
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 002-29930 Rev. *A Revised May 4, 2020

Features

▪ Bluetooth v4.2-compliant protocol stack

▪ Generic Access Profile (GAP) Features

□ Broadcaster, Observer, Peripheral, and Central roles

□ Support for role reversal between Peripheral and Central

□ User-defined advertising data

□ Bonding support for up to four devices

□ Security modes 1 and 2

▪ Generic Attribute Profile (GATT) Features

□ GATT Client and Server

□ 16-, 32-, and 128-bit UUIDs

▪ Special Interest Group (SIG) adopted GATT-based Profiles and Services; quick prototype
of new profile design through intuitive GUI Custom Profile development; Support of
Bluetooth Developer Studio Profile format

▪ Security Manager Features

□ Pairing methods: Just works, Passkey Entry, Out of Band, Numeric Comparison

□ Authenticated man-in-the-middle (MITM) protection and data signing

▪ Logical Link Adaption Protocol (L2CAP) Connection Oriented Channel

▪ Link Layer (LL) Features

□ Master and Slave roles

□ 128-bit AES encryption

□ Low Duty Cycle Advertising

□ LE Ping

Bluetooth Low Energy (BLE)
3.64

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 2 of 559 Document Number: 002-29930 Rev. *A

General Description

The Bluetooth Low Energy (BLE) Component provides a comprehensive GUI-based
configuration window to facilitate designing applications requiring BLE connectivity. The
Component incorporates a Bluetooth Core Specification v4.2 compliant protocol stack and
provides APIs to enable user applications to access the underlying hardware via the stack.

When to use the BLE Component

The BLE is used in lowest-power networks and Internet of Things (IoT) solutions aimed at low-
cost battery operated devices that can quickly connect and form simple wireless links. Among
many others, target applications also include HID, remote controls, sports and fitness monitors,
portable medical devices and smart phone accessories.

SIG adopted Profiles and Services

The BLE Component supports numerous SIG-adopted GATT-based Profiles and Services that
can be configured for either a GATT Client or GATT Server. The Component generates all the
necessary code for a particular Profile/Service operation, as configured in the component
Configure dialog.

The component can also support several Profiles at a time by adding the required Services of a
Profile to a base Profile. For example, you can select HID as a base Profile. Then to add a Find
Me Profile, add the Immediate Alert Service to the HID Profile.

See BLE Service-Specific APIs for a list of supported Profiles and Services.

Comprehensive APIs

The BLE Component provides application-level APIs to design solutions without requiring
manual stack-level configuration. The BLE Component API documentation is also provided in a
separate HTML-based file.

Custom Profiles

You can create custom Profiles that use existing Services, and you can create custom Services
with custom Characteristics and Descriptors. There are no restrictions for GAP roles for a
custom Profile.

Debug Support

For testing and debugging, the Component can be configured to HCI mode through a
Component embedded UART. For over-the-air verification, Cypress CySmart Central Emulation
Tool can be used for generic Bluetooth host stack emulation. To launch this tool, right click on
the Component to bring up the context menu, and choose to deploy the CySmart Central
Emulation Tool.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 3 of 559

BLE Component Architecture

The BLE Component consists of the BLE Stack, BLE Profile, BLE Component Hardware
Abstraction Layer (HAL), and the Link Layer. The following figure shows a high-level architecture
of the BLE Component, illustrating the relationship between each of the layers and the route in
which the application interacts with the Component. Note that the application is informed of the
BLE events through the use of callback functions. You may build your state machine using
these.

For detail, refer to the Callback Functions section.

BLE Component

GUI GATT DB Profile API

Stack

Controller

Manager

Application

B
LE

 A
P

I

Event Scheduler

HAL

HW

BLESSUART

ISR
ISR

SW Timer

Ti
m

er
 A

P
I

HCI

I/O interface to

external resources

Profile specific interface
(e.g., heart rate sensor)

GAP/GATT

Host

GAP/GATT API

P
ro

ce
ss

 E
ve

n
t

ca
ll

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 4 of 559 Document Number: 002-29930 Rev. *A

The following sub-sections overview each layer.

BLE Stack

The BLE stack implements the core BLE functionality as defined in Bluetooth Core Specification
4.2. The stack is included as a precompiled library and it is embedded inside the BLE
Component.

The BLE stack implements all the mandatory and optional features of Low Energy Single Mode
compliant with Bluetooth Core Specification 4.2. The following table shows which Bluetooth Core
Specification 4.2 features are supported by different devices.

Features Devices with Bluetooth 4.1 Devices with Bluetooth 4.2

LE Secure connection

LL Privacy -

LE Data Length Extension -

The BLE Stack implements a layered architecture of the BLE protocol stack as shown in the
following figure.

BLE Stack

Physical Layer (PHY)

Link Layer (LL)

Host Control Interface (HCI)

Logical Link Control and Adaption Protocol (L2CAP)

Attribute Protocol (ATT) Security Manager (SM)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

Controller

Host

Generic Access Profile (GAP)

The Generic Access Profile defines the generic procedures related to discovery of Bluetooth
devices and link management aspects of connecting to Bluetooth devices. In addition, this profile
includes common format requirements for parameters accessible on the user interface level.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 5 of 559

The Generic Access Profile defines the following roles when operating over the LE physical
channel:

▪ Broadcaster role – A device operating in the Broadcaster role can send advertising
events. It is referred to as a Broadcaster. It has a transmitter and may have a receiver.

▪ Observer role – A device operating in the Observer role is a device that receives
advertising events. It is referred to as an Observer. It has a receiver and may have a
transmitter.

▪ Peripheral role – A device that accepts the establishment of an LE physical link using
any of the connection establishment procedures is termed to be in a "Peripheral role." A
device operating in the Peripheral role will be in the "Slave role" in the Link Layer
Connection State. A device operating in the Peripheral role is referred to as a Peripheral.
A Peripheral has both a transmitter and a receiver.

▪ Central role – A device that supports the Central role initiates the establishment of a
physical connection. A device operating in the "Central role" will be in the "Master role" in
the Link Layer Connection. A device operating in the Central role is referred to as a
Central. A Central has a transmitter and a receiver.

Generic Attribute Profile (GATT)

The Generic Attribute Profile defines a generic service framework using the ATT protocol layer.
This framework defines the procedures and formats of services and their Characteristics. It
defines the procedures for Service, Characteristic, and Descriptor discovery, reading, writing,
notifying, and indicating Characteristics, as well as configuring the broadcast of Characteristics.

GATT Roles

▪ GATT Client – This is the device that wants data. It initiates commands and requests
towards the GATT Server. It can receive responses, indications, and notifications data
sent by the GATT Server.

▪ GATT Server – This is the device that has the data and accepts incoming commands and
requests from the GATT Client and sends responses, indications, and notifications to a
GATT Client.

The BLE Stack can support both roles simultaneously.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 6 of 559 Document Number: 002-29930 Rev. *A

Attribute Protocol (ATT)

The Attribute Protocol layer defines a Client/Server architecture above the BLE logical transport
channel. The attribute protocol allows a device referred to as the GATT Server to expose a set of
attributes and their associated values to a peer device referred to as the GATT Client. These
attributes exposed by the GATT Server can be discovered, read, and written by a GATT Client,
and can be indicated and notified by the GATT Server. All the transactions on attributes are
atomic.

Security Manager Protocol (SMP)

Security Manager Protocol defines the procedures and behavior to manage pairing,
authentication, and encryption between the devices. These include:

▪ Encryption and Authentication

▪ Pairing and Bonding

□ Pass Key and Out of band bonding

▪ Key Generation for a device identity resolution, data signing and encryption

▪ Pairing method selection based on the IO capability of the GAP central and GAP
peripheral device

Logical Link Control Adaptation Protocol (L2CAP)

L2CAP provides a connectionless data channel. LE L2CAP provides the following features:

▪ Channel multiplexing, which manages three fixed channels. Two channels are dedicated
for higher protocol layers like ATT, SMP; one channel – for the LE-L2CAP protocol
signaling channel for its own use.

▪ Segmentation and reassembly of packets whose size is up to the BLE Controller
managed maximum packet size.

▪ Connection-oriented channel over a specific application registered using the PSM
(protocol service multiplexer) channel. It implements credit-based flow control between
two LE L2CAP entities. This feature can be used for BLE applications that require
transferring large chunks of data.

Host Controller Interface (HCI)

The HCI layer implements a command, event, and data interface to allow link layer access from
upper layers such as GAP, L2CAP, and SMP.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 7 of 559

Link Layer (LL)

The LL protocol manages the physical BLE connections between devices. It supports all LL
states such as Advertising, Scanning, Initiating, and Connecting (Master and Slave). It
implements all the key link control procedures such as LE Encryption, LE Connection Update, LE
Channel Update, and LE Ping. The Link Layer is hardware-firmware co-implementation, where
the key time critical LL functions are implemented in the LL hardware. The LL firmware maintains
and controls the key LL procedure state machines. It supports all the BLE chip specific low
power modes.

The BLE Stack is a pre-compiled library in the BLE Component. The appropriate configuration of
the BLE Stack library is linked during a build process based on application. The BLE Stack
libraries are ARM Embedded Application Binary Interface (eabi) compliant and they are compiled
using ARM compiler version 5.03.

The following table shows the mapping between the BLE Stack library to the user-configured
Profile Role in Profile Mode or HCI Mode. Refer to the Generic Tab section for selection of stack
configuration.

BLE Component
Configuration GAP Role BLE Stack Library

BLE Profile Central + Peripheral CyBLEStack_BLE_SOC_CENTRAL_PERIPHERAL.a

BLE Profile Central CyBLEStack_BLE_SOC_CENTRAL.a

BLE Profile Peripheral CyBLEStack_BLE_SOC_PERIPHERAL.a

Broadcaster/Observer Broadcaster CyBLEStack_BLE_SOC_PERIPHERAL.a

Broadcaster/Observer Observer CyBLEStack_BLE_SOC_CENTRAL.a

HCI Mode N/A CyBLEStack_HCI_MODE_CENTRAL_PERIPHERAL.a

Profile Layer

In the BLE, data is organized into concepts called Profiles, Services, and Characteristics.

▪ Profile – Describes how devices connect to each other to find and use Services. It is a
definition used by Bluetooth devices to describe the type of application and the general
expected behavior of that device. See the Profile parameter for how to configure the BLE
Component.

▪ Service – A collection of data entities called Characteristics. A Service is used to define a
certain function in a Profile. A Service may also define its relationship to other Services. A
Service is assigned a Universally Unique Identifier (UUID). This is 16 bits for SIG adopted
Services and 128 bits for custom Services. See the Toolbar section for information about
adding Services to a Profile.

▪ Characteristic – Contains a Value and the Descriptor that describes the Characteristic
Value. It is an attribute type for a specific piece of information within a Service. Like a
Service, each Characteristic is designated with a UUID; 16 bits for SIG-adopted

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 8 of 559 Document Number: 002-29930 Rev. *A

Characteristics and 128 bits for custom Characteristics. See the Toolbar section for
information about adding Characteristics and Descriptors.

The following diagram shows the relationship between Profiles, Services, and Characteristics in
a sample BLE heart rate monitor application using a Heart Rate Profile.

 Profile: Heart Rate Collector role Profile: Heart Rate Sensor role

Service

Heart Rate Service

Characteristic

Heart Rate measurement

Characteristic

Body Sensor Location

Characteristic

Heart Rate Control Point

Wants data Has data

Heart Rate Service

Device Information

Service

Link Layer: Master

GAP role: Central

GATT Server

GAP role: Peripheral

BLE HRM

Belt

GATT Client

Link Layer: Slave

GATT

Client

GATT

Server

Scans Services Exposes Services
Collector

Profile

Sensor

Profile

Initiates physical link

connection

Accepts physical link

connection
GAP

Central

GAP

Peripheral

Establish and manage

link
Advertise Capabilities

Link

Master

Link

Slave

The Heart Rate Profile contains a Heart Rate Service and a Device Information Service. Within
the Heart Rate Service, there are three Characteristics, each containing different information.
The device in the diagram is configured as a Sensor role, meaning that in the context of the
Heart Rate Profile, the device is a GAP Peripheral and a GATT Server. These concepts are
explained in the BLE Stack description.

The Profile layer is generated by PSoC Creator using the parameter configurations specified in
the GUI. The Profile implements the Profile-specific attribute database and APIs required for the
application. You can choose to configure a standard SIG-adopted Profile and generate a design
or define a Custom Profile required by an application. The GUI also allows import/export of a
Profile design in the XML format for Profile design re-use. In addition, the Bluetooth Developer
Studio compliant XML format is available.

Hardware Abstraction Layer (HAL)

The HAL implements the interface between the BLE stack and the underlying hardware. This
layer is meant for the stack only and is not advisable to be modified.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 9 of 559

Functional Description

Operation Flow

Typical application code consists of three separate stages: Initialization, Normal operation, and
Low power operation.

Power-on

Platform initialization

BLE-Component Initialization

BLE-Init Success

- Process received packet &
status of previous transfer
- Scan sensors

No

Any data to Tx

Call BLE component s
Tx function

Pending Event

No sensor / BLE event
till Deep sleep timeout

Go to Sleep mode

Go to Deep Sleep
mode

Event
Occurred

No

Yes

No

Yes

Yes

No

Process BLE Events

Yes

BLE-Establish Connection

Yes
Application to call
 Process BLE
Events API at least
once in BLE
connection event
period

Execute Deep Sleep
wakeup sequence

Wake-up from
hibernate

No

No

Device
connected

Yes

No

Connected
Success

Yes

No

Error handling –
Application decides to go

to Power-down mode

Once the Component is initialized, it enters normal operation and periodically enters various
degrees of low-power operation to conserve power. Hence, initialization should only happen at a
system power-up, and the Component should operate between Normal mode and Low-power
mode afterwards.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 10 of 559 Document Number: 002-29930 Rev. *A

System Initialization

The initialization stage happens at a system power-up or when waking from system hibernation.
This stage sets up the platform and the Component parameters. The application code should
also start the Component and set up the callback functions for event callbacks to happen in the
other modes of operation.

System Normal Operation

Upon successful initialization of the BLE Component or hibernate wakeup sequence, the
Component enters Normal mode. Normal operation first establishes a BLE connection, if it is not
already connected. Then processes all pending BLE events by checking the stack status. This is
accomplished by calling CyBle_ProcessEvents(). When all events have been processed, any
data to be communicated is transmitted and the BLE Component enters low-power operation
unless there is another pending event. In such a case, it executes a normal operation flow again.
Processing of BLE events should be performed at least once in a BLE connection event period.
The BLE connection event is configured by the Central device while establishing a connection.

System Low-power Operation

When there are no pending interrupts in normal operation, the Component should be placed in
Low power mode. It should first enter Sleep mode. The component can enter either Sleep or
Deep Sleep mode depending on the state of the BLE interface hardware. If an event happens at
any time in Low power mode, it should re-enter normal operation.

Note The MCU and BLE Sub-System (BLESS) have separate power modes and are able to go
to different power modes independent of each other. The check marks in the following table
show the possible combination of power modes of MCU and BLESS.

BLESS Power Modes

PSoC 4200-BL, PRoC 4200-BL MCUs Power Modes

Active Sleep Deep Sleep Hibernate Stop

Active (idle/Tx/Rx)

Sleep

Deep Sleep (ECO off)

Off

Callback Functions

The BLE Component requires that you define a callback function for handling BLE stack events.
This is passed as a parameter to the CyBle_Start() API. The callback function is of type
CYBLE_CALLBACK_T, as defined by:

void (* CYBLE_CALLBACK_T)(uint32 eventCode, void *eventParam);

▪ eventCode – The stack event code

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 11 of 559

▪ eventParam – Stack event parameters

The callback function should then evaluate eventCode (and eventParam for certain events) and
provide stack event-specific actions. Hence, the events are used to build your application-
specific state machine for general events such as advertisement, scan, connection, and timeout.
Refer to the BLE Common Events section for the BLE stack events.

The BLE stack triggers an application event handler callback for any pending events generated
by the link layer, after calling the CyBle_ProcessEvents() API method. However, other BLE
component API methods requesting host-generated actions can also trigger an application event
handler callback, causing events to be processed before these API methods return.

Similarly, you will need to provide a callback function for each Service to be used. This function
is also of type CYBLE_CALLBACK_T and is passed as a parameter to the Service-specific
callback registration function. The callback function is used to evaluate the Service-specific
events and act as defined by your application. Then a Service specific state machine can be built
using these events. Refer to the BLE Service-Specific Events section for the BLE Service-
specific events.

Device Bonding

The BLE Component will store the connection link-key after pairing with a remote device. If the
connection is lost and re-established, the devices will use the previously stored key for the
connection.

The BLE stack will update the bonding data in RAM while the devices are connected. If the
bonding data is to be retained during shutdown, the application can use
CyBle_StoreBondingData() API to write the bonding data from RAM to the dedicated flash
location, as defined by the Component. Refer to the BLE_HID_Keyboard example project for
usage details.

Notes

▪ For a BLE device with 128 K of flash memory, the flash write modifies the IMO of the chip
to 48 MHz temporarily during a write cycle. Therefore, you should only perform the
bonding data flash storage while the BLE device is disconnected, because the change in
IMO may disrupt the BLE communication link. Likewise, you should either temporarily halt
all peripherals running off of the IMO or compensate for the brief frequency change during
a flash write cycle.

▪ If a BLE device with 128 K of flash memory, is configured to run at 48 MHz, then the IMO
does not change and does not affect other peripherals. However, the flash write is a
blocking call and may disrupt the BLE communication. Therefore, it is advisable to
perform the flash write while the device is disconnected.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 12 of 559 Document Number: 002-29930 Rev. *A

LFCLK Configuration

The LFCLK configuration as set in the Clocks tab of the Design-Wide Resources
(<project>.cydwr) file affects the BLE Component’s ability to operate in Deep Sleep Mode. If the
WCO is chosen, then the Component Deep Sleep mode is available for use. However, if the ILO
is chosen, then the Component cannot enter Deep Sleep.

Note The LFCLK is used in the BLE Component only during Deep Sleep mode and hence, the
ILO inaccuracy does not affect the BLE communication.

ECO Capacitance Trim

ECO capacitance trim is required to supply the correct capacitance load to achive 0 ppm for the
ECO. By default, the ECO capacitance trim values are set to the trim values of PSoC 4 BLE /
PRoC® 4 BLE modules. If any other BLE module is used (such as, EZ-BLE module), the trim
values should be changed to the values provided by that module’s datasheet.

1. To configure the ECO capacitance trim, open the Design-Wide Resources Clock Editor
(<project>.cydwr).

2. Click Edit Clock to open the “Configure System Clocks” dialog.

3. Under the High Frequency Clocks tab, in the ECO section, click the Configure… button
to open the “ECO Capacitance Trim” dialog.

http://www.cypress.com/products/psoc-4-ble-bluetooth-smart
http://www.cypress.com/products/psoc-4-ble-bluetooth-smart
http://www.cypress.com/products/ez-ble-module-bluetooth-smart

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 13 of 559

Unsupported Features

The BLE Component stack does not support the following optional Bluetooth v4.2 protocol
features, as listed in Vol 6, Part B, Section 4.6 of the specification:

▪ Connection Parameters Request Procedure (Vol 6, Part B, section 4.6.2)

▪ Extended Reject Indication (Vol 6, Part B, section 4.6.3)

▪ Slave-initiated Features Exchange (Vol 6, Part B, section 4.6.4)

Input/Output Connections

This section describes the input and output connections for the BLE. An asterisk (*) in the list of
I/Os indicates that the I/O may be hidden on the symbol under the conditions listed in the
description of that I/O.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 14 of 559 Document Number: 002-29930 Rev. *A

pa_en – Output *

The power amplifier enable (pa_en) output allows you to connect a high-active external power
amplifier to the device. This output can be routed to the P5[0] digital output pin only. This output
is visible if the Enable external Power Amplifier control parameter is selected on the
Advanced tab.

Component Parameters

Drag a BLE Component onto your design and double-click it to open the Configure dialog. This
dialog has the following tabs with different parameters.

General Tab

The General tab allows the general configuration of the BLE Component. This tab contains tools
to load and save configurations as also three main areas for the type of configuration.

Load Configuration/Save Configuration

Use the Load Configuration button to load the previously saved xml Component configuration;
use the Save Configuration button to save the current configuration for use in other designs. It is
possible to import and export the customizer configuration in xml format.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 15 of 559

Note In order to load or save a Profile in the Bluetooth Developer Studio compliant format, use
Load BDS Profile and Save Profile in BDS format toolbar commands on the Profiles tab.

Mode Selection

On the main part of this tab, there are three options to select a mode:

▪ Profile

▪ Broadcaster/Observer

▪ Host Controller Interface

General Tab – Profile

The Profile mode is used to select the target Profile, Profile role, and GAP role, as well as Over-
The-Air (OTA) Bootloading options.

Profile

The Profile option is used to choose the target Profile from a list of supported Profiles. See
Profile, Service, and Characteristic. The following Profiles are available for selection:

Alert Notification

This Profile enables a GATT Client device to receive different types of alerts and event
information, as well as information on the count of new alerts and unread items, which exist in
the GATT Server device.

▪ Alert Notification Server Profile role – Specified as a GATT Server. Requires the
following Service: Alert Notification Service.

□ Central GAP role

□ Peripheral and Central GAP role

▪ Alert Notification Client Profile role – Specified as a GATT Client.

□ Peripheral GAP role

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 16 of 559 Document Number: 002-29930 Rev. *A

□ Peripheral and Central GAP role

For detail, refer to the Alert Notification Profile Specification.

Automation IO

This Profile enables a device to connect and interact with an Automation IO Module (IOM) in
order to access digital and analog signals.

▪ Automation IO Server Profile role – Specified as a GATT Server. Requires the following
Service: Automation IO Service.

□ Peripheral GAP role

▪ Automation IO Client Profile role – Specified as a GATT Client.

□ Central GAP role

□ Peripheral and Central GAP role

Refer to the Automation IO Profile Specification for detailed information about the Automation IO
Profile.

Blood Pressure

This Profile enables a device to connect and interact with a Blood Pressure Sensor device for
use in consumer and professional health care applications.

▪ Blood Pressure Sensor Profile role – Specified as a GATT Server. Requires the
following Services: Blood Pressure Service, Device Information Service.

□ Peripheral GAP role

▪ Blood Pressure Collector Profile role – Specified as a GATT Client. Requires support of
the following Services: Blood Pressure Service. Support of Device Information Service
is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Blood Pressure Profile Specification.

Continuous Glucose Monitoring

This Profile enables a device to connect and interact with a Continuous Glucose Monitoring
Sensor device for use in consumer healthcare applications.

▪ Continuous Glucose Monitoring Sensor Profile role – Specified as a GATT Server.
Requires the following Services: Continuous Glucose Monitoring Service, Device
Information Service. Optionally may include Bond Management Service.

□ Peripheral GAP role

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=242286
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=304971
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=243125

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 17 of 559

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Services: Continuous Glucose Monitoring Service. Support of Bond Management
Service and Device Information Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Continuous Glucose Monitoring Profile Specification.

Cycling Power

This Profile enables a Collector device to connect and interact with a Cycling Power Sensor for
use in sports and fitness applications.

▪ Cycling Power Sensor Profile role – Specified as a GATT Server. Requires the following
Service: Cycling Power Service. Optionally may include Device Information Service
and Battery Service.

□ Peripheral GAP role

▪ Cycling Power Sensor and Broadcaster Profile role. Requires the following Service:
Cycling Power Service.

□ Peripheral GAP role

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Cycling Power Service. Support of Device Information Service and Battery
Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

▪ Cycling Power Observer Profile role. Can only talk to a device with the Cycling Power
Broadcaster role.

□ Central GAP role

For detail, refer to Cycling Power Profile Specification.

Cycling Speed and Cadence

This Profile enables a Collector device to connect and interact with a Cycling Speed and
Cadence Sensor for use in sports and fitness applications.

▪ Cycling Speed and Cadence Sensor Profile role – Specified as a GATT Server.
Requires the following Service: Cycling Speed and Cadence Service. Optionally may
include Device Information Service.

□ Peripheral GAP role

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=294793
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=271994

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 18 of 559 Document Number: 002-29930 Rev. *A

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Cycling Speed and Cadence Service. Support of Device Information Service
is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Cycling Speed and Cadence Profile Specification.

Environmental Sensing Profile

This Profile enables a Collector device to connect and interact with an Environmental Sensor for
use in outdoor activity applications.

▪ Environmental Sensor Profile role – Specified as a GATT Server. Requires the following
Service: Environmental Sensing Service. Optionally may include Device Information
Service and Battery Service.

□ Peripheral GAP role

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Environmental Sensing Service. Support of Device Information Service and
Battery Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Environmental Sensing Profile Specification.

Find Me

The Find Me Profile defines the behavior when a button is pressed on a device to cause an
alerting signal on a peer device.

▪ Find Me Target Profile role – Specified as a GATT Server. Requires the following
Service: Immediate Alert Service.

□ Peripheral GAP role

□ Central GAP role

□ Peripheral and Central GAP roles

▪ Find Me Locator Profile role – Specified as a GATT Client. Requires support of the
following Service: Immediate Alert Service.

□ Peripheral GAP role

□ Central GAP role

□ Peripheral and Central GAP roles

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=261449
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=294796

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 19 of 559

For detail, refer to Find Me Profile Specification.

Glucose

This Profile enables a device to connect and interact with a Glucose Sensor for use in consumer
healthcare applications.

▪ Glucose Sensor Profile role – Specified as a GATT Server. Requires the following
Services: Glucose Service, Device Information Service.

□ Peripheral GAP role

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Glucose Service. Support of Device Information Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Glucose Profile Specification.

Health Thermometer

This Profile enables a Collector device to connect and interact with a Thermometer sensor for
use in healthcare applications.

▪ Thermometer Profile role – Specified as a GATT Server. Requires the following Services:
Health Thermometer Service, Device Information Service.

□ Peripheral GAP role

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Health Thermometer Service. Support of Device Information Service is
optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Health Thermometer Profile Specification.

HTTP Proxy

This Service allows a Client device, typically a sensor, to communicate with a Web Server
through a gateway device. HTTP Proxy Service is not available in the Profile drop-down list. It
can be added to Custom Profile (or other) on the Profiles tab.

For detail, refer to HTTP Proxy Service Specification.

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239389
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=248025
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=238687
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=308344

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 20 of 559 Document Number: 002-29930 Rev. *A

Heart Rate

This Profile enables a Collector device to connect and interact with a Heart Rate Sensor for use
in fitness applications.

▪ Heart Rate Sensor Profile role – Specified as a GATT Server. Requires the following
Services: Heart Rate Service, Device Information Service.

□ Peripheral GAP role

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Service: Heart Rate Service. Support of Device Information Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Heart Rate Profile Specification.

HID over GATT

This Profile defines how a BLE wireless communication device can support HID Services over
the BLE protocol stack using the Generic Attribute Profile.

▪ HID Device Profile role – Specified as a GATT Server. Requires the following Services:
HID Service, Battery Service, and Device Information Service. Optionally may include
Scan Parameters Service as part of the Scan Server role of the Scan Parameters
Profile. HID Device supports multiple instances of HID Service and Battery Service and
may include any other optional Services.

□ Peripheral GAP role

▪ Boot Host Profile role – Specified as a GATT Client. Requires support of the following
Service: HID Service. Support of Battery Service and Device Information Service is
optional.

□ Central GAP role

□ Peripheral and Central GAP roles

▪ Report Host Profile role – Specified as a GATT Client. Requires support of the following
Services: HID Service, Battery Service, Device Information Service. Support of Scan
Client role of the Scan Parameters is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

▪ Report and Boot Host Profile role – Specified as a GATT Client. Requires support of the
following Services: HID Service, Battery Service, Device Information Service. Support
of Scan Client role of the Scan Parameters is optional.

□ Central GAP role

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239865

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 21 of 559

□ Peripheral and Central GAP roles

For detail, refer to HID over GATT Profile Specification.

Indoor Positioning

The Indoor Positioning Service exposes location information to support mobile devices to
position themselves in an environment where GNSS signals are not available. For example, on
indoor premises. The location information is mainly exposed via advertising and the GATT-based
service is primarily intended for configuration.

The Indoor Positioning Service is not available on the Profile drop-down list. It can be added to
the Custom Profile (or other) on the Profiles tab.

For detail, refer to Indoor Positioning Service Specification.

Internet Protocol Support

This Profile provides the support of exchanging IPv6 packets between devices over the
Bluetooth Low Energy transport. The IPSP defines two roles – Node role and Router role. A
device may support both Node role and Router role. A device supporting the Node role is likely
to be a sensor or actuator. A device supporting the Router role is likely to be an Access Point
(such as home router, mobile phone, or similar).

▪ Node Profile role – Specified as a GATT Server. Requires the following Service: Internet
Protocol Support Service.

□ Peripheral GAP role

□ Peripheral and Central GAP role

▪ Router Profile role – Specified as a GATT Client. Requires support of the following
Services: Internet Protocol Support Service.

□ Central GAP role

□ Peripheral and Central GAP role

For detail, refer to Internet Protocol Support Profile Specification.

Location and Navigation

This Profile enables devices to communicate with a Location and Navigation Sensor for use in
outdoor activity applications.

▪ Location and Navigation Sensor Profile role – Specified as a GATT Server. Requires
the following Service: Location and Navigation Service. Optionally may include Device
Information Service and Battery Service.

□ Peripheral GAP role

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245141
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=302114
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=296307

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 22 of 559 Document Number: 002-29930 Rev. *A

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Services: Location and Navigation Service. Support of Device Information Service
and Battery Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Location and Navigation Profile Specification.

Object Transfer

This Profile defines the fundamental requirements to enable an Object Client that is used to
create and delete objects and to execute a variety of actions using a currently selected object.
Such actions can be: reading object data from or writing object data to an Object Server that
exposes the Object Transfer Service. This profile is designed to be referenced by a higher layer
specification to enable a variety of object transfer use cases.

▪ Object Transfer Server Profile role – Specified as a GATT Server. Requires the following
Service: Object Transfer Service.

□ Peripheral GAP role

▪ Object Transfer Client Profile role – Specified as a GATT Client.

□ Central GAP role

For detail, refer to the Object Transfer Profile Specification and Object Transfer Service
Specification.

Phone Alert Status

This Profile enables a device to alert its user about the alert status of a phone connected to the
device.

▪ Phone Alert Server Profile role – Specified as a GATT Server. Requires the following
Services: Phone Alert Status Service.

□ Central GAP role

□ Peripheral and Central GAP role

▪ Phone Alert Client Profile role – Specified as a GATT Client. Requires support of the
following Service: Phone Alert Service.

□ Peripheral GAP role

□ Peripheral and Central GAP role

For detail, refer to Phone Alert Status Profile Specification.

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=271996
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=309936
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=309937
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=309937
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=241861

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 23 of 559

Proximity

The Proximity Profile enables proximity monitoring between two devices.

▪ Proximity Reporter Profile role – Specified as a GATT Server. Requires the following
Service: Link Loss Service. Optionally may include Immediate Alert Service and Tx
Power Service if both are used. Using only one of the optional Services is not allowed.

□ Peripheral GAP role

□ Central GAP role

▪ Proximity Monitor Profile role – Specified as a GATT Client. Requires support of the
following Services: Link Loss Service. Support of Immediate Alert Service and Tx
Power Service is optional. The same restrictions apply to Proximity Reporter.

□ Central GAP role

□ Peripheral GAP role

□ Peripheral and Central GAP role

For detail, refer to Proximity Profile Specification.

Pulse Oximeter

This Profile is used to enable communications between a Pulse Oximeter (PLX) and a Collector.
It guides you to find, connect to, receive measurements from, and configure a pulse oximeter
that supports this profile.

▪ Pulse Oximeter Sensor Profile role – Specified as a GATT Server. Requires the
following Services: Pulse Oximeter Service and Device Information Service. Optionally
may include Bond Management Service, Current Time Service and/or Battery Service.

□ Peripheral GAP role

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Services: Pulse Oximeter Service and Device Information Service. Support of Bond

Management Service, Current Time Service and/or Battery Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Pulse Oximeter Specification.

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239392
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239392

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 24 of 559 Document Number: 002-29930 Rev. *A

Running Speed and Cadence

This Profile enables a Collector device to connect and interact with a Running Speed and
Cadence Sensor for use in sports and fitness applications.

▪ Running Speed and Cadence Sensor Profile role – Specified as a GATT Server.
Requires the following Service: Running Speed and Cadence Service. Optionally may
include Device Information Service.

□ Peripheral GAP role

▪ Collector Profile role – Specified as a GATT Client. Requires support of the following
Services: Running Speed and Cadence Service. Support of Device Information
Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Running Speed and Cadence Profile Specification.

Scan Parameters

This Profile defines how a Scan Client device with BLE wireless communications can write its
scanning behavior to a Scan Server, and how a Scan Server can request updates of the Scan
Client scanning behavior.

▪ Scan Server Profile role – Specified as a GATT Server. Requires the following Service:
Scan Parameters Service.

□ Peripheral GAP role

▪ Scan Client Profile role – Specified as a GATT Client. Required support of the following
Service: Scan Parameters Service.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Scan Parameters Profile Specification.

Time

The Time Profile enables the device to get the date, time, time zone, and DST information and
control the functions related to time.

▪ Time Server Profile role – Specified as a GATT Server. Requires the following Service:
Current Time Service. Optionally may include Next DST Change Service and
Reference Time Update Service.

□ Central GAP role

□ Peripheral and Central GAP role

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=261266
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=245142

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 25 of 559

▪ Time Client Profile role – Specified as a GATT Client. Requires support of the following
Service: Current Time Service. Support of Next DST Change Service and Reference
Time Update Service is optional.

□ Peripheral GAP role

□ Peripheral and Central GAP role

For detail, refer to Time Profile Specification.

Weight Scale

The Weight Scale Profile is used to enable a data collection device to obtain data from a Weight
Scale that exposes the Weight Scale Service.

▪ Weight Scale Profile role – Specified as a GATT Server, and may be also a GATT Client.

Requires the following Services: Weight Scale Service and Device Information
Service.

Optionally may include: User Data Service, Body Composition Service, Battery
Service and Current Time Service.

□ Peripheral GAP role

▪ Collector Profile role – Specified as a GATT Client, and may be also a GATT Service.

Required support of the following Service: Weight Scale Service and Device
Information Service.

Support of User Data Service, Body Composition Service, Battery Service and
Current Time Service is optional.

□ Central GAP role

□ Peripheral and Central GAP roles

For detail, refer to Weight Scale Profile Specification.

Wireless Power Transfer

The Wireless Power Transfer Profile (A4WP) enables communication between Power Receiver
Unit and Power Transmitter Unit in the Wireless Power Transfer systems.

▪ Power Receiver Unit Profile role – Specified as a GATT Server. Requires the following
Service: Wireless Power Transfer.

□ Peripheral GAP role

▪ Power Transmitter Unit Profile role – Specified as a GATT Client. Requires support of
the following Service: Wireless Power Transfer.

□ Central GAP role

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=241874
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=293525

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 26 of 559 Document Number: 002-29930 Rev. *A

□ Peripheral and Central GAP roles

The Wireless Power Transfer Profile is a custom service defined by the Alliance for Wireless
Power (A4WP).

Refer to AirFuel Alliance for the detailed information about the Wireless Power Transfer Profile.

Custom

Used to create a custom Profile. It allows you to add a Custom Service and gives control over
the Service types. Custom Services cannot be used in stand-alone mode; they need to be used
in a Profile. For example, the Device Information Service is used in the Heart Rate Profile. It can
be used in a custom Profile, or it can be added to any of existing Profiles.

Note The Apple Notification Center Service is not included into any Bluetooth SIG adopted
Profiles, so it can be used only within custom Profile.

▪ Server (GATT Server) Profile role

□ Peripheral GAP role

□ Central GAP role

□ Peripheral and Central GAP roles

▪ Client (GATT Client) Profile role

□ Peripheral GAP role

□ Central GAP role

□ Peripheral and Central GAP roles

▪ Client and Server (GATT Client and Server) Profile role

□ Peripheral GAP role

□ Central GAP role

□ Peripheral and Central GAP roles

Bootloader Profile

The component supports the Bootloader Profile and Bootloader Service, which allow a
Bootloader component to update the existing firmware on the Cypress BLE device. The
Bootloader Service uses the Bluetooth Low Energy interface as a communication interface. It
can be added to any of the profiles if the design requires updating the firmware Over-the-Air
(OTA).

The Bootloader Service is designed to be used with the Cypress Bootloader/Bootloadable
components and therefore it uses the characteristic structure compatible with the Bootloader
component command format.

http://airfuel.org/

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 27 of 559

Profile Role

The Profile role parameter configuration depends on the chosen Profile, and the Profile role
selection affects the GAP role parameter. These parameters affect the options available on the
Profiles tab.

▪ GATT Server – Defines the role of the device that contains a specific data in a structured
form. The device in this role is usually a sensor that gets the data. The data is structured
in the GATT database. BLE Profiles can introduce their own names to identify GATT
Server device (e.g. Find Me Profile uses “Find Me Target”). GATT Server devices usually
utilize the GAP Peripheral role.

▪ GATT Client – Defines the role of the device that generates requests to the GATT Server
device to fetch data. BLE Profiles can introduce their own names to identify GATT Client
device (e.g. Find Me Profile uses “Find Me Locator”). GATT Client devices usually utilize
the GAP Central role.

▪ Client and Server – Defines the role of the device that concurrently can perform
functionality of a GATT Client and Server Profile role. For example, a peripheral device
can act as a GATT Client and start discovering the iOS device's (acting as GATT Server)
Services (Battery, Time and Apple Notification Central Service).

Gap Role

The GAP role parameter can take the following values:

▪ Peripheral – Defines a device that advertises using connectable advertising packets and
so becomes a slave once connected. Peripheral devices need a Central device, as the
Central device initiates connections. Through the advertisement data, a Peripheral device
can broadcast the general information about a device.

▪ Central – Defines a device that initiates connections to peripherals and will therefore
become a master when connected. Peripheral devices need a Central device, as the
Central device initiates connections.

▪ Peripheral and Central – In this role, the application can perform role reversal between
Peripheral and Central roles at run time. For example, Bluetooth Smart watch (Peripheral)
can connect to a smartphone (Central device). The same sports watch can then switch to
the Central device mode to obtain data from other Peripheral devices such as a heart rate
monitor and a blood pressure sensor.

Note The BLE device can also be configured to simultaneously support both Peripheral
and Broadcaster or Central and Observer roles. This option is not exposed in the GUI, but
can be dynamically configured in the firmware. Refer to the BLE Cycling Sensor code
example for an implementation of simultaneous Peripheral and Broadcaster roles.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 28 of 559 Document Number: 002-29930 Rev. *A

Over-The-Air bootloading with code sharing

This option is used in the over-the-air (OTA) implementation. It allows you to share the BLE
component code between two component instances: one instance with profile-specific code and
one with the stack. This parameter allows you to choose between the following options:

▪ Disabled – Disables the OTA feature.

▪ Stack only – The component represents only the stack portion of BLE along with a
Bootloader Service. Used to isolate the stack from the profiles.

Stack only mode is used in the BLE OTA Upgradable Stack Example.

Note This mode requires approximately 3024 additional bytes of heap memory. If there is
not enough heap memory, the BLE component will not work. The Heap size property can
be modified in the PSoC Creator Design-Wide Resources System Editor. See the PSoC
Creator Help for more information.

▪ Profile only – This option makes the component only have the profile-specific code.
Stack is excluded.

□ Stack dependency – This field allows you to associate a Profiles only project with
a Stack only project. Each project configured in Stack only mode during the build
generates the .CYCSA file located in the Generated_Source project folder. This file
needs to be referenced from the Profiles only project using this field.

General Tab – Broadcaster/Observer

The Broadcaster/Observer mode allows you to configure the device directly into one of the
non-connectable GAP roles that does not require a Profile definition.

Two GAP roles are available for selection:

▪ Broadcaster – Similar to the Peripheral role, the device sends advertising data. However
Broadcaster does not support connections and can only send data but not receive it.

▪ Observer – The device scans for Broadcasters and reports the received information to an
application. The Observer role does not allow transmissions.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 29 of 559

General Tab – Host Controller Interface

Choosing this configuration places the component in HCI mode, which enables use of the device
as a BLE controller. It also allows communication with a host stack using a Component
embedded UART. When choosing this mode, the Profiles tab, GAP Settings tab, and L2CAP
Settings tab become unavailable.

Two HCI interfaces are available for selection:

▪ Software HCI

The BLE host communicates with the BLE controller using the software transport.

Use CyBle_HciSendPacket() to send the HCI commands to the BLE controller. The BLE
controller will generate CYBLE_EVT_HCI_PKT event with responses to HCI commands in
the registered application callback. The same event should be used to receive commands
from remote devices in the HCI format.

▪ HCI over UART

The BLE host communicates with the BLE controller via a UART.

The UART is a full-duplex 8 data bit, 1 stop bit, no parity with Flow control interface.

The parameters:

□ Baud rate (bps) – Configures a UART baud rate.

□ RTS – Enables the Ready to Send (RTS) output signal. The RTS signal is part of
the flow control functionality used by the receiver. If the receiver is ready to accept
more data, it will keep the RTS signal active. The RTS FIFO level parameter
determines if RTS remains active. The default value is True.

□ RTS Polarity – Defines active polarity of an RTS output signal as Active Low
(default) or Active High.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 30 of 559 Document Number: 002-29930 Rev. *A

□ RTS FIFO level – Only available for the PSoC 4100 BLE / PSoC 4200 BLE / PSoC
4100M / PSoC 4200M / PSoC 4200L / PSoC 4000S / PSoC 4100S / PSoC Analog
Coprocessor devices. Determines whether an RTS signal remains active. While the
RX FIFO has fewer entries than the RTS FIFO level, the RTS signal remains
active. Otherwise, the RTS signal becomes inactive. The RTS remains inactive unit
data from RX FIFO will be read to match RTS FIFO level. The default value is 4.

□ CTS – Enables the Clear to Send (CTS) input signal to be routed out to the pin.
The CTS signal is part of flow control functionality used by the transmitter. The
transmitter checks whether the CTS signal is active before sending data from the
TX FIFO. The transmission of data is suspended if the CTS signal is inactive, and
transmission will be resumed when the CTS signal becomes active again. Default
value: true.

□ CTS Polarity – Defines the active polarity of a CTS input signal as Active Low
(default) or Active High.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 31 of 559

Profiles Tab

The Profiles tab is used to configure Profile-specific parameters. It is directly affected by the
choice of Profile settings set in the General tab. The Profiles tab has 3 areas: Toolbars, Profiles
tree, and Parameters Configuration.

Toolbars

The toolbars contain navigation options and a means to add or delete Services, Characteristics,
and Descriptors.

▪ Add Service – Available when the Profile Role is highlighted in the Profile tree. It allows
loading of Services in the selected Profile Role. In GATT server configuration, this option
adds the selected service data to the server GATT database and enables service-specific
APIs. In GATT client configuration, the data structures for auto discovery of this service is
created by the Component. If services not-populated in the GUI are discovered during
auto discovery, the Component ignores those service and the application is responsible
for discovering such services details.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 32 of 559 Document Number: 002-29930 Rev. *A

Refer to the Profile section for the available Services.

▪ Add Characteristic – Available when a Service is highlighted in the Profile tree. The
Characteristic options are unique to each Service and are all loaded automatically when a
Service is added to the design. The Add Characteristic button can be used to manually
add new Characteristics to the Service. All Characteristics for the above mentioned
Services plus Custom Characteristic are available for selection.

▪ Add Descriptor – Available when a Characteristic is highlighted in the Profile tree. Similar
to the Characteristic options, Descriptor options are unique to a Characteristic and are all
automatically loaded when a Characteristic is added to the design. For detail of BLE
Characteristic Descriptors, refer to developer.bluetooth.org.

Note Only Bluetooth SIG members have full access to this site.

▪ Delete – Deletes the selected Service, Characteristic, or Descriptor.

▪ Load/Save – Imports/Exports Profiles, Services, Characteristics, and Descriptors as
shown in the tree. This functionality is independent of the Load Configuration/Save
Configuration buttons on the General tab. That is, this allows you to customize this tree
independently of the general settings. Each exported file type will have its own extension.

The BLE component supports import and export of profiles in the file format of Bluetooth
Developer Studio tool. Use Load BDS Profile command to import the BDS profile and
Save Profile in BDS format command to export the profile into the BDS file format.

▪ Rename – Renames the selected item in the Profiles tree.

▪ Move Up/Down – Moves the selected item up or down in the Profiles tree.

▪ Copy/Paste – Copies/pastes items in the Profiles tree.

▪ Expand All – Expands all items in the Profiles tree.

▪ Collapse all Services – Collapses all Services in the Profiles tree.

Profiles Tree

The Profiles tree is used to view Services, Characteristics, and Descriptors in the selected
Profile. By navigating through the tree, you can quickly add, delete, or modify Services,
Characteristics, and Descriptors using the toolbar buttons or the context menu. You can
configure the parameters by clicking an item on the tree. These parameters will show in the
Parameters Configuration section.

https://developer.bluetooth.org/

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 33 of 559

Parameters Configuration

The Parameters Configuration section allows you to configure a Service or Characteristic by
selecting the type of Service or Characteristic in the tree.

Notes

▪ All Profiles must have a Generic Access Service and a Generic Attribute Service.

▪ The Service Characteristics are configurable only when the device is a GATT Server.

▪ The security settings located in the GAP Settings tab are applied globally. Also, you can
manually configure the security of each Characteristic/Descriptor.

▪ The tree node icons may have two colors: blue – the node is mandatory and cannot be
deleted; white – the node is optional.

Generic Access Service

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 34 of 559 Document Number: 002-29930 Rev. *A

This Service is used to define the basic Bluetooth connection and discovery parameters. Click
the Characteristic under the Generic Access Service to view that particular Characteristic
settings. You perform the actual Characteristics configuration in the General options located in
the GAP Settings tab.

▪ Device Name – The name of your device. It has a read (without
authentication/authorization) default-associated property. This parameter can be up to
248 bytes. The value comes from the Device Name field on the GAP Settings tab, under
General.

▪ Appearance – The device's logo or appearance, which is a SIG-defined 2-byte value. It
has a read (without authentication/authorization) default-associated property. The value
comes from the Appearance field on the GAP Settings tab, under General.

▪ Peripheral Preferred Connection – A device in the peripheral role can convey its
preferred connection parameter to a peer device. This parameter is 8 bytes in total and is
composed of the following sub-parameters.

Note This parameter is read-only and is derived from the GAP Settings tab, Peripheral
Preferred Connection Parameters node. It will only be available when the device
supports a Peripheral role. Refer to the GAP Settings Tab Peripheral preferred connection
parameters section for more information.

□ Minimum Connection Interval – A 2-byte parameter that denotes the minimum
permissible connection time.

□ Maximum Connection Interval – A 2-byte parameter that denotes the maximum
permissible connection time.

□ Slave Latency – A 2-byte value that defines the latency between consecutive
connection events.

□ Connection Supervision Timeout Multiplier – A 2-byte value that denotes the LE
link supervision timeout interval. It defines the timeout an LE link needs to be
sustained for if no response comes from a peer device over the LE link.

Note The above parameters are used for connection parameters update procedure over
L2CAP if a GAP central device does not use the peripheral preferred connection
parameters. For example, iOS7 ignores peripheral preferred connection parameter
Characteristics and establishes a connection with a default 30 ms connection interval. The
peripheral device should request a connection parameter update by sending an L2CAP
connection parameter update request at an appropriate time.

Typical peripheral implementation should initiate an L2CAP connection parameter update
procedure after any Characteristic is configured for periodic notification or indication.

▪ Central address resolution – A device in the central role can convey whether it supports
privacy with the address resolution. The Peripheral checks if the peer device supports the
address resolution by reading the Central Address Resolution characteristic before using

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 35 of 559

the directed advertisement where the initiator address is set to a Resolvable Private
Address (RPA).

Generic Attribute Service

Click the Characteristic under the Generic Attribute Service to configure a particular
Characteristic.

▪ Service Changed – Used to indicate to a connected device that a Service has changed
(i.e., added, removed, or modified). Used to indicate to GATT Clients that have a trusted
relationship (i.e., bond) with the GATT Server when GATT based Services have changed
when they re-connect to the GATT Server. It is mandatory for the device in the GATT
Client role. For the device in the GATT Server role, the Characteristic is mandatory if the
GATT Server changes the supported Services in the device.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 36 of 559 Document Number: 002-29930 Rev. *A

Custom Service Configuration

UUID

A universally unique identifier of the service. This field is editable for Custom Services. Use the
Generate button to generate a random 128-bit UUID.

Service type

▪ Primary – Represents the primary functionality of the device.

▪ Secondary – Represents the device additional functionality. A secondary service must be
included in another service.

Included services

▪ The list of the Services that can be included in the selected Service. Each Service may
have one or more included Services. The included Services provide the additional
functionality for the Service.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 37 of 559

Custom Characteristic Configuration

UUID

A universally unique identifier of the Characteristic. This field is editable for Custom
Characteristics. Use the Generate button to generate a random 128-bit UUID.

Fields

Represent a Characteristic value. The default value for each field can be set in the Value
column. The fields are customizable for the Custom Characteristic.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 38 of 559 Document Number: 002-29930 Rev. *A

Properties

The Characteristic properties define how the Characteristic value can be used. Some properties
(Broadcast, Notify, Indicate, Reliable Write, Writable Auxiliaries) require the presence of a
corresponding Characteristic Descriptor. For details, refer Bluetooth Core Specification Vol.3,
part G (GATT), section 3.3.1.1 “Characteristic Properties”.

Permissions

Characteristic permissions define how the Characteristic Value attribute can be accessed and
the security level required for this access. Access permissions are set based on the
Characteristic properties. The Update after GAP Security Level change check box determines
if the Security permissions are automatically updated when the Security Mode or Security
Level parameters are changed on the GAP Settings tab.

Custom Descriptor Configuration

UUID

A universally unique identifier of the Descriptor. This field is editable for Custom Descriptors. Use
the Generate button to generate a random 128-bit UUID.

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 39 of 559

Fields

Fields represent a Descriptor value. The default value for each field can be set in the Value
column. In case of the Custom Descriptor, the fields are customizable.

Permissions

Descriptor permissions define how the Descriptor attribute can be accessed and the security
level required for this access.

Bootloader Service Configuration

UUID

A universally unique identifier of the service. The UUID is set to 00060000-F8CE-11E4-ABF4-
0002A5D5C51B.

Service type

▪ Primary – Represents the primary functionality of the device.

▪ Secondary – Represents an additional functionality of the device. The secondary service
must be included in another service.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 40 of 559 Document Number: 002-29930 Rev. *A

Included services

▪ The list of the Services that can be included in the selected Service. Each Service may
have one or more included Services. The included Services provide the additional
functionality for the Service.

Command Characteristic Configuration

UUID

A universally unique identifier of the Characteristic. The UUID is set to 00060001-F8CE-11E4-
ABF4-0002A5D5C51B.

Fields

Fields represent Command Characteristic values, such as the following.

▪ Start of packet – This constant defines the start of a bootloader packet.

▪ Command – This field defines a bootloader command. Since the bootloader commands
are dependent on the revision of the Cypress Bootloader/Bootloadable component, refer
to the Bootloader/ Bootloadable component datasheet for the list and description of
bootloader commands.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 41 of 559

▪ Status Code – This field defines the status code of the command.

▪ Data Length – This field defines the length of the bootloader command/response and
should be set to the maximum command data length that can be used in the design. The
maximum command data length should be obtained from the Bootloader component
datasheet.

Per specifics of the BLE protocol, if the command requires a response larger than 20
bytes, the attribute MTU size should be increased. To support the responses with a data
length set to 56 (response for Get Metadata command), the attribute MTU size should be
set to 66. This can be seen from the following equation:

MTU size = Data Length + Bootloader command overhead + notification
parameters overhead

Where:

□ Data Length = the response data length

□ Bootloader command overhead = 7

□ Notification parameters overhead = 3

Not following this will result in the BLE component failing to send a response to the
requested command.

▪ Data – This field defines bootloader command data. The length of this field is specified by
the Data Length field.

▪ Checksum – This field defines a checksum computed for an entire packet with the
exception of the Checksum and End of Packet fields.

▪ End of Packet – This constant defines the end of a bootloader packet.

Properties

The Command Characteristic can be Written or Notified.

Permissions

Characteristic permissions define how the Characteristic Value attribute can be accessed, as
well as the security level required for this access. Access permissions are set based on the
Characteristic properties. The Update after GAP Security Level change check box determines
if the Security permissions are automatically updated when the Security Mode or Security
Level parameters are changed on the GAP Settings.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 42 of 559 Document Number: 002-29930 Rev. *A

GAP Settings Tab

The GAP parameters define the general connection settings required when connecting Bluetooth
devices. It contains various sections of parameters based on the item you select in the tree.

The GAP Settings tab displays the settings possible based on the GAP role selected in the
General tab. This tab allows the default settings of the active tree item to be restored by using
the Restore Defaults button.

The following sections show the different categories of parameters based on what item you
select in the tree.

GAP Settings Tab – General

This section contains general GAP parameters:

Public device address (Company ID – Company assigned)

This is a unique 48-bit Bluetooth public address used to identify a device. It is divided into the
two parts:

▪ “Company ID” – The 24 most significant bits contain this part. It is a 24-bit Organization
Unique Identifier (OUI) address assigned by IEEE.

▪ “Company assigned” – The 24 least significant bits contain this part.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 43 of 559

The address configured here is static and is designed to be used for development purposes only.
During production, the device address should be programmed into the user’s SFLASH location
for device address (row 0 of user SFLASH) via the SWD interface. Normally, this address must
be programmed only once during mass production, and then never changed as in-field.
However, user flash can be reprogrammed in-field many times. During prototyping (FW design),
the device address can be programmed into the user’s SFLASH location using MiniProg3 and
the sample application installed in the "C:\Program Files
(x86)\Cypress\Programmer\Example\Misc\PSoC4-BLE-SFLASH-Update\Executable\" folder of
PSoC Programmer. Enter a device address structure of type CYBLE_GAP_BD_ADDR_T in the
Row 0 line to store it in the SFLASH.

Row 1, Row 2 and Row 3 are not used by the component and available for user information
storage. Note that row addresses and length (128 or 256 bytes) depend on the flash memory
size of the selected device. Row 0 address is: 0x0FFF F200 for device with 128 KB Flash or
0x0FFF F400 for device with 256 KB Flash.

This application is provided in the source code, and can be used as a reference example for
implementation in production programmers.

Silicon generated “Company assigned” part of device address

When checked, the “Company assigned” part of the device address is generated using the
factory programmed die X/Y location, wafer ID and lot ID of the silicon.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 44 of 559 Document Number: 002-29930 Rev. *A

Note The silicon-generated “Company assigned” option does not guarantee a unique device
address. For mass production, Cypress strongly recommends that the device address be
programmed into the user’s SFLASH location (row 0 of user SFLASH) via the SWD interface.

Device Name

The device name to be displayed on the peer side. It has a read (without
authentication/authorization) default-associated property. This parameter can be up to 248 bytes.

Note This parameter configures the GAP Service Device name Characteristic located in the
Profile Tree. It is available for modification only when the device is a GATT Server.

Appearance

The device's logo or appearance, which is a SIG-defined 2-byte value. It has a read (without
authentication/authorization) default-associated property.

Note This parameter configures the GAP Service Appearance Characteristic located in the
Profile Tree. It is available for modification only when the device is a GATT Server.

Attribute MTU Size

The Maximum Transmission Unit size (bytes) of an attribute to be used in the design. The valid
range is from 23 to 512 bytes. This value is used to respond to an Exchange MTU request from
the GATT Client.

Link Layer Max Tx Payload Size

The maximum link layer transmit payload size to be used in the design. The actual size of the
link layer transmit packet is decided based on the peer device’s link layer receive packet size
during Data Length Update Procedure and will be informed through
'CYBLE_EVT_GAP_DATA_LENGTH_CHANGE' event. The valid range is from 27 to 251 bytes.
This option is available only for devices supporting Bluetooth 4.2.

Link Layer Max Rx Payload Size

The maximum link-layer receive-payload size to be used in the design. The actual size of the link
layer receive packet is decided based on the peer device’s link layer transmit packet size during
Data Length Update Procedure and will be informed through
'CYBLE_EVT_GAP_DATA_LENGTH_CHANGE' event. Valid range is from 27 to 251 bytes. This
option is available only for the devices supporting Bluetooth 4.2.

Setting the Link Layer Max Tx Payload Size or Link Layer Max Rx Payload Size to the value
greater than 27 enables the LE Data Length Extension feature.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 45 of 559

Adv/Scan TX power level

The initial transmitter power level (dBm) of the advertisement or scan channels upon startup.
Default: 0 dBm. Possible values: -18 dBm, -12 dBm, -6 dBm, -3 dBm, -2 dBm, -1 dBm, 0 dBm, 3
dBm.

Connection TX power level

The initial transmitter power level (dBm) of the connection channels upon startup. Default: 0
dBm. Possible values: -18 dBm, -12 dBm, -6 dBm, -3 dBm, -2 dBm, -1 dBm, 0 dBm, 3 dBm.

Note Due to hardware limitations, the 3-dBm value can be set only for the Adv/Scan TX power
level and Connection TX power level simultaneously.

Enable Link Layer Privacy

Enables the LL Privacy 1.2 feature of Bluetooth 4.2 and enables the generation of the
CYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE and
CYBLE_EVT_GAPC_DIRECT_ADV_REPORT events.

Note that the CYBLE_EVT_GAP_DEVICE_CONNECTED event is not generated when this
feature is enabled. This option is available only for devices supporting Bluetooth 4.2.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 46 of 559 Document Number: 002-29930 Rev. *A

GAP Settings Tab – Advertisement Settings

These parameters are available when the device is configured as "Peripheral," "Peripheral and
Central," or "Broadcaster" GAP role.

Discovery mode

▪ Non-discoverable – The device cannot be discovered by a Central device.

▪ Limited Discoverable – Used by devices to be discoverable only for a limited period of
time, during temporary conditions, or for a specific event. A device advertising in Limited
Discoverable mode is available for a connection to Central device which performs the
Limited Discovery procedure. The timeout duration is defined by the applicable advertising
timeout parameter.

▪ General Discoverable – The device is used by devices to be discoverable continuously
or for no specific condition. A device advertising in General Discoverable mode is
available for a connection to Central device which performs the General Discovery
procedure. The timeout duration is defined by the applicable advertising timeout
parameter.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 47 of 559

Advertising type

This parameter defines the advertising type to be used by the LL for an appropriate Discovery
mode.

▪ Connectable undirected advertising – Used for general advertising of the advertising
and scan response data. It allows any other device to connect to this device.

▪ Scannable undirected advertising – Used to broadcast advertising data and scan
response data to active scanners.

▪ Non-connectable undirected advertising – Used only to broadcast advertising data.

Filter policy

This parameter defines how the scan and connection requests are filtered.

▪ Scan request: Any | Connect request: Any – Processes scan and connects requests
from all devices.

▪ Scan request: White List | Connect request: Any – Processes scan requests only from
the devices on the White List and connects requests from all devices.

▪ Scan request: Any | Connect request: White List – Processes scan requests from all
devices and connects requests only from the devices on the White List.

▪ Scan request: White List | Connect request: White List – Processes scan and
connects requests only from the devices on the White List.

Advertising channel map

This parameter is used to enable a specific advertisement channel.

▪ Channel 37 – Enables advertisement channel #37.

▪ Channel 38 – Enables advertisement channel #38.

▪ Channel 39 – Enables advertisement channel #39.

▪ Channels 37 and 38 – Enables advertisement channels #37 and #38.

▪ Channel 37 and 39 – Enables advertisement channels #37 and #39.

▪ Channels 38 and 39 – Enables advertisement channels #38 and #39.

▪ All channels – Enables all the three advertisement channels.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 48 of 559 Document Number: 002-29930 Rev. *A

Advertising Interval

This parameter defines the interval between two advertising events. Sets the permissible
minimum and maximum values of the two Advertisement interval types: Fast advertising
interval and Slow advertising interval. Typically, after the device initialization, a peripheral
device uses the Fast advertising interval. After the Fast advertising interval timeout value
expires, and if a connection with a Central device is not established, the Profile switches to Slow
advertising interval to save the battery life. After the Slow advertising interval timeout value
expires, the 'CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP' event is generated.

Note The Advertising interval must be aligned with the selected Profile specification.

▪ Fast advertising interval – This advertisement interval results in faster LE Connection.
The BLE Component uses this interval value when the connection time is between the
specified minimum and maximum values of the interval.

□ Minimum – The minimum interval for advertising data and establishing the LE
Connection. The parameter is configured to increment in multiples of 0.625 ms.
The valid range is from 20 ms to 10240 ms.

□ Maximum – The maximum interval for advertising data and establishing the LE
Connection. The parameter is configured to increment in multiples of 0.625 ms.
The valid range is from 20 ms to 10240 ms.

□ Timeout – The timeout value of advertising with fast advertising interval
parameters. When unchecked, the device is advertising continuously and slow
advertising settings become unavailable. A timeout cannot occur before the
advertising interval expires. So, if a timeout value is less than the fast advertising
interval minimum value, a warning is displayed.

▪ Slow advertising interval – Defines the advertising interval for slow advertising. This is
an optional parameter. If enabled – allows implementing advertising with a lower duty
cycle to save the battery life. The Slow advertising interval parameters are applied to the
device after an internal fast advertising interval timeout occurs. The minimum and
maximum values defined using this parameter allow the BLE Stack to expect the
advertising to happen within these intervals.

□ Minimum – The minimum interval for advertising the data and establishing the LE
Connection. The parameter is configured to increment in multiples of 0.625 ms.
The valid range is from 1000 ms to 10240 ms.

□ Maximum – The maximum interval for advertising the data and establishing the LE
Connection. The parameter is configured to increment in multiples of 0.625 ms.
The valid range is from 1000 ms to 10240 ms.

□ Timeout – The timeout value of advertising with the slow advertising interval
parameters. When unchecked, the device is advertising continuously. A timeout
cannot occur before the advertising interval expires. So, if a timeout value is less
than the slow advertising interval minimum value, a warning is displayed.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 49 of 559

− AdvDelay is a pseudo random delay of 0-10 ms.

− The complete advertising Event consists of one advertising Pakcage Data
Unit (PDU) sent to each of the advertising channels being used.

GAP Settings Tab – Advertisement Packet

This section displays the device configuration to contain the "Peripheral," "Broadcaster," or
"Peripheral and Central" GAP roles. It is used to configure the Advertisement data to be used
in device advertisements.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 50 of 559 Document Number: 002-29930 Rev. *A

Advertisement / Scan response data settings

An Advertisement (AD) or Scan response data packet of 31-byte payload used to declare the
device's BLE capability and its connection parameters. This data structure is shown below as
specified in the Bluetooth specification.

Advertising or Scan Response Data (31 Octets)

Significant Part Non-significant Part

AD Structure 1 AD Structure 2 AD Structure N... 000… '000

Length Data

AD Type AD Type

1 Octet Length Octets

n Octets Length – n Octets

A data packet can contain a number of AD structures. Each of these structures is composed of
the following parameters.

▪ AD Length – The size of the AD Type and AD Data in bytes.

▪ AD Type – The type of advertisement within the AD structure.

▪ AD Data – The data associated with the AD Type.

The total length of a complete Advertising packet cannot exceed 31 bytes.

An example structure for Advertisement data or Scan response data is as follows.

▪ AD Structure Element Definition:

□ AD Length: Size of AD Type and associated AD Data = 5 bytes

□ AD Type (1 byte): 0x03 (Service UUID)

□ AD Data (4 bytes): 0x180D, 0x180A (Heart Rate Service, Device Information
Service)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 51 of 559

The following table shows the AD Types.

AD Type Description

Flags Flags to broadcast the underlying BLE transport capability such as Discoverable
mode, LE only, etc.

Local Name Device Name (complete of shortened). The device name value comes from the
Device name field on the GAP Settings tab, under General.

Tx Power Level Transmit Power Level. Taken from the Adv/Scan TX power level field on the GAP
Settings tab, under General.

Slave Connection Interval Range The preferred connection interval range for the device. Not available in
Broadcaster GAP role.

Service UUID The list of Service UUIDs that the device has implemented to be broadcasted.
There are different AD Type values to advertise 16-bit, 32-bit, and 128-bit Service
UUIDs. 16-bit and 32-bit Service UUIDs are used if they are assigned by the
Bluetooth SIG.

Service Solicitation The list of Service UUIDs from the central device that the peripheral device may
use. There are different AD Type values to advertise 16-bit, 32-bit and 128-bit
Service UUIDs.

Service Data 2/4/16-byte Service UUID, followed by additional Service data.

Security Manager TK value The temporal key to be used at the time of pairing. Not available in the
Broadcaster GAP role.

Appearance The external appearance of the device. The value comes from the Appearance
field on the GAP Settings tab, under General.

Public Target Address The public device address of intended recipients.

Random Target Address The random device address of intended recipients.

Advertising Interval The Advertising interval value calculated as an average of Fast advertising interval
minimum and maximum values configured on the GAP Settings tab, under
Advertisement Settings.

LE Bluetooth Device Address The device address of the local device. The value comes from the Public device
address field on the GAP Settings tab, under General.

LE Role The supported LE roles. Not available in the Broadcaster GAP role.

URI URI, as defined in the IETF STD 66.

Manufacturer Specific Data The 2-byte company identifier followed by manufacturer specific data.

Indoor Positioning The data specified in the Indoor Positioning Service Specification. This is available
when the Indoor Positioning Service is present in the Profile.

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=302114

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 52 of 559 Document Number: 002-29930 Rev. *A

GAP Settings Tab – Scan Response Packet

This section displays when the device is configured to contain a "Peripheral," "Broadcaster," or
"Peripheral and Central" GAP role. It is used to configure the Scan response data packet to be
used in response to device scanning performed by a GATT Client device.

The packet structure of a Scan response packet is the same as an Advertisement packet. See
Advertisement / Scan response data settings for information on configuring the Scan response
packet.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 53 of 559

GAP Settings Tab – Peripheral Preferred Connection Parameters

These parameters define the preferred BLE interface connection settings of the Peripheral. After
establishing a connection, the Central device may read these settings and update the BLE
interface connection parameters accordingly.

Note The scaled values of these parameters used internally by the BLE stack are also shown in
the Peripheral Preferred Connection Parameters on the Profiles tab. These are the actual
values sent over the air.

▪ Connection interval – The Central device being connected to a Peripheral device needs
to define the time interval for a connection to happen.

□ Minimum (ms) – This parameter is the minimum permissible connection time value
to be used during a connection event. It is configured in steps of 1.25 ms. The
range is from 7.5 ms to 4000 ms. Unchecked means no specific minimum.

□ Maximum (ms) – This parameter is the maximum permissible connection time
value to be used during a connection event. It is configured in steps of 1.25 ms.
The range is from 7.5 ms to 4000 ms. Unchecked means no specific maximum.

▪ Slave Latency – Defines the latency of the slave in responding to a connection event in
consecutive connection events. This is expressed in terms of multiples of connection
intervals, where only one connection event is allowed per interval. The range is from 0 to
499 events.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 54 of 559 Document Number: 002-29930 Rev. *A

▪ Connection Supervision Timeout – This parameter defines the LE link supervision
timeout interval. It defines the timeout an LE link needs to be sustained for if there is no
response from the peer device over the LE link. The time interval is configured in multiples
of 10 ms. Unchecked means no specific value. The range is from 100 ms to 32000 ms.

Note Connection Supervision Timeout must be larger than (1 + Slave latency) *
Connection Interval * 2 (ms). For detail, refer to Bluetooth Core Specification 4.2 Volume
6, Part B, Chapter 4.5.2.

GAP Settings Tab – Scan Settings

These parameters are available when the device is configured as a "Central," "Peripheral and
Central," or “Observer” GAP role. Typically, during a device discovery, the GATT Client device
initiates the scan procedure. It uses Fast scan parameters for a period of time, approximately
30 to 60 seconds, and then it reduces the scan frequency using the Slow scan parameters.

Note The scan interval needs to be aligned with the user-selected Profile specification.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 55 of 559

Discovery procedure

▪ Limited – A device performing this procedure discovers a device that does Limited
discovery mode advertising only.

▪ General – A device performing this procedure discovers a device that does general and
limited discovery advertising.

Scanning state

▪ Passive – A device can only listen to advertisement packets.

▪ Active – A device may ask an advertiser for additional information.

Filter policy

This parameter defines how the advertisement packets are filtered.

▪ All – Processes all advertisement packets.

▪ White List Only – Processes advertisement packets only from the devices on the White
List.

Duplicate filtering

When enabled, this activates filtering of duplicated advertisement data. If disabled, the BLE stack
will not perform filtering of advertisement data.

Scan parameters

These parameters define the scanning time and interval between scanning events. Two different
sets of Scan parameters are used: Fast scan parameters and Slow scan parameters.
Typically, after the device initialization, a central device uses the Fast scan parameters. After the
Fast scan timeout value expires, and if a connection with a Peripheral device is not established,
the Profile switches to the Slow scan parameters to save the battery life. After the Slow scan
timeout value expires, the 'CYBLE_EVT_GAPC_SCAN_START_STOP ' event is generated. For
detail, refer to the API documentation.

▪ Fast scan parameters – This connection type results in a faster connection between the
GATT Client and Server devices than it is possible using a normal connection.

□ Scan Window – This parameter defines the scan window when operating in Fast
connection. The parameter is configured to increment in multiples of 0.625 ms.
The valid range is from 2.5 ms to 10240 ms. Scan Window must be less than the
Scan Interval. Default: 30 ms.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 56 of 559 Document Number: 002-29930 Rev. *A

□ Scan Interval – This parameter defines the scan interval when operating in Fast
connection. The parameter is configured to increment in multiples of 0.625 ms.
The valid range is from 2.5 ms to 10240 ms. Default: 30 ms.

□ Scan Timeout – The timeout value of scanning with fast scan parameters. Default:
30 s. When unchecked, the device is scanning continuously. The timeout cannot
occur before the scanning interval expires. So, if a timeout value is less than the
slow scanning interval minimum value, a warning displays.

▪ Slow scan parameters – This connection results in a slower connection between the
GATT Client and GATT Server devices than is possible using a normal connection.
However, this method consumes less power.

□ Scan Window – This parameter defines the scan window when operating in Slow
Connection. The parameter is configured to increment in multiples of 0.625ms.
The valid range is from 2.5 ms to 10240 ms. Scan Window must be less than the
Scan Interval. Default: 1125 ms.

□ Scan Interval – This parameter defines the scan interval when operating in Slow
Connection. The parameter is configured to increment in multiples of 0.625 ms.
The valid range is from 2.5 ms to 10240 ms. Default: 1280 ms.

□ Scan Timeout – The timeout value of scanning with slow scan parameters. The
default value is 150 s. When unchecked, the device is scanning continuously. A
timeout cannot occur before the scanning interval expires. So, if a timeout value is
less than the slow scanning interval minimum value, a warning displays.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 57 of 559

GAP Settings Tab – Connection Parameters

This section is the same as Peripheral Preferred Connection Parameters for Advertisement
Settings. The only difference is that the Central connection parameters are not shown on the
Peripheral Preferred Connection parameters on the Profile tab.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 58 of 559 Document Number: 002-29930 Rev. *A

GAP Settings Tab – Security

This section contains several parameters to configure the global security options for the
Component. These parameters are configurable only in Profile mode. If the device is configured
as a GATT Server, you can optionally set each Characteristic using its own unique security
setting in the Profile Tree.

Security mode

Defines GAP security modes for the Component. Both available modes may support
authentication.

▪ Mode 1 – Used in designs where data encryption is required.

▪ Mode 2 – Used in designs where data signing is required.

Security level

Enables different levels of security depending on the selected Security mode:

▪ If Mode1 is selected, the security levels are as follows:

□ No Security – The device does not use encryption or authentication.

□ Unauthenticated pairing with encryption – The device sends encrypted data after
establishing a connection with a remote device.

□ Authenticated pairing with encryption – The device sends encrypted data after
establishing a connection with a remote device. To establish a connection, the
device performs the authenticated paring procedure.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 59 of 559

□ Authenticated LE Secure Connections pairing with encryption – With this level of
security, the device uses an algorithm called Elliptic curve Diffie–Hellman (ECDH)
for key generation, and a new pairing procedure for the key exchange. It also
provides a new protection method from Man-In-The-Middle (MITM) attacks -
Numeric Comparison.

▪ If Mode 2 is selected, then the following security levels are available.

□ Unauthenticated pairing with data signing – The device performs the data-signing
prior to sending it to a remote device after they establish a connection.

□ Authenticated pairing with data signing – The device performs the data-signing
prior to sending it to a remote device after they establish a connection. To establish
a connection, the devices perform the authenticated paring procedure.

Strict Pairing

Provides an option to use only the selected security features and does not automatically fallback
to an unsecure connection if the peer device does not support the selected security features.

I/O capabilities

This parameter refers to the device's input and output capability to enable or restrict a particular
pairing method or security level.

▪ No Input No Output – Used in devices that do not have any capability to enter or display
the authentication key data to the user. Used in mouse-like devices. No GAP
authentication is required.

▪ Display Only – Used in devices with the display capability and may display authentication
data. GAP authentication is required.

▪ Keyboard Only – Used in devices with a numeric keypad. GAP authentication is required.

▪ Display Yes/No – Used in devices with a display and at least two input keys for Yes/No
action. GAP authentication is required.

▪ Keyboard and Display – Used in devices like a PC and tablet. GAP authentication is
required.

Keypress notifications

Provides an option for a keyboard-only device during the LE secure pairing process to send key
press notifications when the user enters or deletes a key. This option is available when the
Security level is set to Authenticated LE Secure Connections pairing with encryption and I/O
capabilities option is set to either Keyboard or Keyboard and Display.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 60 of 559 Document Number: 002-29930 Rev. *A

Bonding Requirement

This parameter is used to configure the bonding requirements. The purpose of bonding is to
create a relation between two Bluetooth devices based on a common link key (a bond). The link
key is created and exchanged (pairing) during the bonding procedure and is expected to be
stored by both Bluetooth devices, to be used for future authentication. The maximum number of
remote devices that can be bonded is four.

▪ Bonding – The device stores the link key of a connection after paring with a remote
device in the flash memory. If a connection is lost and re-established, the devices will use
the previously stored key for the connection.

Note Bonding information is stored in RAM and should be written to flash to be retained
during a shutdown.

For detail, refer to the Functional Description section.

▪ No Bonding – The pairing process is performed on each connection establishment.

Encryption Key Size

This parameter defines the encryption key size based on the Profile requirement. The valid
values of encryption key size are 7-to-16 bytes.

Other Parameters

Other parameters that are not exposed in the GUI and have fixed values:

▪ Maximum Bonded Devices – The maximum number of bonded devices supported by this
device. The value is 4.

▪ Maximum Whitelist Size – The maximum number of devices that can be added to the
whitelist. The value is 8.

▪ Maximum Resolvable Devices – The maximum number of peer devices whose addresses
should be resolved by this device. The value is 8.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 61 of 559

L2CAP Settings Tab

The L2CAP parameters define parameters for L2CAP connection-oriented channel configuration.

Enable L2CAP logical channels

This parameter enables configuration of the L2CAP logical channels. The default is True.

Number of L2CAP logical channels

This parameter defines the number of LE L2CAP connection-oriented logical channels required
by the application. The valid range is from 1 to 255. The default is 1.

Number of PSMs

This parameter defines the number of PSMs required by the application. The valid range is from
1 to 255. The default is 1.

L2CAP MTU size

This parameter defines the maximum SDU size of an L2CAP packet. The valid range is from 23
to 65488 bytes. The default is 1280 bytes when Internet Protocol Support Service is
supported, 23 bytes otherwise.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 62 of 559 Document Number: 002-29930 Rev. *A

L2CAP MPS size

This parameter defines the maximum size of payload data that the L2CAP layer is capable of
accepting. L2CAP MPS size should be less than or equal to the L2CAP MTU size parameter.
The valid range is from 23 to 65488 bytes. The default is 23 bytes.

Advanced Tab

The Advanced parameters define parameters for Low power mode and external power
amplification.

Use BLE Low power mode

This parameter identifies if the Low power mode support is required for the BLE component. The
default is True.

When this parameter is set, WCO must be selected as the LFCLK source in the Design-Wide
Resources Clock Editor. This configuration is the requirement if you intend to use the
Component in Low power mode.

Enable external Power Amplifier control

This parameter enables the high-active external power amplifier control signal (pa_en) on a
GPIO. This signal is set high just before the BLE RF transmission is enabled and is set low
immediately after the BLE RF transmission.

The default is False.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 63 of 559

BLE Component APIs

The BLE Component contains a comprehensive API list to allow you to configure the BLE stack,
the underlying chip hardware and the BLE service-specific configuration using software. You
may access the GAP, GATT and L2CAP layers of the stack using these.

The APIs are broadly categorized as follows:

▪ BLE Common APIs

▪ BLE Service-Specific APIs

Note All BLE Component API names begin with CyBle_. This is a unique feature of the BLE
Component, and allows only one instance of the Component to be placed in your design.

HTML-Based API Document

Because the BLE Component has numerous APIs, Cypress has also provided a separate HTML-
based API reference document (CHM file). To open this file, right-click the BLE Component on
the design canvas, and select Open API Documentation…

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 64 of 559 Document Number: 002-29930 Rev. *A

BLE Common APIs

Description

The common APIs act as a general interface between the BLE application and the BLE Stack module. The application
may use these APIs to control the underlying hardware such as radio power, data encryption and device bonding via
the stack. It may also access the GAP, GATT and L2CAP layers of the stack.

Modules

• BLE Common Core Functions

The common core APIs are used for general BLE component configuration. These include initialization, power
management, and utilities.

• GAP Functions

The GAP APIs allow access to the Generic Access Profile (GAP) layer of the BLE stack. Depending on the chosen
GAP role in the GUI, you may use a subset of the supported APIs.

• GATT Functions

The GATT APIs allow access to the Generic Attribute Profile (GATT) layer of the BLE stack. Depending on the
chosen GATT role in the GUI, you may use a subset of the supported APIs.

• L2CAP Functions

The L2CAP APIs allow access to the Logical link control and adaptation protocol (L2CAP) layer of the BLE stack.

• BLE Common Events

The BLE stack generates events to notify the application on various status alerts concerning the stack. These can
be generic stack events or can be specific to GAP, GATT or L2CAP layers. The service specific events are handled
separately in BLE Service-Specific Events.

• BLE Common Definitions and Data Structures

Contains definitions and structures that are common to all BLE common APIs. Note that some of these are also
used in Service-specific APIs.

BLE Common Core Functions

Description

The common core APIs are used for general BLE component configuration. These include initialization, power
management, and utilities.

Macros

• #define CyBle_SetState(state) (cyBle_state = (state))

• #define CyBle_GetState() (cyBle_state)

• #define CyBle_GattGetBusyStatus() (cyBle_busyStatus)

• #define CyBle_SetGattError(gattError) (cyBle_gattError = (gattError))

Functions

• CYBLE_API_RESULT_T CyBle_Start (CYBLE_CALLBACK_T callbackFunc)

• void CyBle_Stop (void)

• CYBLE_API_RESULT_T CyBle_StoreBondingData (uint8 isForceWrite)

• CYBLE_API_RESULT_T CyBle_GapRemoveBondedDevice (CYBLE_GAP_BD_ADDR_T *bdAddr)

• uint8 CyBle_IsDeviceAddressValid (const CYBLE_GAP_BD_ADDR_T *deviceAddress)

• CYBLE_API_RESULT_T CyBle_SoftReset (void)

• CYBLE_LP_MODE_T CyBle_EnterLPM (CYBLE_LP_MODE_T pwrMode)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 65 of 559

• CYBLE_LP_MODE_T CyBle_ExitLPM (void)

• void CyBle_ProcessEvents (void)

• CYBLE_API_RESULT_T CyBle_SetDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr)

• CYBLE_API_RESULT_T CyBle_GetDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr)

• int8 CyBle_GetRssi (void)

• CYBLE_API_RESULT_T CyBle_GetTxPowerLevel (CYBLE_BLESS_PWR_IN_DB_T *bleSsPwrLvl)

• CYBLE_API_RESULT_T CyBle_SetTxPowerLevel (CYBLE_BLESS_PWR_IN_DB_T *bleSsPwrLvl)

• CYBLE_API_RESULT_T CyBle_GetBleClockCfgParam (CYBLE_BLESS_CLK_CFG_PARAMS_T
*bleSsClockConfig)

• CYBLE_API_RESULT_T CyBle_SetBleClockCfgParam (CYBLE_BLESS_CLK_CFG_PARAMS_T
*bleSsClockConfig)

• CYBLE_API_RESULT_T CyBle_GenerateRandomNumber (uint8 *randomNumber)

• CYBLE_API_RESULT_T CyBle_AesEncrypt (uint8 *plainData, uint8 *aesKey, uint8 *encryptedData)

• CYBLE_API_RESULT_T CyBle_SetCeLengthParam (uint8 bdHandle, uint8 mdBit, uint16 ceLength)

• CYBLE_API_RESULT_T CyBle_WriteAuthPayloadTimeout (uint8 bdHandle, uint16 authPayloadTimeout)

• CYBLE_API_RESULT_T CyBle_ReadAuthPayloadTimeout (uint8 bdHandle, uint16 *authPayloadTimeout)

• CYBLE_API_RESULT_T CyBle_GetStackLibraryVersion (CYBLE_STACK_LIB_VERSION_T *stackVersion)

• CYBLE_API_RESULT_T CyBle_IsStackIdle (void)

• CYBLE_BLESS_STATE_T CyBle_GetBleSsState (void)

• void CyBle_AesCcmInit (void)

• CYBLE_API_RESULT_T CyBle_AesCcmEncrypt (uint8 *key, uint8 *nonce, uint8 *in_data, uint8 length, uint8
*out_data, uint8 *out_mic)

• CYBLE_API_RESULT_T CyBle_AesCcmDecrypt (uint8 *key, uint8 *nonce, uint8 *in_data, uint8 length, uint8
*out_data, uint8 *in_mic)

• CYBLE_API_RESULT_T CyBle_GenerateAesCmac (CYBLE_AES_CMAC_GENERATE_PARAM_T
*cmacGenParam)

• CYBLE_API_RESULT_T CyBle_SetAppEventMask (uint32 UserEventMask)

• CYBLE_API_RESULT_T CyBle_RegisterBlessInterruptCallback (CYBLE_BLESS_EVENT_PARAM_T
*BlessEventParams)

• void CyBle_SetTxGainMode (uint8 bleSsGainMode)

• void CyBle_SetRxGainMode (uint8 bleSsGainMode)

• CYBLE_API_RESULT_T CyBle_SetSlaveLatencyMode (uint8 bdHandle, uint8 setForceQuickTransmit)

• void CyBle_SetSeedForRandomGenerator (uint32 seed)

• CYBLE_API_RESULT_T CyBle_IsLLControlProcPending (void)

• CYBLE_API_RESULT_T CyBle_StartTransmitterTest (CYBLE_TRANSMITTER_TEST_PARAMS_T
*TransmitterTestParams)

• CYBLE_API_RESULT_T CyBle_StartReceiverTest (uint8 RxFreq)

• CYBLE_API_RESULT_T CyBle_TestEnd (uint16 *PacketCount)

• CYBLE_API_RESULT_T CyBle_HciSendPacket (CYBLE_HCI_PKT_PARAMS_T *HciPktParams)

• CYBLE_API_RESULT_T CyBle_StoreStackData (uint8 isForceWrite)

• CYBLE_API_RESULT_T CyBle_StoreAppData (uint8 *srcBuff, const uint8 destAddr[], uint32 buffLen, uint8
isForceWrite)

Macro Definition Documentation

#define CyBle_SetState(state) (cyBle_state = (state))

Used to set the component state machine's state.

Parameters:

state The desired state of type CYBLE_STATE_T that the event handler's
state machine should be set to. For detailed information refer to
CyBle_GetState() API function description.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 66 of 559 Document Number: 002-29930 Rev. *A

#define CyBle_GetState() (cyBle_state)

This function is used to determine the current state of the component state machine.

The component is in the state CYBLE_STATE_INITIALIZING after CyBle_Start() function is called and until
CYBLE_EVT_STACK_ON event is not received. After successful initialization the state is changed to
CYBLE_STATE_DISCONNECTED. For GAP Peripheral role if CyBle_GappStartAdvertisement() is called and
CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP event received the state is changed to the
CYBLE_STATE_ADVERTISING. For GAP Central role if CyBle_GapcStartScan() API function is called and
CYBLE_EVT_GAPC_SCAN_START_STOP event received the state is changed to the
CYBLE_STATE_SCANNING. When CyBle_GapcConnectDevice() is called the state is changed to
CYBLE_STATE_CONNECTING. After successfully connection indicated by
CYBLE_EVT_GAP_DEVICE_CONNECTED or CYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE event the
state is changed to CYBLE_STATE_CONNECTED. If CyBle_GapDisconnect() API function is called and
EVT_GAP_DEVICE_DISCONNECTED event received the state is changed to the
CYBLE_STATE_DISCONNECTED. If CyBle_Stop() is called state of component is changed to the
CYBLE_STATE_STOPPED.

Returns:

CYBLE_STATE_T: The current state.

• CYBLE_STATE_STOPPED - BLE is turned off

• CYBLE_STATE_INITIALIZING, - Initializing state

• CYBLE_STATE_CONNECTED - Peer device is connected

• CYBLE_STATE_ADVERTISING - Advertising process

• CYBLE_STATE_SCANNING - Scanning process

• CYBLE_STATE_CONNECTING - Connecting

• CYBLE_STATE_DISCONNECTED - Essentially idle state

#define CyBle_GattGetBusyStatus() (cyBle_busyStatus)

This function returns the status of BLE stack (busy or not busy). The status is changed after
CYBLE_EVT_STACK_BUSY_STATUS event.

Returns:

uint8: Busy status

• CYBLE_STACK_STATE_BUSY - BLE stack busy

• CYBLE_STACK_STATE_FREE - BLE stack not busy

#define CyBle_SetGattError(gattError) (cyBle_gattError = (gattError))

Sets the GATT Error Code after the Authorization Code check on the application layer on the
CYBLE_EVT_<service initials>_WRITE_CHAR event for the Bond Management Control Point characteristic.

This API function function is useful only within the registered service callback on the CYBLE_EVT_<service
initials>_CHAR event for the certain services:

BMS: Check the Authorization Code of the Bond Management Control Point characteristic. CTS: To set GATT
error in case if one or several data fields was/were ignored by the Server. ESS: Used by user to indicate the
unsupported condition of ES Trigger Descriptor. CGMS: Check CRC and the length of the characteristics.

CYBLE_GATT_ERR_CODE_T gattError: GATT Error Code, possible values are:

• CYBLE_GATT_ERR_NONE - if the application layer decides the Authorization Code is correct for this
OpCode.

• For the BMS:

• CYBLE_GATT_ERR_OP_CODE_NOT_SUPPORTED - if the application layer decides the OpCode is
not supported.

• CYBLE_GATT_ERR_INSUFFICIENT_AUTHORIZATION - if the application layer decides the
Authorization Code is not correct for this OpCode.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 67 of 559

• For the CTS: CYBLE_GATT_ERR_CTS_DATA_FIELD_IGNORED - one or several data fields was/were
ignored.

• For the ESS:

• CYBLE_GATT_ERR_CONDITION_NOT_SUPPORTED - to indicate that the requested condition is not
supported.

• For the CGMS:

• CYBLE_GATT_ERR_MISSING_CRC - when the CRC is missed.

• CYBLE_GATT_ERR_INVALID_CRC - when the CRC is incorrect.

• CYBLE_GATT_ERR_INVALID_PDU - when the length of the attribute is incorrect.

•

Function Documentation

CYBLE_API_RESULT_T CyBle_Start (CYBLE_CALLBACK_T callbackFunc)

This function initializes the BLE Stack, which consists of the BLE Stack Manager, BLE Controller, and BLE Host
modules. It takes care of initializing the Profile layer, schedulers, Timer and other platform related resources
required for the BLE component. It also registers the callback function for BLE events that will be registered in the
BLE stack.

Note that this function does not reset the BLE Stack.

For HCI-Mode of operation, this function will not initialize the BLE Host module.

Calling this function results in the generation of CYBLE_EVT_STACK_ON event on successful initialization of the
BLE Stack.

Parameters:

callbackFunc Event callback function to receive events from BLE stack.
CYBLE_CALLBACK_T is a function pointer type.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On passing a NULL pointer to the function.

CYBLE_ERROR_REPEATED_ATTE
MPTS

On invoking this function more than once
without calling CyBle_Shutdown() function
between calls to this function.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

There is insufficient memory available.

Global Variables

The CyBle_initVar variable is used to indicate initial configuration of this component. The variable is
initialized to zero (0u) and set to one (1u) the first time CyBle_Start() is called. This allows for component
initialization without re-initialization in all subsequent calls to the CyBle_Start() routine.

void CyBle_Stop (void)

This function stops any ongoing operation in the BLE Stack and forces the BLE Stack to shut down. The only
function that can be called after calling this function is CyBle_Start().

Returns:

None

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 68 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_StoreBondingData (uint8 isForceWrite)

This function writes the new bonding data from RAM to the dedicated Flash location as defined by the component.
It performs data comparing between RAM and Flash before writing to Flash. If there is no change between RAM
and Flash data, then no write is performed. It writes only one flash row in one call. Application should keep calling
this function till it return CYBLE_ERROR_OK. This function is available only when Bonding requirement is
selected in Security settings.

Parameters:

isForceWrite If value is set to 0, then stack will check if flash write is permissible.

Returns:

Return value is of type CYBLE_API_RESULT_T.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_FLASH_WRITE_N
OT_PERMITED

Flash Write is not complete

CYBLE_ERROR_INVALID_PARAME
TER

Invalid input parameter

CYBLE_ERROR_FLASH_WRITE Error in flash Write

Side Effects

For BLE devices with 128K of Flash memory this function will automatically modify the clock settings for the
device. Writing to flash requires changes to be done to the IMO (set to 48 MHz) and HFCLK (source set to
IMO) settings. The configuration is restored before returning. This will impact the operation of most of the
hardware in the device.

Global Variables

The cyBle_pendingFlashWrite variable is used to detect status of pending write to flash operation for stack
data and CCCD. This function automatically clears pending bits after write operation complete.

CYBLE_API_RESULT_T CyBle_GapRemoveBondedDevice (CYBLE_GAP_BD_ADDR_T *bdAddr)

This function marks the device untrusted. It removes the bonding information of the device including CCCD values.
This function removes device from the white list also when autopopulate white list with bonded devices option is
enabled.

This function is available only when Bonding requirement is selected in Security settings.

Parameters:

bdAddr Pointer to peer device address, of type CYBLE_GAP_BD_ADDR_T. If
device address is set to 0, then all devices shall be removed from
trusted list and white list.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'bdAddr'.

CYBLE_ERROR_INVALID_OPERATI
ON

Whitelist is already in use or there is pending
write to flash operation.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device does not exist in the bond list.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 69 of 559

Global Variables

The bdHandle is set in cyBle_pendingFlashWrite variable to indicate that data should be stored to flash by
CyBle_StoreBondingData() afterwards.

uint8 CyBle_IsDeviceAddressValid (const CYBLE_GAP_BD_ADDR_T *deviceAddress)

This function verifies that BLE public address has been programmed to SFLASH during manufacture. It could be
used to verify if public device address is programmed to flash memory.

Parameters:

deviceAddre
ss

the pointer to the BD address of type CYBLE_GAP_BD_ADDR_T.

Returns:

Non zero value when a device address differs from the default SFLASH content.

CYBLE_API_RESULT_T CyBle_SoftReset (void)

This function resets the BLE Stack, including BLE sub-system hardware registers. BLE Stack transitions to idle
mode. This function can be used to reset the BLE Stack if the BLE Stack turns unresponsive due to incomplete
transfers with the peer BLE device.

A call to this function results in the generation of CYBLE_EVT_STACK_ON event on successful BLE Stack Reset.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_OPERATI
ON

This error occurs if this function is invoked
before invoking CyBle_StackInit function.

CYBLE_LP_MODE_T CyBle_EnterLPM (CYBLE_LP_MODE_T pwrMode)

This function requests the underlying BLE modules such as BLE Controller, BLE Host Stack and BLE Stack
manger to enter into one of the supported low power modes. Application should use this function to put Bluetooth
Low Energy Sub-System (BLESS) to Low Power Mode (LPM).

BLE Stack enters and exits low power modes based on its current state and hence the application should consider
the BLE Stack LPM state before putting the CPU or the overall device into LPM. This function attempts to set the
requested low power mode and if that is not possible, it tries to set the next higher low-power-mode. This behavior
is due to the requirement that the application will always try to use the lowest power mode when there is nothing
that it needs to process. Note that the CPU will not be able to access the BLESS registers when BLESS is in deep
sleep mode.

BLE Stack has the following power modes:

1. Active
2. Sleep (Low Power Mode)
3. DeepSleep with ECO Off (Low Power Mode)
4. Hibernate (Low Power Mode)

Note that certain conditions may prevent BLE sub system from entering a particular low power mode.

Active Mode

Bluetooth Low Energy Sub System (BLESS) has three sub-modes in Active mode:

1. Idle
2. Transmit Mode, and
3. Receive Mode

These modes draw full current from the device and the CPU has full access to its registers.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 70 of 559 Document Number: 002-29930 Rev. *A

Sleep Mode

The clock to the link layer engine and digital modem is gated and the (External Crystal Oscillator) ECO continues
to run to maintain the link layer timing. The application cannot enter sleep mode if a Transmit or Receive is in
progress.

Deep Sleep with ECO Off Mode

The ECO is stopped and Watch Crystal Oscillator (WCO) is used to maintain link layer timing. All the regulators
in the Radio Frequency (RF) transceiver are turned off to reduce leakage current and BLESS logic is kept powered
ON from the System Resources Sub System (SRSS) deep-sleep regulator for retention of current BLESS state
information. This mode can be entered from either Idle (Active) or Sleep mode. It should be entered when the next
scheduled activity instant in time domain is greater than the Deep Sleep total wakeup time (typically 2ms).

NOTE: If application is using ECO as source of HFCLK for higher clock accuracy and calls this API function to
move BLESS to Deep Sleep mode then HFCLK accuracy and frequency would be impacted as this API function
switches HFCLK source from ECO to IMO. On BLESS wakeup, the HFCLK source would be switched back to
ECO.

Recommendation is that application turns on IMO and sets it as HFCLK source before calling this API function.
Upon wakeup due to sources other than BLESS, application can turn on ECO and switch HFCLK source to ECO.
Pseudo code of recommendation is given below.

Pseudo Code: Turn on IMO and switch HFCLK to IMO CyBle_EnterLPM(CYBLE_BLESS_DEEPSLEEP);
CySysPmDeepSleep(); If exit is not due to BLE and application need to use ECO then turn on ECO and switch
HFCLK source to ECO.

Hibernate mode

The application layer should invoke this function with the Hibernate Mode option to put the BLE Stack in to
hibernate mode. If this mode is set, the micro-controller can be put in to Hibernate Mode by the application layer.
This mode ensures that BLE Sub-system is completely idle and no procedures such ADV, SCAN and
CONNECTION are active.

The following table indicates the allowed sleep modes for the complete system (BLE Sub-system and the micro-
controller). Modes marked In 'X' are the allowed combinations. The application layer should make sure that the
invalid modes are not entered in to:

BLE
Stack
LPM /
PSoC4
A-BLE
LPM

Active Sleep DeepSleep Hibernate

Active X

Sleep X X

DeepSl
eep
(ECO
OFF)

X X X

Hiberna
te

 X

The application layer is responsible for putting the BLE Sub-system and the micro-controller in to the desired sleep
modes. Upon entering the requested sleep mode combination, the BLE Sub-system and the micro-controller are
woken up by an interrupt every advertisement interval(in case of a GAP Peripheral) or connection interval (in case
of GAP Central). On wakeup, if the application needs to transmit some data, appropriate function(s) including the
Stack functions need to be invoked. This needs to be followed by a call to the function CyBle_ProcessEvents,
which handles all pending transmit and receive operations. The application can now put the complete system
back in to one of the sleep modes. The application should ensure that the above invalid states are never
encountered.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 71 of 559

Application shall also ensure that BLE Sub-system's low power entry and low power exit interrupts are processed
in realtime and not blocked. It is recommended that BLE Sub-system interrupt should be of higher priority. If BLE
Sub-system interrupts are blocked for longer time (> 200us), BLE Sub-system can violate Bluetooth specification
timing for wakeup where ECO is required to perform BLE radio operation. It can also result in race condition where
BLE Stack waits for interrupt as ECO is not started correctly and BLE Sub system enters in unknown state, BLE
Stack gets stuck in busy loop.

This is a blocking function. In process of entering in BLESS Deep Sleep Mode, BLE Stack puts CPU in Sleep
Mode to save power while polling for entry indication to BLESS DSM. No event is generated on calling this
function. Based on the return code from this function, the application layer should decide on the sleep mode for
the complete system. For example, if the return code is CYBLE_BLESS_DEEPSLEEP, the application can choose
to call system wide DeepSleep mode function.

Parameters:

pwrMode The power mode that the component is intended to enter. The allowed
values are,

• CYBLE_BLESS_SLEEP

• CYBLE_BLESS_DEEPSLEEP

Returns:

CYBLE_LP_MODE_T: The actual power mode that BLE stack is now set to.

CYBLE_LP_MODE_T CyBle_ExitLPM (void)

Application can asynchronously wake up the BLE Stack from low power using this function. The wake up is not
performed for the entire chip. This is a blocking call and returns when BLE Stack has come out of LPM, and in
process of waking up from BLESS Deep Sleep Mode, BLE Stack puts CPU in Sleep Mode to save power while
polling for wakeup indication from BLESS. No event is generated on calling this function. It has no effect if it is
invoked when the BLE Stack is already in active mode.

Returns:

CYBLE_LP_MODE_T: The actual power mode that BLE stack is now set to. Expected return value is
CYBLE_BLESS_ACTIVE.

void CyBle_ProcessEvents (void)

This function checks the internal task queue in the BLE Stack, and pending operation of the BLE Stack, if any.
This needs to be called at least once every interval 't' where:

1. 't' is equal to connection interval or scan interval, whichever is smaller, if the device is in GAP Central mode
of operation, or

2. 't' is equal to connection interval or advertisement interval, whichever is smaller, if the device is in GAP
Peripheral mode of operation.

On calling every interval 't', all pending operations of the BLE Stack are processed. This is a blocking function and
returns only after processing all pending events of the BLE Stack Care should be taken to prevent this call from
any kind of starvation; on starvation, events may be dropped by the stack. All the events generated will be
propagated to higher layers of the BLE Stack and to the Application layer only after making a call to this function.

Call to this function can wakeup BLESS from Low Power Mode, and in process of waking up from BLESS Deep
Sleep Mode, BLE Stack puts CPU in Sleep Mode to save power while polling for wakeup indication from BLESS.
This can occur if the caller function has pending data or control transactions to be performed in BLE Stack that
need to be programmed to BLESS in CyBle_ProcessEvents() context and BLESS is in Low Power Mode.

Returns:

None

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 72 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_SetDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr)

This function sets the Bluetooth device address into BLE Stack's memory. This address shall be used for all BLE
procedures unless explicitly changed by application. The application layer needs to call this function every time
an address change is required. Bluetooth 4.1 Core specification [3.12] specifies that the Bluetooth device can
change its private address periodically, with the period being decided by the application; there are no limits
specified on this period. The application layer should maintain its own timers in order to do this.

User should call 'CyBle_GapSetIdAddress' API function to set identity address if 'CyBle_SetDeviceAddress' API
function is used to set public or random static address. This is a blocking function. No event is generated on calling
this function. This API function will be obsolete in future.

Parameters:

bdAddr Bluetooth Device address retrieved from the BLE stack gets stored to a
variable pointed to by this pointer. The variable is of type
CYBLE_GAP_BD_ADDR_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_ERROR_INVALID_OPERATI
ON

Operation is not permitted when device is in
connected state.

CYBLE_API_RESULT_T CyBle_GetDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr)

This API function reads the BD device address from BLE Controller's memory. This address shall be used for BLE
procedures unless explicitly indicated by BLE Host through HCI commands. This is a blocking function and it
returns immediately with the required value.

Parameters:

bdAddr Pointer to the CYBLE_GAP_BD_ADDR_T structure variable. It has two
fields where,

• bdAddr.addr: Bluetooth Device address buffer that is populated
with the device address data from BLE stack.

• bdAddr.type: Caller function should fill the "address type" to
retrieve appropriate address.

Caller function should use bdAddr.type = 0x00 to get the "Public
Device Address" which is currently set.
 Caller function use bdAddr.type = 0x01 to get the "Random Device
Address" which is currently set.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 73 of 559

int8 CyBle_GetRssi (void)

This function reads the recorded Received Signal Strength Indicator (RSSI) value for the last successfully received
packet from the BLE radio sub-system. This is a blocking function. No event is generated on calling this function.

Returns:

int8: The RSSI value of the responding device.

Information Description

Range -85 <= N <= 5

Note The value is in dBm.

CYBLE_API_RESULT_T CyBle_GetTxPowerLevel (CYBLE_BLESS_PWR_IN_DB_T *bleSsPwrLvl)

This function reads the transmit power of the BLE radio for the given BLE sub-system channel group. This is a
blocking function. No event is generated on calling this function.

Parameters:

bleSsPwrLvl Pointer to a variable of type CYBLE_BLESS_PWR_IN_DB_T where,

• bleSsPwrLvl -> blePwrLevelInDbm indicates Output Power
level in dBm returned by the function.

• bleSsPwrLvl -> bleSsChId indicates Channel group for which
power level is to be read. This needs to be set before calling
the function. The value can be advertisement channels
(CYBLE_LL_ADV_CH_TYPE) or data channels
(CYBLE_LL_CONN_CH_TYPE).

• If bleSsPwrLvl->blePwrLevelInDbm is greater than 0dBm, then
the power level is applicable to both advertisement and
connection channel.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter

CYBLE_API_RESULT_T CyBle_SetTxPowerLevel (CYBLE_BLESS_PWR_IN_DB_T *bleSsPwrLvl)

This function sets the transmit power of the BLE radio for given BLE sub-system channel group. This is a blocking
function. No event is generated on calling this function.

Parameters:

bleSsPwrLvl Pointer to a variable of type 'CYBLE_BLESS_PWR_IN_DB_T' where,

• bleSsPwrLvl -> blePwrLevelInDbm indicates Output Power
level in dBm to be set by the function.

• bleSsPwrLvl -> bleSsChId indicates Channel group for which
power level is to be set. The value can be advertisement
channels (CYBLE_LL_ADV_CH_TYPE) or data channels
(CYBLE_LL_CONN_CH_TYPE).

NOTE: The set power level is applicable to both advertisement and connection channel for the following scenarios

• bleSsPwrLvl->blePwrLevelInDbm is greater than 0dB

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 74 of 559 Document Number: 002-29930 Rev. *A

• Before calling this API function Tx power level is 3dB

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_API_RESULT_T CyBle_GetBleClockCfgParam (CYBLE_BLESS_CLK_CFG_PARAMS_T
*bleSsClockConfig)

This function reads the clock configuration parameter of BLE sub-system. This is a blocking function. No event is
generated on calling this function. The following parameters related to the BLE sub-system clock are set by this
function:

Sleep Clock accuracy

Sleep clock accuracy (SCA) in PPM. This parameter indicates the sleep clock accuracy in PPM as described in
the following table. It is set in the BLE Stack and is used for BLE Connection operation while creating LE
connection with the peer device.

Sleep Clock Accuracy Enum Field PPM Range Translation (PPM)

CYBLE_LL_SCA_251_TO_500_PPM 251 - 500

CYBLE_LL_SCA_151_TO_250_PPM 151 - 250

CYBLE_LL_SCA_101_TO_150_PPM 101 - 150

CYBLE_LL_SCA_076_TO_100_PPM 76 - 100

CYBLE_LL_SCA_051_TO_075_PPM 51 - 75

CYBLE_LL_SCA_031_TO_050_PPM 31 - 50

CYBLE_LL_SCA_021_TO_030_PPM 21 - 30

CYBLE_LL_SCA_000_TO_020_PPM 0 - 20

Refer to Bluetooth Core Specification 4.1 Volume 6, Chapter 4.5.7 for more details on how the SCA is used.

Link Layer clock divider

This input decides the frequency of the clock to the link layer. A lower clock frequency results in lower power
consumption. Default clock frequency for the operation is 24 MHz. BLESS supports 24 MHz, 12 MHz and 8 MHz
clock configurations. Based on the end application requirement (how frequent the communication is expected to
be), this parameter needs to be set.

ecoXtalStartUpTime ECO startup time specifies the value in the unit of 62.5 us (16 KHz clock cycles). This value
is programmed in BLESS WAKE_UP config register, to configure the wakeup time required by ECO. Max value
for ECO startup time field can be 79u units = (79 * 62.5) us

Parameters:

bleSsClockC
onfig

Pointer to a variable of type CYBLE_BLESS_CLK_CFG_PARAMS_T
to which the existing clock configuration is stored.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 75 of 559

CYBLE_API_RESULT_T CyBle_SetBleClockCfgParam (CYBLE_BLESS_CLK_CFG_PARAMS_T
*bleSsClockConfig)

This function sets the clock configuration parameter of BLE sub-system. This is a blocking function. No event is
generated on calling this function. The following parameters related to the BLE sub-system clock are set by this
function:

Sleep Clock accuracy

Sleep clock accuracy (SCA) in PPM. This parameter indicates the sleep clock accuracy in PPM as described in
the following table. It is set in the BLE Stack and is used for BLE Connection operation while creating LE
connection with the peer device.

Sleep Clock Accuracy Enum Field PPM Range Translation (PPM)

CYBLE_LL_SCA_251_TO_500_PPM 251 - 500

CYBLE_LL_SCA_151_TO_250_PPM 151 - 250

CYBLE_LL_SCA_101_TO_150_PPM 101 - 150

CYBLE_LL_SCA_076_TO_100_PPM 76 - 100

CYBLE_LL_SCA_051_TO_075_PPM 51 - 75

CYBLE_LL_SCA_031_TO_050_PPM 31 - 50

CYBLE_LL_SCA_021_TO_030_PPM 21 - 30

CYBLE_LL_SCA_000_TO_020_PPM 0 - 20

Refer to Bluetooth Core Specification 4.1 Volume 6, Chapter 4.5.7 for more details on how the SCA is used.

Link Layer clock divider

This input decides the frequency of the clock to the link layer. A lower clock frequency results in lower power
consumption. Default clock frequency for the operation is 24MHz. BLESS supports 24MHz, 12MHz and 8MHz
clock configurations. Based on the end application requirement (how frequent the communication is expected to
be), this parameter needs to be set.

ecoXtalStartUpTime ECO startup time specifies the value in the unit of 62.5us (16KHz clock cycles). This value
is programmed in BLESS WAKE_UP config register, to configure the wakeup time required by ECO. Max value
for ECO startup time field can be 79u units = (79 * 62.5) us

Parameters:

bleSsClockC
onfig

Pointer to a variable of type CYBLE_BLESS_CLK_CFG_PARAMS_T
from which the existing clock configuration is taken.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_API_RESULT_T CyBle_GenerateRandomNumber (uint8 *randomNumber)

This function generates 8-byte random number which complies with pseudo random number generation in
accordance with [FIPS PUB 140-2]. Random number generation function is used during security procedure
documented in Bluetooth 4.1 core specification, Volume 3, Part H.

This is a blocking function. No event is generated on calling this function.

Parameters:

randomNum
ber

Pointer to a buffer of size 8 bytes in which the generated random
number gets stored.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 76 of 559 Document Number: 002-29930 Rev. *A

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_API_RESULT_T CyBle_AesEncrypt (uint8 *plainData, uint8 *aesKey, uint8 *encryptedData)

This function uses BLE sub-system AES engine to encrypt 128-bit of plain text using the given AES key. The
output of AES processing is copied to encryptedData buffer. Refer Bluetooth 4.1 core specification, Volume 3,
Part H, section 2.2 for more details on usage of AES key.

This is a blocking function. No event is generated on calling this function.

Parameters:

plainData Pointer to the data containing plain text (128-bit) that is to be encrypted.

aesKey Pointer to the AES Key (128-bit) that is to be used for AES encryption.

encryptedDa
ta

Pointer to the encrypted data (128-bit) that is output of AES module for
given plainData and aesKey.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter

CYBLE_API_RESULT_T CyBle_SetCeLengthParam (uint8 bdHandle, uint8 mdBit, uint16 ceLength)

This function sets the connection event duration related parameters that can result in extension or truncation of
LE connection event based on more data (mdBit) bit status and 'ceLength' duration. Refer Bluetooth 4.1 core
specification, Volume 6, Part B, section 4.5 for more details on connection states of BLE Link Layer.

This is a blocking function. No event is generated on calling this function.

BLE Stack uses the BLESS hardware (AES module) to encrypt/decrypt the data. BLESS must be initialized before
using this function. This function can safely be used by the application in "single thread/task system" which is the
case with the current implementation of the BLE Stack. For multitasking systems, this function must be used within
the BLE task to ensure atomic operation.

Parameters:

bdHandle Peer device bdHandle.

mdBit 'More Data' bit to select more number of data packets in BLE Stack
buffer. A value of 0x01 indicates extension and a value of 0x00
indicates truncation.

ceLength CE length of connection event that can extend the connection event.
Details on this parameter are as given below:

• Value Range = 0x0000 to 0xFFFF

• Time Calculation = N x 0.625 ms

• Time Range = 0 ms to 40.959 ms

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 77 of 559

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

One of the input parameters is invalid

CYBLE_ERROR_NO_CONNECTION When controller can't find active connection
using given bdHandle

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Invalid bdHandle or LE connection doesn't
exist for link identified by bdHandle.

CYBLE_API_RESULT_T CyBle_WriteAuthPayloadTimeout (uint8 bdHandle, uint16 authPayloadTimeout)

This function sets the Authentication Payload timeout in BLE Controller for LE_PING feature. Refer Bluetooth 4.1
core specification, Volume 6, Part B, section 4.6.5 for LE Ping operation.

This is a blocking function. No event is generated on calling this function.

Parameters:

bdHandle Peer device handle.

authPayload
Timeout

Variable containing authentication timeout value to be written to BLE
Controller. Details on this parameter are as given below:

• Value Range = 0x0001 to 0xFFFF

• Default Value (N) = 3000 (30 seconds)

• Time Calculation = N x 10 ms

• Time Range = 10 ms to 655,350 ms

Note: The time at which PING packet transmitted over the air is determined from the following formula (only in
case of SlaveLatency is enabled) (authPayloadTimeout - (4 * ((1 + SlaveLatency) * Connection Interval)))

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

One of the input parameters is invalid

CYBLE_ERROR_INVALID_OPERATI
ON

Operation is not permitted

CYBLE_ERROR_NO_CONNECTION When controller can't find active connection
using given bdHandle

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Invalid bdHandle or LE connection doesn't
exist for link identified by bdHandle.

CYBLE_API_RESULT_T CyBle_ReadAuthPayloadTimeout (uint8 bdHandle, uint16 *authPayloadTimeout)

This function reads the Authentication Payload timeout set in BLE Controller for LE_PING feature Refer Bluetooth
4.1 core specification, Volume 6, Part B, section 4.6.5 for LE Ping operation.

This is a blocking function. No event is generated on calling this function.

Parameters:

bdHandle Peer device handle

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 78 of 559 Document Number: 002-29930 Rev. *A

authPayload
Timeout

Pointer to a variable to which authentication timeout value, read from
BLE Controller, is written.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

One of the input parameters is invalid.

CYBLE_ERROR_INVALID_OPERATI
ON

Operation is not permitted.

CYBLE_ERROR_NO_CONNECTION When controller can't find active connection
using given bdHandle

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Invalid bdHandle or LE connection doesn't
exist for link identified by bdHandle.

CYBLE_API_RESULT_T CyBle_GetStackLibraryVersion (CYBLE_STACK_LIB_VERSION_T *stackVersion)

This function retrieves the version information of the BLE Stack library. This is a blocking function. No event is
generated on calling this function.

Parameters:

stackVersion Pointer to a variable of type CYBLE_STACK_LIB_VERSION_T
containing the version information of the CYBLE Stack library.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

stackVersion is NULL.

CYBLE_API_RESULT_T CyBle_IsStackIdle (void)

This function is used to check BLE stack is idle or not. This API function returns CYBLE_ERROR_OK if BLE Stack
is idle. This function returns CYBLE_ERROR_STACK_BUSY if L2CAP TX data is queued for transmission, or
any tasks are pending or hardware is busy. This function will not consider Rx path to decide stack is idle or not.

Note: This API function should not be called from BLE Stack callback context.

Use case example: Application can check before shut-down, BLE stack is idle or not.

Errors codes Description

CYBLE_ERROR_OK If Stack is idle

CYBLE_ERROR_STACK_BUSY If Stack is not idle.

CYBLE_BLESS_STATE_T CyBle_GetBleSsState (void)

This function gets the BLE Subsystem's current operational mode. This state can be used to manage system level
power modes based on return value.

Returns:

CYBLE_BLESS_STATE_T bleStackMode: CYBLE_BLESS_STATE_T has one of the following modes

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 79 of 559

BLE Stack Mode Description

CYBLE_BLESS_STATE_ACTIVE BLE Sub System is in active mode, CPU can
be in active mode or sleep mode.

CYBLE_BLESS_STATE_EVENT_CL
OSE

BLE Sub System radio and Link Layer
hardware finishes Tx/Rx. After this state
application can try putting BLE to Deep Sleep
State to save power in rest of the BLE
transmission event.

CYBLE_BLESS_STATE_SLEEP BLE Sub System is in sleep mode, CPU can
be in sleep mode.

CYBLE_BLESS_STATE_ECO_ON BLE Sub System is in process of wakeup from
Deep Sleep Mode and ECO(XTAL) is turned
on. CPU can be put in Deep Sleep Mode.

CYBLE_BLESS_STATE_ECO_STAB
LE

BLE Sub System is in process of wakeup from
Deep Sleep Mode and ECO(XTAL) is stable.
CPU can be put in sleep mode.

CYBLE_BLESS_STATE_DEEPSLEE
P

BLE Sub System is in Deep Sleep Mode. CPU
can be put in Deep Sleep Mode.

CYBLE_BLESS_STATE_HIBERNAT
E

BLE Sub System is in Hibernate Mode. CPU
can be put in Deep Sleep Mode.

void CyBle_AesCcmInit (void)

This function initializes the clocks and registers needed to used AEC CCM encryption / decryption functionality
without initializing the complete BLE Stack. This function must be called before calling CyBle_AesCcmEncrypt
and/or CyBle_AesCcmDecrypt function. This is a blocking function. No event is generated on calling this function.

Returns:

None

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 80 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_AesCcmEncrypt (uint8 *key, uint8 *nonce, uint8 *in_data, uint8 length, uint8
*out_data, uint8 *out_mic)

This function encrypts the given data. This function can only be invoked after invoking 'CyBle_AesCcmInit'
function. This is a blocking function. No event is generated on calling this function.

Parameters:

key Pointer to an array of bytes holding the key. The array length to be
allocated by the application should be 16 bytes.

nonce Pointer to an array of bytes. The array length to be allocated by the
application is 13 Bytes.

in_data Pointer to an array of bytes to be encrypted. Size of the array should be
equal to the value of 'length' parameter.

length Length of the data to be encrypted, in Bytes. Valid value range is 1 to
27.

out_data Pointer to an array of size 'length' where the encrypted data is stored.

out_mic Pointer to an array of bytes (4 Bytes) to store the MIC value generated
during encryption.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

One of the inputs is a null pointer or the
'length' value is invalid

CYBLE_API_RESULT_T CyBle_AesCcmDecrypt (uint8 *key, uint8 *nonce, uint8 *in_data, uint8 length, uint8
*out_data, uint8 *in_mic)

This function decrypts the given data. This function can only be invoked after invoking 'CyBle_AesCcmInit'
function. This is a blocking function. No event is generated on calling this function.

Parameters:

key Pointer to an array of bytes holding the key. The array length to be
allocated by the application should be 16 bytes.

nonce Pointer to an array of bytes. The array length to be allocated by the
application is 13 Bytes.

in_data Pointer to an array of bytes to be decrypted. Size of the array should be
equal to the value of 'length' parameter.

length Length of the data to be decrypted, in Bytes. Valid value range is 1 to
27.

out_data Pointer to an array of size 'length' where the decrypted data is stored.

in_mic Pointer to an array of bytes (4 Bytes) to provide the MIC value
generated during encryption.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

One of the inputs is a null pointer or the
'length' value is invalid

CYBLE_ERROR_MIC_AUTH_FAILE
D

Data decryption has been done successfully
but MIC based authorization check has failed.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 81 of 559

Error codes Description

This error can be ignored if MIC based
authorization was not intended.

CYBLE_API_RESULT_T CyBle_GenerateAesCmac (CYBLE_AES_CMAC_GENERATE_PARAM_T
*cmacGenParam)

This API function enables the application to generate the AES CMAC of 16 bytes, for given variable length
message and CMAC Key.

After this API function call, if the return value is CYBLE_ERROR_OK, then callback given in the input parameter
is called when the cmac generation is completed. Once this callback is called, check the output parameter cmac
to get the generated cmac value.

Parameters:

cmacGenPar
am

pointer to structure containing parameters required for AES CMAC
Generation.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

cmacGenParam is NULL or key is NULL or
mac, output parameter is NULL or
appl_callback is NULL or if buffer is NULL
when size is greater than zero

CYBLE_ERROR_STACK_INTERNAL An error occurred in BLE stack

CYBLE_API_RESULT_T CyBle_SetAppEventMask (uint32 UserEventMask)

This API function enables the application to Mask which Events user wants to receive

Currently supporting maskable events CYBLE_EVT_GAP_CONN_ESTB
CYBLE_EVT_GAP_SCAN_REQ_RECVD

Parameters:

UserEventM
ask

User Event Mask

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

UserEventMask is ZERO

CYBLE_API_RESULT_T CyBle_RegisterBlessInterruptCallback (CYBLE_BLESS_EVENT_PARAM_T
*BlessEventParams)

This API function will registers the callback function for BLESS Events and sets Event mask which BLESS Events
user wants to receive

Currently supporting events CYBLE_ISR_BLESS_CONN_CLOSE_CE CYBLE_ISR_BLESS_ADV_CLOSE

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 82 of 559 Document Number: 002-29930 Rev. *A

Note: Application has to pay utmost care about not doing delayed processing in event handler as the registered
callback will get called from BLESS Interrupt Service Routine.

Application can set/clear flag which can be used for further processing outside of the ISR context.

Event received through callback represents events received as a whole at that point i.e., application won't receive
individual events.

Parameters:

BlessEventP
arams

pointer to structure CYBLE_BLESS_EVENT_PARAM_T

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

If NULL passed

void CyBle_SetTxGainMode (uint8 bleSsGainMode)

This function configures the Tx gain mode for BLESS radio for Tx operation.

Parameters:

bleSsGainM
ode

Gain mode setting for the output power

BLESS RD Gain Mode Description

CYBLE_BLESS_NORMAL_GAIN_M
ODE

0x00u - BLESS Normal Gain Mode Tx Pwr
Range -18dBm to 0 dBm Normal Rx Sensitivity

CYBLE_BLESS_HIGH_GAIN_MODE 0x01u - BLESS High Gain Mode Tx Pwr
Range -18dBm to 3 dBm 3 dBm Additional Rx
Sensitivity

Returns:

none

void CyBle_SetRxGainMode (uint8 bleSsGainMode)

This function configures the Rx gain mode to select Higher or Lower Receive Sensitivity for BLESS radio.

Parameters:

bleSsGainM
ode

Gain mode setting for the Receiver Sensitivity.

BLESS RD Gain Mode Description

CYBLE_BLESS_NORMAL_GAIN_M
ODE

0x00u - BLESS Normal Gain Mode. Rx
Sensitivity of -89dBm.

CYBLE_BLESS_HIGH_GAIN_MODE 0x01u - BLESS High Gain Mode. Rx
Sensitivity of -91dBm.

Returns:

none

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 83 of 559

CYBLE_API_RESULT_T CyBle_SetSlaveLatencyMode (uint8 bdHandle, uint8 setForceQuickTransmit)

This function overrides the default BLE Stack behavior for LE connection that is established with non zero slave
latency. This API function can be used by application to force set quick transmission for a link related to specified
'bdHandle' during slave latency period.

If the force quick transmit option is selected, the device will always respond all the Connection Events (CE)
ignoring the slave latency. To re-enable BLE Stack control quick transmit behavior application should call this API
function with force quick transmit option set to zero.

BLE Stack Control Policy: BLE Stack enables quick transmission whenever any data packet is queued in link
layer. Upon successful transmission of data packet BLE Stack resets the quick transmit to enable latency for
power save.

BLE Stack also enables quick transmit whenever any real time LL Control PDU is received. Once the
acknowledgment of the PDU is processed the quick transmit option is reset.

Parameters:

bdHandle bdHandle identifying LE connection for which force quick transmit
option is to be set or reset.

setForceQui
ckTransmit

This parameter is used to set or reset the force quick transmit
configuration in BLE Stack.

• '1': Set the quick transmit behavior, it gets set immediately and
disables over the air slave latency . This quick transmit setting
remains true until application gives control to BLE Stack for
controlling quick transmit bit.

• '0': Reset the force quick transmit behavior in BLESS to allow
BLE Stack to control quick transmit behavior when slave
latency is applied.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_NO_CONNECTION When controller can't find active connection
using given bdHandle

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Invalid bdHandle or LE connection doesn't
exist for link identified by bdHandle.

void CyBle_SetSeedForRandomGenerator (uint32 seed)

As per security specification of Bluetooth, BLE stack uses pseudo random number generator (Bluetooth core
specification 4.2, Vol.2 Part H, Sec-2). Application can generate random number using API function
CyBle_GenerateRandomNumber. Seed for random number generator with better entropy for randomness can be
provided by application using this API function. This function sets application specific seed for DRBG
(Deterministic Random number generator).

Parameters:

seed Seed for DRBG. Setting the seed to zero is functionally equivalent to
not setting the application specific seed.

Returns:

None.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 84 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_IsLLControlProcPending (void)

This function checks the Link Layer state for any pending real time control (LL_CHANNEL_MAP,
LL_CONNECTION_UPDATE) procedure. When any such procedure is pending in Link layer busy state it is
indicated by Link Layer.

Application using specific GAP API functions or L2CAP API functions that can result in initiation of real time
procedures such as LL_CHANNEL_MAP, LL_CONNECTION_UPDATE can check the state of Link Layer to avoid
any such rejection from BLE Stack.

BLE Stack can reject the new request If any LL control procedure is pending for completion this API function will
return CYBLE_ERROR_CONTROLLER_BUSY.

Returns:

CYBLE_API_RESULT_T: Return value indicates the Link Layer status for any pending real time procedure.

Errors codes Description

CYBLE_ERROR_OK Link Layer is Free.

CYBLE_ERROR_CONTROLLER_BU
SY

Link Layer Control Procedure is pending, no
new LL control procedure can be initiated.

CYBLE_API_RESULT_T CyBle_StartTransmitterTest (CYBLE_TRANSMITTER_TEST_PARAMS_T
*TransmitterTestParams)

This API function Programs direct test mode TX test command parameters.

Parameters:

TransmitterT
estParams

pointer to structure CYBLE_TRANSMITTER_TEST_PARAMS_T.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

TransmitterTestParams is NULL

CYBLE_API_RESULT_T CyBle_StartReceiverTest (uint8 RxFreq)

This API function Programs direct test mode RX test command parameters.

Parameters:

RxFreq Frequency for reception. N = (F 2402)/2 Range: 0x00 0x27. Frequency
Range : 2402 MHz to 2480 MHz.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

RxFreq is Out of Range

CYBLE_API_RESULT_T CyBle_TestEnd (uint16 *PacketCount)

This API function Programs the direct test end command to the hardware, it reads number of successful packtes
received from ll hardware.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 85 of 559

Parameters:

PacketCount Pointer to a buffer of size 16 bytes in which the received number of
successful packets will be stored.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

PacketCount is NULL

CYBLE_API_RESULT_T CyBle_HciSendPacket (CYBLE_HCI_PKT_PARAMS_T *HciPktParams)

This API function Sends HCI packet to Controller

User should deallocate memory buffer passed as an input parameter, after receiving an Event from the controller
for command packet and after recieving Number Of Completed Packets event for data packet transmitted.

Parameters:

HciPktParam
s

pointer to structure CYBLE_HCI_PKT_PARAMS_T.

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

HciCmdParams is NULL

CYBLE_ERROR_INVALID_OPERATI
ON

Operation not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_StoreStackData (uint8 isForceWrite)

This function instructs Stack to backup Stack internal RAM data into flash. This API function must be called by
application to backup stack data. If this API function is not called appropriately, stack internal data structure will
not be available on power cycle.

Parameters:

isForceWrite If value is set to 0, then stack will check if flash write is permissible. If
value is set to 1, application should exit low power mode by calling
CyBle_ExitLPM().

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_FLASH_WRITE_N
OT_PERMITED

Flash Write is not permitted or not completely
written

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 86 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_StoreAppData (uint8 *srcBuff, const uint8 destAddr[], uint32 buffLen, uint8
isForceWrite)

This function instructs the Stack to backup application specific data into flash. This API function must be called by
application to backup application specific data.

Parameters:

srcBuff Source buffer

destAddr Destination address

buffLen Length of srcData

isForceWrite If value is set to 0, then stack will check if flash write is permissible. If
value is set to 1, application should exit low power mode by calling
CyBle_ExitLPM()

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_FLASH_WRITE_N
OT_PERMITED

Flash Write is not permitted

CYBLE_ERROR_INVALID_PARAME
TER

Invalid input parameter

CYBLE_ERROR_FLASH_WRITE Error in flash Write

GAP Functions

Description

The GAP APIs allow access to the Generic Access Profile (GAP) layer of the BLE stack. Depending on the chosen
GAP role in the GUI, you may use a subset of the supported APIs.

The GAP API names begin with CyBle_Gap. In addition to this, the APIs also append the GAP role initial letter in the
API name.

Modules

• GAP Central and Peripheral Functions

These are APIs common to both GAP Central role and GAP Peripheral role. You may use them in either roles.

• GAP Central Functions

APIs unique to designs configured as a GAP Central role.

• GAP Peripheral Functions

APIs unique to designs configured as a GAP Peripheral role.

• GAP Definitions and Data Structures

Contains the GAP specific definitions and data structures used in the GAP APIs.

GAP Central and Peripheral Functions

Description

These are APIs common to both GAP Central role and GAP Peripheral role. You may use them in either roles.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 87 of 559

No letter is appended to the API name: CyBle_Gap

Functions

• CYBLE_API_RESULT_T CyBle_GapSetLocalName (const char8 name[])

• CYBLE_API_RESULT_T CyBle_GapGetLocalName (char8 name[])

• CYBLE_API_RESULT_T CyBle_GapSetIoCap (CYBLE_GAP_IOCAP_T ioCap)

• CYBLE_API_RESULT_T CyBle_GapSetSecurityRequirements (uint8 secReq, uint8 encKeySize)

• CYBLE_API_RESULT_T CyBle_GapSetOobData (uint8 bdHandle, uint8 oobFlag, uint8 *key, uint8 *oobData,
uint8 *oobDataLen)

• CYBLE_API_RESULT_T CyBle_GapGetPeerBdAddr (uint8 bdHandle, CYBLE_GAP_BD_ADDR_T
*peerBdAddr)

• CYBLE_API_RESULT_T CyBle_GapGetPeerBdHandle (uint8 *bdHandle, CYBLE_GAP_BD_ADDR_T
*peerBdAddr)

• CYBLE_API_RESULT_T CyBle_GapGetPeerDevSecurity (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T
*security)

• CYBLE_API_RESULT_T CyBle_GapDisconnect (uint8 bdHandle)

• CYBLE_API_RESULT_T CyBle_GapDisconnectWithReason (uint8 bdHandle, uint8 reason)

• CYBLE_API_RESULT_T CyBle_GapGetPeerDevSecurityKeyInfo (uint8 bdHandle, uint8 *keysFlag,
CYBLE_GAP_SMP_KEY_DIST_T *keyInfo)

• CYBLE_API_RESULT_T CyBle_GapGenerateDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr,
CYBLE_GAP_ADDR_TYPE_T addrType, uint8 *irk)

• CYBLE_API_RESULT_T CyBle_GapSetSecurityKeys (uint8 keysFlag, CYBLE_GAP_SMP_KEY_DIST_T
*keyInfo)

• CYBLE_API_RESULT_T CyBle_GapGenerateKeys (uint8 keysFlag, CYBLE_GAP_SMP_KEY_DIST_T
*keyInfo)

• CYBLE_API_RESULT_T CyBle_GapAuthReq (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T *authInfo)

• CYBLE_API_RESULT_T CyBle_GapAuthPassKeyReply (uint8 bdHandle, uint32 passkey, uint8 accept)

• CYBLE_API_RESULT_T CyBle_GapRemoveDeviceFromWhiteList (CYBLE_GAP_BD_ADDR_T *bdAddr)

• CYBLE_API_RESULT_T CyBle_GapAddDeviceToWhiteList (CYBLE_GAP_BD_ADDR_T *bdAddr)

• CYBLE_API_RESULT_T CyBle_GapGetBondedDevicesList (CYBLE_GAP_BONDED_DEV_ADDR_LIST_T
*bondedDevList)

• CYBLE_API_RESULT_T CyBle_GapRemoveOldestDeviceFromBondedList (void)

• CYBLE_API_RESULT_T CyBle_GapGetDevSecurityKeyInfo (uint8 *keyFlags,
CYBLE_GAP_SMP_KEY_DIST_T *keys)

• CYBLE_API_RESULT_T CyBle_GapGetDevicesFromWhiteList (uint8 *count, CYBLE_GAP_BD_ADDR_T
*addr)

• CYBLE_API_RESULT_T CyBle_GapGetChannelMap (uint8 bdHandle, uint8 *channelMap)

• CYBLE_API_RESULT_T CyBle_GapSetSecureConnectionsOnlyMode (uint8 state)

• CYBLE_API_RESULT_T CyBle_GapGenerateLocalP256Keys (void)

• CYBLE_API_RESULT_T CyBle_GapSetLocalP256Keys (CYBLE_GAP_SMP_LOCAL_P256_KEYS
*localP256Keys, uint8 isValidateKeys)

• CYBLE_API_RESULT_T CyBle_GapAuthSendKeyPress (uint8 bdHandle,
CYBLE_GAP_KEYPRESS_NOTIFY_TYPE notificationType)

• CYBLE_API_RESULT_T CyBle_GapGenerateOobData (const uint8 *pRand)

• CYBLE_API_RESULT_T CyBle_GapSetDataLength (uint8 bdHandle, uint16 connMaxTxOctets, uint16
connMaxTxTime)

• CYBLE_API_RESULT_T CyBle_GapSetRxDataLength (CYBLE_GAP_RX_DATA_LENGTH_T *RxDleParams)

• CYBLE_API_RESULT_T CyBle_GapSetSuggestedDataLength (uint16 suggestedTxOctets, uint16
suggestedTxTime)

• CYBLE_API_RESULT_T CyBle_GapGetDataLength (CYBLE_GAP_DATA_LENGTH_T *readParam)

• CYBLE_API_RESULT_T CyBle_GapConvertOctetToTime (CYBLE_GAP_PHY_TYPE_T phy, uint16 octets,
uint16 *pTime)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 88 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_API_RESULT_T CyBle_GapAddDeviceToResolvingList (const
CYBLE_GAP_RESOLVING_DEVICE_INFO_T *rpaInfo)

• CYBLE_API_RESULT_T CyBle_GapRemoveDeviceFromResolvingList (const CYBLE_GAP_BD_ADDR_T
*peerIdentityAddr)

• CYBLE_API_RESULT_T CyBle_GapClearResolvingList (void)

• CYBLE_API_RESULT_T CyBle_GapReadPeerResolvableAddress (const CYBLE_GAP_BD_ADDR_T
*peerIdentityAddr, uint8 *peerResolvableAddress)

• CYBLE_API_RESULT_T CyBle_GapReadLocalResolvableAddress (const CYBLE_GAP_BD_ADDR_T
*peerIdentityAddr, uint8 *localResolvableAddress)

• CYBLE_API_RESULT_T CyBle_GapSetResolvablePvtAddressTimeOut (uint16 rpaTimeOut)

• CYBLE_API_RESULT_T CyBle_GapReadResolvingList (CYBLE_GAP_RESOLVING_LIST_T *resolvingList)

• CYBLE_API_RESULT_T CyBle_GapSetAddressResolutionEnable (uint8 enableDisable)

• CYBLE_API_RESULT_T CyBle_GapSetPrivacyMode (CYBLE_GAP_PRIVACY_MODE_INFO_T
*privacyModeInfo)

• CYBLE_API_RESULT_T CyBle_GapGetBondedDevicesByRank (CYBLE_GAP_DEVICE_ADDR_LIST_T
*bondedDevList)

• CYBLE_API_RESULT_T CyBle_GapSetLeEventMask (uint8 *hciLeEventMask)

• CYBLE_API_RESULT_T CyBle_GapSetIdAddress (const CYBLE_GAP_BD_ADDR_T *bdAddr)

• CYBLE_API_RESULT_T CyBle_GapGenerateAndSetIrk (uint8 keysFlag, uint8 *irk)

• CYBLE_API_RESULT_T CyBle_GapFixAuthPassKey (uint8 isFixed, uint32 fixedPassKey)

• CYBLE_API_RESULT_T CyBle_GappSetNumOfAdvPkts (CYBLE_GAPP_DISC_MODE_INFO_T *advInfo,
uint16 NumOfAdvPkts)

Function Documentation

CYBLE_API_RESULT_T CyBle_GapSetLocalName (const char8 name[])

This function is used to set the local device name - a Characteristic of the GAP Service. If the characteristic length
entered in the component customizer is shorter than the string specified by the "name" parameter, the local device
name will be cut to the length specified in the customizer.

Parameters:

name The local device name string. The name string to be written as the local
device name. It represents a UTF-8 encoded User Friendly Descriptive
Name for the device. The length of the local device string is entered
into the component customizer and it can be set to a value from 0 to
248 bytes. If the name contained in the parameter is shorter than the
length from the customizer, the end of the name is indicated by a NULL
octet (0x00).

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK Function completed successfully.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter

CYBLE_API_RESULT_T CyBle_GapGetLocalName (char8 name[])

This function is used to read the local device name - a Characteristic of the GAP Service.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 89 of 559

Parameters:

name The local device name string. Used to read the local name to the given
string array. It represents a UTF-8 encoded User Friendly Descriptive
Name for the device. The length of the local device string is entered
into the component customizer and it can be set to a value from 0 to
248 bytes. If the name contained in the parameter is shorter than the
length from the customizer, the end of the name is indicated by a NULL
octet (0x00).

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK Function completed successfully.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter

CYBLE_API_RESULT_T CyBle_GapSetIoCap (CYBLE_GAP_IOCAP_T ioCap)

This function sets the input and output capability of the BLE Device that is used during authentication procedure.
This is a blocking function. No event is generated on calling this function. The input capabilities are described in
the following table:

Capability Description

No input Device does not have the ability to indicate
"yes" or "no"

Yes/No Device has at least two buttons that can be
easily mapped to "yes" and "no" or the device
has a mechanism whereby the user can
indicate either "yes" or "no".

Keyboard Device has a numeric keyboard that can input
the numbers "0" through "9" and a
confirmation. Device also has at least two
buttons that can be easily mapped to "yes"
and "no" or the device has a mechanism
whereby the user can indicate either "yes" or
"no".

The output capabilities are described in the following table:

Capability Description

No output Device does not have the ability to display or
communicate a 6 digit decimal number.

Numeric output Device has the ability to display or
communicate a 6 digit decimal number.

Combined capability is defined in the following table:

Input Capability No Output Numeric Output

No input NoInputNoOutput DisplayOnly

Yes/No NoInputNoOutput DisplayYesNo

Keyboard KeyboardOnly KeyboardDisplay

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 90 of 559 Document Number: 002-29930 Rev. *A

Refer Bluetooth 4.1 core specification, Volume 3, Part C, section 5.2.2.4 for more details on the IO capabilities.
IO capabilities of the BLE devices are used to determine the pairing method. Please refer Bluetooth 4.1 core
specification, Volume 3, Part H, section 2.3.5.1 for more details on the impact of IO capabilities on the pairing
method chosen.

Parameters:

ioCap IO Capability of type CYBLE_GAP_IOCAP_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

On specifying invalid input parameter

CYBLE_API_RESULT_T CyBle_GapSetSecurityRequirements (uint8 secReq, uint8 encKeySize)

This function is used to set the security requirements of local device and encryption key size requirement of the
local device. This is a blocking function. No event is generated on calling this function. It is expected to call this
API function on host stack on, though can be called at any point except when any of SMP procedure is in progress.
Security requirements are defined in the following table:

Security Requirement

CYBLE_GAP_NO_SECURITY_REQ
UIREMENTS

Default :security requirement specifies there
are no security requirements

CYBLE_GAP_SEC_UNAUTH_PAIRI
NG

Bit 0: Legacy pairing with NO MITM protection

CYBLE_GAP_SEC_AUTH_PAIRING Bit 1: Legacy pairing with MITM protection

CYBLE_GAP_SEC_SC_PAIRING_W
ITH_NO_MITM

Bit 2: Secured Connection pairing with NO
MITM protection

CYBLE_GAP_SEC_SC_PAIRING_W
ITH_MITM

Bit 3: Secured Connection pairing with MITM
protection

CYBLE_GAP_SEC_OOB_IN_LEGAC
Y_PAIRING

Bit 4: Legacy pairing with OOB method

CYBLE_GAP_SEC_OOB_IN_SC_PA
IRING

Bit 5: Secured Connection pairing with OOB
method

After this API function is called, BLE Stack will check whether the received security request or pairing request or
pairing response satisfies local device security requirements that are set using this API function. If local device
security requirements are not met then pairing is rejected by the BLE stack.

Eg: CyBle_GapSetSecurityRequirements() is called with secReq as
CYBLE_GAP_SEC_SC_PAIRING_WITH_MITM. Now if BLE Stack receives any pairing request with SC bit and
MITM bit are not set, then that pairing request will be rejected by the stack.

Note: If the secured connection only mode is set, then these security requirements are not considered during
pairing procedure. This is to maintain BWC for SC Only mode.

Parameters:

secReq Security requirement is a bit-field parameter. Application can set this
value with the above defined values in the table. Application can set
multiple security requirements by ORing them in this parameter. Eg: If
secReq is (CYBLE_GAP_SEC_UNAUTH_PAIRING |
CYBLE_GAP_SEC_SC_PAIRING_WITH_NO_MITM), then stack

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 91 of 559

allows pairing only if received pairing request is either Legacy pairing
with NO MITM or Secured Connection pairing with NO MITM.

encKeySize Encryption key size requirement of the local device. This parameter
does not affect anything on central side. At peripheral side, when
encryption key size is set using this API function, then after during
pairing if negotiated key size is less than the key size set by this API
function, then BLE Stack will reject that pairing request.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

On specifying invalid input parameter

CYBLE_API_RESULT_T CyBle_GapSetOobData (uint8 bdHandle, uint8 oobFlag, uint8 *key, uint8 *oobData,
uint8 *oobDataLen)

This function sets OOB presence flag and data. This function should be used by the application layer if it wants
to enable OOB bonding procedure for any specific device identified by "bdHandle". This function should be called
before initiating authentication or before responding to authentication request to set OOB flag and data. For more
details on OOB, please refer Bluetooth 4.1 core specification, Volume 1, Part A, section 5.2.4.3. This is a blocking
function. No event is generated on calling this function.

Parameters:

bdHandle Peer device for which the Out Of Band signaling (OOB) configuration is
to be used.

oobFlag OOB data presence flag. Allowed value are,

• CYBLE_GAP_OOB_DISABLE

• CYBLE_GAP_OOB_ENABLE

key 16 Octet Temporary Key, to be used for OOB authentication.

oobData Pointer to OOB data. In case of Legacy Pairing this parameter is not
used for OOB authentication.

oobDataLen Pointer to a variable to store OOB data length.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter

CYBLE_ERROR_NO_DEVICE_ENTI
TY

'bdHandle' does not represent known device
entity

CYBLE_API_RESULT_T CyBle_GapGetPeerBdAddr (uint8 bdHandle, CYBLE_GAP_BD_ADDR_T
*peerBdAddr)

This function reads the peer Bluetooth device address which has already been fetched by the BLE Stack.
'peerBdAddr' stores the peer's Bluetooth device address identified with 'bdHandle'. This is a blocking function. No
event is generated on calling this function.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 92 of 559 Document Number: 002-29930 Rev. *A

Parameters:

bdHandle Peer device handle.

peerBdAddr Empty buffer where the Bluetooth device address gets stored.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'peerBdAddr'.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Specified device handle does not map to any
device handle entry in BLE stack.

CYBLE_API_RESULT_T CyBle_GapGetPeerBdHandle (uint8 *bdHandle, CYBLE_GAP_BD_ADDR_T
*peerBdAddr)

This function reads the device handle of the remote Bluetooth device using 'peerBdAddr', which has already been
fetched by the BLE Stack. 'bdHandle' stores the peer device handle. This is a blocking function. No event is
generated on calling this function.

Parameters:

bdHandle Pointer to a variable to store peer device handle

peerBdAddr Pointer to Bluetooth device address of peer device of type
CYBLE_GAP_BD_ADDR_T, to be provided to this function as an input

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'peerBdAddr' or 'bdHandle'.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Specified device handle does not map to any
device handle entry in BLE stack.

CYBLE_API_RESULT_T CyBle_GapGetPeerDevSecurity (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T
*security)

This function enables the application to get the device security of the peer device, which has already been fetched
by the BLE Stack, identified using 'bdHandle' when the peer device is in the trusted list. This is a blocking function.
No event is generated on calling this function.

Parameters:

bdHandle Peer device handle

security Pointer to a buffer into which security information will be written.
security level of the peer device is provided in
CYBLE_GAP_AUTH_INFO_T->security. It ignores LE Security mode.
Security should be interpreted as MITM and no MITM as encryption is
always supported if pairing is performed between two devices.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 93 of 559

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'security'.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Specified device handle does not map to any
device handle entry in BLE stack.

CYBLE_API_RESULT_T CyBle_GapDisconnect (uint8 bdHandle)

This function disconnects the peer device. It is to be used by the device in GAP Central mode and may be used
by a GAP Peripheral device to send a disconnect request. This is a non-blocking function. On disconnection, the
following events are generated, in order.

• CYBLE_EVT_GATT_DISCONNECT_IND

• CYBLE_EVT_GAP_DEVICE_DISCONNECTED

Parameters:

bdHandle Peer device handle

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

No device to be disconnected. The specified
device handle does not map to any device
entry in the BLE Stack.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_API_RESULT_T CyBle_GapDisconnectWithReason (uint8 bdHandle, uint8 reason)

This function allows to disconnect the peer device with reason code. It is to be used by the device in GAP Central
mode and may be used by a GAP Peripheral device to send a disconnect request. This is a non-blocking function.
On disconnection, the following events are generated, in order.

• CYBLE_EVT_GATT_DISCONNECT_IND

• CYBLE_EVT_GAP_DEVICE_DISCONNECTED

Note: If the reason code is not valid, then by default reason code sent is 0x13

Parameters:

bdHandle Peer device handle

reason Reason for the disconnect. Refer Volume 2, Part E, section 7.1.6 for
the reason codes.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 94 of 559 Document Number: 002-29930 Rev. *A

Error codes Description

CYBLE_ERROR_INVALID_PARAME
TER

No device to be disconnected. The specified
device handle does not map to any device
entry in the BLE Stack.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_API_RESULT_T CyBle_GapGetPeerDevSecurityKeyInfo (uint8 bdHandle, uint8 *keysFlag,
CYBLE_GAP_SMP_KEY_DIST_T *keyInfo)

This function enables the application to know the keys shared by a given peer device upon completion of the
security sequence (already fetched by the BLE Stack). The keys are shared by the peer device on initiation of
authentication which is performed using the CyBle_GapAuthReq() or CyBle_GappAuthReqReply() function.

This is a blocking function. No event is generated on calling this function.

Parameters:

bdHandle Peer device handle.

keysFlag Indicates the keys to be retrieved from peer device. The following bit
fields indicate the presence or absence of the keys distributed.
 Negotiated Local/Peer Key distribution

• Bit 0. Encryption information (LTK and MID Information)

• Bit 1. Identity information

• Bit 2. Signature Key

• Bit 3-7. Reserved

keyInfo Pointer to variable of type CYBLE_GAP_SMP_KEY_DIST_T to copy
the stored keys of the peer device identified by 'bdHandle'

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'keyInfo'.

CYBLE_ERROR_INVALID_OPERATI
ON

An error occurred in BLE stack.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified using 'bdHandle' does not
exist.

CYBLE_API_RESULT_T CyBle_GapGenerateDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr,
CYBLE_GAP_ADDR_TYPE_T addrType, uint8 *irk)

This function generates either public or random address based on 'type' field of CYBLE_GAP_BD_ADDR_T
structure. It uses BLE Controller's random number generator to generate the random part of the Bluetooth device
address.

The parameter 'addrType' specifies further sub-classification within the public and random address types.

This is a blocking function. No event is generated on calling this function.

Parameters:

bdAddr Bluetooth device address is generated and populated in the structure
pointed to by this pointer. The structure is of type
CYBLE_GAP_BD_ADDR_T.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 95 of 559

addrType Specifies the type of address. This can take one of the values from the
enumerated data type CYBLE_GAP_ADDR_TYPE_T.

irk Pointer to buffer containing 128-bit 'IRK' data. This parameter is only
used when CYBLE_GAP_RANDOM_PRIV_RESOLVABLE_ADDR is
the value set to 'addrType'. For other values of 'addrType', this
parameter is not used.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_API_RESULT_T CyBle_GapSetSecurityKeys (uint8 keysFlag, CYBLE_GAP_SMP_KEY_DIST_T
*keyInfo)

This function sets the security keys that are to be exchanged with peer device during key exchange stage of
authentication procedure and sets it in the BLE Stack. This is a blocking function. No event is generated on calling
this function.

Parameters:

keysFlag This parameter indicates which keys get exchanged with peer device.
The following is the bit field mapping for the keys.

• Bit 0: Local Encryption information

• Bit 1: Local Identity information

• Bit 2: Local Signature Key

• Bit 3: Reserved

• Bit 4: Remote Encryption information

• Bit 5: Remote Identity information

• Bit 6: Remote Signature Key

• Bit 7: Reserved

keyInfo Pointer to a variable containing the keys to be set, of type
'CYBLE_GAP_SMP_KEY_DIST_T'. idAddrInfo param of
'CYBLE_GAP_SMP_KEY_DIST_T' will be ignored.
'CyBle_GapSetIdAddress' api needs to be used to set bd address.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'keyInfo'

CYBLE_API_RESULT_T CyBle_GapGenerateKeys (uint8 keysFlag, CYBLE_GAP_SMP_KEY_DIST_T
*keyInfo)

This function generates and sets the security keys into BLE Stack that are to be exchanged with peer device
during key exchange stage of authentication procedure. This is a blocking function. No event is generated on
calling this function. This API function does not generate identity address (keyInfo->idAddrInfo)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 96 of 559 Document Number: 002-29930 Rev. *A

Parameters:

keysFlag This parameter indicates which keys get exchanged with peer device.
The following is the bit field mapping for the keys.

• Bit 0: Local Encryption information

• Bit 1: Local Identity information

• Bit 2: Local Signature Key

• Bit 3: Reserved

• Bit 4: Remote Encryption information

• Bit 5: Remote Identity information

• Bit 6: Remote Signature Key

• Bit 7: Reserved

keyInfo Pointer to a variable containing the returned keys, of type
'CYBLE_GAP_SMP_KEY_DIST_T'

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'keyInfo'

CYBLE_API_RESULT_T CyBle_GapAuthReq (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T *authInfo)

This function starts authentication/pairing procedure with the peer device. It is a non-blocking function.

If the local device is a GAP Central, the pairing request is sent to the GAP Peripheral device. On receiving
CYBLE_EVT_GAP_AUTH_REQ event, the GAP Peripheral is expected to respond by invoking the
CyBle_GappAuthReqReply() function.

If the local device is GAP Peripheral, a Security Request is sent to GAP Central device. On receiving
CYBLE_EVT_GAP_AUTH_REQ event, the GAP Central device is expected to respond by invoking
'CyBle_GapAuthReq ()' function.

Parameters:

bdHandle Peer device handle

authInfo Pointer to security information of the device of type
CYBLE_GAP_AUTH_INFO_T. The 'authErr' parameter in
CYBLE_GAP_AUTH_INFO_T should be ignored as it is not used in this
function. NOTE: If the bonding flag in authInfo is set to
CYBLE_GAP_BONDING_NONE then, SMP keys will not be distributed
even if application has generated and set the keys explicitly.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying null pointer for 'advInfo' or if any
of the element of this structure has an invalid
value.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 97 of 559

Error codes Description

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified using 'bdHandle' does not
exist.

CYBLE_ERROR_INSUFFICIENT_RE
SOURCES

On bonded device is full and application tries
to initiate pairing with bonding enable.

CYBLE_API_RESULT_T CyBle_GapAuthPassKeyReply (uint8 bdHandle, uint32 passkey, uint8 accept)

This function sends passkey for authentication. It is a non-blocking function.

It should be invoked in reply to the authentication request event
CYBLE_EVT_GAP_PASSKEY_ENTRY_REQUEST received by the BLE Stack. This function is used to accept
the passkey request and send the passkey or reject the passkey request.

• If the authentication operation succeeds, CYBLE_EVT_GAP_AUTH_COMPLETE is generated. If the
authentication process times out, CYBLE_EVT_TIMEOUT event is generated.

• If the authentication fails, CYBLE_EVT_GAP_AUTH_FAILED event is generated.

Parameters:

bdHandle Peer device handle

passkey 6-digit decimal number (authentication passkey)

accept Accept or reject passkey entry request. Allowed values are,

• CYBLE_GAP_REJECT_PASSKEY_REQ

• CYBLE_GAP_ACCEPT_PASSKEY_REQ

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Invalid parameter.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified using 'bdHandle' does not
exist.

CYBLE_API_RESULT_T CyBle_GapRemoveDeviceFromWhiteList (CYBLE_GAP_BD_ADDR_T *bdAddr)

This function marks the device untrusted. It removes the bonding information of the device and removes it from
the white list. More details on 'bonding' and 'trusted devices' is available in Bluetooth 4.1 core specification, Volume
3, Part C, section 9.4.4.

This is a blocking function. No event is generated on calling this function. This API function is kept as is for
backward compatibility. This API function will be obsolete in future.

Parameters:

bdAddr Pointer to peer device address, of type CYBLE_GAP_BD_ADDR_T. If
device address is set to 0, then all devices shall be removed from
trusted list and white list.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 98 of 559 Document Number: 002-29930 Rev. *A

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'bdAddr'.

CYBLE_ERROR_INVALID_OPERATI
ON

Whitelist is already in use.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device does not exist in the whitelist.

CYBLE_API_RESULT_T CyBle_GapAddDeviceToWhiteList (CYBLE_GAP_BD_ADDR_T *bdAddr)

This function adds the device to the whitelist. Maximum number of devices that can be added to the whitelist is
eight including CYBLE_GAP_MAX_BONDED_DEVICE. Refer to Bluetooth 4.1 core specification, Volume 3, Part
C, section 9.3.5 for more details on whitelist.

This is a blocking function. No event is generated on calling this function.

Parameters:

bdAddr Peer device address, of type CYBLE_GAP_BD_ADDR_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'bdAddr' or 'bdAddr->type' has an invalid value

CYBLE_ERROR_INVALID_OPERATI
ON

Whitelist is already in use

CYBLE_ERROR_INSUFFICIENT_RE
SOURCES

 WhitelistMemory is full

CYBLE_ERROR_DEVICE_ALREAD
Y_EXISTS

Matching device already exists in the whitelist

CYBLE_API_RESULT_T CyBle_GapGetBondedDevicesList (CYBLE_GAP_BONDED_DEV_ADDR_LIST_T
*bondedDevList)

This function returns the count and Bluetooth device address of the devices in the bonded device list. This is a
blocking function. No event is generated on calling this function.

Application invoking this function should allocate sufficient memory for the structure
CYBLE_GAP_BONDED_DEV_ADDR_LIST_T, where the complete list of bonded devices along with count can
be written. Maximum devices bonded are specified by CYBLE_GAP_MAX_BONDED_DEVICE, which is a pre
processing time parameter for the BLE Stack. Hence, the bonded device count will be less than or equal to
CYBLE_GAP_MAX_BONDED_DEVICE.

Refer Bluetooth 4.1 core specification, Volume 3, Part C, section 9.4.4 for details on bonded devices.

Parameters:

bondedDevLi
st

Buffer to which list of bonded device list will be stored of type
CYBLE_GAP_BONDED_DEV_ADDR_LIST_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 99 of 559

Errors codes Description

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_API_RESULT_T CyBle_GapRemoveOldestDeviceFromBondedList (void)

This function removes the oldest device from the bonded and white lists. This api should not be called while in
connected state. If device is connected to the oldest device, and this API function is called, it will remove the
device which is next oldest and not connected.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded (0x0000) or failed. Following are
the possible error codes returned.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_MAX On failure operation.

CYBLE_API_RESULT_T CyBle_GapGetDevSecurityKeyInfo (uint8 *keyFlags,
CYBLE_GAP_SMP_KEY_DIST_T *keys)

This function gets the local device's Keys and key flags. The IRK received from this function should be used as
the input IRK for the function 'CyBle_GapGenerateDeviceAddress' to generate Random Private Resolvable
address. This is a blocking function. No event is generated on calling this function.

Parameters:

keyFlags Pointer to a byte where the key flags are stored. Based on the flag bits,
the calling application can determine if the returned value is valid (1) or
not (0). Key distribution flag

• Bit 0: Local Encryption information

• Bit 1: Local Identity information

• Bit 2: Local Signature Key

• Bit 3 - Bit 7: Reserved

keys Pointer to a structure of type CYBLE_GAP_SMP_KEY_DIST_T where
the keys get stored

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameters

CYBLE_API_RESULT_T CyBle_GapGetDevicesFromWhiteList (uint8 *count, CYBLE_GAP_BD_ADDR_T
*addr)

This function extracts the list of devices added to the white list. This is a blocking function. No events are generated
on calling this function. There is no HCI command defined for this operation as the application is expected to keep
track of the devices added to the white list. This function has been provided to facilitate testing of the Cypress
BLE Hardware using CySmart tool.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 100 of 559 Document Number: 002-29930 Rev. *A

Parameters:

count Pointer to a variable to hold the number of enabled addresses in the
white list. This is an output parameter.

addr Pointer to a variable of type 'CYBLE_GAP_BD_ADDR_T' which holds
Address type and Address of the device.

The function invoking this should allocate memory for the variables pointed to by the above pointers. 'addr' should
point to an array of type CYBLE_GAP_BD_ADDR_T and size equal to the maximum number of white list devices
supported by the BLE Stack (CYBLE_MAX_WHITELIST_ENTRIES).

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter(s)

CYBLE_API_RESULT_T CyBle_GapGetChannelMap (uint8 bdHandle, uint8 *channelMap)

This function reads the channel map for data channels. This classification persists until it is overwritten by a
subsequent call to this function or the controller is reset. If this command is used, updates should be sent within
10 seconds of the BLE Host knowing that the channel classification has changed. The interval between two
successive commands sent will be at least one second. This command will only be used when the local device
supports the Master role.

For details, refer to Bluetooth core specification 4.1, Volume 2, part E, section 7.8.19.

This is a blocking function. No event is generated on calling this function.

Parameters:

bdHandle Peer device handle.

channelMap This parameter contains five octet byte stream (Least Significant Byte
having the bit fields 0 to 7, most significant byte having the bit fields 32
to 36). The nth such field (in the range 0 to 36) contains the value for
the link layer channel index n. Allowed values and their interpretation
are,

• Channel 'n' is bad = 0x00u

• Channel 'n' is unknown = 0x01u
The most significant bits (37 to 39) are reserved and will be set to 0. At
least one channel will be marked as unknown.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'channelMap'.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_API_RESULT_T CyBle_GapSetSecureConnectionsOnlyMode (uint8 state)

This API function sets the state of secure connections only mode for device. If device is in secure connections
only mode, it will allow pairing to complete only with secure connections security. Other kind of pairing will lead to

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 101 of 559

pairing failure with reason "Authentication requirement not met" It is expected to call this API function on host
stack on, though can be called at any point. Secure connections only is not persistent across power cycles. It is
persistent across stack shutdown-init cycles.

Parameters:

state 0 - Disable (Device not in secure connections only mode)
 1 - Enable (Device is in secure connections only mode)

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_OPERATI
ON

Secure connections feature was not selected
in feature config and API function is called.

CYBLE_ERROR_INVALID_PARAME
TER

parameter out of range

CYBLE_API_RESULT_T CyBle_GapGenerateLocalP256Keys (void)

This API function is used to generate P-256 Public-Private key pair to be used during LE Secure connection
pairing procedure. Application may choose to generate P-256 public-private key pair before pairing process starts.
If this API function is not called before pairing process starts, BLE Stack will use default public-private key pair.

For robust security Cypress recommends that, the application may change the local public-private key pair after
every pairing (successful or failed) attempt.

For details, refer to Bluetooth core specification 4.2, Volume 3, part H, section 2.3.6.

On the Completion of key generation, new keys will be set in the BLE Stack for SC pairing procedure and
application receives CYBLE_EVT_GAP_SMP_LOC_P256_KEYS_GEN_AND_SET_COMPLETE event.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_OPERATI
ON

Pairing is in progress.

CYBLE_API_RESULT_T CyBle_GapSetLocalP256Keys (CYBLE_GAP_SMP_LOCAL_P256_KEYS
*localP256Keys, uint8 isValidateKeys)

This API function is used to set P-256 Public-Private key pair to be used during LE Secure connection pairing
procedure. Application may choose to set P-256 public-private key pair before pairing process starts. If this API
function is not called before pairing process starts, BLE Stack will use default public-private key pair. This API
function is not expected to be called when pairing procedure is in progress. Application can generate P-256 Public-
Private key pair using API function CyBle_GapGenerateLocalP256Keys() and can set the generated key pair
using this API function.

For robust security Cypress recommends that, the application may change the local public-private key pair after
every pairing (successful or failed) attempt.

For details, refer to Bluetooth core specification 4.2, Volume 3, part H, section 2.3.6.

Parameters:

localP256Ke
ys

Pointer to structure CYBLE_GAP_SMP_LOCAL_P256_KEYS, that has
fields for local P-256 public-private key pair.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 102 of 559 Document Number: 002-29930 Rev. *A

isValidateKe
ys

If it is set to 1 public key is validated, if it is set to 0 public key is not
validated.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Parameter is NULL Or Public key is not valid

CYBLE_ERROR_INVALID_OPERATI
ON

Pairing is in progress.

CYBLE_API_RESULT_T CyBle_GapAuthSendKeyPress (uint8 bdHandle,
CYBLE_GAP_KEYPRESS_NOTIFY_TYPE notificationType)

This API function is used to send LE Secure connections key press notification to peer device during secure
connection pairing. This API function should be called by application to inform stack about passkey entry process
started for each digit

• Started (0), entered (1), erased (2), cleared (3), completed (4). Once all the digits are entered, application
needs to call 'CyBle_GapAuthPassKeyReply()' to inform stack for passkey enter completed. Error will be
returned if key press entry bit was not set in 'pairingProperties' of CYBLE_GAP_AUTH_INFO_T during
authentication procedure.

Typical application usage scenario:

1. Call with CYBLE_GAP_PASSKEY_ENTRY_STARTED on receiving event to enter passkey.
2. Call with CYBLE_GAP_PASSKEY_DIGIT_ENTERED, CYBLE_GAP_PASSKEY_DIGIT_ERASED or

CYBLE_GAP_PASSKEY_CLEARED based on application events while user enters passkey.
3. Call with CYBLE_GAP_PASSKEY_ENTRY_COMPLETED after user application successfully received

passkey.
4. This should be followed by call to CyBle_GapAuthPassKeyReply API function to provide user entered

passkey to Stack.

Parameters:

bdHandle Peer device handle.

notificationTy
pe

parameter of type 'CYBLE_GAP_KEYPRESS_NOTIFY_TYPE'

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

notificationType is invalid.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified using 'bdHandle' does not
exist.

CYBLE_ERROR_INVALID_OPERATI
ON

Keypress was not negotiated or

passkey entry procedure not ongoing or Secured Connection is not enabled or pairing procedure is not in
progress.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 103 of 559

CYBLE_API_RESULT_T CyBle_GapGenerateOobData (const uint8 *pRand)

This API function is used to generate OOB data based on the input parameter (16 Byte random number) This API
function is called to generate OOB data to be used by peer device. Peer device (or local device with peer's OOB
data) will use 'CyBle_GapSetOobData()' to set the OOB data to be used for secure connections pairing.

Note: This API function should be used only in secured connection pairing. In case of legacy pairing only key is
used for OOB authentication. But in SC pairing, key(pRand) is used to generate local OOB data(Confirm value).
In SC both key and generated OOB data are used in OOB authentication. Hence this API function is used only in
SC pairing.

Parameters:

pRand 16 Bytes Random number to be used for generating OOB data. If NULL
is passed, stack will generate 16 Bytes random number and then will
generate OOB data.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Sufficient memory is not available to handle
this request.

CYBLE_API_RESULT_T CyBle_GapSetDataLength (uint8 bdHandle, uint16 connMaxTxOctets, uint16
connMaxTxTime)

This API function allows application to suggest maximum transmission packet size and maximum packet
transmission time for current connection. Actual data length used by controller will be informed through
'CYBLE_EVT_GAP_DATA_LENGTH_CHANGE' event

Parameters:

bdHandle Peer device handle.

connMaxTx
Octets

Preferred maximum number of payload octets that the local Controller
should include in a single Link Layer Data Channel PDU. Range
0x001B-0x00FB (0x0000 - 0x001A and 0x00FC - 0xFFFF Reserved for
future use)

connMaxTxT
ime

Preferred maximum number of microseconds that the local Controller
should use to transmit a single Link Layer Data Channel PDU. Range
0x0148-0x0848 (0x0000 - 0x0147 and 0x0849 - 0xFFFF Reserved for
future use)

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified by bdHandle is not present

CYBLE_ERROR_INVALID_PARAME
TER

Out of range value passed.

CYBLE_ERROR_INVALID_OPERATI
ON

DLE feature not enabled

CYBLE_ERROR_LL_SAME_TRANS
ACTION_COLLISION

When there is already DLE procedure is
pending

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 104 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_GapSetRxDataLength (CYBLE_GAP_RX_DATA_LENGTH_T *RxDleParams)

This API function allows application to suggest the maximum number of payload octets that the local controller
expects to receive and maximum time that local controller expects to take to receive a PDU on current connection.

Actual data length used by controller will be informed through 'CYBLE_EVT_GAP_DATA_LENGTH_CHANGE'
event

Parameters:

RxDleParam
s

Pointer to a structure of type 'CYBLE_GAP_RX_DATA_LENGTH_T'. It
has three fields bdHandle field representing the peer device handle,
connmaxRxOctets field representing preferred maximum number of
payload octets that the local controller should expects to receive on
current connection Range 0x001B-0x00FB (0x0000 - 0x001A and
0x00FC - 0xFFFF Reserved for future use) and connMaxRxTime field
representing preferred maximum number of microseconds that the local
Controller should use to receive a single Link Layer Data Channel
PDU. Range 0x0148-0x0848 (0x0000 - 0x0147 and 0x0849 - 0xFFFF
Reserved for future use)

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified by bdHandle is not present

CYBLE_ERROR_INVALID_PARAME
TER

If NULL passed

CYBLE_ERROR_INVALID_OPERATI
ON

DLE feature not enabled

CYBLE_ERROR_LL_SAME_TRANS
ACTION_COLLISION

When there is already DLE procedure is
pending

CYBLE_API_RESULT_T CyBle_GapSetSuggestedDataLength (uint16 suggestedTxOctets, uint16
suggestedTxTime)

This API function allows the application to specify its preferred values for the Link Layer maximum Tx packet (Data
Channel PDU) size (connInitialMaxTxOctets) and maximum Tx packet transmission time
(connInitialMaxTxTime)to be used for new connections.

Parameters:

suggestedTx
Octets

The suggested value (connInitialMaxTxOctets) for the maximum
transmitted number of payload octets (Link Layer Data Channel PDU)
to be used for new connections. Range 0x001B-0x00FB (0x0000 -
0x001A and 0x00FC - 0xFFFF Reserved for future use)

suggestedTx
Time

The suggested value (connInitialMaxTxTime)for the maximum packet
(Link Layer Data Channel PDU) transmission time to be used for new
connections. Application can use API function
CyBle_GapConvertOctetToTime to get timeconnMaxTxTime
corresponding to suggestedTxOctets. Range 0x0148-0x0848 (0x0000 -
0x0147 and 0x0849 - 0xFFFF Reserved for future use)

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 105 of 559

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Out of range values.

CYBLE_ERROR_INVALID_OPERATI
ON

DLE feature not enabled

CYBLE_API_RESULT_T CyBle_GapGetDataLength (CYBLE_GAP_DATA_LENGTH_T *readParam)

This API function allows the application to read Link Layer maximum supported Tx/Rx packet (DataChannel PDU)
octets / transmission time and maximum suggested Tx/Rx packet octets / transmission time.

Parameters:

readParam Pointer to structure of type 'CYBLE_GAP_DATA_LENGTH_T'. This is
an output parameter which contain the maximum supported Tx and Rx
octets & time and maximum suggested Tx octets & time.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Null pointer passed.

CYBLE_ERROR_INVALID_OPERATI
ON

DLE feature not enabled

CYBLE_API_RESULT_T CyBle_GapConvertOctetToTime (CYBLE_GAP_PHY_TYPE_T phy, uint16 octets,
uint16 *pTime)

This API function allows application to compute time from Octets. Time can be used to pass to BLE Stack while
setting data length.

Parameters:

phy Physical layer to be considered while computing. Should be passed as
CYBLE_GAP_PHY_1MBPS. Other values are Reserved.

octets Payload octets. This is an input parameter.

pTime Buffer where time in microseconds will be stored which is derived from
octets and phy.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Null pointer passed. Invalid PHY Value
passed. Invalid Octet Value is passed. (Valid
Range 27 to 251)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 106 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_GapAddDeviceToResolvingList (const
CYBLE_GAP_RESOLVING_DEVICE_INFO_T *rpaInfo)

This API function is used to add a device to the resolving list in the controller for resolving Resolvable Private
Address(RPA). This API function can be used to update local and/or peer IRKs for an existing Resolving List entry
by passing the same peer address type and peer address in the argument.

Parameters:

rpaInfo Buffer which contains the information of peer address, peer address
type, local and peer IRKs.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Any of the input parameter is NULL

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

When a Controller cannot add a device to the
resolving list because the list is full.

CYBLE_ERROR_INVALID_OPERATI
ON

Request is not permitted when address
translation is enabled in the Controller and:

• Advertising is enabled

• Scanning is enabled

• Create connection command is
outstanding.

CYBLE_API_RESULT_T CyBle_GapRemoveDeviceFromResolvingList (const CYBLE_GAP_BD_ADDR_T
*peerIdentityAddr)

This API function is used to remove one device from the list of address translations used to resolve Resolvable
Private Addresses in the BLE Stack.

Parameters:

peerIdentityA
ddr

Buffer which contains the information of peer bd address and address
type

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Any of the input parameter is NULL

CYBLE_ERROR_INVALID_OPERATI
ON

Request is not permitted when address
translation is enabled in the Controller and:

• Advertising is enabled

• Scanning is enabled

• Create connection command is
outstanding.

CYBLE_ERROR_NO_DEVICE_ENTI
TY

When a Controller cannot remove a device
from the resolving list because it is not found.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 107 of 559

CYBLE_API_RESULT_T CyBle_GapClearResolvingList (void)

This API function is used to clear all devices from the list of address translations used to resolve Resolvable
Private Addresses in the Controller.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_OPERATI
ON

Request is not permitted when address
translation is enabled in the Controller and:

• Advertising is enabled

• Scanning is enabled

• Create connection command is
outstanding.

CYBLE_API_RESULT_T CyBle_GapReadPeerResolvableAddress (const CYBLE_GAP_BD_ADDR_T
*peerIdentityAddr, uint8 *peerResolvableAddress)

This API function is used to get the current peer Resolvable Private Address being used for the corresponding
peer Public and Random (static) Identity Address. The peer’s resolvable address being used may change after
the command is called.

Parameters:

peerIdentityA
ddr

Buffer which contains the information of peer bd address and address
type

peerResolva
bleAddress

Buffer to which peer resolvable private address will be stored.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Any of the input parameter is NULL

CYBLE_ERROR_NO_DEVICE_ENTI
TY

When a Controller cannot remove a device
from the resolving list because it is not found.

CYBLE_API_RESULT_T CyBle_GapReadLocalResolvableAddress (const CYBLE_GAP_BD_ADDR_T
*peerIdentityAddr, uint8 *localResolvableAddress)

This API function is used to get the current local Resolvable Private Address being used for the corresponding
peer Identity Address. The local’s resolvable address being used may change after the command is called.

Parameters:

peerIdentityA
ddr

Buffer which contains the information of peer bd address and address
type

localResolva
bleAddress

Buffer to which local resolvable private address will be stored.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 108 of 559 Document Number: 002-29930 Rev. *A

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Any of the input parameter is NULL

CYBLE_ERROR_NO_DEVICE_ENTI
TY

When a Controller cannot remove a device
from the resolving list because it is not found.

CYBLE_API_RESULT_T CyBle_GapSetResolvablePvtAddressTimeOut (uint16 rpaTimeOut)

This API function is used to set the length of time the controller uses a Resolvable Private Address before a new
resolvable private address is generated and starts being used. This timeout applies to all addresses generated by
the BLE Stack.

Parameters:

rpaTimeOut RPA_Timeout measured in seconds. Range for N: 0x0001 – 0xA1B8 (1
sec – approximately 11.5 hours) Default: N= 0x0384 (900 secs or 15
minutes)

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Invalid timeout value

CYBLE_API_RESULT_T CyBle_GapReadResolvingList (CYBLE_GAP_RESOLVING_LIST_T *resolvingList)

This API function is used to read all the entries of address translation in the resolving list that is stored in BLE
Stack.

Parameters:

resolvingList Buffer to store resolving list. Memory shall be allocated by the calling
function.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Input parameter is NULL

CYBLE_API_RESULT_T CyBle_GapSetAddressResolutionEnable (uint8 enableDisable)

This API function is used to enable resolution of Resolvable Private Addresses in the BLE Stack. This causes the
BLE Stack to use the resolving list whenever the Controller receives a local or peer Resolvable Private Address.

Parameters:

enableDisabl
e

0x00 - Address Resolution in controller disabled (default)
 0x01 - Address Resolution in controller enabled
 0x02 – 0xFF Reserved for Future Use

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 109 of 559

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

'enableDisable' value is greater than 0x01

CYBLE_API_RESULT_T CyBle_GapSetPrivacyMode (CYBLE_GAP_PRIVACY_MODE_INFO_T
*privacyModeInfo)

This API function is used to allow the Host to specify the privacy mode to be used for a given entry on the resolving
list.

The effect of this setting is specified in [Vol 6] Part B, Section 4.7.

When an entry on the resolving list is removed, the mode associated with that entry shall also be removed.

Parameters:

privacyMode
Info

Pointer to a structure of type CYBLE_GAP_PRIVACY_MODE_INFO_T

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

Any of the input parameter is NULL

CYBLE_ERROR_NO_DEVICE_ENTI
TY

When a Controller cannot find device entry in
the resolving list

CYBLE_ERROR_INVALID_OPERATI
ON

Request is not permitted when address
translation is enabled in the Controller and:

• Advertising is enabled

• Scanning is enabled

• Create connection command is
outstanding.

CYBLE_API_RESULT_T CyBle_GapGetBondedDevicesByRank (CYBLE_GAP_DEVICE_ADDR_LIST_T
*bondedDevList)

This function returns the count and Bluetooth device address along with bd handles of the devices in the bonded
device list in the order of Rank*. This is a blocking function. No event is generated on calling this function.

Rank: Newest device bonded will be at 0 index.

Application invoking this function should allocate sufficient memory for the structure
CYBLE_GAP_DEVICE_ADDR_LIST_T, where the complete list of bonded devices along with count can be
written. Maximum devices bonded are specified by CYBLE_GAP_MAX_BONDED_DEVICE, which is a pre
processing time parameter for the BLE Stack. Hence, the bonded device count will be less than or equal to
CYBLE_GAP_MAX_BONDED_DEVICE.

Refer Bluetooth 4.1 core specification, Volume 3, Part C, section 9.4.4 for details on bonded devices.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 110 of 559 Document Number: 002-29930 Rev. *A

Parameters:

bondedDevLi
st

Buffer to which list of bonded device list will be stored of type
CYBLE_GAP_DEVICE_ADDR_LIST_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_API_RESULT_T CyBle_GapSetLeEventMask (uint8 *hciLeEventMask)

The CyBle_GapSetLeEventMask API function is equivalent of LE_Set_Event_Mask HCI command and is used
to control which LE events are generated by the HCI for the Host. Host will process these events and will send
appropriate events to application. If the bit in the hciLeEventMask is set to a one, then the event associated with
that bit will be enabled. The Host has to deal with each event that is generated by an LE Controller. The event
mask allows the application to control which events will be generated for host.

This is a blocking function. No event is generated on calling this function.

Parameters:

hciLeEventM
ask

Pointer to the LE Mask. As of today stack expects 2 bytes length for
this buffer (hciLeEventMask) Refer Core Spec, Vol2, Part E, 7.8.1 for
further information.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_API_RESULT_T CyBle_GapSetIdAddress (const CYBLE_GAP_BD_ADDR_T *bdAddr)

This function sets the Bluetooth identity address into BLE Stack. Calling to this API function will only change the
identity address of the device. If public address or static random address is changed by user, this API function
needs to be called to set the appropriate address as identity address.

This is a blocking function. No event is generated on calling this function.

Parameters:

bdAddr Pointer to the CYBLE_GAP_BD_ADDR_T structure variable. It has two
fields where,

• bdAddr.addr: Bluetooth Device address buffer that is populated
with the device address data.

• bdAddr.type: Caller function should fill the "address type" to set
appropriate address.

Caller function should use bdAddr.type = 0x00 to set the "Public
Device Address" as identity address.
 Caller function use bdAddr.type = 0x01 to set the "Static Random
Device Address" as identity address.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 111 of 559

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter.

CYBLE_API_RESULT_T CyBle_GapGenerateAndSetIrk (uint8 keysFlag, uint8 *irk)

This function generates and sets local Identity resolving key into BLE Stack that is to be exchanged with peer
device during key exchange stage of authentication procedure. This API function only updates IRK and does not
change any other keys. This is a blocking function. No event is generated on calling this function. This API function
does not generate identity address (keyInfo->idAddrInfo)

Parameters:

keysFlag (Input parameter) This parameter indicates which keys get exchanged
with peer device. The following is the bit field mapping for the keys.

• Bit 0: Local Encryption information

• Bit 1: Local Identity information

• Bit 2: Local Signature Key

• Bit 3: Reserved

• Bit 4: Remote Encryption information

• Bit 5: Remote Identity information

• Bit 6: Remote Signature Key

• Bit 7: Reserved

irk (output parameter) Pointer to 16 Bytes buffer where IRK is stored.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'keyInfo'.

CYBLE_API_RESULT_T CyBle_GapFixAuthPassKey (uint8 isFixed, uint32 fixedPassKey)

Sets or clears fixed passkey to be used by SMP procedure. This is a blocking function. No event is generated on
calling this function.

Note1: The fixed passkey will only work if we are the device displaying the passkey and peer has to enter the
passkey. This will not work for numeric comparison(secure connections) method.

Note2: The fixed passkey is not persistent across power cycle.

Note3: This API function should not be called during ongoing SMP procedure. Recommendation is to call this API
function on Stack Init completion.

Parameters:

isFixed isFixed should be true(non zero) and fixedPassKey should be valid
passkey (<=999999) to set the fixed passkey.
 isFixed should be false(0) to ask SMP to generate random passkey
instead of using the fixed passkey. This is only required if previously
the passkey was fixed using this API function.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 112 of 559 Document Number: 002-29930 Rev. *A

fixedPassKe
y

Valid fixed passkey (<=999999) to be used by SMP. This is only used if
isFixed is set to true else ignored.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

If fixedPassKey is not a valid passkey.

CYBLE_API_RESULT_T CyBle_GappSetNumOfAdvPkts (CYBLE_GAPP_DISC_MODE_INFO_T *advInfo,
uint16 NumOfAdvPkts)

Sets number of advertisement packets to be sent over the air and starts Advertisement.

Gap Peripheral receives CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP event after specified number
of adv packets transmitted successfully.

Note1: Advertisement Timeout will be ignored. Note2: Ongoing Advertisement should be stopped by the
application before calling this API function.

Parameters:

advInfo Structure of type CYBLE_GAPP_DISC_MODE_INFO_T, which
contains the advertisement parameters

NumOfAdvP
kts

(Input parameter) Total number of packets to transmitted over the air.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

If Zero passed

GAP Central Functions

Description

APIs unique to designs configured as a GAP Central role.

A letter 'c' is appended to the API name: CyBle_Gapc

Functions

• CYBLE_API_RESULT_T CyBle_GapcStartScan (uint8 scanningIntervalType)

• void CyBle_GapcStopScan (void)

• CYBLE_API_RESULT_T CyBle_GapcConnectDevice (const CYBLE_GAP_BD_ADDR_T *address)

• CYBLE_API_RESULT_T CyBle_GapcCancelDeviceConnection (void)

• CYBLE_API_RESULT_T CyBle_GapcStartDiscovery (CYBLE_GAPC_DISC_INFO_T *scanInfo)

• void CyBle_GapcStopDiscovery (void)

• CYBLE_API_RESULT_T CyBle_GapcInitConnection (CYBLE_GAPC_CONN_PARAM_T *connParam)

• CYBLE_API_RESULT_T CyBle_GapcCancelConnection (void)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 113 of 559

• CYBLE_API_RESULT_T CyBle_GapcResolveDevice (const uint8 *bdAddr, const uint8 *irk)

• CYBLE_API_RESULT_T CyBle_GapcConnectionParamUpdateRequest (uint8 bdHandle,
CYBLE_GAP_CONN_UPDATE_PARAM_T *connParam)

• CYBLE_API_RESULT_T CyBle_GapcSetHostChannelClassification (uint8 *channelMap)

• CYBLE_API_RESULT_T CyBle_GapcSetRemoteAddr (uint8 bdHandle, CYBLE_GAP_BD_ADDR_T
remoteAddr)

Function Documentation

CYBLE_API_RESULT_T CyBle_GapcStartScan (uint8 scanningIntervalType)

This function is used for discovering GAP peripheral devices that are available for connection. It performs the
scanning routine using the parameters entered in the component's customizer.

As soon as the discovery operation starts, CYBLE_EVT_GAPC_SCAN_START_STOP event is generated. The
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT event is generated when a GAP peripheral device is located.
There are three discovery procedures can be selected in the customizer's GUI:

• Observation procedure: A device performing the observer role receives only advertisement data from devices
irrespective of their discoverable mode settings. Advertisement data received is provided by the event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. This procedure requires the scanType sub parameter
to be passive scanning.

• Limited Discovery procedure: A device performing the limited discovery procedure receives advertisement
data and scan# response data from devices in the limited discoverable mode only. Received data is provided
by the event, CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. This procedure requires the scanType
sub-parameter to be active scanning.

• General Discovery procedure: A device performing the general discovery procedure receives the
advertisement data and scan response data from devices in both limited discoverable mode and the general
discoverable mode. Received data is provided by the event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. This procedure requires the scanType sub-parameter
to be active scanning.

Every Advertisement / Scan response packet received results in a new event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. If 'scanTo' sub-parameter is a non-zero value, then upon
commencement of discovery procedure and elapsed time = 'scanTo', CYBLE_EVT_TIMEOUT event is generated
with the event parameter indicating CYBLE_GAP_SCAN_TO. Possible generated events are:

• CYBLE_EVT_GAPC_SCAN_START_STOP: If a device started or stopped scanning. Use CyBle_GetState()
to determine the state. Sequential scanning could be started when CYBLE_STATE_DISCONNECTED state
is returned.

• CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT

• CYBLE_EVT_TIMEOUT (CYBLE_GAP_SCAN_TO)

Parameters:

scanningInte
rvalType

Fast or slow scanning interval with timings entered in Scan settings
section of the customizer.

• CYBLE_SCANNING_FAST 0x00u

• CYBLE_SCANNING_SLOW 0x01u

• CYBLE_SCANNING_CUSTOM 0x02u

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 114 of 559 Document Number: 002-29930 Rev. *A

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_STACK_INTERNAL An error occurred in the BLE stack.

CYBLE_ERROR_INVALID_PARAME
TER

On passing an invalid parameter.

void CyBle_GapcStopScan (void)

This function used to stop the discovery of devices. On stopping discovery operation,
CYBLE_EVT_GAPC_SCAN_START_STOP event is generated. Application layer needs to keep track of the
function call made before receiving this event to associate this event with either the start or stop discovery function.

Possible events generated are:

• CYBLE_EVT_GAPC_SCAN_START_STOP

Returns:

None

CYBLE_API_RESULT_T CyBle_GapcConnectDevice (const CYBLE_GAP_BD_ADDR_T *address)

This function is used to send a connection request to the remote device with the connection parameters set in the
component customizer. This function needs to be called only once after the target device is discovered by
CyBle_GapcStartScan() and further scanning has stopped. Scanning is successfully stopped on invoking
CyBle_GapcStopScan() and then receiving the event CYBLE_EVT_GAPC_SCAN_START_STOP with sub-
parameter 'success' = 0x01u.

On successful connection, the following events are generated at the GAP Central device (as well as the GAP
Peripheral device), in the following order.

• CYBLE_EVT_GATT_CONNECT_IND

• CYBLE_EVT_GAP_DEVICE_CONNECTED - If the device connects to a GAP Central and Link Layer Privacy
is disabled in component customizer.

• CYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE - If the device connects to a GAP Central and Link Layer
Privacy is enabled in component customizer.

• CYBLE_EVT_GAP_DEVICE_CONNECTED

A procedure is considered to have timed out if a connection response packet is not received within time set by
cyBle_connectingTimeout global variable (30 seconds by default). CYBLE_EVT_TIMEOUT event with
CYBLE_GENERIC_TO parameter will indicate about connection procedure timeout. Connection will automatically
be canceled and state will be changed to CYBLE_STATE_DISCONNECTED.

Parameters:

address The device address of the remote device to connect to.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_STACK_INTERNAL On error occurred in the BLE stack.

CYBLE_ERROR_INVALID_PARAME
TER

On passing an invalid parameter.

CYBLE_ERROR_INVALID_STATE On calling this function not in Disconnected
state.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 115 of 559

CYBLE_API_RESULT_T CyBle_GapcCancelDeviceConnection (void)

This function cancels a previously initiated connection with the remote device. It is a blocking function. No event
is generated on calling this function. If the devices are already connected then this function should not be used. If
you intend to disconnect from an existing connection, the function CyBle_GapDisconnect() should be used.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_STACK_INTERNAL An error occurred in the BLE stack.

CYBLE_ERROR_INVALID_STATE On calling this function not in Connecting
state.

CYBLE_API_RESULT_T CyBle_GapcStartDiscovery (CYBLE_GAPC_DISC_INFO_T *scanInfo)

This function starts the discovery of devices which are advertising. This is a non-blocking function. As soon as the
discovery operation starts, CYBLE_EVT_GAPC_SCAN_START_STOP event is generated.

Every Advertisement / Scan response packet received results in a new event,
CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT. If 'scanInfo->scanTo' is a non-zero value, upon
commencement of discovery procedure and elapsed time = 'scanInfo->scanTo', CYBLE_EVT_TIMEOUT event is
generated with the event parameter indicating CYBLE_GAP_SCAN_TO.

If 'scanInfo->scanTo' is equal to zero, the scanning operation is performed until the CyBle_GapcStopDiscovery()
function is invoked.

There are three discovery procedures that can be specified as a parameter to this function.

Observation procedure

A device performing the observer role receives only advertisement data from devices irrespective of their
discoverable mode settings. Advertisement data received is provided by the event,

CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT

'scanInfo->scanType' should be set as passive scanning (0x00).

Limited Discovery procedure

A device performing the limited discovery procedure receives advertisement data and scan response data from
devices in the limited discoverable mode only. Received data is provided by the event,

CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT

'scanInfo->scanType' should be set as active scanning (0x01).

General Discovery procedure

A device performing the general discovery procedure receives the advertisement data and scan response data
from devices in both limited discoverable mode and the general discoverable mode. Received data is provided by
the event,

CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT

'scanInfo->scanType' should be set as active scanning (0x01).

Parameters:

scanInfo Pointer to a variable of type CYBLE_GAPC_DISC_INFO_T

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 116 of 559 Document Number: 002-29930 Rev. *A

Error codes Description

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'scanInfo' or if any element within ' scanInfo'
has an invalid value.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

void CyBle_GapcStopDiscovery (void)

This function stops the discovery of devices. This is a non-blocking function. On stopping discovery operation,
CYBLE_EVT_GAPC_SCAN_START_STOP event is generated. Application layer needs to keep track of the
function call made before receiving this event to associate this event with either the start or stop discovery function.

CYBLE_API_RESULT_T CyBle_GapcInitConnection (CYBLE_GAPC_CONN_PARAM_T *connParam)

This function instructs BLE Stack to initiate connection request to the remote device with required connection
parameters. Connection request from application is acknowledged by BLE Controller as
'CYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE' or 'CYBLE_EVT_GAP_DEVICE_CONNECTED' depend
on Link Layer Privacy is enabled or not in component customizer. That means, request is correct, permitted and
all parameters as part of the request are correct. If the parameter validation or request is not permitted, then BLE
controller throws 'CYBLE_EVT_HCI_STATUS' event with error code instead of
CYBLE_EVT_GAP_DEVICE_CONNECTEDCYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE. For positive
condition, controller can issue connect request to peer. Once connection is done, no more event is required but if
fails to establish connection, 'CYBLE_EVT_GAP_DEVICE_DISCONNECTED' is passed to application.

This is a non-blocking function. This function needs to be called after successfully stopping scanning. Scanning
is successfully stopped on invoking the CyBle_GapcStopDiscovery() function and receiving the event
CYBLE_EVT_GAPC_SCAN_START_STOP with the event data of '0x01', indicating success.

For details related to connection modes and procedures, refer to Bluetooth 4.1 Core Specification, Volume 3, Part
C, Section 9.3.

Parameters:

connParam Structure of type 'CYBLE_GAPC_CONN_PARAM_T' which contains
the connection parameters.
 Note Any parameter of structure type
CYBLE_GAPC_CONN_PARAM_T, if not required by a specific
Bluetooth Low Energy profile, may be ignored.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'connParam' or if any element within
'connParam' has an invalid value.

CYBLE_ERROR_INVALID_OPERATI
ON

Device already connected.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_API_RESULT_T CyBle_GapcCancelConnection (void)

Description: This function cancels a previously initiated connection with the peer device. This is a blocking
function. No event is generated on calling this function.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 117 of 559

If the devices are already connected, then this function should not be used. To disconnect from an existing
connection, use the function CyBle_GapDisconnect().

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_OPERATI
ON

Device already connected.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_API_RESULT_T CyBle_GapcResolveDevice (const uint8 *bdAddr, const uint8 *irk)

This function enables the application to start resolution procedure for a device that is connected using resolvable
private address. This is a blocking function. Application should use this function when in GAP Central mode.

Refer to Bluetooth 4.1 Core specification, Volume 3, Part C, section 10.8.2.3 Resolvable Private Address
Resolution Procedure to understand the usage of Private addresses.

Parameters:

bdAddr Pointer to peer Bluetooth device address of length 6 bytes, not NULL
terminated.

irk Pointer to 128-bit IRK to be used for resolving the peer's private
resolvable address.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

 On specifying NULL as input parameter for
'bdAddr' or 'irk'.

CYBLE_ERROR_INVALID_OPERATI
ON

No device to be resolved. The specified device
handle does not map to any device entry in the
BLE Stack.

CYBLE_API_RESULT_T CyBle_GapcConnectionParamUpdateRequest (uint8 bdHandle,
CYBLE_GAP_CONN_UPDATE_PARAM_T *connParam)

This function sends the connection parameter update command to local controller. This function can only be used
from device connected in GAP Central role. Note: Connection parameter update procedure, defined as part of
Bluetooth spec 4.1, is not supported. This function will allow GAP Central application to update connection
parameter for local controller and local controller will follow the procedure as defined in Bluetooth Core
specification 4.0.

Parameters:

bdHandle Peer device handle

connParam Pointer to a structure of type
CYBLE_GAP_CONN_UPDATE_PARAM_T containing connection
parameter updates

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 118 of 559 Document Number: 002-29930 Rev. *A

Errors codes Description

CYBLE_ERROR_OK On successful operation 'connParam' is NULL

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified using 'bdHandle' does not
exist.

CYBLE_API_RESULT_T CyBle_GapcSetHostChannelClassification (uint8 *channelMap)

This function sets channel classification for data channels. This classification persists until it is overwritten by a
subsequent call to this function or the controller is reset. If this command is used, updates should be sent within
10 seconds of the BLE Host knowing that the channel classification has changed. The interval between two
successive commands sent will be at least one second. This command will only be used when the local device
supports the Master role.

For details, refer to Bluetooth core specification 4.1, Volume 2, part E, section 7.8.19.

This is a non blocking function. Application should look for 'CYBLE_EVT_HCI_STATUS' for any error condition.

Parameters:

channelMap This parameter contains five octet byte stream (Least Significant Byte
having the bit fields 0 to 7, most significant byte having the bit fields 32
to 36). The nth such field (in the range 0 to 36) contains the value for
the link layer channel index n. Allowed values and their interpretation
are,

• Channel 'n' is disabled = 0x00u

• Channel 'n' is enabled = 0x01u

The most significant bits (37 to 39) are reserved and will be set to 0. At least one channel will be marked as
unknown. For example- expected pattern = XX XX XX XX 1F not expected = XX XX XX XX 10, XX XX XX XX 2f
MSB 3 bits should be not set. (1f is most significant bytes in this case)

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'channelMap'.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

CYBLE_API_RESULT_T CyBle_GapcSetRemoteAddr (uint8 bdHandle, CYBLE_GAP_BD_ADDR_T
remoteAddr)

This function allows application to set the new address of remote device identified by bdHandle. This API function
should be used when:

1. If peer device is previously bonded with public address and changes its bd address to resolvable private
address. Application should resolve the device by calling 'CyBle_GapcResolveDevice()' api and set the new
address if successfully resolved.

2. If device is previously bonded with random, application should call this api to set the new
address(public/random).

Parameters:

bdHandle Peer device handle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 119 of 559

remoteAddr Peer device address, of type CYBLE_GAP_BD_ADDR_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On invalid bdHandle

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified using 'bdHandle' does not
exist.

GAP Peripheral Functions

Description

APIs unique to designs configured as a GAP Peripheral role.

A letter 'p' is appended to the API name: CyBle_Gapp

Functions

• CYBLE_API_RESULT_T CyBle_GappStartAdvertisement (uint8 advertisingIntervalType)

• void CyBle_GappStopAdvertisement (void)

• void CyBle_ChangeAdDeviceAddress (const CYBLE_GAP_BD_ADDR_T *bdAddr, uint8 dest)

• CYBLE_API_RESULT_T CyBle_GappEnterDiscoveryMode (CYBLE_GAPP_DISC_MODE_INFO_T *advInfo)

• void CyBle_GappExitDiscoveryMode (void)

• CYBLE_API_RESULT_T CyBle_GappAuthReqReply (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T *authInfo)

• CYBLE_API_RESULT_T CyBle_GapUpdateAdvData (CYBLE_GAPP_DISC_DATA_T *advDiscData,
CYBLE_GAPP_SCAN_RSP_DATA_T *advScanRespData)

Function Documentation

CYBLE_API_RESULT_T CyBle_GappStartAdvertisement (uint8 advertisingIntervalType)

This function is used to start the advertisement using the advertisement data set in the component customizer's
GUI. After invoking this function, the device will be available for connection by the devices configured for GAP
central role. It is only included if the device is configured for GAP Peripheral or GAP Peripheral + Central role.

On start of advertisement, GAP Peripheral receives the CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP
event. The following events are possible on invoking this function:

• CYBLE_EVT_GAP_DEVICE_CONNECTED - If the device connects to a GAP Central and Link Layer Privacy
is disabled in component customizer.

• CYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE - If the device connects to a GAP Central and Link Layer
Privacy is enabled in component customizer.

• CYBLE_EVT_TIMEOUT: If no device in GAP Central mode connects to this device within the specified timeout
limit. Stack automatically initiate stop advertising when Slow advertising was initiated, or starts Slow
advertising after Fast advertising timeout occur.

• CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP: If device started or stopped advertising. Use
CyBle_GetState() to determine the state. Sequential advertising could be started when
CYBLE_STATE_DISCONNECTED state is returned.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 120 of 559 Document Number: 002-29930 Rev. *A

Parameters:

advertisingIn
tervalType

Fast or slow advertising interval with timings entered in Advertising
settings section of the customizer.

• CYBLE_ADVERTISING_FAST 0x00u

• CYBLE_ADVERTISING_SLOW 0x01u

• CYBLE_ADVERTISING_CUSTOM 0x02u

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On passing an invalid parameter.

CYBLE_ERROR_INVALID_STATE On calling this function not in Disconnected
state.

void CyBle_GappStopAdvertisement (void)

This function can be used to exit from discovery mode. After the execution of this function, there will no longer be
any advertisements. On stopping advertising, GAP Peripheral receives
CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP event. It is expected that the application layer tracks the
function call performed before occurrence of this event as this event can occur on making a call to
Cy_BleGappStartAdvertisement(), CyBle_GappEnterDiscoveryMode(), or CyBle_GappStartAdvertisement()
functions as well.

The following event occurs on invoking this function:

• CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP

Returns:

None

void CyBle_ChangeAdDeviceAddress (const CYBLE_GAP_BD_ADDR_T *bdAddr, uint8 dest)

This function is used to set the Bluetooth device address into the advertisement or scan response data structure.

Parameters:

bdAddr Bluetooth Device address. The variable is of type
CYBLE_GAP_BD_ADDR_T

dest 0 - selects advertisement structure, not zero value selects scan
response structure.

Returns:

None

CYBLE_API_RESULT_T CyBle_GappEnterDiscoveryMode (CYBLE_GAPP_DISC_MODE_INFO_T *advInfo)

This function sets the device into discoverable mode. In the discoverable mode, based on the parameters passed
to this function, the BLE Device starts advertisement and can respond to scan requests. This is a non-blocking
function. It is to be used by the device in 'GAP Peripheral' mode of operation to set parameters essential for
starting advertisement procedure.

On start of advertisement, the GAP Peripheral receives CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP
event. The following events can occur on invoking this function.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 121 of 559

• CYBLE_EVT_GAP_DEVICE_CONNECTED - If the device connects to a GAP Central and Link Layer Privacy
is disabled in component customizer. CYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE - If the device
connects to a GAP Central and Link Layer Privacy is enabled in component customizer.

• CYBLE_EVT_TIMEOUT - If no device in 'GAP Central' mode connects to this device within the specified
timeout limit. This event can occur if 'advInfo ->discMode' is equal to CYBLE_GAPP_LTD_DISC_MODE or
CYBLE_GAPP_GEN_DISC_MODE. 'advInfo-> advTo' specifies the timeout duration. Set the 'advInfo->
advTo' to 0 when 'advInfo -> discMode' is set to CYBLE_GAPP_GEN_DISC_MODE so that the timeout event
does not occur and the advertisement continues until the CyBle_GappExitDiscoveryMode() function is
invoked.

Parameters:

advInfo Structure of type CYBLE_GAPP_DISC_MODE_INFO_T, which
contains the advertisement parameters

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying null pointer for 'advInfo' or if any
of the elements of this structure have invalid
values.

void CyBle_GappExitDiscoveryMode (void)

This function is used to exit from discoverable mode. This is a non-blocking function. After the execution of this
function, the device stops advertising.

On stopping advertising, GAP Peripheral receives CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP
event. It is expected that the application layer keeps track of the function call performed before occurrence of this
event, as this event can occur on making a call to the CyBle_GappEnterDiscoveryMode () function as well.

CYBLE_API_RESULT_T CyBle_GappAuthReqReply (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T *authInfo)

This function is used to pass security information for authentication in reply to an authentication request from the
master device. It should be invoked on receiving CYBLE_EVT_GAP_AUTH_REQ event. Events shown in the
following table may be received by the application based on the authentication result.

Event Parameter Description

CYBLE_EVT_TIMEOUT With error code
CYBLE_GAP_PAIRING_PROCESS_TO on
invoking CyBle_GappAuthReqReply() or
CyBle_GapAuthReq() if there is no response
from the peer device

CYBLE_EVT_GAP_AUTH_COMPLE
TE

Pointer to structure of type
'CYBLE_GAP_AUTH_INFO_T' is returned as
parameter to both the peer devices on
successful authentication.

CYBLE_EVT_GAP_AUTH_FAILED Received by both GAP Central and Peripheral
devices (peers) on authentication failure. Data
is of type
CYBLE_GAP_AUTH_FAILED_REASON_T.

CYBLE_EVT_GAP_SMP_NEGOTIAT
ED_AUTH_INFO

With negotiated pairing parameters on
invoking CyBle_GappAuthReqReply() from
function call context.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 122 of 559 Document Number: 002-29930 Rev. *A

Parameters:

bdHandle Peer device handle.

authInfo Pointer to a variable containing security information of the device of
type CYBLE_GAP_AUTH_INFO_T.

NOTE: If the bonding flag in authInfo is set to CYBLE_GAP_BONDING_NONE then, SMP keys will not be
distributed even if application has generated and set the keys explicitly.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying null pointer for 'advInfo' or if any
of the element of this structure has an invalid
value.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_NO_DEVICE_ENTI
TY

Device identified using 'bdHandle' does not
exist.

CYBLE_ERROR_INSUFFICIENT_RE
SOURCES

On bonded device is full and application tries
to initiate pairing with bonding enable.

CYBLE_API_RESULT_T CyBle_GapUpdateAdvData (CYBLE_GAPP_DISC_DATA_T *advDiscData,
CYBLE_GAPP_SCAN_RSP_DATA_T *advScanRespData)

This function allows setting the ADV data and SCAN response data while advertising is ongoing. Application shall
preserve Bluetooth Spec 4.1 mandated AD flags fields corresponding to the type of discovery mode the device is
in and only change the rest of the data. This API function must be called when API function CyBle_GetBleSsState()
returns CYBLE_BLESS_STATE_EVENT_CLOSE state. If API returns is called in any of the BLESS Low Power
Modes, it will force exit BLESS from Low Power Mode state to update ADV Data.

Parameters:

advDiscData Pointer to a structure of CYBLE_GAPP_DISC_DATA_T. It has two
fields advData field representing the data and advDataLen indicating
the length of present data. Application can pass length as 0 if the ADV
data doesn't need to be changed.

advScanRes
pData

Pointer to a structure of type CYBLE_GAPP_SCAN_RSP_DATA_T. It
has two fields scanRspData field representing the data and
scanRspDataLen indicating the length of present data. Application can
pass length as 0 if the SCAN RESP data doesn't need to be changed.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On NULL pointer, Data length in input
parameter exceeds 31 bytes.

CYBLE_ERROR_INVALID_OPERATI
ON

ADV Event is not closed, BLESS is active or
ADV is not enabled.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 123 of 559

GAP Definitions and Data Structures

Description

Contains the GAP specific definitions and data structures used in the GAP APIs.

Data Structures

• struct CYBLE_GAPC_T

• struct CYBLE_GAPS_T

• struct CYBLE_GAP_BD_ADDR_T

• struct CYBLE_GAP_AUTH_INFO_T

• struct CYBLE_GAP_BONDED_DEV_ADDR_LIST_T

• struct CYBLE_GAP_SMP_KEY_DIST_T

• struct CYBLE_GAP_SMP_LOCAL_P256_KEYS

• struct CYBLE_GAPP_DISC_PARAM_T

• struct CYBLE_GAPP_DISC_DATA_T

• struct CYBLE_GAPP_SCAN_RSP_DATA_T

• struct CYBLE_GAPP_DISC_MODE_INFO_T

• struct CYBLE_GAPC_DISC_INFO_T

• struct CYBLE_GAPC_CONN_PARAM_T

• struct CYBLE_GAPC_ADV_REPORT_T

• struct CYBLE_GAP_PASSKEY_DISP_INFO_T

• struct CYBLE_GAP_CONN_UPDATE_PARAM_T

• struct CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T

• struct CYBLE_GAP_OOB_DATA_T

• struct CYBLE_GAP_DATA_LENGTH_T

• struct CYBLE_GAP_CONN_DATA_LENGTH_T

• struct CYBLE_GAP_RX_DATA_LENGTH_T

• struct CYBLE_GAP_RESOLVING_DEVICE_INFO_T

• struct CYBLE_GAP_RESOLVING_LIST_T

• struct CYBLE_GAPC_DIRECT_ADV_REPORT_T

• struct CYBLE_GAP_ENHANCE_CONN_COMPLETE_T

• struct CYBLE_GAP_DEVICE_LIST_T

• struct CYBLE_GAP_DEVICE_ADDR_LIST_T

• struct CYBLE_GAP_PRIVACY_MODE_INFO_T

Enumerations

• enum CYBLE_GAP_ADV_ASSIGN_NUMBERS

• enum CYBLE_GAPP_ADV_T

• enum CYBLE_GAPC_ADV_EVENT_T

• enum CYBLE_GAP_SEC_LEVEL_T

• enum CYBLE_GAP_IOCAP_T

• enum CYBLE_GAP_AUTH_FAILED_REASON_T

• enum CYBLE_GAP_ADDR_TYPE_T

• enum CYBLE_GAP_KEYPRESS_NOTIFY_TYPE

• enum CYBLE_GAP_ADV_ADDR_TYPE_T

• enum CYBLE_GAP_PHY_TYPE_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 124 of 559 Document Number: 002-29930 Rev. *A

Data Structure Documentation

struct CYBLE_GAPC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T deviceNameCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T appearanceCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T periphPrivacyCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T reconnAddrCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T prefConnParamCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T centralAddrResolutionCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T rpaOnlyCharHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPC_T::deviceNameCharHandle

Discovered handle of the GAP Service Device Name Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPC_T::appearanceCharHandle

Discovered handle of the GAP Service Appearance Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPC_T::periphPrivacyCharHandle

Discovered handle of the GAP Service Peripheral Privacy Flag Parameters Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPC_T::reconnAddrCharHandle

Discovered handle of the GAP Service Reconnection Address Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPC_T::prefConnParamCharHandle

Discovered handle of the GAP Service Peripheral Preferred Connection Parameters Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPC_T::centralAddrResolutionCharHandle

Discovered handle of the GAP Service Central Address Resolution Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPC_T::rpaOnlyCharHandle

Discovered handle of the GAP Service Resolvable Private Address Only Characteristic

struct CYBLE_GAPS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T gapServiceCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T deviceNameCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T appearanceCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T prefConnParamCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T centralAddrResolutionCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T rpaOnlyCharHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPS_T::gapServiceCharHandle

Handle of the GAP Service Device Name Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPS_T::deviceNameCharHandle

Handle of the GAP Service Device Name Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPS_T::appearanceCharHandle

Handle of the GAP Service Appearance Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPS_T::prefConnParamCharHandle

Handle of the GAP Service Peripheral Preferred Connection Parameters Characteristic

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 125 of 559

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPS_T::centralAddrResolutionCharHandle

Handle of the GAPS Central Address Resolution characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GAPS_T::rpaOnlyCharHandle

Handle of the GAPS Resolvable Private Address Only characteristic

struct CYBLE_GAP_BD_ADDR_T

Data Fields

• uint8 bdAddr [(0x06u)]

• uint8 type

Field Documentation

uint8 CYBLE_GAP_BD_ADDR_T::bdAddr[(0x06u)]

Bluetooth device address

uint8 CYBLE_GAP_BD_ADDR_T::type

public = 0, Random = 1

struct CYBLE_GAP_AUTH_INFO_T

Data Fields

• uint8 security

• uint8 bonding

• uint8 ekeySize

• CYBLE_GAP_AUTH_FAILED_REASON_T authErr

• uint8 pairingProperties

Field Documentation

uint8 CYBLE_GAP_AUTH_INFO_T::security

Security Mode setting will be as follows: (CYBLE_GAP_SEC_MODE_1 | CYBLE_GAP_SEC_LEVEL_1)
(CYBLE_GAP_SEC_MODE_1 | CYBLE_GAP_SEC_LEVEL_2) (CYBLE_GAP_SEC_MODE_1 |
CYBLE_GAP_SEC_LEVEL_3) (CYBLE_GAP_SEC_MODE_1 | CYBLE_GAP_SEC_LEVEL_4)
(CYBLE_GAP_SEC_MODE_2 | CYBLE_GAP_SEC_LEVEL_2) (CYBLE_GAP_SEC_MODE_2 |
CYBLE_GAP_SEC_LEVEL_3)

uint8 CYBLE_GAP_AUTH_INFO_T::bonding

Bonding type setting: CYBLE_GAP_BONDING_NONE CYBLE_GAP_BONDING

uint8 CYBLE_GAP_AUTH_INFO_T::ekeySize

Encryption Key Size (octets) Minimum = 7 maximum = 16 For slave initiated security request, this parameter
needs to be ignored.

CYBLE_GAP_AUTH_FAILED_REASON_T CYBLE_GAP_AUTH_INFO_T::authErr

Parameter to say it authentication is accepted or rejected with reason. accepted =
CYBLE_GAP_AUTH_ERROR_NONE or error code CYBLE_GAP_AUTH_FAILED_REASON_T.

uint8 CYBLE_GAP_AUTH_INFO_T::pairingProperties

Bit 0: MITM (Applicable only if Secure connections) Use SMP_SC_PAIR_PROP_MITM_MASK Bit 1: Key press
(sets Key press bit in authentication requirements flags of pairing request/response. Applicable only for secure
connections) Use SMP_SC_PAIR_PROP_KP_MASK Bit [2-7]: RFU

struct CYBLE_GAP_BONDED_DEV_ADDR_LIST_T

Data Fields

• uint8 count

• CYBLE_GAP_BD_ADDR_T bdAddrList [0x04u]

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 126 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

uint8 CYBLE_GAP_BONDED_DEV_ADDR_LIST_T::count

Number of bonded devices

CYBLE_GAP_BD_ADDR_T CYBLE_GAP_BONDED_DEV_ADDR_LIST_T::bdAddrList[0x04u]

Pointer to list of Bluetooth device addresses of bonded devices, of type 'CYBLE_GAP_BD_ADDR_T'.
'CYBLE_GAP_MAX_BONDED_DEVICE' is a '#define' to be defined during build-time.

struct CYBLE_GAP_SMP_KEY_DIST_T

Data Fields

• uint8 ltkInfo [0x10u]

• uint8 midInfo [0x0Au]

• uint8 irkInfo [0x10u]

• uint8 idAddrInfo [0x07u]

• uint8 csrkInfo [0x10u]

Field Documentation

uint8 CYBLE_GAP_SMP_KEY_DIST_T::ltkInfo[0x10u]

Long Term Key

uint8 CYBLE_GAP_SMP_KEY_DIST_T::midInfo[0x0Au]

Encrypted Diversifier and Random Number

uint8 CYBLE_GAP_SMP_KEY_DIST_T::irkInfo[0x10u]

Identity Resolving Key

uint8 CYBLE_GAP_SMP_KEY_DIST_T::idAddrInfo[0x07u]

Public device/Static Random address type idAddrInfo[0] - Address Type idAddrInfo[1] to idAddrInfo[6] - Address

uint8 CYBLE_GAP_SMP_KEY_DIST_T::csrkInfo[0x10u]

Connection Signature Resolving Key

struct CYBLE_GAP_SMP_LOCAL_P256_KEYS

Data Fields

• uint8 publicKey [0x40u]

• uint8 privateKey [0x20u]

Field Documentation

uint8 CYBLE_GAP_SMP_LOCAL_P256_KEYS::publicKey[0x40u]

P-256 public key

uint8 CYBLE_GAP_SMP_LOCAL_P256_KEYS::privateKey[0x20u]

P-256 private key

struct CYBLE_GAPP_DISC_PARAM_T

Data Fields

• uint16 advIntvMin

• uint16 advIntvMax

• CYBLE_GAPP_ADV_T advType

• uint8 ownAddrType

• uint8 directAddrType

• uint8 directAddr [(0x06u)]

• uint8 advChannelMap

• uint8 advFilterPolicy

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 127 of 559

Field Documentation

uint16 CYBLE_GAPP_DISC_PARAM_T::advIntvMin

Minimum advertising interval for undirected and low duty cycle directed advertising.

• Time Range: 20 ms to 10.24 sec

uint16 CYBLE_GAPP_DISC_PARAM_T::advIntvMax

Maximum advertising interval for undirected and low duty cycle directed advertising.

• Time Range: 20 ms to 10.24 sec

CYBLE_GAPP_ADV_T CYBLE_GAPP_DISC_PARAM_T::advType

Type of advertisement

• Connectable undirected advertising (0x00)

• Connectable high duty cycle directed advertising (0x01)

• Scannable undirected advertising (0x02)

• Non connectable undirected advertising (0x03)

• Connectable low duty cycle directed advertising (0x04)

uint8 CYBLE_GAPP_DISC_PARAM_T::ownAddrType

Own BD Address Type

• CYBLE_GAP_ADDR_TYPE_PUBLIC

• CYBLE_GAP_ADDR_TYPE_RANDOM

• CYBLE_GAP_ADDR_TYPE_PUBLIC_RPA

• CYBLE_GAP_ADDR_TYPE_RANDOM_RPA

uint8 CYBLE_GAPP_DISC_PARAM_T::directAddrType

Address type of the Bluetooth device address being used for directed advertising, not applicable otherwise

• CYBLE_PUBLIC_DEV_ADDR (Public device address)

CYBLE_RANDOM_DEV_ADDR (Random device address)

uint8 CYBLE_GAPP_DISC_PARAM_T::directAddr[(0x06u)]

This parameter specifies Bluetooth device address of the device to be connected while using directed advertising.
In case of none direct advertising, parameter will be 0

uint8 CYBLE_GAPP_DISC_PARAM_T::advChannelMap

Advertising channels that shall be used when transmitting advertising packets. Channel map selection:

• Enable channel 37 = bitmask. xxxxxxx1b

• Enable channel 38 = bitmask. xxxxxx1xb

• Enable channel 39 = bitmask. xxxxx1xxb

uint8 CYBLE_GAPP_DISC_PARAM_T::advFilterPolicy

Advertising Filter Policy

• CYBLE_GAPP_SCAN_ANY_CONN_ANY (Allow Scan Request from Any, Allow Connect Request from Any
(Default))

• CYBLE_GAPP_SCAN_WHITELIST_CONN_ANY (Allow Scan Request from White List Only, Allow Connect
Request)

• CYBLE_GAPP_SCAN_ANY_CONN_WHITELIST (Allow Scan Request from Any, Allow Connect Request
from White List Only)

• CYBLE_GAPP_SCAN_CONN_WHITELIST_ONLY (Allow Scan Request from White List Only, Allow Connect
Request from White List Only)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 128 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_GAPP_DISC_DATA_T

Data Fields

• uint8 advData [31u]

• uint8 advDataLen

Field Documentation

uint8 CYBLE_GAPP_DISC_DATA_T::advData[31u]

GAP Advertisement Parameters which includes Flags, Service UUIDs and short name

uint8 CYBLE_GAPP_DISC_DATA_T::advDataLen

length of the advertising data. This should be made zero if there is no data

struct CYBLE_GAPP_SCAN_RSP_DATA_T

Data Fields

• uint8 scanRspData [31u]

• uint8 scanRspDataLen

Field Documentation

uint8 CYBLE_GAPP_SCAN_RSP_DATA_T::scanRspData[31u]

Static user data transmitted in scan response. This should be made NULL if there is no data. Maximum length of
the data is equal to 31 bytes

uint8 CYBLE_GAPP_SCAN_RSP_DATA_T::scanRspDataLen

Length of the scan response data. This should be made zero if there is no data

struct CYBLE_GAPP_DISC_MODE_INFO_T

Data Fields

• uint8 discMode

• CYBLE_GAPP_DISC_PARAM_T * advParam

• CYBLE_GAPP_DISC_DATA_T * advData

• CYBLE_GAPP_SCAN_RSP_DATA_T * scanRspData

• uint16 advTo

Field Documentation

uint8 CYBLE_GAPP_DISC_MODE_INFO_T::discMode

Broadcaster and discoverable mode

• CYBLE_GAPP_NONE_DISC_BROADCAST_MODE (Applicable for Broadcaster or non-discoverable mode)

• CYBLE_GAPP_LTD_DISC_MODE (Limited discovery mode)

• CYBLE_GAPP_GEN_DISC_MODE (General discovery mode)

CYBLE_GAPP_DISC_PARAM_T* CYBLE_GAPP_DISC_MODE_INFO_T::advParam

Advertisement parameters

CYBLE_GAPP_DISC_DATA_T* CYBLE_GAPP_DISC_MODE_INFO_T::advData

Advertisement data

CYBLE_GAPP_SCAN_RSP_DATA_T* CYBLE_GAPP_DISC_MODE_INFO_T::scanRspData

Scan Response data

uint16 CYBLE_GAPP_DISC_MODE_INFO_T::advTo

Advertisement timeout is in seconds. If timeout is set to 0, then there will not be any timeout. Parameter 'advTo'
can be used for all GAP timeouts related to peripheral operation. For General discoverable mode, this timer will
be ignored. Application is expected to exit from discoverable mode explicitly by calling
CyBle_GappExitDiscoveryMode() function. For Limited discoverable mode, 'advTo' should not exceed 180 Sec.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 129 of 559

struct CYBLE_GAPC_DISC_INFO_T

Data Fields

• uint8 discProcedure

• uint8 scanType

• uint16 scanIntv

• uint16 scanWindow

• uint8 ownAddrType

• uint8 scanFilterPolicy

• uint16 scanTo

• uint8 filterDuplicates

Field Documentation

uint8 CYBLE_GAPC_DISC_INFO_T::discProcedure

Observation and discovery procedure.

• CYBLE_GAPC_OBSER_PROCEDURE (Observation procedure)

• CYBLE_GAPC_LTD_DISC_PROCEDURE (Limited discovery procedure)

• CYBLE_GAPC_GEN_DISC_PROCEDURE (General discovery procedure)

uint8 CYBLE_GAPC_DISC_INFO_T::scanType

Type of scan to perform

• CYBLE_GAPC_PASSIVE_SCANNING (Passive Scanning)

• CYBLE_GAPC_ACTIVE_SCANNING (Active scanning)

uint16 CYBLE_GAPC_DISC_INFO_T::scanIntv

The time interval from when last LE scan is started until next subsequent LE scan.

• Time Range: 2.5 ms to 10.24 sec.

uint16 CYBLE_GAPC_DISC_INFO_T::scanWindow

The time duration of scanning to be performed

• Time Range: 2.5 ms to 10.24 sec

uint8 CYBLE_GAPC_DISC_INFO_T::ownAddrType

Own BD Address Type

• CYBLE_GAP_ADDR_TYPE_PUBLIC

• CYBLE_GAP_ADDR_TYPE_RANDOM

• CYBLE_GAP_ADDR_TYPE_PUBLIC_RPA

• CYBLE_GAP_ADDR_TYPE_RANDOM_RPA

uint8 CYBLE_GAPC_DISC_INFO_T::scanFilterPolicy

Filter policies to be applied during scanning procedure

• CYBLE_GAPC_ADV_ACCEPT_ALL_PKT

• CYBLE_GAPC_ADV_ACCEPT_WHITELIST_PKT

• CYBLE_GAPC_ADV_ACCEPT_DIRECTED_RPA_PKT

• CYBLE_GAPC_ADV_ACCEPT_WHITELIST_DIRECTED_RPA_PKT

uint16 CYBLE_GAPC_DISC_INFO_T::scanTo

Scan timeout. Timeout is in seconds and none zero. If timeout is set as 0, then there will not be any timeout
scanTo can be used for all GAP timeouts related to Central operation.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 130 of 559 Document Number: 002-29930 Rev. *A

uint8 CYBLE_GAPC_DISC_INFO_T::filterDuplicates

Filter Duplicate Advertisement. The Filter Duplicates parameter controls whether the Link Layer shall filter
duplicate advertising reports to the Host, or if the Link Layer should generate advertising reports for each packet
received.

• CYBLE_GAPC_FILTER_DUP_DISABLE (Duplicate filtering disabled)

• CYBLE_GAPC_FILTER_DUP_ENABLE (Duplicate filtering enabled)

By default, duplicate filtering is enabled

struct CYBLE_GAPC_CONN_PARAM_T

Data Fields

• uint16 scanIntv

• uint16 scanWindow

• uint8 initiatorFilterPolicy

• uint8 peerBdAddr [(0x06u)]

• uint8 peerAddrType

• uint8 ownAddrType

• uint16 connIntvMin

• uint16 connIntvMax

• uint16 connLatency

• uint16 supervisionTO

• uint16 minCeLength

• uint16 maxCeLength

Field Documentation

uint16 CYBLE_GAPC_CONN_PARAM_T::scanIntv

The time interval from when last LE scan is started until next subsequent LE scan.

• Time Range: 2.5 ms to 10.24 sec.

uint16 CYBLE_GAPC_CONN_PARAM_T::scanWindow

The time duration of scanning to be performed

• Time Range: 2.5 ms to 10.24 sec

uint8 CYBLE_GAPC_CONN_PARAM_T::initiatorFilterPolicy

Filter policies to be applied during connection procedure

• CYBLE_GAPC_CONN_ALL (White list is not used to determine which advertiser to connect. Peer address is
used)

• CYBLE_GAPC_CONN_WHITELIST (White list is used to determine which advertiser to connect to. Peer
address shall be ignored)

uint8 CYBLE_GAPC_CONN_PARAM_T::peerBdAddr[(0x06u)]

Peer's bd address with whom connection to be established

uint8 CYBLE_GAPC_CONN_PARAM_T::peerAddrType

Peer's bd address type

• CYBLE_GAP_ADDR_TYPE_PUBLIC

• CYBLE_GAP_ADDR_TYPE_RANDOM

• CYBLE_GAP_ADDR_TYPE_PUBLIC_RPA

• CYBLE_GAP_ADDR_TYPE_RANDOM_RPA

uint8 CYBLE_GAPC_CONN_PARAM_T::ownAddrType

Own bd address type

• CYBLE_GAP_ADDR_TYPE_PUBLIC

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 131 of 559

• CYBLE_GAP_ADDR_TYPE_RANDOM

• CYBLE_GAP_ADDR_TYPE_PUBLIC_RPA

• CYBLE_GAP_ADDR_TYPE_RANDOM_RPA

uint16 CYBLE_GAPC_CONN_PARAM_T::connIntvMin

Minimum value for the connection event interval. This shall be less than or equal to conn_Interval_Max. Minimum
connection interval will be connIntvMin * 1.25 ms Time Range: 7.5 ms to 4 sec

uint16 CYBLE_GAPC_CONN_PARAM_T::connIntvMax

Maximum value for the connection event interval. This shall be greater than or equal to conn_Interval_Min.
Maximum connection interval will be connIntvMax * 1.25 ms Time Range: 7.5 ms to 4 sec

uint16 CYBLE_GAPC_CONN_PARAM_T::connLatency

Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F4

uint16 CYBLE_GAPC_CONN_PARAM_T::supervisionTO

Supervision timeout for the LE Link. Supervision timeout will be supervisionTO * 10 ms Time Range: 100 msec to
32 secs

uint16 CYBLE_GAPC_CONN_PARAM_T::minCeLength

Minimum length of connection needed for this LE connection. Range: 0x0000 - 0xFFFF

uint16 CYBLE_GAPC_CONN_PARAM_T::maxCeLength

Maximum length of connection needed for this LE connection. Range: 0x0000 - 0xFFFF

struct CYBLE_GAPC_ADV_REPORT_T

Data Fields

• CYBLE_GAPC_ADV_EVENT_T eventType

• uint8 peerAddrType

• uint8 * peerBdAddr

• uint8 dataLen

• uint8 * data

• int8 rssi

Field Documentation

CYBLE_GAPC_ADV_EVENT_T CYBLE_GAPC_ADV_REPORT_T::eventType

Advertisement event type

• Connectable undirected advertising = 0x00

• Connectable directed advertising = 0x01

• Scannable undirected advertising = 0x02

• Non connectable undirected advertising = 0x03

• Scan Response = 0x04

uint8 CYBLE_GAPC_ADV_REPORT_T::peerAddrType

bd address type of the device advertising.

• CYBLE_GAP_ADDR_TYPE_PUBLIC

• CYBLE_GAP_ADDR_TYPE_RANDOM

• CYBLE_GAP_ADDR_TYPE_PUBLIC_RPA

• CYBLE_GAP_ADDR_TYPE_RANDOM_RPA

uint8* CYBLE_GAPC_ADV_REPORT_T::peerBdAddr

Public Device Address or Random Device Address for each device which responded to scanning.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 132 of 559 Document Number: 002-29930 Rev. *A

uint8 CYBLE_GAPC_ADV_REPORT_T::dataLen

length of the data for each device that responded to scanning

uint8* CYBLE_GAPC_ADV_REPORT_T::data

Pointer to advertising or scan response data

int8 CYBLE_GAPC_ADV_REPORT_T::rssi

Rssi of the responding device. Range: -85 <= N <= 0 Units: dBm

struct CYBLE_GAP_PASSKEY_DISP_INFO_T

Data Fields

• uint8 bdHandle

• uint32 passkey

Field Documentation

uint8 CYBLE_GAP_PASSKEY_DISP_INFO_T::bdHandle

bd handle of the remote device

uint32 CYBLE_GAP_PASSKEY_DISP_INFO_T::passkey

size = 6, not null terminated

struct CYBLE_GAP_CONN_UPDATE_PARAM_T

Data Fields

• uint16 connIntvMin

• uint16 connIntvMax

• uint16 connLatency

• uint16 supervisionTO

Field Documentation

uint16 CYBLE_GAP_CONN_UPDATE_PARAM_T::connIntvMin

Minimum value for the connection event interval. This shall be less than or equal to conn_Interval_Max. Minimum
connection interval will be connIntvMin * 1.25 ms Time Range: 7.5 ms to 4 sec

uint16 CYBLE_GAP_CONN_UPDATE_PARAM_T::connIntvMax

Maximum value for the connection event interval. This shall be greater than or equal to conn_Interval_Min.
Maximum connection interval will be connIntvMax * 1.25 ms Time Range: 7.5 ms to 4 sec

uint16 CYBLE_GAP_CONN_UPDATE_PARAM_T::connLatency

Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F3

uint16 CYBLE_GAP_CONN_UPDATE_PARAM_T::supervisionTO

Supervision timeout for the LE Link. Supervision timeout will be supervisionTO * 10 ms Time Range: 100 msec to
32 secs

struct CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T

Data Fields

• uint8 status

• uint16 connIntv

• uint16 connLatency

• uint16 supervisionTO

Field Documentation

uint8 CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T::status

status corresponding to this event will be HCI error code as defined in BLE spec 4.1 or User can refer
CYBLE_HCI_ERROR_T for HCI error codes

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 133 of 559

uint16 CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T::connIntv

Connection interval used on this connection. Range: 0x0006 to 0x0C80 Time Range: 7.5 ms to 4 sec

uint16 CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T::connLatency

Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F3

uint16 CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T::supervisionTO

Supervision timeout for the LE Link. Supervision timeout will be supervisionTO * 10 ms Time Range: 100 msec to
32 secs

struct CYBLE_GAP_OOB_DATA_T

Data Fields

• uint8 status

• uint8 * key

• uint8 * oobData

• uint8 oobDataLen

Field Documentation

uint8 CYBLE_GAP_OOB_DATA_T::status

Status corresponding to this event will be HCI error code as defined in BLE spec 4.2

uint8* CYBLE_GAP_OOB_DATA_T::key

Rand for OOB. This is also stored in stack

uint8* CYBLE_GAP_OOB_DATA_T::oobData

OOB Data using 'key' and local Public Key

uint8 CYBLE_GAP_OOB_DATA_T::oobDataLen

Length of OOB data which is 16 Bytes for Secure connections

struct CYBLE_GAP_DATA_LENGTH_T

Data Fields

• uint16 suggestedTxOctets

• uint16 suggestedTxTime

• uint16 maxTxOctets

• uint16 maxTxTime

• uint16 maxRxOctets

• uint16 maxRxTime

Field Documentation

uint16 CYBLE_GAP_DATA_LENGTH_T::suggestedTxOctets

Controller's maximum transmitted number of payload octets to be used for new connections

uint16 CYBLE_GAP_DATA_LENGTH_T::suggestedTxTime

Controller's maximum packet transmission time to be used for new connections

uint16 CYBLE_GAP_DATA_LENGTH_T::maxTxOctets

Maximum number of payload octets that the local Controller supports for transmission of a single Link Layer Data
Channel PDU.

uint16 CYBLE_GAP_DATA_LENGTH_T::maxTxTime

Maximum time, in microseconds, that the local Controller supports for transmission of a single Link Layer Data
Channel PDU.

uint16 CYBLE_GAP_DATA_LENGTH_T::maxRxOctets

Maximum number of payload octets that the local Controller supports for reception of a single Link Layer Data
Channel PDU.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 134 of 559 Document Number: 002-29930 Rev. *A

uint16 CYBLE_GAP_DATA_LENGTH_T::maxRxTime

Maximum time, in microseconds, that the local Controller supports for reception of a single Link Layer Data
Channel PDU.

struct CYBLE_GAP_CONN_DATA_LENGTH_T

Data Fields

• uint16 connMaxTxOctets

• uint16 connMaxTxTime

• uint16 connMaxRxOctets

• uint16 connMaxRxTime

Field Documentation

uint16 CYBLE_GAP_CONN_DATA_LENGTH_T::connMaxTxOctets

The maximum number of payload octets in a Link Layer Data Channel PDU that the local Controller will send on
current connection.

uint16 CYBLE_GAP_CONN_DATA_LENGTH_T::connMaxTxTime

The maximum time that the local Controller will take to send a Link Layer Data Channel PDU on current connection

uint16 CYBLE_GAP_CONN_DATA_LENGTH_T::connMaxRxOctets

The maximum number of payload octets in a Link Layer Data Channel PDU that the local controller expects to
receive on current connection

uint16 CYBLE_GAP_CONN_DATA_LENGTH_T::connMaxRxTime

The maximum time that the local Controller expects to take to receive a Link Layer Data Channel PDU on this
connection

struct CYBLE_GAP_RX_DATA_LENGTH_T

Data Fields

• uint8 bdHandle

• uint16 connMaxRxOctets

• uint16 connMaxRxTime

Field Documentation

uint8 CYBLE_GAP_RX_DATA_LENGTH_T::bdHandle

Peer bdHandle

uint16 CYBLE_GAP_RX_DATA_LENGTH_T::connMaxRxOctets

The maximum number of payload octets in a Link Layer Data Channel PDU that the local controller expects to
receive on current connection

uint16 CYBLE_GAP_RX_DATA_LENGTH_T::connMaxRxTime

The maximum time that the local Controller expects to take to receive a Link Layer Data Channel PDU on this
connection

struct CYBLE_GAP_RESOLVING_DEVICE_INFO_T

Data Fields

• uint8 peerIrk [16u]

• uint8 localIrk [16u]

• uint8 bdAddr [(0x06u)]

• uint8 type

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 135 of 559

Field Documentation

uint8 CYBLE_GAP_RESOLVING_DEVICE_INFO_T::peerIrk[16u]

Peer IRK

uint8 CYBLE_GAP_RESOLVING_DEVICE_INFO_T::localIrk[16u]

Local IRK

uint8 CYBLE_GAP_RESOLVING_DEVICE_INFO_T::bdAddr[(0x06u)]

Peer Identity device address

uint8 CYBLE_GAP_RESOLVING_DEVICE_INFO_T::type

Peer Identity addr type

struct CYBLE_GAP_RESOLVING_LIST_T

Data Fields

• CYBLE_GAP_RESOLVING_DEVICE_INFO_T resolvingList [0x08u]

• uint8 noOfDevice

Field Documentation

CYBLE_GAP_RESOLVING_DEVICE_INFO_T CYBLE_GAP_RESOLVING_LIST_T::resolvingList[0x08u]

Pointer to Resolving list stored in controller

uint8 CYBLE_GAP_RESOLVING_LIST_T::noOfDevice

Number of entries in resolving list

struct CYBLE_GAPC_DIRECT_ADV_REPORT_T

Data Fields

• uint8 * localBdAddr

• uint8 * peerBdAddr

• CYBLE_GAP_ADV_ADDR_TYPE_T peerBdAddrType

• int8 rssi

Field Documentation

uint8* CYBLE_GAPC_DIRECT_ADV_REPORT_T::localBdAddr

Buffer containing Random Device Address of Scanner (local device) This is the address the directed
advertisements are being directed to.

uint8* CYBLE_GAPC_DIRECT_ADV_REPORT_T::peerBdAddr

Buffer containing Device Address of advertiser sending the directed advertisement

CYBLE_GAP_ADV_ADDR_TYPE_T CYBLE_GAPC_DIRECT_ADV_REPORT_T::peerBdAddrType

Device Address type of advertiser sending the directed advertisement

int8 CYBLE_GAPC_DIRECT_ADV_REPORT_T::rssi

Rssi of the responding device. Range: -127 <= N <= +20 Units: dBm N = 127 -> RSSI not available

struct CYBLE_GAP_ENHANCE_CONN_COMPLETE_T

Data Fields

• uint16 connIntv

• uint16 connLatency

• uint16 supervisionTo

• uint8 * peerBdAddr

• CYBLE_GAP_ADV_ADDR_TYPE_T peerBdAddrType

• uint8 * localResolvablePvtAddr

• uint8 * peerResolvablePvtAddr

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 136 of 559 Document Number: 002-29930 Rev. *A

• uint8 role

• uint8 masterClockAccuracy

• uint8 status

Field Documentation

uint16 CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::connIntv

Connection interval used on this connection. Range: 0x0006 to 0x0C80 Time Range: 7.5 ms to 4 sec

uint16 CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::connLatency

Slave latency for the connection in number of connection events. Range: 0x0000 to 0x01F3

uint16 CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::supervisionTo

Supervision timeout for the LE Link. Supervision timeout will be supervisionTO * 10 ms Time Range: 100 msec to
32 secs

uint8* CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::peerBdAddr

Peer Device Address

CYBLE_GAP_ADV_ADDR_TYPE_T CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::peerBdAddrType

Peer Device Address type

uint8* CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::localResolvablePvtAddr

Local Resolvable Private Address Resolvable Private Address being used by the local device for this connection.
This is only valid when the Own_Address_Type in connection/advertisement parameters is set to 0x02 or 0x03.
For other Own_Address_Type values, This will be all zeros.

uint8* CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::peerResolvablePvtAddr

Peer Resolvable Private Address Resolvable Private Address being used by the peer device for this connection.
This is only valid for the Peer_Address_Type 0x02 or 0x03. For other Peer_Address_Type values, This will be all
zeros.

uint8 CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::role

Connection is master/slave Master = 0x00 Slave = 0x01

uint8 CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::masterClockAccuracy

Master clock accuracy 0x00 -> 500 ppm 0x01 -> 250 ppm 0x02 -> 150 ppm 0x03 -> 100 ppm 0x04 -> 75 ppm
0x05 -> 50 ppm 0x06 -> 30 ppm 0x07 -> 20 ppm

uint8 CYBLE_GAP_ENHANCE_CONN_COMPLETE_T::status

Status corresponding to this event will be HCI error code. Values of 0 indicates connection successfully completed.
Refer BLE spec 4.2,Vol2, Part D for Error codes or User can refer CYBLE_HCI_ERROR_T for HCI error codes.

struct CYBLE_GAP_DEVICE_LIST_T

Data Fields

• CYBLE_GAP_BD_ADDR_T bdAddr

• uint8 bdHandle

Field Documentation

CYBLE_GAP_BD_ADDR_T CYBLE_GAP_DEVICE_LIST_T::bdAddr

Bluetooth device address

uint8 CYBLE_GAP_DEVICE_LIST_T::bdHandle

Corresponding bdHandle

struct CYBLE_GAP_DEVICE_ADDR_LIST_T

Data Fields

• CYBLE_GAP_DEVICE_LIST_T bdHandleAddrList [0x04u]

• uint8 count

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 137 of 559

Field Documentation

CYBLE_GAP_DEVICE_LIST_T CYBLE_GAP_DEVICE_ADDR_LIST_T::bdHandleAddrList[0x04u]

Pointer to list of Bluetooth device addresses and bdHandle of bonded devices

uint8 CYBLE_GAP_DEVICE_ADDR_LIST_T::count

Number of bonded devices

struct CYBLE_GAP_PRIVACY_MODE_INFO_T

Data Fields

• uint8 peerBdAddr [(0x06u)]

• uint8 peerBdAddrType

• uint8 privacyMode

Field Documentation

uint8 CYBLE_GAP_PRIVACY_MODE_INFO_T::peerBdAddr[(0x06u)]

Bluetooth device address

uint8 CYBLE_GAP_PRIVACY_MODE_INFO_T::peerBdAddrType

public = 0, Random = 1

uint8 CYBLE_GAP_PRIVACY_MODE_INFO_T::privacyMode

Privacy Mode

Enumeration Type Documentation

enum CYBLE_GAP_ADV_ASSIGN_NUMBERS

Stack mode defines Advertisement SIG assigned numbers

Enumerator

CYBLE_GAP_ADV_FLAGS Flags

CYBLE_GAP_ADV_INCOMPL_16UUID Incomplete List of 16-bit Service Class UUIDs

CYBLE_GAP_ADV_COMPL_16UUID Complete List of 16-bit Service Class UUIDs

CYBLE_GAP_ADV_INCOMPL_32_UUID Incomplete List of 32-bit Service Class UUIDs

CYBLE_GAP_ADV_COMPL_32_UUID Complete List of 32-bit Service Class UUIDs

CYBLE_GAP_ADV_INCOMPL_128_UUID Incomplete List of 128-bit Service Class UUIDs

CYBLE_GAP_ADV_COMPL_128_UUID Complete List of 128-bit Service Class UUIDs

CYBLE_GAP_ADV_SHORT_NAME Shortened Local Name

CYBLE_GAP_ADV_COMPL_NAME Complete Local Name

CYBLE_GAP_ADV_TX_PWR_LVL Tx Power Level

CYBLE_GAP_ADV_CLASS_OF_DEVICE Class of Device

CYBLE_GAP_ADV_SMPL_PAIR_HASH_C Simple Pairing Hash C

CYBLE_GAP_ADV_SMPL_PAIR_RANDOM_R Simple Pairing Randomizer R

CYBLE_GAP_ADV_DEVICE_ID Device ID

CYBLE_GAP_ADV_SCRT_MNGR_TK_VAL Security Manager TK Value

CYBLE_GAP_ADV_SCRT_MNGR_OOB_FLAGS Security Manager Out of Band Flags

CYBLE_GAP_ADV_SLAVE_CONN_INTRV_RANGE Slave Connection Interval Range

CYBLE_GAP_ADV_SOLICIT_16UUID List of 16-bit Service Solicitation UUIDs

CYBLE_GAP_ADV_SOLICIT_128UUID List of 128-bit Service Solicitation UUIDs

CYBLE_GAP_ADV_SRVC_DATA_16UUID Service Data - 16-bit UUID

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 138 of 559 Document Number: 002-29930 Rev. *A

CYBLE_GAP_ADV_PUBLIC_TARGET_ADDR Public Target Address

CYBLE_GAP_ADV_RANDOM_TARGET_ADDR Random Target Address

CYBLE_GAP_ADV_APPEARANCE Appearance

CYBLE_GAP_ADV_ADVERT_INTERVAL Advertising Interval

CYBLE_GAP_ADV_LE_BT_DEVICE_ADDR LE Bluetooth Device Address

CYBLE_GAP_ADV_LE_ROLE LE Role

CYBLE_GAP_ADV_SMPL_PAIR_HASH_C256 Simple Pairing Hash C-256

CYBLE_GAP_ADV_SMPL_PAIR_RANDOM_R256 Simple Pairing Randomizer R-256

CYBLE_GAP_ADV_SOLICIT_32UUID List of 32-bit Service Solicitation UUIDs

CYBLE_GAP_ADV_SRVC_DATA_32UUID Service Data - 32-bit UUID

CYBLE_GAP_ADV_SRVC_DATA_128UUID Service Data - 128-bit UUID

CYBLE_GAP_ADV_3D_INFO_DATA 3D Information Data

enum CYBLE_GAPP_ADV_T

Advertisement type

Enumerator

CYBLE_GAPP_CONNECTABLE_UNDIRECTED_ADV Connectable undirected advertising

CYBLE_GAPP_CONNECTABLE_HIGH_DC_DIRECTED_ADV Connectable high duty cycle directed
advertising

CYBLE_GAPP_SCANNABLE_UNDIRECTED_ADV Scannable undirected advertising

CYBLE_GAPP_NON_CONNECTABLE_UNDIRECTED_ADV Non connectable undirected advertising

CYBLE_GAPP_CONNECTABLE_LOW_DC_DIRECTED_ADV Connectable low duty cycle directed
advertising

enum CYBLE_GAPC_ADV_EVENT_T

Advertisement event type

Enumerator

CYBLE_GAPC_CONN_UNDIRECTED_ADV Connectable undirected advertising

CYBLE_GAPC_CONN_DIRECTED_ADV Connectable directed advertising

CYBLE_GAPC_SCAN_UNDIRECTED_ADV Scannable undirected advertising

CYBLE_GAPC_NON_CONN_UNDIRECTED_ADV Non connectable undirected advertising

CYBLE_GAPC_SCAN_RSP Scan Response

enum CYBLE_GAP_SEC_LEVEL_T

Security Levels

Enumerator

CYBLE_GAP_SEC_LEVEL_1 Level 1 Mode 1 - No Security (No Authentication & No Encryption) Mode 2 -
N/A

CYBLE_GAP_SEC_LEVEL_2 Level 2 Mode 1 - Unauthenticated pairing with encryption (No MITM) Mode 2
- Unauthenticated pairing with data signing (No MITM)

CYBLE_GAP_SEC_LEVEL_3 Level 3 Mode 1 - Authenticated pairing with encryption (With MITM) Mode 2
- Authenticated pairing with data signing (With MITM)

CYBLE_GAP_SEC_LEVEL_4 Level 4 Secured Connection

CYBLE_GAP_SEC_LEVEL_MASK LE Security Level Mask

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 139 of 559

enum CYBLE_GAP_IOCAP_T

IO capability

Enumerator

CYBLE_GAP_IOCAP_DISPLAY_ONLY Platform supports only a mechanism to display or convey only 6
digit number to user.

CYBLE_GAP_IOCAP_DISPLAY_YESNO The device has a mechanism whereby the user can indicate 'yes'
or 'no'.

CYBLE_GAP_IOCAP_KEYBOARD_ONLY Platform supports a numeric keyboard that can input the
numbers '0' through '9' and a confirmation key(s) for 'yes' and 'no'.

CYBLE_GAP_IOCAP_NOINPUT_NOOUTPUT Platform does not have the ability to display or communicate
a 6 digit decimal number.

CYBLE_GAP_IOCAP_KEYBOARD_DISPLAY Platform supports a mechanism through which 6 digit
numeric value can be displayed and numeric keyboard that can input the numbers '0' through '9'.

enum CYBLE_GAP_AUTH_FAILED_REASON_T

Authentication Failed Error Codes

Enumerator

CYBLE_GAP_AUTH_ERROR_NONE No Error

CYBLE_GAP_AUTH_ERROR_PASSKEY_ENTRY_FAILED User input of passkey failed, for example, the
user cancelled the operation

CYBLE_GAP_AUTH_ERROR_OOB_DATA_NOT_AVAILABLE Out Of Band data is not available,
applicable if NFC is supported

CYBLE_GAP_AUTH_ERROR_AUTHENTICATION_REQ_NOT_MET Pairing procedure cannot be
performed as authentication requirements cannot be met due to IO capabilities of one or both devices.

CYBLE_GAP_AUTH_ERROR_CONFIRM_VALUE_NOT_MATCH Confirm value does not match the
calculated compare value

CYBLE_GAP_AUTH_ERROR_PAIRING_NOT_SUPPORTED Pairing is not supported by the device

CYBLE_GAP_AUTH_ERROR_INSUFFICIENT_ENCRYPTION_KEY_SIZE Insufficient key size for the
security requirements of this device or LTK is lost

CYBLE_GAP_AUTH_ERROR_COMMAND_NOT_SUPPORTED command received is not supported

CYBLE_GAP_AUTH_ERROR_UNSPECIFIED_REASON Pairing failed due to an unspecified reason

CYBLE_GAP_AUTH_ERROR_REPEATED_ATTEMPTS Pairing or authentication procedure is disallowed
because too little time has elapsed since last pairing request or security request.

CYBLE_GAP_AUTH_ERROR_INVALID_PARAMETERS Invalid Parameters in Request - Invalid Command
length and Parameter value outside range

CYBLE_GAP_AUTH_ERROR_DHKEY_CHECK_FAILED Indicates to the remote device that the DHKey
Check value received doesn't match the one calculated by the local device

CYBLE_GAP_AUTH_ERROR_NUMERIC_COMPARISON_FAILED Indicates that the confirm values in the
numeric comparison protocol do not match

CYBLE_GAP_AUTH_ERROR_BR_EDR_PAIRING_IN_PROGRESS Indicates that the pairing over the LE
transport failed due to a Pairing Request sent over the BR/EDR transport is in process.

CYBLE_GAP_AUTH_ERROR_CROSS_TRANSPORT_KEY_GEN_DER_NOT_ALLOWED Indicates that
the BR/EDR Link Key generated on the BR/EDR transport cannot be used to derive and distribute keys for
LE transport

CYBLE_GAP_AUTH_ERROR_CODE_SPEC_MAX_VALUE Indicates that over the air, spec will not allow
error code value to be greater than 0x0E

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 140 of 559 Document Number: 002-29930 Rev. *A

CYBLE_GAP_AUTH_ERROR_AUTHENTICATION_TIMEOUT Authentication process timeout, if pairing
timeout happens for first time, application can choose to re-initiate the pairing procedure. If timeout occurs
again, app may choose to disconnect peer device.

CYBLE_GAP_AUTH_ERROR_LINK_DISCONNECTED Link disconnected

enum CYBLE_GAP_ADDR_TYPE_T

GAP address type

Enumerator

CYBLE_GAP_RANDOM_PRIV_NON_RESOLVABLE_ADDR Random private non-resolvable address

CYBLE_GAP_RANDOM_PRIV_RESOLVABLE_ADDR Random private resolvable address

CYBLE_GAP_PUBLIC_ADDR Public address

CYBLE_GAP_RANDOM_STATIC_ADDR Random static address

enum CYBLE_GAP_KEYPRESS_NOTIFY_TYPE

Passkey entry notification types. These are used for CyBle_GapAuthSendKeyPress() function as well as with
CYBLE_EVT_GAP_KEYPRESS_NOTIFICATION event parameter.

Enumerator

CYBLE_GAP_PASSKEY_ENTRY_STARTED Passkey entry started

CYBLE_GAP_PASSKEY_DIGIT_ENTERED One digit entered

CYBLE_GAP_PASSKEY_DIGIT_ERASED One digit erased

CYBLE_GAP_PASSKEY_CLEARED All digits cleared

CYBLE_GAP_PASSKEY_ENTRY_COMPLETED Passkey entry completed

enum CYBLE_GAP_ADV_ADDR_TYPE_T

GAP Direct advertiser address type

Enumerator

CYBLE_GAP_PUBLIC_ADDR_TYPE Public device address type

CYBLE_GAP_RANDOM_RESOLVABLE_ADDR_TYPE Random private resolvable address type

CYBLE_GAP_PUBLIC_IDENTITY_ADDR_TYPE Public Identity address type

CYBLE_GAP_RANDOM_IDENTITY_ADDR_TYPE Random static Identity Address

enum CYBLE_GAP_PHY_TYPE_T

GAP physical layer

Enumerator

CYBLE_GAP_PHY_1MBPS 1 - Mbps Physical Layer.

CYBLE_GAP_PHY_INVALID Reserved Values.

GATT Functions

Description

The GATT APIs allow access to the Generic Attribute Profile (GATT) layer of the BLE stack. Depending on the chosen
GATT role in the GUI, you may use a subset of the supported APIs.

The GATT API names begin with CyBle_Gatt. In addition to this, the APIs also append the GATT role initial letter in
the API name.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 141 of 559

Modules

• GATT Client and Server Functions

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• GATT Client Functions

APIs unique to designs configured as a GATT Client role.

• GATT Server Functions

APIs unique to designs configured as a GATT Server role.

• GATT Definitions and Data Structures

Contains the GATT specific definitions and data structures used in the GATT APIs.

GATT Client and Server Functions

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Gatt

Functions

• CYBLE_API_RESULT_T CyBle_GattGetMtuSize (uint16 *mtu)

Function Documentation

CYBLE_API_RESULT_T CyBle_GattGetMtuSize (uint16 *mtu)

This function provides the correct GATT MTU used by BLE stack. If function is called after GATT MTU
configuration procedure, it will provide the final negotiated GATT MTU else default MTU (23 Bytes).

Parameters:

mtu buffer where Size of GATT MTU will be stored.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

If invalid parameter passed

GATT Client Functions

Description

APIs unique to designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Gattc

Functions

• CYBLE_API_RESULT_T CyBle_GattcStartDiscovery (CYBLE_CONN_HANDLE_T connHandle)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 142 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_API_RESULT_T CyBle_GattcStartPartialDiscovery (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_DB_ATTR_HANDLE_T startHandle, CYBLE_GATT_DB_ATTR_HANDLE_T endHandle)

• void CyBle_GattcStopCmd (void)

• CYBLE_API_RESULT_T CyBle_GattcExchangeMtuReq (CYBLE_CONN_HANDLE_T connHandle, uint16 mtu)

• CYBLE_API_RESULT_T CyBle_GattcDiscoverAllPrimaryServices (CYBLE_CONN_HANDLE_T connHandle)

• CYBLE_API_RESULT_T CyBle_GattcDiscoverPrimaryServiceByUuid (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATT_VALUE_T value)

• CYBLE_API_RESULT_T CyBle_GattcFindIncludedServices (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_ATTR_HANDLE_RANGE_T *range)

• CYBLE_API_RESULT_T CyBle_GattcDiscoverAllCharacteristics (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_ATTR_HANDLE_RANGE_T range)

• CYBLE_API_RESULT_T CyBle_GattcDiscoverCharacteristicByUuid (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)

• CYBLE_API_RESULT_T CyBle_GattcDiscoverAllCharacteristicDescriptors (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_FIND_INFO_REQ_T *findInfoReqParam)

• CYBLE_API_RESULT_T CyBle_GattcReadCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_REQ_T readReqParam)

• CYBLE_API_RESULT_T CyBle_GattcReadUsingCharacteristicUuid (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)

• CYBLE_API_RESULT_T CyBle_GattcReadLongCharacteristicValues (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BLOB_REQ_T *readBlobReqParam)

• CYBLE_API_RESULT_T CyBle_GattcReadMultipleCharacteristicValues (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_MULT_REQ_T *readMultiReqParam)

• CYBLE_API_RESULT_T CyBle_GattcWriteWithoutResponse (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_WRITE_CMD_REQ_T *writeCmdReqParam)

• CYBLE_API_RESULT_T CyBle_GattcSignedWriteWithoutRsp (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T *signedWriteWithoutRspParam)

• CYBLE_API_RESULT_T CyBle_GattcWriteCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_WRITE_REQ_T *writeReqParam)

• CYBLE_API_RESULT_T CyBle_GattcWriteLongCharacteristicValues (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam)

• CYBLE_API_RESULT_T CyBle_GattcReliableWrites (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam, uint8 numOfRequests)

• CYBLE_API_RESULT_T CyBle_GattcConfirmation (CYBLE_CONN_HANDLE_T connHandle)

• CYBLE_API_RESULT_T CyBle_GattcReadCharacteristicDescriptors (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_REQ_T readReqParam)

• CYBLE_API_RESULT_T CyBle_GattcReadLongCharacteristicDescriptors (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BLOB_REQ_T *readBlobReqParam)

• CYBLE_API_RESULT_T CyBle_GattcWriteCharacteristicDescriptors (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_WRITE_REQ_T *writeReqParam)

• CYBLE_API_RESULT_T CyBle_GattcWriteLongCharacteristicDescriptors (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam)

• CYBLE_API_RESULT_T CyBle_GattcReadByTypeReq (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)

• CYBLE_API_RESULT_T CyBle_GattcSendExecuteWriteReq (CYBLE_CONN_HANDLE_T connHandle, uint8
flag)

• CYBLE_API_RESULT_T CyBle_GattcDiscoverPrimaryServices (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_ATTR_HANDLE_RANGE_T *range)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 143 of 559

Function Documentation

CYBLE_API_RESULT_T CyBle_GattcStartDiscovery (CYBLE_CONN_HANDLE_T connHandle)

Starts the automatic server discovery process.

Discovery procedure is based on the user configuration. It discovers only services, characteristics, descriptors
which were declared in the GATT database. Discovery procedure has the following flow:

• discovering primary services by BLE Stack function CyBle_GattcDiscoverAllPrimaryServices();

• discovering included services by BLE Stack function CyBle_GattcFindIncludedServices();

• discovering characteristics for available services by BLE Stack function
CyBle_GattcDiscoverAllCharacteristics();

• discovering characteristic descriptors by BLE Stack function
CyBle_GattcDiscoverAllCharacteristicDescriptors();

During the discovery procedure the discovery-specific stack events are handled by the component and thus aren’t
passed to the application callback: CYBLE_EVT_GATTC_READ_BY_GROUP_TYPE_RSP,
CYBLE_EVT_GATTC_READ_BY_TYPE_RSP, CYBLE_EVT_GATTC_FIND_INFO_RSP,
CYBLE_EVT_GATTC_ERROR_RSP.

After the discovery procedure all information about available services is stored in CYBLE_DISC_SRVC_INFO_T
structures, and discovered attributes handles are stored in service-specific client structures, such as
CYBLE_BASC_T for Battery Service or CYBLE_HRSC_T for Heart Rate Service.

Parameters:

connHandle The handle which consists of the device ID and ATT connection ID.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry.

CYBLE_ERROR_INVALID_OPERATI
ON

The operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_INVALID_STATE If the function is called in any state except
connected or discovered

Events

The following events may be generated after calling this function:

• CYBLE_EVT_GATTC_DISCOVERY_COMPLETE - event is generated when the remote device was
successfully discovered.

• CYBLE_EVT_GATTC_ERROR_RSP - is generated if the device discovery has failed.

• CYBLE_EVT_GATTC_SRVC_DUPLICATION - is generated if duplicate service record was found
during the server device discovery.

• CYBLE_EVT_GATTC_CHAR_DUPLICATION - is generated if duplicate service's characteristic
descriptor record was found during the server device discovery.

• CYBLE_EVT_GATTC_DESCR_DUPLICATION - is generated if duplicate service's characteristic
descriptor record was found during the server device discovery.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 144 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_GattcStartPartialDiscovery (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_DB_ATTR_HANDLE_T startHandle, CYBLE_GATT_DB_ATTR_HANDLE_T endHandle)

Starts the automatic server discovery process as per the range provided on a GATT Server to which it is
connected. This function could be used for partial server discovery after indication received to the Service
Changed Characteristic Value.

Parameters:

connHandle The handle which consists of the device ID and ATT connection ID.

startHandle Start of affected attribute handle range.

endHandle End of affected attribute handle range.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry.

CYBLE_ERROR_INVALID_OPERATI
ON

The operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_INVALID_STATE If the function is called in any state except
connected or discovered

Events

Two events may be generated after calling this function: CYBLE_EVT_GATTC_DISCOVERY_COMPLETE
or CYBLE_EVT_GATTC_ERROR_RSP. The CYBLE_EVT_GATTC_DISCOVERY_COMPLETE event is
generated when the remote device was successfully discovered. The CYBLE_EVT_GATTC_ERROR_RSP
is generated if the device discovery is failed.

void CyBle_GattcStopCmd (void)

This function is used by the GATT Client to stop any of the following ongoing GATT procedures:

1. CyBle_GattcDiscoverAllPrimaryServices()
2. CyBle_GattcDiscoverPrimaryServiceByUuid()
3. CyBle_GattcFindIncludedServices()
4. CyBle_GattcDiscoverAllCharacteristics()
5. CyBle_GattcDiscoverCharacteristicByUuid()
6. CyBle_GattcDiscoverAllCharacteristicDescriptors()
7. CyBle_GattcReadLongCharacteristicValues()
8. CyBle_GattcWriteLongCharacteristicValues()
9. CyBle_GattcReliableWrites()
10. CyBle_GattcReadLongCharacteristicDescriptors()
11. CyBle_GattcWriteLongCharacteristicDescriptors()

If none of the above procedures is ongoing, then this command will be ignored. This function has no effect on ATT
procedures other than those listed above.

If the user intends to start a new GATT procedure including those listed above and there is an ongoing GATT
procedure (any one from the above list), the user needs to call this function to stop the ongoing GATT procedure
and then invoke the desired GATT procedure. This is a blocking function. No event is generated on calling this
function.

Returns:

None

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 145 of 559

CYBLE_API_RESULT_T CyBle_GattcExchangeMtuReq (CYBLE_CONN_HANDLE_T connHandle, uint16 mtu)

This function is used by the GATT Client to send Maximum Transmitted Unit (GATT MTU) supported by the GATT
Client. This is a non-blocking function.

Default GATT MTU size as per Bluetooth 4.1 core specification is 23 bytes. If the GATT Client supports a size
greater than the default, it has to invoke this function with the desired GATT MTU size. This function should only
be initiated once during a connection.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.3.1 for more details on GATT MTU exchange
operation.

This function call results in CYBLE_EVT_GATTS_XCNHG_MTU_REQ event at the GATT Server's end in
response to which the GATT Server is expected to send its GATT MTU size.

The CYBLE_EVT_GATTC_XCHNG_MTU_RSP event is generated at the GATT Client's end on receiving GATT
MTU response from the GATT Server.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

mtu Size of GATT MTU. Max GATT MTU supported by BLE stack is 512
Bytes.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack or, 'mtu' has a value
which is greater than that set on calling
CyBle_StackInit function

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcDiscoverAllPrimaryServices (CYBLE_CONN_HANDLE_T connHandle)

This function is used by the GATT Client to discover all the primary services on a GATT Server to which it is
connected. This is a non-blocking function.

Internally, this function initiates multiple Read By Group Type Requests to the peer device in response to which it
receives Read By Group Type Responses. Each Read By Group Type Response results in
CYBLE_EVT_GATTC_READ_BY_GROUP_TYPE_RSP event, which is propagated to the application layer for
handling.

Primary service discovery is complete when Error Response (CYBLE_EVT_GATTC_ERROR_RSP) is received
and the Error Code is set to Attribute Not Found or when the End Group Handle in the Read by Group Type
Response is 0xFFFF. Completion of this operation is notified to the upper layer(s) using
CYBLE_EVT_GATTC_ERROR_RSP with error code updated appropriately.

It is permitted to end the above stated sequence of operations early if the desired primary service is found prior
to discovering all the primary services on the GATT Server. This can be achieved by calling the
CyBle_GattcStopCmd() function.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.4.1 for more details on this sequence of
operations.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 146 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcDiscoverPrimaryServiceByUuid (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATT_VALUE_T value)

This function is used by the GATT Client to discover a specific primary service on a GATT Server, to which it is
connected, when only the Service UUID is known. This is a non-blocking function.

Internally, this function initiates multiple Find By Type Value Requests with the Attribute Type parameter set to
the UUID for Primary Service and the Attribute Value set to the 16-bit Bluetooth UUID or 128-bit UUID for the
specific primary service. Each Find By Type Value Response received from the peer device is passed to the
application as CYBLE_EVT_GATTC_FIND_BY_TYPE_VALUE_RSP event.

The sequence of operations is complete when the Error Response is received and the Error Code is set to Attribute
Not Found or when the End Group Handle in the Find By Type Value Response is 0xFFFF. Completion of this
function is notified to upper layer using CYBLE_EVT_GATTC_ERROR_RSP event with the error code updated
appropriately.

It is permitted to end the function early by calling the CyBle_GattcStopCmd() function if a desired primary service
is found prior to discovery of all the primary services of the specified service UUID supported on the GATT Server.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.4.2 for more details on this sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

value Parameter is of type CYBLE_GATT_VALUE_T, where,
1. 'value.val' should point to uint8 array containing the UUID to

look for. UUID can be 16 or 128 bit.
2. 'value.len' should be set to 2 if the 16 bit UUID is to be found.

The length should be set to 16 if 128 bit UUID is to be found.
3. 'value.actualLen' is an unused parameter and should be

ignored as it is unused.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 147 of 559

Errors codes Description

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_API_RESULT_T CyBle_GattcFindIncludedServices (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_ATTR_HANDLE_RANGE_T *range)

This function is used by the GATT Client to find Included Service declarations within a GATT Service to which it
is connected. This is a non-blocking function.

Internally, multiple Read By Type Requests are sent to the peer device in response to which Read By Type
Responses are received (CYBLE_EVT_GATTC_READ_BY_TYPE_RSP) and passed to the application layer.

When Read By Type Response data does not contain the service UUID, indicating the service UUID is a 128-bit
UUID, the application layer can choose to get the service UUID by performing the following steps:

1. Stop ongoing GATT operation by invoking CyBle_GattcStopCmd()
2. Send Read Request by invoking the function CyBle_GattcReadCharacteristicValue() with the read request

handle set to the attribute handle of the included service. Handle associated events.
3. Re-initiate CyBle_GattcFindIncludedServices function, setting the start handle to the attribute handle which

is placed next to the one used in the above step.

It is permitted to end the function early if a desired included service is found prior to discovering all the included
services of the specified service supported on the server by calling the CyBle_GattcStopCmd() function. If the
CyBle_GattcStopCmd() function is not invoked, completion of this function is notified to the upper layer using
CYBLE_EVT_GATTC_ERROR_RSP.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.5.1 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

range Pointer to the handle range of type
CYBLE_GATT_ATTR_HANDLE_RANGE_T for which relationship
discovery has to be performed

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcDiscoverAllCharacteristics (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_ATTR_HANDLE_RANGE_T range)

This function is used by the GATT Client to find all characteristic declarations within a service definition on a GATT
Server connect to it when only the service handle range is known. This is a non-blocking function.

Internally, multiple Read By Type Requests are sent to the GATT Server in response to which Read By Type
Responses are received. Each response results in the event CYBLE_EVT_GATTC_READ_BY_TYPE_RSP,
which is passed to the application layer for handling.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 148 of 559 Document Number: 002-29930 Rev. *A

It is permitted to end the function early by calling the CyBle_GattcStopCmd() function if a desired characteristic is
found prior to discovering all the characteristics of the specified service supported on the GATT Server.
Completion of this function is notified to upper layer using CYBLE_EVT_GATTC_ERROR_RSP event.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.6.1 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

range Parameter is of type CYBLE_GATT_ATTR_HANDLE_RANGE_T
where:

1. 'range.startHandle' can be set to the start handle of the desired
primary service.

2. 'range.endHandle' can be set to the end handle of the desired
primary service.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcDiscoverCharacteristicByUuid (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)

This function is used by the GATT Client to discover service characteristics on a GATT Server when only the
service handle ranges are known and the characteristic UUID is known. This is a non-blocking function.

Internally, multiple Read By Type Requests are sent to the peer device in response to which Read By Type
Responses are received. Each of these responses results in the event
CYBLE_EVT_GATTC_READ_BY_TYPE_RSP, which is passed to the application layer for further processing.

It is permitted to end the function early by calling the CyBle_GattcStopCmd() function if a desired characteristic is
found prior to discovering all the characteristics for the specified service supported on the GATT Server.
Completion of this function is notified to upper layer using CYBLE_EVT_GATTC_ERROR_RSP event.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.6.2 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

readByType
ReqParam

Pointer to a variable of type
CYBLE_GATTC_READ_BY_TYPE_REQ_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 149 of 559

Errors codes Description

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcDiscoverAllCharacteristicDescriptors (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_FIND_INFO_REQ_T *findInfoReqParam)

This function is used by the GATT Client to find all the characteristic descriptors. This is a non-blocking function.

Internally, multiple Find Information Requests are sent to the peer device in response to which Find Information
Responses are received by the GATT Client. Each of these responses generate
CYBLE_EVT_GATTC_FIND_INFO_RSP event at the GATT Client end which is propagated to the application
layer for further processing.

It is permitted to end the function early by calling the CyBle_GattcStopCmd() function if desired Characteristic
Descriptor is found prior to discovering all the characteristic descriptors of the specified characteristic. Completion
of this function is notified to upper layer using CYBLE_EVT_GATTC_ERROR_RSP event.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.7.1 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

findInfoReqP
aram

Pointer to a variable of type CYBLE_GATTC_FIND_INFO_REQ_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcReadCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_REQ_T readReqParam)

This function reads a Characteristic Value from a GATT Server when the GATT Client knows the Characteristic
Value Handle. This is a non-blocking function.

Internally, Read Request is sent to the peer device in response to which Read Response is received. This
response results in CYBLE_EVT_GATTC_READ_RSP event which is propagated to the application for handling
the event data. An Error Response (CYBLE_EVT_GATTC_ERROR_RSP event at the GATT Client's end) is sent
by the GATT Server in response to the Read Request on insufficient authentication or insufficient authorization or
insufficient encryption key size is caused by the GATT Client, or if a read operation is not permitted on the
Characteristic Value. The Error Code parameter is set as specified in the Attribute Protocol.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 150 of 559 Document Number: 002-29930 Rev. *A

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.1 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

readReqPar
am

Pointer to a variable of type CYBLE_GATTC_READ_REQ_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcReadUsingCharacteristicUuid (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)

This function reads a Characteristic Value from the GATT Server when the GATT Client only knows the
characteristic UUID and does not know the handle of the characteristic. This is a non-blocking function.

Internally, Read By Type Request is sent to the peer device in response to which Read By Type Response is
received by the GATT Client. This results in CYBLE_EVT_GATTC_READ_BY_TYPE_RSP event, which is
propagated to the application layer for further handling.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.2 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

readByType
ReqParam

Parameter is of type CYBLE_GATTC_READ_BY_TYPE_REQ_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 151 of 559

CYBLE_API_RESULT_T CyBle_GattcReadLongCharacteristicValues (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BLOB_REQ_T *readBlobReqParam)

This function reads a Characteristic Value from the GATT Server when the GATT Client knows the Characteristic
Value Handle and the length of the Characteristic Value is longer than can be sent in a single Read Response
Attribute Protocol message. This is a non-blocking function.

Internally multiple Read Blob Requests are sent to the peer device in response to which Read Blob Responses
are received. For each Read Blob Request, a Read Blob Response event is received
(CYBLE_EVT_GATTC_READ_BLOB_RSP) with a portion of the Characteristic Value contained in the Part
Attribute Value parameter. These events are propagated to the application layer for further processing. Each read
blob response will return up to (GATT MTU-1) bytes of data. If the size of characteristic value field is an integral
multiple of (GATT MTU-1) then the operation terminates with an error response event, where the error code is
CYBLE_GATT_ERR_INVALID_OFFSET. If the size of the characteristic value field is not an integral multiple of
(GATT MTU-1), the last read blob response will return data bytes which are less than (GATT MTU-1). The
application needs to monitor these two conditions before proceeding with the initiation of any other GATT
operation.

An Error Response event (CYBLE_EVT_GATTC_ERROR_RSP) is sent by the GATT Server in response to the
Read Blob Request if insufficient authentication, insufficient authorization, insufficient encryption key size is used
by the client, or if a read operation is not permitted on the Characteristic Value. The Error Code parameter is set
as specified in the Attribute Protocol.

If the Characteristic Value is not longer than (GATT MTU - 1), an Error Response with the Error Code set to
Attribute Not Long is received by the GATT Client on the first Read Blob Request.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.3 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

readBlobReq
Param

Pointer to a variable of type CYBLE_GATTC_READ_BLOB_REQ_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcReadMultipleCharacteristicValues (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_MULT_REQ_T *readMultiReqParam)

This function reads multiple Characteristic Values from a GATT Server when the GATT Client knows the
Characteristic Value Handles. This is a non-blocking function.

Internally, Read Multiple Request is sent to the peer device in response to which Read Multiple Response is
received. This results in C YBLE_EVT_GATTC_READ_MULTI_RSP event, which is propagated to the application
layer.

An Error Response event is sent by the server (CYBLE_EVT_GATTC_ERROR_RSP) in response to the Read
Multiple Request if insufficient authentication, insufficient authorization, insufficient encryption key size is used by

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 152 of 559 Document Number: 002-29930 Rev. *A

the client, or if a read operation is not permitted on any of the Characteristic Values. The Error Code parameter is
set as specified in the Attribute Protocol.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.4 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

readMultiRe
qParam

Pointer to a variable of type CYBLE_GATTC_READ_MULT_REQ_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcWriteWithoutResponse (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_WRITE_CMD_REQ_T *writeCmdReqParam)

This function writes a Characteristic Value to a GATT Server when the GATT Client knows the Characteristic
Value Handle and the client does not need an acknowledgment that the write was successfully performed. This
is a blocking function. No event is generated on calling this function.

Internally, Write Command is sent to the GATT Server and nothing is received in response from the GATT Server.

Refer Bluetooth 4.1 core specification, Volume 3, Part G, section 4.9.1 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

writeCmdRe
qParam

Pointer to a variable of type CYBLE_GATTC_WRITE_CMD_REQ_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 153 of 559

CYBLE_API_RESULT_T CyBle_GattcSignedWriteWithoutRsp (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T *signedWriteWithoutRspParam)

This function writes a Characteristic Value to a server when the client knows the Characteristic Value Handle and
the ATT Bearer is not encrypted. This procedure shall only be used if the Characteristic Properties authenticated
bit is enabled and the client and server device share a bond as defined in Bluetooth Spec4.1 [Vol. 3] Part C,
Generic Access Profile.

This function only writes the first (GATT_MTU - 15) octets of an Attribute Value. This function cannot be used to
write a long Attribute.

Internally, Signed Write Command is used. Refer Bluetooth Spec 4.1 Security Manager [Vol. 3] Part H, Section
2.4.5.

If the authenticated Characteristic Value that is written is the wrong size, has an invalid value as defined by the
profile, or the signed value does not authenticate the client, then the write shall not succeed and no error shall be
generated by the server.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

signedWrite
WithoutRspP
aram

Pointer to a variable of type
CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_INSUFFICIENT_RE
SOURCES

BLE stack out of resource

CYBLE_API_RESULT_T CyBle_GattcWriteCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_WRITE_REQ_T *writeReqParam)

This function writes a Characteristic Value to a GATT Server when the GATT Client knows the Characteristic
Value Handle. This is a non-blocking function.

Internally, Write Request is sent to the GATT Server in response to which Write Response is received. This results
in the event CYBLE_EVT_GATTC_WRITE_RSP, which indicates that the write operation succeeded.

An Error Response event (CYBLE_EVT_GATTC_ERROR_RSP) is sent by the server in response to the Write
Request if insufficient authentication, insufficient authorization, insufficient encryption key size is used by the
client, or if a write operation is not permitted on the Characteristic Value. The Error Code parameter is set as
specified in the Attribute Protocol.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.9.3 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

writeReqPar
am

Pointer to a variable of type CYBLE_GATTC_WRITE_REQ_T.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 154 of 559 Document Number: 002-29930 Rev. *A

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcWriteLongCharacteristicValues (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam)

This function writes a Characteristic Value to a GATT Server when the GATT Client knows the Characteristic
Value Handle but the length of the Characteristic Value is longer than GATT MTU size and cannot be sent in a
single Write Request Attribute Protocol message. This is a non-blocking function.

Internally, multiple Prepare Write Requests are sent to the GATT Server in response to which Prepare Write
Responses are received. No events are generated by the BLE Stack during these operations.

Prepare Write Requests are repeated until the complete Characteristic Value has been transferred to the GATT
Server, after which an Execute Write Request is sent to the GATT Server to write the initially transferred value at
the GATT Server's end. This generates CYBLE_EVT_GATTS_EXEC_WRITE_REQ at the GATT Server's end.

Once the GATT Server responds, CYBLE_EVT_GATTC_EXEC_WRITE_RSP event is generated at the GATT
Client's end. The value associated with this event has to be checked by the application layer to confirm that the
long write operation succeeded.

An Error Response event CYBLE_EVT_GATTC_ERROR_RSP is received by the GATT Client in response to the
Prepare Write Request if insufficient authentication, insufficient authorization, insufficient encryption key size is
used by the client, or if a write operation is not permitted on the Characteristic Value. The Error Code parameter
is set as specified in the Attribute Protocol.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.9.4 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

writePrepRe
qParam

Pointer to a variable of type CYBLE_GATTC_PREP_WRITE_REQ_T,
where 'writePrepReqParam->value.val' points to the actual data to be
written. 'writePrepReqParam' and all associated variables need to be
retained in memory by the calling application until the GATT Write Long
Characteristic Value operation is completed successfully.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 155 of 559

CYBLE_API_RESULT_T CyBle_GattcReliableWrites (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam, uint8 numOfRequests)

This function writes a Characteristic Value to a GATT Server when the GATT Client knows the Characteristic
Value Handle, and assurance is required that the correct Characteristic Value is going to be written by transferring
the Characteristic Value to be written in both directions before the write is performed. This is a non-blocking
function.

Internally, multiple Prepare Write Requests are sent to the GATT Server in response to which Prepare Write
Responses are received. No events are generated by the BLE Stack during these operations.

Prepare Write Requests are repeated until the complete Characteristic Value has been transferred to the GATT
Server, after which an Execute Write Request is sent to the GATT Server to write the initially transferred value at
the GATT Server's end. This generates CYBLE_EVT_GATTS_EXEC_WRITE_REQ at the GATT Server's end.

Once the GATT Server responds, a CYBLE_EVT_GATTC_EXEC_WRITE_RSP event is generated at the GATT
Client's end. The value associated with this event has to be checked by the application layer to confirm that the
long write operation succeeded. An Error Response event CYBLE_EVT_GATTC_ERROR_RSP is received by
the GATT Client in response to the Prepare Write Request if insufficient authentication, insufficient authorization,
insufficient encryption key size is used by the client, or if a write operation is not permitted on the Characteristic
Value. The Error Code parameter is set as specified in the Attribute Protocol.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.9.5 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

writePrepRe
qParam

Pointer to a variable of type CYBLE_GATTC_PREP_WRITE_REQ_T.
Since more than one writes are performed as part of this function, the
first array element of the array of type
CYBLE_GATTC_PREP_WRITE_REQ_T, which contains the values to
be written, has to be specified. 'writePrepReqParam' and all associated
variables need to be retained in memory by the calling application until
the GATT Reliable Write operation is completed successfully.

numOfRequ
ests

Number of requests. That is, the count of array of structures of type
CYBLE_GATTC_PREP_WRITE_REQ_T. Each array element
represents a value and the attribute to which the value has to be
written.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcConfirmation (CYBLE_CONN_HANDLE_T connHandle)

This function sends confirmation to the GATT Server on receiving Handle Value Indication event
CYBLE_EVT_GATTC_HANDLE_VALUE_IND at the GATT Client's end. This is a non-blocking function.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 156 of 559 Document Number: 002-29930 Rev. *A

This function call results in CYBLE_EVT_GATTS_HANDLE_VALUE_CNF event at the GATT Server's end.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.11.1 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcReadCharacteristicDescriptors (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_REQ_T readReqParam)

This function reads a characteristic descriptor from a GATT Server when the GATT Client knows the Attribute
handle from the characteristic descriptor declaration. This is a non-blocking function.

Internally, Read Request is sent to the peer device in response to which Read Response is received. This
response results in CYBLE_EVT_GATTC_READ_RSP event, which is propagated to the application for handling
the event data.

An Error Response (CYBLE_EVT_GATTC_ERROR_RSP event at the GATT Client's end) is sent by the GATT
Server in response to the Read Request on insufficient authentication or insufficient authorization or insufficient
encryption key size is caused by the GATT Client, or if a read operation is not permitted on the Characteristic
Value. The Error Code parameter is set as specified in the Attribute Protocol.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.12.1 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

readReqPar
am

Pointer to a variable of type CYBLE_GATTC_READ_REQ_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 157 of 559

CYBLE_API_RESULT_T CyBle_GattcReadLongCharacteristicDescriptors (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_READ_BLOB_REQ_T *readBlobReqParam)

This function reads a characteristic descriptor from a GATT Server when the GATT Client knows the Attribute
handle from the characteristic descriptor declaration and the length of the characteristic descriptor declaration is
longer than what can be sent in a single Read Response Attribute Protocol message. This is a non-blocking
function.

Internally multiple Read Blob Requests are sent to the peer device in response to which Read Blob Responses
are received. For each Read Blob Request, a Read Blob Response event is received
(CYBLE_EVT_GATTC_READ_BLOB_RSP) with a portion of the Characteristic Value contained in the Part
Attribute Value parameter. These events are propagated to the application layer for further processing. Each read
blob response will return up to (GATT MTU-1) bytes of data. If the size of characteristic descriptor field is an
integral multiple of (GATT MTU-1) then the operation terminates with an error response event, where the error
code is CYBLE_GATT_ERR_INVALID_OFFSET. If the size of the characteristic descriptor field is not an integral
multiple of (GATT MTU-1), the last read blob response will return data bytes which are less than (GATT MTU-1).
The application needs to monitor these two conditions before proceeding with the initiation of any other GATT
operation.

An Error Response event (CYBLE_EVT_GATTC_ERROR_RSP) is sent by the GATT Server in response to the
Read Blob Request if insufficient authentication, insufficient authorization, insufficient encryption key size is used
by the client, or if a read operation is not permitted on the Characteristic Value. The Error Code parameter is set
as specified in the Attribute Protocol. If the Characteristic Value is not longer than (GATT MTU - 1) an Error
Response with the Error Code set to Attribute Not Long is received by the GATT Client on the first Read Blob
Request.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.12.2 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

readBlobReq
Param

Pointer to a variable of type CYBLE_GATTC_READ_BLOB_REQ_T

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcWriteCharacteristicDescriptors (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_WRITE_REQ_T *writeReqParam)

This function writes a characteristic descriptor value to a GATT Server when the GATT Client knows the
characteristic descriptor handle. This is a non-blocking function.

Internally, Write Request is sent to the GATT Server in response to which Write Response is received. This results
in the event CYBLE_EVT_GATTC_WRITE_RSP, which indicates that the write operation succeeded.

An Error Response event (CYBLE_EVT_GATTC_ERROR_RSP) is sent by the server in response to the Write
Request if insufficient authentication, insufficient authorization, insufficient encryption key size is used by the

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 158 of 559 Document Number: 002-29930 Rev. *A

client, or if a write operation is not permitted on the Characteristic Value. The Error Code parameter is set as
specified in the Attribute Protocol.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.12.3 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

writeReqPar
am

Pointer to a variable of type CYBLE_GATTC_WRITE_REQ_T

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcWriteLongCharacteristicDescriptors (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam)

This function writes a characteristic descriptor value to a GATT Server when the GATT Client knows the
characteristic descriptor handle but the length of the characteristic descriptor value is longer than what can be
sent in a single Write Request Attribute Protocol message. This is a non-blocking function.

Internally, multiple Prepare Write Requests are sent to the GATT Server in response to which Prepare Write
Responses are received. No events are generated by the BLE Stack during these operations.

Prepare Write Requests are repeated until the complete Characteristic Descriptor Value has been transferred to
the GATT Server, after which an Execute Write Request is sent to the GATT Server to write the initially transferred
value at the GATT Server's end. This generates CYBLE_EVT_GATTS_EXEC_WRITE_REQ at the GATT Server's
end.

Once the GATT Server responds, CYBLE_EVT_GATTC_EXEC_WRITE_RSP' event is generated at the GATT
Client's end. The value associated with this event has to be checked by the application layer to confirm that the
long write operation succeeded.

An Error Response event CYBLE_EVT_GATTC_ERROR_RSP is received by the GATT Client in response to the
Prepare Write Request if insufficient authentication, insufficient authorization, insufficient encryption key size is
used by the client, or if a write operation is not permitted on the Characteristic Value. The Error Code parameter
is set as specified in the Attribute Protocol.

Refer Bluetooth 4.1 core specification, Volume 3, Part G, section 4.12.4 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

writePrepRe
qParam

Pointer to a variable of type CYBLE_GATTC_PREP_WRITE_REQ_T,
where 'writePrepReqParam->value.val' points to the actual data to be
written. 'writePrepReqParam' and all associated variables need to be
retained in memory by the calling application until the GATT Write Long
Characteristic Descriptor operation is completed successfully.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 159 of 559

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcReadByTypeReq (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)

This function allows the user to send Read by type request to peer server

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.5.1 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

readByType
ReqParam

Pointer to a variable of type
CYBLE_GATTC_READ_BY_TYPE_REQ_T, Where, the following
needs to be set:

• readByTypeReqParam->range.startHandle

• readByTypeReqParam->range.endHandle

• readByTypeReqParam->uuidFormat
(CYBLE_GATT_16_BIT_UUID_FORMAT or
CYBLE_GATT_128_BIT_UUID_FORMAT)

• readByTypeReqParam->uuid.uuid16 or
readByTypeReqParam->uuid.uuid128 based on the
uuidFormat

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcSendExecuteWriteReq (CYBLE_CONN_HANDLE_T connHandle, uint8
flag)

This function allows the user to send execute write request to remote server. This function should be called if
client has previously initiated long/reliable write operation and remote has send error response. Based on error
response application may choose to execute all pending requests or cancel the request.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 160 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

flag Indicates whether Queued Write is to be executed (0x01) or canceled
(0x00)

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattcDiscoverPrimaryServices (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATT_ATTR_HANDLE_RANGE_T *range)

This function is used by the GATT Client to discover the primary services as per the range provided on a GATT
Server to which it is connected. This is a non-blocking function.

Internally, this function initiates multiple Read By Group Type Requests to the peer device in response to which it
receives Read By Group Type Responses. Each Read By Group Type Response results in
CYBLE_EVT_GATTC_READ_BY_GROUP_TYPE_RSP event, which is propagated to the application layer for
handling.

Primary service discovery is complete when Error Response (CYBLE_EVT_GATTC_ERROR_RSP) is received
and the Error Code is set to Attribute Not Found or when the End Group Handle in the Read by Group Type
Response is 0xFFFF. Completion of this operation is notified to the upper layer(s) using
CYBLE_EVT_GATTC_ERROR_RSP with error code updated appropriately.

It is permitted to end the above stated sequence of operations early if the desired primary service is found prior
to discovering all the primary services on the GATT Server. This can be achieved by calling the
CyBle_GattcStopCmd() function.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.4.1 for more details on this sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity of type
CYBLE_CONN_HANDLE_T.

range Parameter is of type CYBLE_GATT_ATTR_HANDLE_RANGE_T
where,

1. 'range.startHandle' can be set to the start handle of the desired
primary service.

2. 'range.endHandle' can be set to the end handle of the desired
primary service.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 161 of 559

Errors codes Description

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

GATT Server Functions

Description

APIs unique to designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Gatts

Functions

• CYBLE_API_RESULT_T CyBle_GattsReInitGattDb (void)

• CYBLE_API_RESULT_T CyBle_GattsDbRegister (const CYBLE_GATTS_DB_T *gattDbPtr, uint16
gattDbTotalEntries, uint16 gattDbMaxValue)

• CYBLE_GATT_ERR_CODE_T CyBle_GattsWriteAttributeValue (CYBLE_GATT_HANDLE_VALUE_PAIR_T
*handleValuePair, uint16 offset, CYBLE_CONN_HANDLE_T *connHandle, uint8 flags)

• CYBLE_GATT_ERR_CODE_T CyBle_GattsReadAttributeValue (CYBLE_GATT_HANDLE_VALUE_PAIR_T
*handleValuePair, CYBLE_CONN_HANDLE_T *connHandle, uint8 flags)

• CYBLE_GATT_ERR_CODE_T CyBle_GattsEnableAttribute (CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle)

• CYBLE_GATT_ERR_CODE_T CyBle_GattsDisableAttribute (CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle)

• CYBLE_GATT_ERR_CODE_T CyBle_GattsDbAuthorize (uint8 yesNo)

• CYBLE_API_RESULT_T CyBle_GattsNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_HANDLE_VALUE_NTF_T *ntfParam)

• CYBLE_API_RESULT_T CyBle_GattsIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_HANDLE_VALUE_IND_T *indParam)

• CYBLE_API_RESULT_T CyBle_GattsErrorRsp (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_ERR_PARAM_T *errRspParam)

• CYBLE_API_RESULT_T CyBle_GattsExchangeMtuRsp (CYBLE_CONN_HANDLE_T connHandle, uint16 mtu)

• void CyBle_GattsPrepWriteReqSupport (uint8 prepWriteSupport)

• CYBLE_API_RESULT_T CyBle_GattsWriteRsp (CYBLE_CONN_HANDLE_T connHandle)

Function Documentation

CYBLE_API_RESULT_T CyBle_GattsReInitGattDb (void)

Reinitializes the GATT database.

Returns:

CYBLE_API_RESULT_T: A function result states if it succeeded or failed with error codes:

Errors codes Description

CYBLE_ERROR_OK GATT database was reinitialized successfully.

CYBLE_ERROR_INVALID_STATE If the function is called in any state except
CYBLE_STATE_DISCONNECTED.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 162 of 559 Document Number: 002-29930 Rev. *A

Errors codes Description

CYBLE_ERROR_INVALID_PARAME
TER

If the Database has zero entries or is a NULL
pointer.

CYBLE_API_RESULT_T CyBle_GattsDbRegister (const CYBLE_GATTS_DB_T *gattDbPtr, uint16
gattDbTotalEntries, uint16 gattDbMaxValue)

This function registers the GATT database for the GATT Server. The GATT database stores all the attributes used
by the GATT server, along with their permissions. This is a blocking function. No event is generated on calling this
function.

Parameters:

gattDbPtr Pointer to the GATT database of type CYBLE_GATTS_DB_T.

gattDbTotalE
ntries

Total number of entries in the GATT database.

gattDbMaxV
alue

Maximum characteristic value length

Returns:

CYBLE_API_RESULT_T: Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

If the Database has zero entries or is a NULL
pointer

CYBLE_GATT_ERR_CODE_T CyBle_GattsWriteAttributeValue (CYBLE_GATT_HANDLE_VALUE_PAIR_T
*handleValuePair, uint16 offset, CYBLE_CONN_HANDLE_T *connHandle, uint8 flags)

This function is used to write to the value field of the specified attribute in the GATT database of a GATT Server.
This is a blocking function. No event is generated on calling this function.

If a peer device connected to the GATT Server initiates a write operation, this function is executed on the GATT
Server. During such a call, the function checks for the attribute permissions (flags) before executing the write
operation.

Parameters:

handleValue
Pair

Pointer to handle value pair of type
CYBLE_GATT_HANDLE_VALUE_PAIR_T.

• 'handleValuePair.attrHandle' is an input for which value has to
be written.

• 'handleValuePair.value.len' is an input parameter for the length
to be written.

• 'handleValuePair.value.val' is an input parameter for data
buffer.

• 'handleValuePair.actualLen' has to be ignored as it is unused in
this function.

offset Offset at which the data (length in number of bytes) is written.

connHandle Pointer to the attribute instance handle, of type
CYBLE_CONN_HANDLE_T.

flags Attribute permissions. Allowed values are,

• CYBLE_GATT_DB_LOCALLY_INITIATED

• CYBLE_GATT_DB_PEER_INITIATED

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 163 of 559

Returns:

Return value is GATT Error code specified in 'CYBLE_GATT_ERR_CODE_T'

CYBLE_GATT_ERR_CODE_T CyBle_GattsReadAttributeValue (CYBLE_GATT_HANDLE_VALUE_PAIR_T
*handleValuePair, CYBLE_CONN_HANDLE_T *connHandle, uint8 flags)

This function is used to read the value field of the specified attribute from the GATT database in a GATT Server.
This is a blocking function. No event is generated on calling this function.

Peer initiated call to this function results in the function checking for attribute permissions before performing this
operation.

Parameters:

handleValue
Pair

Pointer to handle value pair of type
CYBLE_GATT_HANDLE_VALUE_PAIR_T.

• 'handleValuePair.attrHandle' is an input for which value has to
be read.

• 'handleValuePair.value.len' is an input parameter, the
characteristic value is read based on length.

• 'handleValuePair.value.val' is an output parameter for data
buffer.

• 'handleValuePair.actualLen' has to be ignored as it is unused in
this function.

connHandle Pointer to the attribute instance handle, of type
CYBLE_CONN_HANDLE_T. connHandle can be NULL if flags field is
set to CYBLE_GATT_DB_LOCALLY_INITIATED.

flags Attribute permissions. Allowed values are,

• CYBLE_GATT_DB_LOCALLY_INITIATED

• CYBLE_GATT_DB_PEER_INITIATED

Returns:

CYBLE_GATT_ERR_CODE_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_GATT_ERR_NONE On successful operation

CYBLE_GATT_ERR_INVALID_HAN
DLE

'handleValuePair.attrHandle' is not valid

CYBLE_GATT_ERR_READ_NOT_P
ERMITTED

Read operation is not permitted on this
attribute

CYBLE_GATT_ERR_UNLIKELY_ER
ROR

Invalid arguments passed

CYBLE_GATT_ERR_CODE_T CyBle_GattsEnableAttribute (CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle)

This function enables the attribute entry for service or characteristic logical group in the GATT database registered
in BLE Stack. This is a blocking function. No event is generated on calling this function.

This function returns an error if the attribute does not belong to any service or characteristic logical group. If the
attribute entry is already enabled, then this function returns status CYBLE_GATT_ERR_NONE.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 164 of 559 Document Number: 002-29930 Rev. *A

Parameters:

attrHandle Attribute handle of the registered GATT Database to enable particular
attribute entry, of type CYBLE_GATT_DB_ATTR_HANDLE_T.

Returns:

CYBLE_GATT_ERR_CODE_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_GATT_ERR_NONE On successful operation

CYBLE_GATT_ERR_INVALID_HAN
DLE

'attrHandle' is not valid

CYBLE_GATT_ERR_CODE_T CyBle_GattsDisableAttribute (CYBLE_GATT_DB_ATTR_HANDLE_T
attrHandle)

This function disables the attribute entry for service or characteristic logical group in the GATT database registered
in the BLE Stack. This is a blocking function. No event is generated on calling this function.

This function returns error if the attribute does not belong to a service or a characteristic logical group. If attribute
entry is already disabled then it returns CYBLE_GATT_ERR_NONE as status. All the attribute entries are enabled
in GATT database during stack initialization.

Parameters:

attrHandle Attribute handle of the registered GATT Database to disable particular
attribute entry, of type 'CYBLE_GATT_DB_ATTR_HANDLE_T'

Returns:

CYBLE_GATT_ERR_CODE_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_GATT_ERR_NONE On successful operation

CYBLE_GATT_ERR_INVALID_HAN
DLE

'attrHandle' is not valid

CYBLE_GATT_ERR_CODE_T CyBle_GattsDbAuthorize (uint8 yesNo)

This Function sets or clears authorization permission for the GATT database

Parameters:

yesNo Setting this to '0' turns off authorization on the entire GATT database
and all attributes marked as authorize will return authorization error.
Setting this to any non-zero value will authorize the entire GATT
database and all attributes marked as authorize can be read / written
based on other allowed permissions.

Returns:

CYBLE_GATT_ERR_CODE_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_GATT_ERR_NONE On successful operation

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 165 of 559

CYBLE_API_RESULT_T CyBle_GattsNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_HANDLE_VALUE_NTF_T *ntfParam)

This function sends a notification to the peer device when the GATT Server is configured to notify a Characteristic
Value to the GATT Client without expecting any Attribute Protocol layer acknowledgment that the notification was
successfully received. This is a non-blocking function.

On enabling notification successfully for a specific attribute, if the GATT server has an updated value to be notified
to the GATT Client, it sends out a 'Handle Value Notification' which results in
CYBLE_EVT_GATTC_HANDLE_VALUE_NTF event at the GATT Client's end.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.10 for more details on notifications.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

ntfParam Pointer to structure of type CYBLE_GATTS_HANDLE_VALUE_NTF_T
which is same as CYBLE_GATT_HANDLE_VALUE_PAIR_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted as BLE Stack is
busy processing previous requests. The Error
code is returned if the stack queue is full or for
other reasons, the stack cannot process the
operation. If stack busy event
'CYBLE_EVT_STACK_BUSY_STATUS' is
triggered with status busy, calling this API
function will trigger this error code. For details
refer 'CYBLE_EVT_STACK_BUSY_STATUS'
event

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattsIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_HANDLE_VALUE_IND_T *indParam)

This function sends an indication to the peer device when the GATT Server is configured to indicate a
Characteristic Value to the GATT Client and expects an Attribute Protocol layer acknowledgment that the
indication was successfully received. This is a non-blocking function.

On enabling indication successfully, if the GATT server has an updated value to be indicated to the GATT Client,
it sends out a 'Handle Value Indication' which results in CYBLE_EVT_GATTC_HANDLE_VALUE_IND event at
the GATT Client's end.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.11 for more details on Indications.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

indParam Pointer to structure of type CYBLE_GATTS_HANDLE_VALUE_IND_T
which is same as CYBLE_GATT_HANDLE_VALUE_PAIR_T.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 166 of 559 Document Number: 002-29930 Rev. *A

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattsErrorRsp (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GATTS_ERR_PARAM_T *errRspParam)

This function sends an error response to the peer device. The Error Response is used to state that a given request
cannot be performed, and to provide the reason as defined in 'CYBLE_GATT_ERR_CODE_T'. This is a non-
blocking function.

Note that the 'Write Command' initiated by GATT Client does not generate an 'Error Response' from the GATT
Server's end. The GATT Client gets CYBLE_EVT_GATTC_ERROR_RSP event on receiving error response.

Refer Bluetooth 4.1 core specification, Volume 3, Part F, section 3.4.1.1 for more details on Error Response
operation.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

errRspPara
m

Pointer to structure of type CYBLE_GATTS_ERR_PARAM_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_API_RESULT_T CyBle_GattsExchangeMtuRsp (CYBLE_CONN_HANDLE_T connHandle, uint16 mtu)

This function sends the GATT Server's GATT MTU size to the GATT Client. This function has to be invoked in
response to an Exchange GATT MTU Request received from the GATT Client. The GATT Server's GATT MTU
size should be greater than or equal to the default GATT MTU size (23 bytes). This is a non-blocking function.

The peer GATT Client receives CYBLE_EVT_GATTC_XCHNG_MTU_RSP event on executing this function on
the GATT Server.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.3.1 for more details on exchange of GATT
MTU.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 167 of 559

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

mtu Size of GATT MTU, of type uint16

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

If 'l2capPsm' is 0

CYBLE_ERROR_INSUFFICIENT_RE
SOURCES

Cannot register more than one PSM

CYBLE_ERROR_L2CAP_PSM_WR
ONG_ENCODING

PSM value must be an odd number and the
Most Significant Byte must have Least
Significant Bit value set to '0'. If PSM does not
follow this guideline, this return code is
generated.

CYBLE_ERROR_L2CAP_PSM_ALR
EADY_REGISTERED

PSM already Registered

void CyBle_GattsPrepWriteReqSupport (uint8 prepWriteSupport)

This API function needs to be called after getting CYBLE_EVT_GATTS_PREP_WRITE_REQ event from the BLE
Stack to support prepare write request operation. This API function should be called only once during one
Long/reliable write session. This needs to be called from the same event call back context. This is a non-blocking
function.

On receiving CYBLE_EVT_GATTS_PREP_WRITE_REQ, returning from the event handler without calling this
function will result in prepare write response being sent to the peer device rejecting the prepare write operation.
CYBLE_GATT_ERR_REQUEST_NOT_SUPPORTED error code will be sent to client.

Parameters:

prepWriteSu
pport

If prepare write operation is supported by the application then the
application layer should set this variable to
CYBLE_GATTS_PREP_WRITE_SUPPORT. Any other value will result
in the device rejecting the prepare write operation. Allowed values for
this parameter

• CYBLE_GATTS_PREP_WRITE_SUPPORT

• CYBLE_GATTS_PREP_WRITE_NOT_SUPPORT

Returns:

None

CYBLE_API_RESULT_T CyBle_GattsWriteRsp (CYBLE_CONN_HANDLE_T connHandle)

This function sends a Write Response from a GATT Server to the GATT Client. This is a non-blocking function.
This function has to be invoked in response to a valid Write Request event from the GATT Client
(CYBLE_EVT_GATTS_WRITE_REQ) to acknowledge that the attribute has been successfully written.

The Write Response has to be sent after the attribute value is written or saved by the GATT Server. Write
Response results in CYBLE_EVT_GATTC_WRITE_RSP event at the GATT Client's end.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 168 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

GATT Definitions and Data Structures

Description

Contains the GATT specific definitions and data structures used in the GATT APIs.

Data Structures

• struct CYBLE_DISC_SRVC_INFO_T

• struct CYBLE_DISC_SRVC128_INFO_T

• struct CYBLE_DISC_INCL_INFO_T

• struct CYBLE_DISC_CHAR_INFO_T

• struct CYBLE_SRVR_CHAR_INFO_T

• struct CYBLE_DISC_DESCR_INFO_T

• struct CYBLE_GATTS_T

• struct CYBLE_GATTC_T

• struct CY_BLE_FLASH_STORAGE

• struct CYBLE_GATT_VALUE_T

• struct CYBLE_GATT_HANDLE_VALUE_PAIR_T

• struct CYBLE_GATT_ATTR_HANDLE_RANGE_T

• struct CYBLE_GATT_XCHG_MTU_PARAM_T

• struct CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T

• struct CYBLE_PREPARE_WRITE_REQUEST_MEMORY_T

• struct CYBLE_GATTC_ERR_RSP_PARAM_T

• struct CYBLE_GATTC_READ_BY_TYPE_REQ_T

• struct CYBLE_GATTC_READ_BLOB_REQ_T

• struct CYBLE_GATTC_HANDLE_LIST_T

• struct CYBLE_GATTC_READ_RSP_PARAM_T

• struct CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T

• struct CYBLE_GATTC_GRP_ATTR_DATA_LIST_T

• struct CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T

• struct CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T

• struct CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 169 of 559

• struct CYBLE_GATTC_FIND_INFO_RSP_PARAM_T

• struct CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T

• struct CYBLE_GATTC_EXEC_WRITE_RSP_T

• struct CYBLE_GATTS_ATT_GEN_VAL_LEN_T

• struct CYBLE_GATTS_ATT_PACK_VAL_LEN_T

• union CYBLE_GATTS_ATT_VALUE_T

• struct CYBLE_GATTS_DB_T

• struct CYBLE_GATTS_ERR_PARAM_T

• struct CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T

• struct CYBLE_GATTS_EXEC_WRITE_REQ_T

• struct CYBLE_GATTS_WRITE_REQ_PARAM_T

• struct CYBLE_GATTS_CHAR_VAL_READ_REQ_T

Typedefs

• typedef uint16 CYBLE_GATT_DB_ATTR_HANDLE_T

• typedef CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_GATTC_FIND_INFO_REQ_T

• typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T

• typedef CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTC_READ_REQ_T

• typedef CYBLE_GATTC_HANDLE_LIST_T CYBLE_GATTC_READ_MULT_REQ_T

• typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_WRITE_CMD_REQ_T

• typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_WRITE_REQ_T

• typedef CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T CYBLE_GATTC_PREP_WRITE_REQ_T

• typedef CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T
CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T

• typedef CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T
CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T

• typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_EXT_PRPRTY_T

• typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_USER_DESCRIPTION_T

• typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CLIENT_CHAR_CONFIG_T

• typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_SERVER_CHAR_CONFIG_T

• typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_PRESENT_FMT_T

• typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_AGGREGATE_FMT_T

• typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_HANDLE_VALUE_NTF_T

• typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_HANDLE_VALUE_IND_T

• typedef CYBLE_GATT_VALUE_T CYBLE_GATTS_READ_RSP_PARAM_T

• typedef CYBLE_GATTS_WRITE_REQ_PARAM_T CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T

• typedef CYBLE_GATTS_WRITE_REQ_PARAM_T CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T

• typedef CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T
CYBLE_GATTS_PREP_WRITE_RSP_PARAM_T

Enumerations

• enum CYBLE_GATT_PDU_T

• enum CYBLE_GATT_ERR_CODE_T

Data Structure Documentation

struct CYBLE_DISC_SRVC_INFO_T

Data Fields

• CYBLE_GATT_ATTR_HANDLE_RANGE_T range

• uint16 uuid

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 170 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_DISC_SRVC_INFO_T::range

Handle range of the request

uint16 CYBLE_DISC_SRVC_INFO_T::uuid

16-bit UUID

struct CYBLE_DISC_SRVC128_INFO_T

Data Fields

• CYBLE_GATT_ATTR_HANDLE_RANGE_T range

• CYBLE_UUID_T uuid

• uint8 uuidFormat

Field Documentation

CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_DISC_SRVC128_INFO_T::range

Handle range of the request

CYBLE_UUID_T CYBLE_DISC_SRVC128_INFO_T::uuid

128-bit UUID

uint8 CYBLE_DISC_SRVC128_INFO_T::uuidFormat

UUID Format - 16-bit (0x01) or 128-bit (0x02)

struct CYBLE_DISC_INCL_INFO_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T inclDefHandle

• CYBLE_GATT_ATTR_HANDLE_RANGE_T inclHandleRange

• CYBLE_UUID_T uuid

• uint8 uuidFormat

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_DISC_INCL_INFO_T::inclDefHandle

Included definition handle

CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_DISC_INCL_INFO_T::inclHandleRange

Included declaration handle range

CYBLE_UUID_T CYBLE_DISC_INCL_INFO_T::uuid

Included UUID

uint8 CYBLE_DISC_INCL_INFO_T::uuidFormat

UUID Format - 16-bit (0x01) or 128-bit (0x02)

struct CYBLE_DISC_CHAR_INFO_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charDeclHandle

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_UUID_T uuid

• uint8 uuidFormat

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_DISC_CHAR_INFO_T::charDeclHandle

Handle for characteristic declaration

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 171 of 559

uint8 CYBLE_DISC_CHAR_INFO_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_DISC_CHAR_INFO_T::valueHandle

Handle to server database attribute value entry

CYBLE_UUID_T CYBLE_DISC_CHAR_INFO_T::uuid

Characteristic UUID

uint8 CYBLE_DISC_CHAR_INFO_T::uuidFormat

UUID Format - 16-bit (0x01) or 128-bit (0x02)

struct CYBLE_SRVR_CHAR_INFO_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

Field Documentation

uint8 CYBLE_SRVR_CHAR_INFO_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_SRVR_CHAR_INFO_T::valueHandle

Handle of server database attribute value entry

struct CYBLE_DISC_DESCR_INFO_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle

• CYBLE_UUID_T uuid

• uint8 uuidFormat

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_DISC_DESCR_INFO_T::connHandle

Handle to server database attribute entry

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_DISC_DESCR_INFO_T::descrHandle

Descriptor handle

CYBLE_UUID_T CYBLE_DISC_DESCR_INFO_T::uuid

Descriptor UUID

uint8 CYBLE_DISC_DESCR_INFO_T::uuidFormat

UUID Format - 16-bit (0x01) or 128-bit (0x02)

struct CYBLE_GATTS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceChangedHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTS_T::serviceHandle

Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTS_T::serviceChangedHandle

Handle of the Service Changed characteristic

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 172 of 559 Document Number: 002-29930 Rev. *A

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTS_T::cccdHandle

Client Characteristic Configuration descriptor handle

struct CYBLE_GATTC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T serviceChanged

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_GATTC_T::serviceChanged

Handle of the Service Changed characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTC_T::cccdHandle

Client Characteristic Configuration descriptor handle

struct CY_BLE_FLASH_STORAGE

Data Fields

• uint8 stackFlashptr [((0x09u+(0x9Cu *0x04u)))]

• uint8 attValuesCCCDFlashMemory [0x04u+1u][(1u)]

• uint8 cccdCount

• uint8 boundedDevCount

Field Documentation

uint8 CY_BLE_FLASH_STORAGE::stackFlashptr[((0x09u+(0x9Cu *0x04u)))]

Stack internal bonding data

uint8 CY_BLE_FLASH_STORAGE::attValuesCCCDFlashMemory[0x04u+1u][(1u)]

CCCD values

uint8 CY_BLE_FLASH_STORAGE::cccdCount

Number of CCCD

uint8 CY_BLE_FLASH_STORAGE::boundedDevCount

Number of bonded devices

struct CYBLE_GATT_VALUE_T

Data Fields

• uint8 * val

• uint16 len

• uint16 actualLen

Field Documentation

uint8* CYBLE_GATT_VALUE_T::val

Pointer to the value to be packed

uint16 CYBLE_GATT_VALUE_T::len

Length of Value to be packed

uint16 CYBLE_GATT_VALUE_T::actualLen

Out Parameter Indicating Actual Length Packed and sent over the air. Actual length can be less than or equal to
the 'len' parameter value. This provides information to application that what is the actual length of data that is
transmitted over the air. Each GATT procedures defines different length of data that can be transmitted over the
air. If application sends more than that, all data may not transmitted over air.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 173 of 559

struct CYBLE_GATT_HANDLE_VALUE_PAIR_T

Data Fields

• CYBLE_GATT_VALUE_T value

• CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle

Field Documentation

CYBLE_GATT_VALUE_T CYBLE_GATT_HANDLE_VALUE_PAIR_T::value

Attribute Value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATT_HANDLE_VALUE_PAIR_T::attrHandle

Attribute Handle of GATT DB

struct CYBLE_GATT_ATTR_HANDLE_RANGE_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T startHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATT_ATTR_HANDLE_RANGE_T::startHandle

Start Handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATT_ATTR_HANDLE_RANGE_T::endHandle

End Handle

struct CYBLE_GATT_XCHG_MTU_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• uint16 mtu

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATT_XCHG_MTU_PARAM_T::connHandle

Connection handle

uint16 CYBLE_GATT_XCHG_MTU_PARAM_T::mtu

Client/Server Rx/Tx GATT MTU Size

struct CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T

Data Fields

• CYBLE_GATT_HANDLE_VALUE_PAIR_T handleValuePair

• uint16 offset

Field Documentation

CYBLE_GATT_HANDLE_VALUE_PAIR_T
CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T::handleValuePair

Attribute Handle & Value to be Written

uint16 CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T::offset

Offset at which Write is to be performed

struct CYBLE_PREPARE_WRITE_REQUEST_MEMORY_T

Data Fields

• uint8 * queueBuffer

• uint16 totalAttrValueLength

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 174 of 559 Document Number: 002-29930 Rev. *A

• uint16 prepareWriteQueueSize

Field Documentation

uint8* CYBLE_PREPARE_WRITE_REQUEST_MEMORY_T::queueBuffer

buffer to which prepare write queue request will be stored buffer can be calculated as - total buffer =
totalAttrValueLength

• prepareWriteQueueSize * sizeof (CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T)

uint16 CYBLE_PREPARE_WRITE_REQUEST_MEMORY_T::totalAttrValueLength

length of attribute value. This value can be max attribute value length or summation of values lengths which
supports long write. Value should be multiple of 32 bit unsigned integer

uint16 CYBLE_PREPARE_WRITE_REQUEST_MEMORY_T::prepareWriteQueueSize

Size of prepareWriteQueue buffer. Application may choose to decide the size base on (totalAttrValueLength or
Max attribute length or summation of values lengths which supports long write) /(negotiated or default MTU size -
5) In case of reliable write, queue depth should at least be equal to number of handles which has reliable write
support

struct CYBLE_GATTC_ERR_RSP_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATT_PDU_T opCode

• CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle

• CYBLE_GATT_ERR_CODE_T errorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTC_ERR_RSP_PARAM_T::connHandle

Connection handle

CYBLE_GATT_PDU_T CYBLE_GATTC_ERR_RSP_PARAM_T::opCode

Opcode which has resulted in Error

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTC_ERR_RSP_PARAM_T::attrHandle

Attribute Handle in which error is generated

CYBLE_GATT_ERR_CODE_T CYBLE_GATTC_ERR_RSP_PARAM_T::errorCode

Error Code describing cause of error

struct CYBLE_GATTC_READ_BY_TYPE_REQ_T

Data Fields

• CYBLE_GATT_ATTR_HANDLE_RANGE_T range

• CYBLE_UUID_T uuid

• uint8 uuidFormat

Field Documentation

CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_GATTC_READ_BY_TYPE_REQ_T::range

Handle Range

CYBLE_UUID_T CYBLE_GATTC_READ_BY_TYPE_REQ_T::uuid

GATT UUID type

uint8 CYBLE_GATTC_READ_BY_TYPE_REQ_T::uuidFormat

Format indicating, 16 bit or 128 bit UUIDs For 16bits UUID format - CYBLE_GATT_16_BIT_UUID_FORMAT
(0x01) For 128bits UUID format - CYBLE_GATT_128_BIT_UUID_FORMAT (0x02)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 175 of 559

struct CYBLE_GATTC_READ_BLOB_REQ_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle

• uint16 offset

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTC_READ_BLOB_REQ_T::attrHandle

Handle on which Read Blob is requested

uint16 CYBLE_GATTC_READ_BLOB_REQ_T::offset

Value Offset from which the Read is Requested

struct CYBLE_GATTC_HANDLE_LIST_T

Data Fields

• uint16 * handleList

• uint16 listCount

• uint16 actualCount

Field Documentation

uint16* CYBLE_GATTC_HANDLE_LIST_T::handleList

Handle list where the UUID with value Indicated is found

uint16 CYBLE_GATTC_HANDLE_LIST_T::listCount

Number of Handles in the list

uint16 CYBLE_GATTC_HANDLE_LIST_T::actualCount

Actual Number of Handles Packed. This is a output parameter

struct CYBLE_GATTC_READ_RSP_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATT_VALUE_T value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTC_READ_RSP_PARAM_T::connHandle

Connection handle

CYBLE_GATT_VALUE_T CYBLE_GATTC_READ_RSP_PARAM_T::value

Attribute Value

struct CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATT_HANDLE_VALUE_PAIR_T handleValPair

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T::connHandle

Connection handle

CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T::handleValPair

handle value pair, actual length files needs to be ignored

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 176 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_GATTC_GRP_ATTR_DATA_LIST_T

Data Fields

• uint8 * attrValue

• uint16 length

• uint16 attrLen

Field Documentation

uint8* CYBLE_GATTC_GRP_ATTR_DATA_LIST_T::attrValue

attribute handle value pair

uint16 CYBLE_GATTC_GRP_ATTR_DATA_LIST_T::length

Length of each Attribute Data Element including the Handle Range

uint16 CYBLE_GATTC_GRP_ATTR_DATA_LIST_T::attrLen

Total Length of Attribute Data

struct CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATTC_GRP_ATTR_DATA_LIST_T attrData

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T::connHandle

Connection handle

CYBLE_GATTC_GRP_ATTR_DATA_LIST_T CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T::attrData

Group attribute data list

struct CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATT_ATTR_HANDLE_RANGE_T * range

• uint8 count

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T::connHandle

Connection handle

CYBLE_GATT_ATTR_HANDLE_RANGE_T* CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T::range

Handle Range List

uint8 CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T::count

Size of List

struct CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T

Data Fields

• uint8 * list

• uint16 byteCount

Field Documentation

uint8* CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T::list

Handle - UUID Pair list This is a packed byte stream, hence it needs to be unpacked and decoded.

uint16 CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T::byteCount

Number of elements in the list in bytes

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 177 of 559

struct CYBLE_GATTC_FIND_INFO_RSP_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T handleValueList

• uint8 uuidFormat

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTC_FIND_INFO_RSP_PARAM_T::connHandle

Connection handle

CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T
CYBLE_GATTC_FIND_INFO_RSP_PARAM_T::handleValueList

Handle Value List

uint8 CYBLE_GATTC_FIND_INFO_RSP_PARAM_T::uuidFormat

Format indicating, 16 bit (0x01) or 128 bit (0x02) UUIDs

struct CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T

Data Fields

• CYBLE_GATT_VALUE_T value

• CYBLE_GATT_ATTR_HANDLE_RANGE_T range

• CYBLE_UUID16 uuid

Field Documentation

CYBLE_GATT_VALUE_T CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T::value

Attribute Value to Find

CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T::range

Handle Range - Start and End Handle

CYBLE_UUID16 CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T::uuid

16-bit UUID to Find

struct CYBLE_GATTC_EXEC_WRITE_RSP_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• uint8 result

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTC_EXEC_WRITE_RSP_T::connHandle

Connection handle

uint8 CYBLE_GATTC_EXEC_WRITE_RSP_T::result

Result of the execute write request

struct CYBLE_GATTS_ATT_GEN_VAL_LEN_T

Data Fields

• uint16 actualLength

• void * attGenericVal

Field Documentation

uint16 CYBLE_GATTS_ATT_GEN_VAL_LEN_T::actualLength

Length in number of bytes for attGenericVal

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 178 of 559 Document Number: 002-29930 Rev. *A

void* CYBLE_GATTS_ATT_GEN_VAL_LEN_T::attGenericVal

Buffer to the store generic characteristic value based on length or complete UUID value if the attribute is of type
128-bit UUID and 32-bit UUID type.

struct CYBLE_GATTS_ATT_PACK_VAL_LEN_T

Data Fields

• uint16 maxAttrLength

• CYBLE_GATTS_ATT_GEN_VAL_LEN_T * attGenericValLen

Field Documentation

uint16 CYBLE_GATTS_ATT_PACK_VAL_LEN_T::maxAttrLength

Length in number of bytes for attGenericVal

CYBLE_GATTS_ATT_GEN_VAL_LEN_T* CYBLE_GATTS_ATT_PACK_VAL_LEN_T::attGenericValLen

Buffer to the store generic characteristic value based on length or complete UUID value if the attribute is of type
128-bit UUID and 32-bit UUID type.

union CYBLE_GATTS_ATT_VALUE_T

Data Fields

• CYBLE_GATTS_ATT_PACK_VAL_LEN_T attFormatValue

• uint16 attValueUuid

Field Documentation

CYBLE_GATTS_ATT_PACK_VAL_LEN_T CYBLE_GATTS_ATT_VALUE_T::attFormatValue

Buffer containing 32-bit or 128-bit UUID values for Service and Characteristic declaration. Attribute format
structure: if entry is for characteristic value format, then it has the "attribute format value" of pointer type to
represent generic structure to cater wide formats of available list of characteristic formats.

uint16 CYBLE_GATTS_ATT_VALUE_T::attValueUuid

Attribute UUID value

struct CYBLE_GATTS_DB_T

Data Fields

• uint16 attHandle

• uint16 attType

• uint32 permission

• uint16 attEndHandle

• CYBLE_GATTS_ATT_VALUE_T attValue

Field Documentation

uint16 CYBLE_GATTS_DB_T::attHandle

Start Handle: Act as an index for querying BLE GATT database

uint16 CYBLE_GATTS_DB_T::attType

UUID: 16 bit UUID type for an attribute entry, for 32 bit and 128 bit UUIDs the last 16 bits should be stored in this
entry GATT DB access layer shall retrieve complete 128 bit UUID from CYBLE_GATTS_ATT_GENERIC_VAL_T
structure.

uint32 CYBLE_GATTS_DB_T::permission

The permission bits are clubbed in to a 32-bit field. These 32-bits can be grouped in to 4 bytes. The lowest
significant byte is byte 0 (B0) and the most significant byte is byte 3 (B3). The bytes where the permissions have
been grouped is as given below. Attribute permissions for read (B0) Attribute permissions for write (B1)
Characteristic properties (B2) Implementation specific permission (B3)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 179 of 559

uint16 CYBLE_GATTS_DB_T::attEndHandle

Attribute end handle, indicating logical boundary of given attribute.

CYBLE_GATTS_ATT_VALUE_T CYBLE_GATTS_DB_T::attValue

Attribute value format, it can be one of following: uint16 16bit - UUID for 16bit service & characteristic declaration
CYBLE_GATTS_ATT_GENERIC_VAL_T attFormatValue - Buffer containing 32 bit or 128 bit UUID values for
service & characteristic declaration CYBLE_GATTS_ATT_GENERIC_VAL_T attFormatValue - Buffer containing
generic char definition value, or generic descriptor values

struct CYBLE_GATTS_ERR_PARAM_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle

• uint8 opcode

• CYBLE_GATT_ERR_CODE_T errorCode

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTS_ERR_PARAM_T::attrHandle

Handle in which error is generated

uint8 CYBLE_GATTS_ERR_PARAM_T::opcode

Opcode which has resulted in Error Information on ATT/GATT opcodes is available in the Bluetooth specification.

CYBLE_GATT_ERR_CODE_T CYBLE_GATTS_ERR_PARAM_T::errorCode

Error Code describing cause of error

struct CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T * baseAddr

• uint8 currentPrepWriteReqCount

• uint8 gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T::connHandle

Connection handle

CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T*
CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T::baseAddr

Base address of the queue where data is queued, Queue is of type
CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T. Each baseAddr[currentPrepWriteReqCount-
1].handleValuePair.value.val provides the current data and baseAddr[0].handleValuePair.value.val provides the
base address of the data buffer where full value will be stored. Application can calculate the total length based on
each each array element. i.e total length up current request = baseAddr[0].handleValuePair.value.len+
....+baseAddr[currentPrepWriteReqCount-1].handleValuePair.value.len

uint8 CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T::currentPrepWriteReqCount

Current count of prepare request from remote. This parameter can be used to access the data from 'baseAddr[]'.
Array index will range from 0 to currentPrepWriteReqCount - 1

uint8 CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T::gattErrorCode

Application provide GATT error code for the procedure. This is an o/p parameter

struct CYBLE_GATTS_EXEC_WRITE_REQ_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 180 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T * baseAddr

• uint8 prepWriteReqCount

• uint8 execWriteFlag

• CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle

• uint8 gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTS_EXEC_WRITE_REQ_T::connHandle

Connection handle

CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T* CYBLE_GATTS_EXEC_WRITE_REQ_T::baseAddr

Base address of the queue where data is queued. Queue is of type
CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T. baseAddr[0].handleValuePair.value.val provides the
base address of the total data stored in prepare write queue internally by stack. Application can calculate the total
length based on each each array element. i.e total length = baseAddr[0].handleValuePair.value.len+
....+baseAddr[prepWriteReqCount-1].handleValuePair.value.len

uint8 CYBLE_GATTS_EXEC_WRITE_REQ_T::prepWriteReqCount

Total count of prepare request from remote. This parameter can be used to access the data from 'baseAddr[]'.
array index will range from 0 to prepWriteReqCount - 1

uint8 CYBLE_GATTS_EXEC_WRITE_REQ_T::execWriteFlag

Execute write flag received from remote

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTS_EXEC_WRITE_REQ_T::attrHandle

Attribute Handle at which error occurred. This is an o/p param

uint8 CYBLE_GATTS_EXEC_WRITE_REQ_T::gattErrorCode

Application provide GATT error code for the procedure. This is an o/p param

struct CYBLE_GATTS_WRITE_REQ_PARAM_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATT_HANDLE_VALUE_PAIR_T handleValPair

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTS_WRITE_REQ_PARAM_T::connHandle

Connection handle

CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_WRITE_REQ_PARAM_T::handleValPair

handle value pair

struct CYBLE_GATTS_CHAR_VAL_READ_REQ_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GATTS_CHAR_VAL_READ_REQ_T::connHandle

Connection handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTS_CHAR_VAL_READ_REQ_T::attrHandle

Attribute Handle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 181 of 559

CYBLE_GATT_ERR_CODE_T CYBLE_GATTS_CHAR_VAL_READ_REQ_T::gattErrorCode

Output Param: Profile/Service specific error code, profile or application need to change this to service specific
error based on service/profile requirements.

Typedef Documentation

typedef uint16 CYBLE_GATT_DB_ATTR_HANDLE_T

GATT BD Attribute Handle Type

typedef CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_GATTC_FIND_INFO_REQ_T

GATT find info request to be sent to Server

typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T

Signed Write command request to be sent to Server

typedef CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTC_READ_REQ_T

Read request to be sent to Server

typedef CYBLE_GATTC_HANDLE_LIST_T CYBLE_GATTC_READ_MULT_REQ_T

Read multiple request to be sent to Server

typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_WRITE_CMD_REQ_T

Write command request to be sent to Server

typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_WRITE_REQ_T

Write request to be sent to Server

typedef CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T CYBLE_GATTC_PREP_WRITE_REQ_T

Prepare write request to be sent to Server

typedef CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T
CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T

GATT handle value indication parameter received from server type

typedef CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T

GATT read by type response received from server

typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_EXT_PRPRTY_T

Characteristic Extended Property

typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_USER_DESCRIPTION_T

Characteristic User Description

typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CLIENT_CHAR_CONFIG_T

Client Characteristic Configuration

typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_SERVER_CHAR_CONFIG_T

Server Characteristic Configuration

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 182 of 559 Document Number: 002-29930 Rev. *A

typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_PRESENT_FMT_T

Characteristic Presentation Format

typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_AGGREGATE_FMT_T

Characteristic Aggregate Format

typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_HANDLE_VALUE_NTF_T

Handle value notification data to be sent to Client

typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_HANDLE_VALUE_IND_T

GATT handle value indication parameter type

typedef CYBLE_GATT_VALUE_T CYBLE_GATTS_READ_RSP_PARAM_T

Read response parameter to be sent to Client

typedef CYBLE_GATTS_WRITE_REQ_PARAM_T CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T

Write command request parameter received from Client

typedef CYBLE_GATTS_WRITE_REQ_PARAM_T CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T

Signed Write command request parameter received from Client

typedef CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T
CYBLE_GATTS_PREP_WRITE_RSP_PARAM_T

Prepare write response parameter to be sent to Client

Enumeration Type Documentation

enum CYBLE_GATT_PDU_T

Opcode which has resulted in error

Enumerator

CYBLE_GATT_ERROR_RSP Error Response PDU

CYBLE_GATT_XCNHG_MTU_REQ Exchange GATT MTU Request PDU

CYBLE_GATT_XCHNG_MTU_RSP Exchange GATT MTU Response PDU

CYBLE_GATT_FIND_INFO_REQ Find Information Request PDU

CYBLE_GATT_FIND_INFO_RSP Find Information Response PDU

CYBLE_GATT_FIND_BY_TYPE_VALUE_REQ Find By Type Value Request PDU

CYBLE_GATT_FIND_BY_TYPE_VALUE_RSP Find By Type Value Response PDU

CYBLE_GATT_READ_BY_TYPE_REQ Read By Type Request PDU

CYBLE_GATT_READ_BY_TYPE_RSP Read By Type Response PDU

CYBLE_GATT_READ_REQ Read Request PDU

CYBLE_GATT_READ_RSP Read Response PDU

CYBLE_GATT_READ_BLOB_REQ Read Blob Request PDU

CYBLE_GATT_READ_BLOB_RSP Read Blob Response PDU

CYBLE_GATT_READ_MULTIPLE_REQ Read Multiple Request PDU

CYBLE_GATT_READ_MULTIPLE_RSP Read Multiple Response PDU

CYBLE_GATT_READ_BY_GROUP_REQ Read Group Type Request PDU

CYBLE_GATT_READ_BY_GROUP_RSP Read Group Type Response PDU

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 183 of 559

CYBLE_GATT_WRITE_REQ Write Request PDU

CYBLE_GATT_WRITE_RSP Write Response PDU

CYBLE_GATT_WRITE_CMD Write Command PDU

CYBLE_GATT_PREPARE_WRITE_REQ Prepare Write Request PDU

CYBLE_GATT_PREPARE_WRITE_RSP Prepare Write Response PDU

CYBLE_GATT_EXECUTE_WRITE_REQ Execute Write Request PDU

CYBLE_GATT_EXECUTE_WRITE_RSP Execute Write Response PDU

CYBLE_GATT_HANDLE_VALUE_NTF Handle Value Notification PDU

CYBLE_GATT_HANDLE_VALUE_IND Handle Value Indication PDU

CYBLE_GATT_HANDLE_VALUE_CNF Handle Value Confirmation PDU

CYBLE_GATT_SIGNED_WRITE_CMD Signed Write Command PDU

CYBLE_GATT_UNKNOWN_PDU_IND Unknown or Unhandled PDU

enum CYBLE_GATT_ERR_CODE_T

GATT profile error codes

Enumerator

CYBLE_GATT_ERR_NONE No Error

CYBLE_GATT_ERR_INVALID_HANDLE Invalid Handle error code is used in the case when the ATT handle
in the ATT request PDU is invalid.

CYBLE_GATT_ERR_READ_NOT_PERMITTED Read Not Permitted error code is used in the case when
the permission to read the value of an ATT handle is not permitted on the ATT server.

CYBLE_GATT_ERR_WRITE_NOT_PERMITTED Write Not Permitted error code is used in the case when
the permission to write the value of an ATT handle is not permitted on the ATT server.

CYBLE_GATT_ERR_INVALID_PDU Invalid PDU error code is used in the case when the format of the PDU
sent from the ATT Client is incorrect.

CYBLE_GATT_ERR_INSUFFICIENT_AUTHENTICATION Insufficient Authentication error code is used in
the case when an access to a handle is attempted on a un-authenticated link but the attribute requires that
the link be authenticated before any client can access it.

CYBLE_GATT_ERR_REQUEST_NOT_SUPPORTED Request not supported error code is used in the case
when the server does not support the processing of an ATT request sent from the client.

CYBLE_GATT_ERR_INVALID_OFFSET Invalid Offset error code is used in the case when the offset sent
by the client in the Read blob/Prepare Write Request is invalid with respect to the length of the value in the
server.

CYBLE_GATT_ERR_INSUFFICIENT_AUTHORIZATION Insufficient Authorization error code is used in the
case when the ATT server does not Authorize the client and hence prohibiting the client from reading the
handle value.

CYBLE_GATT_ERR_PREPARE_WRITE_QUEUE_FULL Write queue full error code is used when there is
no more space left in the prepare write queue on the server to entertain any more prepare writes from a client.

CYBLE_GATT_ERR_ATTRIBUTE_NOT_FOUND Attribute not found error is used when the ATT server
cannot find any handles that belong to the Attribute type in the given range of handles that the client specified
in its request. This error code can be sent to the client in response to the following request PDUs - Find
Information, Find by Type Value, Read by Type, Read by Group Type requests.

CYBLE_GATT_ERR_ATTRIBUTE_NOT_LONG Attribute Not Long error code is used when the client tries
to read or write a Attribute handle's value which cannot be read or written through Read Blob or multiple
prepare write requests.

CYBLE_GATT_ERR_INSUFFICIENT_ENC_KEY_SIZE Insufficient encryption key size error code is used
when the client tries to access an Attribute Handle's Value for which the link need to be encrypted with a key

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 184 of 559 Document Number: 002-29930 Rev. *A

of certain minimum key size and the current link is encrypted with a key of lesser size than the minimum
required.

CYBLE_GATT_ERR_INVALID_ATTRIBUTE_LEN Invalid Attribute length error code is used when the
Attribute value's length is not correct to process the request containing the value.

CYBLE_GATT_ERR_UNLIKELY_ERROR Unlikely error is used when the processing of the Attribute
request has encountered an error that is not covered by any other error code.

CYBLE_GATT_ERR_INSUFFICIENT_ENCRYPTION Insufficient encryption error code is used when the
client tries to read or write an Attribute handle which requires the link to be encrypted and the link is currently
not encrypted.

CYBLE_GATT_ERR_UNSUPPORTED_GROUP_TYPE Unsupported Group Type error code is used when
the Attribute type requested in the Read by Group Type request is not a valid grouping attribute on the server.

CYBLE_GATT_ERR_INSUFFICIENT_RESOURCE Insufficient Resources error code is used when the ATT
server does not have enough resources such as memory etc. to process the request from the client.

CYBLE_GATT_ERR_TRIGGER_CODITION_VALUE_NOT_SUPPORTED Other Error Groups for ATT -
GATT Reserved: GATT-ATT Error codes 0x12 to 0x7F are reserved for Application Specific Error Code
Range: 0x80 to 0x9F Reserved: 0xA0 to 0xDF Common Profile & Service Error Code : 0xE0 to 0xFF Trigger
condition value not supported.

CYBLE_GATT_ERR_HEART_RATE_CONTROL_POINT_NOT_SUPPORTED Heart Rate Control Point
Not Supported error code is used when a unsupported code is written into Heart Rate service Control Point
characteristic.

CYBLE_GATT_ERR_USER_DATA_ACCESS_NOT_PERMITTED The user data access is not permitted
(i.e. the user has not given consent in order to access these data).

CYBLE_GATT_ERR_CPS_INAPPROPRIATE_CONNECTION_PARAMETERS The notifications of the
Cycling Power Vector characteristic cannot be sent due to inappropriate connection parameters.

CYBLE_GATT_ERR_HTS_OUT_OF_RANGE The value is considered invalid and outside of the range
allowed by the characteristic.

CYBLE_GATTS_ERR_PROCEDURE_ALREADY_IN_PROGRESS Procedure Already in Progress error
code is used when a profile or service request cannot be serviced because an operation that has been
previously triggered is still in progress.

CYBLE_GATT_ERR_OP_CODE_NOT_SUPPORTED The Op Code Not Supported error code is used when
a unsupported Op Code is written into Control Point characteristic.

CYBLE_GATT_ERR_MISSING_CRC The Missing CRC error code is used when the CRC is missed in the
incoming characteristic value.

CYBLE_GATTS_ERR_CCCD_IMPROPERLY_CONFIGURED Client Characteristic Configuration
Descriptor Improperly Configured error code is used when a Client Characteristic Configuration descriptor is
not configured according to the requirements of the profile or service.

CYBLE_GATTS_ERR_OPERATION_FAILED The Operation Failed error code is used when the device is
unable to complete a procedure for any reason.

CYBLE_GATT_ERR_INVALID_CRC The Invalid CRC error code is used when the CRC is invalid in the
incoming characteristic value.

CYBLE_GATTS_ERR_HPS_INVALID_REQUEST A HTTP Control Point request cannot be serviced
because content of the URI, the HTTP Headers or the HTTP Entity Body characteristics is not set correctly.

CYBLE_GATTS_ERR_NETWORK_NOT_AVAILABLE Network connection not available.

CYBLE_GATT_ERR_ANS_COMMAND_NOT_SUPPORTED Command Not Supported used by the Alert
Notification Server when the Client sends incorrect value of the Command ID or Category ID of to the Alert
Notification Control Point Characteristic.

CYBLE_GATT_ERR_ANCS_UNKNOWN_COMMAND Unknown command error code used by the Apple
Notification Center Server when the Client sends unknown command value of the Apple Notification Center
Service Control Point Characteristic.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 185 of 559

CYBLE_GATT_ERR_ANCS_INVALID_COMMAND Invalid command error code used by the Apple
Notification Center Server when the Client sends invalid command value of the Apple Notification Center
Service Control Point Characteristic.

CYBLE_GATT_ERR_ANCS_INVALID_PARAMETER Invalid parameter error code used by the Apple
Notification Center Server when the Client sends invalid parameter value of the Apple Notification Center
Service Control Point Characteristic.

CYBLE_GATT_ERR_ANCS_ACTION_FAILED Action failed error code used by the Apple Notification
Center Server when some Apple Notification Center Service Control Point Characteristic command
processing goes wrong

CYBLE_GATT_ERR_CCCD_IMPROPERLY_CONFIGURED Client Characteristic Configuration Descriptor
Improperly Configured error code is used when a Client Characteristic Configuration descriptor is not
configured according to the requirements of the profile or service.

CYBLE_GATT_ERR_PROCEDURE_ALREADY_IN_PROGRESS The Procedure Already in Progress error
code is used when a profile or service request cannot be serviced because an operation that has been
previously triggered is still in progress.

CYBLE_GATT_ERR_OUT_OF_RANGE Out of Range error code is used when an attribute value is out of
range as defined by a profile or service specification.

L2CAP Functions

Description

The L2CAP APIs allow access to the Logical link control and adaptation protocol (L2CAP) layer of the BLE stack.

The L2CAP API names begin with CyBle_L2cap.

Modules

• L2CAP Definitions and Data Structures

Contains the L2CAP specific definitions and data structures used in the L2CAP APIs.

Functions

• CYBLE_API_RESULT_T CyBle_L2capCbfcRegisterPsm (uint16 l2capPsm, uint16 creditLwm)

• CYBLE_API_RESULT_T CyBle_L2capCbfcUnregisterPsm (uint16 l2capPsm)

• CYBLE_API_RESULT_T CyBle_L2capCbfcConnectReq (uint8 bdHandle, uint16 remotePsm, uint16 localPsm,
CYBLE_L2CAP_CBFC_CONNECT_PARAM_T *param)

• CYBLE_API_RESULT_T CyBle_L2capCbfcConnectRsp (uint16 localCid, uint16 response,
CYBLE_L2CAP_CBFC_CONNECT_PARAM_T *param)

• CYBLE_API_RESULT_T CyBle_L2capCbfcSendFlowControlCredit (uint16 localCid, uint16 credit)

• CYBLE_API_RESULT_T CyBle_L2capChannelDataWrite (uint8 bdHandle, uint16 localCid, uint8 *buffer, uint16
bufferLen)

• CYBLE_API_RESULT_T CyBle_L2capDisconnectReq (uint16 localCid)

• CYBLE_API_RESULT_T CyBle_L2capLeConnectionParamUpdateRequest (uint8 bdHandle,
CYBLE_GAP_CONN_UPDATE_PARAM_T *connParam)

• CYBLE_API_RESULT_T CyBle_L2capLeConnectionParamUpdateResponse (uint8 bdHandle, uint16 result)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 186 of 559 Document Number: 002-29930 Rev. *A

Function Documentation

CYBLE_API_RESULT_T CyBle_L2capCbfcRegisterPsm (uint16 l2capPsm, uint16 creditLwm)

This function registers a new upper layer protocol or PSM to L2CAP, along with the set of callbacks for the L2CAP
Credit Based Flow Control mode. This is a blocking function. No event is generated on calling this function.

Refer Bluetooth 4.1 core specification, Volume 3, Part A, section 3.4 for more details about credit based flow
control mode of operation.

Parameters:

l2capPsm PSM value of the higher-level protocol

creditLwm Upper Layer defined Receive Credit Low Mark

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Error codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

If 'l2capPsm' is 0

CYBLE_ERROR_INSUFFICIENT_RE
SOURCES

Cannot register more than one PSM

CYBLE_ERROR_L2CAP_PSM_NOT
_IN_RANGE

If the PSM is not in range of 0x0001 - 0x00FF.

CYBLE_ERROR_L2CAP_PSM_ALR
EADY_REGISTERED

PSM already Registered

CYBLE_API_RESULT_T CyBle_L2capCbfcUnregisterPsm (uint16 l2capPsm)

This function de-registers an upper layer protocol or LE_PSM from L2CAP for the L2CAP Credit Based Flow
Control mode. This is a blocking function. No event is generated on calling this function.

Parameters:

l2capPsm PSM value of the higher-level protocol

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_L2CAP_PSM_WR
ONG_ENCODING

L2CAP PSM value specified is incorrect or
does not exist

CYBLE_API_RESULT_T CyBle_L2capCbfcConnectReq (uint8 bdHandle, uint16 remotePsm, uint16
localPsm, CYBLE_L2CAP_CBFC_CONNECT_PARAM_T *param)

This L2CAP function initiates L2CAP channel establishment procedure in Credit Based Flow Control (CBFC)
mode. Connection establishment is initiated to the specified remote Bluetooth device, for the specified PSM
representing an upper layer protocol above L2CAP. This is a non-blocking function.

At the receiver's end, CYBLE_EVT_L2CAP_CBFC_CONN_IND event is generated. In response to this call,
CYBLE_EVT_L2CAP_CBFC_CONN_CNF event is generated at the sender's end.

Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.22 for more details about this operation.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 187 of 559

Parameters:

bdHandle Peer device handle.

remotePsm Remote PSM, representing the upper layer protocol above L2CAP.

localPsm Local PSM, representing the upper layer protocol above L2CAP.

param This parameter must be a pointer to the
CYBLE_L2CAP_CBFC_CONNECT_PARAM_T variable containing the
connection parameters for the L2CAP channel.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

If "param" is NULL

CYBLE_ERROR_INSUFFICIENT_RE
SOURCES

Insufficient resources

CYBLE_L2CAP_PSM_NOT_REGIST
ERED

PSM not Registered

CYBLE_API_RESULT_T CyBle_L2capCbfcConnectRsp (uint16 localCid, uint16 response,
CYBLE_L2CAP_CBFC_CONNECT_PARAM_T *param)

This L2CAP function enables an upper layer protocol to respond to L2CAP connection request for LE Credit Based
Flow Control mode of the specified PSM from the specified remote Bluetooth device. This is a non-blocking
function. It is mandatory that the upper layer PSM always responds back by calling this function upon receiving
CBFC Connection Request (CYBLE_EVT_L2CAP_CBFC_CONN_IND) event.

The channel is established (opened) only when the PSM concerned responds back with an event indicating
success (CYBLE_EVT_L2CAP_CBFC_CONN_CNF, at the peer device's end). Otherwise, the channel
establishment request from the peer will be rejected by L2CAP with appropriate result and status as received from
the upper layer PSM.

Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.23 for more details about this operation.

Parameters:

localCid This parameter specifies the local L2CAP channel end-point for this
new L2CAP channel. On receipt of L2CAP Connect Request command
from the peer, local L2CAP will temporarily create a channel. This
parameter identifies the new channel. If the upper layer PSM chooses
to reject this connection, this temporary channel will be closed.

response This parameter specifies the response of the upper layer for the new
L2CAP channel establishment request from the peer. It must be set to
a value as specified in L2CAP Connect Result Codes. Refer to
Bluetooth 4.1 core specification, Volume 3, Part A, section 4.23 for
more details.

param This parameter must be a pointer to the
CYBLE_L2CAP_CBFC_CONNECT_PARAM_T variable containing the
connection parameters for the L2CAP channel.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 188 of 559 Document Number: 002-29930 Rev. *A

Errors codes Description

CYBLE_ERROR_INVALID_PARAME
TER

If "param" is NULL

CYBLE_ERROR_L2CAP_CONNECT
ION_ENTITY_NOT_FOUND

Connection entity is not found

CYBLE_API_RESULT_T CyBle_L2capCbfcSendFlowControlCredit (uint16 localCid, uint16 credit)

This L2CAP function enables an upper layer protocol to send LE Flow Control Credit packet to peer Bluetooth
device, when it is capable of receiving additional LE-frames. This is a non-blocking function.

This function is invoked when the device is expecting more data from the peer device and it gets an event
indicating that the peer device is low on credits CYBLE_EVT_L2CAP_CBFC_RX_CREDIT_IND for which it needs
to respond by sending credits by invoking this function. Once the peer device receives these credits, it gets
CYBLE_EVT_L2CAP_CBFC_TX_CREDIT_IND event indicating the same. It is the responsibility of the
application layer of the device sending the credit to keep track of the total number of credits and making sure that
it does not exceed 65535.

Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.24 for more details about this operation.

Parameters:

localCid This parameter specifies the local channel end-point for the L2CAP
channel. For the initiator of L2CAP channel establishment, this must be
set to the value indicated by the
CYBLE_EVT_L2CAP_CBFC_CONN_CNF event. For the responder,
the upper layer protocol obtains this value when it receives the event
CYBLE_EVT_L2CAP_CBFC_CONN_IND.

credit The credit value field represents number of credits the receiving device
can increment. The credit value field is a number between 1 and
65535.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_L2CAP_CONNECTION_ENT
ITY_NOT_FOUND

L2CAP connection instance is not present

CYBLE_API_RESULT_T CyBle_L2capChannelDataWrite (uint8 bdHandle, uint16 localCid, uint8 *buffer,
uint16 bufferLen)

This function sends a data packet on the L2CAP CBFC channel. This is a blocking function.

This API function generates 'CYBLE_EVT_L2CAP_CBFC_DATA_WRITE_IND' event which is kept for backward
compatibility and the user should handle CYBLE_API_RESULT_T to determine whether the last data packet was
sent out properly.

Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 3.4 for more details about this operation.

Parameters:

bdHandle Peer device handle.

localCid This parameter specifies the local channel end-point for the L2CAP
channel. For the initiator of L2CAP channel establishment, this must be
set to the value indicated by the

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 189 of 559

CYBLE_EVT_L2CAP_CBFC_CONN_CNF event. For the responder,
the upper layer protocol obtains this value when it receives the event
CYBLE_EVT_L2CAP_CBFC_CONN_IND.

buffer Buffer containing packet to be sent.

bufferLen L2CAP Data Packet length. It shall be of lesser than the size of both
local L2CAP MTU & peer L2CAP MTU size.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

If "buffer" is NULL

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_NO_CONNECTION No Link Layer connection is present

CYBLE_L2CAP_CHANNEL_NOT_F
OUND

No L2CAP channel found corresponding to
CID

CYBLE_L2CAP_NOT_ENOUGH_CR
EDITS

Not Enough Credits to transfer data

CYBLE_API_RESULT_T CyBle_L2capDisconnectReq (uint16 localCid)

This function initiates sending of an L2CAP Disconnect Request (CYBLE_EVT_L2CAP_CBFC_DISCONN_IND
event received by the peer device) command to the remote L2CAP entity to initiate disconnection of the referred
L2CAP channel. This is a non-blocking function.

Disconnection of the L2CAP channel always succeeds - either by reception of the L2CAP Disconnect Response
from the peer, or by timeout. In any case, L2CAP will confirm disconnection of the channel, by calling the
CYBLE_EVT_L2CAP_CBFC_DISCONN_CNF event.

Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.6 for more details about this operation.

Parameters:

localCid This parameter specifies the local channel end-point for the L2CAP
channel.

• For initiator of L2CAP channel establishment, this must be set
to the value indicated by the event
CYBLE_EVT_L2CAP_CBFC_CONN_CNF.

• For the responder, the upper layer protocol obtains this value
when it receives the event
CYBLE_EVT_L2CAP_CBFC_CONN_IND.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_OPERATI
ON

No Link Layer connection is present

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_L2CAP_CONNECTION_ENT
ITY_NOT_FOUND

No connection entity found which can be
disconnected

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 190 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_L2capLeConnectionParamUpdateRequest (uint8 bdHandle,
CYBLE_GAP_CONN_UPDATE_PARAM_T *connParam)

This function sends the connection parameter update request to the Master of the link. This is a non-blocking
function. This function can only be used from device connected in LE slave role.

To send connection parameter update request from the master to the slave, use
CyBle_GapcConnectionParamUpdateRequest() function. This function results in
CYBLE_EVT_L2CAP_CONN_PARAM_UPDATE_REQ event at the Master's end.

Refer to Bluetooth 4.1 core specification, Volume 3, Part A, section 4.20 for more details about this operation.

Parameters:

bdHandle Peer device handle

connParam Pointer to a variable of type
CYBLE_GAP_CONN_UPDATE_PARAM_T which indicates the
response to the Connection Parameter Update Request

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

If "connParam" is NULL

CYBLE_ERROR_INVALID_OPERATI
ON

Connection Parameter Update Request is not
allowed

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_NO_CONNECTION No Link Layer connection is present

CYBLE_API_RESULT_T CyBle_L2capLeConnectionParamUpdateResponse (uint8 bdHandle, uint16 result)

This API function sends the connection parameter update response to slave. This API function can only be used
from device connected in LE master role.

Parameters:

bdHandle Peer device handle

result This field indicates the response to the Connection Parameter Update
Request

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

If 'result' is invalid (greater than connection
parameter reject code i.e., 0x0001)

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_NO_CONNECTION No Link Layer connection is present

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 191 of 559

L2CAP Definitions and Data Structures

Description

Contains the L2CAP specific definitions and data structures used in the L2CAP APIs.

Data Structures

• struct CYBLE_L2CAP_CBFC_CONNECT_PARAM_T

• struct CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T

• struct CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T

• struct CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T

• struct CYBLE_L2CAP_CBFC_RX_PARAM_T

• struct CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T

• struct CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T

• struct CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T

Enumerations

• enum CYBLE_L2CAP_COMMAND_REJ_REASON_T

• enum CYBLE_L2CAP_RESULT_PARAM_T

Data Structure Documentation

struct CYBLE_L2CAP_CBFC_CONNECT_PARAM_T

Data Fields

• uint16 mtu

• uint16 mps

• uint16 credit

Field Documentation

uint16 CYBLE_L2CAP_CBFC_CONNECT_PARAM_T::mtu

L2CAP MTU - Maximum SDU Size

The L2CAP MTU field specifies the maximum SDU size (in octets) that the L2CAP layer entity sending the LE
Credit Based Connection Request can receive on this channel. L2CAP implementations shall support a minimum
L2CAP MTU size of 23 octets.

uint16 CYBLE_L2CAP_CBFC_CONNECT_PARAM_T::mps

MPS - Maximum PDU Size

The MPS field specifies the maximum payload size (in octets) that the L2CAP layer entity sending the LE Credit
Based Connection Request is capable of receiving on this channel. L2CAP implementations shall support a
minimum MPS of 23 octets and may support an MPS up to 65488 octets.

uint16 CYBLE_L2CAP_CBFC_CONNECT_PARAM_T::credit

Initial number of Credits

The initial credit value indicates the number of LE-frames that the peer device can send to the L2CAP layer entity
sending the LE Credit Based Connection Request. The initial credit value shall be in the range of 0 to

1.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 192 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T

Data Fields

• uint8 bdHandle

• uint16 lCid

• uint16 psm

• CYBLE_L2CAP_CBFC_CONNECT_PARAM_T connParam

Field Documentation

uint8 CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T::bdHandle

bd handle of the remote device

uint16 CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T::lCid

Local CID

uint16 CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T::psm

Local PSM value

CYBLE_L2CAP_CBFC_CONNECT_PARAM_T CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T::connParam

L2CAP Credit based flow Connection parameter

struct CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T

Data Fields

• uint8 bdHandle

• uint16 lCid

• uint16 response

• CYBLE_L2CAP_CBFC_CONNECT_PARAM_T connParam

Field Documentation

uint8 CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T::bdHandle

bd handle of the remote device

uint16 CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T::lCid

Local CID

uint16 CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T::response

Response codes for Connection parameter update request

CYBLE_L2CAP_CBFC_CONNECT_PARAM_T CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T::connParam

L2CAP Credit based flow Connection parameter

struct CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T

Data Fields

• uint16 lCid

• CYBLE_L2CAP_RESULT_PARAM_T result

Field Documentation

uint16 CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T::lCid

Local CID

CYBLE_L2CAP_RESULT_PARAM_T CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T::result

The result field indicates the outcome of the connection request. The result value of 0x0000 indicates success
while a non-zero value indicates the connection request failed or is pending.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 193 of 559

struct CYBLE_L2CAP_CBFC_RX_PARAM_T

Data Fields

• uint16 lCid

• CYBLE_L2CAP_RESULT_PARAM_T result

• uint8 * rxData

• uint16 rxDataLength

Field Documentation

uint16 CYBLE_L2CAP_CBFC_RX_PARAM_T::lCid

Local CID

CYBLE_L2CAP_RESULT_PARAM_T CYBLE_L2CAP_CBFC_RX_PARAM_T::result

A result value of 0x0000 indicates success, while a non-zero value indicates an error condition (e.g. peer device
violating credit flow, or L2CAP MTU size limit)

uint8* CYBLE_L2CAP_CBFC_RX_PARAM_T::rxData

Received L2cap Data

uint16 CYBLE_L2CAP_CBFC_RX_PARAM_T::rxDataLength

Received L2cap Data Length

struct CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T

Data Fields

• uint16 lCid

• uint16 credit

Field Documentation

uint16 CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T::lCid

Local CID

uint16 CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T::credit

The number of credits (LE-frames)

struct CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T

Data Fields

• uint16 lCid

• CYBLE_L2CAP_RESULT_PARAM_T result

• uint16 credit

Field Documentation

uint16 CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T::lCid

Local CID

CYBLE_L2CAP_RESULT_PARAM_T CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T::result

A result value of 0x0000 indicates success, while a non-zero value indicates an error condition (e.g. credit
overflow, if total number of credits crosses specification defined maximum limit of 0xFFFF)

uint16 CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T::credit

The number of credits (LE-frames)

struct CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T

Data Fields

• uint16 lCid

• CYBLE_L2CAP_RESULT_PARAM_T result

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 194 of 559 Document Number: 002-29930 Rev. *A

• uint8 * buffer

• uint16 bufferLength

Field Documentation

uint16 CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T::lCid

Local CID

CYBLE_L2CAP_RESULT_PARAM_T CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T::result

The result field indicates the outcome of the connection request. The result value of 0x0000 indicates success
while a non-zero value indicates the connection request failed or is pending.

uint8* CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T::buffer

Currently NULL. For future usage

uint16 CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T::bufferLength

Currently 0. For future usage

Enumeration Type Documentation

enum CYBLE_L2CAP_COMMAND_REJ_REASON_T

Reason for command reject event - CYBLE_EVT_L2CAP_COMMAND_REJ

Enumerator

CYBLE_L2CAP_COMMAND_NOT_UNDERSTOOD Command Not Understood

CYBLE_L2CAP_SIGNALLING_MTU_EXCEEDED Signaling L2CAP MTU exceeded

CYBLE_L2CAP_INVALID_CID_IN_REQUEST Invalid Connection Identifier in request

enum CYBLE_L2CAP_RESULT_PARAM_T

The result code of call back structures for L2CAP

Enumerator

CYBLE_L2CAP_RESULT_SUCCESS Operation Successful

CYBLE_L2CAP_RESULT_COMMAND_TIMEOUT Command timeout, if l2cap signaling channel timeout
occurs, app should disconnect.

CYBLE_L2CAP_RESULT_INCORRECT_SDU_LENGTH Invalid sdu length

CYBLE_L2CAP_RESULT_NOT_ENOUGH_CREDITS Not enough credit to perform this operation

CYBLE_L2CAP_RESULT_CREDIT_OVERFLOW Credit overflow. Total credit exceeded 65535 (maximum)

CYBLE_L2CAP_RESULT_UNACCEPTABLE_CREDIT_VALUE Invalid credit value, receive credit is Zero

BLE Common Events

Description

The BLE stack generates events to notify the application on various status alerts concerning the stack. These can be
generic stack events or can be specific to GAP, GATT or L2CAP layers. The service specific events are handled
separately in BLE Service-Specific Events.

Macros

• #define CYBLE_EVT_HOST_STACK_T CYBLE_EVENT_T

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 195 of 559

Enumerations

• enum CYBLE_EVENT_T

• enum CYBLE_HCI_ERROR_T

Macro Definition Documentation

#define CYBLE_EVT_HOST_STACK_T CYBLE_EVENT_T

Alias of CYBLE_EVENT_T, which is used internally by Stack

Enumeration Type Documentation

enum CYBLE_EVENT_T

Host stack events. Generic events: 0x01 to 0x1F GAP events: 0x20 to 0x3F GATT events: 0x40 to 0x6F L2CAP
events: 0x70 to 0x7F Future use: 0x80 to 0xFF

Enumerator

CYBLE_EVT_HOST_INVALID This event is triggered by BLE stack when stack is in a bad state, Restarting
stack is the only way to get out of the state

CYBLE_EVT_STACK_ON This event is received when BLE stack is initialized and turned ON by invoking
CyBle_StackInit () function.

CYBLE_EVT_TIMEOUT This event is received when there is a timeout and application needs to handle the
event. Timeout reason is defined by CYBLE_TO_REASON_CODE_T.

CYBLE_EVT_HARDWARE_ERROR This event indicates that some internal hardware error has occurred.
Reset of the hardware may be required.

CYBLE_EVT_HCI_STATUS This event is triggered by 'Host Stack' if 'Controller' responds with an error code
for any HCI command. Event parameter returned will be an HCI error code as defined in Bluetooth 4.1 core
specification, Volume 2, Part D, section 1.3 or User can refer CYBLE_HCI_ERROR_T for HCI error codes.
This event will be received only if there is an error.

CYBLE_EVT_STACK_BUSY_STATUS This event is triggered by host stack if BLE stack is busy or not.
Event Parameter corresponding to this event will indicate the state of BLE stack's internal protocol buffers for
the application to safely initiate data transactions (GATT, GAP Security, and L2CAP transactions) with the
peer BLE device. Event parameter is of type uint8.

CYBLE_STACK_STATE_BUSY (0x01) = CYBLE_STACK_STATE_BUSY indicates application that BLE
stack's internal buffers are about to be filled, and the remaining buffers are required to respond peer BLE
device After this event, application shall not initiate (GATT, GAP Security and L2CAP data transactions).
However application shall respond to peer initiated transactions to prevent BLE protocol timeouts to occur.
Application initiated data transactions can be resumed after CYBLE_EVT_STACK_BUSY_STATUS event
with parameter 'CYBLE_STACK_STATE_FREE' is received.

CYBLE_STACK_STATE_FREE (0x00) = CYBLE_STACK_STATE_FREE indicates application that pending
transactions are completed and sufficient buffers are available to process application initiated transactions.
The 'CYBLE_EVT_STACK_BUSY_STATUS' event with 'CYBLE_STACK_STATE_FREE' is indicated to
application if BLE Stack's internal buffer state has transitioned from 'CYBLE_STACK_STATE_BUSY' to
'CYBLE_STACK_STATE_FREE'.

To increase BLE stack's internal buffers count and achieve better throughput for attribute MTU greater then
32, use MaxAttrNoOfBuffer parameter in the Expression view of the Advanced tab.

CYBLE_EVT_MEMORY_REQUEST This event is received when stack wants application to provide memory
to process remote request. Event parameter is of type CYBLE_MEMORY_REQUEST_T. This event is
automatically handled by the component for the CYBLE_PREPARED_WRITE_REQUEST request. The
component allocates sufficient memory for the long write request with assumption that attribute MTU size is
negotiated to the minimum possible value. Application could use dynamic memory allocation to save static

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 196 of 559 Document Number: 002-29930 Rev. *A

RAM memory consumption. To enable this event for application level, set EnableExternalPrepWriteBuff
parameter in the Expression view of the Advanced tab to the true.

CYBLE_EVT_GAPC_SCAN_PROGRESS_RESULT This event is triggered every time a device is
discovered; pointer to structure of type CYBLE_GAPC_ADV_REPORT_T is returned as the event parameter.

CYBLE_EVT_GAP_AUTH_REQ This event is received by Peripheral and Central devices. When it is
received by Peripheral, peripheral needs to Call CyBle_GappAuthReqReply() to reply to authentication
request from Central.

When this event is received by Central, that means the slave has requested Central to initiate authentication
procedure. Central needs to call CyBle_GappAuthReq() to initiate authentication procedure. Pointer to
structure of type CYBLE_GAP_AUTH_INFO_T is returned as the event parameter.

CYBLE_EVT_GAP_PASSKEY_ENTRY_REQUEST This event indicates that the device has to send
passkey to be used during the pairing procedure. CyBle_GapAuthPassKeyReply() is required to be called
with valid parameters on receiving this event.

Refer to Bluetooth Core Spec. 4.1, Part H, Section 2.3.5.1 Selecting STK Generation Method.

Nothing is returned as part of the event parameter.

CYBLE_EVT_GAP_PASSKEY_DISPLAY_REQUEST This event indicates that the device needs to display
passkey during the pairing procedure.

Refer to Bluetooth Core Spec. 4.1, Part H, Section 2.3.5.1 Selecting STK Generation Method.

Pointer to data of type 'uint32' is returned as part of the event parameter. Passkey can be any 6-decimal-digit
value.

CYBLE_EVT_GAP_AUTH_COMPLETE This event indicates that the authentication procedure has been
completed.

The event parameter contains the security information as defined by CYBLE_GAP_AUTH_INFO_T. This
event is generated at the end of the following three operations: Authentication is initiated with a newly
connected device Encryption is initiated with a connected device that is already bonded Re-Encryption is
initiated with a connected device with link already encrypted During encryption/re-encryption, the Encryption
Information exchanged during the pairing process is used to encrypt/re-encrypt the link. As this does not
modify any of the authentication parameters with which the devices were paired, this event is generated with
NULL event data and the result of the encryption operation.

CYBLE_EVT_GAP_AUTH_FAILED Authentication process failed between two devices. The return value of
type CYBLE_GAP_AUTH_FAILED_REASON_T indicates the reason for failure.

CYBLE_EVT_GAPP_ADVERTISEMENT_START_STOP Peripheral device has started/stopped advertising.
This event is generated after making a call to CyBle_GappEnterDiscoveryMode and
CyBle_GappExitDiscoveryMode functions. The event parameter contains the status which is of type 'uint8'.

If the data is '0x00', it indicates 'success'; Anything else indicates 'failure'.

CYBLE_EVT_GAP_DEVICE_CONNECTED This event is generated at the GAP Peripheral end after
connection is completed with peer Central device. For GAP Central device, this event is generated as in
acknowledgment of receiving this event successfully by BLE Controller. Once connection is done, no more
event is required but if fails to establish connection, 'CYBLE_EVT_GAP_DEVICE_DISCONNECTED' is
passed to application. ' CYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE' event is triggered instead of
'CYBLE_EVT_GAP_DEVICE_CONNECTED', if Link Layer Privacy is enabled in component customizer.
Event parameter is a pointer to a structure of type
CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T.

CYBLE_EVT_GAP_DEVICE_DISCONNECTED Disconnected from remote device or failed to establish
connection. Parameter returned with the event contains pointer to the reason for disconnection, which is of
type uint8. For details refer core spec 4.2, vol2, part D or User can refer CYBLE_HCI_ERROR_T for HCI error
codes

CYBLE_EVT_GAP_ENCRYPT_CHANGE Encryption change event for active connection. 'evParam' can be
decoded as evParam[0] = 0x00 -> Encryption OFF evParam[0] = 0x01 -> Encryption ON Any other value of
evParam[0] -> Error

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 197 of 559

This is an informative event for application when there is a change in encryption. Application may choose to
ignore it.

CYBLE_EVT_GAP_CONNECTION_UPDATE_COMPLETE This event is generated at the GAP Central and
the Peripheral end after connection parameter update is requested from the host to the controller. Event
parameter is a pointer to a structure of type
CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T.

CYBLE_EVT_GAPC_SCAN_START_STOP Central device has started/stopped scanning. This event is
generated after making a call to CyBle_GapcStartDiscovery and CyBle_GapcStopDiscovery APIs. The event
parameter contains the status, which is of type 'uint8'.

If the data is '0x00', it indicates 'success'; Anything else indicates 'failure'.

CYBLE_EVT_GAP_KEYINFO_EXCHNGE_CMPLT Indication that the SMP keys exchange with peer device
is complete, the event handler is expected to store the peer device keys, especially IRK which is used to
resolve the peer device after the connection establishment.

Event parameter returns data of type CYBLE_GAP_SMP_KEY_DIST_T containing the peer device keys.

CYBLE_EVT_GAP_NUMERIC_COMPARISON_REQUEST This event indicates that the device needs to
display passkey during secure connection pairing procedure. CyBle_GapAuthPassKeyReply() is required to
be called with valid parameters on receiving this event. Since no key to be entered by the user for Numeric
comparison, parameter passkey for the function CyBle_GapAuthPassKeyReply will be ignored. Event
parameter is a pointer to a 6 digit Passkey value.

CYBLE_EVT_GAP_KEYPRESS_NOTIFICATION This event is generated when keypress (Secure
connections) is received from peer device.

CYBLE_EVT_GAP_OOB_GENERATED_NOTIFICATION This event is generated when OOB generation
for Secure connections is complete. Event parameter is of type 'CYBLE_GAP_OOB_DATA_T'

CYBLE_EVT_GAP_DATA_LENGTH_CHANGE The LE Data Length Change event notifies the Host of a
change to either the maximum Payload length or the maximum transmission time of Data Channel PDUs in
either direction. The values reported are the maximum that will actually be used on the connection following
the change. Event parameter is of type 'CYBLE_GAP_CONN_DATA_LENGTH_T'

CYBLE_EVT_GAP_ENHANCE_CONN_COMPLETE The LE Enhanced Connection Complete event
indicates application that a new connection has been created when Link Layer Privacy is enabled in
component customizer. Event parameter is of type 'CYBLE_GAP_ENHANCE_CONN_COMPLETE_T'

CYBLE_EVT_GAPC_DIRECT_ADV_REPORT The LE Direct Advertising Report event indicates that
directed advertisements have been received where the advertiser is using a resolvable private address for
the InitA field in the ADV_DIRECT_IND PDU and the Scanning_Filter_Policy is equal to 0x02 or 0x03. Event
parameter is of type 'CYBLE_GAPC_DIRECT_ADV_REPORT_T'

CYBLE_EVT_GAP_SMP_NEGOTIATED_AUTH_INFO SMP negotiated auth info event is raised as soon as
SMP has completed pairing properties (feature exchange) negotiation. The event parameter is
CYBLE_GAP_AUTH_INFO_T. CYBLE_GAP_AUTH_INFO_T will have the negotiated parameter, the pairing
should either pass with these negotiated parameters or may fail. This event is applicable to both GAP Central
and GAP Peripheral devices. In GAP Peripheral, this event is called from API function
CyBle_GappAuthReqReply context.

CYBLE_EVT_GAP_CONN_ESTB This event is generated when connection got established

CYBLE_EVT_GAP_SCAN_REQ_RECVD SCAN_REQ received event User has to explicitly call
CyBle_SetAppEventMask() by setting scan req event mask

CYBLE_EVT_GAP_AUTH_REQ_REPLY_ERR This event is generated when in the
CYBLE_EVT_GAP_AUTH_REQ component event handler CyBle_GappAuthReqReply() returned not
CYBLE_ERROR_OK value. It's possible when the bonded device is full and application tries to initiate pairing
with bonding enabled. Event parameter is of type 'CYBLE_API_RESULT_T'. Application will have to handle
this event by removing an oldest (or any other) device from the bond list and call CyBle_GappAuthReqReply()
function again.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 198 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_GAP_SMP_LOC_P256_KEYS_GEN_AND_SET_COMPLETE This event is generated when
the local P-256 public-private key pair generation is completed and new keys are stored in the BLE Stack for
SC pairing procedure. Event parameter is a pointer to structure of type
CYBLE_GAP_SMP_LOCAL_P256_KEYS.

CYBLE_EVT_GATTC_ERROR_RSP The event is received by the Client when the Server cannot perform
the requested operation and sends out an error response. Event parameter is a pointer to a structure of type
CYBLE_GATTC_ERR_RSP_PARAM_T.

CYBLE_EVT_GATT_CONNECT_IND This event is generated at the GAP Peripheral end after connection
is completed with peer Central device. For GAP Central device, this event is generated as in acknowledgment
of receiving this event successfully by BLE Controller. Once connection is done, no more event is required
but if fails to establish connection, 'CYBLE_EVT_GATT_DISCONNECT_IND' is passed to application. Event
parameter is a pointer to a structure of type CYBLE_CONN_HANDLE_T.

CYBLE_EVT_GATT_DISCONNECT_IND GATT is disconnected. Nothing is returned as part of the event
parameter.

CYBLE_EVT_GATTS_XCNHG_MTU_REQ 'GATT MTU Exchange Request' received from GATT client
device. Event parameter contains the MTU size of type CYBLE_GATT_XCHG_MTU_PARAM_T.

CYBLE_EVT_GATTC_XCHNG_MTU_RSP 'GATT MTU Exchange Response' received from server device.
Event parameter is a pointer to a structure of type CYBLE_GATT_XCHG_MTU_PARAM_T.

CYBLE_EVT_GATTC_READ_BY_GROUP_TYPE_RSP 'Read by Group Type Response' received from
server device. Event parameter is a pointer to a structure of type
CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T.

CYBLE_EVT_GATTC_READ_BY_TYPE_RSP 'Read by Type Response' received from server device.
Event parameter is a pointer to a structure of type CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T.

CYBLE_EVT_GATTC_FIND_INFO_RSP 'Find Information Response' received from server device. Event
parameter is a pointer to a structure of type 'CYBLE_GATTC_FIND_INFO_RSP_PARAM_T.

CYBLE_EVT_GATTC_FIND_BY_TYPE_VALUE_RSP 'Find by Type Value Response' received from server
device. Event parameter is a pointer to a structure of type
CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T.

CYBLE_EVT_GATTC_READ_RSP 'Read Response' from server device. Event parameter is a pointer to a
structure of type CYBLE_GATTC_READ_RSP_PARAM_T.

CYBLE_EVT_GATTC_READ_BLOB_RSP 'Read Blob Response' from server. Event parameter is a pointer
to a structure of type CYBLE_GATTC_READ_RSP_PARAM_T.

CYBLE_EVT_GATTC_READ_MULTI_RSP 'Read Multiple Responses' from server. Event parameter is a
pointer to a structure of type CYBLE_GATTC_READ_RSP_PARAM_T. The 'actualLen' field should be
ignored as it is unused in this event response.

CYBLE_EVT_GATTS_WRITE_REQ 'Write Request' from client device. Event parameter is a pointer to a
structure of type CYBLE_GATTS_WRITE_REQ_PARAM_T .

CYBLE_EVT_GATTC_WRITE_RSP 'Write Response' from server device. Event parameter is a pointer to a
structure of type CYBLE_CONN_HANDLE_T.

CYBLE_EVT_GATTS_WRITE_CMD_REQ 'Write Command' Request from client device. Event parameter
is a pointer to a structure of type CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T.

CYBLE_EVT_GATTS_PREP_WRITE_REQ 'Prepare Write' Request from client device. Event parameter is
a pointer to a structure of type CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T.

CYBLE_EVT_GATTS_EXEC_WRITE_REQ 'Execute Write' request from client device. Event parameter is
a pointer to a structure of type 'CYBLE_GATTS_EXEC_WRITE_REQ_T' This event will be triggered before
GATT DB is modified. GATT Db will be updated only if there is no error condition provided by application. In
case of error condition triggered during stack validation, partial write will occur. Write will be canceled from
that handle where error has occurred and error response corresponding to that handle will be sent to remote.
If at any point of time 'CYBLE_GATT_EXECUTE_WRITE_CANCEL_FLAG' is received in execWriteFlag
fields of 'CYBLE_GATTS_EXEC_WRITE_REQ_T' structure, then all previous writes are canceled. For

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 199 of 559

execute cancel scenario, all elements of 'CYBLE_GATTS_EXEC_WRITE_REQ_T' should be ignored except
execWriteFlag and connHandle.

CYBLE_EVT_GATTC_EXEC_WRITE_RSP 'Execute Write' response from server device. Event parameter
is a pointer to a structure of type CYBLE_GATTC_EXEC_WRITE_RSP_T.

CYBLE_EVT_GATTC_HANDLE_VALUE_NTF Notification data received from server device. Event
parameter is a pointer to a structure of type CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T.

CYBLE_EVT_GATTC_HANDLE_VALUE_IND Indication data received from server device. Event parameter
is a pointer to a structure of type CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T.

CYBLE_EVT_GATTS_HANDLE_VALUE_CNF Confirmation to indication response from client device.
Event parameter is a pointer to a structure of type CYBLE_CONN_HANDLE_T.

CYBLE_EVT_GATTS_DATA_SIGNED_CMD_REQ Confirmation to indication response from client device.
Event parameter is a pointer to a structure of type
CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T. if value.val parameter is set to Zero, then
signature is not matched and ignored by stack

CYBLE_EVT_GATTC_STOP_CMD_COMPLETE Event indicating that GATT group procedure has stopped
or completed, this event occurs only if application has called CyBle_GattcStopCmd API function. Event
parameters shall be ignored

CYBLE_EVT_GATTS_READ_CHAR_VAL_ACCESS_REQ Event parameter type is
CYBLE_GATTS_CHAR_VAL_READ_REQ_T. It is triggered on server side when client sends read request
and when characteristic has CYBLE_GATT_DB_ATTR_CHAR_VAL_RD_EVENT property set. This event
could be ignored by application unless it need to response by error response which needs to be set in
gattErrorCode field of event parameter. Application can update attribute value when this event is received

CYBLE_EVT_GATTC_LONG_PROCEDURE_END Event indicates that GATT long procedure is end and
stack will not send any further requests to peer. Either this event or 'CYBLE_EVT_GATTC_ERROR_RSP' will
be received by application. This event may get triggered for below GATT long procedures:

1. CyBle_GattcDiscoverAllPrimaryServices
2. CyBle_GattcDiscoverPrimaryServiceByUuid
3. CyBle_GattcFindIncludedServices
4. CyBle_GattcDiscoverAllCharacteristics
5. CyBle_GattcDiscoverCharacteristicByUuid
6. CyBle_GattcDiscoverAllCharacteristicDescriptors
7. CyBle_GattcReadLongCharacteristicValues
8. CyBle_GattcReadLongCharacteristicDescriptors
 Event parameter is ATT opcode for the corresponding long GATT Procedure.

CYBLE_EVT_L2CAP_CONN_PARAM_UPDATE_REQ This event indicates the connection parameter
update received from the remote device. The application is expected to reply to L2CAP using the
CyBle_L2capLeConnectionParamUpdateResponse() function to respond to the remote device, whether
parameters are accepted or rejected.

Event Parameter pointer points to data of type 'CYBLE_GAP_CONN_UPDATE_PARAM_T'

CYBLE_EVT_L2CAP_CONN_PARAM_UPDATE_RSP This event indicates the connection parameter
update response received from the master. Event Parameter pointer points to data with two possible values:
Accepted = 0x0000 Rejected = 0x0001

Data is of type unit16.

CYBLE_EVT_L2CAP_COMMAND_REJ This event indicates that the request send over l2cap signaling has
been rejected. Event parameter is a pointer to a structure of type
CYBLE_L2CAP_COMMAND_REJ_REASON_T.

CYBLE_EVT_L2CAP_CBFC_CONN_IND This event is used to inform application of the incoming L2CAP
CBFC Connection Request. Event parameter is a pointer to a structure of type
CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T is returned.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 200 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_L2CAP_CBFC_CONN_CNF This event is used to inform application of the L2CAP CBFC
Connection Response/Confirmation. Event parameter is a pointer to a structure of type
CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T is returned.

CYBLE_EVT_L2CAP_CBFC_DISCONN_IND This event is used to inform application of the L2CAP CBFC
Disconnection Request received from the Peer device. Event parameter is a pointer to Local CID of type
unit16.

CYBLE_EVT_L2CAP_CBFC_DISCONN_CNF This event is used to inform application of the L2CAP CBFC
Disconnection confirmation/Response received from the Peer device. Event parameter is a pointer to a
structure of type CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T.

CYBLE_EVT_L2CAP_CBFC_DATA_READ This event is used to inform application of data received over
L2CAP CBFC channel. Event parameter is a pointer to a structure of type
CYBLE_L2CAP_CBFC_RX_PARAM_T.

CYBLE_EVT_L2CAP_CBFC_RX_CREDIT_IND This event is used to inform the application of receive
credits reached low mark. After receiving L2CAP data/payload from peer device for a specification Channel,
the available credits are calculated.

If the credit count goes below the low mark, this event is called to inform the application of the condition, so
that if the application wants it can send more credits to the peer device.

Event parameter is a pointer to a structure of type CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T.

CYBLE_EVT_L2CAP_CBFC_TX_CREDIT_IND This event is used to inform application of having received
transmit credits. This event is called on receiving LE Flow Control Credit from peer device.

Event parameter is a pointer to a structure of type CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T.

If the 'result' field of the received data is non-zero, this indicates an error. If the sum of 'credit' field value and
the previously available credit at the peer device receiving credit information exceeds 65535, it indicates a
'credit overflow' error.

In case of error, the peer device receiving this event should initiate disconnection of the L2CAP channel by
invoking CyBle_L2capDisconnectReq () function.

CYBLE_EVT_L2CAP_CBFC_DATA_WRITE_IND This event is used to inform application of data
transmission completion over L2CAP CBFC channel. Event parameter is of type
'CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T'. L2CAP CBFC application must wait for this event before
transmitting the next CBFC L2CAP data. Application can send next data only when
CYBLE_EVT_L2CAP_CBFC_DATA_WRITE_IND event is received for previous sent data and
CYBLE_EVT_STACK_BUSY_STATUS is received with status CYBLE_STACK_STATE_FREE.

This event will be deprecated in future. It is only kept for backward compatibility. It is not recommended to be
used by new design

CYBLE_EVT_QUAL_SMP_PAIRING_REQ_RSP Tester to manipulate pairing request or response PDU.
Event parameter is a pointer to 1 bytes data. Tester can manipulate the bits of the byte

CYBLE_EVT_QUAL_SMP_LOCAL_PUBLIC_KEY Tester to manipulate local Public Key. Event parameter
is a pointer to local public key of size 64 Bytes. Tester can manipulate the bits/bytes

CYBLE_EVT_QUAL_SMP_PAIRING_FAILED_CMD Tester to assign pairing failed error code. Event
parameter is a pointer to 16 bits value. Tester should assign error code to lower bits

CYBLE_EVT_PENDING_FLASH_WRITE This event is used to inform application that flash write is pending
Stack internal data structures are modified and require backup.

CYBLE_EVT_LE_PING_AUTH_TIMEOUT LE PING Authentication Timeout Event to indicate that peer
device has not responded with the valid MIC packet within the application configured ping authentication time.

CYBLE_EVT_HCI_PKT This event is used to inform application that an HCI event has been received from
controller. Event parameter is of type 'CYBLE_HCI_PKT_PARAMS_T'

This event will only be trigger when user register for SoftTransport by calling CyBle_HciSoftTransportEnable()

CYBLE_EVT_FLASH_CORRUPT This event is used to inform application that bonding information stored in
flash is corrupted.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 201 of 559

CYBLE_EVT_MAX Maximum value of CYBLE_EVENT_T type

enum CYBLE_HCI_ERROR_T

HCI Error codes defined by BT Spec

Enumerator

CYBLE_HCI_COMMAND_SUCCEEDED Command success

CYBLE_HCI_UNKNOWN_HCI_COMMAND_ERROR Unknown HCI Command

CYBLE_HCI_NO_CONNECTION_ERROR Unknown Connection Identifier

CYBLE_HCI_HARDWARE_FAILURE_ERROR Hardware Failure

CYBLE_HCI_PAGE_TIMEOUT_ERROR Page Timeout

CYBLE_HCI_AUTHENTICATION_FAILURE_ERROR Authentication Failure

CYBLE_HCI_KEY_MISSING_ERROR PIN or Key Missing

CYBLE_HCI_MEMORY_FULL_ERROR Memory Capacity Exceeded

CYBLE_HCI_CONNECTION_TIMEOUT_ERROR Connection Timeout

CYBLE_HCI_MAX_NUMBER_OF_CONNECTIONS_ERROR Connection Limit Exceeded

CYBLE_HCI_MAX_SCO_CONNECTIONS_REACHED_ERROR Synchronous Connection Limit to a Device
Exceeded

CYBLE_HCI_ACL_CONNECTION_EXISTS_ERROR ACL Connection Already Exists

CYBLE_HCI_COMMAND_DISALLOWED_ERROR Command Disallowed

CYBLE_HCI_HOST_REJECTED_LIMITED_RESOURCES_ERROR Connection Rejected due to Limited
resources

CYBLE_HCI_HOST_REJECTED_SECURITY_REASONS_ERROR Connection Rejected due to Security
Reasons

CYBLE_HCI_HOST_REJECTED_PERSONAL_DEVICE_ERROR Connection Rejected due to
Unacceptable BD_ADDR

CYBLE_HCI_CONNECTION_ACCEPT_TIMEOUT_EXCEEDED_ERROR Connection Accept Timeout
Exceeded

CYBLE_HCI_UNSUPPORTED_FEATURE_OR_PARAMETER_ERROR Unsupported Feature or
Parameter Value

CYBLE_HCI_INVALID_HCI_COMMAND_PARAMETERS_ERROR Invalid HCI Command Parameters

CYBLE_HCI_CONNECTION_TERMINATED_USER_ERROR remote user terminated Connection

CYBLE_HCI_CONNECTION_TERMINATED_LOW_RESOURCES_ERROR Remote Device Terminated
Connection due to Low Resources

CYBLE_HCI_CONNECTION_TERMINATED_POWER_OFF_ERROR Remote Device Terminated
Connection due to Power Off

CYBLE_HCI_CONNECTION_TERMINATED_LOCAL_HOST_ERROR Connection Terminated By Local
Host

CYBLE_HCI_REPEATED_ATTEMPTS_ERROR Repeated Attempts

CYBLE_HCI_PAIRING_NOT_ALLOWED_ERROR Pairing Not Allowed

CYBLE_HCI_UNKNOWN_LMP_PDU_ERROR Unknown LMP PDU

CYBLE_HCI_UNSUPPORTED_REMOTE_FEATURE_ERROR Unsupported Remote Feature

CYBLE_HCI_SCO_OFFSET_REJECTED_ERROR SCO Offset Rejected

CYBLE_HCI_SCO_INTERVAL_REJECTED_ERROR SCO Interval Rejected

CYBLE_HCI_SCO_AIR_MODE_REJECTED_ERROR SCO Air Mode Rejected

CYBLE_HCI_INVALID_LMP_PARAMETERS_ERROR Invalid LMP Parameters

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 202 of 559 Document Number: 002-29930 Rev. *A

CYBLE_HCI_INVALID_LL_PARAMETERS_ERROR Invalid LL Parameters

CYBLE_HCI_UNSPECIFIED_ERROR Unspecified error

CYBLE_HCI_UNSUPPORTED_PARAMETER_VALUE_ERROR Unsupported LMP Parameter Value

CYBLE_HCI_UNSUPPORTED_LL_PARAMETER_VALUE_ERROR Unsupported LL Parameter Value

CYBLE_HCI_SWITCH_NOT_ALLOWED_ERROR Role Change Not Allowed

CYBLE_HCI_LMP_RESPONSE_TIMEOUT_ERROR LMP Response Timeout

CYBLE_HCI_LL_RESPONSE_TEMEOUT_ERROR LL Response Timeout

CYBLE_HCI_LMP_ERROR_TRANSACTION_COLLISION_ERROR LMP Error Transaction Collision

CYBLE_HCI_PDU_NOT_ALLOWED_ERROR LMP PDU Not Allowed

CYBLE_HCI_ENCRYPTION_MODE_NOT_ACCEPTABLE_ERROR Encryption Mode Not Acceptable

CYBLE_HCI_UNIT_KEY_USED_ERROR Link Key cannot be changed

CYBLE_HCI_QOS_NOT_SUPPORTED_ERROR Requested QoS Not Supported

CYBLE_HCI_INSTANT_PASSED_ERROR Instant Passed

CYBLE_HCI_PAIRING_WITH_UNIT_KEY_NOT_SUPPPORTED_ERROR Pairing with unit key not
supported

CYBLE_HCI_DIFFERENT_TRANSACTION_COLLISION Different Transaction Collision

CYBLE_HCI_QOS_UNACCEPTABLE_PARAMETER QoS Unacceptable parameter

CYBLE_HCI_QOS_REJECTED_ERROR QoS Rejected

CYBLE_HCI_CHANNEL_CLASSIFICATION_NOT_SUPPORTED Channel Classification Not Supported

CYBLE_HCI_INSUFFICIENT_SECURITY Insufficient security

CYBLE_HCI_PARAMETER_OUT_OF_MANDATORY_RANGE parameter out of mandatory range

CYBLE_HCI_ROLE_SWITCH_PENDING Role Switch Pending

CYBLE_HCI_RESERVED_SLOT_VIOLATION Reserved Slot violate

CYBLE_HCI_ROLE_SWITCH_FAILED Role switch failed

CYBLE_HCI_EXTENDED_INQUIRY_RESPONSE_TOO_LARGE Extended inquiry response too large

CYBLE_HCI_SECURE_SIMPLE_PAIRING_NOT_SUPPORTED_BY_HOST secure simple pairing not
supported by host

CYBLE_HCI_HOST_BUSY_PAIRING host busy pairing

CYBLE_HCI_CONNECTION_REJECTED_DUE_TO_NO_SUITABLE_CHANNEL_FOUND Connection
Rejected due to No suitable channel found

CYBLE_HCI_CONTROLLER_BUSY Controller busy

CYBLE_HCI_UNACCEPTABLE_CONNECTION_INTERVAL unacceptable connection interval

CYBLE_HCI_UNACCEPTABLE_CONNECTION_PARAMETERS unacceptable connection parameters

CYBLE_HCI_DIRECTED_ADVERTISING_TIMEOUT Directed Advertising Timeout

CYBLE_HCI_CONNECTION_TERMINATED_DUE_TO_MIC_FAILURE Connection Terminated due to MIC
Failure

CYBLE_HCI_CONNECTION_FAILED_TO_BE_ESTABLISHED Connection failed to be established

CYBLE_HCI_MAC_CONNECTION_FAILED MAC connection failed

CYBLE_HCI_COARSE_CLOCK_ADJ_REJECTED_TRY_USING_CLOCK_DRAGGING Coarse Clock
Adjustment Rejected but will try to adjust using clock

CYBLE_HCI_LAST_ENTRY_BLUETOOTH_ERROR_CODE INVALID HCI ERROR CODE

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 203 of 559

BLE Common Definitions and Data Structures

Description

Contains definitions and structures that are common to all BLE common APIs. Note that some of these are also used
in Service-specific APIs.

Data Structures

• struct CYBLE_BLESS_PWR_IN_DB_T

• struct CYBLE_MEMORY_REQUEST_T

• struct CYBLE_BLESS_CLK_CFG_PARAMS_T

• struct CYBLE_STACK_LIB_VERSION_T

• struct CYBLE_STK_APP_DATA_BUFF_T

• struct CYBLE_DLE_CONFIG_PARAM_T

• struct CYBLE_PRIVACY_1_2_CONFIG_PARAM_T

• struct CYBLE_STACK_CONFIG_PARAM_T

• struct CYBLE_AES_CMAC_GENERATE_PARAM_T

• struct CYBLE_BLESS_EVENT_PARAM_T

• struct CYBLE_TRANSMITTER_TEST_PARAMS_T

• struct CYBLE_HCI_PKT_PARAMS_T

• struct CYBLE_UUID128_T

• union CYBLE_UUID_T

• struct CYBLE_CONN_HANDLE_T

Typedefs

• typedef void(* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)

• typedef void(* CYBLE_APP_CB_T) (uint8 event, void *evParam)

• typedef void(* CYBLE_BLESS_CB_T) (uint32 event, void *evParam)

• typedef void(* AES_CMAC_APPL_CB) (void)

• typedef uint16 CYBLE_UUID16

Enumerations

• enum CYBLE_STATE_T

• enum CYBLE_CLIENT_STATE_T

• enum CYBLE_API_RESULT_T

• enum CYBLE_LP_MODE_T

• enum CYBLE_BLESS_STATE_T

• enum CYBLE_BLESS_PWR_LVL_T

• enum CYBLE_BLESS_PHY_CH_GRP_ID_T

• enum CYBLE_BLESS_WCO_SCA_CFG_T

• enum CYBLE_BLESS_ECO_CLK_DIV_T

• enum CYBLE_PROTOCOL_REQ_T

• enum CYBLE_PKT_PAYLOAD_T

• enum CYBLE_HCI_PKT_TYPE_T

• enum CYBLE_TO_REASON_CODE_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 204 of 559 Document Number: 002-29930 Rev. *A

Data Structure Documentation

struct CYBLE_BLESS_PWR_IN_DB_T

Data Fields

• CYBLE_BLESS_PWR_LVL_T blePwrLevelInDbm

• CYBLE_BLESS_PHY_CH_GRP_ID_T bleSsChId

Field Documentation

CYBLE_BLESS_PWR_LVL_T CYBLE_BLESS_PWR_IN_DB_T::blePwrLevelInDbm

Output Power level

CYBLE_BLESS_PHY_CH_GRP_ID_T CYBLE_BLESS_PWR_IN_DB_T::bleSsChId

Channel group ID for which power level is to be read/written

struct CYBLE_MEMORY_REQUEST_T

Data Fields

• CYBLE_PROTOCOL_REQ_T request

• uint8 allocFree

• void * configMemory

Field Documentation

CYBLE_PROTOCOL_REQ_T CYBLE_MEMORY_REQUEST_T::request

Protocol Request type

uint8 CYBLE_MEMORY_REQUEST_T::allocFree

event parameter is generated to allocate memory or to free up previously allocated memory
CYBLE_ALLOC_MEMORY (0) = to allocate memory for request type, CYBLE_FREE_MEMORY (1) = free
previously allocated memory for the request type

void* CYBLE_MEMORY_REQUEST_T::configMemory

This is an output parameter which application needs to fill and pass to BLE Stack as per below table:

request memory

CYBLE_PREPARED_WRITE_REQU
EST

CYBLE_PREPARE_WRITE_REQUEST_MEM
ORY_T

struct CYBLE_BLESS_CLK_CFG_PARAMS_T

Data Fields

• CYBLE_BLESS_WCO_SCA_CFG_T bleLlSca

• CYBLE_BLESS_ECO_CLK_DIV_T bleLlClockDiv

• uint16 ecoXtalStartUpTime

Field Documentation

CYBLE_BLESS_WCO_SCA_CFG_T CYBLE_BLESS_CLK_CFG_PARAMS_T::bleLlSca

Sleep Clock accuracy in PPM, 32Khz Cycles

CYBLE_BLESS_ECO_CLK_DIV_T CYBLE_BLESS_CLK_CFG_PARAMS_T::bleLlClockDiv

Link Layer clock divider

uint16 CYBLE_BLESS_CLK_CFG_PARAMS_T::ecoXtalStartUpTime

ECO crystal startup time in multiple of 62.5us

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 205 of 559

struct CYBLE_STACK_LIB_VERSION_T

Data Fields

• uint16 majorVersion

• uint16 minorVersion

• uint16 patch

• uint16 buildNumber

Field Documentation

uint16 CYBLE_STACK_LIB_VERSION_T::majorVersion

The major version of the library

uint16 CYBLE_STACK_LIB_VERSION_T::minorVersion

The minor version of the library

uint16 CYBLE_STACK_LIB_VERSION_T::patch

The patch number of the library

uint16 CYBLE_STACK_LIB_VERSION_T::buildNumber

The build number of the library

struct CYBLE_STK_APP_DATA_BUFF_T

Data Fields

• uint16 bufferSize

• uint8 bufferUnits

Field Documentation

uint16 CYBLE_STK_APP_DATA_BUFF_T::bufferSize

Size of the buffer chunk

uint8 CYBLE_STK_APP_DATA_BUFF_T::bufferUnits

Number of the buffers units of 'bufferSize'

struct CYBLE_DLE_CONFIG_PARAM_T

Data Fields

• uint16 dleMaxTxCapability

• uint16 dleMaxRxCapability

• uint8 dleNumTxBuffer

Field Documentation

uint16 CYBLE_DLE_CONFIG_PARAM_T::dleMaxTxCapability

DLE max Tx capability

uint16 CYBLE_DLE_CONFIG_PARAM_T::dleMaxRxCapability

DLE max Rx capability

uint8 CYBLE_DLE_CONFIG_PARAM_T::dleNumTxBuffer

DLE number of Tx buffers

struct CYBLE_PRIVACY_1_2_CONFIG_PARAM_T

Data Fields

• uint8 resolvingListSize

Field Documentation

uint8 CYBLE_PRIVACY_1_2_CONFIG_PARAM_T::resolvingListSize

Maximum number of possible entries in resolving list

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 206 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_STACK_CONFIG_PARAM_T

Data Fields

• CYBLE_DLE_CONFIG_PARAM_T * dleConfig

• CYBLE_PRIVACY_1_2_CONFIG_PARAM_T * privacyConfig

• uint16 feature_mask

Field Documentation

CYBLE_DLE_CONFIG_PARAM_T* CYBLE_STACK_CONFIG_PARAM_T::dleConfig

Configuration parameter for DLE feature

CYBLE_PRIVACY_1_2_CONFIG_PARAM_T* CYBLE_STACK_CONFIG_PARAM_T::privacyConfig

Configuration parameter for LL Privacy feature

uint16 CYBLE_STACK_CONFIG_PARAM_T::feature_mask

The feature set mask used to control usage of specified feature in BLE stack. If a feature is not selected then
associated parameter pointer can be NULL.

struct CYBLE_AES_CMAC_GENERATE_PARAM_T

Data Fields

• uint8 * buffer

• uint16 size

• uint8 * key

• uint8 * mac

• AES_CMAC_APPL_CB appl_callback

Field Documentation

uint8* CYBLE_AES_CMAC_GENERATE_PARAM_T::buffer

pointer to message for which AES CMAC has to be calculated, LSB should be first

uint16 CYBLE_AES_CMAC_GENERATE_PARAM_T::size

size of the message buffer

uint8* CYBLE_AES_CMAC_GENERATE_PARAM_T::key

AES CMAC 128-bit Key, LSB should be first

uint8* CYBLE_AES_CMAC_GENERATE_PARAM_T::mac

output-parameter, Buffer to hold generated MAC of 16 bytes. Output is LSB first

AES_CMAC_APPL_CB CYBLE_AES_CMAC_GENERATE_PARAM_T::appl_callback

Callback to notify when the AES-CMAC generation is completed. Once this callback is called, check for the output-
parameter, which contains generated cmac

struct CYBLE_BLESS_EVENT_PARAM_T

Data Fields

• uint32 BlessStateMask

• CYBLE_BLESS_CB_T bless_evt_app_cb

Field Documentation

uint32 CYBLE_BLESS_EVENT_PARAM_T::BlessStateMask

Bless state Event mask

CYBLE_BLESS_CB_T CYBLE_BLESS_EVENT_PARAM_T::bless_evt_app_cb

User callback function

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 207 of 559

struct CYBLE_TRANSMITTER_TEST_PARAMS_T

Data Fields

• uint8 tx_frequency

• uint8 length_of_test_data

• CYBLE_PKT_PAYLOAD_T packet_payload

Field Documentation

uint8 CYBLE_TRANSMITTER_TEST_PARAMS_T::tx_frequency

"N = (F 2402) / 2 Range: 0x00 0x27. Frequency Range : 2402 MHz to 2480 MHz"

uint8 CYBLE_TRANSMITTER_TEST_PARAMS_T::length_of_test_data

length of the test data

CYBLE_PKT_PAYLOAD_T CYBLE_TRANSMITTER_TEST_PARAMS_T::packet_payload

payload sequence

struct CYBLE_HCI_PKT_PARAMS_T

Data Fields

• CYBLE_HCI_PKT_TYPE_T pkt_type

• uint16 length

• uint8 * buffer

Field Documentation

CYBLE_HCI_PKT_TYPE_T CYBLE_HCI_PKT_PARAMS_T::pkt_type

HCI packet type

uint16 CYBLE_HCI_PKT_PARAMS_T::length

length of the command

uint8* CYBLE_HCI_PKT_PARAMS_T::buffer

Command buffer

struct CYBLE_UUID128_T

Data Fields

• uint8 value [16u]

Field Documentation

uint8 CYBLE_UUID128_T::value[16u]

128 Bit UUID

union CYBLE_UUID_T

Data Fields

• CYBLE_UUID16 uuid16

• CYBLE_UUID128_T uuid128

Field Documentation

CYBLE_UUID16 CYBLE_UUID_T::uuid16

16 Bit UUID

CYBLE_UUID128_T CYBLE_UUID_T::uuid128

128 Bit UUID

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 208 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_CONN_HANDLE_T

Data Fields

• uint8 bdHandle

• uint8 attId

Field Documentation

uint8 CYBLE_CONN_HANDLE_T::bdHandle

Identifies the peer device(s) bonded or in current connection. Stack supports
CYBLE_GAP_MAX_BONDED_DEVICE+1 devices. first device connected is assigned value
CYBLE_GAP_MAX_BONDED_DEVICE. If previous device is bonded then current device will be assigned value
CYBLE_GAP_MAX_BONDED_DEVICE-1, else CYBLE_GAP_MAX_BONDED_DEVICE.

uint8 CYBLE_CONN_HANDLE_T::attId

Identifies the ATT Instance. Current implementation supports only one att instance (0) due to availability of only
on fixed channel for att. This parameter is introduced as part of connection handle to keep the interface unchanged
event if new Bluetooth spec defines more fixed channels for ATT payload.

Typedef Documentation

typedef void(* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)

Event callback function prototype to receive events from BLE component

typedef void(* CYBLE_APP_CB_T) (uint8 event, void *evParam)

event callback function prototype to receive events from stack

typedef void(* CYBLE_BLESS_CB_T) (uint32 event, void *evParam)

event callback function prototype to receive Bless State events from stack

typedef void(* AES_CMAC_APPL_CB) (void)

Application callback function prototype to notify when AES CMAC generation is completed

typedef uint16 CYBLE_UUID16

GATT 16 Bit UUID

Enumeration Type Documentation

enum CYBLE_STATE_T

Event handler state machine type

Enumerator

CYBLE_STATE_STOPPED BLE is turned off

CYBLE_STATE_INITIALIZING Initializing state

CYBLE_STATE_CONNECTED Peer device is connected

CYBLE_STATE_ADVERTISING Advertising process

CYBLE_STATE_SCANNING Scanning process

CYBLE_STATE_CONNECTING Connecting

CYBLE_STATE_DISCONNECTED Essentially idle state

enum CYBLE_CLIENT_STATE_T

Client State type

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 209 of 559

Enumerator

CYBLE_CLIENT_STATE_CONNECTED Server device is connected

CYBLE_CLIENT_STATE_SRVC_DISCOVERING Server services are being discovered

CYBLE_CLIENT_STATE_INCL_DISCOVERING Server included services are being discovered

CYBLE_CLIENT_STATE_CHAR_DISCOVERING Server characteristics are being discovered

CYBLE_CLIENT_STATE_DESCR_DISCOVERING Server char. descriptors are being discovered

CYBLE_CLIENT_STATE_DISCOVERED Server is discovered

CYBLE_CLIENT_STATE_DISCONNECTING Server is disconnecting

CYBLE_CLIENT_STATE_DISCONNECTED_DISCOVERED Server is disconnected but discovered

CYBLE_CLIENT_STATE_DISCONNECTED Essentially initial client state

enum CYBLE_API_RESULT_T

Common error codes received as API result

Enumerator

CYBLE_ERROR_OK No Error occurred

CYBLE_ERROR_INVALID_PARAMETER At least one of the input parameters is invalid

CYBLE_ERROR_INVALID_OPERATION Operation is not permitted

CYBLE_ERROR_MEMORY_ALLOCATION_FAILED An internal error occurred in the stack

CYBLE_ERROR_INSUFFICIENT_RESOURCES Insufficient resources to perform requested operation

CYBLE_ERROR_OOB_NOT_AVAILABLE OOB data not available

CYBLE_ERROR_NO_CONNECTION Connection is required to perform requested operation. Connection
not present

CYBLE_ERROR_NO_DEVICE_ENTITY No device entity to perform requested operation

CYBLE_ERROR_REPEATED_ATTEMPTS Attempted repeat operation is not allowed

CYBLE_ERROR_GAP_ROLE GAP role is incorrect

CYBLE_ERROR_TX_POWER_READ Error reading TC power

CYBLE_ERROR_BT_ON_NOT_COMPLETED BLE Initialization failed

CYBLE_ERROR_SEC_FAILED Security operation failed

CYBLE_ERROR_L2CAP_PSM_WRONG_ENCODING L2CAP PSM encoding is incorrect

CYBLE_ERROR_L2CAP_PSM_ALREADY_REGISTERED L2CAP PSM has already been registered

CYBLE_ERROR_L2CAP_PSM_NOT_REGISTERED L2CAP PSM has not been registered

CYBLE_ERROR_L2CAP_CONNECTION_ENTITY_NOT_FOUND L2CAPconnection entity not found

CYBLE_ERROR_L2CAP_CHANNEL_NOT_FOUND L2CAP channel not found

CYBLE_ERROR_L2CAP_PSM_NOT_IN_RANGE Specified PSM is out of range

CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE GATT DB error codes Invalid attribute handle

CYBLE_ERROR_DEVICE_ALREADY_EXISTS Device cannot be added to whitelist as it has already been
added

CYBLE_ERROR_FLASH_WRITE_NOT_PERMITED Write to flash is not permitted

CYBLE_ERROR_MIC_AUTH_FAILED MIC Authentication failure

CYBLE_ERROR_HARDWARE_FAILURE Controller error codes. These come directly from controller (not
host stack) Hardware Failure

CYBLE_ERROR_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE Unsupported feature or
parameter value

CYBLE_ERROR_FLASH_WRITE Error in flash Write

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 210 of 559 Document Number: 002-29930 Rev. *A

CYBLE_ERROR_LL_SAME_TRANSACTION_COLLISION LL same transaction collision

CYBLE_ERROR_CONTROLLER_BUSY Controller Busy

CYBLE_ERROR_MAX All other errors not covered in the above list map to this error code

CYBLE_ERROR_NTF_DISABLED Characteristic notifications disabled

CYBLE_ERROR_IND_DISABLED Characteristic indications disabled

CYBLE_ERROR_INVALID_STATE The state is not valid for current operation

CYBLE_ERROR_STACK_BUSY Stack is Busy

enum CYBLE_LP_MODE_T

BLE power modes

Enumerator

CYBLE_BLESS_ACTIVE Link Layer engine and Digital modem clocked from ECO. The CPU can access
the BLE Sub-System (BLESS) registers. This mode collectively denotes Tx Mode, Rx Mode, and Idle mode
of BLESS.

CYBLE_BLESS_SLEEP The clock to the link layer engine and digital modem is gated. The ECO continues
to run to maintain the link layer timing.

CYBLE_BLESS_DEEPSLEEP The ECO is stopped and WCO is used to maintain link layer timing. RF
transceiver is turned off completely to reduce leakage current. BLESS logic is kept powered ON from the
SRSS deep sleep regulator for retention.

CYBLE_BLESS_HIBERNATE External power is available but all internal LDOs are turned off.

CYBLE_BLESS_INVALID Invalid mode

enum CYBLE_BLESS_STATE_T

BLESS Power enum reflecting power states supported by BLESS radio

Enumerator

CYBLE_BLESS_STATE_ACTIVE BLESS state is ACTIVE

CYBLE_BLESS_STATE_EVENT_CLOSE BLESS state is EVENT_CLOSE

CYBLE_BLESS_STATE_SLEEP BLESS state is SLEEP

CYBLE_BLESS_STATE_ECO_ON BLESS state is ECO_ON

CYBLE_BLESS_STATE_ECO_STABLE BLESS state is ECO_STABLE

CYBLE_BLESS_STATE_DEEPSLEEP BLESS state is DEEPSLEEP

CYBLE_BLESS_STATE_HIBERNATE BLESS state is HIBERNATE

CYBLE_BLESS_STATE_INVALID BLESS state is INVALID

enum CYBLE_BLESS_PWR_LVL_T

BLESS Power enum reflecting power level values supported by BLESS radio

Enumerator

CYBLE_LL_PWR_LVL_NEG_18_DBM ABS PWR = -18dBm, PA_Gain = 0x01

CYBLE_LL_PWR_LVL_NEG_12_DBM ABS PWR = -12dBm, PA_Gain = 0x02

CYBLE_LL_PWR_LVL_NEG_6_DBM ABS PWR = -6dBm, PA_Gain = 0x03

CYBLE_LL_PWR_LVL_NEG_3_DBM ABS PWR = -3dBm, PA_Gain = 0x04

CYBLE_LL_PWR_LVL_NEG_2_DBM ABS PWR = -2dBm, PA_Gain = 0x05

CYBLE_LL_PWR_LVL_NEG_1_DBM ABS PWR = -1dBm, PA_Gain = 0x06

CYBLE_LL_PWR_LVL_0_DBM ABS PWR = 0dBm, PA_Gain = 0x07

CYBLE_LL_PWR_LVL_3_DBM ABS PWR = 3dBm, PA_Gain = 0x07, PWR_GAIN level is same as 0 dBm,
but the ABS_PWR is amplified and applied for both Connection and Advertising channel.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 211 of 559

CYBLE_LL_PWR_LVL_MAX ABS PWR = 3dBm, PA_Gain = 0x07

enum CYBLE_BLESS_PHY_CH_GRP_ID_T

BLE channel group ID

Enumerator

CYBLE_LL_ADV_CH_TYPE Advertisement channel type

CYBLE_LL_CONN_CH_TYPE Connection channel type

CYBLE_LL_MAX_CH_TYPE Maximum value of CYBLE_BLESS_PHY_CH_GRP_ID_T type

enum CYBLE_BLESS_WCO_SCA_CFG_T

BLE WCO sleep clock accuracy configuration

Enumerator

CYBLE_LL_SCA_251_TO_500_PPM SCA 251 to 500 PPM

CYBLE_LL_SCA_151_TO_250_PPM SCA 151 to 250 PPM

CYBLE_LL_SCA_101_TO_150_PPM SCA 101 to 150 PPM

CYBLE_LL_SCA_076_TO_100_PPM SCA 076 to 100 PPM

CYBLE_LL_SCA_051_TO_075_PPM SCA 051 to 075 PPM

CYBLE_LL_SCA_031_TO_050_PPM SCA 031 to 050 PPM

CYBLE_LL_SCA_021_TO_030_PPM SCA 021 to 030 PPM

CYBLE_LL_SCA_000_TO_020_PPM SCA 000 to 020 PPM

CYBLE_LL_SCA_IN_PPM_INVALID Invalid PPM

enum CYBLE_BLESS_ECO_CLK_DIV_T

BLE ECO clock divider

Enumerator

CYBLE_LL_ECO_CLK_DIV_1 Link Layer clock divider = 1

CYBLE_LL_ECO_CLK_DIV_2 Link Layer clock divider = 2

CYBLE_LL_ECO_CLK_DIV_4 Link Layer clock divider = 4

CYBLE_LL_ECO_CLK_DIV_8 Link Layer clock divider = 8

CYBLE_LL_ECO_CLK_DIV_INVALID Invalid Link Layer clock divider

enum CYBLE_PROTOCOL_REQ_T

BLE Stack memory request type

Enumerator

CYBLE_PREPARED_WRITE_REQUEST Memory requested for prepare write request

CYBLE_INVALID_REQUEST Invalid request

enum CYBLE_PKT_PAYLOAD_T

DTM Payload sequence in SoC mode

Enumerator

CYBLE_PAYLOAD_VAL_ZERO PRBS9 sequence '11111111100000111101 (in transmission order) as
described in [Vol 6] Part F, Section 4.1.5

CYBLE_PAYLOAD_VAL_ONE Repeated 11110000 (in transmission order) sequence as described in [Vol
6] Part F, Section 4.1.5

CYBLE_PAYLOAD_VAL_TWO Repeated 10101010 (in transmission order) sequence as described in [Vol
6] Part F, Section 4.1.5

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 212 of 559 Document Number: 002-29930 Rev. *A

CYBLE_PAYLOAD_VAL_THREE PRBS15 sequence as described in [Vol 6] Part F, Section 4.1.5

CYBLE_PAYLOAD_VAL_FOUR Repeated 11111111 (in transmission order) sequence

CYBLE_PAYLOAD_VAL_FIVE Repeated 00000000 (in transmission order) sequence

CYBLE_PAYLOAD_VAL_SIX Repeated 00001111 (in transmission order) sequence

CYBLE_PAYLOAD_VAL_SEVEN Repeated 01010101 (in transmission order) sequence

enum CYBLE_HCI_PKT_TYPE_T

HCI Packet type enum

Enumerator

CYBLE_HCI_CMD_PKT_TYPE HCI Command packet type

CYBLE_HCI_ACL_DATA_PKT_TYPE HCI ACL data packet type

CYBLE_HCI_SYNC_DATA_PKT_TYPE HCI Synchronous packet type

CYBLE_HCI_EVENT_PKT_TYPE HCI Event packet type

enum CYBLE_TO_REASON_CODE_T

BLE stack timeout. This is received with CYBLE_EVT_TIMEOUT event It is application's responsibility to
disconnect or keep the channel on depends on type of timeouts. i.e. GATT procedure timeout: Application may
choose to disconnect.

Enumerator

CYBLE_GAP_ADV_MODE_TO Advertisement time set by application has expired

CYBLE_GAP_SCAN_TO Scan time set by application has expired

CYBLE_GATT_RSP_TO GATT procedure timeout

CYBLE_GENERIC_TO Generic timeout

BLE Service-Specific APIs

Description

This section describes BLE Service-specific APIs. The Service APIs are only included in the design if the Service is
added to the selected Profile in the component GUI. These are interfaces for the BLE application to use during BLE
connectivity. The service specific APIs internally use the BLE Stack APIs to achieve the Service use case.

Refer to the Special Interest Group Web Site for links to the latest specifications and other documentation.

Many of the APIs will generate Service-specific events. The events are also used in the Service-specific callback
functions. These are documented in BLE Service-Specific Events.

Modules

• BLE Service-Specific Events

The BLE stack generates service-specific events to notify the application that a service specific status change
needs attention. For general stack events, refer to BLE Common Events.

• Apple Notification Center Service (ANCS)

The Apple Notification Center Service provides iOS notifications from Apple devices for accessories.

• Alert Notification Service (ANS)

The Alert Notification Service exposes alert information in a device.

• Automation IO Service (AIOS)

https://www.bluetooth.org/en-us/specification/adopted-specifications

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 213 of 559

The Automation IO Service enables a device to connect and interact with an Automation IO Module (IOM) in order
to access digital and analog signals.

• Battery Service (BAS)

The Battery Service exposes the battery level of a single battery or set of batteries in a device.

• Body Composition Service (BCS)

The Body Composition Service exposes data related to body composition from a body composition analyzer
(Server) intended for consumer healthcare as well as sports/fitness applications.

• Blood Pressure Service (BLS)

The Blood Pressure Service exposes blood pressure and other data related to a non-invasive blood pressure
monitor for consumer and professional healthcare applications.

• Bond Management Service (BMS)

The Bond Management Service defines how a peer Bluetooth device can manage the storage of bond information,
especially the deletion of it, on the Bluetooth device supporting this service.

• Continuous Glucose Monitoring Service (CGMS)

The Continuous Glucose Monitoring Service exposes glucose measurement and other data related to a personal
CGM sensor for healthcare applications.

• Cycling Power Service (CPS)

The Cycling Power Service (CPS) exposes power- and force-related data and optionally speed- and cadence-
related data from a Cycling Power sensor (GATT Server) intended for sports and fitness applications.

• Cycling Speed and Cadence Service (CSCS)

The Cycling Speed and Cadence (CSC) Service exposes speed-related data and/or cadence-related data while
using the Cycling Speed and Cadence sensor (Server).

• Current Time Service (CTS)

The Current Time Service defines how a Bluetooth device can expose time information to other Bluetooth devices.

• Device Information Service (DIS)

The Device Information Service exposes manufacturer and/or vendor information about a device.

• Environmental Sensing Service (ESS)

The Environmental Sensing Service exposes measurement data from an environmental sensor intended for sports
and fitness applications.

• Glucose Service (GLS)

The Glucose Service exposes glucose and other data related to a personal glucose sensor for consumer
healthcare applications and is not designed for clinical use.

• HID Service (HIDS)

The HID Service exposes data and associated formatting for HID Devices and HID Hosts.

• Heart Rate Service (HRS)

The Heart Rate Service exposes heart rate and other data related to a heart rate sensor intended for fitness
applications.

• HTTP Proxy Service (HPS)

The HTTP Proxy Service allows a Client device, typically a sensor, to communicate with a Web Server through a
gateway device.

• Health Thermometer Service (HTS)

The Health Thermometer Service exposes temperature and other data related to a thermometer used for
healthcare applications.

• Immediate Alert Service (IAS)

The Immediate Alert Service exposes a control point to allow a peer device to cause the device to immediately
alert.

• Indoor Positioning Service (IPS)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 214 of 559 Document Number: 002-29930 Rev. *A

The Indoor Positioning exposes coordinates and other location related information via an advertisement or
indicates that the device address can be used for location look-up, enabling mobile devices to find their position.

• Link Loss Service (LLS)

The Link Loss Service uses the Alert Level Characteristic to cause an alert in the device when the link is lost.

• Location and Navigation Service (LNS)

The Location and Navigation Service exposes location and navigation-related data from a Location and Navigation
sensor (Server) intended for outdoor activity applications.

• Next DST Change Service (NDCS)

The Next DST Change Service enables a BLE device that has knowledge about the next occurrence of a DST
change to expose this information to another Bluetooth device. The Service uses the "Time with DST"
Characteristic and the functions exposed in this Service are used to interact with that Characteristic.

• Object Transfer Service (OTS)

The Object Transfer Service provides management and control features supporting bulk data transfers which
occur via a separate L2CAP connection oriented channel.

• Phone Alert Status Service (PASS)

The Phone Alert Status Service uses the Alert Status Characteristic and Ringer Setting Characteristic to expose
the phone alert status and uses the Ringer Control Point Characteristic to control the phone's ringer into mute or
enable.

• Pulse Oximeter Service (PLXS)

The Pulse Oximeter (PLX) Service exposes pulse oximetry data related to a non-invasive pulse oximetry sensor
for consumer and professional healthcare applications.

• Running Speed and Cadence Service (RSCS)

The Running Speed and Cadence (RSC) Service exposes speed, cadence and other data related to fitness
applications such as the stride length and the total distance the user has travelled while using the Running Speed
and Cadence sensor (Server).

• Reference Time Update Service (RTUS)

The Reference Time Update Service enables a Bluetooth device that can update the system time using the
reference time such as a GPS receiver to expose a control point and expose the accuracy (drift) of the local
system time compared to the reference time source.

• Scan Parameters Service (ScPS)

The Scan Parameters Service enables a Server device to expose a Characteristic for the GATT Client to write its
scan interval and scan window on the Server device, and enables a Server to request a refresh of the GATT Client
scan interval and scan window.

• TX Power Service (TPS)

The Tx Power Service uses the Tx Power Level Characteristic to expose the current transmit power level of a
device when in a connection.

• User Data Service (UDS)

The User Data Service exposes user-related data in the sports and fitness environment. This allows remote
access and update of user data by a Client as well as the synchronization of user data between a Server and a
Client.

• Wireless Power Transfer Service (WPTS)

The Wireless Power Transfer Service enables communication between Power Receiver Unit and Power
Transmitter Unit in the Wireless Power Transfer systems.

• Weight Scale Service (WSS)

The Weight Scale Service exposes weight and related data from a weight scale (Server) intended for consumer
healthcare as well as sports/fitness applications.

• Custom Service

This section contains the description of structs used for Custom Services.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 215 of 559

BLE Service-Specific Events

Description

The BLE stack generates service-specific events to notify the application that a service specific status change needs
attention. For general stack events, refer to BLE Common Events.

Enumerations

• enum CYBLE_EVT_T

Enumeration Type Documentation

enum CYBLE_EVT_T

Service specific events

Enumerator

CYBLE_EVT_GATTS_INDICATION_ENABLED GATT Server - Indications for GATT Service's "Service
Changed" Characteristic were enabled. The parameter of this event is a structure of
CYBLE_GATTS_WRITE_REQ_PARAM_T type.

CYBLE_EVT_GATTS_INDICATION_DISABLED GATT Server - Indications for GATT Service's "Service
Changed" Characteristic were disabled. The parameter of this event is a structure of
CYBLE_GATTS_WRITE_REQ_PARAM_T type.

CYBLE_EVT_GATTC_INDICATION GATT Client - GATT Service's "Service Changed" Characteristic
Indications were received. The parameter of this event is a structure of
CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T type.

CYBLE_EVT_GATTC_SRVC_DISCOVERY_FAILED GATT Client - Service discovery procedure failed.
This event may be generated on calling CyBle_GattcDiscoverAllPrimaryServices(). No parameters passed
for this event.

CYBLE_EVT_GATTC_INCL_DISCOVERY_FAILED GATT Client - Discovery of included services failed.
This event may be generated on calling CyBle_GattcFindIncludedServices(). No parameters passed for this
event.

CYBLE_EVT_GATTC_CHAR_DISCOVERY_FAILED GATT Client - Discovery of service's characteristics
failed. This event may be generated on calling CyBle_GattcDiscoverAllCharacteristics() or
CyBle_GattcReadUsingCharacteristicUuid(). No parameters passed for this event.

CYBLE_EVT_GATTC_DESCR_DISCOVERY_FAILED GATT Client - Discovery of service's characteristics
failed. This event may be generated on calling CyBle_GattcDiscoverAllCharacteristicDescriptors(). No
parameters passed for this event.

CYBLE_EVT_GATTC_SRVC_DUPLICATION GATT Client - Duplicate service record was found during
server device discovery. The parameter of this event is a structure of uint16 (UUID16) type.

CYBLE_EVT_GATTC_CHAR_DUPLICATION GATT Client - Duplicate service's characteristic record was
found during server device discovery. The parameter of this event is a structure of uint16 (UUID16) type.

CYBLE_EVT_GATTC_DESCR_DUPLICATION GATT Client - Duplicate service's characteristic descriptor
record was found during server device discovery. The parameter of this event is a structure of uint16 (UUID16)
type.

CYBLE_EVT_GATTC_SRVC_DISCOVERY_COMPLETE GATT Client - Service discovery procedure
completed successfully. This event may be generated on calling CyBle_GattcDiscoverAllPrimaryServices().
No parameters passed for this event.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 216 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_GATTC_INCL_DISCOVERY_COMPLETE GATT Client - Included services discovery is
completed successfully. This event may be generated on calling CyBle_GattcFindIncludedServices(). No
parameters passed for this event.

CYBLE_EVT_GATTC_CHAR_DISCOVERY_COMPLETE GATT Client - Discovery of service's
characteristics discovery is completed successfully. This event may be generated on calling
CyBle_GattcDiscoverAllCharacteristics() or CyBle_GattcReadUsingCharacteristicUuid(). No parameters
passed for this event.

CYBLE_EVT_GATTC_DISC_SKIPPED_SERVICE GATT Client - The service (not defined in the GATT
database) was found during the server device discovery. The discovery procedure skips this service. This
event parameter is a structure of the CYBLE_DISC_SRVC128_INFO_T type.

CYBLE_EVT_GATTC_DISCOVERY_COMPLETE GATT Client - Discovery of remote device completed
successfully. No parameters passed for this event.

CYBLE_EVT_AIOSS_NOTIFICATION_ENABLED AIOS Server - Notifications for Automation Input Output
Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSS_NOTIFICATION_DISABLED AIOS Server - Notifications for Automation Input Output
Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSS_INDICATION_ENABLED AIOS Server - Indication for Automation Input Output
Service Characteristic was enabled. The parameter of this event is a structure of
CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSS_INDICATION_DISABLED AIOSS Server - Indication for Automation Input Output
Service Characteristic was disabled. The parameter of this event is a structure of
CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSS_INDICATION_CONFIRMED AIOS Server - Automation Input Output Service
Characteristic Indication was confirmed. The parameter of this event is a structure of
CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSS_CHAR_WRITE AIOS Server - Write Request for Automation Input Output Service
Characteristic was received. The parameter of this event is a structure of CYBLE_AIOS_CHAR_VALUE_T
type.

CYBLE_EVT_AIOSS_DESCR_WRITE AIOSS Server - Write Request for Automation Input Output Service
Characteristic Descriptor was received. The parameter of this event is a structure of
CYBLE_AIOSS_DESCR_VALUE_T type.

CYBLE_EVT_AIOSC_NOTIFICATION AIOS Client - Automation Input Output Characteristic Service
Notification was received. The parameter of this event is a structure of CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSC_INDICATION AIOS Client - Automation Input Output Service Characteristic Indication
was received. The parameter of this event is a structure of CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSC_READ_CHAR_RESPONSE AIOS Client - Read Response for Read Request for
Automation Input Output Service Characteristic Value. The parameter of this event is a structure of
CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSC_WRITE_CHAR_RESPONSE AIOS Client - Write Response for Write Request for
Automation Input Output Service Characteristic Value. The parameter of this event is a structure of
CYBLE_AIOS_CHAR_VALUE_T type.

CYBLE_EVT_AIOSC_READ_DESCR_RESPONSE AIOS Client - Read Response for Read Request for
Automation Input Output Service Characteristic Descriptor Read Request. The parameter of this event is a
structure of CYBLE_AIOS_DESCR_VALUE_T type.

CYBLE_EVT_AIOSC_WRITE_DESCR_RESPONSE AIOS Client - Write Response for Write Request for
Automation Input Output Service Client Characteristic Configuration Descriptor Value. The parameter of this
event is a structure of CYBLE_AIOS_DESCR_VALUE_T type.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 217 of 559

CYBLE_EVT_AIOSC_ERROR_RESPONSE AIOS Client - Error Response for Write Request for Automation
Input Output Service Characteristic Value. The parameter of this event is a structure of
CYBLE_ANCS_CHAR_VALUE_T type.

CYBLE_EVT_ANCSS_NOTIFICATION_ENABLED ANCS Server - Notifications for Apple Notification
Center Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_ANCS_CHAR_VALUE_T type.

CYBLE_EVT_ANCSS_NOTIFICATION_DISABLED ANCS Server - Notifications for Apple Notification
Center Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_ANCS_CHAR_VALUE_T type.

CYBLE_EVT_ANCSS_WRITE_CHAR ANCS Server - Write Request for Apple Notification Center Service
Characteristic was received. The parameter of this event is a structure of CYBLE_ANCS_CHAR_VALUE_T
type.

CYBLE_EVT_ANCSC_NOTIFICATION ANCS Client - Apple Notification Center Characteristic Service
Notification was received. The parameter of this event is a structure of CYBLE_ANCS_CHAR_VALUE_T type.

CYBLE_EVT_ANCSC_WRITE_CHAR_RESPONSE ANCS Client - Write Response for Write Request for
Apple Notification Center Service Characteristic Value. The parameter of this event is a structure of
CYBLE_ANCS_CHAR_VALUE_T type.

CYBLE_EVT_ANCSC_READ_DESCR_RESPONSE ANCS Client - Read Response for Read Request for
Apple Notification Center Service Characteristic Descriptor Read Request. The parameter of this event is a
structure of CYBLE_ANCS_DESCR_VALUE_T type.

CYBLE_EVT_ANCSC_WRITE_DESCR_RESPONSE ANCS Client - Write Response for Write Request for
Apple Notification Center Service Client Characteristic Configuration Descriptor Value. The parameter of this
event is a structure of CYBLE_ANCS_DESCR_VALUE_T type.

CYBLE_EVT_ANCSC_ERROR_RESPONSE ANCS Client - Error Response for Write Request for Apple
Notification Center Service Characteristic Value. The parameter of this event is a structure of
CYBLE_ANCS_CHAR_VALUE_T type.

CYBLE_EVT_ANSS_NOTIFICATION_ENABLED ANS Server - Notifications for Alert Notification Service
Characteristic were enabled. The parameter of this event is a structure of CYBLE_ANS_CHAR_VALUE_T
type.

CYBLE_EVT_ANSS_NOTIFICATION_DISABLED ANS Server - Notifications for Alert Notification Service
Characteristic were disabled. The parameter of this event is a structure of CYBLE_ANS_CHAR_VALUE_T
type.

CYBLE_EVT_ANSS_CHAR_WRITE ANS Server - Write Request for Alert Notification Service Characteristic
was received. The parameter of this event is a structure of CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_ANSC_NOTIFICATION ANS Client - Alert Notification Characteristic Service Notification was
received. The parameter of this event is a structure of CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_ANSC_READ_CHAR_RESPONSE ANS Client - Read Response for Alert Notification Service
Characteristic Value. The parameter of this event is a structure of CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_ANSC_WRITE_CHAR_RESPONSE ANS Client - Write Response for Write Request for Alert
Notification Service Characteristic Value. The parameter of this event is a structure of
CYBLE_ANS_CHAR_VALUE_T type.

CYBLE_EVT_ANSC_READ_DESCR_RESPONSE ANS Client - Read Response for Read Request for Alert
Notification Service Characteristic Descriptor Read Request. The parameter of this event is a structure of
CYBLE_ANS_DESCR_VALUE_T type.

CYBLE_EVT_ANSC_WRITE_DESCR_RESPONSE ANS Client - Write Response for Write Request for Alert
Notification Service Client Characteristic Configuration Descriptor Value. The parameter of this event is a
structure of CYBLE_ANS_DESCR_VALUE_T type.

CYBLE_EVT_BASS_NOTIFICATION_ENABLED BAS Server - Notifications for Battery Level Characteristic
were enabled. The parameter of this event is a structure of CYBLE_BAS_CHAR_VALUE_T type.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 218 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_BASS_NOTIFICATION_DISABLED BAS Server - Notifications for Battery Level
Characteristic were disabled. The parameter of this event is a structure of CYBLE_BAS_CHAR_VALUE_T
type.

CYBLE_EVT_BASC_NOTIFICATION BAS Client - Battery Level Characteristic Notification was received.
The parameter of this event is a structure of CYBLE_BAS_CHAR_VALUE_T type.

CYBLE_EVT_BASC_READ_CHAR_RESPONSE BAS Client - Read Response for Battery Level
Characteristic Value. The parameter of this event is a structure of CYBLE_BAS_CHAR_VALUE_T type.

CYBLE_EVT_BASC_READ_DESCR_RESPONSE BAS Client - Read Response for Battery Level
Characteristic Descriptor Read Request. The parameter of this event is a structure of
CYBLE_BAS_DESCR_VALUE_T type.

CYBLE_EVT_BASC_WRITE_DESCR_RESPONSE BAS Client - Write Response for Battery Level Client
Characteristic Configuration Descriptor Value. The parameter of this event is a structure of
CYBLE_BAS_DESCR_VALUE_T type.

CYBLE_EVT_BCSS_INDICATION_ENABLED BCS Server - Indication for Body Composition Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_BCS_CHAR_VALUE_T
type.

CYBLE_EVT_BCSS_INDICATION_DISABLED BCS Server - Indication for Body Composition Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_BCS_CHAR_VALUE_T
type.

CYBLE_EVT_BCSS_INDICATION_CONFIRMED BCS Server - Body Composition Service Characteristic
Indication was confirmed. The parameter of this event is a structure of CYBLE_BCS_CHAR_VALUE_T type.

CYBLE_EVT_BCSC_INDICATION BCS Client - Body Composition Service Characteristic Indication was
received. The parameter of this event is a structure of CYBLE_BCS_CHAR_VALUE_T type.

CYBLE_EVT_BCSC_READ_CHAR_RESPONSE BCS Client - Read Response for Read Request of Body
Composition Service Characteristic value. The parameter of this event is a structure of
CYBLE_BCS_CHAR_VALUE_T type.

CYBLE_EVT_BCSC_READ_DESCR_RESPONSE BCS Client - Read Response for Read Request of Body
Composition Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_BCS_DESCR_VALUE_T type.

CYBLE_EVT_BCSC_WRITE_DESCR_RESPONSE BCS Client - Write Response for Write Request of Body
Composition Service Characteristic Configuration Descriptor value. The parameter of this event is a structure
of CYBLE_BCS_DESCR_VALUE_T type.

CYBLE_EVT_BLSS_INDICATION_ENABLED BLS Server - Indication for Blood Pressure Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSS_INDICATION_DISABLED BLS Server - Indication for Blood Pressure Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSS_INDICATION_CONFIRMED BLS Server - Blood Pressure Service Characteristic
Indication was confirmed. The parameter of this event is a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSS_NOTIFICATION_ENABLED BLS Server - Notifications for Blood Pressure Service
Characteristic were enabled. The parameter of this event is a structure of CYBLE_BLS_CHAR_VALUE_T
type.

CYBLE_EVT_BLSS_NOTIFICATION_DISABLED BLS Server - Notifications for Blood Pressure Service
Characteristic were disabled. The parameter of this event is a structure of CYBLE_BLS_CHAR_VALUE_T
type

CYBLE_EVT_BLSC_INDICATION BLS Client - Blood Pressure Service Characteristic Indication was
received. The parameter of this event is a structure of CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSC_NOTIFICATION BLS Client - Blood Pressure Service Characteristic Notification was
received. The parameter of this event is a structure of CYBLE_BLS_CHAR_VALUE_T type

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 219 of 559

CYBLE_EVT_BLSC_READ_CHAR_RESPONSE BLS Client - Read Response for Read Request of Blood
Pressure Service Characteristic value. The parameter of this event is a structure of
CYBLE_BLS_CHAR_VALUE_T type

CYBLE_EVT_BLSC_READ_DESCR_RESPONSE BLS Client - Read Response for Read Request of Blood
Pressure Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_BLS_DESCR_VALUE_T type

CYBLE_EVT_BLSC_WRITE_DESCR_RESPONSE BLS Client - Write Response for Write Request of Blood
Pressure Service Characteristic Configuration Descriptor value. The parameter of this event is a structure of
CYBLE_BLS_DESCR_VALUE_T type

CYBLE_EVT_BMSS_WRITE_CHAR BMS Server - Write Request for Bond Management was received. The
parameter of this event is a structure of CYBLE_BMS_CHAR_VALUE_T type.

CYBLE_EVT_BMSC_READ_CHAR_RESPONSE BMS Client - Read Response for Read Request of Bond
Management Service Characteristic value. The parameter of this event is a structure of
CYBLE_BMS_CHAR_VALUE_T type

CYBLE_EVT_BMSC_WRITE_CHAR_RESPONSE BMS Client - Write Response for Write Request of Bond
Management Service Characteristic value. The parameter of this event is a structure of
CYBLE_BMS_CHAR_VALUE_T type.

CYBLE_EVT_BMSC_READ_DESCR_RESPONSE BMS Client - Read Response for Read Request of Bond
Management Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_BMS_DESCR_VALUE_T type.

CYBLE_EVT_CGMSS_INDICATION_ENABLED CGMS Server - Indication for Continuous Glucose
Monitoring Service Characteristic was enabled. The parameter of this event is a structure of
CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSS_INDICATION_DISABLED CGMS Server - Indication for Continuous Glucose
Monitoring Service Characteristic was disabled. The parameter of this event is a structure of
CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSS_INDICATION_CONFIRMED CGMS Server - Continuous Glucose Monitoring Service
Characteristic Indication was confirmed. The parameter of this event is a structure of
CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSS_NOTIFICATION_ENABLED CGMS Server - Notifications for Continuous Glucose
Monitoring Service Characteristic was enabled. The parameter of this event is a structure of
CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSS_NOTIFICATION_DISABLED CGMS Server - Notifications for Continuous Glucose
Monitoring Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSS_WRITE_CHAR CGMS Server - Write Request for Continuous Glucose Monitoring
Service was received. The parameter of this event is a structure of CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSC_INDICATION CGMS Client - Continuous Glucose Monitoring Service Characteristic
Indication was received. The parameter of this event is a structure of CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSC_NOTIFICATION CGMS Client - Continuous Glucose Monitoring Service
Characteristic Notification was received. The parameter of this event is a structure of
CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSC_READ_CHAR_RESPONSE CGMS Client - Read Response for Read Request of
Continuous Glucose Monitoring Service Characteristic value. The parameter of this event is a structure of
CYBLE_CGMS_CHAR_VALUE_T type.

CYBLE_EVT_CGMSC_WRITE_CHAR_RESPONSE CGMS Client - Write Response for Write Request of
Continuous Glucose Monitoring Service Characteristic value. The parameter of this event is a structure of
CYBLE_CGMS_CHAR_VALUE_T type.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 220 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_CGMSC_READ_DESCR_RESPONSE CGMS Client - Read Response for Read Request of
Continuous Glucose Monitoring Service Characteristic Descriptor Read request. The parameter of this event
is a structure of CYBLE_CGMS_DESCR_VALUE_T type.

CYBLE_EVT_CGMSC_WRITE_DESCR_RESPONSE CGMS Client - Write Response for Write Request of
Continuous Glucose Monitoring Service Characteristic Configuration Descriptor value. The parameter of this
event is a structure of CYBLE_CGMS_DESCR_VALUE_T type.

CYBLE_EVT_CPSS_NOTIFICATION_ENABLED CPS Server - Notifications for Cycling Power Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T
type.

CYBLE_EVT_CPSS_NOTIFICATION_DISABLED CPS Server - Notifications for Cycling Power Service
Characteristic were disabled. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T
type

CYBLE_EVT_CPSS_INDICATION_ENABLED CPS Server - Indication for Cycling Power Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSS_INDICATION_DISABLED CPS Server - Indication for Cycling Power Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T
type

CYBLE_EVT_CPSS_INDICATION_CONFIRMED CPS Server - Cycling Power Service Characteristic
Indication was confirmed. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSS_BROADCAST_ENABLED CPS Server - Broadcast for Cycling Power Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSS_BROADCAST_DISABLED CPS Server - Broadcast for Cycling Power Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T
type

CYBLE_EVT_CPSS_CHAR_WRITE CPS Server - Write Request for Cycling Power Service Characteristic
was received. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T type.

CYBLE_EVT_CPSC_NOTIFICATION CPS Client - Cycling Power Service Characteristic Notification was
received. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSC_INDICATION CPS Client - Cycling Power Service Characteristic Indication was
received. The parameter of this event is a structure of CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSC_READ_CHAR_RESPONSE CPS Client - Read Response for Read Request of Cycling
Power Service Characteristic value. The parameter of this event is a structure of
CYBLE_CPS_CHAR_VALUE_T type

CYBLE_EVT_CPSC_WRITE_CHAR_RESPONSE CPS Client - Write Response for Write Request of
Cycling Power Service Characteristic value. The parameter of this event is a structure of
CYBLE_CPS_CHAR_VALUE_T type.

CYBLE_EVT_CPSC_READ_DESCR_RESPONSE CPS Client - Read Response for Read Request of
Cycling Power Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_CPS_DESCR_VALUE_T type.

CYBLE_EVT_CPSC_WRITE_DESCR_RESPONSE CPS Client - Write Response for Write Request of
Cycling Power Service Characteristic Configuration Descriptor value. The parameter of this event is a
structure of CYBLE_CPS_DESCR_VALUE_T type.

CYBLE_EVT_CPSC_SCAN_PROGRESS_RESULT CPS Client - This event is triggered every time a device
receive non-connectable undirected advertising event. The parameter of this event is a structure of
CYBLE_CPS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSS_NOTIFICATION_ENABLED CSCS Server - Notifications for Cycling Speed and
Cadence Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 221 of 559

CYBLE_EVT_CSCSS_NOTIFICATION_DISABLED CSCS Server - Notifications for Cycling Speed and
Cadence Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSS_INDICATION_ENABLED CSCS Server - Indication for Cycling Speed and Cadence
Service Characteristic was enabled. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSS_INDICATION_DISABLED CSCS Server - Indication for Cycling Speed and Cadence
Service Characteristic was disabled. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSS_INDICATION_CONFIRMATION CSCS Server - Cycling Speed and Cadence Service
Characteristic Indication was confirmed. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSS_CHAR_WRITE CSCS Server - Write Request for Cycling Speed and Cadence
Service Characteristic was received. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSC_NOTIFICATION CSCS Client - Cycling Speed and Cadence Service Characteristic
Notification was received. The parameter of this event is a structure of CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSC_INDICATION CSCS Client - Cycling Speed and Cadence Service Characteristic
Indication was received. The parameter of this event is a structure of CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSC_READ_CHAR_RESPONSE CSCS Client - Read Response for Read Request of
Cycling Speed and Cadence Service Characteristic value. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSC_WRITE_CHAR_RESPONSE CSCS Client - Write Response for Write Request of
Cycling Speed and Cadence Service Characteristic value. The parameter of this event is a structure of
CYBLE_CSCS_CHAR_VALUE_T type.

CYBLE_EVT_CSCSC_READ_DESCR_RESPONSE CSCS Client - Read Response for Read Request of
Cycling Speed and Cadence Service Characteristic Descriptor Read request. The parameter of this event is
a structure of CYBLE_CSCS_DESCR_VALUE_T type.

CYBLE_EVT_CSCSC_WRITE_DESCR_RESPONSE CSCS Client - Write Response for Write Request of
Cycling Speed and Cadence Service Characteristic Configuration Descriptor value. The parameter of this
event is a structure of CYBLE_CSCS_DESCR_VALUE_T type.

CYBLE_EVT_CTSS_NOTIFICATION_ENABLED CTS Server - Notification for Current Time Characteristic
was enabled. The parameter of this event is a structure of CYBLE_CTS_CHAR_VALUE_T type.

CYBLE_EVT_CTSS_NOTIFICATION_DISABLED CTS Server - Notification for Current Time Characteristic
was disabled. The parameter of this event is a structure of CYBLE_CTS_CHAR_VALUE_T type.

CYBLE_EVT_CTSS_CHAR_WRITE CTS Server - Write Request for Current Time Service Characteristic
was received. The parameter of this event is a structure of CYBLE_CTS_CHAR_VALUE_T type. When this
event is received the user is responsible for performing any kind of data verification and writing the data to
the GATT database in case of successful verification or setting the error using CyBle_SetGattError() in case
of data verification failure.

CYBLE_EVT_CTSC_NOTIFICATION CTS Client - Current Time Characteristic Notification was received.
The parameter of this event is a structure of CYBLE_CTS_CHAR_VALUE_T type.

CYBLE_EVT_CTSC_READ_CHAR_RESPONSE CTS Client - Read Response for Current Time
Characteristic Value Read Request. The parameter of this event is a structure of
CYBLE_CTS_CHAR_VALUE_T type.

CYBLE_EVT_CTSC_READ_DESCR_RESPONSE CTS Client - Read Response for Current Time Client
Characteristic Configuration Descriptor Value Read Request. The parameter of this event is a structure of
CYBLE_CTS_DESCR_VALUE_T type.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 222 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_CTSC_WRITE_DESCR_RESPONSE CTS Client - Write Response for Current Time
Characteristic Configuration Descriptor Value. The parameter of this event is a structure of
CYBLE_CTS_DESCR_VALUE_T type.

CYBLE_EVT_CTSC_WRITE_CHAR_RESPONSE CTS Client - Write Response for Current Time or Local
Time Information Characteristic Value. The parameter of this event is a structure of
CYBLE_CTS_DESCR_VALUE_T type.

CYBLE_EVT_DISC_READ_CHAR_RESPONSE DIS Client - Read Response for a Read Request for a
Device Information Service Characteristic. The parameter of this event is a structure of
CYBLE_DIS_CHAR_VALUE_T type.

CYBLE_EVT_ESSS_NOTIFICATION_ENABLED ESS Server - Notifications for Environmental Sensing
Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_ESS_CHAR_VALUE_T type.

CYBLE_EVT_ESSS_NOTIFICATION_DISABLED ESS Server - Notifications for Environmental Sensing
Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_ESS_CHAR_VALUE_T type.

CYBLE_EVT_ESSS_INDICATION_ENABLED ESS Server - Indication for Environmental Sensing Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_ESS_CHAR_VALUE_T
type.

CYBLE_EVT_ESSS_INDICATION_DISABLED ESS Server - Indication for Environmental Sensing Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_ESS_CHAR_VALUE_T
type.

CYBLE_EVT_ESSS_INDICATION_CONFIRMATION ESS Server - Environmental Sensing Service
Characteristic Indication was confirmed. The parameter of this event is a structure of
CYBLE_ESS_CHAR_VALUE_T type.

CYBLE_EVT_ESSS_CHAR_WRITE ESS Server - Write Request for Environmental Sensing Service
Characteristic was received. The parameter of this event is a structure of CYBLE_ESS_CHAR_VALUE_T
type.

CYBLE_EVT_ESSS_DESCR_WRITE ESS Server - Write Request for Environmental Sensing Service
Characteristic Descriptor was received. The parameter of this event is a structure of
CYBLE_ESS_DESCR_VALUE_T type. This event is generated only when write for
CYBLE_ESS_CHAR_USER_DESCRIPTION_DESCR, CYBLE_ESS_ES_TRIGGER_SETTINGS_DESCR
or CYBLE_ESS_ES_CONFIG_DESCR occurred.

CYBLE_EVT_ESSC_NOTIFICATION ESS Client - Environmental Sensing Service Characteristic
Notification was received. The parameter of this event is a structure of CYBLE_ESS_CHAR_VALUE_T type.

CYBLE_EVT_ESSC_INDICATION ESS Client - Environmental Sensing Service Characteristic Indication
was received. The parameter of this event is a structure of CYBLE_ESS_CHAR_VALUE_T type.

CYBLE_EVT_ESSC_READ_CHAR_RESPONSE ESS Client - Read Response for Read Request of
Environmental Sensing Service Characteristic value. The parameter of this event is a structure of
CYBLE_ESS_CHAR_VALUE_T type.

CYBLE_EVT_ESSC_WRITE_CHAR_RESPONSE ESS Client - Write Response for Write Request of
Environmental Sensing Service Characteristic value. The parameter of this event is a structure of
CYBLE_ESS_CHAR_VALUE_T type.

CYBLE_EVT_ESSC_READ_DESCR_RESPONSE ESS Client - Read Response for Read Request of
Environmental Sensing Service Characteristic Descriptor Read request. The parameter of this event is a
structure of CYBLE_ESS_DESCR_VALUE_T type.

CYBLE_EVT_ESSC_WRITE_DESCR_RESPONSE ESS Client - Write Response for Write Request of
Environmental Sensing Service Characteristic Configuration Descriptor value. The parameter of this event is
a structure of CYBLE_ESS_DESCR_VALUE_T type.

CYBLE_EVT_GLSS_INDICATION_ENABLED GLS Server - Indication for Glucose Service Characteristic
was enabled. The parameter of this event is a structure of CYBLE_GLS_CHAR_VALUE_T type.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 223 of 559

CYBLE_EVT_GLSS_INDICATION_DISABLED GLS Server - Indication for Glucose Service Characteristic
was disabled. The parameter of this event is a structure of CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSS_INDICATION_CONFIRMED GLS Server - Glucose Service Characteristic Indication
was confirmed. The parameter of this event is a structure of CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSS_NOTIFICATION_ENABLED GLS Server - Notifications for Glucose Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_GLS_CHAR_VALUE_T
type.

CYBLE_EVT_GLSS_NOTIFICATION_DISABLED GLS Server - Notifications for Glucose Service
Characteristic were disabled. The parameter of this event is a structure of CYBLE_GLS_CHAR_VALUE_T
type.

CYBLE_EVT_GLSS_WRITE_CHAR GLS Server - Write Request for Glucose Service was received. The
parameter of this event is a structure of CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSC_INDICATION GLS Client - Glucose Service Characteristic Indication was received. The
parameter of this event is a structure of CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSC_NOTIFICATION GLS Client - Glucose Service Characteristic Notification was received.
The parameter of this event is a structure of CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSC_READ_CHAR_RESPONSE GLS Client - Read Response for Read Request of
Glucose Service Characteristic value. The parameter of this event is a structure of
CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSC_WRITE_CHAR_RESPONSE GLS Client - Write Response for Write Request of
Glucose Service Characteristic value. The parameter of this event is a structure of
CYBLE_GLS_CHAR_VALUE_T type.

CYBLE_EVT_GLSC_READ_DESCR_RESPONSE GLS Client - Read Response for Read Request of
Glucose Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_GLS_DESCR_VALUE_T type.

CYBLE_EVT_GLSC_WRITE_DESCR_RESPONSE GLS Client - Write Response for Write Request of
Glucose Service Characteristic Configuration Descriptor value. The parameter of this event is a structure of
CYBLE_GLS_DESCR_VALUE_T type.

CYBLE_EVT_HIDSS_NOTIFICATION_ENABLED HIDS Server - Notifications for HID service were enabled.
The parameter of this event is a structure of CYBLE_HIDS_CHAR_VALUE_T type.

CYBLE_EVT_HIDSS_NOTIFICATION_DISABLED HIDS Server - Notifications for HID service were
disabled. The parameter of this event is a structure of CYBLE_HIDS_CHAR_VALUE_T type.

CYBLE_EVT_HIDSS_BOOT_MODE_ENTER HIDS Server - Enter boot mode request. The parameter of
this event is a structure of CYBLE_HIDS_CHAR_VALUE_T type.

CYBLE_EVT_HIDSS_REPORT_MODE_ENTER HIDS Server - Enter report mode request. The parameter
of this event is a structure of CYBLE_HIDS_CHAR_VALUE_T type.

CYBLE_EVT_HIDSS_SUSPEND HIDS Server - Enter suspend mode request. The parameter of this event
is a structure of CYBLE_HIDS_CHAR_VALUE_T type.

CYBLE_EVT_HIDSS_EXIT_SUSPEND HIDS Server - Exit suspend mode request. The parameter of this
event is a structure of CYBLE_HIDS_CHAR_VALUE_T type.

CYBLE_EVT_HIDSS_REPORT_CHAR_WRITE HIDS Server - Write Report characteristic request. The
parameter of this event is a structure of CYBLE_HIDSS_REPORT_VALUE_T type.

CYBLE_EVT_HIDSC_NOTIFICATION HIDS Client - HID Service Characteristic Notification was received.
The parameter of this event is a structure of CYBLE_HIDS_CHAR_VALUE_T type.

CYBLE_EVT_HIDSC_READ_CHAR_RESPONSE HIDS Client - Read Response for Read Request of HID
Service Characteristic value. The parameter of this event is a structure of CYBLE_HIDS_DESCR_VALUE_T
type.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 224 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_HIDSC_WRITE_CHAR_RESPONSE HIDS Client - Write Response for Write Request of HID
Service Characteristic value. The parameter of this event is a structure of CYBLE_HIDS_CHAR_VALUE_T
type.

CYBLE_EVT_HIDSC_READ_DESCR_RESPONSE HIDS Client - Read Response for Read Request of HID
Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_HIDS_DESCR_VALUE_T type.

CYBLE_EVT_HIDSC_WRITE_DESCR_RESPONSE HIDS Client - Write Response for Write Request of HID
Service Characteristic Configuration Descriptor value. The parameter of this event is a structure of
CYBLE_HIDS_CHAR_VALUE_T type.

CYBLE_EVT_HPSS_NOTIFICATION_ENABLED HPS Server - Notification for HTTP Proxy Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_HPS_CHAR_VALUE_T
type.

CYBLE_EVT_HPSS_NOTIFICATION_DISABLED HPS Server - Notification for HTTP Proxy Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_HPS_CHAR_VALUE_T
type.

CYBLE_EVT_HPSS_CHAR_WRITE HPS Server - Write Request for HTTP Proxy Service Characteristic
was received. The parameter of this event is a structure of CYBLE_HPS_CHAR_VALUE_T type.

CYBLE_EVT_HPSC_NOTIFICATION HPS Client - HTTP Proxy Service Characteristic Notification was
received. The parameter of this event is a structure of CYBLE_HPS_CHAR_VALUE_T type.

CYBLE_EVT_HPSC_READ_CHAR_RESPONSE HPS Client - Read Response for Read Request of HTTP
Proxy Service Characteristic value. The parameter of this event is a structure of
CYBLE_HPS_CHAR_VALUE_T type.

CYBLE_EVT_HPSC_READ_DESCR_RESPONSE HPS Client - Read Response for Read Request of HTTP
Proxy Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_HPS_DESCR_VALUE_T type.

CYBLE_EVT_HPSC_WRITE_DESCR_RESPONSE HPS Client - Write Response for Write Request of
HTTP Proxy Service Characteristic Configuration Descriptor value. The parameter of this event is a structure
of CYBLE_HPS_DESCR_VALUE_T type.

CYBLE_EVT_HPSC_WRITE_CHAR_RESPONSE HPS Client - Write Response for Write Request of HPS
Service Characteristic value. The parameter of this event is a structure of CYBLE_HPS_CHAR_VALUE_T
type.

CYBLE_EVT_HRSS_ENERGY_EXPENDED_RESET HRS Server - Reset Energy Expended. The
parameter of this event is a structure of CYBLE_HRS_CHAR_VALUE_T type.

CYBLE_EVT_HRSS_NOTIFICATION_ENABLED HRS Server - Notification for Heart Rate Measurement
Characteristic was enabled. The parameter of this event is a structure of CYBLE_HRS_CHAR_VALUE_T
type.

CYBLE_EVT_HRSS_NOTIFICATION_DISABLED HRS Server - Notification for Heart Rate Measurement
Characteristic was disabled. The parameter of this event is a structure of CYBLE_HRS_CHAR_VALUE_T
type.

CYBLE_EVT_HRSC_NOTIFICATION HRS Client - Heart Rate Measurement Characteristic Notification was
received. The parameter of this event is a structure of CYBLE_HRS_CHAR_VALUE_T type.

CYBLE_EVT_HRSC_READ_CHAR_RESPONSE HRS Client - Read Response for Read Request of HRS
Service Characteristic value. The parameter of this event is a structure of CYBLE_HRS_CHAR_VALUE_T
type.

CYBLE_EVT_HRSC_WRITE_CHAR_RESPONSE HRS Client - Write Response for Write Request of HRS
Service Characteristic value. The parameter of this event is a structure of CYBLE_HRS_CHAR_VALUE_T
type.

CYBLE_EVT_HRSC_READ_DESCR_RESPONSE HRS Client - Read Response for Read Request of HRS
Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_HRS_CHAR_VALUE_T type.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 225 of 559

CYBLE_EVT_HRSC_WRITE_DESCR_RESPONSE HRS Client - Write Response for Write Request of HRS
Service Characteristic Configuration Descriptor value. The parameter of this event is a structure of
CYBLE_HRS_CHAR_VALUE_T type.

CYBLE_EVT_HTSS_NOTIFICATION_ENABLED HTS Server - Notifications for Health Thermometer
Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_HTS_CHAR_VALUE_T type.

CYBLE_EVT_HTSS_NOTIFICATION_DISABLED HTS Server - Notifications for Health Thermometer
Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_HTS_CHAR_VALUE_T type.

CYBLE_EVT_HTSS_INDICATION_ENABLED HTS Server - Indication for Health Thermometer Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type.

CYBLE_EVT_HTSS_INDICATION_DISABLED HTS Server - Indication for Health Thermometer Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type.

CYBLE_EVT_HTSS_INDICATION_CONFIRMED HTS Server - Health Thermometer Service Characteristic
Indication was confirmed. The parameter of this event is a structure of CYBLE_HTS_CHAR_VALUE_T type.

CYBLE_EVT_HTSS_CHAR_WRITE HTS Server - Write Request for Health Thermometer Service
Characteristic was received. The parameter of this event is a structure of CYBLE_HTS_CHAR_VALUE_T
type.

CYBLE_EVT_HTSC_NOTIFICATION HTS Client - Health Thermometer Service Characteristic Notification
was received. The parameter of this event is a structure of CYBLE_HTS_CHAR_VALUE_T type.

CYBLE_EVT_HTSC_INDICATION HTS Client - Health Thermometer Service Characteristic Indication was
received. The parameter of this event is a structure of CYBLE_HTS_CHAR_VALUE_T type.

CYBLE_EVT_HTSC_READ_CHAR_RESPONSE HTS Client - Read Response for Read Request of Health
Thermometer Service Characteristic value. The parameter of this event is a structure of
CYBLE_HTS_CHAR_VALUE_T type.

CYBLE_EVT_HTSC_WRITE_CHAR_RESPONSE HTS Client - Write Response for Write Request of Health
Thermometer Service Characteristic value. The parameter of this event is a structure of
CYBLE_HTS_CHAR_VALUE_T type.

CYBLE_EVT_HTSC_READ_DESCR_RESPONSE HTS Client - Read Response for Read Request of Health
Thermometer Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_HTS_DESCR_VALUE_T type.

CYBLE_EVT_HTSC_WRITE_DESCR_RESPONSE HTS Client - Write Response for Write Request of
Health Thermometer Service Characteristic Configuration Descriptor value. The parameter of this event is a
structure of CYBLE_HTS_DESCR_VALUE_T type.

CYBLE_EVT_IASS_WRITE_CHAR_CMD IAS Server - Write command request for Alert Level
Characteristic. The parameter of this event is a structure of CYBLE_IAS_CHAR_VALUE_T type.

CYBLE_EVT_IPSS_WRITE_CHAR IPS Server - Write Request for Indoor Positioning Service Characteristic
was received. The parameter of this event is a structure of CYBLE_IPSS_CHAR_VALUE_T type.

CYBLE_EVT_IPSC_READ_CHAR_RESPONSE IPS Client - Read Response for Read Request of Indoor
Positioning Service Characteristic value. The parameter of this event is a structure of
CYBLE_IPS_CHAR_VALUE_T type.

CYBLE_EVT_IPSC_READ_MULTIPLE_CHAR_RESPONSE IPS Client - Read Multiple Response for Read
Multiple Request of Indoor Positioning Service Characteristic value. The parameter of this event is a structure
of CYBLE_IPS_CHAR_VALUE_T type.

CYBLE_EVT_IPSC_WRITE_CHAR_RESPONSE IPS Client - Write Response for Write Request of Indoor
Positioning Service Characteristic value. The parameter of this event is a structure of
CYBLE_IPS_CHAR_VALUE_T type.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 226 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_IPSC_READ_DESCR_RESPONSE IPS Client - Read Response for Read Request of Indoor
Positioning Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_IPS_DESCR_VALUE_T type.

CYBLE_EVT_IPSC_WRITE_DESCR_RESPONSE IPS Client - Write Response for Write Request of Indoor
Positioning Service Characteristic Configuration Descriptor value. The parameter of this event is a structure
of CYBLE_IPS_DESCR_VALUE_T type.

CYBLE_EVT_IPSC_ERROR_RESPONSE IPS Client - Error Response for Write Request for Indoor
Positioning Service Characteristic Value. The parameter of this event is a structure of
CYBLE_IPS_CHAR_VALUE_T type.

CYBLE_EVT_IPSC_READ_BLOB_RSP IPS Client - Read Response for Long Read Request of Indoor
Positioning Service Characteristic value. The parameter of this event is a structure of
CYBLE_IPS_CHAR_VALUE_T type.

CYBLE_EVT_LLSS_WRITE_CHAR_REQ LLS Server - Write request for Alert Level Characteristic. The
parameter of this event is a structure of CYBLE_LLS_CHAR_VALUE_T type.

CYBLE_EVT_LLSC_READ_CHAR_RESPONSE LLS Client - Read response for Alert Level Characteristic.
The parameter of this event is a structure of CYBLE_LLS_CHAR_VALUE_T type.

CYBLE_EVT_LLSC_WRITE_CHAR_RESPONSE LLS Client - Write response for write request of Alert
Level Characteristic. The parameter of this event is a structure of CYBLE_LLS_CHAR_VALUE_T type.

CYBLE_EVT_LNSS_INDICATION_ENABLED LNS Server - Indication for Location and Navigation Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_LNS_CHAR_VALUE_T
type.

CYBLE_EVT_LNSS_INDICATION_DISABLED LNS Server - Indication for Location and Navigation Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_LNS_CHAR_VALUE_T
type.

CYBLE_EVT_LNSS_INDICATION_CONFIRMED LNS Server - Location and Navigation Service
Characteristic Indication was confirmed. The parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type.

CYBLE_EVT_LNSS_NOTIFICATION_ENABLED LNS Server - Notifications for Location and Navigation
Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type.

CYBLE_EVT_LNSS_NOTIFICATION_DISABLED LNS Server - Notifications for Location and Navigation
Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type.

CYBLE_EVT_LNSS_WRITE_CHAR LNS Server - Write Request for Location and Navigation Service
Characteristic was received. The parameter of this event is a structure of CYBLE_LNS_CHAR_VALUE_T
type.

CYBLE_EVT_LNSC_INDICATION LNS Client - Location and Navigation Service Characteristic Indication
was received. The parameter of this event is a structure of CYBLE_LNS_CHAR_VALUE_T type.

CYBLE_EVT_LNSC_NOTIFICATION LNS Client - Location and Navigation Service Characteristic
Notification was received. The parameter of this event is a structure of CYBLE_LNS_CHAR_VALUE_T type.

CYBLE_EVT_LNSC_READ_CHAR_RESPONSE LNS Client - Read Response for Read Request of
Location and Navigation Service Characteristic value. The parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type.

CYBLE_EVT_LNSC_WRITE_CHAR_RESPONSE LNS Client - Write Response for Write Request of
Location and Navigation Service Characteristic value. The parameter of this event is a structure of
CYBLE_LNS_CHAR_VALUE_T type.

CYBLE_EVT_LNSC_READ_DESCR_RESPONSE LNS Client - Read Response for Read Request of
Location and Navigation Service Characteristic Descriptor Read request. The parameter of this event is a
structure of CYBLE_LNS_DESCR_VALUE_T type.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 227 of 559

CYBLE_EVT_LNSC_WRITE_DESCR_RESPONSE LNS Client - Write Response for Write Request of
Location and Navigation Service Characteristic Configuration Descriptor value. The parameter of this event
is a structure of CYBLE_LNS_DESCR_VALUE_T type.

CYBLE_EVT_NDCSC_READ_CHAR_RESPONSE NDCS Client - Read Response for Read Request of
Next DST Change Service Characteristic value. The parameter of this event is a structure of
CYBLE_NDCS_CHAR_VALUE_T type.

CYBLE_EVT_OTSS_INDICATION_ENABLED OTS Server - Indication for Object Transfer Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_OTS_CHAR_VALUE_T
type.

CYBLE_EVT_OTSS_INDICATION_DISABLED OTSS Server - Indication for Object Transfer Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_OTS_CHAR_VALUE_T
type.

CYBLE_EVT_OTSS_INDICATION_CONFIRMED OTS Server - Object Transfer Service Characteristic
Indication was confirmed. The parameter of this event is a structure of CYBLE_OTS_CHAR_VALUE_T type.

CYBLE_EVT_OTSS_WRITE_CHAR OTS Server - Write Request for Object Transfer Service Characteristic
was received. The parameter of this event is a structure of CYBLE_OTS_CHAR_VALUE_T type.

CYBLE_EVT_OTSS_WRITE_DESCR OTSS Server - Write Request for Object Transfer Service
Characteristic Descriptor was received. The parameter of this event is a structure of
CYBLE_OTSS_DESCR_VALUE_T type.

CYBLE_EVT_OTSC_INDICATION OTS Client - Object Transfer Service Characteristic Indication was
received. The parameter of this event is a structure of CYBLE_OTS_CHAR_VALUE_T type.

CYBLE_EVT_OTSC_READ_CHAR_RESPONSE OTS Client - Read Response for Read Request for Object
Transfer Service Characteristic Value. The parameter of this event is a structure of
CYBLE_OTS_CHAR_VALUE_T type.

CYBLE_EVT_OTSC_READ_BLOB_RSP OTS Client - Read Response for Long Read Request of Object
Transfer Service Characteristic value. The parameter of this event is a structure of
CYBLE_IPS_CHAR_VALUE_T type.

CYBLE_EVT_OTSC_WRITE_CHAR_RESPONSE OTS Client - Write Response for Write Request for
Object Transfer Service Characteristic Value. The parameter of this event is a structure of
CYBLE_OTS_CHAR_VALUE_T type.

CYBLE_EVT_OTSC_READ_DESCR_RESPONSE OTS Client - Read Response for Read Request for
Object Transfer Service Characteristic Descriptor Read Request. The parameter of this event is a structure
of CYBLE_OTS_DESCR_VALUE_T type.

CYBLE_EVT_OTSC_WRITE_DESCR_RESPONSE OTS Client - Write Response for Write Request for
Object Transfer Service Client Characteristic Configuration Descriptor Value. The parameter of this event is
a structure of CYBLE_OTS_DESCR_VALUE_T type.

CYBLE_EVT_OTSC_ERROR_RESPONSE OTS Client - Error Response for Write Request for Object
Transfer Service Characteristic Value. The parameter of this event is a structure of
CYBLE_OTS_CHAR_VALUE_T type.

CYBLE_EVT_PASSS_NOTIFICATION_ENABLED PASS Server - Notifications for Phone Alert Status
Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_PASS_CHAR_VALUE_T type.

CYBLE_EVT_PASSS_NOTIFICATION_DISABLED PASS Server - Notifications for Phone Alert Status
Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_PASS_CHAR_VALUE_T type.

CYBLE_EVT_PASSS_WRITE_CHAR PASS Server - Write Request for Phone Alert Status Service
Characteristic was received. The parameter of this event is a structure of CYBLE_PASS_CHAR_VALUE_T
type.

CYBLE_EVT_PASSC_NOTIFICATION PASS Client - Phone Alert Status Service Characteristic Notification
was received. The parameter of this event is a structure of CYBLE_PASS_CHAR_VALUE_T type.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 228 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_PASSC_READ_CHAR_RESPONSE PASS Client - Read Response for Read Request of
Phone Alert Status Service Characteristic value. The parameter of this event is a structure of
CYBLE_PASS_CHAR_VALUE_T type.

CYBLE_EVT_PASSC_READ_DESCR_RESPONSE PASS Client - Read Response for Read Request of
Phone Alert Status Service Characteristic Descriptor Read request. The parameter of this event is a structure
of CYBLE_PASS_DESCR_VALUE_T type.

CYBLE_EVT_PASSC_WRITE_DESCR_RESPONSE PASS Client - Write Response for Write Request of
Phone Alert Status Service Characteristic Configuration Descriptor value. The parameter of this event is a
structure of CYBLE_PASS_DESCR_VALUE_T type.

CYBLE_EVT_PLXSS_WRITE_CHAR PLXS Server - Write Request for Pulse Oximeter Service
Characteristic was received. The parameter of this event is a structure of CYBLE_PLXSS_CHAR_VALUE_T
type.

CYBLE_EVT_PLXSS_NOTIFICATION_ENABLED PLXS Server - Notifications for Pulse Oximeter
Characteristic were enabled. The parameter of this event is a structure of CYBLE_PLXS_CHAR_VALUE_T
type.

CYBLE_EVT_PLXSS_NOTIFICATION_DISABLED PLXS Server - Notifications for Pulse Oximeter
Characteristic was disabled. The parameter of this event is a structure of CYBLE_PLXS_CHAR_VALUE_T
type.

CYBLE_EVT_PLXSS_INDICATION_ENABLED PLXS Server - Indication for Pulse Oximeter Characteristic
was enabled. The parameter of this event is a structure of CYBLE_PLXS_CHAR_VALUE_T type.

CYBLE_EVT_PLXSS_INDICATION_DISABLED PLXS Server - Indication for Pulse Oximeter Characteristic
was disabled. The parameter of this event is a structure of CYBLE_PLXS_CHAR_VALUE_T type.

CYBLE_EVT_PLXSS_INDICATION_CONFIRMED PLXS Server - Pulse Oximeter Service Characteristic
Indication was confirmed. The parameter of this event is a structure of CYBLE_PLXS_CHAR_VALUE_T type.

CYBLE_EVT_PLXSC_NOTIFICATION PLXS Client - Pulse Oximeter Characteristic Notification was
received. The parameter of this event is a structure of CYBLE_PLXS_CHAR_VALUE_T type.

CYBLE_EVT_PLXSC_INDICATION PLXS Client - Pulse Oximeter Characteristic Indication was received.
The parameter of this event is a structure of CYBLE_PLXS_CHAR_VALUE_T type.

CYBLE_EVT_PLXSC_READ_CHAR_RESPONSE PLXS Client - Read Response for Read Request of
Pulse Oximeter Service Characteristic value. The parameter of this event is a structure of
CYBLE_PLXS_CHAR_VALUE_T type.

CYBLE_EVT_PLXSC_WRITE_CHAR_RESPONSE PLXS Client - Write Response for Write Request of
Pulse Oximeter Service Characteristic value. The parameter of this event is a structure of
CYBLE_PLXS_CHAR_VALUE_T type.

CYBLE_EVT_PLXSC_READ_DESCR_RESPONSE PLXS Client - Read Response for Read Request of
Pulse Oximeter Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_PLXS_DESCR_VALUE_T type.

CYBLE_EVT_PLXSC_WRITE_DESCR_RESPONSE PLXS Client - Write Response for Write Request of
Pulse Oximeter Service Characteristic Configuration Descriptor value. The parameter of this event is a
structure of CYBLE_PLXS_DESCR_VALUE_T type.

CYBLE_EVT_PLXSC_TIMEOUT PLXS Client - PLX RACP procedure timeout was received. The parameter
of this event is a structure of the cy_stc_ble_plxs_char_value_t type.

CYBLE_EVT_RSCSS_NOTIFICATION_ENABLED RSCS Server - Notifications for Running Speed and
Cadence Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSS_NOTIFICATION_DISABLED RSCS Server - Notifications for Running Speed and
Cadence Service Characteristic was disabled. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 229 of 559

CYBLE_EVT_RSCSS_INDICATION_ENABLED RSCS Server - Indication for Running Speed and Cadence
Service Characteristic was enabled. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSS_INDICATION_DISABLED RSCS Server - Indication for Running Speed and Cadence
Service Characteristic was disabled. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSS_INDICATION_CONFIRMATION RSCS Server - Running Speed and Cadence
Service Characteristic Indication was confirmed. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSS_CHAR_WRITE RSCS Server - Write Request for Running Speed and Cadence
Service Characteristic was received. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSC_NOTIFICATION RSCS Client - Running Speed and Cadence Service Characteristic
Notification was received. The parameter of this event is a structure of CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSC_INDICATION RSCS Client - Running Speed and Cadence Service Characteristic
Indication was received. The parameter of this event is a structure of CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSC_READ_CHAR_RESPONSE RSCS Client - Read Response for Read Request of
Running Speed and Cadence Service Characteristic value. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSC_WRITE_CHAR_RESPONSE RSCS Client - Write Response for Write Request of
Running Speed and Cadence Service Characteristic value. The parameter of this event is a structure of
CYBLE_RSCS_CHAR_VALUE_T type.

CYBLE_EVT_RSCSC_READ_DESCR_RESPONSE RSCS Client - Read Response for Read Request of
Running Speed and Cadence Service Characteristic Descriptor Read request. The parameter of this event is
a structure of CYBLE_RSCS_DESCR_VALUE_T type.

CYBLE_EVT_RSCSC_WRITE_DESCR_RESPONSE RSCS Client - Write Response for Write Request of
Running Speed and Cadence Service Characteristic Configuration Descriptor value. The parameter of this
event is a structure of CYBLE_RSCS_DESCR_VALUE_T type.

CYBLE_EVT_RTUSS_WRITE_CHAR_CMD RTUS Server - Write command request for Reference Time
Update Characteristic value. The parameter of this event is a structure of CYBLE_RTUS_CHAR_VALUE_T
type.

CYBLE_EVT_RTUSC_READ_CHAR_RESPONSE RTUS Client - Read Response for Read Request of
Reference Time Update Service Characteristic value. The parameter of this event is a structure of
CYBLE_RTUS_CHAR_VALUE_T type.

CYBLE_EVT_SCPSS_NOTIFICATION_ENABLED ScPS Server - Notifications for Scan Refresh
Characteristic were enabled. The parameter of this event is a structure of CYBLE_SCPS_CHAR_VALUE_T
type.

CYBLE_EVT_SCPSS_NOTIFICATION_DISABLED ScPS Server - Notifications for Scan Refresh
Characteristic were disabled. The parameter of this event is a structure of CYBLE_SCPS_CHAR_VALUE_T
type.

CYBLE_EVT_SCPSS_SCAN_INT_WIN_CHAR_WRITE ScPS Client - Read Response for Scan Interval
Window Characteristic Value of Scan Parameters Service. The parameter of this event is a structure of
CYBLE_SCPS_CHAR_VALUE_T type.

CYBLE_EVT_SCPSC_NOTIFICATION ScPS Client - Scan Refresh Characteristic Notification was received.
The parameter of this event is a structure of CYBLE_SCPS_CHAR_VALUE_T type.

CYBLE_EVT_SCPSC_READ_DESCR_RESPONSE ScPS Client - Read Response for Scan Refresh
Characteristic Descriptor Read Request. The parameter of this event is a structure of
CYBLE_SCPS_DESCR_VALUE_T type.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 230 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_SCPSC_WRITE_DESCR_RESPONSE ScPS Client - Write Response for Scan Refresh Client
Characteristic Configuration Descriptor Value. The parameter of this event is a structure of
CYBLE_SCPS_DESCR_VALUE_T type.

CYBLE_EVT_TPSS_NOTIFICATION_ENABLED TPS Server - Notification for Tx Power Level
Characteristic was enabled. The parameter of this event is a structure of CYBLE_TPS_CHAR_VALUE_T
type.

CYBLE_EVT_TPSS_NOTIFICATION_DISABLED TPS Server - Notification for Tx Power Level
Characteristic was disabled. The parameter of this event is a structure of CYBLE_TPS_CHAR_VALUE_T
type.

CYBLE_EVT_TPSC_NOTIFICATION TPS Client - Tx Power Level Characteristic Notification. The parameter
of this event is a structure of CYBLE_TPS_CHAR_VALUE_T type.

CYBLE_EVT_TPSC_READ_CHAR_RESPONSE TPS Client - Read Response for Tx Power Level
Characteristic Value Read Request. The parameter of this event is a structure of
CYBLE_TPS_CHAR_VALUE_T type.

CYBLE_EVT_TPSC_READ_DESCR_RESPONSE TPS Client - Read Response for Tx Power Level Client
Characteristic Configuration Descriptor Value Read Request. The parameter of this event is a structure of
CYBLE_TPS_DESCR_VALUE_T type.

CYBLE_EVT_TPSC_WRITE_DESCR_RESPONSE TPS Client - Write Response for Tx Power Level
Characteristic Descriptor Value Write Request. The parameter of this event is a structure of
CYBLE_TPS_DESCR_VALUE_T type.

CYBLE_EVT_UDSS_INDICATION_ENABLED UDS Server - Indication for User Data Service Characteristic
was enabled. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSS_INDICATION_DISABLED UDS Server - Indication for User Data Service Characteristic
was disabled. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSS_INDICATION_CONFIRMED UDS Server - User Data Service Characteristic Indication
was confirmed. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSS_NOTIFICATION_ENABLED UDS Server - Notifications for User Data Service
Characteristic were enabled. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T
type.

CYBLE_EVT_UDSS_NOTIFICATION_DISABLED UDS Server - Notifications for User Data Service
Characteristic were disabled. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T
type.

CYBLE_EVT_UDSS_READ_CHAR UDS Server - Read Request for User Data Service Characteristic was
received. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSS_WRITE_CHAR UDS Server - Write Request for User Data Service Characteristic was
received. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSC_INDICATION UDS Client - User Data Service Characteristic Indication was received.
The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSC_NOTIFICATION UDS Client - User Data Service Characteristic Notification was
received. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSC_READ_CHAR_RESPONSE UDS Client - Read Response for Read Request of User
Data Service Characteristic value. The parameter of this event is a structure of
CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSC_WRITE_CHAR_RESPONSE UDS Client - Write Response for Write Request of User
Data Service Characteristic value. The parameter of this event is a structure of
CYBLE_UDS_CHAR_VALUE_T type.

CYBLE_EVT_UDSC_READ_DESCR_RESPONSE UDS Client - Read Response for Read Request of User
Data Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_UDS_DESCR_VALUE_T type.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 231 of 559

CYBLE_EVT_UDSC_WRITE_DESCR_RESPONSE UDS Client - Write Response for Write Request of User
Data Service Characteristic Configuration Descriptor value. The parameter of this event is a structure of
CYBLE_UDS_DESCR_VALUE_T type.

CYBLE_EVT_UDSC_ERROR_RESPONSE UDS Client - Error Response for Write Request for User Data
Service Characteristic Value. The parameter of this event is a structure of CYBLE_UDS_CHAR_VALUE_T
type.

CYBLE_EVT_WPTSS_NOTIFICATION_ENABLED WPTS Server - Notifications for Wireless Power
Transfer Service Characteristic were enabled. The parameter of this event is a structure of
CYBLE_WPTS_CHAR_VALUE_T type.

CYBLE_EVT_WPTSS_NOTIFICATION_DISABLED WPTS Server - Notifications for Wireless Power
Transfer Service Characteristic were disabled. The parameter of this event is a structure of
CYBLE_WPTS_CHAR_VALUE_T type.

CYBLE_EVT_WPTSS_INDICATION_ENABLED WPTS Server - Indication for Wireless Power Transfer
Service Characteristic was enabled. The parameter of this event is a structure of
CYBLE_WPTS_CHAR_VALUE_T type.

CYBLE_EVT_WPTSS_INDICATION_DISABLED WPTS Server - Indication for Wireless Power Transfer
Service Characteristic was disabled. The parameter of this event is a structure of
CYBLE_WPTS_CHAR_VALUE_T type.

CYBLE_EVT_WPTSS_INDICATION_CONFIRMED WPTS Server - Wireless Power Transfer Service
Characteristic Indication was confirmed. The parameter of this event is a structure of
CYBLE_WPTS_CHAR_VALUE_T type.

CYBLE_EVT_WPTSS_WRITE_CHAR WPTS Server - Write Request for Wireless Power Transfer Service
Characteristic was received. The parameter of this event is a structure of CYBLE_WPTS_CHAR_VALUE_T
type.

CYBLE_EVT_WPTSC_NOTIFICATION WPTS Client - Wireless Power Transfer Service Characteristic
Notification was received. The parameter of this event is a structure of CYBLE_WPTS_CHAR_VALUE_T
type.

CYBLE_EVT_WPTSC_INDICATION WPTS Client - Wireless Power Transfer Service Characteristic
Indication was received. The parameter of this event is a structure of CYBLE_WPTS_CHAR_VALUE_T type.

CYBLE_EVT_WPTSC_WRITE_CHAR_RESPONSE WPTS Client - Write Response for Read Request of
Wireless Power Transfer Service Characteristic value. The parameter of this event is a structure of
CYBLE_WPTS_CHAR_VALUE_T type.

CYBLE_EVT_WPTSC_READ_CHAR_RESPONSE WPTS Client - Read Response for Read Request of
Wireless Power Transfer Service Characteristic value. The parameter of this event is a structure of
CYBLE_WPTS_CHAR_VALUE_T type.

CYBLE_EVT_WPTSC_READ_DESCR_RESPONSE WPTS Client - Read Response for Read Request of
Wireless Power Transfer Service Characteristic Descriptor Read request. The parameter of this event is a
structure of CYBLE_WPTS_DESCR_VALUE_T type.

CYBLE_EVT_WPTSC_WRITE_DESCR_RESPONSE WPTS Client - Write Response for Write Request of
Wireless Power Transfer Service Characteristic Configuration Descriptor value. The parameter of this event
is a structure of CYBLE_WPTS_DESCR_VALUE_T type.

CYBLE_EVT_WSSS_INDICATION_ENABLED WSS Server - Indication for Weight Scale Service
Characteristic was enabled. The parameter of this event is a structure of CYBLE_WSS_CHAR_VALUE_T
type.

CYBLE_EVT_WSSS_INDICATION_DISABLED WSS Server - Indication for Weight Scale Service
Characteristic was disabled. The parameter of this event is a structure of CYBLE_WSS_CHAR_VALUE_T
type.

CYBLE_EVT_WSSS_INDICATION_CONFIRMED WSS Server - Weight Scale Service Characteristic
Indication was confirmed. The parameter of this event is a structure of CYBLE_WSS_CHAR_VALUE_T type.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 232 of 559 Document Number: 002-29930 Rev. *A

CYBLE_EVT_WSSC_INDICATION WSS Client - Weight Scale Service Characteristic Indication was
received. The parameter of this event is a structure of CYBLE_WSS_CHAR_VALUE_T type.

CYBLE_EVT_WSSC_READ_CHAR_RESPONSE WSS Client - Read Response for Read Request of
Weight Scale Service Characteristic value. The parameter of this event is a structure of
CYBLE_WSS_CHAR_VALUE_T type.

CYBLE_EVT_WSSC_READ_DESCR_RESPONSE WSS Client - Read Response for Read Request of
Weight Scale Service Characteristic Descriptor Read request. The parameter of this event is a structure of
CYBLE_WSS_DESCR_VALUE_T type.

CYBLE_EVT_WSSC_WRITE_DESCR_RESPONSE WSS Client - Write Response for Write Request of
Weight Scale Service Characteristic Configuration Descriptor value. The parameter of this event is a structure
of CYBLE_WSS_DESCR_VALUE_T type.

CYBLE_DEBUG_EVT_BLESS_INT Event from BLESS interrupt, enebled when StackMode parameter is
set to Debug in the expression view of the customizer's General tab.

Apple Notification Center Service (ANCS)

Description

The Apple Notification Center Service provides iOS notifications from Apple devices for accessories.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The ANCS API names begin with CyBle_Ancs. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• ANCS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• ANCS Server Functions

APIs unique to ANCS designs configured as a GATT Server role.

• ANCS Client Functions

APIs unique to ANCS designs configured as a GATT Client role.

• ANCS Definitions and Data Structures

Contains the ANCS specific definitions and data structures used in the ANCS APIs.

ANCS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Ancs

Functions

• void CyBle_AncsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 233 of 559

Function Documentation

void CyBle_AncsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service-specific attribute operations. Service-specific write requests from a peer
device will not be handled with an unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for ANCS is:
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam), where:

• eventCode indicates The event that triggered this callback.

• eventParam contains The parameters corresponding to the
current event.

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

ANCS Server Functions

Description

APIs unique to ANCS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Ancss

Functions

• CYBLE_API_RESULT_T CyBle_AncssSetCharacteristicValue (CYBLE_ANCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AncssGetCharacteristicValue (CYBLE_ANCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AncssGetCharacteristicDescriptor (CYBLE_ANCS_CHAR_INDEX_T
charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AncssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_AncssSetCharacteristicValue (CYBLE_ANCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets the value of the characteristic, as identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 234 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_AncssGetCharacteristicValue (CYBLE_ANCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets the value of the characteristic, as identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - A characteristic is absent.

CYBLE_API_RESULT_T CyBle_AncssGetCharacteristicDescriptor (CYBLE_ANCS_CHAR_INDEX_T
charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The Characteristic Descriptor value was read successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - A characteristic is absent.

CYBLE_API_RESULT_T CyBle_AncssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification of the specified characteristic value, as identified by the charIndex. On enabling notification
successfully for a service characteristic it sends out a 'Handle Value Notification' which results in
CYBLE_EVT_ANCSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle that consists of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 235 of 559

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

ANCS Client Functions

Description

APIs unique to ANCS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Ancsc

Functions

• CYBLE_API_RESULT_T CyBle_AncscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AncscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANCS_CHAR_INDEX_T charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AncscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANCS_CHAR_INDEX_T charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_AncscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_ANCSS_WRITE_CHAR events is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ANCS service-specific callback is registered (with CyBle_AncsRegisterAttrCallback):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 236 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_ANCSC_WRITE_CHAR_RESPONSE - If the requested attribute is successfully written
on the peer device, the details (char index, etc.) are provided with an event parameter structure of type
CYBLE_ANCS_CHAR_VALUE_T.

Otherwise (if the ANCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_AncscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANCS_CHAR_INDEX_T charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 *attrValue)

This function is used to write the characteristic Value to the server, as identified by its charIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_ANCSS_NOTIFICATION_ENABLED.

• CYBLE_EVT_ANCSS_NOTIFICATION_DISABLED.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successfull execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ANCS service-specific callback is registered (with CyBle_AncsRegisterAttrCallback):

• CYBLE_EVT_ANCSC_WRITE_DESCR_RESPONSE - If the requested attribute is successfully written
on the peer device, the details (char index, descr index etc.) are provided with an event parameter
structure of type CYBLE_ANCS_DESCR_VALUE_T.

Otherwise (if the ANCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T.

CYBLE_API_RESULT_T CyBle_AncscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANCS_CHAR_INDEX_T charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 237 of 559

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ANCS service-specific callback is registered (with CyBle_AncsRegisterAttrCallback):

• CYBLE_EVT_ANCSC_READ_DESCR_RESPONSE - If the requested attribute is successfully written
on the peer device, the details (char index, descr index, value, etc.) are provided with an event
parameter structure of type CYBLE_ANCS_DESCR_VALUE_T.

Otherwise (if the ANCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

ANCS Definitions and Data Structures

Description

Contains the ANCS specific definitions and data structures used in the ANCS APIs.

Data Structures

• struct CYBLE_ANCSS_CHAR_T

• struct CYBLE_ANCSS_T

• struct CYBLE_ANCSC_CHAR_T

• struct CYBLE_ANCSC_T

• struct CYBLE_ANCS_CHAR_VALUE_T

• struct CYBLE_ANCS_DESCR_VALUE_T

Enumerations

• enum CYBLE_ANCS_CHAR_INDEX_T

• enum CYBLE_ANCS_DESCR_INDEX_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 238 of 559 Document Number: 002-29930 Rev. *A

Data Structure Documentation

struct CYBLE_ANCSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_ANCS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ANCSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_ANCSS_CHAR_T::descrHandle[CYBLE_ANCS_DESCR_COUNT]

Handle of descriptor

struct CYBLE_ANCSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_ANCSS_CHAR_T charInfo [CYBLE_ANCS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ANCSS_T::serviceHandle

ANC Service handle

CYBLE_ANCSS_CHAR_T CYBLE_ANCSS_T::charInfo[CYBLE_ANCS_CHAR_COUNT]

ANC Service characteristics info array

struct CYBLE_ANCSC_CHAR_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_ANCS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

uint8 CYBLE_ANCSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ANCSC_CHAR_T::valueHandle

Handle of server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_ANCSC_CHAR_T::descrHandle[CYBLE_ANCS_DESCR_COUNT]

ANCS client char. descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ANCSC_CHAR_T::endHandle

Characteristic End Handle

struct CYBLE_ANCSC_T

Data Fields

• CYBLE_ANCSC_CHAR_T charInfo [CYBLE_ANCS_CHAR_COUNT]

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 239 of 559

Field Documentation

CYBLE_ANCSC_CHAR_T CYBLE_ANCSC_T::charInfo[CYBLE_ANCS_CHAR_COUNT]

Characteristics handle + properties array

struct CYBLE_ANCS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_ANCS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_ANCS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_ANCS_CHAR_INDEX_T CYBLE_ANCS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_ANCS_CHAR_VALUE_T::value

Characteristic value

CYBLE_GATT_ERR_CODE_T CYBLE_ANCS_CHAR_VALUE_T::gattErrorCode

GATT error code for access control

struct CYBLE_ANCS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_ANCS_CHAR_INDEX_T charIndex

• CYBLE_ANCS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_ANCS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_ANCS_CHAR_INDEX_T CYBLE_ANCS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_ANCS_DESCR_INDEX_T CYBLE_ANCS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_ANCS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_ANCS_CHAR_INDEX_T

ANC Service Characteristics indexes

Enumerator

CYBLE_ANCS_NS Notification Source characteristic index

CYBLE_ANCS_CP Control Point characteristic index

CYBLE_ANCS_DS Data Source characteristic index

CYBLE_ANCS_CHAR_COUNT Total count of ANCS characteristics

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 240 of 559 Document Number: 002-29930 Rev. *A

enum CYBLE_ANCS_DESCR_INDEX_T

ANC Service Characteristic Descriptors indexes

Enumerator

CYBLE_ANCS_CCCD Client Characteristic Configuration descriptor index

CYBLE_ANCS_DESCR_COUNT Total count of ANCS descriptors

Alert Notification Service (ANS)

Description

The Alert Notification Service exposes alert information in a device.

This information includes:

• Type of alert occurring in a device

• Additional text information such as the caller's ID or sender's ID

• Count of new alerts

• Count of unread alert items

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The ANS API names begin with CyBle_Ans. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• ANS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• ANS Server Functions

APIs unique to ANS designs configured as a GATT Server role.

• ANS Client Functions

APIs unique to ANS designs configured as a GATT Client role.

• ANS Definitions and Data Structures

Contains the ANS specific definitions and data structures used in the ANS APIs.

ANS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Ans

Functions

• void CyBle_AnsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_AnsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for Alert Notification Service specific attribute operations. Service specific write
requests from peer device will not be handled with unregistered callback function.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 241 of 559

Parameters:

callbackFunc An application layer event callback function to receive service specific
events from the BLE Component. The definition of
CYBLE_CALLBACK_T for Alert Notification Service is,
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_ANSS_NOTIFICATION_ENABLED)

• eventParam contains the parameters corresponding to the
current event (e.g. Pointer to CYBLE_ANS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered).

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

ANS Server Functions

Description

APIs unique to ANS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Anss

Functions

• CYBLE_API_RESULT_T CyBle_AnssSetCharacteristicValue (CYBLE_ANS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AnssGetCharacteristicValue (CYBLE_ANS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AnssGetCharacteristicDescriptor (CYBLE_ANS_CHAR_INDEX_T charIndex,
CYBLE_ANS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AnssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_AnssSetCharacteristicValue (CYBLE_ANS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets a characteristic value of Alert Notification Service, which is a value identified by charIndex, to the local
database.

Parameters:

charIndex The index of the service characteristic of type
CYBLE_ANS_CHAR_INDEX_T. The valid values are,

• CYBLE_ANS_SUPPORTED_NEW_ALERT_CAT

• CYBLE_ANS_SUPPORTED_UNREAD_ALERT_CAT

attrSize The size of the characteristic value attribute.

attrValue The pointer to characteristic value data that should be stored in the
GATT database.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 242 of 559 Document Number: 002-29930 Rev. *A

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_AnssGetCharacteristicValue (CYBLE_ANS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets a characteristic value of Alert Notification Service. The value is identified by charIndex.

Parameters:

charIndex The index of the service characteristic of type
CYBLE_ANS_CHAR_INDEX_T. The valid values are,

• CYBLE_ANS_NEW_ALERT

• CYBLE_ANS_UNREAD_ALERT_STATUS

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_AnssGetCharacteristicDescriptor (CYBLE_ANS_CHAR_INDEX_T charIndex,
CYBLE_ANS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of the specified characteristic of Alert Notification Service.

Parameters:

charIndex The index of the service characteristic of type
CYBLE_ANS_CHAR_INDEX_T. The valid values are,

• CYBLE_ANS_NEW_ALERT

• CYBLE_ANS_UNREAD_ALERT_STATUS

descrIndex The index of the service characteristic descriptor of type
CYBLE_ANS_DESCR_INDEX_T. The valid value is,

• CYBLE_ANS_CCCD

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_AnssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification with the characteristic value, as specified by its charIndex, to the Client device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_ANSC_NOTIFICATION event at the GATT Client's end.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 243 of 559

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic of type
CYBLE_ANS_CHAR_INDEX_T. The valid values are,

• CYBLE_ANS_UNREAD_ALERT_STATUS;

• CYBLE_ANS_NEW_ALERT.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The function completed successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

ANS Client Functions

Description

APIs unique to ANS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Ansc

Functions

• CYBLE_API_RESULT_T CyBle_AnscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_AnscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AnscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, CYBLE_ANS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_AnscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_AnscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex)

Sends a request to the peer device to get a characteristic value, as identified by its charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully;

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 244 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_INVALID_STATE - The component in in invalid state for current operation.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ANS service-specific callback is registered (with CyBle_AnsRegisterAttrCallback):

• CYBLE_EVT_ANSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_ANS_CHAR_VALUE_T.

Otherwise (if the ANS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_AnscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_ANSS_CHAR_WRITE events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize Size of the Characteristic value attribute.

attrValue Pointer to the characteristic value data that should be sent to the server
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_STATE - The component in in invalid state for current operation.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ANS service-specific callback is registered (with CyBle_AnsRegisterAttrCallback):

• CYBLE_EVT_ANSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_ANS_CHAR_VALUE_T.

Otherwise (if the ANS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 245 of 559

CYBLE_API_RESULT_T CyBle_AnscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, CYBLE_ANS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

Sends a request to the peer device to set the characteristic descriptor of the specified characteristic of Alert
Notification Service.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_ANSS_NOTIFICATION_ENABLED;

• CYBLE_EVT_ANSS_NOTIFICATION_DISABLED.

Parameters:

connHandle The BLE peer device connection handle.

charIndex The index of the ANS characteristic.

descrIndex The index of the ANS characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue Pointer to the characteristic descriptor value data that should be sent to
the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_STATE - The component in in invalid state for current operation.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ANS service-specific callback is registered (with CyBle_AnsRegisterAttrCallback):

• CYBLE_EVT_ANSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_ANS_DESCR_VALUE_T.

Otherwise (if the ANS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_AnscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 descrIndex)

Sends a request to the peer device to get the characteristic descriptor of the specified characteristic of Alert
Notification Service.

Parameters:

connHandle BLE peer device connection handle.

charIndex The index of the Service Characteristic.

descrIndex The index of the Service Characteristic Descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - A request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The component is in invalid state for current operation.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 246 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Cannot process a request to send PDU due to invalid
operation performed by the application.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ANS service-specific callback is registered (with CyBle_AnsRegisterAttrCallback):

• CYBLE_EVT_ANSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_ANS_DESCR_VALUE_T.

Otherwise (if the ANS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

ANS Definitions and Data Structures

Description

Contains the ANS specific definitions and data structures used in the ANS APIs.

Data Structures

• struct CYBLE_ANS_CHAR_VALUE_T

• struct CYBLE_ANS_DESCR_VALUE_T

• struct CYBLE_ANSS_CHAR_T

• struct CYBLE_ANSS_T

• struct CYBLE_SRVR_FULL_CHAR_INFO_T

• struct CYBLE_ANSC_T

Enumerations

• enum CYBLE_ANS_CHAR_INDEX_T

• enum CYBLE_ANS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_ANS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_ANS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_ANS_CHAR_VALUE_T::connHandle

Peer device handle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 247 of 559

CYBLE_ANS_CHAR_INDEX_T CYBLE_ANS_CHAR_VALUE_T::charIndex

Index of Alert Notification Service Characteristic

CYBLE_GATT_VALUE_T* CYBLE_ANS_CHAR_VALUE_T::value

Pointer to Characteristic value

struct CYBLE_ANS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_ANS_CHAR_INDEX_T charIndex

• CYBLE_ANS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_ANS_DESCR_VALUE_T::connHandle

Connection handle

CYBLE_ANS_CHAR_INDEX_T CYBLE_ANS_DESCR_VALUE_T::charIndex

Characteristic index of Service

CYBLE_ANS_DESCR_INDEX_T CYBLE_ANS_DESCR_VALUE_T::descrIndex

Service Characteristic Descriptor index

CYBLE_GATT_VALUE_T* CYBLE_ANS_DESCR_VALUE_T::value

Pointer to value of Service Characteristic Descriptor value

struct CYBLE_ANSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_ANS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ANSS_CHAR_T::charHandle

Handle of Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ANSS_CHAR_T::descrHandle[CYBLE_ANS_DESCR_COUNT]

Handle of Descriptor

struct CYBLE_ANSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_ANSS_CHAR_T charInfo [CYBLE_ANS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ANSS_T::serviceHandle

Alert Notification Service handle

CYBLE_ANSS_CHAR_T CYBLE_ANSS_T::charInfo[CYBLE_ANS_CHAR_COUNT]

Array of Alert Notification Service Characteristics + Descriptors handles

struct CYBLE_SRVR_FULL_CHAR_INFO_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T charInfo

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 248 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_GATT_DB_ATTR_HANDLE_T descriptors [CYBLE_ANS_DESCR_COUNT]

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_SRVR_FULL_CHAR_INFO_T::charInfo

Characteristic handle + properties

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_SRVR_FULL_CHAR_INFO_T::endHandle

End handle of characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_SRVR_FULL_CHAR_INFO_T::descriptors[CYBLE_ANS_DESCR_COUNT]

Characteristic descriptors handles

struct CYBLE_ANSC_T

Data Fields

• CYBLE_SRVR_FULL_CHAR_INFO_T characteristics [CYBLE_ANS_CHAR_COUNT]

Field Documentation

CYBLE_SRVR_FULL_CHAR_INFO_T CYBLE_ANSC_T::characteristics[CYBLE_ANS_CHAR_COUNT]

Structure with Characteristic handles + properties of Alert Notification Service

Enumeration Type Documentation

enum CYBLE_ANS_CHAR_INDEX_T

ANS Characteristic indexes

Enumerator

CYBLE_ANS_SUPPORTED_NEW_ALERT_CAT Supported New Alert Category Characteristic index

CYBLE_ANS_NEW_ALERT New Alert Characteristic index

CYBLE_ANS_SUPPORTED_UNREAD_ALERT_CAT Supported Unread Alert Category Characteristic
index

CYBLE_ANS_UNREAD_ALERT_STATUS Unread Alert Status Characteristic index

CYBLE_ANS_ALERT_NTF_CONTROL_POINT Alert Notification Control Point Characteristic index

CYBLE_ANS_CHAR_COUNT Total count of ANS characteristics

enum CYBLE_ANS_DESCR_INDEX_T

ANS Characteristic Descriptors indexes

Enumerator

CYBLE_ANS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_ANS_DESCR_COUNT Total count of descriptors

Automation IO Service (AIOS)

Description

The Automation IO Service enables a device to connect and interact with an Automation IO Module (IOM) in order to
access digital and analog signals.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The AIOS API names begin with CyBle_Aios. In addition to this, the APIs also append the GATT role initial letter in
the API name.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 249 of 559

Modules

• AIOS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• AIOS Server Functions

APIs unique to AIOS designs configured as a GATT Server role.

• AIOS Client Functions

APIs unique to AIOS designs configured as a GATT Client role.

• AIOS Definitions and Data Structures

Contains the AIOS specific definitions and data structures used in the AIOS APIs.

AIOS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Aios

Functions

• void CyBle_AiosRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_AiosRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for AIOS
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode: Indicates the event that triggered this callback (e.g.
CYBLE_EVT_AIOS_NOTIFICATION_ENABLED).

• eventParam: Contains the parameters corresponding to the
current event. (e.g. Pointer to CYBLE_AIOS_CHAR_VALUE_T
structure that contains details of the characteristic for which the
notification enabled event was triggered).

AIOS Server Functions

Description

APIs unique to AIOS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Aioss

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 250 of 559 Document Number: 002-29930 Rev. *A

Functions

• CYBLE_API_RESULT_T CyBle_AiossSetCharacteristicValue (CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8
charInstance, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AiossGetCharacteristicValue (CYBLE_AIOS_CHAR_INDEX_T charIndex,
uint8 charInstance, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AiossSetCharacteristicDescriptor (CYBLE_AIOS_CHAR_INDEX_T charIndex,
uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AiossGetCharacteristicDescriptor (CYBLE_AIOS_CHAR_INDEX_T charIndex,
uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AiossSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AiossSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_AiossSetCharacteristicValue (CYBLE_AIOS_CHAR_INDEX_T charIndex,
uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Sets the characteristic value of the service in the local database.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size (in bytes) of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_AiossGetCharacteristicValue (CYBLE_AIOS_CHAR_INDEX_T charIndex,
uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Gets the characteristic value of the service, which is a value identified by charIndex.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 251 of 559

CYBLE_API_RESULT_T CyBle_AiossSetCharacteristicDescriptor (CYBLE_AIOS_CHAR_INDEX_T charIndex,
uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Set a characteristic descriptor of a specified characteristic of the Indoor Positioning Service from the local GATT
database.

Parameters:

charIndex The index of the characteristic.

charInstance The instance number of the characteristic specified by "charIndex".

descrIndex The index of the characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data to be stored in the GATT
database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_AiossGetCharacteristicDescriptor (CYBLE_AIOS_CHAR_INDEX_T
charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the Automation Input Outtput Service from the local
GATT database.

Parameters:

charIndex The index of the characteristic.

charInstance The instance number of the characteristic specified by "charIndex".

descrIndex The index of the characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_AiossSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Sends a notification with a characteristic value of the Automation Input Output Service, which is a value specified
by charIndex, to the client's device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_AIOSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 252 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - A notification is not enabled by the client.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_AiossSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Sends an indication with a characteristic value of the Automation Input Output Service, which is a value specified
by charIndex, to the client's device.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_AIOSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the Aios service-specific callback is registered (with CyBle_AiosRegisterAttrCallback):

• CYBLE_EVT_AiosS_INDICATION_CONFIRMED -In case if the indication is successfully delivered to
the peer device.

Otherwise (if the Aios service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - In case if the indication is successfully delivered to the
peer device.

AIOS Client Functions

Description

APIs unique to AIOS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Aiosc

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 253 of 559

Functions

• CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicValueWithoutResponse (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AioscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance)

• CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_AioscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicValueWithoutResponse (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server
without response.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_AIOSS_CHAR_WRITE events is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 254 of 559 Document Number: 002-29930 Rev. *A

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the AIOS service-specific callback is registered (with CyBle_AiosRegisterAttrCallback):

• CYBLE_EVT_AIOSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_AIOS_CHAR_VALUE_T.

Otherwise (if the AIOS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_AioscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance)

This function is used to read a characteristic value, which is a value identified by charIndex, from the server.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the AIOS service-specific callback is registered (with CyBle_AiosRegisterAttrCallback):

• CYBLE_EVT_AIOSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_AIOS_CHAR_VALUE_T.

Otherwise (if the AIOS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 255 of 559

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_AIOSS_DESCR_WRITE events is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_AIOSS_NOTIFICATION_ENABLED ;

• CYBLE_EVT_AIOSS_NOTIFICATION_DISABLED;

• CYBLE_EVT_AIOSS_INDICATION_ENABLED;

• CYBLE_EVT_AIOSS_INDICATION_DISABLED.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional Characteristic Descriptor is
absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the AIOS service-specific callback is registered (with CyBle_AiosRegisterAttrCallback):

• CYBLE_EVT_AIOSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_AIOS_DESCR_VALUE_T.

Otherwise (if the AIOS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_AioscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex)

Sends a request to get the characteristic descriptor of the specified characteristic of the service.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 256 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

descrIndex The index of the service characteristic descriptor.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional Characteristic Descriptor is
absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
If the AIOS service-specific callback is registered (with CyBle_AiosRegisterAttrCallback):

• CYBLE_EVT_AIOSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_AIOS_DESCR_VALUE_T.

Otherwise (if the AIOS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

AIOS Definitions and Data Structures

Description

Contains the AIOS specific definitions and data structures used in the AIOS APIs.

Data Structures

• struct CYBLE_AIOSS_CHAR_T

• struct CYBLE_AIOSS_CHAR_INFO_PTR_T

• struct CYBLE_AIOSS_T

• struct CYBLE_AIOSC_CHAR_T

• struct CYBLE_AIOSC_CHAR_INFO_PTR_T

• struct CYBLE_AIOSC_T

• struct CYBLE_AIOS_CHAR_VALUE_T

• struct CYBLE_AIOS_DESCR_VALUE_T

Enumerations

• enum CYBLE_AIOS_CHAR_INDEX_T

• enum CYBLE_AIOS_DESCR_INDEX_T

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 257 of 559

Data Structure Documentation

struct CYBLE_AIOSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_AIOS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_AIOSS_CHAR_T::charHandle

Handles of Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_AIOSS_CHAR_T::descrHandle[CYBLE_AIOS_DESCR_COUNT]

Array of Descriptor handles

struct CYBLE_AIOSS_CHAR_INFO_PTR_T

Data Fields

• CYBLE_AIOSS_CHAR_T * charInfoPtr

Field Documentation

CYBLE_AIOSS_CHAR_T* CYBLE_AIOSS_CHAR_INFO_PTR_T::charInfoPtr

Pointer to CYBLE_AIOSS_CHAR_T which holds information about specific AIO Characteristic

struct CYBLE_AIOSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_AIOSS_CHAR_INFO_PTR_T charInfoAddr [CYBLE_AIOS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_AIOSS_T::serviceHandle

Automation Input Output Service handle

CYBLE_AIOSS_CHAR_INFO_PTR_T CYBLE_AIOSS_T::charInfoAddr[CYBLE_AIOS_CHAR_COUNT]

Automation Input Output Service Array with pointers to Characteristic handles.

struct CYBLE_AIOSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_AIOS_DESCR_COUNT]

• uint8 properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_AIOSC_CHAR_T::valueHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_AIOSC_CHAR_T::endHandle

End handle of characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_AIOSC_CHAR_T::descrHandle[CYBLE_AIOS_DESCR_COUNT]

Array of Descriptor handles

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 258 of 559 Document Number: 002-29930 Rev. *A

uint8 CYBLE_AIOSC_CHAR_T::properties

Properties for value field

struct CYBLE_AIOSC_CHAR_INFO_PTR_T

Data Fields

• CYBLE_AIOSC_CHAR_T * charInfoPtr

Field Documentation

CYBLE_AIOSC_CHAR_T* CYBLE_AIOSC_CHAR_INFO_PTR_T::charInfoPtr

Pointer to CYBLE_AIOSC_CHAR_T which holds information about specific AIO Characteristic.

struct CYBLE_AIOSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_AIOSC_CHAR_INFO_PTR_T charInfoAddr [CYBLE_AIOS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_AIOSC_T::serviceHandle

Automation Input Output Service handle

CYBLE_AIOSC_CHAR_INFO_PTR_T CYBLE_AIOSC_T::charInfoAddr[CYBLE_AIOS_CHAR_COUNT]

Automation Input Output Service Array with pointers to characteristic information.

struct CYBLE_AIOS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_AIOS_CHAR_INDEX_T charIndex

• uint8 charInstance

• CYBLE_GATT_VALUE_T * value

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_AIOS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_AIOS_CHAR_INDEX_T CYBLE_AIOS_CHAR_VALUE_T::charIndex

Index of service characteristic

uint8 CYBLE_AIOS_CHAR_VALUE_T::charInstance

Instance of specific service characteristic

CYBLE_GATT_VALUE_T* CYBLE_AIOS_CHAR_VALUE_T::value

Characteristic value

CYBLE_GATT_ERR_CODE_T CYBLE_AIOS_CHAR_VALUE_T::gattErrorCode

GATT error code for access control

struct CYBLE_AIOS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_AIOS_CHAR_INDEX_T charIndex

• uint8 charInstance

• CYBLE_AIOS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_ERR_CODE_T gattErrorCode

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 259 of 559

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_AIOS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_AIOS_CHAR_INDEX_T CYBLE_AIOS_DESCR_VALUE_T::charIndex

Index of service characteristic

uint8 CYBLE_AIOS_DESCR_VALUE_T::charInstance

Instance of specific service characteristic

CYBLE_AIOS_DESCR_INDEX_T CYBLE_AIOS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_ERR_CODE_T CYBLE_AIOS_DESCR_VALUE_T::gattErrorCode

Error code received from application (optional)

CYBLE_GATT_VALUE_T* CYBLE_AIOS_DESCR_VALUE_T::value

Characteristic value

Enumeration Type Documentation

enum CYBLE_AIOS_CHAR_INDEX_T

AIOS Characteristic indexes

Enumerator

CYBLE_AIOS_DIGITAL AIOS Digital characteristic

CYBLE_AIOS_ANALOG AIOS Analog characteristic

CYBLE_AIOS_AGGREGATE AIOS Aggregate characteristic

CYBLE_AIOS_CHAR_COUNT Total count of AIOS characteristics

enum CYBLE_AIOS_DESCR_INDEX_T

AIOS Characteristic Descriptors indexes

Enumerator

CYBLE_AIOS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_AIOS_CHAR_PRESENTATION_FORMAT Characteristic Presentation Format Descriptor index

CYBLE_AIOS_CHAR_USER_DESCRIPTION_DESCR Characteristic User Description Descriptor index

CYBLE_AIOS_CHAR_EXTENDED_PROPERTIES Characteristic Extended Properties Descriptor index

CYBLE_AIOS_VALUE_TRIGGER_SETTINGS AIO Value Trigger Settings Descriptor index

CYBLE_AIOS_TIME_TRIGGER_SETTINGS AIO Time Trigger Settings Descriptor index

CYBLE_AIOS_VRD Valid Range Descriptor index

CYBLE_AIOS_NUM_OF_DIGITAL_DESCR Number of Digitals Descriptor index

CYBLE_AIOS_DESCR_COUNT Total count of descriptors

Battery Service (BAS)

Description

The Battery Service exposes the battery level of a single battery or set of batteries in a device.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 260 of 559 Document Number: 002-29930 Rev. *A

The BAS API names begin with CyBle_Bas. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• BAS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• BAS Server Functions

APIs unique to BAS designs configured as a GATT Server role.

• BAS Client Functions

APIs unique to BAS designs configured as a GATT Client role.

• BAS Definitions and Data Structures

Contains the BAS specific definitions and data structures used in the BAS APIs.

BAS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Bas

Functions

• void CyBle_BasRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_BasRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive battery service
events from the BLE Component. The definition of
CYBLE_CALLBACK_T for Battery Service is,
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_BASS_NOTIFICATION_ENABLED)

• eventParam contains the parameters corresponding to the
current event (e.g., pointer to CYBLE_BAS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered)

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 261 of 559

BAS Server Functions

Description

APIs unique to BAS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Bass

Functions

• CYBLE_API_RESULT_T CyBle_BassSetCharacteristicValue (uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BassGetCharacteristicValue (uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BassGetCharacteristicDescriptor (uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_BassSendNotification (CYBLE_CONN_HANDLE_T connHandle, uint8
serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_BassSetCharacteristicValue (uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sets a characteristic value of the service in the local database.

Parameters:

serviceIndex The index of the service instance.

charIndex The index of the service characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute. A battery level
characteristic has 1 byte length.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_BassGetCharacteristicValue (uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic value of the Battery service, which is identified by charIndex.

Parameters:

serviceIndex The index of the service instance. e.g. If two Battery Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of a service characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute. A battery level
characteristic has a 1 byte length.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 262 of 559 Document Number: 002-29930 Rev. *A

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_BassGetCharacteristicDescriptor (uint8 serviceIndex,
CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

Gets a characteristic descriptor of a specified characteristic of the Battery service from the local GATT database.

Parameters:

serviceIndex The index of the service instance. e.g. If two Battery Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of a service characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_BAS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_BassSendNotification (CYBLE_CONN_HANDLE_T connHandle, uint8
serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function updates the value of the Battery Level characteristic in the GATT database. If the client has
configured a notification on the Battery Level characteristic, the function additionally sends this value using a
GATT Notification message.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_BASC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The BLE peer device connection handle

serviceIndex The index of the service instance. e.g. If two Battery Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of a service characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute. A battery level
characteristic has 1 byte length.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 263 of 559

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

BAS Client Functions

Description

APIs unique to BAS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Basc

Functions

• CYBLE_API_RESULT_T CyBle_BascGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, uint8
serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_BascSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BascGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_BascGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, uint8
serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic value from a server which is identified by charIndex.

This function call can result in generation of the following events based on the response from the server device.

• CYBLE_EVT_BASC_READ_CHAR_RESPONSE.

• CYBLE_EVT_GATTC_ERROR_RSP.

Parameters:

connHandle The BLE peer device connection handle.

serviceIndex Index of the service instance. e.g. If two Battery Services are supported
in your design, then first service will be identified by serviceIndex of 0
and the second by serviceIndex of 1.

charIndex The index of a service characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BAS service-specific callback is registered (with CyBle_BasRegisterAttrCallback):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 264 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_BASC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_BAS_CHAR_VALUE_T.

Otherwise (if the BAS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_BascSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 *attrValue)

Sends a request to set characteristic descriptor of specified Battery Service characteristic on the server device.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_BASS_NOTIFICATION_ENABLED.

• CYBLE_EVT_BASS_NOTIFICATION_DISABLED.

Parameters:

connHandle The BLE peer device connection handle.

serviceIndex Index of the service instance. e.g. If two Battery Services are supported
in your design, then first service will be identified by serviceIndex of 0
and the second by serviceIndex of 1.

charIndex The index of a service characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_BAS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue Pointer to the characteristic descriptor value data that should be sent to
the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BAS service-specific callback is registered (with CyBle_BasRegisterAttrCallback):

• CYBLE_EVT_BASC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_BAS_DESCR_VALUE_T.

Otherwise (if the BAS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 265 of 559

CYBLE_API_RESULT_T CyBle_BascGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex)

Sends a request to get characteristic descriptor of specified Battery Service characteristic from the server device.
This function call can result in generation of the following events based on the response from the server device.

• CYBLE_EVT_BASC_READ_DESCR_RESPONSE.

• CYBLE_EVT_GATTC_ERROR_RSP.

Parameters:

connHandle The BLE peer device connection handle.

serviceIndex Index of the service instance. e.g. If two Battery Services are supported
in your design, then first service will be identified by serviceIndex of 0
and the second by serviceIndex of 1.

charIndex The index of a Battery service characteristic of type
CYBLE_BAS_CHAR_INDEX_T.

descrIndex The index of a Battery service characteristic descriptor of type
CYBLE_BAS_DESCR_INDEX_T.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BAS service-specific callback is registered (with CyBle_BasRegisterAttrCallback):

• CYBLE_EVT_BASC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_BAS_DESCR_VALUE_T.

Otherwise (if the BAS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

BAS Definitions and Data Structures

Description

Contains the BAS specific definitions and data structures used in the BAS APIs.

Data Structures

• struct CYBLE_BASS_T

• struct CYBLE_BASC_T

• struct CYBLE_BAS_CHAR_VALUE_T

• struct CYBLE_BAS_DESCR_VALUE_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 266 of 559 Document Number: 002-29930 Rev. *A

Enumerations

• enum CYBLE_BAS_CHAR_INDEX_T

• enum CYBLE_BAS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_BASS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T batteryLevelHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T cpfdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BASS_T::serviceHandle

Battery Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BASS_T::batteryLevelHandle

Battery Level characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BASS_T::cpfdHandle

Characteristic Presentation Format Descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BASS_T::cccdHandle

Client Characteristic Configuration descriptor handle

struct CYBLE_BASC_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_SRVR_CHAR_INFO_T batteryLevel

• CYBLE_GATT_DB_ATTR_HANDLE_T cpfdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T rrdHandle

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BASC_T::connHandle

Peer device handle

CYBLE_SRVR_CHAR_INFO_T CYBLE_BASC_T::batteryLevel

Battery Level characteristic info

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BASC_T::cpfdHandle

Characteristic Presentation Format descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BASC_T::cccdHandle

Client Characteristic Configuration descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BASC_T::rrdHandle

Report Reference descriptor handle

struct CYBLE_BAS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• uint8 serviceIndex

• CYBLE_BAS_CHAR_INDEX_T charIndex

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 267 of 559

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BAS_CHAR_VALUE_T::connHandle

Peer device handle

uint8 CYBLE_BAS_CHAR_VALUE_T::serviceIndex

Service instance

CYBLE_BAS_CHAR_INDEX_T CYBLE_BAS_CHAR_VALUE_T::charIndex

Index of a service characteristic

CYBLE_GATT_VALUE_T* CYBLE_BAS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_BAS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• uint8 serviceIndex

• CYBLE_BAS_CHAR_INDEX_T charIndex

• CYBLE_BAS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BAS_DESCR_VALUE_T::connHandle

Peer device handle

uint8 CYBLE_BAS_DESCR_VALUE_T::serviceIndex

Service instance

CYBLE_BAS_CHAR_INDEX_T CYBLE_BAS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_BAS_DESCR_INDEX_T CYBLE_BAS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_BAS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_BAS_CHAR_INDEX_T

BAS Characteristic indexes

Enumerator

CYBLE_BAS_BATTERY_LEVEL Battery Level characteristic index

CYBLE_BAS_CHAR_COUNT Total count of characteristics

enum CYBLE_BAS_DESCR_INDEX_T

BAS Characteristic Descriptors indexes

Enumerator

CYBLE_BAS_BATTERY_LEVEL_CCCD Client Characteristic Configuration descriptor index

CYBLE_BAS_BATTERY_LEVEL_CPFD Characteristic Presentation Format descriptor index

CYBLE_BAS_DESCR_COUNT Total count of descriptors

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 268 of 559 Document Number: 002-29930 Rev. *A

Body Composition Service (BCS)

Description

The Body Composition Service exposes data related to body composition from a body composition analyzer (Server)
intended for consumer healthcare as well as sports/fitness applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The BCS API names begin with CyBle_Bcs. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• BCS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• BCS Server Functions

APIs unique to BCS designs configured as a GATT Server role.

• BCS Client Functions

APIs unique to BCS designs configured as a GATT Client role.

• BCS Definitions and Data Structures

Contains the BCS specific definitions and data structures used in the BCS APIs.

BCS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Bcs

Functions

• void CyBle_BcsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_BcsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode: Indicates the event that triggered this callback (e.g.
CYBLE_EVT_BCSS_INDICATION_ENABLED).

• eventParam: Contains the parameters corresponding to the
current event. (e.g. pointer to CYBLE_BCS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification the enabled event was triggered).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 269 of 559

BCS Server Functions

Description

APIs unique to BCS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Bcss

Functions

• CYBLE_API_RESULT_T CyBle_BcssSetCharacteristicValue (CYBLE_BCS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BcssGetCharacteristicValue (CYBLE_BCS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BcssSetCharacteristicDescriptor (CYBLE_BCS_CHAR_INDEX_T charIndex,
CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BcssGetCharacteristicDescriptor (CYBLE_BCS_CHAR_INDEX_T charIndex,
CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BcssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_BcssSetCharacteristicValue (CYBLE_BCS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets a value for one of three characteristic values of the Body Composition Service. The characteristic is identified
by charIndex.

Parameters:

charIndex The index of a Body Composition Service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was written successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_BcssGetCharacteristicValue (CYBLE_BCS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Reads a characteristic value of the Body Composition Service, which is identified by charIndex from the GATT
database.

Parameters:

charIndex The index of the Body Composition Service characteristic.

attrSize The size of the Body Composition Service characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 270 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_OK - The characteristic value was read successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_BcssSetCharacteristicDescriptor (CYBLE_BCS_CHAR_INDEX_T charIndex,
CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data to be stored in the GATT
database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_BcssGetCharacteristicDescriptor (CYBLE_BCS_CHAR_INDEX_T charIndex,
CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Reads a a characteristic descriptor of a specified characteristic of the Body Composition Service from the GATT
database.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully. CYBLE_ERROR_INVALID_PARAMETER -
Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_BcssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication with a characteristic value of the Body Composition Service, which is a value specified by
charIndex, to the client's device.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_BCSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 271 of 559

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BCS service-specific callback is registered (with CyBle_BcsRegisterAttrCallback):

• CYBLE_EVT_BCSS_INDICATION_CONFIRMED - If the indication is successfully delivered to the peer
device.

Otherwise (if the BCS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - If the indication is successfully delivered to the peer
device.

BCS Client Functions

Description

APIs unique to BCS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Bcsc

Functions

• CYBLE_API_RESULT_T CyBle_BcscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BCS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_BcscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BCS_CHAR_INDEX_T charIndex, CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_BcscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BCS_CHAR_INDEX_T charIndex, CYBLE_BCS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_BcscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BCS_CHAR_INDEX_T charIndex)

This function is used to read a characteristic value, which is a value identified by charIndex, from the server.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 272 of 559 Document Number: 002-29930 Rev. *A

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BCS service-specific callback is registered (with CyBle_BcsRegisterAttrCallback):

• CYBLE_EVT_BCSC_READ_CHAR_RESPONSE - If the requested attribute is successfully read on the
peer device, ! the details (char index , value, etc.) are provided with an event parameter structure of type
CYBLE_BCS_CHAR_VALUE_T.

Otherwise (if the BCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_BcscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BCS_CHAR_INDEX_T charIndex, CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic descriptor to the server, which is identified by charIndex and
descrIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_BCSS_INDICATION_ENABLED

• CYBLE_EVT_BCSS_INDICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BCS service-specific callback is registered (with CyBle_BcsRegisterAttrCallback):

• CYBLE_EVT_BCSC_WRITE_DESCR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, descr index etc.) are provided with an event parameter structure
of type CYBLE_BCS_DESCR_VALUE_T.

Otherwise (if the BCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 273 of 559

CYBLE_API_RESULT_T CyBle_BcscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BCS_CHAR_INDEX_T charIndex, CYBLE_BCS_DESCR_INDEX_T descrIndex)

Sends a request to get the characteristic descriptor of the specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BCS service-specific callback is registered (with CyBle_BcsRegisterAttrCallback):

• CYBLE_EVT_BCSC_READ_DESCR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, descr index, value, etc.) are provided with an event parameter
structure of type CYBLE_BCS_DESCR_VALUE_T.

Otherwise (if the BCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

BCS Definitions and Data Structures

Description

Contains the BCS specific definitions and data structures used in the BCS APIs.

Data Structures

• struct CYBLE_BCS_CHAR_VALUE_T

• struct CYBLE_BCS_DESCR_VALUE_T

• struct CYBLE_BCSS_CHAR_T

• struct CYBLE_BCSS_T

• struct CYBLE_BCSC_CHAR_T

• struct CYBLE_BCSC_T

Enumerations

• enum CYBLE_BCS_CHAR_INDEX_T

• enum CYBLE_BCS_DESCR_INDEX_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 274 of 559 Document Number: 002-29930 Rev. *A

Data Structure Documentation

struct CYBLE_BCS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_BCS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BCS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_BCS_CHAR_INDEX_T CYBLE_BCS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_BCS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_BCS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_BCS_CHAR_INDEX_T charIndex

• CYBLE_BCS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BCS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_BCS_CHAR_INDEX_T CYBLE_BCS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_BCS_DESCR_INDEX_T CYBLE_BCS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_VALUE_T* CYBLE_BCS_DESCR_VALUE_T::value

Characteristic value

struct CYBLE_BCSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_BCS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BCSS_CHAR_T::charHandle

Handle of Characteristic Value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BCSS_CHAR_T::descrHandle[CYBLE_BCS_DESCR_COUNT]

Array of Descriptor handles

struct CYBLE_BCSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_BCSS_CHAR_T charInfo [CYBLE_BCS_CHAR_COUNT]

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 275 of 559

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BCSS_T::serviceHandle

Body Composition Service handle

CYBLE_BCSS_CHAR_T CYBLE_BCSS_T::charInfo[CYBLE_BCS_CHAR_COUNT]

Array of characteristics and descriptors handles

struct CYBLE_BCSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BCSC_CHAR_T::valueHandle

Handle of characteristic value

uint8 CYBLE_BCSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BCSC_CHAR_T::endHandle

End handle of a characteristic

struct CYBLE_BCSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_BCSC_CHAR_T charInfo [CYBLE_BCS_CHAR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T bodyCompositionMeasurementCccdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BCSC_T::serviceHandle

Body Composition Service handle

CYBLE_BCSC_CHAR_T CYBLE_BCSC_T::charInfo[CYBLE_BCS_CHAR_COUNT]

Body Composition Service characteristics info structure

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BCSC_T::bodyCompositionMeasurementCccdHandle

Body Composition Measurement Client Characteristic Configuration handle

Enumeration Type Documentation

enum CYBLE_BCS_CHAR_INDEX_T

BCS Characteristic indexes

Enumerator

CYBLE_BCS_BODY_COMPOSITION_FEATURE Body Composition Feature Characteristic index

CYBLE_BCS_BODY_COMPOSITION_MEASUREMENT Body Composition Measurement Characteristic
index

CYBLE_BCS_CHAR_COUNT Total count of BCS Characteristics

enum CYBLE_BCS_DESCR_INDEX_T

BCS Characteristic Descriptors indexes

Enumerator

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 276 of 559 Document Number: 002-29930 Rev. *A

CYBLE_BCS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_BCS_DESCR_COUNT Total count of Descriptors

Blood Pressure Service (BLS)

Description

The Blood Pressure Service exposes blood pressure and other data related to a non-invasive blood pressure monitor
for consumer and professional healthcare applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The BLS API names begin with CyBle_Bls. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• BLS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• BLS Server Functions

APIs unique to BLS designs configured as a GATT Server role.

• BLS Client Functions

APIs unique to BLS designs configured as a GATT Client role.

• BLS Definitions and Data Structures

Contains the BLS specific definitions and data structures used in the BLS APIs.

BLS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Bls

Functions

• void CyBle_BlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_BlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for Blood
Pressure Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_BASS_NOTIFICATION_ENABLED)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 277 of 559

• eventParam contains the parameters corresponding to the
current event (e.g. Pointer to CYBLE_BLS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered).

BLS Server Functions

Description

APIs unique to BLS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Blss

Functions

• CYBLE_API_RESULT_T CyBle_BlssSetCharacteristicValue (CYBLE_BLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BlssGetCharacteristicValue (CYBLE_BLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BlssGetCharacteristicDescriptor (CYBLE_BLS_CHAR_INDEX_T charIndex,
CYBLE_BLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BlssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BlssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_BlssSetCharacteristicValue (CYBLE_BLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets the value of a characteristic which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

CYBLE_API_RESULT_T CyBle_BlssGetCharacteristicValue (CYBLE_BLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets a characteristic value of the Blood pressure service, which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 278 of 559 Document Number: 002-29930 Rev. *A

attrValue The pointer to the characteristic value data that should be in the GATT
database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

CYBLE_API_RESULT_T CyBle_BlssGetCharacteristicDescriptor (CYBLE_BLS_CHAR_INDEX_T charIndex,
CYBLE_BLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the Blood pressure service from the local GATT
database.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent

CYBLE_API_RESULT_T CyBle_BlssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification of the specified characteristic to the Client device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_BLSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

CYBLE_API_RESULT_T CyBle_BlssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication of the specified characteristic to the Client device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 279 of 559

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_BLSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BLS service-specific callback is registered (with CyBle_BlsRegisterAttrCallback):

• CYBLE_EVT_BLSS_INDICATION_CONFIRMED - In case if the indication is successfully delivered to
the peer device.

Otherwise (if the BLS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - In case if the indication is successfully delivered to the
peer device.

BLS Client Functions

Description

APIs unique to BLS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Blsc

Functions

• CYBLE_API_RESULT_T CyBle_BlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_BlscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_BlscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_BlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server which is identified by charIndex.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 280 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BLS service-specific callback is registered (with CyBle_BlsRegisterAttrCallback):

• CYBLE_EVT_BLSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_BLS_CHAR_VALUE_T.

Otherwise (if the BLS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_BlscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

Sends a request to set characteristic descriptor of specified Blood Pressure Service characteristic on the server
device.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_BLSS_INDICATION_ENABLED

• CYBLE_EVT_BLSS_INDICATION_DISABLED

• CYBLE_EVT_BLSS_NOTIFICATION_ENABLED

• CYBLE_EVT_BLSS_NOTIFICATION_DISABLED

Parameters:

connHandle The BLE peer device connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

attrValue Pointer to the characteristic descriptor value data that should be sent to
the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_INVALID_STATE - The state is not valid

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 281 of 559

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BLS service-specific callback is registered (with CyBle_BlsRegisterAttrCallback):

• CYBLE_EVT_BLSC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_BLS_DESCR_VALUE_T.

Otherwise (if the BLS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_BlscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex)

Sends a request to get characteristic descriptor of specified Blood Pressure Service characteristic from the server
device. This function call can result in the generation of the following events based on the response from the
server device.

• CYBLE_EVT_BLSC_READ_DESCR_RESPONSE

• CYBLE_EVT_GATTC_ERROR_RSP

Parameters:

connHandle The BLE peer device connection handle.

charIndex The index of a service characteristic.

descrIndex The index of a service characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_INVALID_STATE - The state is not valid

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BLS service-specific callback is registered (with CyBle_BlsRegisterAttrCallback):

• CYBLE_EVT_BLSC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_BLS_DESCR_VALUE_T.

Otherwise (if the BLS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 282 of 559 Document Number: 002-29930 Rev. *A

BLS Definitions and Data Structures

Description

Contains the BLS specific definitions and data structures used in the BLS APIs.

Data Structures

• struct CYBLE_BLSS_CHAR_T

• struct CYBLE_BLSS_T

• struct CYBLE_BLSC_CHAR_T

• struct CYBLE_BLSC_T

• struct CYBLE_BLS_CHAR_VALUE_T

• struct CYBLE_BLS_DESCR_VALUE_T

Enumerations

• enum CYBLE_BLS_CHAR_INDEX_T

• enum CYBLE_BLS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_BLSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BLSS_CHAR_T::charHandle

Blood Pressure Service characteristic's handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BLSS_CHAR_T::cccdHandle

Blood Pressure Service char. descriptor's handle

struct CYBLE_BLSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_BLSS_CHAR_T charInfo [CYBLE_BLS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BLSS_T::serviceHandle

Blood Pressure Service handle

CYBLE_BLSS_CHAR_T CYBLE_BLSS_T::charInfo[CYBLE_BLS_CHAR_COUNT]

Array of Blood Pressure Service Characteristics + Descriptors handles

struct CYBLE_BLSC_CHAR_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 283 of 559

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

uint8 CYBLE_BLSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BLSC_CHAR_T::valueHandle

Handle of server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BLSC_CHAR_T::cccdHandle

Blood Pressure client char. config. descriptor's handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BLSC_CHAR_T::endHandle

Characteristic end handle

struct CYBLE_BLSC_T

Data Fields

• CYBLE_BLSC_CHAR_T charInfo [CYBLE_BLS_CHAR_COUNT]

Field Documentation

CYBLE_BLSC_CHAR_T CYBLE_BLSC_T::charInfo[CYBLE_BLS_CHAR_COUNT]

Structure with Characteristic handles + properties of Blood Pressure Service

struct CYBLE_BLS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_BLS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BLS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_BLS_CHAR_INDEX_T CYBLE_BLS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_BLS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_BLS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_BLS_CHAR_INDEX_T charIndex

• CYBLE_BLS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BLS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_BLS_CHAR_INDEX_T CYBLE_BLS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_BLS_DESCR_INDEX_T CYBLE_BLS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 284 of 559 Document Number: 002-29930 Rev. *A

CYBLE_GATT_VALUE_T* CYBLE_BLS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_BLS_CHAR_INDEX_T

Service Characteristics indexes

Enumerator

CYBLE_BLS_BPM Blood Pressure Measurement characteristic index

CYBLE_BLS_ICP Intermediate Cuff Pressure Context characteristic index

CYBLE_BLS_BPF Blood Pressure Feature characteristic index

CYBLE_BLS_CHAR_COUNT Total count of BLS characteristics

enum CYBLE_BLS_DESCR_INDEX_T

Service Characteristic Descriptors indexes

Enumerator

CYBLE_BLS_CCCD Client Characteristic Configuration descriptor index

CYBLE_BLS_DESCR_COUNT Total count of BLS descriptors

Bond Management Service (BMS)

Description

The Bond Management Service defines how a peer Bluetooth device can manage the storage of bond information,
especially the deletion of it, on the Bluetooth device supporting this service.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The BMS API names begin with CyBle_Bms. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• BMS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• BMS Server Functions

APIs unique to BMS designs configured as a GATT Server role.

• BMS Client Functions

APIs unique to BMS designs configured as a GATT Client role.

• BMS Definitions and Data Structures

Contains the BMS specific definitions and data structures used in the BMS APIs.

BMS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Bms

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 285 of 559

Functions

• void CyBle_BmsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_BmsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for BM
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

BMS Server Functions

Description

APIs unique to BMS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Bmss

Functions

• CYBLE_API_RESULT_T CyBle_BmssSetCharacteristicValue (CYBLE_BMS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BmssGetCharacteristicValue (CYBLE_BMS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BmssSetCharacteristicDescriptor (CYBLE_BMS_CHAR_INDEX_T charIndex,
CYBLE_BMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BmssGetCharacteristicDescriptor (CYBLE_BMS_CHAR_INDEX_T charIndex,
CYBLE_BMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_BmssSetCharacteristicValue (CYBLE_BMS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets a characteristic value of the service identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 286 of 559 Document Number: 002-29930 Rev. *A

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_BmssGetCharacteristicValue (CYBLE_BMS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets a characteristic value of the service, which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where Characteristic value data should be
stored.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_BmssSetCharacteristicDescriptor (CYBLE_BMS_CHAR_INDEX_T charIndex,
CYBLE_BMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets a characteristic descriptor of a specified characteristic of the service.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_BMS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_BMS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data that should be stored to the
GATT database.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_BmssGetCharacteristicDescriptor (CYBLE_BMS_CHAR_INDEX_T charIndex,
CYBLE_BMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the service.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_BMS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_BMS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 287 of 559

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

BMS Client Functions

Description

APIs unique to BMS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Bmsc

Functions

• CYBLE_API_RESULT_T CyBle_BmscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BMS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_BmscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BmscReliableWriteCharacteristicValue (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_BMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_BmscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BMS_CHAR_INDEX_T charIndex, CYBLE_BMS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_BmscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BMS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic value from a server which is identified by charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BMS service-specific callback is registered (with CyBle_BmsRegisterAttrCallback):

• CYBLE_EVT_BMSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_BMS_CHAR_VALUE_T.

Otherwise (if the BMS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 288 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_BmscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute to the server. The
function supports a long write procedure - it depends on the attrSize parameter - if it is larger than the current
MTU size - 1, then the long write will be executed. As a result a Write Request is sent to the GATT Server and on
successful execution of the request on the Server side the CYBLE_EVT_BMSS_WRITE_CHAR events is
generated. On successful request execution on the Server side the Write Response is sent to the Client.

The Write response just confirms the operation success.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BMS service-specific callback is registered (with CyBle_BmsRegisterAttrCallback):

• CYBLE_EVT_BMSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_BMS_CHAR_VALUE_T.

Otherwise (if the BMS service-specific callback is not registered):

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - In case if the requested attribute is successfully wrote on
the peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_BmscReliableWriteCharacteristicValue (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_BMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to perform a reliable write command for the Bond Management Control Point characteristic
(identified by charIndex) value attribute to the server.

The Write response just confirms the operation success.

Parameters:

connHandle The connection handle.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 289 of 559

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BMS service-specific callback is registered (with CyBle_BmsRegisterAttrCallback):

• CYBLE_EVT_BMSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_BMS_CHAR_VALUE_T.

Otherwise (if the BMS service-specific callback is not registered):

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - In case if the requested attribute is successfully wrote on
the peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_BmscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_BMS_CHAR_INDEX_T charIndex, CYBLE_BMS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the BMS service-specific callback is registered (with CyBle_BmsRegisterAttrCallback):

• CYBLE_EVT_BMSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_BMS_DESCR_VALUE_T.

Otherwise (if the BMS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 290 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

BMS Definitions and Data Structures

Description

Contains the BMS specific definitions and data structures used in the BMS APIs.

Data Structures

• struct CYBLE_BMSS_CHAR_T

• struct CYBLE_BMSS_T

• struct CYBLE_BMSC_CHAR_T

• struct CYBLE_BMSC_T

• struct CYBLE_BMS_CHAR_VALUE_T

• struct CYBLE_BMS_DESCR_VALUE_T

Enumerations

• enum CYBLE_BMS_CHAR_INDEX_T

• enum CYBLE_BMS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_BMSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_BMS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BMSS_CHAR_T::charHandle

Handle of Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BMSS_CHAR_T::descrHandle[CYBLE_BMS_DESCR_COUNT]

Handles of Descriptors

struct CYBLE_BMSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_BMSS_CHAR_T charInfo [CYBLE_BMS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BMSS_T::serviceHandle

Service handle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 291 of 559

CYBLE_BMSS_CHAR_T CYBLE_BMSS_T::charInfo[CYBLE_BMS_CHAR_COUNT]

Service characteristics info array

struct CYBLE_BMSC_CHAR_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_BMS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

uint8 CYBLE_BMSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BMSC_CHAR_T::valueHandle

Handle of Server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BMSC_CHAR_T::descrHandle[CYBLE_BMS_DESCR_COUNT]

Characteristics descriptors handles

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_BMSC_CHAR_T::endHandle

Characteristic End Handle

struct CYBLE_BMSC_T

Data Fields

• CYBLE_BMSC_CHAR_T charInfo [CYBLE_BMS_CHAR_COUNT]

Field Documentation

CYBLE_BMSC_CHAR_T CYBLE_BMSC_T::charInfo[CYBLE_BMS_CHAR_COUNT]

Characteristics handle + properties array

struct CYBLE_BMS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_BMS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BMS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_BMS_CHAR_INDEX_T CYBLE_BMS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_BMS_CHAR_VALUE_T::value

Characteristic value

CYBLE_GATT_ERR_CODE_T CYBLE_BMS_CHAR_VALUE_T::gattErrorCode

GATT error code for checking the authorization code

struct CYBLE_BMS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 292 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_BMS_CHAR_INDEX_T charIndex

• CYBLE_BMS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_BMS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_BMS_CHAR_INDEX_T CYBLE_BMS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_BMS_DESCR_INDEX_T CYBLE_BMS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_BMS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_BMS_CHAR_INDEX_T

Service Characteristics indexes

Enumerator

CYBLE_BMS_BMCP Bond Management Control Point characteristic index

CYBLE_BMS_BMFT Bond Management Feature characteristic index

CYBLE_BMS_CHAR_COUNT Total count of BMS characteristics

enum CYBLE_BMS_DESCR_INDEX_T

Service Characteristic Descriptors indexes

Enumerator

CYBLE_BMS_CEPD Characteristic Extended Properties descriptor index

CYBLE_BMS_DESCR_COUNT Total count of BMS descriptors

Continuous Glucose Monitoring Service (CGMS)

Description

The Continuous Glucose Monitoring Service exposes glucose measurement and other data related to a personal
CGM sensor for healthcare applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The CGMS API names begin with CyBle_Cgms. In addition to this, the APIs also append the GATT role initial letter
in the API name.

Modules

• CGMS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• CGMS Server Functions

APIs unique to CGMS designs configured as a GATT Server role.

• CGMS Client Functions

APIs unique to CGMS designs configured as a GATT Client role.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 293 of 559

• CGMS Definitions and Data Structures

Contains the CGMS specific definitions and data structures used in the CGMS APIs.

CGMS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Cgms

Functions

• void CyBle_CgmsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_CgmsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for CGM
Service is, typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode,
void *eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

CGMS Server Functions

Description

APIs unique to CGMS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Cgmss

Functions

• CYBLE_API_RESULT_T CyBle_CgmssSetCharacteristicValue (CYBLE_CGMS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CgmssGetCharacteristicValue (CYBLE_CGMS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CgmssSetCharacteristicDescriptor (CYBLE_CGMS_CHAR_INDEX_T
charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CgmssGetCharacteristicDescriptor (CYBLE_CGMS_CHAR_INDEX_T
charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 294 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_API_RESULT_T CyBle_CgmssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CgmssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_CgmssSetCharacteristicValue (CYBLE_CGMS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets a characteristic value of the service identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_CgmssGetCharacteristicValue (CYBLE_CGMS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets a characteristic value of the service identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where Characteristic value data should be
stored.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_CgmssSetCharacteristicDescriptor (CYBLE_CGMS_CHAR_INDEX_T
charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets a characteristic descriptor of a specified characteristic of the service.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CGMS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_CGMS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data that should be stored to the
GATT database.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 295 of 559

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_CgmssGetCharacteristicDescriptor (CYBLE_CGMS_CHAR_INDEX_T
charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the service.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CGMS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_CGMS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_CgmssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification of the specified characteristic to the client device, as defined by the charIndex value.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_CGMSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle which consists of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the Characteristic value data that should be sent to the
client device.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

CYBLE_API_RESULT_T CyBle_CgmssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication of the specified characteristic to the client device, as defined by the charIndex value.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_CGMSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific
callback function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle which consists of the device ID and ATT
connection ID.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 296 of 559 Document Number: 002-29930 Rev. *A

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the Characteristic value data that should be sent to
Client device.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CGMS service-specific callback is registered (with CyBle_CgmsRegisterAttrCallback):

• CYBLE_EVT_CGMSS_INDICATION_CONFIRMED - in case if the indication is successfully delivered to
the peer device.

Otherwise (if the CGMS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - in case if the indication is successfully delivered to the
peer device.

CGMS Client Functions

Description

APIs unique to CGMS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Cgmsc

Functions

• CYBLE_API_RESULT_T CyBle_CgmscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CgmscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_CgmscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CgmscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_CgmscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_CGMSS_WRITE_CHAR events is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 297 of 559

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CGMS service-specific callback is registered (with CyBle_CgmsRegisterAttrCallback):

• CYBLE_EVT_CGMSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_CGMS_CHAR_VALUE_T.

Otherwise (if the CGMS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CgmscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server identified by charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CGMS service-specific callback is registered (with CyBle_CgmsRegisterAttrCallback):

• CYBLE_EVT_CGMSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_CGMS_CHAR_VALUE_T.

Otherwise (if the CGMS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 298 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CgmscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 *attrValue)

Sets the Characteristic Descriptor of the specified characteristic.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_CGMSS_INDICATION_ENABLED

• CYBLE_EVT_CGMSS_INDICATION_DISABLED

• CYBLE_EVT_CGMSS_NOTIFICATION_ENABLED

• CYBLE_EVT_CGMSS_NOTIFICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of a service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CGMS service-specific callback is registered (with CyBle_CgmsRegisterAttrCallback):

• CYBLE_EVT_CGMSC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_CGMS_DESCR_VALUE_T.

Otherwise (if the CGMS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CgmscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CGMS_CHAR_INDEX_T charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 299 of 559

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CGMS service-specific callback is registered (with CyBle_CgmsRegisterAttrCallback):

• CYBLE_EVT_CGMSC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_CGMS_DESCR_VALUE_T.

Otherwise (if the CGMS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CGMS Definitions and Data Structures

Description

Contains the CGMS specific definitions and data structures used in the CGMS APIs.

Data Structures

• struct CYBLE_CGMSS_CHAR_T

• struct CYBLE_CGMSS_T

• struct CYBLE_CGMSC_CHAR_T

• struct CYBLE_CGMSC_T

• struct CYBLE_CGMS_CHAR_VALUE_T

• struct CYBLE_CGMS_DESCR_VALUE_T

Enumerations

• enum CYBLE_CGMS_CHAR_INDEX_T

• enum CYBLE_CGMS_DESCR_INDEX_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 300 of 559 Document Number: 002-29930 Rev. *A

Data Structure Documentation

struct CYBLE_CGMSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_CGMS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CGMSS_CHAR_T::charHandle

Handle of Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_CGMSS_CHAR_T::descrHandle[CYBLE_CGMS_DESCR_COUNT]

Handles of Descriptors

struct CYBLE_CGMSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_CGMSS_CHAR_T charInfo [CYBLE_CGMS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CGMSS_T::serviceHandle

CGM Service handle

CYBLE_CGMSS_CHAR_T CYBLE_CGMSS_T::charInfo[CYBLE_CGMS_CHAR_COUNT]

CGM Service characteristics info array

struct CYBLE_CGMSC_CHAR_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_CGMS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

uint8 CYBLE_CGMSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CGMSC_CHAR_T::valueHandle

Handle of Server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_CGMSC_CHAR_T::descrHandle[CYBLE_CGMS_DESCR_COUNT]

Characteristics descriptors handles

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CGMSC_CHAR_T::endHandle

Characteristic End Handle

struct CYBLE_CGMSC_T

Data Fields

• CYBLE_CGMSC_CHAR_T charInfo [CYBLE_CGMS_CHAR_COUNT]

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 301 of 559

Field Documentation

CYBLE_CGMSC_CHAR_T CYBLE_CGMSC_T::charInfo[CYBLE_CGMS_CHAR_COUNT]

Characteristics handle + properties array

struct CYBLE_CGMS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_CGMS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_CGMS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_CGMS_CHAR_INDEX_T CYBLE_CGMS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_CGMS_CHAR_VALUE_T::value

Characteristic value

CYBLE_GATT_ERR_CODE_T CYBLE_CGMS_CHAR_VALUE_T::gattErrorCode

GATT error code for access control

struct CYBLE_CGMS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_CGMS_CHAR_INDEX_T charIndex

• CYBLE_CGMS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_CGMS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_CGMS_CHAR_INDEX_T CYBLE_CGMS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_CGMS_DESCR_INDEX_T CYBLE_CGMS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_CGMS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_CGMS_CHAR_INDEX_T

Service Characteristics indexes

Enumerator

CYBLE_CGMS_CGMT CGM Measurement characteristic index

CYBLE_CGMS_CGFT CGM Feature characteristic index

CYBLE_CGMS_CGST CGM Status characteristic index

CYBLE_CGMS_SSTM CGM Session Start Time characteristic index

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 302 of 559 Document Number: 002-29930 Rev. *A

CYBLE_CGMS_SRTM CGM Session Run Time characteristic index

CYBLE_CGMS_RACP Record Access Control Point characteristic index

CYBLE_CGMS_SOCP CGM Specific Ops Control Point characteristic index

CYBLE_CGMS_CHAR_COUNT Total count of CGMS characteristics

enum CYBLE_CGMS_DESCR_INDEX_T

Service Characteristic Descriptors indexes

Enumerator

CYBLE_CGMS_CCCD Client Characteristic Configuration descriptor index

CYBLE_CGMS_DESCR_COUNT Total count of CGMS descriptors

Cycling Power Service (CPS)

Description

The Cycling Power Service (CPS) exposes power- and force-related data and optionally speed- and cadence-related
data from a Cycling Power sensor (GATT Server) intended for sports and fitness applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The CPS API names begin with CyBle_Cps. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• CPS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• CPS Server Functions

APIs unique to CPS designs configured as a GATT Server role.

• CPS Client Functions

APIs unique to CPS designs configured as a GATT Client role.

• CPS Definitions and Data Structures

Contains the CPS specific definitions and data structures used in the CPS APIs.

CPS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Cps

Functions

• void CyBle_CpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 303 of 559

Function Documentation

void CyBle_CpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for CPS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

CPS Server Functions

Description

APIs unique to CPS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Cpss

Functions

• CYBLE_API_RESULT_T CyBle_CpssSetCharacteristicValue (CYBLE_CPS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CpssGetCharacteristicValue (CYBLE_CPS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CpssSetCharacteristicDescriptor (CYBLE_CPS_CHAR_INDEX_T charIndex,
CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CpssGetCharacteristicDescriptor (CYBLE_CPS_CHAR_INDEX_T charIndex,
CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CpssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CpssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CpssStartBroadcast (uint16 advInterval, uint8 attrSize, const uint8 *attrValue)

• void CyBle_CpssStopBroadcast (void)

Function Documentation

CYBLE_API_RESULT_T CyBle_CpssSetCharacteristicValue (CYBLE_CPS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets a characteristic value of the service in the local database.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 304 of 559 Document Number: 002-29930 Rev. *A

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CYBLE_API_RESULT_T CyBle_CpssGetCharacteristicValue (CYBLE_CPS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets a characteristic value of the service, which is a value identified by charIndex.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CYBLE_API_RESULT_T CyBle_CpssSetCharacteristicDescriptor (CYBLE_CPS_CHAR_INDEX_T charIndex,
CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets a characteristic descriptor of a specified characteristic of the service.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_CPS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CYBLE_API_RESULT_T CyBle_CpssGetCharacteristicDescriptor (CYBLE_CPS_CHAR_INDEX_T charIndex,
CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the service.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_CPS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 305 of 559

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CYBLE_API_RESULT_T CyBle_CpssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends notification with a characteristic value of the CPS, which is a value specified by charIndex, to the Client
device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_CPSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the Client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the Client.

CYBLE_API_RESULT_T CyBle_CpssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends indication with a characteristic value of the CPS, which is a value specified by charIndex, to the Client
device.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_CPSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

• CYBLE_ERROR_INVALID_STATE - Connection with the Client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the Client

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 306 of 559 Document Number: 002-29930 Rev. *A

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CPS service-specific callback is registered (with CyBle_CpsRegisterAttrCallback):

• CYBLE_EVT_CPSS_INDICATION_CONFIRMED - in case if the indication is successfully delivered to
the peer device.

Otherwise (if the CPS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - in case if the indication is successfully delivered to the
peer device.

CYBLE_API_RESULT_T CyBle_CpssStartBroadcast (uint16 advInterval, uint8 attrSize, const uint8
*attrValue)

This function is used to start broadcasting of the Cycling Power Measurement characteristic or update
broadcasting data when it was started before. For update broadcasting data this function must be called when
CyBle_GetBleSsState() returns CYBLE_BLESS_STATE_EVENT_CLOSE state.

It is available only in Broadcaster role.

Parameters:

advInterval Advertising interval in 625 us units. The valid range is from
CYBLE_GAP_ADV_ADVERT_INTERVAL_NONCON_MIN to
CYBLE_GAP_ADV_ADVERT_INTERVAL_MAX.

attrSize The size of the characteristic value attribute. This size is limited by
maximum advertising packet length and advertising header size.

attrValue The pointer to the Cycling Power Measurement characteristic that
include the mandatory fields (e.g. the Flags field and the Instantaneous
Power field) and depending on the Flags field, some optional fields in a
non connectable undirected advertising event.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On passing an invalid parameter.

CYBLE_ERROR_INVALID_OPERATI
ON

ADV Event is not closed, BLESS is active or
ADV is not enabled.

void CyBle_CpssStopBroadcast (void)

This function is used to stop broadcasting of the Cycling Power Measurement characteristic.

CPS Client Functions

Description

APIs unique to CPS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Cpsc

Functions

• CYBLE_API_RESULT_T CyBle_CpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 307 of 559

• CYBLE_API_RESULT_T CyBle_CpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_CpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_CpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex)

• CYBLE_API_RESULT_T CyBle_CpscStartObserve (void)

• void CyBle_CpscStopObserve (void)

Function Documentation

CYBLE_API_RESULT_T CyBle_CpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_CPSS_CHAR_WRITE events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be send to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CPS service-specific callback is registered (with CyBle_CpsRegisterAttrCallback):

• CYBLE_EVT_CPSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_CPS_CHAR_VALUE_T.

Otherwise (if the CPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex)

This function is used to read a characteristic value, which is a value identified by charIndex, from the server.

The Read Response returns the characteristic Value in the Attribute Value parameter.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 308 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CPS service-specific callback is registered (with CyBle_CpsRegisterAttrCallback):

• CYBLE_EVT_CPSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_CPS_CHAR_VALUE_T.

Otherwise (if the CPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic descriptor to the server which is identified by charIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_CPSS_NOTIFICATION_ENABLED

• CYBLE_EVT_CPSS_NOTIFICATION_DISABLED

• CYBLE_EVT_CPSS_INDICATION_ENABLED

• CYBLE_EVT_CPSS_INDICATION_DISABLED

• CYBLE_EVT_CPSS_BROADCAST_ENABLED

• CYBLE_EVT_CPSS_BROADCAST_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_CPS_DESCR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 309 of 559

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CPS service-specific callback is registered (with CyBle_CpsRegisterAttrCallback):

• CYBLE_EVT_CPSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_CPS_DESCR_VALUE_T.

Otherwise (if the CPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex)

Sends a request to get the characteristic descriptor of the specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_CPS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_CPS_DESCR_INDEX_T.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CPS service-specific callback is registered (with CyBle_CpsRegisterAttrCallback):

• CYBLE_EVT_CPSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_CPS_DESCR_VALUE_T.

Otherwise (if the CPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 310 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_CpscStartObserve (void)

This function is used for observing GAP peripheral devices. A device performing the observer role receives only
advertisement data from devices irrespective of their discoverable mode settings. Advertisement data received is
provided by the event, CYBLE_EVT_CPSC_SCAN_PROGRESS_RESULT. This procedure sets the scanType
sub parameter to passive scanning.

If 'scanTo' sub-parameter is set to zero value, then passive scanning procedure will continue until you call
CyBle_GapcStopObserve(). Possible generated events are:

• CYBLE_EVT_CPSC_SCAN_PROGRESS_RESULT.

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Errors codes Description

CYBLE_ERROR_OK On successful operation.

CYBLE_ERROR_INVALID_PARAME
TER

On specifying NULL as input parameter for
'scanInfo' or if any element within 'scanInfo'
has an invalid value.

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed.

void CyBle_CpscStopObserve (void)

This function used to stop the discovery of devices. On stopping discovery operation,
CYBLE_EVT_GAPC_SCAN_START_STOP event is generated. Application layer needs to keep track of the
function call made before receiving this event to associate this event with either the start or stop discovery function.

Possible events generated are:

• CYBLE_EVT_GAPC_SCAN_START_STOP.

CPS Definitions and Data Structures

Description

Contains the CPS specific definitions and data structures used in the CPS APIs.

Data Structures

• struct CYBLE_CPSS_CHAR_T

• struct CYBLE_CPSS_T

• struct CYBLE_CPSC_CHAR_T

• struct CYBLE_CPSC_T

• struct CYBLE_CPS_CHAR_VALUE_T

• struct CYBLE_CPS_DESCR_VALUE_T

• struct __attribute__

Enumerations

• enum CYBLE_CPS_CHAR_INDEX_T

• enum CYBLE_CPS_DESCR_INDEX_T

• enum CYBLE_CPS_CP_OC_T

• enum CYBLE_CPS_CP_RC_T

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 311 of 559

• enum CYBLE_CPS_SL_VALUE_T

Data Structure Documentation

struct CYBLE_CPSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_CPS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CPSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CPSS_CHAR_T::descrHandle[CYBLE_CPS_DESCR_COUNT]

Handle of descriptor

struct CYBLE_CPSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_CPSS_CHAR_T charInfo [CYBLE_CPS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CPSS_T::serviceHandle

Cycling Power Service handle

CYBLE_CPSS_CHAR_T CYBLE_CPSS_T::charInfo[CYBLE_CPS_CHAR_COUNT]

Cycling Power Service Characteristic handles

struct CYBLE_CPSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_CPS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• uint8 properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CPSC_CHAR_T::descrHandle[CYBLE_CPS_DESCR_COUNT]

Handles of descriptors

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CPSC_CHAR_T::valueHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CPSC_CHAR_T::endHandle

End handle of characteristic

uint8 CYBLE_CPSC_CHAR_T::properties

Properties for value field

struct CYBLE_CPSC_T

Data Fields

• CYBLE_CPSC_CHAR_T charInfo [CYBLE_CPS_CHAR_COUNT]

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 312 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

CYBLE_CPSC_CHAR_T CYBLE_CPSC_T::charInfo[CYBLE_CPS_CHAR_COUNT]

Characteristics handles array

struct CYBLE_CPS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_CPS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_CPS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_CPS_CHAR_INDEX_T CYBLE_CPS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_CPS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_CPS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_CPS_CHAR_INDEX_T charIndex

• CYBLE_CPS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_CPS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_CPS_CHAR_INDEX_T CYBLE_CPS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_CPS_DESCR_INDEX_T CYBLE_CPS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_VALUE_T* CYBLE_CPS_DESCR_VALUE_T::value

Characteristic value

struct __attribute__

Data Fields

• uint16 year

• uint8 month

• uint8 day

• uint8 hours

• uint8 minutes

• uint8 seconds

• uint16 crankLength

• uint16 chainLength

• uint16 chainWeight

• uint16 spanLength

• CYBLE_CPS_DATE_TIME_T factoryCalibrationDate

• uint8 samplingRate

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 313 of 559

• int16 offsetCompensation

Field Documentation

uint16 __attribute__::year

Year

uint8 __attribute__::month

Month

uint8 __attribute__::day

Day

uint8 __attribute__::hours

Time - hours

uint8 __attribute__::minutes

Time - minutes

uint8 __attribute__::seconds

Time - seconds

uint16 __attribute__::crankLength

In millimeters with a resolution of 1/2 millimeter

uint16 __attribute__::chainLength

In millimeters with a resolution of 1 millimeter

uint16 __attribute__::chainWeight

In grams with a resolution of 1 gram

uint16 __attribute__::spanLength

In millimeters with a resolution of 1 millimeter

CYBLE_CPS_DATE_TIME_T __attribute__::factoryCalibrationDate

Use the same format as the Date Time characteristic

uint8 __attribute__::samplingRate

In Hertz with a resolution of 1 Hertz

int16 __attribute__::offsetCompensation

Either the raw force in Newton or the raw torque in 1/32 Newton meter based on the server capabilities. 0xFFFF
means "Not Available"

Enumeration Type Documentation

enum CYBLE_CPS_CHAR_INDEX_T

Characteristic indexes

Enumerator

CYBLE_CPS_POWER_MEASURE Cycling Power Measurement characteristic index

CYBLE_CPS_POWER_FEATURE Cycling Power Feature characteristic index

CYBLE_CPS_SENSOR_LOCATION Sensor Location characteristic index

CYBLE_CPS_POWER_VECTOR Cycling Power Vector characteristic index

CYBLE_CPS_POWER_CP Cycling Power Control Point characteristic index

CYBLE_CPS_CHAR_COUNT Total count of CPS characteristics

enum CYBLE_CPS_DESCR_INDEX_T

Characteristic Descriptors indexes

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 314 of 559 Document Number: 002-29930 Rev. *A

Enumerator

CYBLE_CPS_CCCD Client Characteristic Configuration descriptor index

CYBLE_CPS_SCCD Handle of the Server Characteristic Configuration descriptor

CYBLE_CPS_DESCR_COUNT Total count of descriptors

enum CYBLE_CPS_CP_OC_T

Op Codes of the Cycling Power Control Point characteristic

Enumerator

CYBLE_CPS_CP_OC_SCV Set Cumulative Value

CYBLE_CPS_CP_OC_USL Update Sensor Location

CYBLE_CPS_CP_OC_RSSL Request Supported Sensor Locations

CYBLE_CPS_CP_OC_SCRL Set Crank Length

CYBLE_CPS_CP_OC_RCRL Request Crank Length

CYBLE_CPS_CP_OC_SCHL Set Chain Length

CYBLE_CPS_CP_OC_RCHL Request Chain Length

CYBLE_CPS_CP_OC_SCHW Set Chain Weight

CYBLE_CPS_CP_OC_RCHW Request Chain Weight

CYBLE_CPS_CP_OC_SSL Set Span Length

CYBLE_CPS_CP_OC_RSL Request Span Length

CYBLE_CPS_CP_OC_SOC Start Offset Compensation

CYBLE_CPS_CP_OC_MCPMCC Mask Cycling Power Measurement Characteristic Content

CYBLE_CPS_CP_OC_RSR Request Sampling Rate

CYBLE_CPS_CP_OC_RFCD Request Factory Calibration Date

CYBLE_CPS_CP_OC_SEOC Start Enhanced Offset Compensation

CYBLE_CPS_CP_OC_RC Response Code

enum CYBLE_CPS_CP_RC_T

Response Code of the Cycling Power Control Point characteristic

Enumerator

CYBLE_CPS_CP_RC_SUCCESS Response for successful operation.

CYBLE_CPS_CP_RC_NOT_SUPPORTED Response if unsupported Op Code is received

CYBLE_CPS_CP_RC_INVALID_PARAMETER Response if Parameter received does not meet the
requirements of the service or is outside of the supported range of the Sensor

CYBLE_CPS_CP_RC_OPERATION_FAILED Response if the requested procedure failed

enum CYBLE_CPS_SL_VALUE_T

Sensor Location characteristic value

Enumerator

CYBLE_CPS_SL_OTHER Sensor Location - Other

CYBLE_CPS_SL_TOP_OF_SHOE Sensor Location - Top of shoe

CYBLE_CPS_SL_IN_SHOE Sensor Location - In shoe

CYBLE_CPS_SL_HIP Sensor Location - Hip

CYBLE_CPS_SL_FRONT_WHEEL Sensor Location - Front Wheel

CYBLE_CPS_SL_LEFT_CRANK Sensor Location - Left Crank

CYBLE_CPS_SL_RIGHT_CRANK Sensor Location - Right Crank

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 315 of 559

CYBLE_CPS_SL_LEFT_PEDAL Sensor Location - Left Pedal

CYBLE_CPS_SL_RIGHT_PEDAL Sensor Location - Right Pedal

CYBLE_CPS_SL_FRONT_HUB Sensor Location - Front Hub

CYBLE_CPS_SL_REAR_DROPOUT Sensor Location - Rear Dropout

CYBLE_CPS_SL_CHAINSTAY Sensor Location - Chainstay

CYBLE_CPS_SL_REAR_WHEEL Sensor Location - Rear Wheel

CYBLE_CPS_SL_REAR_HUB Sensor Location - Rear Hub

CYBLE_CPS_SL_CHEST Sensor Location - Chest

CYBLE_CPS_SL_SPIDER Sensor Location - Spider

CYBLE_CPS_SL_CHAIN_RING Sensor Location - Chain Ring

CYBLE_CPS_SL_COUNT Total count of SL characteristics

Cycling Speed and Cadence Service (CSCS)

Description

The Cycling Speed and Cadence (CSC) Service exposes speed-related data and/or cadence-related data while using
the Cycling Speed and Cadence sensor (Server).

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The CSCS API names begin with CyBle_Cscs. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• CSCS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• CSCS Server Functions

APIs unique to CSCS designs configured as a GATT Server role.

• CSCS Client Functions

APIs unique to CSCS designs configured as a GATT Client role.

• CSCS Definitions and Data Structures

Contains the CSCS specific definitions and data structures used in the CSCS APIs.

CSCS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Cscs

Functions

• void CyBle_CscsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 316 of 559 Document Number: 002-29930 Rev. *A

Function Documentation

void CyBle_CscsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for Cycling Speed and Cadence Service specific attribute operations. Service
specific write requests from peer device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for CSCS is:
typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

CSCS Server Functions

Description

APIs unique to CSCS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Cscss

Functions

• CYBLE_API_RESULT_T CyBle_CscssSetCharacteristicValue (CYBLE_CSCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CscssGetCharacteristicValue (CYBLE_CSCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CscssGetCharacteristicDescriptor (CYBLE_CSCS_CHAR_INDEX_T
charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CscssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CscssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_CscssSetCharacteristicValue (CYBLE_CSCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets characteristic value of the Cycling Speed and Cadence Service, which is identified by charIndex, to the local
database.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CSCS_CHAR_INDEX_T. Valid values are,

• CYBLE_CSCS_CSC_FEATURE

• CYBLE_CSCS_SENSOR_LOCATION.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 317 of 559

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic.

CYBLE_API_RESULT_T CyBle_CscssGetCharacteristicValue (CYBLE_CSCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets a characteristic value of the Cycling Speed and Cadence Service, which is identified by charIndex, from the
GATT database.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CSCS_CHAR_INDEX_T. Valid value is,

• CYBLE_CSCS_SC_CONTROL_POINT.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_CscssGetCharacteristicDescriptor (CYBLE_CSCS_CHAR_INDEX_T
charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the Cycling Speed and Cadence Service, from the
GATT database.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_CSCS_CHAR_INDEX_T. Valid values are,

• CYBLE_CSCS_CSC_MEASUREMENT

• CYBLE_CSCS_SC_CONTROL_POINT.

descrIndex The index of a service characteristic descriptor of type
CYBLE_CSCS_DESCR_INDEX_T. Valid value is

• CYBLE_CSCS_CCCD.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 318 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic.

CYBLE_API_RESULT_T CyBle_CscssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends notification with a characteristic value, which is specified by charIndex, of the Cycling Speed and Cadence
Service to the Client device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_CSCSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_CSCS_CHAR_INDEX_T. Valid value is

• CYBLE_CSCS_CSC_MEASUREMENT.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

CYBLE_API_RESULT_T CyBle_CscssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends indication with a characteristic value, which is specified by charIndex, of the Cycling Speed and Cadence
Service to the Client device.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_CSCSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific
callback function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_CSCS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 319 of 559

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CSCS service-specific callback is registered (with CyBle_CscsRegisterAttrCallback):

• CYBLE_EVT_CSCSS_INDICATION_CONFIRMED - in case if the indication is successfully delivered to
the peer device.

Otherwise (if the CSCS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - in case if the indication is successfully delivered to the
peer device.

CSCS Client Functions

Description

APIs unique to CSCS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Cscsc

Functions

• CYBLE_API_RESULT_T CyBle_CscscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CscscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_CscscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CscscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_CscscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_CSCSS_CHAR_WRITE events is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize Size of the characteristic value attribute.

attrValue Pointer to the characteristic value data that should be sent to the server
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully;

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 320 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CSCS service-specific callback is registered (with CyBle_CscsRegisterAttrCallback):

• CYBLE_EVT_CSCSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_CSCS_CHAR_VALUE_T.

Otherwise (if the CSCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CscscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex)

Sends a request to peer device to get characteristic value of the Cycling Speed and Cadence Service, which is
identified by charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully;

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CSCS service-specific callback is registered (with CyBle_CscsRegisterAttrCallback):

• CYBLE_EVT_CSCSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_CSCS_CHAR_VALUE_T.

Otherwise (if the CSCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CscscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

Sends a request to peer device to get characteristic descriptor of specified characteristic of the Cycling Speed
and Cadence Service.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 321 of 559

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_CSCSS_NOTIFICATION_ENABLED

• CYBLE_EVT_CSCSS_NOTIFICATION_DISABLED

• CYBLE_EVT_CSCSS_INDICATION_ENABLED

• CYBLE_EVT_CSCSS_INDICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of a CSCS characteristic.

descrIndex The index of a CSCS characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - the request was sent successfully.

• CYBLE_ERROR_INVALID_STATE - connection with the client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
descriptor.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CSCS service-specific callback is registered (with CyBle_CscsRegisterAttrCallback):

• CYBLE_EVT_CSCSC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_CSCS_DESCR_VALUE_T.

Otherwise (if the CSCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CscscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex)

Sends a request to peer device to get characteristic descriptor of specified characteristic of the Cycling Speed
and Cadence Service.

Parameters:

connHandle The connection handle.

charIndex The index of a Service Characteristic.

descrIndex The index of a Service Characteristic Descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the Client is not established.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 322 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_INVALID_OPERATION - Cannot process a request to send PDU due to invalid
operation performed by the application.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
descriptor.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CSCS service-specific callback is registered (with CyBle_CscsRegisterAttrCallback):

• CYBLE_EVT_CSCSC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_CSCS_DESCR_VALUE_T.

Otherwise (if the CSCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CSCS Definitions and Data Structures

Description

Contains the CSCS specific definitions and data structures used in the CSCS APIs.

Data Structures

• struct CYBLE_CSCS_CHAR_VALUE_T

• struct CYBLE_CSCS_DESCR_VALUE_T

• struct CYBLE_CSCSS_CHAR_T

• struct CYBLE_CSCSS_T

• struct CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T

• struct CYBLE_CSCSC_T

Enumerations

• enum CYBLE_CSCS_CHAR_INDEX_T

• enum CYBLE_CSCS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_CSCS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_CSCS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_CSCS_CHAR_VALUE_T::connHandle

Peer device handle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 323 of 559

CYBLE_CSCS_CHAR_INDEX_T CYBLE_CSCS_CHAR_VALUE_T::charIndex

Index of Cycling Speed and Cadence Service Characteristic

CYBLE_GATT_VALUE_T* CYBLE_CSCS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_CSCS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_CSCS_CHAR_INDEX_T charIndex

• CYBLE_CSCS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_CSCS_DESCR_VALUE_T::connHandle

Connection handle

CYBLE_CSCS_CHAR_INDEX_T CYBLE_CSCS_DESCR_VALUE_T::charIndex

Characteristic index of the Service

CYBLE_CSCS_DESCR_INDEX_T CYBLE_CSCS_DESCR_VALUE_T::descrIndex

Characteristic Descriptor index

CYBLE_GATT_VALUE_T* CYBLE_CSCS_DESCR_VALUE_T::value

Pointer to value of the Service Characteristic Descriptor

struct CYBLE_CSCSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_CSCS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CSCSS_CHAR_T::charHandle

Handle of the Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_CSCSS_CHAR_T::descrHandle[CYBLE_CSCS_DESCR_COUNT]

Handles of the Descriptors

struct CYBLE_CSCSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_CSCSS_CHAR_T charInfo [CYBLE_CSCS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CSCSS_T::serviceHandle

Cycling Speed and Cadence Service handle

CYBLE_CSCSS_CHAR_T CYBLE_CSCSS_T::charInfo[CYBLE_CSCS_CHAR_COUNT]

Array of Cycling Speed and Cadence Service Characteristics and Descriptors handles

struct CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T charInfo

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 324 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_GATT_DB_ATTR_HANDLE_T descriptors [CYBLE_CSCS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T::charInfo

Characteristic handle and properties

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T::descriptors[CYBLE_CSCS_DESCR_COUNT]

Characteristic descriptors handles

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T::endHandle

End handle of Characteristic

struct CYBLE_CSCSC_T

Data Fields

• CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T characteristics [CYBLE_CSCS_CHAR_COUNT]

Field Documentation

CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T
CYBLE_CSCSC_T::characteristics[CYBLE_CSCS_CHAR_COUNT]

Characteristics handles array

Enumeration Type Documentation

enum CYBLE_CSCS_CHAR_INDEX_T

Characteristic indexes

Enumerator

CYBLE_CSCS_CSC_MEASUREMENT CSC Measurement Characteristic index

CYBLE_CSCS_CSC_FEATURE CSC Feature Characteristic index

CYBLE_CSCS_SENSOR_LOCATION CSC Sensor Location Characteristic index

CYBLE_CSCS_SC_CONTROL_POINT CSC SC Control Point Characteristic index

CYBLE_CSCS_CHAR_COUNT Total count of CSCS Characteristics

enum CYBLE_CSCS_DESCR_INDEX_T

Characteristic Descriptors indexes

Enumerator

CYBLE_CSCS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_CSCS_DESCR_COUNT Total count of Descriptors

Current Time Service (CTS)

Description

The Current Time Service defines how a Bluetooth device can expose time information to other Bluetooth devices.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The CTS API names begin with CyBle_Cts. In addition to this, the APIs also append the GATT role initial letter in the
API name.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 325 of 559

Modules

• CTS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• CTS Server Functions

APIs unique to CTS designs configured as a GATT Server role.

• CTS Client Functions

APIs unique to CTS designs configured as a GATT Client role.

• CTS Definitions and Data Structures

Contains the CTS specific definitions and data structures used in the CTS APIs.

CTS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Cts

Functions

• void CyBle_CtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_CtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for Current
Time Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_CTSS_NOTIFICATION_ENABLED)

• eventParam contains the parameters corresponding to the
current event (e.g. Pointer to CYBLE_CTS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered).

CTS Server Functions

Description

APIs unique to CTS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Ctss

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 326 of 559 Document Number: 002-29930 Rev. *A

Functions

• CYBLE_API_RESULT_T CyBle_CtssSetCharacteristicValue (CYBLE_CTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CtssGetCharacteristicValue (CYBLE_CTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CtssGetCharacteristicDescriptor (CYBLE_CTS_CHAR_INDEX_T charIndex,
CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CtssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_CtssSetCharacteristicValue (CYBLE_CTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets a value for one of three characteristic values of the Current Time Service. The characteristic is identified by
charIndex.

Parameters:

charIndex The index of the Current Time Service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was written successfully.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_CtssGetCharacteristicValue (CYBLE_CTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets a characteristic value of the Current Time Service, which is identified by charIndex.

Parameters:

charIndex The index of a Current Time Service characteristic.

attrSize The size of the Current Time Service characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_CtssGetCharacteristicDescriptor (CYBLE_CTS_CHAR_INDEX_T charIndex,
CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the Current Time Service.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 327 of 559

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_CtssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification to the client's device. A characteristic value also gets written to the GATT database.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_CTSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic to be send as a notification to the
Client device.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic notification was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

CTS Client Functions

Description

APIs unique to CTS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Ctsc

Functions

• CYBLE_API_RESULT_T CyBle_CtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_CtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize,
uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_CtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 descrIndex)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 328 of 559 Document Number: 002-29930 Rev. *A

Function Documentation

CYBLE_API_RESULT_T CyBle_CtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_CTSS_CHAR_WRITE events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic descriptor attribute.

attrValue Pointer to the characteristic value data that should be sent to the server
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CTS service-specific callback is registered (with CyBle_CtsRegisterAttrCallback):

• CYBLE_EVT_CTSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_CTS_CHAR_VALUE_T.

Otherwise (if the CTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex)

Gets a characteristic value of the Current Time Service, which is identified by charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 329 of 559

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CTS service-specific callback is registered (with CyBle_CtsRegisterAttrCallback):

• CYBLE_EVT_CTSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_CTS_CHAR_VALUE_T.

Otherwise (if the CTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize,
uint8 *attrValue)

Sets a characteristic descriptor of the Current Time Characteristic of the Current Time Service.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_CTSS_NOTIFICATION_ENABLED.

• CYBLE_EVT_CTSS_NOTIFICATION_DISABLED.

Parameters:

connHandle The connection handle.

charIndex The index of the Current Time Service characteristic.

descrIndex The index of the Current Time Service characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue Pointer to the characteristic descriptor value data that should be sent to
the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on specified attribute.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
descriptor.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CTS service-specific callback is registered (with CyBle_CtsRegisterAttrCallback):

• CYBLE_EVT_CTSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_CTS_DESCR_VALUE_T.

Otherwise (if the CTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 330 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_CtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 descrIndex)

Gets a characteristic descriptor of the Current Time Characteristic of the Current Time Service.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of a service characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - State is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
descriptor.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the CTS service-specific callback is registered (with CyBle_CtsRegisterAttrCallback):

• CYBLE_EVT_CTSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_CTS_DESCR_VALUE_T.

Otherwise (if the CTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CTS Definitions and Data Structures

Description

Contains the CTS specific definitions and data structures used in the CTS APIs.

Data Structures

• struct CYBLE_CTS_CURRENT_TIME_T

• struct CYBLE_CTS_LOCAL_TIME_INFO_T

• struct CYBLE_CTS_REFERENCE_TIME_INFO_T

• struct CYBLE_CTS_CHAR_VALUE_T

• struct CYBLE_CTS_DESCR_VALUE_T

• struct CYBLE_CTSS_T

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 331 of 559

• struct CYBLE_CTSC_T

Enumerations

• enum CYBLE_CTS_CHAR_INDEX_T

• enum CYBLE_CTS_CHAR_DESCRIPTORS_T

Data Structure Documentation

struct CYBLE_CTS_CURRENT_TIME_T

Data Fields

• uint8 yearLow

• uint8 yearHigh

• uint8 month

• uint8 day

• uint8 hours

• uint8 minutes

• uint8 seconds

• uint8 dayOfWeek

• uint8 fractions256

• uint8 adjustReason

Field Documentation

uint8 CYBLE_CTS_CURRENT_TIME_T::yearLow

LSB of current year

uint8 CYBLE_CTS_CURRENT_TIME_T::yearHigh

MSB of current year

uint8 CYBLE_CTS_CURRENT_TIME_T::month

Current month

uint8 CYBLE_CTS_CURRENT_TIME_T::day

Current day

uint8 CYBLE_CTS_CURRENT_TIME_T::hours

Current time - hours

uint8 CYBLE_CTS_CURRENT_TIME_T::minutes

Current time - minutes

uint8 CYBLE_CTS_CURRENT_TIME_T::seconds

Current time - seconds

uint8 CYBLE_CTS_CURRENT_TIME_T::dayOfWeek

Current day of week

uint8 CYBLE_CTS_CURRENT_TIME_T::fractions256

The value of 1/256th of second

uint8 CYBLE_CTS_CURRENT_TIME_T::adjustReason

Reason of Current Time service characteristics change

struct CYBLE_CTS_LOCAL_TIME_INFO_T

Data Fields

• int8 timeZone

• uint8 dst

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 332 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

int8 CYBLE_CTS_LOCAL_TIME_INFO_T::timeZone

Current Time Zone

uint8 CYBLE_CTS_LOCAL_TIME_INFO_T::dst

Daylight Saving Time value

struct CYBLE_CTS_REFERENCE_TIME_INFO_T

Data Fields

• uint8 timeSource

• uint8 timeAccuracy

• uint8 daysSinceUpdate

• uint8 hoursSinseUpdate

Field Documentation

uint8 CYBLE_CTS_REFERENCE_TIME_INFO_T::timeSource

Time update source

uint8 CYBLE_CTS_REFERENCE_TIME_INFO_T::timeAccuracy

Time accuracy

uint8 CYBLE_CTS_REFERENCE_TIME_INFO_T::daysSinceUpdate

Days since last time update

uint8 CYBLE_CTS_REFERENCE_TIME_INFO_T::hoursSinseUpdate

Hours since last time update

struct CYBLE_CTS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_CTS_CHAR_INDEX_T charIndex

• CYBLE_GATT_ERR_CODE_T gattErrorCode

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_CTS_CHAR_VALUE_T::connHandle

Connection handle

CYBLE_CTS_CHAR_INDEX_T CYBLE_CTS_CHAR_VALUE_T::charIndex

Characteristic index of Current Time Service

CYBLE_GATT_ERR_CODE_T CYBLE_CTS_CHAR_VALUE_T::gattErrorCode

GATT error code for access control

CYBLE_GATT_VALUE_T* CYBLE_CTS_CHAR_VALUE_T::value

Pointer to value of Current Time Service characteristic

struct CYBLE_CTS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_CTS_CHAR_INDEX_T charIndex

• CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex

• CYBLE_GATT_VALUE_T * value

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 333 of 559

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_CTS_DESCR_VALUE_T::connHandle

Connection handle

CYBLE_CTS_CHAR_INDEX_T CYBLE_CTS_DESCR_VALUE_T::charIndex

Characteristic index of Current Time Service

CYBLE_CTS_CHAR_DESCRIPTORS_T CYBLE_CTS_DESCR_VALUE_T::descrIndex

Characteristic index Descriptor of Current Time Service

CYBLE_GATT_VALUE_T* CYBLE_CTS_DESCR_VALUE_T::value

Pointer to value of Current Time Service characteristic

struct CYBLE_CTSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T currTimeCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T currTimeCccdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T localTimeInfCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T refTimeInfCharHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CTSS_T::serviceHandle

Current Time Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CTSS_T::currTimeCharHandle

Current Time Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CTSS_T::currTimeCccdHandle

Current Time Client Characteristic Configuration Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CTSS_T::localTimeInfCharHandle

Local Time Information Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CTSS_T::refTimeInfCharHandle

Reference Time Information Characteristic handle

struct CYBLE_CTSC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T currTimeCharacteristics [CYBLE_CTS_CHAR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T currTimeCccdHandle

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_CTSC_T::currTimeCharacteristics[CYBLE_CTS_CHAR_COUNT]

Structure with Characteristic handles + properties of Current Time Service

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CTSC_T::currTimeCccdHandle

Current Time Client Characteristic Configuration handle of Current Time Service

Enumeration Type Documentation

enum CYBLE_CTS_CHAR_INDEX_T

Service Characteristics indexes

Enumerator

CYBLE_CTS_CURRENT_TIME Current Time characteristic index

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 334 of 559 Document Number: 002-29930 Rev. *A

CYBLE_CTS_LOCAL_TIME_INFO Local Time Information characteristic index

CYBLE_CTS_REFERENCE_TIME_INFO Reference Time Information characteristic index

CYBLE_CTS_CHAR_COUNT Total count of Current Time Service characteristics

enum CYBLE_CTS_CHAR_DESCRIPTORS_T

Service Characteristic Descriptors indexes

Enumerator

CYBLE_CTS_CURRENT_TIME_CCCD Current Time Client Characteristic configuration descriptor index

CYBLE_CTS_COUNT Total count of Current Time Service characteristic descriptors

Device Information Service (DIS)

Description

The Device Information Service exposes manufacturer and/or vendor information about a device.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The DIS API names begin with CyBle_Dis. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• DIS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• DIS Server Functions

APIs unique to DIS designs configured as a GATT Server role.

• DIS Client Functions

APIs unique to DIS designs configured as a GATT Client role.

• DIS Definitions and Data Structures

Contains the DIS specific definitions and data structures used in the DIS APIs.

DIS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Dis

Functions

• void CyBle_DisRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_DisRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Callback doesn't have events in server role.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 335 of 559

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for Device
Information Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

DIS Server Functions

Description

APIs unique to DIS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Diss

Functions

• CYBLE_API_RESULT_T CyBle_DissSetCharacteristicValue (CYBLE_DIS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_DissGetCharacteristicValue (CYBLE_DIS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_DissSetCharacteristicValue (CYBLE_DIS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets a characteristic value of the service, which is identified by charIndex, to the local database.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

*attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CYBLE_API_RESULT_T CyBle_DissGetCharacteristicValue (CYBLE_DIS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets a characteristic value of the service, which is identified by charIndex, from the GATT database.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

*attrValue The pointer to the location where characteristic value data should be
stored.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 336 of 559 Document Number: 002-29930 Rev. *A

Returns:

Return value is of type CYBLE_API_RESULT_T. Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

DIS Client Functions

Description

APIs unique to DIS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Disc

Functions

• CYBLE_API_RESULT_T CyBle_DiscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_DIS_CHAR_INDEX_T charIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_DiscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_DIS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server which is identified by charIndex.

The Read Response returns the characteristic value in the Attribute Value parameter. The Read Response only
contains the characteristic value that is less than or equal to (MTU - 1) octets in length. If the characteristic value
is greater than (MTU - 1) octets in length, a Read Long Characteristic Value procedure may be used if the rest of
the characteristic value is required.

This function call can result in generation of the following events based on the response from the server device.

• CYBLE_EVT_DISC_READ_CHAR_RESPONSE

• CYBLE_EVT_GATTC_ERROR_RSP

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the DIS service-specific callback is registered (with CyBle_DisRegisterAttrCallback):

• CYBLE_EVT_DISC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully wrote
on the peer device, the details (char index , value, etc.) are provided with event parameter structure of
type CYBLE_DIS_CHAR_VALUE_T.

Otherwise (if the DIS service-specific callback is not registered):

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 337 of 559

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

DIS Definitions and Data Structures

Description

Contains the DIS specific definitions and data structures used in the DIS APIs.

Data Structures

• struct CYBLE_DISS_T

• struct CYBLE_DISC_T

• struct CYBLE_DIS_CHAR_VALUE_T

Enumerations

• enum CYBLE_DIS_CHAR_INDEX_T

Data Structure Documentation

struct CYBLE_DISS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle [CYBLE_DIS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_DISS_T::serviceHandle

Device Information Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_DISS_T::charHandle[CYBLE_DIS_CHAR_COUNT]

Device Information Service Characteristic handles

struct CYBLE_DISC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T charInfo [CYBLE_DIS_CHAR_COUNT]

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_DISC_T::charInfo[CYBLE_DIS_CHAR_COUNT]

Characteristics handle + properties array

struct CYBLE_DIS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_DIS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 338 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_DIS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_DIS_CHAR_INDEX_T CYBLE_DIS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_DIS_CHAR_VALUE_T::value

Characteristic value

Enumeration Type Documentation

enum CYBLE_DIS_CHAR_INDEX_T

DIS characteristic index

Enumerator

CYBLE_DIS_MANUFACTURER_NAME Manufacturer Name String characteristic index

CYBLE_DIS_MODEL_NUMBER Model Number String characteristic index

CYBLE_DIS_SERIAL_NUMBER Serial Number String characteristic index

CYBLE_DIS_HARDWARE_REV Hardware Revision String characteristic index

CYBLE_DIS_FIRMWARE_REV Firmware Revision String characteristic index

CYBLE_DIS_SOFTWARE_REV Software Revision String characteristic index

CYBLE_DIS_SYSTEM_ID System ID characteristic index

CYBLE_DIS_REG_CERT_DATA IEEE 11073-20601 characteristic index

CYBLE_DIS_PNP_ID PnP ID characteristic index

CYBLE_DIS_CHAR_COUNT Total count of DIS characteristics

Environmental Sensing Service (ESS)

Description

The Environmental Sensing Service exposes measurement data from an environmental sensor intended for sports
and fitness applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The ESS API names begin with CyBle_Ess. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• ESS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• ESS Server Functions

APIs unique to ESS designs configured as a GATT Server role.

• ESS Client Functions

APIs unique to ESS designs configured as a GATT Client role.

• ESS Definitions and Data Structures

Contains the ESS specific definitions and data structures used in the ESS APIs.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 339 of 559

ESS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Ess

Functions

• void CyBle_EssRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_EssRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for ESS
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode: Indicates the event that triggered this callback (e.g.
CYBLE_EVT_ESSS_NOTIFICATION_ENABLED).

• eventParam: Contains the parameters corresponding to the
current event. (e.g. Pointer to CYBLE_ESS_CHAR_VALUE_T
structure that contains details of the characteristic for which the
notification enabled event was triggered).

ESS Server Functions

Description

APIs unique to ESS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Esss

Functions

• CYBLE_API_RESULT_T CyBle_EsssSetChangeIndex (uint16 essIndex)

• CYBLE_API_RESULT_T CyBle_EsssSetCharacteristicValue (CYBLE_ESS_CHAR_INDEX_T charIndex, uint8
charInstance, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_EsssGetCharacteristicValue (CYBLE_ESS_CHAR_INDEX_T charIndex, uint8
charInstance, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_EsssSetCharacteristicDescriptor (CYBLE_ESS_CHAR_INDEX_T charIndex,
uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_EsssGetCharacteristicDescriptor (CYBLE_ESS_CHAR_INDEX_T charIndex,
uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_EsssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 340 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_API_RESULT_T CyBle_EsssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_EsssSetChangeIndex (uint16 essIndex)

Performs write operation of two-byte pseudo-random change index to the advertisement packet. The "Service
Data" field should be selected in the component customizer GUI and contain a two-byte initial change index value
and in opposite case the function will always return "CYBLE_ERROR_INVALID_OPERATION".

This function must be called when CyBle_GetBleSsState() returns CYBLE_BLESS_STATE_EVENT_CLOSE
state.

Parameters:

essIndex A two-byte pseudo-random change index to be written to the
advertisement data.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - On NULL pointer, Data length in input parameter exceeds
31 bytes.

• CYBLE_ERROR_INVALID_OPERATION - The change index is not present in the advertisement data
or its length is not equal to two bytes or ADV Event is not closed, BLESS is active or ADV is not
enabled.

CYBLE_API_RESULT_T CyBle_EsssSetCharacteristicValue (CYBLE_ESS_CHAR_INDEX_T charIndex, uint8
charInstance, uint8 attrSize, uint8 *attrValue)

Sets the characteristic value of the service in the local database.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size (in Bytes) of the characteristic value attribute.

attrValue The pointer to the characteristic value data that Event is not stored in
the GATT database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_EsssGetCharacteristicValue (CYBLE_ESS_CHAR_INDEX_T charIndex, uint8
charInstance, uint8 attrSize, uint8 *attrValue)

Gets the characteristic value of the service, which is a value identified by charIndex.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 341 of 559

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_EsssSetCharacteristicDescriptor (CYBLE_ESS_CHAR_INDEX_T charIndex,
uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint16 attrSize, uint8 *attrValue)

Sets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the service characteristic.

charInstance The instance number of the characteristic specified by "charIndex".

descrIndex The index of the service characteristic descriptor of type
CYBLE_ESS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data to be stored in the GATT
database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_EsssGetCharacteristicDescriptor (CYBLE_ESS_CHAR_INDEX_T charIndex,
uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint16 attrSize, uint8 *attrValue)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

descrIndex The index of the service characteristic descriptor of type
CYBLE_ESS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_EsssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Sends a notification with a characteristic value of the Environmental Sensing Service, which is a value specified
by charIndex, to the client's device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_ESSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 342 of 559 Document Number: 002-29930 Rev. *A

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - A notification is not enabled by the client.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_EsssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

Sends an indication with a characteristic value of the Environmental Sensing Service, which is a value specified
by charIndex, to the client's device.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_ESSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ESS service-specific callback is registered (with CyBle_EssRegisterAttrCallback):

• CYBLE_EVT_ESSS_INDICATION_CONFIRMED - in case if the indication is successfully delivered to
the peer device.

Otherwise (if the ESS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - in case if the indication is successfully delivered to the
peer device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 343 of 559

ESS Client Functions

Description

APIs unique to ESS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Essc

Functions

• CYBLE_API_RESULT_T CyBle_EsscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_EsscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance)

• CYBLE_API_RESULT_T CyBle_EsscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_EsscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex)

• CYBLE_API_RESULT_T CyBle_EsscSetLongCharacteristicDescriptor (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T
descrIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_EsscGetLongCharacteristicDescriptor (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T
descrIndex, uint16 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_EsscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_ESSS_CHAR_WRITE events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 344 of 559 Document Number: 002-29930 Rev. *A

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ESS service-specific callback is registered (with CyBle_EssRegisterAttrCallback):

• CYBLE_EVT_ESSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_ESS_CHAR_VALUE_T.

Otherwise (if the ESS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_EsscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance)

This function is used to read a characteristic value, which is a value identified by charIndex, from the server.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ESS service-specific callback is registered (with CyBle_EssRegisterAttrCallback):

• CYBLE_EVT_ESSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_ESS_CHAR_VALUE_T.

Otherwise (if the ESS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_EsscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex,
uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_ESSS_DESCR_WRITE events is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 345 of 559

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_ESSS_NOTIFICATION_ENABLED.

• CYBLE_EVT_ESSS_NOTIFICATION_DISABLED.

• CYBLE_EVT_ESSS_INDICATION_ENABLED.

• CYBLE_EVT_ESSS_INDICATION_DISABLED.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional Characteristic Descriptor is
absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ESS service-specific callback is registered (with CyBle_EssRegisterAttrCallback):

• CYBLE_EVT_ESSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_ESS_DESCR_VALUE_T.

Otherwise (if the ESS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_EsscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex)

Sends a request to get the characteristic descriptor of the specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

descrIndex The index of the service characteristic descriptor.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 346 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional Characteristic Descriptor is
absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
If the ESS service-specific callback is registered (with CyBle_EssRegisterAttrCallback):

• CYBLE_EVT_ESSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_ESS_DESCR_VALUE_T.

Otherwise (if the ESS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_EsscSetLongCharacteristicDescriptor (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T
descrIndex, uint16 attrSize, uint8 *attrValue)

This function is used to write a long characteristic descriptor to the server, which is identified by charIndex and
descrIndex.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

charInstance The instance number of the characteristic specified by "charIndex".

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic Descriptor is
absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ESS service-specific callback is registered (with CyBle_EssRegisterAttrCallback):

• CYBLE_EVT_ESSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_ESS_DESCR_VALUE_T.

Otherwise (if the ESS service-specific callback is not registered):

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - In case if the requested attribute is successfully wrote on
the peer device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 347 of 559

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_EsscGetLongCharacteristicDescriptor (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T
descrIndex, uint16 attrSize, uint8 *attrValue)

Sends a request to read long characteristic descriptor of the specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

charInstance The instance number of the characteristic specified by "charIndex".

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the buffer where the read long characteristic descriptor
value should be stored.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The optional Characteristic Descriptor is
absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the ESS service-specific callback is registered (with CyBle_EssRegisterAttrCallback):

• CYBLE_EVT_ESSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_ESS_DESCR_VALUE_T.

Otherwise (if the ESS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_BLOB_RSP - In case if the requested attribute is successfully read on the
peer device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

ESS Definitions and Data Structures

Description

Contains the ESS specific definitions and data structures used in the ESS APIs.

Data Structures

• struct CYBLE_ESSS_CHAR_T

• struct CYBLE_ESSS_CHAR_INFO_PTR_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 348 of 559 Document Number: 002-29930 Rev. *A

• struct CYBLE_ESSS_T

• struct CYBLE_ESSC_CHAR_T

• struct CYBLE_ESSC_CHAR_INFO_PTR_T

• struct CYBLE_ESSC_T

• struct CYBLE_ESS_CHAR_VALUE_T

• struct CYBLE_ESS_DESCR_VALUE_T

Enumerations

• enum CYBLE_ESS_CHAR_INDEX_T

• enum CYBLE_ESS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_ESSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_ESS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ESSS_CHAR_T::charHandle

Handles of Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ESSS_CHAR_T::descrHandle[CYBLE_ESS_DESCR_COUNT]

Array of Descriptor handles

struct CYBLE_ESSS_CHAR_INFO_PTR_T

Data Fields

• CYBLE_ESSS_CHAR_T * charInfoPtr

Field Documentation

CYBLE_ESSS_CHAR_T* CYBLE_ESSS_CHAR_INFO_PTR_T::charInfoPtr

Pointer to CYBLE_ESSS_CHAR_T which holds information about specific ES Characteristic

struct CYBLE_ESSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_ESSS_CHAR_INFO_PTR_T charInfoAddr [CYBLE_ESS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ESSS_T::serviceHandle

Environmental Sensing Service handle

CYBLE_ESSS_CHAR_INFO_PTR_T CYBLE_ESSS_T::charInfoAddr[CYBLE_ESS_CHAR_COUNT]

Environmental Sensing Service Array with pointers to Characteristic handles.

struct CYBLE_ESSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_ESS_DESCR_COUNT]

• uint8 properties

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 349 of 559

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ESSC_CHAR_T::valueHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ESSC_CHAR_T::endHandle

End handle of characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ESSC_CHAR_T::descrHandle[CYBLE_ESS_DESCR_COUNT]

Array of Descriptor handles

uint8 CYBLE_ESSC_CHAR_T::properties

Properties for value field

struct CYBLE_ESSC_CHAR_INFO_PTR_T

Data Fields

• CYBLE_ESSC_CHAR_T * charInfoPtr

Field Documentation

CYBLE_ESSC_CHAR_T* CYBLE_ESSC_CHAR_INFO_PTR_T::charInfoPtr

Pointer to CYBLE_ESSC_CHAR_T which holds information about specific ES Characteristic.

struct CYBLE_ESSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_ESSC_CHAR_INFO_PTR_T charInfoAddr [CYBLE_ESS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_ESSC_T::serviceHandle

Environmental Sensing Service handle

CYBLE_ESSC_CHAR_INFO_PTR_T CYBLE_ESSC_T::charInfoAddr[CYBLE_ESS_CHAR_COUNT]

Environmental Sensing Service Array with pointers to characteristic information.

struct CYBLE_ESS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_ESS_CHAR_INDEX_T charIndex

• uint8 charInstance

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_ESS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_ESS_CHAR_INDEX_T CYBLE_ESS_CHAR_VALUE_T::charIndex

Index of service characteristic

uint8 CYBLE_ESS_CHAR_VALUE_T::charInstance

Instance of specific service characteristic

CYBLE_GATT_VALUE_T* CYBLE_ESS_CHAR_VALUE_T::value

Characteristic value

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 350 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_ESS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_ESS_CHAR_INDEX_T charIndex

• uint8 charInstance

• CYBLE_ESS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_ERR_CODE_T gattErrorCode

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_ESS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_ESS_CHAR_INDEX_T CYBLE_ESS_DESCR_VALUE_T::charIndex

Index of service characteristic

uint8 CYBLE_ESS_DESCR_VALUE_T::charInstance

Instance of specific service characteristic

CYBLE_ESS_DESCR_INDEX_T CYBLE_ESS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_ERR_CODE_T CYBLE_ESS_DESCR_VALUE_T::gattErrorCode

Error code received from application (optional)

CYBLE_GATT_VALUE_T* CYBLE_ESS_DESCR_VALUE_T::value

Characteristic value

Enumeration Type Documentation

enum CYBLE_ESS_CHAR_INDEX_T

ESS Characteristic indexes

Enumerator

CYBLE_ESS_DESCRIPTOR_VALUE_CHANGED Descriptor Value Changed Characteristic index

CYBLE_ESS_APPARENT_WIND_DIR Apparent Wind Direction Characteristic index

CYBLE_ESS_APPARENT_WIND_SPEED Apparent Wind Speed Characteristic index

CYBLE_ESS_DEW_POINT Dew Point Characteristic index

CYBLE_ESS_ELEVATION Elevation Characteristic index

CYBLE_ESS_GUST_FACTOR Gust Factor Characteristic index

CYBLE_ESS_HEAT_INDEX Heat Index Characteristic index

CYBLE_ESS_HUMIDITY Humidity Characteristic index

CYBLE_ESS_IRRADIANCE Irradiance Characteristic index

CYBLE_ESS_POLLEN_CONCENTRATION Pollen Concentration Characteristic index

CYBLE_ESS_RAINFALL Rainfall Characteristic index

CYBLE_ESS_PRESSURE Pressure Characteristic index

CYBLE_ESS_TEMPERATURE Temperature Characteristic index

CYBLE_ESS_TRUE_WIND_DIR True Wind Direction Characteristic index

CYBLE_ESS_TRUE_WIND_SPEED True Wind Speed Characteristic index

CYBLE_ESS_UV_INDEX UV Index Characteristic index

CYBLE_ESS_WIND_CHILL Wind Chill Characteristic index

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 351 of 559

CYBLE_ESS_BAROMETRIC_PRESSURE_TREND Barometric Pressure trend Characteristic index

CYBLE_ESS_MAGNETIC_DECLINATION Magnetic Declination Characteristic index

CYBLE_ESS_MAGNETIC_FLUX_DENSITY_2D Magnetic Flux Density 2D Characteristic index

CYBLE_ESS_MAGNETIC_FLUX_DENSITY_3D Magnetic Flux Density 3D Characteristic index

CYBLE_ESS_CHAR_COUNT Total count of ESS characteristics

enum CYBLE_ESS_DESCR_INDEX_T

ESS Characteristic Descriptors indexes

Enumerator

CYBLE_ESS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_ESS_CHAR_EXTENDED_PROPERTIES Characteristic Extended Properties Descriptor index

CYBLE_ESS_ES_MEASUREMENT_DESCR ES Measurement Descriptor index

CYBLE_ESS_ES_TRIGGER_SETTINGS_DESCR1 ES Trigger Settings Descriptor #1 index

CYBLE_ESS_ES_TRIGGER_SETTINGS_DESCR2 ES Trigger Settings Descriptor #2 index

CYBLE_ESS_ES_TRIGGER_SETTINGS_DESCR3 ES Trigger Settings Descriptor #3 index

CYBLE_ESS_ES_CONFIG_DESCR ES Configuration Descriptor index

CYBLE_ESS_CHAR_USER_DESCRIPTION_DESCR Characteristic User Description Descriptor index

CYBLE_ESS_VRD Valid Range Descriptor index

CYBLE_ESS_DESCR_COUNT Total count of descriptors

Glucose Service (GLS)

Description

The Glucose Service exposes glucose and other data related to a personal glucose sensor for consumer healthcare
applications and is not designed for clinical use.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The GLS API names begin with CyBle_Gls. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• GLS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• GLS Server Functions

APIs unique to GLS designs configured as a GATT Server role.

• GLS Client Functions

APIs unique to GLS designs configured as a GATT Client role.

• GLS Definitions and Data Structures

Contains the GLS specific definitions and data structures used in the GLS APIs.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 352 of 559 Document Number: 002-29930 Rev. *A

GLS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Gls

Functions

• void CyBle_GlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_GlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for Glucose
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

GLS Server Functions

Description

APIs unique to GLS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Glss

Functions

• CYBLE_API_RESULT_T CyBle_GlssSetCharacteristicValue (CYBLE_GLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_GlssGetCharacteristicValue (CYBLE_GLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_GlssGetCharacteristicDescriptor (CYBLE_GLS_CHAR_INDEX_T charIndex,
CYBLE_GLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_GlssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_GlssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 353 of 559

Function Documentation

CYBLE_API_RESULT_T CyBle_GlssSetCharacteristicValue (CYBLE_GLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets a characteristic value of the service, which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

*attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_GlssGetCharacteristicValue (CYBLE_GLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets a characteristic value of the service, which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

*attrValue Pointer to the location where Characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_GlssGetCharacteristicDescriptor (CYBLE_GLS_CHAR_INDEX_T charIndex,
CYBLE_GLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value attribute.

*attrValue Pointer to the location where the descriptor value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_GlssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification of the specified characteristic to the client device, as defined by the charIndex value.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 354 of 559 Document Number: 002-29930 Rev. *A

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_GLSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

*attrValue Pointer to the Characteristic value data that should be sent to Client
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

CYBLE_API_RESULT_T CyBle_GlssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a indication of the specified characteristic to the client device, as defined by the charIndex value.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_GLSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

*attrValue Pointer to the Characteristic value data that should be sent to Client
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the GLS service-specific callback is registered (with CyBle_GlsRegisterAttrCallback):

• CYBLE_EVT_GLSS_INDICATION_CONFIRMED - In case if the indication is successfully delivered to
the peer device.

Otherwise (if the GLS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - In case if the indication is successfully delivered to the
peer device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 355 of 559

GLS Client Functions

Description

APIs unique to GLS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Glsc

Functions

• CYBLE_API_RESULT_T CyBle_GlscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_GlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_GlscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_GlscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_GlscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_GLSS_WRITE_CHAR events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

*attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the GLS service-specific callback is registered (with CyBle_GlsRegisterAttrCallback):

• CYBLE_EVT_GLSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_GLS_CHAR_VALUE_T.

Otherwise (if the GLS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 356 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_GlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server which is identified by charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the GLS service-specific callback is registered (with CyBle_GlsRegisterAttrCallback):

• CYBLE_EVT_GLSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_GLS_CHAR_VALUE_T.

Otherwise (if the GLS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_GlscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

Sets the Characteristic Descriptor of the specified Characteristic.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_GLSS_INDICATION_ENABLED.

• CYBLE_EVT_GLSS_INDICATION_DISABLED.

• CYBLE_EVT_GLSS_NOTIFICATION_ENABLED.

• CYBLE_EVT_GLSS_NOTIFICATION_DISABLED.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of a service characteristic descriptor.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 357 of 559

attrSize The size of the characteristic descriptor value attribute.

*attrValue Pointer to the characteristic descriptor value data that should be sent to
the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the GLS service-specific callback is registered (with CyBle_GlsRegisterAttrCallback):

• CYBLE_EVT_GLSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_GLS_DESCR_VALUE_T.

Otherwise (if the GLS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_GlscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the GLS service-specific callback is registered (with CyBle_GlsRegisterAttrCallback):

• CYBLE_EVT_GLSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_GLS_DESCR_VALUE_T.

Otherwise (if the GLS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 358 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

GLS Definitions and Data Structures

Description

Contains the GLS specific definitions and data structures used in the GLS APIs.

Data Structures

• struct CYBLE_GLSS_CHAR_T

• struct CYBLE_GLSS_T

• struct CYBLE_GLSC_CHAR_T

• struct CYBLE_GLSC_T

• struct CYBLE_GLS_CHAR_VALUE_T

• struct CYBLE_GLS_DESCR_VALUE_T

Enumerations

• enum CYBLE_GLS_CHAR_INDEX_T

• enum CYBLE_GLS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_GLSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GLSS_CHAR_T::charHandle

Glucose Service char handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GLSS_CHAR_T::cccdHandle

Glucose Service CCCD handle

struct CYBLE_GLSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GLSS_CHAR_T charInfo [CYBLE_GLS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GLSS_T::serviceHandle

Glucose Service handle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 359 of 559

CYBLE_GLSS_CHAR_T CYBLE_GLSS_T::charInfo[CYBLE_GLS_CHAR_COUNT]

Glucose Service characteristics info array

struct CYBLE_GLSC_CHAR_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

uint8 CYBLE_GLSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GLSC_CHAR_T::valueHandle

Handle of server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GLSC_CHAR_T::cccdHandle

Glucose client char. descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GLSC_CHAR_T::endHandle

Characteristic End Handle

struct CYBLE_GLSC_T

Data Fields

• CYBLE_GLSC_CHAR_T charInfo [CYBLE_GLS_CHAR_COUNT]

Field Documentation

CYBLE_GLSC_CHAR_T CYBLE_GLSC_T::charInfo[CYBLE_GLS_CHAR_COUNT]

Characteristics handle + properties array

struct CYBLE_GLS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GLS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GLS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_GLS_CHAR_INDEX_T CYBLE_GLS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_GLS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_GLS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_GLS_CHAR_INDEX_T charIndex

• CYBLE_GLS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 360 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_GLS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_GLS_CHAR_INDEX_T CYBLE_GLS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GLS_DESCR_INDEX_T CYBLE_GLS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_GLS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_GLS_CHAR_INDEX_T

Service Characteristics indexes

Enumerator

CYBLE_GLS_GLMT Glucose Measurement characteristic index

CYBLE_GLS_GLMC Glucose Measurement Context characteristic index

CYBLE_GLS_GLFT Glucose Feature characteristic index

CYBLE_GLS_RACP Record Access Control Point characteristic index

CYBLE_GLS_CHAR_COUNT Total count of GLS characteristics

enum CYBLE_GLS_DESCR_INDEX_T

Service Characteristic Descriptors indexes

Enumerator

CYBLE_GLS_CCCD Client Characteristic Configuration descriptor index

CYBLE_GLS_DESCR_COUNT Total count of GLS descriptors

HID Service (HIDS)

Description

The HID Service exposes data and associated formatting for HID Devices and HID Hosts.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The HID API names begin with CyBle_Hid. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• HIDS Server and Client Functions

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• HIDS Server Functions

APIs unique to HID designs configured as a GATT Server role.

• HIDS Client Functions

APIs unique to HID designs configured as a GATT Client role.

• HIDS Definitions and Data Structures

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 361 of 559

Contains the HID specific definitions and data structures used in the HID APIs.

HIDS Server and Client Functions

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Hids

Functions

• void CyBle_HidsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_HidsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for HID
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_HIDS_NOTIFICATION_ENABLED).

• eventParam contains the parameters corresponding to the
current event. (e.g. pointer to CYBLE_HIDS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered).

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

HIDS Server Functions

Description

APIs unique to HID designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Hidss

Functions

• CYBLE_API_RESULT_T CyBle_HidssSetCharacteristicValue (uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HidssGetCharacteristicValue (uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 362 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_API_RESULT_T CyBle_HidssGetCharacteristicDescriptor (uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_HidssSendNotification (CYBLE_CONN_HANDLE_T connHandle, uint8
serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_HidssSetCharacteristicValue (uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sets local characteristic value of the specified HID Service characteristics.

Parameters:

serviceIndex The index of the service instance. e.g. If two HID Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of a service characteristic.

• CYBLE_HIDS_PROTOCOL_MODE - Protocol Mode
characteristic

• CYBLE_HIDS_REPORT_MAP - Report Map characteristic

• CYBLE_HIDS_INFORMATION - HID Information characteristic

• CYBLE_HIDS_CONTROL_POINT - HID Control Point
characteristic

• CYBLE_HIDS_BOOT_KYBRD_IN_REP - Boot Keyboard Input
Report Characteristic

• CYBLE_HIDS_BOOT_KYBRD_OUT_REP - Boot Keyboard
Output Report Characteristic

• CYBLE_HIDS_BOOT_MOUSE_IN_REP - Boot Mouse Input
Report Characteristic

• CYBLE_HIDS_REPORT - Report Characteristic

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

CYBLE_API_RESULT_T CyBle_HidssGetCharacteristicValue (uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Gets local characteristic value of the specified HID Service characteristics.

Parameters:

serviceIndex The index of the service instance. e.g. If two HID Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of the service characteristic.

• CYBLE_HIDS_PROTOCOL_MODE - Protocol Mode
characteristic

• CYBLE_HIDS_REPORT_MAP - Report Map characteristic

• CYBLE_HIDS_INFORMATION - HID Information characteristic

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 363 of 559

• CYBLE_HIDS_CONTROL_POINT - HID Control Point
characteristic

• CYBLE_HIDS_BOOT_KYBRD_IN_REP - Boot Keyboard Input
Report Characteristic

• CYBLE_HIDS_BOOT_KYBRD_OUT_REP - Boot Keyboard
Output Report Characteristic

• CYBLE_HIDS_BOOT_MOUSE_IN_REP - Boot Mouse Input
Report Characteristic

• CYBLE_HIDS_REPORT - Report Characteristic

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

CYBLE_API_RESULT_T CyBle_HidssGetCharacteristicDescriptor (uint8 serviceIndex,
CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex, uint8 attrSize, uint8
*attrValue)

Gets local characteristic descriptor of the specified HID Service characteristic.

Parameters:

serviceIndex The index of the service instance. e.g. If two HID Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of the characteristic.

• CYBLE_HIDS_REPORT_MAP - Report Map Characteristic

• CYBLE_HIDS_BOOT_KYBRD_IN_REP - Boot Keyboard Input
Report Characteristic

• CYBLE_HIDS_BOOT_KYBRD_OUT_REP - Boot Keyboard
Output Report Characteristic

• CYBLE_HIDS_BOOT_MOUSE_IN_REP - Boot Mouse Input
Report Characteristic

• CYBLE_HIDS_REPORT - Report Characteristic

descrIndex The index of the descriptor.

• CYBLE_HIDS_REPORT_CCCD - Client Characteristic
Configuration descriptor

• CYBLE_HIDS_REPORT_RRD - Report Reference descriptor

• CYBLE_HIDS_REPORT_MAP_ERRD - Report Map External
Report Reference descriptor

attrSize The size of the descriptor value attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 364 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent

CYBLE_API_RESULT_T CyBle_HidssSendNotification (CYBLE_CONN_HANDLE_T connHandle, uint8
serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends specified HID Service characteristic notification to the Client device.

CYBLE_EVT_HIDSC_NOTIFICATION event is received by the peer device, on invoking this function.

On enabling notification successfully for a service characteristic, it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_HIDSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle BLE peer device connection handle.

serviceIndex The index of the HID service instance. e.g. If two HID Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue Pointer to the characteristic value data that should be sent to the Client
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

HIDS Client Functions

Description

APIs unique to HID designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Hidsc

Functions

• CYBLE_API_RESULT_T CyBle_HidscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HIDSC_CHAR_WRITE_T subProcedure, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HidscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HIDSC_CHAR_READ_T subProcedure, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T
charIndex)

• CYBLE_API_RESULT_T CyBle_HidscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HidscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 365 of 559

Function Documentation

CYBLE_API_RESULT_T CyBle_HidscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HIDSC_CHAR_WRITE_T subProcedure, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T
charIndex, uint8 attrSize, uint8 *attrValue)

Sends a request to set characteristic value of the specified HID Service, which is identified by serviceIndex and
reportIndex, on the server device. This function call can result in generation of the following events based on the
response from the server device:

• CYBLE_EVT_HIDSC_WRITE_CHAR_RESPONSE.

• CYBLE_EVT_GATTC_ERROR_RSP.

Parameters:

connHandle The connection handle.

subProcedur
e

Characteristic value write sub-procedure.

• CYBLE_HIDSC_WRITE_WITHOUT_RESPONSE;

• CYBLE_HIDSC_WRITE_CHAR_VALUE.

serviceIndex The index of the service instance. e.g. If two HID Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HIDS service-specific callback is registered (with CyBle_HidsRegisterAttrCallback):

• CYBLE_EVT_HIDSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_HIDS_CHAR_VALUE_T.

Otherwise (if the HIDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HidscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HIDSC_CHAR_READ_T subProcedure, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T
charIndex)

This function is used to read the characteristic value from a server which is identified by charIndex.

The Read Response returns the characteristic value in the Attribute Value parameter.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 366 of 559 Document Number: 002-29930 Rev. *A

The Read Response only contains the characteristic value that is less than or equal to (MTU - 1) octets in length.
If the characteristic value is greater than (MTU - 1) octets in length, the Read Long Characteristic Value procedure
may be used if the rest of the characteristic Value is required.

Parameters:

connHandle The connection handle.

subProcedur
e

The characteristic value read sub-procedure.

• CYBLE_HIDSC_READ_CHAR_VALUE;

• CYBLE_HIDSC_READ_LONG_CHAR_VALUE.

serviceIndex The index of the service instance.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HIDS service-specific callback is registered (with CyBle_HidsRegisterAttrCallback):

• CYBLE_EVT_HIDSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_HIDS_CHAR_VALUE_T.

Otherwise (if the HIDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_READ_BLOB_RSP - In case if the requested attribute is successfully read on the
peer device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HidscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex, uint8
attrSize, uint8 *attrValue)

This function is used to write the characteristic descriptor to the server, which is identified by charIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_HIDSS_NOTIFICATION_ENABLED;

• CYBLE_EVT_HIDSS_NOTIFICATION_DISABLED.

Parameters:

connHandle The BLE peer device connection handle.

serviceIndex The index of the service instance. e.g. If two HID Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 367 of 559

charIndex The index of the HID service characteristic.

descrIndex The index of the HID service characteristic descriptor.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HIDS service-specific callback is registered (with CyBle_HidsRegisterAttrCallback):

• CYBLE_EVT_HIDSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_HIDS_DESCR_VALUE_T.

Otherwise (if the HIDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HidscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex)

Gets a characteristic descriptor of the specified characteristic of the HID Service from the server device.

This function call can result in generation of the following events based on the response from the server device.

• CYBLE_EVT_HIDSC_READ_DESCR_RESPONSE;

• CYBLE_EVT_GATTC_ERROR_RSP.

Parameters:

connHandle The connection handle.

serviceIndex The index of the service instance. e.g. If two HID Services are
supported in your design, then first service will be identified by
serviceIndex of 0 and the second by serviceIndex of 1.

charIndex The index of the service characteristic.

descrIndex The index of the HID Service characteristic descriptor.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 368 of 559 Document Number: 002-29930 Rev. *A

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HIDS service-specific callback is registered (with CyBle_HidsRegisterAttrCallback):

• CYBLE_EVT_HIDSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_HIDS_DESCR_VALUE_T.

Otherwise (if the HIDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

HIDS Definitions and Data Structures

Description

Contains the HID specific definitions and data structures used in the HID APIs.

Data Structures

• struct CYBLE_HIDSS_REPORT_REF_T

• struct CYBLE_HIDSS_INFORMATION_T

• struct CYBLE_HIDSS_REPORT_T

• struct CYBLE_HIDSS_T

• struct CYBLE_HIDSC_REPORT_T

• struct CYBLE_HIDSC_REPORT_MAP_T

• struct CYBLE_HIDSC_T

• struct CYBLE_HIDS_CHAR_VALUE_T

• struct CYBLE_HIDS_DESCR_VALUE_T

Enumerations

• enum CYBLE_HIDS_CHAR_INDEX_T

• enum CYBLE_HIDS_DESCR_T

• enum CYBLE_HIDSC_CHAR_WRITE_T

• enum CYBLE_HIDSC_CHAR_READ_T

Data Structure Documentation

struct CYBLE_HIDSS_REPORT_REF_T

Data Fields

• uint8 reportId

• uint8 reportType

Field Documentation

uint8 CYBLE_HIDSS_REPORT_REF_T::reportId

Non-zero value if there are more than one instance of the same Report Type

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 369 of 559

uint8 CYBLE_HIDSS_REPORT_REF_T::reportType

Type of Report characteristic

struct CYBLE_HIDSS_INFORMATION_T

Data Fields

• uint16 bcdHID

• uint8 bCountryCode

• uint8 flags

Field Documentation

uint16 CYBLE_HIDSS_INFORMATION_T::bcdHID

Version number of HIDSe USB HID Specification implemented by HID Device

uint8 CYBLE_HIDSS_INFORMATION_T::bCountryCode

Identifies which country hardware is localized for

uint8 CYBLE_HIDSS_INFORMATION_T::flags

Bit 0: RemoteWake - Indicates whether HID Device is capable of sending wake-signal to HID Host. Bit 1:
NormallyConnectable - Indicates whether HID Device will be advertising when bonded but not connected.

struct CYBLE_HIDSS_REPORT_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T reportHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T rrdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_REPORT_T::reportHandle

Handle of Report characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_REPORT_T::cccdHandle

Handle of Client Characteristic Configuration descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_REPORT_T::rrdHandle

Handle of Report Reference descriptor

struct CYBLE_HIDSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T protocolModeHandle

• uint8 reportCount

• const CYBLE_HIDSS_REPORT_T * reportArray

• CYBLE_HIDSS_REPORT_T bootReportArray [(0x03u)]

• CYBLE_GATT_DB_ATTR_HANDLE_T reportMapHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T reportMapErrdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T informationHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T controlPointHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_T::serviceHandle

Handle of HID service

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_T::protocolModeHandle

Handle of Protocol Mode Characteristic

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 370 of 559 Document Number: 002-29930 Rev. *A

uint8 CYBLE_HIDSS_T::reportCount

Number of report Characteristics

const CYBLE_HIDSS_REPORT_T* CYBLE_HIDSS_T::reportArray

Info about report Characteristics

CYBLE_HIDSS_REPORT_T CYBLE_HIDSS_T::bootReportArray[(0x03u)]

Info about Boot Report Characteristics

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_T::reportMapHandle

Handle of Report Map Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_T::reportMapErrdHandle

Handle of Report Map External Report Reference descr.

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_T::informationHandle

Handle of HID Information Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSS_T::controlPointHandle

Handle of HID Control Point Characteristic

struct CYBLE_HIDSC_REPORT_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T cccdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T rrdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• uint8 properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSC_REPORT_T::cccdHandle

Handle of Client Characteristic Configuration Descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSC_REPORT_T::rrdHandle

Handle of Report Reference Descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSC_REPORT_T::valueHandle

Handle of Report Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSC_REPORT_T::endHandle

End handle of Characteristic

uint8 CYBLE_HIDSC_REPORT_T::properties

Properties for value field

struct CYBLE_HIDSC_REPORT_MAP_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T errdHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• uint8 properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSC_REPORT_MAP_T::errdHandle

Handle of Report Map External Report Reference descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSC_REPORT_MAP_T::valueHandle

Handle of Report characteristic value

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 371 of 559

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSC_REPORT_MAP_T::endHandle

End handle of characteristic

uint8 CYBLE_HIDSC_REPORT_MAP_T::properties

Properties for value field

struct CYBLE_HIDSC_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_SRVR_CHAR_INFO_T protocolMode

• CYBLE_HIDSC_REPORT_T bootReport [(0x03u)]

• CYBLE_HIDSC_REPORT_MAP_T reportMap

• CYBLE_SRVR_CHAR_INFO_T information

• CYBLE_SRVR_CHAR_INFO_T controlPoint

• CYBLE_HIDSC_REPORT_T report [(`$HidsCReportCount`)]

• uint8 reportCount

• CYBLE_GATT_DB_ATTR_HANDLE_T includeHandle

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HIDSC_T::connHandle

Peer device handle

CYBLE_SRVR_CHAR_INFO_T CYBLE_HIDSC_T::protocolMode

Protocol Mode Characteristic handle and properties

CYBLE_HIDSC_REPORT_T CYBLE_HIDSC_T::bootReport[(0x03u)]

Boot Report Characteristic info

CYBLE_HIDSC_REPORT_MAP_T CYBLE_HIDSC_T::reportMap

Report Map Characteristic handle and descriptors

CYBLE_SRVR_CHAR_INFO_T CYBLE_HIDSC_T::information

Information Characteristic handle and properties

CYBLE_SRVR_CHAR_INFO_T CYBLE_HIDSC_T::controlPoint

Control Point Characteristic handle and properties

CYBLE_HIDSC_REPORT_T CYBLE_HIDSC_T::report[(`$HidsCReportCount`)]

Report Characteristic info

uint8 CYBLE_HIDSC_T::reportCount

Number of report Characteristics

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HIDSC_T::includeHandle

Included declaration handle

struct CYBLE_HIDS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• uint8 serviceIndex

• CYBLE_HIDS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HIDS_CHAR_VALUE_T::connHandle

Peer device handle

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 372 of 559 Document Number: 002-29930 Rev. *A

uint8 CYBLE_HIDS_CHAR_VALUE_T::serviceIndex

Index of HID Service

CYBLE_HIDS_CHAR_INDEX_T CYBLE_HIDS_CHAR_VALUE_T::charIndex

Index of HID Service Characteristic

CYBLE_GATT_VALUE_T* CYBLE_HIDS_CHAR_VALUE_T::value

Pointer to Characteristic value

struct CYBLE_HIDS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• uint8 serviceIndex

• CYBLE_HIDS_CHAR_INDEX_T charIndex

• CYBLE_HIDS_DESCR_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HIDS_DESCR_VALUE_T::connHandle

Peer device handle

uint8 CYBLE_HIDS_DESCR_VALUE_T::serviceIndex

Index of HID Service

CYBLE_HIDS_CHAR_INDEX_T CYBLE_HIDS_DESCR_VALUE_T::charIndex

Index of HID Service Characteristic

CYBLE_HIDS_DESCR_T CYBLE_HIDS_DESCR_VALUE_T::descrIndex

Service Characteristic Descriptor index

CYBLE_GATT_VALUE_T* CYBLE_HIDS_DESCR_VALUE_T::value

Pointer to value of Service Characteristic Descriptor value

Enumeration Type Documentation

enum CYBLE_HIDS_CHAR_INDEX_T

HIDS characteristic indexes

Enumerator

CYBLE_HIDS_PROTOCOL_MODE Protocol Mode Characteristic index

CYBLE_HIDS_INFORMATION HID Information Characteristic index

CYBLE_HIDS_CONTROL_POINT HID Control Point Characteristic index

CYBLE_HIDS_REPORT_MAP Report Map Characteristic index

CYBLE_HIDS_BOOT_KYBRD_IN_REP Boot Keyboard Input Report Characteristic index

CYBLE_HIDS_BOOT_KYBRD_OUT_REP Boot Keyboard Output Report Characteristic index

CYBLE_HIDS_BOOT_MOUSE_IN_REP Boot Mouse Input Report Characteristic index

CYBLE_HIDS_REPORT Report Characteristic index

CYBLE_HIDS_REPORT_END Index of last Report Char

CYBLE_HIDS_CHAR_COUNT Total count of characteristics

enum CYBLE_HIDS_DESCR_T

HID Service Characteristic Descriptors indexes

Enumerator

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 373 of 559

CYBLE_HIDS_REPORT_CCCD Client Characteristic Configuration descriptor index

CYBLE_HIDS_REPORT_RRD Report Reference descriptor index

CYBLE_HIDS_REPORT_MAP_ERRD Report Map External Report Reference descriptor index

CYBLE_HIDS_DESCR_COUNT Total count of descriptors

enum CYBLE_HIDSC_CHAR_WRITE_T

Characteristic Value Write Sub-Procedure supported by HID Service

Enumerator

CYBLE_HIDSC_WRITE_WITHOUT_RESPONSE Write Without Response

CYBLE_HIDSC_WRITE_CHAR_VALUE Write Characteristic Value

enum CYBLE_HIDSC_CHAR_READ_T

Characteristic Value Read Sub-Procedure supported by HID Service

Enumerator

CYBLE_HIDSC_READ_CHAR_VALUE Read Characteristic Value

CYBLE_HIDSC_READ_LONG_CHAR_VALUE Read Long Characteristic Values

Heart Rate Service (HRS)

Description

The Heart Rate Service exposes heart rate and other data related to a heart rate sensor intended for fitness
applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The HRS API names begin with CyBle_Hrs. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• HRS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• HRS Server Functions

APIs unique to HRS designs configured as a GATT Server role.

• HRS Client Functions

APIs unique to HRS designs configured as a GATT Client role.

• HRS Definitions and Data Structures

Contains the HRS specific definitions and data structures used in the HRS APIs.

HRS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Hrs

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 374 of 559 Document Number: 002-29930 Rev. *A

Functions

• void CyBle_HrsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_HrsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for HRS
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_HRSS_NOTIFICATION_ENABLED).

• eventParam contains the parameters corresponding to the
current event. (e.g. pointer to CYBLE_HRS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered).

HRS Server Functions

Description

APIs unique to HRS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Hrss

Functions

• CYBLE_API_RESULT_T CyBle_HrssSetCharacteristicValue (CYBLE_HRS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HrssGetCharacteristicValue (CYBLE_HRS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HrssGetCharacteristicDescriptor (CYBLE_HRS_CHAR_INDEX_T charIndex,
CYBLE_HRS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HrssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_HrssSetCharacteristicValue (CYBLE_HRS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets local characteristic value of the specified Heart Rate Service characteristic.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 375 of 559

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_HrssGetCharacteristicValue (CYBLE_HRS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets the local characteristic value of specified Heart Rate Service characteristic.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_HrssGetCharacteristicDescriptor (CYBLE_HRS_CHAR_INDEX_T charIndex,
CYBLE_HRS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets the local characteristic descriptor of the specified Heart Rate Service characteristic.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value attribute. The Heart Rate Measurement
characteristic client configuration descriptor has 2 bytes length.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_HrssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends notification of a specified Heart Rate Service characteristic value to the Client device. No response is
expected.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_HRSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of a service characteristic.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 376 of 559 Document Number: 002-29930 Rev. *A

attrSize The size of the characteristic value attribute. The Heart Rate
Measurement characteristic has 2 bytes length (by default). The Body
Sensor Location and Control Point characteristic both have 1 byte
length.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

HRS Client Functions

Description

APIs unique to HRS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Hrsc

Functions

• CYBLE_API_RESULT_T CyBle_HrscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HrscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_HrscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_HrscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_HrscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic value attribute (identified by charIndex) to the server. The Write
Response just confirms the operation success.

This function call can result in generation of the following events based on the response from the server device:

• CYBLE_EVT_HRSC_WRITE_CHAR_RESPONSE.

• CYBLE_EVT_GATTC_ERROR_RSP.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 377 of 559

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HRS service-specific callback is registered (with CyBle_HrsRegisterAttrCallback):

• CYBLE_EVT_HRSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_HRS_CHAR_VALUE_T.

Otherwise (if the HRS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HrscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server which is identified by charIndex.

The Read Response returns the characteristic Value in the Attribute Value parameter.

The Read Response only contains the characteristic Value that is less than or equal to (MTU - 1) octets in length.
If the characteristic Value is greater than (MTU - 1) octets in length, the Read Long Characteristic Value procedure
may be used if the rest of the characteristic Value is required.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HRS service-specific callback is registered (with CyBle_HrsRegisterAttrCallback):

• CYBLE_EVT_HRSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_HRS_CHAR_VALUE_T.

Otherwise (if the HRS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 378 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HrscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic Value to the server, which is identified by charIndex.

This function call can result in generation of the following events based on the response from the server device:

• CYBLE_EVT_HRSC_WRITE_DESCR_RESPONSE.

• CYBLE_EVT_GATTC_ERROR_RSP.

One of the following events is received by the peer device, on invoking this function:

• CYBLE_EVT_HRSS_NOTIFICATION_ENABLED.

• CYBLE_EVT_HRSS_NOTIFICATION_DISABLED.

• CYBLE_EVT_HRSS_ENERGY_EXPENDED_RESET.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_INVALID_STATE - The state is not valid

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HRS service-specific callback is registered (with CyBle_HrsRegisterAttrCallback):

• CYBLE_EVT_HRSC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_HRS_DESCR_VALUE_T.

Otherwise (if the HRS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 379 of 559

CYBLE_API_RESULT_T CyBle_HrscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex)

Gets a characteristic descriptor of a specified characteristic of the service.

This function call can result in generation of the following events based on the response from the server device:

• CYBLE_EVT_HRSC_READ_DESCR_RESPONSE

• CYBLE_EVT_GATTC_ERROR_RSP

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_INVALID_STATE - The state is not valid

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HRS service-specific callback is registered (with CyBle_HrsRegisterAttrCallback):

• CYBLE_EVT_HRSC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_HRS_DESCR_VALUE_T.

Otherwise (if the HRS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

HRS Definitions and Data Structures

Description

Contains the HRS specific definitions and data structures used in the HRS APIs.

Data Structures

• struct CYBLE_HRSS_T

• struct CYBLE_HRSC_T

• struct CYBLE_HRS_CHAR_VALUE_T

• struct CYBLE_HRS_DESCR_VALUE_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 380 of 559 Document Number: 002-29930 Rev. *A

Enumerations

• enum CYBLE_HRS_CHAR_INDEX_T

• enum CYBLE_HRS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_HRSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle [CYBLE_HRS_CHAR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T hrmCccdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HRSS_T::serviceHandle

Heart Rate Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HRSS_T::charHandle[CYBLE_HRS_CHAR_COUNT]

Heart Rate Service characteristics handles and properties array

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HRSS_T::hrmCccdHandle

Heart Rate Measurement client char. config. descriptor Handle

struct CYBLE_HRSC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T charInfo [CYBLE_HRS_CHAR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T hrmCccdHandle

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_HRSC_T::charInfo[CYBLE_HRS_CHAR_COUNT]

Heart Rate Service characteristics handles and properties array

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HRSC_T::hrmCccdHandle

Heart Rate Measurement client char. config. descriptor Handle

struct CYBLE_HRS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_HRS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HRS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_HRS_CHAR_INDEX_T CYBLE_HRS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_HRS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_HRS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 381 of 559

• CYBLE_HRS_CHAR_INDEX_T charIndex

• CYBLE_HRS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HRS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_HRS_CHAR_INDEX_T CYBLE_HRS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_HRS_DESCR_INDEX_T CYBLE_HRS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_HRS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_HRS_CHAR_INDEX_T

HRS Characteristics indexes

Enumerator

CYBLE_HRS_HRM Heart Rate Measurement characteristic index

CYBLE_HRS_BSL Body Sensor Location characteristic index

CYBLE_HRS_CPT Control Point characteristic index

CYBLE_HRS_CHAR_COUNT Total count of HRS characteristics

enum CYBLE_HRS_DESCR_INDEX_T

HRS Characteristic Descriptors indexes

Enumerator

CYBLE_HRS_HRM_CCCD Heart Rate Measurement client char. config. descriptor index

CYBLE_HRS_DESCR_COUNT Total count of HRS HRM descriptors

HTTP Proxy Service (HPS)

Description

The HTTP Proxy Service allows a Client device, typically a sensor, to communicate with a Web Server through a
gateway device.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The HPS API names begin with CyBle_Hps. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• HPS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• HPS Server Functions

APIs unique to HPS designs configured as a GATT Server role.

• HPS Client Functions

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 382 of 559 Document Number: 002-29930 Rev. *A

APIs unique to HPS designs configured as a GATT Client role.

• HPS Definitions and Data Structures

Contains the HPS specific definitions and data structures used in the HPS APIs.

HPS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Hps

Functions

• void CyBle_HpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_HpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode - Indicates the event that triggered this callback
(e.g. CYBLE_EVT_HPSS_NOTIFICATION_ENABLED).

• eventParam - Contains the parameters corresponding to the
current event. (e.g. pointer to CYBLE_HPS_CHAR_VALUE_T
structure that contains details of the characteristic for which an
indication enabled event was triggered).

HPS Server Functions

Description

APIs unique to HPS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Hpss

Functions

• CYBLE_API_RESULT_T CyBle_HpssSetCharacteristicValue (CYBLE_HPS_CHAR_INDEX_T charIndex,
uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HpssGetCharacteristicValue (CYBLE_HPS_CHAR_INDEX_T charIndex,
uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HpssSetCharacteristicDescriptor (CYBLE_HPS_CHAR_INDEX_T charIndex,
CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 383 of 559

• CYBLE_API_RESULT_T CyBle_HpssGetCharacteristicDescriptor (CYBLE_HPS_CHAR_INDEX_T charIndex,
CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HpssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_HpssSetCharacteristicValue (CYBLE_HPS_CHAR_INDEX_T charIndex,
uint16 attrSize, uint8 *attrValue)

Sets a value for one of characteristic values of the HTTP Proxy Service. The characteristic is identified by
charIndex.

Parameters:

charIndex The index of a HTTP Proxy Service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was written successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_HpssGetCharacteristicValue (CYBLE_HPS_CHAR_INDEX_T charIndex,
uint16 attrSize, uint8 *attrValue)

Reads a characteristic value of the HTTP Proxy Service, which is identified by charIndex from the GATT database.

Parameters:

charIndex The index of the HTTP Proxy Service characteristic.

attrSize The size of the HTTP Proxy Service characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_HpssSetCharacteristicDescriptor (CYBLE_HPS_CHAR_INDEX_T charIndex,
CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets the characteristic descriptor value of the specified characteristic.

Parameters:

charIndex The index of the service characteristic.

descrIndex The index of the descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data to be stored in the GATT
database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 384 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_HpssGetCharacteristicDescriptor (CYBLE_HPS_CHAR_INDEX_T charIndex,
CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Reads a a characteristic descriptor of a specified characteristic of the HTTP Proxy Service from the GATT
database.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_HpssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification with a characteristic value of the HTTP Proxy Service, which is a value specified by charIndex,
to the client's device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_HPSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - A notification is not enabled by the client.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

HPS Client Functions

Description

APIs unique to HPS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Hpsc

Functions

• CYBLE_API_RESULT_T CyBle_HpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 385 of 559

• CYBLE_API_RESULT_T CyBle_HpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_HpscSetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HpscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_HpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, CYBLE_HPS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_HpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_HPSS_CHAR_WRITE events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HPS service-specific callback is registered (with CyBle_HpsRegisterAttrCallback):

• CYBLE_EVT_HPSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_HPS_CHAR_VALUE_T.

• Otherwise (if the HPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully written on the
peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there were some trouble with the requested attribute
on the peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 386 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_HpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex)

This function is used to read a characteristic value, which is a value identified by charIndex, from the server.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HPS service-specific callback is registered (with CyBle_HpsRegisterAttrCallback):

• CYBLE_EVT_HPSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_HPS_CHAR_VALUE_T.

Otherwise (if the HPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is trouble with the requested attribute on the peer device,
the details are provided with event parameters structure (CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HpscSetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

Sends a request to set a long characteristic value of the service, which is a value identified by charIndex, to the
server's device.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 387 of 559

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HPS service-specific callback is registered (with CyBle_HpsRegisterAttrCallback):

• CYBLE_EVT_HPSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_HPS_CHAR_VALUE_T.

• Otherwise (if the HPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - In case if the requested attribute is successfully wrote on
the peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HpscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

This function is used to read a long characteristic value, which is a value identified by charIndex, from the server.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

attrSize The size of the buffer to store long characteristic value.

attrValue The pointer to the buffer where the read long characteristic value
should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HPS service-specific callback is registered (with CyBle_HpsRegisterAttrCallback):

• CYBLE_EVT_HPSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_HPS_CHAR_VALUE_T.

• Otherwise (if the HPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_BLOB_RSP - If the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with an event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is trouble with the requested attribute on the peer device,
the details are provided with event parameters structure (CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic descriptor to the server, which is identified by charIndex and
descrIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 388 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_HPSS_NOTIFICATION_ENABLED

• CYBLE_EVT_HPSS_NOTIFICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HPS service-specific callback is registered (with CyBle_HpsRegisterAttrCallback):

• CYBLE_EVT_HPSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_HPS_CHAR_VALUE_T. Otherwise (if the HPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is trouble with the requested attribute on the peer device,
the details are provided with event parameters structure (CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HPS_CHAR_INDEX_T charIndex, CYBLE_HPS_DESCR_INDEX_T descrIndex)

Sends a request to get the characteristic descriptor of the specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 389 of 559

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HPS service-specific callback is registered (with CyBle_HpsRegisterAttrCallback):

• CYBLE_EVT_HPSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
read on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_HPS_DESCR_VALUE_T.

Otherwise (if the HPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is trouble with the requested attribute on the peer device,
the details are provided with event parameters structure (CYBLE_GATTC_ERR_RSP_PARAM_T).

HPS Definitions and Data Structures

Description

Contains the HPS specific definitions and data structures used in the HPS APIs.

Data Structures

• struct CYBLE_HPS_CHAR_VALUE_T

• struct CYBLE_HPS_DESCR_VALUE_T

• struct CYBLE_HPSS_CHAR_T

• struct CYBLE_HPSS_T

• struct CYBLE_HPSC_CHAR_T

• struct CYBLE_HPSC_T

Enumerations

• enum CYBLE_HPS_CHAR_INDEX_T

• enum CYBLE_HPS_DESCR_INDEX_T

• enum CYBLE_HPS_HTTP_REQUEST_T

Data Structure Documentation

struct CYBLE_HPS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_HPS_CHAR_INDEX_T charIndex

• CYBLE_GATT_ERR_CODE_T gattErrorCode

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HPS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_HPS_CHAR_INDEX_T CYBLE_HPS_CHAR_VALUE_T::charIndex

Index of service characteristic

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 390 of 559 Document Number: 002-29930 Rev. *A

CYBLE_GATT_ERR_CODE_T CYBLE_HPS_CHAR_VALUE_T::gattErrorCode

Error code received from application (optional)

CYBLE_GATT_VALUE_T* CYBLE_HPS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_HPS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_HPS_CHAR_INDEX_T charIndex

• CYBLE_HPS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_ERR_CODE_T gattErrorCode

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HPS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_HPS_CHAR_INDEX_T CYBLE_HPS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_HPS_DESCR_INDEX_T CYBLE_HPS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_ERR_CODE_T CYBLE_HPS_DESCR_VALUE_T::gattErrorCode

Error code received from application (optional)

CYBLE_GATT_VALUE_T* CYBLE_HPS_DESCR_VALUE_T::value

Characteristic value

struct CYBLE_HPSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_HPS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HPSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HPSS_CHAR_T::descrHandle[CYBLE_HPS_DESCR_COUNT]

Array of descriptor handles

struct CYBLE_HPSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_HPSS_CHAR_T charInfo [CYBLE_HPS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HPSS_T::serviceHandle

HTTP Proxy Service handle

CYBLE_HPSS_CHAR_T CYBLE_HPSS_T::charInfo[CYBLE_HPS_CHAR_COUNT]

Array of characteristics and descriptors handles

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 391 of 559

struct CYBLE_HPSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_HPS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HPSC_CHAR_T::valueHandle

Handle of characteristic value

uint8 CYBLE_HPSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HPSC_CHAR_T::endHandle

End handle of characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HPSC_CHAR_T::descrHandle[CYBLE_HPS_DESCR_COUNT]

Array of descriptor handles

struct CYBLE_HPSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_HPSC_CHAR_T charInfo [CYBLE_HPS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HPSC_T::serviceHandle

HTTP Proxy Service handle

CYBLE_HPSC_CHAR_T CYBLE_HPSC_T::charInfo[CYBLE_HPS_CHAR_COUNT]

HTTP Proxy Service characteristics info structure

Enumeration Type Documentation

enum CYBLE_HPS_CHAR_INDEX_T

HPS Characteristic indexes

Enumerator

CYBLE_HPS_URI Universal Resource Identifier Characteristics index

CYBLE_HPS_HTTP_HEADERS HTTP Headers Characteristics index

CYBLE_HPS_HTTP_ENTITY_BODY HTTP Entity Body Characteristics index

CYBLE_HPS_HTTP_CP HTTP Control Point Characteristics index

CYBLE_HPS_HTTP_STATUS_CODE HTTP Status Code Characteristics index

CYBLE_HPS_HTTPS_SECURITY HTTPS Security Characteristics index

CYBLE_HPS_CHAR_COUNT Total count of HPS Characteristics

enum CYBLE_HPS_DESCR_INDEX_T

HPS Characteristic Descriptors indexes

Enumerator

CYBLE_HPS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_HPS_DESCR_COUNT Total count of Descriptors

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 392 of 559 Document Number: 002-29930 Rev. *A

enum CYBLE_HPS_HTTP_REQUEST_T

HTTP Requests

Enumerator

CYBLE_HPS_HTTP_GET HTTP GET Request

CYBLE_HPS_HTTP_HEAD HTTP HEAD Request

CYBLE_HPS_HTTP_POST HTTP POST Request

CYBLE_HPS_HTTP_PUT HTTP PUT Request

CYBLE_HPS_HTTP_DELETE HTTP DELETE Request

CYBLE_HPS_HTTPS_GET HTTS GET Request

CYBLE_HPS_HTTPS_HEAD HTTPS HEAD Request

CYBLE_HPS_HTTPS_POST HTTPS POST Request

CYBLE_HPS_HTTPS_PUT HTTPS PUT Request

CYBLE_HPS_HTTPS_DELETE HTTPS DELETE Request

CYBLE_HPS_HTTP_REQ_CANCEL HTTP CANCEL Request

Health Thermometer Service (HTS)

Description

The Health Thermometer Service exposes temperature and other data related to a thermometer used for healthcare
applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The HTS API names begin with CyBle_Hts. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• HTS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• HTS Server Functions

APIs unique to HTS designs configured as a GATT Server role.

• HTS Client Functions

APIs unique to HTS designs configured as a GATT Client role.

• HTS Definitions and Data Structures

Contains the HTS specific definitions and data structures used in the HTS APIs.

HTS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Hts

Functions

• void CyBle_HtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 393 of 559

Function Documentation

void CyBle_HtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for HTS
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_HTSS_NOTIFICATION_ENABLED).

• eventParam contains the parameters corresponding to the
current event. (e.g. pointer to CYBLE_HTS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered).

HTS Server Functions

Description

APIs unique to HTS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Htss

Functions

• CYBLE_API_RESULT_T CyBle_HtssSetCharacteristicValue (CYBLE_HTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HtssGetCharacteristicValue (CYBLE_HTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HtssSetCharacteristicDescriptor (CYBLE_HTS_CHAR_INDEX_T charIndex,
CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HtssGetCharacteristicDescriptor (CYBLE_HTS_CHAR_INDEX_T charIndex,
CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HtssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HtssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_HtssSetCharacteristicValue (CYBLE_HTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets the characteristic value of the service in the local database.

Parameters:

charIndex The index of the service characteristic.

attrSize The size (in Bytes) of the characteristic value attribute.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 394 of 559 Document Number: 002-29930 Rev. *A

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_HtssGetCharacteristicValue (CYBLE_HTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets the characteristic value of the service, which is a value identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_HtssSetCharacteristicDescriptor (CYBLE_HTS_CHAR_INDEX_T charIndex,
CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data that should be stored in the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_HtssGetCharacteristicDescriptor (CYBLE_HTS_CHAR_INDEX_T charIndex,
CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 395 of 559

CYBLE_API_RESULT_T CyBle_HtssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends notification with a characteristic value of the Health Thermometer Service, which is a value specified by
charIndex, to the Client device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_HTSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

CYBLE_API_RESULT_T CyBle_HtssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends indication with a characteristic value of the Health Thermometer Service, which is a value specified by
charIndex, to the Client device.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_HTSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HTS service-specific callback is registered (with CyBle_HtsRegisterAttrCallback):

• CYBLE_EVT_HTSS_INDICATION_CONFIRMED - in case if the indication is successfully delivered to
the peer device.

Otherwise (if the HTS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 396 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - in case if the indication is successfully delivered to the
peer device.

HTS Client Functions

Description

APIs unique to HTS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Htsc

Functions

• CYBLE_API_RESULT_T CyBle_HtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_HtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_HtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_HtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_HtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_HTSS_CHAR_WRITE events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HTS service-specific callback is registered (with CyBle_HtsRegisterAttrCallback):

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 397 of 559

• CYBLE_EVT_HTSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_HTS_CHAR_VALUE_T.

Otherwise (if the HTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex)

This function is used to read a characteristic value, which is a value identified by charIndex, from the server.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HTS service-specific callback is registered (with CyBle_HtsRegisterAttrCallback):

• CYBLE_EVT_HTSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_HTS_CHAR_VALUE_T.

Otherwise (if the HTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic descriptor to the server, which is identified by charIndex and
descrIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_HTSS_NOTIFICATION_ENABLED;

• CYBLE_EVT_HTSS_NOTIFICATION_ENABLED;

• CYBLE_EVT_HTSS_INDICATION_ENABLED;

• CYBLE_EVT_HTSS_INDICATION_DISABLED.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 398 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HTS service-specific callback is registered (with CyBle_HtsRegisterAttrCallback):

• CYBLE_EVT_HTSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_HTS_DESCR_VALUE_T.

Otherwise (if the HTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_HtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the HTS service-specific callback is registered (with CyBle_HtsRegisterAttrCallback):

• CYBLE_EVT_HTSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_HTS_DESCR_VALUE_T.

Otherwise (if the HTS service-specific callback is not registered):

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 399 of 559

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

HTS Definitions and Data Structures

Description

Contains the HTS specific definitions and data structures used in the HTS APIs.

Data Structures

• struct CYBLE_HTSS_CHAR_T

• struct CYBLE_HTSS_T

• struct CYBLE_HTSC_CHAR_T

• struct CYBLE_HTSC_T

• struct CYBLE_HTS_CHAR_VALUE_T

• struct CYBLE_HTS_DESCR_VALUE_T

• struct CYBLE_HTS_FLOAT32

Enumerations

• enum CYBLE_HTS_CHAR_INDEX_T

• enum CYBLE_HTS_DESCR_INDEX_T

• enum CYBLE_HTS_TEMP_TYPE_T

Data Structure Documentation

struct CYBLE_HTSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_HTS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HTSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HTSS_CHAR_T::descrHandle[CYBLE_HTS_DESCR_COUNT]

Handle of descriptor

struct CYBLE_HTSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_HTSS_CHAR_T charInfo [CYBLE_HTS_CHAR_COUNT]

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 400 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HTSS_T::serviceHandle

Health Thermometer Service handle

CYBLE_HTSS_CHAR_T CYBLE_HTSS_T::charInfo[CYBLE_HTS_CHAR_COUNT]

Health Thermometer Service Characteristic handles

struct CYBLE_HTSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_HTS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• uint8 properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HTSC_CHAR_T::descrHandle[CYBLE_HTS_DESCR_COUNT]

Handle of descriptor

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HTSC_CHAR_T::valueHandle

Handle of Report characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_HTSC_CHAR_T::endHandle

End handle of characteristic

uint8 CYBLE_HTSC_CHAR_T::properties

Properties for value field

struct CYBLE_HTSC_T

Data Fields

• CYBLE_HTSC_CHAR_T charInfo [CYBLE_HTS_CHAR_COUNT]

Field Documentation

CYBLE_HTSC_CHAR_T CYBLE_HTSC_T::charInfo[CYBLE_HTS_CHAR_COUNT]

Characteristics handles array

struct CYBLE_HTS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_HTS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HTS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_HTS_CHAR_INDEX_T CYBLE_HTS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_HTS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_HTS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 401 of 559

• CYBLE_HTS_CHAR_INDEX_T charIndex

• CYBLE_HTS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_HTS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_HTS_CHAR_INDEX_T CYBLE_HTS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_HTS_DESCR_INDEX_T CYBLE_HTS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_VALUE_T* CYBLE_HTS_DESCR_VALUE_T::value

Characteristic value

struct CYBLE_HTS_FLOAT32

Data Fields

• int8 exponent

• int32 mantissa

Field Documentation

int8 CYBLE_HTS_FLOAT32::exponent

Base 10 exponent

int32 CYBLE_HTS_FLOAT32::mantissa

Mantissa, should be using only 24 bits

Enumeration Type Documentation

enum CYBLE_HTS_CHAR_INDEX_T

HTS Characteristic indexes

Enumerator

CYBLE_HTS_TEMP_MEASURE Temperature Measurement characteristic index

CYBLE_HTS_TEMP_TYPE Temperature Type characteristic index

CYBLE_HTS_INTERM_TEMP Intermediate Temperature characteristic index

CYBLE_HTS_MEASURE_INTERVAL Measurement Interval characteristic index

CYBLE_HTS_CHAR_COUNT Total count of HTS characteristics

enum CYBLE_HTS_DESCR_INDEX_T

HTS Characteristic Descriptors indexes

Enumerator

CYBLE_HTS_CCCD Client Characteristic Configuration descriptor index

CYBLE_HTS_VRD Valid Range descriptor index

CYBLE_HTS_DESCR_COUNT Total count of descriptors

enum CYBLE_HTS_TEMP_TYPE_T

Temperature Type measurement indicates where the temperature was measured

Enumerator

CYBLE_HTS_TEMP_TYPE_ARMPIT Armpit

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 402 of 559 Document Number: 002-29930 Rev. *A

CYBLE_HTS_TEMP_TYPE_BODY Body (general)

CYBLE_HTS_TEMP_TYPE_EAR Ear (usually ear lobe)

CYBLE_HTS_TEMP_TYPE_FINGER Finger

CYBLE_HTS_TEMP_TYPE_GI_TRACT Gastro-intestinal Tract

CYBLE_HTS_TEMP_TYPE_MOUTH Mouth

CYBLE_HTS_TEMP_TYPE_RECTUM Rectum

CYBLE_HTS_TEMP_TYPE_TOE Toe

CYBLE_HTS_TEMP_TYPE_TYMPANUM Tympanum (ear drum)

Immediate Alert Service (IAS)

Description

The Immediate Alert Service exposes a control point to allow a peer device to cause the device to immediately alert.

The Immediate Alert Service uses the Alert Level Characteristic to cause an alert when it is written with a value other
than "No Alert".

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The IAS API names begin with CyBle_Ias. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• IAS Server Functions

APIs unique to IAS designs configured as a GATT Server role.

• IAS Client Functions

APIs unique to IAS designs configured as a GATT Client role.

• IAS Definitions and Data Structures

Contains the IAS specific definitions and data structures used in the IAS APIs.

IAS Server Functions

Description

APIs unique to IAS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Iass

Functions

• void CyBle_IasRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

• CYBLE_API_RESULT_T CyBle_IassGetCharacteristicValue (CYBLE_IAS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Function Documentation

void CyBle_IasRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 403 of 559

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for IAS
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_IASS_NOTIFICATION_ENABLED).

• eventParam contains the parameters corresponding to the
current event. (e.g. pointer to CYBLE_IAS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered).

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.
 Note : IAS only has events for the GATT server. There are no events for the GATT client since the client
sends data without waiting for response. Therefore there is no need to register a callback through
CyBle_IasRegisterAttrCallback for an IAS GATT client.

CYBLE_API_RESULT_T CyBle_IassGetCharacteristicValue (CYBLE_IAS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets the Alert Level characteristic value of the service, which is identified by charIndex.

Parameters:

charIndex The index of the Alert Level characteristic.

attrSize The size of the Alert Level characteristic value attribute.

attrValue The pointer to the location where the Alert Level characteristic value
data should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

IAS Client Functions

Description

APIs unique to IAS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Iasc

Functions

• CYBLE_API_RESULT_T CyBle_IascSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 404 of 559 Document Number: 002-29930 Rev. *A

Function Documentation

CYBLE_API_RESULT_T CyBle_IascSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_IASS_WRITE_CHAR_CMD event is generated.

Parameters:

connHandle The connection handle.

charIndex The index of the Alert Level service characteristic.

attrSize The size of the Alert Level characteristic value attribute.

attrValue The pointer to the Alert Level characteristic value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

IAS Definitions and Data Structures

Description

Contains the IAS specific definitions and data structures used in the IAS APIs.

Data Structures

• struct CYBLE_IASS_T

• struct CYBLE_IAS_CHAR_VALUE_T

• struct CYBLE_IASC_T

Enumerations

• enum CYBLE_IAS_CHAR_INDEX_T

Data Structure Documentation

struct CYBLE_IASS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T alertLevelCharHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IASS_T::serviceHandle

Immediate Alert Service handle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 405 of 559

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IASS_T::alertLevelCharHandle

Handle of Alert Level Characteristic

struct CYBLE_IAS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_IAS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_IAS_CHAR_VALUE_T::connHandle

Connection handle

CYBLE_IAS_CHAR_INDEX_T CYBLE_IAS_CHAR_VALUE_T::charIndex

Characteristic index of Immediate Alert Service

CYBLE_GATT_VALUE_T* CYBLE_IAS_CHAR_VALUE_T::value

Pointer to value of Immediate Alert Service characteristic

struct CYBLE_IASC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T alertLevelChar

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_IASC_T::alertLevelChar

Handle of Alert Level Characteristic of Immediate Alert Service

Enumeration Type Documentation

enum CYBLE_IAS_CHAR_INDEX_T

Immediate Alert Service Characteristic indexes

Enumerator

CYBLE_IAS_ALERT_LEVEL Alert Level Characteristic index

CYBLE_IAS_CHAR_COUNT Total count of characteristics

Indoor Positioning Service (IPS)

Description

The Indoor Positioning exposes coordinates and other location related information via an advertisement or indicates
that the device address can be used for location look-up, enabling mobile devices to find their position.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The IPS API names begin with CyBle_Ips. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• IPS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• IPS Server Functions

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 406 of 559 Document Number: 002-29930 Rev. *A

APIs unique to IPS designs configured as a GATT Server role.

• IPS Client Functions

APIs unique to IPS designs configured as a GATT Client role.

• IPS Definitions and Data Structures

Contains the IPS specific definitions and data structures used in the IPS APIs.

IPS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Ips

Functions

• void CyBle_IpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_IpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for IPS
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode: Indicates the event that triggered this callback (e.g.
CYBLE_EVT_IPS_NOTIFICATION_ENABLED).

• eventParam: Contains the parameters corresponding to the
current event. (e.g. Pointer to CYBLE_IPS_CHAR_VALUE_T
structure that contains details of the characteristic for which the
notification enabled event was triggered).

IPS Server Functions

Description

APIs unique to IPS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Ipss

Functions

• CYBLE_API_RESULT_T CyBle_IpssSetCharacteristicValue (CYBLE_IPS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_IpssGetCharacteristicValue (CYBLE_IPS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 407 of 559

• CYBLE_API_RESULT_T CyBle_IpssSetCharacteristicDescriptor (CYBLE_IPS_CHAR_INDEX_T charIndex,
CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_IpssGetCharacteristicDescriptor (CYBLE_IPS_CHAR_INDEX_T charIndex,
CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_IpssSetCharacteristicValue (CYBLE_IPS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets the characteristic value of the service in the local database.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

attrSize The size (in bytes) of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_IpssGetCharacteristicValue (CYBLE_IPS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets the characteristic value of the service, which is a value identified by charIndex.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_IpssSetCharacteristicDescriptor (CYBLE_IPS_CHAR_INDEX_T charIndex,
CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Set a characteristic descriptor of a specified characteristic of the Indoor Positioning Service from the local GATT
database.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data to be stored in the GATT
database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 408 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_IpssGetCharacteristicDescriptor (CYBLE_IPS_CHAR_INDEX_T charIndex,
CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the Indoor Positioning Service from the local GATT
database.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

IPS Client Functions

Description

APIs unique to IPS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Ipsc

Functions

• CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicValueWithoutResponse (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_IpscReliableWriteCharacteristicValue (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_IpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_IpscGetMultipleCharacteristicValues (CYBLE_CONN_HANDLE_T
connHandle, const CYBLE_IPS_CHAR_INDEX_T *charIndexesList, uint8 numberOfCharIndexes)

• CYBLE_API_RESULT_T CyBle_IpscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex, CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_IpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex, CYBLE_IPS_DESCR_INDEX_T descrIndex)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 409 of 559

Function Documentation

CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicValueWithoutResponse (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server
without response.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_IPSS_WRITE_CHAR events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

The Write Response just confirms the operation success.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the IPS service-specific callback is registered (with CyBle_IpsRegisterAttrCallback):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 410 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_IPSC_WRITE_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, etc.) are provided with an event parameter structure of type
CYBLE_IPS_CHAR_VALUE_T.

Otherwise (if the IPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - If the requested attribute is successfully written on the
peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_IpscReliableWriteCharacteristicValue (CYBLE_CONN_HANDLE_T
connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to perform a reliable write command for the Indoor Positioning Service (identified by
charIndex) value attribute to the server.

The Write response just confirms the operation success.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the IPS service-specific callback is registered (with CyBle_IpsRegisterAttrCallback):

• CYBLE_EVT_IPSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_IPS_CHAR_VALUE_T.

Otherwise (if the IPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - in case if the requested attribute is successfully wrote on
the peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_IpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server, as identified by its charIndex

The Read Response returns the characteristic Value in the Attribute Value parameter.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 411 of 559

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the IPS service-specific callback is registered (with CyBle_IpsRegisterAttrCallback):

• CYBLE_EVT_IPSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_IPS_CHAR_VALUE_T.

Otherwise (if the IPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_IpscGetMultipleCharacteristicValues (CYBLE_CONN_HANDLE_T
connHandle, const CYBLE_IPS_CHAR_INDEX_T *charIndexesList, uint8 numberOfCharIndexes)

This function reads multiple Characteristic Values from a GATT Server when the GATT Client knows the
Characteristic value handles. This is a non-blocking function.

Internally, Read Multiple Request is sent to the peer device in response to which Read Multiple Response is
received. This results in CYBLE_EVT_GATTC_READ_MULTI_RSP event, which is propagated to the application
layer.

An Error Response event is sent by the server (CYBLE_EVT_GATTC_ERROR_RSP) in response to the Read
Multiple Request if insufficient authentication, insufficient authorization, insufficient encryption key size is used by
the client, or if a read operation is not permitted on any of the Characteristic values. The Error Code parameter is
set as specified in the Attribute Protocol.

Refer to Bluetooth 4.1 core specification, Volume 3, Part G, section 4.8.4 for more details on the sequence of
operations.

Parameters:

connHandle Connection handle to identify the peer GATT entity, of type
CYBLE_CONN_HANDLE_T.

charIndexes
List

Pointer to a list of Characteristic value handles

numberOfCh
arIndexes

Number of requested Characteristic handles

Returns:

CYBLE_API_RESULT_T : Return value indicates if the function succeeded or failed. Following are the
possible error codes.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 412 of 559 Document Number: 002-29930 Rev. *A

Errors codes Description

CYBLE_ERROR_OK On successful operation

CYBLE_ERROR_INVALID_PARAME
TER

'connHandle' value does not represent any
existing entry in the Stack

CYBLE_ERROR_INVALID_OPERATI
ON

This operation is not permitted

CYBLE_ERROR_MEMORY_ALLOC
ATION_FAILED

Memory allocation failed

CYBLE_ERROR_INVALID_STATE Connection with the Client is not established.

CYBLE_ERROR_GATT_DB_INVALI
D_ATTR_HANDLE

The peer device doesn't have the particular
characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the IPS service-specific callback is registered (with CyBle_IpsRegisterAttrCallback):

• CYBLE_EVT_IPSC_READ_MULTIPLE_CHAR_RESPONSE - If the requested attribute is successfully
written on the peer device, the details (char index , value, etc.) are provided with an event parameter
structure of type CYBLE_IPS_CHAR_VALUE_T.

Otherwise (if the IPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_MULTI_RSP - If the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_IpscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

Sends a request to read a long characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the buffer where the read long characteristic descriptor
value should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the IPS service-specific callback is registered (with CyBle_IpsRegisterAttrCallback):

• CYBLE_EVT_IPSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_IPS_CHAR_VALUE_T.

Otherwise (if the IPS service-specific callback is not registered):

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 413 of 559

• CYBLE_EVT_GATTC_READ_BLOB_RSP - If the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex, CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic Value to the server, as identified by its charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

attrValue The pointer to the characteristic descriptor value data type should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the IPS service-specific callback is registered (with CyBle_IpsRegisterAttrCallback):

• CYBLE_EVT_IPSC_WRITE_DESCR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, descr index etc.) are provided with an event parameter structure
of type CYBLE_IPS_DESCR_VALUE_T.

Otherwise (if the IPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_IpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_IPS_CHAR_INDEX_T charIndex, CYBLE_IPS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 414 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the IPS service-specific callback is registered (with CyBle_IpsRegisterAttrCallback):

• CYBLE_EVT_IPSC_READ_DESCR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, descr index, value, etc.) are provided with an event parameter
structure of type CYBLE_IPS_DESCR_VALUE_T.

Otherwise (if the IPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

IPS Definitions and Data Structures

Description

Contains the IPS specific definitions and data structures used in the IPS APIs.

Data Structures

• struct CYBLE_IPSS_CHAR_T

• struct CYBLE_IPSS_CHAR_INFO_PTR_T

• struct CYBLE_IPSS_T

• struct CYBLE_IPSC_CHAR_T

• struct CYBLE_IPSC_CHAR_INFO_PTR_T

• struct CYBLE_IPSC_T

• struct CYBLE_IPS_CHAR_VALUE_T

• struct CYBLE_IPS_DESCR_VALUE_T

Enumerations

• enum CYBLE_IPS_CHAR_INDEX_T

• enum CYBLE_IPS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_IPSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_IPS_DESCR_COUNT]

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 415 of 559

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IPSS_CHAR_T::charHandle

Handles of Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IPSS_CHAR_T::descrHandle[CYBLE_IPS_DESCR_COUNT]

Array of Descriptor handles

struct CYBLE_IPSS_CHAR_INFO_PTR_T

Data Fields

• CYBLE_IPSS_CHAR_T * charInfoPtr

Field Documentation

CYBLE_IPSS_CHAR_T* CYBLE_IPSS_CHAR_INFO_PTR_T::charInfoPtr

Pointer to CYBLE_IPSS_CHAR_T which holds information about specific IP Characteristic

struct CYBLE_IPSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_IPSS_CHAR_T charInfo [CYBLE_IPS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IPSS_T::serviceHandle

Indoor Positioning Service handle

CYBLE_IPSS_CHAR_T CYBLE_IPSS_T::charInfo[CYBLE_IPS_CHAR_COUNT]

Indoor Positioning Service Array with pointers to Characteristic handles.

struct CYBLE_IPSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_IPS_DESCR_COUNT]

• uint8 properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IPSC_CHAR_T::valueHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IPSC_CHAR_T::endHandle

End handle of characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IPSC_CHAR_T::descrHandle[CYBLE_IPS_DESCR_COUNT]

Array of Descriptor handles

uint8 CYBLE_IPSC_CHAR_T::properties

Properties for value field

struct CYBLE_IPSC_CHAR_INFO_PTR_T

Data Fields

• CYBLE_IPSC_CHAR_T * charInfoPtr

Field Documentation

CYBLE_IPSC_CHAR_T* CYBLE_IPSC_CHAR_INFO_PTR_T::charInfoPtr

Pointer to CYBLE_IPSC_CHAR_T which holds information about specific IP Characteristic.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 416 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_IPSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_IPSC_CHAR_T charInfo [CYBLE_IPS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_IPSC_T::serviceHandle

Indoor Positioning Service handle

CYBLE_IPSC_CHAR_T CYBLE_IPSC_T::charInfo[CYBLE_IPS_CHAR_COUNT]

Indoor Positioning Service characteristics info array

struct CYBLE_IPS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_IPS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_IPS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_IPS_CHAR_INDEX_T CYBLE_IPS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_IPS_CHAR_VALUE_T::value

Characteristic value

CYBLE_GATT_ERR_CODE_T CYBLE_IPS_CHAR_VALUE_T::gattErrorCode

GATT error code for access control

struct CYBLE_IPS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_IPS_CHAR_INDEX_T charIndex

• CYBLE_IPS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_ERR_CODE_T gattErrorCode

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_IPS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_IPS_CHAR_INDEX_T CYBLE_IPS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_IPS_DESCR_INDEX_T CYBLE_IPS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_ERR_CODE_T CYBLE_IPS_DESCR_VALUE_T::gattErrorCode

Error code received from application (optional)

CYBLE_GATT_VALUE_T* CYBLE_IPS_DESCR_VALUE_T::value

Characteristic value

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 417 of 559

Enumeration Type Documentation

enum CYBLE_IPS_CHAR_INDEX_T

IPS Characteristic indexes

Enumerator

CYBLE_IPS_INDOOR_POSITINING_CONFIG Set of characteristic values included in the Indoor Positioning
Service AD type.

CYBLE_IPS_LATITUDE WGS84 North coordinate of the device.

CYBLE_IPS_LONGITUDE WGS84 East coordinate of the device.

CYBLE_IPS_LOCAL_NORTH_COORDINATE North coordinate of the device using local coordinate system.

CYBLE_IPS_LOCAL_EAST_COORDINATE East coordinate of the device using local coordinate system.

CYBLE_IPS_FLOOR_NUMBER Describes in which floor the device is installed in.

CYBLE_IPS_ALTITUDE Altitude of the device.

CYBLE_IPS_UNCERTAINTY Uncertainty of the location information the device exposes.

CYBLE_IPS_LOCATION_NAME Name of the location the device is installed in.

CYBLE_IPS_CHAR_COUNT Total count of IPS characteristics

enum CYBLE_IPS_DESCR_INDEX_T

IPS Characteristic Descriptors indexes

Enumerator

CYBLE_IPS_CEPD Characteristic Extended Properties descriptor index

CYBLE_IPS_SCCD Server Characteristic Configuration Descriptor index

CYBLE_IPS_DESCR_COUNT Total count of descriptors

Link Loss Service (LLS)

Description

The Link Loss Service uses the Alert Level Characteristic to cause an alert in the device when the link is lost.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The LLS API names begin with CyBle_Lls. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• LLS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• LLS Server Functions

APIs unique to LLS designs configured as a GATT Server role.

• LLS Client Functions

APIs unique to LLS designs configured as a GATT Client role.

• LLS Definitions and Data Structures

Contains the LLS specific definitions and data structures used in the LLS APIs.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 418 of 559 Document Number: 002-29930 Rev. *A

LLS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Lls

Functions

• void CyBle_LlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_LlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for Link Loss
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_LLSS_NOTIFICATION_ENABLED).

• eventParam contains the parameters corresponding to the
current event. (e.g. pointer to CYBLE_LLS_CHAR_VALUE_T
structure that contains details of the characteristic for which
notification enabled event was triggered).

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

LLS Server Functions

Description

APIs unique to LLS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Llss

Functions

• CYBLE_API_RESULT_T CyBle_LlssGetCharacteristicValue (CYBLE_LLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_LlssGetCharacteristicValue (CYBLE_LLS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets an Alert Level characteristic value of the service, which is identified by charIndex.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 419 of 559

Parameters:

charIndex The index of an Alert Level characteristic.

attrSize The size of the Alert Level characteristic value attribute.

attrValue The pointer to the location where an Alert Level characteristic value
data should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

LLS Client Functions

Description

APIs unique to LLS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Llsc

Functions

• CYBLE_API_RESULT_T CyBle_LlscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_LlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LLS_CHAR_INDEX_T charIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_LlscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sets the Alert Level characteristic value of the Link Loss Service, which is identified by charIndex. As a result a
Write Request is sent to the GATT Server and on successful execution of the request on the Server side the
CYBLE_EVT_LLSS_WRITE_CHAR_REQ event is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the Alert Level service characteristic.

attrSize The size of the Alert Level characteristic value attribute.

attrValue The pointer to the Alert Level characteristic value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the LLS service-specific callback is registered (with CyBle_LlsRegisterAttrCallback):

• CYBLE_EVT_LLSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_LLS_CHAR_VALUE_T.

Otherwise (if the LLS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 420 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_LlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LLS_CHAR_INDEX_T charIndex)

Sends a request to get characteristic value of the Link Loss Service, which is identified by charIndex.

This function call can result in generation of the following events based on the response from the server device:

• CYBLE_EVT_LLSC_READ_CHAR_RESPONSE

• CYBLE_EVT_GATTC_ERROR_RSP

Parameters:

connHandle The connection handle.

charIndex The index of the Link Loss Service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the LLS service-specific callback is registered (with CyBle_LlsRegisterAttrCallback):

• CYBLE_EVT_LLSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_LLS_CHAR_VALUE_T.

Otherwise (if the LLS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

LLS Definitions and Data Structures

Description

Contains the LLS specific definitions and data structures used in the LLS APIs.

Data Structures

• struct CYBLE_LLS_CHAR_VALUE_T

• struct CYBLE_LLSS_T

• struct CYBLE_LLSC_T

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 421 of 559

Enumerations

• enum CYBLE_LLS_CHAR_INDEX_T

Data Structure Documentation

struct CYBLE_LLS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_LLS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_LLS_CHAR_VALUE_T::connHandle

Connection handle

CYBLE_LLS_CHAR_INDEX_T CYBLE_LLS_CHAR_VALUE_T::charIndex

Characteristic index of Link Loss Service

CYBLE_GATT_VALUE_T* CYBLE_LLS_CHAR_VALUE_T::value

Pointer to value of Link Loss Service characteristic

struct CYBLE_LLSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T alertLevelCharHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_LLSS_T::serviceHandle

Link Loss Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_LLSS_T::alertLevelCharHandle

Handle of Alert Level Characteristic

struct CYBLE_LLSC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T alertLevelChar

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_LLSC_T::alertLevelChar

Handle of Alert Level Characteristic of Link Loss Service

Enumeration Type Documentation

enum CYBLE_LLS_CHAR_INDEX_T

Link Loss Service Characteristic indexes

Enumerator

CYBLE_LLS_ALERT_LEVEL Alert Level Characteristic index

CYBLE_LLS_CHAR_COUNT Total count of characteristics

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 422 of 559 Document Number: 002-29930 Rev. *A

Location and Navigation Service (LNS)

Description

The Location and Navigation Service exposes location and navigation-related data from a Location and Navigation
sensor (Server) intended for outdoor activity applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The LNS API names begin with CyBle_Lns. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• LNS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• LNS Server Functions

APIs unique to LNS designs configured as a GATT Server role.

• LNS Client Functions

APIs unique to LNS designs configured as a GATT Client role.

• LNS Definitions and Data Structures

Contains the LNS specific definitions and data structures used in the LNS APIs.

LNS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Lns

Functions

• void CyBle_LnsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_LnsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for LNS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 423 of 559

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

LNS Server Functions

Description

APIs unique to LNS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Lnss

Functions

• CYBLE_API_RESULT_T CyBle_LnssSetCharacteristicValue (CYBLE_LNS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_LnssGetCharacteristicValue (CYBLE_LNS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_LnssGetCharacteristicDescriptor (CYBLE_LNS_CHAR_INDEX_T charIndex,
CYBLE_LNS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_LnssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_LnssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_LnssSetCharacteristicValue (CYBLE_LNS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets the value of the characteristic, as identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

CYBLE_API_RESULT_T CyBle_LnssGetCharacteristicValue (CYBLE_LNS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets the value of the characteristic, as identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 424 of 559 Document Number: 002-29930 Rev. *A

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - Characteristic value was read successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Characteristic is absent.

CYBLE_API_RESULT_T CyBle_LnssGetCharacteristicDescriptor (CYBLE_LNS_CHAR_INDEX_T charIndex,
CYBLE_LNS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - Characteristic Descriptor value was read successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Characteristic is absent.

CYBLE_API_RESULT_T CyBle_LnssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification of the specified characteristic value, as identified by the charIndex.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_LNSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

CYBLE_API_RESULT_T CyBle_LnssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication of the specified characteristic value, as identified by the charIndex.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_LNSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 425 of 559

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

• CYBLE_ERROR_IND_DISABLED - Indication is disabled for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the LNS service-specific callback is registered (with CyBle_LnsRegisterAttrCallback):

• CYBLE_EVT_LNSS_INDICATION_CONFIRMED - in case if the indication is successfully delivered to
the peer device.

Otherwise (if the LNS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - in case if the indication is successfully delivered to the
peer device.

LNS Client Functions

Description

APIs unique to LNS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Lnsc

Functions

• CYBLE_API_RESULT_T CyBle_LnscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_LnscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_LnscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_LnscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 426 of 559 Document Number: 002-29930 Rev. *A

Function Documentation

CYBLE_API_RESULT_T CyBle_LnscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_LNSS_WRITE_CHAR event is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the LNS service-specific callback is registered (with CyBle_LnsRegisterAttrCallback):

• CYBLE_EVT_LNSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_LNS_CHAR_VALUE_T.

Otherwise (if the LNS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_LnscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server, as identified by its charIndex

The Read Response returns the characteristic Value in the Attribute Value parameter.

The Read Response only contains the characteristic Value that is less than or equal to (MTU - 1) octets in length.
If the characteristic Value is greater than (MTU - 1) octets in length, the Read Long Characteristic Value procedure
may be used if the rest of the characteristic Value is required.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 427 of 559

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the LNS service-specific callback is registered (with CyBle_LnsRegisterAttrCallback):

• CYBLE_EVT_LNSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_LNS_CHAR_VALUE_T.

Otherwise (if the LNS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_LnscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic Value to the server, as identified by its charIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_LNSS_INDICATION_ENABLED

• CYBLE_EVT_LNSS_INDICATION_DISABLED

• CYBLE_EVT_LNSS_NOTIFICATION_ENABLED

• CYBLE_EVT_LNSS_NOTIFICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_INVALID_STATE - The state is not valid

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the LNS service-specific callback is registered (with CyBle_LnsRegisterAttrCallback):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 428 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_LNSC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_LNS_DESCR_VALUE_T.

Otherwise (if the LNS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_LnscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_INVALID_STATE - The state is not valid

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the LNS service-specific callback is registered (with CyBle_LnsRegisterAttrCallback):

• CYBLE_EVT_LNSC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_LNS_DESCR_VALUE_T.

Otherwise (if the LNS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

LNS Definitions and Data Structures

Description

Contains the LNS specific definitions and data structures used in the LNS APIs.

Data Structures

• struct CYBLE_LNSS_CHAR_T

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 429 of 559

• struct CYBLE_LNSS_T

• struct CYBLE_LNSC_CHAR_T

• struct CYBLE_LNSC_T

• struct CYBLE_LNS_CHAR_VALUE_T

• struct CYBLE_LNS_DESCR_VALUE_T

Enumerations

• enum CYBLE_LNS_CHAR_INDEX_T

• enum CYBLE_LNS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_LNSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_LNS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_LNSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_LNSS_CHAR_T::descrHandle[CYBLE_LNS_DESCR_COUNT]

Handle of descriptor

struct CYBLE_LNSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_LNSS_CHAR_T charInfo [CYBLE_LNS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_LNSS_T::serviceHandle

Location and Navigation Service handle

CYBLE_LNSS_CHAR_T CYBLE_LNSS_T::charInfo[CYBLE_LNS_CHAR_COUNT]

Location and Navigation Service characteristics info array

struct CYBLE_LNSC_CHAR_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_LNS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

uint8 CYBLE_LNSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_LNSC_CHAR_T::valueHandle

Handle of server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_LNSC_CHAR_T::descrHandle[CYBLE_LNS_DESCR_COUNT]

Location and Navigation client char. descriptor handle

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 430 of 559 Document Number: 002-29930 Rev. *A

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_LNSC_CHAR_T::endHandle

Characteristic End Handle

struct CYBLE_LNSC_T

Data Fields

• CYBLE_LNSC_CHAR_T charInfo [CYBLE_LNS_CHAR_COUNT]

Field Documentation

CYBLE_LNSC_CHAR_T CYBLE_LNSC_T::charInfo[CYBLE_LNS_CHAR_COUNT]

Characteristics handle + properties array

struct CYBLE_LNS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_LNS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_LNS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_LNS_CHAR_INDEX_T CYBLE_LNS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_LNS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_LNS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_LNS_CHAR_INDEX_T charIndex

• CYBLE_LNS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_LNS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_LNS_CHAR_INDEX_T CYBLE_LNS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_LNS_DESCR_INDEX_T CYBLE_LNS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_LNS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_LNS_CHAR_INDEX_T

LNS Service Characteristics indexes

Enumerator

CYBLE_LNS_FT Location and Navigation Feature characteristic index

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 431 of 559

CYBLE_LNS_LS Location and Speed characteristic index

CYBLE_LNS_PQ Position Quality characteristic index

CYBLE_LNS_CP Location and Navigation Control Point characteristic index

CYBLE_LNS_NV Navigation characteristic index

CYBLE_LNS_CHAR_COUNT Total count of LNS characteristics

enum CYBLE_LNS_DESCR_INDEX_T

LNS Service Characteristic Descriptors indexes

Enumerator

CYBLE_LNS_CCCD Client Characteristic Configuration descriptor index

CYBLE_LNS_DESCR_COUNT Total count of LNS descriptors

Next DST Change Service (NDCS)

Description

The Next DST Change Service enables a BLE device that has knowledge about the next occurrence of a DST change
to expose this information to another Bluetooth device. The Service uses the "Time with DST" Characteristic and the
functions exposed in this Service are used to interact with that Characteristic.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The NDCS API names begin with CyBle_Ndcs. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• NDCS Server and Client Functions

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• NDCS Server Functions

APIs unique to NDCS designs configured as a GATT Server role.

• NDCS Client Functions

APIs unique to NDCS designs configured as a GATT Client role.

• NDCS Definitions and Data Structures

Contains the NDCS specific definitions and data structures used in the NDCS APIs.

NDCS Server and Client Functions

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Ndcs

Functions

• void CyBle_NdcsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 432 of 559 Document Number: 002-29930 Rev. *A

Function Documentation

void CyBle_NdcsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for Next DST Change Service specific attribute operations. Service specific write
requests from peer device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for NDCS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

NDCS Server Functions

Description

APIs unique to NDCS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Ndcss

Functions

• CYBLE_API_RESULT_T CyBle_NdcssSetCharacteristicValue (CYBLE_NDCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_NdcssGetCharacteristicValue (CYBLE_NDCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_NdcssSetCharacteristicValue (CYBLE_NDCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets characteristic value of the Next DST Change Service, which is identified by charIndex in the local database.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_NDCS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - the request is handled successfully;

• CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_NdcssGetCharacteristicValue (CYBLE_NDCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets a characteristic value of the Next DST Change Service, which is identified by charIndex.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 433 of 559

Parameters:

charIndex The index of a service characteristic of type
CYBLE_NDCS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - the request is handled successfully;

• CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameter failed.

NDCS Client Functions

Description

APIs unique to NDCS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Ndcsc

Functions

• CYBLE_API_RESULT_T CyBle_NdcscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_NDCS_CHAR_INDEX_T charIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_NdcscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_NDCS_CHAR_INDEX_T charIndex)

Sends a request to peer device to set characteristic value of the Next DST Change Service, which is identified by
charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - the request was sent successfully.

• CYBLE_ERROR_INVALID_STATE - connection with the client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the NDCS service-specific callback is registered (with CyBle_NdcsRegisterAttrCallback):

• CYBLE_EVT_NDCSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_NDCS_CHAR_VALUE_T.

Otherwise (if the NDCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 434 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

NDCS Definitions and Data Structures

Description

Contains the NDCS specific definitions and data structures used in the NDCS APIs.

Data Structures

• struct CYBLE_NDCS_CHAR_VALUE_T

• struct CYBLE_NDCSS_T

• struct CYBLE_NDCSC_T

Enumerations

• enum CYBLE_NDCS_CHAR_INDEX_T

Data Structure Documentation

struct CYBLE_NDCS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_NDCS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_NDCS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_NDCS_CHAR_INDEX_T CYBLE_NDCS_CHAR_VALUE_T::charIndex

Index of Next DST Change Service Characteristic

CYBLE_GATT_VALUE_T* CYBLE_NDCS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_NDCSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T timeWithDst

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_NDCSS_T::serviceHandle

Handle of the Next DST Change Service

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_NDCSS_T::timeWithDst

Handle of the Time with DST Characteristic

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 435 of 559

struct CYBLE_NDCSC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T charInfo [CYBLE_NDCS_CHAR_COUNT]

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_NDCSC_T::charInfo[CYBLE_NDCS_CHAR_COUNT]

Characteristic handle and properties

Enumeration Type Documentation

enum CYBLE_NDCS_CHAR_INDEX_T

Characteristic indexes

Enumerator

CYBLE_NDCS_TIME_WITH_DST Time with DST Characteristic index

CYBLE_NDCS_CHAR_COUNT Total count of NDCS Characteristics

Object Transfer Service (OTS)

Description

The Object Transfer Service provides management and control features supporting bulk data transfers which occur
via a separate L2CAP connection oriented channel.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The OTS API names begin with CyBle_Ots. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• OTS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• OTS Server Functions

APIs unique to OTS designs configured as a GATT Server role.

• OTS Client Functions

APIs unique to OTS designs configured as a GATT Client role.

• OTS Definitions and Data Structures

Contains the OTS specific definitions and data structures used in the OTS APIs.

OTS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Ots

Functions

• void CyBle_OtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 436 of 559 Document Number: 002-29930 Rev. *A

Function Documentation

void CyBle_OtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for OTS
Service is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode: Indicates the event that triggered this callback (e.g.
CYBLE_EVT_OTS_NOTIFICATION_ENABLED).

• eventParam: Contains the parameters corresponding to the
current event. (e.g. Pointer to CYBLE_OTS_CHAR_VALUE_T
structure that contains details of the characteristic for which the
notification enabled event was triggered).

OTS Server Functions

Description

APIs unique to OTS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Otss

Functions

• CYBLE_API_RESULT_T CyBle_OtssSetCharacteristicValue (CYBLE_OTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_OtssGetCharacteristicValue (CYBLE_OTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_OtssSetCharacteristicDescriptor (CYBLE_OTS_CHAR_INDEX_T charIndex,
CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_OtssGetCharacteristicDescriptor (CYBLE_OTS_CHAR_INDEX_T charIndex,
CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_OtssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_OtssSetCharacteristicValue (CYBLE_OTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets the characteristic value of the service in the local database.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

attrSize The size (in bytes) of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 437 of 559

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_OtssGetCharacteristicValue (CYBLE_OTS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets the characteristic value of the service, which is a value identified by charIndex.

Parameters:

charIndex The index of the service characteristic. Starts with zero.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_OtssSetCharacteristicDescriptor (CYBLE_OTS_CHAR_INDEX_T charIndex,
CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Set a characteristic descriptor of a specified characteristic of the Indoor Positioning Service from the local GATT
database.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data to be stored in the GATT
database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_OtssGetCharacteristicDescriptor (CYBLE_OTS_CHAR_INDEX_T charIndex,
CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the Indoor Positioning Service from the local GATT
database.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 438 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_OtssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication with a characteristic value of the Object Transfer Service, which is a value specified by
charIndex, to the client's device.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_OTSS_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the OTS service-specific callback is registered (with CyBle_OtsRegisterAttrCallback):

• CYBLE_EVT_OTSS_INDICATION_CONFIRMED -In case if the indication is successfully delivered to
the peer device.

Otherwise (if the OTS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - In case if the indication is successfully delivered to the
peer device.

OTS Client Functions

Description

APIs unique to OTS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Otsc

Functions

• CYBLE_API_RESULT_T CyBle_OtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_OtscSetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_OtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 439 of 559

• CYBLE_API_RESULT_T CyBle_OtscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_OtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_OtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, CYBLE_OTS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_OtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_OTSS_WRITE_CHAR events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

The Write Response just confirms the operation success.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the OTS service-specific callback is registered (with CyBle_OtsRegisterAttrCallback):

• CYBLE_EVT_OTSC_WRITE_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, etc.) are provided with an event parameter structure of type
CYBLE_OTS_CHAR_VALUE_T.

Otherwise (if the OTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - If the requested attribute is successfully written on the
peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_OtscSetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

Sends a request to set a long characteristic value of the service, which is a value identified by charIndex, to the
server's device.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 440 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the OTS service-specific callback is registered (with CyBle_OtsRegisterAttrCallback):

• CYBLE_EVT_OTSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_OTS_CHAR_VALUE_T.

• Otherwise (if the OTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - In case if the requested attribute is successfully wrote on
the peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_OtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server, as identified by its charIndex

The Read Response returns the characteristic Value in the Attribute Value parameter.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the OTS service-specific callback is registered (with CyBle_OtsRegisterAttrCallback):

• CYBLE_EVT_OTSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_OTS_CHAR_VALUE_T.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 441 of 559

Otherwise (if the OTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_OtscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

Sends a request to read a long characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the buffer where the read long characteristic descriptor
value should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the OTS service-specific callback is registered (with CyBle_OtsRegisterAttrCallback):

• CYBLE_EVT_OTSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_OTS_CHAR_VALUE_T.

Otherwise (if the OTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_BLOB_RSP - If the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_OtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic Value to the server, as identified by its charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 442 of 559 Document Number: 002-29930 Rev. *A

attrValue The pointer to the characteristic descriptor value data type should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the OTS service-specific callback is registered (with CyBle_OtsRegisterAttrCallback):

• CYBLE_EVT_OTSC_WRITE_DESCR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, descr index etc.) are provided with an event parameter structure
of type CYBLE_OTS_DESCR_VALUE_T.

Otherwise (if the OTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_OtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_OTS_CHAR_INDEX_T charIndex, CYBLE_OTS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the OTS service-specific callback is registered (with CyBle_OtsRegisterAttrCallback):

• CYBLE_EVT_OTSC_READ_DESCR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, descr index, value, etc.) are provided with an event parameter
structure of type CYBLE_OTS_DESCR_VALUE_T.

Otherwise (if the OTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 443 of 559

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

OTS Definitions and Data Structures

Description

Contains the OTS specific definitions and data structures used in the OTS APIs.

Data Structures

• struct CYBLE_OTSS_CHAR_T

• struct CYBLE_OTSS_CHAR_INFO_PTR_T

• struct CYBLE_OTSS_T

• struct CYBLE_OTSC_CHAR_T

• struct CYBLE_OTSC_CHAR_INFO_PTR_T

• struct CYBLE_OTSC_T

• struct CYBLE_OTS_CHAR_VALUE_T

• struct CYBLE_OTS_DESCR_VALUE_T

Enumerations

• enum CYBLE_OTS_CHAR_INDEX_T

• enum CYBLE_OTS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_OTSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_OTS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_OTSS_CHAR_T::charHandle

Handles of Characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_OTSS_CHAR_T::descrHandle[CYBLE_OTS_DESCR_COUNT]

Array of Descriptor handles

struct CYBLE_OTSS_CHAR_INFO_PTR_T

Data Fields

• CYBLE_OTSS_CHAR_T * charInfoPtr

Field Documentation

CYBLE_OTSS_CHAR_T* CYBLE_OTSS_CHAR_INFO_PTR_T::charInfoPtr

Pointer to CYBLE_OTSS_CHAR_T which holds information about specific IP Characteristic

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 444 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_OTSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_OTSS_CHAR_T charInfo [CYBLE_OTS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_OTSS_T::serviceHandle

Object Transfer Service handle

CYBLE_OTSS_CHAR_T CYBLE_OTSS_T::charInfo[CYBLE_OTS_CHAR_COUNT]

Object Transfer Service Array with pointers to Characteristic handles.

struct CYBLE_OTSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_OTS_DESCR_COUNT]

• uint8 properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_OTSC_CHAR_T::valueHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_OTSC_CHAR_T::endHandle

End handle of characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_OTSC_CHAR_T::descrHandle[CYBLE_OTS_DESCR_COUNT]

Array of Descriptor handles

uint8 CYBLE_OTSC_CHAR_T::properties

Properties for value field

struct CYBLE_OTSC_CHAR_INFO_PTR_T

Data Fields

• CYBLE_OTSC_CHAR_T * charInfoPtr

Field Documentation

CYBLE_OTSC_CHAR_T* CYBLE_OTSC_CHAR_INFO_PTR_T::charInfoPtr

Pointer to CYBLE_OTSC_CHAR_T which holds information about specific OTS Characteristic.

struct CYBLE_OTSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_OTSC_CHAR_T charInfo [CYBLE_OTS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_OTSC_T::serviceHandle

Indoor Positioning Service handle

CYBLE_OTSC_CHAR_T CYBLE_OTSC_T::charInfo[CYBLE_OTS_CHAR_COUNT]

Indoor Positioning Service characteristics info array

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 445 of 559

struct CYBLE_OTS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_OTS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_OTS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_OTS_CHAR_INDEX_T CYBLE_OTS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_OTS_CHAR_VALUE_T::value

Characteristic value

CYBLE_GATT_ERR_CODE_T CYBLE_OTS_CHAR_VALUE_T::gattErrorCode

GATT error code for access control

struct CYBLE_OTS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_OTS_CHAR_INDEX_T charIndex

• CYBLE_OTS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_ERR_CODE_T gattErrorCode

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_OTS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_OTS_CHAR_INDEX_T CYBLE_OTS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_OTS_DESCR_INDEX_T CYBLE_OTS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_ERR_CODE_T CYBLE_OTS_DESCR_VALUE_T::gattErrorCode

Error code received from application (optional)

CYBLE_GATT_VALUE_T* CYBLE_OTS_DESCR_VALUE_T::value

Characteristic value

Enumeration Type Documentation

enum CYBLE_OTS_CHAR_INDEX_T

OTS Characteristic indexes

Enumerator

CYBLE_OTS_FEATURE Exposes which optional features are supported by the Server implementation.

CYBLE_OTS_OBJECT_NAME The name of the Current Object.

CYBLE_OTS_OBJECT_TYPE The type of the Current Object, identifying the object type by UUID.

CYBLE_OTS_OBJECT_SIZE The current size as well as the allocated size of the Current Object.

CYBLE_OTS_OBJECT_FIRST_CREATED Date and time when the object contents were first created.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 446 of 559 Document Number: 002-29930 Rev. *A

CYBLE_OTS_OBJECT_LAST_MODIFIED Date and time when the object content was last modified.

CYBLE_OTS_OBJECT_ID The Object ID of the Current Object. The Object ID is a LUID (Locally Unique
Identifier).

CYBLE_OTS_OBJECT_PROPERTIES The properties of the Current Object.

CYBLE_OTS_OBJECT_ACTION_CONTROL_POINT Is used by a Client to control certain behaviors of the
Server.

CYBLE_OTS_OBJECT_LIST_CONTROL_POINT Provides a mechanism for the Client to find the desired
object and to designate it as the Current Object.

CYBLE_OTS_OBJECT_LIST_FILTER_1 The filter conditions determines which objects are included in or
excluded from the list of objects.

CYBLE_OTS_OBJECT_LIST_FILTER_2 The filter conditions determines which objects are included in or
excluded from the list of objects.

CYBLE_OTS_OBJECT_LIST_FILTER_3 The filter conditions determines which objects are included in or
excluded from the list of objects.

CYBLE_OTS_OBJECT_CHANGED Enables a Client to receive an indication if the contents and/or metadata
of one or more objects are changed.

CYBLE_OTS_CHAR_COUNT Total count of OTS characteristics

enum CYBLE_OTS_DESCR_INDEX_T

OTS Characteristic Descriptors indexes

Enumerator

CYBLE_OTS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_OTS_DESCR_COUNT Total count of descriptors

Phone Alert Status Service (PASS)

Description

The Phone Alert Status Service uses the Alert Status Characteristic and Ringer Setting Characteristic to expose the
phone alert status and uses the Ringer Control Point Characteristic to control the phone's ringer into mute or enable.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The PASS API names begin with CyBle_Pass. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• PASS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• PASS Server Functions

APIs unique to PASS designs configured as a GATT Server role.

• PASS Client Functions

APIs unique to PASS designs configured as a GATT Client role.

• PASS Definitions and Data Structures

Contains the PASS specific definitions and data structures used in the PASS APIs.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 447 of 559

PASS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Pass

Functions

• void CyBle_PassRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_PassRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for PASS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

PASS Server Functions

Description

APIs unique to PASS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Passs

Functions

• CYBLE_API_RESULT_T CyBle_PasssSetCharacteristicValue (CYBLE_PASS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PasssGetCharacteristicValue (CYBLE_PASS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PasssGetCharacteristicDescriptor (CYBLE_PASS_CHAR_INDEX_T
charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PasssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_PasssSetCharacteristicValue (CYBLE_PASS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets the value of a characteristic which is identified by charIndex.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 448 of 559 Document Number: 002-29930 Rev. *A

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_PasssGetCharacteristicValue (CYBLE_PASS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets the value of a characteristic which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_PasssGetCharacteristicDescriptor (CYBLE_PASS_CHAR_INDEX_T
charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of a specified characteristic of the service.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value attribute.

attrValue The pointer to the descriptor value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T:

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_PasssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification of the specified by the charIndex characteristic value.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_PASSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle which consists of the device ID and ATT
connection ID.

charIndex The index of a service characteristic.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 449 of 559

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the Client.

PASS Client Functions

Description

APIs unique to PASS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Passc

Functions

• CYBLE_API_RESULT_T CyBle_PasscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PasscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_PasscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_PasscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_PasscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_PASSS_WRITE_CHAR event is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 450 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

CYBLE_API_RESULT_T CyBle_PasscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a Server which is identified by the charIndex.

The Read Response returns the characteristic Value in the Attribute Value parameter.

The Read Response only contains the characteristic Value that is less than or equal to (MTU - 1) octets in length.
If the characteristic Value is greater than (MTU - 1) octets in length, the Read Long Characteristic Value procedure
may be used if the rest of the characteristic Value is required.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the Server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the PASS service-specific callback is registered (with CyBle_PassRegisterAttrCallback):

• CYBLE_EVT_PASSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_PASS_CHAR_VALUE_T.

Otherwise (if the PASS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_PasscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic Value to the server which is identified by the charIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_PASSS_NOTIFICATION_ENABLED

• CYBLE_EVT_PASSS_NOTIFICATION_DISABLED

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 451 of 559

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of a service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the PASS service-specific callback is registered (with CyBle_PassRegisterAttrCallback):

• CYBLE_EVT_PASSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_PASS_DESCR_VALUE_T.

Otherwise (if the PASS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_PasscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex)

Gets a characteristic descriptor of a specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of a service characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the PASS service-specific callback is registered (with CyBle_PassRegisterAttrCallback):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 452 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_PASSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_PASS_DESCR_VALUE_T.

Otherwise (if the PASS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

PASS Definitions and Data Structures

Description

Contains the PASS specific definitions and data structures used in the PASS APIs.

Data Structures

• struct CYBLE_PASSS_CHAR_T

• struct CYBLE_PASSS_T

• struct CYBLE_PASSC_CHAR_T

• struct CYBLE_PASSC_T

• struct CYBLE_PASS_CHAR_VALUE_T

• struct CYBLE_PASS_DESCR_VALUE_T

Enumerations

• enum CYBLE_PASS_CHAR_INDEX_T

• enum CYBLE_PASS_DESCR_INDEX_T

• enum CYBLE_PASS_RS_T

• enum CYBLE_PASS_CP_T

Data Structure Documentation

struct CYBLE_PASSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_PASS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PASSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_PASSS_CHAR_T::descrHandle[CYBLE_PASS_DESCR_COUNT]

Handle of descriptor

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 453 of 559

struct CYBLE_PASSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_PASSS_CHAR_T charInfo [CYBLE_PASS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PASSS_T::serviceHandle

Phone Alert Status Service handle

CYBLE_PASSS_CHAR_T CYBLE_PASSS_T::charInfo[CYBLE_PASS_CHAR_COUNT]

Phone Alert Status Service characteristics info array

struct CYBLE_PASSC_CHAR_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_PASS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

uint8 CYBLE_PASSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PASSC_CHAR_T::valueHandle

Handle of Server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_PASSC_CHAR_T::descrHandle[CYBLE_PASS_DESCR_COUNT]

Phone Alert Status Client characteristics descriptors handles

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PASSC_CHAR_T::endHandle

Characteristic End Handle

struct CYBLE_PASSC_T

Data Fields

• CYBLE_PASSC_CHAR_T charInfo [CYBLE_PASS_CHAR_COUNT]

Field Documentation

CYBLE_PASSC_CHAR_T CYBLE_PASSC_T::charInfo[CYBLE_PASS_CHAR_COUNT]

Characteristics handle and properties array

struct CYBLE_PASS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_PASS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_PASS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_PASS_CHAR_INDEX_T CYBLE_PASS_CHAR_VALUE_T::charIndex

Index of service characteristic

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 454 of 559 Document Number: 002-29930 Rev. *A

CYBLE_GATT_VALUE_T* CYBLE_PASS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_PASS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_PASS_CHAR_INDEX_T charIndex

• CYBLE_PASS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_PASS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_PASS_CHAR_INDEX_T CYBLE_PASS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_PASS_DESCR_INDEX_T CYBLE_PASS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_PASS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_PASS_CHAR_INDEX_T

Service Characteristics indexes

Enumerator

CYBLE_PASS_AS Alert Status characteristic index

CYBLE_PASS_RS Ringer Setting characteristic index

CYBLE_PASS_CP Ringer Control Point characteristic index

CYBLE_PASS_CHAR_COUNT Total count of PASS characteristics

enum CYBLE_PASS_DESCR_INDEX_T

Service Characteristic Descriptors indexes

Enumerator

CYBLE_PASS_CCCD Client Characteristic Configuration descriptor index

CYBLE_PASS_DESCR_COUNT Total count of PASS descriptors

enum CYBLE_PASS_RS_T

Ringer Setting values

Enumerator

CYBLE_PASS_RS_SILENT Ringer Silent

CYBLE_PASS_RS_NORMAL Ringer Normal

enum CYBLE_PASS_CP_T

Ringer Control Point values

Enumerator

CYBLE_PASS_CP_SILENT Silent Mode

CYBLE_PASS_CP_MUTE Mute Once

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 455 of 559

CYBLE_PASS_CP_CANCEL Cancel Silent Mode

Pulse Oximeter Service (PLXS)

Description

The Pulse Oximeter (PLX) Service exposes pulse oximetry data related to a non-invasive pulse oximetry sensor for
consumer and professional healthcare applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The PLXS API names begin with CyBle_Plxs. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• PLXS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• PLXS Server Functions

APIs unique to PLXS designs configured as a GATT Server role.

• PLXS Client Functions

APIs unique to PLXS designs configured as a GATT Client role.

• PLXS Definitions and Data Structures

Contains the PLXS specific definitions and data structures used in the PLXS APIs.

PLXS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Plxs

Functions

• void CyBle_PlxsInit (void)

• void CyBle_PlxsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_PlxsInit (void)

This function initializes the Pulse Oximeter Service.

void CyBle_PlxsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service-specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of cyble_callback_t for PLX Service is:
 typedef void (* cyble_callback_t) (uint32 eventCode, void
*eventParam)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 456 of 559 Document Number: 002-29930 Rev. *A

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

PLXS Server Functions

Description

APIs unique to PLXS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Plxss

Functions

• CYBLE_API_RESULT_T CyBle_PlxssSetCharacteristicValue (CYBLE_PLXS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PlxssGetCharacteristicValue (CYBLE_PLXS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PlxssSetCharacteristicDescriptor (CYBLE_PLXS_CHAR_INDEX_T charIndex,
CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PlxssGetCharacteristicDescriptor (CYBLE_PLXS_CHAR_INDEX_T charIndex,
CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PlxssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PlxssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_PlxssSetCharacteristicValue (CYBLE_PLXS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets a characteristic value of the service, which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

Events

None

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 457 of 559

CYBLE_API_RESULT_T CyBle_PlxssGetCharacteristicValue (CYBLE_PLXS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets a characteristic value of the service, which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue Pointer to the location where Characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

CYBLE_API_RESULT_T CyBle_PlxssSetCharacteristicDescriptor (CYBLE_PLXS_CHAR_INDEX_T
charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets a characteristic descriptor of a specified characteristic of the service.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_PLXS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_PLXS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data that should be stored to the
GATT database.

Returns:

The return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request is handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent

CYBLE_API_RESULT_T CyBle_PlxssGetCharacteristicDescriptor (CYBLE_PLXS_CHAR_INDEX_T
charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value attribute.

attrValue Pointer to the location where the descriptor value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent

CYBLE_API_RESULT_T CyBle_PlxssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification of the specified characteristic to the client device, as defined by the charIndex value.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 458 of 559 Document Number: 002-29930 Rev. *A

On enabling notification successfully for a service characteristic, it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_PLXSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue Pointer to the Characteristic value data that should be sent to Client
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client

CYBLE_API_RESULT_T CyBle_PlxssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication of the specified characteristic to the client device, as defined by the charIndex value.

On enabling indication successfully, if the GATT server has an updated value to be indicated to the GATT Client,
it sends out a 'Handle Value Indication' which results in CYBLE_EVT_PLXS_INDICATION or
CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service-specific callback function is not registered) event at the
GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue Pointer to the Characteristic value data that should be sent to Client
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the PLXS service-specific callback is registered (with CyBle_PlxsRegisterAttrCallback):

• CYBLE_EVT_PLXSS_INDICATION_CONFIRMED - in case if the indication is successfully delivered to
the peer device.

Otherwise (if the PLXS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - in case if the indication is successfully delivered to the
peer device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 459 of 559

PLXS Client Functions

Description

APIs unique to PLXS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Plxsc

Functions

• CYBLE_API_RESULT_T CyBle_PlxscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_PlxscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_PlxscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_PlxscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_PlxscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_PLXSS_WRITE_CHAR events is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the PLXS service-specific callback is registered (with CyBle_PlxsRegisterAttrCallback):

• CYBLE_EVT_PLXSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_PLXS_CHAR_VALUE_T.

Otherwise (if the PLXS service-specific callback is not registered):

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 460 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure (cy_stc_ble_gatt_err_param_t).

CYBLE_API_RESULT_T CyBle_PlxscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server which is identified by charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the PLXS service-specific callback is registered (with CyBle_PlxsRegisterAttrCallback):

• CYBLE_EVT_PLXSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_PLXS_CHAR_VALUE_T.

Otherwise (if the PLXS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure (cy_stc_ble_gatt_err_param_t).

CYBLE_API_RESULT_T CyBle_PlxscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

Sets the Characteristic Descriptor of the specified Characteristic.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_PLXSS_INDICATION_ENABLED

• CYBLE_EVT_PLXSS_INDICATION_DISABLED

• CYBLE_EVT_PLXSS_NOTIFICATION_ENABLED

• CYBLE_EVT_PLXSS_NOTIFICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of a service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 461 of 559

attrValue Pointer to the characteristic descriptor value data that should be sent to
the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_INVALID_STATE - The state is not valid

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the PLXS service-specific callback is registered (with CyBle_PlxsRegisterAttrCallback):

• CYBLE_EVT_PLXSC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_PLXS_DESCR_VALUE_T.

Otherwise (if the PLXS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure (cy_stc_ble_gatt_err_param_t).

CYBLE_API_RESULT_T CyBle_PlxscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_PLXS_CHAR_INDEX_T charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

descrIndex The index of the service characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_INVALID_STATE - The state is not valid

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the PLXS service-specific callback is registered (with CyBle_PlxsRegisterAttrCallback):

• CYBLE_EVT_PLXSC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_PLXS_DESCR_VALUE_T.

Otherwise (if the PLXS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 462 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure (cy_stc_ble_gatt_err_param_t).

PLXS Definitions and Data Structures

Description

Contains the PLXS specific definitions and data structures used in the PLXS APIs.

Data Structures

• struct CYBLE_PLXSS_CHAR_T

• struct CYBLE_PLXSS_T

• struct CYBLE_PLXSC_CHAR_T

• struct CYBLE_PLXSC_T

• struct CYBLE_PLXS_CHAR_VALUE_T

• struct CYBLE_PLXS_DESCR_VALUE_T

Macros

• #define CYBLE_PLXS_DSS_EDU_BIT (0x01u << 0u)

• #define CYBLE_PLXS_DSS_EMD_BIT (0x01u << 1u)

• #define CYBLE_PLXS_DSS_SPID_BIT (0x01u << 2u)

• #define CYBLE_PLXS_DSS_ISD_BIT (0x01u << 3u)

• #define CYBLE_PLXS_DSS_PSD_BIT (0x01u << 4u)

• #define CYBLE_PLXS_DSS_LPD_BIT (0x01u << 5u)

• #define CYBLE_PLXS_DSS_ESD_BIT (0x01u << 6u)

• #define CYBLE_PLXS_DSS_NSD_BIT (0x01u << 7u)

• #define CYBLE_PLXS_DSS_QPD_BIT (0x01u << 8u)

• #define CYBLE_PLXS_DSS_SA_BIT (0x01u << 9u)

• #define CYBLE_PLXS_DSS_SID_BIT (0x01u << 10u)

• #define CYBLE_PLXS_DSS_SUTU_BIT (0x01u << 11u)

• #define CYBLE_PLXS_DSS_USC_BIT (0x01u << 12u)

• #define CYBLE_PLXS_DSS_SD_BIT (0x01u << 13u)

• #define CYBLE_PLXS_DSS_SM_BIT (0x01u << 14u)

• #define CYBLE_PLXS_DSS_SDISC_BIT (0x01u << 15u)

• #define CYBLE_PLXS_MS_MEAS_BIT (0x01u << 5u)

• #define CYBLE_PLXS_MS_EED_BIT (0x01u << 6u)

• #define CYBLE_PLXS_MS_VDATA_BIT (0x01u << 7u)

• #define CYBLE_PLXS_MS_FQDATA_BIT (0x01u << 8u)

• #define CYBLE_PLXS_MS_DFMS_BIT (0x01u << 9u)

• #define CYBLE_PLXS_MS_DFDEMO_BIT (0x01u << 10u)

• #define CYBLE_PLXS_MS_DFTEST_BIT (0x01u << 11u)

• #define CYBLE_PLXS_MS_CALIB_BIT (0x01u << 12u)

• #define CYBLE_PLXS_MS_MUN_BIT (0x01u << 13u)

• #define CYBLE_PLXS_MS_QMD_BIT (0x01u << 14u)

• #define CYBLE_PLXS_MS_IMD_BIT (0x01u << 15u)

• #define CYBLE_PLXS_SCMT_FLAG_TMSF_BIT (0x01u << 0u)

• #define CYBLE_PLXS_SCMT_FLAG_MSF_BIT (0x01u << 1u)

• #define CYBLE_PLXS_SCMT_FLAG_DSSF_BIT (0x01u << 2u)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 463 of 559

• #define CYBLE_PLXS_SCMT_FLAG_PAIF_BIT (0x01u << 3u)

• #define CYBLE_PLXS_SCMT_FLAG_DEVCLK_BIT (0x01u << 4u)

• #define CYBLE_PLXS_CTMT_FLAG_FAST_BIT (0x01u << 0u)

• #define CYBLE_PLXS_CTMT_FLAG_SLOW_BIT (0x01u << 1u)

• #define CYBLE_PLXS_CTMT_FLAG_MSF_BIT (0x01u << 2u)

• #define CYBLE_PLXS_CTMT_FLAG_DSSF_BIT (0x01u << 3u)

• #define CYBLE_PLXS_CTMT_FLAG_PAIF_BIT (0x01u << 4u)

• #define CYBLE_PLXS_FEAT_SUPPORT_MEAS_BIT (0x01u << 0u)

• #define CYBLE_PLXS_FEAT_SUPPORT_DSS_BIT (0x01u << 1u)

• #define CYBLE_PLXS_FEAT_SUPPORT_MSSC_BIT (0x01u << 2u)

• #define CYBLE_PLXS_FEAT_SUPPORT_TMSF_BIT (0x01u << 3u)

• #define CYBLE_PLXS_FEAT_SUPPORT_FAST_BIT (0x01u << 4u)

• #define CYBLE_PLXS_FEAT_SUPPORT_SLOW_BIT (0x01u << 5u)

• #define CYBLE_PLXS_FEAT_SUPPORT_PAI_BIT (0x01u << 6u)

• #define CYBLE_PLXS_FEAT_SUPPORT_MBS_BIT (0x01u << 7u)

Enumerations

• enum CYBLE_PLXS_CHAR_INDEX_T

• enum CYBLE_PLXS_DESCR_INDEX_T

• enum CYBLE_PLXS_RACP_OPC_T

• enum CYBLE_PLXS_RACP_OPR_T

• enum CYBLE_PLXS_RACP_OPD_T

• enum CYBLE_PLXS_RACP_RSP_T

Data Structure Documentation

struct CYBLE_PLXSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_PLXS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PLXSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_PLXSS_CHAR_T::descrHandle[CYBLE_PLXS_DESCR_COUNT]

Handle of descriptor

struct CYBLE_PLXSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_PLXSS_CHAR_T charInfo [CYBLE_PLXS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PLXSS_T::serviceHandle

PLXS handle

CYBLE_PLXSS_CHAR_T CYBLE_PLXSS_T::charInfo[CYBLE_PLXS_CHAR_COUNT]

PLXS Characteristic handles

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 464 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_PLXSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_PLXS_DESCR_COUNT]

• uint8_t properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PLXSC_CHAR_T::valueHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PLXSC_CHAR_T::endHandle

End handle of characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_PLXSC_CHAR_T::descrHandle[CYBLE_PLXS_DESCR_COUNT]

Array of Descriptor handles

uint8_t CYBLE_PLXSC_CHAR_T::properties

Properties for value field

struct CYBLE_PLXSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_PLXSC_CHAR_T charInfo [CYBLE_PLXS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_PLXSC_T::serviceHandle

Pulse Oximeter Service handle

CYBLE_PLXSC_CHAR_T CYBLE_PLXSC_T::charInfo[CYBLE_PLXS_CHAR_COUNT]

PLXS characteristics info array

struct CYBLE_PLXS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_PLXS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_PLXS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_PLXS_CHAR_INDEX_T CYBLE_PLXS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_PLXS_CHAR_VALUE_T::value

Characteristic value

CYBLE_GATT_ERR_CODE_T CYBLE_PLXS_CHAR_VALUE_T::gattErrorCode

GATT error code for access control

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 465 of 559

struct CYBLE_PLXS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_PLXS_CHAR_INDEX_T charIndex

• CYBLE_PLXS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_ERR_CODE_T gattErrorCode

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_PLXS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_PLXS_CHAR_INDEX_T CYBLE_PLXS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_PLXS_DESCR_INDEX_T CYBLE_PLXS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_ERR_CODE_T CYBLE_PLXS_DESCR_VALUE_T::gattErrorCode

Error code received from application (optional)

CYBLE_GATT_VALUE_T* CYBLE_PLXS_DESCR_VALUE_T::value

Characteristic value

Macro Definition Documentation

#define CYBLE_PLXS_DSS_EDU_BIT (0x01u << 0u)

"Device and Sensor Status" field bits Extended Display Update Ongoing bit

#define CYBLE_PLXS_DSS_EMD_BIT (0x01u << 1u)

Equipment Malfunction Detected bit

#define CYBLE_PLXS_DSS_SPID_BIT (0x01u << 2u)

Signal Processing Irregularity Detected bit

#define CYBLE_PLXS_DSS_ISD_BIT (0x01u << 3u)

Inadequite Signal Detected bit

#define CYBLE_PLXS_DSS_PSD_BIT (0x01u << 4u)

Poor Signal Detected bit

#define CYBLE_PLXS_DSS_LPD_BIT (0x01u << 5u)

Low Perfusion Detected bit

#define CYBLE_PLXS_DSS_ESD_BIT (0x01u << 6u)

Erratic Signal Detected bit

#define CYBLE_PLXS_DSS_NSD_BIT (0x01u << 7u)

Nonpulsatile Signal Detected bit

#define CYBLE_PLXS_DSS_QPD_BIT (0x01u << 8u)

Questionable Pulse Detected bit

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 466 of 559 Document Number: 002-29930 Rev. *A

#define CYBLE_PLXS_DSS_SA_BIT (0x01u << 9u)

Signal Analysis Ongoing bit

#define CYBLE_PLXS_DSS_SID_BIT (0x01u << 10u)

Sensor Interface Detected bit

#define CYBLE_PLXS_DSS_SUTU_BIT (0x01u << 11u)

Sensor Unconnected to User bit

#define CYBLE_PLXS_DSS_USC_BIT (0x01u << 12u)

Unknown Sensor Connected bit

#define CYBLE_PLXS_DSS_SD_BIT (0x01u << 13u)

Sensor Displaced bit

#define CYBLE_PLXS_DSS_SM_BIT (0x01u << 14u)

Sensor Malfunctioning bit

#define CYBLE_PLXS_DSS_SDISC_BIT (0x01u << 15u)

Sensor Disconnected bit

#define CYBLE_PLXS_MS_MEAS_BIT (0x01u << 5u)

"Measurement Status" field bits Measurement Ongoing bit

#define CYBLE_PLXS_MS_EED_BIT (0x01u << 6u)

Early Estimated Data bit

#define CYBLE_PLXS_MS_VDATA_BIT (0x01u << 7u)

Validated Data bit

#define CYBLE_PLXS_MS_FQDATA_BIT (0x01u << 8u)

Fully Qualified Data bit

#define CYBLE_PLXS_MS_DFMS_BIT (0x01u << 9u)

Data from Measurement Storage bit

#define CYBLE_PLXS_MS_DFDEMO_BIT (0x01u << 10u)

Data for Demonstration bit

#define CYBLE_PLXS_MS_DFTEST_BIT (0x01u << 11u)

Data for Testing bit

#define CYBLE_PLXS_MS_CALIB_BIT (0x01u << 12u)

Calibration Ongoing bit

#define CYBLE_PLXS_MS_MUN_BIT (0x01u << 13u)

Measurement Unavailable bit

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 467 of 559

#define CYBLE_PLXS_MS_QMD_BIT (0x01u << 14u)

Questionable Measurement Detected bit

#define CYBLE_PLXS_MS_IMD_BIT (0x01u << 15u)

Invalid Measurement Detected bit

#define CYBLE_PLXS_SCMT_FLAG_TMSF_BIT (0x01u << 0u)

"Flag" field bits of PLX Spot-Check Measurement characteristic Timestamp field bit

#define CYBLE_PLXS_SCMT_FLAG_MSF_BIT (0x01u << 1u)

Measurement Status Field bit

#define CYBLE_PLXS_SCMT_FLAG_DSSF_BIT (0x01u << 2u)

Device and Sensor Status Field bit

#define CYBLE_PLXS_SCMT_FLAG_PAIF_BIT (0x01u << 3u)

Pulse Amplitude Index field bit

#define CYBLE_PLXS_SCMT_FLAG_DEVCLK_BIT (0x01u << 4u)

Device Clock is Not Set bit

#define CYBLE_PLXS_CTMT_FLAG_FAST_BIT (0x01u << 0u)

"Flag" field bits of PLX Continuous Measurement characteristic SpO2PR-Fast field bit

#define CYBLE_PLXS_CTMT_FLAG_SLOW_BIT (0x01u << 1u)

SpO2PR-Slow field bit

#define CYBLE_PLXS_CTMT_FLAG_MSF_BIT (0x01u << 2u)

Measurement Status field bit

#define CYBLE_PLXS_CTMT_FLAG_DSSF_BIT (0x01u << 3u)

Device and Sensor Status field bit

#define CYBLE_PLXS_CTMT_FLAG_PAIF_BIT (0x01u << 4u)

Pulse Amplitude Index field bit

#define CYBLE_PLXS_FEAT_SUPPORT_MEAS_BIT (0x01u << 0u)

"Supported Features" bits of PLX Features characteristic Measurement Status support bit

#define CYBLE_PLXS_FEAT_SUPPORT_DSS_BIT (0x01u << 1u)

Device and Sensor Status support bit

#define CYBLE_PLXS_FEAT_SUPPORT_MSSC_BIT (0x01u << 2u)

Measurement Storage for Spot-check measurements bit

#define CYBLE_PLXS_FEAT_SUPPORT_TMSF_BIT (0x01u << 3u)

Timestamp for Spot-check measurements bit

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 468 of 559 Document Number: 002-29930 Rev. *A

#define CYBLE_PLXS_FEAT_SUPPORT_FAST_BIT (0x01u << 4u)

SpO2PR-Fast metric bit

#define CYBLE_PLXS_FEAT_SUPPORT_SLOW_BIT (0x01u << 5u)

SpO2PR-Slow metric bit

#define CYBLE_PLXS_FEAT_SUPPORT_PAI_BIT (0x01u << 6u)

Pulse Amplitude Index field bit

#define CYBLE_PLXS_FEAT_SUPPORT_MBS_BIT (0x01u << 7u)

Multiple Bonds Supported bit

Enumeration Type Documentation

enum CYBLE_PLXS_CHAR_INDEX_T

PLXS Characteristic indexes

Enumerator

CYBLE_PLXS_SCMT The PLX Spot-check Measurement characteristic, if supported, is used to send Spot-
check measurements of SpO2 (Percent oxygen saturation of hemoglobin) and PR (pulse rate). This
characteristic is a variable length structure containing the Flags field, the SpO2PR-Spot-Check field, and
depending on the contents of the Flags field, the Timestamp field, the Measurement Status field, the Device
and Sensor Status field, and/or the Pulse Amplitude Index field.

CYBLE_PLXS_CTMT The PLX Continuous Measurement characteristic, if supported, is used to send
periodic pulse oximetry measurements. This characteristic is a variable length structure containing the Flags
field (to indicate presence of optional fields), the SpO2PR-Normal field, and depending on the contents of the
Flags field, the SpO2PR-Fast field, the SpO2PR-Slow field, the Measurement Status field, the Device and
Sensor Status field, and/or the Pulse Amplitude Index field.

CYBLE_PLXS_FEAT The PLX Features characteristic is used to describe the supported features of the
Server. Included in the characteristic is a PLX Features field, and, depending on the contents of the PLX
Features field, the Measurement Status Support field, and the Device and Sensor Status Support field.

CYBLE_PLXS_RACP This control point is used with a service to provide basic management functionality for
the PLX Sensor patient record database. This enables functions including counting records, transmitting
records and clearing records based on filter criterion. The filter criterion in the Operand field is defined by the
service that references this characteristic as is the format of a record (that may be comprised of one or more
characteristics) and the sequence of transferred records.

CYBLE_PLXS_CHAR_COUNT Total count of PLXS characteristics

enum CYBLE_PLXS_DESCR_INDEX_T

PLXS Characteristic Descriptors indexes

Enumerator

CYBLE_PLXS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_PLXS_DESCR_COUNT Total count of descriptors

enum CYBLE_PLXS_RACP_OPC_T

Record Access Control Point characteristic fields defines Opcode of the Record Access Control Point
characteristic value type

Enumerator

CYBLE_PLXS_RACP_OPC_RESERVED Reserved for future use (Operator:N/A)

CYBLE_PLXS_RACP_OPC_REPORT_REC Report stored records (Operator: Value from Operator Table)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 469 of 559

CYBLE_PLXS_RACP_OPC_DELETE_REC Delete stored records (Operator: Value from Operator Table)

CYBLE_PLXS_RACP_OPC_ABORT_OPN Abort operation (Operator: Null 'value of 0x00 from Operator
Table')

CYBLE_PLXS_RACP_OPC_REPORT_NUM_REC Report number of stored records (Operator: Value from
Operator Table)

CYBLE_PLXS_RACP_OPC_NUM_REC_RSP Number of stored records response (Operator: Null 'value of
0x00 from Operator Table')

CYBLE_PLXS_RACP_OPC_RSP_CODE Response Code (Operator: Null 'value of 0x00 from Operator
Table')

enum CYBLE_PLXS_RACP_OPR_T

Operator of the Record Access Control Point characteristic value type

Enumerator

CYBLE_PLXS_RACP_OPR_NULL Null

CYBLE_PLXS_RACP_OPR_ALL All records

CYBLE_PLXS_RACP_OPR_LESS Less than or equal to

CYBLE_PLXS_RACP_OPR_GREAT Greater than or equal to

CYBLE_PLXS_RACP_OPR_WITHIN Within range of (inclusive)

CYBLE_PLXS_RACP_OPR_FIRST First record(i.e. oldest record)

CYBLE_PLXS_RACP_OPR_LAST Last record (i.e. most recent record)

enum CYBLE_PLXS_RACP_OPD_T

Operand of the Record Access Control Point characteristic value type

Enumerator

CYBLE_PLXS_RACP_OPD_NA N/A

CYBLE_PLXS_RACP_OPD_1 Filter parameters (as appropriate to Operator and Service)

CYBLE_PLXS_RACP_OPD_2 Filter parameters (as appropriate to Operator and Service)

CYBLE_PLXS_RACP_OPD_NO_INCL Not included

CYBLE_PLXS_RACP_OPD_4 Filter parameters (as appropriate to Operator and Service)

CYBLE_PLXS_RACP_OPD_NUM_REC Number of Records (Field size defined per service)

CYBLE_PLXS_RACP_OPD_RSP Request Op Code, Response Code Value

enum CYBLE_PLXS_RACP_RSP_T

Operand Response Code Values of the Record Access Control Point characteristic value type

Enumerator

CYBLE_PLXS_RACP_RSP_NA N/A

CYBLE_PLXS_RACP_RSP_SUCCESS Normal response for successful operation

CYBLE_PLXS_RACP_RSP_UNSPRT_OPC Normal response if unsupported Op Code is received

CYBLE_PLXS_RACP_RSP_INV_OPR Normal response if Operator received does not meet the
requirements of the service (e.g. Null was expected)

CYBLE_PLXS_RACP_RSP_UNSPRT_OPR Normal response if unsupported Operator is received

CYBLE_PLXS_RACP_RSP_INV_OPD Normal response if Operand received does not meet the
requirements of the service

CYBLE_PLXS_RACP_RSP_NO_REC Normal response if request to report stored records or request to
delete stored records resulted in no records meeting criteria.

CYBLE_PLXS_RACP_RSP_UNSUCCESS Normal response if request for Abort cannot be completed

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 470 of 559 Document Number: 002-29930 Rev. *A

CYBLE_PLXS_RACP_RSP_NO_COMPL Normal response if request for Abort cannot be completed

CYBLE_PLXS_RACP_RSP_UNSPRT_OPD Normal response if unsupported Operand is received

Running Speed and Cadence Service (RSCS)

Description

The Running Speed and Cadence (RSC) Service exposes speed, cadence and other data related to fitness
applications such as the stride length and the total distance the user has travelled while using the Running Speed and
Cadence sensor (Server).

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The RSCS API names begin with CyBle_Rscs. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• RSCS Server and Client Functions

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• RSCS Server Functions

APIs unique to RSCS designs configured as a GATT Server role.

• RSCS Client Functions

APIs unique to RSCS designs configured as a GATT Client role.

• RSCS Definitions and Data Structures

Contains the RSCS specific definitions and data structures used in the RSCS APIs.

RSCS Server and Client Functions

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Rscs

Functions

• void CyBle_RscsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_RscsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for Running Speed and Cadence Service specific attribute operations. Service
specific write requests from peer device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for RSCS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 471 of 559

• eventParam contains the parameters corresponding to the
current event.

RSCS Server Functions

Description

APIs unique to RSCS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Rscss

Functions

• CYBLE_API_RESULT_T CyBle_RscssSetCharacteristicValue (CYBLE_RSCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_RscssGetCharacteristicValue (CYBLE_RSCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_RscssGetCharacteristicDescriptor (CYBLE_RSCS_CHAR_INDEX_T
charIndex, CYBLE_RSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_RscssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_RscssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_RscssSetCharacteristicValue (CYBLE_RSCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets the characteristic value of the Running Speed and Cadence Service in the local GATT database. The
characteristic is identified by charIndex.

Parameters:

charIndex The index of a service characteristic. Valid values are,

• CYBLE_RSCS_RSC_FEATURE

• CYBLE_RSCS_SENSOR_LOCATION.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

CYBLE_API_RESULT_T CyBle_RscssGetCharacteristicValue (CYBLE_RSCS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets the characteristic value of the Running Speed and Cadence Service from the GATT database. The
characteristic is identified by charIndex.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 472 of 559 Document Number: 002-29930 Rev. *A

Parameters:

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic

CYBLE_API_RESULT_T CyBle_RscssGetCharacteristicDescriptor (CYBLE_RSCS_CHAR_INDEX_T
charIndex, CYBLE_RSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets the characteristic descriptor of a specified characteristic of the Running Speed and Cadence Service from
the GATT database.

Parameters:

charIndex The index of a service characteristic. Valid values are,

• CYBLE_RSCS_RSC_MEASUREMENT

• CYBLE_RSCS_SC_CONTROL_POINT

descrIndex The index of a service characteristic descriptor. Valid value is,

• CYBLE_RSCS_CCCD

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
descriptor

CYBLE_API_RESULT_T CyBle_RscssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification with the characteristic value to the Client device. This is specified by charIndex of the Running
Speed and Cadence Service.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_RSCSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic. Valid value is,

• CYBLE_RSCS_RSC_MEASUREMENT.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 473 of 559

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

CYBLE_API_RESULT_T CyBle_RscssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication with a characteristic value to the Client device. This is specified by charIndex of the Running
Speed and Cadence Service.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_RSCSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific
callback function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter is failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the RSCS service-specific callback is registered (with CyBle_RscsRegisterAttrCallback):

• CYBLE_EVT_RSCSS_INDICATION_CONFIRMED - In case if the indication is successfully delivered to
the peer device.

Otherwise (if the RSCS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - In case if the indication is successfully delivered to the
peer device.

RSCS Client Functions

Description

APIs unique to RSCS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Rscsc

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 474 of 559 Document Number: 002-29930 Rev. *A

Functions

• CYBLE_API_RESULT_T CyBle_RscscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_RscscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_RscscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, CYBLE_RSCS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_RscscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_RscscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_RSCSS_CHAR_WRITE event is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize Size of the characteristic value attribute.

attrValue Pointer to the characteristic value data that should be sent to the server
device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the RSCS service-specific callback is registered (with CyBle_RscsRegisterAttrCallback):

• CYBLE_EVT_RSCSC_WRITE_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_RSCS_CHAR_VALUE_T.

Otherwise (if the RSCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_RscscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex)

Sends a request to the peer device to set the characteristic value of the Running Speed and Cadence Service.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 475 of 559

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the RSCS service-specific callback is registered (with CyBle_RscsRegisterAttrCallback):

• CYBLE_EVT_RSCSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_RSCS_CHAR_VALUE_T.

Otherwise (if the RSCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_RscscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, CYBLE_RSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

Sends a request to the peer device to get the characteristic descriptor of the specified characteristic of the Running
Speed and Cadence Service.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_RSCSS_NOTIFICATION_ENABLED;

• CYBLE_EVT_RSCSS_NOTIFICATION_DISABLED;

• CYBLE_EVT_RSCSS_INDICATION_ENABLED;

• CYBLE_EVT_RSCSS_INDICATION_DISABLED.

Parameters:

connHandle The connection handle.

charIndex The index of a RSCS characteristic.

descrIndex The index of a RSCS characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the characteristic descriptor value data should be sent to
the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 476 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
descriptor.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the RSCS service-specific callback is registered (with CyBle_RscsRegisterAttrCallback):

• CYBLE_EVT_RSCSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_RSCS_DESCR_VALUE_T.

Otherwise (if the RSCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_RscscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 descrIndex)

Sends a request to the peer device to get characteristic descriptor of the specified characteristic of the Running
Speed and Cadence Service.

Parameters:

connHandle The connection handle.

charIndex The index of a Service Characteristic.

descrIndex The index of a Service Characteristic Descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_INVALID_OPERATION - Cannot process a request to send PDU due to invalid
operation performed by the application.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Peer device doesn't have a particular
descriptor.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the RSCS service-specific callback is registered (with CyBle_RscsRegisterAttrCallback):

• CYBLE_EVT_RSCSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_RSCS_DESCR_VALUE_T.

Otherwise (if the RSCS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 477 of 559

RSCS Definitions and Data Structures

Description

Contains the RSCS specific definitions and data structures used in the RSCS APIs.

Data Structures

• struct CYBLE_RSCS_CHAR_VALUE_T

• struct CYBLE_RSCS_DESCR_VALUE_T

• struct CYBLE_RSCSS_CHAR_T

• struct CYBLE_RSCSS_T

• struct CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T

• struct CYBLE_RSCSC_T

Enumerations

• enum CYBLE_RSCS_CHAR_INDEX_T

• enum CYBLE_RSCS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_RSCS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_RSCS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_RSCS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_RSCS_CHAR_INDEX_T CYBLE_RSCS_CHAR_VALUE_T::charIndex

Index of Running Speed and Cadence Service Characteristic

CYBLE_GATT_VALUE_T* CYBLE_RSCS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_RSCS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_RSCS_CHAR_INDEX_T charIndex

• CYBLE_RSCS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_RSCS_DESCR_VALUE_T::connHandle

Connection handle

CYBLE_RSCS_CHAR_INDEX_T CYBLE_RSCS_DESCR_VALUE_T::charIndex

Characteristic index of the Service

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 478 of 559 Document Number: 002-29930 Rev. *A

CYBLE_RSCS_DESCR_INDEX_T CYBLE_RSCS_DESCR_VALUE_T::descrIndex

Characteristic index Descriptor the Service

CYBLE_GATT_VALUE_T* CYBLE_RSCS_DESCR_VALUE_T::value

Pointer to value of the Service Characteristic Descriptor

struct CYBLE_RSCSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_RSCS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_RSCSS_CHAR_T::charHandle

Handle of the characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_RSCSS_CHAR_T::descrHandle[CYBLE_RSCS_DESCR_COUNT]

Handle of the descriptor

struct CYBLE_RSCSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_RSCSS_CHAR_T charInfo [CYBLE_RSCS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_RSCSS_T::serviceHandle

Running Speed and Cadence Service handle

CYBLE_RSCSS_CHAR_T CYBLE_RSCSS_T::charInfo[CYBLE_RSCS_CHAR_COUNT]

Array of Running Speed and Cadence Service Characteristics + Descriptors handles

struct CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T charInfo

• CYBLE_GATT_DB_ATTR_HANDLE_T descriptors [CYBLE_RSCS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T::charInfo

Characteristic handle + properties

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T::descriptors[CYBLE_RSCS_DESCR_COUNT]

Characteristic descriptors handles handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T::endHandle

End handle of characteristic

struct CYBLE_RSCSC_T

Data Fields

• CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T characteristics [CYBLE_RSCS_CHAR_COUNT]

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 479 of 559

Field Documentation

CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T
CYBLE_RSCSC_T::characteristics[CYBLE_RSCS_CHAR_COUNT]

Characteristics handles array

Enumeration Type Documentation

enum CYBLE_RSCS_CHAR_INDEX_T

RSCS Characteristic indexes

Enumerator

CYBLE_RSCS_RSC_MEASUREMENT RSC Measurement Characteristic index

CYBLE_RSCS_RSC_FEATURE RSC Feature Characteristic index

CYBLE_RSCS_SENSOR_LOCATION Sensor Location Characteristic index

CYBLE_RSCS_SC_CONTROL_POINT SC Control Point Characteristic index

CYBLE_RSCS_CHAR_COUNT Total count of RSCS characteristics

enum CYBLE_RSCS_DESCR_INDEX_T

RSCS Characteristic Descriptors indexes

Enumerator

CYBLE_RSCS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_RSCS_DESCR_COUNT Total count of descriptors

Reference Time Update Service (RTUS)

Description

The Reference Time Update Service enables a Bluetooth device that can update the system time using the reference
time such as a GPS receiver to expose a control point and expose the accuracy (drift) of the local system time
compared to the reference time source.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The RTUS API names begin with CyBle_Rtus. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• RTUS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• RTUS Server Functions

APIs unique to RTUS designs configured as a GATT Server role.

• RTUS Client Functions

APIs unique to RTUS designs configured as a GATT Client role.

• RTUS Definitions and Data Structures

Contains the RTUS specific definitions and data structures used in the RTUS APIs.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 480 of 559 Document Number: 002-29930 Rev. *A

RTUS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Rtus

Functions

• void CyBle_RtusRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_RtusRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for Reference Time Update Service specific attribute operations. Service specific
write requests from peer device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for RTUS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

RTUS Server Functions

Description

APIs unique to RTUS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Rtuss

Functions

• CYBLE_API_RESULT_T CyBle_RtussSetCharacteristicValue (CYBLE_RTUS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_RtussGetCharacteristicValue (CYBLE_RTUS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_RtussSetCharacteristicValue (CYBLE_RTUS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets characteristic value of the Reference Time Update Service, which is identified by charIndex in the local
database.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_RTUS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 481 of 559

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - the request is handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed

CYBLE_API_RESULT_T CyBle_RtussGetCharacteristicValue (CYBLE_RTUS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets a characteristic value of the Reference Time Update Service, which is identified by charIndex.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_RTUS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - the request is handled successfully;

• CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameter failed.

RTUS Client Functions

Description

APIs unique to RTUS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Rtusc

Functions

• CYBLE_API_RESULT_T CyBle_RtuscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RTUS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_RtuscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RTUS_CHAR_INDEX_T charIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_RtuscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RTUS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_RTUSS_WRITE_CHAR_CMD event is generated.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

attrSize Size of the characteristic value attribute.

attrValue Pointer to the characteristic value data that should be sent to the server
device.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 482 of 559 Document Number: 002-29930 Rev. *A

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_STATE - Connection with the Client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

CYBLE_API_RESULT_T CyBle_RtuscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_RTUS_CHAR_INDEX_T charIndex)

Sends a request to a peer device to set characteristic value of the Reference Time Update Service, which is
identified by charIndex.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - the request was sent successfully;

• CYBLE_ERROR_INVALID_STATE - connection with the Client is not established.

• CYBLE_ERROR_INVALID_PARAMETER - validation of the input parameters failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the RTUS service-specific callback is registered (with CyBle_RtusRegisterAttrCallback):

• CYBLE_EVT_RTUSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_RTUS_CHAR_VALUE_T.

Otherwise (if the RTUS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

RTUS Definitions and Data Structures

Description

Contains the RTUS specific definitions and data structures used in the RTUS APIs.

Data Structures

• struct CYBLE_RTUS_CHAR_VALUE_T

• struct CYBLE_RTUS_TIME_UPDATE_STATE_T

• struct CYBLE_RTUSS_T

• struct CYBLE_RTUSC_T

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 483 of 559

Enumerations

• enum CYBLE_RTUS_CHAR_INDEX_T

Data Structure Documentation

struct CYBLE_RTUS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_RTUS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_RTUS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_RTUS_CHAR_INDEX_T CYBLE_RTUS_CHAR_VALUE_T::charIndex

Index of Reference Time Update Service Characteristic

CYBLE_GATT_VALUE_T* CYBLE_RTUS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_RTUS_TIME_UPDATE_STATE_T

Data Fields

• uint8 currentState

• uint8 result

Field Documentation

uint8 CYBLE_RTUS_TIME_UPDATE_STATE_T::currentState

Current state

uint8 CYBLE_RTUS_TIME_UPDATE_STATE_T::result

Result of Time update

struct CYBLE_RTUSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T timeUpdateCpHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T timeUpdateStateHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_RTUSS_T::serviceHandle

Handle of the Reference Time Update Service

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_RTUSS_T::timeUpdateCpHandle

Handle of the Time Update Control Point Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_RTUSS_T::timeUpdateStateHandle

Handle of the Time Update State Characteristic

struct CYBLE_RTUSC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T charInfo [CYBLE_RTUS_CHAR_COUNT]

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 484 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_RTUSC_T::charInfo[CYBLE_RTUS_CHAR_COUNT]

Characteristic handle and properties

Enumeration Type Documentation

enum CYBLE_RTUS_CHAR_INDEX_T

Characteristic indexes

Enumerator

CYBLE_RTUS_TIME_UPDATE_CONTROL_POINT Time Update Control Point Characteristic index

CYBLE_RTUS_TIME_UPDATE_STATE Time Update State Characteristic index

CYBLE_RTUS_CHAR_COUNT Total count of RTUS characteristics

Scan Parameters Service (ScPS)

Description

The Scan Parameters Service enables a Server device to expose a Characteristic for the GATT Client to write its scan
interval and scan window on the Server device, and enables a Server to request a refresh of the GATT Client scan
interval and scan window.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The ScPS API names begin with CyBle_Scps. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• ScPS Server and Client Functions

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• ScPS Server Functions

APIs unique to ScPS designs configured as a GATT Server role.

• ScPS Client Functions

APIs unique to ScPS designs configured as a GATT Client role.

• ScPS Definitions and Data Structures

Contains the ScPS specific definitions and data structures used in the ScPS APIs.

ScPS Server and Client Functions

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Scps

Functions

• void CyBle_ScpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 485 of 559

Function Documentation

void CyBle_ScpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for ScPS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

ScPS Server Functions

Description

APIs unique to ScPS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Scpss

Functions

• CYBLE_API_RESULT_T CyBle_ScpssSetCharacteristicValue (CYBLE_SCPS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_ScpssGetCharacteristicValue (CYBLE_SCPS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_ScpssGetCharacteristicDescriptor (CYBLE_SCPS_CHAR_INDEX_T
charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_ScpssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_ScpssSetCharacteristicValue (CYBLE_SCPS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets a characteristic value of the Scan Parameters service, which is identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

• CYBLE_SCPS_SCAN_INT_WIN - The Scan Interval Window
characteristic index.

• CYBLE_SCPS_SCAN_REFRESH - The Scan Refresh
characteristic index

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 486 of 559 Document Number: 002-29930 Rev. *A

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_ScpssGetCharacteristicValue (CYBLE_SCPS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Gets a characteristic value of the Scan Parameters service, which is identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

• CYBLE_SCPS_SCAN_INT_WIN - The Scan Interval Window
characteristic index.

• CYBLE_SCPS_SCAN_REFRESH - The Scan Refresh
characteristic index

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent.

CYBLE_API_RESULT_T CyBle_ScpssGetCharacteristicDescriptor (CYBLE_SCPS_CHAR_INDEX_T
charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of the specified characteristic of the Scan Parameters service.

Parameters:

charIndex The index of the characteristic.

• CYBLE_SCPS_SCAN_REFRESH - The Scan Refresh
characteristic index.

descrIndex The index of the descriptor.

• CYBLE_SCPS_SCAN_REFRESH_CCCD - The Client
Characteristic Configuration descriptor index of the Scan
Refresh characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where the characteristic descriptor value
data should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 487 of 559

CYBLE_API_RESULT_T CyBle_ScpssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function notifies the client that the server requires the Scan Interval Window Characteristic to be written with
the latest values upon notification.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_SCPSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the characteristic.

• CYBLE_SCPS_SCAN_REFRESH - The Scan Refresh
characteristic index.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

ScPS Client Functions

Description

APIs unique to ScPS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Scpsc

Functions

• CYBLE_API_RESULT_T CyBle_ScpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_ScpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_ScpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_ScpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sets a characteristic value of the Scan Parameters Service, which is identified by charIndex.

This function call can result in generation of the following events based on the response from the server device:

• CYBLE_EVT_GATTC_WRITE_RSP;

• CYBLE_EVT_GATTC_ERROR_RSP.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 488 of 559 Document Number: 002-29930 Rev. *A

The CYBLE_EVT_SCPSS_SCAN_INT_WIN_CHAR_WRITE event is received by the peer device on invoking this
function.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

CYBLE_API_RESULT_T CyBle_ScpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

Sets characteristic descriptor of specified characteristic of the Scan Parameters Service.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_SCPSS_NOTIFICATION_ENABLED;

• CYBLE_EVT_SCPSS_NOTIFICATION_DISABLED.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the descriptor value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the SCPS service-specific callback is registered (with CyBle_ScpsRegisterAttrCallback):

• CYBLE_EVT_SCPSC_WRITE_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_SCPS_DESCR_VALUE_T.

Otherwise (if the SCPS service-specific callback is not registered):

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 489 of 559

• CYBLE_EVT_GATTC_WRITE_RSP - In case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_ScpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex)

Gets characteristic descriptor of specified characteristic of the Scan Parameters Service.

This function call can result in generation of the following events based on the response from the server device:

• CYBLE_EVT_SCPSC_READ_DESCR_RESPONSE;

• CYBLE_EVT_GATTC_ERROR_RSP.

Parameters:

connHandle The connection handle.

charIndex The index of a Service Characteristic.

descrIndex The index of a Service Characteristic Descriptor.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the SCPS service-specific callback is registered (with CyBle_ScpsRegisterAttrCallback):

• CYBLE_EVT_SCPSC_READ_DESCR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_SCPS_DESCR_VALUE_T.

Otherwise (if the SCPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

ScPS Definitions and Data Structures

Description

Contains the ScPS specific definitions and data structures used in the ScPS APIs.

Data Structures

• struct CYBLE_SCPSS_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 490 of 559 Document Number: 002-29930 Rev. *A

• struct CYBLE_SCPSC_T

• struct CYBLE_SCPS_CHAR_VALUE_T

• struct CYBLE_SCPS_DESCR_VALUE_T

Enumerations

• enum CYBLE_SCPS_CHAR_INDEX_T

• enum CYBLE_SCPS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_SCPSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T intervalWindowCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T refreshCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T refreshCccdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_SCPSS_T::serviceHandle

Scan Parameter Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_SCPSS_T::intervalWindowCharHandle

Handle of Scan Interval Window Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_SCPSS_T::refreshCharHandle

Handle of Scan Refresh Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_SCPSS_T::refreshCccdHandle

Handle of Client Characteristic Configuration Descriptor

struct CYBLE_SCPSC_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_SRVR_CHAR_INFO_T intervalWindowChar

• CYBLE_SRVR_CHAR_INFO_T refreshChar

• CYBLE_GATT_DB_ATTR_HANDLE_T refreshCccdHandle

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_SCPSC_T::connHandle

Peer device handle

CYBLE_SRVR_CHAR_INFO_T CYBLE_SCPSC_T::intervalWindowChar

Handle + properties of Scan Interval Window Characteristic

CYBLE_SRVR_CHAR_INFO_T CYBLE_SCPSC_T::refreshChar

Handle + properties of Scan Refresh Characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_SCPSC_T::refreshCccdHandle

Handle of Client Characteristic Configuration Descriptor

struct CYBLE_SCPS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_SCPS_CHAR_INDEX_T charIndex

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 491 of 559

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_SCPS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_SCPS_CHAR_INDEX_T CYBLE_SCPS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_SCPS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_SCPS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_SCPS_CHAR_INDEX_T charIndex

• CYBLE_SCPS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_SCPS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_SCPS_CHAR_INDEX_T CYBLE_SCPS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_SCPS_DESCR_INDEX_T CYBLE_SCPS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_SCPS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_SCPS_CHAR_INDEX_T

ScPS Characteristic indexes

Enumerator

CYBLE_SCPS_SCAN_INT_WIN Scan Interval Window characteristic index

CYBLE_SCPS_SCAN_REFRESH Scan Refresh characteristic index

CYBLE_SCPS_CHAR_COUNT Total count of characteristics

enum CYBLE_SCPS_DESCR_INDEX_T

ScPS Characteristic Descriptors indexes

Enumerator

CYBLE_SCPS_SCAN_REFRESH_CCCD Client Characteristic Configuration descriptor index

CYBLE_SCPS_DESCR_COUNT Total count of descriptors

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 492 of 559 Document Number: 002-29930 Rev. *A

TX Power Service (TPS)

Description

The Tx Power Service uses the Tx Power Level Characteristic to expose the current transmit power level of a device
when in a connection.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The TPS API names begin with CyBle_Tps. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• TPS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• TPS Server Functions

APIs unique to TPS designs configured as a GATT Server role.

• TPS Client Functions

APIs unique to TPS designs configured as a GATT Client role.

• TPS Definitions and Data Structures

Contains the TPS specific definitions and data structures used in the TPS APIs.

TPS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Tps

Functions

• void CyBle_TpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_TpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for TPS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 493 of 559

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

TPS Server Functions

Description

APIs unique to TPS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Tpss

Functions

• CYBLE_API_RESULT_T CyBle_TpssSetCharacteristicValue (CYBLE_TPS_CHAR_INDEX_T charIndex, uint8
attrSize, int8 *attrValue)

• CYBLE_API_RESULT_T CyBle_TpssGetCharacteristicValue (CYBLE_TPS_CHAR_INDEX_T charIndex, uint8
attrSize, int8 *attrValue)

• CYBLE_API_RESULT_T CyBle_TpssGetCharacteristicDescriptor (CYBLE_TPS_CHAR_INDEX_T charIndex,
CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_TpssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex, uint8 attrSize, int8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_TpssSetCharacteristicValue (CYBLE_TPS_CHAR_INDEX_T charIndex, uint8
attrSize, int8 *attrValue)

Sets characteristic value of the Tx Power Service, which is identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored in the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameters failed.

CYBLE_API_RESULT_T CyBle_TpssGetCharacteristicValue (CYBLE_TPS_CHAR_INDEX_T charIndex, uint8
attrSize, int8 *attrValue)

Gets characteristic value of the Tx Power Service, which is identified by charIndex.

Parameters:

charIndex The index of the Tx Power characteristic.

attrSize The size of the Tx Power characteristic value attribute.

attrValue The pointer to the location where Tx Power characteristic value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - Characteristic value was read successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 494 of 559 Document Number: 002-29930 Rev. *A

CYBLE_API_RESULT_T CyBle_TpssGetCharacteristicDescriptor (CYBLE_TPS_CHAR_INDEX_T charIndex,
CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets characteristic descriptor of specified characteristic of the Tx Power Service.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - Characteristic Descriptor value was read successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional descriptor is absent.

CYBLE_API_RESULT_T CyBle_TpssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex, uint8 attrSize, int8 *attrValue)

Sends a notification with the characteristic value, as specified by charIndex, to the Client device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_TPSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this. characteristic.

• CYBLE_ERROR_INVALID_STATE - Connection with client is not established.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

TPS Client Functions

Description

APIs unique to TPS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Tpsc

Functions

• CYBLE_API_RESULT_T CyBle_TpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_TpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize,
uint8 *attrValue)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 495 of 559

• CYBLE_API_RESULT_T CyBle_TpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_TpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex)

Gets the characteristic value of the Tx Power Service, which is identified by charIndex.

This function call can result in generation of the following events based on the response from the server device:

• CYBLE_EVT_TPSC_READ_CHAR_RESPONSE.

• CYBLE_EVT_GATTC_ERROR_RSP.

Parameters:

connHandle The connection handle.

charIndex The index of the characteristic.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - Request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the TPS service-specific callback is registered (with CyBle_TpsRegisterAttrCallback):

• CYBLE_EVT_TPSC_READ_CHAR_RESPONSE - In case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_TPS_CHAR_VALUE_T.

Otherwise (if the TPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - In case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - In case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_TpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize,
uint8 *attrValue)

Sets a characteristic descriptor value of the Tx Power Service.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_TPSS_NOTIFICATION_ENABLED

• CYBLE_EVT_TPSS_NOTIFICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of the Characteristic

descrIndex The index of the TX Power Service characteristic descriptor.

attrSize The size of the characteristic descriptor attribute.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 496 of 559 Document Number: 002-29930 Rev. *A

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the TPS service-specific callback is registered (with CyBle_TpsRegisterAttrCallback):

• CYBLE_EVT_TPSC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_TPS_DESCR_VALUE_T.

Otherwise (if the TPS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_TpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex)

Gets a characteristic descriptor of the Tx Power Service.

This function call can result in generation of the following events based on the response from the server device:

• CYBLE_EVT_TPSC_READ_DESCR_RESPONSE.

• CYBLE_EVT_GATTC_ERROR_RSP.

Parameters:

connHandle The connection handle.

charIndex The index of the characteristic.

descrIndex The index of the characteristic descriptor.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - Request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The component in in invalid state for current operation.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - Cannot process request to send PDU due to invalid
operation performed by the application.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the TPS service-specific callback is registered (with CyBle_TpsRegisterAttrCallback):

• CYBLE_EVT_TPSC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_TPS_DESCR_VALUE_T.

Otherwise (if the TPS service-specific callback is not registered):

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 497 of 559

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

TPS Definitions and Data Structures

Description

Contains the TPS specific definitions and data structures used in the TPS APIs.

Data Structures

• struct CYBLE_TPS_CHAR_VALUE_T

• struct CYBLE_TPS_DESCR_VALUE_T

• struct CYBLE_TPSS_T

• struct CYBLE_TPSC_T

Enumerations

• enum CYBLE_TPS_CHAR_INDEX_T

• enum CYBLE_TPS_CHAR_DESCRIPTORS_T

Data Structure Documentation

struct CYBLE_TPS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_TPS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_TPS_CHAR_VALUE_T::connHandle

Connection handle

CYBLE_TPS_CHAR_INDEX_T CYBLE_TPS_CHAR_VALUE_T::charIndex

Characteristic index of Tx Power Service

CYBLE_GATT_VALUE_T* CYBLE_TPS_CHAR_VALUE_T::value

Pointer to value of Tx Power Service characteristic

struct CYBLE_TPS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_TPS_CHAR_INDEX_T charIndex

• CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex

• CYBLE_GATT_VALUE_T * value

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 498 of 559 Document Number: 002-29930 Rev. *A

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_TPS_DESCR_VALUE_T::connHandle

Connection handle

CYBLE_TPS_CHAR_INDEX_T CYBLE_TPS_DESCR_VALUE_T::charIndex

Characteristic index of Tx Power Service

CYBLE_TPS_CHAR_DESCRIPTORS_T CYBLE_TPS_DESCR_VALUE_T::descrIndex

Characteristic index Descriptor of Tx Power Service

CYBLE_GATT_VALUE_T* CYBLE_TPS_DESCR_VALUE_T::value

Pointer to value of Tx Power Service characteristic

struct CYBLE_TPSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T txPowerLevelCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T txPowerLevelCccdHandle

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_TPSS_T::serviceHandle

Tx Power Service handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_TPSS_T::txPowerLevelCharHandle

Tx Power Level Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_TPSS_T::txPowerLevelCccdHandle

Tx Power Level Client Characteristic Configuration Descriptor handle

struct CYBLE_TPSC_T

Data Fields

• CYBLE_SRVR_CHAR_INFO_T txPowerLevelChar

• CYBLE_GATT_DB_ATTR_HANDLE_T txPowerLevelCccdHandle

Field Documentation

CYBLE_SRVR_CHAR_INFO_T CYBLE_TPSC_T::txPowerLevelChar

Tx Power Level Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_TPSC_T::txPowerLevelCccdHandle

Tx Power Level Client Characteristic Configuration Descriptor handle

Enumeration Type Documentation

enum CYBLE_TPS_CHAR_INDEX_T

TPS Characteristic indexes

Enumerator

CYBLE_TPS_TX_POWER_LEVEL Tx Power Level characteristic index

CYBLE_TPS_CHAR_COUNT Total count of characteristics

enum CYBLE_TPS_CHAR_DESCRIPTORS_T

TPS Characteristic Descriptors indexes

Enumerator

CYBLE_TPS_CCCD Tx Power Level Client Characteristic configuration descriptor index

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 499 of 559

CYBLE_TPS_DESCR_COUNT Total count of Tx Power Service characteristic descriptors

User Data Service (UDS)

Description

The User Data Service exposes user-related data in the sports and fitness environment. This allows remote access
and update of user data by a Client as well as the synchronization of user data between a Server and a Client.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The UDS API names begin with CyBle_Uds. In addition to this, the APIs also append the GATT role initial letter in the
API name.

Modules

• UDS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• UDS Server Functions

APIs unique to UDS designs configured as a GATT Server role.

• UDS Client Functions

APIs unique to UDS designs configured as a GATT Client role.

• UDS Definitions and Data Structures

Contains the UDS specific definitions and data structures used in the UDS APIs.

UDS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Uds

Functions

• void CyBle_UdsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_UdsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service-specific attribute operations. Service-specific write requests from a peer
device will not be handled with an unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T for UDS is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam), where:

• eventCode indicates the event that triggered this callback.

• eventParam contains the parameters corresponding to the
current event.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 500 of 559 Document Number: 002-29930 Rev. *A

Side Effects

The *eventParams in the callback function should not be used by the application once the callback function
execution is finished. Otherwise this data may become corrupted.

UDS Server Functions

Description

APIs unique to UDS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Udss

Functions

• CYBLE_API_RESULT_T CyBle_UdssSetCharacteristicValue (CYBLE_UDS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_UdssGetCharacteristicValue (CYBLE_UDS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_UdssGetCharacteristicDescriptor (CYBLE_UDS_CHAR_INDEX_T charIndex,
CYBLE_UDS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_UdssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_UdssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_UdssSetCharacteristicValue (CYBLE_UDS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Sets the value of the characteristic, as identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent

CYBLE_API_RESULT_T CyBle_UdssGetCharacteristicValue (CYBLE_UDS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

Gets the value of the characteristic, as identified by charIndex.

Parameters:

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 501 of 559

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - A characteristic is absent.

CYBLE_API_RESULT_T CyBle_UdssGetCharacteristicDescriptor (CYBLE_UDS_CHAR_INDEX_T charIndex,
CYBLE_UDS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Gets a characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - Characteristic Descriptor value was read successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - A characteristic is absent.

CYBLE_API_RESULT_T CyBle_UdssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends a notification of the specified characteristic value, as identified by the charIndex.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_UDSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

CYBLE_API_RESULT_T CyBle_UdssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication of the specified characteristic value, as identified by the charIndex.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_UDSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 502 of 559 Document Number: 002-29930 Rev. *A

Parameters:

connHandle The connection handle which consist of the device ID and ATT
connection ID.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - An optional characteristic is absent.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the client.

• CYBLE_ERROR_IND_DISABLED - Indication is disabled for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the UDS service-specific callback is registered (with CyBle_UdsRegisterAttrCallback):

• CYBLE_EVT_UDSS_INDICATION_CONFIRMED - If the indication is successfully delivered to the peer
device.

Otherwise (if the UDS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - If the indication is successfully delivered to the peer
device.

UDS Client Functions

Description

APIs unique to UDS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Udsc

Functions

• CYBLE_API_RESULT_T CyBle_UdscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_UdscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_UdscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_UdscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, CYBLE_UDS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_UdscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, CYBLE_UDS_DESCR_INDEX_T descrIndex)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 503 of 559

Function Documentation

CYBLE_API_RESULT_T CyBle_UdscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_UDSS_WRITE_CHAR events is generated. On successful request execution on the Server
side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the UDS service-specific callback is registered (with CyBle_UdsRegisterAttrCallback):

• CYBLE_EVT_UDSC_WRITE_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, etc.) are provided with an event parameter structure of type
CYBLE_UDS_CHAR_VALUE_T.

Otherwise (if the UDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_EXEC_WRITE_RSP - If the requested attribute is successfully written on the
peer device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_UdscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex)

This function is used to read the characteristic Value from a server, as identified by its charIndex. As a result a
Read Request is sent to the GATT Server and on successful execution of the request on the Server side the
CYBLE_EVT_UDSS_READ_CHAR events is generated. On successful request execution on the Server side the
Read Response is sent to the Client.

The Read Response only contains the characteristic Value that is less than or equal to (MTU - 1) octets in length.
If the characteristic Value is greater than (MTU - 1) octets in length, the Read Long Characteristic Value procedure
may be used if the rest of the characteristic Value is required.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Returns:

A return value is of type CYBLE_API_RESULT_T.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 504 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the UDS service-specific callback is registered (with CyBle_UdsRegisterAttrCallback):

• CYBLE_EVT_UDSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_UDS_CHAR_VALUE_T.

Otherwise (if the UDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_UdscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)

Sends a request to read a long characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the buffer where the read long characteristic descriptor
value should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the UDS service-specific callback is registered (with CyBle_UdsRegisterAttrCallback):

• CYBLE_EVT_UDSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_UDS_CHAR_VALUE_T.

Otherwise (if the UDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_BLOB_RSP - If the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 505 of 559

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_UdscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, CYBLE_UDS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic Value to the server, as identified by its charIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_UDSS_INDICATION_ENABLED

• CYBLE_EVT_UDSS_INDICATION_DISABLED

• CYBLE_EVT_UDSS_NOTIFICATION_ENABLED

• CYBLE_EVT_UDSS_NOTIFICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic descriptor value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the UDS service-specific callback is registered (with CyBle_UdsRegisterAttrCallback):

• CYBLE_EVT_UDSC_WRITE_DESCR_RESPONSE - If the requested attribute is successfully written
on the peer device, the details (char index, descr index etc.) are provided with an event parameter
structure of type CYBLE_UDS_DESCR_VALUE_T.

Otherwise (if the UDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_UdscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_UDS_CHAR_INDEX_T charIndex, CYBLE_UDS_DESCR_INDEX_T descrIndex)

Gets the characteristic descriptor of the specified characteristic.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 506 of 559 Document Number: 002-29930 Rev. *A

descrIndex The index of the service characteristic descriptor.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
descriptor.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In the case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the UDS service-specific callback is registered (with CyBle_UdsRegisterAttrCallback):

• CYBLE_EVT_UDSC_READ_DESCR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, descr index, value, etc.) are provided with an event parameter
structure of type CYBLE_UDS_DESCR_VALUE_T.

Otherwise (if the UDS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameter structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is some trouble with the requested attribute on the peer
device, the details are provided with an event parameter structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

UDS Definitions and Data Structures

Description

Contains the UDS specific definitions and data structures used in the UDS APIs.

Data Structures

• struct CYBLE_UDSS_CHAR_T

• struct CYBLE_UDSS_T

• struct CYBLE_UDSC_CHAR_T

• struct CYBLE_UDSC_T

• struct CYBLE_UDS_CHAR_VALUE_T

• struct CYBLE_UDS_DESCR_VALUE_T

Enumerations

• enum CYBLE_UDS_CHAR_INDEX_T

• enum CYBLE_UDS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_UDSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 507 of 559

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_UDS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_UDSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_UDSS_CHAR_T::descrHandle[CYBLE_UDS_DESCR_COUNT]

Handle of descriptor

struct CYBLE_UDSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_UDSS_CHAR_T charInfo [CYBLE_UDS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_UDSS_T::serviceHandle

User Data Service handle

CYBLE_UDSS_CHAR_T CYBLE_UDSS_T::charInfo[CYBLE_UDS_CHAR_COUNT]

User Data Service characteristics info array

struct CYBLE_UDSC_CHAR_T

Data Fields

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_UDS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

Field Documentation

uint8 CYBLE_UDSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_UDSC_CHAR_T::valueHandle

Handle of server database attribute value entry

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_UDSC_CHAR_T::descrHandle[CYBLE_UDS_DESCR_COUNT]

User Data client char. descriptor handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_UDSC_CHAR_T::endHandle

Characteristic End Handle

struct CYBLE_UDSC_T

Data Fields

• CYBLE_UDSC_CHAR_T charInfo [CYBLE_UDS_CHAR_COUNT]

Field Documentation

CYBLE_UDSC_CHAR_T CYBLE_UDSC_T::charInfo[CYBLE_UDS_CHAR_COUNT]

Characteristics handle + properties array

struct CYBLE_UDS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_UDS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 508 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_GATT_ERR_CODE_T gattErrorCode

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_UDS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_UDS_CHAR_INDEX_T CYBLE_UDS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_UDS_CHAR_VALUE_T::value

Characteristic value

CYBLE_GATT_ERR_CODE_T CYBLE_UDS_CHAR_VALUE_T::gattErrorCode

GATT error code for access control

struct CYBLE_UDS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_UDS_CHAR_INDEX_T charIndex

• CYBLE_UDS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_UDS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_UDS_CHAR_INDEX_T CYBLE_UDS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_UDS_DESCR_INDEX_T CYBLE_UDS_DESCR_VALUE_T::descrIndex

Index of service characteristic descriptor

CYBLE_GATT_VALUE_T* CYBLE_UDS_DESCR_VALUE_T::value

Descriptor value

Enumeration Type Documentation

enum CYBLE_UDS_CHAR_INDEX_T

UDS Service Characteristics indexes

Enumerator

CYBLE_UDS_FNM First Name characteristic index

CYBLE_UDS_LNM Last Name characteristic index

CYBLE_UDS_EML Email Address characteristic index

CYBLE_UDS_AGE Age characteristic index

CYBLE_UDS_DOB Date of Birth characteristic index

CYBLE_UDS_GND Gender characteristic index

CYBLE_UDS_WGT Weight characteristic index

CYBLE_UDS_HGT Height characteristic index

CYBLE_UDS_VO2 VO2 Max characteristic index

CYBLE_UDS_HRM Heart Rate Max characteristic index

CYBLE_UDS_RHR Resting Heart Rate characteristic index

CYBLE_UDS_MRH Maximum Recommended Heart Rate characteristic index

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 509 of 559

CYBLE_UDS_AET Aerobic Threshold characteristic index

CYBLE_UDS_ANT Anaerobic Threshold characteristic index

CYBLE_UDS_STP Sport Type for Aerobic and Anaerobic Thresholds characteristic index

CYBLE_UDS_DTA Date of Threshold Assessment characteristic index

CYBLE_UDS_WCC Waist Circumference characteristic index

CYBLE_UDS_HCC Hip Circumference characteristic index

CYBLE_UDS_FBL Fat Burn Heart Rate Lower Limit characteristic index

CYBLE_UDS_FBU Fat Burn Heart Rate Upper Limit characteristic index

CYBLE_UDS_AEL Aerobic Heart Rate Lower Limit characteristic index

CYBLE_UDS_AEU Aerobic Heart Rate Upper Limit characteristic index

CYBLE_UDS_ANL Anaerobic Heart Rate Lower Limit characteristic index

CYBLE_UDS_ANU Anaerobic Heart Rate Upper Limit characteristic index

CYBLE_UDS_5ZL Five Zone Heart Rate Limits characteristic index

CYBLE_UDS_3ZL Three Zone Heart Rate Limits characteristic index

CYBLE_UDS_2ZL Two Zone Heart Rate Limit characteristic index

CYBLE_UDS_DCI Database Change Increment characteristic index

CYBLE_UDS_UIX User Index characteristic index

CYBLE_UDS_UCP User Control Point characteristic index

CYBLE_UDS_LNG Language characteristic index

CYBLE_UDS_CHAR_COUNT Total count of UDS characteristics

enum CYBLE_UDS_DESCR_INDEX_T

UDS Service Characteristic Descriptors indexes

Enumerator

CYBLE_UDS_CCCD Client Characteristic Configuration descriptor index

CYBLE_UDS_DESCR_COUNT Total count of UDS descriptors

Wireless Power Transfer Service (WPTS)

Description

The Wireless Power Transfer Service enables communication between Power Receiver Unit and Power Transmitter
Unit in the Wireless Power Transfer systems.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The WPTS API names begin with CyBle_Wpts. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• WPTS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• WPTS Server Functions

APIs unique to WPTS designs configured as a GATT Server role.

• WPTS Client Functions

APIs unique to WPTS designs configured as a GATT Client role.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 510 of 559 Document Number: 002-29930 Rev. *A

• WPTS Definitions and Data Structures

Contains the WPTS specific definitions and data structures used in the WPTS APIs.

WPTS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Wpts

Functions

• void CyBle_WptsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_WptsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode indicates the event that triggered this callback (e.g.
CYBLE_EVT_WPTSS_INDICATION_ENABLED).

• eventParam contains the parameters corresponding to the
current event. (e.g. pointer to
CYBLE_WPTS_CHAR_VALUE_T structure that contains
details of the characteristic for which notification enabled event
was triggered).

WPTS Server Functions

Description

APIs unique to WPTS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Wptss

Functions

• CYBLE_API_RESULT_T CyBle_WptssSetCharacteristicValue (CYBLE_WPTS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WptssGetCharacteristicValue (CYBLE_WPTS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WptssSetCharacteristicDescriptor (CYBLE_WPTS_CHAR_INDEX_T
charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WptssGetCharacteristicDescriptor (CYBLE_WPTS_CHAR_INDEX_T
charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 511 of 559

• CYBLE_API_RESULT_T CyBle_WptssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WptssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

CYBLE_API_RESULT_T CyBle_WptssSetCharacteristicValue (CYBLE_WPTS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets a characteristic value of the Wireless Power Transfer Service in the local GATT database. The characteristic
is identified by charIndex.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was written successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_WptssGetCharacteristicValue (CYBLE_WPTS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Reads a characteristic value of the Wireless Power Transfer Service, which is identified by charIndex from the
GATT database.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_WptssSetCharacteristicDescriptor (CYBLE_WPTS_CHAR_INDEX_T
charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_WPTS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data that should be stored to the
GATT database.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 512 of 559 Document Number: 002-29930 Rev. *A

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_WptssGetCharacteristicDescriptor (CYBLE_WPTS_CHAR_INDEX_T
charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Reads a characteristic descriptor of a specified characteristic of the Wireless Power Transfer Service from the
GATT database.

Parameters:

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_WPTS_DESCR_INDEX_T.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

CYBLE_API_RESULT_T CyBle_WptssSendNotification (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends notification with a characteristic value of the WPTS, which is a value specified by charIndex, to the Client
device.

On enabling notification successfully for a service characteristic it sends out a 'Handle Value Notification' which
results in CYBLE_EVT_WPTSC_NOTIFICATION event at the GATT Client's end.

Parameters:

connHandle The connection handle

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

• CYBLE_ERROR_INVALID_STATE - Connection with the Client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_NTF_DISABLED - Notification is not enabled by the Client.

CYBLE_API_RESULT_T CyBle_WptssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication with a characteristic value of the Wireless Power Transfer Service, which is a value specified
by charIndex, to the Client device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 513 of 559

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_WPTSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific
callback function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
Client device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - Optional characteristic is absent

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WPTS service-specific callback is registered (with CyBle_WptsRegisterAttrCallback):

• CYBLE_EVT_WPTSS_INDICATION_CONFIRMED - in case if the indication is successfully delivered to
the peer device.

Otherwise (if the WPTS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - in case if the indication is successfully delivered to the
peer device.

WPTS Client Functions

Description

APIs unique to WPTS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Wptsc

Functions

• void CyBle_WptscDiscovery (CYBLE_GATT_DB_ATTR_HANDLE_T servHandle)

• CYBLE_API_RESULT_T CyBle_WptscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WptscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_WptscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WptscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex)

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 514 of 559 Document Number: 002-29930 Rev. *A

Function Documentation

void CyBle_WptscDiscovery (CYBLE_GATT_DB_ATTR_HANDLE_T servHandle)

This function discovers the PRU's WPT service and characteristics using the GATT Primary Service Handle,
received through the WPT Service Data within the PRU advertisement payload, together with the handle offsets
defined A4WP specification.

The PTU may perform service discovery using the CyBle_GattcStartDiscovery(). This function may be used in
response to Service Changed indication or to discover services other than the WPT service supported by the
PRU.

Parameters:

servHandle GATT Primary Service Handle of the WPT service.

CYBLE_API_RESULT_T CyBle_WptscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

This function is used to write the characteristic (which is identified by charIndex) value attribute in the server. As
a result a Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the CYBLE_EVT_WPTSS_WRITE_CHAR events is generated. On successful request execution on the
Server side the Write Response is sent to the Client.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be send to the
server device.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WPTS service-specific callback is registered (with CyBle_WptsRegisterAttrCallback):

• CYBLE_EVT_WPTSC_WRITE_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, etc.) are provided with event parameter structure of
type CYBLE_WPTS_CHAR_VALUE_T.

Otherwise (if the WPTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_WptscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex)

This function is used to read a characteristic value, which is a value identified by charIndex, from the server.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 515 of 559

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

Returns:

Return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WPTS service-specific callback is registered (with CyBle_WptsRegisterAttrCallback):

• CYBLE_EVT_WPTSC_READ_CHAR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index , value, etc.) are provided with event parameter
structure of type CYBLE_WPTS_CHAR_VALUE_T.

Otherwise (if the WPTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_WptscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize,
uint8 *attrValue)

This function is used to write the characteristic descriptor to the server, which is identified by charIndex and
descrIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_WPTSS_NOTIFICATION_ENABLED

• CYBLE_EVT_WPTSS_NOTIFICATION_DISABLED

• CYBLE_EVT_WPTSS_INDICATION_ENABLED

• CYBLE_EVT_WPTSS_INDICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_WPTS_DESCR_INDEX_T.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 516 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WPTS service-specific callback is registered (with CyBle_WptsRegisterAttrCallback):

• CYBLE_EVT_WPTSC_WRITE_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index etc.) are provided with event parameter
structure of type CYBLE_WPTS_DESCR_VALUE_T.

Otherwise (if the WPTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - in case if the requested attribute is successfully wrote on the peer
device.

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_WptscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WPTS_CHAR_INDEX_T charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex)

Sends a request to get the characteristic descriptor of the specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of a service characteristic of type
CYBLE_WPTS_CHAR_INDEX_T.

descrIndex The index of a service characteristic descriptor of type
CYBLE_WPTS_DESCR_INDEX_T.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WPTS service-specific callback is registered (with CyBle_WptsRegisterAttrCallback):

• CYBLE_EVT_WPTSC_READ_DESCR_RESPONSE - in case if the requested attribute is successfully
wrote on the peer device, the details (char index, descr index, value, etc.) are provided with event
parameter structure of type CYBLE_WPTS_DESCR_VALUE_T.

Otherwise (if the WPTS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - in case if the requested attribute is successfully read on the peer
device, the details (handle, value, etc.) are provided with event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - in case if there some trouble with the requested attribute on the
peer device, the details are provided with event parameters structure
(CYBLE_GATTC_ERR_RSP_PARAM_T).

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 517 of 559

WPTS Definitions and Data Structures

Description

Contains the WPTS specific definitions and data structures used in the WPTS APIs.

Data Structures

• struct CYBLE_WPTSS_CHAR_T

• struct CYBLE_WPTS_CHAR_VALUE_T

• struct CYBLE_WPTS_DESCR_VALUE_T

• struct CYBLE_WPTSS_T

• struct CYBLE_WPTSC_CHAR_T

• struct CYBLE_WPTSC_T

Enumerations

• enum CYBLE_WPTS_CHAR_INDEX_T

• enum CYBLE_WPTS_DESCR_INDEX_T

Data Structure Documentation

struct CYBLE_WPTSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_WPTS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WPTSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_WPTSS_CHAR_T::descrHandle[CYBLE_WPTS_DESCR_COUNT]

Handle of descriptor

struct CYBLE_WPTS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_WPTS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_WPTS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_WPTS_CHAR_INDEX_T CYBLE_WPTS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_WPTS_CHAR_VALUE_T::value

Characteristic value

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 518 of 559 Document Number: 002-29930 Rev. *A

struct CYBLE_WPTS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_WPTS_CHAR_INDEX_T charIndex

• CYBLE_WPTS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_WPTS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_WPTS_CHAR_INDEX_T CYBLE_WPTS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_WPTS_DESCR_INDEX_T CYBLE_WPTS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_VALUE_T* CYBLE_WPTS_DESCR_VALUE_T::value

Characteristic value

struct CYBLE_WPTSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_WPTSS_CHAR_T charInfo [CYBLE_WPTS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WPTSS_T::serviceHandle

Wireless Power Transfer Service handle

CYBLE_WPTSS_CHAR_T CYBLE_WPTSS_T::charInfo[CYBLE_WPTS_CHAR_COUNT]

Wireless Power Transfer Characteristic handles

struct CYBLE_WPTSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_WPTS_DESCR_COUNT]

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• uint8 properties

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_WPTSC_CHAR_T::descrHandle[CYBLE_WPTS_DESCR_COUNT]

Handles of descriptors

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WPTSC_CHAR_T::valueHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WPTSC_CHAR_T::endHandle

End handle of a characteristic

uint8 CYBLE_WPTSC_CHAR_T::properties

Properties for value field

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 519 of 559

struct CYBLE_WPTSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_WPTSC_CHAR_T charInfo [CYBLE_WPTS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WPTSC_T::serviceHandle

Wireless Power Transfer Service handle

CYBLE_WPTSC_CHAR_T CYBLE_WPTSC_T::charInfo[CYBLE_WPTS_CHAR_COUNT]

Wireless Power Transfer Service characteristics info structure

Enumeration Type Documentation

enum CYBLE_WPTS_CHAR_INDEX_T

WPTS Characteristic indexes

Enumerator

CYBLE_WPTS_PRU_CONTROL PRU Control Characteristic index

CYBLE_WPTS_PTU_STATIC_PAR PTU Static Parameter Characteristic index

CYBLE_WPTS_PRU_ALERT PRU Alert Characteristic index

CYBLE_WPTS_PRU_STATIC_PAR PRU Static Parameter Characteristic index

CYBLE_WPTS_PRU_DYNAMIC_PAR PRU Dynamic Parameter Characteristic index

CYBLE_WPTS_CHAR_COUNT Total count of WPTS Characteristics

enum CYBLE_WPTS_DESCR_INDEX_T

WPTS Characteristic Descriptors indexes

Enumerator

CYBLE_WPTS_CCCD Client Characteristic Configuration Descriptor index

CYBLE_WPTS_DESCR_COUNT Total count of Descriptors

Weight Scale Service (WSS)

Description

The Weight Scale Service exposes weight and related data from a weight scale (Server) intended for consumer
healthcare as well as sports/fitness applications.

Depending on the chosen GATT role in the GUI, you may use a subset of the supported APIs.

The WSS API names begin with CyBle_Wss. In addition to this, the APIs also append the GATT role initial letter in
the API name.

Modules

• WSS Server and Client Function

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

• WSS Server Functions

APIs unique to WSS designs configured as a GATT Server role.

• WSS Client Functions

APIs unique to WSS designs configured as a GATT Client role.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 520 of 559 Document Number: 002-29930 Rev. *A

• WSS Definitions and Data Structures

Contains the WSS specific definitions and data structures used in the WSS APIs.

WSS Server and Client Function

Description

These are APIs common to both GATT Client role and GATT Server role. You may use them in either roles.

No letter is appended to the API name: CyBle_Wss

Functions

• void CyBle_WssRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Function Documentation

void CyBle_WssRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

Registers a callback function for service specific attribute operations. Service specific write requests from peer
device will not be handled with unregistered callback function.

Parameters:

callbackFunc An application layer event callback function to receive events from the
BLE Component. The definition of CYBLE_CALLBACK_T is:
 typedef void (* CYBLE_CALLBACK_T) (uint32 eventCode, void
*eventParam)

• eventCode - Indicates the event that triggered this callback
(e.g. CYBLE_EVT_WSSS_INDICATION_ENABLED).

• eventParam - Contains the parameters corresponding to the
current event. (e.g. pointer to CYBLE_WSS_CHAR_VALUE_T
structure that contains details of the characteristic for which an
indication enabled event was triggered).

WSS Server Functions

Description

APIs unique to WSS designs configured as a GATT Server role.

A letter 's' is appended to the API name: CyBle_Wsss

Functions

• uint8 CyBle_WssGetAdUserIdListSize (void)

• CYBLE_API_RESULT_T CyBle_WssSetAdUserId (uint8 listSize, const uint8 userIdList[])

• CYBLE_API_RESULT_T CyBle_WsssSetCharacteristicValue (CYBLE_WSS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WsssGetCharacteristicValue (CYBLE_WSS_CHAR_INDEX_T charIndex, uint8
attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WsssSetCharacteristicDescriptor (CYBLE_WSS_CHAR_INDEX_T charIndex,
CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 521 of 559

• CYBLE_API_RESULT_T CyBle_WsssGetCharacteristicDescriptor (CYBLE_WSS_CHAR_INDEX_T charIndex,
CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

• CYBLE_API_RESULT_T CyBle_WsssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WSS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Function Documentation

uint8 CyBle_WssGetAdUserIdListSize (void)

Returns the size (in bytes) of User ID List in the advertisement packet.

Returns:

Size of User ID List.

CYBLE_API_RESULT_T CyBle_WssSetAdUserId (uint8 listSize, const uint8 userIdList[])

Sets the User ID List to the advertisement packet. To be able to set the User ID List with this function, the
advertisement packet should be configured in the component GUI to include Weight Scale Service UUID in the
Service Data field. The Service Data should have enough room to fit the User ID List that is planned to be
advertised. To reserve the room for the User ID List, the Service Data for WSS should be filled with Unknown
User ID - 0xFF. The amount of 0xFF's should be equal to User List Size that is planned to be advertised. This
function must be called when CyBle_GetBleSsState() returns CYBLE_BLESS_STATE_EVENT_CLOSE state.

Parameters:

listSize The size of the User List.

userIdList The array contains a User List.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - On NULL pointer, Data length in input parameter exceeds
31 bytes.

• CYBLE_ERROR_INVALID_OPERATION - The advertisement packet doesn't contain the User List or
advertisement packet is to small or ADV Event is not closed, BLESS is active or ADV is not enabled.

CYBLE_API_RESULT_T CyBle_WsssSetCharacteristicValue (CYBLE_WSS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Sets a value for one of two characteristic values of the Weight Scale Service. The characteristic is identified by
charIndex.

Parameters:

charIndex The index of a Weight Scale Service characteristic.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be stored to the
GATT database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was written successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_WsssGetCharacteristicValue (CYBLE_WSS_CHAR_INDEX_T charIndex,
uint8 attrSize, uint8 *attrValue)

Reads a characteristic value of the Weight Scale Service, which is identified by charIndex from the GATT
database.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 522 of 559 Document Number: 002-29930 Rev. *A

Parameters:

charIndex The index of the Weight Scale Service characteristic.

attrSize The size of the Weight Scale Service characteristic value attribute.

attrValue The pointer to the location where characteristic value data should be
stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The characteristic value was read successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

CYBLE_API_RESULT_T CyBle_WsssSetCharacteristicDescriptor (CYBLE_WSS_CHAR_INDEX_T charIndex,
CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Sets the characteristic descriptor of the specified characteristic.

Parameters:

charIndex The index of the service characteristic.

descrIndex The index of the descriptor.

attrSize The size of the characteristic descriptor attribute.

attrValue The pointer to the descriptor value data to be stored in the GATT
database.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_WsssGetCharacteristicDescriptor (CYBLE_WSS_CHAR_INDEX_T charIndex,
CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

Reads a a characteristic descriptor of a specified characteristic of the Weight Scale Service from the GATT
database.

Parameters:

charIndex The index of the characteristic.

descrIndex The index of the descriptor.

attrSize The size of the descriptor value.

attrValue The pointer to the location where characteristic descriptor value data
should be stored.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

CYBLE_API_RESULT_T CyBle_WsssSendIndication (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WSS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

Sends an indication with a characteristic value of the Weight Scale Service, which is a value specified by
charIndex, to the client's device.

On enabling indication successfully it sends out a 'Handle Value Indication' which results in
CYBLE_EVT_WSSC_INDICATION or CYBLE_EVT_GATTC_HANDLE_VALUE_IND (if service specific callback
function is not registered) event at the GATT Client's end.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 523 of 559

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic value data that should be sent to the
client's device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was handled successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameter failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted.

• CYBLE_ERROR_INVALID_STATE - Connection with the client is not established.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_IND_DISABLED - Indication is not enabled by the client.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WSS service-specific callback is registered (with CyBle_WssRegisterAttrCallback()):

• CYBLE_EVT_WSSS_INDICATION_CONFIRMED - If the indication is successfully delivered to the peer
device.

Otherwise (if the WSS service-specific callback is not registered):

• CYBLE_EVT_GATTS_HANDLE_VALUE_CNF - If the indication is successfully delivered to the peer
device.

WSS Client Functions

Description

APIs unique to WSS designs configured as a GATT Client role.

A letter 'c' is appended to the API name: CyBle_Wssc

Functions

• CYBLE_API_RESULT_T CyBle_WsscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WSS_CHAR_INDEX_T charIndex)

• CYBLE_API_RESULT_T CyBle_WsscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WSS_CHAR_INDEX_T charIndex, CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

• CYBLE_API_RESULT_T CyBle_WsscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WSS_CHAR_INDEX_T charIndex, CYBLE_WSS_DESCR_INDEX_T descrIndex)

Function Documentation

CYBLE_API_RESULT_T CyBle_WsscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WSS_CHAR_INDEX_T charIndex)

This function is used to read a characteristic value, which is a value identified by charIndex, from the server.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The read request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 524 of 559 Document Number: 002-29930 Rev. *A

• CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE - The peer device doesn't have the particular
characteristic.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_STATE - Connection with the server is not established.

• CYBLE_ERROR_INVALID_OPERATION - Operation is invalid for this characteristic.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WSS service-specific callback is registered (with CyBle_WssRegisterAttrCallback):

• CYBLE_EVT_WSSC_READ_CHAR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index , value, etc.) are provided with an event parameter structure of
type CYBLE_WSS_CHAR_VALUE_T.

Otherwise (if the WSS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is trouble with the requested attribute on the peer device,
the details are provided with event parameters structure (CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_WsscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WSS_CHAR_INDEX_T charIndex, CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8
*attrValue)

This function is used to write the characteristic descriptor to the server, which is identified by charIndex and
descrIndex.

Internally, Write Request is sent to the GATT Server and on successful execution of the request on the Server
side the following events can be generated:

• CYBLE_EVT_WSSS_INDICATION_ENABLED

• CYBLE_EVT_WSSS_INDICATION_DISABLED

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

attrSize The size of the characteristic value attribute.

attrValue The pointer to the characteristic descriptor value data that should be
sent to the server device.

Returns:

A return value is of type CYBLE_API_RESULT_T.

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WSS service-specific callback is registered (with CyBle_WssRegisterAttrCallback):

• CYBLE_EVT_WSSC_WRITE_DESCR_RESPONSE - If the requested attribute is successfully written
on the peer device, the details (char index, descr index etc.) are provided with event parameter structure
of type CYBLE_WSS_DESCR_VALUE_T.

Otherwise (if the WSS service-specific callback is not registered):

• CYBLE_EVT_GATTC_WRITE_RSP - If the requested attribute is successfully written on the peer
device.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 525 of 559

• CYBLE_EVT_GATTC_ERROR_RSP - If there is trouble with the requested attribute on the peer device,
the details are provided with event parameters structure (CYBLE_GATTC_ERR_RSP_PARAM_T).

CYBLE_API_RESULT_T CyBle_WsscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle,
CYBLE_WSS_CHAR_INDEX_T charIndex, CYBLE_WSS_DESCR_INDEX_T descrIndex)

Sends a request to get the characteristic descriptor of the specified characteristic of the service.

Parameters:

connHandle The connection handle.

charIndex The index of the service characteristic. Starts with zero.

descrIndex The index of the service characteristic descriptor.

Returns:

• CYBLE_ERROR_OK - The request was sent successfully.

• CYBLE_ERROR_INVALID_PARAMETER - Validation of the input parameters failed.

• CYBLE_ERROR_INVALID_STATE - The state is not valid.

• CYBLE_ERROR_MEMORY_ALLOCATION_FAILED - Memory allocation failed.

• CYBLE_ERROR_INVALID_OPERATION - This operation is not permitted on the specified attribute.

Events

In case of successful execution (return value = CYBLE_ERROR_OK) the next events can appear:
 If the WSS service-specific callback is registered (with CyBle_WssRegisterAttrCallback()):

• CYBLE_EVT_WSSC_READ_DESCR_RESPONSE - If the requested attribute is successfully written on
the peer device, the details (char index, descr index, value, etc.) are provided with an event parameter
structure of type CYBLE_WSS_DESCR_VALUE_T.

Otherwise (if the WSS service-specific callback is not registered):

• CYBLE_EVT_GATTC_READ_RSP - If the requested attribute is successfully read on the peer device,
the details (handle, value, etc.) are provided with an event parameters structure
(CYBLE_GATTC_READ_RSP_PARAM_T).

• CYBLE_EVT_GATTC_ERROR_RSP - If there is trouble with the requested attribute on the peer device,
the details are provided with event parameters structure (CYBLE_GATTC_ERR_RSP_PARAM_T).

WSS Definitions and Data Structures

Description

Contains the WSS specific definitions and data structures used in the WSS APIs.

Data Structures

• struct CYBLE_WSS_CHAR_VALUE_T

• struct CYBLE_WSS_DESCR_VALUE_T

• struct CYBLE_WSSS_CHAR_T

• struct CYBLE_WSSS_T

• struct CYBLE_WSSC_CHAR_T

• struct CYBLE_WSSC_T

Enumerations

• enum CYBLE_WSS_CHAR_INDEX_T

• enum CYBLE_WSS_DESCR_INDEX_T

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 526 of 559 Document Number: 002-29930 Rev. *A

Data Structure Documentation

struct CYBLE_WSS_CHAR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_WSS_CHAR_INDEX_T charIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_WSS_CHAR_VALUE_T::connHandle

Peer device handle

CYBLE_WSS_CHAR_INDEX_T CYBLE_WSS_CHAR_VALUE_T::charIndex

Index of service characteristic

CYBLE_GATT_VALUE_T* CYBLE_WSS_CHAR_VALUE_T::value

Characteristic value

struct CYBLE_WSS_DESCR_VALUE_T

Data Fields

• CYBLE_CONN_HANDLE_T connHandle

• CYBLE_WSS_CHAR_INDEX_T charIndex

• CYBLE_WSS_DESCR_INDEX_T descrIndex

• CYBLE_GATT_VALUE_T * value

Field Documentation

CYBLE_CONN_HANDLE_T CYBLE_WSS_DESCR_VALUE_T::connHandle

Peer device handle

CYBLE_WSS_CHAR_INDEX_T CYBLE_WSS_DESCR_VALUE_T::charIndex

Index of service characteristic

CYBLE_WSS_DESCR_INDEX_T CYBLE_WSS_DESCR_VALUE_T::descrIndex

Index of descriptor

CYBLE_GATT_VALUE_T* CYBLE_WSS_DESCR_VALUE_T::value

Characteristic value

struct CYBLE_WSSS_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T charHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_WSS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WSSS_CHAR_T::charHandle

Handle of characteristic value

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WSSS_CHAR_T::descrHandle[CYBLE_WSS_DESCR_COUNT]

Array of descriptor handles

struct CYBLE_WSSS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_WSSS_CHAR_T charInfo [CYBLE_WSS_CHAR_COUNT]

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 527 of 559

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WSSS_T::serviceHandle

Weight Scale Service handle

CYBLE_WSSS_CHAR_T CYBLE_WSSS_T::charInfo[CYBLE_WSS_CHAR_COUNT]

Array of characteristics and descriptors handles

struct CYBLE_WSSC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T valueHandle

• uint8 properties

• CYBLE_GATT_DB_ATTR_HANDLE_T endHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T descrHandle [CYBLE_WSS_DESCR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WSSC_CHAR_T::valueHandle

Handle of characteristic value

uint8 CYBLE_WSSC_CHAR_T::properties

Properties for value field

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WSSC_CHAR_T::endHandle

End handle of characteristic

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WSSC_CHAR_T::descrHandle[CYBLE_WSS_DESCR_COUNT]

Array of descriptor handles

struct CYBLE_WSSC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T serviceHandle

• CYBLE_WSSC_CHAR_T charInfo [CYBLE_WSS_CHAR_COUNT]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_WSSC_T::serviceHandle

Weight Scale Service handle

CYBLE_WSSC_CHAR_T CYBLE_WSSC_T::charInfo[CYBLE_WSS_CHAR_COUNT]

Weight Scale Service characteristics info structure

Enumeration Type Documentation

enum CYBLE_WSS_CHAR_INDEX_T

WSS Characteristic indexes

Enumerator

CYBLE_WSS_WEIGHT_SCALE_FEATURE Weight Scale Feature Characteristic index

CYBLE_WSS_WEIGHT_MEASUREMENT Weight Measurement Characteristic index

CYBLE_WSS_CHAR_COUNT Total count of WSS Characteristics

enum CYBLE_WSS_DESCR_INDEX_T

WSS Characteristic Descriptors indexes

Enumerator

CYBLE_WSS_CCCD Client Characteristic Configuration Descriptor index

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 528 of 559 Document Number: 002-29930 Rev. *A

CYBLE_WSS_DESCR_COUNT Total count of Descriptors

Custom Service

Description

This section contains the description of structs used for Custom Services.

Data Structures

• struct CYBLE_CUSTOMS_INFO_T

• struct CYBLE_CUSTOMS_T

• struct CYBLE_CUSTOMC_DESC_T

• struct CYBLE_CUSTOMC_CHAR_T

• struct CYBLE_CUSTOMC_T

Variables

• const CYBLE_CUSTOMS_T cyBle_customs [(`$CustomSCount`)]

• CYBLE_CUSTOMC_T cyBle_customCServ [(`$CustomCCount`)]

Data Structure Documentation

struct CYBLE_CUSTOMS_INFO_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T customServCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T customServCharDesc
[((`$CustomMaxDescriptorCount`)==0u)?1u:(`$CustomMaxDescriptorCount`)]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CUSTOMS_INFO_T::customServCharHandle

Custom Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T
CYBLE_CUSTOMS_INFO_T::customServCharDesc[((`$CustomMaxDescriptorCount`)==0u)?1u:(`$CustomMa
xDescriptorCount`)]

Custom Characteristic Descriptors handles

struct CYBLE_CUSTOMS_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T customServHandle

• CYBLE_CUSTOMS_INFO_T customServInfo
[((`$CustomMaxCharacteristicCount`)==0u)?1u:(`$CustomMaxCharacteristicCount`)]

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CUSTOMS_T::customServHandle

Handle of a Custom Service

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 529 of 559

CYBLE_CUSTOMS_INFO_T
CYBLE_CUSTOMS_T::customServInfo[((`$CustomMaxCharacteristicCount`)==0u)?1u:(`$CustomMaxCharac
teristicCount`)]

Information about Custom Characteristics

struct CYBLE_CUSTOMC_DESC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T descHandle

• const void * uuid

• uint8 uuidFormat

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CUSTOMC_DESC_T::descHandle

Custom Descriptor handle

const void* CYBLE_CUSTOMC_DESC_T::uuid

Custom Descriptor 128 bit UUID

uint8 CYBLE_CUSTOMC_DESC_T::uuidFormat

UUID Format - 16-bit (0x01) or 128-bit (0x02)

struct CYBLE_CUSTOMC_CHAR_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T customServCharHandle

• CYBLE_GATT_DB_ATTR_HANDLE_T customServCharEndHandle

• const void * uuid

• uint8 uuidFormat

• uint8 properties

• uint8 descCount

• CYBLE_CUSTOMC_DESC_T * customServCharDesc

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CUSTOMC_CHAR_T::customServCharHandle

Characteristic handle

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CUSTOMC_CHAR_T::customServCharEndHandle

Characteristic end handle

const void* CYBLE_CUSTOMC_CHAR_T::uuid

Custom Characteristic UUID

uint8 CYBLE_CUSTOMC_CHAR_T::uuidFormat

UUID Format - 16-bit (0x01) or 128-bit (0x02)

uint8 CYBLE_CUSTOMC_CHAR_T::properties

Properties for value field

uint8 CYBLE_CUSTOMC_CHAR_T::descCount

Number of descriptors

CYBLE_CUSTOMC_DESC_T* CYBLE_CUSTOMC_CHAR_T::customServCharDesc

Characteristic Descriptors

struct CYBLE_CUSTOMC_T

Data Fields

• CYBLE_GATT_DB_ATTR_HANDLE_T customServHandle

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 530 of 559 Document Number: 002-29930 Rev. *A

• const void * uuid

• uint8 uuidFormat

• uint8 charCount

• CYBLE_CUSTOMC_CHAR_T * customServChar

Field Documentation

CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_CUSTOMC_T::customServHandle

Custom Service handle

const void* CYBLE_CUSTOMC_T::uuid

Custom Service UUID

uint8 CYBLE_CUSTOMC_T::uuidFormat

UUID Format - 16-bit (0x01) or 128-bit (0x02)

uint8 CYBLE_CUSTOMC_T::charCount

Number of characteristics

CYBLE_CUSTOMC_CHAR_T* CYBLE_CUSTOMC_T::customServChar

Custom Service Characteristics

Variable Documentation

const CYBLE_CUSTOMS_T cyBle_customs[(`$CustomSCount`)]

Custom Services GATT DB handles structures

CYBLE_CUSTOMC_T cyBle_customCServ[(`$CustomCCount`)]

Custom Services discovered attributes information

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 531 of 559

Code snippets

▪ For an application callback: void CyBle_AppCallback(uint32 eventCode, void
*eventParam){<all general events>}

▪ For each CyBle_<service>RegisterAttrCallback API function:
CyBle_<service>RegisterAttrCallback(CyBle_<service>CallBack);

▪ For each service callback: void CyBle_<service>CallBack(uint32 eventCode, void
*eventParam) {<all service-specific events>}

Sample Firmware Source Code

PSoC Creator provides numerous example projects that include schematics and example code
in the “Find Code Example” dialog. For Component-specific examples, open the dialog from the
Component Catalog or an instance of the Component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

For detail, refer to the "Find Code Example" topic in the PSoC Creator Help.

Application Notes

Cypress provides a number of application notes describing how PSoC can be integrated into
your design. You can access the Cypress Application Notes search web page at
www.cypress.com/appnotes. Application Notes that use this component include:

▪ AN94020 - Getting Started with PRoC BLE

▪ AN92584 - Designing for Low Power and Estimating Battery Life for BLE Applications

▪ AN91184 - Creating BLE Applications Using PSoC 4 BLE

▪ AN96112 - Creating Custom Profiles Using PSoC 4 BLE

▪ AN95089 - PSoC® 4/PRoC™ BLE Crystal Oscillator Selection and Tuning Techniques

▪ AN97060 - PSoC® 4/PRoC™ Over-The-Air (OTA) Firmware Upgrade Guide

▪ AN85951 - CapSense Design Guide

▪ AN91445 - Antenna Design Guide

▪ AN99209 - PSoC® 4 BLE and PRoC™ BLE : Bluetooth LE 4.2 features

Additionally, you can look at 100 projects in 100 days blog that describes a variety of projects
that expose possible use of the BLE component.

http://www.cypress.com/appnotes
http://www.cypress.com/go/AN92584
http://www.cypress.com/go/AN91184
http://www.cypress.com/go/AN96112
http://www.cypress.com/go/AN95089
http://www.cypress.com/go/AN95089
http://www.cypress.com/BLEApplicationNotes
http://www.cypress.com/go/AN85951
http://www.cypress.com/go/AN91445
http://www.cypress.com/blog/100-projects-100-days

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 532 of 559 Document Number: 002-29930 Rev. *A

Industry Standards

MISRA Compliance

This section describes the MISRA-C:2004 compliance and deviations for the Component. There
are three types of deviations defined:

▪ Project deviations – Applicable for all PSoC Creator Components.

▪ Component specific deviations – Applicable only for the common part of this Component.

▪ Profile specific deviations – Applicable only for a specific Profile of the Component.

This section provides information on the Component-specific deviations. The project deviations
are described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The BLE Component has the following specific deviations:

MISRA-
C:2004
Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

9.3 R In an enumerator list, the '=' construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Violated when a specific value needs to be
assigned to an enumerator item.

10.1 R The value of an expression of integer type
shall not be implicitly converted to a different
underlying type under some circumstances.

An operand of an essential enum type is being
converted to an unsigned type as a result of an
arithmetic or conditional operation. The
conversion does not have any unintended effect.

11.4 A A cast should not be performed between a
pointer to object type and a different pointer
to object type.

A cast involving pointers conducted with the
caution that the pointers are correctly aligned for
the type of an object being pointed to.

13.7 R Boolean operations whose results are
invariant shall not be permitted.

A Boolean operator can yield a result that can be
proven to be always "True" or always "False" in
some specific configurations because of a
generalized implementation approach.

17.4 R Array indexing shall be the only allowed
form of pointer arithmetic.

An array subscript operator used to subscript an
expression which is not of the array type. This is
perfectly legitimate in the C language providing
the pointer addresses an array element.

18.4 R Unions shall not be used. Deviated for constructing efficient
implementation.

19.7 A A function should be used in preference to a
function-like macro.

Deviated for more efficient code.

This Component has the following embedded Components: cy_isr, SCB. For detail, refer to the
corresponding Component datasheets to read about their MISRA compliance and specific
deviations.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 533 of 559

Bluetooth Qualification

The BLE solutions provided by Cypress are listed on the Bluetooth SIG website as certified
solutions. The qualification is modular, allowing greater flexibility to customers. The following is
the list of Qualified Design IDs (QD ID) and Declaration IDs.

QD ID(s) Declaration ID# Description

76858 D028204 4.2 Host

76764 D028203 4.2 Link Layer

63199 D025070
Profiles supported by BLE Component in PSoC Creator

73181 D026298

61908 D024756 Host

62243 D024755 Link Layer

62245 D024754 RF-PHY for 56-QFN package

63368 D025068 RF-PHY for 68-ball WLCSP package

62887 D024757 PSoC 4 BLE and PRoC BLE end product (56-QFN package)

63683 D025069 PSoC 4 BLE and PRoC BLE end product (68-ball WLCSP package)

API Memory Usage

The Component memory usage varies significantly, depending on the compiler, device, number
of APIs used and Component configuration. The following table provides the memory usage for
all APIs available in the given Component configuration.

The measurements are done with the associated compiler configured in Release mode with
optimization set for Size. For a specific design, the map file generated by the compiler can be
analyzed to determine the memory usage.

The Component's BLE Stack is implemented in the four libraries and therefore the Component
memory usage is directly dependent on the library used. The libraries are:

▪ HCI Library (used in HCI mode)

▪ Peripheral (used when the Component is configured for GAP Peripheral or GAP
Broadcaster role)

▪ Central (used when the Component is configured for GAP Central or GAP Observer role)

▪ Peripheral and Central (used when the Component is configured for GAP Peripheral and
Central roles)

https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=28204
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24756
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=28203
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24755
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=25070
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=25070
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=26298
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=26298
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24756
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24756
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24755
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24755
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24754
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24754
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=25068
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=25068
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24757
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=24757
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=25069
https://www.bluetooth.org/tpg/QLI_viewQDL.cfm?qid=25069

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 534 of 559 Document Number: 002-29930 Rev. *A

HCI Mode

Configuration

PSoC 4200 BLE (GCC)

Flash Bytes SRAM Bytes Stack Bytes

HCI Mode 41100 3177 2048

Peripheral and Central Profile Mode

Configuration

PSoC 4200 BLE (GCC)

Flash Bytes SRAM Bytes Stack Bytes

Alert Notification Profile (Server) 91290 8466 2048

Find Me Profile (Find Me Target role) 90794 8394 2048

Internet Protocol Support 90476 11592 2048

Phone Alert Status 91118 8443 2048

Time 91842 8486 2048

Central Profile Mode

Configuration

PSoC 4200 BLE (GCC)

Flash Bytes SRAM Bytes Stack Bytes

Alert Notification Profile (Server) 84238 8284 2048

Find Me Profile (Find Me Target role) 83450 8189 2048

HID over GATT Profile (Host) 89236 8367 2048

Phone Alert Status 83934 8227 2048

Proximity Profile (Proximity Reporter) 84314 8215 2048

Time 84642 8270 2048

Peripheral Profile Mode

Configuration

PSoC 4200 BLE (GCC)

Flash Bytes SRAM Bytes Stack Bytes

Blood Pressure 82294 8367 2048

Bootloader 81758 8249 2048

Continuous Glucose Monitoring 83612 8461 2048

Cycling Power 82756 8320 2048

Cycling Speed and Cadence 82424 8359 2048

Custom 81250 8251 2048

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 535 of 559

Configuration

PSoC 4200 BLE (GCC)

Flash Bytes SRAM Bytes Stack Bytes

Environmental Sensing 86696 9978 2048

Find Me Profile (Find Me Target role) 81352 8203 2048

Glucose Profile (Glucose Sensor) 82632 8378 2048

Health Thermometer Profile (Server) 82716 8382 2048

Heart Rate Profile (Heart Rate Sensor) 82250 8321 2048

HID Over GATT Profile (HID Device) 84134 8493 2048

Internet Protocol Support 83746 8523 2048

Location and Navigation 82166 8299 2048

Proximity Profile (Proximity Reporter) 82184 8240 2048

Running Speed and Cadence 82444 8362 2048

Scan Parameters Profile (Scan Server) 81716 8226 2048

Weight Scale 87372 8933 2048

Wireless Power Transfer 82358 8362 2048

BLE 4.2. Data Length, Security, Privacy. 99670 19581 2048

Resources

The BLE Component uses one BLESS block, two external crystals, interrupt(s), and an optional
SCB Block:

Configuration

Resource Type

BLESS[1] SCB [2] Interrupt ECO WCO [3]

Profile Mode 1 - 1 1 1

HCI Mode 1 1 2 1 1

1 The BLESS Component instantiates an SCB Component when configured in HCI Mode. Refer to the SCB
Component datasheet for its resource usage.

2 The BLE Component instantiates an SCB Component when configured in HCI Mode. Refer to the SCB
Component datasheet for its resource usage.

3 WCO is optional. It is used if Component deep sleep is required. If WCO is not used, then ILO is used as the
LFCLK source.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 536 of 559 Document Number: 002-29930 Rev. *A

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

Parameter Description Min Typ Max Units Details/Conditions

RF Receiver Specification

RXS, IDLE RX sensitivity with idle transmitter – –89 – dBm

 RX sensitivity with idle transmitter
excluding Balun loss

– –91 – dBm Guaranteed by design
simulation

RXS, DIRTY RX sensitivity with dirty transmitter – –87 –70 dBm RF-PHY Specification (RCV-
LE/CA/01/C)

RXS, HIGHGAIN RX sensitivity in high-gain mode with
idle transmitter

– –91 – dBm

PRXMAX Maximum input power –10 –1 – dBm RF-PHY Specification (RCV-
LE/CA/06/C)

CI1 Cochannel interference,
Wanted signal at –67 dBm and
Interferer at FRX

– 9 21 dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI2 Adjacent channel interference
Wanted signal at –67 dBm and
Interferer at FRX ±1 MHz

– 3 15 dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI3 Adjacent channel interference
Wanted signal at –67 dBm and
Interferer at FRX ±2 MHz

– –29 – dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI4 Adjacent channel interference
Wanted signal at –67 dBm and
Interferer at ≥FRX ±3 MHz

– –39 – dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI5 Adjacent channel interference
Wanted Signal at –67 dBm and
Interferer at Image frequency
(FIMAGE)

– –20 – dB RF-PHY Specification (RCV-
LE/CA/03/C)

CI3 Adjacent channel interference
Wanted signal at –67 dBm and
Interferer at Image frequency (FIMAGE
± 1 MHz)

– –30 – dB RF-PHY Specification (RCV-
LE/CA/03/C)

OBB1 Out-of-band blocking,
Wanted signal at –67 dBm and
Interferer at F = 30–2000 MHz

–30 –27 – dBm RF-PHY Specification (RCV-
LE/CA/04/C)

OBB2 Out-of-band blocking,
Wanted signal at –67 dBm and
Interferer at F = 2003–2399 MHz

–35 –27 – dBm RF-PHY Specification (RCV-
LE/CA/04/C)

OBB3 Out-of-band blocking,
Wanted signal at –67 dBm and
Interferer at F = 2484–2997 MHz

–35 –27 – dBm RF-PHY Specification (RCV-
LE/CA/04/C)

OBB4 Out-of-band blocking,
Wanted signal a –67 dBm and
Interferer at F = 3000–12750 MHz

–30 –27 – dBm RF-PHY Specification (RCV-
LE/CA/04/C)

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 537 of 559

Parameter Description Min Typ Max Units Details/Conditions

IMD Intermodulation performance
Wanted signal at –64 dBm and 1-
Mbps BLE, third, fourth, and fifth
offset channel

–50 – – dBm RF-PHY Specification (RCV-
LE/CA/05/C)

RXSE1 Receiver spurious emission
30 MHz to 1.0 GHz

– – –57 dBm 100-kHz measurement
bandwidth
ETSI EN300 328 V1.8.1

RXSE2 Receiver spurious emission
1.0 GHz to 12.75 GHz

– – –47 dBm 1-MHz measurement
bandwidth
ETSI EN300 328 V1.8.1

RF Transmitter Specifications

TXP, ACC RF power accuracy – – ±4 dB

TXP, RANGE RF power control range – 20 – dB

TXP, 0dBm Output power, 0-dB Gain setting
(PA7)

–4 0 3 dBm

TXP, MAX Output power, maximum power
setting (PA10)

–1 3 6 dBm

TXP, MIN Output power, minimum power
setting (PA1)

– –18 – dBm

F2AVG Average frequency deviation for
10101010 pattern

185 – – kHz RF-PHY Specification (TRM-
LE/CA/05/C)

F1AVG Average frequency deviation for
11110000 pattern

225 250 275 kHz RF-PHY Specification (TRM-
LE/CA/05/C)

EO Eye opening = ∆F2AVG/∆F1AVG 0.8 – – RF-PHY Specification (TRM-
LE/CA/05/C)

FTX, ACC Frequency accuracy –150 – 150 kHz RF-PHY Specification (TRM-
LE/CA/06/C)

FTX, MAXDR Maximum frequency drift –50 – 50 kHz RF-PHY Specification (TRM-
LE/CA/06/C)

FTX, INITDR Initial frequency drift –20 – 20 kHz RF-PHY Specification (TRM-
LE/CA/06/C)

FTX, DR Maximum drift rate –20 – 20 kHz/
50 µs

RF-PHY Specification (TRM-
LE/CA/06/C)

IBSE1 In-band spurious emission at 2-MHz
offset

– – –20 dBm RF-PHY Specification (TRM-
LE/CA/03/C)

IBSE2 In-band spurious emission at ≥3-
MHz offset

– – -30 dBm RF-PHY Specification (TRM-
LE/CA/03/C)

TXSE1 Transmitter spurious emissions
(average), <1.0 GHz

– – -55.5 dBm FCC-15.247

TXSE2 Transmitter spurious emissions
(average), >1.0 GHz

– – -41.5 dBm FCC-15.247

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 538 of 559 Document Number: 002-29930 Rev. *A

Parameter Description Min Typ Max Units Details/Conditions

RF Current Specifications

IRX Receive current in normal mode – 18.7 – mA

IRX_RF Radio receive current in normal
mode

– 16.4 – mA Measured at VDDR

IRX, HIGHGAIN Receive current in high-gain mode – 21.5 – mA

ITX, 3dBm TX current at 3-dBm setting (PA10) – 20 – mA

ITX, 0dBm TX current at 0-dBm setting (PA7) – 16.5 – mA

ITX_RF, 0dBm Radio TX current at 0 dBm setting
(PA7)

– 15.6 – mA Measured at VDDR

ITX_RF, 0dBm Radio TX current at 0 dBm excluding
Balun loss

– 14.2 – mA Guaranteed by design
simulation

ITX,-3dBm TX current at –3-dBm setting (PA4) – 15.5 – mA

ITX,-6dBm TX current at –6-dBm setting (PA3) – 14.5 – mA

ITX,-12dBm TX current at –12-dBm setting (PA2) – 13.2 – mA

ITX,-18dBm TX current at –18-dBm setting (PA1) – 12.5 – mA

Iavg_1sec,
0dBm

Average current at 1-second BLE
connection interval

– 18.9 – µA TXP: 0 dBm; ±20-ppm master
and slave clock accuracy.

Iavg_4sec,
0dBm

Average current at 4-second BLE
connection interval

– 6.25 – µA TXP: 0 dBm; ±20-ppm master
and slave clock accuracy.

General RF Specifications

FREQ RF operating frequency 2400 – 2482 MHz

CHBW Channel spacing – 2 – MHz

DR On-air data rate – 1000 – kbps

IDLE2TX BLE.IDLE to BLE. TX transition time – 120 140 µs

IDLE2RX BLE.IDLE to BLE. RX transition time – 75 120 µs

RSSI Specifications

RSSI, ACC RSSI accuracy – ±5 – dB

RSSI, RES RSSI resolution – 1 – dB

RSSI, PER RSSI sample period – 6 – µs

The following table summarizes the different measurements of the time taken by the BLE
firmware stack to perform / initiate different BLE operations. The measurements have been
performed with IMO set to 12 MHz, connection interval set to 7.5 ms, and Encryption is enabled.

Operation Duration (μs)

Ble Stack On Time 10615.8

‘CyBle_ProcessEvents’ execution time (Best case) 11.1

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 539 of 559

Operation Duration (μs)

Worst case BLE ISR Execution time 80.3

Start Scan execution time 4702

Passive Scan receive advertisement duration 353

Active Scan receive {Advertisement + Scan Response} duration 339.8

Read request processing time on GATT Server (Attribute MTU = 512 Bytes) 11452.3

Write request processing time on GATT Server (Attribute MTU = 512 Bytes) 10692

Connection time on GAP Central 5749.5

Connection time on GAP Peripheral 3699.2

Start advertisement execution time (Worst Case) 4436.7

‘CyBle_EnterLPM’ execution time (Worst Case) 294.2

Notification processing time on GATT Server (Attribute MTU = 512 Bytes) 2826.2

Write command processing time on GATT Server (Attribute MTU = 512 Bytes) 9486.1

Creating L2CAP COC 1811.2

Response L2CAP COC 1034.8

Updating from BLE v1.x to BLE v2.x or later

If you are updating to BLE v2.x or later from version v1.0, 1.10 or 1.20 and if you have used
CYBLE_EVT_GATTS_PREP_WRITE_REQ or CYBLE_EVT_GATTS_EXEC_WRITE_REQ
events in your existing design, it is likely that your design will not build after the update.

The reason for this is that the mechanism for the events generation and the event parameters
were modified to allow the CYBLE_EVT_GATTS_PREP_WRITE_REQ and
CYBLE_EVT_GATTS_EXEC_WRITE_REQ events to be used by the Long Write Value and
Reliable Write procedures.

The following table shows the changes between version 2.x and older versions of the BLE
component.

v1.0-1.20 v2.x and later

1 Single CYBLE_EVT_GATTS_PREP_WRITE_REQ event
is generated.

Multiple CYBLE_EVT_GATTS_PREP_WRITE_REQ
events are generated

2 Multiple CYBLE_EVT_GATTS_EXEC_WRITE_REQ
events are generated

Single CYBLE_EVT_GATTS_EXEC_WRITE_REQ event
is generated.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 540 of 559 Document Number: 002-29930 Rev. *A

v1.0-1.20 v2.x and later

3 The CYBLE_EVT_GATTS_PREP_WRITE_REQ event
has the following parameter structure:

typedef struct {

 CYBLE_CONN_HANDLE_T connHandle;

 CYBLE_GATT_DB_ATTR_HANDLE_T

attrHandle;

} CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T

The CYBLE_EVT_GATTS_PREP_WRITE_REQ event
has the following parameter structure:

typedef struct {

 CYBLE_CONN_HANDLE_T connHandle;

 CYBLE_GATT_HANDLE_VALUE_OFFSET_

PARAM_T * baseAddr;

 uint8 currentPrepWriteReqCount;

 uint8 gattErrorCode;

} CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T

4 The CYBLE_EVT_GATTS_EXEC_WRITE_REQ event
has the following parameter structure:

typedef struct {

 CYBLE_CONN_HANDLE_T connHandle;

 CYBLE_GATT_DB_ATTR_HANDLE_T

attrHandle;

 uint16 length;

 uint16 offset;

 uint8 result;

} CYBLE_GATTS_EXEC_WRITE_REQ_T

The CYBLE_EVT_GATTS_EXEC_WRITE_REQ event
has the following parameter structure:

typedef struct {

 CYBLE_CONN_HANDLE_T connHandle;

 CYBLE_GATT_HANDLE_VALUE_OFFSET_

PARAM_T * baseAddr;

 uint8 prepWriteReqCount;

 uint8 execWriteFlag;

 CYBLE_GATT_DB_ATTR_HANDLE_T

attrHandle;

 uint8 gattErrorCode;

} CYBLE_GATTS_EXEC_WRITE_REQ_T

The following are detailed descriptions of the changes described in the table, and how they may
impact your design:

Item #1

In the earlier versions of the BLE component, the CYBLE_EVT_GATTS_PREP_WRITE_REQ
event was generated only once when the device received the first Prepare Write Request of a
Long Write Value procedure. To respond to the CYBLE_EVT_GATTS_PREP_WRITE_REQ
event, the CyBle_GattsPrepWriteReqSupport() function is called by the application to inform the
Client if the Server supports Long Writes. This functionality remains in the BLE v2.x component.

In BLE v2.x, the CyBle_GattsPrepWriteReqSupport() function is called each time the device
receives the first CYBLE_EVT_GATTS_PREP_WRITE_REQ event of Long Write Value
procedure. For a Reliable Write Procedure, the CYBLE_EVT_GATTS_PREP_WRITE_REQ
event is generated for each unique attribute handle, and therefore it requires calling the
CyBle_GattsPrepWriteReqSupport() function.

Item #2

In the earlier versions of the BLE component, the CYBLE_EVT_GATTS_EXEC_WRITE_REQ
event was generated multiple times, and the number of events was dependent on the attribute
MTU size and the length of the long attribute. This event contained the burst data of the long
attribute, with the length and offset specified in the event parameter structure. When the last

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 541 of 559

CYBLE_EVT_GATTS_EXEC_WRITE_REQ was received, the event signaled that the data was
actually written to the GATT database.

In the BLE v2.x component, the event is generated once for each Long Write Value procedure,
and the event parameter provides a pointer to the start of the buffer where data is temporarily
stored. The data will be written to the GATT database only if there is successful indication from
the user, or if gattErrorCode equals to CYBLE_GATT_ERR_NONE.

Item #3

In the earlier BLE component versions, the CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T
event included the eventParam -> attrHandle parameter that included the attribute handle of a
long attribute value that has been written.

In the BLE v2.x component, this parameter is placed in the following location of the event
parameter structure:

eventParam -> baseAddr[eventParam ->
currentPrepWriteReqCount].handleValuePair.attrHandle.

For detail, refer to the CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T section.

Item #4

In the earlier BLE component versions, the CYBLE_GATTS_EXEC_WRITE_REQ_T event
included the eventParam -> length and eventParam -> offset parameters. These are respectively
equivalent to eventParam -> baseAddr[n].handleValuePair.value.len and eventParam ->
baseAddr[n].offset in the BLE v2.x Component.

The n means the number of the burst to which the entire long value is divided. Both the older
versions and BLE v2.x components include eventParam -> attrHandle parameters. However, in
the BLE v2.x component, the parameter has a different purpose. The attribute handle is stored in
the eventParam -> baseAddr[n].handleValuePair.attrHandle similar to
CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T struct. In the BLE v2.x component, the
eventParam -> result was renamed to eventParam -> execWriteFlag.

For detail, refer to the CYBLE_GATTS_EXEC_WRITE_REQ_T section.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 542 of 559 Document Number: 002-29930 Rev. *A

Component Errata

This section lists the known problems with the component.

Cypress
ID

Component
Version

Problem Workaround

246514 All This issue is related to an Rx packet for a
device that operates in the slave role.
Some time when there is a CRC error, the
length field of the Rx data packet is
corrupted, and the actual length is lost.

In this case, processing the packet is
postponed to the next connection event.
This is not expected behavior.

No public workaround available.

210832 All An application using IMO to source HFCLK
(at 3 MHz) for low-power state may lead to
CPU not waking up from Deep Sleep upon
disconnection.

Per AN92584 (001-92584 *A), an application
should use the ECO-sourced HFCLK (at 3 MHz)
instead of the IMO.

No workaround exists if you insist on using IMO to
source the HFCLK instead of the ECO for low-
power application.

278026 3.40 The BLE link may get stuck while sending
continuous notifications with slave latency
and Deep Sleep enabled, causing a
connection timeout on the central side

Use slave latency = 0, or disable quick transmit
using the CyBle_SetSlaveLatencyMode() function
before sending continuous notifications.

280542 3.40 The link is established by IUT as a master.
IUT fails to initiate advertisement as a
slave after the link is disconnected.

Call the CyBle_Shutdown() API followed by
CyBle_StackInit() API to restart the BLE stack
when the application switches roles.

223246 3.0 Customers using the BLE 3.x component
for the 4.1 features only see an increase in
Flash by 5 K bytes compared to the
previous component versions.

No workaround.

The increase is due to enhancements, defect fixes
and support for 4.2 features.

BLE Stack Changes

This section lists changes made to the BLE Stack.

Version Description of Changes Reason for Changes / Impact

3.6.4.392 Updated the SMP random number generation
procedure to generate a 128-bit random number..

The random number generation procedure used for
generating Na/Nb during pairing procedure was incorrectly
generating a 64-bit random number instead of a 128-bit
number as supported by the Bluetooth Specification. For
details, refer to the CVE-2020-11957 vulnerability page.

Fix for CVE-2019-16336. Enforced the length check on incoming LL PDUs to protect
against buffer overflows caused by malicious packets.
Malformed Data packets dropped in the LL. Malformed
Control packets are replied with LL_UNKNOWN_RSP. For
detail, refer to the CVE-2019-16336 vulnerability page.

3.6.3.382 Fix for CVE-2019-17061. Updated the handling of LL PDU with LLID 0 to prevent the
corruption in subsequently received LL PDUs. Such packets
are dropped in the LL, but the peer is acked for a packet. For
detail, refer to the CVE-2019-17061 vulnerability page.

https://nvd.nist.gov/vuln/detail/CVE-2020-11957
https://nvd.nist.gov/vuln/detail/CVE-2019-16336
https://nvd.nist.gov/vuln/detail/CVE-2019-17061

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 543 of 559

Version Description of Changes Reason for Changes / Impact

3.6.2.379 Updated the stack to qualify the PSoC 4 BLE 128
K, version 1 parts as BLE 5.1 spec-compliant.

The Bluetooth SIG has deprecated BLE spec 4.1/

Updated the stack to pass with PTS 7.4.1. The latest PTS ver 7.4.1 brought several new test cases,
specifically
GATT_SR_UNS_BI_01_C/GATT_SR_UNS_BI_02_C: the
device returns incorrect error code
(CYBLE_GATT_ERR_INVALID_PDU (0x04) instead of
CYBLE_GATT_ERR_REQUEST_NOT_SUPPORTED
(0x06)).

Added the support to handle malformed LL PDUs. Malformed LL PDUs (with a length greater than 32 bytes)
when sent to the PSoC 4 BLE DUT cause memory corruption
and a crash.

3.6.1.370 Fixed a defect in the handling of the
CYBLE_EVT_GAP_SMP_NEGOTIATED_AUTH_I
NFO event.

The security level reported by this event was inconsistent
with the one actually used OTA and reported in the
CYBLE_EVT_GAP_AUTH_COMPLETE event.

3.5.4.362 PRoC: BLESS does not enter Deep Sleep after
sending a fixed number of ADV packets.

Once a fixed number of packets has been sent:

1. In the last ADV_TX_INTR handler: Call the
ADV_CLOSE interrupt handler.

2. In the task context: Free-up the connection entity
used for the advertisement and update the device’s
FSM.

SMP enhancement: BLE pairing vulnerability. 1. Added the public Key Validation check for the
remote key.

2. Updated the documentation for
CyBle_GapGenerateLocalP256Keys() and
CyBle_GapSetLocalP256Keys() APIs, to recommend
the application to update the private key as mentioned
in BLE Core spec 4.2 Vol. 3 Part H, Section 2.3.6

3. Added the feature bit for Remote Public Key
Validation. This feature is not supported currently and
hence defaults to zero. However, it has been
additionally masked to zero as required by the BLE
Core Specification Errata 10734.

3.5.3.348 Updated storage manager to re-Calculate CRC for
any amount of change to the Flash.

The CRC was not being updated when amount of data
written was less than 1-block size (128 bytes), leading
to a trigger of CYBLE_EVT_FLASH_CORRUPT event
on stack re-initialization.

For DTM TX command, max payload length will be
tested based on the BLESS IP version.

For 128K and 256V1 Devices, the maximum payload
length is 37 bytes.

3.5.2.344 Interoperability issue with iphone8/Iphone8Plus. BLE spec erratum E7791 and 8745 were addressed to
resolve this issue.

Flash memory consumtion was reduced
approxomatly 1 kB.

Enhancement. More flash memory remains for user
applications.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 544 of 559 Document Number: 002-29930 Rev. *A

Version Description of Changes Reason for Changes / Impact

3.5.1.340 The stack will not reject LL_LENGTH_REQ PDU
with inconsistent TX Octet and TX time parameter
values.

The stack API CyBle_SetDataLength() accepts
inconsistent TX Octet and TX time values. BLE Spec
4.2 does not mandate this check, but it was
incorporated in the design.

The BLE Spec 5.0 explicitly requires this check to be
omitted. This causes BLE 5.0 compliant controllers to
be incompatible with the PSoC 4 BLE devices.

3.5.0.335 Modified the API for updating the advertisement
data and scan response data such that
advertisement data and scan response data will
not be updated if an update to the same is
currently pending.

Multiple calls to update Advertisement data before the
ADV_CLOSE Event occurs causes ACL TX Buffer to
overflow.

Added a fix for handling Read by group request for
an attribute whose start handle is disabled in the
GATT DB.

IUT responds infinitely to Read with a group type request
(Primary Service discovery) if the attribute corresponding to
the start handle sent in read by a group type request is
disabled in the GATT database.

Added a fix in the procedure for handling a
scenario where the DUT receives an unknown
response for a DLE request.

DLE negotiation failure was observed for the case where the
peer device does not support DLE.

3.4.0.326 Changed GATT attribute permission routine to
handle GATT access during pairing process.

The GATT characteristic value, which needs that the
encryption for read and write could be read/written during the
pairing process.

Global security context is now reset on soft reset
and shutdown.

Global security context was not getting a reset on calling
CyBle_SoftReset() and CyBle_Shutdown() APIs.

Updated the condition to send
'CYBLE_EVT_PENDING_FLASH_WRITE' event if
device is previously added to whitelist.

When bonding is completed, the GAP module is trying to add
a device to the white list. If a device is added to the white list
before pairing, the controller rejects this request and stack is
not sending the 'CYBLE_EVT_PENDING_FLASH_WRITE'
event to the application.

Updated the API documentation for
CyBle_SetCeLengthParam API.

CyBle_SetCeLengthParam API returns
"CYBLE_ERROR_NO_DEVICE_ENTITY" instead of the
described "CYBLE_ERROR_NO_CONNECTION"

Updated check to report the last service in
response even if it does not have any
characteristics.

When the last service has no characteristics, it is not reported
during the service discovery procedure.

Fixed the handling of GATT Read Multiple
Request at the server when the number of handles
is >= 15.

When the GATT server receives a read multiple
characteristic request from a client with a number of handles
greater than or equal to 15, it does not send a read multiple
characteristic response.

The ADV filter policy check is updated to check for
the white list when privacy 1.2 is enabled.

The white list filter policy does not work when privacy 1.2 is
enabled.

Added the condition to process a pending
encryption procedure when the connection update
procedure is completed.

When the controller is waiting for Connection Update, the
instant controller pauses the encryption procedure pending
during the pairing procedure. After a connection Update
instant occurs, the controller does not resume the pending
Encryption procedure.

3.3.0.309 An erroneous internal state handling was modified
in CyBle_SoftReset () to prevent BLE Stack
operation failure.

The BLE stack API functions were not operating correctly
after calling CyBle_SoftReset().

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 545 of 559

Version Description of Changes Reason for Changes / Impact

Reading GATT-DB is optimized at the server side,
so that response is not limited to only 3-
handle/value/UUID pair, rather it should limit to
ATT-MTU size.

Better user experience.

At the server side GATT-DB read operation in BLE
Stack is modified to read GATT-DB after giving
the“CYBLE_EVT_GATTS_READ_CHAR_VAL_AC
CESS_REQ” event to the application.

The application can modify the GATT DB in the
“CYBLE_EVT_GATTS_READ_CHAR_VAL_ACCESS_REQ”
event handler so that the stack responds with the updated
value.

Added a new function -
CyBle_GapSetSecurityRequirements.

This function will enable the application to restrict pairing
based on security requirements like the encryption key size,
security level etc. The BLE Stack rejects pairing if the
security requirements are not met.

Added a new function -
CyBle_GapSetLocalP256Keys().

To set device’s own P256 public and private keys.

A new event -
CYBLE_EVT_GAP_SMP_LOC_P256_KEYS_GE
N_AND_SET_COMPLETE.

This event gets generated once execution
CyBle_GapGenerateLocalP256Keys() is completed. This
event contains generated keys which can be used by the
peer device for OOB pairing.

Modified the pairing procedure to not to distribute
SMP Keys if bonding is not enabled.

SMP Keys were distributed when the bonding flag was not
enabled. This was resulting in an inter-op issue.

Some of the devices (like iOS) would force disconnect if SMP
keys are not distributed at the end of pairing. So, it is
recommended to enable bonding all the time for such
devices.

New enum- CYBLE_HCI_ERROR_T added This will help the application to map the error number
returned along with CYBLE_EVT_HCI_STATUS event.

New function CyBle_HciSendPacket() & event
CYBLE_EVT_HCI_PKT has been added.

This enhancement allows the user to send HCI command
and data using this function. This function and event are
available only when the BLE Component is built for Controller
only mode with the soft transport enabled.

New function CyBle_IsStackIdle() added.

Return value of this function indicates to the
application whether any transfer queued by the
application is completed or not.

One of the use case scenarios where this function is used –
in case of OTA after transferring all the OTA packets
application needs to know whether all queued packets are
transferred before shutting down BLE Stack.

At Peripheral side when encryption is failed due to
LTK loss, CYBLE_EVT_GAP_AUTH_FAILED
event with reason code
CYBLE_GAP_AUTH_ERROR_INSUFFICIENT_E
NCRYPTION_KEY_SIZE is given to application.

Behavior is made uniform between central and peripheral.

CyBle_GattcSignedWriteWithoutRsp() will return
CYBLE_ERROR_INVALID_OPERATION if the
link is encrypted.

Defect fixing. GATT signed write operation should not be
allowed on encrypted link.

Memory related issue: memory used for value
field in signed write command at GATT client is
freed after processing command.

Defect fixing: Application was not able to send GATT signed
write command after 20 iterations.

Using CyBle_L2capCbfcRegisterPsm(),
application can register L2CAP COC PSM value
with even number also.

L2CAP COC PSM value should not be restricted to odd
numbers.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 546 of 559 Document Number: 002-29930 Rev. *A

Version Description of Changes Reason for Changes / Impact

If GATT server receives any of GATT PDU with
length of PDU greater than negotiated MTU, then
GATT server sends GATT Error Response with
reason code Invalid PDU.

When GATT Server received GATT PDU longer than MTU
length, server was responding with "Unlikey Error".

New functions CyBle_StartTransmitterTest(),
CyBle_StartReceiverTest(), CyBle_TestEnd() have
been added.

These functions allow user to perform Direct Test Mode
(DTM) operation in SoC mode.

New event “CYBLE_EVT_FLASH_CORRUPT” is
added to notify application of data corruption
observed during Stack initialization.

Enhancement to detect flash data corruption.

BLE Stack firmware has been modified to handle
SupTo in LPM mode when master is out of range

Defect fix. When a supervision timeout was triggered, either
by going out of range or by isolating the central, the
peripheral got stuck in SysPmSleep and does not give the
disconnect event.

Privacy Errata changes as per ESR10 has been
implemented.

New function CyBle_GapSetPrivacyMode() has
been added.

Privacy feature Enhancements.

This function allows user to set either device privacy mode or
network privacy mode for the peer device.

Limited High Duty Cycle Non-Connectable
Advertising feature

Enhancement. Allows user to choose minimum ADV interval
>= 20ms for Non-Connectable Undirected ADV & Scannable
Undirected Adv type.

New Event CYBLE_ISR_BLESS_ADV_CLOSE
has been added

Enhancement. With this application can synchronize its
operation to BLE events for better power consumption.

3.2.0.250 New API added
CyBle_RegisterBlessInterruptCallback() to register
application routine to monitor
CYBLE_ISR_BLESS_CONN_CLOSE_CE event.

Enhancement. Application can register it’s routine with BLE
stack to monitor CYBLE_ISR_BLESS_CONN_CLOSE_CE.
With this application can synchronize its operation to BLE
events for better power consumption.

New API and Event Added:

API - CyBle_SetAppEventMask()

Event - CYBLE_EVT_GAP_SCAN_REQ_RECVD

Enhancement.

New helps selectively enable/disable newly added events.

With the help of event -
CYBLE_EVT_GAP_SCAN_REQ_RECVD, application can
update Scan Response data after every scan response sent
by peripheral.

Modified Low Power Mode functionality to take
care of spurious interrupt.

Defect fix. Sometime system was hung due to spurious
interrupt in CyBle_ExitLPM().

Added a new API
CyBle_GapDisconnectWithReason()

Enhancement. Provides flexibility to the application to send
reason code for disconnecting a LE connection.

Modified CyBle_GappEnterDiscoveryMode() API
to allow broadcasting of ADV packet without AD
Flag data type when ADV packet is non
connectable and all flag bits are zero.

Enhancement to include modification made in “Supplement to
Bluetooth Core Specification - CSSv6” Part A, section 1.3.

New API added CyBle_GappSetNumOfAdvPkts(). Enhancement. Application can send only predefined number
of Advertisement packets using this API.

New Event added -
CYBLE_EVT_GAP_CONN_ESTB

Enhancement. This event notifies Application when device
receives first empty packet in data channel.

API CyBle_GapcCancelConnection() modified to
remove the device added during
CyBle_GapcInitConnection().

Defect. It was not possible to connect to more than 5 devices
with different BD address when connection was cancelled.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 547 of 559

Version Description of Changes Reason for Changes / Impact

Controller FW is updated to take care of updating
Slave Latency in corner condition.

Defect fix. Some time peripheral was not getting into latency
mode resulting into higher power consumption.

BLE Stack is modified, not to add a device to
resolving list with ID Address as zero.

Enhanced not to add ID Address as zero to the resolving list.

BLE Stack DLE functionality is modified to handle
corner condition - when suggested data length set
by application is 27 and while processing data
length request, BLE Stack was not considering
application set suggested data length (i.e. 27).

Defect fix.

New API added - CyBle_GapSetRxDataLength() Enhancement. Application will be able to set maximum octet
that BLE controller can receive.

BLE Stack DLE code is modified to give event
CYBLE_EVT_DATA_LENGTH_CHANGED after
queuing response to controller.

Defect fix.

Event was triggered immediately after device received data
length request from peer before queuing response to
controller.

API - CyBle_GapAuthReq() in SMP-Master mode
is modified to send application specific error code.

Application was not able to send an error in SMP master
mode when it receives security request from SMP-slave.

Added a new API CyBle_GenerateAesCmac() to
expose AES CMAC engine to application.

Enhancement

Modified CyBle_GattDBGetGroupRangeValpair()
API, additional check before length of attribute
before writing to GATT-DB.

Defect fix. GATT indication or notifications after GATT-Write
of large size packet, some time resulting in system hang.

API - CyBle_GattcReadCharacteristicValue()
modified to return attributes value if the connection
handle is of type primary service declaration.

Modified to keep consistency between attribute type of 16-bit
and 128-bit UUID.

Modified GATT DB for each attribute to have
separate permissions for read and write
operations.

Enhancement. By default each attribute will have the same
permission for both read and write operation. Application can
change these permissions for read and write operation.

The event
CYBLE_EVT_L2CAP_CBFC_DATA_WRITE_IND
is notified to application after transferring CBFC
data to controller instead of notifying after queuing
to L2CAP module.

Enhancement. When all memory inside BLE stack was
consumed to receive packet then application was getting
memory allocation failure all the time and
CYBLE_EVT_STACK_BUSY_STATUS was not triggered.
Now with the combination of
CYBLE_EVT_STACK_BUSY_STATUS &
CYBLE_EVT_L2CAP_CBFC_DATA_WRITE_IND,
application will know when to queue next packet for
transmission.

3.1.0.194 Modified the L2CAP CBFC flow control algorithm
such that the CyBle_L2capChannelDataWrite()
API doesn’t give
CYBLE_ERROR_MEMORY_ALLOCATION_FAIL
ED error when the ratio of transmit packet length
to MPS size is more than 8.

Data transfer was failing due to insufficient memory when the
application sent L2CAP data with the following L2CAP
configuration:
MTU = 512 and MPS = 23.

Modified the BLE Stack to store Local LTK in
retention memory.

The application is easier to use by not being required to keep
a copy of LTK & IRK in retention memory, because this is
done within stack.

Application was storing LTK, IRK, and bdHandle in retention
memory and was setting these keys after the BLE Stack was
on.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 548 of 559 Document Number: 002-29930 Rev. *A

Version Description of Changes Reason for Changes / Impact

Modified the CyBle_GapGetChannelMap() API to
give correct channel map value.

Defect fix. CyBle_GapGetChannelMap API was giving
incorrect value.

Added new CyBle_GapFixAuthPassKey() API to
enable the application to set or clear the pass-key.

Enhancement. Provides flexibility to modify fixed pass-key
instead of stack generating random number every time.

Updated BLESS to go to Deep Sleep even if
connection parameter / channel map update
procedure is in progress.

Improved power consumption even during LL-control
procedures like connection establishment and channel map
update.

Added new
CyBle_SetSeedForRandomGenerator() API.

Provides flexibility to the application to improve randomness.

Updated the description for the CyBle_EnterLPM
API to describe the clock switching procedure
between ECO and IMO if the application is using
ECO for non-BLE functions.

Gives more clarity.

Modified the CyBle_StoreAppData() API to return
CYBLE_ERROR_FLASH_WRITE_NOT_PERMIT
ED when flash write failed due to wrong Flash
address.

API CyBle_StoreAppData() was returning
CYBLE_ERROR_OK for invalid Flash address.

Modified the GATT long procedures to give
CYBLE_EVT_GATTC_LONG_PROCEDURE_EN
D event in the following condition also – ATT
handle is equal to end handle of the request.

In long procedures if received response contain end handle
of the request then
CYBLE_EVT_GATTC_LONG_PROCEDURE_END event
was not raised by BLE Stack.

Defines SMP_SC_PAIR_PROP_MITM_MASK and
SMP_SC_PAIR_PROP_KP_MASK are mapped to
CYBLE_GAP_SMP_SC_PAIR_PROP_MITM_MA
SK and
CYBLE_GAP_SMP_SC_PAIR_PROP_KP_MASK
respectively.

Modified for more readability.

Modified the BLE Controller module to not decrypt
non encrypted terminate packet.

BLE controller was decrypting non-encrypted terminate
packet when encryption was in progress. Due to this
peripheral was not getting disconnected.

Modified the handling of Find Information Request
to handle Primary Service of type 128-bit UUID.

GATT-Server was not giving 128 Bit Service UUID if handle
of 128 bit service UUID lies between start and end handle of
Find by Information request.

PDU timer in BLE Controller is killed once BLESS
gives device disconnect interrupt.

If device connected and disconnected continuously some
time API CyBle_GapDisconnect() takes long time to
disconnect.

Modified the DLE negation logic to consider Max
Data Len as 27 when suggested data length is 27.

When suggested data length is 27 and during negotiation
device receives Max Data Len greater than 27 and less then
Max Supported Len then device consider negotiated Data
Len as Max Data Len instead of suggested data length (i.e.
27)

Modified the CyBle_GapGetDataLength() API to
return correct value.

API CyBle_GapGetDataLength() was not returning correct
data in “readParam” parameter.

3.0.0.153 Modified the BLE Stack ISR to ignore SCAN_INTR
interrupt if scan operation is stopped by
application.

Due to race condition between application stopping scan and
BLESS raising SCAN_INTR interrupt was causing BLE Stack
FW to read invalid data from FIFO while processing
advertisement packet.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 549 of 559

Version Description of Changes Reason for Changes / Impact

Enhanced the BLE Stack to configure the queue
depth for the prepare write command.

Because the write queue depth was fixed, it was not possible
to execute the prepare write command if the maxAttribLength
is greater than 10 times the ATT MTU size.

Implemented the ECDH algorithm such that, at the
end of each stage, the BLE stack can process
commands from the master, for example, the
channel map update.

The ECDH algorithm execution takes about 3 seconds.
During this time no commands from the master could be
processed by the peripheral. This resulted in an inter-op
issue.

Modified the BLE Stack to handle invalid offset
(0xFFFF).

The read long characteristic was timing out with invalid offset
(oxFFFF).

Changed all 4.2 APIs that passed a pointer as an
input to the stack to a constant.

To avoid the application being modified within the BLE stack.

Added new API CyBle_SetSlaveLatencyMode
API.

This API was added to override the Slave latency setting so
that data is transmitted quickly even when slave latency is
enabled.

Modified CHANNEL_MAP_UPDATE PDU
handling for improved power consumption.

Improved power consumption in the system where frequent
channel map updates take place.

Fixed a memory leak issue observed during device
disconnect when active data transfer is in
progress.

Fixed a defect.

Updated the CyBle_SetCeLengthParam API such
that, at the time of connection creation, the CE
length is set to Maximum available length and
application would modify CE length upon
CONN_UPDATE event.

Enhanced to support CE Length configuration during run
time.

Optimized the BLE Stack to get better throughput. Throughput optimization.

Modified the BLE Stack to give only one
CYBLE_EVT_GAP_DATA_LENGTH_CHANGE
event when the length update procedure is
initiated by both master and slave.

Two CYBLE_EVT_GAP_DATA_LENGTH_CHANGE events
were received by the application when the length update
procedure was initiated by both master and slave.

Added eew
CYBLE_EVT_GATTC_LONG_PROCEDURE_EN
D event to notify completion of discover
characteristic by UUID procedure.

Application could not know the completion of discover
characteristic by UUID procedure.

Reinitialized some variables after shutdown. Fixed defect.

3.0.0.103 Enhanced BLE Stack to support BLE 4.2 features:

LE Secure connection

LL Privacy

LE Data Length Extension

Enhancement. New BLE 4.2 features implementation.

New CyBle_GattcDiscoverPrimaryServices API
added.

Enhancement. It was not possible to discover a partial data
base using the existing CyBle_GattcStartDiscovery API.

Internal L2CAP queue elements are freed after
device disconnects.

Defect fix. While the application is continuously transmitting
data packets, if the peer device gets disconnected, then the
internal L2CAP queue elements were not freed. This resulted
in a failure to establish a connection.

CyBle_GattsNotification API is modified to return
CYBLE_ERROR_MEMORY_ALLOCATION_FAIL
ED when memory was not available.

Defect fix. CyBle_GattsNotification API was returning
CYBLE_ERROR_INVALID_OPERATION instead of
CYBLE_ERROR_MEMORY_ALLOCATION_FAILED when
memory was not available.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 550 of 559 Document Number: 002-29930 Rev. *A

Version Description of Changes Reason for Changes / Impact

Modified stack to reserve memory for ATT/GATT
response handling when a peripheral is
continuously transmitting data (notification /
indication).

Defect fix. When the application continuously transmits data
using notification or indication, all the BLE Stack memory was
consumed for transmitting data. This resulted in no memory
available for responding to a new request. This meant no
response was sent for a request when a continuous
notification was in progress.

2.3.0.46 Updated internal operation of the
CyBle_GappStopAdvertisement() API to wait on
BLESS hardware ADV_ON_STATUS bit until
advertising is actually stopped. It is done to reflect
integrated “Advertising Status” for BLESS
hardware and BLE Stack to support correct ADV
stop operation to support all different IMO and
BLESS frequency ranges.

BLESS DSM entry was not happening when a device
advertisement of type high duty cycle ADV_DIRECT_IND
was stopped by the application and the CPU was running at
7 MHz or less frequency.

Updated description of
GapcSetHostChannelClassification() API.

Updated the HCI event handler function to return
HCI Status event to application, when invalid
parameters are passed to the function.

API description was not clear enough to use this API. Host
was not returning the HCI status event for invalid input
parameters.

Updated the description for the
CyBle_L2capChannelDataWrite() API.

BLE Stack will return error code
‘CYBLE_ERROR_INVALID_PARAMETER’ when
data input size is higher than permitted in the
channel.

‘CYBLE_ERROR_INVALID_PARAMETER’ error code in
more accurate than default ‘CYBLE_ERROR_MAX’ for this
condition.

Changed a default random address to Static
random address in the BLE configuration data file.

The default random address, returned by the Stack, did not
meet the criteria for a random address. Note that application
is expected to set the random address and not use a default
random address.

All References to MTU in BLE Stack header files
are replaced with either GATT MTU or L2CAP
MTU explicitly.

MTU is used for both ATT and L2CAP MTU references.

Removed
‘CYBLE_ERROR_NO_DEVICE_ENTITY’ error
code from
CyBle_GapRemoveOldestDeviceFromBondedList(
) API Description.

‘CYBLE_ERROR_NO_DEVICE_ENTITY’ error code is never
returned by BLE Stack.

Added descriptions for the following ENUM
definitions:

CYBLE_EVT_HOST_INVALID

CYBLE_BLESS_PWR_LVL_T

CYBLE_BLESS_ECO_CLK_DIV_T

Provide meaningful description to ENUMs.

SMP FSM handler was modified to update
negotiated authentication parameters to
authenticated property, if OOB is used.

Core v4.1, Vol 3, Part H, Section 2.3.5.1

"If the out of band authentication method is used the key is
assumed to be Authenticated MITM Protection."

Changed number of bits used to generate random
number for passkey display from 16 bits to 20 bits.
Change is made in SMP FSM handler.

Passkey generated to display was never larger than 65535.
As per spec (Core v4.2, Vol 3, Part C, Section 3.2.3.3) value
should be between 000000 – 999999.

BLE Stack updated to filter duplicate “scannable
unidirect” type of advertising packets.

BLE device continuously receives Advertisement report if
Filter Policy is set to "Scan Request: White list"

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 551 of 559

Version Description of Changes Reason for Changes / Impact

Documentation update for the following functions:

CyBle_EnterLPM()

CyBle_ExitLPM()

CyBle_ProcessEvents()

Documented usage of CPU Sleep Mode in BLE Stack while
BLESS force exit is issued by BLE Stack when BLESS is in
BLE Deep Sleep Mode. More clarity is added in all BLESS
Low Power Mode APIs as call to CyBle_ProcessEvents(),
CYBLe_ExitLPM() can cause BLESS force DSM exit.

Updated the BT Timer code to handle timer
creation with any order of timeouts.

If two timers were started simultaneously, the timeout didn’t
happen as per timeout provided. If a second timer was
started with a lesser timeout thsn first, then second timer did
not work as expected.

2.2.0.36 Updated Synth Delay to interop with HP laptop
and to avoid the extra modulated stream on '0's.

Touch Mouse was not able to establish connection with HP
laptop which has Ralink RT3290 BLE4.0 Chipset.

Clear the disconnection status in LL Connection
Entity every time upon CONN_FAILED interrupt.

UNSPECIFIED ERROR passed to application for
any other possible corner case for application to
remain in synch with BLE Component/Stack.

Sometime application never receives disconnect event even
when the peer device is powered off.

Changed the sequence of enabling/disabling
interrupts during SCAN start and SCAN stop to
avoid race condition where high priority interrupts
occur to avoid SCAN FIFO becomes full.

Central hangs in scanning mode when lots of devices are
advertising. GAPC_SCAN_PROGRESS_RESULT event is
never generated.

2.1.0.30. Updated existing interface between BLE
component and BLE stack CyBle_StackInit() API
for providing the flash address for storing the
information with respect to bonding

To allow to retain the information of bonding when application
is updated using OTA.

Reduced the BLE stack start up time by removing
the delay of 10ms used for FPGA. Reducing
redundant HCI command exchanges between the
Host and Controller layer during initialization in
SoC mode

Reduced the BLE stack start up time which reduces the
power during initialization.

Dynamic memory usage within BLE Stack is
optimized.

Effective RAM utilization

Enhancement to register multiple L2CAP PSM
specified during the BLE stack initialization.

Enhancement

Memory corruption due to out of bound copying
during read request is fixed.

Defect fix.

Defect fixed to enable retrieving SMP keys using
IDADDR.

Privacy 1.1: Device was not able to identify the device when
connected with a public address which was previously
Bonded with random address.

2.0.0.81 Removed autonomous initiation of
VERSION_EXCHANGE after connection
establishment from BLE Stack.

Resolves the interoperability issue with MI4 phone Bluetooth
host. No impact to existing functionality.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 552 of 559 Document Number: 002-29930 Rev. *A

Version Description of Changes Reason for Changes / Impact

Added configurability for optimal RAM usage and
consequently updated following.

Updated existing interface between BLE
Component and BLE Stack for CyBle_StackInit()
API

Added CyBle_L2capSetConfig() API

Added configurability for optimal RAM usage in BLE
Component and Stack based on application
configuration/requirement for usage of MTU and L2CAP
features.

CyBle_L2capSetConfig() API is added to configure the BLE
Stack for following L2CAP configuration:

Total dynamic channels (CIDs) required by application.

Total number of Credit Based Flow Control (CBFC) Protocol
Service Multiplexing (PSM) channels required.

L2CAP Signaling transactions related timeout

Updated handling of
“CYBLE_EVT_GAPC_SCAN_PROGRESS_RESU
LT” in to filter and do not propagate advertising
reports of type ADV_DIR_IND.

ADV_DIR_IND shall be sent to application only during
observation procedure. This was being sent when the device
is performing Limited or General Discovery procedure.

Updated CyBle_GapcSetRemoteAddr() API CyBle_GapcSetRemoteAddr was failing on subsequent call
when same peer device changes its address between public
and random. API is the updated to fix the issue.

Updated
CyBle_GapRemoveOldestDeviceFromBondedList(
) API.

The oldest device from the bond list was not getting removed
from retention memory. It was only getting removed from
RAM.

Added error code return value
CYBLE_ERROR_NO_DEVICE_ENTITY to caller API in case
where no device is present in bond list and the API is
invoked.

Updated CyBle_GapcResolveDevice() API The CyBle_GapcResolveDevice() API had a side-effect, as
the value of the input parameter identity resolution key “uint8
*irk” was getting changed after API execution.

Updated CyBle_SetTxPower API The API is changed for user convenience to avoid the value
change of input parameter “CYBLE_BLESS_PWR_IN_DB_T
*bleSsPwrLvl” after API execution.

Updated handling of internal low power operation
when simultaneous operation for ADV, CONN and
SCAN is in progress.

Updated the internal low power operation for CONN to
sustain when non-connectable ADV or passive SCAN is
going on.

Added event
“CYBLE_EVT_GATTC_STOP_CMD_COMPLETE
”

Updated internal handling of GATT stop procedure
to propagate
“CYBLE_EVT_GATTC_STOP_CMD_COMPLETE
” to application.

Added event
“CYBLE_EVT_GATTC_STOP_CMD_COMPLETE” to
indicate CyBle_GattcStopCmd() API operation is complete.

GATT Database is enhanced to support varying
length characteristic at run time.

Upcoming profile application such as User Data Service
(UDS) require supporting varying length characteristic.

Previous approach had current attribute length store in
FLASH and hence prevented run time modification.

Updated BLE Stack to give timeout event
CYBLE_EVT_TIMEOUT correctly for discovery
procedure or observation procedure.

Observation procedure timeout did not occur after step 3:

Connect with peer device and start any GATT procedure
(MTU Exchange).

Disconnect from peer device

Start observation procedure with timeout

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 553 of 559

Version Description of Changes Reason for Changes / Impact

Bonded device list handling is updated for clearing
bond device operation.

Sixth time connection was failing after following steps are
performed for 5-6 times

Change local device address

Connect and bond with peer device

Disconnect and clear bonding info

Updated BLE Stack to return
CYBLE_ERROR_INVALID_PARAMETER when
GATT write operation with invalid length is
performed.

Error code “CYBLE_ERROR_INVALID_PARAMETER” was
not given when GATT write characteristic operation was
performed with invalid length with respect to set MTU size.

L2CAP module modified to fix memory leak Memory leak in L2CAP credit based flow control (CBFC) data
path is fixed

1.0.0.184 Updated the
CyBle_GattcDiscoverCharacteristicByUuid API to
achieve characteristic discovery with 128-bit UUID
using this API.

Defect fix

Optimized the BLE Stack to reduce the system
power consumption for BLE solutions.

Power optimization for BLE solutions

Corrected the GATT server access error code
when the attribute is not found.

Defect fix

Provided more clarification for
CYBLE_EVT_STACK_BUSY_STATUS event
handling.

Better user experience.

1.0.0.181 Update internal device settings. Fix for BLE RF link (transmit/receive) issues observed on
some devices. Increase of ~0.3 mA on Rx current.

1.0.0.169 Initial BLE Stack version.

Component Changes

This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

3.64.a BLE Stack changes section update. See BLE Stack Changes.

3.64 BLE Stack was updated to version 3.6.4.392 See BLE Stack Changes.

3.63 BLE Stack was updated to version 3.6.3.385 See BLE Stack Changes.

3.62.a Minor datasheet edit.

3.62 BLE Stack was updated to version 3.6.2.379. See BLE Stack Changes.

3.61 BLE Stack was updated to version 3.6.1.370. See BLE Stack Changes.

3.60 Added support for the Object Transfer Profile and
Service.

New feature.

3.54 BLE Stack was updated to version 3.5.4.362. See BLE Stack Changes.

3.53 BLE Stack was updated to version 3.5.3.348. See BLE Stack Changes.

3.52 BLE Stack was updated to version 3.5.2.344. See BLE Stack Changes.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 554 of 559 Document Number: 002-29930 Rev. *A

Version Description of Changes Reason for Changes / Impact

3.51 BLE Stack was updated to version 3.5.1.340. See BLE Stack Changes.

3.50 Added storing the CCCD value in flash memory for the Tx
Power Level Characteristic (TPS).

BLE specification requirement.

Enabled editing the Profile configuration on the Profiles
tab in the OTA Stack only mode.

Flexibility.

BLE Stack was updated to version 3.5.0.335. See BLE Stack Changes.

3.40 Added support for the Pulse Oximeter Profile and
Service.

New feature.

Updated Wireless Power Profile to version 1.3 of the
Cycling Power Profile specification.

Support the new specification version.

Added event
CYBLE_EVT_GATTC_DISC_SKIPPED_SERVICE,
which indicates that the service (not defined in the GATT
database) was found during the server device discovery.

New feature.

Updated Cycling Power Service to version 1.1 of the
Cycling Power Service specification.

Support the new specification version.

BLE Stack was updated to version 3.4.0.326. See BLE Stack Changes.

3.30.a BLE Stack changes section update. See BLE Stack Changes.

3.30 Added support for the Automation IO Profile and Service. New feature.

Added HCI over software transport mode. New feature.

Added possibility to delete mandatory characteristics and
descriptors in the customizer.

Flexibility.

Customizer read-only security parameters were removed
from the Security node of the GAP Settings tab.

Enable Link Layer Privacy parameter was moved to the
General node of the GAP Settings tab.

To refine component usability.

The Write permission for characteristics is set when any
of the following Properties are checked:

- Write

- WriteWithoutResponse

- SignedWrite

- ReliableWrite.

Previously it was set only for the Write and
WriteWithoutResponse Properties only.

BLE specification requirement.

The Strict Pairing option was enabled in the GUI. This feature allows the device to use specified security
settings during pairing or reject pairing request if the
security requirements are not satisfied.

The following functions were added

 CyBle_HciUartTransportEnable();

 CyBle_HciSoftTransportEnable();

 CyBle_HciSendPacket().

This was done to allow sending of HCI commands to
BLE Stack.

BLE Stack was updated to version 3.3.0.309. See BLE Stack Changes.

3.20 Added support for the Indoor Positioning Service. New feature.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 555 of 559

Version Description of Changes Reason for Changes / Impact

Added possibility to modify UART Flow Control settings in
the HCI mode.

Flexibility.

Added possibility to generate 128-bit UUIDs for custom
services, characteristics and descriptors. The default
128-bit UUIDs are generated randomly for each custom
service, characteristic and descriptor.

New feature.

BLE Stack was updated to version 3.2.0.250. See BLE Stack Changes.

3.10 Added a check box that allows enabling / disabling the
automatic update of the characteristics and descriptors
security permissions after a GAP Security settings
change.

New feature.

Added a check box that allows enabling / disabling the
L2CAP logical channels functionality.

It enables configuration of the L2CAP logical
channels.

Updated the Continuous Glucose Monitoring Service
conditional characteristics fields according to the
specification.

To conform with the Continuous Glucose Monitoring
Service requirements.

BLE Stack was updated to version 3.1.0.194. See BLE Stack Changes.

3.0 Added support for BLE 4.2 Stack protocol to the
component

New feature-support added.

Note The BLE component 3.0 supporting BLE 4.2 is
provided as Beta Level for early design starts. For all
other MPN users, Cypress recommends continuing to
use BLE component version 2.30 or earlier.

Added support for the HTTP Proxy Service to the
component.

New feature-support added.

Added TX power level validation in the customizer. In
case when one of the TX power levels on the GAP tab
equals 3 dBm and other isn't, an error icon is shown.

This was done because of internal limitations for a TX
power settings.

The CyBle_GapRemoveBondedDevice() was added to
the component.

The function allows removing the bonding information
of the device including CCCD values.

The CyBle_GattcStartPartialDiscovery() was added to the
component.

The function allows partial service discovery of the
remote device

Internal function CyBle_IsDeviceAddressValid() was
made public.

The function is used to verify if a public device
address is programmed to flash memory

Added pa_en output terminal and Enable external Power
Amplifier field on the Advanced tab of the BLE
customizer.

To enable connection of a high active external power
amplifier to the device.

Advanced tab was added to the component customizer
GUI.

New feature-support added.

Added the implementation of a GATT Server role to the
GATT Client devices.

In order to enable GATT Server role for the existing
GATT Client configurations, you need to do the following
steps: 1) Open the customizer. 2) On the General tab,
open the Profile role combo box and re-select the
currently selected GATT role item (without switching
between the Profile role items).

BLE specification requirement

BLE Stack was updated to version 3.0.0.153. See BLE Stack Changes.

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 556 of 559 Document Number: 002-29930 Rev. *A

Version Description of Changes Reason for Changes / Impact

2.30 Added validation of the TX power level in the component
GUI. 3 dBm value can be set only for both Adv/Scan TX
power level and Connection TX power level
simultaneously.

Hardware limitations.

The new QD ID and Declaration ID# for BLE component
Profiles were added in the table of Bluetooth Qualification
section

New QD ID and Declaration ID# were introduced to
include qualification details about UDS, WSS, WSP,
BCS and CTS (v1.1).

The generation of an erroneous value length for a
Custom Descriptor with 32-bit or 128-bit UUID was fixed.

In case when 32-bit or 128-bit UUID was used for the
Custom Descriptor and BLE device was acting as a
GATT Server, a wrong Descriptor UUID and value
length were generated by the component.

Updated the CyBle_NdcssGetCharacteristicValue() and
CyBle_RtussGetCharacteristicValue() functions. They
were always returning
CYBLE_ERROR_INVALID_PARAMETER.

The reason for this was an incorrect condition check
that was done after the value was written to the GATT
database.

Updated the following services: HIDS, SCPS, ESS, BMS,
UDS, CTS.

In cases of security mode usage, where pairing is
required, these services were generating WRITE
CHARACTERISTIC/DESCRIPTOR, NOTIFIFICATION or
INDICATION ENABLED/DISABLED events even though
the device wasn’t paired. Also, the data wasn’t written to
the GATT DB.

Due to erroneous code, the events were generated
prior to checking security settings.

BLE Stack was updated to version 2.3.0.46. See BLE Stack Changes.

2.20 Support of the following profiles/services was added to
the component:

Apple Notification Center Service (ANCS)

Body Composition Service (BCS)

Bootloader Service (BTS)

User Data Service (UDS)

Weight Scale Profile (WSP)

Weight Scale Service (WSS)

New feature-support added.

BLE Code Snippets feature description added. New feature-support added.

A defect in the Current Time Service was fixed. The
optional write permission of the Current Time and Local
Time Information characteristics are now controlled by
the corresponding permission flags in the BLE
component customizer GUI.

In previous BLE component versions, the Current
Time and Local Time Information characteristics were
always writable regardless of permission flag settings.

If you write the Current Time and/or Local Time
Information characteristics in your projects, make sure
to update the corresponding permission flags properly,
because by default the optional write permission is
disabled.

BLE stack was updated to version 2.2.0.36. See BLE Stack Changes.

2.10.a Added the Component Errata section Document known issues.

2.10 Support of the Wireless Power Transfer (WPT) Profile
was added to the component.

New feature-support added.

BLE stack was updated to version 2.1.0.30. See BLE Stack Changes.

2.0.a Minor datasheet edits. Fixed several typos.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 557 of 559

Version Description of Changes Reason for Changes / Impact

2.0 Support of the following profiles was added to the
component:

• Environmental Sensing Profile (ESP)

• Continuous Glucose Monitoring Profile (CGMP)

• Bond Management Service (BMS)

• Internet Protocol Support Profile (IPSP)

New feature-support added.

Changed long write and reliable write procedures.

Refer to the Updating to v2.x section for more information
on the design impact of this change.

The component addresses a defect, where the
application did not have the option to validate the data
and only one prepare write event and multiple execute
write events were going to the application.

User impact:

This change may have backward compatibility issues
for some designs. The details are described in the
Updating to v2.x section.

The following structures are modified:

• ‘CYBLE_GATTS_PREP_WRITE_REQ_PARAM
_T’

• ‘CYBLE_GATTS_EXEC_WRITE_REQ_T’

Updated CyBle_StoreBondingData API description. New
BLE device with 256K of Flash memory is not affected by
modification of the clock settings.

New flash memory type doesn’t require clock settings
modification.

BLE stack was updated to version 2.0.0.81 See BLE Stack Changes.

1.20 Improved TX power level performance for +3 dBm option. +3 dBm Tx Power level had no effect compared to 0
dBm

Fixed Advertising Channel Map bit mask for "Channel 39"
and "Channels 37 and 38" items.

Advertising Channel Map bit masks generated for
"Channel 39" and "Channels 37 and 38" items were
swapped.

Changed the functions
CyBle_CscssGetCharacteristicDescriptor() and
CyBle_RscssGetCharacteristicDescriptor() to use
CyBle_GattsReadAttributeValue() instead of
CyBle_GattsWriteAttributeValue().

This corrected the functions that were not working.

For Health Thermometer Service the “Out of Range” error
code changed from 0xff (defined by Supplement to
Bluetooth Core Specification) to 0x80 which is defined by
HEALTH THERMOMETER SERVICE specification.

The change was made to bring the implementation in
accordance with the Health Thermometer Service
specification.

Added CyBle_ChangeAdDeviceAddress API to update
the Bluetooth device address in the advertisement or
scan response data structure.

Added CyBle_GattGetBusyStatus API description in
datasheet

Device address was not updated in advertisement
packet when silicon generated option selected in
customizer.

Fixed scanning state in Central role to reflect the
customizer selection.

BLE Scan Type was always set to active scan.

Extended values input range for several characteristics to
include "Unknown" value:

 - Time Zone

 - DST Offset

 - Day of Week

Characteristics for CTS did not allow 'Unknown'
settings

Bluetooth Low Energy (BLE) PSoC® Creator™ Component Datasheet

Page 558 of 559 Document Number: 002-29930 Rev. *A

Version Description of Changes Reason for Changes / Impact

Simplified the usage of CyBLE_GapUpdateAdvData API.
Now CyBLE_GapUpdateAdvData API works in all BLESS
states.

Better user experience.

BLE stack was updated to version 1.0.1.184 See BLE Stack Changes.

1.10 BLE Stack was updated to version 1.0.0.181. See BLE Stack Changes.

1.0.b Support of the following profiles was added to the
component:

• Phone Alert Status Profile (PASP)

• Location and Navigation Profile (LNP)

• Cycling Speed and Cadence Profile (CSCP)

• Cycling Power Profile (CPP)

New feature-support added.

The CYBLE_L2CAP_COMMAND_REJ_REASON_T
event was renamed to
CYBLE_EVT_L2CAP_COMMAND_REJ.

The event was renamed to be consistent with other
event name formats.

The
CYBLE_EVT_GAP_RESOLVE_PVT_ADDR_VERIFY_C
NF event was removed.

The event became obsolete.

The following members of the CYBLE_API_RESULT_T

structure were deprecated:

CYBLE_ERROR_GATT_DB_INVALID_OFFSET,

CYBLE_ERROR_GATT_DB_NULL_PARAMETER_NOT_A

LLOWED,

CYBLE_ERROR_GATT_DB_UNSUPPORTED_GROUP_TY

PE,

CYBLE_ERROR_GATT_DB_INSUFFICIENT_BUFFER_

LEN,

CYBLE_ERROR_GATT_DB_MORE_MATCHING_RESULT

_FOUND,

CYBLE_ERROR_GATT_DB_NO_MATCHING_RESULT,

CYBLE_ERROR_GATT_DB_HANDLE_NOT_FOUND,

CYBLE_ERROR_GATT_DB_HANDLE_NOT_IN_RANGE,

CYBLE_ERROR_GATT_DB_HANDLE_IN_GROUP_RANG

E,

CYBLE_ERROR_GATT_DB_INVALID_OPERATION,

CYBLE_ERROR_GATT_DB_UUID_NOT_IN_BT_SPACE

,

CYBLE_ERROR_GATT_DB_INVALID_ATTR_HANDLE,

CYBLE_ERROR_GATT_DB_INSUFFICIENT_SECURIT

Y,

CYBLE_ERROR_GATT_DB_INSUFFICIENT_ENC_KEY

_SIZE,

CYBLE_ERROR_GATT_DB_INVALID_INSTANCE,

CYBLE_ERROR_GATT_DB_INCORRECT_UUID_FRMT,

CYBLE_ERROR_GATT_DB_UUID_FRMT_UNSUPPORTE

D,

CYBLE_ERROR_GATT_DB_TYPE_MISMATCH,

CYBLE_ERROR_GATT_DB_INSUFFICIENT_ENCRYPT

ION,

CYBLE_ERROR_L2CAP_NOT_ENOUGH_CREDITS

The elements weren’t used as return values in any of
the API functions.

PSoC® Creator™ Component Datasheet Bluetooth Low Energy (BLE)

Document Number: 002-29930 Rev. *A Page 559 of 559

Version Description of Changes Reason for Changes / Impact

Removed WDT from the BLE Component. In the preliminary release of the BLE Component, the
protocol procedure timeout functionality was
implemented using the WDT. For the production
release, the Component was optimized to use the
BLESS Link Layer timer.

Edits to the datasheet. Update Configure dialog screen captures.

Added the APIs into the datasheet.

Added Unsupported Features section.

Added characterization data.

Addressed all Errata from the preliminary version of
the datasheet and removed the section.

1.0.a Edits to the datasheet. Added sections to describe WDT counter and
interrupt.

Clarified descriptions for several APIs and GUIs.

Added Errata section.

Moved API documentation to separate CHM file.

Updated Functional Description section.

1.0 Initial document for new Component.

Initial BLE Stack version 1.0.0.169.

© Cypress Semiconductor Corporation, 2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use
of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY
SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of
the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided
only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and
any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons
systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous
substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in
whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of
Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective
owners.

	Features
	General Description
	When to use the BLE Component
	SIG adopted Profiles and Services
	Comprehensive APIs
	Custom Profiles
	Debug Support
	BLE Component Architecture
	BLE Stack
	Generic Access Profile (GAP)
	Generic Attribute Profile (GATT)
	GATT Roles
	Attribute Protocol (ATT)
	Security Manager Protocol (SMP)
	Logical Link Control Adaptation Protocol (L2CAP)
	Host Controller Interface (HCI)
	Link Layer (LL)

	Profile Layer
	Hardware Abstraction Layer (HAL)

	Functional Description
	Operation Flow
	System Initialization
	System Normal Operation
	System Low-power Operation

	Callback Functions
	Device Bonding
	LFCLK Configuration
	ECO Capacitance Trim
	Unsupported Features

	Input/Output Connections
	pa_en – Output *

	Component Parameters
	General Tab
	Load Configuration/Save Configuration
	Mode Selection

	General Tab – Profile
	Profile
	Alert Notification
	Automation IO
	Blood Pressure
	Continuous Glucose Monitoring
	Cycling Power
	Cycling Speed and Cadence
	Environmental Sensing Profile
	Find Me
	Glucose
	Health Thermometer
	HTTP Proxy
	Heart Rate
	HID over GATT
	Indoor Positioning
	Internet Protocol Support
	Location and Navigation
	Object Transfer
	Phone Alert Status
	Proximity
	Pulse Oximeter
	Running Speed and Cadence
	Scan Parameters
	Time
	Weight Scale
	Wireless Power Transfer
	Custom
	Bootloader Profile

	Profile Role
	Gap Role
	Over-The-Air bootloading with code sharing

	General Tab – Broadcaster/Observer
	General Tab – Host Controller Interface
	Profiles Tab
	Toolbars
	Profiles Tree
	Parameters Configuration
	Generic Access Service
	Generic Attribute Service

	Custom Service Configuration
	UUID
	Service type
	Included services

	Custom Characteristic Configuration
	UUID
	Fields
	Properties
	Permissions

	Custom Descriptor Configuration
	UUID
	Fields
	Permissions

	Bootloader Service Configuration
	UUID
	Service type
	Included services

	Command Characteristic Configuration
	UUID
	Fields
	Properties
	Permissions

	GAP Settings Tab
	GAP Settings Tab – General
	Public device address (Company ID – Company assigned)
	Silicon generated “Company assigned” part of device address
	Device Name
	Appearance
	Attribute MTU Size
	Link Layer Max Tx Payload Size
	Link Layer Max Rx Payload Size
	Adv/Scan TX power level
	Connection TX power level
	Enable Link Layer Privacy

	GAP Settings Tab – Advertisement Settings
	Discovery mode
	Advertising type
	Filter policy
	Advertising channel map
	Advertising Interval

	GAP Settings Tab – Advertisement Packet
	Advertisement / Scan response data settings

	GAP Settings Tab – Scan Response Packet
	GAP Settings Tab – Peripheral Preferred Connection Parameters
	GAP Settings Tab – Scan Settings
	Discovery procedure
	Scanning state
	Filter policy
	Duplicate filtering
	Scan parameters

	GAP Settings Tab – Connection Parameters
	GAP Settings Tab – Security
	Security mode
	Security level
	Strict Pairing
	I/O capabilities
	Keypress notifications
	Bonding Requirement
	Encryption Key Size
	Other Parameters

	L2CAP Settings Tab
	Enable L2CAP logical channels
	Number of L2CAP logical channels
	Number of PSMs
	L2CAP MTU size
	L2CAP MPS size

	Advanced Tab
	Use BLE Low power mode
	Enable external Power Amplifier control

	BLE Component APIs
	HTML-Based API Document
	BLE Common APIs
	Description
	Modules
	BLE Common Core Functions
	Description
	Macros
	Functions
	Macro Definition Documentation
	#define CyBle_SetState(state) (cyBle_state = (state))
	#define CyBle_GetState() (cyBle_state)
	#define CyBle_GattGetBusyStatus() (cyBle_busyStatus)
	#define CyBle_SetGattError(gattError) (cyBle_gattError = (gattError))

	Function Documentation
	CYBLE_API_RESULT_T CyBle_Start (CYBLE_CALLBACK_T callbackFunc)
	void CyBle_Stop (void)
	CYBLE_API_RESULT_T CyBle_StoreBondingData (uint8 isForceWrite)
	CYBLE_API_RESULT_T CyBle_GapRemoveBondedDevice (CYBLE_GAP_BD_ADDR_T *bdAddr)
	uint8 CyBle_IsDeviceAddressValid (const CYBLE_GAP_BD_ADDR_T *deviceAddress)
	CYBLE_API_RESULT_T CyBle_SoftReset (void)
	CYBLE_LP_MODE_T CyBle_EnterLPM (CYBLE_LP_MODE_T pwrMode)
	CYBLE_LP_MODE_T CyBle_ExitLPM (void)
	void CyBle_ProcessEvents (void)
	CYBLE_API_RESULT_T CyBle_SetDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr)
	CYBLE_API_RESULT_T CyBle_GetDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr)
	int8 CyBle_GetRssi (void)
	CYBLE_API_RESULT_T CyBle_GetTxPowerLevel (CYBLE_BLESS_PWR_IN_DB_T *bleSsPwrLvl)
	CYBLE_API_RESULT_T CyBle_SetTxPowerLevel (CYBLE_BLESS_PWR_IN_DB_T *bleSsPwrLvl)
	CYBLE_API_RESULT_T CyBle_GetBleClockCfgParam (CYBLE_BLESS_CLK_CFG_PARAMS_T *bleSsClockConfig)
	CYBLE_API_RESULT_T CyBle_SetBleClockCfgParam (CYBLE_BLESS_CLK_CFG_PARAMS_T *bleSsClockConfig)
	CYBLE_API_RESULT_T CyBle_GenerateRandomNumber (uint8 *randomNumber)
	CYBLE_API_RESULT_T CyBle_AesEncrypt (uint8 *plainData, uint8 *aesKey, uint8 *encryptedData)
	CYBLE_API_RESULT_T CyBle_SetCeLengthParam (uint8 bdHandle, uint8 mdBit, uint16 ceLength)
	CYBLE_API_RESULT_T CyBle_WriteAuthPayloadTimeout (uint8 bdHandle, uint16 authPayloadTimeout)
	CYBLE_API_RESULT_T CyBle_ReadAuthPayloadTimeout (uint8 bdHandle, uint16 *authPayloadTimeout)
	CYBLE_API_RESULT_T CyBle_GetStackLibraryVersion (CYBLE_STACK_LIB_VERSION_T *stackVersion)
	CYBLE_API_RESULT_T CyBle_IsStackIdle (void)
	CYBLE_BLESS_STATE_T CyBle_GetBleSsState (void)
	void CyBle_AesCcmInit (void)
	CYBLE_API_RESULT_T CyBle_AesCcmEncrypt (uint8 *key, uint8 *nonce, uint8 *in_data, uint8 length, uint8 *out_data, uint8 *out_mic)
	CYBLE_API_RESULT_T CyBle_AesCcmDecrypt (uint8 *key, uint8 *nonce, uint8 *in_data, uint8 length, uint8 *out_data, uint8 *in_mic)
	CYBLE_API_RESULT_T CyBle_GenerateAesCmac (CYBLE_AES_CMAC_GENERATE_PARAM_T *cmacGenParam)
	CYBLE_API_RESULT_T CyBle_SetAppEventMask (uint32 UserEventMask)
	CYBLE_API_RESULT_T CyBle_RegisterBlessInterruptCallback (CYBLE_BLESS_EVENT_PARAM_T *BlessEventParams)
	void CyBle_SetTxGainMode (uint8 bleSsGainMode)
	void CyBle_SetRxGainMode (uint8 bleSsGainMode)
	CYBLE_API_RESULT_T CyBle_SetSlaveLatencyMode (uint8 bdHandle, uint8 setForceQuickTransmit)
	void CyBle_SetSeedForRandomGenerator (uint32 seed)
	CYBLE_API_RESULT_T CyBle_IsLLControlProcPending (void)
	CYBLE_API_RESULT_T CyBle_StartTransmitterTest (CYBLE_TRANSMITTER_TEST_PARAMS_T *TransmitterTestParams)
	CYBLE_API_RESULT_T CyBle_StartReceiverTest (uint8 RxFreq)
	CYBLE_API_RESULT_T CyBle_TestEnd (uint16 *PacketCount)
	CYBLE_API_RESULT_T CyBle_HciSendPacket (CYBLE_HCI_PKT_PARAMS_T *HciPktParams)
	CYBLE_API_RESULT_T CyBle_StoreStackData (uint8 isForceWrite)
	CYBLE_API_RESULT_T CyBle_StoreAppData (uint8 *srcBuff, const uint8 destAddr[], uint32 buffLen, uint8 isForceWrite)

	GAP Functions
	Description
	Modules

	GAP Central and Peripheral Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_GapSetLocalName (const char8 name[])
	CYBLE_API_RESULT_T CyBle_GapGetLocalName (char8 name[])
	CYBLE_API_RESULT_T CyBle_GapSetIoCap (CYBLE_GAP_IOCAP_T ioCap)
	CYBLE_API_RESULT_T CyBle_GapSetSecurityRequirements (uint8 secReq, uint8 encKeySize)
	CYBLE_API_RESULT_T CyBle_GapSetOobData (uint8 bdHandle, uint8 oobFlag, uint8 *key, uint8 *oobData, uint8 *oobDataLen)
	CYBLE_API_RESULT_T CyBle_GapGetPeerBdAddr (uint8 bdHandle, CYBLE_GAP_BD_ADDR_T *peerBdAddr)
	CYBLE_API_RESULT_T CyBle_GapGetPeerBdHandle (uint8 *bdHandle, CYBLE_GAP_BD_ADDR_T *peerBdAddr)
	CYBLE_API_RESULT_T CyBle_GapGetPeerDevSecurity (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T *security)
	CYBLE_API_RESULT_T CyBle_GapDisconnect (uint8 bdHandle)
	CYBLE_API_RESULT_T CyBle_GapDisconnectWithReason (uint8 bdHandle, uint8 reason)
	CYBLE_API_RESULT_T CyBle_GapGetPeerDevSecurityKeyInfo (uint8 bdHandle, uint8 *keysFlag, CYBLE_GAP_SMP_KEY_DIST_T *keyInfo)
	CYBLE_API_RESULT_T CyBle_GapGenerateDeviceAddress (CYBLE_GAP_BD_ADDR_T *bdAddr, CYBLE_GAP_ADDR_TYPE_T addrType, uint8 *irk)
	CYBLE_API_RESULT_T CyBle_GapSetSecurityKeys (uint8 keysFlag, CYBLE_GAP_SMP_KEY_DIST_T *keyInfo)
	CYBLE_API_RESULT_T CyBle_GapGenerateKeys (uint8 keysFlag, CYBLE_GAP_SMP_KEY_DIST_T *keyInfo)
	CYBLE_API_RESULT_T CyBle_GapAuthReq (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T *authInfo)
	CYBLE_API_RESULT_T CyBle_GapAuthPassKeyReply (uint8 bdHandle, uint32 passkey, uint8 accept)
	CYBLE_API_RESULT_T CyBle_GapRemoveDeviceFromWhiteList (CYBLE_GAP_BD_ADDR_T *bdAddr)
	CYBLE_API_RESULT_T CyBle_GapAddDeviceToWhiteList (CYBLE_GAP_BD_ADDR_T *bdAddr)
	CYBLE_API_RESULT_T CyBle_GapGetBondedDevicesList (CYBLE_GAP_BONDED_DEV_ADDR_LIST_T *bondedDevList)
	CYBLE_API_RESULT_T CyBle_GapRemoveOldestDeviceFromBondedList (void)
	CYBLE_API_RESULT_T CyBle_GapGetDevSecurityKeyInfo (uint8 *keyFlags, CYBLE_GAP_SMP_KEY_DIST_T *keys)
	CYBLE_API_RESULT_T CyBle_GapGetDevicesFromWhiteList (uint8 *count, CYBLE_GAP_BD_ADDR_T *addr)
	CYBLE_API_RESULT_T CyBle_GapGetChannelMap (uint8 bdHandle, uint8 *channelMap)
	CYBLE_API_RESULT_T CyBle_GapSetSecureConnectionsOnlyMode (uint8 state)
	CYBLE_API_RESULT_T CyBle_GapGenerateLocalP256Keys (void)
	CYBLE_API_RESULT_T CyBle_GapSetLocalP256Keys (CYBLE_GAP_SMP_LOCAL_P256_KEYS *localP256Keys, uint8 isValidateKeys)
	CYBLE_API_RESULT_T CyBle_GapAuthSendKeyPress (uint8 bdHandle, CYBLE_GAP_KEYPRESS_NOTIFY_TYPE notificationType)
	CYBLE_API_RESULT_T CyBle_GapGenerateOobData (const uint8 *pRand)
	CYBLE_API_RESULT_T CyBle_GapSetDataLength (uint8 bdHandle, uint16 connMaxTxOctets, uint16 connMaxTxTime)
	CYBLE_API_RESULT_T CyBle_GapSetRxDataLength (CYBLE_GAP_RX_DATA_LENGTH_T *RxDleParams)
	CYBLE_API_RESULT_T CyBle_GapSetSuggestedDataLength (uint16 suggestedTxOctets, uint16 suggestedTxTime)
	CYBLE_API_RESULT_T CyBle_GapGetDataLength (CYBLE_GAP_DATA_LENGTH_T *readParam)
	CYBLE_API_RESULT_T CyBle_GapConvertOctetToTime (CYBLE_GAP_PHY_TYPE_T phy, uint16 octets, uint16 *pTime)
	CYBLE_API_RESULT_T CyBle_GapAddDeviceToResolvingList (const CYBLE_GAP_RESOLVING_DEVICE_INFO_T *rpaInfo)
	CYBLE_API_RESULT_T CyBle_GapRemoveDeviceFromResolvingList (const CYBLE_GAP_BD_ADDR_T *peerIdentityAddr)
	CYBLE_API_RESULT_T CyBle_GapClearResolvingList (void)
	CYBLE_API_RESULT_T CyBle_GapReadPeerResolvableAddress (const CYBLE_GAP_BD_ADDR_T *peerIdentityAddr, uint8 *peerResolvableAddress)
	CYBLE_API_RESULT_T CyBle_GapReadLocalResolvableAddress (const CYBLE_GAP_BD_ADDR_T *peerIdentityAddr, uint8 *localResolvableAddress)
	CYBLE_API_RESULT_T CyBle_GapSetResolvablePvtAddressTimeOut (uint16 rpaTimeOut)
	CYBLE_API_RESULT_T CyBle_GapReadResolvingList (CYBLE_GAP_RESOLVING_LIST_T *resolvingList)
	CYBLE_API_RESULT_T CyBle_GapSetAddressResolutionEnable (uint8 enableDisable)
	CYBLE_API_RESULT_T CyBle_GapSetPrivacyMode (CYBLE_GAP_PRIVACY_MODE_INFO_T *privacyModeInfo)
	CYBLE_API_RESULT_T CyBle_GapGetBondedDevicesByRank (CYBLE_GAP_DEVICE_ADDR_LIST_T *bondedDevList)
	CYBLE_API_RESULT_T CyBle_GapSetLeEventMask (uint8 *hciLeEventMask)
	CYBLE_API_RESULT_T CyBle_GapSetIdAddress (const CYBLE_GAP_BD_ADDR_T *bdAddr)
	CYBLE_API_RESULT_T CyBle_GapGenerateAndSetIrk (uint8 keysFlag, uint8 *irk)
	CYBLE_API_RESULT_T CyBle_GapFixAuthPassKey (uint8 isFixed, uint32 fixedPassKey)
	CYBLE_API_RESULT_T CyBle_GappSetNumOfAdvPkts (CYBLE_GAPP_DISC_MODE_INFO_T *advInfo, uint16 NumOfAdvPkts)

	GAP Central Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_GapcStartScan (uint8 scanningIntervalType)
	void CyBle_GapcStopScan (void)
	CYBLE_API_RESULT_T CyBle_GapcConnectDevice (const CYBLE_GAP_BD_ADDR_T *address)
	CYBLE_API_RESULT_T CyBle_GapcCancelDeviceConnection (void)
	CYBLE_API_RESULT_T CyBle_GapcStartDiscovery (CYBLE_GAPC_DISC_INFO_T *scanInfo)
	void CyBle_GapcStopDiscovery (void)
	CYBLE_API_RESULT_T CyBle_GapcInitConnection (CYBLE_GAPC_CONN_PARAM_T *connParam)
	CYBLE_API_RESULT_T CyBle_GapcCancelConnection (void)
	CYBLE_API_RESULT_T CyBle_GapcResolveDevice (const uint8 *bdAddr, const uint8 *irk)
	CYBLE_API_RESULT_T CyBle_GapcConnectionParamUpdateRequest (uint8 bdHandle, CYBLE_GAP_CONN_UPDATE_PARAM_T *connParam)
	CYBLE_API_RESULT_T CyBle_GapcSetHostChannelClassification (uint8 *channelMap)
	CYBLE_API_RESULT_T CyBle_GapcSetRemoteAddr (uint8 bdHandle, CYBLE_GAP_BD_ADDR_T remoteAddr)

	GAP Peripheral Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_GappStartAdvertisement (uint8 advertisingIntervalType)
	void CyBle_GappStopAdvertisement (void)
	void CyBle_ChangeAdDeviceAddress (const CYBLE_GAP_BD_ADDR_T *bdAddr, uint8 dest)
	CYBLE_API_RESULT_T CyBle_GappEnterDiscoveryMode (CYBLE_GAPP_DISC_MODE_INFO_T *advInfo)
	void CyBle_GappExitDiscoveryMode (void)
	CYBLE_API_RESULT_T CyBle_GappAuthReqReply (uint8 bdHandle, CYBLE_GAP_AUTH_INFO_T *authInfo)
	CYBLE_API_RESULT_T CyBle_GapUpdateAdvData (CYBLE_GAPP_DISC_DATA_T *advDiscData, CYBLE_GAPP_SCAN_RSP_DATA_T *advScanRespData)

	GAP Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_GAPC_T
	struct CYBLE_GAPS_T
	struct CYBLE_GAP_BD_ADDR_T
	struct CYBLE_GAP_AUTH_INFO_T
	struct CYBLE_GAP_BONDED_DEV_ADDR_LIST_T
	struct CYBLE_GAP_SMP_KEY_DIST_T
	struct CYBLE_GAP_SMP_LOCAL_P256_KEYS
	struct CYBLE_GAPP_DISC_PARAM_T
	struct CYBLE_GAPP_DISC_DATA_T
	struct CYBLE_GAPP_SCAN_RSP_DATA_T
	struct CYBLE_GAPP_DISC_MODE_INFO_T
	struct CYBLE_GAPC_DISC_INFO_T
	struct CYBLE_GAPC_CONN_PARAM_T
	struct CYBLE_GAPC_ADV_REPORT_T
	struct CYBLE_GAP_PASSKEY_DISP_INFO_T
	struct CYBLE_GAP_CONN_UPDATE_PARAM_T
	struct CYBLE_GAP_CONN_PARAM_UPDATED_IN_CONTROLLER_T
	struct CYBLE_GAP_OOB_DATA_T
	struct CYBLE_GAP_DATA_LENGTH_T
	struct CYBLE_GAP_CONN_DATA_LENGTH_T
	struct CYBLE_GAP_RX_DATA_LENGTH_T
	struct CYBLE_GAP_RESOLVING_DEVICE_INFO_T
	struct CYBLE_GAP_RESOLVING_LIST_T
	struct CYBLE_GAPC_DIRECT_ADV_REPORT_T
	struct CYBLE_GAP_ENHANCE_CONN_COMPLETE_T
	struct CYBLE_GAP_DEVICE_LIST_T
	struct CYBLE_GAP_DEVICE_ADDR_LIST_T
	struct CYBLE_GAP_PRIVACY_MODE_INFO_T

	Enumeration Type Documentation
	enum CYBLE_GAP_ADV_ASSIGN_NUMBERS
	enum CYBLE_GAPP_ADV_T
	enum CYBLE_GAPC_ADV_EVENT_T
	enum CYBLE_GAP_SEC_LEVEL_T
	enum CYBLE_GAP_IOCAP_T
	enum CYBLE_GAP_AUTH_FAILED_REASON_T
	enum CYBLE_GAP_ADDR_TYPE_T
	enum CYBLE_GAP_KEYPRESS_NOTIFY_TYPE
	enum CYBLE_GAP_ADV_ADDR_TYPE_T
	enum CYBLE_GAP_PHY_TYPE_T

	GATT Functions
	Description
	Modules

	GATT Client and Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_GattGetMtuSize (uint16 *mtu)

	GATT Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_GattcStartDiscovery (CYBLE_CONN_HANDLE_T connHandle)
	CYBLE_API_RESULT_T CyBle_GattcStartPartialDiscovery (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATT_DB_ATTR_HANDLE_T startHandle, CYBLE_GATT_DB_ATTR_HANDLE_T endHandle)
	void CyBle_GattcStopCmd (void)
	CYBLE_API_RESULT_T CyBle_GattcExchangeMtuReq (CYBLE_CONN_HANDLE_T connHandle, uint16 mtu)
	CYBLE_API_RESULT_T CyBle_GattcDiscoverAllPrimaryServices (CYBLE_CONN_HANDLE_T connHandle)
	CYBLE_API_RESULT_T CyBle_GattcDiscoverPrimaryServiceByUuid (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATT_VALUE_T value)
	CYBLE_API_RESULT_T CyBle_GattcFindIncludedServices (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATT_ATTR_HANDLE_RANGE_T *range)
	CYBLE_API_RESULT_T CyBle_GattcDiscoverAllCharacteristics (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATT_ATTR_HANDLE_RANGE_T range)
	CYBLE_API_RESULT_T CyBle_GattcDiscoverCharacteristicByUuid (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)
	CYBLE_API_RESULT_T CyBle_GattcDiscoverAllCharacteristicDescriptors (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_FIND_INFO_REQ_T *findInfoReqParam)
	CYBLE_API_RESULT_T CyBle_GattcReadCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_READ_REQ_T readReqParam)
	CYBLE_API_RESULT_T CyBle_GattcReadUsingCharacteristicUuid (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)
	CYBLE_API_RESULT_T CyBle_GattcReadLongCharacteristicValues (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_READ_BLOB_REQ_T *readBlobReqParam)
	CYBLE_API_RESULT_T CyBle_GattcReadMultipleCharacteristicValues (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_READ_MULT_REQ_T *readMultiReqParam)
	CYBLE_API_RESULT_T CyBle_GattcWriteWithoutResponse (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_WRITE_CMD_REQ_T *writeCmdReqParam)
	CYBLE_API_RESULT_T CyBle_GattcSignedWriteWithoutRsp (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T *signedWriteWithoutRspParam)
	CYBLE_API_RESULT_T CyBle_GattcWriteCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_WRITE_REQ_T *writeReqParam)
	CYBLE_API_RESULT_T CyBle_GattcWriteLongCharacteristicValues (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam)
	CYBLE_API_RESULT_T CyBle_GattcReliableWrites (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam, uint8 numOfRequests)
	CYBLE_API_RESULT_T CyBle_GattcConfirmation (CYBLE_CONN_HANDLE_T connHandle)
	CYBLE_API_RESULT_T CyBle_GattcReadCharacteristicDescriptors (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_READ_REQ_T readReqParam)
	CYBLE_API_RESULT_T CyBle_GattcReadLongCharacteristicDescriptors (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_READ_BLOB_REQ_T *readBlobReqParam)
	CYBLE_API_RESULT_T CyBle_GattcWriteCharacteristicDescriptors (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_WRITE_REQ_T *writeReqParam)
	CYBLE_API_RESULT_T CyBle_GattcWriteLongCharacteristicDescriptors (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_PREP_WRITE_REQ_T *writePrepReqParam)
	CYBLE_API_RESULT_T CyBle_GattcReadByTypeReq (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTC_READ_BY_TYPE_REQ_T *readByTypeReqParam)
	CYBLE_API_RESULT_T CyBle_GattcSendExecuteWriteReq (CYBLE_CONN_HANDLE_T connHandle, uint8 flag)
	CYBLE_API_RESULT_T CyBle_GattcDiscoverPrimaryServices (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATT_ATTR_HANDLE_RANGE_T *range)

	GATT Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_GattsReInitGattDb (void)
	CYBLE_API_RESULT_T CyBle_GattsDbRegister (const CYBLE_GATTS_DB_T *gattDbPtr, uint16 gattDbTotalEntries, uint16 gattDbMaxValue)
	CYBLE_GATT_ERR_CODE_T CyBle_GattsWriteAttributeValue (CYBLE_GATT_HANDLE_VALUE_PAIR_T *handleValuePair, uint16 offset, CYBLE_CONN_HANDLE_T *connHandle, uint8 flags)
	CYBLE_GATT_ERR_CODE_T CyBle_GattsReadAttributeValue (CYBLE_GATT_HANDLE_VALUE_PAIR_T *handleValuePair, CYBLE_CONN_HANDLE_T *connHandle, uint8 flags)
	CYBLE_GATT_ERR_CODE_T CyBle_GattsEnableAttribute (CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle)
	CYBLE_GATT_ERR_CODE_T CyBle_GattsDisableAttribute (CYBLE_GATT_DB_ATTR_HANDLE_T attrHandle)
	CYBLE_GATT_ERR_CODE_T CyBle_GattsDbAuthorize (uint8 yesNo)
	CYBLE_API_RESULT_T CyBle_GattsNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTS_HANDLE_VALUE_NTF_T *ntfParam)
	CYBLE_API_RESULT_T CyBle_GattsIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTS_HANDLE_VALUE_IND_T *indParam)
	CYBLE_API_RESULT_T CyBle_GattsErrorRsp (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GATTS_ERR_PARAM_T *errRspParam)
	CYBLE_API_RESULT_T CyBle_GattsExchangeMtuRsp (CYBLE_CONN_HANDLE_T connHandle, uint16 mtu)
	void CyBle_GattsPrepWriteReqSupport (uint8 prepWriteSupport)
	CYBLE_API_RESULT_T CyBle_GattsWriteRsp (CYBLE_CONN_HANDLE_T connHandle)

	GATT Definitions and Data Structures
	Description
	Data Structures
	Typedefs
	Enumerations
	Data Structure Documentation
	struct CYBLE_DISC_SRVC_INFO_T
	struct CYBLE_DISC_SRVC128_INFO_T
	struct CYBLE_DISC_INCL_INFO_T
	struct CYBLE_DISC_CHAR_INFO_T
	struct CYBLE_SRVR_CHAR_INFO_T
	struct CYBLE_DISC_DESCR_INFO_T
	struct CYBLE_GATTS_T
	struct CYBLE_GATTC_T
	struct CY_BLE_FLASH_STORAGE
	struct CYBLE_GATT_VALUE_T
	struct CYBLE_GATT_HANDLE_VALUE_PAIR_T
	struct CYBLE_GATT_ATTR_HANDLE_RANGE_T
	struct CYBLE_GATT_XCHG_MTU_PARAM_T
	struct CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T
	struct CYBLE_PREPARE_WRITE_REQUEST_MEMORY_T
	struct CYBLE_GATTC_ERR_RSP_PARAM_T
	struct CYBLE_GATTC_READ_BY_TYPE_REQ_T
	struct CYBLE_GATTC_READ_BLOB_REQ_T
	struct CYBLE_GATTC_HANDLE_LIST_T
	struct CYBLE_GATTC_READ_RSP_PARAM_T
	struct CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T
	struct CYBLE_GATTC_GRP_ATTR_DATA_LIST_T
	struct CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T
	struct CYBLE_GATTC_FIND_BY_TYPE_RSP_PARAM_T
	struct CYBLE_GATTC_HANDLE_UUID_LIST_PARAM_T
	struct CYBLE_GATTC_FIND_INFO_RSP_PARAM_T
	struct CYBLE_GATTC_FIND_BY_TYPE_VALUE_REQ_T
	struct CYBLE_GATTC_EXEC_WRITE_RSP_T
	struct CYBLE_GATTS_ATT_GEN_VAL_LEN_T
	struct CYBLE_GATTS_ATT_PACK_VAL_LEN_T
	union CYBLE_GATTS_ATT_VALUE_T
	struct CYBLE_GATTS_DB_T
	struct CYBLE_GATTS_ERR_PARAM_T
	struct CYBLE_GATTS_PREP_WRITE_REQ_PARAM_T
	struct CYBLE_GATTS_EXEC_WRITE_REQ_T
	struct CYBLE_GATTS_WRITE_REQ_PARAM_T
	struct CYBLE_GATTS_CHAR_VAL_READ_REQ_T

	Typedef Documentation
	typedef uint16 CYBLE_GATT_DB_ATTR_HANDLE_T
	typedef CYBLE_GATT_ATTR_HANDLE_RANGE_T CYBLE_GATTC_FIND_INFO_REQ_T
	typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_SIGNED_WRITE_CMD_REQ_T
	typedef CYBLE_GATT_DB_ATTR_HANDLE_T CYBLE_GATTC_READ_REQ_T
	typedef CYBLE_GATTC_HANDLE_LIST_T CYBLE_GATTC_READ_MULT_REQ_T
	typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_WRITE_CMD_REQ_T
	typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTC_WRITE_REQ_T
	typedef CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T CYBLE_GATTC_PREP_WRITE_REQ_T
	typedef CYBLE_GATTC_HANDLE_VALUE_NTF_PARAM_T CYBLE_GATTC_HANDLE_VALUE_IND_PARAM_T
	typedef CYBLE_GATTC_READ_BY_GRP_RSP_PARAM_T CYBLE_GATTC_READ_BY_TYPE_RSP_PARAM_T
	typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_EXT_PRPRTY_T
	typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_USER_DESCRIPTION_T
	typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CLIENT_CHAR_CONFIG_T
	typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_SERVER_CHAR_CONFIG_T
	typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_PRESENT_FMT_T
	typedef CYBLE_GATTS_ATT_VALUE_T CYBLE_CHAR_AGGREGATE_FMT_T
	typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_HANDLE_VALUE_NTF_T
	typedef CYBLE_GATT_HANDLE_VALUE_PAIR_T CYBLE_GATTS_HANDLE_VALUE_IND_T
	typedef CYBLE_GATT_VALUE_T CYBLE_GATTS_READ_RSP_PARAM_T
	typedef CYBLE_GATTS_WRITE_REQ_PARAM_T CYBLE_GATTS_WRITE_CMD_REQ_PARAM_T
	typedef CYBLE_GATTS_WRITE_REQ_PARAM_T CYBLE_GATTS_SIGNED_WRITE_CMD_REQ_PARAM_T
	typedef CYBLE_GATT_HANDLE_VALUE_OFFSET_PARAM_T CYBLE_GATTS_PREP_WRITE_RSP_PARAM_T

	Enumeration Type Documentation
	enum CYBLE_GATT_PDU_T
	enum CYBLE_GATT_ERR_CODE_T

	L2CAP Functions
	Description
	Modules
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_L2capCbfcRegisterPsm (uint16 l2capPsm, uint16 creditLwm)
	CYBLE_API_RESULT_T CyBle_L2capCbfcUnregisterPsm (uint16 l2capPsm)
	CYBLE_API_RESULT_T CyBle_L2capCbfcConnectReq (uint8 bdHandle, uint16 remotePsm, uint16 localPsm, CYBLE_L2CAP_CBFC_CONNECT_PARAM_T *param)
	CYBLE_API_RESULT_T CyBle_L2capCbfcConnectRsp (uint16 localCid, uint16 response, CYBLE_L2CAP_CBFC_CONNECT_PARAM_T *param)
	CYBLE_API_RESULT_T CyBle_L2capCbfcSendFlowControlCredit (uint16 localCid, uint16 credit)
	CYBLE_API_RESULT_T CyBle_L2capChannelDataWrite (uint8 bdHandle, uint16 localCid, uint8 *buffer, uint16 bufferLen)
	CYBLE_API_RESULT_T CyBle_L2capDisconnectReq (uint16 localCid)
	CYBLE_API_RESULT_T CyBle_L2capLeConnectionParamUpdateRequest (uint8 bdHandle, CYBLE_GAP_CONN_UPDATE_PARAM_T *connParam)
	CYBLE_API_RESULT_T CyBle_L2capLeConnectionParamUpdateResponse (uint8 bdHandle, uint16 result)

	L2CAP Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_L2CAP_CBFC_CONNECT_PARAM_T
	struct CYBLE_L2CAP_CBFC_CONN_IND_PARAM_T
	struct CYBLE_L2CAP_CBFC_CONN_CNF_PARAM_T
	struct CYBLE_L2CAP_CBFC_DISCONN_CNF_PARAM_T
	struct CYBLE_L2CAP_CBFC_RX_PARAM_T
	struct CYBLE_L2CAP_CBFC_LOW_RX_CREDIT_PARAM_T
	struct CYBLE_L2CAP_CBFC_LOW_TX_CREDIT_PARAM_T
	struct CYBLE_L2CAP_CBFC_DATA_WRITE_PARAM_T

	Enumeration Type Documentation
	enum CYBLE_L2CAP_COMMAND_REJ_REASON_T
	enum CYBLE_L2CAP_RESULT_PARAM_T

	BLE Common Events
	Description
	Macros
	Enumerations
	Macro Definition Documentation
	#define CYBLE_EVT_HOST_STACK_T CYBLE_EVENT_T

	Enumeration Type Documentation
	enum CYBLE_EVENT_T
	enum CYBLE_HCI_ERROR_T

	BLE Common Definitions and Data Structures
	Description
	Data Structures
	Typedefs
	Enumerations
	Data Structure Documentation
	struct CYBLE_BLESS_PWR_IN_DB_T
	struct CYBLE_MEMORY_REQUEST_T
	struct CYBLE_BLESS_CLK_CFG_PARAMS_T
	struct CYBLE_STACK_LIB_VERSION_T
	struct CYBLE_STK_APP_DATA_BUFF_T
	struct CYBLE_DLE_CONFIG_PARAM_T
	struct CYBLE_PRIVACY_1_2_CONFIG_PARAM_T
	struct CYBLE_STACK_CONFIG_PARAM_T
	struct CYBLE_AES_CMAC_GENERATE_PARAM_T
	struct CYBLE_BLESS_EVENT_PARAM_T
	struct CYBLE_TRANSMITTER_TEST_PARAMS_T
	struct CYBLE_HCI_PKT_PARAMS_T
	struct CYBLE_UUID128_T
	union CYBLE_UUID_T
	struct CYBLE_CONN_HANDLE_T

	Typedef Documentation
	typedef void(* CYBLE_CALLBACK_T) (uint32 eventCode, void *eventParam)
	typedef void(* CYBLE_APP_CB_T) (uint8 event, void *evParam)
	typedef void(* CYBLE_BLESS_CB_T) (uint32 event, void *evParam)
	typedef void(* AES_CMAC_APPL_CB) (void)
	typedef uint16 CYBLE_UUID16

	Enumeration Type Documentation
	enum CYBLE_STATE_T
	enum CYBLE_CLIENT_STATE_T
	enum CYBLE_API_RESULT_T
	enum CYBLE_LP_MODE_T
	enum CYBLE_BLESS_STATE_T
	enum CYBLE_BLESS_PWR_LVL_T
	enum CYBLE_BLESS_PHY_CH_GRP_ID_T
	enum CYBLE_BLESS_WCO_SCA_CFG_T
	enum CYBLE_BLESS_ECO_CLK_DIV_T
	enum CYBLE_PROTOCOL_REQ_T
	enum CYBLE_PKT_PAYLOAD_T
	enum CYBLE_HCI_PKT_TYPE_T
	enum CYBLE_TO_REASON_CODE_T

	BLE Service-Specific APIs
	Description
	Modules
	BLE Service-Specific Events
	Description
	Enumerations
	Enumeration Type Documentation
	enum CYBLE_EVT_T

	Apple Notification Center Service (ANCS)
	Description
	Modules

	ANCS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_AncsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	ANCS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_AncssSetCharacteristicValue (CYBLE_ANCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AncssGetCharacteristicValue (CYBLE_ANCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AncssGetCharacteristicDescriptor (CYBLE_ANCS_CHAR_INDEX_T charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AncssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	ANCS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_AncscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AncscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANCS_CHAR_INDEX_T charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AncscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANCS_CHAR_INDEX_T charIndex, CYBLE_ANCS_DESCR_INDEX_T descrIndex)

	ANCS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_ANCSS_CHAR_T
	struct CYBLE_ANCSS_T
	struct CYBLE_ANCSC_CHAR_T
	struct CYBLE_ANCSC_T
	struct CYBLE_ANCS_CHAR_VALUE_T
	struct CYBLE_ANCS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_ANCS_CHAR_INDEX_T
	enum CYBLE_ANCS_DESCR_INDEX_T

	Alert Notification Service (ANS)
	Description
	Modules

	ANS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_AnsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	ANS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_AnssSetCharacteristicValue (CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AnssGetCharacteristicValue (CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AnssGetCharacteristicDescriptor (CYBLE_ANS_CHAR_INDEX_T charIndex, CYBLE_ANS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AnssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	ANS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_AnscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_AnscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AnscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANS_CHAR_INDEX_T charIndex, CYBLE_ANS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AnscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ANS_CHAR_INDEX_T charIndex, uint8 descrIndex)

	ANS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_ANS_CHAR_VALUE_T
	struct CYBLE_ANS_DESCR_VALUE_T
	struct CYBLE_ANSS_CHAR_T
	struct CYBLE_ANSS_T
	struct CYBLE_SRVR_FULL_CHAR_INFO_T
	struct CYBLE_ANSC_T

	Enumeration Type Documentation
	enum CYBLE_ANS_CHAR_INDEX_T
	enum CYBLE_ANS_DESCR_INDEX_T

	Automation IO Service (AIOS)
	Description
	Modules

	AIOS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_AiosRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	AIOS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_AiossSetCharacteristicValue (CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AiossGetCharacteristicValue (CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AiossSetCharacteristicDescriptor (CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AiossGetCharacteristicDescriptor (CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AiossSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AiossSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

	AIOS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicValueWithoutResponse (CYBLE_CONN_HANDLE_T connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AioscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance)
	CYBLE_API_RESULT_T CyBle_AioscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_AioscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_AIOS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_AIOS_DESCR_INDEX_T descrIndex)

	AIOS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_AIOSS_CHAR_T
	struct CYBLE_AIOSS_CHAR_INFO_PTR_T
	struct CYBLE_AIOSS_T
	struct CYBLE_AIOSC_CHAR_T
	struct CYBLE_AIOSC_CHAR_INFO_PTR_T
	struct CYBLE_AIOSC_T
	struct CYBLE_AIOS_CHAR_VALUE_T
	struct CYBLE_AIOS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_AIOS_CHAR_INDEX_T
	enum CYBLE_AIOS_DESCR_INDEX_T

	Battery Service (BAS)
	Description
	Modules

	BAS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_BasRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	BAS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_BassSetCharacteristicValue (uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BassGetCharacteristicValue (uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BassGetCharacteristicDescriptor (uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BassSendNotification (CYBLE_CONN_HANDLE_T connHandle, uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	BAS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_BascGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_BascSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BascGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, uint8 serviceIndex, CYBLE_BAS_CHAR_INDEX_T charIndex, CYBLE_BAS_DESCR_INDEX_T descrIndex)

	BAS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_BASS_T
	struct CYBLE_BASC_T
	struct CYBLE_BAS_CHAR_VALUE_T
	struct CYBLE_BAS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_BAS_CHAR_INDEX_T
	enum CYBLE_BAS_DESCR_INDEX_T

	Body Composition Service (BCS)
	Description
	Modules

	BCS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_BcsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	BCS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_BcssSetCharacteristicValue (CYBLE_BCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BcssGetCharacteristicValue (CYBLE_BCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BcssSetCharacteristicDescriptor (CYBLE_BCS_CHAR_INDEX_T charIndex, CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BcssGetCharacteristicDescriptor (CYBLE_BCS_CHAR_INDEX_T charIndex, CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BcssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	BCS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_BcscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BCS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_BcscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BCS_CHAR_INDEX_T charIndex, CYBLE_BCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BcscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BCS_CHAR_INDEX_T charIndex, CYBLE_BCS_DESCR_INDEX_T descrIndex)

	BCS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_BCS_CHAR_VALUE_T
	struct CYBLE_BCS_DESCR_VALUE_T
	struct CYBLE_BCSS_CHAR_T
	struct CYBLE_BCSS_T
	struct CYBLE_BCSC_CHAR_T
	struct CYBLE_BCSC_T

	Enumeration Type Documentation
	enum CYBLE_BCS_CHAR_INDEX_T
	enum CYBLE_BCS_DESCR_INDEX_T

	Blood Pressure Service (BLS)
	Description
	Modules

	BLS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_BlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	BLS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_BlssSetCharacteristicValue (CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BlssGetCharacteristicValue (CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BlssGetCharacteristicDescriptor (CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BlssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BlssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	BLS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_BlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BLS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_BlscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BlscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BLS_CHAR_INDEX_T charIndex, CYBLE_BLS_DESCR_INDEX_T descrIndex)

	BLS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_BLSS_CHAR_T
	struct CYBLE_BLSS_T
	struct CYBLE_BLSC_CHAR_T
	struct CYBLE_BLSC_T
	struct CYBLE_BLS_CHAR_VALUE_T
	struct CYBLE_BLS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_BLS_CHAR_INDEX_T
	enum CYBLE_BLS_DESCR_INDEX_T

	Bond Management Service (BMS)
	Description
	Modules

	BMS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_BmsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	BMS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_BmssSetCharacteristicValue (CYBLE_BMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BmssGetCharacteristicValue (CYBLE_BMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BmssSetCharacteristicDescriptor (CYBLE_BMS_CHAR_INDEX_T charIndex, CYBLE_BMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BmssGetCharacteristicDescriptor (CYBLE_BMS_CHAR_INDEX_T charIndex, CYBLE_BMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

	BMS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_BmscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BMS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_BmscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BmscReliableWriteCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_BmscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_BMS_CHAR_INDEX_T charIndex, CYBLE_BMS_DESCR_INDEX_T descrIndex)

	BMS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_BMSS_CHAR_T
	struct CYBLE_BMSS_T
	struct CYBLE_BMSC_CHAR_T
	struct CYBLE_BMSC_T
	struct CYBLE_BMS_CHAR_VALUE_T
	struct CYBLE_BMS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_BMS_CHAR_INDEX_T
	enum CYBLE_BMS_DESCR_INDEX_T

	Continuous Glucose Monitoring Service (CGMS)
	Description
	Modules

	CGMS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_CgmsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	CGMS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_CgmssSetCharacteristicValue (CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CgmssGetCharacteristicValue (CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CgmssSetCharacteristicDescriptor (CYBLE_CGMS_CHAR_INDEX_T charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CgmssGetCharacteristicDescriptor (CYBLE_CGMS_CHAR_INDEX_T charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CgmssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CgmssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	CGMS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_CgmscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CGMS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CgmscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CGMS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_CgmscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CGMS_CHAR_INDEX_T charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CgmscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CGMS_CHAR_INDEX_T charIndex, CYBLE_CGMS_DESCR_INDEX_T descrIndex)

	CGMS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_CGMSS_CHAR_T
	struct CYBLE_CGMSS_T
	struct CYBLE_CGMSC_CHAR_T
	struct CYBLE_CGMSC_T
	struct CYBLE_CGMS_CHAR_VALUE_T
	struct CYBLE_CGMS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_CGMS_CHAR_INDEX_T
	enum CYBLE_CGMS_DESCR_INDEX_T

	Cycling Power Service (CPS)
	Description
	Modules

	CPS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_CpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	CPS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_CpssSetCharacteristicValue (CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CpssGetCharacteristicValue (CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CpssSetCharacteristicDescriptor (CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CpssGetCharacteristicDescriptor (CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CpssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CpssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CpssStartBroadcast (uint16 advInterval, uint8 attrSize, const uint8 *attrValue)
	void CyBle_CpssStopBroadcast (void)

	CPS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_CpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CPS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_CpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CPS_CHAR_INDEX_T charIndex, CYBLE_CPS_DESCR_INDEX_T descrIndex)
	CYBLE_API_RESULT_T CyBle_CpscStartObserve (void)
	void CyBle_CpscStopObserve (void)

	CPS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_CPSS_CHAR_T
	struct CYBLE_CPSS_T
	struct CYBLE_CPSC_CHAR_T
	struct CYBLE_CPSC_T
	struct CYBLE_CPS_CHAR_VALUE_T
	struct CYBLE_CPS_DESCR_VALUE_T
	struct __attribute__

	Enumeration Type Documentation
	enum CYBLE_CPS_CHAR_INDEX_T
	enum CYBLE_CPS_DESCR_INDEX_T
	enum CYBLE_CPS_CP_OC_T
	enum CYBLE_CPS_CP_RC_T
	enum CYBLE_CPS_SL_VALUE_T

	Cycling Speed and Cadence Service (CSCS)
	Description
	Modules

	CSCS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_CscsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	CSCS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_CscssSetCharacteristicValue (CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CscssGetCharacteristicValue (CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CscssGetCharacteristicDescriptor (CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CscssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CscssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	CSCS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_CscscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CscscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CSCS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_CscscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CscscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CSCS_CHAR_INDEX_T charIndex, CYBLE_CSCS_DESCR_INDEX_T descrIndex)

	CSCS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_CSCS_CHAR_VALUE_T
	struct CYBLE_CSCS_DESCR_VALUE_T
	struct CYBLE_CSCSS_CHAR_T
	struct CYBLE_CSCSS_T
	struct CYBLE_CSCSC_SRVR_FULL_CHAR_INFO_T
	struct CYBLE_CSCSC_T

	Enumeration Type Documentation
	enum CYBLE_CSCS_CHAR_INDEX_T
	enum CYBLE_CSCS_DESCR_INDEX_T

	Current Time Service (CTS)
	Description
	Modules

	CTS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_CtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	CTS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_CtssSetCharacteristicValue (CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CtssGetCharacteristicValue (CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CtssGetCharacteristicDescriptor (CYBLE_CTS_CHAR_INDEX_T charIndex, CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CtssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	CTS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_CtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CTS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_CtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CTS_CHAR_INDEX_T charIndex, CYBLE_CTS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_CtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_CTS_CHAR_INDEX_T charIndex, uint8 descrIndex)

	CTS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_CTS_CURRENT_TIME_T
	struct CYBLE_CTS_LOCAL_TIME_INFO_T
	struct CYBLE_CTS_REFERENCE_TIME_INFO_T
	struct CYBLE_CTS_CHAR_VALUE_T
	struct CYBLE_CTS_DESCR_VALUE_T
	struct CYBLE_CTSS_T
	struct CYBLE_CTSC_T

	Enumeration Type Documentation
	enum CYBLE_CTS_CHAR_INDEX_T
	enum CYBLE_CTS_CHAR_DESCRIPTORS_T

	Device Information Service (DIS)
	Description
	Modules

	DIS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_DisRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	DIS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_DissSetCharacteristicValue (CYBLE_DIS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_DissGetCharacteristicValue (CYBLE_DIS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	DIS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_DiscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_DIS_CHAR_INDEX_T charIndex)

	DIS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_DISS_T
	struct CYBLE_DISC_T
	struct CYBLE_DIS_CHAR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_DIS_CHAR_INDEX_T

	Environmental Sensing Service (ESS)
	Description
	Modules

	ESS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_EssRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	ESS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_EsssSetChangeIndex (uint16 essIndex)
	CYBLE_API_RESULT_T CyBle_EsssSetCharacteristicValue (CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_EsssGetCharacteristicValue (CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_EsssSetCharacteristicDescriptor (CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_EsssGetCharacteristicDescriptor (CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_EsssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_EsssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)

	ESS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_EsscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_EsscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance)
	CYBLE_API_RESULT_T CyBle_EsscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_EsscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex)
	CYBLE_API_RESULT_T CyBle_EsscSetLongCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_EsscGetLongCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_ESS_CHAR_INDEX_T charIndex, uint8 charInstance, CYBLE_ESS_DESCR_INDEX_T descrIndex, uint16 attrSize, uint8 *attrValue)

	ESS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_ESSS_CHAR_T
	struct CYBLE_ESSS_CHAR_INFO_PTR_T
	struct CYBLE_ESSS_T
	struct CYBLE_ESSC_CHAR_T
	struct CYBLE_ESSC_CHAR_INFO_PTR_T
	struct CYBLE_ESSC_T
	struct CYBLE_ESS_CHAR_VALUE_T
	struct CYBLE_ESS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_ESS_CHAR_INDEX_T
	enum CYBLE_ESS_DESCR_INDEX_T

	Glucose Service (GLS)
	Description
	Modules

	GLS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_GlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	GLS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_GlssSetCharacteristicValue (CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_GlssGetCharacteristicValue (CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_GlssGetCharacteristicDescriptor (CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_GlssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_GlssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	GLS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_GlscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_GlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GLS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_GlscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_GlscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_GLS_CHAR_INDEX_T charIndex, CYBLE_GLS_DESCR_INDEX_T descrIndex)

	GLS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_GLSS_CHAR_T
	struct CYBLE_GLSS_T
	struct CYBLE_GLSC_CHAR_T
	struct CYBLE_GLSC_T
	struct CYBLE_GLS_CHAR_VALUE_T
	struct CYBLE_GLS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_GLS_CHAR_INDEX_T
	enum CYBLE_GLS_DESCR_INDEX_T

	HID Service (HIDS)
	Description
	Modules

	HIDS Server and Client Functions
	Description
	Functions
	Function Documentation
	void CyBle_HidsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	HIDS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_HidssSetCharacteristicValue (uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HidssGetCharacteristicValue (uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HidssGetCharacteristicDescriptor (uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HidssSendNotification (CYBLE_CONN_HANDLE_T connHandle, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	HIDS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_HidscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HIDSC_CHAR_WRITE_T subProcedure, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HidscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HIDSC_CHAR_READ_T subProcedure, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_HidscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HidscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, uint8 serviceIndex, CYBLE_HIDS_CHAR_INDEX_T charIndex, CYBLE_HIDS_DESCR_T descrIndex)

	HIDS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_HIDSS_REPORT_REF_T
	struct CYBLE_HIDSS_INFORMATION_T
	struct CYBLE_HIDSS_REPORT_T
	struct CYBLE_HIDSS_T
	struct CYBLE_HIDSC_REPORT_T
	struct CYBLE_HIDSC_REPORT_MAP_T
	struct CYBLE_HIDSC_T
	struct CYBLE_HIDS_CHAR_VALUE_T
	struct CYBLE_HIDS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_HIDS_CHAR_INDEX_T
	enum CYBLE_HIDS_DESCR_T
	enum CYBLE_HIDSC_CHAR_WRITE_T
	enum CYBLE_HIDSC_CHAR_READ_T

	Heart Rate Service (HRS)
	Description
	Modules

	HRS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_HrsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	HRS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_HrssSetCharacteristicValue (CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HrssGetCharacteristicValue (CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HrssGetCharacteristicDescriptor (CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HrssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	HRS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_HrscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HRS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HrscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HRS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_HrscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HrscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HRS_CHAR_INDEX_T charIndex, CYBLE_HRS_DESCR_INDEX_T descrIndex)

	HRS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_HRSS_T
	struct CYBLE_HRSC_T
	struct CYBLE_HRS_CHAR_VALUE_T
	struct CYBLE_HRS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_HRS_CHAR_INDEX_T
	enum CYBLE_HRS_DESCR_INDEX_T

	HTTP Proxy Service (HPS)
	Description
	Modules

	HPS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_HpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	HPS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_HpssSetCharacteristicValue (CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HpssGetCharacteristicValue (CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HpssSetCharacteristicDescriptor (CYBLE_HPS_CHAR_INDEX_T charIndex, CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HpssGetCharacteristicDescriptor (CYBLE_HPS_CHAR_INDEX_T charIndex, CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HpssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	HPS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_HpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HPS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_HpscSetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HpscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HPS_CHAR_INDEX_T charIndex, CYBLE_HPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HPS_CHAR_INDEX_T charIndex, CYBLE_HPS_DESCR_INDEX_T descrIndex)

	HPS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_HPS_CHAR_VALUE_T
	struct CYBLE_HPS_DESCR_VALUE_T
	struct CYBLE_HPSS_CHAR_T
	struct CYBLE_HPSS_T
	struct CYBLE_HPSC_CHAR_T
	struct CYBLE_HPSC_T

	Enumeration Type Documentation
	enum CYBLE_HPS_CHAR_INDEX_T
	enum CYBLE_HPS_DESCR_INDEX_T
	enum CYBLE_HPS_HTTP_REQUEST_T

	Health Thermometer Service (HTS)
	Description
	Modules

	HTS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_HtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	HTS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_HtssSetCharacteristicValue (CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HtssGetCharacteristicValue (CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HtssSetCharacteristicDescriptor (CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HtssGetCharacteristicDescriptor (CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HtssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HtssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	HTS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_HtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HTS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_HtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_HtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_HTS_CHAR_INDEX_T charIndex, CYBLE_HTS_DESCR_INDEX_T descrIndex)

	HTS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_HTSS_CHAR_T
	struct CYBLE_HTSS_T
	struct CYBLE_HTSC_CHAR_T
	struct CYBLE_HTSC_T
	struct CYBLE_HTS_CHAR_VALUE_T
	struct CYBLE_HTS_DESCR_VALUE_T
	struct CYBLE_HTS_FLOAT32

	Enumeration Type Documentation
	enum CYBLE_HTS_CHAR_INDEX_T
	enum CYBLE_HTS_DESCR_INDEX_T
	enum CYBLE_HTS_TEMP_TYPE_T

	Immediate Alert Service (IAS)
	Description
	Modules

	IAS Server Functions
	Description
	Functions
	Function Documentation
	void CyBle_IasRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)
	CYBLE_API_RESULT_T CyBle_IassGetCharacteristicValue (CYBLE_IAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	IAS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_IascSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_IAS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	IAS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_IASS_T
	struct CYBLE_IAS_CHAR_VALUE_T
	struct CYBLE_IASC_T

	Enumeration Type Documentation
	enum CYBLE_IAS_CHAR_INDEX_T

	Indoor Positioning Service (IPS)
	Description
	Modules

	IPS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_IpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	IPS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_IpssSetCharacteristicValue (CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_IpssGetCharacteristicValue (CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_IpssSetCharacteristicDescriptor (CYBLE_IPS_CHAR_INDEX_T charIndex, CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_IpssGetCharacteristicDescriptor (CYBLE_IPS_CHAR_INDEX_T charIndex, CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)

	IPS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicValueWithoutResponse (CYBLE_CONN_HANDLE_T connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_IpscReliableWriteCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_IpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_IpscGetMultipleCharacteristicValues (CYBLE_CONN_HANDLE_T connHandle, const CYBLE_IPS_CHAR_INDEX_T *charIndexesList, uint8 numberOfCharIndexes)
	CYBLE_API_RESULT_T CyBle_IpscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_IpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, CYBLE_IPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_IpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_IPS_CHAR_INDEX_T charIndex, CYBLE_IPS_DESCR_INDEX_T descrIndex)

	IPS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_IPSS_CHAR_T
	struct CYBLE_IPSS_CHAR_INFO_PTR_T
	struct CYBLE_IPSS_T
	struct CYBLE_IPSC_CHAR_T
	struct CYBLE_IPSC_CHAR_INFO_PTR_T
	struct CYBLE_IPSC_T
	struct CYBLE_IPS_CHAR_VALUE_T
	struct CYBLE_IPS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_IPS_CHAR_INDEX_T
	enum CYBLE_IPS_DESCR_INDEX_T

	Link Loss Service (LLS)
	Description
	Modules

	LLS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_LlsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	LLS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_LlssGetCharacteristicValue (CYBLE_LLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	LLS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_LlscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_LLS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_LlscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_LLS_CHAR_INDEX_T charIndex)

	LLS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_LLS_CHAR_VALUE_T
	struct CYBLE_LLSS_T
	struct CYBLE_LLSC_T

	Enumeration Type Documentation
	enum CYBLE_LLS_CHAR_INDEX_T

	Location and Navigation Service (LNS)
	Description
	Modules

	LNS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_LnsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	LNS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_LnssSetCharacteristicValue (CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_LnssGetCharacteristicValue (CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_LnssGetCharacteristicDescriptor (CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_LnssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_LnssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	LNS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_LnscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_LNS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_LnscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_LNS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_LnscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_LnscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_LNS_CHAR_INDEX_T charIndex, CYBLE_LNS_DESCR_INDEX_T descrIndex)

	LNS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_LNSS_CHAR_T
	struct CYBLE_LNSS_T
	struct CYBLE_LNSC_CHAR_T
	struct CYBLE_LNSC_T
	struct CYBLE_LNS_CHAR_VALUE_T
	struct CYBLE_LNS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_LNS_CHAR_INDEX_T
	enum CYBLE_LNS_DESCR_INDEX_T

	Next DST Change Service (NDCS)
	Description
	Modules

	NDCS Server and Client Functions
	Description
	Functions
	Function Documentation
	void CyBle_NdcsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	NDCS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_NdcssSetCharacteristicValue (CYBLE_NDCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_NdcssGetCharacteristicValue (CYBLE_NDCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	NDCS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_NdcscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_NDCS_CHAR_INDEX_T charIndex)

	NDCS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_NDCS_CHAR_VALUE_T
	struct CYBLE_NDCSS_T
	struct CYBLE_NDCSC_T

	Enumeration Type Documentation
	enum CYBLE_NDCS_CHAR_INDEX_T

	Object Transfer Service (OTS)
	Description
	Modules

	OTS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_OtsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	OTS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_OtssSetCharacteristicValue (CYBLE_OTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_OtssGetCharacteristicValue (CYBLE_OTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_OtssSetCharacteristicDescriptor (CYBLE_OTS_CHAR_INDEX_T charIndex, CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_OtssGetCharacteristicDescriptor (CYBLE_OTS_CHAR_INDEX_T charIndex, CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_OtssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_OTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	OTS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_OtscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_OTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_OtscSetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_OTS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_OtscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_OTS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_OtscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_OTS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_OtscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_OTS_CHAR_INDEX_T charIndex, CYBLE_OTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_OtscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_OTS_CHAR_INDEX_T charIndex, CYBLE_OTS_DESCR_INDEX_T descrIndex)

	OTS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_OTSS_CHAR_T
	struct CYBLE_OTSS_CHAR_INFO_PTR_T
	struct CYBLE_OTSS_T
	struct CYBLE_OTSC_CHAR_T
	struct CYBLE_OTSC_CHAR_INFO_PTR_T
	struct CYBLE_OTSC_T
	struct CYBLE_OTS_CHAR_VALUE_T
	struct CYBLE_OTS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_OTS_CHAR_INDEX_T
	enum CYBLE_OTS_DESCR_INDEX_T

	Phone Alert Status Service (PASS)
	Description
	Modules

	PASS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_PassRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	PASS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_PasssSetCharacteristicValue (CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PasssGetCharacteristicValue (CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PasssGetCharacteristicDescriptor (CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PasssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	PASS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_PasscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PASS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PasscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PASS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_PasscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PasscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PASS_CHAR_INDEX_T charIndex, CYBLE_PASS_DESCR_INDEX_T descrIndex)

	PASS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_PASSS_CHAR_T
	struct CYBLE_PASSS_T
	struct CYBLE_PASSC_CHAR_T
	struct CYBLE_PASSC_T
	struct CYBLE_PASS_CHAR_VALUE_T
	struct CYBLE_PASS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_PASS_CHAR_INDEX_T
	enum CYBLE_PASS_DESCR_INDEX_T
	enum CYBLE_PASS_RS_T
	enum CYBLE_PASS_CP_T

	Pulse Oximeter Service (PLXS)
	Description
	Modules

	PLXS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_PlxsInit (void)
	void CyBle_PlxsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	PLXS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_PlxssSetCharacteristicValue (CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PlxssGetCharacteristicValue (CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PlxssSetCharacteristicDescriptor (CYBLE_PLXS_CHAR_INDEX_T charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PlxssGetCharacteristicDescriptor (CYBLE_PLXS_CHAR_INDEX_T charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PlxssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PlxssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	PLXS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_PlxscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PLXS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PlxscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PLXS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_PlxscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PLXS_CHAR_INDEX_T charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_PlxscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_PLXS_CHAR_INDEX_T charIndex, CYBLE_PLXS_DESCR_INDEX_T descrIndex)

	PLXS Definitions and Data Structures
	Description
	Data Structures
	Macros
	Enumerations
	Data Structure Documentation
	struct CYBLE_PLXSS_CHAR_T
	struct CYBLE_PLXSS_T
	struct CYBLE_PLXSC_CHAR_T
	struct CYBLE_PLXSC_T
	struct CYBLE_PLXS_CHAR_VALUE_T
	struct CYBLE_PLXS_DESCR_VALUE_T

	Macro Definition Documentation
	#define CYBLE_PLXS_DSS_EDU_BIT (0x01u << 0u)
	#define CYBLE_PLXS_DSS_EMD_BIT (0x01u << 1u)
	#define CYBLE_PLXS_DSS_SPID_BIT (0x01u << 2u)
	#define CYBLE_PLXS_DSS_ISD_BIT (0x01u << 3u)
	#define CYBLE_PLXS_DSS_PSD_BIT (0x01u << 4u)
	#define CYBLE_PLXS_DSS_LPD_BIT (0x01u << 5u)
	#define CYBLE_PLXS_DSS_ESD_BIT (0x01u << 6u)
	#define CYBLE_PLXS_DSS_NSD_BIT (0x01u << 7u)
	#define CYBLE_PLXS_DSS_QPD_BIT (0x01u << 8u)
	#define CYBLE_PLXS_DSS_SA_BIT (0x01u << 9u)
	#define CYBLE_PLXS_DSS_SID_BIT (0x01u << 10u)
	#define CYBLE_PLXS_DSS_SUTU_BIT (0x01u << 11u)
	#define CYBLE_PLXS_DSS_USC_BIT (0x01u << 12u)
	#define CYBLE_PLXS_DSS_SD_BIT (0x01u << 13u)
	#define CYBLE_PLXS_DSS_SM_BIT (0x01u << 14u)
	#define CYBLE_PLXS_DSS_SDISC_BIT (0x01u << 15u)
	#define CYBLE_PLXS_MS_MEAS_BIT (0x01u << 5u)
	#define CYBLE_PLXS_MS_EED_BIT (0x01u << 6u)
	#define CYBLE_PLXS_MS_VDATA_BIT (0x01u << 7u)
	#define CYBLE_PLXS_MS_FQDATA_BIT (0x01u << 8u)
	#define CYBLE_PLXS_MS_DFMS_BIT (0x01u << 9u)
	#define CYBLE_PLXS_MS_DFDEMO_BIT (0x01u << 10u)
	#define CYBLE_PLXS_MS_DFTEST_BIT (0x01u << 11u)
	#define CYBLE_PLXS_MS_CALIB_BIT (0x01u << 12u)
	#define CYBLE_PLXS_MS_MUN_BIT (0x01u << 13u)
	#define CYBLE_PLXS_MS_QMD_BIT (0x01u << 14u)
	#define CYBLE_PLXS_MS_IMD_BIT (0x01u << 15u)
	#define CYBLE_PLXS_SCMT_FLAG_TMSF_BIT (0x01u << 0u)
	#define CYBLE_PLXS_SCMT_FLAG_MSF_BIT (0x01u << 1u)
	#define CYBLE_PLXS_SCMT_FLAG_DSSF_BIT (0x01u << 2u)
	#define CYBLE_PLXS_SCMT_FLAG_PAIF_BIT (0x01u << 3u)
	#define CYBLE_PLXS_SCMT_FLAG_DEVCLK_BIT (0x01u << 4u)
	#define CYBLE_PLXS_CTMT_FLAG_FAST_BIT (0x01u << 0u)
	#define CYBLE_PLXS_CTMT_FLAG_SLOW_BIT (0x01u << 1u)
	#define CYBLE_PLXS_CTMT_FLAG_MSF_BIT (0x01u << 2u)
	#define CYBLE_PLXS_CTMT_FLAG_DSSF_BIT (0x01u << 3u)
	#define CYBLE_PLXS_CTMT_FLAG_PAIF_BIT (0x01u << 4u)
	#define CYBLE_PLXS_FEAT_SUPPORT_MEAS_BIT (0x01u << 0u)
	#define CYBLE_PLXS_FEAT_SUPPORT_DSS_BIT (0x01u << 1u)
	#define CYBLE_PLXS_FEAT_SUPPORT_MSSC_BIT (0x01u << 2u)
	#define CYBLE_PLXS_FEAT_SUPPORT_TMSF_BIT (0x01u << 3u)
	#define CYBLE_PLXS_FEAT_SUPPORT_FAST_BIT (0x01u << 4u)
	#define CYBLE_PLXS_FEAT_SUPPORT_SLOW_BIT (0x01u << 5u)
	#define CYBLE_PLXS_FEAT_SUPPORT_PAI_BIT (0x01u << 6u)
	#define CYBLE_PLXS_FEAT_SUPPORT_MBS_BIT (0x01u << 7u)

	Enumeration Type Documentation
	enum CYBLE_PLXS_CHAR_INDEX_T
	enum CYBLE_PLXS_DESCR_INDEX_T
	enum CYBLE_PLXS_RACP_OPC_T
	enum CYBLE_PLXS_RACP_OPR_T
	enum CYBLE_PLXS_RACP_OPD_T
	enum CYBLE_PLXS_RACP_RSP_T

	Running Speed and Cadence Service (RSCS)
	Description
	Modules

	RSCS Server and Client Functions
	Description
	Functions
	Function Documentation
	void CyBle_RscsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	RSCS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_RscssSetCharacteristicValue (CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_RscssGetCharacteristicValue (CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_RscssGetCharacteristicDescriptor (CYBLE_RSCS_CHAR_INDEX_T charIndex, CYBLE_RSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_RscssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_RscssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	RSCS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_RscscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_RscscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_RSCS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_RscscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_RSCS_CHAR_INDEX_T charIndex, CYBLE_RSCS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_RscscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_RSCS_CHAR_INDEX_T charIndex, uint8 descrIndex)

	RSCS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_RSCS_CHAR_VALUE_T
	struct CYBLE_RSCS_DESCR_VALUE_T
	struct CYBLE_RSCSS_CHAR_T
	struct CYBLE_RSCSS_T
	struct CYBLE_RSCSC_SRVR_FULL_CHAR_INFO_T
	struct CYBLE_RSCSC_T

	Enumeration Type Documentation
	enum CYBLE_RSCS_CHAR_INDEX_T
	enum CYBLE_RSCS_DESCR_INDEX_T

	Reference Time Update Service (RTUS)
	Description
	Modules

	RTUS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_RtusRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	RTUS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_RtussSetCharacteristicValue (CYBLE_RTUS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_RtussGetCharacteristicValue (CYBLE_RTUS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	RTUS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_RtuscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_RTUS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_RtuscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_RTUS_CHAR_INDEX_T charIndex)

	RTUS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_RTUS_CHAR_VALUE_T
	struct CYBLE_RTUS_TIME_UPDATE_STATE_T
	struct CYBLE_RTUSS_T
	struct CYBLE_RTUSC_T

	Enumeration Type Documentation
	enum CYBLE_RTUS_CHAR_INDEX_T

	Scan Parameters Service (ScPS)
	Description
	Modules

	ScPS Server and Client Functions
	Description
	Functions
	Function Documentation
	void CyBle_ScpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	ScPS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_ScpssSetCharacteristicValue (CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_ScpssGetCharacteristicValue (CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_ScpssGetCharacteristicDescriptor (CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_ScpssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	ScPS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_ScpscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_SCPS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_ScpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_ScpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_SCPS_CHAR_INDEX_T charIndex, CYBLE_SCPS_DESCR_INDEX_T descrIndex)

	ScPS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_SCPSS_T
	struct CYBLE_SCPSC_T
	struct CYBLE_SCPS_CHAR_VALUE_T
	struct CYBLE_SCPS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_SCPS_CHAR_INDEX_T
	enum CYBLE_SCPS_DESCR_INDEX_T

	TX Power Service (TPS)
	Description
	Modules

	TPS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_TpsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	TPS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_TpssSetCharacteristicValue (CYBLE_TPS_CHAR_INDEX_T charIndex, uint8 attrSize, int8 *attrValue)
	CYBLE_API_RESULT_T CyBle_TpssGetCharacteristicValue (CYBLE_TPS_CHAR_INDEX_T charIndex, uint8 attrSize, int8 *attrValue)
	CYBLE_API_RESULT_T CyBle_TpssGetCharacteristicDescriptor (CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_TpssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_TPS_CHAR_INDEX_T charIndex, uint8 attrSize, int8 *attrValue)

	TPS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_TpscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_TPS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_TpscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_TpscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_TPS_CHAR_INDEX_T charIndex, CYBLE_TPS_CHAR_DESCRIPTORS_T descrIndex)

	TPS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_TPS_CHAR_VALUE_T
	struct CYBLE_TPS_DESCR_VALUE_T
	struct CYBLE_TPSS_T
	struct CYBLE_TPSC_T

	Enumeration Type Documentation
	enum CYBLE_TPS_CHAR_INDEX_T
	enum CYBLE_TPS_CHAR_DESCRIPTORS_T

	User Data Service (UDS)
	Description
	Modules

	UDS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_UdsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	UDS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_UdssSetCharacteristicValue (CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_UdssGetCharacteristicValue (CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_UdssGetCharacteristicDescriptor (CYBLE_UDS_CHAR_INDEX_T charIndex, CYBLE_UDS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_UdssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_UdssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	UDS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_UdscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_UDS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_UdscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_UDS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_UdscGetLongCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_UDS_CHAR_INDEX_T charIndex, uint16 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_UdscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_UDS_CHAR_INDEX_T charIndex, CYBLE_UDS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_UdscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_UDS_CHAR_INDEX_T charIndex, CYBLE_UDS_DESCR_INDEX_T descrIndex)

	UDS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_UDSS_CHAR_T
	struct CYBLE_UDSS_T
	struct CYBLE_UDSC_CHAR_T
	struct CYBLE_UDSC_T
	struct CYBLE_UDS_CHAR_VALUE_T
	struct CYBLE_UDS_DESCR_VALUE_T

	Enumeration Type Documentation
	enum CYBLE_UDS_CHAR_INDEX_T
	enum CYBLE_UDS_DESCR_INDEX_T

	Wireless Power Transfer Service (WPTS)
	Description
	Modules

	WPTS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_WptsRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	WPTS Server Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_WptssSetCharacteristicValue (CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WptssGetCharacteristicValue (CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WptssSetCharacteristicDescriptor (CYBLE_WPTS_CHAR_INDEX_T charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WptssGetCharacteristicDescriptor (CYBLE_WPTS_CHAR_INDEX_T charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WptssSendNotification (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WptssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	WPTS Client Functions
	Description
	Functions
	Function Documentation
	void CyBle_WptscDiscovery (CYBLE_GATT_DB_ATTR_HANDLE_T servHandle)
	CYBLE_API_RESULT_T CyBle_WptscSetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WPTS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WptscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WPTS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_WptscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WPTS_CHAR_INDEX_T charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WptscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WPTS_CHAR_INDEX_T charIndex, CYBLE_WPTS_DESCR_INDEX_T descrIndex)

	WPTS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_WPTSS_CHAR_T
	struct CYBLE_WPTS_CHAR_VALUE_T
	struct CYBLE_WPTS_DESCR_VALUE_T
	struct CYBLE_WPTSS_T
	struct CYBLE_WPTSC_CHAR_T
	struct CYBLE_WPTSC_T

	Enumeration Type Documentation
	enum CYBLE_WPTS_CHAR_INDEX_T
	enum CYBLE_WPTS_DESCR_INDEX_T

	Weight Scale Service (WSS)
	Description
	Modules

	WSS Server and Client Function
	Description
	Functions
	Function Documentation
	void CyBle_WssRegisterAttrCallback (CYBLE_CALLBACK_T callbackFunc)

	WSS Server Functions
	Description
	Functions
	Function Documentation
	uint8 CyBle_WssGetAdUserIdListSize (void)
	CYBLE_API_RESULT_T CyBle_WssSetAdUserId (uint8 listSize, const uint8 userIdList[])
	CYBLE_API_RESULT_T CyBle_WsssSetCharacteristicValue (CYBLE_WSS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WsssGetCharacteristicValue (CYBLE_WSS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WsssSetCharacteristicDescriptor (CYBLE_WSS_CHAR_INDEX_T charIndex, CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WsssGetCharacteristicDescriptor (CYBLE_WSS_CHAR_INDEX_T charIndex, CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WsssSendIndication (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WSS_CHAR_INDEX_T charIndex, uint8 attrSize, uint8 *attrValue)

	WSS Client Functions
	Description
	Functions
	Function Documentation
	CYBLE_API_RESULT_T CyBle_WsscGetCharacteristicValue (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WSS_CHAR_INDEX_T charIndex)
	CYBLE_API_RESULT_T CyBle_WsscSetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WSS_CHAR_INDEX_T charIndex, CYBLE_WSS_DESCR_INDEX_T descrIndex, uint8 attrSize, uint8 *attrValue)
	CYBLE_API_RESULT_T CyBle_WsscGetCharacteristicDescriptor (CYBLE_CONN_HANDLE_T connHandle, CYBLE_WSS_CHAR_INDEX_T charIndex, CYBLE_WSS_DESCR_INDEX_T descrIndex)

	WSS Definitions and Data Structures
	Description
	Data Structures
	Enumerations
	Data Structure Documentation
	struct CYBLE_WSS_CHAR_VALUE_T
	struct CYBLE_WSS_DESCR_VALUE_T
	struct CYBLE_WSSS_CHAR_T
	struct CYBLE_WSSS_T
	struct CYBLE_WSSC_CHAR_T
	struct CYBLE_WSSC_T

	Enumeration Type Documentation
	enum CYBLE_WSS_CHAR_INDEX_T
	enum CYBLE_WSS_DESCR_INDEX_T

	Custom Service
	Description
	Data Structures
	Variables
	Data Structure Documentation
	struct CYBLE_CUSTOMS_INFO_T
	struct CYBLE_CUSTOMS_T
	struct CYBLE_CUSTOMC_DESC_T
	struct CYBLE_CUSTOMC_CHAR_T
	struct CYBLE_CUSTOMC_T

	Variable Documentation
	const CYBLE_CUSTOMS_T cyBle_customs[(`$CustomSCount`)]
	CYBLE_CUSTOMC_T cyBle_customCServ[(`$CustomCCount`)]

	Code snippets
	Sample Firmware Source Code
	Application Notes
	Industry Standards
	MISRA Compliance
	Bluetooth Qualification

	API Memory Usage
	HCI Mode
	Peripheral and Central Profile Mode
	Central Profile Mode
	Peripheral Profile Mode

	Resources
	DC and AC Electrical Characteristics
	Updating from BLE v1.x to BLE v2.x or later
	Item #1
	Item #2
	Item #3
	Item #4

	Component Errata
	BLE Stack Changes
	Component Changes

