a developable
surface �. Let �n = �n(u, v) be a normal to �. Since the Gaussian curvature K is
zero, a generator at each of its points goes along the main direction. Consequently,
by Rodrigues’s theorem,

∂ �n
∂v

= 0. (2.65)

Equation (2.65) shows us that in fact the normal �n(u, v) depends on u only; conse-
quently, all tangent planes along a generator are parallel, and since they all contain
the same straight line, they all coincide. This property of tangent planes along a
generator is called the stationarity of a tangent plane.

Finally, we study in detail the structure of a developable surface in a neigh-
borhood of a base curve γ̃ : �r = �r2(u). Divide � onto two semisurfaces �1 and
�2 by the inequalities v ≥ 0 for �1 and v ≤ 0 for �2. We now calculate the
coefficients of the first fundamental form of the surface,

�ru = (�r2)u + v�a′
(u), �rv = �a(u). (2.66)

If we assume u to be an arc length parameter of γ̃ , and �a(u) = �r2
′(u) a vector

field, then from (2.66) it follows that

E = 1 + k2v2, F = G = 1, (2.67)

where k(u) is the curvature of γ̃ . From (2.67) one can see that at the points
(u, v) ∈ �1 and (u, −v) ∈ �2, the coefficients E , F , and G coincide. Conse-
quently, the semisurfaces �1 and �2 are isometric. Thus � is the union of two
isometric semisurfaces �1 and �2 that are “glued” to each other along the base
curve. Thus, we see that the surface � is not regular at the points of the base curve
γ̃ . At its other points, � is regular if the curvature k(u) of γ̃ is nonzero at each
point, because |�ru × �rv|2 = EG − F2 = k2v2.

The semisurfaces �1 and �2 often intersect with each other. Here is the sim-
plest example: Let γ be a circle in R2, and suppose the field �a(t) is a tangent
vector field to γ . Then �1 and �2 obviously coincide, and � consists of two
copies of the exterior of a circle, “glued” along a circle.

We now explain why a ruled surface � with zero Gaussian curvature is called
a developable surface. Let P0(u0, v0) be a regular point of �. Take on � a neigh-
borhood U of P0 defined by the inequalities |u − u0| < ε, |v − v0| < ε. Let ε be
sufficiently small such that the curvature k(u) of the base curve differs from zero
if |u − u0| < ε, and v �= 0 if |v − v0| < ε. Take a curve γ̄ : �r = �ρ(u) on some
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plane α such that its curvature k̄(u) coincides with k(u) for |u − u0| < ε and �a(u)

is the unit vector field tangent to γ̄ . Then the region Ū of a plane α determined by
the condition �r = �ρ(u) + v�a(u) for u, v ∈ U is isometric to the region U on �,
as is seen from (2.67). So, we can say that a neighborhood U of P0 is developed
(unrolled) onto a plane.

Finally, note that if a complete regular surface � is developable, then � is a
cylinder (in particular, a plane).

2.6.3 Convex Surfaces

Recall that a region D ⊂ R3 is convex if together with each pair of its points P
and Q it contains the line segment P Q connecting these points. The boundary
∂ D of a convex region D is actually a surface (generally, a continuous surface),
and it is called a convex surface.

Theorem 2.6.1. If a convex region D contains a straight line, then the surface
� = ∂ D is homeomorphic to a cylinder; if D contains a ray but does not contain
any straight line, then � = ∂ D is homeomorphic to a plane; if D does not contain
any ray (D is compact), then the surface � = ∂ D is homeomorphic to a sphere.

Proof. The statements of Theorem 2.6.1 are straightforward, and we shall prove
only the first of them. Let a be a straight line that lies entirely in D, and let P
be an arbitrary point on �. Take two points P1 and P2 on the straight line a. In
view of the convexity of D, the line segments P P1 and P P2 belong to D. Let
points P1 and P2 tend to infinity along the straight line a, and let the length of
the line segment P1 P2 also tend to infinity. Then the line segments P P1 and P P2

tend to some rays a1 and a2 lying on the straight line a(P) that is parallel to
a. Consequently, through each point P ∈ � there passes a straight line a(P)

that is parallel to a and lies entirely on �. Bring the plane α through some point
Q ∈ � and orthogonally to a. Since α ∩ D is a convex region on the plane α, the
intersection α ∩ � is a convex curve γ . Let C be a cylinder whose directrix curve
is γ and whose rulings are parallel to the straight line a. Since C is contained in
� and is an open and closed set, they coincide, which completes the proof. �

The following obvious properties of convex surfaces are formulated as exer-
cises.

Exercise 2.6.2. A regular surface � of class Ck (k ≥ 1) is convex if and only if it
lies entirely on one side of every one of its tangent planes.

Exercise 2.6.3. The Gaussian curvature of a regular convex surface of class Ck

(k ≥ 2) is nonnegative at every point.

Exercise 2.6.4. The integral curvature (see Section 2.5) of a closed regular convex
surface of class C2 is 4π .

Hint. Use Gauss’s Theorem 2.5.2 (about spherical images).
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Exercise 2.6.5. The exact upper bound of the integral curvature of any open, reg-
ular, convex surface of class C2 is not greater than 2π .

Hint. Use Gauss’s Theorem 2.5.2 (about spherical images).

Exercise 2.6.6. The exact lower bound of the Gaussian curvature K (P) of an
open, regular, convex surface of class C2 is zero.

Hint. Use the statement of the previous exercise.

Exercise 2.6.7. If the Gaussian curvature K (P) of a regular convex surface of
class C2 is not smaller than a positive real number a, then the surface is closed
(compact).

Exercise 2.6.8. If a convex surface � is neither a cylinder nor a plane, then there
is a nondegenerate right circular cone containing �.

2.6.4 Problems: Curvature of Convex Surfaces

Now we formulate some conditions under which a regular surface of class C2 has
points of positive Gaussian curvature.

Problem 2.6.2. On each closed (compact) regular surface � of class C2 there is
a point at which the Gaussian curvature is positive.

Solution. Let S(O, R) be a sphere with center at some point O and radius R so
large that the entire surface � lies in this sphere. Decrease the radius of this sphere
until the sphere and � touch each other for the first time, at which time the radius
of the sphere will be R1 < R. Denote by P a point that belongs to � ∩ S(O, R1).
The tangent plane T �P at P is also a tangent plane to the sphere S(O, R1). Direct
a normal �n(P) inside of S(O, R1). The normal curvatures of S(O, R1) at this
point are equal to 1/R1, and the normal curvatures of � are not smaller than 1/R1,
because � lies entirely inside the sphere S(O, R1). Consequently, the Gaussian
curvature K (P) of � at P is not smaller than 1/(R1)

2. �

An analogous criterion for complete, noncompact (open) surfaces can be for-
mulated as follows:

Problem 2.6.3. If an open, regular surface � of class C2 lies entirely inside a
convex circular cone T , then there is a point on � at which the Gaussian curvature
is positive.

Solution. Write down the equation of the cone T in the form x2 + y2 − a2z2 = 0,
and define a region containing the surface � by the inequalities

x2 + y2 − a2z2 < 0, z > 0.

Take another cone T1, defined by the equation
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x2 + y2 − b2(z + c)2 = 0 (where b > a, c > 0). (2.68)

Let H be one (upper) sheet of the hyperboloid of revolution of two sheets given
by the equation

4b2

c2
(x2 + y2) − 4

c2
(z + c)2 = −1, z ≥ − c

2
.

This convex surface H lies entirely between the cones T and T1, and the cone T1

is asymptotic to H . Let
ρ0 = inf

P∈D,Q∈H
|P Q|.

From the condition b > a in (2.68), follows that ρ0 exists and is finite, and that
there exist points P0 and Q0 on the surfaces � and H such that ρ0 = |P0 Q0|.
Now displace H parallel to itself by the vector

−−→
P0 Q0. Denote by H0 the result-

ing surface. The surfaces H0 and � have a common tangent plane at P0, and �

lies entirely inside the convex region bounded by H0. Thus, as in the previous
problem, the Gaussian curvature of the surface � at P0 is not smaller than the
Gaussian curvature of the surface H0 at Q0, which is positive. �

Remark 2.6.2. If a convex surface � has a point at which the Gaussian curvature
is positive, then there is a right circular cone T containing � (see Exercise 2.6.8).

Thus from Problem 2.6.3 we obtain the following corollary.

Corollary 2.6.1. If a complete, open regular surface � lies entirely inside a con-
vex region bounded by a convex surface �1 whose Gaussian curvature is positive
at least at one point, then there is a point on � at which the Gaussian curvature is
positive.

We now solve Hadamard’s problem.

Problem 2.6.4 (Hadamard). If the Gaussian curvature at each point of a closed
regular surface � of class C2 is positive, then � is convex.

Hadamard’s problem is a particular case of Problem 2.6.5 given below. We shall
give another solution of this problem, different from but no less illuminating than
the solution of Problem 2.6.5.

Solution. The surface � bounds some three-dimensional region, which will be
denoted by D. Take a point P on �, and direct a normal �n(P) to � at this point P
inside of D, and continue this direction of the normal by continuity to each point
on �. Define the sign of the normal curvature at each point of � by the direction
of the normal �n(P). In view of the statement of Problem 2.6.2, there is a point
Q on � at which under the above definition of the sign of a normal curvature all
normal curvatures are positive. By the conditions of our problem, the Gaussian
curvature at all points P ∈ � is positive. It follows that the normal curvatures of
� are positive at all of its points. Now let Q be some point in int D. Denote by
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�Q the set of points int D that can be connected with Q by a line segment entirely
contained in int D. Obviously, �Q is an open set in int D.

We prove that �Q is closed in int D. Let Q0 ∈ int D be a point such that there is
a sequence of points Qn ∈ �Q tending to Q0. Assume that Q0 �∈ �Q . That means
that the line segment Q Q0 touches � at some point P that lies inside of the line
segment Q Q0 (P ∈ Q Q0, P �= Q, P �= Q0). Then

−−→
P Q0 belongs to the tangent

plane T �P , and the normal curvature of � at the point P and in the direction of
the vector

−−→
P Q0 is nonpositive, which is a contradiction. �

Problem 2.6.5. Let � be a closed, regular surface of class C2 immersed in R3.
Then if the Gaussian curvature of the surface � at each of its points is nonnega-
tive, then � is convex, and consequently, an embedded surface.

Solution. Assume the opposite and lead this assumption to a contradiction. If �

is a nonconvex surface, then there is a plane α such that the set α ∩ � is not
connected, because in the opposite case, � will lie on one side of each of its
tangent planes and will be convex. Take a point Q on the plane α and a unit vector
�e orthogonal to the plane α. Define a function fα(P) on �, assuming it to be equal
to (

−→
Q P, �e). Note that in view of Problem 2.5.1, we can assume that fα(P) has

no degenerate critical points on the surface �. Let P1 and P2 be two points in the
set �∩α from its different connected components. Without loss of generality, we
may suppose that there is a continuous curve σ(t) (0 ≤ t ≤ 1) on � connecting
P1 and P2 and belonging to the region defined by the inequality fα(P) ≥ 0. Let
�(P1 P2) be the class of all continuous curves σ on � with endpoints P1 and P2

that lie in the region fα(P) ≥ 0. Take a point Pσ on each curve σ ∈ �(P1 P2) at
which the function fα(σ (t)) for 0 ≤ t ≤ 1 reaches its maximum. Define a real
number a0 by the equality

a0 = inf
σ∈�(P1 P2)

fα(Pσ ).

Obviously, a0 > 0. In view of the compactness of � and the definition of a0, there
is a point P0 on � such that fα(P0) = Q0; and there exist points Q1 �= P0 and
Q2 �= P0 in any neighborhood of P0 on the surface � such that

fα(Q1) ≤ a0, (2.69)

fα(Q2) ≥ a0. (2.70)

In view of the definition of a0 and of the point P0, a plane T �P0 is parallel to
the plane α. Introduce a rectangular Cartesian coordinate system x , y, z with the
origin at P0; direct the axis O Z parallel to the vector �e, and so the axes O X and
OY are located in the plane T �P0 . The equation of � in some neighborhood of
P0 can be written explicitly as

z = h(x, y).

The function h(x, y) satisfies the equations
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h(0, 0) = 0,
∂h

∂x
(0, 0) = ∂h

∂y
(0, 0) = 0;

moreover, the axes O X and OY can be chosen so that

∂2h

∂x∂y
(0, 0) = 0.

We introduce the notation

a = 1

2

∂2h

∂x2
(0, 0), b = 1

2

∂2h

∂y2
(0, 0).

Write Taylor’s formula for the function h(x, y):

h(x, y) = ax2 + by2 + ō(x2 + y2). (2.71)

Since the functions h(x, y) and fα(P) in a neighborhood of the point P0 are
related by the equality fα(x, y) = h(x, y)+a0, and since fα(0) has no degenerate
critical points on �, P0 is a degenerate critical point of the function h(x, y). Thus
a · b �= 0 holds. If we assume that a · b > 0, then in view of (2.71), this leads
to a contradiction either with the inequality (2.69) or with the inequality (2.70).
Consequently, a · b < 0. But then the Gaussian curvature K of �, equal to 4a · b,
would be negative, which contradicts the conditions of the problem. The problem
is solved. �

Now we study open (i.e., complete noncompact) surfaces.

Problem 2.6.6. If the Gaussian curvature of an open regular surface � of class
C2 is everywhere positive, then � is convex.

Hint. Repeat the considerations and constructions of Problem 2.6.4.

An analogue of Problem 2.6.5 appears to be more complicated. The following
statement holds.

Problem 2.6.7. Let � be an open regular surface of class C2 immersed in R3.
Then if the Gaussian curvature of � at each of its points is nonnegative and there
is a point of positive Gaussian curvature, then � is convex and consequently, an
embedded surface.

The solution of this problem is difficult and long. It can be found in [Pog]. We
now give some tests that allow us to estimate from above the principal curvatures
of a surface at some points of this surface.

Problem 2.6.8. If a region D bounded by a convex surface � of class C2 con-
tains a ball C(R) of radius R, then there is a point P on � at which all normal
curvatures are not greater than 1/R.
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Solution. Increase the radius of the ball C(R) while its center is fixed until it (the
ball C(R1), R1 > R) touches the surface � for the first time at some point P0. So
we have obtained that � touches the ball C(R1) at P0 and lies outside of the ball
C(R1). From this it follows that the absolute value of any normal curvature is not
greater than 1/R1, and consequently, than 1/R. �
Remark 2.6.3. The convexity assumption for the surface � is not essential when
the sign of the normal curvature of � is defined by the direction of its inner nor-
mal.

This test is essentially strengthened in the following problem.

Problem 2.6.9. Let � be a convex, regular surface of class C2 bounded by a con-
vex region D. Then, if one can place a circle with radius R entirely inside of
D, there is a point on � at which all the normal curvatures are not greater than
1/R. (The sign of the normal curvature is determined by the direction of the inner
normals.)

Solution. Let K R be a disk of radius R that lies entirely in D, and let α be the
plane containing this disk. Denote by C the right circular cylinder whose gener-
atrix is the boundary of the disk K R , and the rulings are straight lines orthogonal
to the plane α. The following two cases are possible:

(1) the cylinder C does not intersect the surface �,

(2) the cylinder C cuts out from the surface � at least one surface �1.

In the first case, as follows from Theorem 2.6.1, � itself is a cylinder C , and
the statement of the problem becomes obvious.

Consider the second case. Let D̃ be the region bounded by the cylinder C and
�1. Let S(R − ε) be the sphere of radius R − ε (0 < ε < R) with center on the
axis of the cylinder C that does not intersect �1. Move the sphere S(R − ε) in the
direction toward �1 until the first tangency of S(R − ε) and �1 appears, and let
P be a point of tangency. The surface �1, as follows from our construction, lies
entirely on one side of S(R − ε) and touches it at P , an interior point of �1. Thus
all normal curvatures of �1 at P are not greater than 1

R−ε
. Since ε may be chosen

as close to zero as possible, the statement of the problem is proved. �
There are many books and surveys devoted to convex surfaces and bodies with-

out any smoothness assumptions; see [Ku1], [Bus], [Sto], [Pog], [Hop].

2.6.5 Saddle Surfaces

Definition 2.6.5. A regular surface � of class C2 is called a saddle surface if the
Gaussian curvature at each point of � is nonpositive.

Note that the class of saddle surfaces contains the well-studied class of minimal
surfaces, i.e., surfaces whose mean curvature H is identically zero,7

7 See, for example, [OG].
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Generally speaking, there is another definition of a saddle surface that is also
applicable for a continuous surface and coincides with our definition in the regular
case.

If the Gaussian curvature of � is negative at some point P ∈ �, then the
tangent plane T �P intersects �, and the surface lies on both sides of T �P . The
surface � has a saddle-type shape in a neighborhood of such a point, which is the
reason for the name of these surfaces. One of the features of a complete saddle
surface is its unboundness in R3. So for instance, from Problem 2.6.2 it follows
that there does not exist a closed saddle surface in R3, and from Problem 2.6.3 (or
its Corollary 2.6.1) it follows that one cannot place a saddle surface entirely in
any strictly convex region. But a saddle surface can be entirely placed between two
parallel planes, for instance, a circular cylinder or, a more interesting example, the
surface obtained by rotation of the curve x = z2

1−z2 (|z| < 1) about the axis O Z .
The Gaussian curvature of this surface is negative at each point. But this procedure
is impossible for saddle surfaces homeomorphic to a plane.

Theorem 2.6.2 (S.N. Bernstein). If a saddle surface � defined by the equation

z = f (x, y) (−∞ < x, y < ∞)

has points of negative Gaussian curvature, then

sup
x,y

| f (x, y)| = ∞.

The proof of this theorem is very difficult and cannot be given here. We now
study the behavior of the Gaussian curvature K (P) and the principal curvatures
k1(P) and k2(P) of saddle surfaces.

The strongest result concerning the behavior of the Gaussian curvature on a
saddle surface was obtained by N.V. Efimov.

Theorem 2.6.3 (N.V. Efimov ). The least upper bound of the Gaussian curvature
on a complete saddle surface in R3 is zero.

This theorem of N.V. Efimov is very deep and difficult to prove. It is an essential
generalization of the well-known theorem of Hilbert on the nonexistence in R3 of
a complete regular surface with constant negative Gaussian curvature. In this
book we cannot give its proof. We restrict ourselves to only the proof of Hilbert’s
theorem given at the end of Section 2.8.

The statements of N.V. Efimov’s theorem and Exercise 2.6.6 can be formulated
in the form of a single theorem.

Theorem 2.6.4. The exact lower bound of the absolute value of the Gaussian cur-
vature of a complete open regular surface in R3 is zero.

Let us now study the behavior of the principal curvatures k1(P) and k2(P) at
infinity for any complete saddle surface.
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Problem 2.6.10. Prove that if on a complete saddle surface � ⊂ R3,

inf
P∈�

|k1(P)| + inf
P∈�

|k2(P)| = c > 0

holds, then � is a cylinder, i.e., k1(P) ≡ 0 and k2(P) = const.

Solution. Assume for definiteness that k1(P) ≤ 0 and k2(P) ≥ 0 and that
infP∈� |k2(P)| = c1 > 0. Assume that the Gaussian curvature K (P) is not iden-
tically zero, and show that this leads to a contradiction. Take a real number R,
satisfying the inequality

R >
1

c1
. (2.72)

Then the Gaussian curvature of a parallel surface �(R) is nonnegative. Indeed,
by Theorem 2.4.6 we have

k1(P, R) = k1(P)

1 − Rk1(P)
, k2(P, R) = k2(P)

1 − Rk2(P)
.

From this, we obtain

K (P, R) = K (P)

(1 − Rk1(P))(1 − Rk2(P))
.

The numerator and denominator of this fraction are negative. Indeed, K (P) ≤ 0
by the conditions of the problem, 1 − Rk1(P) > 0 because of k1(P) ≤ 0, and
1 − Rk2(P) < 0 in view of inequality (2.72). From the nonnegativity of the
Gaussian curvature of �(R), it follows (see Exercise 2.6.8) that �(R) can be
placed entirely inside of a strictly convex cone C . Take another strongly convex
cone C1 such that it contains C and the distance from any point of C to C1 is
greater than R. Then a saddle surface � lies entirely in the cone C , which is
impossible (see Problem 2.6.3). Thus, the Gaussian curvature of � is identically
zero. �

In 1966, J. Milnor enunciated a conjecture, which for saddle surfaces implies
that for statement 2.6.10 to hold, it suffices that:

inf
P∈�

(|k1(P)| + |k2(P)|) �= 0.

This assertion is not yet been proved.
We solve one more problem, in which saddle and convex surfaces are closely

related.

Problem 2.6.11. Let � be a regular convex surface of class Ck (k ≥ 2), and k1(P)

and k2(P) the principal curvatures of � at a point P . Suppose that 0 ≤ k1(P) ≤
k2(P). In this case, if supP∈� k1(P) < infP∈� k2(P), then � is a cylinder, and
consequently, k1 ≡ 0, but k2 = c0 > 0. The sign of the normal curvature is
determined by the direction of the inner normal.
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Solution. We assume that � is not a cylinder, and show this leads to a contradic-
tion. The surface � cannot be homeomorphic to a sphere, because on any such
surface there is an umbilic at which k1(P) = k2(P), in contradiction to the con-
dition of the problem. Thus we need only study the case that � is homeomorphic
to a plane; in this case we may suppose that supP∈� k1(P) = c1 > 0. Define
c2 = infP∈� k2(P), and denote by R a real number satisfying the inequality

1

c2
< R <

1

c1
. (2.73)

Take parallel surfaces �(R) and �(−R). The surface �(−R) is convex and con-
tains �(R) entirely. Prove that �(R) is regular and a saddle surface. The regular-
ity of �(R) follows from Theorem 2.4.6. We now calculate the principal curva-
tures of �(R) at a point ϕ(P). (We use the notation introduced in Section 2.4.9).
By Theorem 2.4.6,

k1(P, R) = k1(P)

1 − Rk1(P)
, k2(P, R) = k2(P)

1 − Rk2(P)
.

Thus the Gaussian curvature K (P, R) of �(R) is expressed by the formula

K (P, R) = K (P)

(1 − Rk1(P))(1 − Rk2(P))
. (2.74)

The numerator of this fraction is nonnegative, and the denominator is negative. In
fact, in view of (2.73),

1 − Rk1(P) ≥ 1 − c1 R > 0, (2.75)

but

1 − Rk2(P) ≤ 1 − c2 R < 0. (2.76)

Thus, from (2.74) – (2.76) follows that

K (P, R) ≤ 0.

So a saddle surface �(R) lies entirely inside of the convex surface �(−R), which
is impossible. �

2.7 Some Classes of Curves on a Surface

2.7.1 Lines of Curvature

Definition 2.7.1. A smooth curve γ on a regular surface � of class C2 is called a
line of curvature if the tangent vector of γ is a principal vector of � at all points
of γ .
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Recall the equation determining the principal vectors∣∣∣∣∣∣
−(λ2)2 λ1λ2 −(λ1)2

E F G
L M N

∣∣∣∣∣∣ = 0.

If u = u(t), v = v(t) are equations of some curve, then its tangent vector has in
a local base the coordinates u′(t) and v′(t). Thus the problem of existence of the
lines of curvature is reduced to the problem of the existence of a solution to the
following differential equation:

(L F − E M)
(
u′)2 − (E N − LG)u′v′ + (MG − N F)

(
v′)2 = 0.

From Lemma 2.1.1 it follows that through each nonumbilical point of the surface
� it is possible to pass a line of curvature and then to extend it until we reach an
umbilic.

From the same lemma it follows that in a neighborhood of any nonumbilical
point one can construct a coordinate system such that the lines of curvature will
become the coordinate curves. The characteristic indication of such a coordinate
system is the fulfilment of the following equalities: M = F = 0. In fact, if
the coordinate curves are the lines of curvature, then F = 0 in view of their
orthogonality, and M = 0, since the principal vectors are conjugate with respect
to the second fundamental form.

We now consider some geometric properties of the lines of curvature.

Theorem 2.7.1. A ruled surface C formed by the family of normal straight lines
to � along the lines of curvature has nonzero Gaussian curvature.

Proof. Let �r = �r(t) be the equation of a line of curvature γ , and �n(t) the di-
rections of the normals to � along γ . Then the equation of the surface C can be
written in the form

�r = �r(u, v) = �r(u) + v�n(u).

By Rodrigues’s theorem, �n′
(u) = −k�r ′

(u), and consequently, see (2.64), the
Gaussian curvature of the surface � is zero. �

Theorem 2.7.2. If two surfaces �1 and �2 intersect with a constant angle and
the curve of intersection is a line of curvature on one of them, then it is also a line
of curvature on the other surface.

Proof. Let �r = �r(t) be the equation of the curve of intersection of the surfaces �1

and �2. Denote by �n1 and �n2 the unit normals to �1 and �2 along γ , respectively.
From the conditions of the theorem we obtain the equations

〈�n1(t), �n2(t)〉 = const, (2.77)

d �n1

dt
= −k(t)�r ′

(t), (2.78)

〈�r ′
(t), �n1〉 = 〈�r ′

(t), �n2〉 = 0. (2.79)
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From (2.77) follows

〈d �n1/dt, �n2〉 + 〈�n1, d �n2/dt〉 = 0, (2.80)

and from (2.78) and (2.80) follows

〈�n1, d �n2/dt〉 = 0. (2.81)

Moreover, we have

〈�n2, d �n2/dt〉 = 0. (2.82)

Thus, from the equalities (2.81) and (2.82) we see that the vector d �n2
dt is orthogonal

to �n1 and �n2, but then from the equality (2.79) follows the collinearity of �r ′ and
d �n2
dt , i.e., d �n2

dt = α�r , and now the theorem follows from Rodrigues’s theorem. �

Corollary 2.7.1. If a plane or a sphere intersects some surface with a constant
angle, then the curve of intersection is the line of curvature.

This statement follows from the fact that any curve on a plane and on a sphere
is the line of curvature. From this it follows that all parallels and meridians on a
surface of revolution are its lines of curvature.

Figure 2.15. Curvature lines (parallels) on a surface of revolution.

Finally, we study the properties of the lines of curvature on a surface � with
zero Gaussian curvature. Let γ (t) be the line of curvature that passes along the
principal vector corresponding to zero principal curvature. Then by Rodrigues’s
theorem, d �n

dt = 0, and consequently, the field of normals to � along γ (t) is con-
stant: �n(t) = �n(0) = �c. But then 〈�r ′

(t), �n0〉 = 0 and 〈�r(t) − �r(0), �n0〉 = const.
The last equality means that γ is a plane curve. We prove that in the case
H(P) �= 0 a curve γ is a line segment. Introduce in a neighborhood of γ a
coordinate system (u, v) whose coordinate curves are the lines of curvature. Let
the curves u = t , v = const be the lines of curvature passing along the principal
vectors corresponding to zero principal curvature. Then by Rodrigues’s theorem,
�nu ≡ 0, and hence, (�nu)v ≡ 0. Changing the order of differentiation, we obtain
(�nv)u ≡ 0. From the last equality it follows that the field �nv that is orthogonal
to the plane curve u = t , v = const is a field of parallel vectors. Hence, u = t ,
v = const is a line segment.



2.7 Some Classes of Curves on a Surface 117

Theorem 2.7.3. A regular surface � of class Ck (k ≥ 2) with zero Gaussian
curvature is a ruled surface, and hence is either a cone or a cylinder, or it is
formed by the family of tangent lines to some space curve.

If the surface has nonzero mean curvature, then the statement of Theorem 2.7.3
is proved, because in this case the second principal curvature differs from zero. In
the general case, the proof of Theorem 2.7.3 requires a more delicate approach,
which we omit.

2.7.2 Asymptotic Curves

Definition 2.7.2. A tangent vector �λ ∈ T �P at a point P is called an asymptotic
direction if I I (�λ) = 0; i.e., the normal curvature of a surface � in this direction
is zero.

Definition 2.7.3. An asymptotic curve is a smooth curve γ on a surface � whose
tangent vector is an asymptotic direction at each point.

From Euler’s formula one can see that asymptotic directions exist only at hy-
perbolic or parabolic points on a regular surface �. Moreover, at hyperbolic points
there are two such directions, and at parabolic points, there is one.

Equations of asymptotic curves result directly from their definition. If u = u(t),
v = v(t) are parametric equations of an asymptotic curve, then the functions u(t)
and v(t) must satisfy the differential equation

L (du/dt)2 + 2M(du/dt) · (dv/dt) + N (dv/dt)2 = 0. (2.83)

From Lemma 2.1.1 it immediately follows that in a neighborhood of a hyperbolic
point there is a coordinate system in which the coordinate curves are the asymp-
totic curves.

From (2.83) it follows that coordinate curves are asymptotic curves if and only
if L = N = 0. Indeed, if u = t , v = const is an asymptotic curve, then L · 1 +
2M · 0 + N · 0 = 0 or L = 0, analogously, if u = const, v = t is an asymptotic
curve, then N = 0. Conversely, if L = N = 0, then (2.83) takes the form

M(du/dt) · (dv/dt) = 0. (2.84)

If M �= 0, then (2.84) has two solutions: u = f (t), v = const and u = const,
v = f (t); i.e., the coordinate curves are the asymptotic curves. If M = 0, then a
surface � in a neighborhood of the point under discussion is a plane, and each of
its curves is an asymptotic curve.

We now study the geometrical characteristic of asymptotic curves.

Theorem 2.7.4. If γ is an asymptotic curve on a regular surface � of class Ck

(k ≥ 3), then a tangent plane to � is an osculating plane of a curve γ at each
point γ (t).
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Proof. Consider an arbitrary point γ (t) on the curve γ . Since the normal cur-
vature of � in the direction of the tangent vector �τ = γ̇ (t) is zero, then by
Meusnier’s theorem, either the curvature of γ is zero at this point, or the angle
between the principal normal �ν(t) to γ and the normal �n(t) to � at the point γ (t)
is π

2 . In the first case, any plane containing �τ (t) is an osculating plane, including
T �P , and in the second case, the plane T �P contains both �τ (t) and �ν(t), and
hence it is again osculating.

Consider in detail a vector field �n(t) along the asymptotic curve γ (t). For those
points where the torsion of γ (t) exists, the vector �n(t) equals ±�β(t), and hence
κ2 = ∣∣ d �n

dt

∣∣2; and for those points where the curvature of γ is zero and the torsion

is not determined, we define it in addition, supposing that κ2 = ∣∣ d �n
dt

∣∣2. Here t is
the arc length parameter of a curve. �

Keeping in mind this remark, we formulate the Beltrami–Enneper theorem.

Theorem 2.7.5. The square of the torsion of an asymptotic curve on a regular
surface of class Ck (k ≥ 3) at each of its points is equal to the Gaussian curvature
of the surface at this point, considered with the opposite sign.

Proof. By definition,
κ2 = |d �n/dt |2 = I I I (�τ ),

where �τ is the tangent vector to the asymptotic curve. By (2.45) we have I I I (�τ ) =
−K · I (�τ ) + 2H · I I (�τ ), but by the condition of the theorem, I I (�τ ) = 0, in view
of the choice of parameter t : I (�τ ) = 1. Thus, we obtain κ2 = ( d �n

dt )
2 = I I I (�τ ) =

−K . The theorem is proved. �

It is interesting to consider the particular case of the Beltrami–Enneper theorem
in which an asymptotic curve γ is a straight line. Draw along γ (t) on the surface
� the unit vector field �λ(t) orthogonal to γ (t),

�λ(t) ∈ T �γ(t), 〈�λ(t), �τ (t)〉 = 0.

Here we again assume that t is an arc length parameter on γ . Write down the
equalities 〈

�λ(t),
d

dt
�λ
〉

= 0, (2.85a)

〈�λ(t), �τ (t)〉 = 0, (2.85b)

�λ(t) = ±�τ (t) × �n(t), (2.85c)

�n(t) = ±�τ (t) × �λ(t), (2.85d)

d �τ
dt

= 0. (2.85e)

From (2.85c–e) we have
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d

dt
�λ = ±�τ × d �n

dt
,

d �n
dt

= ±�τ × d

dt
�λ, (2.86)

and from this it follows that 〈
d �n
dt

, �τ
〉

= 0. (2.87)

From (2.85e) and (2.86) we obtain∣∣∣∣ d

dt
�λ
∣∣∣∣ = |�τ | ·

∣∣∣∣d �n
dt

∣∣∣∣ · sin
π

2
=
∣∣∣∣d �n

dt

∣∣∣∣ .
Consequently, (

d

dt
�λ
)2

=
(

d �n
dt

)2

= κ2 = −K .

We have thus proved the following theorem.

Theorem 2.7.6. Let a regular surface � of class Ck (k ≥ 3) contain a straight
line γ , and let �λ(t) be the field of unit vectors along the straight line γ (t) that
are tangent to � and orthogonal to γ . Then the Gaussian curvature K is equal to
−| d

dt
�λ|2, where t is the arc length of γ .

2.7.3 Geodesics on a Surface

Here we give the definition and study the simplest properties of the most beautiful
class of curves on a surface: the class of geodesics. We first define the notion of
geodesic curvature of a curve on a surface �. Let γ (t) (a ≤ t ≤ b) be a regular
curve of class C2 on a regular surface � of class C2. Let t be the arc length of the
curve γ (t), counting from one of its points.

Denote, as usual, by k(t) the curvature of γ at the point γ (t), by �τ (t) and �ν(t)
the tangent vector and principal normal vector at the point γ (t), and by ϕ(t) the
angle between �ν(t) and �n(t). The geodesic curvature kg(t) of the curve γ at the
point γ (t) is defined by the formula

kg(t) = k(t) · sin ϕ(t). (2.88)

In other words, the geodesic curvature kg(t) of γ at the point γ (t) is the norm
of the projection of the vector k(t)�ν(t) onto the tangent plane T �γ(t) to �. Recall
for comparison that the normal curvature of the curve γ (the normal curvature of
� in the direction �τ ) is the projection of k(t)�ν(t) onto �n. Find the formula for
calculation of kg . From (2.88) and Theorem 1.6.1 it follows that

kg(t) = k(t) · sin ϕ(t) = k(t) · |〈�ν × �n, �τ 〉| = (k(t)�ν · �τ · �n) = (�r ′′ · �r ′ · �n).

It is not difficult to derive that if t is an arbitrary parameter, then
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Figure 2.16. Geodesic curvature.

kg(t) = (�r ′′ · �r ′ · �n)

|�r ′|3 . (2.89)

We give now the definition of a geodesic.

Definition 2.7.4. A regular curve γ (t) of class C2 on a regular surface � of class
C2 is called a geodesic if its geodesic curvature at each point is zero.

From this definition it immediately follows that a normal �n to a surface � along
a geodesic γ (t) coincides with the principal normal �ν(t) everywhere it is defined.
Note that this property can be considered as the definition of a geodesic.

We deduce the equation of a geodesic. From (2.89) it follows that for a
geodesic,

(�r ′′ · �r ′ · �n) = 0. (2.90)

We calculate �r ′ and �r ′′:

�r ′ = �ruu′ + �rvv
′,

�r ′′ = �ruu(u
′)2 + 2�ruvu′v′ + �rvv(v

′)2 + �ruu′′ + �rvv
′′. (2.91)

Since the surface � is regular, then at any of its points the vectors �ru, �rv, �n form a
basis, and hence the vectors �ruu , �ruv , �rvv can be expressed as linear combinations
of �ru , �rv , and �n. Let ⎧⎪⎨⎪⎩

�ruu = �1
11�ru + �2

11�rv + α11�n,

�ruv = �1
12�ru + �2

12�rv + α12�n,

�rvv = �1
22�ru + �2

22�rv + α22�n.

The geometrical sense of the coefficients in the above expressions will become
clear later on, in Section 2.8 (and in Chapter 3), and there the expression of these
coefficients will be given through the coefficients of the first and the second fun-
damental forms. Substituting the last equations into (2.91), and then into (2.90),
we obtain

�r ′′ = (u′′ + A)�ru + (v′′ + B)�rv + c�n,

where
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A = �1
11(u

′)2 + 2�1
12u′v′ + �1

22(v
′)2,

B = �2
11(u

′)2 + 2�2
12u′v′ + �2

22(v
′)2. (2.92)

From (2.92) and (2.90) it follows that

u′′v′ − u′v′′ + Av′ − Bu′ = 0. (2.93)

We prove the following important local theorem.

Theorem 2.7.7. Through every point on a regular surface � of class C2 in any
direction one can pass one and only one geodesic.

Proof. Let P0(u0, v0) be any point on �, and let �λ0 = λ1
0�ru +λ2

0�rv be any nonzero
vector at P0; hence �λ0 ∈ T �P0 . Let for definiteness, λ1

0 �= 0. If the equation of a
geodesic is given explicitly as u = u, v = v(u), then (2.93) takes the form

−v′′ + Āv′ − B̄ = 0,

where

Ā = �1
11 + 2�1

12v
′ + �1

22(v
′)2, B̄ = �2

11 + 2�2
12v

′ + �2
22(v

′)2. (2.94)

The initial conditions for the function v(u) will be the following:

v(u) = v0,
dv

du
= v′(u0) = λ2

0

λ1
0

. (2.95)

From (2.85d) and (2.95), using the standard existence and uniqueness theorem
for a solution of ordinary differential equations, the statement of the theorem
follows. �

We consider some examples.

Example 2.7.1 (Geodesics on a sphere). Directly from the definition it follows
that the great circles on a sphere are actually the geodesics, since a normal to
a sphere and the principal normal to a great circle at all points are parallel, and
from Theorem 2.7.7 it follows that there are no other geodesics, since we can pass
a great circle through each point on a sphere in any direction.

Figure 2.17. Geodesics on a sphere and a cylinder.
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Example 2.7.2 (Geodesics on a cylinder). The equation of a right circular cylin-
der C of radius a can be written in parametric form as

x = a cos u, y = a sin u, z = v,

for −∞ < u < ∞, −∞ < u < ∞. Prove that any helix lying on C is a geodesic.
Let

�r = �r(t) = a cos(t − t0)�i + a sin(t − t0)�j + [b(t − t0) + c]�k
be the equation of a helix (the equation of a parallel for b = 0). Then

�r ′
(t) = −a sin(t − t0)�i + a cos(t − t0)�j + b�k,

�r ′′
(t) = −a cos(t − t0)�i − a sin(t − t0)�j ,

and

�ru = −a sin u�i + a cos u�j , �rv = �k,

but
�ru × �rv = a cos u�i + a sin u�j ,

and we see that the vectors �r ′′
(t) and �n(u, v) are parallel at points of a helix.

Consequently, (�r ′′ · �r ′ · �n) = 0, and hence a helix for every b, c, and t0 is a geodesic
on the cylinder C . Note that the rulings of the cylinder C (i.e., the straight lines
x = x0, y = y0, z = t − t0) are also the geodesics.

We prove that there are no other geodesics on the cylinder C . In view of Theo-
rem 2.7.7, it is sufficient to show that through any point P0(u0, v0) on the cylinder
C and in any direction �λ = λ1�ru + λ2�rv one can pass a helix if �λ �= 0, and if
�λ = �rv , then a ruling. Indeed, let

�r(t) = a cos(t − t0)�i + a sin(t − t0)�j + [b(t − t0) + c]�k,

where

t0 = −u0, b = λ2

λ1
u0, c = v0 − λ2

λ1
v0.

Then
�r(0) = a cos(u0)�i + λa cos(u0)�j + λ1�k = λ1�ru + λ2�rv,

which completes the proof.

Example 2.7.3 (Geodesics on a surface of revolution). Let � be the regular sur-
face of class C2 obtained by rotation of a curve γ around the axis O Z (see Sec-
tion 2.6.1). Directly from the main property of geodesics it follows that all merid-
ians on � are geodesics. Usually, one cannot find other geodesics in the form
of explicit equations. But it is possible to point out a property of geodesics that
allows us to give a qualitative view of their behavior on a surface of revolution.

Let �r = �r(t) be the arc length parameterization of a geodesic σ(t) on �. Denote
by ρ(t) the distance from a point σ(t) to the axis of rotation, and by α(t) the
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angle between σ(t) and a parallel at the point of their intersection, σ(t). Then the
equality

ρ(t) · cos α(t) = c (2.96)

(Clairaut’s theorem) is satisfied. First, we shall prove the equality

ρ(t) · cos α(t) = (�r · �r ′ · �k), (2.97)

where �k is a unit basis vector of the axis of rotation O Z . Denote by �µ(t) a unit
vector tangent to a parallel of the surface � at the point σ(t). Then

�k × �r(t) = ρ(t)�µ(t), 〈�µ(t), �r ′
(t)〉 = cos α(t). (2.98)

From equalities (2.98) follows (2.97). Differentiating the right-hand side of (2.97)
with respect to t , we obtain

(�r · �r ′ · �k)′ = (�r · �r ′′ · �k). (2.99)

Since t is the arc length of σ(t), then �r ′′
(t) is parallel to the principal normal �ν(t)

of the curve σ(t), and since σ(t) is a geodesic, then �ν(t) is parallel to the normal
�n(t) of � at the point σ(t). Consequently, �r ′′

(t) is parallel to �n(t). But on the
other hand, since � is a surface of revolution, then �n(t) lies in the plane spanned
by �k and �r(t). Consequently, the vectors �k, �r(t), and �r ′′

(t) are coplanar, and hence

(�r(t) · �r ′′
(t) · �k) = 0.

From this equality and equality (2.97) follows our statement, the equality (2.96).
The equality (2.96) gives us the possibility to describe the “qualitative” behavior
of a geodesic. Let c �= 0 (if c = 0, then we obtain that σ is a meridian). When we
move along a geodesic σ(t), passing from “wider” part of � into its “thinner” part,
then the functions ρ(t) and α(t) decrease; i.e., the angle between the geodesic
σ(t) and the parallels on � becomes less and less. If for some t the value of ρ(t)
becomes equal to c, then at this point σ(t) touches a parallel, and after this returns
into the “wider” part of �. While passing from the “thinner” part on the surface
� into the “wider” part, the functions ρ(t) and α(t) increase, and consequently,
the angle between σ(t) and the meridians becomes less and less. If the “wide”
part becomes limitlessly “wide,” then the direction of a geodesic limitlessly tends
to the direction of a meridian; see Figure 2.18.

Finally, if a tangent line to the curve γ at some point is parallel to the axis
of rotation, then the parallel on � corresponding to this point becomes a closed
geodesic, because in this case the normal to the surface � is at the same time the
principal normal to this parallel.

2.7.4 Problems

The following two topological lemmas are necessary for us to solve a sequence
of problems.

Let D be some region homeomorphic to a disk on a regular surface � with a
regular boundary ∂ D = γ , and let �e(P) be a continuous vector field in D.
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Figure 2.18. Geodesics on a surface of revolution.

Lemma 2.7.1. If for each point Q on the curve γ the vector �e(Q) forms a nonzero
angle with a tangent vector γ̇ at a point γ (t), then there is a point Q0 ∈ int D at
which �e(Q0) = 0 holds.

Lemma 2.7.2. Let � be a regular surface, homeomorphic to a sphere. Then for
any continuous field �e(P) on � (i.e., tangent) there is a point Q with the property
�e(Q) = 0.

Remark 2.7.1. Lemma 2.7.2 is a particular case of the Poincaré–Brouwer theo-
rem: If � is a compact surface and X is a vector field on � with only a finite
number of zeros, then the total index I (X) = ∑

i i p(X) is 2πχ(�), where χ(�)

is the Euler characteristic of �. Here i p(X) is the angular variation of X along
“small” circle on � with center at P . The Euler characteristic of the sphere is 2.

Problem 2.7.1. Let � be a regular surface of class C2. Prove that

(1) if a line of curvature is a geodesic, then it is a plane curve, or more exactly,
the torsion of this curve is zero at every point where it (the torsion) is defined;

(2) if an asymptotic curve is at the same time a geodesic, then it is a straight line;
(3) if a line of curvature is at the same time an asymptotic curve, then it is a plane

curve.

Hint. Use Rodrigues’s theorem 2.4.5, the properties of asymptotic curves and
geodesics, and the Frenet formulas from Chapter 1.

Problem 2.7.2. On any regular surface � of class C2 homeomorphic to a sphere
there is at least one umbilic.

Solution. Assume the opposite. This means that we assume the inequality

k1(P) < k2(P), (2.100)

where as usual, k1(P), k2(P) are the principal curvatures of � at the point P . Let
P0 ∈ � and let a unit vector �e be parallel to a principal direction that corresponds
to the principal curvature k1(P). Build a vector field of unit vectors on the whole
surface � by the following method: join the point P0 with an arbitrary point P by
some continuous curve

σ(t) (0 ≤ t ≤ 1, σ (0) = P0, σ (1) = P),
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and let �e(t) be a unit continuous vector field along σ(t) with the condition
�e(0) = �e(P), and �e(t) for each t is parallel to a principal direction. In view of
the inequality (2.100), a vector field �e(t) is uniquely determined by these condi-
tions. Now assume �e(P) = �e(1). We prove that the definition of the vector �e(P)

does not depend on the choice of curve σ(t) joining P0 and P . Let

σ1(t) (0 ≤ t ≤ 1, σ1(0) = P0, σ1(1) = P)

be some other continuous curve relating P0 with the point P . Repeating the previ-
ous construction for the curve σ1, we obtain a vector �eσ1(P), which is either equal
to �e(P) or to �e(P) = −�eσ1(P). But since � is homeomorphic to a sphere, there is
on it a continuous deformation σu(t) (0 ≤ u ≤ 1) of the path σ1 onto the path σ ,
σ(0, t) = σ0, σ(1, t) = σ1, for which the vector �eσu (P) continuously depends on
u. Thus �eσ(1)(P) = �eσ(0)(P) = �e(P). So, we have built a continuous unit vector
field �e(P) on the whole surface �, which contradicts Lemma 2.7.2. �

Problem 2.7.3. If on a regular surface � of class C2 there is a closed line of
curvature bounding on � a region D homeomorphic to a circle, then there is an
umbilic in D.

Hint. Repeat with obvious modifications the proof of Problem 2.7.2 and apply
Lemma 2.7.1.

Problem 2.7.4. On a regular surface � of class C2 with negative Gaussian curva-
ture there are no closed asymptotic curves.

Hint. The solution is analogous to the solution of Problem 2.7.3.

Problem 2.7.5.∗ If on a saddle surface homeomorphic to a plane there is a closed
asymptotic curve, then the region bounded by this curve, is a region on the plane.

This assertion was formulated by A.V. Pogorelov, but it has not yet been proved.

Problem 2.7.6. Let � be a regular surface of class C2 and γ (t) (a ≤ t ≤ b) a
line of curvature on �. Then if the Gaussian curvature of � is either negative or
positive, ∣∣∣∣∫ t1

t0

κ(t) dt

∣∣∣∣ < π

holds for all t0, t1 ∈ (a, b), where κ is the torsion and t is the arc length of the
curve. Note that the case a = −∞ and b = ∞ is not excluded.

Solution. From the restrictions given for the Gaussian curvature of � it follows
that the principal curvatures k1(P) and k2(P) at each point P differ from zero,
and consequently, by Meusnier’s theorem the curvature k(t) of the curve γ (t) is
everywhere positive:

k(t) > 0 (a < t < b). (2.101)
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Let �τ (t), �ν(t), �β(t), and �n(t) be four vector fields along γ , where �τ (t) is a tangent
vector field, �ν(t) is the field of principal normal vectors, �β(t) binormals, and �n(t)
is a field of normals to � along γ (t) such that k1(t) > 0. Compose �n(t) as a linear
combination of �ν(t) and �β(t):

�n(t) = cos α(t)�ν(t) + sin α(t)�β(t). (2.102)

Then, on the one hand, by Rodrigues’s theorem,

�n′
(t) = −k1(t)�τ (t), (2.103)

and on the other hand, from (2.102) and the Frenet formulas of Chapter 1, we
obtain

�n′
(t) = − sin α(t) · α′(t)�ν(t) + cos α(t)(−k�τ (t) − κ �β(t))

+ cos α(t) · α′(t)�β(t) + sin α(t)κ�ν(t) = −k cos α(t)�τ (t)

− sin α(t)(α′(t) − κ)�ν(t) + cos α(t)(α′(t) − κ)�β(t). (2.104)

Comparing (2.103) with (2.104), we have the system⎧⎪⎨⎪⎩
k1(t) = k · cos α(t),

sin α(t)(α′(t) − κ) = 0,

cos α(t)(α′(t) − κ) = 0.

(2.105)

From (2.105) it follows that

α′(t) = κ(t). (2.106)

Let t0 be an arbitrary real number from the interval (a, b), and α(t0) = α0. Then
from (2.106) follows

α(t) =
∫ t

t0

κ(t) dt + α0. (2.107)

Finally, from (2.101) and from the conditions k1(t) > 0 and (2.105) we obtain
that

cos α(t) = k1(t)/k(t) > 0.

Hence α(t) satisfies the inequalities

−π

2
< α(t) <

π

2
. (2.108)

In particular, −π
2 < α0 < π

2 . From (2.107) and (2.108) the statement of the
problem follows. �
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Let γ be a regular curve in R3 of class C3, and γ (u) its natural parameteri-
zation, c < u < d (c < u ≤ d). In the case c < u ≤ d , suppose that γ is
closed, and in the first case, the equalities c = ∞ and d = ∞ are not excluded.
In each normal plane to γ at a point γ (t) take the circle of radius a with center
at the point γ (t). The obtained one-parameter family of circles forms, generally
speaking, a regular surface of class C2, which we denote by �(a) and call a gen-
eralized cylinder or if � is closed, a generalized torus. Denote by k(u) and κ(u)

the curvature and the torsion of γ at the point γ (t).

Figure 2.19. Generalized cylinder.

Problem 2.7.7. Prove that a surface �(a) is regular if and only if k(u) < 1
a holds.

Prove that there are no umbilics on a regular surface �(a). Prove that the largest
principal curvature of a surface �(a) is constant and equal to 1

a . Find the equations
for the lines of curvature on �(a).

Hint. The problem can be solved by direct computation if the parameterization of
�(a) is given in the following form:

�r = �r(u, v) = �ρ(u) + a(cos α(u, v)�ν + sin α(u, v)�β(t)),

where �ρ(u) is the parameterization of γ ,

α(u, v) = v +
∫ u

u0

κ(u) du,

c < u < d (c < u ≤ d), and∫ u

u0

κ(u) du < v ≤ 2π +
∫ u

u0

κ(u) du.

2.8 The Main Equations of Surface Theory

2.8.1 Derivational formulas

At each point P on a regular parameterized surface � : �r = �r(u, v) of class Ck

(k ≥ 2), the three vectors �ru , �rv , and �n are defined. These three vectors, in view
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of the regularity of �, are linearly independent and consequently form a basis.
Thus, any other vector can be presented as a linear combination of �ru , �rv , and �n.
Find the coefficients of this decomposition by the basis of the vectors �ruu , �ruv ,
�rvv and �nu , �nv . Let

�ruu = �1
11�ru + �2

11�rv + A11�n,

�ruv = �1
12�ru + �2

12�rv + A12�n,

�rvv = �1
22�ru + �2

22�rv + A22�n, (2.109)

�nu = α11�ru + α12�rv,

�nv = α21�ru + α22�rv.

It is easiest to find the coefficients Ai j (i, j = 1, 2). We obtain the scalar product
of the first three equations of (2.109) on �n:

A11 = 〈�ruu, �n〉 = L , A12 = 〈�ruv, �n〉 = M, A22 = 〈�rvv, �n〉 = N . (2.110)

For coefficients α11, α12 and α21, α22 we obtain a system of equations by taking
the scalar product of the last two equations of (2.109) with �ru and �rv:{

α11 E + α12 F = −L
α11 F + α12G = −M,

(2.111){
α21 E + α22 F = −M
α21 F + α22G = −N .

(2.112)

From (2.111) and (2.112) we have

α11 = −LG + M F

EG − F2
, α12 = L F − M E

EG − F2
,

α21 = N F − MG

EG − F2
, α22 = −N E + M F

EG − F2
. (2.113)

It is interesting to note that for a coordinate system whose coordinate curves co-
incide with the lines of curvature, equations (2.113) can be rewritten in the form

α11 = −k1 α12 = α21 = 0, α22 = −k2,

where k1, and k2 are the principal curvatures of � at a given point. We shall obtain
a system of equations for the coefficients �i

jk , applying the scalar multiplication
of the first three equations of (2.109) on �ru and �rv:{

�1
11 E + �2

11 F = 〈�ruu, �ru〉 = 1
2 Eu

�1
11 F + �2

11G = 〈�ruu, �rv〉 = Fu − 1
2 Ev,

(2.114){
�1

12 E + �2
12 F = 〈�ruv, �ru〉 = 1

2 Ev

�1
12 F + �2

12G = 〈�ruv, �rv〉 = 1
2 Gu,

(2.115){
�1

22 E + �2
22 F = 〈�rvv, �ru〉 = Fv − 1

2 Gu

�1
22 F + �2

22G = 〈�rvv, �rv〉 = 1
2 Gv.

(2.116)
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By the way, we have used the identities

〈�ruu, �rv〉 = − ∂

∂u
〈�ru, �rv〉 − 〈�ru�ruv〉, 〈�rvv, �ru〉 = ∂

∂v
〈�rv, �ru〉 − 〈�rv�ruv〉.

Solving the systems (2.114)–(2.116) we obtain

�1
11 =

1
2 EuG + 1

2 Ev F − F Fu

EG − F2
, �2

11 = Fu E − 1
2 Ev E − 1

2 Eu F

EG − F2
,

�1
12 =

1
2 EvG − 1

2 Gu F

EG − F2
, �2

12 =
1
2 Gu E − 1

2 Ev F

EG − F2
, (2.117)

�1
22 = − 1

2 GuG − 1
2 Gv F + G Fv

EG − F2
, �2

22 =
1
2 Gv E + 1

2 Gu F − F Fv

EG − F2
.

If the coordinate system (u, v) is orthogonal, i.e., F(u, v) = 0, then the formulas
for �i

jk (i, j, k = 1, 2) are essentially simplified:

�1
11 = Eu

2E
, �2

11 = − Ev

2G
, �1

12 = Ev

2E
,

�2
12 = Gu

2G
, �1

22 = − Gu

2E
, �2

22 = Gv

2G
.

(2.118)

The geometrical sense of the coefficients �i
jk (i, j, k = 1, 2) will be cleared up

below, in Chapter 3. Now note only that they are expressed through the coeffi-
cients of the first fundamental form and their first derivatives only. The coeffi-
cients themselves are called the Christoffel symbols of the second kind. Finally,
note that the derivational formulas (2.109) can be considered as a direct general-
ization of the Frenet formulas for the space curves (see Chapter 1).

2.8.2 Gauss–Peterson–Codazzi Formulas

If E(λ1)2 +2F(λ1)(λ2)+G(λ2)2 and L(λ1)2 +2M(λ1)(λ2)+ N (λ2)2 are the first
and the second fundamental forms of a surface, then they cannot be taken arbi-
trarily. There are definite relations between the coefficients of these fundamental
forms. These relations can be found based on the independence of the derivatives
from the order of derivation. If a regular surface � belongs to class Ck (k ≥ 3)

and �r = �r(u, v) is its vector equation, then the following equations hold:

(�ruu)v = (�ruv)u, (�rvv)u = (�ruv)v, (�nu)v = (�nv)u .

If we substitute in these formulas the expressions for �ruu , �ruv , �rvv , �nu , �nv from
(2.109), then the three vector equalities

(�1
11�ru + �2

11�rv + L �n)v = (�1
12�ru + �2

12�rv + M �n)u,

(�1
22�ru + �2

22�rv + N �n)u = (�1
12�ru + �2

12�rv + M �n)v,

(α11�ru + α12�rv)v = (α21�ru + α22�rv)u . (2.119)



130 2. Extrinsic Geometry of Surfaces in Three-dimensional Euclidean Space

are obtained. Differentiating them, we obtain

∂�1
11

∂v
�ru + �1

11�ruv + ∂�2
11

∂v
�rv + �2

11�rvv + Lv �n + L �nv

= ∂�1
12

∂u
�ru + �1

12�ruu + ∂�2
12

∂u
�rv + �2

12�ruv + Mu �n + M �nu,

∂�1
22

∂u
�ru + �1

22�ruu + ∂�2
22

∂u
�rv + �2

22�ruv + Nu �n + N �nu

= ∂�1
12

∂v
�ru + �1

12�ruv + ∂�2
12

∂v
�rv + �2

12�rvv + Mv �n + M �nv,

∂α11

∂v
�ru + α11�ruv + ∂α12

∂v
�rv + α12�rvv

= ∂α21

∂u
�ru + α21�ruu + ∂α22

∂u
�rv + α22�ruv. (2.120)

Substituting above the expressions for the vectors �ruu , �ruv , �rvv and �nu , �nv from
(2.109) and collecting together the coefficients at �ru , �ru , �n, we obtain equalities
of the following form: ⎧⎨⎩

Ã11�ru + Ã12�rv + B1�n = 0,

Ã21�ru + Ã22�rv + B2�n = 0,

Ã31�ru + Ã32�rv + B3�n = 0.

(2.121)

From this, in view of the linear independence of the vectors �ru , �rv , �n, it follows
that all coefficients in (2.121) are zero. Altogether, we have obtained nine scalar
equalities. But it turns out that only three of them are independent, and the others
become identities when these three are satisfied. We find an expression for Ã12:

Ã12 = ∂�2
11

∂v
− ∂�2

12

∂u
+ �1

11�
2
12 + �2

11�
2
22 − �1

12�
2
11 − �2

12�
2
12 + Lα22 − Mα12 = 0

or

Mα12 − Lα22 = ∂�2
11

∂v
− ∂�2

12

∂u
+ �1

11�
2
12 + �2

11�
2
22 − �1

12�
2
11 − �2

12�
2
12

= T . (2.122)

Substituting in (2.122) the expressions for α12 and α22, we obtain

M
L F − M E

EG − F2
− L

−N E + M F

EG − F2
= T, or E

L N − M2

EG − F2
= T .

Finally, we obtain that the Gaussian curvature K of � is
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K = 1

E

(∂�2
11

∂v
− ∂�2

12

∂u
+ �1

11�
2
12 + �2

11�
2
22 − �1

12�
2
11 − �2

12�
2
12

)
. (2.123)

The equality (2.123) was first obtained by Gauss and is called Gauss’s “Theo-
rema Egregium” which means remarkable. From this equality it is seen that the
Gaussian curvature of a surface can be calculated when only the coefficients of
the first fundamental form are given.8 Hence Gaussian curvature is an object of
the intrinsic geometry of a surface.

I think that actually, differential geometry has been distinguished as an indepen-
dent subject only after the work of Gauss, and that Gauss’s “theorema egregium”
has played the main part in this process. As we shall see below, in Chapter 3,
Gaussian curvature determines the most essential properties of a surface from the
point of view of its intrinsic geometry. This theorem has also served as a start-
ing point for the development of n-dimensional Riemannian geometry. From the
remaining eight equations only two are linearly independent; the others are con-
sequences of these. The last two equations were obtained by K. Peterson and later
by D. Codazzi and G. Mainardi. They can be written in the following simple and
symmetric form (by A.V. Pogorelov):

2(EG − F2)(Lv − Mu)

− (E N − 2F M + GL)(Ev − Fu) +
∣∣∣∣∣∣

E Eu L
F Fu M
G Gu N

∣∣∣∣∣∣ = 0, (2.124)

2(EG − F2)(Mv − Nu)

− (E N − 2F M + GL)(Fv − Gu) +
∣∣∣∣∣∣

E Ev L
F Fv M
G Gv N

∣∣∣∣∣∣ = 0. (2.125)

The formulas (2.124) and (2.125) are known as the Peterson–Codazzi formulas.
Finally, Gauss’s formula can be written in the form

K = −1

2
√

EG − F2

[(
Ev − Fu√
EG − F2

)
v

−
(

Fv − Gu√
EG − F2

)
u

]

− 1

4(EG − F2)2

∣∣∣∣∣∣
E Eu Ev

F Fu Fv

G Gu Gv

∣∣∣∣∣∣ . (2.126)

The Peterson–Codazzi formulas take a quite simple form if the coordinate system
(u, v) is such that the coordinate curves of this system are the lines of curvature.
In such a coordinate system, as we know, F = M = 0, and then (2.124) and
(2.125) can be simplified to

8 In other words, the Gaussian curvature of a surface is preserved by isometries.
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Lv = Ev

2

(
L

E
+ N

G

)
, Nu = Gu

2

(
L

E
+ N

G

)
. (2.127)

The principal curvatures k1(u, v) and k2(u, v) in this coordinate system are

k1(u, v) = L

E
, k2(u, v) = N

G
. (2.128)

Thus (2.127) take the form

Lv = (k1)v E + k1 Ev, Nu = (k2)uG + k2Gu . (2.129)

Substituting Lv and Nu from (2.129) into (2.127), we obtain

(k1)v = (k2 − k1)
Ev

2E
, (k2)u = (k1 − k2)

Gu

2G
, (2.130)

and Gauss’s formula (2.126) takes the following form:

K = − 1

2
√

EG

[(
Ev√
EG

)
v

+
(

Gu√
EG

)
u

]
. (2.131)

From the Gauss–Peterson–Codazzi equations follows the important Bonnet rigid-
ity theorem.

Theorem 2.8.1 (O. Bonnet). Let E du2 + 2F du dv + G dv2 and L du2 +
2M du dv + N dv2 be two arbitrary fundamental forms in a disk U of the (u, v)-
plane, the first one positive definite. If for the coefficients of these fundamental
forms the Gauss–Peterson–Codazzi equations are satisfied, then there is a unique,
up to a rigid motion of the space R3, surface � given by �r : U → R3 for which
these forms are the first and the second fundamental forms, respectively.

A proof of Bonnet’s theorem can be found, for example, in [Kl2]. In the sense
of ideas, this fundamental theorem of surfaces repeats the proof of Theorem 1.9.1,
but in technical details it is lengthy enough and related with many computations.

2.8.3 Problems

Problem 2.8.1. If all the points of a regular complete surface � of class C3 are
umbilics, then � is a connected open region on either a sphere or a plane.

Solution. From the conditions of the problem it follows that the normal curvature
k(P, �λ) of � at each point does not depend on �λ; hence, in particular, the principal
curvatures k1(P) and k2(P) of the surface are equal to each other at every point P:

k1(P) = k2(P) = k(P). (2.132)

Let P be an arbitrary point on �. Introduce an orthogonal coordinate system
(u, v) in some neighborhood of P . Then for such a coordinate system, F = 0
holds, and since any curve on � is a line of curvature, M = 0 also holds. Then
from (2.130) and (2.132) we obtain (k)u = (k)v = 0, i.e., in this case the function
k(P, �λ) does not depend on either P or �λ; and now the assertion of the problem
follows from Problem 2.4.1. �
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Problem 2.8.2. If the principal curvatures of a regular surface � of class C2 are
constants, then � is a sphere, a plane, or a cylinder.

Solution. Let k1(P) = c1, k2(P) = c2. If c1 = c2, then as was just proved, � is
either a sphere, or, in the case of c1 = c2 = 0, a plane. Thus it is left to prove
only that if c1 �= c2, then either c1 = 0 or c2 = 0. Assume that the direction
of a normal �n on � is selected with the condition k2(P) > 0, and suppose that
c1 < c2. Let P be an arbitrary point on �. Introduce in a neighborhood of P a
coordinate system (u, v) such that the coordinate curves are the lines of curvature.
In this case, the Peterson–Codazzi equations take the form of (2.130). From the
assumptions k1(P) = c1, k2(P) = c2, and c2 − c1 �= 0 it follows that Ev ≡ Gu ≡
0. Then Gauss’s formula gives us

k1 · k2 = K = − 1

2EG
(Evv + Guu) = 0. (2.133)

From this follows k1 = 0. The problem is solved. �
Problem 2.8.3. Find all complete regular surfaces of class C3 without umbilics
whose largest principal curvature is constant and equal to 1

a .

Solution. In a neighborhood of an arbitrary point P ∈ � introduce a coordinate
system (u, v) whose coordinate curves coincide with the lines of curvature. The
Peterson–Codazzi equations take the form (2.130). From them and the condition
of the problem it follows that

Gu ≡ 0, (2.134)

but then from (2.93) it follows that a curve σu : u = c, v = t is a geodesic. In fact,
it is enough to prove that the value A in (2.93) that is equal to �1

22 is zero. From
(2.118) and (2.134) we have

�1
22 = −Gu

E
= 0. (2.135)

So the curves σu are actually the lines of curvature, and at the same time the
geodesics. Consequently, they are all plane curves, and their curvature k2(t) co-
incides with the principal curvature of � in the directions of the tangent lines to
σu(t); i.e., ku(t) = 1

a holds. Hence σu(t) is a circle Cu of radius a. Define now a
curve γu as the geometrical locus of centers of the circles Cu . Thus, � is a gener-
alized cylinder or a generalized torus; see Problem 2.8.2. �

Now consider surfaces whose principal curvatures are dependent by the relation

h(k1(P), k2(P)) = 0.

If h is symmetric with respect to k1 and k2, then � in this case is called a Wein-
garten surface. We consider the two most interesting and important cases9 of h,
namely, k1 + k2 and k1 · k2.

9 Classical examples of the case k1 + k2 are minimal surfaces and surfaces of constant mean curva-
ture.
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Theorem 2.8.2 (H. Liebmann). If on a complete regular surface � of class C3

the Gaussian curvature is constant and equal to some positive number K0 > 0,
then � is a sphere of radius 1√

K0
.

Proof. If the principal curvatures of � are equal to each other at all points of �,
then the statement of Theorem 2.8.2 follows from Problem 2.8.1. Thus assume
that there is a point P at which one of the principal curvatures, k1, takes its maxi-
mum. Then the other principal curvature, k2, takes its minimum at the same point;
and this assumption leads to a contradiction. Since at P we have k1(P) �= k2(P),
then in some neighborhood it is possible to introduce the coordinates (u, v) such
that the coordinate curves will be the lines of curvature, or, what is the same, the
equalities M = F = 0 hold. Moreover, at the origin P(0, 0) the equations

(k1)u = (k1)v = (k2)u = (k2)v = 0 (2.136)

and two inequalities

∂2k1

∂v2
≤ 0,

∂2k2

∂u2
≥ 0 (2.137)

hold. We shall now use the Peterson–Codazzi equations in the form of (2.130).
From them and from (2.136) we obtain

Ev(P) = Gu(P) = 0. (2.138)

From (2.137) and (2.130) we have[
Evv

2E
(k2 − k1)

]
P

= ∂2k1

∂v2
(P) ≤ 0,

and hence

Evv(P) ≥ 0. (2.139)

Analogously, [
Guu

2G
(k1 − k2)

]
P

= ∂2k2

∂u2
(P) ≥ 0, (2.140)

from which follows

Guu(P) ≥ 0. (2.141)

We substitute (2.138), (2.139), and (2.141) in Gauss’s formula (2.131), and we
obtain

K (P) = −
[

1

2EG
(Evv + Guu)

]
P

≤ 0,

contrary to our assumption. This contradiction completes the proof of the theo-
rem. �
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The completeness condition of the surface � in Theorem 2.8.2 is not superflu-
ous. It is known that if the Gaussian curvature of some surface � is constant, then
� is not necessarily part of a sphere. In other words, one can say that a complete
sphere cannot be bent, but an arbitrary part of it can bend.

From Theorem 2.8.2 follows the following theorem of H. Liebmann.

Theorem 2.8.3. If on a closed regular surface � the Gaussian curvature is posi-
tive and the mean curvature is constant and equal to H0, then � is part of a sphere
of radius 1

H0
.

Proof. A proof of the theorem can be given repeating scheme of the proof of
Theorem 2.8.2 word for word.

Another proof of this theorem is based on Bonnet’s method. Let �(a) be a
parallel surface for �. Then by Theorem 2.4.6 the principal curvatures k1(a) and
k2(a) of �(a) are expressed by the following formulas:

k1(a) = k1

1 − ak1
, k2(a) = k2

1 − ak2
.

Hence the Gaussian curvature K (a) of the surface �(a) is

K (a) = k1k2

1 − a(k1 + k2) + a2k1k2
= k1k2

1 − 2H0a + a2k1k2
.

Suppose that a = 1
2H0

. Then K · 1
2H0

= 1
4H 2

0
. So we see that the Gaussian cur-

vature of the surface �
(

1
2H0

)
is constant and equal to 1

4H 2
0

. Consequently, as was

proved in Theorem 2.8.2, �
(

1
2H0

)
is a sphere. But then � is also a sphere of

radius 1
2H0

. �

The condition of positivity of Gaussian curvature of a surface � in Theo-
rem 2.8.3 is not superfluous, because if one of the principal curvatures at some
point P of � is zero, then the other principal curvature at the same point is 2H0,
and the point ϕ(P) on �( 1

2H0
) is not regular, as is seen from Theorem 2.4.6.

Finally, if we require in the conditions of Theorem 2.8.3 that the sum of the
principal curvature radii be constant, then the result would be the same. The sur-
face � would be a sphere. This statement follows from a more general theorem
by E.B. Christoffel, and it can be proved following the scheme of the proof of
Theorem 2.8.2.

Finally, we shall prove Hilbert’s theorem, as promised earlier.

Theorem 2.8.4 (D. Hilbert). There does not exist a complete regular surface of
class C3 in R3 whose Gaussian curvature is a negative constant K0.

Proof. We assume the existence of a surface � ⊂ R3 satisfying the conditions
of the theorem and obtain a contradiction. Take on a surface a coordinate sys-
tem (u, v) such that the coordinate curves are the lines of curvature. Then in the
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notation of Theorem 2.8.2 (Liebmann), we obtain the system of equations, see
(2.130),

(k1)v = (k2 − k1)
Ev

2E
, (k2)u = (k1 − k2)

Gu

2G
. (2.142)

Assuming K0 = −1 and integrating system (2.142), we obtain

E = C1(u)

1 + k2
1(u, v)

, G = C2(v)

1 + k2
2(u, v)

.

The constants of integration C1(u), C2(v), without loss a generality, may be as-
sumed to be 1. For this purpose it is enough to require that E(u, 0) = 1

1+k2
1(u,0)

and

G(0, v) = 1
1+k2

2(0,v)
, which one can always achieve. Thus, we obtain the equality

E = 1

1 + k2
1

, G = 1

1 + k2
2

.

But then, in view of k1k2 = −1,

E + G = 1

1 + k2
1

+ 1

1 + k2
2

= 2 + k2
1 + k2

2

1 + k2
1 + k2

2 + k2
1k2

2

= 2 + k2
1 + k2

2

2 + k2
1 + k2

2

= 1,

and hence we obtain √
E = sin σ,

√
G = cos σ.

From this, using (2.128), we find that

L = + sin σ cos σ, N = − sin σ cos σ.

Hence, a differential equation of asymptotic curves takes the form

(du + dv)(du − dv) = 0.

If we introduce new parameters p and q by the equalities

u = p − q, v = p + q,

then the new coordinate curves p = const and q = const will be the asymptotic
curves of the surface. The linear element of the surface will thus be presented by
the following expression:

ds2 = du2 sin2 σ + dv2 cos2 σ = dp2 + 2 dp dq cos σ + dq2.

From here, by the way, one may conclude that the opposite sides in a quadrangle
formed from asymptotic curves are equal. Such nets of curves (for which E =
G = 1) on arbitrary surfaces were investigated by the Russian mathematician
P.L. Tchebyshev in 1878. Such figures are formed by pulling a fishnet over a bent
surface.
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If we apply Gauss’s formula (2.126) to the linear element expressed through
parameters p, q , then for an angle 2σ = ω formed by two asymptotic curves, we
obtain the differential equation

∂2ω

∂p ∂q
= sin ω. (2.143)

From here it is easy to deduce some simple corollaries; for example, for the area
of a surface,

F =
∫∫

sin ω dp dq.

For the area of a quadrangle bounded by asymptotic curves p1 < p < p2, q1 <

q < q2, we obtain

F = ω(p1, q1) − ω(p1, q2) + ω(p2, q2) − ω(p2, q1),

or if we denote the inner angles by αk (see Figure 2.20 a),

F = α1 + α2 + α3 + α4 − 2π (0 < αk < π). (2.144)

This formula was first given by J.N. Hazzidakis.10 All known surfaces of constant
negative curvature, as for example a helicoid found by F. Minding, have singular
lines. Therefore, Hilbert asked whether there exist unbounded and in any finite
area everywhere regular analytic surfaces with curvature K = −1. It turned out
that such surfaces cannot exist.

If such a surface existed, then its asymptotic curves would be in any finite area
everywhere regular analytic curves; two asymptotic curves would pass through
each of its points with two different tangent lines, so that we could subordinate an
angle between them to the condition 0 < ω < π . If we now accept that p and q
are rectangular coordinates of a point in a plane, then we can put the points of our
surface in one-to-one correspondence with the points of the plane.

Figure 2.20. Tchebyshev net.

10 Über einige Eigenschaften der Flächen mit konstantem Krümmungsmasz, Crelles J., v. 88, 68–73,
1880.
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A surface will thus be mapped to the plane injectively. It is impossible to say
in advance whether the inverse map will be also injective, since we did not yet
exclude the possibility of the existence of closed asymptotic curves. Since by
(2.143), ω cannot be constant on any of the asymptotic curves, then it is possible
to select on the surface a reference mark, p and q , and a positive direction for
counting p, so that ω(p, 0) will increase for

0 ≤ p ≤ p2.

Then we obtain

ω(p, q) − ω(0, q) = ω(p, 0) − ω(0, 0) +
∫ p

0

∫ q

0
sin ω dp dq. (2.145)

From this it follows that ω increases on each line segment q = const > 0, 0 <

p < p2, at least as fast as on the line segment q = 0, 0 < p < p2 (since the
double integral is positive).

Now consider a quadrangle (see Figure 2.20 b) 0 < p < p1 < p2, 0 < q < q1,
and suppose ω(p2, 0) − ω(p1, 0) = ε. In this quadrangle, for sufficiently large
q1, obviously, there obviously exists a point for which

ω = π − ε

2
.

In fact, if ω always remains smaller than π − ε
2 , then for sufficiently large q, the

integral in (2.145) could be made as large as possible, since, for example, for

p1

2
< q < p1

the inequalities

ω
( p1

2
, 0
)

− ω(0, 0) < ω(p, q) < π − ε

2

always hold, and hence sin ω surpasses some positive number. But then it would
be possible to make ω(p, q) large enough, contrary to the assumption that ω < π .
Now let (p0, q0) be a point such that

ω(p0, q0) < π − ε

2
.

In view of (2.145), we obtain

ω(p2, q0) − ω(p0, q0) = ω(p2, 0) − ω(p0, 0) +
∫ p2

p0

∫ q0

0
sin ω dp dq

> ω(p2, 0) − ω(p1, 0) = ε,

and hence ω(p2, q0) > π − ε
2 . Thus the angle would be greater than π on the line

segment p0 < p < p2; q = q0, in contradiction to our assumption. �
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This simple proof was given by E. Holmgren.11

Finally, we give in brief an idea of the first proof by Hilbert. From that fact
that the asymptotic curves form a Tchebyshev net, Hilbert concludes that on a
surface there is no closed asymptotic curve. Therefore, if a surface admits an
everywhere “regular” net, then it is in one-to-one correspondence with a plane.
From Hazzidakis’s formula (2.144) it is possible to deduce as a corollary that the
area of each quadrangle formed by the asymptotic curves is less than 2π and that
hence the area of the entire surface,∫∫

y>0

dx dy

y2

is infinite. So, assuming that there is an unbounded and everywhere regular sur-
face with measure of curvature K = −1, we come to a contradiction.

It is necessary to note only that the existence of the needed coordinate system
on the entire surface was not proved.

2.9 Appendix: Indicatrix of a Surface of Revolution

Consider now the case of an arbitrary surface of revolution �, see Section 2.6.1.
From the formulas

k1 = f ′

x
√

1 + ( f ′)2
, k2 = f ′′[

1 + ( f ′)2
]3/2

it is clear that k1 and k2 depend on the same parameter. Hence, generally speaking,
k1 and k2 are functionally dependent: h(k1, k2) = 0 or k2 = ϕ(k1). Surfaces
for which k1 and k2 are functionally related belong to the class of Weingarten
surfaces; see Section 2.8.3. Not all of these surfaces are surfaces of revolution.
The first question arising here is,

For what functions k2 = ϕ(k1) do there exist complete surfaces of revolution?

The full answer to this question is given below without a proof in the case that
the function ϕ is a bijection; that is, if k1(P) = k1(Q) then k2(P) = k2(Q) and
conversely; here P, Q ∈ �.12

Definition 2.9.1. The indicatrix of a surface of revolution � is the set of all pairs
(k1, k2) counted at all points of the surface.

Theorem 2.9.1. The indicatrix of a surface of revolution whose principal curva-
tures are related by a bijective functional dependence either reduces to a point or
is the graph of a continuous strictly monotonic function defined on some real line
segment.

11 Comptes Rendus, v. 134, 740–743, 1902.
12 The results of Section 2.9 are due to V.V. Ivanov and were conveyed to the author in a personal

communication.
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Point-type indicatrices are of three kinds, a plane, a cylinder, or a sphere, by a
suitable choice of a scale of measurements and a side of a surface (Figure 2.21).
In each of these cases the corresponding complete surface is uniquely defined.

(0,0) — plane;
(1,0) — cylinder;
(1,1) — sphere.

Figure 2.21. Point-type indicatrices

(This statement coincides with Problem 2.8.2). Further, in speaking about the
uniqueness of this or that surface of revolution we shall mean uniqueness to within
the choice of an axis of rotation and a translation along it.

Theorem 2.9.2. (a) An increasing graph serves as indicatrix of an accordingly
oriented complete surface of revolution if and only if it belongs to one of the
classes 1–6 described below.

(b) A decreasing graph serves as indicatrix of an accordingly oriented complete
surface of revolution if and only if it belongs to one of the classes 7–9 described
below.

The proof of all these statements is long; it is based on the problem’s reduction
to studying of the following differential equation:

dv

dx
= ϕ

(v

x

)
, (2.146)

where v = xk1. In what follows we only describe the above classes 1–9 of sur-
faces.

2.9.1 Increasing Indicatrices

In all six cases 1–6 described in this section, the indicatrix is the graph of a strictly
increasing continuous and bounded function k2 = ϕ(k1) defined on a finite line
segment with endpoints a and b, always located over the diagonal k1 = k2 and
resting on it by its left end.

Class 1. The domain of the function ϕ is a line segment a < k1 < b, where
0 < a < b. Thus ϕ(a) = a and ϕ(k1) > k1 when a < k1 < b. For each function
ϕ possessing the specified properties (Figure 2.22 a) there is a unique complete
surface of revolution (Figure 2.22 b). This surface is closed, convex, and possesses
a plane of symmetry orthogonal to the axis of rotation. Details of its shape depend
on convergence of the integral
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I =
∫ b

a

du

ϕ(u) − u
,

having a unique singularity at the point a. If I = ∞, then both curvatures decrease
as they tend to the axis of rotation. In the case of I < ∞, spherical caps appear
on the surface (Figure 2.22 c).

Figure 2.22. Increasing indicatrices: Class 1.

Class 2. A function ϕ is defined also on the line segment a ≤ k1 ≤ b, but
now 0 = a < b. Moreover, ϕ(0) = 0 and ϕ(k1) > k1 when 0 < k1 < b.
For each function ϕ possessing the specified properties (Figure 2.23 a) there is a
unique complete surface of revolution (Figure 2.23 b). It is also closed, convex,
and symmetric in the above-mentioned sense. For I = ∞ its shape does not
differ from that specified in Figure 2.22 a, in this case only umbilics on the axis
of rotation turn to planar points. If I < ∞, then instead of a spherical cap we see
on the surface a flat circular region (Figure 2.23 c) whose radius decreases as the
integral I increases.

Figure 2.23. Increasing indicatrices: Class 2.

Class 3. The line segment a ≤ k1 ≤ b for which the function ϕ is defined now
contains both positive and negative numbers: a < 0 < b. As before, ϕ(a) = a
and ϕ(k1) > k1 if a < k1 ≤ b. In order that the graph (Figure 2.24 a) should serve
as indicatrix of a complete surface of revolution, it is necessary and sufficient to
fulfill an additional condition, namely, that the unique solution v = v(x) (Fig-
ure 2.24 b) of the differential equation (2.146) that is determined on the interval
0 < x < 1/b and takes the value of 1 at x = 1/b should satisfy the inequalities

v > −1,

∫ 1/b

0

vdx√
1 − v2

> 0.
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If desired, these requirements can be expressed directly in terms of the function ϕ.

Figure 2.24. Increasing indicatrices: Class 3.

A complete surface of revolution in the case under discussion is also uniquely
determined by its indicatrix. It is closed and symmetric, but completely loses its
convexity, becoming similar to a sphere with “extended cheeks” (Figure 2.24 c).
The presence or absence of an umbilical cap — only here concave — is deter-
mined by the above convergence condition of the integral I . As one may note, the
three considered classes of bijective functional dependences between the princi-
pal curvatures and corresponding surfaces of revolution belong naturally to united
series: the right endpoint of the indicatrix is located in the region of positive cur-
vature, and the left endpoint passes from positive values through zero into the
region of negative curvatures.

Class 4. The following three classes also form (in some sense) a separate family
within the bounds of which a smooth transition from one case to other is possible.
First, we discuss the class for which the function ϕ is determined on the line
segment a ≤ k1 ≤ b, where a < b < 0, and ϕ(a) = a and k1 < ϕ(k2) < 0
if a < k1 ≤ b. For each function ϕ possessing these (and also those specified in
the beginning of the section) properties (Figure 2.25 a) there is a unique complete
surface of revolution (Figure 2.25 b). This surface is closed, convex, and possesses

Figure 2.25. Increasing indicatrices: Class 4.

a plane of symmetry orthogonal to the axis of rotation. But, in contrast to surfaces
of Class 1, the curvatures now decrease with increasing distance from the axis of
rotation: If the surfaces of the Class 1 were similar to a flattened ellipsoid, the
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new surfaces resemble an ellipsoid stretched along the axis of rotation. Note that
in this case the previous remarks concerning the influence of the integral I on
details of the shape of the surface near the axis of rotation remain valid.

Class 5. The first case of the lack of uniqueness arises when the function ϕ,
defined on the same line segment a ≤ k1 ≤ b, (a < b < 0), satisfies almost
the same conditions: ϕ(a) = a and k1 < ϕ(k1) < 0 if a < k1 < b, but now
only ϕ(b) = 0. The graph of any such function (Figure 2.26 a) is an indicatrix
of several complete surfaces of revolution. All of them are convex, but only one
of them is closed and symmetric, like a surface of the previous class. The only
difference here is that our new surface comes to a point maximally far from the
axis of rotation (incidentally, lying on the plane of symmetry), with zero curvature
along a meridian. For this reason, its further behavior is not so rigidly limited, as
before. The surface need not be reflected in the above-mentioned plane; it can

Figure 2.26. Increasing indicatrices: Class 5.

remain a cylinder for a while, even forever. Thus, we have four variants of a
surface’s behavior for a given indicatrix of the class under discussion; all of them
are shown in Figures 2.26 b–e.

Class 6. The last case of increasing indicatrix is one more example of the lack
of uniqueness, but of absolutely another sort in comparison with the previous one.
Here the function ϕ is determined on the line segment a ≤ k1 < 0 and satisfies
the conditions ϕ(a) = a and k1 < ϕ(k1) < 0, but also, at the point 0 it has a zero
left-hand limit.

For the existence of a complete surface of revolution whose indicatrix is the
graph of such a function ϕ, it is necessary and sufficient that for some u∗ < 0 the
integral ∫ 0

u∗

ϕ(u)

ϕ(u) − u
eI (u) du where I (u) =

∫ u

u∗

dt

ϕ(t) − t

should converge. If one does not consider exotic (though quite possible) details
of the behavior of the function ϕ at zero, this condition has a simple sense. For
example, it is not satisfied for a function, whose graph has a nonzero inclination
at the coordinate center. If ϕ(u) = o(u), then the above condition is equivalent to
the integrability of the function ϕ(u)/u2 at zero.
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The graph of the function satisfying the above-mentioned requirement (Fig-
ure 2.27 a) is an indicatrix of the entire family of complete surfaces of revolution
(Figure 2.27 b).

Figure 2.27. Increasing indicatrices: Class 6.

All of them are convex and are reminiscent of paraboloids by their shape, which
by the way, belong to the class of surfaces under discussion. Each surface of
our family runs to infinity with the determined inclination along a meridian. The
inclination can be either infinite (and thus horizontal cross-sections of a surface
extend without bound), or a nonzero number. For each such inclination, there is
exactly one representative member in the family of surfaces corresponding to the
given indicatrix. It is curious to note that if at least one of the surfaces in the
family belongs to a cap (the presence of which for the above reasons depends on
the nature of the approach of the left end of the indicatrix to the diagonal), then
all the others also belong.

2.9.2 Decreasing Indicatrices

Quite a different picture is obtained, when an indicatrix is a decreasing line. In
the remaining examples it is the graph of the function ϕ that (besides what will be
told about it in each concrete case) is defined on the bounded line segment with
endpoints a < b ≤ 0, always including the point a, and is continuous and strictly
decreasing on it. Thus the graph is located entirely above the umbilical diagonal,
sometimes intersecting it at one point.

Class 7. The domain of the function k2 = ϕ(k1) here is a line segment a ≤
k1 < 0, so on it ϕ > 0 holds. Thus the left-hand limit of the function ϕ at the
point 0 should be zero. Any such function determines a unique complete saddle
surface of revolution, homeomorphic to a cylinder with symmetric convex profile
curve having a catenoid-like shape. But some important details depend on the
asymptotic character of the function ϕ at zero. To see this, consider the integrals

I (u) =
∫ u

a

dt

ϕ(t) − t
and J =

∫ 0

−1/a

v dx√
1 − v2

.
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The first of them is an increasing function on the line segment a ≤ u < 0, and its
limit for u → −0 will be denoted by the letter I . In the second integral, which also
could be expressed explicitly through ϕ, the function v = v(x) means a unique
solution of the differential equation (2.146), already familiar to us, existing on the
interval −1/a ≤ x < ∞ and satisfying the initial condition v(−1/a) = −1. We
have three cases.

Case 1. Let I < ∞ and so J < ∞. Then if one completes the graph of a func-
tion ϕ by one new point, attached to the origin (Figure 2.28 a), it serves as the
indicatrix of an interesting surface whose profile curve is shown in Figure 2.28 b.

Figure 2.28. Decreasing indicatrices: Class 7, Case 1.

Case 2. Let I = ∞, but still J < ∞. In this case the indicatrix has no right
endpoint (Figure 2.29 a), and the surface is similar to the previous one, and differs
from it in that it no longer sticks to two infinite rings compressing it, though it
asymptotically tends to them (Figure 2.29 b).

Figure 2.29. Decreasing indicatrices: Class 7, Case 2.

Case 3. Let finally I = J = ∞. This means that the indicatrix rapidly approaches
the k1-axis (Figure 2.30 a). In this case the distance between the branches of the
profile curve (Figure 2.30 b) increases without bound while increasing its distance
from the axis of rotation, but their inclination tends to a definite finite number. It
is expressed by the formula

1 − L√
L(2 − L)

, where L = −1

a

∫ 0

a

ϕ(u)

ϕ(u) − u
eI (u) du.

The values of the integral L fill the interval 0 < L ≤ 1, so the asymptotic incli-
nation of the branches can be any number, starting from zero.
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Figure 2.30. Decreasing indicatrices: Class 7, Case 3.

Class 8. A surface with a decreasing indicatrix can be periodic. Here we con-
sider such a case. Let the function ϕ be determined on the line segment from a
to b, where a < b < 0, and in addition to the above-mentioned general require-
ments, the following conditions are satisfied: ϕ(a) > 0 > ϕ(b) > b. For the
existence of a complete surface of revolution whose indicatrix serves a graph of
such a function (Figure 2.31 a), it is necessary and sufficient for it to obey the
following equality:

I =
∫ b

a

du

ϕ(u) − u
= ln

a

b
.

Then the surface (Figure 2.31 b) together with all its parameters is uniquely de-
fined by its indicatrix.

Figure 2.31. Decreasing indicatrices: Class 8.

Class 9. The last case we should discuss is similar to the previous one in many
respects, but differs from it in the moment of principle: it provides one more ex-
ample of the lack of uniqueness. Here the function ϕ is determined on the same
line segment from a to b, where a < b < 0, but it now satisfies other conditions:
ϕ(a) > 0 > ϕ(b) = b. The graph of such function a (Figure 2.32 a) serves as an
indicatrix of a complete surface of revolution if and only if I < ln(a/b), where
I is the integral just considered. But now this surface is already not unique (Fig-
ures 2.32 b – f). The reason is the following. The parallel farthest from the axis of
rotation consists of umbilics, and in the case I < ln(a/b), it appears as an entire
umbilic layer. But also its one circle is enough for that after its achievement a sur-
face could select the variant of further behavior. At each such moment it has two
variants — either to pass one more period repeating the previous form, or to curtail
by a sphere. Thus there appears an infinite series of closed surfaces (Figures 2.32
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b, c) similar to “pods of a peanut, containing some grains,” and their number can
be any natural number, but not smaller than two. If a surface once decides to stop,
then we obtain two paraboloidal-type surfaces (i.e., homeomorphic to a plane) as
shown in Figures 2.32 d, e. Finally, if a surface infinitely self-repeats the form,
then it remains the same periodically pulsing cylindrical surface (Figure 2.32 f)
that was seen in the previous class.

Figure 2.32. Decreasing indicatrices: Class 9.

2.10 Exercises to Chapter 2

Exercise 2.10.1. Write the parametric equations of (a) a twofold hyperbolic cylin-
der, (b) a circular cylinder, (c) a circular cone.

Exercise 2.10.2. Write the equations of a surface of revolution with the axis O Z :
(a) the torus obtained by a rotation of the circle x = a + b sin u, y = 0,

z = b sin u, 0 < b < a,
(b) the pseudosphere obtained by rotation of the tractrix x = a sin u, y =

0, z = a(log tan u
2 + cos u),

(c) the catenoid obtained by rotation of the catenary x = a cosh u
a , y =

0, z = u.

Exercise 2.10.3. Show that the equations x = u
u2+v2 , y = v

u2+v2 , z = 1
u2+v2 and

x = u cos v, y = u sin v, z = u2 define the same surface.

Exercise 2.10.4. Prove that the surface x = a(uv+1)

u+v
, y = b(u−v)

u+v
, z = uv−1

u+v

is a onefold hyperboloid. What are the coordinate curves of the surface in this
parameterization?

Exercise 2.10.5. Given the surface x = a(u + v), y = b(u − v), z = u + a, find
an explicit equation of the surface and prove that it is a hyperbolic paraboloid.

Exercise 2.10.6. Prove that the equation x = u + sin v, y = u + cos v, z = u + a
is the equation of a cylinder.

Exercise 2.10.7. Write the equations of the tangent plane and a normal to the
surface (a) x2 + 2y2 − 3z2 − 4 = 0 at the point M(3, 1, −1), (b) x = u + v,
y = u − v, z = uv at the point M(2, 1), (c) x = u cos v, y = u sin v, z = av at
each point.
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Exercise 2.10.8. Write the equations of the tangent plane and a normal to the
pseudosphere

x = a sin u cos v, y = a sin u sin v, z = a
(

ln tan
u

2
+ cos u

)
.

Exercise 2.10.9. Show that all tangent planes to the surface z = x3 + y3 at the
points M(α, −α, 0) form a set of planes.

Exercise 2.10.10. Find the first fundamental form of (a) a sphere⎧⎨⎩
x = R cos u cos v,

y = R cos u sin v,

z = R sin u,

(b) a circular cone x = u cos v, y = u sin v, z = u , (c) the catenoid x = a cosh u
a ,

y = u cos u
a sin vz = u.

Exercise 2.10.11. Find the first fundamental form of each surface: (a) a cylinder,
(b) a helicoid, (c) a pseudosphere.

Exercise 2.10.12. Let v = ln(u ± √
u2 + 1) + C be the curves given on the right

helicoid x = u cos v, y = u sin v, z = 2v. Calculate the arc lengths of these
curves between the points M1(1, 2) and M1(3, 4).

Exercise 2.10.13. Find the area of the quadrangle on the right helicoid x =
u cos v, y = u sin v, z = av formed by the curves u = 0, u = a, v = 0,
v = 1.

Exercise 2.10.14. Find the perimeter, inner angles, and the area of the curvilinear
triangle

u = ± 1
2 avr , v = 1 on the helicoid x = u cos v, y = u sin v, z = −av.

Exercise 2.10.15. Find the second fundamental form of each surface: (a) cylinder,
(b) sphere, (c) circular cone, (d) helicoid, (e) catenoid, (f) pseudosphere⎧⎨⎩

x = a sin u cos v,

y = a sin u sin v,

z = a
(
log tan u

2 + cos u
)
.

Exercise 2.10.16. Find the principal curvatures (a) at the vertices of the twofold
hyperboloid x2

a2 − y2

b2 − z2

c2 −1 = 0, (b) of the surface z = xy at the point M(1, 1, 1).

Exercise 2.10.17. Find the principal curvatures and the principal vectors of each
surface:

(a) z = xy at the point M(1, 1, 1), (b) x2

p + y2

p = 2z at the point M(0, 0, 0),

(c) x = u2 + v2, y = u2 − v2, z = uv at the point M(1, 1).
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Exercise 2.10.18. Find the Gaussian curvature of each surface: (a) a sphere, (b) a
(circular) cylinder, (c) a pseudosphere, (d) a catenoid, (e) a paraboloid x2

p + y2

p =
2z, (f) a helicoid, (g) a torus.

Exercise 2.10.19. Calculate the mean curvature of a catenoid.

Exercise 2.10.20. Prove that the umbilics on the surface x = u2

2 + v, y = u + v2

2 ,
z = uv lie on the curves u = v, u + v + 1 = 0.

Exercise 2.10.21. Find the lines of curvature on the following surfaces: (a) an
arbitrary surface of revolution, (b) the surface x = u2 + v2, y = u2 − v2, z = v.

Exercise 2.10.22. Find the lines of curvature on each surface: (a) x = u2 + v2,
y = u2 −v2, z = v, (b) x = 3u2 −u3 +3uv2, y = u2 −3u2v−3v, z = 3(u2 −v2).

Exercise 2.10.23. Prove that the curve x = 2
1+t , y = 2

1−t , z = t is an asymptotic
curve on the surface z = 1

x2 − 1
y2 .

Exercise 2.10.24. Find the asymptotic curves of a right helicoid.

Exercise 2.10.25. Find the geodesic curvature of each curve:

(a) a circle of radius r on a sphere of radius R,

(b) a helix u = c, v = t on a helicoid x = u cos v, y = u sin v, z = u.

Exercise 2.10.26. Find the geodesic curvature of the curves u = const and v =
const on a surface x = u cos v, y = y sin v, z = f (v).

Exercise 2.10.27. Prove that if no external forces act on a particle moving along
a surface, then it will move along a geodesic.

Exercise 2.10.28. Prove that every straight line on a surface is a geodesic.

Exercise 2.10.29. Prove that a geodesic is also a line of curvature if and only if it
is a straight line.

Exercise 2.10.30. Prove that a geodesic is also an asymptotic curve if and only if
it is a plane curve.

Exercise 2.10.31. Two surfaces touch each other along a curve L . Prove that if L
is a geodesic on one of the surfaces, then it is also a geodesic on the other surface.

Exercise 2.10.32. Find the geodesics of (1) a cylindrical surface, (2) a circular
cone, (3) a Möbius strip, (4) a flat torus, (5) a Klein bootle.

Hint. The surfaces (4), (5) are obtained from a square in the plane with the stan-
dard metric after gluing the pair(s) of its sides with corresponding orientation.

Exercise 2.10.33. Prove that the meridians of a surface of revolution are its
geodesics.
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Exercise 2.10.34. Prove that a parallel of a surface of revolution is also its
geodesic if and only if a tangent line to a meridian passing through a point is
parallel to the axis of rotation.

Exercise 2.10.35. Find the geodesics on (a) a right helicoid: x = u cos v, y =
u sin v, z = u, (b) a pseudosphere.

Exercise 2.10.36. Prove that the only minimal surfaces of revolution are a plane
and a catenoid.

Exercise 2.10.37. Prove that among all ruled surfaces, only a plane and a catenoid
are minimal.

Exercise 2.10.38.∗Let γ be a closed geodesic without points of self-intersection
on a closed convex surface. Prove that the spherical image of γ divides a sphere
into two parts with equal areas.



3
Intrinsic Geometry of Surfaces

In this chapter the foundations of intrinsic geometry of a two-dimensional surface
are introduced. The material is presented in such a form that all statements other
than the Gauss–Bonnet theorem can be generalized almost word for word to the
multidimensional case. So, this chapter can be considered as an introduction to
the theory of n-dimensional Riemannian manifolds.

3.1 Introducing Notation

The local coordinates (u, v) of some parameterization of a surface � will be writ-
ten as (u1, u2), the vectors �ru1(u1, u2) and �ru2(u1, u2) by �r1 and �r2. Denote the co-
efficients of the first fundamental form by gik (i, k = 1, 2), where gik = 〈�r i , �rk〉;
the elements of the inverse matrix to {gi j } by gi j ; the coordinates of the vector
�λ = λ1�r1 + λ2�r2 in a local basis �r1, �r2 by λ1, λ2. Introduce the magnitudes,
called the Christoffel symbols of the first kind,

� jk,l = 1

2

(
∂g jl

∂uk
+ ∂gkl

∂u j
− ∂g jk

∂ul

)
(i, j, k = 1, 2), (3.1)

and the Christoffel symbols of the second kind by the formula

�i
jk =

2∑
l=1

� jk,l g
li (i, j, k = 1, 2). (3.2)

The derivational formulas (2.109) in this notation take the form
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∂�r i

∂u j
= �r i j =

2∑
k=1

�k
i j �rk + Ai j �n (i, j = 1, 2), (3.3)

where �n is a normal to �, and Ai j are the coefficients of the second fundamental
form. The Gaussian curvature K of � is expressed through the coefficients of the
first fundamental form by the formula, see (2.123),

K = 1

g11

(
∂�2

11

∂u2
− ∂�2

11

∂u1
+ �1

11�
2
12 + �2

11�
2
22 − �1

12�
2
11 − �2

12�
2
12

)
. (3.4)

If the equations of a curve c(t) in local coordinates (u1, u2) are given by the
functions (u1(t), u2(t)), then the tangent vector to c(t), which is equal to (u1)′�r1+
(u2)′�r2, is denoted by ċ(t). Later on, we will agree that if in any term the same
index is written twice, one time up and the second time down, then it in fact occurs
as a summation with respect to this index. For example, (�µ, �λ) = gi jλ

iµ j , �i
jk =

gil� jk,l , and so on.

3.2 Covariant Derivative of a Vector Field

Let �λ(t) ∈ T �c(t) be a differentiable vector field along a smooth curve c(t) on a
regular surface � of class C3. Take the derivative d

dt
�λ of this vector field at a point

c(t). In the general case, d
dt

�λ does not belong to the tangent plane T �c(t). Define

the covariant derivative D
dt

�λ of the vector field �λ along c(t) as the orthogonal

projection of d
dt

�λ onto T �c(t). From this definition it follows that

D

dt
�λ = d

dt
�λ −

〈
d

dt
�λ, �n

〉
�n, (3.5)

where �n is a normal to � at c(t). To find an analytical expression for D
dt

�λ in

local coordinates, let �λ(t) = λ1(t)�r1(t) + λ2(t)�r2(t), and let c(t) be given by the
equations u1 = u1(t), u2 = u2(t). From this notation we obtain

d

dt
�λ = dλ1

dt
�r1 + dλ2

dt
�r2 + λ1

(
�r11

du1

dt
+ �r12

du2

dt

)
+ λ2

(
�r21

du1

dt
+ �r22

du2

dt

)
.

We now express �r1i and �r2 j through �r1, �r2 and �n by derivational formulas (3.3),
obtaining

d

dt
�λ =

(
dλ1

dt
+ �1

i jλ
i du j

dt

)
�r1 +

(
dλ2

dt
+ �2

i jλ
i du j

dt

)
�r2 + A�n. (3.6)

From (3.6) it is seen that 〈 d
dt

�λ, �n〉 = A. Therefore,

D

dt
�λ =

(
dλ1

dt
+ �1

i jλ
i du j

dt

)
�r1 +

(
dλ2

dt
+ �2

i jλ
i du j

dt

)
�r2 (3.7)
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and (
D

dt
�λ
)k

= dλk

dt
+ �k

i jλ
i du j

dt
(k = 1, 2). (3.8)

Remark 3.2.1. Sometimes it is useful to use D
dt

�λ|c(t) instead of the notation D
dt

�λ,
indicating explicitly that the covariant derivative is taken along c(t).

Remark 3.2.2. In the definition of covariant derivative of a vector field �λ(t) along
c(t) we have used the circumstance that the surface � lies in R3. However, (3.7),
(3.8), and (3.3) show that for a given curve c(t) and the vector field �λ(t) the
coordinates of a vector field D

dt
�λ are expressed only through the coefficients of

the first fundamental form, their first-order derivatives, and the coordinates of �λ.
Thus one can say that the covariant derivative of a vector field along a curve is
an object of intrinsic geometry.

3.3 Parallel Translation of a Vector along a
Curve on a Surface

Definition 3.3.1. A vector field �λ(t) along a curve c(t) on a surface � is called a
field of parallel vectors if D

dt
�λ(t)|c(t) ≡ 0.

Definition 3.3.2. We say that a vector �λ1 at a point c(t1) is obtained from a vector
�λ0 at a point c(t0) by a parallel translation along c(t) (t0 ≤ t ≤ t1) if there is
a field of parallel vectors �λ(t) (t0 ≤ t ≤ t1) along c(t) for which �λ(t0) = �λ0,
�λ(t1) = �λ1.

If a curve c(t) lies entirely in one coordinate neighborhood, then for expressing
the coordinates λ1

1, λ
2
1 of a vector �λ1 through coordinates λ1

0, λ
2
0 of a vector �λ0, in

view of Definition 3.3.2, we need to solve the system, see (3.8),

dλk

dt
+ �k

i jλ
i du j

dt
= 0 (k = 1, 2) (3.9)

with initial conditions λ1(t0) = λ1
0, λ

2(t0) = λ2
0 and to set λ1

1 = λ1(t1), λ2
1 =

λ2(t1). The existence and uniqueness of a solution of the system (3.9) for arbitrary
initial conditions and for any t follow from a theorem about systems of ordinary
differential equations.

If c(t) does not lie entirely in one coordinate neighborhood, then we divide it
onto a finite number of arcs, each of which belongs to some coordinate neighbor-
hood, and then produce a parallel translation along each part in consecutive order.
Parallel translation of a vector can also be defined along a piecewise smooth curve
as consecutive parallel translations along each smooth part. Note that a parallel
displacement of a vector on a surface is defined as a parallel translation along a
given curve. Thus, in general, the result of a parallel translation depends on the
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curve along which it is considered. But if there is a region B on � for which the
result of a parallel displacement does not depend on the choice of curve, but de-
pends only on its endpoints, then one says that there is absolute parallelness on
the region B.

Obviously, the parallel translation together with the covariant derivative are ob-
jects of the intrinsic geometry. This circumstance allows us to produce the parallel
displacement in simple cases without writing and solving the system (3.9).

Example 3.3.1. Take a cone with vertex at the point O and with a solid angle ϕ

(Figure 3.1). Let c be a curve connecting the points P0 and P1, and let �λ0 be any
vector at P0. Find a vector �λ1 obtained from �λ0 by a parallel translation along c.
Since a cone is locally isometric to a plane, we act in the following way: “cut” a
cone along a straight line, its ruling, and develop it onto the Euclidean plane R2.
Obtain on the plane a region inside of an angle. Construct a vector �λ1 at the point
P1 that is parallel to �λ0 in the sense of parallel translation in R2. If �λ0 forms an
angle α with a ruling O P0, then a vector �λ1 will form an angle α+β with a ruling
O P1, where β = � P0 O P1. We thus see that on any simply connected region B
on a cone without the vertex O there is absolute parallelness. However, under
a parallel translation along a closed curve that envelops the vertex O , a vector
rotates through an angle β; thus absolute parallelness does not exist on the cone
as a whole.

Figure 3.1. Parallel translation along a cone and its envelope.

3.3.1 Properties of the Parallel Translation

Theorem 3.3.1. Parallel translation of vectors along a curve preserves the scalar
product of vectors and linear operations with them.

Proof. The second statement of the theorem follows directly from the definition,
and also from the linearity of the system (3.9). We prove the first statement. Let
�λ1(t) and �λ2(t) be two fields of parallel vectors along some curve c(t). We must
show that 〈�λ1(t), �λ2(t)〉 ≡ const. This statement follows from the formula
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d

dt

〈�λ1, �λ2

〉
=
〈

D

dt
�λ1, �λ2

〉
+
〈
�λ1,

D

dt
�λ2

〉
. (3.10)

Let us prove it:
d

dt
〈�λ1, �λ2〉 =

〈
d

dt
�λ1, �λ2

〉
+
〈
�λ1,

d

dt
�λ2

〉
.

From the definition of covariant derivative it follows that
〈

d
dt

�λ1, �λ2
〉 = 〈

D
dt

�λ1, �λ2
〉

and
〈�λ1,

d
dt

�λ2
〉 = 〈�λ1,

D
dt

�λ2
〉
, from which follows (3.10). The statement of the the-

orem may be also proven by direct use of (3.9):

〈�λ1, �λ2〉 = gi jλ
i
1λ

j
2,

d

dt

(
gi jλ

i
1λ

j
2

) = ∂gi j

∂uk

duk

dt
λi

1λ
j
2 + gi j

dλi
1

dt
λ

j
2 + gi jλ

i
1

dλ
j
2

dt
.

Substitute here dλi
1

dt and dλ
j
2

dt from (3.9), and then use (3.7) and (3.8). We obtain

d

dt
〈�λ1, �λ2〉 = ∂gi j

∂uk

duk

dt
λi

1λ
j
2 − gi j�

i
pkλ

p
1

duk

dt
λ

j
2 − gi j�

j
pkλ

p
2

duk

dt
λi

1

= ∂gi j

∂uk

duk

dt
λi

1λ
j
2 − �pk, jλ

p
1 λ

j
2

duk

dt
− �pk,iλ

p
2 λi

1
duk

dt

= ∂gi j

∂uk
λi

1λ
j
2

duk

dt
− 1

2

(
∂gpi

∂uk
+ ∂gkj

∂u p
− ∂gpk

∂u j

)
λ

p
1 λ

j
2

duk

dt

− 1

2

(
∂gpi

∂uk
+ ∂gkj

∂u p
− ∂gpk

∂u j

)
λi

1λ
p
2

duk

dt

=
[
∂gi j

∂uk
− 1

2

(
∂gi j

∂uk
+ ∂gkj

∂ui
− ∂gik

∂u j

)
− 1

2

(
∂gi j

∂uk
+ ∂gki

∂u j
− ∂g jk

∂ui

)]
· λi

1λ
j
2

duk

dt
= 0.

Thus based on the notion of covariant derivative of a vector field we can define
the notion of a parallel translation of a vector along a curve.

Conversely, we can define the covariant derivative of a vector field from the
notion of parallel translation of a vector along a curve. Indeed, let c(t) be a curve
and �λ(t) a vector field along c(t). Take two vectors �λ(t) and λ̃(t + �t) at a point
c(t) and assume that λ̃(t +�t) is obtained from �λ(t +�t) by a parallel translation
along the arc c(t + �t)c(t) of a curve c(t). Then define

D

dt
�λ|c = lim

�t→0

λ̃(t + �t) − �λ(t)

�t
. (3.11)

Note that if a parallel translation of a vector in a local coordinates is defined by
(3.9), then (3.8) can be deduced from (3.11). The proof of this statement is left to
the reader as an exercise. �
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3.4 Geodesics

In this section we continue the study the geodesics. It turns out that the properties
of geodesics imitate the properties of straight lines in a plane as far as possible.
One of the characteristic properties of a straight line in a plane is that a vector
tangent to it stays tangent under parallel translation. Define a geodesic on a surface
� as a curve with the same property.

3.4.1 Definition of Geodesics and Their Equations

Let γ (t) be a twice continuously differentiable curve on a regular surface � of
class C2.

Definition 3.4.1. A curve γ (t) is called a geodesic on a surface � if the vector
field γ̇ (t) is a field of parallel vectors along γ (t).

We deduce the equations of geodesics in local coordinates. If the equations of
γ (t) are u1 = u1(t), u2 = u2(t), then the vector γ̇ (t) has coordinates du1

dt , du2

dt .
Consequently, from (3.8) follows(

D

dt
γ̇

)k

= d2uk

dt2
+ �k

i j

dui

dt

du j

dt
(k = 1, 2),

and we obtain the equations of geodesics

d2uk

dt2
+ �k

i j

dui

dt

du j

dt
= 0 (k = 1, 2). (3.12)

Note that from our definition of geodesic it follows that the parameter t is the
canonical parameter, i.e., it is proportional to the arc length. In fact, since γ̇ (t) is
a field of parallel vectors, then from Theorem 3.3.1 it follows that |γ̇ (t)| = c and

s =
∫ t

0
|γ̇ (t)| dt = ct. (3.13)

Example 3.4.1. We find all geodesics on a cylinder with one more method. As
is seen from the definition of geodesics or directly from the system (3.12), the
geodesics under an isometric (or locally isometric) map of one surface onto other
also turn into geodesics. Use this property for finding the geodesics on a circular
cylinder of radius R. Cutting the cylinder along its ruling and developing it onto a
plane, we obtain in the plane a strip of width 2π R between parallel straight lines
a1 and a2. However, it is more convenient to do the following. Denote by �d a
vector orthogonal to a1 and of length 2π R. Take an arbitrary point P inside the
strip and identify with it all points in the plane that can be obtained by parallel
displacement of P by a vector multiple of the vector �d. This identification allows
us to build a local isometry of the plane onto the cylinder (a covering map). Under
this map any straight line in the plane will turn into some geodesic on the cylinder,
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and all geodesics on the cylinder can be thus obtained. This circumstance allows
us to find all geodesics on the cylinder. Straight lines that are parallel to a1 turn
into rulings of the cylinder; straight lines that are orthogonal to a1 turn into closed
geodesics (parallels on a cylinder); and straight lines that are oblique to a1 turn
into helices on the cylinder. Thus, the geodesics on a cylinder are exactly the
rulings, parallels, and helices.

Problem 3.4.1. Study the behavior of geodesics on a circular cone.

We prove now that the definitions of geodesics given in Chapters 2 and 3 are
equivalent. Let γ (s) be a length-parameterized curve. Then D

ds γ̇ = 0 means that
d
ds γ̇ = �ν is a vector parallel to �n, and conversely, if the vector d

ds γ̇ is parallel to
�n, then D

ds γ̇ = 0.

3.4.2 Exponential Map. Properties of an Exponential Map
and Local Properties of Geodesics

The system (3.12) is a system of second-order ordinary differential equations,
solved with respect to the highest derivatives. Therefore, the next lemma follows
from well-known theorems on the existence and uniqueness of solutions of sys-
tems of ordinary differential equations and the continuous dependence of their
solutions on initial values.

Lemma 3.4.1. For each point P on a surface � there are a neighborhood U of
P and a real number ε̃P > 0 such that for every point Q ∈ U and an ar-
bitrary vector �λ ∈ T �Q whose length is smaller than ε̃P there is a unique
geodesic γ (Q, �λ, t) (−1 < t < 1) satisfying the conditions γ (Q, �λ, 0) = Q,
γ̇ (Q, �λ, 0) = �λ.

From our notation and from (3.13) follows the equality

γ (Q, t · �λ, 1) = γ (Q, �λ, t). (3.14)

For some point Q and some vector �λ ∈ T �Q let there be a geodesic γ (Q, �λ, t)
(0 ≤ t ≤ 1). Denote by expQ

�λ the point γ (Q, �λ, 1):

expQ
�λ = γ (Q, �λ, 1). (3.15)

In view of Lemma 3.4.1, for each point Q ∈ � and each vector �λ ∈ T �Q whose
length is not greater than ε̃Q there is a geodesic γ (Q, �λ, t) for 0 ≤ t ≤ 1. Conse-
quently, (3.15) defines some map from an open disk of radius ε̃Q with center at Q
in the plane T �Q into �. This mapping is called an exponential map.

Problem 3.4.2. Describe the exponential map of a tangent plane on a sphere of
radius R. Find all critical points of this map.
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Lemma 3.4.2. The rank of the exponential map expQ
�λ at the point Q is 2.

Proof. Let the equations of geodesics γ (Q, �λ, t) in local coordinates u1, u2 be

u1 = f 1(λ1, λ2, t), u2 = f 2(λ1, λ2, t).

Then the mapping expQ
�λ is given by the functions f 1(λ1, λ2, 1), f 2(λ1, λ2, 1).

By the definition of a geodesic γ (Q, �λ, t),

d f i

dt

∣∣∣
t=0

= λi (i = 1, 2). (3.16)

But in view of (3.14), the following identity holds:

f i (λ1, λ2, t) = f i (tλ1, tλ2, 1) (i = 1, 2). (3.17)

Differentiating the identity (3.17) by t and assuming t = 0, we obtain

d f i

dt
(λ1, λ2, t)

∣∣∣
t=0

= ∂ f i (0, 0, 1)

∂λ1
λ1 + ∂ f i (0, 0, 1)

∂λ2
λ2 (i = 1, 2). (3.18)

Now from (3.16) and (3.18) it follows that the Jacobian matrix of the mapping
expQ at the point Q is the unit matrix. �

From Lemmas 3.4.1 and 3.4.2 we shall deduce the main lemma of this section.

Lemma 3.4.3. For each point Q ∈ � there is a neighborhood WQ and a real εQ

such that for any two points Q1 ∈ WQ and Q2 ∈ WQ there is a unique geodesic
γ (Q1, Q2, t) (0 ≤ t ≤ 1) joining Q1 and Q2 and of length not greater than εQ .

Proof. Let UQ and ε̃Q be the neighborhood and real number obtained in Lemma
3.4.1. Denote by A(UQ, ε̃Q) the set of pairs (R, �λ), where R ∈ UQ and �λ ∈ T �R .
Introduce coordinates on a set A by corresponding to each element (R, �λ) of the
set A(UQ, ε̃Q) the real numbers u1, u2, λ1, λ2, where u1, u2 are local coordinates
of the point R, and λ1, λ2 are the coordinates of �λ in a local basis of the plane
T �R . Then define the set B = UQ × UQ . Also introduce coordinates in the
set B by corresponding to each element (Q1, Q2) of the set B the real numbers
x1, x2, y1, y2, where x1, x2 are local coordinates of the point Q1, and y1, y2 are
local coordinates of the point Q2. Define a map f : A → B in the following way:
correspond the pair (R, �λ) of A to the pair (R, expR

�λ) of B.
(α). Prove that the rank of the map f at the point (Q, 0) is maximal, i.e., equal

to 4. By the notation of the previous lemma, the map f can be rewritten in the
following form:

x1 = u1, x2 = u2, y1 = f 1(u1, u2, λ1, λ2, 1),

y2 = f 2(u1, u2, λ1, λ2, 1).
(3.19)
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From (3.19) it is seen that the value of the determinant of the Jacobi matrix of

the map f at the point Q is equal to the value of the determinant
∣∣∣ ∂ f 1/∂λ1 ∂ f 1/∂λ2

∂ f 2/∂λ1 ∂ f 2/∂λ2

∣∣∣
derived for λ1 = λ2 = 0. The value 1 of the last determinant was calculated in
Lemma 3.4.2. The statement (α) is proven.

Continuing, we deduce from the inverse function theorem the existence of a
neighborhood WQ and a real εQ such that the map f is a diffeomorphism of the
set A(WQ, εQ) onto B. Let C = f(A). Take a neighborhood WQ of the point
Q such that WQ × WQ ⊂ C . Then the neighborhood WQ and εQ satisfy all the
requirements of the lemma. �

By the way, we have proved that the coordinates of the point γ (Q1, Q2, t) and
the function l(Q1, Q2), the length of the geodesic γ (Q1, Q2, t), smoothly depend
on the coordinates of the points Q1 and Q2 for Q1 �= Q2.

Example 3.4.2. For a sphere S2
R of radius R in R3, any circular neighborhood WP

of radius ε with center at an arbitrary point P has all the properties given in
Lemma 3.4.3 if ε < 1

2π R. Indeed, recall that the geodesics on a sphere are the
arcs of great circles. If P1 ∈ WP and P2 ∈ WP , then for ε < 1

2π R the points
P1, P2 and the center O of the sphere lie on the same straight line. Pass a plane
through them. This plane intersects the sphere in a great circle, which, by the
construction, is uniquely defined by the points P1 and P2, and the shortest arc of
this circle lies entirely in WP and its length is smaller than ε.

Problem 3.4.3. Prove that for a circular cylinder of radius R any circular neigh-
borhood WP of radius ε with center at the point P has all the properties from
Lemma 3.4.3 if ε < 1

2π R.

3.4.3 Parallel Translation and Geodesic Curvature of a Curve

The geodesic curvature kg of an arbitrary curve on a surface was defined in Sec-
tion 2.7.3. Now we shall give another (equivalent) definition of kg using the notion
of parallel translation of a vector along a curve. Let c(t) be a parameterization of
a curve c, and t an arc length parameter. Take two vectors ċ(t) and c̃′

(t + �t)
at a point c(t), where the vector c̃′

(t + �t) is obtained from ċ(t + �t) by paral-
lel translation along the arc c(t + �t)c(t) of the curve c. Denote by �ψ(�t, t)
the angle between ċ(t) and c̃′

(t + �t). Define now the geodesic curvature by the
formula

kg = lim
�t→0

�ψ(�t, t)

�t
. (3.20)

Theorem 3.4.1. For any regular curve c(t) of class C2, the geodesic curvature
exists and is

kg =
∣∣∣ D

dt
ċ
∣∣∣, (3.21)

where t is an arc length parameter.
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Proof. Since ċ(t) and c̃′
(t + �t) are unit vectors, then 2 sin �ψ

2 = |c̃′
(t + �t) −

ċ(t)|. Hence

kg = lim
�t→0

�ψ

�t
= lim

�t→0

�ψ

2 sin �ψ

2

· lim
�t→0

|c̃′
(t + �t) − ċ(t)|

�t
=
∣∣∣∣ D

dt
ċ

∣∣∣∣
by formula (3.11).

We prove now that (3.21) and (2.88) of Chapter 2 coincide. Indeed, from the
definition of covariant derivative of a vector field, D

dt ċ(t) is the projection of the
vector d

dt ċ(t) on the tangent plane T �c(t). Therefore,∣∣∣ D

dt
ċ(t)

∣∣∣ =
∣∣∣ d

dt
ċ(t)

∣∣∣ sin ϕ,

where ϕ is the angle between the main normal to the curve c(t) and the normal
to the surface, but

∣∣ d
dt ċ

∣∣ = k, and we have
∣∣ D

dt ċ
∣∣ = k sin ϕ, which completes the

proof. �
From Theorem 3.4.1 it follows that if kg = 0 at each point of c(t), then c(t) is

a geodesic.
For curves on a surface � one can define the sign of geodesic curvature sim-

ilarly, as was done for the curvature of plane curves. Recall one particular case
that will be important for us in what follows. Let c be a regular curve bounding a
region D homeomorphic to a disk. If a vector D

dt ċ at some point is directed inside
of D, then assume that the geodesic curvature of c at this point is positive, and in
the opposite case, negative.

Example 3.4.3. Consider the intersection of the sphere x2 + y2 + z2 = R2 with
the plane z = a (−R < a < R). This intersection is the circle Sa on the sphere.
The radius of this circle in the plane is

√
R2 − a2. Hence the curvature of Sa is

1/
√

R2 − a2, and the vector d
dt ċ is directed inside of the circle. The angle that d

dt ċ
forms with the tangent plane to the sphere is equal to arccos a

R . Consequently, the
geodesic curvature with respect to the region D : z ≤ a, depending on the sign, is
equal to a

R
√

R2−a2 . In particular, for a = 0 we obtain a great circle whose geodesic
curvature is zero, i.e., a geodesic on the sphere.

Problem 3.4.4. Find the geodesic curvature of the intersection of the paraboloid
z = x2 + y2 with the plane z = a2. The sign of geodesic curvature should be
determined with respect to the region 0 ≤ z ≤ a2.

3.4.4 Geodesics and Parallel Translation

Parallel translation along geodesics on a surface has an especially simple realiza-
tion. Indeed, the tangent vector to a geodesic stays tangent during parallel trans-
lation along it, and parallel translation of vectors keeps their scalar product. Thus
for drawing a field of parallel vectors along a geodesic it is sufficient to build a
vector of constant length at each point that forms a constant angle with the tangent
vector to the curve.
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Example 3.4.4. Consider again a two-dimensional sphere in R3. Construct two
meridians orthogonal to each other from the north pole O of the sphere. Denote
by A1 and A2 their intersections with the equator. Consider a closed piecewise
smooth curve γ composed of geodesic arcs σ1 = O A1, σ2 = A1 A2, and σ3 =
A2 O . Let �λ be a unit vector tangent to σ1 at the point O . Find the vector �λ1

obtained from �λ by parallel translation along σ1. Since σ1 is a geodesic arc, then
�λ1 is a vector of the same length and again tangent to σ1, but just at the point
A1. Furthermore, �λ1 is orthogonal to σ2. Consequently, �λ2 obtained from �λ1 by a
parallel translation along σ2 is again a vector orthogonal to σ2, but just at the point
A2. Further, �λ1 is tangent to σ3, but σ3 is a geodesic, thus a vector �λ3 obtained from
�λ2 by parallel translation along σ3 is also tangent to σ3, but at O . Finally, we see
that �λ turns through the angle π/2 under parallel translation along γ .

Figure 3.2. Parallel translation along geodesics on a sphere.

3.5 Shortest Paths and Geodesics

3.5.1 Metric on a Surface and the Shortest Paths

Recall the definition of the distance between two points on a surface �. Let P
and Q be two points on �. Denote by LP Q the set of all curves on the surface �

with endpoints at P and Q. The distance ρ�(P, Q) between the points P and Q
is defined by the formula

ρ�(P, Q) = inf
c∈LP Q

l(c). (3.22)

It is not difficult to show that on a connected differentiable surface � the distance
is well-defined for any pair of points. To prove this, it is sufficient to show that
any two points on such a surface can be joined by a curve of finite length. The
function ρ� ≥ 0 has all the usual properties of a metric (see Section 2.3.2):
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(1) ρ�(P, Q) = ρ�(Q, P),

(2) ρ�(P, Q) + ρ�(Q, R) ≥ ρ�(P, R),

(3) ρ�(P, Q) = 0 ⇐⇒ P = Q.

(3.23)

Further, in the cases in which it would not lead to a contradiction, the distance
ρ�(P, Q) between the points P and Q is denoted by P Q.

Definition 3.5.1. The shortest path joining two points P and Q is a curve, whose
length is P Q.

3.5.2 Stationary Curves of the Length Functional

Let γ be a twice continuously differentiable curve on � located in some coordi-
nate neighborhood U ; ui = ui (t) (i = 1, 2) its equations, t a canonical parame-
ter, a ≤ t ≤ b. Find necessary conditions for γ to be a shortest path. Consider the
curve γε(t) given by the equations{

u1 = u1(t) + εη1(t) = ũ1(t, ε),

u2 = u2(t) + εη2(t) = ũ2(t, ε),
(3.24)

and require that the curve γε(t) have the same endpoints as a curve γ (t). For this
it is sufficient to assume that the following equations hold:

ηi (a) = ηi (b) = 0 (i = 1, 2). (3.25)

From (3.24) it follows that γ0 = γ . If we now fix the functions η1 and η2, then
l(ε) = l(γε), and the length of γε is a function of ε only. Thus for γ to be a
shortest path, it is necessary that it satisfy⎧⎪⎨⎪⎩

dl

dε

∣∣∣
ε=0

= 0

l(ε) =
∫ b

a
F(ũi , ũi ′) dt,

(3.26)

where

ũi ′ = dũi

dt
, F(ũi , ũi ′) =

√
gi j (ũi )ũi ′ũ j ′,

dl

dε

∣∣∣
ε=0

=
∫ b

a

(
∂ F

∂ ũi
ηi + ∂ F

∂ ũi ′ η
i ′
)

dt = ∂ F

∂ ũi
ηi
∣∣∣b
a
−
∫ b

a

(
∂ F

∂ ũi
− d

dt

∂ F

∂ ũi ′

)
ηi dt.

The nonintegral term is zero in view of the conditions (3.25). Thus from (3.26)
we obtain ∫ b

a

(
∂ F

∂ui
− d

dt

∂ F

∂ui ′

)
ηi dt = 0. (3.27)
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Recall now that η1(t) and η1(t) are arbitrary functions satisfying the conditions
(3.25) only. Set

f 1 = ∂ F

∂u1
− d

dt

∂ F

∂u1′ , f 2 = ∂ F

∂u2
− d

dt

∂ F

∂u2′ ,

and assume that

η1 = f 1 sin2 π(t − a)

b − a
, η2 = f 2 sin2 π(t − a)

b − a
.

Substituting η1(t) and η2(t) into (3.27), we obtain∫ b

a

[
( f 1)2 + ( f 2)2

]
sin2 π(t − a)

b − a
dt = 0,

from which follows f 1 = f 2 = 0, or

d

dt

∂ F

∂ui
− ∂ F

∂ui ′ = 0 (i = 1, 2). (3.28)

The system of equations (3.28) is called an Euler system, and the curves that
are the solutions of this system are called the stationary curves of the length
functional. Writing down the equations (3.28) for the length functional F =√

gi j ui ′u j ′, we have

∂ F

∂ui ′ = gpi u p′√
gi j ui ′u j ′ = 1

C
gpi u

p′,

and because t is a canonical parameter, we have
√

gi j ui ′u j ′ = C . Therefore,

d

dt

(
∂ F

∂ui ′

)
= 1

C

(
∂gpk

∂ui

du p

dt

duk

dt
+ gpi

d2u p

dt2

)
.

Moreover,

∂ F

∂ui
= 1

2
√

gi j ui ′u j ′

(
∂gpk

∂ui

du p

dt

duk

dt

)
= 1

2C

(
∂gpk

∂ui

du p

dt

duk

dt

)
.

Substituting the expressions for ∂ F
∂ui and d

dt

(
∂ F
∂ui ′

)
in (3.28), we obtain

gip
d2u p

dt2
+ ∂gpi

∂uk

duk

dt

du p

dt
− 1

2

∂gpk

∂ui

du p

dt

duk

dt
= 0. (3.29)

Note that
∂gpi

∂uk

duk

dt

du p

dt
= 1

2

(
∂gpi

∂uk
+ ∂gki

∂u p

)
du p

dt

duk

dt
.

Therefore, (3.29) can be rewritten in the following form:
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gip
d2u p

dt2
+ 1

2

(
∂gpi

∂uk
+ ∂gki

∂u p
− ∂gpk

∂ui

)
du p

dt

duk

dt
= 0 (i = 1, 2),

or, using expressions for Christoffel symbols of the first kind,

gip
d2u p

dt2
+ �pk,i

du p

dt

duk

dt
= 0 (i = 1, 2). (3.30)

Multiply (3.30) by g ji and sum it over i . Then (3.2) gives us in final form,

d2u j

dt2
+ �

j
pk

du p

dt

duk

dt
= 0 ( j = 1, 2). (3.31)

Thus, we see that stationary curves of the length functional coincide with geodes-
ics, as they were defined in Section 3.4.

It is necessary to note that from this result it does not follow that any geodesic is
a shortest path, because only necessary conditions for the minimum of the length
functional were found. Moreover, it is easy to give an example when an arc of a
geodesic is not a shortest path. For this, it is sufficient to take an arc of a great cir-
cle on a sphere whose length is greater than the semiperimeter of the whole circle.
Also it does not follow from our result that a shortest path is a geodesic, because
we have assumed in our deducing of equations (3.31) that a shortest path γ is
twice continuously differentiable curve, which does not follow from the above
text.

3.5.3 Geodesics as Shortest Paths

Here we prove that sufficiently small arcs of geodesics are shortest paths. Hence
the curves realizing the distance between their endpoints, i.e., the shortest paths,
are sometimes called segments or minimal geodesics.

Let P be a point on � and let WP be a neighborhood in which any two
points can be joined by a unique geodesic with length not greater than εP (see
Lemma 3.4.3). Suppose that two length-parameterized curves γ1(s) and γ2(s) are
given in the neighborhood WP . Join the points γ1(s) and γ2(s) by the geodesic
γ (s, t) = γ (γ1(s), γ2(s), t), where t is a canonical parameter, counting from
the point γ1(s). Denote by α(s) the angle between γ̇ 1 and −γ̇ at the point
γ1(s), and by β(s) the angle between γ̇ 2 and γ̇ at a point γ2(s). The function
l(s) = l(γ (s, t)) is differentiable with respect to s, in view of the remark to
Lemma 3.4.3.

Lemma 3.5.1 (The derivative of the length of a family of geodesics).

dl

ds
= cos α(s) + cos β(s). (3.32)

Proof. Let the equations of the curves γ1(s) and γ2(s) be presented by the func-
tions f i

k (s); let ui = f i
k (s) (k = 1, 2), and let the equations of geodesics γ (s, t)

be the functions ϕi (s, t). Then the functions ϕi (s, t) satisfy the conditions
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Figure 3.3. Derivative of the length of a family of geodesics.

ϕi (s, 0) = f i
1 (s), ϕi (s, 1) = f i

2 (s) (i = 1, 2), (3.33)

cos α(s) = −gi j
d f i

1
ds · dϕ j

dt (s, 0)√
gi j

dϕi

dt (s, 0) · dϕ j

dt (s, 0)

,

cos β(s) = −gi j
d f i

2
ds · dϕ j

dt (s, 1)√
gi j

dϕi

dt (s, 1) · dϕ j

dt (s, 1)

.

(3.34)

Set F = √
gi j ϕ̇i ϕ̇ j and obtain

dl

ds
=
∫ 1

0

(
∂ F

∂ϕ̇i
· ∂2ϕi

∂s∂t
+ ∂ F

∂ϕi
· ∂ϕi

∂s

)
dt

= ∂ F

∂ϕ̇i
· ∂ϕi

∂s

∣∣∣1
0
+
∫ 1

0

(
∂ F

∂ϕi
− d

dt

∂ F

∂ϕ̇i

)
dt.

The subintegral expression in parentheses is zero, because all the curves γ (s, t)
are geodesics. Thus

dl

ds
= ∂ϕi

∂s
(s, 1) · ∂ F

∂ϕ̇i

∣∣∣
t=1

− ∂ϕi

∂s
(s, 0) · ∂ F

∂ϕ̇i

∣∣∣
t=0

,

and since ∂ F
∂ϕ̇i = gi j ϕ̇

i√
gi j ϕ̇i ϕ̇ j

, then from (3.33) and (3.34) we obtain (3.32). �

Remark 3.5.1. If one of the curves, say γ1, degenerates to a point, then dl
ds =

cos β(s).

We now prove an important lemma.

Lemma 3.5.2. For each point P there is a neighborhood such that any two points
from this neighborhood can be joined by a unique shortest path, and this shortest
path is a geodesic.

Proof. Let WP be a neighborhood defined in Lemma 3.4.3. Choose a neighbor-
hood ṼP of the point P such that for any two points Q1 and Q2 from this neigh-
borhood an arc γ (Q1, Q2) of a geodesic connecting them lies in WP .
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(α). Prove that l0 = l(γ (Q1, Q2)), the length of the geodesic γ (Q1, Q2), is
not greater than the length s0 of any other curve c(s) connecting the same points
Q1 and Q2 and located in WP ; and s0 = l0 if and only if c(s) ≡ γ . Here s is
the arc length of c(s) counting from Q1. Join Q1 with a point c(s) by a geodesic
σ(s). Denote by l(s) the length of σ(s) and apply to this function the remark of
Lemma 3.5.1. Then dl

ds = cos β(s), where β(s) is the angle between σ(s, t) and
ċ(s) at a point of their intersection. From this follows

l0 =
∫ s0

0

dl

ds
ds =

∫ s0

0
cos β(s)ds ≤

∫ s0

0
ds = s0 = l(c(s)).

The statement (α) is completely proved.
Further, take a disk K1 in a plane T �P with center at a point P and with

radius ε1 so small that V 1
P = expP(K1) ⊂ ṼP holds. Consider, finally, a circular

neighborhood V 2
P of radius 1

4ε1. Prove that a neighborhood V 2
P can be taken in

a part of a neighborhood VP . Indeed, let Q1 and Q2 be arbitrary points in VP

and γ (Q1, Q2) a geodesic joining them. Prove that γ (Q1, Q2) is a shortest path.
Let c(t) be an arbitrary curve on � with endpoints Q1 and Q2. If this curve

Figure 3.4. Any two points from a neighborhood can be joined by a unique shortest path.

lies entirely in WP and does not coincide with γ (Q1, Q2), then its length l(c) is
greater than the length of γ (Q1, Q2) by the statement (α) just proven.

Therefore, assume that c(t) does not lie entirely in WP . Then it does not lie
entirely in the neighborhood V 1

P . Denote by R1 (R2) the first point of intersection
of c(t) with the boundary of V 1

P counting from Q1 (from Q2). The length of the
radius P R1 is equal to ε1, the length of the radius P Q1 is not greater than 1

4ε1, and
the length of the curve composed from the radius P Q1 and the arc Q1 R1 of the
curve c(t), by statement (α), is not smaller than the length of P R1. Consequently,
the length Q R1 of the curve c(t) is not smaller than ε1 − ε1

4 = 3
4ε1. Analogously,

the length of the arc R2 Q2 of the curve c(t) is not smaller than 3
4ε1. Hence the

length of the whole curve c(t) in the case under discussion is not smaller than
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3
2ε1. On the other hand, the length of the geodesic γ (Q1, Q2), again in view of
statement (α), is not greater than the sum of the lengths of radii P Q1 and P Q2,
which is equal to 1

2ε1. Comparing these two results, we obtain the statement of
the lemma. �

A neighborhood where the statements of Lemma 3.5.2 hold is called canonical.

Problem 3.5.1. Prove that the neighborhoods mentioned in Example 3.4.2 and
Problem 3.4.3 are canonical neighborhoods.

From Lemma 3.5.2 we can deduce some important theorems.

Theorem 3.5.1. For each inner point P on a geodesic γ there is an arc Q R such
that P ∈ Q R and the arc Q R is a shortest path.

Proof. Let VP be a canonical neighborhood of a point P . Since P is an inner point
of γ , then there exist two points Q and R on the geodesic such that P belongs to
the arc Q R and both points lie inside of VP . Then by Lemma 3.5.2, the arc Q R is
a shortest path. �

The statement of Theorem 3.5.1 can also be reformulated in the following form:
any sufficiently small arc of a geodesic is a shortest path.

Indeed, sufficiently large arcs of geodesics can also be shortest paths. For ex-
ample, any arc of a geodesic with length not greater than π R on a sphere of radius
R and on a circular cylinder of radius R is a shortest path.

The following theorem about convex surfaces was formulated by A.D. Alek-
sandrov and proved by A.V. Pogorelov [Pog].

Theorem 3.5.2. On a convex surface whose Gaussian curvature is not greater
than k0, any arc of a geodesic of length not greater than π/

√
k0 is a shortest path.

Theorem 3.5.3. Any shortest path is a geodesic.

Proof. Let VP be a canonical neighborhood of an arbitrary point P located on
some shortest path γ . Take two arbitrary points Q1 ∈ γ and Q2 ∈ γ in VP and
join them by a geodesic γ (Q1, Q2). By Lemma 3.5.2, this geodesic is the unique
shortest path joining Q1 and Q2. Consequently, γ (Q1, Q2) ⊂ γ . Since Q1, Q2

were chosen arbitrarily, then our theorem is completely proved. �
Theorem 3.5.4. For each compact set F there is a real d > 0 such that any two
points from F whose mutual distance is smaller than d, can be joined by a unique
shortest path.13

Proof. Let {VP} be a system of canonical neighborhoods that are constructed for
all P ∈ F . This system covers the whole of F . Since F is a compact set, one
can select a finite cover V1 = VP1 , . . . , Vn = VPn . Consider a real d (Lebesgue
number) so small that any two points whose mutual distance is smaller than d
belong to one of the above neighborhoods {Vi }1≤i≤n . Then the statement of the
theorem follows from Lemma 3.5.2. �

13 d is an elementary length of the compact set F .
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Theorem 3.5.5. If two different shortest paths γ1 and γ2 have two common points
P1 and P2, then these points are the ends of γ1, and so of γ2.

Proof. Assume the contrary. Let, for instance, P2 be an inner point of γ2. Denote

by P1 P2 the arc of a shortest path γ1, and by P1 P2 the arc of a shortest path γ2.
Take a point Q1 ∈ P1 P2, Q1 �= P2, in a canonical neighborhood VP2 of P2 and a

point Q2 �= P2, Q2 ∈ γ2, Q2 /∈ P1 P2. By the triangle inequality we have

Q1 Q2 ≤ Q1 P2 + P2 Q2. (3.35)

But by Lemma 3.5.2, the equality in (3.35) is possible if and only if the arc Q1 P2

lies on γ2, and from this it would follow by Theorem 3.5.3 that the shortest paths
γ1 and γ2 coincide. Hence

Q1 Q2 < Q1 P2 + P2 Q2. (3.36)

Now consider a shortest path P1 Q2, an arc of a shortest path γ2. From the defini-
tion of shortest path and (3.36) it follows that

Q1 Q2 = P1 P2 + P2 Q2 = l(P1 P2) + P2 Q2

= P1 Q1 + Q1 P2 + P2 Q2 > P1 Q1 + Q1 Q2,

which contradicts the triangle inequality. �

3.5.4 Complete Surfaces

Definition 3.5.2. A surface � is geodesically complete if each its geodesic seg-
ments can be extended limitlessly.

Theorem 3.5.6 (Hopf–Rinow). If a surface � is geodesically complete, then any
two of its points can be joined by a shortest path.

Proof (see [Miln] ). Let P and Q be points on �, P �= Q, P Q = a. Take a circle
�δ in a canonical neighborhood VP of a point P with radius δ. Since the set �δ

is compact, there is a point Pδ on �δ for which Pδ Q is equal to the distance from
Q to the set �δ . Draw a geodesic γ (t) through the points P and Q, where t is
an arc length parameter counting from P . Prove that γ (a) = Q and that an arc
of γ (t) for 0 ≤ t ≤ a is a shortest path joining P and Q. Since any curve with
endpoints P and Q intersects �δ , then by definition of the distance and in view of
Lemma 3.5.2, the following equality is true:

δ + Pδ Q = P Q = a. (3.37)

Let F be the set of real t ∈ (0, a] satisfying the equality

t + γ (t)Q = P Q. (3.38)
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The set F is nonempty, as is seen from (3.37); it is closed in view of continuity
of metrical function ρ�; and it is connected in view of the triangle inequality.
Suppose that t0 = supt∈F t . If t0 = a, then the theorem is proved.

Thus we suppose that t0 < a, and this will lead to a contradiction. Take a circle
�1 of radius δ1 in a canonical neighborhood Vγ (t0) = V0 of the point γ (t0), and
select δ1 such that δ1 < min(t0, a − t0) holds. Take a point Pδ1 = P1 on �1 such
that

δ1 + P1 Q = γ (t0)Q. (3.39)

The existence of the above point P1 can be proved similarly to how the existence
of Pδ was proved. Now two cases are possible:

(1) P1 ∈ γ, (2) P1 /∈ γ.

In the first case, from (3.38) and (3.39) it follows that t0 + δ1 ∈ F , contrary to
the definition of t0. So, one needs to study only the second case. In this case, by

Figure 3.5. Geodesically complete surface.

Lemma 3.5.2,

γ (t0 − δ)P1 < 2δ, (3.40)

and from (3.38)–(3.40) follows

P Q ≤ Q P1 + P1γ (t0 − δ1) + γ (t0 − δ1)P

< Q P1 + 2δ1 + t0 − δ1 = t0 + δ1 + γ (t0)Q = P Q,

i.e., P Q < P Q. This contradiction implies that t0 = a, and the theorem is
proved. �
Remark 3.5.2. The assumption of geodesic completeness in Theorem 3.5.6 is nec-
essary. Indeed, if we delete at least one point O from the Euclidean plane R2, then
the points P1 and P2, which lie on a same straight line with O , cannot be joined
by a shortest path if O is located between P1 and P2. In addition to the geodesic
completeness of a surface one can also define metrical completeness, i.e., com-
pleteness with respect to the metrical function ρ�(P, Q). It turns out that both
these notions of completeness are equivalent.
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Theorem 3.5.7. A surface � is geodesically complete if and only if it is metrically
complete.

Proof. Assume that � is metrically complete. Then the property of geodesic com-
pleteness follows from well-known theorems of the theory of ordinary differential
equations. Conversely, let � be a geodesically complete surface. Take a bounded
and closed set F on � in the sense of the metric ρ�(P, Q). We prove that F is
compact. Denote by d the diameter of F . Let Q ∈ F . Construct a closed disk K
of radius d in the plane T �Q . Since � is geodesically complete, expQ is defined
on the whole of K . The set expQ K , as the continuous image of a compact set,
is also a compact set. In view of Theorem 3.5.6, the set F belongs to expQ K ;
consequently, it is also compact. �

Note that from Theorems 3.5.6 and 3.5.7 it follows that for any point Q on a
complete surface � the mapping expQ is defined on the whole plane T �Q and
maps it onto all of �.

3.5.5 Convex Regions on a Complete Surface

Consider the form taken by the well-known notion of a convex region in Euclidean
geometry. Let D be some closed region. For simplicity, assume it to be homeo-
morphic to a disk. Define the distance between points P and Q of a region D with
respect to D by the rule

ρD(P, Q) = inf
c∈LP Q(D)

l(c), (3.41)

where LP Q(D) is the set of all curves in D joining P with Q. A curve joining
P and Q whose length is ρD(P, Q) is called a shortest path in the region D.
A region D on a surface � is geodesically convex if any shortest path in D is a
geodesic on �. It turns out that geodesically convex regions, similarly to convex
regions in the Euclidean plane R2, can be characterized locally.

Theorem 3.5.8. A region D is geodesically convex if and only if the geodesic
curvature of its boundary at each point is nonnegative (in the direction of D).

We leave it to reader as an exercise to find a proof of this theorem.

Definition 3.5.3. A region D on a surface is called convex if each shortest path in
D is at the same time a shortest path on �.

Theorem 3.5.9. Find an example of a surface and a region on it that is geodesi-
cally convex, but not convex.

Definition 3.5.4. A region D on a surface � is called totally convex if any shortest
path on � with ends in D lies entirely in D.

Problem 3.5.2. Find an example of a surface and a region on it that is convex but
not totally convex.
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Finally, we shall present the notion of an absolutely convex region on a surface.

Definition 3.5.5. A region D is called absolutely convex if any arc of a geodesic
γ with ends in D lies entirely in D.

Problem 3.5.3. Prove that on a compact surface no absolutely convex region ex-
ists.

Definition 3.5.6. A half-geodesic with initial point at P is called a ray with vertex
P if any of its arcs is a shortest path.

Problem 3.5.4. Prove that on any complete open surface � of class C2 through
any point P ∈ � there passes at least one ray.

Definition 3.5.7. Let r1 be some ray on a complete open surface � of class C2.
We say that a ray r2 with the vertex P is a co-ray for r1 if it is the limit of the
shortest paths P Pn as Pn ∈ r1 tends to infinity.

Problem 3.5.5. Prove that through every point P ∈ � there exists a co-ray for a
given ray r1.

Problem 3.5.6. Let r2 be the co-ray for some ray r1, and Q the inner point on the
ray r2. Prove that through the point Q there is a unique co-ray for the ray r1.

Example 3.5.1. Consider the paraboloid of revolution � : z = x2+y2 in R3. Prove
that each region D(a) ⊂ �, defined by the inequality 0 ≤ z ≤ a, is an absolutely
convex region. A paraboloid � divides R3 into two regions, one of which, namely
the one containing the positive axis O Z , is a convex region. Denote this region
by B. Let �n(P) be a normal to � at the point P . Assume that it is directed inside
of B. Then �n(P) forms an acute angle with the positive axis O Z .

Take an arc of an arbitrary geodesic, γ (t) (a ≤ t ≤ b), on �. We study the
behavior of a function z on the arc γ (t). It turns out that a maximum of z on γ is
reached only at the endpoints (or at one of the endpoints). Assume the opposite.
Let the function z(t) take its maximum at a point γ (t0). Pass the plane z = z(t0) =
z0 through γ (t0). Then the curve γ (t) in some neighborhood of γ (t0) does not lie
entirely above the plane z = z0. Thus the main normal �ν(t0) to γ at the point
γ (t0) forms an angle not smaller than π/2 with the positive semiaxis O Z , and the
normal �n(γ (t0)) forms an acute angle with the same semiaxis. Hence, the normal
�n(γ (t0)) to � and the main normal �ν(t0) to γ at γ (t0) are not parallel, which
contradicts the definition of a geodesic.

Now we can prove the absolutely convexity of the region D(a) for any a > 0.
Let P ∈ D(a) and Q ∈ D(a). Denote by γ (t) an arc of an arbitrary geodesic
with endpoints P and Q. Assume that γ (t) does not lie entirely in D(a). Then,
since z is not greater than a at P and Q by definition of D(a), the function z
takes its maximal value at some inner point of the arc of the geodesic γ (t), which
contradicts the above statement. Hence, D(a) is an absolutely convex region for
any a > 0.
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3.6 Special Coordinate Systems

3.6.1 Riemannian Normal Coordinate System

Let P be an arbitrary point on the surface �. Consider the rectangular coordinate
system u1, u2 in the plane T �P . In view of Lemma 3.4.3, there is δ such that
the disk B(P, δ) with center at P and radius δ is uniquely mapped onto some
neighborhood W of P on � under the exponential map. Let Q1 ∈ B(P, δ) and
Q = expP(

−−→
P Q1). Introduce a coordinate system u1, u2 in W , letting the coordi-

nates of the point Q be equal to the coordinates of the point P . Then P has zero
coordinates, and �r1(0, 0) and �r2(0, 0) are unit and mutually orthogonal vectors.
Thus

g11(0, 0) = g22(0, 0) = 1, g12(0, 0) = 0.

The equations of geodesics on � passing through P will be written in the form
u1 = α1t , u2 = α2t , where t is proportional to an arc length parameter and is
equal to it when (α1)2 + (α1)2 = 1. Substituting these functions in the equations
of geodesics, we obtain

�i
jk(α

1t, α2t)α jαk = 0 (i = 1, 2). (3.42)

Multiplying (3.42) by gip and summing over i , we obtain

� jk,p(α
1t, α2t)α jαk = 0 (p = 1, 2). (3.43)

Let t = 0. Then

� jk,p(0, 0)α jαk = 0 (p = 1, 2). (3.44)

From (3.44), in view of the arbitrariness of the real α1 and α2, we have

�i j,k = 0 (i, j, k = 1, 2). (3.45)

For calculating the second derivatives of the metric tensor components, differen-
tiate (3.43) with respect to t and assume that t = 0. Then

∂� jk,p

∂ui
αiα jαk = 0 (p = 1, 2). (3.46)

Write down (3.46) in detail:

(α1)3 ∂�11,p

∂u1
+ (α1)2α2

(∂�11,p

∂u2
+ ∂�12,p

∂u1

)
+ α1(α2)2

(∂�22,p

∂u1
+ ∂�12,p

∂u2

)
+ (α2)3 ∂�22,p

∂u2
= 0 (p = 1, 2). (3.47)

From (3.47) we obtain eight equations:
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∂�11,p

∂u1
(0, 0) = ∂2g1p

(∂u1)2
− 1

2

∂2g11

∂u1∂u p
= 0 (p = 1, 2), (3.48)

∂�11,p

∂u2
(0, 0) + 2

∂�12,p

∂u1
(0, 0) = ∂2g1p

∂u1∂u2
− 1

2

∂2g11

∂u2∂u p

+ ∂2g1p

∂u1∂u2
+ ∂2g2p

(∂u1)2
− ∂2g12

∂u1∂u p
= 0 (p = 1, 2), (3.49)

∂�22,p

∂u1
(0, 0) + 2

∂�12,p

∂u2
(0, 0) = ∂2g2p

∂u1∂u2
− 1

2

∂2g22

∂u1∂u p

+ ∂2g1p

(∂u2)2
+ ∂2g2p

∂u1∂u2
− ∂2g12

∂u2∂u p
= 0 (p = 1, 2), (3.50)

∂�22,p

∂u2
(0, 0) = ∂2g2p

(∂u2)2
− 1

2

∂2g22

∂u2∂u p
= 0 (p = 1, 2). (3.51)

We add to these equations the expression for the Gaussian curvature K of a surface
� at P . In view of (3.45), we obtain

K = 1

2

(
2

∂2g12

∂u1∂u2
− ∂2g11

(∂u2)2
− ∂2g22

(∂u1)2

)
. (3.52)

Solving the system (3.48)–(3.52), we obtain

∂2g11

(∂u1)2
(0, 0) = ∂2g11

∂u1∂u2
(0, 0) = ∂2g12

(∂u1)2
(0, 0)

= ∂2g22

∂u1∂u2
(0, 0) = ∂2g12

(∂u2)2
(0, 0) = 0,

∂2g11

(∂u2)2
(0, 0) = ∂2g22

(∂u1)2
(0, 0) = −2

3
K (0, 0),

∂2g12

∂u1∂u2
(0, 0) = 1

3
K (0, 0). (3.53)

From (3.53) it follows that

g11 = 1 − 1

3
K (0, 0)(u2)2 + ō((u1)2 + (u2)2),

g12 = 1

3
K (0, 0)u1u2 + ō((u1)2 + (u2)2), (3.54)

g22 = 1 − 1

3
K (0, 0)(u1)2 + ō((u1)2 + (u2)2).

The formulas (3.54) give us the possibility to compare the length of an arbitrary
curve γ1 on a tangent plane T �P with the length of its image γ under the expo-
nential map.

3.6.2 Comparison Theorem for Metrics

Let a curve γ1 lie inside a disk B(P, δ) in a plane T �P , and let γ be its image
under the exponential map. Denote by l1 the length of γ1, and by l the length of γ .
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Theorem 3.6.1. There exists δ1 such that for all δ < δ0 the inequality |l − l1| ≤
Cl1δ

2 holds, where the constant C does not depend on the value of the Gaussian
curvature at a point P.

Proof. Let the equations of the curve γ1 in Cartesian rectangular coordinates on
T �P be presented by the functions f1(t) and f2(t); u1 = f1(t), u2 = f2(t).
Then the equations of the curve γ in Riemannian normal coordinates are given
by the same functions. Let t be the arc length of the curve γ1 counting from its
initial point. Then

[ f ′
1(t)]2 + [ f ′

2(t)]2 = 1. (3.55)

Calculate the length l of the curve γ :

l =
∫ l1

0

√
( f ′

1)
2 + ( f ′

2)
2 + 1

3 K (0, 0)[2 f1 f2 f ′
1 f ′

2 − f 2
1 ( f ′

1)
2 − f 2

2 ( f ′
2)

2] + ō(δ2) dt.

(3.56)

Set

A = 1

3
K (0, 0)(2 f1 f2 f ′

1 f ′
2 − f 2

1 ( f ′
1)

2 − f 2
2 ( f ′

2)
2) + ō(δ2).

Then

|l − l1| =
∫ l1

0
(
√

1 + A − 1) dt =
∫ l1

0

A dt√
1 + A + 1

.

We estimate |A| from above:

|A| ≤ 1

3
|K (0, 0)| · 2[ f 2

1 ( f ′
1)

2 + f 2
2 ( f ′

2)
2] + ō(δ2).

Since | f ′
1| ≤ 1 and | f ′

2| ≤ 1, for a sufficiently small δ we obtain

|A| ≤ 1

3
|K (0, 0)|2δ2 + ō(δ2) ≤ |K (0, 0)|δ2.

We estimate
√

1 + A + 1 from below. In view of the previous inequality, we have√
1 + A + 1 > 3

2 . We thus obtain

|l − l1| ≤ 2

3
|K (0, 0)|δ2

∫ l1

0
dt = 2

3
|K (0, 0)|l1δ

2. �

In particular, let γ1 be the circle of radius δ with center at P in the plane T �P ,
and γ the circle of radius δ with center at P on �. Then from Theorem 3.6.1
follows l = 2πδ + ō(δ2), and if γ is an arc of a circle with a central angle α, then

l = αδ + ō(δ2). (3.57)

Corollary 3.6.1. Let A ∈ B(P, δ), B ∈ B(P, δ), Ā = exp−1
P (A), and B̄ =

exp−1
P (B). Then AB = Ā B̄ + ō(δ).

Proof. Let γ = expP( Ā B̄), and γ̄ = exp−1
P (AB). Then, in view of Theo-

rem 3.6.1, we have l = l(γ ) = Ā B̄ + ō(δ), l̄ = l(γ̄ ) = AB + ō(δ). But since
AB ≤ l, Ā B̄ < l̄, then AB ≤ Ā B̄ + ō(δ), Ā B̄ ≤ AB + ō(δ). From the two last
inequalities it follows that AB = Ā B̄ + ō(δ). �
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3.6.3 Geodesic Polar Coordinates on a Surface

Let P be an arbitrary point on a surface �. Introduce a polar coordinate sys-
tem with the center at a point P in the plane T �P . In view of Lemma 3.4.3,
there is δ0 > 0 such that for all δ (0 < δ < δ0) the exponential map expP is
a diffeomorphism of a disk B̃(P, δ) ⊂ T �P onto some neighborhood W ⊂ �.
Introduce coordinates (ρ, ϕ) in W , assuming coordinates of a point Q equal to
the coordinates of its inverse image under the exponential map expP . This coordi-
nate system is called a geodesic polar coordinate system with the origin at P , and
a neighborhood W itself is called a disk, which we denote by the same symbol
B(P, δ). The point P is a singular point of this coordinate system: |�rρ(0, 0)| = 1,
and |�rϕ(0, 0)| = 0. Therefore,

g11(0, 0) = 〈�rρ, �rρ〉 = 1, g22(0, 0) = 〈�rϕ, �rϕ〉 = 0,

g12(0, 0) = 〈�rρ, �rϕ〉 = 0. (3.58)

In view of Lemma 3.5.1 about the derivative of the length of a family of geodesics,
we see that the coordinate curves ρ = const and ϕ = const are orthogonal. Thus

g12(ρ, ϕ) = 0. (3.59)

Set f = √
g22(ρ, ϕ). Then from (3.58) it follows that

f (0, ϕ) = 0. (3.60)

We prove that f ′
ρ(0, ϕ) = 1. Let l(ρ, α) be an arc length parameter of the circle

of radius ρ and center at P and with central angle α on �. Then

l(ρ, α) =
∫ α

0

√
g22(ρ, ϕ) dϕ.

Hence from (3.57) follows the identity∫ α

0

√
g22(ρ, ϕ) dϕ = αρ + ō(ρ).

Differentiating the last equality with respect to ρ and α, assuming then ρ = 0, we
get

d

dρ

(
g22(ρ, ϕ)

)∣∣
ρ=0 = 1,

or

f ′
ρ(0, ϕ) = 1. (3.61)

We now calculate the Gaussian curvature K of the surface �. In view of equalities
(3.58) and (3.59), we obtain

K (ρ, ϕ) = − f ′′
ρρ(ρ, ϕ)/ f (ρ, ϕ). (3.62)
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We rewrite (3.62) in the following form:

f ′′
ρρ(ρ, ϕ) + K (ρ, ϕ) f (ρ, ϕ) = 0, (3.63a)

f (0, ϕ) = 0, f ′
ρ(0, ϕ) = 1. (3.63b)

Equation (3.63a) and initial conditions (3.63b) show us that if K (ρ, ϕ) is a known
function of coordinates (ρ, ϕ), then g22(ρ, ϕ) is uniquely defined and all coeffi-
cients of the metric tensor can be obtained. For instance, let K (ρ, ϕ) = ±a2.

Then g11 = 1, g12 = 0, g22 = 1
a2 sin2(aρ) or g22 = 1

a2 sinh2(aρ) in the case of
K = −a2.

3.6.4 Semigeodesic Coordinate System on a Surface

Take on a surface � a closed arc of a geodesic γ without points of self-intersection.
Introduce on γ an arc length parameterization γ (t) (0 ≤ t ≤ b), counting from
some point. Pass a geodesic σ(t, s) through every point γ (t) orthogonal to γ ,
where s is an arc length parameter on σ(t, s), starting from the point γ (t). Prove
that there is δ0 > 0 such that for |s| < δ0 none of the geodesics σ(t, s) inter-
sect for a sufficiently small extension. First, prove that two sufficiently nearby
geodesics σ(t, s) do not intersect on a sufficiently small extension.

Take some point γ (t), and let any coordinates u1, u2 be defined in its neighbor-
hood. Let γ (t) have the equations ui = ui (t) (i = 1, 2), and let σ(t, s) have the
equations ui = hi (t, s). Then

hi (t, s) = ui (t) (i = 1, 2). (3.64)

Prove that the determinant � =
∣∣∣ ∂h1

∂t
∂h2

∂t
∂h1

∂s
∂h2

∂s

∣∣∣ is nonzero for s = 0. Set λi = ∂hi

∂t

∣∣
s=0

and µi = ∂hi

∂s

∣∣
s=0. Then λi are coordinates of a unit vector �λ that is tangent to

γ (t) at the point γ (t), and µi are coordinates of a unit vector �µ that is tangent
to the geodesic σ(t, s) at the point σ(t, 0) = γ (t). Since �λ and �µ are mutually
orthogonal vectors by their construction, then � �= 0. From this and the implicit
function theorem it follows that for each t1 there exist real numbers δ(t1) and ε(t1)
such that for t1 − ε(t1) < t < t1 + ε(t1) the arcs of the geodesics σ(t, s) do not
intersect. Moreover, all points σ(t, s) for t1 − ε(t1) < t < t1 + ε(t1), |s| < δ(t1)
form a region on �. Since the closed arc γ is compact, there exist real numbers δ1

and ε1 such that the arcs of geodesics σ(t1, s) and σ(t2, s) do not intersect when
|s| < δ1 and |t2 − t1| < ε1.

Now let δ2 = min{ρ(γ (t), γ (t + t ′)) : t, t ′ ∈ [a, b], t ′ ≥ ε′}. Define δ0 =
1
2 min{δ1, δ2}. It is not difficult to check that δ0 is the required real number. Con-
sider the region on the surface � consisting of the points σ(t, s) for a ≤ t ≤ b.
Introduce coordinates in this region, assuming u1 = s, u2 = t . The obtained
coordinates are called semigeodesic coordinates.

Remark 3.6.1. In the construction of semigeodesic coordinates one can, generally
speaking, take an arbitrary regular curve instead of a geodesic γ .
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Figure 3.6. Semigeodesic coordinates on a surface.

We now study the structure of the coefficients of the first fundamental form
of a surface in a semigeodesic coordinate system. The coordinate curves u1 =
const and u2 = const intersect in a right angle. This statement follows from the
construction of the coordinate system and from Lemma 3.5.1 about the derivative
of the length of a family of geodesics. Therefore,

g21(u
1, u2) = 0. (3.65)

Furthermore, since u1 is the length of the curve u2 = const, then

g11(u
1, u2) = 1. (3.66)

Thus,

ds2 = (du1)2 + g22(u
1, u2)(du2)2. (3.67)

Assuming f (u1, u2) = √
g22, we obtain, as in Section 3.6.3

∂2 f

(∂u1)2
+ K (u1, u2) f (u1, u2) = 0. (3.68)

However, the initial conditions are different. Since for u1 = 0, u2 is the length of
γ , then √

g22(0, u2) = f (0, u2) = 1. (3.69)

Finally, u1 = 0, u2 = t is a geodesic; consequently,

�1
22(0, u2) = �2

22(0, u2) = 0. (3.70)

Using the expressions of Christoffel symbols of the first kind, we obtain

− f (0, u2)
∂ f

∂u1
(0, u2) = 0,

and from this follows
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∂ f

∂u1
(0, u2) = 0. (3.71)

So the function f (u1, u2) satisfies (3.68) with the initial conditions (3.69) and
(3.71). We calculate Christoffel symbols of the second kind for a semigeodesic
coordinate system. We have

g22 = G(u1, u2) = f 2(u1, u2), g12 = g21 = 0, g11 = 1.

Thus

�1
11 = �2

11 = �1
12 = �1

21 = 0, �1
22 = �22,1 = −1

2
Gu1 = − f fu1 ,

�2
21 = �2

12 = 2

f 2
f fu1 = fu1

f
, �2

22 = 1

f 2
�22,2 = fu2

f
.

(3.72)

Furthermore, we obtain a formula for the geodesic curvature kg of an arbitrary
curve c. Let u1 = u1(t), u2 = u2(t) be the equations of c, and t an arc length
parameter on c, counting from some point. Then we have the equalities

|ċ(t)| = 1,
〈
ċ(t),

D

dt
ċ(t)

〉
= 0. (3.73)

If we denote by µ1 and µ2 the coordinates of the vector D
dt ċ(t) in a local basis,

then the system (3.73) in semigeodesic coordinates is written in the following
form: (du1

dt

)2 + G
(du2

dt

)2 = 1, (3.74)

µ1 du1

dt
+ Gµ2 du2

dt
= 0. (3.75)

Lemma 3.6.1. The geodesic curvature kg of a curve c is expressed by the formula

kg = √
G

∣∣∣∣µ1 du2

dt
− µ2 du1

dt

∣∣∣∣ . (3.76)

Proof. Raise the right-hand side to the second power. In view of (3.74), (3.75),
and (3.21) we obtain

G

[(
µ1 du2

dt

)2 +
(
µ2 du1

dt

)2 − 2µ1µ2 du1

dt

du2

dt

]
= G

[(
µ1 du2

dt

)2 +
(
µ2 du1

dt

)2

− µ1

G

du1

dt

(
− µ1 du1

dt

)
− µ2 du2

dt

(
− Gµ2 du2

dt

)]
= G

[
(µ1)2

G

(
G
(du2

dt

)2 +
(du1

dt

)2
)

+ (µ2)2

((du1

dt

)2 + G
(du2

dt

)2
)]

= (µ1)2 + G(µ2)2 =
∣∣∣ D

dt
ċ(t)

∣∣∣2 = k2
g. �
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Now substitute the expressions for u1 and u2, see (3.8), in (3.76). Then the
geodesic curvature is

kg =
∣∣∣∣ f

[
du2

dt

d2u1

dt2
− f fu1

(du2

dt

)2
]

− f
du1

dt

[
d2u2

dt2
+ 2

fu1

f

du1

dt

du2

dt
+ fu2

f

(du2

dt

)2
]∣∣∣∣ .

Simplifying the sums of the above terms yields

− f 2 fu1

(
du2

dt

)3

− fu1

(
du1

dt

)2
du2

dt

= −du2

dt
fu1

[
f 2

(
du2

dt

)2

+
(

du1

dt

)2
]

= − fu1
du2

dt
.

Consequently,

kg =
∣∣∣∣ f
(d2u1

dt2

du2

dt
− d2u2

dt2

du1

dt

)
− fu1

((du1

dt

)2 + 1

)
du2

dt
− fu2

(du2

dt

)2 du1

dt

∣∣∣∣ . (3.77)

3.7 Gauss–Bonnet Theorem and Comparison Theorem
for the Angles of a Triangle

Consider a region W on a complete surface � that is homeomorphic to a disk and
that lies in some coordinate neighborhood U with coordinates (u1, u2). Introduce
an orientation in W , induced by coordinates (u1, u2); i.e., define a basis �r1 = �ru1 ,
�r2 = �ru2 at each point of W . Assume that the boundary of W is a curve c of
class C2. Take a field of normals �a along c, directed inside of W . Introduce a
parameterization on c such that the ordered pair of vectors {�a, ċ(t)} forms a basis
equivalent to the basis {�r1, �r2}. Define the sign of the geodesic curvature kg of the
curve c(t) in the following way.

If the basis
{

D
dt ċ(t), ċ(t)

}
is equivalent to the basis {�a, ċ(t)}, then suppose kg >

0, and kg < 0 for the opposite case. If µ1, µ2 are the components of D
dt ċ(t) in this

basis {�r1, �r2}, and (c1, c2) are the components of ċ(t) in the same basis, then the

signs of the curvature kg and the determinant
∣∣∣ µ1 µ2

c1 c2

∣∣∣ = µ1c2 −µ2c1 coincide. So,

sign kg = sign(µ1c2 − µ2c1). (3.78)

From the geometrical point of view, the definition of sign kg is equivalent to the
condition that if kg is positive at each point on c(t), then W is a geodesically
convex region.
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We move now to the formulation of the Gauss–Bonnet theorem. Let the bound-
ary of a region W be a piecewise smooth curve with a finite number of angular
points A1, . . . , An joined in consecutive order by regular curves c1, . . . , cn of
class C2. Denote by αi an interior angle from the side of the region W at the
vertex Ai (i = 1, . . . , n). Then the following theorem holds.

Theorem 3.7.1. (Gauss–Bonnet.) The following equality is satisfied:

n∑
i=1

∫
ci

kg dt +
n∑

i=1

(π − αi ) +
∫∫

W
K d S = 2π, (3.79)

where t is an arc length parameter, d S an element of the area on �, and K the
Gaussian curvature.

Figure 3.7. Gauss–Bonnet theorem.

Proof. First consider the case that the boundary ∂W of W does not contain an-
gular points and it is possible to introduce semigeodesic coordinates in the whole
region W . The magnitude kg(t), in view of the definition of the sign of kg in
(3.78), the equality

√
G = f , and (3.77), can be written in the following form:

kg dt = −d
(

arctan
√

G
(u2)′

(u1)′
)

− (u2)′(
√

G)u1 dt.

Thus ∫
c

kg dt = −
∫

c
d
(

arctan
√

G
(u2)′

(u1)′
)

−
∫

c
(
√

G)u1 du2.

Since arctan is a multivalued function, its values corresponding to the same value
of an argument differ by a multiple of π . Hence

−
∫

c
d
(

arctan
√

G
(u2)′

(u1)′
)

= πm, (3.80)

where m is some integer. The second term
∫

c(
√

G)u1 du2, by Green’s formula and
(3.63a), is transformed to the following form:
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c
(
√

G)u1 du2 =
∫∫

W
(
√

G)u1u1 du1du2

=
∫∫

W

(
√

G)u1u1√
G

√
Gdu1du2 = −

∫∫
W

K d S.

So we obtain ∫
c

kg dt = mπ −
∫∫

W
K d S.

It remains now only to derive the value of m. If the function f (u1u2) were iden-
tically 1, then the magnitude mπ would be equal to the angle of rotation of the
tangent to the curve c(t) vector while moving around this curve. Obviously, this
angle is 2π , i.e., the value of m is then equal to 2. Consider the integral∫

γ

−d
(

arctan
a(u1u2)(u2)′

(u1)′
)
.

This integral continuously depends on a(u1u2) and is equal to 2π when a(u1u2)

= 1. Consequently, this integral is 2π for any function a(u1u2) satisfying the
positivity condition, in particular, for a = f . We thus obtain that

∫
c kg dt

+ ∫∫
W K d S = 2π. The Gauss–Bonnet theorem for this case is proved.

Now consider the case that ∂W = c(t) contains angular points. At each angular
point Ai the tangent vector c(t) turns through the angle (π −αi ) (see Section 3.4).
Hence in this case, instead of the integral

∫
c kg dt , we must write

n∑
i=1

∫
ci

kg dt +
n∑

i=1

(π − αi ),

and again we obtain the Gauss–Bonnet formula (3.79).
Finally, we need not assume the existence of a global semigeodesic coordinate

system on W : Consider the particular case that W can be divided into two regions
W1 and W2 for which the Gauss–Bonnet formula holds. Assume for simplicity
that the boundary of W is a regular curve c(t) of class C2, but a curve γ1 dividing
W onto W1 and W2, is also a regular curve of class C2. Denote by A and B
the endpoints of the curve γ1, and by α1, α2 and β1, β2 the interior angles of the
regions W1 and W2 at the points A and B, respectively, and by c1 and c2 the arcs
of the curve c. Then by our assumption, we have∫

c1

kg dt +
∫

γ1

k1
g dt + π − α1 + π − α2 +

∫∫
W1

K d S = 2π,∫
c2

kg dt +
∫

γ1

k2
g dt + π − β1 + π − β2 +

∫∫
W2

K d S = 2π.

Here k1
g is the geodesic curvature of the curve γ1 whose sign is determined by W1,

and k2
g is the geodesic curvature of the same curve γ1 whose sign is defined by
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W2. Obviously, k1
g + k2

g = 0. Taking the sum of left and right terms of the two last
two equalities, we obtain∫

c1

kg dt +
∫

c2

kg dt +4π −(α1 +α2 +β1 +β2)+
∫∫

W1

K d S+
∫∫

W2

K d S = 4π.

Since α1 + α2 + β1 + β2 = 2π , we have
∫

c kg dt + ∫∫
W K d S = 2π . �

In the general case, the proof of the Gauss–Bonnet theorem can be obtained by
induction on the number of regions dividing W .

We now deduce some corollaries of the Gauss–Bonnet theorem.

Corollary 3.7.1. Take on a surface � a triangle �, composed of geodesics, and
assume that a region D bounded by � is homeomorphic to a disk. Denote by α1,
α2, and α3 the interior angles of the triangle. Apply the Gauss–Bonnet formula
to D: ∫∫

D
K d S + (π − α1) + (π − α2) + (π − α3) = 2π,

or

α1 + α2 + α3 = π +
∫∫

D
K d S. (3.81)

If K ≡ 0, then we obtain a well-known theorem from elementary geometry. For
K > 0 we see that the sum of angles of the triangle is greater than π , and for
K < 0 the sum is smaller than π .

Corollary 3.7.2. If a surface � is homeomorphic to a sphere, then its integral
curvature is 4π .

Proof. Transfer a closed smooth curve γ onto �, dividing it into two regions
D1 and D2, each of them is homeomorphic to a disk. Apply the Gauss–Bonnet
formula to D1 and D2:∫∫

D1

K d S +
∫

γ

k1
g dt = 2π,

∫∫
D2

K d S +
∫

γ

k2
g dt = 2π. (3.82)

Here we denote by k1
g the geodesic curvature of the curve γ whose sign is deter-

mined with respect to the region D1, and by k2
g the geodesic curvature of the same

curve γ , but with the sign of k2
g determined with respect to D2. Therefore,

k1
g + k2

g = 0. (3.83)

Summing the two formulas of (3.82), in view of (3.83), we obtain∫∫
D1

K d S +
∫∫

D2

K d S =
∫∫

�

K d S = 4π. �
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Problem 3.7.1. Prove that the integral curvature of any surface homeomorphic to
a torus is 0.

Remark 3.7.1. The total Gaussian curvature of a compact surface � is∫∫
�

K d S = 2πχ(�),

where χ(�) is the Euler characteristic (see Remark 2.7.1).

Problem 3.7.2 (Sine theorem for small triangles). Let �ABC be a triangle on
the regular surface of class C2, and AC = δ. Then

BC = sin α · δ/sin(α + γ ) + ō(δ), AB = sin γ · δ/sin(α + γ ) + ō(δ),

where α and γ are the angles of �ABC at the vertices A and C , respectively.

Solution. Introduce on AC the arc length parameterization c(s), counting from
the point A, 0 ≤ s ≤ δ. Bring a geodesic σ(s) through the point c(s) forming an
angle γ with AC , and denote by B(s) the point of intersection of σ(s) with AB.
Let t (s) = AB(s), l(s) = A(s)B(s) and denote by β(s) the angle of �ABC at
the vertex B(s). Then, in view of Lemma 3.5.1, we have

dl

ds
= cos γ + cos β(s)

dt

ds
.

From Corollary 3.7.1 and the Gauss–Bonnet theorem follows β(s) = π − α −
γ + ō(s). Therefore,

dl

ds
= cos γ − cos(α + γ )

dt

ds
+ ō(s).

Integrating the last equality with respect to s from 0 to δ, we obtain

l(δ) = BC = cos γ · δ − cos(α + γ )AB + ō(δ).

Analogously, we obtain

AB = cos α · δ − cos(α + γ )BC + ō(δ).

So,

BC + cos(α + γ )AB = cos γ · δ + ō(δ),

BC cos(α + γ ) + AB = cos α · δ + ō(δ).

From these equalities follows

AB = cos α − cos γ cos(α + γ )

sin2(α + γ )
δ + ō(δ) = sin γ · δ

sin(α + γ )
+ ō(δ),

BC = cos γ − cos α cos(α + γ )

sin2(α + γ )
δ + ō(δ) = sin α · δ

sin(α + γ )
+ ō(δ).

Finally, the formula α + β + γ = π + ō(δ) follows from (3.81). �
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Consider a simply connected complete surface of nonpositive Gaussian curva-
ture. Denote such a surface by �−. Recall that a surface � is simply connected if
any simple closed curve divides � into two regions, one of which is homeomor-
phic to a disk.

Theorem 3.7.2. There exists no more than one geodesic through any two points
on a surface �−.

Proof. Assume the contrary. Let two different geodesics γ1 and γ2 pass through
the points P1 and P2. Let Q1 be the first point of intersection of γ1 with γ2 count-
ing from P1. Consider a piecewise smooth curve (a bi-angle) γ , composed of
the arcs γ1, γ2 that join P1 and Q1. Let D be homeomorphic to the disk region
bounded by γ . Apply the Gauss–Bonnet formula to D:∫∫

D
K d S + π − α + π − β = 2π, (3.84)

where α and β are the angles at the vertices P1 and Q1, respectively. From (3.84)
we obtain

α + β =
∫∫

D
K d S ≤ 0,

which is impossible. �

Corollary 3.7.3. There are no closed geodesics on a surface �−.

Some other theorems can be deduced from Theorem 3.7.2.

Theorem 3.7.3. Any two points on �− can be joined by a unique shortest path.

Proof. The existence of a shortest path follows from the completeness of �− (see
Theorem 3.5.6), and the uniqueness follows from Theorem 3.7.2. �

Theorem 3.7.4. Any arc of a geodesic on �− is a shortest path.

Proof. Indeed, if an arc P Q of some geodesic γ is not a shortest path, then joining
its endpoints by a shortest path, we obtain two different geodesics joining two
points, contrary to Theorem 3.7.2. �

3.8 Local Comparison Theorems for Triangles

If a geodesic triangle (i.e., composed of geodesics) lies on a convex surface (i.e.,
on a surface of nonnegative Gaussian curvature), then the sum of its inner angles
is at least π , which follows from (3.80). This property of geodesic triangle can
be determined more exactly in the following sense. Let �ABC be a triangle on
a complete convex surface �, composed of the shortest paths AB, AC , and BC .
The angle of the triangle �ABC at some vertex is the angle between the shortest
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paths starting at this vertex. Thus the angles of any triangle �ABC are not greater
than π .

We introduce standard notation: denote by α, β and γ the angles at the vertices
A, B, and C , respectively. The lengths of the shortest paths AB, BC , and AC will
be denoted by the same symbols. Note that �ABC is not uniquely defined by its
vertices. Take on the plane R2 a triangle �A′ B ′C ′ whose sides are A′ B ′ = AB,

Figure 3.8. A small (geodesic) triangle on a surface.

A′C ′ = AC , B ′C ′ = BC . The triangle �A′ B ′C ′ is called a comparison triangle
for �ABC , and its angles are denoted by α′, β ′, and γ ′. Then it turns out that
each angle of �ABC is not smaller than the corresponding angle of �A′ B ′C ′.

In this section we prove the last statement for “small” triangles. We first prove

Figure 3.9. Comparison triangle on a plane for a small triangle on a convex surface.

an auxiliary comparison lemma on solutions y(x) and z(x) of the differential
equations

y′′ + k1(x)y = 0, z′′ + k2(x)z = 0 (3.85)

with initial conditions

y(0) = z(0) = 0, y′(0) = z′(0) = 1. (3.86)

Lemma 3.8.1. If k1(x) ≥ k2(x) and y(x) > 0 for x ∈ (0, x0), then z(x)/y(x) ≥
1 is an increasing function on the interval (0, x0).

Remark 3.8.1. For the multidimensional case, the statement analogous to Lemma
3.8.1 is called Rauch’s comparison theorem; see [Kl3].
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Proof. Multiply (3.85:a) by z(x), and (3.85:b) by y(x), and then take their differ-
ence. We obtain

y′′z − z′′y + (k1 − k2)yz = 0. (3.87)

Integrating (3.87) from 0 to x , we obtain

y′(x)z(x) − z′(x)y(x) =
∫ x

0
(k2 − k1)yzdx .

Divide the last equality by zy and then integrate from 0 to x . We have

log
y

z
=
∫ x

0

[
1

yz

∫ x

0
(k2 − k1)yzdx

]
dx = −h(x). (3.88)

From (3.88) follows y(x)

z(x)
= exp(h(x)). The function h(x), in view of the condi-

tions of the lemma, is increasing, and h(x) > 0 for x > 0. �

From Lemma 3.8.1 some corollaries follow by a natural way.

Corollary 3.8.1. The inequality y(x) ≤ z(x) is satisfied for x ∈ (0, x0].
Corollary 3.8.2. If x1 ∈ (0, x0] and y(x1) = z(x1), then k1(x) = k2(x), y(x) =
z(x) for x ∈ (0, x1].
Corollary 3.8.3. If z(x0) = 1, then y(x) = z(x) and k1(x) = k2(x) for x ∈
(0, x0].

Now we give the definition of a “small ” triangle.

Definition 3.8.1. The real number ri (P) is called the injectivity radius of a com-
plete surface � at a point P if any arc of a geodesic with initial point P whose
length l is smaller than ri (P) is a shortest path and for any r > ri (P) there is an
arc of a geodesic with the length r and initial point P that is not a shortest path.
If the real number ri = inf{ri (P) : P ∈ �} differs from zero, then it is called the
injectivity radius of a surface �.

From the definition of ri (P) and Theorem 3.5.6 it follows that the exponential
map on an open disk K (ri (P)) in the plane T �P with center at P and radius
ri (P) is a bijection of K (ri (P)) onto a region W (P) = expP(K (ri (P))) of �.

Definition 3.8.2. A triangle �ABC is called admissible for the vertex A if the
distance from A to any point on the side BC is not greater than ri (P).

Take a triangle � Ā B̄C̄ on R2 whose sides are Ā B̄ = AB, ĀC̄ = AC , and
� B̄ ĀC̄ = α.

Theorem 3.8.1. If a triangle �ABC on a convex complete surface � of class C2

is admissible for the vertex A, then BC ≤ B̄C̄ .
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Proof. Take two rays on the plane T �A tangent to the shortest paths AC and AB,
and then mark off along them the line segments AC̃ and AB̃ whose lengths are
equal to AC and AB, respectively. The triangle �AB̃C̃ is equal to � Ā B̄C̄ . In
particular,

B̃C̃ = B̄C̄ . (3.89)

Define geodesic polar coordinates (ρ̃, ϕ̃) and (ρ, ϕ) in the disk K (ri (A)) with
center A and radius ri (A) in the plane T �A and in the region W (A) =
expA K (ri (A)), respectively. Let the equations of the line segment B̃C̃ in coor-
dinates (ρ̃, ϕ̃) be written in parametric form:

ρ̃ = h(t), ϕ̃ = ψ(t) (0 ≤ t ≤ 1).

Set γ = expA(B̃C̃). Then the equations of γ in coordinates (ρ, ϕ) are given by
the same functions ρ = h(t), ϕ = ψ(t). Compare the length l(γ ) of γ with the
length of the line segment B̃C̃ :

B̃C̃ =
∫ 1

0

√
[h′(t)]2 + h2(t)[ψ ′(t)]2 dt, (3.90)

l(γ ) =
∫ 1

0

√
[h′(t)]2 + f 2(h(t), ψ(t))[ψ ′(t)]2 dt, (3.91)

where the function f (ρ, ϕ) satisfies (3.85:a) with the initial conditions f (0, ϕ) =
0, f ′

ρ(0, ϕ) = 1. Then from Lemma 3.8.1 and the conditions of the theorem fol-
lows

f (h(t), ϕ(t)) ≤ h(t). (3.92)

From (3.90)–(3.92) follows l(γ ) ≤ B̃C̃ , but the length of the shortest path BC is
not greater than l(γ ). Hence we have BC ≤ l(γ ) ≤ B̃C̃ = B̄C̄ . �

From Theorem 3.8.1 we obtain the comparison theorem for the angles of ad-
missible triangles.

Theorem 3.8.2. Under the conditions of Theorem 3.8.1 the inequality α ≥ α′
holds, where α′ is the angle of the comparison triangle �A′ B ′C ′ at the vertex A′.

Proof. Since BC = B ′C ′ ≤ B̃C̃ , then by a well-known theorem of elementary
geometry, α′ ≤ α. �

Corollary 3.8.4. If a triangle �ABC on a complete convex surface � is admissi-
ble for each of its vertices, then the inequalities α ≥ α′, β ≥ β ′, γ ≥ γ ′ hold.

The statements analogous to Theorems 3.8.1, 3.8.2 (with opposite signs in the
inequalities) are true for saddle surfaces.
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Problem 3.8.1. If �ABC on a complete saddle surface � of class C2 is admissi-
ble for its vertex A, then the angle α is not greater than the angle α′ of a compari-
son triangle �A′ B ′C ′.

Hint. It is sufficient to show that BC ≥ B̄C̄ (under the notation of Theorem 3.8.1).
For this it is sufficient to compare the length of the shortest path BC with the
length of the curve γ̄ = exp−1

A (BC) and then to apply Lemma 3.8.1.�

Problem 3.8.2. The angles of an arbitrary triangle �ABC on a complete simply
connected saddle surface � of class C2 are not greater than the corresponding
angles of a comparison triangle �A′ B ′C ′; α ≤ α′, β ≤ β ′, γ ≤ γ ′.

If the Gaussian curvature of some surface � is not smaller than some real num-
ber k0, then it is natural to compare the angles of �ABC on � with the an-
gles of a comparison triangle on a plane Rk0 of constant curvature k0. Denote by
(�A′ B ′C ′)k0 a comparison triangle on Rk0 , and a surface � itself whose Gaussian
curvature is not smaller than k0, denote by �k0 .

If k0 < 0, then Rk0 is actually a Lobachevski (hyperbolic) plane, and if k0 > 0,
then Rk0 is a sphere of radius 1/

√
k0. In the last case the comparison triangle

(�A′ B ′C ′)k0 exists if and only if the perimeter of �ABC is not greater than
2π/

√
k0. Repeating the proof of Theorems 3.8.1 almost word for word and 3.8.2,

we can deduce the following Theorem 3.8.3.

Theorem 3.8.3. If a triangle �ABC on �k0 is admissible for all its vertices, then
its angles are not smaller than the corresponding angles of a comparison triangle
(�A′ B ′C ′)k0 . If k0 > 0, then the perimeter of �ABC is assumed not greater than
2π/

√
k0 .

Remark 3.8.2 (of the editor). Let (X, dX ) be a metric space. For a continuous path
γ : [0, L] → X , we define the length l(γ ) of γ by l(γ ) = sup{∑n−1

i=0 dX (γ (ti ),
γ (ti+1)) : 0 = t0 < · · · < tn = L}, where the supremum is taken over all se-
quences {ti }0≤i≤n as above, and all n ∈ N. A continuous path γ : [0, L] → X is a
geodesic if it has a constant speed and is locally minimizing, that is,

l(γ |[a,b]) = (|b − a|/L) · l(γ ),

and if for every a ∈ [0, L], there is some ε > 0 such that

l(γ |[a′,a′′]) = dX (γ (a′), γ (a′′))

holds, where a′ = max{a − ε, 0} and a′′ = min{a + ε, L}.
A metric space (X, dX ) is called a CAT(k)-space if it satisfies the following

conditions:

(i) Every two points x, y ∈ X (with dX (x, y) ≤ π/
√

k if k > 0) are joined
by a minimizing geodesic; that is, γ : [0, L] → X, which satisfies γ (0) =
x, γ (L) = y, and l(γ ) = dX (x, y).
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(ii) (CAT(k)-property). For an arbitrary geodesic triangle �(A, B, C) ⊂ X
(with perimeter < 2π/

√
k if k > 0) we have the comparison triangle

�(A′, B ′, C ′) ⊂ Rk (with the same side lengths as �(A, B, C)) such that
dX (x, y) ≤ dRk (x ′, y′) for every pair x ∈ AB, y ∈ AC and the correspond-
ing points x ′ ∈ A′ B ′, y′ ∈ A′C ′.

The notion of CAT(k)-spaces (named for Cartan, Aleksandrov, and Topono-
gov), introduced by M. Gromov,14 is based on Aleksandrov’s original notion, i.e.,
spaces with curvature bounded above by k ∈ R. Two-dimensional examples of
CAT(1)-spaces are spheres of radius ≥ 1. More generally, complete smooth sur-
faces with Gaussian curvature uniformly bounded above by 1 and of injectivity
radii bounded below by π are CAT(1)-spaces. Examples of CAT(0)-spaces are
saddle surfaces in R3 and generalizations of Hadamard manifolds, which are sim-
ply connected complete Riemannian manifolds such that the sectional curvature
is nonpositive.

A basic property of CAT(k)-spaces is that between any two geodesic segments
AB and AC in X starting from one point there is an angle � B AC .

(iii) (Angle comparison theorem). The angles α, β, γ of an arbitrary triangle T in
X are not greater than the corresponding angles α′, β ′, γ ′ of the comparison
triangle Tk on Rk .

According to Reshetnyak’s gluing lemma,15 the space constructed by gluing
CAT(k)-spaces isometrically along proper convex subsets is again a CAT(k)-
space.

3.9 Aleksandrov Comparison Theorem for the
Angles of a Triangle

The following comparison theorem for the angles of triangles by A.D. Aleksan-
drov holds (see proof below, in Section 3.9.1).

Theorem 3.9.1. The angles of a triangle �ABC on a surface �k0 of class C2 are
not smaller than the corresponding angles of a comparison triangle (�A′ B ′C ′)k0 :
α ≥ α′, β ≥ β ′, γ ≥ γ ′.

First we shall prove three lemmas.

Lemma 3.9.1 (about convex quadrilaterals, A.D. Aleksandrov). Let ABC D
and A′ B ′C ′ D′ be two given convex quadrilaterals in the plane Rk0 whose cor-
responding sides are equal: AB = A′ B ′, BC = B ′C ′, C D = C ′ D′, D A = D′ A′.

14 M. Gromov, Geometric Group Theory, Essays in Group Theory (S.M. Gersten, ed.), M.S.R.I. Publ.
8, Springer-Verlag, Berlin-Heidelberg-New York, 1987, 75–264.

15 Yu. G. Reshetnyak, On the theory of spaces of curvature not greater than K , Mat. Sb., 52 (1960),
789–798.
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Figure 3.10. Comparison triangle (�A′ B′C ′)k0 for a triangle on a surface.

�

Then if the angle � ADC is not smaller (greater) than � A′ D′C ′, then � B AD and
� BC D are not greater (smaller) than � B ′ A′ D′ and � B ′C ′ D′, respectively. For the
case k0 > 0 we assume that the perimeter of ABC D is smaller than 2π/

√
k0. The

case that � ADC is equal to π also is not excluded.

Proof. Let k0 = 0. The conditions of the lemma implies that inequality AC ≥
A′C ′ (AC > A′C ′), from which it follows that � ABC is not smaller (greater) than
� A′ B ′C ′. But the sum of all angles of the quadrilaterals ABC D and A′ B ′C ′ D′
is 2π . Therefore, at least one of the angles � B AD or � BC D does not exceed (is
smaller than) � B ′ A′ D′ or � B ′C ′ D′. In both cases we have B D ≤ B ′ D′ (B D <

B ′ D′), whence the statement of the lemma follows.
In the case of k0 �= 0 consider a quadrilateral A′′ B ′′C ′′ D′′ for which � A′′ D′′C ′′

= � A′ D′C ′, � B ′′C ′′ D′′ = � BC D, and the sides A′′ D′′, D′′C ′′ and C ′′ B ′′ are
equal, respectively, to AD, DC , and C B. Comparing this quadrilateral with
ABC D and A′ B ′C ′ D′, one can see that � BC D does not exceed (is smaller than)
� B ′C ′ D′.16 Similarly for the second inequality, whence it follows that � B AD
does not exceed (is smaller than) � B ′ A′ D′. �

Remark 3.9.1. From the law of cosines of spherical and hyperbolic trigonometry
(k0 = ±1),

cos a = cos b cos c + sin a sin b cos A,

cosh a = cosh b cosh c − sinh a sinh b cos A

it follows that in all cases that a = a(A) is a monotonic increasing function of
the angle A ∈ [0, π ] when b, c are given. This simple fact on the monotonicity
relation between angle and length of the closing edge of a geodesic hinge in Rk0

can be used in the proof of Lemma 3.9.1, case k0 �= 0. (A geodesic hinge in � is
a figure consisting of a point A ∈ � called the vertex and minimal geodesics γ, τ

emanating from A called sides. The angle between the tangent vectors to γ, τ at
A is called the angle of the geodesic hinge.)

16 �B′′C ′′ D′′ = �BC D; hence B′′ D′′ = B D and � A′′ D′′ B′′ ≥ � ADB. Comparing �A′′ D′′ B′′
with �ADB, we get A′′ B′′ ≤ AB (see Remark 3.9.1 by editor). Comparing �A′′ B′′C ′′ with
�A′ B′C ′, from A′ B′ ≥ A′′ B′′ we get � A′C ′ B′ ≥ � A′′C ′′ B′′. Then � D′′C ′′ B′′ ≤ � D′C ′ B′.
Comparing �B′C ′ D′ with �BC D, we get D′ B′ ≥ DB.
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Let D be an open region on � whose closure is compact, with a triangle �ABC
in its interior, and d an elementary length of D (see Theorem 3.5.4).

Definition 3.9.1. A triangle �ABC is a thin triangle if the distance from any
point on the side AB up to the side AC does not exceed δ = d/4.

Lemma 3.9.2. (about thin triangles.) If a triangle �ABC on a surface �k0 is
thin, then its angles at the vertices B and C are not smaller than the corresponding
angles of a comparison triangle (�A′ B ′C ′)k0 : β ≥ β ′, γ ≥ γ ′. In the case k0 > 0,
the perimeter of �ABC is supposed to be not greater than 2π/

√
k0.

Proof. Introduce the parameterizations B(x) and C(y) on the shortest paths AB
and AC , where x and y are the lengths of the arcs AB(x) and AC(y) of the short-
est paths AB and AC . Denote by β(x, y) and γ (x, y) the angles of �AB(x)C(y)

at the vertices B(x) and C(y), respectively. Define the set T of ordered pairs
(x, y) by the following conditions:

(1) The angles β(x, y) and γ (x, y) are not smaller than the corresponding angles
β ′(x, y) and γ ′(x, y) of a comparison triangle (�A′ B ′C ′)k1 , where k1 is an
arbitrary real number smaller than k0.

(2) |x − y| ≤ δ/2.
(3) If a pair (x1, y1) is in T , then (x2, y2) is also in T when x2 ≤ x1, y2 ≤ y1, and

|x2 − y2| ≤ δ/2.

From Corollary 3.8.4 it follows that the pairs (x, y) for x < δ/2 and y < δ/2
belong to T . Consequently, the set T is nonempty. Define on T the function
f (x, y) = x + y. Let T0 = max{ f (x, y) : (x, y) ∈ T }. If T0 = AB + AC ,
then the statement of the lemma has been proved. Assume that T0 = x0 + y0 <

AB + AC and derive a contradiction. Let, for definiteness, x0 ≥ y0. Then prove
that the angle β(x, y) is greater than the angle β ′(x, y). Indeed, all the angles
of �B(x0 − δ/2)B(x0)C(y0) are greater than the corresponding angles of the
triangle (�B ′(x0 − δ/2)B ′(x0)C ′(y0))k1 (see Corollary 3.8.4 and the condition
for k1). Therefore, the angle at the vertex B ′(x0 − δ/2) of the convex quadri-
lateral A′′ B ′′(x0 − δ/2)B ′′(x0)C ′′(y0) in the plane Rk1 obtained by gluing tri-
angles (�A′ B ′(x0 − δ/2)C ′(y0))k1 and (�B(x0 − δ/2)B(x0)C(y0))k1 to each
other along their common side B ′(x0 − δ/2)B ′(x0) is smaller than π . Applying
Lemma 3.9.1 to the quadrilateral A′′ B ′′(x0 − δ/2)B ′′(x0)C ′′(y0) and the trian-
gle (�A′ B ′(x0)C ′(y0))k1 , we obtain our statement β(x0, y0) > β ′(x0, y0). From
the last inequality and continuity follows the existence of δ1 > 0 such that for
0 ≤ t ≤ δ1 the angle β(x0, y0 + t) is not smaller than β ′(x0, y0 + t).

We prove that the pair (x0, y0+t) for 0 ≤ t ≤ min{δ1, δ, AC−y0} = δ2 belongs
to T . Indeed, all angles of �B(x0)C(y0+t)C(y0) are greater than the correspond-
ing angles of the triangle (�B ′(x0)C ′(x0+t)C ′(y0))k1 . Therefore, arguments sim-
ilar to those stated above show us that the angle γ (x0, y0 + t) is greater than
γ ′(x0, y0 + t) for 0 ≤ t ≤ δ2. But then f (x0, y0 + t) = x0 + y0 + t > x0 + y0 = T0

for t > 0, contrary to the definition of T0. The statement of the lemma now fol-
lows from the arbitrariness of k1. �
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Lemma 3.9.3 (about a limit angle). Let the shortest paths AB, BC , C Xn be
given, and C /∈ AB, Xn �= B, AXn < AB. Denote by α the angle between
B A and BC , by βn the angle between XnC and Xn A. If limn→∞ Xn = B, then
limn→∞ βn = β and β ≤ α.

Proof. Obviously, it is sufficient to prove that if a sequence of shortest paths C Xn

converges to some shortest path C B, then β ≤ α. Suppose that β > α and obtain
a contradiction. Draw through a point Xn a geodesic σn under the angle π −βn to
the shortest path Xn B, so that σn intersects the shortest path C B at some point Cn ,
and from the point C draw a geodesic σ̄n forming an angle α with the shortest path
C Xn , so that it intersects the shortest path C Xn at some point C̄n . For sufficiently

Figure 3.11. A limit angle.

large n, the existence of geodesics σn and σ̄n with the above-mentioned properties
results from the assumption β > α. From the statement of Problem 3.7.2 we
obtain the equalities

� BCn Xn = � BC̄n Xn = βn − α + ō(B Xn),

BCn = BC̄n = sin βn

sin(βn − α)
B Xn + ō(B Xn), (3.93)

Cn Xn = C̄n Xn = sin α

sin(βn − α)
B Xn + ō(B Xn).

Furthermore, from the triangle inequality we obtain

BC̄n + C̄nC ≥ BC = CCn + Cn B,

XnCn + CnC ≥ XnC = XnC̄n + CC̄n.
(3.94)

From (3.93) and (3.94) follows the equality

CC̄n = CCn + ō(B Xn). (3.95)

Take now a point Ēn on the shortest path C Xn such that C̄n Ēn = C̄n Xn and
Ēn �= Xn . Then from the statement of Problem 3.7.2 it is easy to deduce that
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C Ēn = 2C̄n Xn sin
(π

2
− βn − α

2

)
+ ō(B Xn)

= 2C̄n Xn cos
(βn − α

2

)
+ ō(B Xn).

From this equality and from (3.95) follows

CCn + Cn B = C B ≤ C Ēn + ĒnC

= 2C̄n Xn cos
(βn − α

2

)
+ ĒnC + ō(B Xn)

= 2C̄n Xn cos
(βn − α

2

)
+ CC̄n − Cn Xn + ō(B Xn). (3.96)

Further on, from (3.93), (3.95), and (3.96) we obtain the inequality

2CCn ≤ 2C̄n Xn cos
(βn − α

2

)
+ ō(B Xn)

= 2CC̄n cos
(βn − α

2

)
+ ō(B Xn).

(3.97)

Divide (3.97) by 2CCn and pass to the limit for n → ∞. Then we obtain 1 ≤
cos

(
β−α

2

)
, which is impossible, since β − α > 0. �

3.9.1 Proof of the Comparison Theorem for the
Angles of a Triangle

Let �ABC be an arbitrary triangle on a surface �k0 . In the case of k0 > 0 we
assume temporarily that the perimeter of �ABC is smaller than 2π/

√
k0. We

prove the theorem for the angle α. Introduce on AC a parameterization C(x),
where x is the length of an arc AC(x) of shortest path. Denote by γ (x) the angle
� AC(x)B of the triangle �ABC . Define the set of real numbers T of x satisfying
the following inequalities:

α ≥ α′, γ ≥ γ ′ (3.98)

The set T is not empty, since by virtue of the lemma about thin triangles and
the lemma about a limit angle, the inequalities (3.98) are satisfied for sufficiently
small x . Let x0 = sup T . If x0 = AC , then Theorem 3.8.1 is proven for the
angle α.

Assume x0 < AC , and obtain a contradiction. Note that x0 ∈ T by the lemma
about a limit angle. Take a sequence of points Cn = C(xn), Cn �= C(x0) =
C0, xn > x0 such that limn→∞ Cn = C0. Also assume, without loss of general-
ity, that the sequence of the shortest paths BCn converges to some shortest path
BC0. For sufficiently large n (n ≥ n0) the triangle �Cn0 BC0 is thin. Therefore,
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the angle at the vertex C0
′′ of the quadrilateral A′′ B ′′Cn0

′′C0
′′ obtained by glu-

ing (�A′ B ′Cn0
′)k0 and (�Cn0

′ B ′C0
′)k0 along their common side B ′C0

′ does not
exceed π . Hence, from Lemma 3.9.1 it follows that xn0 ∈ T , contrary to the defi-
nition of x0. So, Theorem 3.9.1 is proven for the angle α. For the other angles of
�ABC , Theorem 3.9.1 can be proved similarly.

We are left to consider the case of k0 > 0 and remove from the assumption that
the perimeter of �ABC is smaller than 2π/

√
k0. Assume that on the surface �k0

there is a triangle �ABC whose perimeter is greater than 2π/
√

k0, and obtain a
contradiction. Suppose that at least one of the angles of �ABC , say the vertex
A, differs from π . Take the points B0 and C0 on the sides AB and AC such that
AB0 + B0C0 + C0 A = 2π/

√
k0. Assume, without loss of generality, that the sum

of the lengths of the two smallest sides of �AB0C0 is equal to the length of the
third. Let Bn and Cn be the sequences of points on AB and AC ; moreover, Bn �=
B0, Cn �= C0, ABn < AB0, ACn < AC0, and limn→∞ Bn = B0, limn→∞ Cn =
C0. Then for every t it is true that ABn + BnCn + Cn A < 2π/

√
k0, for otherwise,

the perimeter of �ABC would be 2π/
√

k0. Applying Theorem 3.9.1 to triangles
�ABnCn , we obtain β ≥ β ′, γ ≥ γ ′. But as is easy to see, limn→∞ β ′

n =
limn→∞ γ ′

n = π , and hence limn→∞ βn = limn→∞ γn = π . But then B0 BCC0

would be the shortest path of length 2π/
√

k0, and consequently, the perimeter of
�ABC would be 2π/

√
k0, contrary to the assumption.

So we have proved that if the perimeter of �ABC is greater than 2π/
√

k0, then
all its angles are π , which means that the line AB ∪ BC ∪C A is a closed geodesic
γ . But then the perimeter of �A1 BC , where A1 ∈ γ and A1 also is close to A,
is larger than 2π/

√
k0, and its angles at the vertices B and C differ from π . The

obtained contradiction proves an absence on �k0 of a triangle whose perimeter is
greater than 2π/

√
k0.

Now let the perimeter of �ABC be 2π/
√

k0. If the triangle is nondegenerate,
then reasoning as above, we can prove that �ABC is a closed geodesic, and
consequently, all its angles are π , and then the statements of Theorem 3.9.1 are
obviously true. If it is degenerate, that is, composed of two shortest paths (a bi-
angle (or lune)), then in this case the surface �k0 is a sphere (see Problem 3.10.1),
and �ABC can be compared with itself.

The comparison theorem for the angles can formulated in a different form, us-
ing the convexity condition of A.D. Aleksandrov. Let AB and AC be two shortest
paths starting from the point A, and also suppose B(x) ∈ AB, C(y) ∈ AC ,
x = AB(x), y = AC(y). Denote by ϕ(x, y) the angle at the vertex A′ of a
comparison triangle (�A′ B ′(x)C ′(y))k0 . We say that the Aleksandrov convexity
condition is satisfied on a surface � with respect to a plane Rk0 if the function
ϕ(x, y) is decreasing.

Theorem 3.9.2. A surface �k0 satisfies the Aleksandrov convexity condition with
respect to Rk0 .

Proof. This theorem easily follows from Theorem 3.9.1 and Lemma 3.9.1. �



3.10 Problems to Chapter 3 195

3.10 Problems to Chapter 3

Problem 3.10.1. The diameter d of a surface �k0 (k0 > 0) is not greater than
π/

√
k0. If d = π/

√
k0, then �k0 coincides with a sphere of radius 1/

√
k0.

Solution. The first statement of Problem 3.10.1 obviously follows from Theo-
rem 3.9.1. Consider the case d = π/

√
k0. Let A and B be the endpoints of

a diameter, and P an arbitrary point on �k0 . Then, by the triangle inequality,
AP + P B ≥ π/

√
k0, but on the other hand, π/

√
k0 + AP + P B ≤ 2π/

√
k0.

Therefore, AP + P B = π/
√

k0. From the last equality it follows that the polyg-
onal line AP ∪ P B is a shortest path of length π/

√
k0. Thus we have obtained

that any geodesic starting from A comes to B, and the length of an arc AB of this
geodesic is π/

√
k0. Introduce the geodesic polar coordinates (ρ, ϕ) with the ori-

gin at A. Then ds2 = dρ2+ f 2(ρ, ϕ)dϕ2, where the function f (ρ, ϕ) satisfies the
equation f ′′

ρρ+K (ρ, ϕ) f = 0 with initial conditions f (0, ϕ) = 0, f ′
ρ(0, ϕ) = 1.

From what we have proved it follows that f (ρ, ϕ) > 0 for 0 < ρ < π/
√

k0, and
since sin(

√
k0ρ)/

√
k0 is zero at ρ = π/

√
k0, then from the third corollary of

Lemma 3.8.1 it follows that K (ρ, ϕ) ≡ k0 for 0 ≤ ϕ ≤ 2π ; i.e., we have proved
that the Gaussian curvature at each point of the surface �k0 is the constant k0. The
statement of Problem 3.10.1 now follows from Theorem 2.8.2 of Liebmann. �

Remark 3.10.1. In the conditions of Problem 3.10.1 it is possible to construct an
isometry ψ : �k0 → S(1/

√
k0) and not use Liebmann’s theorem. So this problem

is solved for the multidimensional case. The reader is asked to prove that expA is
the required isometry ψ .

Recall that a straight line on a surface is a complete geodesic γ such that every
one of its arcs is a shortest path.

Problem 3.10.2 (S. Cohn-Vossen). Prove that if on a complete convex surface
of class C2 there is a straight line γ , then � is a cylinder.

Solution. Take an arbitrary point P ∈ �, P ∈ γ . Let γP be a point on γ , the
nearest to P . Then the shortest path PγP is either orthogonal to γ , or P can be
joined with a point γP at least by two shortest paths, each of which forms with
γ an angle not greater than π/2 (see Lemma 3.5.1). Let γ (t) be a parameteri-
zation of γ and t = ±γPγ (t), γP = γ (0), −∞ < t < ∞, tn be a sequence
of positive numbers tending to infinity, and τn a sequence of negative numbers
tending to minus infinity. Without loss of generality, assume that the limit of the
shortest paths Pγ (tn) for n → ∞ is some ray σ1 with vertex at P , and the limit
of the shortest paths Pγ (τn) for c is some ray σ2 with the same vertex P . Place
the triangles �P ′γ ′(tn)γ ′(τn) on R2 so that the sides γ ′(tn)γ ′(τn) lie on the same
straight line a. From Theorem 3.9.1 and Lemma 3.9.1 it follows that the dis-
tance from the vertex P ′ of triangle �P ′γ ′(tn)γ ′(τn) up to a straight line a does
not exceed PγP for any n. Therefore, the limit of the angle � γ ′(tn)P ′γ ′(τn) for
n → ∞ is π ; i.e., the rays σ1 and σ2 lie on the same geodesic γ̄ . But then from
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Theorem 3.9.1 it follows that the angle between σ1 and σ2 is also π , since the
rays σ1 and σ2 lie on the same geodesic γ̄ . Furthermore, the sum of the angles
� P ′γ ′(0)γ ′(tn) and � γ ′(0)P ′γ ′(tn) of �γ ′(0)P ′γ ′(tn) for n → ∞ is equal to π ,
and since � P ′γ ′(0)γ ′(tn) does not exceed π/2 (by Theorem 3.9.1) for any n, the
limit of the angle � γ ′(0)P ′γ ′(tn) for n → ∞ is not smaller than π/2. Then again
by Theorem 3.9.1, an angle between the ray σ1 and the shortest path Pγ (0) is not
smaller than π/2. It can be proved similarly that the angle between σ2 and Pγ (0)

is not smaller than π/2. But since their sum is π , we obtain that Pγ (0) intersects
γ̄ in a right angle. From here it follows that a shortest path Pγ (0) also intersects
the geodesic γ in a right angle.

Now let P1 ∈ γ̄ and P1 �= P . Repeating all the previous constructions and
reasoning, we obtain that the shortest path P1γP1 intersects the geodesics γ̄ and
γ also in a right angle. So, we have obtained that in the region D bounded by
the quadrilateral P P1γP1γP , all internal angles are π/2. Applying to region D the
Gauss–Bonnet formula, we obtain that the integral curvature of D is zero. But the
Gaussian curvature of the surface � is nonnegative; consequently, it is identically
zero at each point of D. In particular, the Gaussian curvature of � is zero at P .
But the point P has been selected arbitrarily. Hence the Gaussian curvature of �

is zero at every point. �

Remark 3.10.2. In Problem 3.10.2 as well as in Problem 3.10.1 it is possible
to construct an isometry ψ of � onto the plane R0 without referring to the
Gauss–Bonnet theorem. Namely, these arguments solve this problem in the n-
dimensional case. To construct a map ψ , one needs to introduce a semigeodesic
coordinate system on � and R0 and to compare points with identical coordinates.

Problem 3.10.3. For a triangle �ABC on a surface �k0 let the shortest path AB
be a unique shortest path connecting points A and B, and let the angle γ be equal
to the angle γ ′. Prove that then all angles of �ABC are equal to the corresponding
angles of (�ABC)k0 .

Hint. It is sufficient to prove that for any point P on the shortest path AC the
angle � B PC is equal to � B ′ P ′C ′ of triangle (�B ′ P ′C ′)k0 , which follows easily
from Theorem 3.9.1 and Lemma 3.9.1. After this, it is easy to prove that α = α′.
The equality β = β ′ is proved analogously.

Problem 3.10.4. Prove that in the conditions of Problem 3.10.3, �ABC bounds
a region such that at every one of its points the Gaussian curvature is k0.

Hint. Use the results of Problem 3.10.3, Lemma 3.5.1, and Lemma 3.8.1.

Problem 3.10.5. Let �ABC be composed of the shortest paths AB, BC , and an
arc AC of a geodesic whose length is smaller than AB + BC . Prove that α ≥ α′
and γ ≥ γ ′.

Hint. Divide a geodesic AC into a finite number of arcs, each of them a shortest
path, and take advantage of Theorem 3.9.1 and Lemma 3.9.1.
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Problem 3.10.6. Prove that on a surface �k0 for k0 > 0 each arc of a geodesic
whose length is greater than 4π/

√
k0 has points of self-intersection.

Hint. Assume the opposite and with the help of Theorem 3.9.1 reduce this as-
sumption to a contradiction.

Problem 3.10.7. For �ABC on a surface �k0 with k0 > 0 construct a triangle
(�A′′ B ′′C ′′)k0 whose angles are equal to the corresponding angles of �ABC .
Prove that then AB ≤ A′′ B ′′, AC ≤ AC ′′, BC ≤ B ′′C ′′. Consider the case in
which AB = A′′ B ′′ and the angles of �ABC at the vertices A and B are equal to
the angles of �A′′ B ′′C ′′ at the vertices A′′ and B ′′.

Problem 3.10.8. Formulate and solve the problems for saddle surfaces analogous
to Problems 3.10.3 and 3.10.4.

Problem 3.10.9. Let Kr be a disk of radius r with center at a point O on a convex
surface �, and let AB be a chord of this disk. Prove that if � O AB = � O B A =
45◦, then AB ≥ √

2r .

Problem 3.10.10. Let r be some ray with vertex at a point P on a complete
convex surface � of class C2. Introduce on r a parameterization r(t), where t is
the arc length parameter counted from P . Let B(t) = {Q ∈ � : ρ(Q, r(t)) < t}.
Prove that D(r) = �\⋃∞

t=0 B(t) is an absolutely convex set on � for any ray r .

Problem 3.10.11. Let � be a complete regular surface of class C2 whose Gaus-
sian curvature satisfies the inequality 1

a2 ≤ K ≤ 1. Prove that there is a diffeo-
morphism ϕ of � onto a unit sphere S1 such that for any points P and Q on �,
the following inequalities satisfied:

ρ1(ϕ(P), ϕ(Q)) ≤ ρ�(P, Q) ≤ aρ1(ϕ(P), ϕ(Q)).

Here ρ1 is a metric on S1, and ρ� is a metric on �.

Remark 3.10.3. The construction of diffeomorphisms satisfying the first and sec-
ond inequality separately is simple enough. But it is not known whether there
exists a diffeomorphism ϕ satisfying both these inequalities.

Note that all theorems and problems of Sections 3.9, 3.10 can be formulated
and proved for any geodesically convex region on a regular surface of class C2.
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Aleksandrov convexity condition,
194

base of a polygon, 36
bi-angle (lune), 51, 184, 194
Bonnet rigidity theorem, 132

canonical parameter (on a
geodesic), 156

Christoffel symbols
of the first kind, 151
of the second kind, 129, 151

Clairaut’s theorem, 123
comparison triangle, 185

on the plane Rk0 , 188
convex

region, 15, 106, 170
region on a sphere, 51

Coordinates
geodesic polar (on a surface), 175
geographical, 78
local (on a surface), 151
Riemannian normal (on a

surface), 174
semigeodesic (on a surface), 176

cosines, law of, 190
covering map, 156
Curve, 22

absolute torsion, 45
arc length parameterization, 14
astroid, 4, 63
bicylinder, 6
binormal vector, 11
cardioid, 4
catenary, 147
central set, 37
closed, 3
conic helix, 3
convex, 15
convex on a sphere, 51
convex, plane, 15
curvature, 19
cycloid, 3, 63
diametrically opposite points, 44
epicycloid, 3
explicit presentation, 4
graph, 4
half-cubic (Neil’s) parabola, 42
helix, 3, 15, 50, 51, 62, 122
hypocycloid, 3
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implicit equations, 5
implicit presentation, 5
integral curvature, 54
length, 11
natural equation, 23
normal line, 8
parallel, 38
parametric equations, 3
parametric presentation, 4
piecewise smooth (regular), 3
principal normal vector, 10
radius of curvature, 22
rectifiable, 11, 14
regular of class Ck , 2
simple, 23
smooth, 2
smooth regular, 23
tangent line, 6
tractrix, 4, 63, 101, 147
vector form equation, 3
velocity vector, 6
Viviani, 5
width, 43

derivational formulas, 129
differentiable field of unit normals,

71
directrix plane, 102
distance between the points, 51

element of arc length, 75
equivalent local diffeomorphisms,

22
Euler characteristic, 124, 183
Euler system, 163
Euler’s equations, 163
Euler’s formula, 87
evolute, 41
evolvent, 42
exponential map, 157

flat torus, 149
Frenet formulas, 47

Gauss (spherical) map, 93

Gauss’s formula, 131
geodesic, 120

equations, 156
minimal, 164

geodesic curvature, 119, 159
sign, 160

great circle, 93, 121

height function relative to the unit
vector, 73

immersion, 96
proper, 96

indicatrix of a tangent line, 54
injectivity radius

at a point, 186
of a surface, 186

interior angle from the side of a
region, 180

isometry, 76
isoperimetric inequality, 18

Klein bootle, 149

Lobachevskii (hyperbolic) plane,
188

Möbius strip, 71, 149

normal plane of a curve, 47

orientable plane, 73
orientation of a region, induced by

coordinates, 179
osculating plane of a curve, 8, 47

parallel of a surface of revolution,
122

parallel translation along a curve,
153

Peterson–Codazzi formulas, 131
phase distance of two vectors, 57
phase length, 58
phase polygonal line inscribed in a

curve, 58
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Point
elliptic (of convexity), 80, 85
hyperbolic (saddle), 80, 85
parabolic (cylindrical), 85
planar, 86
umbilic, 86, 114

polygonal line, 11

rectifying plane of a curve, 47
regular value of a map, 5
regularly inscribed polygon in a

curve, 11
Rello’s triangle, 43
right-hand rule, 46
ruling (of a ruled surface), 106, 122

secant, 8
set of all curves in a region joining

two points, 170
set of all regularly inscribed

polygonal lines in a curve, 11
shortest path (on a sphere), 51
sign of principal curvature, 82
stationarity of a tangent plane, 105
Surface, 65, 95

absolute parallelness, 154
absolute parallelness on a region,

154
absolutely convex region, 171
angle of a triangle, 184
area element, 77
asymptotic curve, 117
asymptotic direction, 117
base curve, 105
canonical neighborhood, 167
catenoid, 148
closed (compact), 76
co-ray, 171
complete, 76
conoid, 102
convex, 106
convex region, 170
coordinate curves, 67
coordinate neighborhood, 66

covariant derivative of a vector
field, 152

cylinder, 82, 122
developable, 105
disk, 175
distance between points of a

region, 170
distance between two points, 76,

161
embedded, 95
first fundamental form, 74
Gaussian curvature, 85
generalized cylinder, 127, 133
generalized Plücker’s conoid,

103
generalized torus, 127, 133
geodesic, 156
geodesic triangle, 184
geodesically complete, 168
geodesically convex region, 170
helicoid, 102
immersed, 95
implicit equation, 66
integral curvature of a region, 93
intrinsic geometry, 75
isometric, 76
k-fold continuously

differentiable, 66
parameterization, 65

line of curvature, 114
local basis at a point, 73
local coordinates of a point, 67
mean curvature, 85
metrical completeness, 169
minimal, 86
noncylindrical, 102
nonorientable, 71
normal, 70
normal curvature, 79
of nonpositive Gaussian

curvature, 184
of revolution

indicatrix, 139
orientable, 71
parallel, 90
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parallel vector field along a
curve, 153

parameterization, 65
parametric equations, 66
principal curvature at the point,

84
principal vectors at the point, 84
pseudosphere, 101, 148
ray, 171
regular, 66
right helicoid, 82, 148, 150
ruled, 102
saddle, 111
second fundamental form, 80
set of all rectifiable curves with

given endpoints, 76

shortest path, 162
shortest path in a region, 170
simply connected, 184
small triangle, 186
straight line, 195
tangent plane, 70
Tchebyshev net, 139
thin triangle, 191
third fundamental form, 91
totally convex region, 170
triangle admissible for the vertex,

186
Weingarten, 133, 139

two-dimensional manifold, 95
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