

Holtek 32-Bit Microcontroller with Arm[®] Cortex[®]-M0+

HT32F50231/HT32F50241

User Manual

Revision: V1.20 Date: February 03, 2021

www.holtek.com

Table of Contents

1	Introduction	. 22
	Overview	. 22
	Features	. 23
	Device Information	. 26
	Block Diagram	
_		
2	Document Conventions	. 28
3	System Architecture	. 29
	Arm [®] Cortex [®] -M0+ Processor	. 29
	Bus Architecture	. 30
	Memory Organization	. 31
	Метогу Мар	32
	Embedded Flash Memory	34
	Embedded SRAM Memory	34
	AHB Peripherals	34
	APB Peripherals	34
4	Flash Memory Controller (FMC)	. 35
ĵ.	Introduction	
	Features	
	Functional Descriptions	
	Flash Memory Map	
	Flash Memory Architecture	
	Booting Configuration	
	Page Erase	
	Mass Erase	
	Word Programming	
	Option Byte Description	
	Page Erase / Program Protection	43
	Security Protection	44
	Register Map	.45
	Register Descriptions	. 46
	Flash Target Address Register – TADR	
	Flash Write Data Register – WRDR	
	Flash Operation Command Register – OCMR	48
	Flash Operation Control Register – OPCR	49
	Flash Operation Interrupt Enable Register – OIER	50
	Flash Operation Interrupt and Status Register – OISR	51
	Flash Page Erase / Program Protection Status Register – PPSR	53
	Flash Security Protection Status Register – CPSR	
	Flash Vector Mapping Control Register – VMCR	55

	Flash Manufacturer and Device ID Register – MDID	
	Flash Page Number Status Register – PNSR	
	Flash Page Size Status Register – PSSR	
	Device ID Register – DIDR	
	Custom ID Register n – CIDRn, n = 0 ~ 3	60
5	Power Control Unit (PWRCU)	61
	Introduction	61
	Features	
	Functional Descriptions	
	V_{DD} Power Domain	
	1.5 V Power Domain	
	Operation Modes	
	Register Map	
	Register Descriptions	
	Power Control Status Register – PWRSR Power Control Register – PWRCR	
	Low Voltage / Brown Out Detect Control and Status Register – LVDCSR	
6	Clock Control Unit (CKCU)	71
	Introduction	71
	Features	73
	Function Descriptions	73
	High Speed External Crystal Oscillator – HSE	
	High Speed Internal RC Oscillator – HSI	74
	Auto Trimming of High Speed Internal RC Oscillator – HSI	74
	Low Speed External Crystal Oscillator – LSE	76
	Low Speed Internal RC Oscillator – LSI	
	Clock Ready Flag	
	System Clock (CK_SYS) Selection	
	HSE Clock Monitor	
	Clock Output Capability	
	Register Map	78
	Register Descriptions	
	Global Clock Configuration Register – GCFGR	
	Global Clock Control Register – GCCR	
	Global Clock Status Register – GCSR	
	Global Clock Interrupt Register – GCIR	
	AHB Configuration Register – AHBCFGR	
	AHB Clock Control Register – AHBCCR	
	APB Configuration Register – APBCFGR	
	APB Clock Control Register 0 – APBCCR0 APB Clock Control Register 1 – APBCCR1	
	Clock Source Status Register – CKST	

	APB Peripheral Clock Selection Register 0 – APBPCSR0	91
	APB Peripheral Clock Selection Register 1 – APBPCSR1	
	HSI Control Register – HSICR	
	HSI Auto Trimming Counter Register – HSIATCR	
	APB Peripheral Clock Selection Register 2 – APBPCSR2	
	MCU Debug Control Register – MCUDBGCR	
7	Reset Control Unit (RSTCU)	
	Introduction	
	Functional Descriptions	
	Power On Reset	
	System Reset	
	AHB and APB Unit Reset	
	Register Map	
	Register Descriptions	
	Global Reset Status Register – GRSR	
	AHB Peripheral Reset Register – AHBPRSTR	
	APB Peripheral Reset Register 0 – APBPRSTR0	
	APB Peripheral Reset Register 1 – APBPRSTR1	
8	General Purpose I/O (GPIO)	106
	Introduction	
	Features	
	Functional Descriptions	
	Default GPIO Pin Configuration	
	General Purpose I/O – GPIO	
	GPIO Locking Mechanism	
	Register Map	
	Register Descriptions.	
	Port A Data Direction Control Register – PADIRCR	
	Port A Input Function Enable Control Register – PAINER	
	Port A Pull-Up Selection Register – PAPUR	
	Port A Pull-Down Selection Register – PAPDR	
	Port A Open-Drain Selection Register – PAODR	
	Port A Output Drive Current Selection Register – PADRVR	
	Port A Lock Register – PALOCKR	
	Port A Data Input Register – PADINR	
	Port A Output Data Register – PADOUTR	
	Port A Output Set / Reset Control Register – PASRR	
	Port A Output Reset Register – PARR	
	Port A Sink Current Enhanced Selection Register – PASCER	
	Port B Data Direction Control Register – PBDIRCR	
	Port B Input Function Enable Control Register – PBINER	
	Port B Pull-Up Selection Register – PBPUR	122

Deat D Dull Deven Calenting Deviation DDDDD	400
Port B Pull-Down Selection Register – PBPDR	
Port B Open-Drain Selection Register – PBODR Port B Output Drive Current Selection Register – PBDRVR	
Port B Lock Register – PBLOCKR	
-	
Port B Data Input Register – PBDINR	
Port B Output Data Register – PBDOUTR	
Port B Output Set / Reset Control Register – PBSRR	
Port B Output Reset Register – PBRR	
Port B Sink Current Enhanced Selection Register – PBSCER	
Port C Data Direction Control Register – PCDIRCR	
Port C Input Function Enable Control Register – PCINER Port C Pull-Up Selection Register – PCPUR	
· · ·	
Port C Pull-Down Selection Register – PCPDR	
Port C Open Drain Selection Register – PCODR	
Port C Output Current Drive Selection Register – PCDRVR	
Port C Lock Register – PCLOCKR Port C Data Input Register – PCDINR	
Port C Output Data Register – PCDOUTR Port C Output Set / Reset Control Register – PCSRR	
Port C Output Reset Register – PCRR	
Port C Sink Current Enhanced Selection Register – PCSCER	
9 Alternate Function Input / Output Control Unit (AFIO)	
9 Alternate Function Input / Output Control Unit (AFIO) Introduction	
Introduction Features	140 141
Introduction Features Functional Descriptions	140 141 141
Introduction Features Functional Descriptions External Interrupt Pin Selection	140 141 141 141
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function	
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism	
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map	
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions	
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0	140 141 141 141 141 142 142 142 142 143 143
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1	
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1 GPIO Port x Configuration Low Register – GPxCFGLR, x = A, B, C	
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1	
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1 GPIO Port x Configuration Low Register – GPxCFGLR, x = A, B, C	140 141 141 141 142 142 142 142 143 143 143 144 145 146
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1 GPIO Port x Configuration Low Register – GPxCFGLR, x = A, B, C GPIO Port x Configuration High Register – GPxCFGHR, x = A, B, C	140 141 141 141 142 142 142 142 143 143 143 143 144 145 146 147
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1 GPIO Port x Configuration Low Register – GPxCFGLR, x = A, B, C GPIO Port x Configuration High Register – GPxCFGHR, x = A, B, C 10 Nested Vectored Interrupt Controller (NVIC) Introduction	140 141 141 141 142 142 142 142 143 143 143 143 144 145 146 147
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1 GPIO Port x Configuration Low Register – GPxCFGLR, x = A, B, C GPIO Port x Configuration High Register – GPxCFGLR, x = A, B, C 10 Nested Vectored Interrupt Controller (NVIC) Introduction Features	
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1 GPIO Port x Configuration Low Register – GPxCFGLR, x = A, B, C GPIO Port x Configuration High Register – GPxCFGHR, x = A, B, C Introduction Features Function Descriptions	140 141 141 141 142 142 142 142 142 143 143 143 143 144 145 146 147 147 147
Introduction Features Functional Descriptions External Interrupt Pin Selection Alternate Function Lock Mechanism Register Map Register Descriptions EXTI Source Selection Register 0 – ESSR0 EXTI Source Selection Register 1 – ESSR1 GPIO Port x Configuration Low Register – GPxCFGLR, x = A, B, C GPIO Port x Configuration High Register – GPxCFGLR, x = A, B, C 10 Nested Vectored Interrupt Controller (NVIC) Introduction Features	140 141 141 141 142 142 142 142 143 143 143 143 144 145 146 147 147 147 148 149

	4.50
11 External Interrupt / Event Controller (EXTI)	
Introduction	
Features	
Function Descriptions	151
Wakeup Event Management	151
External Interrupt / Event Line Mapping	151
Interrupt and Debounce	151
Register Map	152
Register Descriptions	
EXTI Interrupt n Configuration Register – EXTICFGRn, n = 0 ~ 15	153
EXTI Interrupt Control Register – EXTICR	154
EXTI Interrupt Edge Flag Register – EXTIEDGEFLGR	155
EXTI Interrupt Edge Status Register – EXTIEDGESR	156
EXTI Interrupt Software Set Command Register – EXTISSCR	157
EXTI Interrupt Wakeup Control Register – EXTIWAKUPCR	158
EXTI Interrupt Wakeup Polarity Register – EXTIWAKUPPOLR	159
EXTI Interrupt Wakeup Flag Register – EXTIWAKUPFLG	
12 Analog to Digital Converter (ADC)	161
Features	
Function Descriptions	
ADC Clock Setup	163
Channel Selection	
Conversion Mode	
Start Conversion on External Event	
Sampling Time Setting	
Data Format	
Analog Watchdog	
Interrupts	
Register Map	
Register Descriptions	
ADC Conversion Control Register – ADCCR	
ADC Conversion List Register 0 – ADCLST0	
ADC Conversion List Register 1 – ADCLST1	
ADC Input Sampling Time Register – ADCSTR	
ADC Conversion Data Register y – ADCDRy, y = 0 ~ 7	
ADC Trigger Control Register – ADCTCR	
ADC Trigger Source Register – ADCTSR	
ADC Watchdog Control Register – ADCWCR	
ADC Watchdog Threshold Register – ADCTR	
ADC Interrupt Enable Register – ADCIER	
ADC Interrupt Raw Status Register – ADCIRAW	

ADC Interrupt Status Register – ADCISR	
ADC Interrupt Clear Register – ADCICLR	
13 General-Purpose Timer (GPTM)	
Introduction	
Features	186
Functional Descriptions	
Counter Mode	
Clock Controller	
Trigger Controller	
Slave Controller	
Master Controller	
Channel Controller	
Input Stage	
Quadrature Decoder	
Output Stage	
Update Management	
Single Pulse Mode	
Asymmetric PWM Mode	
Timer Interconnection	
Trigger Peripherals Start	
PDMA Request	
Register Map	
Register Descriptions	
Timer Counter Configuration Register – CNTCFR	
Timer Mode Configuration Register – MDCFR	
Timer Trigger Configuration Register – TRCFR	
Timer Control Register – CTR	
Channel 0 Input Configuration Register – CH0ICFR	
Channel 1 Input Configuration Register – CH1ICFR	
Channel 2 Input Configuration Register – CH2ICFR	
Channel 3 Input Configuration Register – CH3ICFR	
Channel 0 Output Configuration Register – CH0OCFR	
Channel 1 Output Configuration Register – CH10CFR	
Channel 2 Output Configuration Register – CH2OCFR	
Channel 3 Output Configuration Register – CH3OCFR	
Channel Control Register – CHCTR	
Channel Polarity Configuration Register – CHPOLR	
Timer PDMA/Interrupt Control Register – DICTR	
Timer Event Generator Register – EVGR	
Timer Interrupt Status Register – INTSR	
Timer Counter Register – CNTR Timer Prescaler Register – PSCR	
Timer Counter-Reload Register – CRR	
Timer Obunter-Reibau Register - ORRA	

	0 Capture/Compare Register – CH0CCR	
	1 Capture/Compare Register – CH1CCR	
	2 Capture/Compare Register – CH2CCR	
	3 Capture/Compare Register – CH3CCR	
	0 Asymmetric Compare Register – CH0ACR	
	1 Asymmetric Compare Register – CH1ACR	
	2 Asymmetric Compare Register – CH2ACR	
Channel	3 Asymmetric Compare Register – CH3ACR	
14 Pulse-W	idth-Modulation Timer (PWM)	
Introductior	n	248
Features		
Functional	Descriptions	
Clock Co	ntroller	
Trigger C	Controller	
Slave Co	ntroller	
Master C	controller	
Channel	Controller	
Output St	tage	
Update M	lanagement	
Single Pu	ulse Mode	
Asymmet	tric PWM Mode	
Timer Inte	erconnection	
Trigger P	Peripherals Start	
PDMA Re	equest	
Register Ma	ар	
Register De	escriptions	
Timer Co	ounter Configuration Register – CNTCFR	
Timer Mo	ode Configuration Register – MDCFR	
Timer Trig	gger Configuration Register – TRCFR	
Timer Co	ntrol Register – CTR	
Channel	0 Output Configuration Register – CH0OCFR	
Channel	1 Output Configuration Register – CH1OCFR	
Channel	2 Output Configuration Register – CH2OCFR	279
Channel	3 Output Configuration Register – CH3OCFR	
Channel	Control Register – CHCTR	
Channel	Polarity Configuration Register – CHPOLR	
	0MA/Interrupt Control Register – DICTR	
Timer Eve	ent Generator Register – EVGR	
	errupt Status Register – INTSR	
	ounter Register – CNTR	
	escaler Register – PSCR	
	ounter-Reload Register – CRR	
Channel	0 Compare Register – CH0CR	

Channel 1 Compare Register – CH1CR	
Channel 2 Compare Register – CH2CR	
Channel 3 Compare Register – CH3CR	
Channel 0 Asymmetric Compare Register – CH0ACR	
Channel 1 Asymmetric Compare Register – CH1ACR	
Channel 2 Asymmetric Compare Register – CH2ACR	
Channel 3 Asymmetric Compare Register – CH3ACR	
15 Basic Function Timer (BFTM)	295
Introduction	
Features	
Functional Description	
Repetitive Mode	
One Shot Mode	
Trigger ADC Start	
Register Map	
Register Descriptions	
BFTM Control Register – BFTMCR	
BFTM Status Register – BFTMSR	
BFTM Counter Value Register – BFTMCNTR	
BFTM Compare Value Register – BFTMCMPR	
16 Motor Control Timer (MCTM)	
Introduction	
Features	
Functional Descriptions	
Counter Mode	
Clock Controller	
Trigger Controller	
Slave Controller	
Master Controller	
Channel Controller	
Input Stage	
Output Stage	
Update Management	
Single Pulse Mode	
Timer Interconnection	
Trigger Peripherals Start	
Lock Level Table	
Register Map	
Register Descriptions	
Timer Counter Configuration Register – CNTCFR	
Timer Mode Configuration Register – MDCFR	
Timer Trigger Configuration Register – TRCFR	

Timer Control Register – CTR	
Channel 0 Input Configuration Register – CH0ICFR	
Channel 1 Input Configuration Register – CH1ICFR	
Channel 2 Input Configuration Register – CH2ICFR	
Channel 3 Input Configuration Register – CH3ICFR	
Channel 0 Output Configuration Register – CH0OCFR	
Channel 1 Output Configuration Register – CH1OCFR	
Channel 2 Output Configuration Register – CH2OCFR	
Channel 3 Output Configuration Register – CH3OCFR	
Channel Control Register – CHCTR	
Channel Polarity Configuration Register – CHPOLR	
Channel Break Configuration Register – CHBRKCFR	
Channel Break Control Register – CHBRKCTR	
Timer Interrupt Control Register – DICTR	
Timer Event Generator Register – EVGR	
Timer Interrupt Status Register – INTSR	
Timer Counter Register – CNTR	
Timer Prescaler Register – PSCR	
Timer Counter Reload Register – CRR	
Timer Repetition Register – REPR	
Channel 0 Capture/Compare Register – CH0CCR	
Channel 1 Capture/Compare Register – CH1CCR	
Channel 2 Capture/Compare Register – CH2CCR	
Channel 3 Capture/Compare Register – CH3CCR	
Channel 0 Asymmetric Compare Register – CH0ACR	
Channel 1 Asymmetric Compare Register – CH1ACR	
Channel 2 Asymmetric Compare Register – CH2ACR	
Channel 3 Asymmetric Compare Register – CH3ACR	
17 Real Time Clock (RTC)	376
Introduction	
Features	
Functional Descriptions	
RTC Related Register Reset	
Low Speed Clock Configuration	
RTC Counter Operation	
Interrupt and Wakeup Control	
RTCOUT Output Pin Configuration	
Register Map	
Register Descriptions	
RTC Counter Register – RTCCNT	
RTC Compare Register – RTCCMP	
RTC Control Register – RTCCR	

RTC Status Register – RTCSR	
RTC Interrupt and Wakeup Enable Register – RTCIWEN	
18 Watchdog Timer (WDT)	
Introduction	
Features	
Functional Description	
Register Map	
Register Descriptions	
Watchdog Timer Control Register – WDTCR	
Watchdog Timer Mode Register 0 – WDTMR0	
Watchdog Timer Mode Register 1 – WDTMR1	390
Watchdog Timer Status Register – WDTSR	391
Watchdog Timer Protection Register – WDTPR	392
Watchdog Timer Clock Selection Register – WDTCSR	393
19 Inter-Integrated Circuit (I ² C)	
Introduction	
Features	
Functional Descriptions	
Two-Wire Serial Interface	
START and STOP Conditions	
Data Validity	
Addressing Format	
Data Transfer and Acknowledge	
Clock Synchronization	
Arbitration	
General Call Addressing	401
Bus Error	
Address Mask Enable	401
Address Snoop	401
Operation Mode	401
Conditions of Holding SCL Line	407
I ² C Timeout Function	408
Register Map	
Register Descriptions	
I ² C Control Register – I2CCR	409
I ² C Interrupt Enable Register – I2CIER	410
I ² C Address Register – I2CADDR	411
I ² C Status Register – I2CSR	412
I ² C SCL High Period Generation Register – I2CSHPGR	415
I ² C SCL Low Period Generation Register – I2CSLPGR	
I ² C Data Register – I2CDR	417
I ² C Target Register – I2CTAR	418

I ² C Address Mask Register – I2CADDMR	419
I ² C Address Snoop Register – I2CADDSR	420
I ² C Timeout Register – I2CTOUT	421
20 Serial Peripheral Interface (SPI)	422
Introduction	422
Features	423
Functional Descriptions	
Master Mode	
Slave Mode	
SPI Serial Frame Format	
SPI Dual Mode	
Status Flags	
PDMA Interface	433
Register Map	433
Register Descriptions	
SPI Control Register 0 – SPICR0	
SPI Control Register 1 – SPICR1	
SPI Interrupt Enable Register – SPIIER	
SPI Clock Prescaler Register – SPICPR	439
SPI Data Register – SPIDR	440
SPI Status Register – SPISR	440
SPI FIFO Control Register – SPIFCR	442
SPI FIFO Status Register – SPIFSR	443
SPI FIFO Time Out Counter Register – SPIFTOCR	444
21 Universal Synchronous Asynchronous Receiver Transmitter (USART)	445
Introduction	445
Features	446
Functional Descriptions	446
Serial Data Format	
Baud Rate Generation	447
Hardware Flow Control	448
IrDA	449
RS485 Mode	451
Synchronous Master Mode	453
Interrupts and Status	455
Register Map	455
Register Descriptions	456
USART Data Register – USRDR	456
USART Control Register – USRCR	457
USART FIFO Control Register – USRFCR	459
USART Interrupt Enable Register – USRIER	460
USART Status & Interrupt Flag Register – USRSIFR	462

USART Timing Parameter Register – USRTPR	
USART IrDA Control Register – IrDACR	
USART RS485 Control Register – RS485CR	
USART Synchronous Control Register – SYNCR	
USART Divider Latch Register – USRDLR	
USART Test Register – USRTSTR	
22 Universal Asynchronous Receiver Transmitter (UART)	470
Introduction	
Features	
Function Descriptions	
Serial Data Format	
Baud Rate Generation	
Interrupts and Status	
Register Map	
Register Descriptions	
UART Data Register – URDR	
UART Control Register – URCR	
UART Interrupt Enable Register – URIER	
UART Status & Interrupt Flag Register – URSIFR	
UART Divider Latch Register – URDLR	
UART Test Register – URTSTR	480
23 Divider (DIV)	
Introduction	
Features	
Functional Descriptions	
Register Map	
Register Descriptions	
Divider Control Register – CR	
Dividend Data Register – DDR	
Divisor Data Register – DSR	
Quotient Data Register – QTR	
Remainder Data Register – RMR	
24 Cyclic Redundancy Check (CRC)	185
Introduction	
Features	
Functional Descriptions	
CRC Computation	
Byte and Bit Reversal for CRC Computation	
Register Map	

CRC Control Register – CRCCR	487
CRC Seed Register – CRCSDR	488
CRC Checksum Register – CRCCSR	489
CRC Data Register – CRCDR	490

List of Tables

Table 1. Features and Peripheral List	
Table 2. Document Conventions	
Table 3. Register Map	33
Table 4. Flash Memory and Option Byte	37
Table 5. Booting Modes	
Table 6. Option Byte Memory Map	42
Table 7. Access Permission of Protected Main Flash Page	43
Table 8. Access Permission When Security Protection is Enabled	44
Table 9. FMC Register Map	45
Table 10. Operation Mode Definitions	
Table 11. Enter / Exit Power Saving Modes	
Table 12. Power Status After System Reset	
Table 13. PWRCU Register Map	
Table 14. CKOUT Clock Source	
Table 15. CKCU Register Map	
Table 16. RSTCU Register Map	101
Table 17. AFIO, GPIO and I/O Pad Control Signal True Table	108
Table 18. GPIO Register Map	109
Table 19. AFIO Selection for Peripheral Map Example	142
Table 20. AFIO Register Map	142
Table 21. Exception Types	147
Table 22. NVIC Register Map	149
Table 23. EXTI Register Map	152
Table 24. Data Format in ADCDR [15:0]	167
Table 25. A/D Converter Register Map	169
Table 26. Counting Direction and Encoding Signals	
Table 27. Compare Match Output Setup	
Table 28. GPTM Register Map	210
Table 29. GPTM Internal Trigger Connection	215
Table 30. Compare Match Output Setup	
Table 31. PWM Register Map	268
Table 32. PWM Internal Trigger Connection	
Table 33. BFTM Register Map	
Table 34. Compare Match Output Setup	
Table 35. Output Control Bits for Complementary Output with a Break Event Occurrence	
Table 36. Lock Level Table	
Table 37. MCTM Register Map	
Table 38. MCTM Internal Trigger Connection	
Table 39. LSE Startup Mode Operating Current and Startup Time	

Table 40.	RTCOUT Output Mode and Active Level Setting	
	RTC Register Map	
Table 42.	Watchdog Timer Register Map	
Table 43.	Conditions of Holding SCL line	407
Table 44.	I ² C Register Map	408
Table 45.	I ² C Clock Setting Example	416
Table 46.	SPI Interface Format Setup	424
Table 47.	SPI Mode Fault Trigger Conditions	432
Table 48.	SPI Master Mode SPI_SEL Pin Status	432
Table 49.	SPI Register Map	433
Table 50.	Baud Rate Deviation Error Calculation – CK_USART = 20 MHz	448
Table 51.	Baud Rate Deviation Error Calculation – CK_USART = 10 MHz	448
Table 52.	USART Register Map	455
Table 53.	Baud Rate Deviation Error Calculation – CK_UART = 20 MHz	
Table 54.	Baud Rate Deviation Error Calculation – CK_UART = 10 MHz	473
Table 55.	UART Register Map	473
Table 56.	DIV Register Map	482
Table 57.	CRC Register Map	487

List of Figures

Figure 1. Block Diagram	
Figure 2. Cortex [®] -M0+ Block Diagram	
Figure 3. Bus Architecture	
Figure 4. Memory Map	
Figure 5. Flash Memory Controller Block Diagram	
Figure 6. Flash Memory Map	
Figure 7. Vector Remapping	
Figure 8. Page Erase Operation Flowchart	
Figure 9. Mass Erase Operation Flowchart	
Figure 10. Word Programming Operation Flowchart	41
Figure 11. PWRCU Block Diagram	61
Figure 12. Power On Reset / Power Down Reset Waveform	63
Figure 13. CKCU Block Diagram	72
Figure 14. External Crystal, Ceramic and Resonators for HSE	73
Figure 15. HSI Auto Trimming Block Diagram	75
Figure 16. External Crystal, Ceramic and Resonators for LSE	
Figure 17. RSTCU Block Diagram	
Figure 18. Power On Reset Sequence	100
Figure 19. GPIO Block Diagram	106
Figure 20. AFIO / GPIO Control Signal	108
Figure 21. AFIO Block Diagram	140
Figure 22. EXTI Channel Input Selection	141
Figure 23. EXTI Block Diagram	150
Figure 24. EXTI Wakeup Event Management	151
Figure 25. EXTI Interrupt Debounce Function	152
Figure 26. ADC Block Diagram	161
Figure 27. One Shot Conversion Mode	164
Figure 28. Continuous Conversion Mode	164
Figure 29. Discontinuous Conversion Mode	166
Figure 30. GPTM Block Diagram	185
Figure 31. Up-counting Example	187
Figure 32. Down-counting Example	187
Figure 33. Center-aligned Counting Example	188
Figure 34. GPTM Clock Source Selection	189
Figure 35. Trigger Control Block	190
Figure 36. Slave Controller Diagram	191
Figure 37. GPTM in Restart Mode	
Figure 38. GPTM in Pause Mode	192
Figure 39. GPTM in Trigger Mode	192

Figure 40.	Master GPTMn and Slave GPTMm/TMm Connection	193
Figure 41.	MTO Selection	193
Figure 42.	Capture/Compare Block Diagram	194
Figure 43.	Input Capture Mode	195
Figure 44.	PWM Pulse Width Measurement Example	196
Figure 45.	Channel 0 and Channel 1 Input Stages	196
Figure 46.	Channel 2 and Channel 3 Input Stages	197
Figure 47.	TI0 Digital Filter Diagram with N = 2	197
Figure 48.	Input Stage and Quadrature Decoder Block Diagram	198
Figure 49.	Both TI0 and TI1 Quadrature Decoder Counting	199
Figure 50.	Output Stage Block Diagram	199
Figure 51.	Toggle Mode Channel Output Reference Signal (CHxPRE = 0)	200
Figure 52.	Toggle Mode Channel Output Reference Signal (CHxPRE = 1)	201
Figure 53.	PWM Mode Channel Output Reference Signal and Counter in Up-counting Mode	201
Figure 54.	PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode	202
Figure 55.	PWM Mode Channel Output Reference Signal and Counter in Centre-aligned Mode	202
Figure 56.	Update Event Setting Diagram	203
Figure 57.	Single Pulse Mode	204
Figure 58.	Immediate Active Mode Minimum Delay	205
Figure 59.	Asymmetric PWM Mode versus Center-Aligned Counting Mode	206
Figure 60.	Pausing PWM0 using the GPTM CH0OREF Signal	207
Figure 61.	Triggering PWM0 with GPTM Update Event	207
Figure 62.	Trigger GPTM and PWM0 with the GPTM CH0 Input	208
Figure 63.	GPTM PDMA Mapping Diagram	209
Figure 64.	PWM Block Diagram	248
Figure 65.	Up-counting Example	249
Figure 66.	Down-counting Example	250
Figure 67.	Center-aligned Counting Example	251
Figure 68.	PWM Clock Selection Source	252
Figure 69.	Trigger Control Block	253
Figure 70.	Slave Controller Diagram	254
Figure 71.	PWM in Restart Mode	254
Figure 72.	PWM in Pause Mode	255
Figure 73.	PWM in Trigger Mode	255
Figure 74.	Master PWMn and Slave PWMm/TMm Connection	256
Figure 75.	MTO Selection	256
Figure 76.	Compare Block Diagram	257
Figure 77.	Output Stage Block Diagram	257
Figure 78.	Toggle Mode Channel Output Reference Signal (CHxPRE = 0)	258
Figure 79.	Toggle Mode Channel Output Reference Signal (CHxPRE = 1)	259
Figure 80.	PWM Mode Channel Output Reference Signal and Counter in Up-counting Mode	259

Figure 81. PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode	
Figure 82. PWM Mode Channel Output Reference Signal and Counter in Center-aligned Mode	
Figure 83. Update Event Setting Diagram	
Figure 84. Single Pulse Mode	
Figure 85. Immediate Active Mode Minimum Delay	263
Figure 86. Asymmetric PWM Mode versus Center-aligned Counting Mode	264
Figure 87. Pausing PWM1 using the PWM0 CH0OREF Signal	265
Figure 88. Triggering PWM1 with PWM0 Update Event	265
Figure 89. Trigger PWM0 and PWM1 with the PWM0 Timer Enable Signal	266
Figure 90. PWM PDMA Mapping Diagram	267
Figure 91. BFTM Block Diagram	295
Figure 92. BFTM – Repetitive Mode	296
Figure 93. BFTM – One Shot Mode	297
Figure 94. BFTM – One Shot Mode Counter Updating	297
Figure 95. MCTM Block Diagram	301
Figure 96. Up-counting Example	303
Figure 97. Down-counting Example	303
Figure 98. Center-aligned Counting Example	304
Figure 99. Update Event 1 Dependent Repetition Mechanism Example	305
Figure 100. MCTM Clock Source Selection	306
Figure 101. Trigger Controller Block	307
Figure 102. Slave Controller Diagram	308
Figure 103. MCTM in Restart Mode	308
Figure 104. MCTM in Pause Mode	309
Figure 105. MCTM in Trigger Mode	309
Figure 106. Master MCTMn and Slave GPTMm Connection	310
Figure 107. MTO Selection	310
Figure 108. Capture/Compare Block Diagram	311
Figure 109. Input Capture Mode	311
Figure 110. PWM Pulse Width Measurement Example	312
Figure 111. Channel 0 and Channel 1 Input Stages	313
Figure 112. Channel 2 and Channel 3 Input Stages	313
Figure 113. TI0 Digital Filter Diagram with N = 2	314
Figure 114. Output Stage Block Diagram	314
Figure 115. Toggle Mode Channel Output Reference Signal – CHxPRE = 0	315
Figure 116. Toggle Mode Channel Output Reference Signal – CHxPRE = 1	316
Figure 117. PWM Mode Channel Output Reference Signal and Counter in Up-counting Mode	316
Figure 118. PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode	317
Figure 119. PWM Mode 1 Channel Output Reference Signal and Counter in Centre-aligned Coun	ting
Mode	317
Figure 120. Dead-time Insertion Performed for Complementary Outputs	318

Figure 121.	MCTM Break Signal Bolck Diagram	319
Figure 122.	MT_BRK Pin Digital Filter Diagram with N = 2	319
Figure 123.	Channel 3 Output with a Break Event Occurrence	320
Figure 124.	Channel 0 ~ 2 Complementary Outputs with a Break Event Occurrence	321
Figure 125.	Channel 0 ~ 2 Only One Output Enabled when Break Event Occurs	322
Figure 126.	Hardware Protection When Both CHxO and CHxNO are in Active Condition	323
Figure 127.	Update Event 1 Setup Diagram	325
Figure 128.	CHxE, CHxNE and CHxOM Updated by Update Event 2	326
Figure 129.	Update Event 2 Setup Diagram	326
Figure 130.	Single Pulse Mode	327
Figure 131.	Immediate Active Mode Minimum Delay	328
Figure 132.	Asymmetric PWM Mode versus Center-aligned Counting Mode	329
Figure 133.	Pausing GPTM using the MCTM CH0OREF Signal	330
Figure 134.	Triggering GPTM with MCTM Update Event 1	331
Figure 135.	Trigger MCTM and GPTM with the MCTM CH0 Input	332
Figure 136.	CH1XOR Input as Hall Sensor Interface	333
Figure 137.	RTC Block Diagram	376
Figure 138.	Watchdog Timer Block Diagram	385
Figure 139.	Watchdog Timer Behavior	387
Figure 140.	I ² C Module Block Diagram	394
Figure 141.	START and STOP Condition	396
Figure 142.	Data Validity	396
Figure 143.	7-bit Addressing Mode	397
Figure 144.	10-bit Addressing Write Transmit Mode	398
Figure 145.	10-bit Addressing Read Receive Mode	398
Figure 146.	I ² C Bus Acknowledge	399
Figure 147.	Clock Synchronization during Arbitration	400
Figure 148.	Two Master Arbitration Procedure	400
Figure 149.	Master Transmitter Timing Diagram	402
Figure 150.	Master Receiver Timing Diagram	404
Figure 151.	Slave Transmitter Timing Diagram	405
Figure 152.	Slave Receiver Timing Diagram	406
Figure 153.	SCL Timing Diagram	416
Figure 154.	SPI Block Diagram	422
Figure 155.	SPI Single Byte Transfer Timing Diagram – CPOL = 0, CPHA = 0	424
Figure 156.	SPI Continuous Data Transfer Timing Diagram – CPOL = 0, CPHA = 0	424
Figure 157.	SPI Single Byte Transfer Timing Diagram – CPOL = 0, CPHA = 1	425
Figure 158.	SPI Continuous Transfer Timing Diagram – CPOL = 0, CPHA = 1	425
Figure 159.	SPI Single Byte Transfer Timing Diagram – CPOL = 1, CPHA = 0	426

Figure 160.	SPI Continuous Transfer Timing Diagram – CPOL = 1, CPHA = 0	426
Figure 161.	SPI Single Byte Transfer Timing Diagram – CPOL = 1, CPHA = 1	427
Figure 162.	SPI Continuous Transfer Timing Diagram – CPOL = 1, CPHA = 1	427
•	SPI Dual Mode Bit Sequence – CPOL = 0, CPHA = 0, DFL = 0x8 (16-bit), MSB Transmit	
	SPI Dual Mode Bit Sequence – CPOL = 0, CPHA = 1, DFL = 0x8 (16-bit), MSB Transmit	
•	SPI Dual Mode Bit Sequence – CPOL = 1, CPHA = 0, DFL = 0x8 (16-bit) , MSB Transmi	
0	SPI Dual Mode Bit Sequence – CPOL = 1, CPHA = 1, DFL = 0x8 (16-bit) , MSB Transmi	
Figure 167.	SPI Dual Mode Data Read Example - CPOL = 1, CPHA = 1	430
Figure 168.	SPI Multi-Master Slave Environment	431
Figure 169.	USART Block Diagram	444
Figure 170.	USART Serial Data Format	446
Figure 171.	USART Clock CK_USART and Data Frame Timing	446
Figure 172.	Hardware Flow Control between 2 USARTs	447
Figure 173.	USART RTS Flow Control	448
Figure 174.	USART CTS Flow Control	448
Figure 175.	IrDA Modulation and Demodulation	449
Figure 176.	USART I/O and IrDA Block Diagram	450
Figure 177.	RS485 Interface and Waveform	451
Figure 178.	USART Synchronous Transmission Example	452
Figure 179.	8-bit Format USART Synchronous Waveform	453
Figure 180.	UART Block Diagram	469
Figure 181.	UART Serial Data Format	470
Figure 182.	UART Clock CK_UART and Data Frame Timing	471
Figure 183.	Divider Functional Diagram	480
Figure 184.	CRC Block Diagram	484
Figure 185.	CRC Data Bit and Byte Reversal Example	485

1 Introduction

Overview

This user manual provides detailed information including how to use the devices, system and bus architecture, memory organization and peripheral instructions. The target audiences for this document are software developers, application developers and hardware developers. For more information regarding pin assignment, package and electrical characteristics, please refer to the datasheet.

The devices are high performance and low power consumption 32-bit microcontrollers based around an Arm[®] Cortex[®]-M0+ processor core. The Cortex[®]-M0+ is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer and advanced debug support.

The devices operate at a frequency of up to 20 MHz for HT32F50231/50241 to obtain maximum efficiency. It provides up to 64 KB of embedded Flash memory for code / data storage and 8 KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as Hardware Divider DIV, ADC, I²C, USART, UART, SPI, BFTM, MCTM, GPTM, PWM, CRC-16/32, RTC, WDT and SW-DP (Serial Wire Debug Port), etc., are also implemented in the device series. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, which is an especially important consideration in low power applications.

The above features ensure that the devices are suitable for use in a wide range of applications, especially in areas such as white goods application control, power monitors, alarm systems, consumer products, handheld equipment, data logging applications, motor control and so on.

Features

Core

- 32-bit Arm[®] Cortex[®]-M0+ processor core
- Up to 20 MHz operating frequency
- Single-cycle multiplication
- Integrated Nested Vectored Interrupt Controller (NVIC)
- 24-bit SysTick timer
- On-chip Memory
 - Up to 64 KB on-chip Flash memory for instruction / data and option byte storage
 - 8 KB on-chip SRAM
 - Supports multiple booting modes
- Flash Memory Controller FMC
 - 32-bit word programming with In System Programming Interface (ISP) and In Application Programming (IAP)
 - Flash protection capability to prevent illegal access
- Reset Control Unit RSTCU
 - Supply supervisor: Power On Reset / Power Down Reset (POR / PDR), Brown-out Detector (BOD) and Programmable Low Voltage Detector (LVD)
- Clock Control Unit CKCU
 - External 4 to 20 MHz crystal oscillator
 - Internal 20 MHz RC oscillator trimmed to ±2 % accuracy at 25 °C operating temperature
 - Internal 32 kHz RC oscillator
 - Independent clock divider and gating bits for peripheral clock sources
- Power Management PWRCU
 - Flexible power supply:
 - $-V_{DD}$ power supply: 2.5 V to 5.5 V
 - $-V_{DDIO}$ power supply for I/O pins: 1.8 V to 5.5 V
 - Integrated 1.5 V LDO regulator for CPU core, peripheral and memory power supply
 - Three power domains: V_{DD} , V_{DDIO} and 1.5 V
 - Three power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2
- External Interrupt / Event Controller EXTI
 - Up to 16 EXTI lines with configurable trigger source and type
 - All GPIO pins can be selected as EXTI trigger source
 - Source trigger type includes high level, low level, negative edge, positive edge or both edge
 - Individual interrupt enable, wakeup enable and status bits for each EXTI line
 - Software interrupt trigger mode for each EXTI line
 - Integrated deglitch filter for short pulse blocking
- Analog to Digital Converter ADC
 - 12-bit SAR ADC engine
 - Up to 1 Msps conversion rate
 - Up to 12 external analog input channels
- I/O ports GPIO
 - Up to 40 GPIOs
 - Port A, B, C are mapped as 16 external interrupts EXTI
 - Almost I/O pins are configurable output driving current

- Motor Control Timer MCTM
 - 16-bit up / down auto-reload counter
 - 16-bit programmable prescaler allowing counter clock frequency division by any factor between 1 and 65536
 - Input Capture function
 - Compare Match Output
 - PWM waveform generation with Edge-aligned and Center-aligned Counting Modes
 - Single Pulse Mode Output
 - Complementary Outputs with programmable dead-time insertion
 - Break input to force the timer's output signals into a reset or fixed condition
- General-Purpose Timer GPTM
 - 16-bit up / down auto-reload counter
 - Up to 4 independent channels
 - 16-bit programmable prescaler allowing the counter clock frequency division by any factor between 1 and 65536
 - Input Capture function
 - Compare Match Output
 - PWM waveform generation with Edge-aligned and Center-aligned Counting Modes
 - Single Pulse Mode Output
 - Encoder interface controller with two inputs using quadrature decoder
- Pulse-Width-Modulation Timer PWM
 - 16-bit up / down auto-reload counter
 - Up to 4 independent channels
 - 16-bit programmable prescaler allowing counter clock frequency division by any factor between 1 and 65536
 - Compare Match Output
 - PWM waveform generation with Edge-aligned and Center-aligned Counting Modes
 - Single Pulse Mode Output
- Basic Function Timer BFTM
 - 32-bit compare / match count-up counter No I/O control features
 - One shot mode Counting stops after a match condition
 - Repetitive mode Restart counter after a match condition
- Watchdog Timer WDT
 - 12-bit down-counter with a 3-bit pre-scaler
 - Reset event for the system
 - Programmable watchdog timer window function
 - Register write protection function
- Real Time Clock RTC
 - 24-bit up-counter with a programmable prescaler
 - Alarm function
 - Interrupt and Wake-up event
- Inter-integrated Circuit I²C
 - Supports both master and slave modes with a frequency of up to 1 MHz
 - Provides an arbitration function and clock synchronization
 - Supports 7-bit and 10-bit addressing modes and general call addressing
 - Supports slave multi-addressing mode with maskable address

- Serial Peripheral Interface SPI
 - Supports both master and slave modes
 - Frequency of up to $(f_{PCLK}/2)$ MHz for master mode and $(f_{PCLK}/3)$ MHz for slave mode
 - FIFO Depth: 8 levels
 - Multi-master and multi-slave operation
- Universal Synchronous Asynchronous Receiver Transmitter USART
 - Supports both asynchronous and clocked synchronous serial communication modes
 - Asynchronous operating baud-rate clock frequency up to $(f_{PCLK}/16)$ MHz and synchronous operating baud-rate clock frequency up to $(f_{PCLK}/8)$ MHz
 - Full duplex communication
 - Fully programmable characteristics of serial communication including: word length, parity bit, stop bit and bit order
 - Error detection: Parity, overrun and frame error
 - Auto hardware flow control mode RTS, CTS
 - IrDA SIR encoder and decoder
 - RS485 mode with output enable control
 - FIFO Depth: 8-level for both receiver and transmitter
- Universal Asynchronous Receiver Transmitter UART
 - Asynchronous serial communication operating baud rate clock frequency of up to (f_{PCLK}/16) MHz
 - Capability of full duplex communication
 - Fully programmable characteristics of serial communication including: word length, parity bit, stop bit and bit order
 - Error detection: Parity, overrun and frame error
- Hardware Divider DIV
 - Signed / unsigned 32-bit divider
 - Operation in 8 clock cycles, load in 1 clock cycle
 - Division by zero error flag
- Cyclic Redundancy Check CRC
 - Support CRC16 polynomial: 0x8005, X¹⁶ + X¹⁵ + X² + 1
 - Support CCITT CRC16 polynomial: 0x1021, X¹⁶ + X¹² + X⁵ + 1
 - Support IEEE-802.3 CRC32 polynomial: 0x04C11DB7, $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$
 - Supports 1's complement, byte reverse & bit reverse operation on data and checksum
 - Supports byte, half-word & word data size
 - Programmable CRC initial seed value
 - CRC computation executed in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32-bit data
- Debug Support
 - Serial Wire Debug Port SW-DP
 - 4 comparators for hardware breakpoint or code / literal patch
 - 2 comparators for hardware watchpoints
- Package and Operation Temperature
 - 24/28-pin SSOP, 28-pin SOP, 24/33-pin QFN and 44/48-pin LQFP package types
 - Operation temperature range: -40 °C to 85 °C

Device Information

Table 1. Features and Peripheral List

Peri	pherals	HT32F50231	HT32F50241	
Main Flash (KB)		32	63	
Option Bytes Flash (KB)	1	1	
SRAM (KB)		4	8	
	MCTM		1	
	GPTM	1		
Timers	PWM	2	2	
limers	BFTM	2	2	
	WDT		1	
	RTC		1	
	SPI	2	2	
Communication	USART	1		
Communication	UART	2		
	I ² C	2		
Hardware Divider CRC-16/32 EXTI			1	
			1 16	
		1		
12-bit ADC			1	
Number of Channels		12 Channels	12 Channels	
GPIO		Up to 40	Up to 40	
CPU Frequency		Up to 20 MHz		
Operating Voltage		2.5 V ~ 5.5 V	2.5 V ~ 5.5 V	
Operating Temperature		-40 °C ~ 85 °C	-40 °C ~ 85 °C	
Package			24/28-pin SSOP, 28-pin SOP, 24/33-pin QFN and 44/48-pin LQFP	

Block Diagram

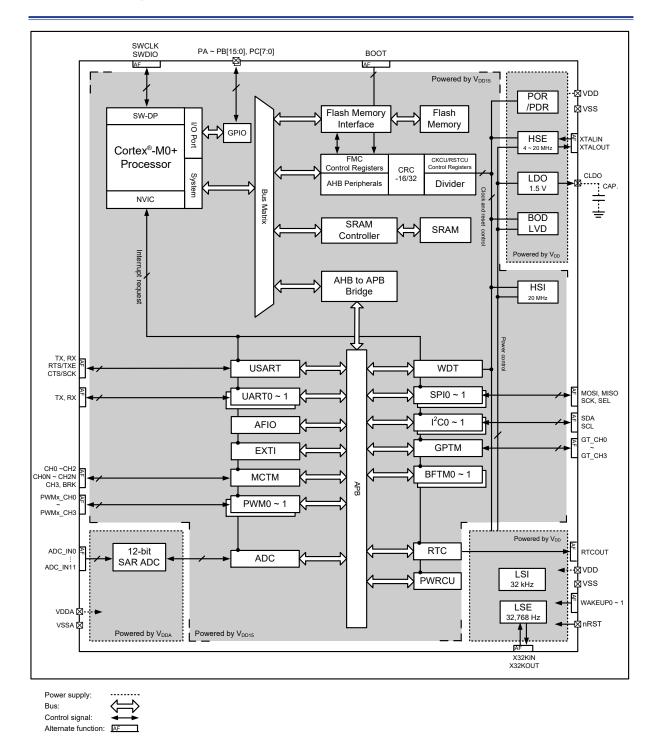


Figure 1. Block Diagram

2 Document Conventions

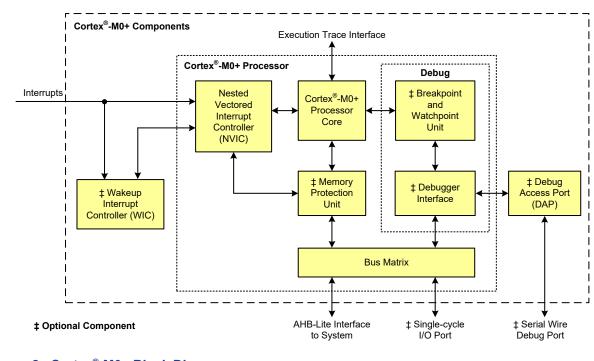
Unless otherwise specified, this document uses the conventions which showed as follows.

Notation	Example	Description	
0x	0x5a05	The number string with a 0x prefix indicates a hexadecimal number.	
0xnnnn_nnnn	0x2000_0100	32-bit Hexadecimal address or data.	
b	b0101	The number string with a lowercase b prefix indicates a binary number.	
NAME [n]	ADDR [5]	Specific bit of NAME. NAME can be a register or field of register. For example, ADDR [5] means bit 5 of ADDR register (field).	
NAME [m:n]	ADDR [11:5]	Specific bits of NAME. NAME can be a register or field of register. For example, ADDR [11:5] means bit 11 to 5 of ADDR register (field).	
Х	b10X1	Don't care notation which means any value is allowed.	
RW	19 18 SERDYIE PLLRDYIE RW 0 RW 0	Software can read and write to this bit.	
RO	3 2 HSIRDY HSERDY RO 1 RO 0	Software can only read this bit. A write operation will have no effect.	
RC	1 0 PDF BAK_PORF RC 0 RC 1	Software can only read this bit. Read operation will clear it to 0 automatically.	
WC	3 2 SERDYF PLLRDYF WC 0 WC 0	Software can read this bit or clear it by writing 1. Writing a 0 will have no effect.	
W0C	1 0 Reserved MIF W0C 0	Software can read this bit or clear it by writing 0. Writing a 1 will have no effect.	
WO	31 30 DB_CKSRC WO 0 WO 0	Software can only write to this bit. A read operation always returns 0.	
Reserved	1 0 LLRDY Reserved RO 0	Reserved bit(s) for future use. Data read from these bits is not well defined and should be treated as random data. Normally these reserved bits should be set to a 0 value. Note that reserved bit must be kept at reset value.	
Word		Data length of a word is 32-bit.	
Half-word		Data length of a half-word is 16-bit.	
Byte		Data length of a byte is 8-bit.	

Table 2. Document Conventions

3 System Architecture

The system architecture of devices that includes the Arm[®] Cortex[®]-M0+ processor, bus architecture and memory organization will be described in the following sections. The Cortex[®]-M0+ is a next generation processor core which offers many new features. Integrated and advanced features make the Cortex[®]-M0+ processor suitable for market products that require microcontrollers with high performance and low power consumption. In brief, The Cortex[®]-M0+ processor includes AHB-Lite bus interface. All memory accesses of the Cortex[®]-M0+ processor are executed on the AHB-Lite bus according to the different purposes and the target memory spaces. The memory organization uses a Harvard architecture, pre-defined memory map and up to 4 GB of memory space, making the system flexible and extendable.


Arm[®] Cortex[®]-M0+ Processor

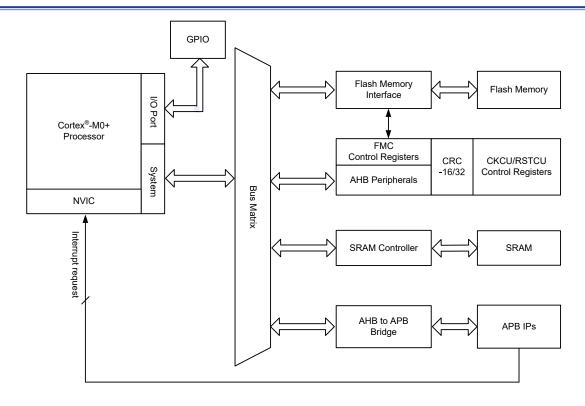
The Cortex[®]-M0+ processor is a very low gate count, highly energy efficient processor that is intended for microcontroller and deeply embedded applications that require an area optimized, low-power processor. The processor is based on the ARMv6-M architecture and supports Thumb[®] instruction sets; single-cycle I/O port; hardware multiplier and low latency interrupt respond time. Some system peripherals listed below are also provided by Cortex[®]-M0+:

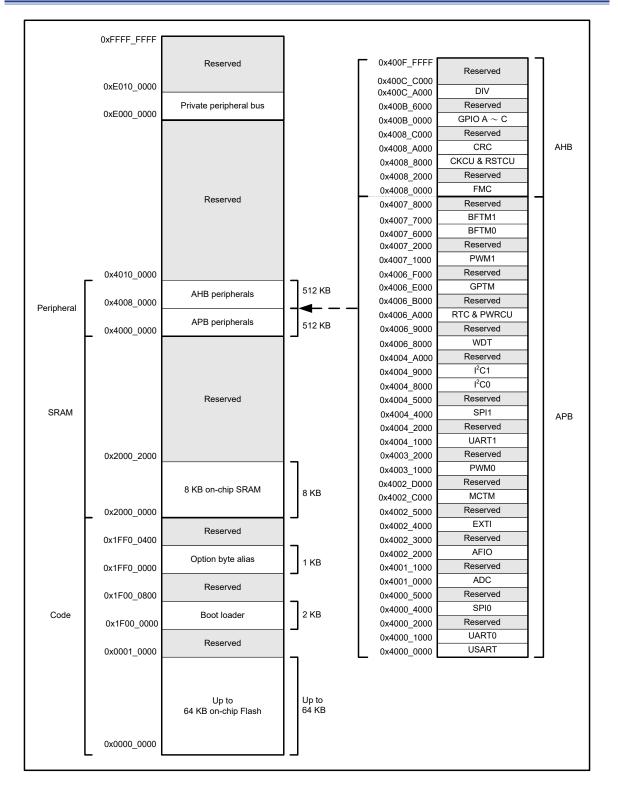
- Internal Bus Matrix connected with AHB-Lite Interface, Single-cycle I/O port and Debug Access Port (DAP)
- Nested Vectored Interrupt Controller (NVIC)
- Optional Wakeup Interrupt Controller (WIC)
- Breakpoint and Watchpoint Unit
- Optional Memory Protection Unit (MPU)
- Serial Wire debug Port (SW-DP)
- Optional Micro Trace Buffer Interface (MTB)

The following figure shows the Cortex[®]-M0+ processor block diagram. For more information, refer to the Arm[®] Cortex[®]-M0+ Technical Reference Manual.

Bus Architecture

The HT32F50231/50241 series devices consist of one master and four slaves in the bus architecture. The Cortex[®]-M0+ AHB-Lite bus is the master while the internal SRAM access bus, the internal Flash memory access bus, the AHB peripherals access bus and the AHB to APB bridges are the slaves. The single 32-bit AHB-Lite system interface provides simple integration to all system regions include the internal SRAM region and the peripheral region. All of the master buses are based on 32-bit Advanced High-performance Bus-Lite (AHB-Lite) protocol. The following figure shows the bus architecture of the HT32F50231/50241 series.




Figure 3. Bus Architecture

Memory Organization

The Arm[®] Cortex[®]-M0+ processor access and debug access share the single external interface to external AHB peripheral. The processor access takes priority over debug access. The maximum address range of the Cortex[®]-M0+ is 4 GB since it has 32-bit bus address width. Additionally, a predefined memory map is provided by the Cortex[®]-M0+ processor to reduce the software complexity of repeated implementation of different device vendors. However, some regions are used by the Arm[®] Cortex[®]-M0+ system peripherals. Refer to the Arm[®] Cortex[®]-M0+ Technical Reference Manual for more information. The following figure shows the memory map of HT32F50231/50241 series of devices, including Code, SRAM, peripheral and other pre-defined regions.

Memory Map

Table 3. Register Map					
Start Address	End Address	Peripheral	Bus		
0x4000_0000	0x4000_0FFF	USART			
0x4000_1000	0x4000_1FFF	UART0			
0x4000_2000	0x4000_3FFF	Reserved			
0x4000_4000	0x4000_4FFF	SPI0			
0x4000_5000	0x4000_FFFF	Reserved			
0x4001_0000	0x4001_0FFF	ADC			
0x4001_1000	0x4002_1FFF	Reserved			
0x4002_2000	0x4002_2FFF	AFIO			
0x4002_3000	0x4002_3FFF	Reserved			
0x4002_4000	0x4002_4FFF	EXTI			
0x4002_5000	0x4002_BFFF	Reserved			
0x4002_C000	0x4002_CFFF	MCTM			
0x4002_D000	0x4003_0FFF	Reserved			
0x4003_1000	0x4003_1FFF	PWM0			
0x4003_2000	0x4004_0FFF	Reserved			
0x4004_1000	0x4004_1FFF	UART1			
0x4004_2000	0x4004_3FFF	Reserved	APB		
0x4004_4000	0x4004_4FFF	SPI1			
0x4004_5000	0x4004_7FFF	Reserved			
0x4004_8000	0x4004_8FFF	I ² C0			
0x4004_9000	0x4004_9FFF	I ² C1			
0x4004_A000	0x4006_7FFF	Reserved			
		WDT			
0x4006_9000	0x4006_9FFF	Reserved			
0x4006_A000	0x4006_AFFF	RTC & PWRCU			
0x4006_B000	0x4006_DFFF	Reserved	_		
0x4006_E000	0x4006_EFFF	GPTM			
0x4006_F000	0x4007_0FFF	Reserved			
0x4007_1000	0x4007_1FFF	PWM1			
0x4007_2000	0x4007_5FFF	Reserved			
0x4007_6000	0x4007_6FFF	BFTM0			
0x4007_7000	0x4007_7FFF	BFTM1			
0x4007_8000	0x4007_FFFF	Reserved			
0x4008_0000	0x4008_1FFF	FMC			
0x4008_2000	0x4008_7FFF	Reserved	_		
0x4008_8000	0x4008_9FFF	CKCU & RSTCU			
0x4008_A000	0x4008_BFFF	CRC			
0x4008_C000	0x400A_FFFF	Reserved			
0x400B_0000	0x400B_1FFF	GPIOA	AHB		
		GPIOB			
		GPIOC			
		Reserved			
 0x400C_A000	 0x400C_BFFF	DIV			
0x400C_C000	0x400F_FFFF	Reserved			
	,				

2 D aict r M h

Embedded Flash Memory

The HT32F50231/50241 series provide up to 64 KB on-chip Flash memory which is located at address 0x0000_0000. It supports byte, half-word and word access operations. Note that the Flash memory only supports read operations for the bus access. Any write operations to the Flash memory will cause a bus fault exception. The Flash memory has up to capacity of 64 pages. Each page has a memory capacity of 1 KB and can be erased independently. A 32-bit programming interface provides the capability of changing bits from 1 to 0. A data storage or firmware upgrade can be implemented using several methods such as In System Programming (ISP), In Application Programming (IAP) or In Circuit Programming (ICP). For more information, refer to the Flash Memory Controller section.

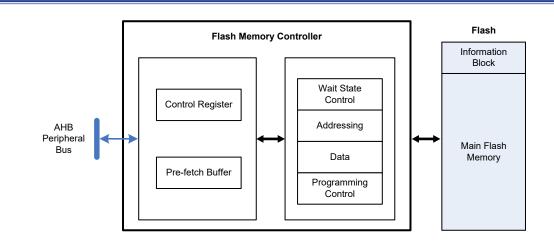
Embedded SRAM Memory

The HT32F50231/50241 series contain up to 8 KB on-chip SRAM which is located at address 0x2000_0000. It support byte, half-word and word access operations.

AHB Peripherals

The address of the AHB peripherals ranges from 0x4008_0000 to 0x400F_FFFF. Some peripherals such as Clock Control Unit, Reset Control Unit and Flash Memory Controller are connected to the AHB bus directly. The AHB peripherals clocks are always enabled after a system reset. Access to registers for these peripherals can be achieved directly via the AHB bus. Note that all peripheral registers in the AHB bus support only word access.

APB Peripherals

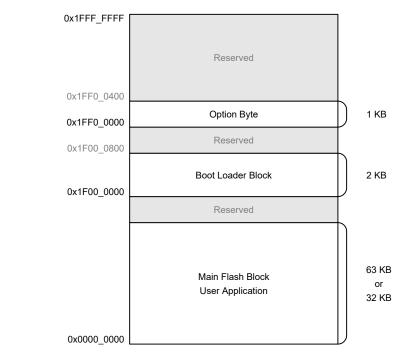

The address of APB peripherals ranges from 0x4000_0000 to 0x4007_FFFF. An APB to AHB Bridge provides access capability between the CPU and the APB peripherals. Additionally, the APB peripheral clocks are disabled after a system reset. Software must enable the peripheral clock by setting up the APBCCRn register in the Clock Control Unit before accessing the corresponding peripheral register. Note that the APB to AHB Bridge will duplicate the half-word or byte data to word width when a half-word or byte access is performed on the APB peripheral registers. In other words, the access result of a half-word or byte access on the APB peripheral register will vary depending on the data bit width of the access operation on the peripheral registers.

4 Flash Memory Controller (FMC)

Introduction

The Flash Memory Controller, FMC, provides functions of flash operation and pre-fetch buffer for the embedded on-chip Flash memory. Figure below shows the block diagram of FMC which includes programming interface, control register, pre-fetch buffer and access interface. Since the access speed of Flash memory is slower than the CPU, a wide access interface with pre-fetch buffer is provided to the Flash memory in order to reduce the CPU wait state, which will cause instruction gaps. The functions of word programming / page erase are also provided for instruction / data storage of Flash memory.

Features


- Up to 64 KB of on-chip Flash memory for storing instruction / data and option bytes
 - 64 KB (instruction / data + Option Byte)
 - 32 KB (instruction / data + Option Byte)
- Page size of 1 KB, totally up to 64 pages depending on the main Flash size
- Wide access interface with pre-fetch buffer to reduce instruction gaps
- Page erase and mass erase capability
- 32-bit word programming
- Interrupt capability when ready or error occurs
- Flash read protection to prevent illegal code / data access
- Page erase / program protection to prevent unexpected operation

Functional Descriptions

Flash Memory Map

The following figure is the Flash memory map of the system. The address ranges from 0x0000_0000 to 0x1FFF_FFFF (0.5 GB). The address from 0x1F00_0000 to 0x1F00_07FF is mapped to Boot Loader Block (2 KB). Besides, address 0x1FF0_0000 to 0x1FF0_03FF is the alias of Option Byte block (1 KB) which locates at the last page of main Flash physically. The memory mapping on system view is shown as below.

Flash Memory Architecture

The Flash memory consists of up to 64 KB main Flash with 1 KB per page and 2 KB Information Block for Boot Loader. The main Flash memory contains totally 64 pages (or 32 pages for 32 KB device) which can be erased individually. The following table shows the base address, size and protection setting bit of each page.

Block	Name	Address	Page Protection Bit	Size
	Page 0	0x0000_0000 ~ 0x0000_03FF	OB_PP [0]	1 KB
Pa	Page 1	0x0000_0400 ~ 0x0000_07FF	OB_PP [1]	1 KB
	Page 2	0x0000_0800 ~ 0x0000_0BFF	OB_PP [2]	1 KB
	Page 3	0x0000_0C00 ~ 0x0000_0FFF	OB_PP [3]	1 KB
Main Flash	:	:	:	:
Block	Page 60	0x0000_F000 ~ 0x0000_F3FF	OB_PP [60]	1 KB
	Page 61	0x0000_F400 ~ 0x0000_F7FF	OB_PP [61]	1 KB
	Page 62	0x0000_F800 ~ 0x0000_FBFF	OB_PP [62]	1 KB
	Page 63 (Option Byte)	Physical: 0x0000_FC00 ~ 0x0000_FFFF Alias: 0x1FF0_0000 ~ 0x1FF0_03FF	OB_CP [1]	1 KB
Information Block	Boot Loader	0x1F00_0000 ~ 0x1F00_07FF	NA	2 KB

Table 4. Flash Memory and Option Byte

Notes: 1. Information Block stores boot loader – This block can not be programmed or erased by user.

2. Option Byte is always located at last page of main Flash block.

Booting Configuration

The system provides two kinds of booting mode which can be selected through the BOOT pin. The value of BOOT pin is sampled during the power-on reset or system reset. Once the logic value is decided, the first 4 words of vector will be remapped to the corresponding source according to the booting mode. The booting mode is shown in the following table.

Table 5. Booting Modes

Booting Mode Selection Pin BOOT	Mode	Descriptions
0	Boot Loader	The source of Vector is Boot Loader
1	Main Flash	The source of Vector is main Flash

The Flash Vector Mapping Control Register, VMCR, is provided to change the setting of the vector remapping temporarily after the chip reset. The reset value of VMCR is determined by the BOOT pin status which will be sampled during the reset duration.

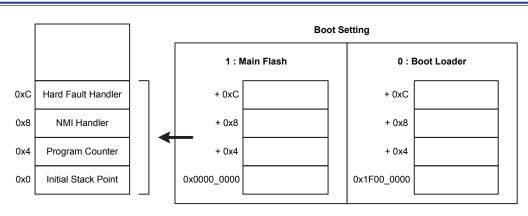
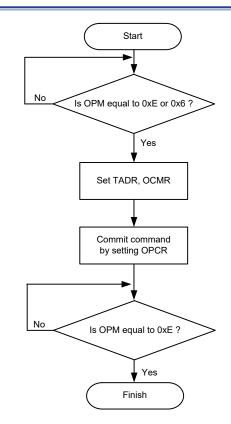


Figure 7. Vector Remapping



Page Erase

The FMC provides a page erase function which is used to reset partial content of Flash memory. Any page can be erased independently without affecting others. The following steps show the access sequence of the register for page erase.

- Check the OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equals to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write the page address to TADR register.
- Write the page erase command to OCMR register (Set CMD [3:0] = 0x8).
- Commit page erase command to FMC by setting OPCR register (Set OPM [3:0] = 0xA).
- Wait until all the operations have been completed by checking the value of OPCR register (OPM [3:0] equals to 0xE).
- Read and verify the page if required.

Note that a correct target page address must be confirmed. The software may run out of control if the target erase page is being used to fetch code or access data. The FMC will not provide any notification when this happens. Additionally, the page erase operation will be ignored on the protected pages. When this occurs, the OREF bit will be set by the FMC and then a Flash Operation Error interrupt will be generated if the OREIEN bit in the OIER register is set. The software can check the PPEF bit in the OISR register to detect this condition in the interrupt handler. The following figure shows the page erase operation flow.

Figure 8. Page Erase Operation Flowchart

Mass Erase

The FMC provides a mass erase function which is used for resetting all the main Flash memory content. The following steps show the register access sequence for mass erase operation.

- Check OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equals to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write mass erase command to OCMR register (Set CMD [3:0] = 0xA).
- Commit mass erase command to FMC by setting OPCR register (Set OPM [3:0] = 0xA).
- Wait until all operations have been finished by checking the value of OPCR register (OPM [3:0] equals to 0xE).
- Read and verify the Flash memory if required.

Since all Flash data will be reset as 0xFFFF_FFFF, the mass erase operation can be implemented by the program that runs in the SRAM or by the debugging tool that accesses FMC registers directly. The software function that is executed on the Flash memory shall not trigger a mass erase operation. The following figure displays the mass erase operation flow.

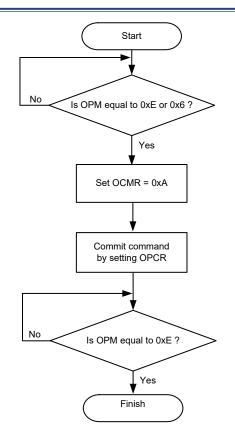
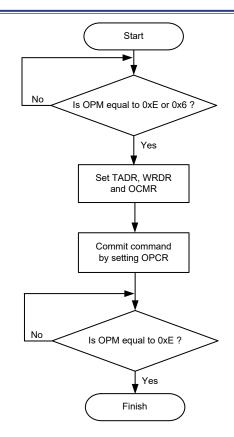


Figure 9. Mass Erase Operation Flowchart



Word Programming

The FMC provides a 32 bits word programming function which is used for modifying the Flash memory content. The following steps show the sequence of register access for word programming.

- Check OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equals to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write word address to TADR register. Write data to WRDR register.
- Write word programming command to OCMR register (Set CMD [3:0] = 0x4).
- Commit word programming command to FMC by setting OPCR register (Set OPM [3:0] = 0xA).
- Wait until all operations have been finished by checking the value of OPCR register (OPM [3:0] equals to 0xE).
- Read and verify the Flash memory if required.

Note that the word programming operation can not be successively applied to the same address twice. Successive word programming operation to the same address must be separated by a page erase operation. Besides, the word program will be ignored on protected pages. When this occurs, the OREF bit will be set by the FMC and then a Flash Operation Error interrupt will be generated if the OREIEN bit in the OIER register is set. Software can check the PPEF bit in the OISR register to detect this condition in the interrupt handler. The following figure displays the word programming operation flow.

Figure 10. Word Programming Operation Flowchart

Option Byte Description

The Option Byte can be treated as an independent Flash memory of which base address is 0x1FF0_0000. The following table shows the function description and Option Byte memory map.

Table 6. Option Byte Memory Map								
Option Byte	Offset	Description	Reset Value					
Option Byte Base Address = 0x1FF0_0000								
OB_PP	0x000 0x004 0x008 0x00C	Flash Page Erase / Program Protection (n = 0 ~ 127) OB_PP [n] (n = 0 ~ 62) 0: Flash Page n Erase / Program Protection is enabled 1: Flash Page n Erase / Program Protection is disabled OB_PP [n] (n = 63 ~ 127) Reserved	0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF 0xFFFF_FFFF					
OB_CP	0x010	Flash Security Protection OB_CP [0] 0: Flash Security protection is enabled 1: Flash Security protection is disabled Option Byte Protection OB_CP [1] 0: Option Byte protection is enabled 1: Option Byte protection is disabled OB_CP [31:2] Reserved	0xFFFF_FFFF					
ОВ_СК	0x020	Flash Option Byte Checksum OB_CK [31:0] OB_CK should be set as the content value sum of 5 registers which offset address is from 0x000 to 0x010 in Option Byte (0x000 + 0x004 + 0x008 + 0x00C + 0x010) when the OB_PP or OB_CP register's content is not equal to 0xFFFF_FFF. Otherwise, both page erase / program protection and security protection will be enabled.	0xFFFF_FFFF					
OB_TOOL	0x030 ~ 0x04C	Reserved for Flash writer tool and boot loader.	0xFFFF_FFFF					
OB_WDT	0x3F0	Flash Option Watchdog Timer Enable OB_WDT [15:0]: 0x7A92 If the OB_WDT [15:0] is set to 0x7A92, the WDT will be enabled immediately when the MCU power on reset or system reset occurs. The WDT can be disabled by software. OB_WDT [31:16]: Reserved	0xFFFF_FFFF					

Page Erase / Program Protection

FMC provides functions of page erase / program protection to prevent unexpected operation of Flash memory. The page erase (CMD [3:0] = 0x8 in the OCMR register) or word programming (CMD [3:0] = 0x4) command will not be accepted by FMC on the protected pages. When the page erase or word programming command aimed at the protected pages is sent to the FMC, the PPEF bit in the OISR register will then be set by the FMC and the Flash operation error interrupt will be triggered to inform the CPU if the OREIEN bit in the OIER register is set. The page protection function can be enabled for each page independently by setting the OB_PP registers of the Option Byte. The following table shows the access permission of the main Flash page when the page protection is enabled.

Table 7. Access Permission of Protected Main Flash Page

Mode Operation	ISP / IAP	ICP / Debug Mode
Read	0	0
Program	Х	Х
Page Erase	Х	Х
Mass Erase	0	0

Notes: 1. Note that the setting of write protection is based on page. The above access permission only affects the pages that enable protection function. Other pages are not affected.

- 2. Main Flash page protection is configured by OB_PP [127:0]. Option Byte is physically located at the last page of main Flash Option Byte page protection is configured by the OB_CP [1] bit.
- 3. The page erase on Option Byte area can disable the page protection of main Flash.
- 4. The page protection of Option Byte can only be disabled by a mass erase operation.

The following steps show the register access sequence for page erase / program protection procedure.

- Check OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equals to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write OB_PP address to TADR register (TADR = $0x1FF0_{0000}$).
- Write the data, which indicates the protection function of corresponding page is enabled or disabled, to the WRDR register (0: Enabled, 1: Disabled).
- Write word programming command to the OCMR register (Set CMD [3:0] = 0x4).
- Commit word programming command to FMC by setting the OPCR register (Set OPM [3:0] = 0xA).
- Wait until all operations have been finished by checking the value of the OPCR register (OPM [3:0] equals to 0xE).
- Read and verify the Option Byte if required.
- The OB CK field in the Option Byte must be updated according to the Option Byte checksum rule.
- Apply a system reset to active the new OB_PP setting.

Security Protection

FMC provides a Security protection function to prevent illegal code / data access of the Flash memory. This function is useful for protecting the software / firmware from illegal users. The function is activated by setting the Option Byte OB_CP [0] bit. Once the function has been enabled, all the main Flash data access through ICP / Debug mode, programming and page erase will not be allowed except the user's application. But the mass erase operation will still be accepted by FMC in order to disable this function. The following table shows the access permission of Flash memory when the security protection is enabled.

Table 8.	Access	Permission	When	Security	Protection	is Enabled
----------	--------	------------	------	----------	------------	------------

Mode	User Application ^(Note 1)	ICP / Debug Mode
Read	0	X (read as 0)
Program	O (Note 1)	Х
Page Erase	O (Note 1)	Х
Mass Erase	0	0

Notes: 1. User application means the software that is executed or booted from main Flash memory with the JTAG / SW debugger being disconnected. However, the Option Byte area and page 0 are still under protection where the Program / Page Erase operations are not accepted.

2. The Mass erase operation can erase the Option Byte area and disable the security protection.

The following steps show the register access sequence for Security protection procedure.

- Check the OPCR register to confirm that no Flash memory operation is in progress (OPM [3:0] equals to 0xE or 0x6). Otherwise, wait until the previous operation has been finished.
- Write OB_CP address to the TADR register (TADR = $0x1FF0_0010$).
- Write the WRDR register to set the OB_CP [0] as 0.
- Write word programming command to the OCMR register (Set CMD [3:0] = 0x4).
- Commit word programming command to FMC by setting the OPCR register (Set OPM [3:0] = 0xA).
- Wait until all operations have been finished by checking the value of the OPCR register (OPM [3:0] equals to 0xE).
- Read and verify the Option Byte if required.
- The OB_CK field in the Option Byte must be updated according to the Option Byte checksum rule.
- Apply a system reset to active the new OB_CP setting.

Register Map

The following table shows the FMC registers and reset values.

Table 9.	FMC	Register	Map
		regiotor	map

Register	Offset	Description	Reset Value
TADR	0x000	Flash Target Address Register	0x0000_0000
WRDR	0x004	Flash Write Data Register	0x0000_0000
OCMR	0x00C	Flash Operation Command Register	0x0000_0000
OPCR	0x010	Flash Operation Control Register	0x0000_000C
OIER	0x014	Flash Operation Interrupt Enable Register	0x0000_0000
OISR	0x018	Flash Operation Interrupt and Status Register	0x0001_0000
PPSR	0x020 0x024 0x028 0x02C	Flash Page Erase / Program Protection Status Register	0xXXXX_XXXX 0xXXXX_XXXX 0xXXXX_XXXX 0xXXXX_XXXX
CPSR	0x030	Flash Security Protection Status Register	0x0000_000X
VMCR	0x100	Flash Vector Mapping Control Register	0x0000_000X
MDID	0x180	Flash Manufacturer and Device ID Register	0x0376_XXXX
PNSR	0x184	Flash Page Number Status Register	0x0000_00XX
PSSR	0x188	Flash Page Size Status Register	0x0000_0400
DIDR	0x18C	Device ID Register	0x000X_XXXX
CIDR0	0x310	Custom ID Register 0	0xXXX_XXXX
CIDR1	0x314	Custom ID Register 1	0xXXX_XXXX
CIDR2	0x318	Custom ID Register 2	0xXXX_XXXX
CIDR3	0x31C	Custom ID Register 3	0xXXX_XXXX

Note: "X" means various reset values which depend on the Device, Flash value, option byte value or power on reset setting.

Register Descriptions

Flash Target Address Register – TADR

This register specifies the target address of the page erase and word programming operation.

Offset:	0x000
Reset value:	0x0000_0000

	31	30	29	28	27	26	25	24
					TADB			
Type/Reset	RW	0 RW 0						
	23	22	21	20	19	18	17	16
					TADB			
Type/Reset	RW	0 RW 0						
	15	14	13	12	11	10	9	8
					TADB			
Type/Reset	RW	0 RW 0						
	7	6	5	4	3	2	1	0
					TADB			
Type/Reset	RW	0 RW 0						

Bits	Field
[31:0]	TADB

Descriptions Flash Target Address Bits

For programming operations, the TADR register specifies the address where the data is written. Since the programming length is 32 bits, the TADR shall be set as word-aligned (4 bytes). The TADB [1:0] will be ignored during programming operations. For page erase operations, the TADR register contains the page address which is going to be erased. Since the page size is 1 KB, the TADB [9:0] will be ignored in order to limit the target address as 1 Kbyte-aligned. For 64 KB main Flash addressing, TADB [31:16] should be zero and TADB [31:15] should be zero for 32 KB. Address from 0x1FF0_0000 to 0x1FF0_03FF is the 1 KB Option Byte. This field for available Flash address, it must be under 0x1FFF_FFFF. Otherwise, the Invalid Target Address interrupt will be occurred if the corresponding interrupt enable bit is set.

24

16

8

0

0

0

0

0

Flash Write Data Register – WRDR

This register specifies the data to be written for programming operation.

This register	specifies	the	data to	be v	vritten	for p	rogran	nmin	g o	peration								
Offset:	0x004																	
Reset value:	0x0000_	_00	00															
	31		30	D		29		28		27		2	26		25			2
										WRD	ЭB							
Type/Reset	RW	0	RW	0	RW	(RW		0	RW	0	RW	C	RW		0	RW	
	23		22	2		21		20		19		1	8		17			1
										WRE	DВ							
Type/Reset	RW	0	RW	0	RW	(RW		0	RW	0	RW	C	RW		0	RW	
	15		14	4		13		12		11		1	0		9			8
										WR	DВ							
Type/Reset	RW	0	RW	0	RW	(RW		0	RW	0	RW	C	RW		0	RW	
	7		6	;		5		4		3			2		1			(
										WRE	DВ							
Type/Reset	RW	0	RW	0	RW	(RW		0	RW	0	RW	C	RW		0	RW	
Bits	Field		Des	crip	tions													

WRDB Flash Write Data Bits

The data value for programming operation.

[31:0]

Flash Operation Command Register – OCMR

This register is used to specify the Flash operation commands that include word programming, page erase and mass erase.

Offset:	0x00C							
Reset value:	0x0000_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved				CMD	
Type/Reset					RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions	6							
[3:0]	CMD	Flash Operatio	Flash Operation Command							
		operation. If a		[3:0] bits which specify the Flash IOCMIEN bit is set to 1, an Invalid						
		CMD [3:0]	Description							
		0x0	Idle (default)							

CMD [3:0]	Description
0x0	Idle (default)
0x4	Word programming
0x8	Page erase
0xA	Mass erase
Others	Reserved

Flash Operation Control Register – OPCR

This register is used for controlling the command commitment and checking the status of the FMC operations.

Offset:	0x010							
Reset value:	0x0000_000)C						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved	1	1	
Type/Reset	_		_			-		_
	7	6	5	4	3	2	1	0
		Reserved				OPM		Reserved
T (D)								
Type/Reset				RW 0	RW 1	RW 1	RW 0	
Type/Reset Bits	Field	Descript	tions	RW 0	RW 1	RW 1	RW 0)
	Field OPM	Descript Operation		RW 0	RW 1	RW 1	RW 0	
Bits	1	Operation The follow	Mode wing table s	shows the o	peration mo	des of the F	MC. Users	can commit
Bits	1	Operation The follow command	Mode wing table s which is se	shows the operation of the operation of the operation of the ocline of t	peration mo MR register	des of the F to the FMC a	MC. Users	can commit the address
Bits	1	Operation The follow command alias sett	Mode wing table s which is se ing in the T	shows the op et by the OCI TADR regist	peration mo MR register er. The con	des of the F to the FMC a tents of TAL	MC. Users according to DR, WRDR	can commit the address and OCMR
Bits	1	Operation The follow command alias sett registers	Mode wing table s which is se ing in the shall be pre	shows the op et by the OCI TADR regist epared before	peration mo MR register er. The con e setting this	des of the F to the FMC a tents of TAL s register. Aft	MC. Users according to DR, WRDR ter all the o	can commit the address and OCMR operation has
Bits	1	Operation The follow command alias sett registers been finis	Mode wing table s which is se ing in the shall be pre hed, the OF	shows the op et by the OCI TADR regist epared before PM field will I	peration mo MR register er. The con e setting this be set as 0x	des of the F to the FMC a tents of TAI s register. Aft E or 0xF by	MC. Users according to DR, WRDR ter all the o the FMC h	can commit to the address and OCMR operation has ardware. The
Bits	1	Operation The follow command alias sett registers been finis Idle mode	Mode wing table s which is se ing in the shall be pre hed, the OF can be set	shows the op et by the OCI TADR regist epared before PM field will I when all the	peration mo MR register er. The con e setting this be set as 0x e operations	des of the F to the FMC a tents of TAL s register. Aft E or 0xF by have been fil	MC. Users according to DR, WRDR ter all the o the FMC h nished for p	a can commit o the address and OCMR operation has ardware. The power saving.
Bits	1	Operation The follow command alias sett registers been finis Idle mode Note that	Mode wing table s which is se ing in the shall be pre hed, the OF can be set the operatio	shows the op et by the OCI TADR regist epared before PM field will I when all the on status shou	peration mo MR register er. The con e setting this be set as 0x e operations uld be check	des of the F to the FMC a tents of TAL s register. Aff E or 0xF by have been fil ed before the	MC. Users according to DR, WRDR ter all the o the FMC h nished for p e next action	can commit to the address and OCMR operation has ardware. The
Bits	1	Operation The follow command alias sett registers been finis Idle mode Note that the FMC.	Mode wing table s which is se ing in the shall be pre hed, the OF can be set the operatio The content	shows the op et by the OCI TADR regist epared before PM field will I when all the on status shou	peration mo MR register er. The con e setting this be set as 0x e operations uld be check WRDR, OCM	des of the F to the FMC a tents of TAL register. Aff E or 0xF by have been fil ed before the IR and OPCF	MC. Users according to DR, WRDR ter all the o the FMC h nished for p e next action	a can commit o the address and OCMR operation has ardware. The power saving. n is applied to
Bits	1	Operation The follow command alias sett registers been finis Idle mode Note that the FMC.	Mode wing table s which is se- ing in the shall be pre- hed, the OF can be set the operatio The content until the pre-	shows the op et by the OCI TADR regist epared before PM field will I when all the on status shou ts of TADR, V	peration mo MR register f er. The con e setting this be set as 0x e operations uld be check WRDR, OCM on has been	des of the F to the FMC a tents of TAL register. Aff E or 0xF by have been fil ed before the IR and OPCF	MC. Users according to DR, WRDR ter all the o the FMC h nished for p e next action	a can commit o the address and OCMR operation has ardware. The power saving. n is applied to
Bits	1	Operation The follow command alias sett registers s been finis Idle mode Note that the FMC. changed u	Mode wing table s which is se- ing in the shall be pre- hed, the OF can be set the operatio The content until the pre-	shows the op at by the OCI TADR regist epared before PM field will I when all the on status shou ts of TADR, V vious operation	peration mo MR register er. The con e setting this be set as 0x e operations uld be check WRDR, OCM on has been ion	des of the F to the FMC a tents of TAL register. Aff E or 0xF by have been fil ed before the IR and OPCF	MC. Users according to DR, WRDR ter all the o the FMC h nished for p e next action	a can commit o the address and OCMR operation has ardware. The power saving. n is applied to
Bits	1	Operation The follow command alias sett registers s been finis Idle mode Note that the FMC. changed u OPM [3:0	Mode wing table s which is se- ing in the shall be pre- hed, the OF can be set the operatio The content until the pre-	shows the op to by the OCI TADR regist epared before PM field will I when all the on status shou ts of TADR, V vious operation Description	peration mo MR register er. The con e setting this be set as 0x e operations uld be check WRDR, OCM on has been ion	des of the F to the FMC a tents of TAI register. Aff E or 0xF by have been fil ed before the IR and OPCF finished.	MC. Users according to DR, WRDR ter all the o the FMC h nished for p e next action	a can commit o the address and OCMR operation has ardware. The power saving. n is applied to
Bits	1	Operation The follow command alias sett registers s been finis Idle mode Note that the FMC. changed u OPM [3:0 0x6	Mode wing table s which is se- ing in the shall be pre- hed, the OF can be set the operatio The content until the pre-	shows the op to by the OCI TADR regist epared before PM field will I when all the on status shou ts of TADR, V vious operation Descripti Idle (defate Commit	peration mo MR register er. The con e setting this be set as 0x e operations uld be check WRDR, OCM on has been ion	des of the F to the FMC a tents of TAI s register. Aff E or 0xF by have been fin ed before the IR and OPCF finished. main Flash	MC. Users according to DR, WRDR ter all the o the FMC h nished for p e next action R registers	a can commit o the address and OCMR operation has ardware. The power saving. n is applied to

Flash Operation Interrupt Enable Register – OIER

This register is used to enable or disable interrupt function of FMC. The FMC will generate interrupts when the corresponding interrupt enable bit is set and the interrupt condition occurs.

Offset:	0x014							
Reset value:	0x0000_000	0						
	04	20	00	00	07	00	05	
	31	30	29	28	27 Reserved	26	25	24
Type/Reset					Reserved			
Type/Tteset	23	22	21	20	19	18	17	16
					Reserved			10
Type/Reset						1		
51	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved		OREIEN	IOCMIEN	OBEIEN	ITADIEN	ORFIEN
Type/Reset				RW 0	RW 0	RW 0	RW 0	RW 0
Bits	Field	Descripti	ons					
[4]	OREIEN	Operation I		upt Enable				
		•		interrupt is di				
				interrupt is ei				
[3]	IOCMIEN			nmand Interru				
			•	n Command n Command				
				n command	interrupt is ei	labicu		
[2]	OBEIEN			im Error Inter	rrunt Enable			
[2]	OBEIEN	Option Byte	e Check Su	um Error Inter eck Sum Erro		disabled		
[2]	OBEIEN	Option Byte 0: Optio	e Check Su n Byte Che		or interrupt is			
[2]	OBEIEN	Option Byte 0: Optio 1: Optio Invalid Targ	e Check Su n Byte Che n Byte Che jet Address	eck Sum Erro eck Sum Erro s Interrupt En	or interrupt is or interrupt is able	enabled		
		Option Byte 0: Optio 1: Optio Invalid Targ 0: Invali	e Check Su n Byte Che n Byte Che n Byte Che let Address d Target Ad	eck Sum Erro eck Sum Erro	or interrupt is or interrupt is able upt is disable	enabled d		

Operation Finished Interrupt Enable

0: Operation Finish interrupt is disabled 1: Operation Finish interrupt is enabled

[0]

ORFIEN

Flash Operation Interrupt and Status Register – OISR

This register indicates the status of the FMC interrupt to check if an operation has been finished or an error occurs. The status bits, bit [4:0], if set high, are available to trigger the interrupt when the corresponding enable bits in the OIER register are set high.

Offset:	0x018				1			
Reset value:	0x0001_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
				Reserved			PPEF	RORFF
Type/Reset							RO 0	RO 1
	15	14	13	12	11	10	9	8
					Reserved	a)		1
Type/Reset	7	6	5	4	3	2	1	0
		leserved	•	OREF	IOCMF	OBEF	ITADF	ORFF
Type/Reset						_	•	WC 0
Bits	Field	Descrip	tions					
[17]	PPEF	•	•	am Protected	•			
		-	-	Program Prot or due to an i				a applied to
		-	rotected pa			/ program o	peration bei	ig applied to
				ardware onc	e a new flasł	n operation c	ommand is o	committed.
[16]	RORFF	Raw Ope	ration Finis	shed Flag				
				operation cor				
				operation cor irectly connec			for dobuggi	
[4]	OREF		n Error Flag	-		asir memory	ioi debuggii	ig puipose.
[']	ORE			ation error oc	curred			
			-	operation is f				
				when any F	-			
				erase error				occurs if the
[0]	IOCMF			IER register		this bit by w	riting 1.	
[3]	IOCIVIE			ommand Flag h operation c		s set		
				h operation c			n into the OC	MR reaister
				igh when an				-
				ister. The IO		-		
				. Reset this b				

Bits	Field	Descriptions
[2]	OBEF	Option Byte Check Sum Error Flag
		0: Check sum of Option Byte is correct
		1: Check sum of Option Byte is incorrect This bit will be set high when the Option Byte checksum is incorrect. The OBE interrupt will occur if the OBEIEN bit in the OIER register is set. This bit is cleared to 0 by software writing 1 into it. However, the Option Byte Checksum Error Flag can not be cleared by software until the interrupt condition is cleared, which means that the Option Byte check sum value has to be correctly modified or the corresponding interrupt control is disabled. Otherwise, the interrupt will be
		continually generated.
[1]	ITADF	Invalid Target Address Flag 0: The target address is valid 1: The target address is invalid
		The data in the TADR field must be in the range from 0x0000_0000 to 0x1FFF_ FFFF. Otherwise, this bit will be set high and an ITAD interrupt will be generated if the ITADIEN bit in the OIER register is set. Reset this bit by writing 1.
[0]	ORFF	Operation Finished Flag 0: Operation is not finished 1: Last flash operation command is finished
		This bit will be set high when the last flash operation is finished. The ORF interrupt will be generated if the ORFIEN bit in the OIER register is set. Reset this bit by writing 1.

Flash Page Erase / Program Protection Status Register – PPSR

This register indicates the status of Flash page erase / program protection.

Offset:	0x020 (0) ~ 0x0	2C (3)																
Reset value:	0xXXXX	<_XXXX																		
	31		30		29			28			27		26			25			24	
										PI	PSBn									
Type/Reset	RO	X RO		ΧF	RO	Х	RO		Х	RO		Х	RO	Х	RO		Х	RO		Х
	23		22		21			20			19		18			17			16	
										PI	PSBn									
Type/Reset	RO	X RO		ΧF	RO	Х	RO		Х	RO		Х	RO	Х	RO		Х	RO		Х
	15		14		13			12			11		10			9			8	
										PI	PSBn									
Type/Reset	RO	X RO		ΧF	20	Х	RO		Х	RO		Х	RO	Х	RO		Х	RO		Х
	7		6		5			4			3		2			1			0	
										PI	PSBn									
Type/Reset	RO	X RO		XF	RO	Х	RO		Х	RO		Х	RO	Х	RO		Х	RO		Х
Bits	Field	D	esc	riptio	ons															
[127:0]	PPSBn	P	age	Erase	/ Prog	ram	Prof	ectio	on S	Status	s Bits	(n	= 0 ~ 1	27)						

PPSB[n] = OB PP[n]

0: The corresponding page is protected

1: The corresponding page is not protected

The content of this register is not dynamically updated and will only be reloaded from the Option Byte when any kind of reset occurs. The erase or program function of specific pages is not allowed when the corresponding bits of the PPSR registers are reset. The reset value of PPSR [127:0] is determined by the Option Byte OB PP [127:0]. Since the maximum page number of the main flash is various and dependent on the chip specification. Therefore, the every page erase / program protection status bit may protect one or two pages and dependent on the chip specification. The other remained bits of OB PP and PPSR registers are reserved.

Flash Security Protection Status Register – CPSR

This register indicates the status of the Flash Memory Security protection. The content of this register is not dynamically updated and will only be reloaded by the Option Byte loader, which is active when any kind of reset occurs.

000010.								
Offset:	0x030							
Reset value:	0x0000_000X							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved			OBPSB	CPSB
Type/Reset							RO X	RO X
Bits	Field	Descri	ptions					
[1]	OBPSB	Option E	Byte Page Er	ase / Progra	am Protection	Status Bit		
		0: Th	e Option Byt	te page is pr	otected			
		1: Th	e Option Byt	te page is no	ot protected			
		The rese	et value of O	BPSB is det	termined by th	ne Option By	rte, OB_CP [1].
[0]	CPSB	Flash Se	ecurity Prote	ction Status	Bit			
		0: Fla	ash Security	protection is	s enabled			
		1: Fla	ash Security	protection is	s not enabled			
		The rese	et value of Cl	PSB is dete	rmined by the	Option Byte	∍, OB_CP [0]	

Flash Vector Mapping Control Register – VMCR

This register is used to control the vector mapping. The reset value of the VMCR register is determined by the external booting pin, BOOT, during the power-on reset period.

Offset:	0x100		·					
	0x0000_000X							
	00000_00000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset	<u>-</u>							
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset	E I							
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved			VMCB	Reserved
Type/Reset							RW X	

Bits	Field	Descriptions
[1]	VMCB	Vector Mapping Control Bit
		The VMCB bits is used to control the mapping source of first 4-word vector (address
		$0x0 \sim 0xC$). The following table shows the vector mapping setting.

BOOT	VMCB	Descriptions
Low	0	Boot Loader mode The vector mapping source is the boot loader area.
High	1	Main Flash mode The vector mapping source is the main Flash area.

The reset value of VMCR is determined by the pins status of BOOT during power-on reset and system reset. The vector mapping setting can be changed temporarily by setting the VMCB bit when the application is running.

0x180

Offset:

Flash Manufacturer and Device ID Register – MDID

This register specifies the manufacture ID and device part number information which can be used as the product identity.

Reset value:	0x0376_	_XX>	XX																			
	31		30			29			28			27			26			25			24	
											N	1FID										
Type/Reset	RO	0	RO	0	RO		0	RO		0	RO		0	RO		0	RO		1	RO		1
	23		22			21			20			19			18			17			16	
											N	1FID										
Type/Reset	RO	0	RO	1	RO		1	RO		1	RO		0	RO		1	RO		1	RO		0
	15		14			13			12			11			10			9			8	
											С	hipIE)									
Type/Reset	RO	Х	RO	Х	RO		Х	RO		Х	RO		Х	RO		Х	RO		Х	RO		Х
	7		6			5			4			3			2			1			0	
											С	hipIE)									
Type/Reset	RO	Х	RO	Х	RO		Х	RO		Х	RO		Х	RO		Х	RO		Х	RO		Х
Bits	Field		Desc	rip	tions	5																
[31:16]	MFID		Manu	fact	urer l	D																
			Read	as (0x037	76																
[15:0]	ChipID		Chip I	D																		
	Read the last 4 digital codes of the MCU device part number.																					

Flash Page Number Status Register – PNSR

This register specifies the page number of Flash memory.

Offset:	0x184	
Reset value:	0x0000 00XX	

	31		30			29			28			27		26			25			24	
											P	NSB									
Type/Reset	RO	0 R	0	0	RO		0	RO		0	RO	0	RC)	0	RO		0	RO		0
	23		22			21			20			19		18			17			16	
											Р	NSB									
Type/Reset	RO	0 R	0	0	RO		0	RO		0	RO	0	RC)	0	RO		0	RO		0
	15		14			13			12			11		10			9			8	
											Р	NSB									
Type/Reset	RO	0 R	0	0	RO		0	RO		0	RO	0	RC)	0	RO		0	RO		0
	7		6			5			4			3		2			1			0	
											Р	NSB									
Type/Reset	RO	XR	0	Х	RO		Х	RO		Х	RO	Х	RC)	Х	RO		Х	RO		Х
Bits	Field		Desc	ript	ions	6															
[31:0]	PNSB		Flash	Pag	je Ni	ımbe	er S	tatus	Bits												
	0x0000_0010: Totally 16 pages for the on-chip Flash memory device																				
	0x0000 0020: Totally 32 pages for the on-chip Flash memory device																				

0x0000_0010: Totally 16 pages for the on-chip Flash memory device 0x0000_0020: Totally 32 pages for the on-chip Flash memory device 0x0000_0040: Totally 64 pages for the on-chip Flash memory device 0x0000_0080: Totally 128 pages for the on-chip Flash memory device 0x0000_00FF: Totally 255 pages for the on-chip Flash memory device

Flash Page Size Status Register – PSSR

This register specifies the page size in bytes.

Offset:	0x188	
Reset value:	0x0000_	_0400

31 30 29 28 27 26 25 24 PSSB Type/Reset RO 0 23 22 21 20 19 18 17 16 PSSB 0 RO Type/Reset RO 0 15 14 12 11 10 9 13 8 PSSB 0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 0 RO Type/Reset RO 0 7 6 5 4 3 2 1 0 PSSB 0 RO 0 RO 0 RO Type/Reset RO 0 RO 0 RO 0 RO 0 RO 0 **Descriptions** Bits Field [31:0] PSSB Status Bits of Flash Page Size

0x200: That means the page size is 512 Byte per page 0x400: That means the page size is 1 KB per page

0x800: That means the page size is 2 KB per page

Device ID Register – DIDR

This register specifies the device part number information which can be used as the product identity.

Offset:	0x18C																					
Reset value:	0x000X	_xx	XX																			
	31		30			29			28			27			26			25			24	
											Res	serv	ed									
Type/Reset																						
	23		22			21			20			19			18			17			16	
					Res	serv	ed										С	hipll	D			
Type/Reset											RO		Х	RO		Х	RO		Х	RO		Х
	15		14			13			12			11			10			9			8	
											Cł	nipII	D									
Type/Reset	RO	Х	RO	Х	RO		Х	RO		Х	RO		Х	RO		Х	RO		Х	RO		Х
	7		6			5			4			3			2			1			0	
											Cł	nipII	D									
Type/Reset	RO	Х	RO	Х	RO		Х	RO		Х	RO		Х	RO		Х	RO		Х	RO		Х
Bits	Field	l	Des	scri	ption	S																
[19:0]	ChipII	D	Chip	D ID																		
			Poo	d th	0 00m	nlo	to 5	diait		- do	of th			dov	ico r	ort	num	hor				

Read the complete 5 digital codes of the MCU device part number.

Custom ID Register n – CIDRn, n = 0 ~ 3

This register specifies the custom ID information which can be used as the custom identity.

Offset: 0x310 (0) ~ 0x31C (3) Reset value: Various depending on Flash Manufacture Privilege Information Block.

	31	30	29	28	27	26	25	24
					CID			
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	23	22	21	20	19	18	17	16
					CID			
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	15	14	13	12	11	10	9	8
					CID			
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
	7	6	5	4	3	2	1	0
					CID			
Type/Reset	RO	X RO	X RO	X RO	X RO	X RO	X RO	X RO X
Bits	Field	Des	criptions					
[31:0]	CIDn	Cust	om ID					

Custom ID

Read as the CIDn[31:0] (n = 0 ~ 3) field in the Custom ID registers in Flash Manufacture Privilege Block.

5 Power Control Unit (PWRCU)

Introduction

The power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, provides many types of power saving modes such as Sleep, Deep-Sleep1 and Deep-Sleep2 modes. These modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption. The dash line in the Figure 11 indicates the power supply source of two digital power domains.

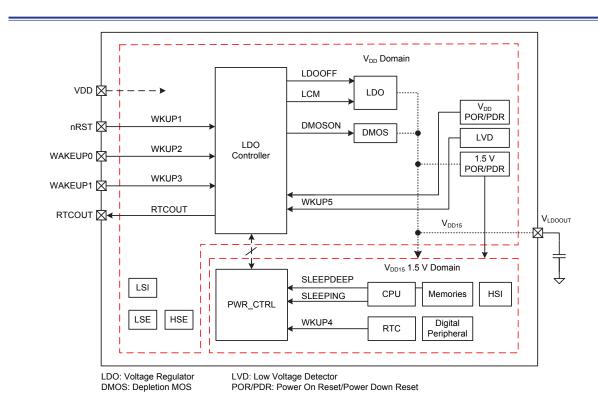


Figure 11. PWRCU Block Diagram

Features

- Three power domains: V_{DD}, V_{DDIO} and V_{DDI5} 1.5 V power domains.
- Three power saving modes: Sleep, Deep-Sleep1 and Deep-Sleep2 modes.
- Internal Voltage regulator supplies 1.5 V voltage source.
- Additional Depletion MOS supplies 1.5 V voltage source with low leakage and low operating current.
- A power reset is generated when one of the following events occurs:
 - Power-on / Power-down reset (POR / PDR reset).
 - The control bits BODEN = 1, BODRIS = 0 and the supply power $V_{DD} \le V_{BOD}$.
- BOD Brown-out Detector can issue a system reset or an interrupt when V_{DD} power source is lower than the Brown Out Detector voltage V_{BOD}.
- LVD Low Voltage Detector can issue an interrupt or wakeup event when V_{DD} is lower than a programmable threshold voltage V_{LVD}.

Functional Descriptions

V_{DD} **Power Domain**

LDO Power Control

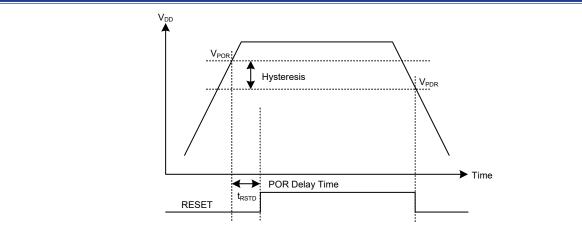
The LDO will be automatically switched off when the following condition occurs:

■ The Deep-Sleep2 mode is entered.

The LDO will be automatically switched on by hardware when the supply power $V_{DD} > V_{POR}$ if any of the following conditions occurs:

- Resume operation from the power saving mode RTC wakeup, LVD wakeup, EXTI wakeup and WAKEUP pins.
- Detect a falling edge on the external reset pin (nRST).
- The control bit BODEN = 1 and the supply power $V_{DD} > V_{BOD}$.

To enter the Deep-Sleep1 mode, the PWRCU will request the LDO to operate in a low current mode, LCM. To enter the Deep-Sleep2 mode, the PWRCU will turn off the LDO and turn on the DMOS to supply an alternative 1.5 V power.


Voltage Regulator

The voltage regulator, LDO, Depletion MOS, DMOS, Low voltage Detector, LVD, Low Speed Internal RC oscillator, LSI, Low Speed External Crystal oscillator, LSE, and the High Speed External Crystal oscillator, HSE, are operated under the V_{DD} power domain. The LDO can be configured to operate in either normal mode (LDOOFF = 0, LDOLCM = 0, I_{OUT} = High current mode) or low current mode (LDOOFF = 0, LDOLCM = 1, I_{OUT} = Low current mode) to supply the 1.5 V power. An alternative 1.5 V power source is the output of the DMOS which has low static and driving current characteristics. It is controlled using the DMOSON bit in the PWRCR register. The DMOS output has weak output current and regulation capability and only operates in the Deep-Sleep2 mode for data retention purposes in the V_{DD15} power domain.

Power On Reset (POR) / Power Down Reset (PDR)

The device has an integrated POR / PDR circuitry that allows proper operation starting from V_{POR} . For more details concerning the power on / power down reset threshold voltage, refer to the electrical characteristics of the corresponding datasheet.

Figure 12. Power On Reset / Power Down Reset Waveform

Low Voltage Detector / Brown Out Detector

The Low Voltage Detector, LVD, can detect whether the supply voltage V_{DD} is lower than a programmable threshold voltage V_{LVD} . It is selected by the LVDS bits in the LVDCSR register. When a low voltage on the VDD power pin is detected, the LVDF flag will be active and an interrupt will be generated and sent to the MCU core if the LVDEN and LVDIWEN bits in the LVDCSR register are set. For more details concerning the LVD programmable threshold voltage V_{LVD} , refer to the electrical characteristics of the corresponding datasheet.

The Brown Out Detector, BOD, is used to detect if the V_{DD} supply voltage is equal to or lower than V_{BOD} . When the BODEN bit in the LVDCSR register is set to 1 and the V_{DD} supply voltage is lower than V_{BOD} then the BODF flag is active. The PWRCU will regard this as a power down reset situation and then immediately issue a system reset when the BODRIS bit is cleared to 0 or issue an interrupt to notify the CPU to execute a power down procedure when the BODRIS bit is set to 1. For more details concerning the Brown Out Detector voltage V_{BOD} , refer to the electrical characteristics of the corresponding datasheet.

High Speed External Oscillator

The High Speed External Oscillator, HSE, is located in the V_{DD} power domain. The HSE crystal oscillator can be switched on or off using the HSEEN bit in the Global Clock Control Register (GCCR). The HSE clock can be used directly as the system clock source.

LSE, LSI and RTC

The Real Time Clock Timer clock source can be derived from either the Low Speed Internal RC oscillator, LSI, or the Low Speed External Crystal oscillator, LSE. Before entering the power saving mode by executing WFI / WFE instruction, the MCU needs to setup the compare register with an expected wakeup time and enable the wakeup function to achieve the RTC timer wakeup event. After entering the power saving mode for a certain amount of time, the Compare Match flag, CMFLAG, will be asserted to wake up the device when the compare match event occurs. The details of the RTC configuration for wakeup timer will be described in the RTC chapter.

1.5 V Power Domain

The main functions that include high speed internal oscillator, HSI, MCU core logic, AHB / APB peripherals and memories and so on are located in this power domain. Once the 1.5 V is powered up, the POR will generate a reset sequence on 1.5 V power domain. Subsequently, to enter the expected power saving mode, the associated control bits including the LDOOFF, DMOSON and LDOLCM bits must be configured. Then, once a WFI or WFE instruction is executed, the device will enter an expected power saving mode which will be discussed in the following section.

High Speed Internal Oscillator

The High Speed Internal Oscillator, HSI, is located in the V_{DD15} power domain. When exiting from the Deep-Sleep mode, the HSI clock will be configured as the system clock for a certain period by setting the PSRCEN bit to 1. This bit is located in the Global Clock Control Register, GCCR, in the Clock Control Unit, CKCU. The system clock will not be switched back to the original clock source used before entering the Deep-Sleep mode until the original clock source stabilizes.

Operation Modes

Run Mode

In the Run mode, the system operates with full functions and all power domains are active. There are two ways to reduce the power consumption in this mode. The first is to slow down the system clock by setting the AHBPRE field in the CKCU AHBCFGR register, and the second is to turn off the unused peripherals clock by setting the APBCCR0 and APBCCR1 registers or slow down peripherals clock by setting the APBPCSR0 and APBPCSR1 registers to meet the application requirement. Reducing the system clock speed before entering the sleep mode will also help to minimize power consumption.

Additionally, there are several power saving modes to provide maximum optimization between device performance and power consumption.

Mode Name	Hardware Action
Run	After system reset, CPU fetches instructions to execute.
Sleep	 CPU clock will be stopped. Peripherals, Flash and SRAM clocks can be stopped by setting.
Deep-Sleep1 ~ 2	 Stop all clocks in the 1.5 V power domain. Disable HSI, HSE. Turning on the LDO low current mode or DMOS to reduce the 1.5 V power domain current.

Table 10. Operation Mode Definitions

Sleep Mode

By default, only the CPU clock will be stopped in the Sleep mode. Clearing the FMCEN or SRAMEN bit in the CKCU AHBCCR register to 0 will have the effect of stopping the Flash clock or SRAM clock after the system enters the Sleep mode. If it is not necessary for the CPU to access the Flash memory and SRAM in the Sleep mode, it is recommended to clear the FMCEN and SRAMEN bits in the AHBCCR register to minimize power consumption. To enter the Sleep mode, it is only CPU executes a WFI or WFE instruction and lets the SLEEPDEEP signal to 0. The system will exit from the Sleep mode via any interrupt or event trigger. The accompanying table provides more information about the power saving modes.

		Mode Er	ntry						
Mode	CPU Instruction	CPU SLEEPDEEP		DMOSON	Mode Exit				
Sleep	WFI or WFE	0	х	х	WFI: Any interrupt WFE: Any wakeup event ⁽¹⁾ or Any interrupt (NVIC on) or Any interrupt with SEVONPEND = 1 (NVIC off)				
Deep-Sleep1	(Takes effect)	1	0	0	Any EXTI in event mode or RTC wakeup or LVD wakeup ⁽²⁾ or WAKEUP pins				
Deep-Sleep2		1	Х	1	Any EXTI in event mode or RTC wakeup or LVD wakeup ⁽²⁾ or WAKEUP pins				

Table 11. Enter / Exit Power Saving Modes

Notes: 1. Wakeup event means EXTI line in event mode, RTC, LVD and WAKEUP pins

2. If the system allows the LVD activity to wake it up after the system has entered the power saving mode, the LVDEWEN and LVDEN bits in the LVDCSR register must be set to 1 to make sure that the system can be woken up by an LVD event and then the LDO regulator can be turned on when system is woken up from the Deep-Sleep2 mode.

Deep-Sleep Mode

To enter Deep-Sleep mode, configure the registers as shown in the preceding table and execute the WFI or WFE instruction. In the Deep-Sleep mode, all clocks including high speed oscillator, known as HSI and HSE, will be stopped. In addition, Deep-Sleep1 turns the LDO into low current mode while Deep-Sleep2 turns off the LDO and uses a DMOS to keep 1.5 V power. Once the PWRCU receives a wakeup event or an interrupt as shown in the preceding Mode-Exiting table, the LDO will then operate in normal mode and the high speed oscillator will be enabled. Finally, the CPU will return to Run mode to handle the wakeup interrupt if required. A Low Voltage Detection also can be regarded as a wakeup event if the corresponding wakeup control bit LVDEWEN in the LVDCSR register is enabled. The last wakeup event is a transition on the external WAKEUP pin sent to the PWRCU to resume from Deep-Sleep mode. During the Deep-Sleep mode, retaining the register and memory contents will shorten the wakeup latency.

Table I	Table 12. Fower Status Alter System Reset												
PORF	PORSTF	Description											
1	1	Power-up for the first time after the V_{DD} power domain is reset: Power on reset when V_{DD} is applied for the first time or executing software reset command on the V_{DD} domain.											
0	1	Restart from unexpected loss of the 1.5 V power or other reset (nRST, WDT,)											

Table 12 Power Status After System Reset

WAKEUPn Pin Wakeup

The software can set the WUPnEN bit in register PWRCR to 1 to enable the WAKEUPn pin function before entering the power saving mode, waiting for a wakeup trigger signal occurrence on the WAKEUPn pin to wake up the system from the power saving mode. The external WAKEUPn pin interrupt shares the same exception number with the EXTI event wakeup interrupt. The software can set the EXTI Event Wakeup Interrupt Enable bit (EVWUPIEN) to 1 to assert the WKUP interrupt in the NVIC unit when both the WUPnEN and WUPFn bits are set to 1.

Although the WUPnEN bit is located in the V_{DD} domain, it also can be reset by the nRST reset pin. After the reset there will be a delay before the WUPnEN bit is active. This bit will not be active until the system reset is finished and the V_{DD} domain ISO signal is disabled. This means that the bit cannot be immediately set by software after a system reset is finished and the V_{DD} domain ISO signal is disabled. The delay time requires at least three 32 kHz clock periods after the WUPnEN bit reset has been finished.

Register Map

The following table shows the PWRCU registers and reset values. Note all the registers in this unit are located in the V_{DD15} power domain.

Table 13. PWRCU Register Ma	Ip
-----------------------------	-----------

Register	Offset	Description	Reset Value
PWRSR	0x100	Power Control Status Register	0x0000_0010
PWRCR	0x104	Power Control Register	0x0000_0000
LVDCSR	0x110	Low Voltage / Brown Out Detect Control and Status Register	0x0000_0000

Register Descriptions

Power Control Status Register – PWRSR

This register indicates power control status.

0x100 Offset: Reset value: 0x0000_0010

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved			WUPF'	I WUPF0
Type/Reset							RC	0 RC 0
	7	6	5	4	3	2	1	0
		Reserved		PORF			Reserve	d
Type/Reset				RC 1				

Bits	Field	Descriptions
[9]	WUPF1	External WAKEUP1 Pin Flag
		0: The WAKEUP1 pin is not asserted
		1: The WAKEUP1 pin is asserted
		This bit is set by hardware when the WAKEUP1 pin asserts and is cleared by
		software read. Software should read this bit to clear it after a system wake up from
		the power saving mode.

Bits	Field	Descriptions
[8]	WUPF0	External WAKEUP0 Pin Flag 0: The WAKEUP0 pin is not asserted 1: The WAKEUP0 pin is asserted
		This bit is set by hardware when the WAKEUP0 pin asserts and is cleared by software read. Software should read this bit to clear it after a system wake up from the power saving mode.
[4]	PORF	Power On Reset Flag 0: V_{DD15} Power Domain reset does not occur 1: V_{DD15} Power Domain reset occurs This bit is set by hardware when V_{DD15} power on reset occurs, either a hardware power on reset or software reset. The bit is cleared by software read. This bit must be cleared after the system is first powered on, otherwise it will be impossible to detect when a V_{DD15} Power Domain reset has been triggered. When this bit is read as 1, a read software loop must be implemented until the bit returns again to 0.

Power Control Register – PWRCR

This register provides power control bits for the different kinds of power saving modes.

Offset: 0x104

Reset value: 0x0000_0000

	31		30	29	28	27		2	26	25		24	
						Reserv	ed						
Type/Reset													
	23		22	21	20	19		1	8	17		16	
				Reserved				WUP [,]	1TYPE			WUP0T	YPE
Type/Reset						RW	0	RW	0	RW	0	RW	0
	15		14	13	12	11		1	0	9		8	
	DMOSS	STS			Reserved			WUF	P1EN	Reserve	ed	WUPC	EN
Type/Reset	RO	0						RW	0			RW	0
	7		6	5	4	3			2	1		0	
	DMOS	NC		Reserved		LDOOF	F	LDC	LCM	Reserve	ed	PWCU	RST
Type/Reset	RW	0				RW	0	RW	0			WO	0

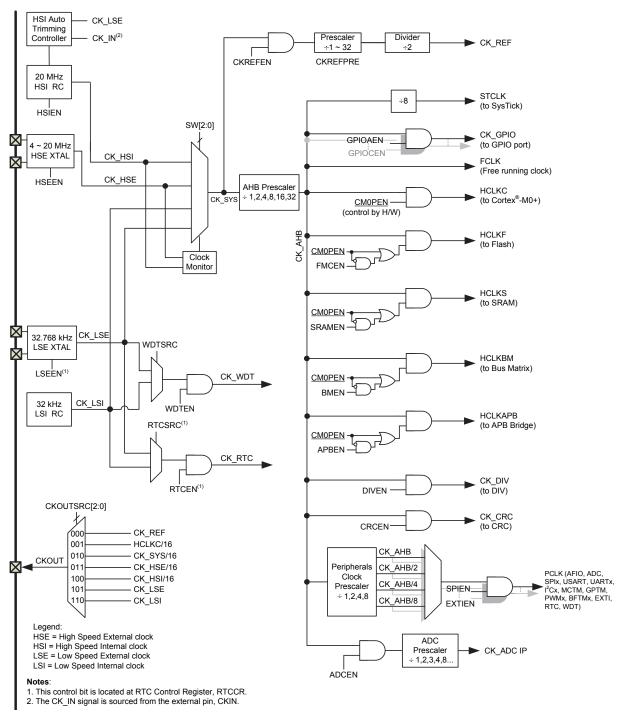
Bits	Field	Descriptions					
[19:18]	WUP1TYPE	WAKEUP1 S					
		WUP1TYP	E [1:0]	WAKEUP1 Signal Trigger Type			
		0 0)	Positive-edge Triggered			
		0 1	1	Negative-edge Triggered			
		1 0)	High-level Sensitive			
		1 1	1	Low-level Sensitive			
[17:16]	WUP0TYPE	WAKEUP0 S	Signal Trig	ger Type			
		WUP0TYP	E [1:0]	WAKEUP0 Signal Trigger Type			
		0 0)	Positive-edge Triggered			
		0 1	1	Negative-edge Triggered			
		1 0)	High-level Sensitive			
		1 1	1	Low-level Sensitive			
[15]	DMOSSTS	Depletion MC	OS Status	;			
		This bit is set	t to 1 if the	e DMOSON bit in this register has been s	set to 1.		
		This bit is clea	red to 0 if	the DMOSON bit has been set to 0 or if a PO	R / PDR reset occurred.		
[10]	WUP1EN	External WA					
				P1 pin function			
				P1 pin function			
				the WUP1EN bit as 1 to enable the W oower saving mode. When WUP1EN =	-		
				up the system from the power saving mo	-		
				pin should be configured to an input and			
[8]	WUP0EN	' External WAł	-		1		
[-]	WOI OLIN	0: Disable WAKEUP0 pin function					
				^o 0 pin function			
		The Software	e can set	the WUP0EN bit as 1 to enable the W	AKEUP0 pin function		
				oower saving mode. When WUP0EN =	-		
				up the system from the power saving mo			
	DUGGGN	-	-	pin should be configured to an input and	pull-down state.		
[7]	DMOSON	DMOS Contr					
		0: DMOS is OFF 1: DMOS is ON					
				ed to provide an alternative voltage sour	ce for the 1.5 V power		
				J enters the Deep-Sleep mode (SLEEPD	-		
		bit DMOSON	l is set by	software and cleared by software or V_{DE}	power domain reset.		
		If the DMOS	SON bit is	s set to 1, the LDO will automatically be	e turned off when the		
		CPU enters t	the Deep-	Sleep mode.			
[3]	LDOOFF	LDO Operati	•				
				es in a low current mode when CPU enters	the Deep-Sleep mode		
				1). The V_{DD15} power is available	mada (OLEEDDEED		
1: The LDO is turned off when the CPU enters the Deep-SI 1). The V _{DD15} power is not available					mode (SLEEPDEEP =		
				vailable when the DMOSON bit is cleared	d to 0		
		1000. THIS DI	cho onny a		4.00.		

Bits	Field	Descriptions
[2]	LDOLCM	LDO Low Current Mode 0: The LDO is operated in normal current mode 1: The LDO is operated in low current mode
		Note: This bit is only available when CPU is in the run mode. The LDO output current capability will be limited at 10 mA below and lower static current when the LDOLCM bit is set. It is suitable for CPU, which is operated at lower speed system clock, to get a lower current consumption. This bit will be cleared to 0 when the LDO is powered down or V _{DD} power domain is reset.
[0]	PWCURST	Power Control Unit Software Reset 0: No action 1: Power Control Unit Software Reset is activated When this bit is set, it will reset all the related RTC and PWRCU registers.

Low Voltage / Brown Out Detect Control and Status Register – LVDCSR

This register	specifies flag	js, enable bi	its and option	DILS IOF IOW	vollage dele	clor.		
Offset:	0x110							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
				1	Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
	Reserved	LVDS [2]	LVDEWEN	LVDIWEN	-		LVDS [1:0]	LVDEN
Type/Reset								RW 0
	15	14	13	12	11	10	9	8
- (D)					Reserved			
Type/Reset	7	6	5	4	3	2	1	0
		-	Reserved		BODF	Reserved	BODRIS	BODEN
Type/Reset	·				RO 0		RW 0	RW 0
Bits	Field	Descrip	tions					
[21]	LVDEWEN	LVD Ever	nt Wakeup Er	nable				
) event wake	•				
) event wake	•				
		•			LVD event wa	akeup functio	on to wake up	the system
					which recult in		it haing aga	artad If the
					hich result ir		•	
		system re		woken up	hich result ir from the Dee		•	
[20]	LVDIWEN	system re this bit m LVD Inter	equires to be ust be set to rupt Wakeup	woken up 1. Enable	from the Dee		•	
[20]	LVDIWEN	system ro this bit m LVD Inter 0: LVD	equires to be ust be set to rupt Wakeup) interrupt wa	woken up 1. Enable keup is disa	from the Dee		•	
[20]	LVDIWEN	system ro this bit m LVD Inter 0: LVI 1: LVI	equires to be ust be set to rupt Wakeup) interrupt wa) interrupt wa	woken up 1. Enable keup is disa keup is ena	from the Dee abled bled	ep-Sleep mo	de by an LVI	D condition,
[20]	LVDIWEN	system ro this bit m LVD Inter 0: LVE 1: LVE Setting th	equires to be ust be set to rupt Wakeup D interrupt wa D interrupt wa nis bit to 1 w	woken up 1. Enable keup is disa keup is ena ill enable th	from the Dee abled bled e LVD interro	ep-Sleep mo upt function.	de by an LVI When an LV	D condition, D condition
[20]	LVDIWEN	system ro this bit m LVD Inter 0: LVE 1: LVE Setting th occurs ar	equires to be ust be set to rupt Wakeup D interrupt wa D interrupt wa nis bit to 1 w	woken up 1. Enable keup is disa keup is ena ill enable th	from the Dee abled bled	ep-Sleep mo upt function.	de by an LVI When an LV	D condition, D condition

Bits	Field	Descriptions
[19]	LVDF	Low Voltage Detect Status Flag 0: V _{DD} is higher than the specific voltage level 1: V _{DD} is equal to or lower than the specific voltage level When the LVD condition occurs, the LVDF flag will be asserted. When the LVDF flag is asserted, an LVD interrupt will be generated for CPU if the LVDIWEN bit is set to 1. However, if the LVDEWEN bit is set to 1 and the LVDIWEN bit is cleared to 0, only an LVD event will be generated rather than an LVD interrupt when the LVDF flag is asserted.
[22], [18:17]	LVDS [2:0]	Low Voltage Detect Level Selection For more details concerning the LVD programmable threshold voltage, refer to the electrical characteristics of the corresponding datasheet.
[16]	LVDEN	Low Voltage Detect Enable 0: Disable Low Voltage Detect 1: Enable Low Voltage Detect Setting this bit to 1 will generate an LVD event when the V _{DD} power is equal to or lower than the voltage set by LVDS bits. Therefore when the LVD function is enabled before the system is into the Deep-Sleep2 (DMOS is turn on and LDO is power down), the LVDEWEN bit has to be enabled to avoid the LDO does not activate in the meantime when the CPU is woken up by the low voltage detection activity.
[3]	BODF	Brown Out Detect Flag 0: $V_{DD} > V_{BOD}$ 1: $V_{DD} \le V_{BOD}$
[1]	BODRIS	BOD Reset or Interrupt Selection 0: Reset the whole chip 1: Generate Interrupt
[0]	BODEN	Brown Out Detector Enable 0: Disable Brown Out Detector 1: Enable Brown Out Detector


6 Clock Control Unit (CKCU)

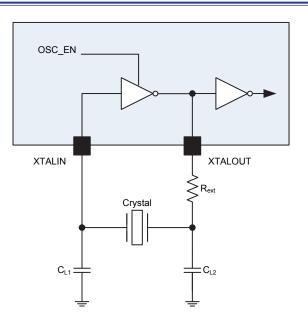
Introduction

The Clock Control unit, CKCU, provides functions of high speed internal RC oscillator, HSI, High speed external crystal oscillator, HSE, Low speed internal RC oscillator, LSI, Low speed external crystal oscillator, LSE, HSE clock monitor, clock prescaler, clock multiplexer and clock gating. The clock of AHB, APB and CPU are derived from system clock, CK_SYS, which can come from HSI, HSE, LSI and LSE. Watchdog Timer and Real Time Clock, RTC, use either LSI or LSE as their clock source.

A variety of internal clocks can also be wired out through CKOUT for debugging purpose. The clock monitor can be used to get clock failure detection of HSE. Once the clock of HSE does not function (could be broken down or removed or etc.), CKCU will force to switch the system clock source to HSI clock to prevent system halt.

Features

- $4 \sim 20$ MHz external crystal oscillator (HSE)
- Internal 20 MHz RC oscillator (HSI) with configuration option calibration and custom trimming capability.
- 32,768 Hz external crystal oscillator (LSE) for Watchdog Timer, RTC or system clock.
- Internal 32 kHz RC oscillator (LSI) for Watchdog Timer, RTC or system clock.
- HSE clock monitor


Function Descriptions

High Speed External Crystal Oscillator – HSE

The high speed external 4 to 20 MHz crystal oscillator (HSE) produces a highly accurate clock source to the system clock. The related hardware configuration is shown in the following figure. The crystal with specific frequency must be placed across the two HSE pins (XTALIN / XTALOUT) and the external components such as resistors and capacitors are necessary to make it oscillate properly.

The following guidelines are provided to improve the stability of the crystal circuit PCB layout.

- The crystal oscillator should be located as close as possible to the MCU so that the trace lengths are kept as short as possible to reduce any parasitic capacitances.
- Shield any lines in the vicinity of the crystal by using a ground plane to isolate signals and reduce noise.
- Keep frequently switching signal lines away from the crystal area to prevent crosstalk.

Figure 14. External Crystal, Ceramic and Resonators for HSE

ດ

The HSE crystal oscillator can be switched on or off using the HSEEN bit in the Global Clock Control Register (GCCR). The HSERDY flag in the Global Clock Status Register (GCSR) will indicate if the high-speed external crystal oscillator is stable. While switching on the HSE, the HSE clock will still not be released until this HSERDY bit is set by the hardware. The specific delay period is well-known as "Start-up time". The HSE clock can then be used directly as the system clock source.

High Speed Internal RC Oscillator – HSI

The high speed internal RC oscillator (HSI) is the default selection of clock source for the CPU when the device is powered up. The HSI RC oscillator provides a clock source in a lower cost because no external components are required. The HSI RC oscillator can be switched on or off using the HSIEN bit in the Global Clock Control Register (GCCR). The HSIRDY flag in the Global Clock Status Register (GCSR) will indicate if the internal RC oscillator is stable. The start-up time of HSI is shorter than the HSE crystal oscillator.

The accuracy of the frequency of the high speed internal RC oscillator HSI can be calibrated via the configuration options, but it is still less accurate than the HSE crystal oscillator. The applications, the environments and the cost will determine the use of the oscillators.

Software could configure the PSRCEN bit (Power Saving Wakeup RC Clock Enable) to 1 to force HSI clock to be system clock when wake-up from Deep-Sleep1/2 mode. Subsequently, the system clock is back to the original clock source if the original clock source ready flag is asserted. This function can reduce the wakeup time when using HSE as system clock.

Auto Trimming of High Speed Internal RC Oscillator – HSI

The frequency accuracy of the high speed internal RC oscillator HSI can vary from one chip to another due to manufacturing process variations, this is why each device is factory calibrated by Holtek for ± 2 % accuracy at $V_{DD} = 5$ V and $T_A = 25^{\circ}$ C. But the accuracy is not enough for some applications and environments requirement. Therefore, this device provides the trimming mechanism for HSI frequency calibration using more accurate external reference clock. The detailed block diagram is shown as Figure 15.

After reset, the factory trimming value is loaded in the HSICOARSE[4:0] and HSIFINE[7:0] bits in the HSI Control Register (HSICR). The HSI frequency accuracy may be affected by voltage or temperature variations. If the application has to be driven by a more accurate HSI frequency, users can trim manually the HSI frequency using the HSIFINE[7:0] bits in the HSI Control Register (HSICR) or automatically adjust the HSI frequency using the Auto Trimming Controller (ATC) together with an external reference clock in the application. The reference clock can be provided form the following clock sources:

- 32,768 Hz low speed external crystal or ceramic resonator oscillator LSE output clock
- External pin (CKIN) with 1 kHz pulse

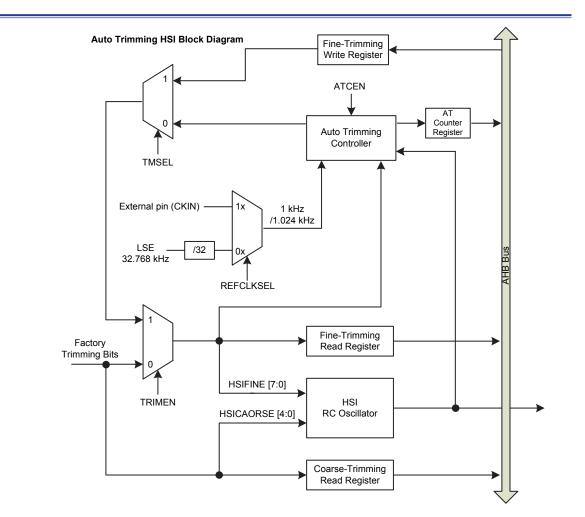
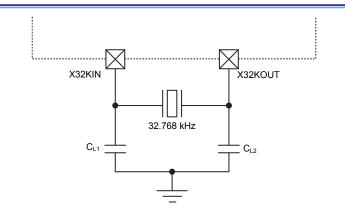



Figure 15. HSI Auto Trimming Block Diagram

Low Speed External Crystal Oscillator – LSE

The low speed external crystal or ceramic resonator oscillator with 32.768 kHz frequency produces a low power but highly accurate clock source for the circuits of Real-Time-Clock peripheral, Watchdog Timer or system clock. The associated hardware configuration is shown in the following figure. The crystal or ceramic resonator must be placed across the two LSE pins (X32KIN / X32KOUT) and the external capacitors are necessary to make it oscillate properly. The LSE oscillator can be switched on or off by using the LSEEN bit in the RTC Control Register (RTCCR). The LSERDY flag in the Global Clock Status Register (GCSR) will indicate if the LSE clock is stable.

Figure 16. External Crystal, Ceramic and Resonators for LSE

Low Speed Internal RC Oscillator – LSI

The low speed internal RC oscillator with frequency of about 32 kHz produces a low power clock source for the circuits of Real-Time-Clock peripheral, Watchdog Timer or system clock. The LSI is also a clock source of low cost because no external component is needed to make it oscillates. The accuracy of the frequency of the low speed internal RC oscillator LSI is shown as the corresponding data sheet. The LSIRDY flag in the Global Clock Status Register (GCSR) will indicate if the LSI clock is stable.

Clock Ready Flag

CKCU provides clock ready flags for HSI, HSE, LSI and LSE to confirm those clocks are stable before using them as system clock source or other purpose. Software can check specific clock is ready or not by polling separate clock ready status bits in GCSR register.

System Clock (CK_SYS) Selection

After the system reset occurs, the default system clock source CK_SYS will be the high speed internal RC oscillator HSI. The CK_SYS may come from the HSI, HSE, LSI and LSE output clock and it can be switched from one clock source to another via the System Clock Switch bits, SW, in the Global Clock Control Register GCCR. The system will still run under the original clock until the destination clock gets ready. The corresponding clock ready status bits in the Global Clock Status Register GCSR will indicate whether the selected clock is ready to use or not. The CKCU also contains the clock source status bits in the Clock Source Status Register CKST to indicate which clock is currently used as the system clock. More details about function of clock enable are described in below.

If any following action takes effect, the HSI is always under enable state.

- Enable Clock monitor. (CKMEN)
- Configure clock switch register bits to select the HSI. (SW)
- Configure HSI enable register bit to 1. (HSIEN)

If any following action takes effect, the HSE is always under enable state.

- Configure clock switch register bits to select the HSE. (SW)
- Configure HSE enable register bit to 1. (HSEEN)

Programming guide of System clock selection is listed in following.

- 1. Enable any source clock which will become system clock.
- 2. Configuring the SW register bits to change system clock source will take effect after ready flag of source clock is asserted. Note that system clock will force to HSI if clock monitor is enabled and HSE clock configured as system clock is stuck at 0 or 1.

HSE Clock Monitor

The main function of the oscillator check is enabled by the HSE Clock Monitor Enable bit CKMEN in the Global Clock Control Register, GCCR. The HSE clock monitor should be enabled after the HSE oscillator start-up delay and be disabled when the HSE oscillator is stopped. Once the HSE oscillator failure is detected, the HSE oscillator will automatically be disabled. The HSE clock stuck flag CKSF in the Global Clock Interrupt Register GCIR will be set and an event of main oscillator failure will be generated if the clock fail interrupt enable bit CKSIE in the GCIR is set. This failure interrupt is connected to the exception vector of CPU Non-Maskable Interrupt, NMI. If the HSE is directly used as the system clock, when the HSE oscillator failure occurs, the HSE will be turned off and the system clock will be switched to the HSI automatically by the hardware.

Clock Output Capability

The device has the clock output capability to allow the clocks to be output on the specific external output pin CKOUT. The configuration registers of the corresponding GPIO port must be well configured in the Alternate Function I/O section, AFIO, to output the selected clock signal. There are seven output clock signals to be selected via the device clock output source selection bits CKOUTSRC in the Global Clock Configuration Register, GCFGR.

CKOUTSRC[2:0]	Clock Source
000	CK_REF = CK_SYS / (CKREFPRE + 1) / 2
001	HCLKC / 16
010	CK_SYS / 16
011	CK_HSE / 16
100	CK_HSI / 16
101	CK_LSE
110	CK_LSI

Table 14. CKOUT Clock Source

Register Map

The following table shows the CKCU register and reset value.

Table 15. CKCU Register Map

Register	Offset	Description	Reset Value
GCFGR	0x000	Global Clock Configuration Register	0x0000_0002
GCCR	0x004	Global Clock Control Register	0x0000_0803
GCSR	0x008	Global Clock Status Register	0x0000_0028
GCIR	0x00C	Global Clock Interrupt Register	0x0000_0000
AHBCFGR	0x020	AHB Configuration Register	0x0000_0001
AHBCCR	0x024	AHB Clock Control Register	0x0000_0065
APBCFGR	0x028	APB Configuration Register	0x0001_0000
APBCCR0	0x02C	APB Clock Control Register 0	0x0000_0000
APBCCR1	0x030	APB Clock Control Register 1	0x0000_0000
CKST	0x034	Clock Source Status Register	0x0100_0003
APBPCSR0	0x038	APB Peripheral Clock Selection Register 0	0x0000_0000
APBPCSR1	0x03C	APB Peripheral Clock Selection Register 1	0x0000_0000
HSICR	0x040	HSI Control Register	0xXXXX_0000 where X is undefined
HSIATCR	0x044	HSI Auto Trimming Counter Register	0x0000_0000
APBPCSR2	0x048	APB Peripheral Clock Selection Register 2	0x0000_0000
MCUDBGCR	0x304	MCU Debug Control Register	0x0000_0000

Register Descriptions

Global Clock Configuration Register – GCFGR

This register specifies the low power mode status and clock source for CKOUT.

 Offset:
 0x000

 Reset value:
 0x0000_0002

	31	30	29	28	27	26	25	24		
		LPMO	D		Reserved					
Type/Reset	RO	0 RO	0 RO	0						
	23	22	21	20	19	18	17	16		
					Reserved					
Type/Reset										
	15	14	13	12	11	10	9	8		
			CKREFPF	RE			Reserved			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0					
	7	6	5	4	3	2	1	0		
	Reserved CKOUT							;		
Type/Reset						RW	0 RW 1	RW 0		

Bits	Field	Descriptions
[31:29]	LPMOD	Lower Power Mode Status
		000: When Chip is in running mode
		001: When Chip wants to enter Sleep mode
		010: When Chip wants to enter Deep-Sleep1 mode
		011: When Chip wants to enter Deep-Sleep2 mode Others: Reserved
		Set and reset by hardware.
[15:11]	CKREFPRE	CK REF Clock Prescaler Selection
		CK REF = CK SYS / (CKREFPRE + 1) / 2
		00000: CK REF = CK SYS / 2
		00001: CK_REF = CK_SYS / 4
		11111: CK_REF = CK_SYS / 64
		Set and reset by software to control CK_REF clock prescaler setting.
[2:0]	CKOUTSRC	CKOUT Clock Source Selection
		000: (CK_SYS / (CKREFPRE + 1) / 2) is selected
		001: (HCLKC / 16) is selected
		010: (CK_SYS / 16) is selected
		011: (CK_HSE / 16) is selected
		100: (CK_HSI / 16) is selected
		101: CK LSE is selected
		110: CK_LSI is selected
		Set and reset by software.

	specifies the c	lock enabl	e bits.								
Offset:	0x004										
Reset value:	0x0000_0803	3									
	31	30	29	28	27	26		25		24	
					Reserved						
Type/Reset											
	23	22	21	20	19	18		17		16	
				Reserved				PSRCE	N	CKM	EN
Type/Reset								RW	0	RW	0
	15	14	13	12	11	10		9		8	
			Reserved		HSIEN	HSEEN	Ν	Reserve	ed	HSEG	AIN
Type/Reset					RW 1	RW	0			RW	0
	7	6	5	4	3	2		1		0	
				Reserved				SW			
Type/Reset						RW	0	RW	1	RW	1
Bits	Field	Descrip	tions								
[17]	PSRCEN	•	iving Wakeup	RC Clock	Enable						
['']	I SRUEN	0: No									
			Internal RC c		a avatam alaa	k offer e F)	Sleep1/	0 m	ada wal	

Global Clock Control Register – GCCR

[17]	PSRCEN	Power Saving Wakeup RC Clock Enable
		0: No action
		1: Use Internal RC clock (HSI) as system clock after a Deep-Sleep1/2 mode wakeup
		Software can set PSRCEN to high before entering Deep-Sleep1/2 mode in order to
		reduce the waiting time after wakeup. When PSRCEN = 1, hardware will select HSI
		as clock source after the system wakeup from Deep-Sleep1/2 mode. Meanwhile,
		instruction can start execution since the HSI clock is provided to MCU. After the
		original clock source, which is selected as CK_SYS before entering Deep-Sleep1/2 mode, is ready, hardware will switch back the clock source as originally.
[16]	CKMEN	HSE Clock Monitor Enable
		0: Disable External crystal oscillator clock monitor
		1: Enable External crystal oscillator clock monitor
		When hardware detects HSE clock stuck at low / high state, internal hardware will switch
		the system clock to internal high speed RC clock (HSI).
[11]	HSIEN	Internal High Speed Clock Enable
		0: Internal RC oscillator clock is set to off
		1: Internal RC oscillator clock is set to on
		Set and reset by software. This bit can not be reset if HSI clock is used as system clock.
[10]	HSEEN	External High Speed Clock Enable
		0: External crystal oscillator clock is set to off
		1: External crystal oscillator clock is set to on
		Set and reset by software. This bit can not be reset if the HSE clock is used as
		system clock.

Bits	Field	Descriptions
[8]	HSEGAIN	External High Speed Clock Gain Selection 0: HSE low gain mode 1: HSE high gain mode
[2:0]	SW	 System Clock Switch 010: CK_HSE as system clock 011: CK_HSI as system clock 110: CK_LSE as system clock 111: CK_LSI as system clock Others: CK_HSI as system clock These bits are set and reset by software to select CK_SYS source. If the HSE oscillator is used directly or indirectly as the system clock and the HSE clock monitor function is enabled, once the HSE failure is detected, these bits will be set by hardware to force HSI (b011) as the system clock. Note: When switch the system clock using the SW bits, the system clock is not immediately switched and a certain delay is necessary. The software can monitor the CKSWST bit in the clock source status register CKST to make sure which clock is currently used as system clock.

0x008

Offset:

Global Clock Status Register – GCSR

This register indicates the clock ready status.

Reset value:	0x0000_00	28						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
		Reserved	LSIRDY	LSERDY	HSIRDY	HSERDY		Reserved
Type/Reset			RO 1	RO 0	RO 1	RO 0		

Bits	Field	Descriptions
[5]	LSIRDY	Internal Low Speed Clock Ready Flag
		0: Internal 32 kHz RC oscillator clock is not ready
		1: Internal 32 kHz RC oscillator clock is ready
		Set by hardware to indicate that the LSI is stable to be used.
[4]	LSERDY	External Low Speed Clock Ready Flag
		0: External 32.768 kHz RC oscillator clock is not ready
		1: External 32.768 kHz RC oscillator clock is ready
		Set by hardware to indicate that the LSE is stable to be used.
[3]	HSIRDY	Internal High Speed Clock Ready Flag
		0: Internal RC oscillator clock is not ready
		1: Internal RC oscillator clock is ready
		Set by hardware to indicate that the HSI is stable to be used.
[2]	HSERDY	External High Speed Clock Ready Flag
		0: External crystal oscillator clock is not ready
		1: External crystal oscillator clock is ready
		Set by hardware to indicate that the HSE is stable to be used.

Global Clock Interrupt Registe	r – GCIR
--------------------------------	----------

This register specifies interrupt enable and flag bits.Offset:0x00C

Reset value: 0x0000_0000 Reserved Type/Reset Reserved CKSIE Type/Reset RW Reserved Type/Reset Reserved CKSF Type/Reset WC

Bits	Field	Descriptions
[16]	CKSIE	Clock Stuck Interrupt Enable
		0: Disable clock fail interrupt
		1: Enable clock fail interrupt
		Set and reset by software to enable / disable interrupt caused by clock monitor.
[0]	CKSF	Clock Stuck Interrupt Flag 0: Clock works normally 1: HSE clock is stuck Reset by software (Write 1 clear). Set by hardware when HSE clock stuck and CKMEN is set.

AHB Configuration Register – AHBCFGR

This register specifies frequency of system clock.

Olisel.	0x020							
Reset value:	0x0000_0001							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved				AHBPRE	
Type/Reset						RW	0 RW 0	RW 1

Bits	Field	Descriptions
[2:0]	AHBPRE	AHB Pre-scaler
		000: CK_AHB = CK_SYS
		001: CK_AHB = CK_SYS / 2
		010: CK_AHB = CK_SYS / 4
		011: CK_AHB = CK_SYS / 8
		100: CK_AHB = CK_SYS / 16
		101: CK_AHB = CK_SYS / 32
		110: CK_AHB = CK_SYS / 32
		111: CK_AHB = CK_SYS / 32
		Set and reset by software to control the division factor of the AHB clock.

AHB Clock Control Register – AHBCCR

This register specifies clock enable bits of AHB.

Offset: 0x024 Reset value: 0x000_0065

	31	30	29	28	27	26	25	24
				Reserved				DIVEN
Type/Reset								RW 0
	23	22	21	20	19	18	17	16
				Reserved		PCEN	PBEN	PAEN
Type/Reset						RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
		Reserved	CRCEN	Reserved	CKREFEN		Reserved	
Type/Reset			RW 0		RW 0			
	7	6	5	4	3	2	1	0
	Reserved	APBEN	BMEN		Reserved	SRAMEN	Reserved	FMCEN
Type/Reset		RW 1	RW 1			RW 1		RW 1

Bits	Field	Descriptions
[24]	DIVEN	Divider Clock Enable
		0: Divider clock is disabled
		1: Divider clock is enabled
		Set and reset by software.
[18]	PCEN	GPIO Port C Clock Enable
		0: Port C clock is disabled
		1: Port C clock is enabled
		Set and reset by software.
[17]	PBEN	GPIO Port B Clock Enable
		0: Port B clock is disabled
		1: Port B clock is enabled
		Set and reset by software.
[16]	PAEN	GPIO Port A Clock Enable
		0: Port A clock is disabled
		1: Port A clock is enabled
		Set and reset by software.
[13]	CRCEN	CRC Module Clock Enable
		0: CRC clock is disabled
		1: CRC clock is enabled
		Set and reset by software.
[11]	CKREFEN	CK_REF Clock Enable
		0: CK_REF clock is disabled
		1: CK_REF clock is enabled
		Set and reset by software.
[6]	APBEN	APB bridge Clock Enable
		0: APB bridge clock is automatically disabled by hardware during Sleep mode
		1: APB bridge clock is always enabled during Sleep mode
		Set and reset by software. Users can clear the APBEN bit to 0 to reduce power
		consumption if the APB bridge is unused during Sleep mode.

Bits	Field	Descriptions
[5]	BMEN	Bus Matrix Clock Enable 0: Bus Matrix clock is automatically disabled by hardware during Sleep mode 1: Bus Matrix clock is always enabled during Sleep mode Set and reset by software. Users can clear the BMEN to 0 to reduce power consumption if the bus matrix is unused during Sleep mode.
[2]	SRAMEN	 SRAM Clock Enable 0: SRAM clock is automatically disabled by hardware during Sleep mode 1: SRAM clock is always enabled during Sleep mode Set and reset by software. Users can clear the SRAMEN to 0 to reduce power consumption if the SRAM is unused during Sleep mode.
[0]	FMCEN	Flash Memory Controller Clock Enable 0: FMC clock is automatically disabled by hardware during Sleep mode 1: FMC clock is always enabled during Sleep mode Set and reset by software. Users can clear the FMCEN to 0 to reduce power consumption if the Flash Memory is unused during Sleep mode.

APB Configuration Register – APBCFGR

This register	specifies the free	quency	of ADC convers	ion clock	-			
Offset:	0x028							
Reset value:	0x0001_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
			Reserved				ADCDI	V
Type/Reset						RW	0 RW	0 RW 1
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
					Reserved			

Type/Reset

Bits	Field	Descriptions
[18:16]	ADCDIV	ADC Clock Frequency Divide Selection
		000: CK_ADC = (CK_AHB / 1)
		001: CK_ADC = (CK_AHB / 2)
		010: CK_ADC = (CK_AHB / 4)
		011: CK_ADC = (CK_AHB / 8)
		100: CK_ADC = (CK_AHB / 16)
		101: CK_ADC = (CK_AHB / 32)
		110: CK_ADC = (CK_AHB / 64)
		111: CK_ADC = (CK_AHB / 3)
		Set and reset by software to control ADC conversion clock division factor.

APB Clock Control Register 0 – APBCCR0 This register specifies clock enable bits of APB peripherals.

Offset:	0x02C							
Reset value:	0x0000 000	00						
	—							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EXTIEN	AFIOEN		Reserved	UR1EN	UR0EN	Reserved	USREN
Type/Reset	RW 0	RW 0			RW 0	RW 0		RW 0
	7	6	5	4	3	2	1	0
		Reserved	SPI1EN	SPI0EN		Reserved	I2C1EN	I2C0EN
Type/Reset			RW 0	RW 0			RW 0	RW 0

Bits	Field	Descriptions
[15]	EXTIEN	External Interrupt Clock Enable
		0: EXTI clock is disabled
		1: EXTI clock is enabled
		Set and reset by software.
[14]	AFIOEN	Alternate Function I/O Clock Enable
		0: AFIO clock is disabled
		1: AFIO clock is enabled
		Set and reset by software.
[11]	UR1EN	UART1 Clock Enable
		0: UART1 clock is disabled
		1: UART1 clock is enabled
		Set and reset by software.
[10]	UR0EN	UART0 Clock Enable
		0: UART0 clock is disabled
		1: UART0 clock is enabled
		Set and reset by software.
[8]	USREN	USART Clock Enable
		0: USART clock is disabled
		1: USART clock is enabled
		Set and reset by software.
[5]	SPI1EN	SPI1 Clock Enable
		0: SPI1 clock is disabled
		1: SPI1 clock is enabled
		Set and reset by software.
[4]	SPI0EN	SPI0 Clock Enable
		0: SPI0 clock is disabled
		1: SPI0 clock is enabled
		Set and reset by software.

Bits	Field	Descriptions
[1]	I2C1EN	I ² C1 Clock Enable
		0: I ² C1 clock is disabled
		1: I ² C1 clock is enabled
		Set and reset by software.
[0]	I2C0EN	I ² C0 Clock Enable
		0: I ² C0 clock is disabled
		1: I ² C0 clock is enabled
		Set and reset by software.

APB Clock Control Register 1 – APBCCR1

This register specifies clock enable bits APB peripherals.

Offset: 0x030 Reset value: 0x0000_0000 25 31 30 29 28 27 26 24 Reserved ADCCEN Type/Reset RW 0 23 22 21 20 19 18 17 16 BFTM1EN BFTM0EN Reserved 0 RW Type/Reset RW 0 15 14 13 12 11 10 9 8 Reserved PWM1EN PWM0EN Reserved GPTMEN Type/Reset RW 0 RW 0 RW 0 7 6 5 4 3 2 1 0 Reserved VDDREN Reserved WDTREN Reserved MCTMEN RW RW 0 RW Type/Reset 0 0

Bits	Field	Descriptions
[24]	ADCCEN	ADC Controller Clock Enable 0: ADC clock is disabled 1: ADC clock is enabled Set and reset by software.
[17]	BFTM1EN	BFTM1 Clock Enable 0: BFTM1 clock is disabled 1: BFTM1 clock is enabled Set and reset by software.
[16]	BFTM0EN	BFTM0 Clock Enable 0: BFTM0 clock is disabled 1: BFTM0 clock is enabled Set and reset by software.
[13]	PWM1EN	PWM1 Clock Enable 0: PWM1 clock is disabled 1: PWM1 clock is enabled Set and reset by software.

Bits	Field	Descriptions
[12]	PWM0EN	PWM0 Clock Enable 0: PWM0 clock is disabled 1: PWM0 clock is enabled Set and reset by software.
[8]	GPTMEN	GPTM Clock Enable 0: GPTM clock is disabled 1: GPTM clock is enabled Set and reset by software.
[6]	VDDREN	 V_{DD} Domain Clock Enable for Registers Access 0: Register access clock is disabled 1: Register access clock is enabled Set and reset by software.
[4]	WDTREN	Watchdog Timer Clock Enable for Registers Access 0: Register access clock is disabled 1: Register access clock is enabled Set and reset by software.
[0]	MCTMEN	MCTM Clock Enable 0: MCTM clock is disabled 1: MCTM clock is enabled Set and reset by software.

Clock Source	Status	Register – CKST
		•

This register s	specifies	status	of cloc	k source.
Offset:	0x034			

Reset value: 0x0100_0003

	31	30	29	28	27	26	25	24	
			Reserved				HSIS	Т	
Type/Reset						RO	0 RO	0 RO	1
	23	22	21	20	19	18	17	16	
				Reserved				HSES	ST
Type/Reset							RO	0 RO	0
-	15	14	13	12	11	10	9	8	
					Reserved				
Type/Reset									
	7	6	5	4	3	2	1	0	
			Reserved				CKSW	ST	
Type/Reset						RO	0 RO	1 RO	1

Bits	Field	Descriptions
[26:24]	HSIST	Internal High Speed Clock Occupation Status (CK_HSI) xx1: HSI is used by System Clock (CK_SYS) (SW = 0x3) x1x: Reserved 1xx: HSI is used by Clock Monitor
[17:16]	HSEST	External High Speed Clock Occupation Status (CK_HSE) x1: HSE is used by System Clock (CK_SYS) (SW = 0x2) 1x: Reserved
[2:0]	CKSWST	Clock Switch Status 00x: Reserved 010: CK_HSE as system clock 011: CK_HSI as system clock 110: CK_LSE as system clock 111: CK_LSI as system clock The fields are status to indicate which clock source is using as system clock currently.

Offenti	-	PB peripher			000011.								
Offset:	0x038												
Reset value:	0x0000_0	0000											
	31	30	29		28	27	2	26	2	5		24	
		UR1PCL	K	URC	PCLK		Res	erved			USI	RPC	LΚ
Type/Reset	RW	0 RW	0 RW	0 RW	0				RW	0	RW		0
	23	22	21		20	19	1	8	1	7		16	
		Reserve	d	GPT	NPCLK		Res	erved			МСТ	MPC	CLK
Type/Reset			RW	0 RW	0				RW	0	RW		0
	15	14	13		12	11	1	0	g)		8	
		BFTM1PC	LK	BFTN	IOPCLK				Rese	rved			
Type/Reset	RW	0 RW	0 RW	0 RW	0								
	7	6	5		4	3		2	1			0	
		SPI1PCL	.K	SPIC	PCLK		I2C1	PCLK			I2C	0PC	LΚ
Type/Reset	RW	0 RW	0 RW	0 RW	0	RW	0 RW	0	RW	0	RW		0
Bits	Field	Desc	criptions										
[31:30]	UR1PCLI	K UAR	T1 Peripher	ral Clock S	Selectio	n							
): PCLK = (_									
		01	: PCLK = 0	СК_АНВ /									
		01 10	: PCLK = (): PCLK = (СК_АНВ / СК_АНВ /	4								
		01 10 11	: PCLK = (): PCLK = (: PCLK = (СК_АНВ / СК_АНВ / СК_АНВ /	4 8		and CPI		,				
120-201		01 10 11 PCLk	: PCLK = (): PCLK = (: PCLK = ((= Periphe	CK_AHB / CK_AHB / CK_AHB / eral Clock;	4 8 CK_AF		3 and CPI	J clocl	K				
[29:28]	UR0PCL	01 10 11 PCLk K UAR	: PCLK = 0): PCLK = 0 : PCLK = 0 (= Periphe 10 Periphe	CK_AHB / CK_AHB / CK_AHB / ral Clock; ral Clock §	4 8 CK_AF		3 and CPI	J clocl	٢				
[29:28]	UR0PCLI	01 10 11 PCLF K UAR ⁻ 00	: PCLK = (): PCLK = (: PCLK = ((= Periphe (Periphe)): PCLK = (CK_AHB / CK_AHB / CK_AHB / ral Clock; ral Clock \$ CK_AHB	4 8 CK_AF Selectio		3 and CPI	J clocl	<				
[29:28]	UR0PCL	01 10 11 PCLk K UAR 00 01	: PCLK = (): PCLK = (: PCLK = ((= Periphe TO Peripher): PCLK = (: PCLK = (CK_AHB / CK_AHB / CK_AHB / oral Clock; ral Clock S CK_AHB CK_AHB /	4 8 CK_AF Selectio 2		3 and CPI	J cloci	<				
[29:28]	UR0PCL	01 10 11 PCLk K UAR 00 01	: PCLK = (): PCLK = (: PCLK = ((= Periphe (Periphe)): PCLK = (CK_AHB / CK_AHB / CK_AHB / rral Clock; ral Clock § CK_AHB CK_AHB / CK_AHB /	4 8 CK_AF Selectio 2 4		3 and CPI	J clocl	٢				
[29:28]	UR0PCLI	01 10 PCLk K UAR 00 01 10	: PCLK = (): PCLK = (: PCLK = ((= Periphe TO Peripher): PCLK = (): PCLK = (): PCLK = (CK_AHB / CK_AHB / CK_AHB / ral Clock; ral Clock § CK_AHB CK_AHB / CK_AHB / CK_AHB /	4 8 CK_AF Selectio 2 4 8	n							
	UR0PCLI USRPCLI	01 10 PCLk K UAR 00 01 10 11 PCLk	: PCLK = (): PCLK = (: PCLK = ((= Periphe TO Peripher): PCLK = (): PCLK = (): PCLK = (): PCLK = (CK_AHB / CK_AHB / CK_AHB / ral Clock; ral Clock S CK_AHB CK_AHB / CK_AHB / CK_AHB / ral Clock;	4 8 CK_AF Selectio 2 4 8 CK_AF	n 1B = AHE							
		01 10 PCLk K UAR 00 01 10 11 PCLk K USAF	: PCLK = (: PCLK = (: PCLK = (C = Peripher : PCLK = (: PCLK = (: PCLK = (: PCLK = (C = Peripher : PCLK = (:	CK_AHB / CK_AHB / Pral Clock; ral Clock S CK_AHB CK_AHB / CK_AHB / CK_AHB / CK_AHB / Pral Clock; ral Clock S	4 8 CK_AF Selectio 2 4 8 CK_AF	n 1B = AHE							
		01 10 PCLk K UAR 00 01 10 11 PCLk K USAR	: PCLK = (): PCLK = (; PCLK = ((= Peripher): PCLK = (): PCLK = (): PCLK = (): PCLK = ((= Peripher RT Peripher	CK_AHB / CK_AHB / CK_AHB / Pral Clock (S CK_AHB CK_AHB / CK_AHB / CK_AHB / Pral Clock (S CK_AHB	4 8 CK_AF Selectio 2 4 8 CK_AF Selectic	n 1B = AHE							
		01 10 PCLk K UAR 00 01 10 11 PCLk K USAR 00 01	: PCLK = (: PCLK = (: PCLK = ((= Peripher): PCLK = (: PCLK = (: PCLK = (: PCLK = ((= Peripher RT Peripher): PCLK = (: PCLK = (: PCLK = (): PCLK = (): PCLK = (CK_AHB / CK_AHB / CK_AHB / ral Clock; ral Clock § CK_AHB / CK_AHB / CK_AHB / ral Clock; ral Clock § CK_AHB / CK_AHB / CK_AHB /	4 8 CK_AF Selectio 2 4 8 CK_AF Selectic 2 4	n 1B = AHE							
		01 10 PCLk K UAR 00 01 10 11 PCLk K USAF 00 01 11	: PCLK = (: PCLK = (: PCLK = ((= Peripheric : PCLK = (:	CK_AHB / CK_AHB / CK_AHB / ral Clock; ral Clock § CK_AHB / CK_AHB / CK_AHB / ral Clock; ral Clock § CK_AHB / CK_AHB / CK_AHB /	4 8 CK_AF Selectio 2 4 8 CK_AF Selectic 2 4 8	n IB = AHE n	3 and CPl	J clocl	<				
[25:24]	USRPCL	01 10 PCLk K UAR 00 01 10 11 PCLk K USAR 00 01 10 11 PCLk	: PCLK = (: PCLK = (: PCLK = ((= Peripheric): PCLK = (: P	CK_AHB / CK_AHB /	4 8 CK_AF Selectio 2 4 8 CK_AF 2 4 8 CK_AF	n IB = AHE n IB = AHE	3 and CPl	J clocl	<				
[25:24]		01 10 11 PCLk K UAR 00 01 10 FCLk K USAF 01 11 PCLk SLK GPT	: PCLK = (): PCLK = ((PCLK = ((Peripher): PCLK = (): PCLK = (): PCLK = ((PCLK = ((PCLK = (): PCLK = (): PCLK = (): PCLK = ((PCLK = ((PCLK = ((PCLK = ()): PCLK = ((PCLK = ()): PCLK = ((PCLK = ()): PCLK = (): PCLK = ()	CK_AHB / CK_AHB / CK_AHB / Pral Clock; ral Clock § CK_AHB / CK_AHB / CK_AHB / CK_AHB / CK_AHB / CK_AHB / CK_AHB / CK_AHB / CK_AHB / CK_AHB / CK_AHS / CK_AHS / CK_AHS /	4 8 CK_AF Selectio 2 4 8 CK_AF 2 4 8 CK_AF	n IB = AHE n IB = AHE	3 and CPl	J clocl	<				
[25:24]	USRPCL	01 10 11 PCLk K UAR 00 01 10 FCLk K USAR 00 01 10 11 PCLk SLK GPTN 00	: PCLK = (): PCLK = ((PCLK = ((Peripher): PCLK = (): PCLK = (): PCLK = ((PCLK = ((PCLK = (): PCLK = (): PCLK = (): PCLK = ((PCLK = ((Peripher)): PCLK = ((PCLK = ()): PCLK = ()): PCLK = ():	CK_AHB / CK_AHB /	4 8 CK_AF Selectio 2 4 8 CK_AF Selectic 2 4 8 CK_AF electior	n IB = AHE n IB = AHE	3 and CPl	J clocl	<				
[25:24]	USRPCL	01 10 11 PCLk K UAR 00 01 10 FCLk K USAR 00 01 10 11 PCLk SLK GPTN 00 01	 PCLK = 0 	CK_AHB / CK_AHB / CK_AHB / Aral Clock; ral Clock § CK_AHB / CK_AHB /	4 8 CK_AF Selectio 2 4 8 CK_AF Selectic 2 4 8 CK_AF electior 2	n IB = AHE n IB = AHE	3 and CPl	J clocl	<				
[29:28] [25:24] [21:20]	USRPCL	01 10 11 PCLk K UAR 00 01 10 PCLk K USAR 00 01 11 PCLk SLK GPTN 00 01	: PCLK = (): PCLK = ((PCLK = ((Peripher): PCLK = (): PCLK = (): PCLK = ((PCLK = ((PCLK = (): PCLK = (): PCLK = (): PCLK = ((PCLK = ((Peripher)): PCLK = ((PCLK = ()): PCLK = ()): PCLK = ():	CK_AHB / CK_AHB / CK_AHB / Fral Clock; ral Clock S CK_AHB / CK_AHB /	4 8 CK_AF Selectio 2 4 8 CK_AF Selectic 2 4 8 CK_AF electior 2 4	n IB = AHE n IB = AHE	3 and CPl	J clocl	<				

Bits	Field	Descriptions
[17:16]	MCTMPCLK	MCTM Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[15:14]	BFTM1PCLK	BFTM1 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[13:12]	BFTM0PCLK	BFTM0 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[7:6]	SPI1PCLK	SPI1 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[5:4]	SPIOPCLK	SPI0 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[3:2]	I2C1PCLK	 I²C1 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[1:0]	I2C0PCLK	I ² C0 Peripheral Clock Selection 00: PCLK = CK_AHB 01: PCLK = CK_AHB / 2 10: PCLK = CK_AHB / 4 11: PCLK = CK_AHB / 8 PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock

This register	specifies /	APB peripheral	clock pres	scaler selecti	on.							
Offset:	0x03C											
Reset value:	0x0000_	0000										
	31	30	29	28		27		26	25		24	
					R	eserv	ed					
Type/Reset												
	23	22	21	20		19		18	17		16	
					R	eserv	ed					
Type/Reset												
	15	14	13	12		11		10	9		8	
		VDDRPCLK		WDTRPC			I		Reser	ved		
Type/Reset	RW		RW	0 RW	0							
	7	6	5	4		3		2	1		0	
		Reserved		ADCCPC				TIPCLK	<u> </u>		AFIOPO	
Type/Reset			RW	0 RW	0 R\	N	0 RW	0	RW	0 F	RW	0
Bits	Field	Descri	ptions									
[15:14]	VDDRP		nain Reg	ister Access	Clock S	Select	ion					
				K_AHB / 4								
				K_AHB / 8								
				K_AHB / 16 K_AHB / 32								
				al Clock; CK	AHB	= AHF	and Cl	PLL clock	¢			
[13:12]	WDTRP			cess Clock S				0 01001	·			
[10.12]	110114		PCLK = C		Joiootit	511						
				K_AHB / 2								
				K_AHB / 4								
				K_AHB / 8								
11			-	al Clock; CK	_			-U cloch	< C			
[5:4]	ADCCPO			Peripheral Clo	ock Sel	ection	1					
			PCLK = 0	K_AHB / 2								
				K_AHB / 4								
				K AHB/8								
		PCLK =	Peripher	al Clock; CK	_AHB	= AHE	and Cl	⊃U clocł	< C			
[3:2]	EXTIPCI	LK EXTI P	eripheral	Clock Selecti	on							
		00: F	PCLK = C	K_AHB								
				K_AHB / 2								
				K_AHB / 4								
				K_AHB / 8		- \ LID						
		PULK =	Peripher	al Clock; CK	AHR	– AHE	and Cl		(

APB Peripheral Clock Selection Register 1 – APBPCSR1

Bits	Field	Descriptions
[1:0]	AFIOPCLK	AFIO Peripheral Clock Selection
		00: PCLK = CK_AHB
		01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
		PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock

HSI Control Register – HSICR

This register is to control the frequency trimming of HSI RC oscillation.

Offset: 0x040

Reset value: 0xXXXX_0000 where X is undefined

	31		30		29		28		27		26		2	5		24	
			Reserv	ed							HSICOAF	RSE					
Type/Reset							RO	Х	RO	Х	RO	Х	RO	Х	RO		Х
	23		22		21		20		19		18		1	7		16	
									HSIFI	NE							
Type/Reset	RW	Х	RW	Х	RW	Х	RW	Х	RW	Х	RW	Х	RW	Х	RW		Х
	15		14		13		12		11		10		ę)		8	
									Reserv	/ed							
Type/Reset																	
	7		6		5		4		3		2		1			0	
	FLOC	к			REFCLK	SEL	TMSE	L	ATMS	EL	LTRSE	EL	ATC	EN	TF	RIME	N
Type/Reset	RO	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0

Bits	Field	Descriptions
[28:24]	HSICOARSE	HSI Clock Coarse Trimming Value These bits are initialized automatically at startup. They are adjusted by factory trimming and cannot trim by program.
[23:16]	HSIFINE	HSI Clock Fine Trimming Value These bits are initialized automatically at startup. They are also adjusted by factory trimming. But these bits provide an additional user-programmable trimming value that is added to the HSICOARSE[4:0] bits to get more accurate or compensate the variations in voltage and temperature that influence the frequency of the HSI. It can be programmed by software or automatically adjusted by the Auto Trimming Controller (ATC) with an external reference clock.
[7]	FLOCK	Frequency Lock 0: HSI frequency is not trimmed into target range 1: HSI frequency is trimmed into target range
[6:5]	REFCLKSEL	Reference Clock Selection 0x: Select 32.768 kHz external low speed clock source (LSE) 1x: Select external pin (CKIN) 1 kHz pulse These bits are used to select the reference clock for the HSI Auto Trimming Controller.

Bits	Field	Descriptions
[4]	TMSEL	Trimming Mode Selection 0: Automatic by Auto Trimming Controller
		1: Manual by user program
		This bit is used to select the HSI RC oscillator trimming function by ATC hardware or user programming via the HSIFINE[7:0] bits in the HSI Control Register.
[3]	ATMSEL	Automatic Trimming Mode Selection
		0: Auto Trimming Controller uses binary search to approach the target range 1: Auto Trimming Controller uses linear search to approach the target range
		This bit is selected the automatic trimming method by ATC hardware for HSI RC oscillator.
[2]	LTRSEL	Lock Target Range Selection 0: 0.1 % variation
		1: 0.2 % variation
		This bit is selected the lock target range of the internal HSI RC oscillator trimming
		function for 0.1 % or 0.2 % variation.
[1]	ATCEN	ATC Enable
		0: Disable Auto Trimming Controller
		1: Enable Auto Trimming Controller
[0]	TRIMEN	Trimming Enable
		0: HSI Trimming is disable
		1: HSI Trimming is enable
		The bit enables the HSI RC oscillator trimming function by ATC hardware or user programming.

HSI Auto Trimming Counter Register – HSIATCR

This register	contains the	counter valu	e of the H	ISI auto	trim	ming controll	ler.					
Offset:	0x044											
Reset value:	0x0000_00	00										
	31	30	29		28	27	2	6	25		24	
						Reserv	ed					
Type/Reset												
	23	22	21		20	19	18	8	17		16	
						Reserv	ed					
Type/Reset												
	15	14	13		12	11	1	0	9		8	
		Reserved					ATC	NT				
Type/Reset			RO	0 RO		0 RO	0 RO	0	RO	0 RO		0
	7	6	5		4	3	2	2	1		0	
						ATCN	Т					
Type/Reset	RO 0	RO 0	RO	0 RO		0 RO	0 RO	0	RO	0 RO		0
Bits	Field	Descript	ions									
[13:0]	ATCNT	Auto Trim	ming Cou	Inter								
		These hits	contain	the cou	nterv	value of the l	HSI auto tr	immin	a control	ler		

These bits contain the counter value of the HSI auto trimming controller.

Offset:	0x048											
Reset value:	: 0x0000_000	0										
	31	30	29	28	27		26		25		24	
					Reserv	/ed						
Type/Reset												
	23	22	21	20	19		18		17		16	
			Reserved				PWM1P0	CLK		P١	VM0P	CLK
Type/Reset					RW	0	RW	0	RW	0 RV	V	0
	15	14	13	12	11		10		9		8	
					Reserv	/ed						
Type/Reset												
	7	6	5	4	3		2		1		0	
					Reserv	od						

APB Peripheral Clock Selection Register 2 – APBPCSR2

Type/Reset

Bits	Field	Descriptions
[19:18]	PWM1PCLK	PWM1 Peripheral Clock Selection
		00: PCLK = CK_AHB
		01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
		PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock
[17:16]	PWM0PCLK	PWM0 Peripheral Clock Selection
		00: PCLK = CK_AHB
		01: PCLK = CK_AHB / 2
		10: PCLK = CK_AHB / 4
		11: PCLK = CK_AHB / 8
		PCLK = Peripheral Clock; CK_AHB = AHB and CPU clock

MCU Debug Control Register – MCUDBGCR

MCU Debug Control Register – MCUDBGCR									
This register	specifies deb	oug control of	f MCU.						
Offset:	0x304								
Reset value:	0x0000_000	00 (Reset by	VDD domaii	n reset only)					
	31	30	29	28	27	26	25	24	
	DBPWM1	DBPWM0				Reserved			
Type/Reset	RW 0	RW 0							
	23	22	21	20	19	18	17	16	
			Reserved		DBUR1	DBUR0	DBBFTM1	DBBFTM	10
Type/Reset					RW 0	RW 0	RW 0	RW	0
	15	14	13	12	11	10	9	8	
	Reserved	DBDSLP2	DBI2C1	DBI2C0	DBSPI1	DBSPI0	Reserved	DBUSR	2
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0		RW	0
	7	6	5	4	3	2	1	0	
	Reserved	DBGPTM	Reserved	DBMCTM	DBWDT	Reserved	DBDSLP1	DBSLP)
Type/Reset		RW 0		RW 0	RW 0		RW 0	RW	0
Bits	Field	Descript	ions						
Bits [31]	Field DBPWM1	-	ions bug Mode E	nable					
		PWM1 De	bug Mode E	nable continues to c	ount even if	the core is h	alted		
		PWM1 De 0: PWN 1: PWN	bug Mode E M1 counter c M1 counter is	continues to c s stopped wh			alted		
[31]		PWM1 De 0: PWN 1: PWN Set and re	bug Mode E M1 counter c M1 counter is eset by softw	continues to c s stopped wh are.			alted		
		PWM1 De 0: PWM 1: PWM Set and re PWM0 De	bug Mode E M1 counter c M1 counter is eset by softw bug Mode E	continues to c s stopped wh are. nable	en the core i	is halted			
[31]	DBPWM1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM	bug Mode E M1 counter c M1 counter is eset by softw bug Mode E M0 counter c	continues to c s stopped wh are. nable continues to c	en the core i count even if	is halted the core is h			
[31]	DBPWM1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM	bug Mode E M1 counter c M1 counter is eset by softw bug Mode E M0 counter c M0 counter is	continues to c s stopped wh are. inable continues to c s stopped wh	en the core i count even if	is halted the core is h			
[31]	DBPWM1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re	bug Mode E M1 counter c M1 counter is set by softw bug Mode E M0 counter c M0 counter is set by softw	continues to c s stopped wh are. Enable continues to c s stopped wh are.	en the core i count even if	is halted the core is h			
[31]	DBPWM1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re UART1 De	bug Mode E M1 counter c M1 counter is eset by softw bug Mode E M0 counter c M0 counter is eset by softw ebug Mode E	continues to c s stopped wh rare. Enable continues to c s stopped wh rare. Enable	en the core i count even if en the core i	is halted the core is h			
[31]	DBPWM1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re UART1 De 0: Sam	bug Mode E M1 counter c M1 counter is eset by softw bug Mode E M0 counter c M0 counter is eset by softw ebug Mode E the behavior a	continues to c s stopped wh rare. Enable continues to c s stopped wh rare. Enable as in normal r	en the core i count even if en the core i mode	is halted the core is h is halted			
[31]	DBPWM1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re UART1 De 0: Sam 1: UAR	bug Mode E M1 counter c M1 counter is eset by softw bug Mode E M0 counter c M0 counter is eset by softw bug Mode E be behavior a RT1 timeout i	continues to c s stopped wh are. Enable continues to c s stopped wh are. Enable as in normal r s frozen whe	en the core i count even if en the core i mode	is halted the core is h is halted			
[31] [30] [19]	DBPWM1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re UART1 De 0: Sam 1: UAR Set and re	bug Mode E M1 counter c M1 counter is eset by softw bug Mode E M0 counter c M0 counter is eset by softw ebug Mode E the behavior a	continues to c s stopped wh are. Enable continues to c s stopped wh are. Enable as in normal r s frozen whe are.	en the core i count even if en the core i mode	is halted the core is h is halted			
[31]	DBPWM1 DBPWM0 DBUR1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re UART1 De 0: Sam 1: UAR Set and re UART0 De	bug Mode E M1 counter c M1 counter is eset by softw bug Mode E M0 counter c M0 counter is eset by softw ebug Mode E the behavior a RT1 timeout i eset by softw ebug Mode E	continues to c s stopped wh are. Enable continues to c s stopped wh are. Enable as in normal r s frozen whe are.	en the core i count even if en the core i mode n the core is	is halted the core is h is halted			
[31] [30] [19]	DBPWM1 DBPWM0 DBUR1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re UART1 De 0: Sam 1: UAR Set and re UART0 De 0: Sam	bug Mode E M1 counter of M1 counter is eset by softw bug Mode E M0 counter of M0 counter is eset by softw bug Mode E the behavior a RT1 timeout i eset by softw bug Mode E the behavior a	continues to c s stopped wh are. Enable continues to c s stopped wh are. Enable as in normal r s frozen whe are. Enable Enable	en the core i count even if en the core i mode n the core is mode	is halted the core is h is halted halted			
[31] [30] [19]	DBPWM1 DBPWM0 DBUR1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re UART1 De 0: Sam 1: UAR Set and re UART0 De 0: Sam 1: UAR	bug Mode E M1 counter of M1 counter is eset by softw bug Mode E M0 counter of M0 counter is eset by softw bug Mode E the behavior a RT1 timeout i eset by softw bug Mode E the behavior a	continues to c s stopped wh rare. Enable continues to c s stopped wh rare. Enable as in normal r s frozen whe rare. Enable as in normal r s frozen whe	en the core i count even if en the core i mode n the core is mode	is halted the core is h is halted halted			
[31] [30] [19]	DBPWM1 DBPWM0 DBUR1	PWM1 De 0: PWM 1: PWM Set and re PWM0 De 0: PWM 1: PWM Set and re UART1 De 0: Sam 1: UAR Set and re UART0 De 0: Sam 1: UAR Set and re BFTM1 De	bug Mode E M1 counter c M1 counter c set by softw bug Mode E M0 counter c M0 counter c M0 counter is set by softw bug Mode E behavior a RT1 timeout i set by softw bug Mode E to behavior a RT0 timeout i set by softw bug Mode E	continues to c s stopped wh are. Enable continues to c s stopped wh are. Enable as in normal r s frozen whe are. Enable as in normal r s frozen whe are. S frozen whe are.	en the core i count even if en the core i mode n the core is mode n the core is	is halted the core is h is halted halted halted			

[16]

[14]

DBBFTM0

DBDSLP2

1: BFTM1 counter is stopped when the core is halted

1: BFTM0 counter is stopped when the core is halted

0: BFTM0 counter continues to count even if the core is halted

1: LDO = On, FCLK = On and CM0PEN = 1 in Deep-Sleep2 mode

0: LDO = Off (but turn on DMOS), FCLK = Off and CM0PEN = 0 in Deep-Sleep2 mode

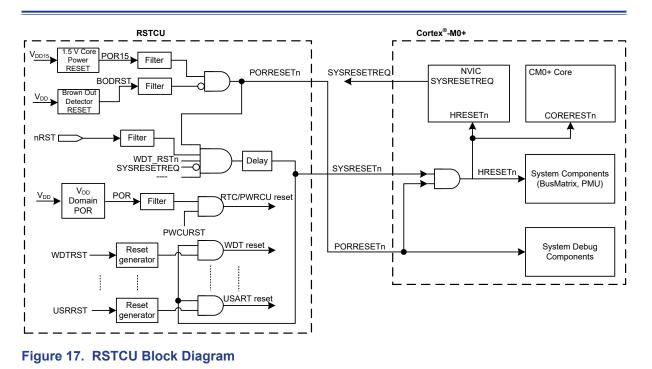
Set and reset by software.

Set and reset by software.

Set and reset by software.

Debug Deep-Sleep2

BFTM0 Debug Mode Enable


Bits	Field	Descriptions
[13]	DBI2C1	l ² C1 Debug Mode Enable
		0: Same behavior as in normal mode
		1: I ² C1 timeout is frozen when the core is halted
		Set and reset by software.
[12]	DBI2C0	I ² C0 Debug Mode Enable
		0: Same behavior as in normal mode
		1: I ² C0 timeout is frozen when the core is halted
		Set and reset by software.
[11]	DBSPI1	SPI1 Debug Mode Enable
		0: Same behavior as in normal mode
		1: SPI1 FIFO timeout is frozen when the core is halted
		Set and reset by software.
[10]	DBSPI0	SPI0 Debug Mode Enable
		0: Same behavior as in normal mode
		1: SPI0 FIFO timeout is frozen when the core is halted
		Set and reset by software.
[8]	DBUSR	USART Debug Mode Enable
		0: Same behavior as in normal mode
		1: USART timeout is frozen when the core is halted
		Set and reset by software.
[6]	DBGPTM	GPTM Debug Mode Enable
		0: GPTM counter continues to count even if the core is halted
		1: GPTM counter is stopped when the core is halted
		Set and reset by software.
[4]	DBMCTM	MCTM Debug Mode Enable
		0: MCTM counter continues even if the core is halted
		1: MCTM counter is stopped when the core is halted
		Set and reset by software.
[3]	DBWDT	Watchdog Timer Debug Mode Enable
		0: Watchdog Timer counter continues to count even if the core is halted
		1: Watchdog Timer counter is stopped when the core is halted
		Set and reset by software.
[1]	DBDSLP1	Debug Deep-Sleep1
		0: LDO = Low power mode, FCLK = Off and CM0PEN = 0 in Deep-Sleep1 mode
		1: LDO = On, FCLK = On and CM0PEN = 1 in Deep-Sleep1 mode
		Set and reset by software.
[0]	DBSLP	Debug Sleep Mode
		0: LDO = On, FCLK = On and CM0PEN = 0 in Sleep mode
		1: LDO = On, FCLK = On and CM0PEN = 1 in Sleep mode
		Set and reset by software.
[6] [4] [3]	DBGPTM DBMCTM DBWDT DBDSLP1	USART Debug Mode Enable 0: Same behavior as in normal mode 1: USART timeout is frozen when the core is halted Set and reset by software. GPTM Debug Mode Enable 0: GPTM counter continues to count even if the core is halted 1: GPTM counter is stopped when the core is halted Set and reset by software. MCTM Debug Mode Enable 0: MCTM counter continues even if the core is halted 1: MCTM counter is stopped when the core is halted 1: MCTM counter is stopped when the core is halted 2: MCTM counter is stopped when the core is halted 3: MCTM counter is stopped when the core is halted 2: MCTM counter is stopped when the core is halted 3: MCTM counter is stopped when the core is halted 3: Watchdog Timer Debug Mode Enable 0: Watchdog Timer counter continues to count even if the core is halted 1: Watchdog Timer counter is stopped when the core is halted Set and reset by software. Debug Deep-Sleep1 0: LDO = Low power mode, FCLK = Off and CM0PEN = 0 in Deep-Sleep1 mode 1: LDO = On, FCLK = On and CM0PEN = 1 in Deep-Sleep1 mode Set and reset by software. Debug Sleep Mode 0: LDO = On, FCLK = On and CM0PEN = 0 in Sleep mode 1: LDO = On, FCLK = On and CM0PEN = 1 in Sleep mode 1: LDO = On, FCLK = On and CM0PEN = 1 in Sleep mode

7 Reset Control Unit (RSTCU)

Introduction

The Reset Control Unit, RSTCU, has three kinds of reset, the power on reset, system reset and APB unit reset. The power on reset, known as a cold reset, resets the full system during a power up. A system reset resets the processor core and peripheral IP components with the exception of the debug port controller. The resets can be triggered by an external signal, internal events and the reset generators. More information about these resets will be described in the following section.

Functional Descriptions

Power On Reset

The Power on reset, POR, is generated by either an external reset or the internal reset generator. Both types have an internal filter to prevent glitches from causing erroneous reset operations. By referring to Figure 18, the POR15 active low signal will be de-asserted when the internal LDO voltage regulator is ready to provide a 1.5 V power. In addition to the POR15 signal, the Power Control Unit, PWRCU, will assert the BODF signal as a Power Down Reset, PDR, when the BODEN bit in the LVDCSR register is set and the brown-out event occurs. For more details about the PWRCU function, refer to the PWRCU chapter.

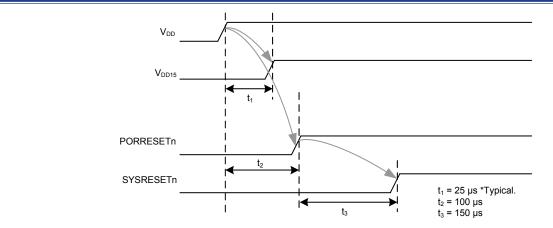


Figure 18. Power On Reset Sequence

System Reset

A system reset is generated by a power on reset (PORRESETn), a Watchdog Timer reset (WDT_RSTn), nRST pin or a software reset (SYSRESETREQ) event. For more information about SYSRESETREQ event, refer to the related chapter in the Cortex[®]-M0+ reference manual.

AHB and APB Unit Reset

The AHB and APB unit reset can be divided into hardware and software resets. A hardware reset can be generated by either power on reset or system reset for all AHB and APB units. Each functional IP connected to the AHB and APB buses can be reset individually through the associated software reset bits in the RSTCU. For example, the application software can generate a USART reset via the USRRST bit in the APBPRSTR0 register.

Register Map

The following table shows the RSTCU registers and reset values.

Table 16. RSTCU Register Map

Register	Offset	Description	Reset Value
GRSR	0x100	Global Reset Status Register	0x0000_0008
AHBPRSTR	0x104	AHB Peripheral Reset Register	0x0000_0000
APBPRSTR0	0x108	APB Peripheral Reset Register 0	0x0000_0000
APBPRSTR1	0x10C	APB Peripheral Reset Register 1	0x0000_0000

Register Descriptions

Global Reset Status Register – GRSR

This register specifies a variety of reset status conditions.

Offset: 0x100 Reset value: 0x0000_0008

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved		PORSTF	WDTRSTF	EXTRSTF	NVICRSTF
Type/Reset					WC 1	WC 0	WC 0	WC 0

Bits	Field	Descriptions
[3]	PORSTF	Core 1.5 V Power On Reset Flag
		0: No POR occurred
		1: POR occurred
		This bit is set by hardware when a power on reset occurs and reset by writing 1 into it.
[2]	WDTRSTF	Watchdog Timer Reset Flag
		0: No Watchdog Timer reset occurred
		1: Watchdog Timer occurred
		This bit is set by hardware when a watchdog timer reset occurs and reset by writing
		1 into it or by hardware when a power on reset occurs.
[1]	EXTRSTF	External Pin Reset Flag
		0: No pin reset occurred
		1: Pin reset occurred
		This bit is set by hardware when an external pin reset occurs and reset by writing 1
		into it or by hardware when a power on reset occurs.

Bits	Field	Descriptions
[0]	NVICRSTF	NVIC Reset Flag
		0: No NVIC asserting system reset occurred
		1: NVIC asserting system reset occurred
		This bit is set by hardware when a system reset occurs and reset by writing 1 into it
		or by hardware when a power on reset occurs.

AHB Peripheral Reset Register – AHBPRSTR

This register specifies several AHB peripherals software reset control bits.									
Offset:	0x104								
Reset value:	0x0000_000	0							
	31	30	29	28	27	26	25	24	
					Reserved			DIVRS	т
Type/Reset								RW	0
	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset									
	15	14	13	12	11	10	9	8	
			Reserved			PCRST	PBRST	PARS	Т
Type/Reset						RW 0	RW 0	RW	0
	7	6	5	4	3	2	1	0	
	CRCRST				Reserved				
Type/Reset	RW 0								

Bits	Field	Descriptions
[24]	DIVRST	Divider Reset Control
		0: No reset
		1: Reset Divider
		This bit is set by software and cleared to 0 by hardware automatically.
[10]	PCRST	GPIO Port C Reset Control
		0: No reset
		1: Reset Port C
		This bit is set by software and cleared to 0 by hardware automatically.
[9]	PBRST	GPIO Port B Reset Control
		0: No reset
		1: Reset Port B
		This bit is set by software and cleared to 0 by hardware automatically.
[8]	PARST	GPIO Port A Reset Control
		0: No reset
		1: Reset Port A
		This bit is set by software and cleared to 0 by hardware automatically.
[7]	CRCRST	CRC Reset Control
		0: No reset
		1: Reset CRC
		This bit is set by software and cleared to 0 by hardware automatically.

This register Offset:	0x108		-								
Reset value:		00									
Reset value.	0,0000_00	00									
	31	30	29	28	27	26	25	24			
					Reserved						
Type/Reset											
51	23	22	21	20	19	18	17	16			
					Reserved						
Type/Reset											
	15	14	13	12	11	10	9	8			
	EXTIRST	AFIORST		Reserved	UR1RST	UR0RST	Reserved	USRRST			
Type/Reset	RW 0	RW 0			RW 0	RW 0	1	RW 0			
51	7	6	5	4	3	2	1	0			
		Reserved	SPI1RST	SPIORST		Reserved	I2C1RST	I2C0RST			
Type/Reset	L			RW 0				RW 0			
51											
Dite	Field	Decerin	tiono								
Bits	Field	Descrip									
[15]	EXTIRST External Interrupt Controller Reset Control										
	0: No reset 1: Reset EXTI										
				ware and clea	ared to 0 by I	hardware au	tomatically				
[14]	AFIORST	AFIORST Alternate Function I/O Reset Control									
[]		0: No reset									
		1: Re:	set Alternate	Function I/C	1						
		This bit is	s set by soft	ware and clea	ared to 0 by I	nardware au	tomatically.				
[11]	UR1RST	UART1 F	Reset Contro								
		0: No	reset								
	1: Reset UART1										
		This bit is	s set by soft	ware and clea	ared to 0 by I	hardware au	tomatically.				
[10]	UR0RST UART0 Reset Control										
		0: No									
			set UART0								
101	LIODDOT		-	ware and clea	ared to 0 by r	hardware au	tomatically.				
[8]	USRRST	-	Reset Contro	DI							
		0: No	reset set USART								
			-	ware and clea	ared to 0 by 1	hardware au	tomatically				
[5]	SPI1RST		set Control				tornatioally.				
[0]		0: No									
		•••••	set SPI1								
				ware and clea	ared to 0 by I	nardware au	tomatically.				
[4]	SPIORST		set Control		,						
		0: No	reset								
		1: Re:	set SPI0								
		This bit is	s set by soft	ware and clea	ared to 0 by I	hardware au	tomatically.				

APB Peripheral Reset Register 0 – APBPRSTR0

Bits	Field	Descriptions
[1]	I2C1RST	I ² C1 Reset Control
		0: No reset
		1: Reset I ² C1
		This bit is set by software and cleared to 0 by hardware automatically.
[0]	I2C0RST	I ² C0 Reset Control
		0: No reset
		1: Reset I ² C0
		This bit is set by software and cleared to 0 by hardware automatically.

APB Peripheral Reset Register 1 – APBPRSTR1

This register specifies several APB peripherals software reset control bits.

Offset: 0x10C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24	
				Reserved				ADCR	ST
Type/Reset								RW	0
	23	22	21	20	19	18	17	16	
				Reserved			BFTM1RST	BFTMOR	RST
Type/Reset							RW 0	RW	0
	15	14	13	12	11	10	9	8	
		Reserved	PWM1RST	PWM0RST		Reserved		GPTMF	ST
Type/Reset			RW 0	RW 0				RW	0
	7	6	5	4	3	2	1	0	
		Reserved		WDTRST		Reserved		MCTMF	RST
Type/Reset				RW 0				RW	0

Bits	Field	Descriptions
[24]	ADCRST	A/D Converter Reset Control 0: No reset
		1: Reset A/D Converter
		This bit is set by software and cleared to 0 by hardware automatically.
[17]	BFTM1RST	BFTM1 Reset Control 0: No reset 1: Reset BFTM1
		This bit is set by software and cleared to 0 by hardware automatically.
[16]	BFTMORST	BFTM0 Reset Control 0: No reset 1: Reset BFTM0
		This bit is set by software and cleared to 0 by hardware automatically.
[13]	PWM1RST	PWM1 Reset Control 0: No reset
		1: Reset PWM1
		This bit is set by software and cleared to 0 by hardware automatically.

Bits	Field	Descriptions
[12]	PWM0RST	PWM0 Reset Control
		0: No reset
		1: Reset PWM0
		This bit is set by software and cleared to 0 by hardware automatically.
[8]	GPTMRST	GPTM Reset Control
		0: No reset
		1: Reset GPTM
		This bit is set by software and cleared to 0 by hardware automatically.
[4]	WDTRST	Watchdog Timer Reset Control
		0: No reset
		1: Reset Watchdog Timer
		This bit is set by software and cleared to 0 by hardware automatically.
[0]	MCTMRST	MCTM Reset Control
		0: No reset
		1: Reset MCTM
		This bit is set by software and cleared to 0 by hardware automatically.

8 General Purpose I/O (GPIO)

Introduction

There are up to 40 General Purpose I/O port, GPIO, named PA0 ~ PA15, PB0 ~ PB15 and PC0 ~ PC7 for the device to implement the logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirement of specific applications. The really available General Purpose I/O port numbers are dependent on the device specification and package type. Plase refer the device data sheet for detail information.

The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the AF input or output pins.

The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit (EXTI).

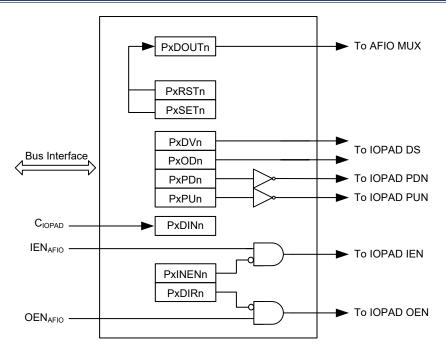


Figure 19. GPIO Block Diagram

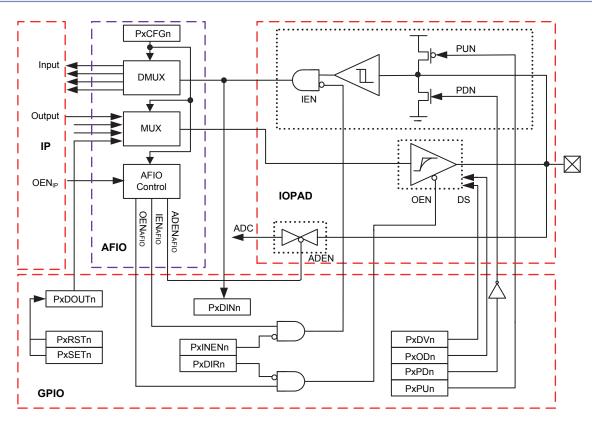
Features

- Input / output direction control
- Input weak pull-up / pull-down control
- Output push-pull / open-drain enable control
- Output set / reset control
- Output drive current selection
- External interrupt with programmable trigger edge Using EXTI configuration registers
- Analog input / output configurations Using AFIO configuration registers
- Alternate function input / output configurations Using AFIO configuration registers
- Port configuration lock

Functional Descriptions

Default GPIO Pin Configuration

During or just after the reset period, the alternative functions are all inactive and the GPIO ports are configured into the input disable floating mode, i.e. input disabled without pull-up / pull-down resistors. Only the boot and Serial-Wired Debug pins which are pin-shared with the I/O pins are active after a device reset.


- BOOT: Input enable with internal pull-up
- SWCLK: Input enable with internal pull-up
- SWDIO: Input enable with internal pull-up

General Purpose I/O – GPIO

The GPIO pins can be configured as inputs or outputs via the data direction control registers PxDIRCR (where $x = A \sim C$). When the GPIO pins are configured as input pins, the data on the external pads can be read if the enable bits in the input enable function register PxINER are set. The GPIO pull-up / pull-down registers PxPUR / PxPDR can be configured to fit specific applications. When the pull-up and pull-down functions are both enabled, the pull-up function has the higher priority while the pull-down function will be blocked until the pull-up function is released.

The GPIO pins can be configured as output pins where the output data is latched into the data register PxDOUTR. The output type can be setup to be either push-pull or open-drain by the open drain selection register PxODR. Only one or several specific bits of the output data will be set or reset by configuring the port output set and reset control register PxSRR or the port output reset control register PxRR without affecting the unselected bits. As the port output set and reset functions are both enabled, the port output set function has the higher priority and the port output reset function will be blocked. The output driving current of the GPIO pins can be selected by configuring the drive current selection register PxDRVR.

Figure 20. AFIO / GPIO Control Signal

PxDINn / PxDOUTn (x = A ~ C): Data Input / Data OutputPxRSTn / PxSETn (x = A ~ C): Reset / SetPxDIRn (x = A ~ C): DirectionPxINENn (x = A ~ C): Input EnablePxDVn (x = A ~ C): Output DrivePxODn (x = A ~ C): Open DrainPxPDn / PxPUn (x = A ~ C): Pull Down / UpPxCFGn (x = A ~ C): AFIO Configuration

Turno	AFIO			GPIO		PAD					
Туре		OENAFIO	IENAFIO	PxDIRn	PxINENn	ADEN	OEN	IEN			
GPIO Input (Note)	1	1	1	0	1	1	1	0			
GPIO Output (Note)	1	1	1	1	0 (1 if need)	1	0	1 (0)			
AFIO Input	1	1	0	0	Х	1	1	0			
AFIO Output	1	0	1	Х	0 (1 if need)	1	0	1 (0)			
ADC Input	0	1	1	0	0 (1 if need)	0	1	1 (0)			
OSC Output	0	1	1	0	0 (1 if need)	0	1	1 (0)			

Table 17. AFIO, GPIO and I/O Pad Control Signal True Table

Note: The signals, IEN and OEN, for I/O pads are derived from the GPIO register bits PxINENn and PxDIRn respectively when the associated pin is configured in the GPIO input / output mode.

 $\boldsymbol{\infty}$

GPIO Locking Mechanism

The GPIO also offers a lock function to lock the port until a reset event occurs. The PxLOCKR ($x = A \sim C$) registers are used to lock the port x and lock control options. The value 0x5FA0 is written into the PxLKEY field in the PxLOCKR registers to freeze the PxDIRCR, PxINER, PxPUR, PxPDR, PxODR, PxDRVR control and AFIO mode configuration (GPxCFGHR or GPxCFGLR, where $x = A \sim C$). If the value in the PxLOCKR register is 0x5FA0_0001, it means that the Port x Lock function is enabled and the Port x pin 0 is frozen.

Register Map

The following table shows the GPIO registers and reset values of the Port A \sim C.

Register	Offset	Description	Reset Value
GPIO A Base	Address = (Dx400B_0000	
PADIRCR	0x000	Port A Data Direction Control Register	0x0000_0000
PAINER	0x004	Port A Input Function Enable Control Register	0x0000_0200
PAPUR	0x008	Port A Pull-Up Selection Register	0x0000_3200
PAPDR	0x00C	Port A Pull-Down Selection Register	0x0000_0000
PAODR	0x010	Port A Open-Drain Selection Register	0x0000_0000
PADRVR	0x014	Port A Drive Current Selection Register	0x0000_0000
PALOCKR	0x018	Port A Lock Register	0x0000_0000
PADINR	0x01C	Port A Data Input Register	0x0000_3200
PADOUTR	0x020	Port A Data Output Register	0x0000_0000
PASRR	0x024	Port A Output Set / Reset Control Register	0x0000_0000
PARR	0x028	Port A Output Reset Control Register	0x0000_0000
PASCER	0x02C	Port A Sink Current Enhanced Selection Register	0x0000_0000
GPIO B Base	Address =	0x400B_2000	
PBDIRCR	0x000	Port B Data Direction Control Register	0x0000_0000
PBINER	0x004	Port B Input Function Enable Control Register	0x0000_0000
PBPUR	0x008	Port B Pull-Up Selection Register	0x0000_0000
PBPDR	0x00C	Port B Pull-Down Selection Register	0x0000_0000
PBODR	0x010	Port B Open-Drain Selection Register	0x0000_0000
PBDRVR	0x014	Port B Drive Current Selection Register	0x0000_0000
PBLOCKR	0x018	Port B Lock Register	0x0000_0000
PBDINR	0x01C	Port B Data Input Register	0x0000_0000
PBDOUTR	0x020	Port B Data Output Register	0x0000_0000
PBSRR	0x024	Port B Output Set / Reset Control Register	0x0000_0000
PBRR	0x028	Port B Output Reset Control Register	0x0000_0000
PBSCER	0x02C	Port B Sink Current Enhanced Selection Register	0x0000_0000
GPIO C Base	Address =	0x400B_4000	
PCDIRCR	0x000	Port C Data Direction Control Register	0x0000_0000
PCINER	0x004	Port C Input Function Enable Control Register	0x0000_0000
PCPUR	0x008	Port C Pull-Up Selection Register	0x0000_0000
PCPDR	0x00C	Port C Pull-Down Selection Register	0x0000_0000
PCODR	0x010	Port C Open-Drain Selection Register	0x0000_0000
PCDRVR	0x014	Port C Drive Current Selection Register	0x0000_0000

Table 18. GPIO Register Map

Register	Offset	Description	Reset Value
PCLOCKR	0x018	Port C Lock Register	0x0000_0000
PCDINR	0x01C	Port C Data Input Register	0x0000_0000
PCDOUTR	0x020	Port C Data Output Register	0x0000_0000
PCSRR	0x024	Port C Output Set / Reset Control Register	0x0000_0000
PCRR	0x028	Port C Output Reset Control Register	0x0000_0000
PCSCER	0x02C	Port C Sink Current Enhanced Selection Register	0x0000_0000

Register Descriptions

Port A Data Direction Control Register – PADIRCR

This register is used to control the direction of the GPIO Port A pin as input or output.

Offset:	0x000							
Reset value:	0x0000_	0000						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					PADIR			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW 0) RW 0
	7	6	5	4	3	2	1	0
					PADIR			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW 0) RW 0

Bits	Field	Descriptions
[15:0]	PADIRn	GPIO Port A pin n Direction Control Bits (n = 0 ~ 15)
		0: Pin n is in input mode

1: Pin n is in output mode

This register	is used to	o en	able or	disa	ble the	e GF	210	Port	A in	out	functior	۱.							
Offset:	0x004																		
Reset value:	0x0000_	02	00																
	31		30			29			28		27		26			25		24	
											Reser	ved							
Type/Reset																			
	23		22			21			20		19		18			17		16	
			1								Reser	ved							
Type/Reset																			
	15		14			13			12		11		10			9		8	
											PAIN	EN							
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW	0	RW	1	RW	/	0
	7		6			5			4		3		2			1		0	
											PAIN	EN							
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW	0	RW	(RW	/	0
Bits	Field		Desc	crip	tions	;													

Port A Input Function Enable Control Register – PAINER

[15:0] PAINENN GPIO Port A pin n Input Enable Control Bits (n = 0 ~ 15)

0: Pin n input function is disabled

1: Pin n input function is enabled

When the pin n input function is disabled, the input Schmitt trigger will be turned off and the Schmitt trigger output will remain at a zero state.

This register	This register is used to enable or disable the GPIO Port A pull-up function.																				
Offset:	0x008																				
Reset value:	0x0000_	32	00																		
	31		30			29			28		2	27		26			25			24	
											Res	erved									
Type/Reset																					
	23		22			21			20			19		18			17			16	
											Res	erved									
Type/Reset																					
	15		14			13			12			11		10			9			8	
											PA	٩PU									
Type/Reset	RW	0	RW	0	RW		1	RW		1	RW	C	RW		0	RW		1	RW	1	0
	7		6			5			4			3		2			1			0	
											PA	N PU									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	C	RW		0	RW		0	RW	/	0
Bits	Field		Desc	rip	tions																

Port A Pull-Up Selection Register – PAPUR

PAPUn GPIO Port A pin n Pull-Up Selection Control Bits (n = 0 ~ 15) 0: Pin n pull-up function is disabled

1: Pin n pull-up function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

[15:0]

This register	This register is used to enable or disable the GPIO Port A pull-down function.																					
Offset:	0x00C																					
Reset value:	0x0000_	00	00																			
	31			30			29			28			27		26			25			24	
												Res	erveo	ł								
Type/Reset																						
	23			22			21			20			19		18			17			16	
												Res	erveo	1								
Type/Reset																						
	15			14			13			12			11		10			9			8	
												PA	٩PD							1		
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	(C	RW	0	RW		0	RW		0
	7			6			5			4			3		2			1			0	
													٩PD									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	(C	RW	0	RW		0	RW		0
Bits	Field		De	sc	ript	ions	;															

GPIO Port A pin n Pull-Down Selection Control Bits (n = 0 ~ 15)

Port A Pull-Down Selection Register – PAPDR

0: Pin n pull-down function is disabled

1: Pin n pull-down function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

[15:0]

PAPDn

This register	is used to	o en	able or	disa	ble the	e GF	910	Port	A op	ben	drain f	unctio	on.								
Offset:	0x010																				
Reset value:	0x0000_	00	00																		
	31		30)		29			28		2	7	2	26			25		2	4	
											Rese	erved									
Type/Reset																					
	23		22	2		21			20		1	9		18			17		1	6	
											Rese	erved									
Type/Reset																					
	15		14	1		13			12		1	1		10			9		8	3	
											PAG	OD									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
	7		6			5			4		3	3		2			1		()	
											PAG	OD									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
Bits	Field		Des	crip	tions																

Port A Open-Drain Selection Register – PAODR

 Field
 Descriptions

 PAODn
 GPIO Port A pin n Open-Drain Selection Control Bits (n = 0 ~ 15)

0: Pin n Open-Drain output is disabled (The output type is CMOS output)

1: Pin n Open-Drain output is enabled (The output type is open-drain output)

Note: When the open-drain function is enabled, the pin n internal pull-up or pull-down configuration will be invalid.

[15:0]

Port A Output Drive Current Selection Register – PADRVR

This register specifies the GPIO Port A output driving current	t.
--	----

Offset:	0x014																	
Reset value:	0x0000_	_00	00															
	31		30		29		2	28	2	27		26		2	5		24	
			PADV15				PAD	DV14				PADV13	3				PADV	12
Type/Reset	RW	0	RW (0	RW	0	RW	0	RW	()	RW	0	RW		0	RW	0
	23		22		21		2	20	1	19		18		1	7		16	
			PADV11				PAD	DV10				PADV9					PAD	/8
Type/Reset	RW	0	RW ()	RW	0	RW	0	RW	()	RW	0	RW		0	RW	0
	15		14		13		1	12	1	11		10		9)		8	
			PADV7				PA	DV6				PADV5					PAD	/4
Type/Reset	RW	0	RW (C	RW	0	RW	0	RW	()	RW	0	RW		0	RW	0
	7		6		5			4		3		2		1	I		0	
			PADV3				PA	DV2				PADV1					PAD	/0
Type/Reset	RW	0	RW ()	RW	0	RW	0	RW	()	RW	0	RW		0	RW	0
Dito	Field		Deee	:	ntiono													

Bits	Field	Descriptions
[31:0]	PADVn[1:0]	GPIO Port A pin n Output Drive Current Selection Control Bits (n = 0 ~ 15)
		00: 4 mA source / sink current
		01: 8 mA source / sink current
		10: 12 mA source / sink current
		11: 16 mA source / sink current

0x018

Offset:

Port A Lock Register – PALOCKR

This register specifies the GPIO Port A lock configuration.

Reset value:	0x0000_	00	00															
	31		30		29			28		2	7	20	6		25		24	L
										PAL	KEY							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	23		22		21		:	20		1	9	18	3		17		16	6
										PAL	KEY							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	15		14		13			12		1	1	1()		9		8	
										PAL	оск							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	7		6		5			4		3	3	2			1		0	
										PAL	оск							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[31:16]	PALKEY	GPIO Port A Lock Key 0x5FA0: Port A Lock function is enabled
		Others: Port A Lock function is disabled To lock the Port A function, a value of 0x5FA0 should be written into the PALKEY field in this register. To execute a successful write operation on this lock register, the value written into the PALKEY field must be 0x5FA0. If the value written into this field is not equal to 0x5FA0, any write operations on the PALOCKR register will be aborted. The result of a read operation on the PALKEY field returns the GPIO Port A Lock Status which indicates whether the GPIO Port A is locked or not. If the read value of the PALKEY field is 0, this indicates that the GPIO Port A Lock function is disabled. Otherwise, it indicates that the GPIO Port A Lock function is enabled as the read value is equal to 1.
[15:0]	PALOCKn	 GPIO Port A Pin n Lock Control Bits (n = 0 ~ 15) 0: Port A Pin n is not locked 1: Port A Pin n is locked The PALOCKn bits are used to lock the configurations of corresponding GPIO Pins when the correct Lock Key is applied to the PALKEY field. The locked configurations including PADIRn, PAINENn, PAPUn, PAPDn, PAODn and PADVn setting in the related GPIO registers. Additionally, the GPACFGHR or GPACFGLR field register which is used to configure the alternative function of the associated GPIO pin will also be locked. Note that the PALOCKR register can only be written once which means that PALKEY and PALOCKn (lock control bit) should be written together and can not be changed until a system reset or GPIO Port A reset occurs.

Port A Data Input Register – PADINR

This register specifies the GPIO Port A input data.

Offset:	0x01C																		
Reset value:	0x0000_	3200																	
	31		30		2	9		28		27	7	26			25			24	
										Rese	rved								
Type/Reset																			
	23		22		2	1		20		19)	18			17			16	
										Rese	rved								
Type/Reset																			
	15		14		1	3		12		11		10			9			8	
										PAD	N								
Type/Reset	RO	0 RO		0	RO		1 RO		1	RO	0	RO	0	RO		1	RO		0
	7		6		Į	5		4		3		2			1			0	
										PAD	N								
Type/Reset	RO	0 RO		0	RO		0 RO		0	RO	0	RO	0	RO		0	RO		0

Bits	Field	Descriptions	
[15:0]	PADINn	GPIO Port A pin n Data Input Bits (n = 0 ~ 15)	_
		0: The input data of pin n is 0	
		1: The input data of pin n is 1	

. .

Port A Output Data Register – PADOUTR

This register specifies the GPIO Port A output data.

Offset: 0x020 Reset value: 0x0000_0000

	31		3	30			29			28		2	27		26			25			24	
												Rese	erved									
Type/Reset																						
	23		2	22			21			20		1	9		18			17			16	
												Rese	erved									
Type/Reset																						
	15			14			13			12		1	11		10			9			8	
												PAD	OUT									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	C	RW	1	0	RW		0	RW		0
	7			6			5			4			3		2			1			0	
												PAD	OUT									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	C	RW	1	0	RW		0	RW		0
Bits	Field		De	scr	ipt	ions																

DILS	Field	Descriptions
[15:0]	PADOUTn	GPIO Port A pin n Data Output Bits (n = 0 ~ 15)
		0: Data to be output on pin n is 0

1: Data to be output on pin n is 1

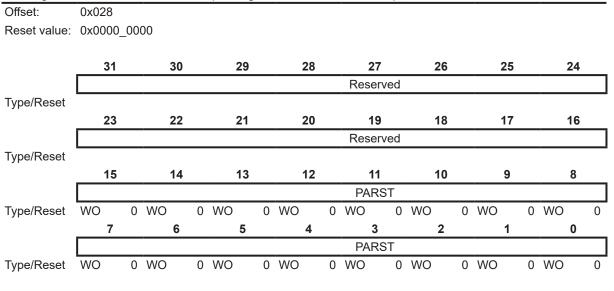
Port A Output Set / Reset Control Register – PASRR

This register is used to set or reset the corresponding bit of the GPIO Port A output data.

Offset:	0x024																	
Reset value:	0x0000_	_000	00															
	31		30		29)		28		27		26		25		2	24	
										PARS	Т							
Type/Reset	WO	0	WO	0	WO	0	WO		0	WO	0	WO	0	WO	0	WO		0
	23		22		21			20		19		18		17		1	6	
										PARS	Т							
Type/Reset	WO	0	WO	0	WO	0	WO		0	WO	0	WO	0	WO	0	WO		0
	15		14		13	;		12		11		10		9			8	
										PASE	Т							
Type/Reset	WO	0	WO	0	WO	0	WO		0	WO	0	WO	0	WO	0	WO		0
	7		6		5			4		3		2		1			0	
										PASE	Т							
Type/Reset	WO	0	WO	0	WO	0	WO		0	WO	0	WO	0	WO	0	WO		0
Bits	Field		Desc	rip	tions													
[24,46]	PARST	n	GPIO	Po	rt A pin r	n Out	tout R	leset	t Co	ontrol Bits	s (n	= 0 ~ 15)						
31.10	170011																	
[31:16]	1741011				effect or						`	,						

	Note that when the PARSTn bit in this register or (and) the PARSTn bit in the PARR
	register is enabled, the reset function on the PADOUTn bit will take effect.
-	

[15:0]PASETnGPIO Port A pin n Output Set Control Bits (n = 0 ~ 15)0: No effect on the PADOUTn bit


1: Set the PADOUTn bit

Note that the function enabled by the PASETn bit has the higher priority if both the PASETn and PARSTn bits are set at the same time.

Port A Output Reset Register – PARR

This register is used to reset the corresponding bit of the GPIO Port A output data.

Bits	Field	Descriptions
[15:0]	PARSTn	GPIO Port A pin n Output Reset Control Bits (n = 0 ~ 15)
		0: No effect on the PADOUTn bit
		1: Reset the PADOUTn bit

Port A Sink Current Enhanced Selection Register – PASCER

This register	specifies the	GPIO Port A	enhanced s	ink driving c	urrent.			
Offset:	0x02C							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	PASCE15	PASCE14	PASCE13	PASCE12	PASCE11	PASCE10	PASCE9	PASCE8
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
	PASCE7	PASCE6	PASCE5	PASCE4	PASCE3	PASCE2	PASCE1	PASCE0
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
Bits	Field	Descript	ions					
[15:0]	PASCEn	GPIO Por	t A pin n Sinł	Current Enl	nanced Sele	ction Control	Bits (n = 0 ~	15)
		0: No e	enhanced sir	ik current				
		1: Enh	anced sink c	urrent				

œ

This register	is used to	cor	ntrol th	ne d	lire	ction o	of G	PI) Por	tΒ	pin a	as inp	out o	or o	utput.								
Offset:	0x000																						
Reset value:	0x0000_	000	00																				
	31		3	0		2	29			28			27			26			25			24	
												Res	serve	ed									
Type/Reset																							
	23		2	2		2	21			20			19			18			17			16	
												Res	serve	ed									
Type/Reset																							
	15		1	4		1	13			12			11			10			9			8	
												PE	BDIR	2									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0
	7		6	6			5			4			3			2			1			0	
												PE	BDIR	2									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0

Port B Data Direction Control Register – PBDIRCR

Bits	Field	Descriptions	
[15:0]	PBDIRn	GPIO Port B pin n Direction Control Bits (n = 0 ~ 15)	
		0: Pin n is in input mode	
		1: Pin n is in output mode	

This register	is used to	enab	le or d	isab	le the G	PIO	Port B ir	nput	function	۱.								
Offset:	0x004																	
Reset value:	0x0000_	0000																
	31		30		29		28		27		26			25		2	24	
									Reserv	ved								
Type/Reset																		
	23		22		21		20		19		18			17		1	16	
									Reserv	ved								
Type/Reset																		
	15		14		13		12		11		10			9			8	
									PBIN	ΕN								
Type/Reset	RW	0 R	W	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW		0
	7		6		5		4		3		2			1			0	
									PBIN	ΞN								
Type/Reset	RW	0 R	W	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW		0

Port B Input Function Enable Control Register – PBINER

 Bits
 Field
 Descriptions

 [15:0]
 PBINENn
 GPIO Port B pin n Input Enable Control Bits (n = 0 ~ 15) 0: Pin n input function is disabled

1: Pin n input function is enabled

When the pin n input function is disabled, the input Schmitt trigger will be turned off and the Schmitt trigger output will remain at a zero state.

This register is used to enable or disable the GPIO Port B pull-up function.																		
Offset:	0x008																	
Reset value:	0x0000_	0000)															
	31		30		29		28	3	27		26			25			24	
									Reser	ved								
Type/Reset																		
	23		22		21		20)	19		18			17			16	
									Reser	ved								
Type/Reset																		
	15		14		13		12	2	11		10			9			8	
									PBP	U								
Type/Reset	RW	0 F	RM	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW		0
	7		6		5		4		3		2			1			0	
									PBP	U								
Type/Reset	RW	0 F	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0	RW		0

Port B Pull-Up Selection Register – PBPUR

Field Descriptions

2110	11010	
[15:0]	PBPUn	GPIO Port B pin n Pull-Up Selection Control Bits (n = 0 ~ 15)

0: Pin n pull-up function is disabled

1: Pin n pull-up function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

Bits

This register	is used to) en	able o	or di	isab	le the	GF	PIO	Port	Вр	ull-c	lown f	unctio	on.								
Offset:	0x00C																					
Reset value:	0x0000_	_000	00																			
	31			30			29			28		2	27		26			25			24	
												Res	ervec	1								
Type/Reset																						
	23		2	22			21			20			19		18			17			16	
												Res	ervec	1								
Type/Reset																						
	15			14			13			12			11		10			9			8	
												PE	3PD									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	() F	RW	0	RW		0	RW		0
	7			6			5			4			3		2			1			0	
												PE	BPD									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	() F	RW	0	RW		0	RW		0
Dito	Field		Do		int	iono																

Port B Pull-Down Selection Register – PBPDR

 Bits
 Field
 Descriptions

 [15:0]
 PBPDn
 GPIO Port B pin n Pull-Down Selection Control Bits (n = 0 ~ 15) 0: Pin n pull-down function is disabled 1: Pin n pull down function is disabled

1: Pin n pull-down function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

This register is used to enable or disable the GPIO Port B open-drain function.																					
Offset:	0x010																				
Reset value:	0x0000_	00	00																		
	31		30			29			28		2	7	2	26			25			24	
											Rese	erved									
Type/Reset																					
	23		22			21			20		1	9	-	8			17			16	
											Rese	erved									
Type/Reset																					
	15		14			13			12		1	1	1	0			9			8	
											PB	OD									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
	7		6			5			4		3	3		2			1			0	
											PB	OD									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
Rits	Field		Desc	rin	tions																

Port B Open-Drain Selection Register – PBODR

Bits	Field	Descriptions
[15:0]	PBODn	GPIO Port B pin n Open-Drain Selection Control Bits (n = 0 ~ 15)
		0: Pin n Open Drain output is disabled (The output type is CMOS output)
		1. Bin n Onon Drain output is anabled (The output type is apon drain output)

1: Pin n Open Drain output is enabled (The output type is open-drain output)

Note: When the open-drain function is enabled, the pin n internal pull-up or pull-down configuration will be invalid.

Port B Output Drive Current Selection Register – PBDRVR

This register specifies the GPIO Port B output driving current.Offset:0x014

2
0
8
0
4
0
0
0
(4 (0

Bits	Field	Descriptions
[31:0]	PBDVn[1:0]	GPIO Port B pin n Output Drive Current Selection Control Bits (n = 0 ~ 15)
		00: 4 mA source / sink current
		01: 8 mA source / sink current
		10: 12 mA source / sink current

11: 16 mA source / sink current

0x018

Offset:

Port B Lock Register – PBLOCKR

This register specifies the GPIO Port B lock configuration.

Reset value:	0x0000_	00	00													
	31		30		29		28		27		26		25		24	4
									PBLK	ΕY						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		10	ò
									PBLK	ΕY						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	i
									PBLO	СК						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	1
									PBLO	СК						
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[31:16]	PBLKEY	 GPIO Port Block Key 0x5FA0: Port Block function is enabled Others: Port B Lock function is disabled To lock the Port B function, a value of 0x5FA0 should be written into the PBLKEY field in this register. To execute a successful write operation on this lock register, the value written into the PBLKEY field must be 0x5FA0. If the value written into this field is not equal to 0x5FA0, any write operations on the PBLOCKR register will be aborted. The result of a read operation on the PBLKEY field returns the GPIO Port B Lock Status which indicates whether the GPIO Port B is locked or not. If the read value of the PBLKEY field is 0, this indicates that the GPIO Port B Lock function is disabled. Otherwise, it indicates that the GPIO Port B Lock function is enabled as the read value is equal to 1.
[15:0]	PBLOCKn	 GPIO Port B pin n Lock Control Bits (n = 0 ~ 15) 0: Port B pin n is not locked 1: Port B pin n is locked The PBLOCKn bits are used to lock the configurations of corresponding GPIO Pins when the correct Lock Key is applied to the PBLKEY field. The locked configurations including PBDIRn, PBINENn, PBPUn, PBPDn, PBODn and PBDVn setting in the related GPIO registers. Additionally, the GPBCFGHR or GPBCFGLR register which is used to configure the alternative function of the associated GPIO pin will also be locked. Note that the PBLOCKR register can only be written once which means that PBLKEY and PBLOCKn (lock control bit) should be written together and can not be changed until a system reset or GPIO Port B reset occurs.

Port B Data Input Register – PBDINR

This register specifies the GPIO Port B input data.

Offset:	0x01C													
Reset value:	0x0000_	0000												
	31		30	29		28		27	26		25		24	
							Res	serve	d					
Type/Reset														
	23	2	22	21		20		19	18		17		16	
							Res	serve	d					
Type/Reset														
	15		14	13		12		11	10		9		8	
							PI	BDIN						
Type/Reset	RO	0 RO	C) RO	0 RC)	0 RO		0 RO	0 F	RO	0 RO		0
	7		6	5		4		3	2		1		0	
							PI	3DIN						
Type/Reset	RO	0 RO	C) RO	0 RC)	0 RO		0 RO	0 F	RO	0 RO		0

Bits	Field	Descriptions
[15:0]	PBDINn	GPIO Port B pin n Data Input Bits (n = 0 ~ 15)
		0: The input data of corresponding pin is 0

1: The input data of corresponding pin is 1

Port B Output Data Register – PBDOUTR

This register specifies the	GPIO Port B output data.

Offset: 0x020 Reset value: 0x000_0000

	31		30			29			28		2	27	2	26			25			24	
											Rese	erved									
Type/Reset																					
	23		22			21			20		1	9	1	8			17			16	
											Rese	erved									
Type/Reset																					
	15		14			13			12		1	1	1	0			9			8	
											PBD	OUT									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
	7		6			5			4		;	3		2			1			0	
											PBD	OUT									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
Bits	Field		Dese	rip	tions																

[15:0]	PBDOUTn	GPIO Port B pin n Data Output Bits (n = 0 ~ 15)	

0: Data to be output on pin n is 0

1: Data to be output on pin n is 1

 $\boldsymbol{\infty}$

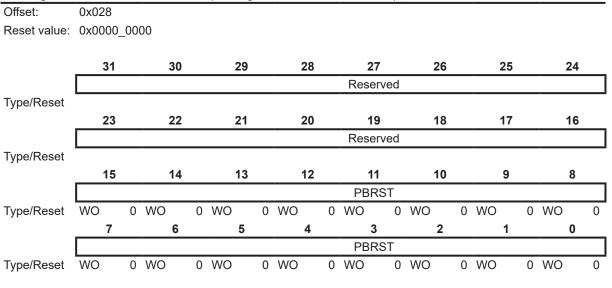
Port B Output Set / Reset Control Register – PBSRR

This register is used to set or reset the corresponding bit of the GPIO Port B output data.

Offset:	0x024																
Reset value:	0x0000_	_000	00														
	31		30		29		28		27		26		25	5		24	
									PBRS	Т							
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO		0
	23		22		21		20		19		18		17	7		16	
									PBRS	т							
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO		0
	15		14		13		12		11		10		9			8	
									PBSE	Т							
Type/Reset	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO	0	WO		0
											-					0	
	7		6		5		4		3		2		1				
	7		6		5		4		3 PBSE	Т	2		1				
Type/Reset	7 WO		6 WO	0	5 WO	0	4 WO	0	-		2 WO	0	WO	0	WO		0
Type/Reset			_	0		0		0	PBSE			0	_	0	WO		0
Type/Reset Bits			_		WO	0		0	PBSE			0	_	0	WO		0
	WO	0	WO Desc	rip	WO		WO		PBSE WO	0			_	0	WO		0
Bits	WO Field	0	WO Desc GPIO	rip Por	WO	Out	WO tput Rese	et C	PBSE WO ontrol Bit	0	WO		_	0	WO		0

Note that when the PBRSTn bit in this register or (and) the PBRSTn bit in the PBRR register is enabled, the reset function on the PBDOUTn bit will take effect.

[15:0] PBSETn GPIO Port B pin n Output Set Control Bits (n = 0 ~ 15) 0: No effect on the PBDOUTn bit


1: Set the PBDOUTn bit

Note that the function enabled by the PBSETn bit has the higher priority if both the PBSETn and PBRSTn bits are set at the same time.

Port B Output Reset Register – PBRR

This register is used to reset the corresponding bit of the GPIO Port B output data.

Bits	Field	Descriptions	
[15:0]	PBRSTn	GPIO Port B pin n Output Reset Control Bits (n = 0 ~ 15)	
		0: No effect on the PBDOUTn bit	
		1: Reset the PBDOUTn bit	

Port B Sink Current Enhanced Selection Register – PBSCER

This register	specifies the	GPIO Port E	enhanced s	sink driving c	urrent.			
Offset:	0x02C							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
				1	Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
				1	Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	PBSCE15	PBSCE14	PBSCE13	PBSCE12	PBSCE11	PBSCE10	PBSCE9	PBSCE8
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
	PBSCE7	PBSCE6	PBSCE5	PBSCE4	PBSCE3	PBSCE2	PBSCE1	PBSCE0
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
Bits	Field	Descript	ions					
[15:0]	PBSCEn	GPIO Por	t B pin n Sinl	k Current En	hanced Sele	ction Control	Bits (n = 0 ~	~ 15)
		0: No e	enhanced sir	nk current				
		1: Enh	anced sink c	urrent				

This register	is used to co	ntrol the di	rection of Gl	PIO Port C	pin as input or o	output.		
Offset:	0x000							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
					PCDIR			
Type/Reset	RW 0	RW (0 RW	0 RW	0 RW 0	RW	0 RW (0 RW 0

Port C Data Direction Control Register – PCDIRCR

 Bits
 Field
 Descriptions

 [7:0]
 PCDIRn
 GPIO Port C pin n Direction Control Bits (n = 0 ~ 7) 0: Pin n is in input mode 1: Pin n is in output mode

This register	is used to e	nable or disa	ble the GPI	O Port C in	put function.			
Offset:	0x004							
Reset value:	0x0000_0	000						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
					PCINEN			
Type/Reset	RW () RW 0	RW	0 RW	0 RW 0	RW (0 RW 0	RW 0
Dite	F ield	Deceria	4					

Port C Input Function Enable Control Register – PCINER

 Bits
 Field
 Descriptions

 [7:0]
 PCINENn
 GPIO Port C pin n Input Enable Control Bits (n = 0 ~ 7)

 0: Pin n input function is disabled
 1: Pin n input function is enabled

When the pin n input function is disabled, the input Schmitt trigger will be turned off and the Schmitt trigger output will remain at a zero state.

Offset:	0x008							
Reset value:	0x0000_	_0000						
	31	30	29	28	27	26	25	24
			2	20	Reserved		23	
Type/Reset	L							
	23	22	21	20	19	18	17	16
					Reserved	d		
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved	d		
Type/Reset								
	7	6	5	4	3	2	1	0
					PCPU			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0
Dite	Field	Dess						

Port C Pull-Up Selection Register – PCPUR

This register is used to enable or disable the GPIO Port C pull-up function.

Bits	Field	Descriptions
[7:0]	PCPUn	GPIO Port C pin n Pull-Up Selection Control Bits (n = 0 ~ 7)
		0: Pin n pull-up function is disabled
		1: Pin n pull-up function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up function will have the higher priority and therefore the pull-down function will be blocked and disabled.

This register	is used to e	nable or disa	ble the G	PIO Port C p	oull-down funct	ion.		
Offset:	0x00C							
Reset value:	0x0000_00	000						
	31	30	29	28	27	26	25	24
					Reserve	d		
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserve	d		
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserve	d		
Type/Reset								
	7	6	5	4	3	2	1	0
					PCPD			
Type/Reset	RW 0	RW 0	RW	0 RW	0 RW	0 RW	0 RW	0 RW 0
Bits	Field	Descrip	tions					

Port C Pull-Down Selection Register – PCPDR

PCPDn GPIO Port C pin n Pull-Down Selection Control Bits (n = $0 \sim 7$)

0: Pin n pull-down function is disabled 1: Pin n pull-down function is enabled

Note: When the pull-up and pull-down functions are both enabled, the pull-up

function will have the higher priority and therefore the pull-down function will be blocked and disabled.

[7:0]

This register	is used to er	nable or disa	ble the GP	PIO Port C o	pen drain funct	ion.		
Offset:	0x010							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
			29	20	Reserved		25	
					Reserveu			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
					PCOD			
Type/Reset	RW 0	RW 0	RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
Bits	Field	Descrip	tions					
[7:0]	PCODn	GPIO Po	rt C pin n (Open Drain	Selection Contr	ol Bits (n	= 0 ~ 7)	

Port C Open Drain Selection Register – PCODR

0: Pin n Open Drain output is disabled (The output type is CMOS output)

1: Pin n Open Drain output is enabled (The output type is open-drain output)

Note: When the open-drain function is enabled, the pin n internal pull-up or pull-down configuration will be invalid.

This register specifies the GPIO Port C output driving current.																		
Offset:	0x014																1	
Reset value:	0x0000_	_000	00															
	31		30		29		2	3	2	27		26			25		24	
									Rese	erve	ed							
Type/Reset																		
	23		22		21		20)	1	9		18			17		16	
									Rese	erve	d							
Type/Reset																		
	15		14		13		12	2	1	1		10			9		8	
			PCD	/7			PCE	V6				PCDV	′5				PCDV	′4
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW	0
	7		6		5		4		;	3		2			1		0	
			PCD\	/3			PCE	V2				PCDV	'1				PCDV	′0
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW	0
Bits	Field		De	scri	ptions													
[15:0]	PCDVn[1:0]	GP	IO F	ort C pin	n (Dutput [Drive	Currer	nt S	ele	ction Cor	ntro	Bits	(n =	0 ~	- 7)	
	-	-		00: 4	4 mA sou	rce	/ sink c	urrer	nt						-		-	

Port C Output Current Drive Selection Register – PCDRVR

00: 4 mA source / sink current 01: 8 mA source / sink current

10: 12 mA source / sink current

11: 16 mA source / sink current

0x018

Offset:

Port C Lock Register – PCLOCKR

This register specifies the GPIO Port C lock configuration.

Reset value:	0x0000_	000	00															
	31		30		29			28		27		26			25		24	
										PCLK	ΕY							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	23		22		21			20		19		18			17		16	
										PCLK	ΕY							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	15		14		13			12		11		10			9		8	
										Reserv	/ed							
Type/Reset																		
	7		6		5			4		3		2			1		0	
										PCLO	СК							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[31:16]	PCLKEY	 GPIO Port C lock Key 0x5FA0: Port C Lock function is enabled Others: Port C Lock function is disabled To lock the Port C function, a value of 0x5FA0 should be written into the PCLKEY field in this register. To execute a successful write operation on this lock register, the value written into the PCLKEY field must be 0x5FA0. If the value written into this field is not equal to 0x5FA0, any write operations on the PCLOCKR register will be aborted. The result of a read operation on the PCLKEY field returns the GPIO Port C Lock Status which indicates whether the GPIO Port C is locked or not. If the read value of the PCLKEY field is 0, this indicates that the GPIO Port C Lock function is disabled. Otherwise, it indicates that the GPIO Port C Lock function is enabled as the read value is equal to 1.
[7:0]	PCLOCKn	 GPIO Port C pin n Lock Control Bits (n = 0 ~ 7) 0: Port C pin n is not locked 1: Port C pin n is locked The PCLOCKn bits are used to lock the configurations of corresponding GPIO Pins when the correct Lock Key is applied to the PCLKEY field. The locked configurations including PCDIRn, PCINENn, PCPUn, PCPDn, PCODn and PCDVn setting in the related GPIO registers. Additionally, the GPCCFGHR or GPCCFGLR register which is used to configure the alternative function of the associated GPIO pin will also be locked. Note that the PCLOCKR register can only be written once which means that PCLKEY and PCLOCKn (lock control bit) should be written together and can not be changed until a system reset or GPIO Port C reset occurs.

Port C Data Input Register – PCDINR

This register specifies the GPIO Port C input data.

Offset:	0x01C							
Reset value:	0x0000_	0000						
	31	30	29	28	27	26	25	24
					Reserve	d		
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserve	d		
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserve	d		
Type/Reset								
	7	6	5	4	3	2	1	0
					PCDIN			
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0

Bits	Field	Descriptions
[7:0]	PCDINn	GPIO Port C pin n Data Input Bits (n = 0 ~ 7)
		0: The input data of corresponding pin is 0

1: The input data of corresponding pin is 1

Port C Output Data Register – PCDOUTR

This register specifies the GPIO Port C output data.

Offset:	0x020							
Reset value:	0x0000_	0000						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
					PCDOUT			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW	0 RW	0 RW 0
Bits	Field	Descr	riptions					

[7:0]	PCDOUTn	GPIO Port C pin n Data Output Bits (n = 0 ~ 7)
		0: Data to be output on pin n is 0

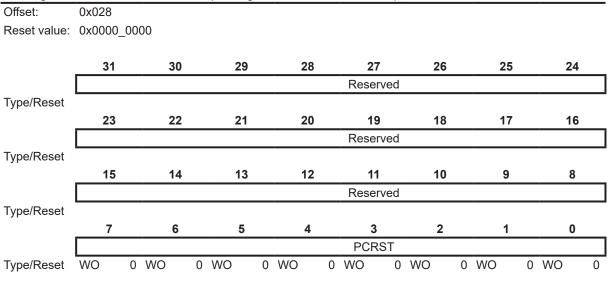
1: Data to be output on pin n is 1

General Purpose I/O (GPIO)

 $\boldsymbol{\infty}$

Rev. 1.20

Offset:	0x024														
Reset value:	0x0000_0	000													
	24	20	20	20	07	20	25	24							
	31	30	29	28	27 Reserved	26	25	24							
Type/Reset	I				110001100										
	23	22	21	20	19	18	17	16							
					PCRST										
Type/Reset	WO () WO	0 WO	0 WO	0 WO 0	WO	0 WO	0 WO	0						
	15	14	13	12	11	10	9	8							
				1	Reserved										
Type/Reset	7	c	-	4	2	0		0							
	7	6	5	4	PCSET	2	1	0							
Type/Reset	WO () WO	0 WO	0 WO		WO	0 WO	0 WO	0						
1990/10000		, 110	0 110	0 110	0 110 0		0 110	0 110	Ŭ						
Bits	Field	Descrij	ptions												
[23:16]	PCRSTn	GPIO P	ort C pin n	Output Rese	t Control Bits (r	$n = 0 \sim 7)$									
				he PCDOUT	n bit										
			eset the PC				DODOT								
				DCDCInhi	in this realster	or (and) t	he PCRSIn	bit in the PCI	RR						
					Note that when the PCRSTn bit in this register or (and) the PCRSTn bit in the PCRR register is enabled, the reset function on the PCDOUTn bit will take effect.										
		register	is enabled,	the reset fur	nction on the P	CDOUTn	bit will take e	ffect.							
[7:0]	PCSETn	register GPIO Po	is enabled, ort C pin n (the reset fu Output Set C	nction on the P Control Bits (n =	CDOUTn	bit will take e	ffect.							
[7:0]	PCSETn	register GPIO Po 0: No	is enabled, ort C pin n o effect on t	the reset fu Output Set C he PCDOUT	nction on the P Control Bits (n =	CDOUTn	bit will take e	ffect.							
[7:0]	PCSETn	register GPIO Po 0: No 1: Se	is enabled, ort C pin n o effect on t et the PCDC	the reset fur Output Set C he PCDOUT DUTn bit	nction on the P Control Bits (n =	CDOUTn 0 ~ 7)			the						


Port C Output Set / Reset Control Register – PCSRR

Rev. 1.20

Port C Output Reset Register – PCRR

This register is used to reset the corresponding bit of the GPIO Port C output data.

Bits	Field	Descriptions
[7:0]	PCRSTn	GPIO Port C pin n Output Reset Control Bits (n = 0 ~ 7)
		0: No effect on the PCDOUTn bit
		1: Reset the PCDOUTn bit

Port C Sink Current Enhanced Selection Register – PCSCER

This register	specifies the	GPIO Port C	c enhanced s	sink driving c	urrent.			
Offset:	0x02C							
Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	PCSCE7	PCSCE6	PCSCE5	PCSCE4	PCSCE3	PCSCE2	PCSCE1	PCSCE0
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
Bits	Field	Descript	ions					
[7:0]	PCSCEn	GPIO Por	t C pin n Sinl	k Current En	hanced Sele	ction Control	Bits (n = 0 ~	~ 7)
			enhanced sin					-
		1: Enh	anced sink c	urrent				

œ

9 Alternate Function Input / Output Control Unit (AFIO)

Introduction

In order to expand the flexibility of the GPIO or the usage of peripheral functions, each I/O pin can be configured to have up to sixteen different functions such as GPIO or IP functions by setting the GPxCFGLR or GPxCFGHR register where x is the different port name. According to the usage of the IP resource and application requirements, suitable pin-out locations can be selected by using the peripheral I/O remapping mechanism. Additionally, various GPIO pins can be selected to be the EXTI interrupt line by setting the EXTINPIN [3:0] field in the ESSRn register to trigger an interrupt or event. Please refer to the EXTI section for more details.

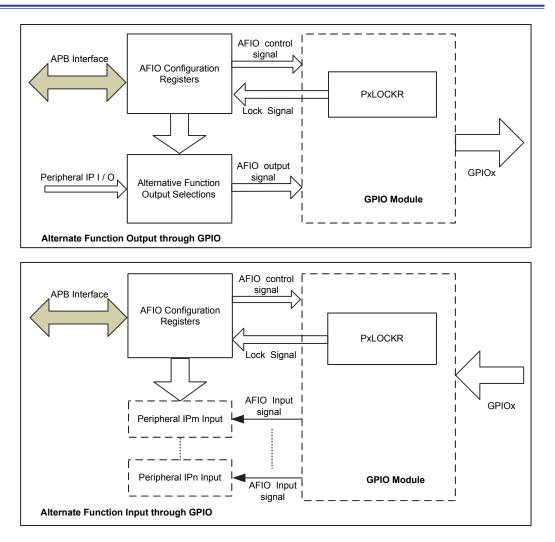
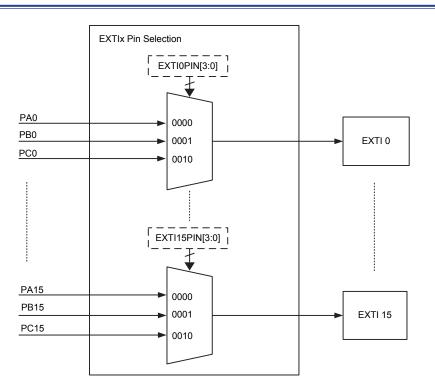


Figure 21. AFIO Block Diagram

9


Features

- APB slave interface for register access
- EXTI source selection
- Configurable pin function for each GPIO, up to sixteen alternative functions on each pin
- AFIO lock mechanism

Functional Descriptions

External Interrupt Pin Selection

The GPIO pins are connected to the 16 EXTI lines as shown in the accompanying figure. For example, users can set the EXTIOPIN [3:0] field in the ESSR0 register to b0000 to select the GPIO PA0 pin as EXTI line 0 input. Since not all the pins of the Port A \sim C are available in all package types, please refer to the pin assignment section for detailed pin information. The setting of the EXTInPIN [3:0] field is invalid when the corresponding pin is not available.

Figure 22. EXTI Channel Input Selection

9

Alternate Function

Up to sixteen alternative functions can be chosen for each I/O pad by setting the PxCFGn [3:0] field in the GPxCFGLR or GPxCFGHR (n = $0 \sim 15$, x = A \sim C) registers. If the pin is selected as unavailable item which is noted as "N/A" item in the "Alternate Function Mapping" table of the device datasheet, this pin will be defined as default alternate function. Refer to the "Alternate Function Mapping" table in the device datasheet for the detailed mapping of the alternate function I/O pins. In addition to this flexible I/O multiplexing architecture, each peripheral has alternate functions mapped onto different I/O pins to optimize the number of peripherals available in smaller packages. The following description shows the setting of the PxCFGn [3:0] field.

- PxCFGn [3:0] = 0000: The default alternated function (after reset, AF0)
- **PxCFGn** [3:0] = 0001: Alternate Function 1 (AF1)
- **PxCFGn** [3:0] = 0010: Alternate Function 2 (AF2)
-
- **PxCFGn** [3:0] = 1110: Alternate Function 14 (AF14)
- PxCFGn [3:0] = 1111: Alternate Function 15 (AF15)

Table 19. AFIO Selection for Peripheral Map Example

AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
System Default	GPIO	ADC	N/A	GPTM /MCTM	SPI	USART /UART	I ² C	N/A	N/A	N/A	N/A	N/A	PWM	N/A	System Other

Lock Mechanism

The device also offers a lock function to lock the AFIO configuration using the GPIO lock register, PxLOCKR, until a reset event occurs. Refer to the GPIO Locking Mechanism section in the GPIO chapter for more details.

Register Map

The following table shows the AFIO registers and reset value.

Table 20. AFIO Register Map

Register	Offset	Description	Reset Value
ESSR0	0x000	EXTI Source Selection Register 0	0x0000_0000
ESSR1	0x004	EXTI Source Selection Register 1	0x0000_0000
GPACFGLR	0x020	GPIO Port A Configuration Low Register	0x0000_0000
GPACFGHR	0x024	GPIO Port A Configuration High Register	0x0000_0000
GPBCFGLR	0x028	GPIO Port B Configuration Low Register	0x0000_0000
GPBCFGHR	0x02C	GPIO Port B Configuration High Register	0x0000_0000
GPCCFGLR	0x030	GPIO Port C Configuration Low Register	0x0000_0000
GPCCFGHR	0x034	GPIO Port C Configuration High Register	0x0000_0000

Register Descriptions

EXTI Source Selection Register 0 – ESSR0

This register specifies the I/O selection of EXTI0 ~ EXTI7.

 Offset:
 0x000

 Reset value:
 0x0000_0000

	31		30		29		28	1	27		26		25		24	
					EXTI7F	PIN							EXTI6F	PIN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20)	19		18		17		16	
					EXTI5F	PIN							EXTI4F	ΡIN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
-	15		14		13		12		11		10		9		8	
					EXTI3F	PIN							EXTI2F	PIN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
					EXTI1F	PIN							EXTI0F	PIN		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[31:0]	EXTInPIN[3:0]	EXTIn Pin Selection (n = $0 \sim 7$)
		0000: PA Bit n is selected as EXTIn source signal
		0001: PB Bit n is selected as EXTIn source signal
		0010: PC Bit n is selected as EXTIn source signal
		Others: Reserved
		Note: Since not all GPIO pins are available in all products and package types, refer to the pin assignment section for detailed pin information. The EXTINPIN [3:0] field setting is invalid when the corresponding pin is not available.

0x004

Offset:

Olisel.	0X004															
Reset value:	0x0000	_0000	0													
	31		30		29	2	8	2	27	2	6	:	25		24	
		EXTI15PIN										EXT	I14PIN	1		
Type/Reset	RW	0 F	RW	0 RV	V 0	RW	0	RW	0	RW	0	RW	0	RW		0
	23		22		21	2	0	1	9	1	8		17		16	
	EXTI13PIN							EXTI12PIN								
Type/Reset	RW	0 F	RW	0 RV	V 0	RW	0	RW	0	RW	0	RW	0	RW		0
	15		14		13	1	2	1	1	1	0		9		8	
	EXTI11PIN										EXT	I10PIN	1			
Type/Reset	RW	0 F	RW	0 RV	V 0	RW	0	RW	0	RW	0	RW	0	RW		0
	7		6		5		4	:	3	2	2		1		0	
	EXTI9PIN								EXTI8PIN							
Type/Reset	RW	0 F	RW	0 RV	V 0	RW	0	RW	0	RW	0	RW	0	RW		0
Bits	Field		Des	scripti	ons											
[31:0]	EXTInP	IN[3:0	0] EX1	In Pin	Selectio	n (n = 8	3~15)								
	0000: PA Bit n is selected as EXTIn source signal															
					B Bit n i					-						
										•						
	0010: PC Bit n is selected as EXTIn source signal Others: Reserved															
				Juiers.	11030100	,u										

EXTI Source Selection Register 1 – ESSR1

This register specifies the I/O selection of EXTI8 ~ EXTI15.

Note: Since not all GPIO pins are available in all products and package types, refer to the pin assignment section for detailed pin information. The EXTINPIN [3:0] field setting is invalid when the corresponding pin is not available.

GPIO Port x Configuration Low Register – GPxCFGLR, x = A, B, C

This low register specifies the alternate function of GPIO Port x, x = A, B, C.

 Offset:
 0x020, 0x028, 0x030

 Reset value:
 0x0000_0000

	31		30		29		28		27		26		25		24	
					PxCFC	G7							PxCFG	6		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20		19		18		17		16	
					PxCFC	G5							PxCFG	64		
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12		11		10		9		8	
	15		14		13 PxCFC	3 3	12		11		10		9 PxCFG	62	8	
Type/Reset	15 RW	0	14 RW	0	-		12 RW	0	11 RW	0	10 RW	0		62 0	8 RW	0
Type/Reset		0		0	PxCFC			0		0		0	PxCFG			0
Type/Reset		0	RW	0	PxCFC RW	0	RW	0	RW	0		0	PxCFG	0	RW	0

Bits	Field	Descriptions
[31:0]	PxCFGn[3:0]	Alternate function selection for port x pin n (n = $0 \sim 7$)
		0000: Port x pin n is selected as AF0
		0001: Port x pin n is selected as AF1
		:
		1110: Port x pin n is selected as AF14
		1111: Port x pin n is selected as AF15
		If the pin is selected as unavailable item which is noted as "N/A" item in the "A

If the pin is selected as unavailable item which is noted as "N/A" item in the "Alternate Function Mapping" table of the device datasheet. This pin will be defined as default alternate function. Please refer to the "Alternate Function Mapping" table in the device datasheet for the detailed mapping of the alternate function I/O pins.

GPIO Port x Configuration High Register – **GPxCFGHR**, x = A, B, C

This high register specifies the alternate function of GPIO Port x. x = A, B, C.

Offset: 0x024, 0x02C, 0x034 Reset value: 0x000_0000

	31		30		29		28		27		26		25		2	24	
					PxCFG	15							PxCFG	14			
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0
	23		22		21		20		19		18		17		1	6	
					PxCFG	13							PxCFG	12			
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW		0
	15		14		13		12		11		10		9			8	
	15		14		13 PxCFG	11	12		11		10		9 PxCFG	10		8	
Type/Reset	15 RW	0	14 RW	0	-		12 RW	0	11 RW	0	10 RW	0	÷	10 0	RW	8	0
Type/Reset		0		0	PxCFG			0		0	_	0	PxCFG	-	RW	8	0
Type/Reset		0	RW	0	PxCFG RW	0	RW	0	RW	0	_	0	PxCFG	0	RW		0

Bits	Field	Descriptions
[31:0]	PxCFGn[3:0]	Alternate function selection for port x pin n (n = $8 \sim 15$)
		0000: Port x pin n is selected as AF0
		0001: Port x pin n is selected as AF1
		:
		1110: Port x pin n is selected as AF14
		1111: Port x pin n is selected as AF15
		If the win is called a uncovallable item which is noted as "NI/A" item in the "/

If the pin is selected as unavailable item which is noted as "N/A" item in the "Alternate Function Mapping" table of the device datasheet. This pin will be defined as default alternate function. Please refer to the "Alternate Function Mapping" table in the device datasheet for the detailed mapping of the alternate function I/O pins.

10 Nested Vectored Interrupt Controller (NVIC)

Introduction

In order to reduce the latency and increase the interrupt processing efficiency, a tightly coupled integrated section, which is named as Nested Vectored Interrupt Controller (NVIC) is provided by the Cortex[®]-M0+. The NVIC controls the system exceptions and the peripheral interrupts which include functions such as the enable / disable control, priority, clear-pending, active status report, software trigger and vector table remapping. Refer to the Technical Reference Manual of Cortex[®]-M0+ for more details.

Additionally, an integrated simple, 24-bit down count timer (SysTick) is provided by the Cortex[®]-M0+ to be used as a tick timer for the Real Timer Operation System (RTOS) or as a simple counter. The SysTick counts down from the reloaded value and generates a system interrupt when it reaches zero. The accompanying table lists the system exceptions types and a variety of peripheral interrupts.

Interrupt Number	Exception Number	Exception Type	Priority	Vector Address	Description
_	0	—		0x000	Initial Stack Point value
_	1	Reset	-3 (Highest)	0x004	Reset
-14	2	NMI	-2	0x008	Non-Maskable Interrupt. The clock stuck interrupt signal (clock monitor function provided by Clock Control Unit) is connected to the NMI input
-13	3	Hard Fault	-1	0x00C	All fault classes
_	4-10	Reserved		—	
-5	11	SVCall	Configurable ⁽¹⁾	0x02C	SVC instruction System service call
_	12-13	Reserved		—	_
-2	14	PendSV	Configurable ⁽¹⁾	0x038	System Service Pendable request
-1	15	SysTick	Configurable ⁽¹⁾	0x03C	SysTick timer decremented to zero
0	16	LVD	Configurable ⁽²⁾	0x040	Low voltage detection interrupt
1	17	RTC	Configurable ⁽²⁾	0x044	RTC global interrupt
2	18	FMC	Configurable ⁽²⁾	0x048	FMC global interrupt
3	19	WKUP	Configurable ⁽²⁾	0x04C	EXTI event wakeup or external WAKEUP pin interrupt ⁽³⁾
4	20	EXTI0 ~ 1	Configurable ⁽²⁾	0x050	EXTI Line 0 & 1 interrupt
5	21	EXTI2 ~ 3	Configurable ⁽²⁾	0x054	EXTI Line 2 & 3 interrupt
6	22	EXTI4 ~ 15	Configurable ⁽²⁾	0x058	EXTI Line 4 ~ 15 interrupt
7	23	Reserved		0x05C	_
8	24	ADC	Configurable ⁽²⁾	0x060	ADC global interrupt
9	25	Reserved		0x064	_
10	26	MCTM	Configurable ⁽²⁾	0x068	MCTM global interrupt
11	27	Reserved		0x06C	
12	28	GPTM	Configurable ⁽²⁾	0x070	GPTM global interrupt
13	29	Reserved		0x074	

Table 21. Exception Types

Interrupt Number	Exception Number	Exception Type	Priority	Vector Address	Description
14	30	Reserved		0x078	
15	31	PWM0	Configurable ⁽²⁾	0x07C	PWM0 global interrupt
16	32	PWM1	Configurable ⁽²⁾	0x080	PWM1 global interrupt
17	33	BFTM0	Configurable ⁽²⁾	0x084	BFTM0 global interrupt
18	34	BFTM1	Configurable ⁽²⁾	0x088	BFTM1 global interrupt
19	35	I ² C0	Configurable ⁽²⁾	0x08C	l ² C0 global interrupt
20	36	l ² C1	Configurable ⁽²⁾	0x090	l ² C1 global interrupt
21	37	SPI0	Configurable ⁽²⁾	0x094	SPI0 global interrupt
22	38	SPI1	Configurable ⁽²⁾	0x098	SPI1 global interrupt
23	39	USART	Configurable ⁽²⁾	0x09C	USART global interrupt
24	40	Reserved		0x0A0	_
25	41	UART0	Configurable ⁽²⁾	0x0A4	UART0 global interrupt
26	42	UART1	Configurable ⁽²⁾	0x0A8	UART1 global interrupt
27	43	Reserved		0x0AC	
28	44	Reserved		0x0B0	
29	45	Reserved		0x0B4	
30	46	Reserved		0x0B8	_
31	47	Reserved		0x0BC	—

Notes: 1. The exception priority can be changed using the NVIC System Handler Priority Registers. For more information, refer to the Arm[®] "Cortex[®]-M0+ Devices Generic User Guide" document.

2. The interrupt priority can be changed using the NVIC Interrupt Priority Registers. For more information, refer to the Arm[®] "Cortex[®]-M0+ Devices Generic User Guide" document.

3. Refer to the PWRCU chapter for the relevant configuration descriptions about the WAKEUP-pin wakeup interrupt.

Features

- 7 system Cortex[®]-M0+ exceptions
- Up to 32 Maskable peripheral interrupts
- 4 programmable priority levels (2 bits for interrupt priority setting)
- Non-Maskable interrupt
- Low-latency exception and interrupt handling
- Vector table remapping capability
 - Integrated simple, 24-bit system timer, SysTick
 - 24-bit down-counter
 - Auto-reloading capability
 - Maskable system interrupt generation when counter decreases to 0
 - SysTick clock source derived from the HCLK clock divided by 8

Function Descriptions

SysTick Calibration

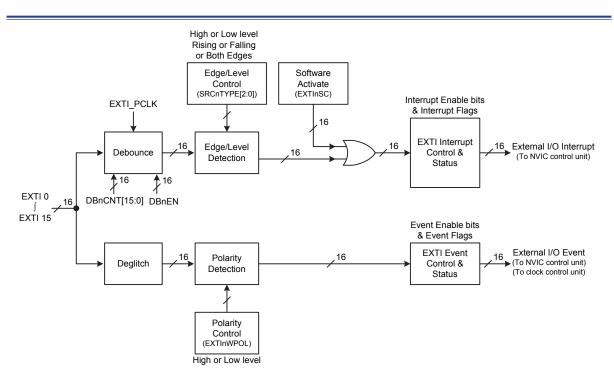
The SysTick Calibration Value Register (SYST_CALIB) is provided by the NVIC to give a reference time base of 1 ms for the RTOS tick timer or other purposes. The TENMS field in the SYST_CALIB register has a fixed value of 2500 which is the counter reload value to indicate 1 ms when the clock source comes from the SysTick reference input clock STCLK with a frequency of 2.5 MHz (20 MHz divide by 8).

Register Map

The following table shows the NVIC registers and reset values.

Register	Offset	Description	Reset Value
NVIC Base Add	ress = 0xE0	00_E000	
SYST_CSR	0x010	SysTick Control and Status Register	0x0000_0000
SYST_RVR	0x014	SysTick Reload Value Register	Unpredictable
SYST_CVR	0x018	SysTick Current Value Register	Unpredictable
SYST_CALIB	0x01C	SysTick Calibration Value Register	0x4000_09C4
NVIC_ISER	0x100	Interrupt Set Enable Register	0x0000_0000
NVIC_ICER	0x180	Interrupt Clear Enable Register	0x0000_0000
NVIC_ISPR	0x200	Interrupt Set Pending Register	0x0000_0000
NVIC_ICPR	0x280	Interrupt Clear Pending Register	0x0000_0000
NVIC_IPR0	0x400	Interrupt 0 ~ 3 Priority Register	0x0000_0000
NVIC_IPR1	0x404	Interrupt 4 ~ 7 Priority Register	0x0000_0000
NVIC_IPR2	0x408	Interrupt 8 ~ 11 Priority Register	0x0000_0000
NVIC_IPR3	0x40C	Interrupt 12 ~ 15 Priority Register	0x0000_0000
NVIC_IPR4	0x410	Interrupt 16 ~ 19 Priority Register	0x0000_0000
NVIC_IPR5	0x414	Interrupt 20 ~ 23 Priority Register	0x0000_0000
NVIC_IPR6	0x418	Interrupt 24 ~ 27 Priority Register	0x0000_0000
NVIC_IPR7	0x41C	Interrupt 28 ~ 31 Priority Register	0x0000_0000
CPUID	0xD00	CPUID register	0x410C_C601
ICSR	0xD04	Interrupt Control and State Register	0x0000_0000
VTOR	0xD08	Vector Table Offset Register	0x0000_0000
AIRCR	0xD0C	Application Interrupt and Reset Control Register	0xFA05_0000
SCR	0xD10	System Control Register	0x0000_0000
CCR	0xD14	Configuration and Control Register	0x0000_0208
SHPR2	0xD1C	System Handlers Priority Register 2	0x0000_0000
SHPR3	0xD20	System Handlers Priority Register 3	0x0000_0000

Table 22. NVIC Register Map

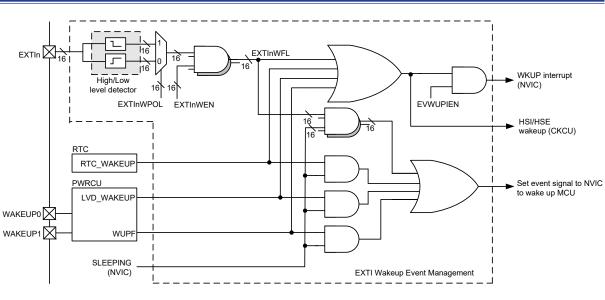

Note: For more detailed information of the above register, please refer to the "Cortex[®]-M0+ Devices Generic User Guide" document from Arm.

11 External Interrupt / Event Controller (EXTI)

Introduction

The External Interrupt / Event Controller, EXTI, comprises 16 edge detectors which can generate a wakeup event or interrupt requests independently. In the interrupt mode there are five trigger types which can be selected as the external interrupt trigger type, low level, high level, negative edge, positive edge and both edges, selectable using the SRCnTYPE field in the EXTICFGRn ($n = 0 \sim 15$) register. In the wakeup event mode, the wakeup event polarity can be configured by setting the EXTINWPOL ($n = 0 \sim 15$) field in the EXTIWAKUPPOLR register. If the EVWUPIEN bit in the EXTIWAKUPCR Register is set, the EVWUP interrupt can be generated when the associated wakeup event occurs and the corresponding EXTI wakeup enable bit is set. Each EXTI line can also be masked independently.

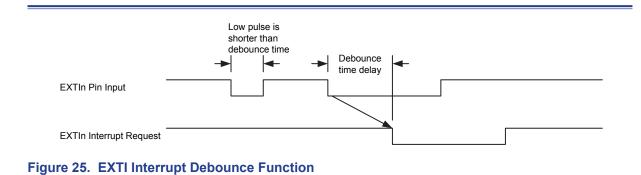
Features


- Up to 16 EXTI lines with configurable trigger source and type
 - All GPIO pins can be selected as EXTI trigger source
 - Source trigger type includes high level, low level, negative edge, positive edge or both edge
- Individual interrupt enable, wakeup enable and status bits for each EXTI line
- Software interrupt trigger mode for each EXTI line
- Integrated deglitch filter for short pulse blocking

Function Descriptions

Wakeup Event Management

In order to wakeup the system from the power saving mode, the EXTI controller provides a function which can monitor external events and send them to the CPU core and the Clock Control Unit, CKCU. These external events include EXTI events, Low Voltage Detection, WAKEUP input pins and RTC wakeup function. By configuring the wakeup event enable bit in the corresponding peripheral, the wakeup signal will be sent to the CPU and the CKCU via the EXTI controller when the corresponding wakeup event occurs. Additionally, the software can enable the event wakeup interrupt function by setting the EVWUPIEN bit in the EXTIWAKUPCR register and the EXTI controller will then assert an interrupt when the wakeup event occurs.


External Interrupt / Event Line Mapping

All GPIO pins can be selected as EXTI trigger sources by configuring the EXTInPIN [3:0] field in the AFIO ESSRn (n = $0 \sim 1$) register to trigger an interrupt or event. Refer to the AFIO section for more details.

Interrupt and Debounce

The application software can set the DBnEN bit in the EXTIn Interrupt Configuration Register EXTICFGRn ($n = 0 \sim 15$) to enable the corresponding pin de-bounce function and configure the DBnCNT field in the EXTICFGRn so as to select an appropriate debounce time for specific applications. The interrupt signal will however be delayed due to the de-bounce function. When the device is woken up from the power saving mode by an external interrupt, an interrupt request will be generated by the EXTI wakeup flag. After the device has been woken up and the clock has recovered, the EXTI wakeup flag that was triggered by the EXTI line must be read and then cleared by application software. The accompanying diagram shows the relationship between the EXTI input signal and the EXTI interrupt / event request signal.

Register Map

The following table shows the EXTI registers and reset values.

Register	Offset	Description	Reset Value
		-	
EXTICFGR0	0x000	EXTI Interrupt 0 Configuration Register	0x0000_0000
EXTICFGR1	0x004	EXTI Interrupt 1 Configuration Register	0x0000_0000
EXTICFGR2	0x008	EXTI Interrupt 2 Configuration Register	0x0000_0000
EXTICFGR3	0x00C	EXTI Interrupt 3 Configuration Register	0x0000_0000
EXTICFGR4	0x010	EXTI Interrupt 4 Configuration Register	0x0000_0000
EXTICFGR5	0x014	EXTI Interrupt 5 Configuration Register	0x0000_0000
EXTICFGR6	0x018	EXTI Interrupt 6 Configuration Register	0x0000_0000
EXTICFGR7	0x01C	EXTI Interrupt 7 Configuration Register	0x0000_0000
EXTICFGR8	0x020	EXTI Interrupt 8 Configuration Register	0x0000_0000
EXTICFGR9	0x024	EXTI Interrupt 9 Configuration Register	0x0000_0000
EXTICFGR10	0x028	EXTI Interrupt 10 Configuration Register	0x0000_0000
EXTICFGR11	0x02C	EXTI Interrupt 11 Configuration Register	0x0000_0000
EXTICFGR12	0x030	EXTI Interrupt 12 Configuration Register	0x0000_0000
EXTICFGR13	0x034	EXTI Interrupt 13 Configuration Register	0x0000_0000
EXTICFGR14	0x038	EXTI Interrupt 14 Configuration Register	0x0000_0000
EXTICFGR15	0x03C	EXTI Interrupt 15 Configuration Register	0x0000_0000
EXTICR	0x040	EXTI Interrupt Control Register	0x0000_0000
EXTIEDGEFLGR	0x044	EXTI Interrupt Edge Flag Register	0x0000_0000
EXTIEDGESR	0x048	EXTI Interrupt Edge Status Register	0x0000_0000
EXTISSCR	0x04C	EXTI Interrupt Software Set Command Register	0x0000_0000
EXTIWAKUPCR	0x050	EXTI Interrupt Wakeup Control Register	0x0000_0000
EXTIWAKUPPOLR	0x054	EXTI Interrupt Wakeup Polarity Register	0x0000_0000
EXTIWAKUPFLG	0x058	EXTI Interrupt Wakeup Flag Register	0x0000_0000

Table 23. EXTI Register Map

Register Descriptions

EXTI Interrupt n Configuration Register – EXTICFGRn, n = 0 ~ 15

This register is used to specify the debounce function and select the trigger type.

Offset: 0x000 (0) ~ 0x03C (15) Reset value: 0x000_0000

	31	30	2	29	28		27	,	26			25			24	
	DBnEN		SRCn	TYPE							Res	serv	ed			
Type/Reset	RW 0	RW	0 RW	0	RW	0										
	23	22	2	21	20		19)	18			17			16	
							Reser	ved								
Type/Reset																
	15	14	1	3	12		11		10			9			8	
							DBnC	NT								
Type/Reset	RW 0	RW	0 RW	0	RW	0	RW	0	RW	0	RW		0	RW		0
	7	6	ł	5	4		3		2			1			0	
							DBnC	NT								
Type/Reset	RW 0	RW	0 RW	0	RW	0	RW	0	RW	0	RW		0	RW		0
Bits	Field	Descr	iptions													
[31]	DBnEN		De-boun	co Ciro	uit Enabl	o Bi	it (n = 0)	~ 15	:)							—
[51]	DDIILIN		De-bounc				it (ii – 0	10	')							
)e-bounc													
[30:28]	SRCnTYPE		Interrupt				e (n = 0)~15	5)							
[]			CnTYPE	-		• •	pt Sou		·							
		0	0	0	Low-lev				<u>, </u>							
		0	0	1	High-le	vel	Sensitiv	'e								
		0	1	0	Negativ				ed							
		0	1	1	Positive	e-ed	lge Trig	gere	b							
		1	X	Х	Both-eo			-								
[15:0]	DBnCNT	FXTIn	De-boun	ce Cou	nter (n =	0~	15)									
[10.0]	DBHON		e-bounce				,	nCN	T × APB	clo	ck (E	хті	P	CLK)	per	iod
			ould be lo								•		,	•)	1	
				-	-					-						

is used to co	ntrol the EX1	T interrupt.					
0x040							
0x0000_00	00						
31	30	29	28	27	26	25	24
				Reserved			
23	22	21	20	19	18	17	16
				Reserved			
15	14	13	12	11	10	9	8
EXTI15EN	EXTI14EN	EXTI13EN	EXTI12EN	EXTI11EN	EXTI10EN	EXTI9EN	EXTI8EN
RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
7	6	5	4	3	2	1	0
EXTI7EN	EXTI6EN	EXTI5EN	EXTI4EN	EXTI3EN	EXTI2EN	EXTI1EN	EXTI0EN
RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
Field	Descrip	tions					
EXTInEN	-		le Bit (n = 0 -	~ 15)			
		•		,			
	0x040 0x0000_000 31 23 23 EXTI15EN RW 0 7 EXTI7EN RW 0	is used to control the EXT 0x040 0x0000_0000 31 30 23 22 23 22 15 14 EXTI15EN EXTI14EN RW 0 RW 0 7 6 EXTI7EN EXTI6EN RW 0 RW 0 Field Descrip EXTInEN EXTIn Into 0: EXT	31 30 29 23 22 21 15 14 13 EXTI15EN EXTI14EN EXTI13EN RW 0 RW 0 RW 0 7 6 5 EXTI7EN EXTI6EN EXTI5EN RW 0 RW 0 RW 0 Field Descriptions EXTIn Interrupt Enab 0: EXTI line n interval	is used to control the EXTI interrupt. 0x040 0x0000_0000 31 30 29 28 23 22 21 20 15 14 13 12 EXTI15EN EXTI14EN EXTI13EN EXTI12EN RW 0 RW 0 RW 0 7 6 5 4 EXTI7EN EXTI6EN EXTI5EN EXTI4EN RW 0 RW 0 RW 0 Q RW 0 RW 0 RW 0 Field Descriptions EXTIn Interrupt Enable Bit (n = 0 - 0) 0) C C EXTINEN EXTIN Interrupt Enable Bit (n = 0 - 0) 0) C C C	is used to control the EXTI interrupt. 0x040 0x0000_0000 31 30 29 28 27 Reserved 23 22 21 20 19 Reserved 15 14 13 12 11 EXTI15EN EXTI14EN EXTI13EN EXTI12EN EXTI11EN RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 7 6 5 4 3 EXTI7EN EXTI6EN EXTI5EN EXTI4EN EXTI3EN RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 Field Descriptions	is used to control the EXTI interrupt. 0x040 0x0000_0000 31 30 29 28 27 26 Reserved 23 22 21 20 19 18 23 22 21 20 19 18 Reserved 15 14 13 12 11 10 EXTI15EN EXTI14EN EXTI13EN EXTI12EN EXTI11EN EXTI10EN RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 7 6 5 4 3 2 EXTI7EN EXTI6EN EXTI5EN EXTI4EN EXTI3EN EXTI2EN RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 7 6 5 4 3 2 EXTI7EN EXTI6EN EXTI5EN EXTI4EN EXTI3EN EXT12EN RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 7 6 5 4 3 2 EXTI7EN EXTI6EN EXTI5EN EXT14EN EXT3EN EXT12EN RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 Field Descriptions EXTIN EXTIN Interrupt Enable Bit (n = 0 ~ 15) 0: EXTI line n interrupt is disabled	is used to control the EXTI interrupt. 0x040 0x0000_0000 31 30 29 28 27 26 25 Reserved 23 22 21 20 19 18 17 Reserved 15 14 13 12 11 10 9 EXTI15EN EXTI14EN EXTI13EN EXTI12EN EXTI10EN EXTI9EN RW 0 RW 0

EXTI Interrupt Control Register – EXTICR

Rev. 1.20

This register	is used to i	ndicate if an E	-XTI edge ha	s been deter	cted			
Offset:	0x044		- stri ougo na					
Reset value:		000						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EXTI15ED	F EXTI14EDF	EXTI13EDF	EXTI12EDF	EXTI11EDF	EXTI10EDF	EXTI9EDF	EXTI8EDF
Type/Reset	WC	0 WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
	7	6	5	4	3	2	1	0
	EXTI7ED	F EXTI6EDF	EXTI5EDF	EXTI4EDF	EXTI3EDF	EXTI2EDF	EXTI1EDF	EXTI0EDF
Type/Reset	WC	0 WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
Bits	Field	Descrij	otions					
[15:0]	EXTInED	F EXTIn E	dge Detectio	n Flag (n = C	i ~ 15)			
		0: No	edge is dete	ected				
		4. Da		tive edge is	al a t a a t a al			

EXTI Interrupt Edge Flag Register – EXTIEDGEFLGR

1: Positive or negative edge is detected

This bit is set by the hardware circuitry when a positive or negative edge is detected on the corresponding EXTI line. Software should write 1 to clear it.

EXTI Interrupt Edge Status Register – EXTIEDGESR

This register	indicates the	polarity of a	detected EX	TI edge.				
Offset:	0x048							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
	EXTI15EDS	EXTI14EDS	EXTI13EDS	EXTI12EDS	EXTI11EDS	EXTI10EDS	EXTI9EDS	EXTI8EDS
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
	7	6	5	4	3	2	1	0
	EXTI7EDS	EXTI6EDS	EXTI5EDS	EXTI4EDS	EXTI3EDS	EXTI2EDS	EXTI1EDS	EXTI0EDS
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0
Bits	Field	Descrip	tions					
[15:0]	EXTInEDS	EXTIn Ec	Ige Detectio	n Status (n =	= 0 ~ 15)			
		0: Neg	gative edge i	s detected				
			sitive edge is					
		Software	should write	1 to clear it				

This register is used to activate the EXTI interrupt.										
Offset:	0x04C									
Reset value:	0x0000_00	00								
	31	30	29	28	27	26	25	24		
					Reserved					
Type/Reset										
	23	22	21	20	19	18	17	16		
					Reserved					
Type/Reset										
	15	14	13	12	11	10	9	8		
	EXTI15SC	EXTI14SC	EXTI13SC	EXTI12SC	EXTI11SC	EXTI10SC	EXTI9SC	EXTI8SC		
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0		
	7	6	5	4	3	2	1	0		
	EXTI7SC	EXTI6SC	EXTI5SC	EXTI4SC	EXTI3SC	EXTI2SC	EXTI1SC	EXTI0SC		
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0		
Bits	Field	Descrip	tions							
[15:0]	EXTInSC	EXTIn Sc	ftware Set C	ommand (n	= 0 ~ 15)					
				-	ng EXTI inter	-				

EXTI Interrupt Software Set Command Register – EXTISSCR

1: Activates the corresponding EXTI interrupt

This register i	This register is used to control the EXTI interrupt and wakeup function.										
Offset:	0x050										
Reset value:	0x0000_00	00									
	31	30	29	28	27	26	25	24			
	EVWUPIEN				Reserved						
Type/Reset	RW 0										
	23	22	21	20	19	18	17	16			
					Reserved						
Type/Reset											
	15	14	13	12	11	10	9	8			
	EXTI15WEN	EXTI14WEN	EXTI13WEN	EXTI12WEN	EXTI11WEN	EXTI10WEN	EXTI9WEN	EXTI8WEN			
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0			
	7	6	5	4	3	2	1	0			
	EXTI7WEN	EXTI6WEN	EXTI5WEN	EXTI4WEN	EXTI3WEN	EXTI2WEN	EXTI1WEN	EXTIOWEN			
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0			
Bits	Field	Descrip	tions								
[31]	EVWUPIE	N EXTIEVe	ent Wakeup I	Interrupt Ena	ble Bit						
		0: Dis	able EVWUF	^o interrupt							
		1: Ena	able EVWUP	o interrupt							
[15:0]	EXTInWEN		-	le Bit (n = 0 ~	,						
			-	node wakeup							
		1: Po	wer saving m	node wakeup	is enabled						

EXTI Interrupt Wakeup Control Register – EXTIWAKUPCR

11 External Interrupt / Event Controller (EXTI)

This register	is used to se	elect the EXT	l line interrup	ot wakeup po	larity.							
Offset:	0x054											
Reset value:	0x0000_00	00										
	31	30	29	28	27	26	25	24				
					Reserved							
Type/Reset												
	23	22	21	20	19	18	17	16				
					Reserved							
Type/Reset												
	15	14	13	12	11	10	9	8				
	EXTI15WPOL	EXTI14WPOL	EXTI13WPOL	EXTI12WPOL	EXTI11WPOL	EXTI10WPOL	EXTI9WPOL	EXTI8WPOL				
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0				
	7	6	5	4	3	2	1	0				
	EXTI7WPOL	EXTI6WPOL	EXTI5WPOL	EXTI4WPOL	EXTI3WPOL	EXTI2WPOL	EXTI1WPOL	EXTI0WPOL				
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0				
Bits	Field	Descrip	otions									
[15:0]	EXTInWPC	L EXTIn W	akeup Polari	ity (n = 0 ~ 1	5)							
	15:0] EXTINWPOL EXTIN Wakeup Polarity (n = 0 ~ 15)0: EXTIN wakeup is high level active											

EXTI Interrupt Wakeup Polarity Register – EXTIWAKUPPOLR

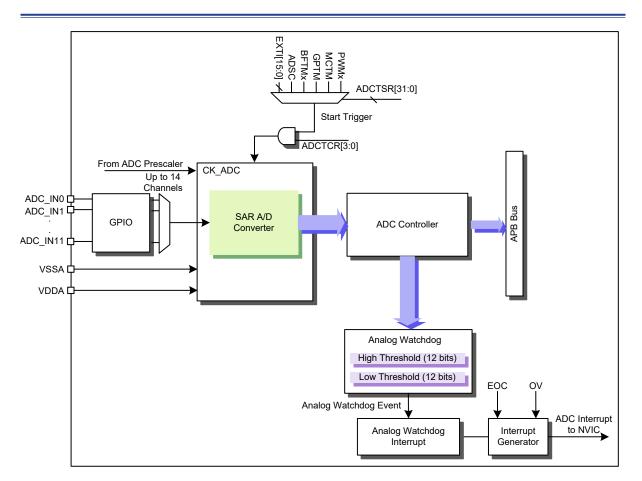
1: EXTIN wakeup is low level active

EXTI Interrupt Wakeup Flag Register – EXTIWAKUPFLG

This register is the EXTI interrupt wakeup flag register.

Offset:	0x058										
Reset value:	0x0000_00	00									
	31	30	29	28	27	26	25	24			
					Reserved						
Type/Reset	23	22	21	20	19	18	17	16			
			21	20	Reserved	10	17				
Type/Reset					Reserved						
	15	14	13	12	11	10	9	8			
	EXTI15WFL	EXTI14WFL	EXTI13WFL	EXTI12WFL	EXTI11WFL	EXTI10WFL	EXTI9WFL	EXIT8WFL			
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0			
	7	6	5	4	3	2	1	0			
	EXTI7WFL	EXTI6WFL	EXTI5WFL	EXTI4WFL	EXTI3WFL	EXTI2WFL	EXTI1WFL	EXTI0WFL			
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0	WC 0			
Bits	Field	Descrip	tions								
[15:0]	EXTInWFL	EXTIn W	akeup Flag (n = 0 ~ 15)							
	0: No wakeup occurs										

1: System is woken up by EXTIn


Software should write 1 to clear it.

12 Analog to Digital Converter (ADC)

Introduction

A 12-bit multi-channel Analog to Digital Converter is integrated in the device. There are a total of 14 multiplexed channels including 12 external channels on which the external analog signal can be supplied and 2 internal channels. If the input voltage is required to remain within a specific threshold window, the Analog Watchdog function will monitor and detect the signal. An interrupt will then be generated to inform that the input voltage is higher or lower than the set thresholds. There are three conversion modes to convert an analog signal to digital data. The A/D conversion can be operated in one shot, continuous and discontinuous conversion mode. A 16-bit data register is provided to store the data after conversion.

Features

- 12-bit SAR ADC engine
- Up to 1 Msps conversion rate
- 12 external analog input channels
- 2 internal analog input channels for reference voltage detection
- Programmable sampling time for conversion channel
- Up to 8 programmable conversion channel sequence and dedicated data registers for conversion result
- Three conversion modes
 - One shot conversion mode
 - Continuous conversion mode
 - Discontinuous conversion mode
- Analog watchdog for predefined voltage range monitor
 - Lower / upper threshold register
 - Interrupt generation
- Various trigger start sources for conversion modes
 - Software trigger
 - EXTI External interrupt input pin
 - MCTM trigger
 - GPTM trigger
 - PWM0 / PWM1 trigger
 - BFTM0 / BFTM1 trigger
- Multiple generated interrupts
 - End of single conversion
 - End of subgroup conversion
 - End of cycle conversion
 - Analog Watchdog
 - Data register overwriting

Function Descriptions

ADC Clock Setup

The ADC clock, CK_ADC is provided by the Clock Controller which is synchronous and divided by with the AHB clock known as HCLK. Refer to the Clock Control Unit chapter for more details. Notes that ADC peripheral needs keeping at least two ADC clock cycles to switch between power-on and power off stage (ADCEN bit = '0').

Channel Selection

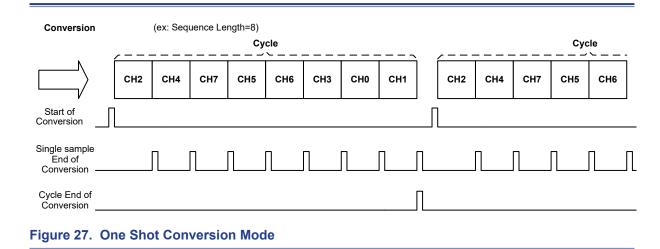
The A/D converter supports 14 multiplexed channels and converts the conversion results into ADC conversion data register. A conversion group can organize a sequence which can be implemented arranged in a specific conversion sequence length from 1 to 8. For example, conversion can be carried out with the following channel sequence: CH2, CH4, CH7, CH5, CH6, CH3, CH0 and CH1 one after another.

A group is composed of up to 8 conversions. The selected channels of the group conversion can be specified in the ADCLST0 \sim ADCLST1 registers. The total conversion sequence length is setup using the ADSEQL[2:0] bits in the ADCCR register.

Modifying the ADCCR register during a conversion process will reset the current conversion, after which a new start pulse is required to restart a new conversion.

Conversion Mode

The A/D has three operating conversion modes. The conversion modes are One Shot Conversion Mode, Continuous Conversion Mode and Discontinuous Conversion mode. Details are provided later.


One Shot Conversion Mode

In one shot conversion mode, the ADC will perform conversion cycles on the channels specified in the A/D conversion list registers ADCLSTn with a specific sequence when an A/D converter event trigger occurs. When the A/D conversion mode field ADMODE [1:0] in the ADCCR register is set to 0x0, the A/D converter will operate in the One Shot Conversion Mode. This mode can be started by a software trigger, an external EXTI event or a Timer event determined by the Trigger Control Register ADCTCR and the Trigger Source Register ADCTSR.

After Conversion

- The converted data will be stored in the 16-bit ADCDRy ($y = 0 \sim 7$) registers.
- The ADC regular single sample end of conversion event raw status flag, ADIRAWS, in the ADCIRAW register will be set when the single sample conversion is finished.
- An interrupt will be generated after a single sample end of conversion if the ADIES bit in the ADCIER register is enabled.
- An interrupt will be generated after a regular group cycle end of conversion if the ADIEC bit in the ADCIER register is enabled.

Continuous Conversion Mode

In Continuous Conversion Mode, repeated conversion cycle will start automatically without requiring additional A/D start trigger signals after a channels group conversion has completed. When the A/D conversion mode field ADMODE[1:0] is set to 0x2, the A/D converter will operate in the Continuous Conversion Mode which can be started by a software trigger, an external EXTI event or a Timer event determined by the Trigger Control Register ADCTCR and the Trigger Source Register ADCTSR.

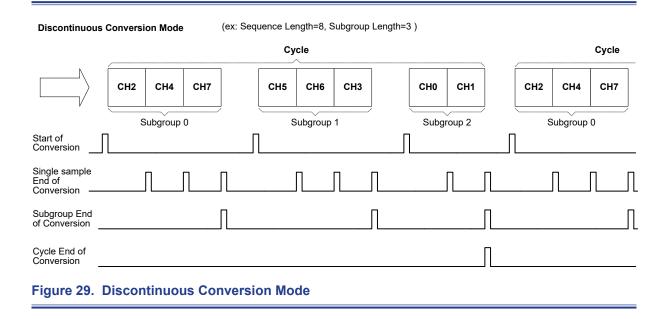
After conversion:

- The converted data will be stored in the 16-bit ADCDRy ($y = 0 \sim 7$) registers.
- The ADC regular group and high priority group cycle end of conversion event raw status flag, ADIRAWC, in the ADCIRAW register will be set when the conversion cycle is finished.
- An interrupt will be generated after a regular or high priority group cycle end of conversion if the ADIEC bit in the ADCIER register is enabled.

Continuous	s Conversion	Mode	(ex: S	equence	Length=	:8)								
Continuous Conversion Mode (ex: Sequence Length=8) Cycle Idle CH2 CH4 CH7 CH5 CH6 Start of Conversion Single sample End of Cycle End of Conversion						cle		Cycle						
	ldle	СН2	CH4	СН7	CH5	CH6	СНЗ	CH0	CH1	CH2	CH4	СН7		СН1
Start of Conv	version													
	le End of		Л	Л	Π	Γ	Π	Π	Γ	Γ	Π	Π	л, <i>"</i> l	
Cycle End of	Conversion									Π				
Figure 28	3. Continu	ious C	onve	rsion	Mode									

Discontinuous Conversion Mode

The A/D converter will operate in the Discontinuous Conversion Mode for channels group when the A/D conversion mode bit field ADMODE [1:0] in the ADCCR register is set to 0x3. The group to be converted can have up to 8 channels and can be arranged in a specific sequence by configuring the ADCLSTn registers where n ranges from 0 to 1. This mode is provided to convert data for the group with a short sequence, named as the A/D conversion subgroup, each time a trigger event occurs. The subgroup length is defined by the ADSUBL [2:0] field in the ADCCR register to specify the subgroup length. In the Discontinuous Conversion Mode the A/D converter can be started by a software trigger, an external EXTI event or a TM event for regular groups determined by the Trigger Control Register ADCTCR and the Trigger Source Register ADCTSR.


In the Discontinuous Conversion Mode, the A/D Converter will start to convert the next n conversions where the number n is the subgroup length defined by the ADSUBL field. When a trigger event occurs, the channels to be converted with a specific sequence are specified in the ADCLSTn registers. After n conversions have completed, the regular subgroup EOC interrupt raw flag ADIRAWG in the ADCIRAW register will be asserted. The A/D converter will now not continue to perform the next n conversions until the next trigger event occurs. The conversion cycle will end after all the group channels, of which the total number is defined by the ADSEQL[2:0] bits in the ADCCR register, have finished their conversion, at which point the cycle EOC interrupt raw flag ADIRAWC in the ADCIRAW register will be asserted. If a new trigger event occurs after all the subgroup channels have all been converted, i.e., a complete conversion cycle has been finished, the conversion will restart from the first subgroup.

Example:

A/D subgroup length = 3 (ADSUBL = 2) and sequence length = 8 (ADSEQL = 7), channels to be converted = 2, 4, 7, 5, 6, 3, 0 and 1 – specific converting sequence as defined in the ADCLSTn registers.

- Trigger 1: subgroup channels to be converted are CH2, CH4 and CH7 with the ADIRAWG flag being asserted after subgroup EOC.
- Trigger 2: subgroup channels to be converted are CH5, CH6 and CH3 with the ADIRAWG flag being asserted after subgroup EOC.
- Trigger 3: subgroup channels to be converted are CH0 and CH1 with the ADIRAWG flag being asserted after subgroup EOC. Also a Cycle end of conversion (EOC) interrupt raw flag ADIRAWC will be asserted.
- Trigger 4: subgroup channels to be converted are CH2, CH4 and CH7 with the ADIRAWG flag being asserted conversion sequence restarts from the beginning.

Start Conversion on External Event

An A/D converter conversion can be initiated by a software trigger, a General-Purpose Timer Module (GPTM) event, a Motor Control Timer Module (MCTM) event, a PWM Trigger Event, a Basic Function Timer Module (BFTM) event or an external trigger. Each trigger source can be enabled by setting the corresponding enable control bit in the ADCTCR register and then selected by configuring the associated selection bits in the ADCTSR register to start a group channel conversion.

An A/D converter conversion can be started by setting the software trigger bit, ADSC, in the ADCTSR register for the group channel when the software trigger enable bit, ADSW, in the ADCTCR register is set to 1. After the A/D converter starts converting the analog data, the corresponding enable bit ADSC will be cleared to 0 automatically.

The A/D converter can also be triggered to start a group conversion by a Timer event. The Timer events include a PWM master trigger output MTO, four PWM channel outputs CH0 \sim CH3, a GPTM or MCTM master trigger output MTO, four GPTM or MCTM channel outputs CH0 \sim CH3 and a BFTM trigger output. If the corresponding Timer trigger enable bit is set to 1 and the trigger output or the Timer channel event is selected via the relevant Timer event selection bits, the A/D converter will start a conversion when a rising edge of the selected trigger event occurs.

In addition to the internal trigger sources, the A/D converter can be triggered to start a conversion by an external trigger event. The external trigger event is derived from the external lines of the EXTI unit. If the external trigger enable bit ADEXTI is set to 1 and the corresponding EXTI line is selected by configuring the ADEXTIS field in the ADCTSR register, the A/D converter will start a conversion when an EXTI line activity occurs.

Sampling Time Setting

The conversion channel can be programmed the sampling time according to the input resistance of the input voltage source. This sampling time must be enough for the input voltage source to charge the internal sample and hold capacitor of the A/D converter to the input voltage level. By modifying the ADST [7:0] bits in the ADCSTR register, the sampling time of the analog input signal can be determined.

The total conversion time (T_{conv}) is calculated using the following formula:

 $T_{\rm conv} = T_{\rm Sampling} + T_{\rm Latency}$

Where the minimum sampling time $T_{\text{Sampling}} = 1.5$ cycles (when ADST[7:0] = 0) and the minimum channel conversion latency $T_{\text{Latency}} = 12.5$ cycles.

Example:

With the A/D Converter clock CK_ADC = 14 MHz and a sampling time = 1.5 cycles:

 $T_{conv} = 1.5 + 12.5 = 14$ cycles = 1 µs

Data Format

The ADC conversed result can be read in the ADCDR register and output data format which is shown as following Table 24.

Table 24. Data Format in ADCDR [15:0]

Description	ADCDR Register Data Format							
Right aligned	"0_0_0_0_d11_d10_d9_d8_d7_d6_d5_d4_d3_d2_d1_d0"							

Analog Watchdog

The A/D converter includes a watchdog function to monitor the converted data. There are two kinds of thresholds for the watchdog monitor function, known as the watchdog lower threshold and watchdog upper threshold, which are specified by the ADLT bit field and ADUT bit field in the ADCTR register respectively. The watchdog monitor function is enabled by setting the watchdog upper and lower threshold monitor function enable bits, ADWUE and ADWLE, in the watchdog control register ADCWCR. The channel to be monitored can be specified by configuring the ADWCH and ADWALL bits. When the converted data is less or higher than the lower or upper threshold, as defined by the ADLT bit field and ADUT bit field in the ADCTR register respectively, the watchdog lower or upper threshold interrupt raw flags, ADIRAWL or ADIRAWU in the ADCIRAW register, will be asserted if the watchdog lower or upper threshold monitor function is enabled. If the lower or upper threshold interrupt raw flag is asserted and the corresponding interrupt is enabled by setting the ADIEL or ADIEU bit in the ADCIER register, the A/D watchdog lower or upper threshold interrupt will be generated.

Interrupts

When an A/D conversion is completed, an End of Conversion EOC event will occur. There are three kinds of EOC events which are known as single sample EOC, subgroup EOC and cycle EOC for A/D conversion. A single sample EOC event will occur and the single sample EOC interrupt raw flag, ADIRAWS bits in the ADCIRAW register, will be asserted when a single channel conversion has completed. A subgroup EOC event will occur and the subgroup EOC interrupt raw flag, ADIRAWG in the ADCIRAW register, will be asserted when a subgroup conversion has completed. A cycle EOC event will occur and the cycle EOC interrupt raw flag, ADIRAWC bits in the ADCIRAW register, will be asserted when a subgroup conversion has completed. A cycle EOC event will occur and the cycle EOC interrupt raw flag, ADIRAWC bits in the ADCIRAW register, will be asserted when a single sample EOC, a subgroup EOC or a cycle EOC raw flag is asserted and the corresponding interrupt enable bit, ADIES, ADIEG or ADIEC bit in the ADCIER register, is set to 1, the associated interrupt will be generated.

After a conversion has completed, the 12-bit digital data will be stored in the associated ADCDRy registers and the value of the data valid flag named as ADVLDy will be changed from low to high. The converted data should be read by the application program, after which the data valid flag ADVLDy will be automatically changed from high to low. Otherwise, a data overwrite event will occur and the data overwrite interrupt raw flag ADIRAWO bit in the ADCIRAW register will be asserted. When the related data overwrite raw flag is asserted, the data overwrite interrupt will be generated if the interrupt enable bit ADIEO in the ADCIER register is set to 1.

If the A/D watchdog monitor function is enabled and the data after a channel conversion is less than the lower threshold or higher than the upper threshold, the watchdog lower or upper threshold interrupt raw flag ADIRAWL or ADIRAWU in the ADCIRAW register will be asserted. When the ADIRAWL or ADIRAWU flag is asserted and the corresponding interrupt enable bit, ADIEL or ADIEU in the ADCIER register, is set a watchdog lower or upper threshold interrupt will be generated.

The A/D Converter interrupt clear bits are used to clear the associated A/D converter interrupt raw and interrupt status bits. Writing a 1 into the specific A/D converter interrupt clear bit in the A/D converter interrupt clear register ADCICLR will clear the corresponding A/D converter interrupt raw status and interrupt status bits. These bits are automatically cleared to 0 by hardware after being set to 1.

Register Map

The following table shows the A/D Converter registers and reset values.

Register	Offset	Description	Reset Value
ADCCR	0x000	ADC Conversion Control Register	0x0000_0000
ADCLST0	0x004	ADC Conversion List Register 0	0x0000_0000
ADCLST1	0x008	ADC Conversion List Register 1	0x0000_0000
ADCSTR	0x020	ADC Input Sampling Time Register	0x0000_0000
ADCDR0	0x030	ADC Conversion Data Register 0	0x0000_0000
ADCDR1	0x034	ADC Conversion Data Register 1	0x0000_0000
ADCDR2	0x038	ADC Conversion Data Register 2	0x0000_0000
ADCDR3	0x03C	ADC Conversion Data Register 3	0x0000_0000
ADCDR4	0x040	ADC Conversion Data Register 4	0x0000_0000
ADCDR5	0x044	ADC Conversion Data Register 5	0x0000_0000
ADCDR6	0x048	ADC Conversion Data Register 6	0x0000_0000
ADCDR7	0x04C	ADC Conversion Data Register 7	0x0000_0000
ADCTCR	0x070	ADC Trigger Control Register	0x0000_0000
ADCTSR	0x074	ADC Trigger Source Register	0x0000_0000
ADCWCR	0x078	ADC Watchdog Control Register	0x0000_0000
ADCTR	0x07C	ADC Watchdog Threshold Register	0x0000_0000
ADCIER	0x080	ADC Interrupt Enable register	0x0000_0000
ADCIRAW	0x084	ADC Interrupt Raw Status Register	0x0000_0000
ADCISR	0x088	ADC Interrupt Status Register	0x0000_0000
ADCICLR	0x08C	ADC Interrupt Clear Register	0x0000_0000

Register Descriptions

ADC Conversion Control Register – ADCCR

This register specifies the mode setting, sequence length and subgroup length of ADC conversion mode. Note that once the content of ADCCR is changed, the conversion in progress will be aborted and the A/D converter will return to an idle state. The application program has to wait for at least one CK_ADC clock before issuing the next command.

 Offset:
 0x000

 Reset value:
 0x0000_0000

	31	30	29	28	27	26		25		24				
					Reserved									
Type/Reset														
	23	22	21	20	19	18		17		16				
			Reserved	eserved ADSUBL										
Type/Reset						RW	0 F	RW	0	RW	0			
	15	14	13	12	11	10		9		8				
			Reserved					ADSEC	٦٢					
Type/Reset						RW	0 F	RW	0	RW	0			
	7	6	5	4	3	2		1		0				
	ADCEN	ADCRST			Reserved					ADMO	DE			
Type/Reset	RW 0	RW 0					F	RW	0	RW	0			

Bits	Field	Descriptions
[18:16]	ADSUBL	ADC Conversion Subgroup Length The ADSUBL field specifies the conversion channel length of each subgroup for regular discontinuous mode. Subgroup length = ADSUBL [2:0] + 1. If the sequence length (ADSEQL [2:0] + 1) is not a multiple of the subgroup length (ADSUBL [2:0] + 1), the last subgroup will be the rest of the group channels that have not been converted.
[10:8]	ADSEQL	 ADC Conversion Length 0x0: The channel specified by the ADSEQ0 field in the ADCLST0 register will be converted Others: Length of list queue = ADSEQL [2:0] + 1 The ADSEQL field specifies the whole conversion sequence length for the conversion group.
[7]	ADCEN	ADC Enable 0: Disable 1: Enable
[6]	ADCRST	ADC Reset 0: No effect 1: Reset A/D converter except for the A/D Converter controller

Bits	Field	Descriptions									
[1:0]	ADMODE	ADC Conversion	ADC Conversion Mode								
		ADMODE [1:0]	Mode	Descriptions							
		00	One shot mode	After a start trigger, the conversion will be executed on the specific channels for the whole conversion sequence once.							
		01	Reserved								
		10	Continuous mode	After a start trigger, the conversion will be executed on the specific channels for the whole sequence continuously until conversion mode is changed.							
		11	Discontinuous mode	After a start trigger, the conversion will be executed on the current subgroup. When the last subgroup is finished, the conversion will restart from the first subgroup if another start trigger occurs.							

This register	specifies the	conversion se	quence o	rder No.0	~ N	o.3 of t	the A[DC.						
Offset:	0x004													
Reset value:	0x0000_00	00												
	•						_							
	31	30	29	28		2	7	26			25	_	2	<u>+</u>
		Reserved						ADSI	EQ3					
Type/Reset				RW	0	RW	0	RW	0	RW		0	RW	0
	23	22	21	20		1	9	18	3		17		1	6
		Reserved						ADS	EQ2					
Type/Reset				RW	0	RW	0	RW	0	RW		0	RW	0
	15	14	13	12		1	1	10)		9		8)
		ADSEQ1												
Type/Reset				RW	0	RW	0	RW	0	RW		0	RW	0
	7	6	5	4		3	3	2			1		C)
		Reserved						ADS	EQ0					
Type/Reset				RW	0	RW	0	RW	0	RW		0	RW	0
D'1-	F 1.1.1	Description												
Bits	Field	Descriptio	ons											
[28:24]	ADSEQ3	ADC Conve	ersion Sec	quence Se	lect	3								
		Select ADC	input cha	nnel for th	<u> </u>		conve	areion e	مرابهم	nco				

ADC Conversion List Register 0 – ADCLST0

Bits	Field	Descriptions
[28:24]	ADSEQ3	ADC Conversion Sequence Select 3
		Select ADC input channel for the 3 rd ADC conversion sequence.
		0x00: ADC_IN0
		0x01: ADC_IN1
		0x02: ADC_IN2
		0x03: ADC_IN3
		0x04: ADC_IN4
		0x05: ADC_IN5
		0x06: ADC_IN6
		0x07: ADC_IN7
		0x08: ADC_IN8
		0x09: ADC_IN9
		0x0A: ADC_IN10
		0x0B: ADC_IN11
		0x0C: Analog ground, VSSA (V _{REF-})
		0x0D: Analog power, VDDA (V _{REF +})
		0x0E ~ 0x1F: Invalid setting and reserved. Don't set these values; it may cause
		the ADC operation become abnormally.
[20:16]	ADSEQ2	ADC Regular Conversion Sequence Select 2
[12:8]	ADSEQ1	ADC Regular Conversion Sequence Select 1
[4:0]	ADSEQ0	ADC Regular Conversion Sequence Select 0

Offset:	0x008		1			0.7 0											
Reset value:	0x0000_00	00															
	31	30	29	28			27			26			25			24	
		Reserved		1					AD	SEQ7	7						
Type/Reset				RW	0	RW		0	RW		0	RW		0	RW	/	0
	23	22	21	20			19			18			17			16	
		Reserved								SEQ							
Type/Reset				RW	0	RW		0	RW		0	RW		0	RW		0
	15	14	13	12			11			10			9			8	
		Reserved								SEQ							
Type/Reset	_		_	RW	0	RW		0	RW		0	RW		0	RW		0
	7	6	5	4			3			2			1			0	
Type/Reset		Reserved		RW	0	RW		0	RW	SEQ4		RW		0	RW	,	0
Type/Reset				RVV	0	RVV		0	RVV		0	RVV		0	RVV		0
		_															
Bits	Field	Description															
[28:24]	ADSEQ7	ADC Regul															
		Select ADC	-	nnel for t	he 7	th AD	C co	nve	ersior	n sequ	en	ice.					
		0x00: A[
		0x01: AI 0x02: AI															
		0x02: Al															
		0x04: Al															
		0x05: AI	_														
		0x06: AI															
		0x07: AI	DC_IN7														
		0x08: AI	DC_IN8														
		0x09: AI	_														
			DC_IN10														
			DC_IN11		•	,											
			nalog grou														
			nalog pow 0x1F: Inva					ad	Don'	t cot t	ho	60 M	مايام	c· if	+ mo		100
		UXUE A		ADC ope	-						пе	50 Va	aiue	5, 11	. IIIa	y ca	126
[20:16]	ADSEQ6	ADC Regul		-						y.							
[12:8]	ADSEQ5	ADC Regul															
[4:0]	ADSEQ4	ADC Regul															
[]	, DOLQT	, ib o i togui		0.011 0.041	aon												

ADC Conversion List Register 1 – ADCLST1 This register specifies the conversion sequence order No.4 ~ No.7 of the ADC.

This register		he A/D conve		-	ling time.			
Offset:	0x020			-				
Reset value:	0x0000_0	0000						
	31	30	29	28	27	26	25	24
					Reserve	d		
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserve	d		
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserve	d		
Type/Reset								
	7	6	5	4	3	2	1	0
					ADST			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0
Bits	Field	Descri	ptions					
[7:0]	ADST	ADC In	out Channel	Sampling T	ïme			
		Sampling time = (ADST [7:0] + 1.5) CK_ADC clocks.						

ADC Input Sampling Time Register – ADCSTR

ADC Conversion Data Register y – ADCDRy, y = 0 ~ 7

 This register is used to store the conversion data of the conversion sequence order No.y which is specified by the ADSEQy field in the ADCLSTn (n = 0 ~ 1) registers.

 Offset:
 0x030 ~ 0x04C

0	0/10/00	•																			
Reset value:	0x0000_	_000	00																		
	31		30			29			28		:	27		26			25			24	
	ADVL	Dу									Res	serve	d								
Type/Reset	RC	0	6																		
	23		22			21			20			19		18			17			16	
											Res	serve	ed								
Type/Reset																					
	15		14			13			12			11		10			9			8	
											A	DDy									
Type/Reset	RO	0	RO	0	RO		0	RO		0	RO		0	RO	0	RO		0	RO		0
	7		6			5			4			3		2			1			0	
											A	DDy									
Type/Reset	RO	0	RO	0	RO		0	RO		0	RO		0	RO	0	RO		0	RO		0
Bits	Field		Desc	ript	ions	;															
[31]	ADVLD	/	ADC	Con	versio	on D)ata	of S	eque	ence	e Ord	er No	o.y '	Valid Bi	t (y :	= 0 ~	7)				
											n read						,				
			1:	New	/ data	are	e va	lid													

		•••
		1: New data are valid
[15:0]	ADDy	ADC Conversion Data of Sequence Order No.y ($y = 0 \sim 7$)
		The conversion result of Sequence Order ADSEQy in the ADCLSTn (n = 0 \sim 1) registers

Offset:	0x070							
Reset value:	0x0000_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved		TM1	TM0	ADEXTI	ADSW
Type/Reset					RW 0	RW 0	RW 0	RW 0

ADC Trigger Control Register – ADCTCR

This register contains the ADC start conversion trigger enable bits.

Bits	Field	Descriptions
[3]	TM1	ADC Conversion BFTM or PWM Event Trigger enable control 0: Disable conversion trigger by BFTM or PWM events 1: Enable conversion trigger by BFTM or PWM events
[2]	TM0	ADC Conversion GPTM or MCTM Event Trigger enable control 0: Disable conversion trigger by GPTM or MCTM events 1: Enable conversion trigger by GPTM or MCTM events
[1]	ADEXTI	ADC Conversion EXTI Event Trigger enable control 0: Disable conversion trigger by EXTI lines 1: Enable conversion trigger by EXTI lines
[0]	ADSW	ADC Conversion Software Trigger enable control 0: Disable conversion trigger by software trigger bit 1: Enable conversion trigger by software trigger bit

0x074

Offset:

ADC Trigger Source Register – ADCTSR

This register contains the trigger source selection and the software trigger bit of the conversion.

Reset value:	0x0000_	_0000												
	31	30	29		28		27		26		2	25	2	4
		Reserved			TM1E	_					ΤM	10E		
Type/Reset			RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23	22	21		20		19		18		1	7	1	6
		TM1S [2:1]			Reserve	ed	TM1S	[0]			ΤN	10S		
Type/Reset	RW	0 RW 0					RW	0	RW	0	RW	0	RW	0
	15	14	13		12		11		10		9	9	8	}
			Reserve	ed							ADE	XTIS		
Type/Reset							RW	0	RW	0	RW	0	RW	0
	7	6	5		4		3		2			1	C)
					Reserve	ed							AD	SC
Type/Reset													RW	0

Bits	Field	Descriptions
[29:27]	TM1E	PWM Trigger Event Selection of ADC Conversion 000: PWM MTO event 001: PWM CH0O event 010: PWM CH1O event 011: PWM CH2O event 100: PWM CH3O event Others: Reserved – Should not be used to avoid unpredictable results
[26:24]	TM0E	GPTM or MCTM Trigger Event Selection of ADC Conversion 000: GPTM or MCTM MTO event 001: GPTM or MCTM CH0O event 010: GPTM or MCTM CH1O event 011: GPTM or MCTM CH2O event 100: GPTM or MCTM CH3O event Others: Reserved – Should not be used to avoid unpredictable results
[23:22], [19]	TM1S	BFTM or PWM Trigger Timer Selection of ADC Conversion 000: BFTM0 001: BFTM1 010: PWM0 011: PWM1 Others: Reserved – Should not be used to avoid unpredictable results
[18:16]	TM0S	GPTM Trigger Timer Selection of ADC Conversion 000: MCTM 001: Reserved 010: GPTM Others: Reserved – Should not be used to avoid unpredictable results

Bits	Field	Descriptions
[11:8]	ADEXTIS	EXTI Trigger Source Selection of ADC Conversion 0x0: EXTI line 0 0x1: EXTI line 1
[0]	ADSC	0xF: EXTI line 15 Note that the EXTI line active edge to start an A/D conversion is determined in the External Interrupt / Event Control Unit, EXTI. ADC Conversion Software Trigger Bit 0: No operation 1: Start conversion immediately This bit is set by software to start a conversion manually and then cleared by hardware automatically after conversion is started.

ADC Watchdog Control Register – ADCWCR

Offset:	0x078											
Reset value:	0x0000_000	00										
	31	30	29	28	27		26		2	5	:	24
			Reserved						ADL	JCH		
Type/Reset					RO	0	RO	0	RO	0	RO	0
	23	22	21	20	19		18		1	7		6
Reserved A									ADL	.CH		
Type/Reset					RO	0	RO	0	RO	0	RO	0
	15	14	13	12	11		10		9)		8
			Reserved						ADV	VCH		
Type/Reset					RW	0	RW	0	RW	0	RW	0
	7	6	5	4	3		2		1			0
			Reserved				ADWA	LL	ADV	VUE	AD'	WLE
Type/Reset							RW	0	RW	0	RW	0
Bits	Field	Descript	ions									
[27:24]	ADUCH	Upper Th	reshold Chanr	nel Status								
		0000: /	ADC_IN0 is hi	gher than	the upper	thre	eshold					
	0001: ADC_IN1 is higher than the upper threshold											
		1011:7	ADC_IN11 is h	nigher thar	n the uppe	r thi	reshold					
		Others	: Reserved									
		If one of	these status	bits are	set to 1 l	ov tl	he watcl	hdoo	g moni	itor fu	Inctio	h. this

If one of these status bits are set to 1 by the watchdog monitor function, this status field value should first be stored in the user-defined memory location in the corresponding ISR. Otherwise, the ADUCH field will be changed if another input channel converted data is higher than the upper threshold.

Bits	Field	Descriptions
[19:16]	ADLCH	Lower Threshold Channel Status 0000: ADC_IN0 is lower than the lower threshold 0001: ADC_IN1 is lower than the lower threshold
		 1011: ADC_IN11 is lower than the lower threshold Others: Reserved
		If one of these status bits are set to 1 by the watchdog monitor function, this status field value should first be stored in the user-defined memory location in the corresponding ISR. Otherwise, the ADLCH field will be changed if another input channel converted data is lower than the lower threshold.
[11:8]	ADWCH	ADC Watchdog Specific Channel Selection 0000: ADC_IN0 is monitored 0001: ADC_IN1 is monitored
		 1011: ADC_IN11 is monitored Others: Reserved
[2]	ADWALL	ADC Watchdog Specific / All Channel Setting 0: Only the channel which specified by the ADWCH field is monitored 1: All channels are monitored
[1]	ADWUE	ADC Watchdog Upper Threshold Enable Bit 0: Disable upper threshold function 1: Enable upper threshold function
[0]	ADWLE	ADC Watchdog Lower Threshold Enable Bit 0: Disable lower threshold function 1: Enable lower threshold function

ADC Watchdog Threshold Register – ADCTR

This register specifies the upper and lower threshold of the ADC watchdog function.

Offset:	0x07C																			
Reset value:	0x0000_	_00	00																	
	31		30		29			28		27		:	26			25		:	24	
	Reserved									ADUT										
Type/Reset										RW	0	RW		0	RW		0	RW		0
	23		22		21			20		19			18			17			16	
										ADU ⁻	Г									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW		0	RW		0
	15		14		13			12		11			10			9			8	
	Reserved								ADLT											
Type/Reset										RW	0	RW		0	RW		0	RW		0
	7		6		5			4		3			2			1			0	
		ADLT																		
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW		0	RW		0
Bits	Field		Desc	rip	tions															
[27:16]	ADUT		ADC V	Vat	chdog Up	pei	r Thre	esho	ld V	/alue										

[11:0] ADLT ADC Watchdog Lower Threshold Value

Specify the lower threshold for the ADC watchdog monitor function.

0x080

Offset:

ADC Interrupt Enable Register – ADCIER

This register contains the ADC interrupt enable bits.

Reset value:	0x0000_000	0						
	31	30	29	28	27	26	25	24
				Reserved				ADIEO
Type/Reset								RW 0
	23	22	21	20	19	18	17	16
				Reserved			ADIEU	ADIEL
Type/Reset							RW 0	RW 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved			ADIEC	ADIEG	ADIES
Type/Reset						RW 0	RW 0	RW 0

Bits	Field	Descriptions
[24]	ADIEO	ADC Data Register Overwrite Interrupt enable 0: ADC data register overwrite interrupt is disabled 1: ADC data register overwrite interrupt is enabled
[17]	ADIEU	ADC Watchdog Upper Threshold Interrupt enable 0: ADC watchdog upper threshold interrupt is disabled 1: ADC watchdog upper threshold interrupt is enabled
[16]	ADIEL	ADC Watchdog Lower Threshold Interrupt enable 0: ADC watchdog lower threshold interrupt is disabled 1: ADC watchdog lower threshold interrupt is enabled
[2]	ADIEC	ADC Cycle EOC Interrupt enable 0: ADC cycle end of conversion interrupt is disabled 1: ADC cycle end of conversion interrupt is enabled
[1]	ADIEG	ADC Subgroup EOC Interrupt enable 0: ADC subgroup end of conversion interrupt is disabled 1: ADC subgroup end of conversion interrupt is enabled
[0]	ADIES	ADC Single EOC Interrupt enable 0: ADC single end of conversion interrupt is disabled 1: ADC single end of conversion interrupt is enabled

0x084

Offset:

This register contains the ADC interrupt raw status bits.

Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
				Reserved				ADIRAWO
Type/Reset								RO 0
	23	22	21	20	19	18	17	16
				Reserved			ADIRAWU	ADIRAWL
Type/Reset							RO 0	RO 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved			ADIRAWC	ADIRAWG	ADIRAWS
Type/Reset						RO 0	RO 0	RO 0

ADC Interrupt Raw Status Register – ADCIRAW

Bits	Field	Descriptions
[24]	ADIRAWO	ADC Data Register Overwrite Interrupt Raw Status 0: ADC data register overwrite interrupt does not occur 1: ADC data register overwrite interrupt occurs
[17]	ADIRAWU	ADC Watchdog Upper Threshold Interrupt Raw Status 0: ADC watchdog upper threshold interrupt does not occur 1: ADC watchdog upper threshold interrupt occurs
[16]	ADIRAWL	ADC Watchdog Lower Threshold Interrupt Raw Status 0: ADC watchdog lower threshold interrupt does not occur 1: ADC watchdog lower threshold interrupt occurs
[2]	ADIRAWC	ADC Cycle EOC Interrupt Raw Status 0: ADC regular cycle end of conversion interrupt does not occur 1: ADC regular cycle end of conversion interrupt occurs
[1]	ADIRAWG	ADC Subgroup EOC Interrupt Raw Status 0: ADC regular subgroup end of conversion interrupt does not occur 1: ADC regular subgroup end of conversion interrupt occurs
[0]	ADIRAWS	ADC Single EOC Interrupt Raw Status 0: ADC regular single end of conversion interrupt does not occur 1: ADC regular single end of conversion interrupt occurs

ADC Interrupt Status Register – ADCISR

This register contains the ADC interrupt status bits. The corresponding interrupt status will be set to 1 if the associated interrupt event occurs and the related enable bit is set to 1.

 Offset:
 0x088

 Reset value:
 0x0000_0000

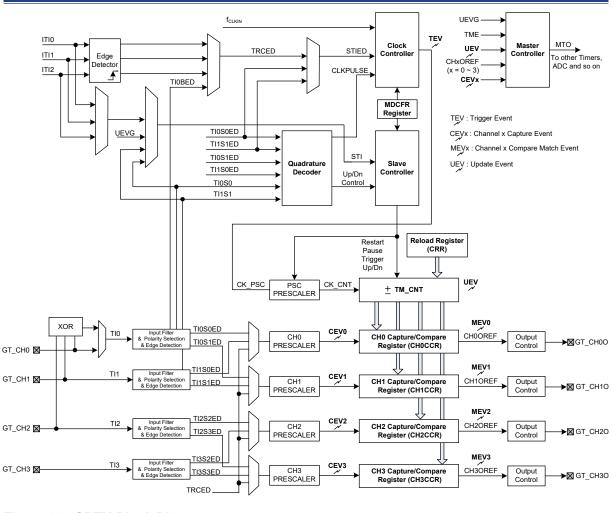
	31	30	29	28	27	26	25	24
				Reserved				ADISRO
Type/Reset								RO 0
	23	22	21	20	19	18	17	16
				Reserved			ADISRU	ADISRL
Type/Reset							RO 0	RO 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved			ADISRC	ADISRG	ADISRS
Type/Reset						RO 0	RO 0	RO 0

Bits	Field	Descriptions
[24]	ADISRO	ADC Data Register Overwrite Interrupt Status
		 ADC data register overwrite interrupt does not occur or data register overwrite interrupt is disabled
		 ADC data register overwrite interrupt occurs and data register overwrite interrupt is enabled
[17]	ADISRU	ADC Watchdog Upper Threshold Interrupt Status
		 ADC watchdog upper threshold interrupt does not occur or watchdog upper threshold interrupt is disabled
		 ADC watchdog upper threshold interrupt occurs and watchdog upper threshold interrupt is enabled
[16]	ADISRL	ADC Watchdog Lower Threshold Interrupt Status
		0: ADC watchdog lower threshold interrupt does not occur or watchdog lower threshold interrupt is disabled
		 ADC watchdog lower threshold interrupt occurs and watchdog lower threshold interrupt is enabled
[2]	ADISRC	ADC Cycle EOC Interrupt Status
		 ADC cycle end of conversion interrupt does not occur or cycle end of conversion interrupt is disabled
		 ADC cycle end of conversion interrupt occurs and cycle end of conversion interrupt is enabled
[1]	ADISRG	ADC Subgroup EOC Interrupt Status
		 ADC subgroup end of conversion interrupt does not occur or subgroup end of conversion interrupt is disabled
		 ADC subgroup end of conversion interrupt occurs and subgroup end of conversion interrupt is enabled
[0]	ADISRS	ADC Single EOC Interrupt Status
		0: ADC single end of conversion interrupt does not occur or single end of conversion interrupt is disabled
		 ADC single end of conversion interrupt occurs and single end of conversion interrupt is enabled

ADC Interrupt Clear Register – ADCICLR

This register provides the clear bits used to clear the interrupt raw and interrupt status of the ADC. These bits are
set to 1 by software to clear the interrupt status and automatically cleared to 0 by hardware after being set to 1.Offset:0x08C

Reset value:	0x0000_000	0						
	31	30	29	28	27	26	25	24
				Reserved				ADICLRO
Type/Reset								WO 0
	23	22	21	20	19	18	17	16
				Reserved			ADICLRU	ADICLRL
Type/Reset							WO 0	WO 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved			ADICLRC	ADICLRG	ADICLRS
Type/Reset						WO 0	WO 0	WO 0


Bits	Field	Descriptions
[24]	ADICLRO	ADC Data Register Overwrite Interrupt Status Clear Bit 0: No effect 1: Clear ADISRO and ADIRAWO bits
[17]	ADICLRU	ADC Watchdog Upper Threshold Interrupt Status Clear Bit 0: No effect 1: Clear ADISRU and ADIRAWU bits
[16]	ADICLRL	ADC Watchdog Lower Threshold Interrupt Status Clear Bit 0: No effect 1: Clear ADISRL and ADIRAWL bits
[2]	ADICLRC	ADC Cycle EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADISRC and ADIRAWC bits
[1]	ADICLRG	ADC Subgroup EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADISRG and ADIRAWG bits
[0]	ADICLRS	ADC Single EOC Interrupt Status Clear Bit 0: No effect 1: Clear ADISRS and ADIRAWS bits

13 General-Purpose Timer (GPTM)

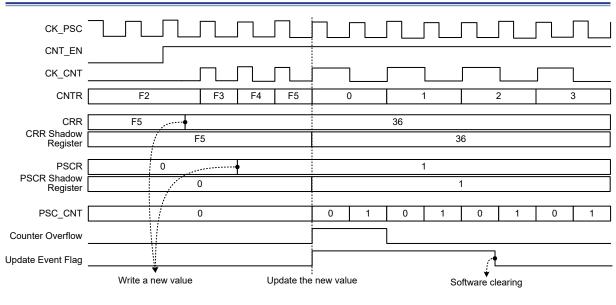
Introduction

The General-Purpose Timer consists of one 16-bit up/down-counter, four 16-bit Capture/ Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. It can be used for a variety of purposes including general timer, input signal pulse width measurement or output waveform generation such as single pulse generation or PWM output. The GPTM supports an encoder interface using a quadrature decoder with two inputs.

Features

- 16-bit up/down auto-reload counter
- 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency
- Up to 4 independent channels for:
 - Input Capture function
 - Compare Match Output
 - Generation of PWM waveform Edge and Center-aligned Mode
 - Single Pulse Mode Output
- Encoder interface controller with two inputs using quadrature decoder
- Synchronization circuit to control the timer with external signals and to interconnect several timers together
- Interrupt generation with the following events:
 - Update event
 - Trigger event
 - Input capture event
 - Output compare match event
- GPTM Master/Slave mode controller

Functional Descriptions


Counter Mode

Up-Counting

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the CRR register, in a count-up direction. Once the counter reaches the counter-reload value; then restarts from 0 and generates a counter overflow event. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 0 for the up-counting mode.

When the update event is generated by setting the UEVG bit in the EVGR register to 1, the counter value will also be initialized to 0.

Figure 31. Up-counting Example

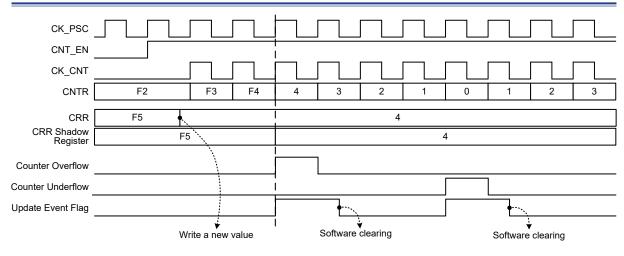
Down-Counting

In this mode the counter counts continuously from the counter-reload value, which is defined in the CRR register, to 0 in a count-down direction. Once the counter reaches 0; then restarts from the counter-reload value and generates a counter underflow event. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 1 for the down-counting mode.

When the update event is set by the UEVG bit in the EVGR register, the counter value will also be initialized to the counter-reload value.

CK_PSC					
CNT_EN					
CK_CNT					
CNTR	3 2 1 0	36	35	34	33
CRR	F5•		36		
CRR Shadow Register	F5		3	36	
PSCR	0		1		
PSCR Shadow Register	0			1	
PSC_CNT	0	0 1	0 1	0 1	0 1
Counter Underflow			1		
Update Event Flag		<u> </u>			
	Write a new value Update a	new value	Softw	vare clearing	

Figure 32. Down-counting Example



Center-Aligned Counting

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer module generates an overflow event when the counter counts to the counter-reload value in the up-counting mode and generates an underflow event when the counter counts to 0 in the down-counting mode. The counting direction bit DIR in the CNTCFR register is read-only and indicates the counting direction when in the center-aligned mode. The counting direction is updated by hardware automatically.

Setting the UEVG bit in the EVGR register will initialize the counter value to 0 irrespective of whether the counter is counting up or down in the center-aligned counting mode.

The update event interrupt flag bit in the INTSR register will be set to 1, when an overflow or underflow event occurs.

Clock Controller

The following describes the Timer Module clock controller which determines the clock source of the internal prescaler counter.

Internal APB clock f_{CLKIN} :

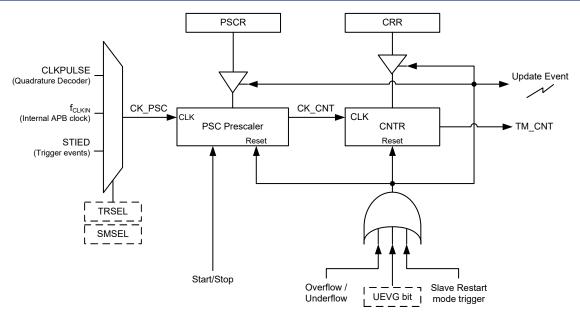
The default internal clock source is the APB clock f_{CLKIN} used to drive the counter prescaler when the slave mode is disabled. When the slave mode selection bits SMSEL in the MDCFR register are set to 0x4, 0x5 or 0x6, the internal APB clock f_{CLKIN} is the counter prescaler driving clock source. If the slave mode controller is enabled by setting SMSEL field in the MDCFR register to an available value including 0x1, 0x2, 0x3 and 0x7, the prescaler is clocked by other clock sources selected by the TRSEL field in the TRCFR register and described as follows.

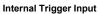
Quadrature Decoder:

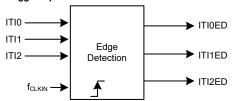
To select Quadrature Decoder mode the SMSEL field should be set to 0x1, 0x2 or 0x3 in the MDCFR register. The Quadrature Decoder function uses two input states of the GT_CH0 and GT_CH1 pins to generate the clock pulse to drive the counter prescaler. The counting direction bit DIR is modified by hardware automatically at each transition on the input source signal. The input source signal can be derived from the GT_CH0 pin only, the GT_CH1 pin only or both GT_CH0 and GT_CH1 pins.

STIED

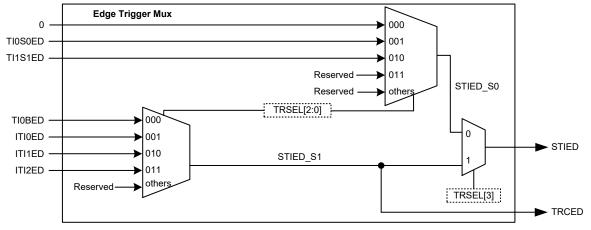
The counter prescaler can count during each rising edge of the STI signal. This mode can be selected by setting the SMSEL field to 0x7 in the MDCFR register. Here the counter will act as an event counter. The input event, known as STI here, can be selected by setting the TRSEL field to an available value except the value of 0x0. When the STI signal is selected as the clock source, the internal edge detection circuitry will generate a clock pulse during each STI signal rising edge to drive the counter prescaler. It is important to note that if the TRSEL field is set to 0x0 to select the software UEVG bit as the trigger source, then when the SMSEL field is set to 0x7, the counter will be updated instead of counting.



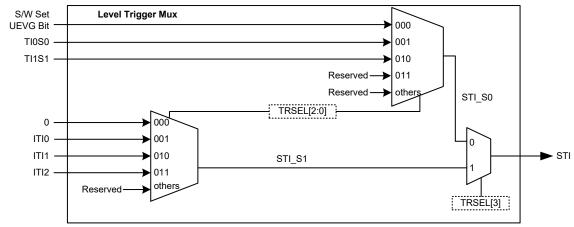

Figure 34. GPTM Clock Source Selection



Trigger Controller


The trigger controller is used to select the trigger source and setup the trigger level or trigger edge condition. For the internal trigger input, it can be selected by the Trigger Selection bits TRSEL in the TRCFR register. For all the trigger sources except the UEVG bit software trigger, the internal edge detection circuitry will generate a clock pulse at each trigger signal rising edge to stimulate some GPTM functions which are triggered by a trigger signal rising edge.

Trigger Controller Block = Edge Trigger Mux + Level Trigger Mux



Edge Trigger Source = Internal (ITIx) + Channel input (TIn)

Level Trigger Source = Internal (ITIx) + Channel input (TIn) + Software UEVG bit

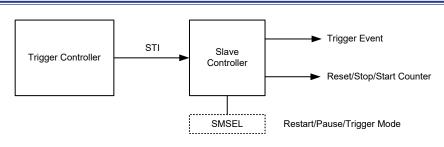
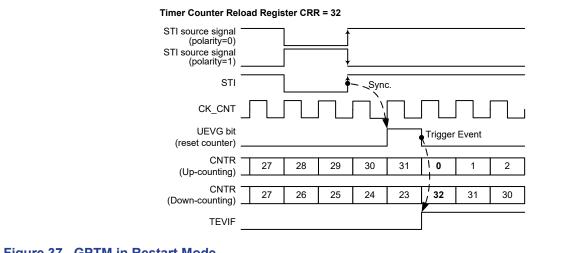
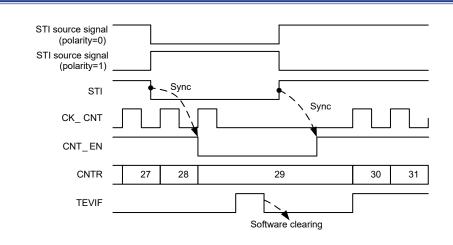


Figure 35. Trigger Control Block

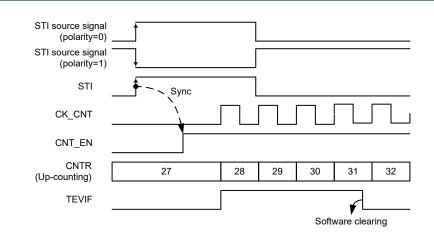
Slave Controller


The GPTM can be synchronized with an external trigger in several modes including the Restart mode, the Pause mode and the Trigger mode which can be selected by the SMSEL field in the MDCFR register. The trigger input of these modes comes from the STI signal which is selected by the TRSEL field in the TRCFR register. The operation modes in the Slave Controller are described in the accompanying sections.

Restart Mode


The counter and its prescaler can be reinitialized in response to a rising edge of the STI signal. When an STI rising edge occurs, the update event software generation bit named UEVG will automatically be asserted by hardware and the trigger event flag will also be set. Then the counter and prescaler will be reinitialized. Although the UEVG bit is set to 1 by hardware, the update event does not really occur. It depends upon whether the update event disable control bit UEVDIS is set to 1 or not. If the UEVDIS is set to 1 to disable the update event to occur, there will no update event be generated, however the counter and prescaler are still reinitialized when the STI rising edge occurs. If the UEVDIS bit in the CNTCFR register is cleared to enable the update event to occur, an update event will be generated together with the STI rising edge, then all the preloaded registers will be updated.

Pause Mode


In the Pause Mode, the selected STI input signal level is used to control the counter start/stop operation. The counter starts to count when the selected STI signal is at a high level and stops counting when the STI signal is changed to a low level, here the counter will maintain its present value and will not be reset. Since the Pause function depends upon the STI level to control the counter stop/start operation, the selected STI trigger signal can not be derived from the TI0BED signal.

Trigger Mode

After the counter is disabled to count, the counter can resume counting when an STI rising edge signal occurs. When an STI rising edge occurs, the counter will start to count from the current value in the counter. Note that if the STI signal is selected to be derived from the UEVG bit software trigger, the counter will not resume counting. When software triggering using the UEVG bit is selected as the STI source signal, there will be no clock pulse generated which can be used to make the counter resume counting. Note that the STI signal is only used to enable the counter to resume counting and has no effect on controlling the counter to stop counting.

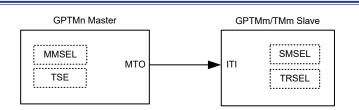
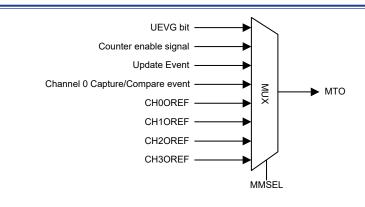


Figure 39. GPTM in Trigger Mode


Master Controller

The GPTMs and TMs can be linked together internally for timer synchronization or chaining. When one GPTM is configured to be in the Master Mode, the GPTM Master Controller will generate a Master Trigger Output (MTO) signal which includes a reset, a start, a stop signal or a clock source which is selected by the MMSEL field in the MDCFR register to trigger or drive another GPTM or TM, if exists, which is configured in the Slave Mode.

Figure 40. Master GPTMn and Slave GPTMm/TMm Connection

The Master Mode Selection field, MMSEL, in the MDCFR register is used to select the MTO source for synchronizing another slave GPTM or TM if exists.

Figure 41. MTO Selection

For example, setting the MMSEL field to 0x5 is to select the CH1OREF signal as the MTO signal to synchronize another slave GPTM or TM. For a more detailed description, refer to the related MMSEL field definitions in the MDCFR register.

Channel Controller

The GPTM has four independent channels which can be used as capture inputs or compare match outputs. Each capture input or compare match output channel is composed of a preload register and a shadow register. Data access of the APB bus is always implemented by reading/writing the preload register.

When used in the input capture mode, the counter value is captured into the CHxCCR shadow register first and then transferred into the CHxCCR preload register when the capture event occurs.

When used in the compare match output mode, the contents of the CHxCCR preload register is copied into the associated shadow register, the counter value is then compared with the register value.

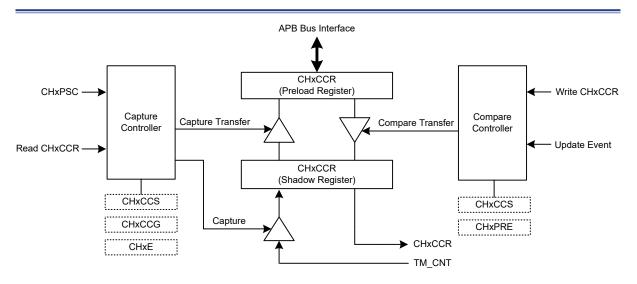
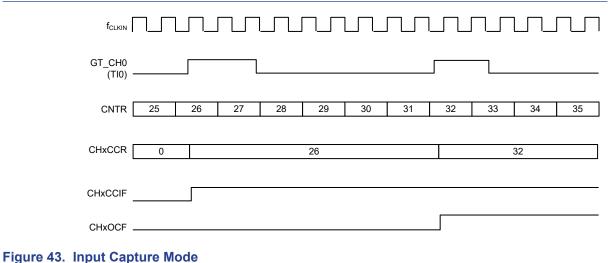
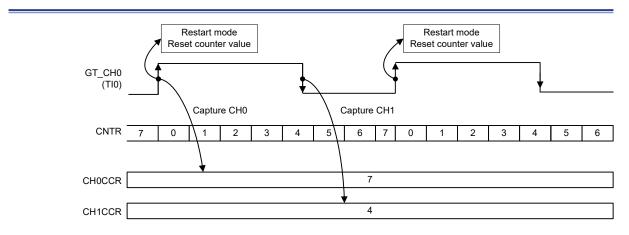



Figure 42. Capture/Compare Block Diagram

Capture Counter Value Transferred to CHxCCR

When the channel is used as a capture input, the counter value is captured into the Channel Capture/Compare Register (CHxCCR) when an effective input signal transition occurs. Once the capture event occurs, the CHxCCIF flag in the INTSR register is set accordingly. If the CHxCCIF bit is already set, i.e., the flag has not yet been cleared by software, and another capture event on this channel occurs, the corresponding channel Over-Capture flag, named CHxOCF, will be set.

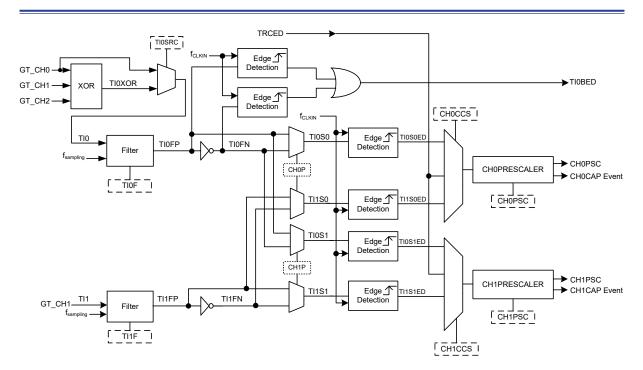


Pulse Width Measurement

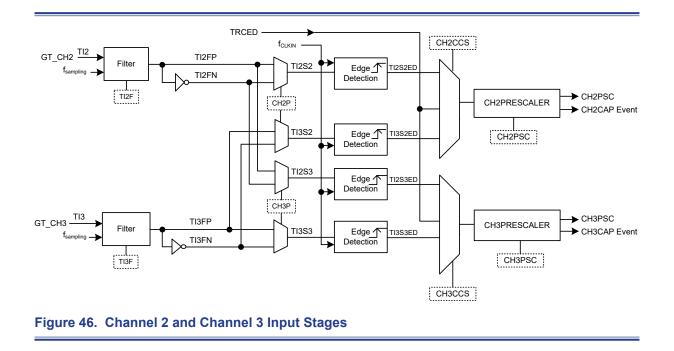
The input capture mode can be also used for pulse width measurement from signals on the GT CHx pins, TIx. The following example shows how to configure the GPTM operated in the input capture mode to measure the high pulse width and the input period on the GT CH0 pin using channel 0 and channel 1. The basic steps are shown as follows.

- Configure the capture channel 0 (CH0CCS = 0x1) to select the TI0 signal as the capture input.
- Configure the CH0P bit to 0 to choose the rising edge of the TI0 input as the active polarity.
- Configure the capture channel 1 (CH1CCS = 0x2) to select the TI0 signal as the capture input.
- Configure the CH1P bit to 1 to choose the falling edge of the TI0 input as the active polarity.
- Configure the TRSEL bits to 0x1 to select TI0S0 as the trigger input.
- Configure the Slave controller to operate in the Restart mode by setting the SMSEL field in the MDCFR register to 0x4.
- Enable the input capture mode by setting the CH0E and CH1E bits in the CHCTR register to 1.

As the following diagram shows, the high pulse width on the GT CH0 pin will be captured into the CH1CCR register while the input period will be captured into the CH0CCR register after input capture operation.



www.holtek.co



Input Stage

The input stage consists of a digital filter, a channel polarity selection, edge detection and a channel prescaler. The channel 0 input signal (TI0) can be chosen to come from the GT_CH0 signal or the Excusive-OR function of the GT_CH0, GT_CH1 and GT_CH2 signals. The channel input signal (TIx) is sampled by a digital filter to generate a filtered input signal TIxFP. Then the channel polarity and the edge detection block can generate a TIxS0ED or TIxS1ED signal for the input capture function. The effective input event number can be set by the channel capture input source prescaler setting field, CHxPSC.

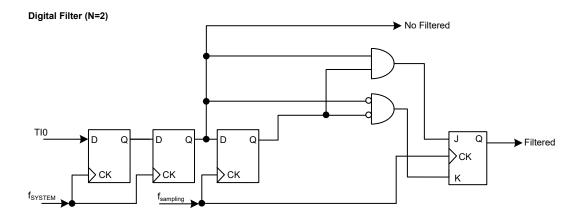
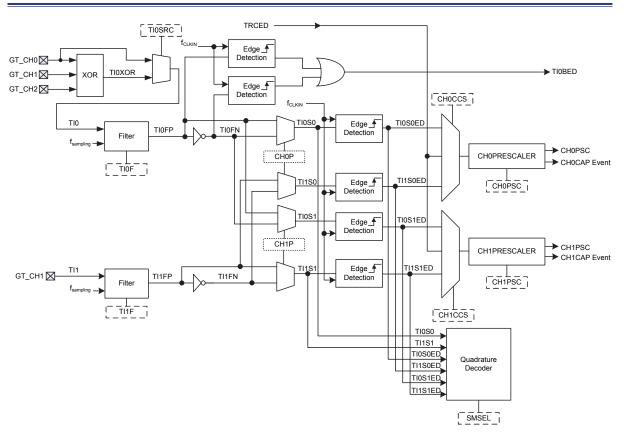


Figure 45. Channel 0 and Channel 1 Input Stages

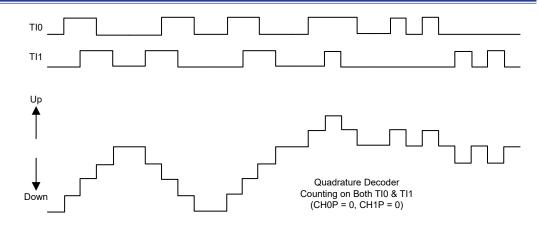
Digital Filter

The digital filters are embedded in the input stage for the $GT_CH0 \sim GT_CH3$ pins respectively. The digital filter in the GPTM is an N-event counter where N refers to how many valid transitions are necessary to output a filtered signal. The N value can be 0, 2, 4, 5, 6 or 8 according to the user selection for each filter by setting the TIxF field in the CHxICFR register.



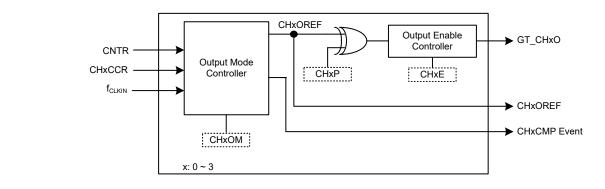
Quadrature Decoder

The Quadrature Decoder function uses two quadrantal inputs TI0 and TI1 derived from the GT_CH0 and GT_CH1 pins respectively to interact to generate the counter value. The DIR bit is modified by hardware automatically during each input source transition. The input source can be either TI0 only, TI1 only or both TI0 and TI1, the selection made by setting the SMSEL field to 0x1, 0x2 or 0x3. The mechanism for changing the counter direction is shown in the following table. The Quadrature decoder can be regarded as an external clock with a directional selection. This means that the counter counts continuously in the interval between 0 and the counter-reload value. Therefore, users must configure the CRR register before the counter starts to count.



Counting Mode	Level	TIO	S0	TI1S1		
Counting Mode	Lever	Rising	Falling	Rising	Falling	
Counting on TI0 only	TI1S1 = High	Down	Up	—	_	
(SMSEL = 0x1)	TI1S1 = Low	Up	Down	—	_	
Counting on TI1 only (SMSEL = 0x2)	TI0S0 = High			Up	Down	
	TI0S0 = Low			Down	Up	
	TI1S1 = High	Down	Up	Х	Х	
Counting on TI0 and TI1 (SMSEL = 0x3)	TI1S1 = Low	Up	Down	Х	Х	
	TI0S0 = High	Х	Х	Up	Down	
	TI0S0 = Low	Х	Х	Down	Up	

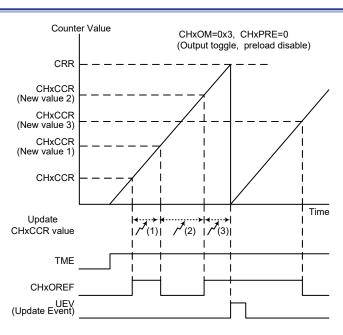
Table 26. Counting Direction and Encoding Signals


 $\textbf{Note: ``--`' } \rightarrow \text{means ``no counting''; ``X'' } \rightarrow \text{impossible}$

Output Stage

The GPTM has four channels for compare match, single pulse or PWM output function. The channel output GT_CHxO is controlled by the CHxOM, CHxP and CHxE bits in the corresponding CHxOCFR, CHPOLR and CHCTR registers.

Figure 50. Output Stage Block Diagram



Channel Output Reference Signal

When the GPTM is used in the compare match output mode, the Channel x Output Reference signal, CHxOREF, is defined by the CHxOM field setup. The CHxOREF signal has several types of output function which defines what happens to the output when the counter value matches the contents of the CHxCCR register. In addition to the low, high and toggle CHxOREF output types, there are also PWM mode 1 and PWM mode 2 outputs. In these modes, the CHxOREF signal level is changed according to the count direction and the relationship between the counter value and the CHxCCR content. There are also two modes which will force the output into an inactive or active state irrespective of the CHxCCR content or counter values. With regard to a more detailed description refer to the relative bit definition. The accompanying Table 33 shows a summary of the output type setup.

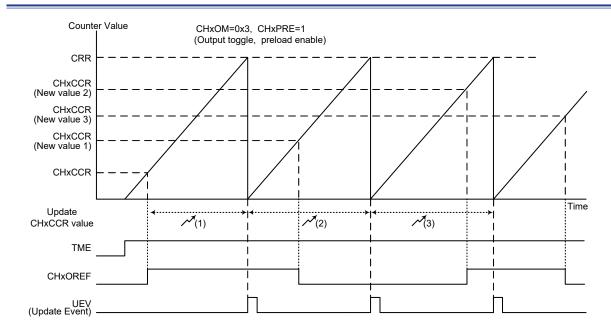
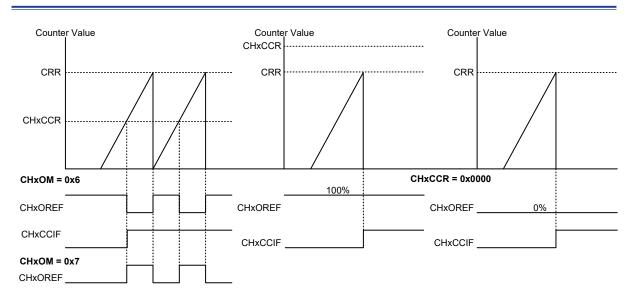
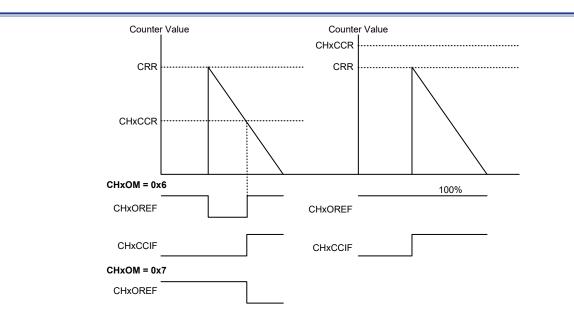

CHxOM Value	Compare Match Level
0x0	No change
0x1	Clear Output to 0
0x2	Set Output to 1
0x3	Toggle Output
0x4	Force Inactive Level
0x5	Force Active Level
0x6	PWM Mode 1
0x7	PWM Mode 2

Table 27. Compare Match Output Setup





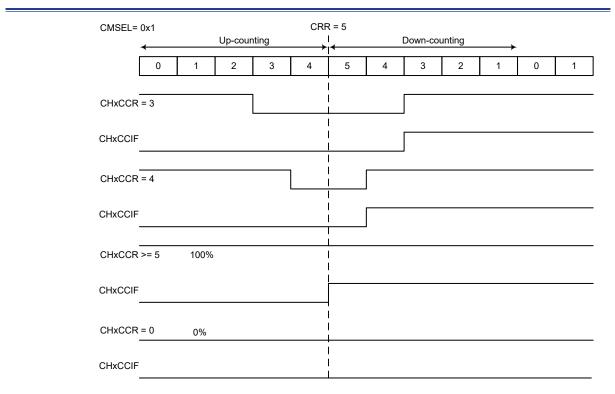


Figure 54. PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode

Figure 55. PWM Mode Channel Output Reference Signal and Counter in Centre-aligned Mode

Update Management

The Update event is used to update the CRR, the PSCR, the CHxACR and the CHxCCR values from the actual registers to the corresponding shadow registers. An update event occurs when the counter overflows or underflows, the software update control bit is triggered or an update event from the slave controller is generated.

The UEVDIS bit in the CNTCFR register can determine whether the update event occurs or not. When the update event occurs, the corresponding update event interrupt will be generated depending upon whether the update event interrupt generation function is enabled or not by configuring the UGDIS bit in the CNTCFR register. For more detailed description, refer to the UEVDIS and UGDIS bit definition in the CNTCFR register

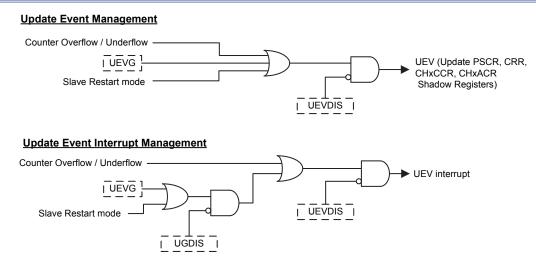
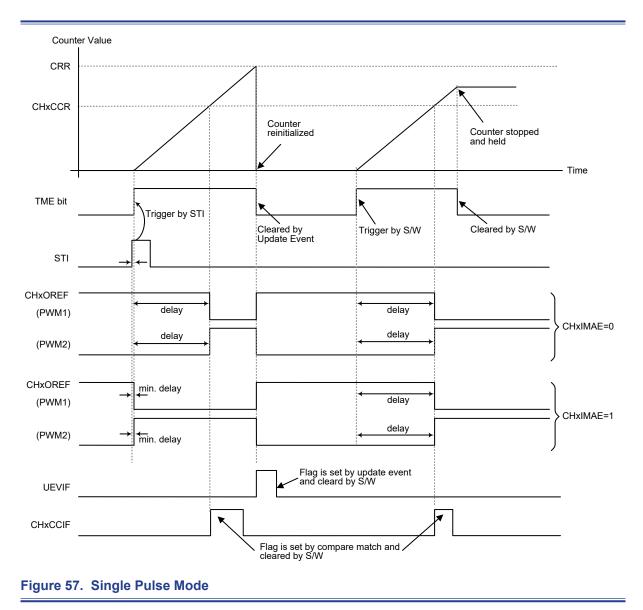
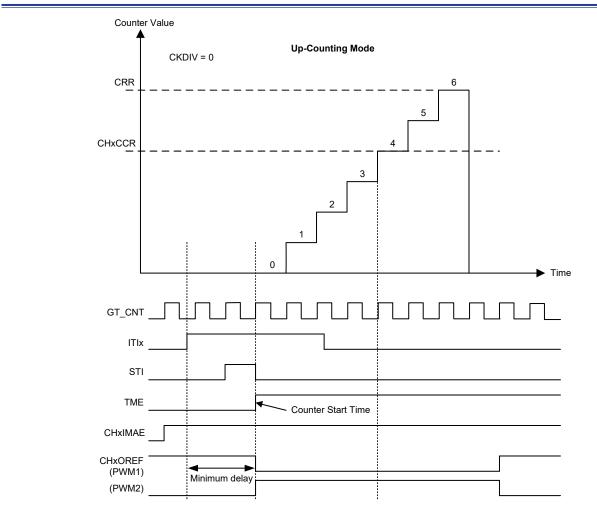



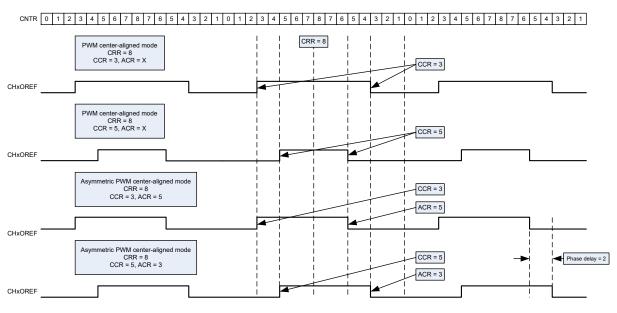
Figure 56. Update Event Setting Diagram

Single Pulse Mode

Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit TME in the CTR register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the STI signal rising edge or by setting the TME bit to 1 using software. Setting the TME bit to 1 or a trigger from the STI signal rising edge can generate a pulse and then keep the TME bit at a high state until the update event occurs or the TME bit is written to 0 by software. If the TME bit is cleared to 0 using software, the counter will be stopped and its value held. If the TME bit is automatically cleared to 0 by a hardware update event, the counter will be reinitialized.

In the Single Pulse mode, the STI active edge which sets the TME bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the CHxCCR value. In order to reduce the delay to a minimum value, the user can set the CHxIMAE bit in each CHxOCFR register. After an STI rising edge trigger occurs in the single pulse mode, the CHxOREF signal will immediately be forced to the state which the CHxOREF signal will change to as the compare match event occurs without taking the comparison result into account. The CHxIMAE bit is available only when the output channel is configured to operate in the PWM mode 1 or PWM mode 2 and the trigger source is derived from the STI signal.

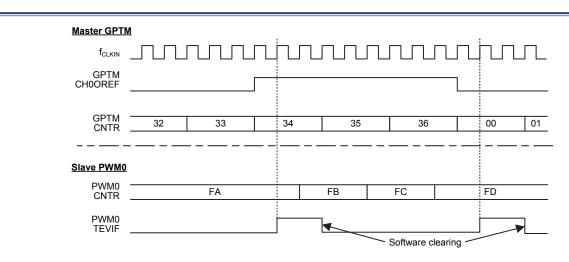



Figure 58. Immediate Active Mode Minimum Delay

Asymmetric PWM Mode

Asymmetric PWM mode allows two center-aligned PWM signals to be generated with a programmable phase shift. While the PWM frequency is determined by the value of the CRR register, the duty cycle and the phase-shift are determined by the CHxCCR and CHxACR register. When the counter is counting up, the PWM uses the value in CHxCCR as up-count compare value. When the counter is into counting down stage, the PWM uses the value in CHxACR as down-count compare value. The Figure 59 is shown as an example for asymmetric PWM mode in center-aligned counting mode.

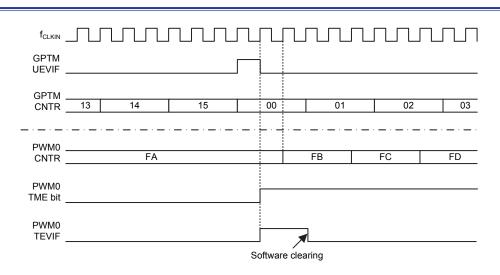
Note: Asymmetric PWM mode can only be operated in center-aligned counting mode.


Timer Interconnection

The timers can be internally connected together for timer chaining or synchronization. This can be implemented by configuring one timer to operate in the Master mode while configuring another timer to be in the Slave mode. The following figures present several examples of trigger selection for the master and slave modes.

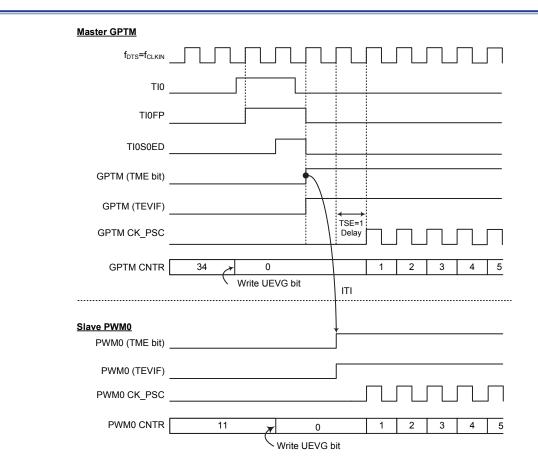
Using One Timer to Enable/Disable another Timer Start or Stop Counting

- Configure GPTM as the master mode to send its channel 0 Output Reference signal CH0OREF as a trigger output (MMSEL = 0x4).
- Configure GPTM CH0OREF waveform.
- Configure PWM0 to receive its input trigger source from the GPTM trigger output (TRSEL = 0xA).
- Configure PWM0 to operate in the pause mode (SMSEL = 0x5).
- Enable PWM0 by writing '1' to the TME bit.
- Enable GPTM by writing '1' to the TME bit.



Using one Timer to Trigger another Timer Start Counting

- Configure GPTM to operate in the master mode to send its Update Event UEV as the trigger output (MMSEL = 0x2).
- Configure the GPTM period by setting the CRR register.
- Configure PWM0 to get the input trigger source from the GPTM trigger output (TRSEL = 0xA).
- Configure PWM0 to be in the slave trigger mode (SMSEL = 0x6).
- Start GPTM by writing '1' to the TME bit.



Starting Two Timers Synchronously in Response to an External Trigger

- Configure GPTM to operate in the master mode to send its enable signal as a trigger output (MMSEL = 0x1).
- Configure GPTM slave mode to receive its input trigger source from GT_CH0 pin (TRSEL = 0x1).
- Configure GPTM to be in the slave trigger mode (SMSEL = 0x6).
- Enable the GPTM master timer synchronization function by setting the TSE bit in the MDCFR register to 1 to synchronize the slave timer.
- Configure PWM0 to receive its input trigger source from the GPTM trigger output (TRSEL = 0xA).
- Configure PWM0 to be in the slave trigger mode (SMSEL = 0x6).

Trigger Peripherals Start

To interconnect to the peripherals, such as ADC, Timer and so on, the GPTM could output the MTO signal or the channel compare match output signal CHxOREF (x = 0~3) to be used as peripherals input trigger signal and depending on the MCU specification.

PDMA Request

The GPTM supports the interface for PDMA data transfer. There are certain events which can generate the PDMA requests if the corresponding enable control bits are set to 1 to enable the PDMA access. These events are the GPTM update events, trigger events and channel capture/ compare events. When the PDMA request is generated from the GPTM channel, it can be derived from the channel capture/compare event or the GPTM update event selected by the channel PDMA selection bit, CHCCDS, for all channels. For more detailed PDMA configuring information, refer to the corresponding section in the PDMA chapter.

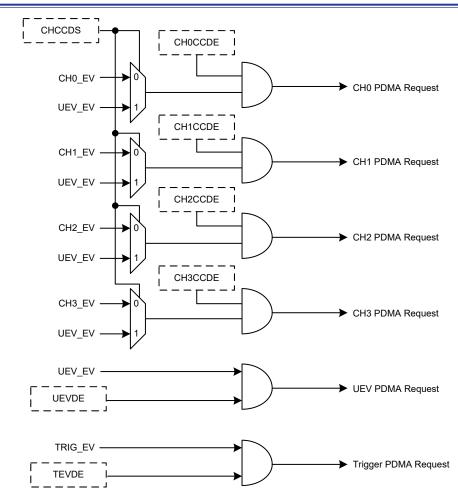


Figure 63. GPTM PDMA Mapping Diagram

Register Map

The following table shows the GPTM registers and reset values.

Table 28. G	BPTM Register Map
-------------	--------------------------

Register	Offset	Description	Reset Value
CNTCFR	0x000	Timer Counter Configuration Register	0x0000_0000
MDCFR	0x004	Timer Mode Configuration Register	0x0000_0000
TRCFR	0x008	Timer Trigger Configuration Register	0x0000_0000
CTR	0x010	Timer Control Register	0x0000_0000
CH0ICFR	0x020	Channel 0 Input Configuration Register	0x0000_0000
CH1ICFR	0x024	Channel 1 Input Configuration Register	0x0000_0000
CH2ICFR	0x028	Channel 2 Input Configuration Register	0x0000_0000
CH3ICFR	0x02C	Channel 3 Input Configuration Register	0x0000_0000
CH0OCFR	0x040	Channel 0 Output Configuration Register	0x0000_0000
CH10CFR	0x044	Channel 1 Output Configuration Register	0x0000_0000
CH2OCFR	0x048	Channel 2 Output Configuration Register	0x0000_0000
CH3OCFR	0x04C	Channel 3 Output Configuration Register	0x0000_0000
CHCTR	0x050	Channel Control Register	0x0000_0000
CHPOLR	0x054	Channel Polarity Configuration Register	0x0000_0000
DICTR	0x074	Timer PDMA/Interrupt Control Register	0x0000_0000
EVGR	0x078	Timer Event Generator Register	0x0000_0000
INTSR	0x07C	Timer Interrupt Status Register	0x0000_0000
CNTR	0x080	Timer Counter Register	0x0000_0000
PSCR	0x084	Timer Prescaler Register	0x0000_0000
CRR	0x088	Timer Counter-Reload Register	0x0000_FFFF
CH0CCR	0x090	Channel 0 Capture/Compare Register	0x0000_0000
CH1CCR	0x094	Channel 1 Capture/Compare Register	0x0000_0000
CH2CCR	0x098	Channel 2 Capture/Compare Register	0x0000_0000
CH3CCR	0x09C	Channel 3 Capture/Compare Register	0x0000_0000
CH0ACR	0x0A0	Channel 0 Asymmetric Compare Register	0x0000_0000
CH1ACR	0x0A4	Channel 1 Asymmetric Compare Register	0x0000_0000
CH2ACR	0x0A8	Channel 2 Asymmetric Compare Register	0x0000_0000
CH3ACR	0x0AC	Channel 3 Asymmetric Compare Register	0x0000_0000

Register Descriptions

Timer Counter Configuration Register – CNTCFR

This register specifies the GPTM counter configuration.

Offset: 0x000 Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
				Reserved				DIR
Type/Reset								RW 0
	23	22	21	20	19	18	17	16
				CMSEL				
Type/Reset							RW	0 RW 0
	15	14	13	12	11	10	9	8
				Reserved				CKDIV
Type/Reset							RW	0 RW 0
	7	6	5	4	3	2	1	0
				Reserved			UGDIS	6 UEVDIS
Type/Reset							RW	0 RW 0

Bits	Field	Descriptions
[24]	DIR	Counting Direction 0: Count-up 1: Count-down Note: This bit is read only when the Timer is configured to be in the Center-aligned mode or when used as a Quadrature decoder.
[17:16]	CMSEL	 Counter Mode Selection 00: Edge-aligned mode. Normal up-counting and down-counting available for this mode. Counting direction is defined by the DIR bit. 01: Center-aligned mode 1. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-down period. 10: Center-aligned mode 2. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up period. 11: Center-aligned mode 3. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up period. 11: Center-aligned mode 3. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up and count-down periods.
[9:8]	CKDIV	Clock Division These two bits define the frequency ratio between the timer clock (f_{CLKIN}) and the dead-time clock (f_{DTS}). The dead-time clock is also used for digital filter sampling clock. 00: $f_{DTS} = f_{CLKIN}$ 01: $f_{DTS} = f_{CLKIN} / 2$ 10: $f_{DTS} = f_{CLKIN} / 4$ 11: Reserved

Bits	Field	Descriptions
[1]	UGDIS	Update event interrupt generation disable control 0: Any of the following events will generate an update PDMA request or interrupt - Counter overflow/underflow - Setting the UEVG bit - Update generation through the slave mode 1: Only counter overflow/underflow generates an update PDMA request or
[0]	UEVDIS	interrupt Update Event Disable control 0: Enable the update event request by one of following events: - Counter overflow/underflow - Setting the UEVG bit - Update generation through the slave mode 1: Disable the update event (However the counter and the prescaler are reinitialized if the UEVG bit is set or if a hardware restart is received from the slave mode)

Timer Mode Configuration Register – MDCFR

This register specifies the GPTM master and slave mode selection and single pulse mode.

Bits	Field	Descrip	tions							
Type/Neset										0
Type/Reset				Reserved					RW	= 0
	7	6	5	4	3	2		1		- 1
Type/Reset	_		-		•	RW	0 RW		RW	0
			Reserved					ISEL		
	15	14	13	12	11	10		9	8	
Type/Reset						RW	0 RW	0	RW	0
			Reserved				M	I SEL		
	23	22	21	20	19	18		17	16	
Type/Reset									RW	0
				Reserved					SPMS	SET
	31	30	29	28	27	26		25	24	
Reset value:	0x0000_0000)								
		、 、								
Offset:	0x004					<u>9.0 pa.00 i</u>				

SPMSET

0: Counter counts normally irrespective of whether the update event occurred or not

1: Counter stops counting at the next update event and then the TME bit is cleared by hardware

[24]

Bits	Field	Descriptions						
[18:16] MMSEL	Master mode	Master Mode Selection Master mode selection is used to select the MTO signal source which is used to synchronize the other slave timer.						
		MMSEL [2:0]	Mode	Descriptions				
		000	Reset Mode	 The MTO signal in the Reset mode is an output derived from one of the following cases: 1. Software setting UEVG bit 2. The STI trigger input signal which will be output on the MTO signal line when the Timer is used in the slave Restart mode 				
		001	Enable Mode	The Counter Enable signal is used as the trigge output.				
		010	Update Mode	 The update event is used as the trigger output according to one of the following cases when the UEVDIS bit is cleared to 0: 1. Counter overflow / underflow 2. Software setting UEVG 3. Slave trigger input when used in slave restarm mode 				
		011	Capture/Compare Mode	When a Channel 0 capture or compare match event occurs, it will generate a positive pulse used as the master trigger output.				
		100	Compare Mode 0	The Channel 0 Output reference signal named CH0OREF is used as the trigger output.				
		101	Compare Mode 1	The Channel 1 Output reference signal named CH1OREF is used as the trigger output.				
		110	Compare Mode 2	The Channel 2 Output reference signal named CH2OREF is used as the trigger output.				
		111	Compare Mode 3	The Channel 3 Output reference signal named CH3OREF is used as the trigger output.				

Bits	Field	Descriptions					
[10:8]	SMSEL	Slave Mode S	election				
		SMSEL [2:0]	Mode	Descriptions			
		000	Disable Mode	The prescaler is clocked directly by the internal clock.			
		001	Quadrature Decoder Mode 1	The counter uses the clock pulse generated from the interaction between the TI0 and TI1 signals to drive the counter prescaler. A transition of the TI0 edge is used in this mode depending upon the TI1 level.			
		010	Quadrature Decoder Mode 2	The counter uses the clock pulse generated from the interaction between the TI0 and TI1 signals to drive the counter prescaler. A transition of the TI1 edge is used in this mode depending upon the TI0 level.			
		011	Quadrature Decoder Mode 3	The counter uses the clock pulse generated from the interaction between the TI0 and TI1 signals to drive the counter prescaler. A transition of one channel edge is used in the quadrature decoder mode 3 depending upon the other channel level.			
		100	Restart Mode	The counter value restarts from 0 or the CRR shadow register value depending upon the counter mode on the rising edge of the STI signal. The registers will also be updated.			
		101	Pause Mode	The counter starts to count when the selected trigger input STI is high. The counter stops counting on the instant, not being reset, when the STI signal changes its state to a low level. Both the counter start and stop control are determined by the STI signal.			
		110	Trigger Mode	The counter starts to count from the original value in the counter on the rising edge of the selected trigger input STI. Only the counter start control is determined by the STI signal.			
		111	STIED	The rising edge of the selected trigger signal STI will clock the counter.			

[0]

TSE

Timer Synchronization Enable

0: No action

1: Master timer (current timer) will generate a delay to synchronize its slave timer through the MTO signal.

This register	specilies the tr	igger sourc	ce selection of GP	I IVI.				
Offset:	0x008							
Reset value:	0x0000_0000	1						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								,
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved				TRSEL	
Type/Reset					RW 0	RW	0 RW 0) RW 0
Bits	Field	Descript	ions					
Bits [3:0]	Field TRSEL	•	ions ource Selection					
		Trigger So		ct the tri	gger input (STI) for co	ounter synchro	nization.
		Trigger So These bits 0000: \$	ource Selection s are used to selec Software Trigger b	y setting	g the UEVO		ounter synchro	nization.
		Trigger So These bits 0000: \$	ource Selection s are used to selec	y setting	g the UEVO		ounter synchro	nization.
		Trigger So These bits 0000: \$ 0001: I	ource Selection s are used to selec Software Trigger b	y setting annel 0	g the UEV0 (TI0S0)		ounter synchro	nization.
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: F	ource Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved	y setting annel 0 annel 1	g the UEVO (TI0S0) (TI1S1)		ounter synchro	nization.
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: F	burce Selection are used to selection Software Trigger b Filtered input of ch Filtered input of ch	y setting annel 0 annel 1	g the UEVO (TI0S0) (TI1S1)		ounter synchro	nization.
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: F 1000: 0	ource Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved	oy setting nannel 0 nannel 1 netector	g the UEVO (TI0S0) (TI1S1) (TI0BED)	3 bit	ounter synchro	nization.
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: F 1000: 0 1001: I	ource Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved Channel 0 Edge D	y setting nannel 0 nannel 1 petector pdule Tri	g the UEVC (TI0S0) (TI1S1) (TI0BED) gger 0 (ITI0	G bit D)	ounter synchro	nization.
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: I 1000: 0 1001: I 1010: I	burce Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved Channel 0 Edge D Internal Timing Mo	y setting nannel 0 nannel 1 netector nodule Tri nodule Tri	g the UEVC (TI0S0) (TI1S1) (TI0BED) gger 0 (ITI0 gger 1 (ITI1	6 bit 0) 1)	ounter synchro	nization.
		Trigger Sc These bits 0000: \$ 0001: I 0010: I 0011: F 1000: 0 1001: I 1010: I 1011: I	burce Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved Channel 0 Edge D Internal Timing Mo	y setting nannel 0 nannel 1 netector nodule Tri nodule Tri	g the UEVC (TI0S0) (TI1S1) (TI0BED) gger 0 (ITI0 gger 1 (ITI1	6 bit 0) 1)	ounter synchro	nization.
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: F 1000: 0 1001: I 1010: I 1011: I Others	burce Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved Channel 0 Edge D Internal Timing Mo Internal Timing Mo Internal Timing Mo	y setting nannel 0 nannel 1 netector odule Tri odule Tri	g the UEVC (TI0S0) (TI1S1) (TI0BED) gger 0 (ITI0 gger 1 (ITI2 gger 2 (ITI2	5 bit)) 1) 2)		
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: F 1000: 0 1001: I 1010: I 1011: I Others Note: The	burce Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved Channel 0 Edge D Internal Timing Mo Internal Timing Mo Internal Timing Mo Internal Timing Mo	oy setting nannel 0 nannel 1 petector odule Tri odule Tri odule Tri	g the UEVC (TI0S0) (TI1S1) (TI0BED) gger 0 (ITI0 gger 1 (ITI2 gger 2 (ITI2)) 1) 2) ney are no		
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: I 1000: 0 1001: I 1010: I 1011: I Others Note: The is d	burce Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved Channel 0 Edge D Internal Timing Mo Internal Timing Mo Internal Timing Mo Internal Timing Mo Se bits must be up	y setting nannel 0 nannel 1 petector odule Tri odule Tri odule Tri odated c the SM	g the UEVC (TI0S0) (TI1S1) (TI0BED) gger 0 (ITI0 gger 1 (ITI1 gger 2 (ITI2 only when the set field to	0) 1) 2) ney are no 0x0.		
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: F 1000: 0 1001: I 1010: I 1011: I Others Note: The is d Table 29.	burce Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved Channel 0 Edge D Internal Timing Mo Internal Timing Mo Internal Timing Mo Internal Timing Mo Is Reserved se bits must be up isabled by setting	y setting nannel 0 nannel 1 detector odule Tri odule Tri odule Tri odated c the SM	g the UEVC (TI0S0) (TI1S1) (TI0BED) gger 0 (ITI0 gger 1 (ITI1 gger 2 (ITI2 only when the set field to	0) 1) 2) ney are no 0x0.		
		Trigger So These bits 0000: \$ 0001: I 0010: I 0011: F 1000: 0 1001: I 1010: I 1011: I Others Note: The is d Table 29.	burce Selection s are used to select Software Trigger b Filtered input of ch Filtered input of ch Reserved Channel 0 Edge D Internal Timing Mo Internal Timing Mo Internal Timing Mo : Reserved se bits must be up isabled by setting GPTM Internal 1	vy setting nannel 0 hannel 1 hetector bdule Tri bdule Tri bdule Tri bdule Tri bdule Tri bdule Tri bdule Tri bdule Tri	g the UEVC (TI0S0) (TI1S1) (TI0BED) gger 0 (ITI0 gger 1 (ITI1 gger 2 (ITI2 only when the set field to Connection)) 1) 2) ney are no 0x0. n	t in use, i.e. th	

Timer Trigger Configuration Register – TRCFR

Timer Control Register – CTR

This register specifies the timer enable bit (TME), CRR buffer enable bit (CRBE) and Channel PDMA selection bit (CHCCDS).

Offset:	0x010								
Reset value:	0x0000_0000)							
	31	30	29	28	27	26	25	24	
					Reserved				
Type/Reset									
	23	22	21	20	19	18	17	16	
				Reserved				CHCCDS	S
Type/Reset								RW (0
	15	14	13	12	11	10	9	8	
					Reserved				
Type/Reset									
	7	6	5	4	3	2	1	0	
				Reserved			CRBE	TME	
Type/Reset							RW 0	RW (0
Bits	Field	Descript	tions						
[16]	CHCCDS	Channel I	PDMA event	selection					
		0: Cha	annel PDMA r	equest deriv	ed from the c	hannel cap	ture/compare	e event.	
		1: Cha	annel PDMA r	equest deriv	ed from the L	Jpdate ever	nt.		
[1]	CRBE		Reload registe						
				•	e updated im				
				egister can r	ot be update	d until the u	pdate event	occurs	
[0]	TME	Timer Ena							
		0: GP							
			TM on – GPT		•	a atannad -	nd the ODT	1.00000	~~
		when the	TME bit is c	cleared to U.	the counter is	s stopped a	ana the GPH	vi consume	es
					except for th				

trigger mode. In these two modes the TME bit can automatically be set to 1 by

hardware which permits all the GPTM registers to function normally.

TioSRC Reserved Type/Reset RW 0 23 22 21 20 19 18 17 Reserved Type/Reset Type/Reset	24 16 0CCS 0 8
31 30 29 28 27 26 25 25 TIOSRC Reserved TioF Reserved Reserved Reserved TioF Reserved TioF Reserved TioF TioF Reserved TioF Reserved TioF TioF	16 0CCS 0
TioSRC Reserved Type/Reset 23 22 21 20 19 18 17 Z3 22 21 20 19 18 17 Type/Reset Reserved CH0PSC CH0 Type/Reset RW 0 RW 0 RW 0 RW Type/Reset 15 14 13 12 11 10 9 15 Type/Reset 7 6 5 4 3 2 1 Reserved TI0F TI0F TI0F TI0F TI0F TI0F	16 0CCS 0
Type/Reset RW 0 23 22 21 20 19 18 17 Reserved CH0PSC CH0 RW 0 RW	0CCS 0
23 22 21 20 19 18 17 Type/Reset Reserved CHOPSC CHOPSC CHOPSC RW 0 RW 0 RW 0 Type/Reset 15 14 13 12 11 10 9 Type/Reset Reserved Reserved TioF	0CCS 0
Type/Reset Reserved CHOPSC CHOPSC Type/Reset RW 0 RW 0 </td <td>0CCS 0</td>	0CCS 0
Type/Reset RW 0	0
15 14 13 12 11 10 9 Reserved Type/Reset 7 6 5 4 3 2 1 Reserved TioF	0
Type/Reset Reserved 7 6 5 4 3 2 1 Reserved TIOF TIOF TIOF TIOF TIOF	8
Type/Reset 7 6 5 4 3 2 1 Reserved TIOF	
7 6 5 4 3 2 1 Reserved TIOF	
Reserved TI0F	
	0
Type/Reset RW 0 RW 0 RW 0 RW	
	0
Bits Field Descriptions	
[31] TI0SRC Channel 0 Input Source TI0 Selection	
0: The GT_CH0 pin is connected to channel 0 input TI0	
1: The XOR operation output of the GT_CH0, GT_CH1, and GT_CH2 pi	ns are
connected to the channel 0 input TI0	
[19:18] CH0PSC Channel 0 Capture Input Source Prescaler Setting	
These bits define the effective events of the channel 0 capture input. Note the	
prescaler is reset once the Channel 0 Capture/Compare Enable bit, CH0E, Channel Control register named CHCTR is cleared to 0.	
00: No prescaler, channel 0 capture input signal is chosen for each active	event
01: Channel 0 Capture input signal is chosen for every 2 events	JVOIIL
10: Channel 0 Capture input signal is chosen for every 4 events	
11: Channel 0 Capture input signal is chosen for every 8 events	
[17:16] CH0CCS Channel 0 Capture/Compare Selection	
00: Channel 0 is configured as an output	
01: Channel 0 is configured as an input derived from the TI0 signal	
on channel on configured as an input derived from the TIO Signal	
10: Channel 0 is configured as an input derived from the TI1 signal	
10: Channel 0 is configured as an input derived from the TI1 signal 11: Channel 0 is configured as an input which comes from the TRCED	signal
10: Channel 0 is configured as an input derived from the TI1 signal	

Channel 0 Input Configuration Register – CH0ICFR

13 General-Purpose Timer (GPTM)

Bits	Field	Descriptions
[3:0]	TIOF	Channel 0 Input Source TI0 Filter Setting
		These bits define the frequency divided ratio used to sample the TI0 signal. The
		Digital filter in the GPTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal.
		0000: No filter, the sampling clock is f _{SYSTEM}
		0001: $f_{sampling} = f_{CLKIN}$, N = 2
		0010: $f_{\text{sampling}} = f_{\text{CLKIN}}$, N = 4
		0011: $f_{sampling} = f_{CLKIN}$, N = 8
		0100: $f_{sampling} = f_{DTS} / 2$, N = 6
		0101: $f_{sampling} = f_{DTS} / 2$, N = 8
		0110: $f_{sampling} = f_{DTS} / 4$, N = 6
		0111: $f_{sampling} = f_{DTS} / 4$, N = 8
		1000: $f_{sampling} = f_{DTS} / 8$, N = 6
		1001: $f_{sampling} = f_{DTS} / 8$, N = 8
		1010: $f_{sampling} = f_{DTS} / 16$, N = 5
		1011: $f_{sampling} = f_{DTS} / 16$, N = 6
		1100: $f_{sampling} = f_{DTS} / 16$, N = 8
		1101: $f_{sampling} = f_{DTS} / 32$, N = 5
		1110: $f_{sampling} = f_{DTS} / 32$, N = 6
		1111: $f_{sampling} = f_{DTS} / 32$, N = 8

Channel 1 Input Configuration Register – CH1ICFR

This register specifies the channel 1 input mode configuration.

Reset value: 0x0000_0000 24 30 29 28 27 26 25 31 Reserved Type/Reset 23 22 21 20 19 18 17 16 CH1CCS CH1PSC Reserved 0 RW 0 RW Type/Reset RW 0 RW 0 15 14 13 12 11 10 9 8 Reserved Type/Reset 3 2 7 6 5 4 1 0 TI1F Reserved RW 0 RW 0 RW 0 RW Type/Reset 0

Offset:

0x024

Bits	Field	Descriptions
[19:18]	CH1PSC	Channel 1 Capture Input Source Prescaler Setting
		These bits define the effective events of the channel 1 capture input. Note that the
		prescaler is reset once the Channel 1 Capture/Compare Enable bit, CH1E, in the
		Channel Control register named CHCTR is cleared to 0.
		00: No prescaler, channel 1 capture input signal is chosen for each active event 01: Channel 1 Capture input signal is chosen for every 2 events
		10: Channel 1 Capture input signal is chosen for every 4 events
		11: Channel 1 Capture input signal is chosen for every 8 events
[17:16]	CH1CCS	Channel 1 Capture/Compare Selection
		00: Channel 1 is configured as an output
		01: Channel 1 is configured as an input derived from the TI1 signal
		10: Channel 1 is configured as an input derived from the TI0 signal
		11: Channel 1 is configured as an input which comes from the TRCED signal derived from the Trigger Controller
		Note: The CH1CCS field can be accessed only when the CH1E bit is cleared to 0.
[3:0]	TI1F	Channel 1 Input Source TI1 Filter Setting
		These bits define the frequency divided ratio used to sample the TI1 signal. The
		Digital filter in the GPTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal.
		0000: No filter, the sampling clock is f _{SYSTEM}
		0001: $f_{sampling} = f_{CLKIN}$, N = 2
		0010: $f_{sampling} = f_{CLKIN}$, N = 4
		0011: $f_{sampling} = f_{CLKIN}$, N = 8
		0100: $f_{sampling} = f_{DTS} / 2$, N = 6
		0101: $f_{sampling} = f_{DTS} / 2$, N = 8
		0110: $f_{sampling} = f_{DTS} / 4$, N = 6
		0111: $f_{sampling} = f_{DTS} / 4$, N = 8
		1000: $f_{sampling} = f_{DTS} / 8$, N = 6
		1001: $f_{sampling} = f_{DTS} / 8$, N = 8
		1010: $f_{sampling} = f_{DTS} / 16$, N = 5
		1011: $f_{sampling} = f_{DTS} / 16$, N = 6
		1100: $f_{sampling} = f_{DTS} / 16$, N = 8
		1101: $f_{sampling} = f_{DTS} / 32$, N = 5
		1110: $f_{sampling} = f_{DTS} / 32$, N = 6
		1111: $f_{sampling} = f_{DTS} / 32, N = 8$

This register	specifies the	channel 2 in	put mode co	nfiguration					
Offset:	0x028								
Reset value:	: 0x0000_00	00							
	31	30	29	28	27	26	25	24	
					Reserved	-			
Type/Reset									
	23	22	21	20	19	18	17	16	
			Reserved			CH2PS	С	CH2CC	s
Type/Reset					RW (RW	0 RW	0 RW	0
	15	14	13	12	11	10	9	8	
					Reserved				
Type/Reset	7	6	5	4	3	2	1	0	
	· ·	0	Reserved			£	TI2F	0	
Type/Reset			rtooorrou		RW () RW		0 RW	0
51									
Bits	Field	Descript	ions						
[19:18]	CH2PSC	Channel 2	2 Capture Inp	ut Source	Prescaler Se	tting			
							capture input.		
							re Enable bit,	CH2E, in t	the
			Control regist				acon for cook	activa avan	
			annel 2 Capt				osen for each	active ever	п
			annel 2 Capt	-	-		-		
			annel 2 Capt	-	-		-		
	CH2CCS		-	-	-				
[17:16]	CHZCCS	Channel 2		mpare Sele	ection				
[17:16]	СП2003		annel 2 is co	mpare Sel nfigured as					
[17:16]	CH2CC3	00: Ch	annel 2 is co	nfigured as	s an output	rived from t	the TI2 signal		
[17:16]	CH2CCS	00: Ch 01: Ch	annel 2 is co annel 2 is co	nfigured as nfigured as	s an output s an input de		the TI2 signal the TI3 signal		
[17:16]		00: Ch 01: Ch 10: Ch 11: Ch	annel 2 is co annel 2 is co annel 2 is co	nfigured as nfigured as nfigured as onfigured	s an output s an input de s an input de as an input	rived from t			nal

Channel 2 Input Configuration Register – CH2ICFR

Note: The CH2CCS field can be accessed only when the CH2E bit is cleared to 0.

Bits	Field	Descriptions
[3:0]	TI2F	Channel 2 Input Source TI2 Filter Setting
		These bits define the frequency divided ratio used to sample the TI2 signal. The
		Digital filter in the GPTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal.
		0000: No filter, the sampling clock is f _{SYSTEM}
		0001: $f_{\text{sampling}} = f_{\text{CLKIN}}$, N = 2
		0010: $f_{\text{sampling}} = f_{\text{CLKIN}}$, N = 4
		0011: $f_{sampling} = f_{CLKIN}$, N = 8
		0100: $f_{sampling} = f_{DTS} / 2$, N = 6
		0101: $f_{sampling} = f_{DTS} / 2$, N = 8
		0110: $f_{sampling} = f_{DTS} / 4$, N = 6
		0111: $f_{sampling} = f_{DTS} / 4$, N = 8
		1000: $f_{sampling} = f_{DTS} / 8$, N = 6
		1001: $f_{sampling} = f_{DTS} / 8$, N = 8
		1010: $f_{sampling} = f_{DTS} / 16$, N = 5
		1011: $f_{sampling} = f_{DTS} / 16$, N = 6
		1100: $f_{sampling} = f_{DTS} / 16$, N = 8
		1101: $f_{sampling} = f_{DTS} / 32$, N = 5
		1110: $f_{sampling} = f_{DTS} / 32$, N = 6
		1111: $f_{sampling} = f_{DTS} / 32$, N = 8

Channel 3 Input Configuration Register – CH3ICFR

This register specifies the channel 3 input mode configuration.

Reset value: 0x0000_0000 24 30 29 28 27 26 25 31 Reserved Type/Reset 23 22 21 20 19 18 17 16 CH3CCS CH3PSC Reserved 0 RW 0 RW Type/Reset RW 0 RW 0 15 14 13 12 11 10 9 8 Reserved Type/Reset 3 2 7 6 5 4 1 0 TI3F Reserved RW 0 RW 0 RW 0 RW Type/Reset 0

Offset:

0x02C

Bits	Field	Descriptions
[19:18]	CH3PSC	Channel 3 Capture Input Source Prescaler Setting
		These bits define the effective events of the channel 3 capture input. Note that the
		prescaler is reset once the Channel 3 Capture/Compare Enable bit, CH3E, in the
		Channel Control register named CHCTR is cleared to 0.
		00: No prescaler, channel 3 capture input signal is chosen for each active event 01: Channel 3 Capture input signal is chosen for every 2 events
		10: Channel 3 Capture input signal is chosen for every 4 events
		11: Channel 3 Capture input signal is chosen for every 8 events
[17:16]	CH3CCS	Channel 3 Capture/Compare Selection
		00: Channel 3 is configured as an output
		01: Channel 3 is configured as an input derived from the TI3 signal
		10: Channel 3 is configured as an input derived from the TI2 signal
		11: Channel 3 is configured as an input which comes from the TRCED signal derived from the Trigger Controller
		Note: The CH3CCS field can be accessed only when the CH3E bit is cleared to 0.
[3:0]	TI3F	Channel 3 Input Source TI3 Filter Setting
		These bits define the frequency divided ratio used to sample the TI3 signal. The
		Digital filter in the GPTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal.
		0000: No filter, the sampling clock is f _{SYSTEM}
		0001: $f_{sampling} = f_{CLKIN}$, N = 2
		0010: $f_{sampling} = f_{CLKIN}$, N = 4
		0011: $f_{sampling} = f_{CLKIN}$, N = 8
		0100: $f_{sampling} = f_{DTS} / 2$, N = 6
		0101: $f_{sampling} = f_{DTS} / 2$, N = 8
		0110: $f_{sampling} = f_{DTS} / 4$, N = 6
		0111: $f_{sampling} = f_{DTS} / 4$, N = 8
		1000: $f_{sampling} = f_{DTS} / 8$, N = 6
		1001: $f_{sampling} = f_{DTS} / 8$, N = 8
		1010: $f_{sampling} = f_{DTS} / 16$, N = 5
		1011: $f_{sampling} = f_{DTS} / 16$, N = 6
		1100: $f_{sampling} = f_{DTS} / 16$, N = 8
		1101: $f_{sampling} = f_{DTS} / 32$, N = 5
		1110: $f_{sampling} = f_{DTS} / 32$, N = 6
		1111: $f_{sampling} = f_{DTS} / 32, N = 8$

Offset:	0x040								
Reset value:	0x0000_00	00							
	31	30	29	28	27	26	25	24	ļ
					Reserved				
Type/Reset									
	23	22	21	20	19	18	17	16	;
					Reserved				
Type/Reset									
	15	14	13	12	11	10	9	8	
					Reserved			CH0O	M[3]
Type/Reset								RW	0
	7	6	5	4	3	2	1	0	
		Reserved	CH0IMAE	CH0PRE	Reserved		CH0OM[2	:0]	
Type/Reset			RW 0	RW 0		RW	0 RW	0 RW	0
Bits	Field	Descrip	tions						
Bits [5]	Field CH0IMAE	-	tions 0 Immediate	Active Enab	le				
		-	0 Immediate	Active Enab	le				
		Channel 0: No 1: Sing	0 Immediate action gle pulse Imr	mediate Activ	ve Mode is e				
		Channel 0: No 1: Sing The	0 Immediate action gle pulse Imr e CH0OREF	mediate Activ signal will be	ve Mode is e e forced to th	ne compar	re matched lev		-
		Channel 0 0: No 1: Sing The afte	0 Immediate action gle pulse Imr e CH0OREF er an availa	mediate Activ signal will be able trigger	ve Mode is e e forced to th event occu	ne compar urs irresp	ective of the		-
		Channel (0: No 1: Sing The afte	0 Immediate action gle pulse Imr e CH0OREF er an availa nparison bet	mediate Activ signal will be able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	ne compar urs irresp CH0CCR	ective of the values.	e result of	f the
		Channel (0: No 1: Sing The afte con The	0 Immediate action gle pulse Imr e CH0OREF er an availa nparison bet e effective d	mediate Activ signal will be able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	ne compar urs irresp CH0CCR	ective of the	e result of	f the
		Channel (0: No 1: Sing The afte con The eve	D Immediate action gle pulse Imr e CH0OREF er an availa nparison bet e effective d ent.	mediate Activ signal will be able trigger ween the CN uration ends	ve Mode is e e forced to th event occu NTR and the s automatica	ne compar urs irresp CH0CCR ally at the	ective of the values. next overflow	e result of w or under	f the
		Channel (0: No 1: Sing The afte con The eve Note: The	D Immediate action gle pulse Imr e CH0OREF er an availa nparison bet e effective d ent.	mediate Activ signal will be able trigger ween the CN uration ends pit is availabl	ve Mode is e e forced to th event occu ITR and the s automatica e only if the	ne compar urs irresp CH0CCR ally at the	ective of the values.	e result of w or under	f the
[5]		Channel (0: No 1: Sing The afte con The eve Note: The in t	D Immediate action gle pulse Imr CH0OREF er an availa nparison bet e effective d ent. CH0IMAE t he PWM mo	mediate Activ signal will be able trigger ween the CN uration ends poit is available ode 1 or PWN	ve Mode is e e forced to th event occu JTR and the s automatica e only if the M mode 2.	ne compar urs irresp CH0CCR ally at the channel 0	ective of the values. next overflow is configured	e result of w or under	f the
5]	CH0IMAE	Channel (0: No 1: Sing The afte con The eve Note: The in t Channel (D Immediate action gle pulse Imr CH0OREF er an availa nparison bet e effective d ent. CH0IMAE t	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWN compare Reg	ve Mode is e e forced to th event occu ITR and the s automatica e only if the M mode 2. ister (CH0C0	ne compar urs irresp CH0CCR ally at the channel 0	ective of the values. next overflow is configured	e result of w or under	f the
[5]	CH0IMAE	Channel (0: No 1: Sing The afte con The eve Note: The in t Channel (0: CH(D Immediate action gle pulse Imr e CH0OREF er an availa nparison bet e effective d ent. e CH0IMAE t he PWM mo D Capture/Co DCCR preloa	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWN ompare Regi ad function is	ve Mode is e e forced to th event occu NTR and the s automatica e only if the M mode 2. ister (CH0C0 s disabled	ne compar urs irresp CH0CCR ally at the channel 0 CR) Preloa	ective of the values. next overflow is configured	e result of w or under to be oper	f the rflow rated
[5]	CH0IMAE	Channel (0: No 1: Sing The afte con The eve Note: The in t Channel (0: CH(The	D Immediate action gle pulse Imr e CH0OREF er an availan parison bet e effective d ent. CH0IMAE to he PWM mo D Capture/Co DCCR preloa CH0CCR	mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWN compare Reg ad function is register can	ve Mode is e e forced to th event occu ITR and the s automatica e only if the M mode 2. ister (CH0C0 o disabled n be immed	ne compar urs irresp CH0CCR ally at the channel 0 CR) Preloa diately as	ective of the values. next overflow is configured ad Enable	e result of w or under to be oper w value w	f the rflow rated
5]	CH0IMAE	Channel (0: No 1: Sing The afte con The eve Note: The in t Channel (0: CH(The the imm	D Immediate action gle pulse Imr e CH0OREF er an availanparison bet e effective d ent. e CH0IMAE t he PWM mo D Capture/Co DCCR preloa e CH0CCR CH0PRE b nediately.	mediate Activ signal will be able trigger ween the CN uration ends bit is availabl ode 1 or PWN ompare Reg ad function is register can it is cleared	ve Mode is e e forced to th event occu JTR and the s automatica e only if the M mode 2. ister (CH0C0 disabled n be immed d to 0 and t	ne compar urs irresp CH0CCR ally at the channel 0 CR) Preloa diately as	ective of the values. next overflow is configured ad Enable signed a ne	e result of w or under to be oper w value w	f the rflow rated
	CH0IMAE	Channel (0: No 1: Sing The afte con The eve Note: The in t Channel (0: CH(The the imm 1: CH(D Immediate action gle pulse Imr e CH0OREF er an availa nparison bet e effective d ent. e CH0IMAE t he PWM mo D Capture/Co DCCR preloa e CH0CCR CH0PRE b nediately. DCCR preloa	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWN ompare Reg ad function is register can it is cleared	ve Mode is e e forced to th event occu JTR and the s automatica e only if the M mode 2. ister (CH0C0 d disabled n be immed d to 0 and t e enabled	ne compar urs irresp CH0CCR ally at the channel 0 CR) Preloa diately as he updat	ective of the values. next overflow is configured ad Enable signed a ne	e result of w or under to be oper w value w value is u	f the rflow rated vhen used

Channel 0 Output Configuration Register – CH0OCFR

Bits	Field	Descriptions
[8][2:0]	CH0OM[3:0]	Channel 0 Output Mode Setting
		These bits define the functional types of the output reference signal CH0OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH0OREF is forced to 0
		0101: Force active – CH0OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
		 During down-counting, channel 0 has an inactive level when CNTR > CH0CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 0 is has an inactive level when CNTR < CH0CCR or otherwise has an active level.
		 During down-counting, channel 0 has an active level when CNTR > CH0CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
		 During down-counting, channel 0 has an inactive level when CNTR > CH0ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 0 has an inactive level when CNTR < CH0CCR or otherwise has an active level.
		 During down-counting, channel 0 has an active level when CNTR > CH0ACR or otherwise has an inactive level
		Note: When channel 0 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = 0x1/0x2/0x3).

This register Offset:	0x044			sonngaration		1		1	
		00							
Reset value:	0x0000_00	00							
	31	30	29	28	27	26	25		24
		1			Reserved				
Type/Reset	23	22	21	20	19	18	17		16
					Reserved				
Type/Reset									
	15	14	13	12	11	10	9		8
					Reserved			CH1	OM[3]
Type/Reset								RW	0
	7	6	5	4	3	2	1		0
		Reserved	CH1IMAE	CH1PRE	Reserved		CH1OM		
Type/Reset			RW 0	RW 0		RW	0 RW	0 RW	0
				1.00		1.1.1	0 100	0 RW	0
Bits	Field	Descrip					0 1110	0 100	0
Bits [5]	Field CH1IMAE	Descrip Channel			ble			0 1.00	0
Bits [5]		-	tions 1 Immediate		ble				
		Channel 0: No	tions 1 Immediate action	Active Enat	ble ve Mode is e				0
		Channel 0: No 1: Sing The	tions 1 Immediate action gle pulse Imr e CH10REF	Active Enab mediate Acti signal will b	ve Mode is e e forced to th	enabled ne compai	re matched	level imme	diately
		Channel 0: No 1: Sing The afte	tions 1 Immediate action gle pulse Imr e CH1OREF er an availa	Active Enat mediate Acti signal will b able trigger	ve Mode is e e forced to th event occu	enabled ne compai urs irresp	re matched pective of t	level imme	diately
		Channel 0: No 1: Sing The afte	tions 1 Immediate action gle pulse Imr e CH1OREF er an availa nparison bet	Active Enat mediate Acti signal will b able trigger ween the Cl	ve Mode is e e forced to th event occu NTR and the	enabled ne compai urs irresp CH1CCR	re matched pective of t values.	level imme he result	diately of the
		Channel 0: No 1: Sing The afte con The	tions 1 Immediate action gle pulse Imr e CH10REF er an availa nparison bet e effective d	Active Enat mediate Acti signal will b able trigger ween the Cl	ve Mode is e e forced to th event occu	enabled ne compai urs irresp CH1CCR	re matched pective of t values.	level imme he result	diately of the
		Channel 0: No 1: Sing The afte con The eve	tions 1 Immediate action gle pulse Imme e CH10REF er an availa nparison bet e effective d ent.	Active Enab mediate Acti signal will b able trigger ween the CI uration end	ve Mode is e e forced to th event occu NTR and the s automatica	enabled ne compai urs irresp CH1CCR ally at the	re matched bective of t values. e next overf	level imme he result low or unc	diately of the erflow
		Channel 0: No 1: Sing The afte con The eve Note: The	tions 1 Immediate action gle pulse Imme e CH10REF er an availa nparison bet e effective d ent.	Active Enat mediate Acti signal will b able trigger ween the Cl uration end pit is availab	ve Mode is e e forced to th event occu NTR and the s automatica le only if the	enabled ne compai urs irresp CH1CCR ally at the	re matched bective of t values. e next overf	level imme he result low or unc	diately of the erflow
[5]		Channel 0: No 1: Sing The afte con The eve Note: The in t	tions 1 Immediate action gle pulse Imme CH1OREF er an availan parison bet e effective d ent. e CH1IMAE to the PWM mo	Active Enab mediate Acti signal will b able trigger ween the CI uration end poit is availab ode 1 or PWI	ve Mode is e e forced to th event occu NTR and the s automatica le only if the	enabled ne compar urs irresp CH1CCR ally at the channel 1	re matched bective of t values. e next overf is configure	level imme he result low or unc	diately of the erflow
[5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel	tions 1 Immediate action gle pulse Imme CH1OREF er an availan parison bet e effective d ent. e CH1IMAE to the PWM mo	Active Enab mediate Acti signal will b able trigger ween the CI uration end pit is availab ode 1 or PWI ompare Reg	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. jister (CH1C0	enabled ne compar urs irresp CH1CCR ally at the channel 1	re matched bective of t values. e next overf is configure	level imme he result low or unc	diately of the erflow
[5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH The	tions 1 Immediate action gle pulse Immediate e CH10REF er an availand nparison bet e effective d ent. e CH1IMAE to the PWM mod 1 Capture/Cod 1 CCR preloate e CH1CCR	Active Enab mediate Acti signal will b able trigger ween the CI uration end bit is availab ode 1 or PWI ompare Reg ad function is register ca	ve Mode is e e forced to th vevent occu NTR and the s automatica le only if the M mode 2. sister (CH1C0 s disabled. n be immed	enabled ne compai urs irresp CH1CCR ally at the channel 1 CR) Preloc diately as	re matched bective of t values. e next overf is configure ad Enable ssigned a r	level imme he result low or unc ed to be op new value	diately of the erflow erated when
[5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH The the	tions 1 Immediate action gle pulse Immediate e CH10REF er an availat nparison bet e effective d ent. e CH1IMAE to the PWM mod 1 Capture/Cod 1 Capture/Cod 2 CH1CCR CH1PRE b	Active Enab mediate Acti signal will b able trigger ween the CI uration end bit is availab ode 1 or PWI ompare Reg ad function is register ca	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. sister (CH1C0 s disabled.	enabled ne compai urs irresp CH1CCR ally at the channel 1 CR) Preloc diately as	re matched bective of t values. e next overf is configure ad Enable ssigned a r	level imme he result low or unc ed to be op new value	diately of the erflow erated when
[5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH The the imm	tions 1 Immediate action gle pulse Immediate e CH10REF er an availand nparison bet e effective d e effective d e effective d e cH1IMAE I he PWM mod 1 Capture/Cod 1 CCR preloa e CH1CCR CH1PRE b nediately.	Active Enab mediate Acti signal will b able trigger ween the Cl uration end bit is availab ode 1 or PWI ompare Reg ad function is register ca it is cleared	ve Mode is e e forced to the vevent occu NTR and the s automaticate le only if the M mode 2. pister (CH1CC s disabled. n be immed d to 0 and t	enabled ne compai urs irresp CH1CCR ally at the channel 1 CR) Preloc diately as	re matched bective of t values. e next overf is configure ad Enable ssigned a r	level imme he result low or unc ed to be op new value	diately of the erflow erated when
	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH The the imm 1: CH	tions 1 Immediate action gle pulse Immediate CH10REF er an availand nparison bet e effective d ent. CH1IMAE I he PWM mod 1 Capture/Co 1 CCR preloa CH1PRE b nediately. 1 CCR preloa	Active Enab mediate Acti signal will b able trigger ween the CI uration end bit is availab ode 1 or PWI ompare Reg ad function is register ca it is cleared ad function is	ve Mode is e e forced to the vevent occu NTR and the s automaticate le only if the M mode 2. pister (CH1CC s disabled. n be immed d to 0 and t	enabled ne compar urs irresp CH1CCR ally at the channel 1 CR) Prelo diately as the updat	re matched bective of t values. is configure ad Enable ssigned a r ed CH1CC	level imme he result low or und ed to be op new value R value is	diately of the erflow erated when s used

Channel 1 Output Configuration Register – CH10CFR

Bits	Field	Descriptions
[8][2:0]	CH1OM[3:0]	Channel 1 Output Mode Setting
		These bits define the functional types of the output reference signal CH1OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH1OREF is forced to 0
		0101: Force active – CH1OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 1 has an active level when CNTR < CH1CCR or otherwise has an inactive level.
		 During down-counting, channel 1 has an inactive level when CNTR > CH1CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 1 has an inactive level when CNTR < CH1CCR or otherwise has an active level.
		 During down-counting, channel 1 has an active level when CNTR > CH1CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 1 has an active level when CNTR < CH1CCR or otherwise has an inactive level.
		 During down-counting, channel 1 has an inactive level when CNTR > CH1ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 1 has an inactive level when CNTR < CH1CCR or otherwise has an active level.
		 During down-counting, channel 1 has an active level when CNTR > CH1ACR or otherwise has an inactive level
		Note: When channel 1 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = 0x1/0x2/0x3).

This register Offset:	0x048		1						
Reset value:		00							
Reset value.	00000_00	00							
	31	30	29	28	27	26	25	24	_
					Reserved				
Type/Reset									
	23	22	21	20	19	18	17	16	
Turne (Decet					Reserved				
Type/Reset	15	14	13	12	11	10	9	8	
		17	10	12	Reserved	10		CH2OI	M[3]
Type/Reset	L				10001100			RW	0
.)[7	6	5	4	3	2	1	0	
		Reserved	CH2IMAE	CH2PRE	Reserved		CH2OM[2	::0]	
Type/Reset			RW 0	RW 0		RW	0 RW	0 RW	0
Bits	Field	Descrip	tions						
Bits [5]	Field CH2IMAE	-	tions 2 Immediate	Active Enab	le				
		Channel 0: No	2 Immediate action						
		Channel 0: No 1: Sin	2 Immediate action gle pulse Imi	mediate Activ	ve Mode is e				
		Channel 0: No 1: Sin The	2 Immediate action gle pulse Imr e CH2OREF	mediate Activ signal will be	ve Mode is e e forced to th	ne compar	e matched lev		-
		Channel 0: No 1: Sin The afte	2 Immediate action gle pulse Imr e CH2OREF er an availa	mediate Activ signal will be able trigger	ve Mode is e e forced to th event occu	ne compar urs irresp	ective of the		-
		Channel 0: No 1: Sin The aft	2 Immediate action gle pulse Imr e CH2OREF er an availa nparison bet	mediate Activ signal will bo able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	ne compar urs irresp CH2CCR	ective of the	e result of	the
		Channel 0: No 1: Sin The aft	2 Immediate action gle pulse Imr e CH2OREF er an availa nparison bet e effective d	mediate Activ signal will bo able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	ne compar urs irresp CH2CCR	ective of the values.	e result of	the
		Channel 0: No 1: Sin The aft cor The eve Note: The	2 Immediate action gle pulse Imr e CH2OREF er an availa nparison bet e effective d ent. e CH2IMAE b	mediate Activ signal will be able trigger ween the CN uration ends bit is available	ve Mode is e e forced to th event occu NTR and the s automatica le only if the	ne compar urs irresp CH2CCR ally at the	ective of the values.	e result of w or under	the flow
[5]	CH2IMAE	Channel 0: No 1: Sin The aft cor The eve Note: The in t	2 Immediate action gle pulse Imme e CH2OREF er an availa mparison bet e effective d ent. e CH2IMAE to the PWM mo	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWN	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2.	ne compar urs irresp CH2CCR ally at the channel 2	ective of the values. next overflor is configured	e result of w or under	the flow
		Channel 0: No 1: Sin The aft cor The eve Note: The in t	2 Immediate action gle pulse Imme e CH2OREF er an availat mparison bet e effective d ent. e CH2IMAE h the PWM mo 2 Capture/Co	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWI ompare Reg	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. ister (CH2CO	ne compar urs irresp CH2CCR ally at the channel 2	ective of the values. next overflor is configured	e result of w or under	the flow
[5]	CH2IMAE	Channel 0: No 1: Sin The aft cor The eve Note: The in t Channel 0: CH	2 Immediate action gle pulse Imme e CH2OREF er an availan parison bet e effective d ent. e CH2IMAE to the PWM mo 2 Capture/Co 2CCR preloa	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWN ompare Reg ad function is	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. ister (CH2C0 s disabled.	ne compar urs irresp CH2CCR ally at the channel 2 CR) Preloa	ective of the values. next overflor is configured ad Enable	e result of w or under I to be opera	the flow ated
[5]	CH2IMAE	Channel 0: No 1: Sin The afte cor The eve Note: The in f Channel 0: CH	2 Immediate action gle pulse Immediate e CH2OREF er an availant parison bet e effective d ent. e CH2IMAE to the PWM mod 2 Capture/Cod 2CCR preloate e CH2CCR	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWI ompare Reg ad function is register cas	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. ister (CH2C0 s disabled. n be immed	ne compar urs irresp CH2CCR ally at the channel 2 CR) Preloa diately as	ective of the values. next overflor is configured ad Enable signed a ne	e result of w or under I to be opera w value w	the flow ated
[5]	CH2IMAE	Channel 0: No 1: Sin The aft cor The eve Note: The in t Channel 0: CH The the	2 Immediate action gle pulse Immediate e CH2OREF er an availant parison bet e effective d ent. e CH2IMAE to the PWM mod 2 Capture/Cod 2CCR preloate e CH2CCR	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWI ompare Reg ad function is register cas	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. ister (CH2C0 s disabled. n be immed	ne compar urs irresp CH2CCR ally at the channel 2 CR) Preloa diately as	ective of the values. next overflor is configured ad Enable	e result of w or under I to be opera w value w	the flow ated
[5]	CH2IMAE	Channel 0: No 1: Sin The aft cor The eve Note: The in t Channel 0: CH The the	2 Immediate action gle pulse Immediate e CH2OREF er an availan parison bet e effective d ent. e CH2IMAE Man 2 Capture/Co 2 CCR preloa e CH2CCR CH2PRE b	mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWI ompare Reg ad function is register cal it is cleared	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2. ister (CH2C0 s disabled. n be immed d to 0 and t	ne compar urs irresp CH2CCR ally at the channel 2 CR) Preloa diately as	ective of the values. next overflor is configured ad Enable signed a ne	e result of w or under I to be opera w value w	the flow ated
[5]	CH2IMAE	Channel 0: No 1: Sin The aft cor The eve Note: The in f Channel 0: CH The the imn 1: CH	2 Immediate action gle pulse Immediate e CH2OREF er an availa mparison bet e effective d ent. e CH2IMAE h the PWM mod 2 Capture/Cod 2CCR preloa e CH2CCR CH2PRE b nediately. 2CCR preloa	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWI ompare Reg ad function is register can it is cleared ad function is CR value wil	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2. ister (CH2C0 s disabled. n be immed d to 0 and t s enabled	ne compar urs irresp CH2CCR ally at the channel 2 CR) Preloa diately as he update	ective of the values. next overflor is configured ad Enable signed a ne	e result of w or under I to be opera w value w value is u	the flow ated hen ised

Channel 2 Output Configuration Register – CH2OCFR

Bits	Field	Descriptions
[8][2:0]	CH2OM[3:0]	Channel 2 Output Mode Setting
		These bits define the functional types of the output reference signal CH2OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH2OREF is forced to 0
		0101: Force active – CH2OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 2 has an active level when CNTR < CH2CCR or otherwise has an inactive level.
		 During down-counting, channel 2 has an inactive level when CNTR > CH2CCR or otherwise has an active level.
		0111: PWM mode 2
		- During up-counting, channel 2 has an inactive level when CNTR < CH2CCR or otherwise has an active level.
		 During down-counting, channel 2 has an active level when CNTR > CH2CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		- During up-counting, channel 2 has an active level when CNTR < CH2CCR or otherwise has an inactive level.
		 During down-counting, channel 2 has an inactive level when CNTR > CH2ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 2 has an inactive level when CNTR < CH2CCR or otherwise has an active level.
		 During down-counting, channel 2 has an active level when CNTR > CH2ACR or otherwise has an inactive level
		Note: When channel 2 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = $0x1/0x2/0x3$).

Offset:	0x04C									
Reset value:	0x0000_00	00								
	31	30	29	28	27	26	25		24	
					Reserved					
Type/Reset	<u> </u>									
	23	22	21	20	19	18	17		16	
					Reserved					
Type/Reset										
	15	14	13	12	11	10	9	1	8	
		1			Reserved			CH	BOM[[3]
Type/Reset								RW		0
	7	6	5	4	3	2	1		0	
		Reserved	CH3IMAE	CH3PRE	Reserved		CH3OM			
Type/Reset			RW 0	RW 0		RW	0 RW	0 RW		
				1000 0		1.1.1	0 100	0 RW		0
Rits	Field	Descript					0 1110	0 100		0
	Field CH3IMAE	Descript	tions		le			0 100		0
	Field CH3IMAE	-	tions 3 Immediate		le					0
		Channel 3 0: No a	tions 3 Immediate	Active Enab						0
		Channel 3 0: No 1: Sing The	tions 3 Immediate action gle pulse Imr ∋ CH3OREF	Active Enab nediate Activ signal will bo	ve Mode is e e forced to th	enabled ne compar	re matched I	evel imme		ely
		Channel 3 0: No 1: Sing The afte	tions 3 Immediate action gle pulse Imr e CH3OREF er an availa	Active Enab nediate Activ signal will bo able trigger	ve Mode is e e forced to th event occu	enabled ne compar urs irresp	re matched I	evel imme		ely
		Channel 3 0: No 3 1: Sing The afte con	tions 3 Immediate action gle pulse Imr e CH3OREF er an availa nparison bet	Active Enab mediate Activ signal will be able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	enabled ne compar urs irresp CH3CCR	re matched l rective of th values.	evel imme he result	of tl	ely he:
		Channel 3 0: No 1: Sing The afte con The	tions 3 Immediate action gle pulse Imr e CH3OREF er an availa nparison bet e effective d	Active Enab mediate Activ signal will be able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	enabled ne compar urs irresp CH3CCR	re matched l rective of th values.	evel imme he result	of tl	ely he:
		Channel 3 0: No 3 1: Sing The afte con The eve	tions 3 Immediate action gle pulse Imr e CH3OREF er an availa nparison bet e effective d ent.	Active Enab mediate Activ signal will bo able trigger ween the CN uration ends	ve Mode is e e forced to th event occu NTR and the s automatica	enabled ne compar urs irresp CH3CCR ally at the	re matched l bective of th values. next overfl	evel imme he result ow or une	of ti derflo	ely he
		Channel 3 0: No 3 1: Sing The afte con The eve Note: The	tions 3 Immediate action gle pulse Imr e CH3OREF er an availa nparison bet e effective d	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available	ve Mode is e e forced to th event occu NTR and the s automatica le only if the	enabled ne compar urs irresp CH3CCR ally at the	re matched l bective of th values. next overfl	evel imme he result ow or une	of ti derflo	ely he
[5]		Channel 3 0: No 3 1: Sing The afte con The eve Note: The in t	tions 3 Immediate action gle pulse Imr e CH3OREF er an availa nparison bet e effective d ent. e CH3IMAE t	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWN	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2.	enabled ne compar urs irresp CH3CCR ally at the channel 3	re matched l pective of tl values. next overfl is configure	evel imme he result ow or une	of ti derflo	ely he
[5]	CH3IMAE	Channel 3 0: No 3 1: Sing The afte con The eve Note: The in t Channel 3 0: CH3	tions 3 Immediate action gle pulse Imr e CH3OREF er an availa nparison bet e effective d ent. e CH3IMAE to the PWM mo 3 Capture/Co 3CCR preloa	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWI compare Reg ad function is	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. ister (CH3C0 s disabled.	enabled ne compar urs irresp CH3CCR ally at the channel 3 CR) Preloa	re matched l bective of th values. next overfl is configure ad Enable	evel imme he result ow or une ed to be op	of ti derflo berati	ely he ow ted
[5]	CH3IMAE	Channel 3 0: No 3 1: Sing The afte con The eve Note: The in t Channel 3 0: CH3 The	tions 3 Immediate action gle pulse Imr e CH3OREF er an availa nparison bet e effective d ent. e CH3IMAE t the PWM mo 3 Capture/Co 3 CCR preloa e CH3CCR	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWI ompare Reg ad function is register cas	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. ister (CH3C0 s disabled. n be immed	enabled ne compar urs irresp CH3CCR ally at the channel 3 CR) Preloa diately as	re matched l vective of th values. next overfl is configure ad Enable ssigned a n	evel imme he result ow or un ed to be op ew value	of the official densities of the official density of	ely he ow ted
[5]	CH3IMAE	Channel 3 0: No 3 1: Sing The afte con The eve Note: The in t Channel 3 0: CH3 The the	tions 3 Immediate action gle pulse Immediate CH3OREF er an availand nparison betre effective d ent. CH3IMAE to CH3IMAE to CH3CRR b	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWI ompare Reg ad function is register cas	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. ister (CH3C0 s disabled. n be immed	enabled ne compar urs irresp CH3CCR ally at the channel 3 CR) Preloa diately as	re matched l vective of th values. next overfl is configure ad Enable ssigned a n	evel imme he result ow or un ed to be op ew value	of the official densities of the official density of	ely he ow ted
[5]	CH3IMAE	Channel 3 0: No 3 1: Sing The afte con The eve Note: The in t Channel 3 0: CH3 The the imm	tions 3 Immediate action gle pulse Immediate CH3OREF er an availan parison betre effective d effective d cH3IMAE to CH3IMAE to CH3PRE b nediately.	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWN ompare Reg ad function is register cal it is cleared	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2. ister (CH3C0 s disabled. n be immed d to 0 and t	enabled ne compar urs irresp CH3CCR ally at the channel 3 CR) Preloa diately as	re matched l vective of th values. next overfl is configure ad Enable ssigned a n	evel imme he result ow or un ed to be op ew value	of the official densities of the official density of	ely he ow ted
Bits [5] [4]	CH3IMAE	Channel 3 0: No 3 1: Sing The afte con The eve Note: The in t Channel 3 0: CH3 The the imm 1: CH3	tions 3 Immediate action gle pulse Immediate CH3OREF er an availand nparison betre effective d ent. CH3IMAE to CH3IMAE to CH3CRR b	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWN ompare Reg ad function is register cas it is cleared	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2. ister (CH3C0 s disabled. n be immed d to 0 and t s enabled	enabled ne compar urs irresp CH3CCR ally at the channel 3 CR) Preloa diately as the updat	re matched l nective of th values. next overfl is configure ad Enable ssigned a n ed CH3CCl	evel imme he result ow or une ed to be op ew value R value i	of the derflo oerate whe	ely he ow ted

Channel 3 Output Configuration Register – CH3OCFR

Bits	Field	Descriptions
[8][2:0]	CH3OM[3:0]	Channel 3 Output Mode Setting
		These bits define the functional types of the output reference signal CH3OREF
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH3OREF is forced to 0
		0101: Force active – CH3OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 3 has an active level when CNTR < CH3CCR or otherwise has an inactive level.
		 During down-counting, channel 3 has an inactive level when CNTR > CH3CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 3 has an inactive level when CNTR < CH3CCR or otherwise has an active level.
		 During down-counting, channel 3 has an active level when CNTR > CH3CCR or otherwise has an inactive level
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 3 has an active level when CNTR < CH3CCR or otherwise has an inactive level.
		 During down-counting, channel 3 has an inactive level when CNTR > CH3ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 3 has an inactive level when CNTR < CH3CCR or otherwise has an active level.
		 During down-counting, channel 3 has an active level when CNTR > CH3ACR or otherwise has an inactive level
		Note: When channel 3 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = 0x1/0x2/0x3).

Channel Control Register – CHCTR

This register contains the channel capture input or compare output function enable control bits.

Offset:	0x050	channel capi	ure input or	compare of	utput function	enable contr	of dits.	
Reset value:		00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
- (D (1	Reserved		1	1
Type/Reset	45	4.4	40	40	44	40	0	0
	15	14	13	12	11 Reserved	10	9	8
Type/Reset					Reserveu			
1990/110301	7	6	5	4	3	2	1	0
	Reserved	CH3E	Reserved	CH2E	Reserved	CH1E	Reserved	CHOE
Type/Reset	•	RW 0		RW ()	RW 0		RW 0
Bits	Field	Descripti	ons					
[6]	CH3E	Channel 3	Capture/Co	mpare Ena	ble			
			3 is configui Capture Mo		put (CH3CCS	S = 0x1/0x2/0	0x3)	
			Capture Mo					
					utput (CH3CC	S = 0x0)		
				• •	al CH3O is no CH3O is gene		correspondir	na output pin
[4]	CH2E		Capture/Co		-		conception	ig output pill
				-	put (CH2CCS	$S = 0 \times 1/0 \times 2/0$	x3)	
			Capture Mo					
			Capture Mo			S = 0.0		
			-		utput (CH2CC al CH2O is no	,		
					CH2O is gene		correspondir	ng output pin
[2]	CH1E		Capture/Co		-		·	
					put (CH1CCS	S = 0x1/0x2/0	x3)	
			Capture M					
			Capture Mo		led utput (CH1CC	S = 0x0		
			-		al CH1O is no			
					CH1O is gene		correspondir	ng output pin
[0]	CH0E		Capture/Co					-
			-		put (CH0CCS	S = 0x1/0x2/0	x3)	
			Capture Mo					
			Capture Mo			S - 0v0)		
			-		utput (CH0CC al CH0O is no	,		
				• •	CH0O is gene		correspondir	ng output pin
		1: On –	Channel 0 C	ouput signal	CHUC is gene	erated on the	correspondir	ig output pin

This register	contains the	channel cant	ure input or a	compare out	out polarity o	ontrol		
Offset:	0x054				put polarity o			
Reset value:	0x0000_00	00						
	_							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	CH3P	Reserved	CH2P	Reserved	CH1P	Reserved	CH0P
Type/Reset		RW 0		RW 0		RW 0		RW 0
Bits	Field	Descript						
[6]	CH3P		Capture/Co		-			
				-	an input (CH annel 3 rising		/0x2/0x3)	
		-			annel 3 fallin			
		-			an output (C		(0)	
			nnel 3 Outpu	-			- /	
		1: Cha	nnel 3 Outpu	t is active lov				
F 4 3					N			
[4]	CH2P	Channel 2	Capture/Co	mpare Polari	ty			
[4]	CH2P	Channel 2 - When Cł	nannel 2 is co	mpare Polari onfigured as	ty an input (CH		/0x2/0x3)	
[4]	CH2P	Channel 2 - When Ch 0: capt	nannel 2 is co ure event oc	mpare Polari onfigured as curs on a Ch	ty an input (CH annel 2 rising	g edge	/0x2/0x3)	
[4]	CH2P	Channel 2 - When Ch 0: capt 1: capt	nannel 2 is co ure event oc ure event oc	mpare Polari onfigured as curs on a Ch curs on a Ch	ty an input (CH annel 2 risino annel 2 fallin	g edge g edge	·	
[4]	CH2P	Channel 2 - When Ch 0: capt 1: capt - When Ch	nannel 2 is co ure event oc ure event oc nannel 2 is co	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as	ty an input (CH annel 2 rising annel 2 fallin an output (C	g edge g edge	·	
[4]	CH2P	Channel 2 - When Cł 0: capt 1: capt - When Cł 0: Cha	nannel 2 is co ure event oc ure event oc	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig	ty an input (CH annel 2 risinı annel 2 fallin an output (C gh	g edge g edge	·	
	CH2P CH1P	Channel 2 - When Ch 0: capt 1: capt - When Ch 0: Chai 1: Chai	nannel 2 is co ure event oc ure event oc nannel 2 is co nnel 2 Outpu	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig t is active lov	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v	g edge g edge	·	
[4]		Channel 2 - When Ch 0: capt 1: capt - When Ch 0: Chan 1: Chan Channel 1	nannel 2 is co ure event occ ure event occ nannel 2 is co nnel 2 Outpu nnel 2 Outpu Capture/Co	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig t is active low mpare Polari	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v	g edge g edge H2CCS = 0;	(0)	
		Channel 2 - When Cł 0: capt 1: capt - When Cł 0: Char 1: Char Channel 1 - When Cł 0: capt	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu nnel 2 Outpu Capture/Con nannel 1 is co ure event occ	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig t is active low mpare Polari onfigured as curs on a Ch	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v ty an input (CH annel 1 rising	g edge g edge H2CCS = 0; 1CCS = 0x1 g edge	(0)	
		Channel 2 - When Ch 0: capt 1: capt - When Ch 0: Chan 1: Chan Channel 1 - When Ch 0: capt 1: capt	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu nnel 2 Outpu Capture/Co nannel 1 is co ure event occ ure event occ	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig t is active low mpare Polari onfigured as curs on a Ch curs on a Ch	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v ty an input (CH annel 1 rising annel 1 fallin	g edge g edge H2CCS = 0; 1CCS = 0x1 g edge g edge	(0)	
		Channel 2 - When Ch 0: capt 1: capt - When Ch 0: Chan 1: Chan Channel 1 - When Ch 0: capt 1: capt - Channel	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu nnel 2 Outpu Capture/Co nannel 1 is co ure event occ 1 is configur	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig t is active low mpare Polari onfigured as curs on a Ch curs on a Ch ed as an out	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v ty an input (CH annel 1 rising annel 1 fallin put (CH1CCS	g edge g edge H2CCS = 0; 1CCS = 0x1 g edge g edge	(0)	
		Channel 2 - When Ch 0: capt 1: capt - When Ch 0: Chan 1: Chan Channel 1 - When Ch 0: capt 1: capt - Channel 0: Chan	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu Capture/Con nannel 1 is co ure event occ 1 is configur nnel 1 Outpu	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active low mpare Polari onfigured as curs on a Ch curs on a Ch ed as an out t is active hig	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v ty an input (CH annel 1 rising annel 1 fallin put (CH1CCS gh	g edge g edge H2CCS = 0; 1CCS = 0x1 g edge g edge	(0)	
[2]	CH1P	Channel 2 - When Cł 0: capt 1: capt - When Cł 0: Char 1: Char Channel 1 - When Cł 0: capt 1: capt - Channel 0: Char 1: Char	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu Capture/Con nannel 1 is co ure event occ 1 is configur nnel 1 Outpu nnel 1 Outpu	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active low mpare Polari onfigured as curs on a Ch curs on a Ch curs on a Ch ed as an out t is active hig t is active low	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v ty an input (CH annel 1 rising annel 1 fallin put (CH1CCS gh v	g edge g edge H2CCS = 0; 1CCS = 0x1 g edge g edge	(0)	
		Channel 2 - When Cł 0: capt 1: capt - When Cł 0: Chan 1: Chan Channel 1 - When Cł 0: capt 1: capt - Channel 0: Chan 1: Chan	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu Capture/Con nannel 1 is co ure event occ 1 is configur nnel 1 Outpu Capture/Col	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig t is active low mpare Polari onfigured as curs on a Ch curs on a Ch ed as an out t is active hig t is active low mpare Polari	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v an input (CH annel 1 rising annel 1 fallin put (CH1CCS gh v ty	g edge g edge H2CCS = 0x 1CCS = 0x1 g edge g edge S = 0x0)	k0) I/0x2/0x3)	
[2]	CH1P	Channel 2 - When Cł 0: capt 1: capt - When Cł 0: Chan 1: Chan Channel 1 - When Cł 0: capt 1: capt - Channel 0: Chan 1: Chan Channel 0 - When Cł	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu Capture/Con nannel 1 is co ure event occ 1 is configur nnel 1 Outpu Capture/Co nannel 1 Outpu Capture/Co nannel 0 is co	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig t is active low mpare Polari onfigured as curs on a Ch curs on a Ch ed as an out t is active hig t is active low mpare Polari onfigured as	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v ty an input (CH annel 1 rising annel 1 fallin put (CH1CCS gh v	g edge g edge H2CCS = 0x 1CCS = 0x1 g edge g edge S = 0x0) 0CCS = 0x1	k0) I/0x2/0x3)	
[2]	CH1P	Channel 2 - When Ch 0: capt 1: capt - When Ch 0: Chan 1: Channel 1 - When Ch 0: capt 1: capt - Channel 0: Chan 1: Chan Channel 0 - When Ch 0: capt 0: capt 1: chan 0: chan 1: chan 0: chan 1: chan 0: chan 1: capt 0: chan 0: chan 0: chan 1: capt 0: chan 0: capt 0: chan 0: capt 0: chan 0: capt 0: chan 0: capt 0: chan 0: capt 0: chan 0: chan 0: chan 0: chan 0: chan 0: chan 0: chan 0: chan 0: chan 0: capt 0: chan 0: capt	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu Capture/Con nannel 1 is co ure event occ 1 is configur nnel 1 Outpu Capture/Con nannel 1 Outpu Capture/Con nannel 0 is co ure event occ	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active hig t is active low mpare Polari onfigured as curs on a Ch ed as an out t is active hig t is active low mpare Polari onfigured as curs on a Ch	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v an input (CH annel 1 rising annel 1 fallin put (CH1CCS gh v ty an input (CH	g edge g edge H2CCS = 0x 1CCS = 0x1 g edge g edge S = 0x0) 0CCS = 0x1 g edge	k0) I/0x2/0x3)	
[2]	CH1P	Channel 2 - When Cł 0: capt 1: capt - When Cł 0: Char 1: Char Channel 1 - When Cł 0: capt 1: capt - Channel 0: Char 1: Char Channel 0: Char 1: Char 1: capt - When Cł 0: capt 1: capt - When Cł 0: capt 1: capt - When Cł	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu Capture/Con nannel 1 is co ure event occ 1 is configur nnel 1 Outpu Capture/Con nannel 1 Outpu Capture/Con nannel 0 is co ure event occ nannel 0 is co nannel 0 is co	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active low mpare Polari onfigured as curs on a Ch curs on a Ch curs on a Ch onfigured as curs on a Ch curs on a Ch curs on a Ch curs on a Ch	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v ty an input (CH annel 1 fallin put (CH1CC gh v ty an input (CH annel 0 rising annel 0 fallin an output (C	g edge g edge $H2CCS = 0x^{1}$ g edge g edge S = 0x0) $0CCS = 0x^{1}$ g edge g edge	(0) 1/0x2/0x3)	
[2]	CH1P	Channel 2 - When Cł 0: capt 1: capt - When Cł 0: Chan 1: Chan Channel 1 - When Cł 0: capt 1: capt - Channel 0: Chan 1: Chan Channel 0 - When Cł 0: capt 1: capt - When Cł 0: capt 1: capt - When Cł 0: capt 1: capt - When Cł 0: capt 1: chan	nannel 2 is co ure event occ nannel 2 is co nnel 2 Outpu Capture/Cou nannel 1 is co ure event occ 1 is configur nnel 1 Outpu Capture/Cou nannel 1 Outpu Capture/Cou nannel 0 is co ure event occ ure event occ ure event occ ure event occ ure event occ	mpare Polari onfigured as curs on a Ch curs on a Ch onfigured as t is active low mpare Polari onfigured as curs on a Ch curs on a Ch	ty an input (CH annel 2 rising annel 2 fallin an output (C gh v ty an input (CH annel 1 fallin put (CH1CCS gh v ty an input (CH annel 0 rising annel 0 fallin an output (C gh	g edge g edge $H2CCS = 0x^{1}$ g edge g edge S = 0x0) $0CCS = 0x^{1}$ g edge g edge	(0) 1/0x2/0x3)	

Channel Polarity Configuration Register – CHPOLR

Timer PDMA/Interrupt Control Register – DICTR

This register contains the timer PDMA and interrupt enable control bits.

Offset:	0x074							
Reset value:	0x0000_0000							
	31	30	29	28	27	26	25	24
			Reserved			TEVDE	Reserved	UEVDE
Type/Reset						RW 0		RW 0
	23	22	21	20	19	18	17	16
			Reserved		CH3CCDE	CH2CCDE	CH1CCDE	CH0CCDE
Type/Reset					RW 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
			Reserved			TEVIE	Reserved	UEVIE
Type/Reset						RW 0		RW 0
	7	6	5	4	3	2	1	0
			Reserved		CH3CCIE	CH2CCIE	CH1CCIE	CH0CCIE
Type/Reset					RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[26]	TEVDE	Trigger event PDMA Request Enable 0: Trigger PDMA request is disabled 1: Trigger PDMA request is enabled
[24]	UEVDE	Update event PDMA Request Enable 0: Update event PDMA request is disabled 1: Update event PDMA request is enabled
[19]	CH3CCDE	Channel 3 Capture/Compare PDMA Request Enable 0: Channel 3 PDMA request is disabled 1: Channel 3 PDMA request is enabled
[18]	CH2CCDE	Channel 2 Capture/Compare PDMA Request Enable 0: Channel 2 PDMA request is disabled 1: Channel 2 PDMA request is enabled
[17]	CH1CCDE	Channel 1 Capture/Compare PDMA Request Enable 0: Channel 1 PDMA request is disabled 1: Channel 1 PDMA request is enabled
[16]	CH0CCDE	Channel 0 Capture/Compare PDMA Request Enable 0: Channel 0 PDMA request is disabled 1: Channel 0 PDMA request is enabled
[10]	TEVIE	Trigger event Interrupt Enable 0: Trigger event interrupt is disabled 1: Trigger event interrupt is enabled
[8]	UEVIE	Update event Interrupt Enable 0: Update event interrupt is disabled 1: Update event interrupt is enabled
[3]	CH3CCIE	Channel 3 Capture/Compare Interrupt Enable 0: Channel 3 interrupt is disabled 1: Channel 3 interrupt is enabled

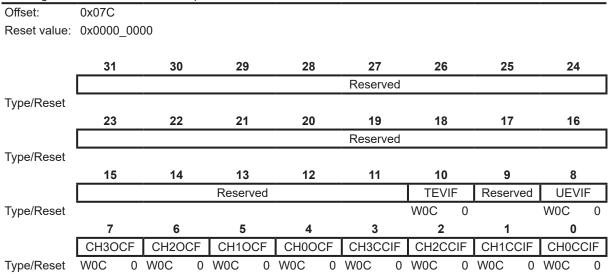
Bits	Field	Descriptions
[2]	CH2CCIE	Channel 2 Capture/Compare Interrupt Enable 0: Channel 2 interrupt is disabled 1: Channel 2 interrupt is enabled
[1]	CH1CCIE	Channel 1 Capture/Compare Interrupt Enable 0: Channel 1 interrupt is disabled 1: Channel 1 interrupt is enabled
[0]	CH0CCIE	Channel 0 Capture/Compare Interrupt Enable 0: Channel 0 interrupt is disabled 1: Channel 0 interrupt is enabled

Offset: 0x078 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 20 18 23 22 21 19 17 16 Reserved Type/Reset 15 14 13 12 11 10 9 8 Reserved TEVG Reserved UEVG WO 0 WO Type/Reset 0 7 6 5 4 3 2 1 0 Reserved **CH3CCG** CH2CCG CH1CCG CH0CCG Type/Reset WO 0 WO 0 WO 0 WO Bits Field Descriptions [10] TEVG **Trigger Event Generation** The trigger event TEV can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: TEVIF flag is set UEVG Update Event Generation [8] The update event UEV can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Reinitialize the counter The counter value returns to 0 or the CRR preload value, depending on the counter mode in which the current timer is being used. An update operation of any related registers will also be performed. For more detailed descriptions, refer to the corresponding section. [3] CH3CCG Channel 3 Capture/Compare Generation A Channel 3 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically.

Timer Event Generator Register – EVGR

0: No action

This register contains the software event generation bits.


1: Capture/compare event is generated on channel 3 If Channel 3 is configured as an input, the counter value is captured into the CH3CCR register and then the CH3CCIF bit is set. If Channel 3 is configured as an output, the CH3CCIF bit is set.

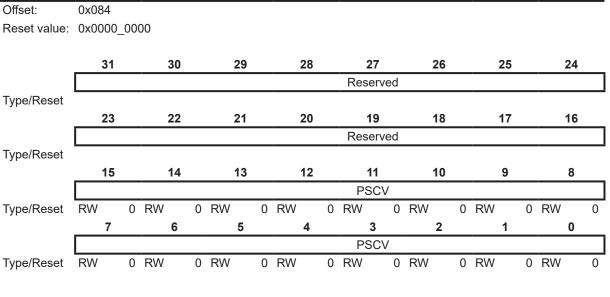
Field	Descriptions
CH2CCG	Channel 2 Capture/Compare Generation A Channel 2 capture/compare event can be generated by setting this bit. It is cleared
	by hardware automatically. 0: No action
	1: Capture/compare event is generated on channel 2
	If Channel 2 is configured as an input, the counter value is captured into the
	CH2CCR register and then the CH2CCIF bit is set. If Channel 2 is configured as an output, the CH2CCIF bit is set.
CH1CCG	Channel 1 Capture/Compare Generation
	A Channel 1 capture/compare event can be generated by setting this bit. It is cleared
	by hardware automatically.
	0: No action
	1: Capture/compare event is generated on channel 1
	If Channel 1 is configured as an input, the counter value is captured into the
	CH1CCR register and then the CH1CCIF bit is set. If Channel 1 is configured as an output, the CH1CCIF bit is set.
CH0CCG	Channel 0 Capture/Compare Generation
	A Channel 0 capture/compare event can be generated by setting this bit. It is cleared
	by hardware automatically.
	0: No action
	1: Capture/compare event is generated on channel 0
	If Channel 0 is configured as an input, the counter value is captured into the CH0CCR register and then the CH0CCIF bit is set. If Channel 0 is configured as an output, the CH0CCIF bit is set.
	CH2CCG CH1CCG

Timer Interrupt Status Register – INTSR

This register stores the timer interrupt status.

Bits	Field	Descriptions
[10]	TEVIF	Trigger Event Interrupt Flag This flag is set by hardware on a trigger event and is cleared by software. 0: No trigger event occurs 1: Trigger event occurs
[8]	UEVIF	Update Event Interrupt Flag This bit is set by hardware on an update event and is cleared by software. 0: No update event occurs 1: Update event occurs Note: The update event is derived from the following conditions: - The counter overflows or underflows - The UEVG bit is asserted - A restart trigger event occurs from the slave trigger input
[7]	CH3OCF	 Channel 3 Over-Capture Flag This flag is set by hardware and cleared by software. 0: No over-capture event is detected 1: Capture event occurs again when the CH3CCIF bit is already set and it is not yet cleared by software
[6]	CH2OCF	 Channel 2 Over-Capture Flag This flag is set by hardware and cleared by software. 0: No over-capture event is detected 1: Capture event occurs again when the CH2CCIF bit is already set and it is not cleared yet by software
[5]	CH1OCF	 Channel 1 Over-Capture Flag This flag is set by hardware and cleared by software. 0: No over-capture event is detected 1: Capture event occurs again when the CH1CCIF bit is already set and it is not cleared yet by software.
[4]	CH0OCF	 Channel 0 Over-Capture Flag This flag is set by hardware and cleared by software. 0: No over-capture event is detected 1: Capture event occurs again when the CH0CCIFbit is already set and it is not yet cleared by software.
[3]	CH3CCIF	 Channel 3 Capture/Compare Interrupt Flag Channel 3 is configured as an output: No match event occurs The content of the counter CNTR has matched the content of the CH3CCR register This flag is set by hardware when the counter value matches the CH3CCR value except in the center-aligned mode. It is cleared by software. Channel 3 is configured as an input: No input capture occurs Input capture occurs This bit is set by hardware on a capture event. It is cleared by software or by reading the CH3CCR register.

Bits	Field	Descriptions
[2]	CH2CCIF	Channel 2 Capture/Compare Interrupt Flag
		- Channel 2 is configured as an output:
		0: No match event occurs
		1: The content of the counter CNTR has matched the content of the CH2CCR register
		This flag is set by hardware when the counter value matches the CH2CCR value except in the center-aligned mode. It is cleared by software. - Channel 2 is configured as an input:
		0: No input capture occurs
		1: Input capture occurs.
		This bit is set by hardware on a capture event. It is cleared by software or by reading the CH2CCR register.
[1]	CH1CCIF	Channel 1 Capture/Compare Interrupt Flag
		- Channel 1 is configured as an output:
		0: No match event occurs
		1: The content of the counter CNTR has matched the content of the CH1CCR register
		This flag is set by hardware when the counter value matches the CH1CCR value except in the center-aligned mode. It is cleared by software.
		- Channel 1 is configured as an input: 0: No input capture occurs
		1: Input capture occurs
		This bit is set by hardware on a capture event. It is cleared by software or by reading the CH1CCR register.
[0]	CH0CCIF	Channel 0 Capture/Compare Interrupt Flag
		- Channel 0 is configured as an output: 0: No match event occurs
		1: The content of the counter CNTR has matched the content of the CH0CCR register
		This flag is set by hardware when the counter value matches the CH0CCR value except in the center-aligned mode. It is cleared by software.
		- Channel 0 is configured as an input:
		0: No input capture occurs 1: Input capture occurs
		This bit is set by hardware on a capture event. It is cleared by software or by reading the CH0CCR register.


Timer Counter Register – CNTR

This register	stores the	e timer co	unter	value.											
Offset:	0x080														
Reset value:	0x0000_	0000													
	31	3	0	29		28		27		26		2	5	2	24
								Reserv	/ed						
Type/Reset															
	23	2	2	21		20		19		18		1	7	1	6
								Reserv	/ed			1			
Type/Reset															
	15	1	4	13		12		11		10)		8
								CNT	V						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6	5		4		3		2		1	I		0
								CNT	V						
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
Bits	Field	De	scrip	tions											
[15:0]	CNTV	Cou	Inter \	/alue											

Timer Prescaler Register – PSCR

This register specifies the timer prescaler value to generate the counter clock.

Bits	Field	Descriptions
[15:0]	PSCV	Prescaler Value
		These bits are used to specify the prescaler value to generate the counter clock
		frequency f _{CK_CNT} .

 $f_{CK_CNT} = \frac{f_{CK_PSC}}{PSCV[15:0]+1},$ where the f_{CK_PSC} is the prescaler clock source.

This register	specifies	the tin	ner co	unte	er-reload	valı	le.													
Offset:	0x088																			
Reset value:	0x0000_	FFFF																		
	31		30		29			28		2	27		26			25			24	
										Res	erve	ed								
Type/Reset																				
	23		22		21			20			19		18			17			16	
										Res	erve	ed								
Type/Reset																				
	15		14		13			12			11		10			9			8	
										С	RV									
Type/Reset	RW	1 R	W	1	RW	1	RW		1	RW		1	RW	1	RW		1	RW		1
	7		6		5			4			3		2			1			0	
										С	RV									
Type/Reset	RW	1 R	W	1	RW	1	RW		1	RW		1	RW	1	RW		1	RW		1
Bits	Field		Desc	rip	tions															
[15:0]	CRV		Count	er-F	Reload Va	lue	;													
			The C	RV	is the rele	bad	value	e wh	nich	is loa	ded	int	to the act	ual	coun	ter r	egi	ster.		

Reset value:	0x0000_	000	00																			
	31		3	30			29			28			27		26			25			24	
												Res	served									
Type/Reset																						
	23		2	22			21			20			19		18			17			16	
												Res	served									
Type/Reset																						
	15		1	14			13			12		1	11		10			9			8	
												СН	0CCV									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	C	RW	1	0	RW		0	RW		0
	7			6			5			4			3		2			1			0	
												СН	0CCV									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	C	RW	1	0	RW		0	RW		0

Channel 0 Capture/Compare Register – CH0CCR

Bits	Field	Descriptions
[15:0]	CH0CCV	Channel 0 Capture/Compare Value
		- When Channel 0 is configured as an output:
		The CH0CCR value is compared with the counter value and the comparison result
		is used to trigger the CH0OREF output signal.
		- When Channel 0 is configured as an input:
		The CHACCR register stores the counter value cantured by the last channel (

The CH0CCR register stores the counter value captured by the last channel 0 capture event.

This register	specifies	the	timer of	chani	nel 1 d	capti	ure/	comp	are	valı	ue.										
Offset:	0x094																				_
Reset value:	0x0000_	_00	00																		
	31		3	0		29			28		2	27		26			25		2	24	
											Res	erved									
Type/Reset																					
	23		2	2		21			20			19		18			17		1	6	
											Res	erved									
Type/Reset																					
	15		1	4		13			12			11		10			9			8	
											CH	1CCV									
Type/Reset	RW	0	RW	C	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
	7			6		5			4			3		2			1			0	
											CH	1CCV									
Type/Reset	RW	0	RW	C	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
Bits	Field		Des	scrip	tions	6															
[45.0]	01400		0		4.0		10														

Channel 1 Capture/Compare Register – CH1CCR

Bits	Field	Descriptions
[15:0]	CH1CCV	Channel 1 Capture/Compare Value
		- When Channel 1 is configured as an output:
		The CH1CCR value is compared with the counter value and the comparison result
		is used to trigger the CH1OREF output signal.
		- When Channel 1 is configured as an input:
		The CH1CCR register stores the counter value captured by the last channel 1

The CH1CCR register stores the counter value captured by the last channel 1 capture event.

This register	specifies	the	timer cl	nann	el 2 c	aptı	ure/	comp	are	val	ue.										
Offset:	0x098																				-
Reset value:	0x0000_	00	00																		
	31		30			29			28		2	27		26			25		2	4	
											Res	erved									
Type/Reset																					_
	23		22			21			20			19		18			17		1	6	
											Res	erved									
Type/Reset																					_
	15		14			13			12			11		10			9		8	3	
											CH2	2CCV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW	0)
	7		6			5			4			3		2			1		()	
											CH2	2CCV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW	0)
Bits	Field		Des	crip	tions	;															_

Channel 2 Capture/Compare Register – CH2CCR

Bits	Field	Descriptions
[15:0]	CH2CCV	Channel 2 Capture/Compare Value
		- When Channel 2 is configured as an output:
		The CH2CCR value is compared with the counter value and the comparison result
		is used to trigger the CH2OREF output signal.
		- When Channel 2 is configured as an input:
		The CH2CCR register stores the counter value contured by the last channel 2

The CH2CCR register stores the counter value captured by the last channel 2 capture event.

This register	specifies	the	timer	cha	ann	el 3 c	aptu	ıre/	comp	are	valı	Je.										
Offset:	0x09C		I				-															
Reset value:	0x0000_	000	00																			
	31		;	30			29			28			27		26			25			24	
												Res	served	1								
Type/Reset																						
	23			22			21			20			19		18			17			16	
												Res	serve	1								
Type/Reset																						
	15			14			13			12			11		10			9			8	
												CH	3CCV	'								
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	() RW	/	0	RW		0	RW		0
	7			6			5			4			3		2			1			0	
												CH	3CCV	/								
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	() RM	/	0	RW		0	RW		0
Bits	Field		De	sci	ript	ions																
[15:0]		1	Ch	onn		Con	turo	ICo	mpor	$\sim 1/$	ميراد											

Channel 3 Capture/Compare Register – CH3CCR

Bits	Field	Descriptions
[15:0]	CH3CCV	Channel 3 Capture/Compare Value
		- When Channel 3 is configured as an output:
		The CH3CCR value is compared with the counter value and the comparison result
		is used to trigger the CH3OREF output signal.
		- When Channel 3 is configured as an input:
		The CH3CCR register stores the counter value captured by the last channel 3

capture event.

This register	-	the	timer ch	ann	el 0 as	symm	etric d	comp	bare	value	Э.								
Offset:	0x0A0																		
Reset value:	0x0000	_00	00																
	31		30		2	29		28			27	2	6		25		2	.4	
										Res	erved								
Type/Reset																			
	23		22		2	21		20			19	1	8		17		1	6	
										Res	erved								
Type/Reset																			_
	15		14		1	3		12			11	1	0		9		f	8	
										CH	DACV								Γ
Type/Reset	RW	0	RW	0	RW	(RW		0	RW	0	RW	0	RW		0	RW	(0
	7		6		!	5		4			3	2	2		1		(0	
										CH	DACV								Π
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions														
[15:0]	CHOAC	V	Chan) Asvm	metr	ic Cor	nnar	ΈV	alue									

Channel 0 Asymmetric Compare Register – CH0ACR

Bits	Field	Descriptions
[15:0]	CH0ACV	Channel 0 Asymmetric Compare Value
		When channel 0 is configured as asymmetric PWM mode and the counter is
		counting down, the value written is this register will be compared to the counter.

Channel 1 Asymmetric Compare Register – CH1ACR

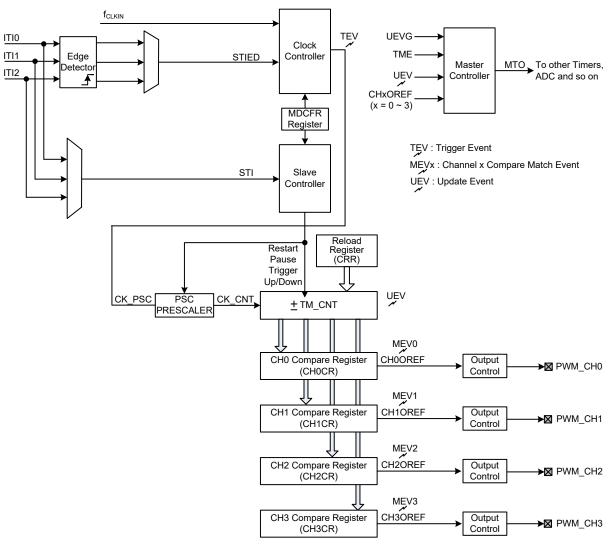
This register	specifies	the ti	, mer ch	ann	el 1 a	syn	nme	etric c	comp	bare	value	Э.									
Offset:	0x0A4					-															
Reset value:	0x0000_	0000)																		
	31		30			29			28			27		2	6		25			24	
											Res	serv	ed								
Type/Reset																					
	23		22			21			20			19		1	8		17			16	
											Res	erv	ed								
Type/Reset																					
	15		14			13			12			11		1	0		9			8	
											CH	1AC	V								
Type/Reset	RW	0 F	RM	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
	7		6			5			4			3		2	2		1			0	
											CH	1AC	V								
Type/Reset	RW	0 F	RM	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions																
[15:0]	CH1AC	/	Chanr	nel ´	1 Asyr	nm	etrio	c Cor	npar	e V	alue										
			When	ch	anne	1	is (confi	gure	ed a	is as	ymr	net	ric PV	/M m	node	and	the	e cou	Inte	r is
			counti	ng (down,	the	e va	lue w	ritte	n is	this r	egis	ster	will be	com	pared	to t	he c	count	er.	

This register	specifies	the	timer	cha	nn	el 2 as	sym	me	tric c	omp	are	value	e.										
Offset:	0x0A8																						
Reset value:	0x0000_	_00	00																				
	31		;	30		:	29			28			27		:	26			25			24	
												Res	serve	d									
Type/Reset																							
	23		2	22			21			20			19			18			17			16	
												Res	serve	b									
Type/Reset																							
	15			14			13			12			11			10			9			8	
												CH	2AC\	/									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0
	7			6			5			4			3			2			1			0	
												CH	2AC\	/									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0	RW		0
Bits	Field		De	scr	ipt	ions																	
[15:0]	CH2AC	1	Ch	ann	<u> </u>	Δενη	nmc	tric	Con	nar		ميراد											

Channel 2 Asymmetric Compare Register – CH2ACR

Bits	Field	Descriptions
[15:0]	CH2ACV	Channel 2 Asymmetric Compare Value
		When channel 2 is configured as asymmetric PWM mode and the counter is
		counting down, the value written is this register will be compared to the counter.

Channel 3 Asymmetric Compare Register – CH3ACR


This register			timor ob				- C														
Offset:	0x0AC	uie		ann	ei J a	Syn	inne		Joint	Jare	value	•									
Reset value:	0x0000_	000	00																		
	31		30			29			28		2	27		26			25			24	
											Rese	erve	d								
Type/Reset																					
	23		22			21			20		1	9		18			17			16	
											Rese	erve	d								
Type/Reset	·																				
51	15		14			13			12		1	1		10			9			8	
											СНЗ		V				-			-	
Type/Reset	RW	0	RW	0	RW		0	RW		0			0	RW	0	RW		0	RW		0
1990/110301	7	0	6	0	1.00	5	0	1.00	4	0		3	0	2	0	1.00	1	0	1.00	0	0
	<u> </u>					5			4		СНЗ	-	\ /	2			<u> </u>			0	
- (D)											_	AC									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions																
[15:0]	CH3AC	/	Chan	nel 3	3 Asyr	nm	etrio	c Cor	npar	e V	alue										
			When	ch	anne	13	is (confi	gure	ed a	as asy	mm	net	ric PWN	1 m	ode a	and	the	e cou	unte	r is
									-		-			will be co							

14 Pulse-Width-Modulation Timer (PWM)

Introduction

The Pulse-Width-Modulation Timer consists of one 16-bit up/down-counter, four 16-bit Compare Registers (CRs), one 16-bit Counter-Reload Register (CRR) and several control/status registers. It can be used for a variety of purposes including general timer and output waveform generation such as single pulse generation or PWM output.

Features

- 16-bit up/down auto-reload counter
- 16-bit programmable prescaler that allows division of the prescaler clock source by any factor between 1 and 65536 to generate the counter clock frequency
- Up to 4 independent channels for:
 - Compare Match Output
 - Generation of PWM waveform Edge and Center-aligned Mode
 - Single Pulse Mode Output
- Synchronization circuit to control the timer with external signals and to interconnect several timers together
- Interrupt generation with the following events:
 - Update event
 - Trigger event
 - Output compare match event
- PWM Master/Slave mode controller

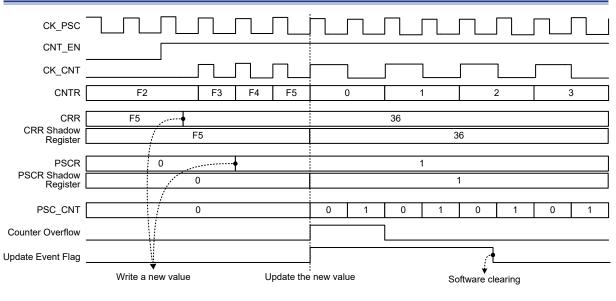
Functional Descriptions

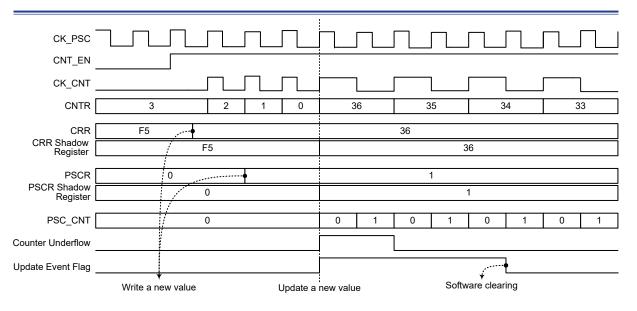
Counter Mode

Up-Counting

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the CRR register, in a count-up direction. Once the counter reaches the counter-reload value; then restarts from 0 and generates a counter overflow event. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 0 for the up-counting mode.

When the update event is generated by setting the UEVG bit in the EVGR register to 1, the counter value will also be initialized to 0.

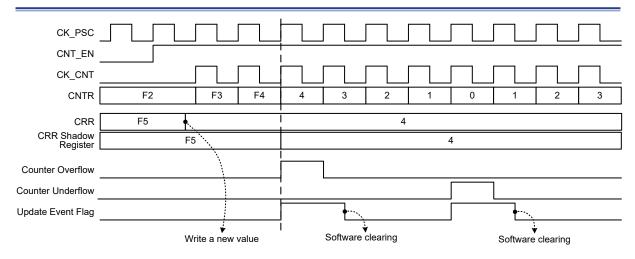



Figure 65. Up-counting Example

Down-Counting

In this mode the counter counts continuously from the counter-reload value, which is defined in the CRR register, to 0 in a count-down direction. Once the counter reaches 0; then restarts from the counter-reload value and generates a counter underflow event. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 1 for the down-counting mode.

When the update event is set by the UEVG bit in the EVGR register, the counter value will also be initialized to the counter-reload value.



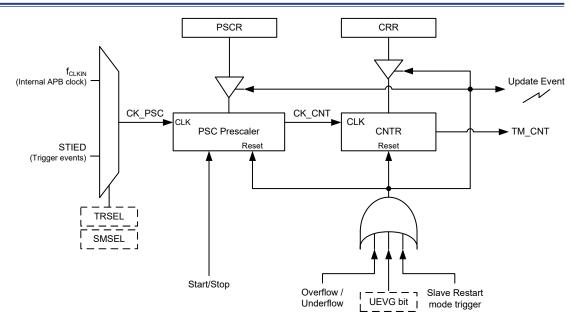
Center-Aligned Counting

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer module generates an overflow event when the counter counts to the counter-reload value in the up-counting mode and generates an underflow event when the counter counts to 0 in the down-counting mode. The counting direction bit DIR in the CNTCFR register is read-only and indicates the counting direction when in the center-aligned mode. The counting direction is updated by hardware automatically.

Setting the UEVG bit in the EVGR register will initialize the counter value to 0 irrespective of whether the counter is counting up or down in the center-aligned counting mode.

The update event interrupt flag bit in the INTSR register will be set to 1, when an overflow or underflow event occurs.

Clock Controller

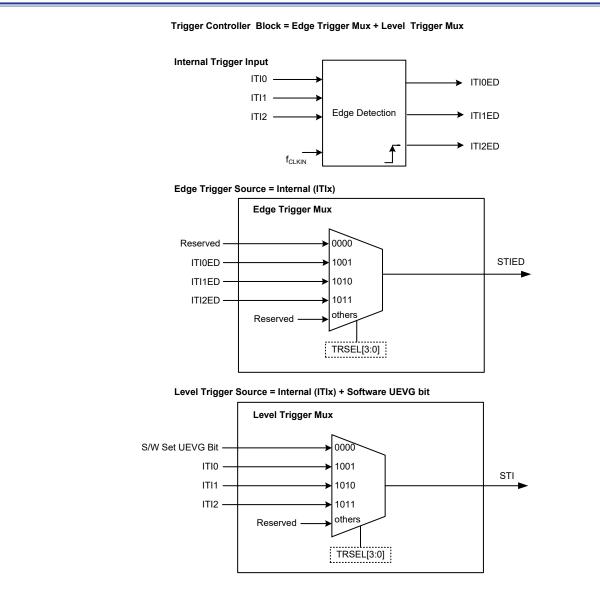

The following describes the Timer Module clock controller which determines the clock source of the internal prescaler counter.

Internal APB clock f_{CLKIN} :

The default internal clock source is the APB clock $f_{\mbox{\tiny CLKIN}}$ used to drive the counter prescaler.

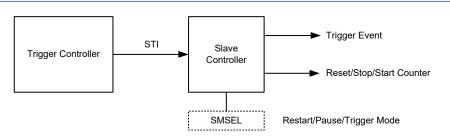
STIED:

The counter prescaler can count during each rising edge of the STI signal. This mode can be selected by setting the SMSEL field to 0x7 in the MDCFR register. Here the counter will act as an event counter. The input event, known as STI here, can be selected by setting the TRSEL field to an available value except the value of 0x0. When the STI signal is selected as the clock source, the internal edge detection circuitry will generate a clock pulse during each STI signal rising edge to drive the counter prescaler. It is important to note that if the TRSEL field is set to 0x0 to select the software UEVG bit as the trigger source, then when the SMSEL field is set to 0x7, the counter will be updated instead of counting.



Trigger Controller

The trigger controller is used to select the trigger source and setup the trigger level or edge trigger condition. For the internal trigger input, it can be selected by the Trigger Selection bits TRSEL in the TRCFR register. For all the trigger sources except the UEVG bit software trigger, the internal edge detection circuitry will generate a clock pulse at each trigger signal rising edge to stimulate some PWM functions which are triggered by a trigger signal rising edge.



Slave Controller

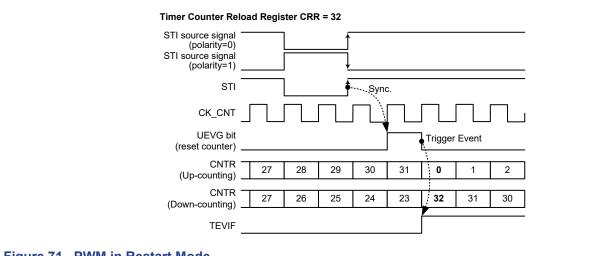

The PWM can be synchronized with an external trigger in several modes including the Restart mode, the Pause mode and the Trigger mode which is selected by the SMSEL field in the MDCFR register. The trigger input of these modes comes from the STI signal which is selected by the TRSEL field in the TRCFR register. The operation modes in the Slave Controller are described in the accompanying sections.

Figure 70. Slave Controller Diagram

Restart Mode

The counter and its prescaler can be reinitialized in response to a rising edge of the STI signal. When an STI rising edge occurs, the update event software generation bit named UEVG will automatically be asserted by hardware and the trigger event flag will also be set. Then the counter and prescaler will be reinitialized. Although the UEVG bit is set to 1 by hardware, the update event does not really occur. It depends upon whether the update event disable control bit UEVDIS is set to 1 or not. If the UEVDIS is set to 1 to disable the update event to occur, there will no update event be generated, however the counter and prescaler are still reinitialized when the STI rising edge occurs. If the UEVDIS bit in the CNTCFR register is cleared to enable the update event to occur, an update event will be generated together with the STI rising edge, then all the preloaded registers will be updated.

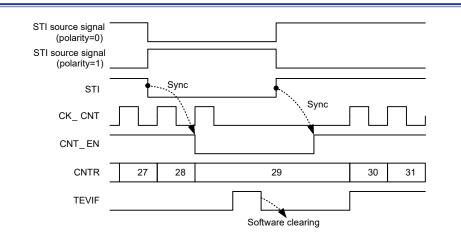
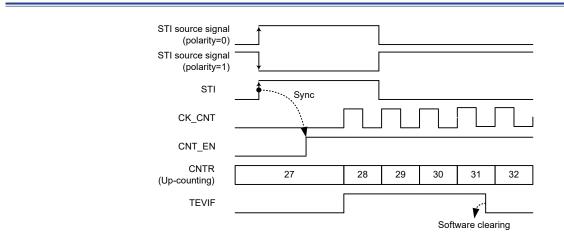


Figure 71. PWM in Restart Mode

Pause Mode


In the Pause Mode, the selected STI input signal level is used to control the counter start/stop operation. The counter starts to count when the selected STI signal is at a high level and stops counting when the STI signal is changed to a low level, here the counter will maintain its present value and will not be reset. Since the Pause function depends upon the STI level to control the counter stop/start operation.

Trigger Mode

After the counter is disabled to count, the counter can resume counting when an STI rising edge signal occurs. When an STI rising edge occurs, the counter will start to count from the current value in the counter. Note that if the STI signal is selected to be derived from the UEVG bit software trigger, the counter will not resume counting. When software triggering using the UEVG bit is selected as the STI source signal, there will be no clock pulse generated which can be used to make the counter resume counting. Note that the STI signal is only used to enable the counter to resume counting and has no effect on controlling the counter to stop counting.

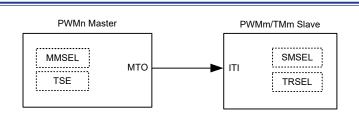
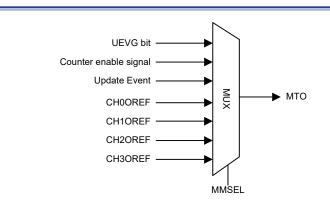


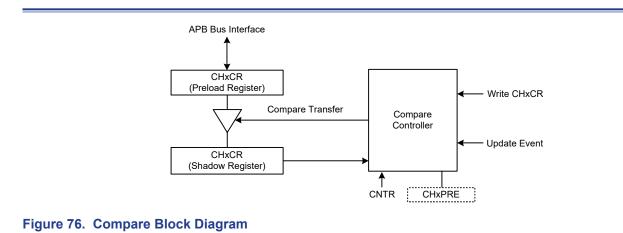
Figure 73. PWM in Trigger Mode


Master Controller

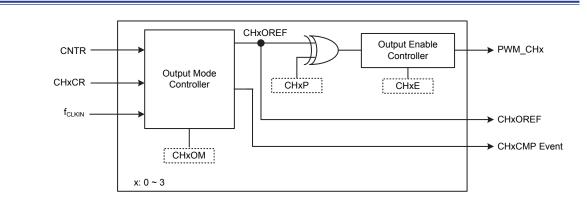
The PWMs and TMs can be linked together internally for timer synchronization or chaining. When one PWM is configured to be in the Master Mode, the PWM Master Controller will generate a Master Trigger Output (MTO) signal which includes a reset, a start, a stop signal or a clock source which is selected by the MMSEL field in the MDCFR register to trigger or drive another PWM or TM, if exists, which is configured in the Slave Mode.

Figure 74. Master PWMn and Slave PWMm/TMm Connection

The Master Mode Selection bits, MMSEL, in the MDCFR register are used to select the MTO source for synchronizing another slave PWM or TM if exists.


For example, setting the MMSEL field to 0x5 is to select the CH1OREF signal as the MTO signal to synchronize another slave PWM or TM. For a more detailed description, refer to the related MMSEL field definitions in the MDCFR register.

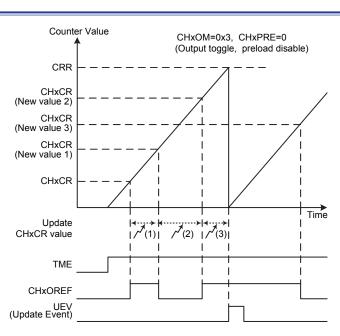
Channel Controller


The PWM has four independent channels which can be used as compare match outputs. Each compare match output channel is composed of a preload register and a shadow register. Data access of the APB bus is always implemented by reading/writing preload register.

When used in the compare match output mode, the contents of the CHxCR preload register is copied into the associated shadow register; the counter value is then compared with the register value.

Output Stage

The PWM has four channels for compare match, single pulse or PWM output function. The channel output PWM_CHx is controlled by the CHxOM, CHxP and CHxE bits in the corresponding CHxOCFR, CHPOLR and CHCTR registers.



Channel Output Reference Signal

When the PWM is used in the compare match output mode, the Channel x Output Reference signal, CHxOREF, is defined by the CHxOM field setup. The CHxOREF signal has several types of output function which defines what happens to the output when the counter value matches the contents of the CHxCR register. In addition to the low, high and toggle CHxOREF output types; there are also PWM mode 1 and PWM mode 2 outputs. In these modes, the CHxOREF signal level is changed according to the count direction and the relationship between the counter value and the CHxCR content. There are also two modes which will force the output into an inactive or active state irrespective of the CHxCR content or counter values. With regard to a more detailed description refer to the relative bit definition. The accompanying Table 36 shows a summary of the output type setup.

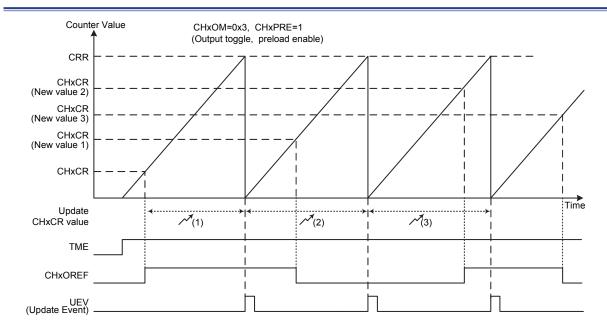

CHxOM Value	Compare Match Level
0x0	No change
0x1	Clear Output to 0
0x2	Set Output to 1
0x3	Toggle Output
0x4	Force Inactive Level
0x5	Force Active Level
0x6	PWM Mode 1
0x7	PWM Mode 2
0xE	Asymmetric PWM mode 1
0xF	Asymmetric PWM mode 2

Table 30. Compare Match Output Setup

Figure 78. Toggle Mode Channel Output Reference Signal (CHxPRE = 0)

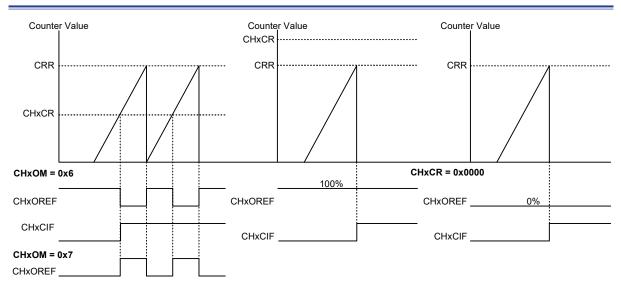
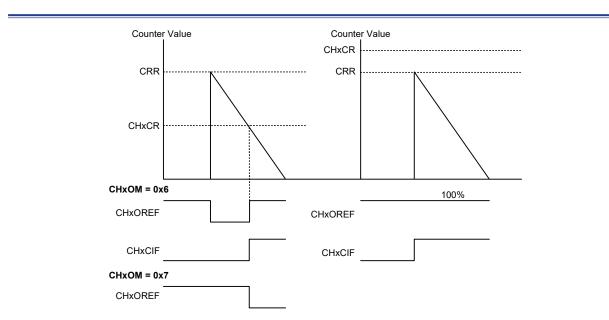
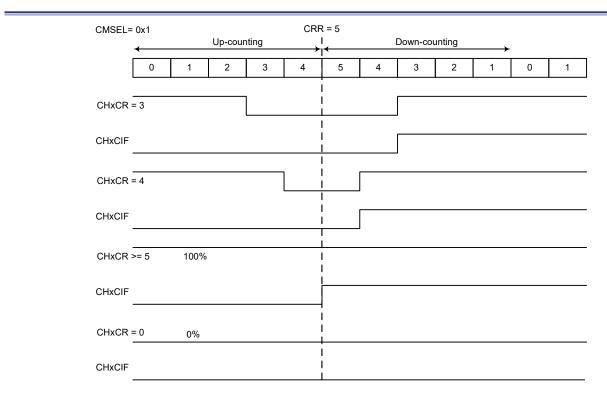
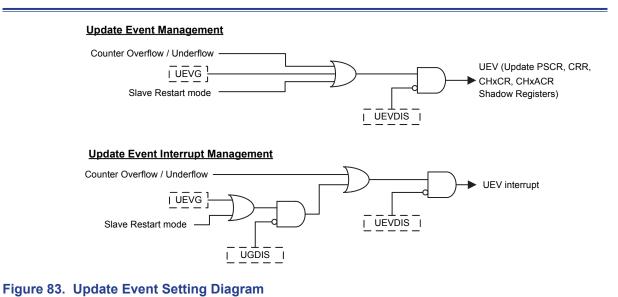




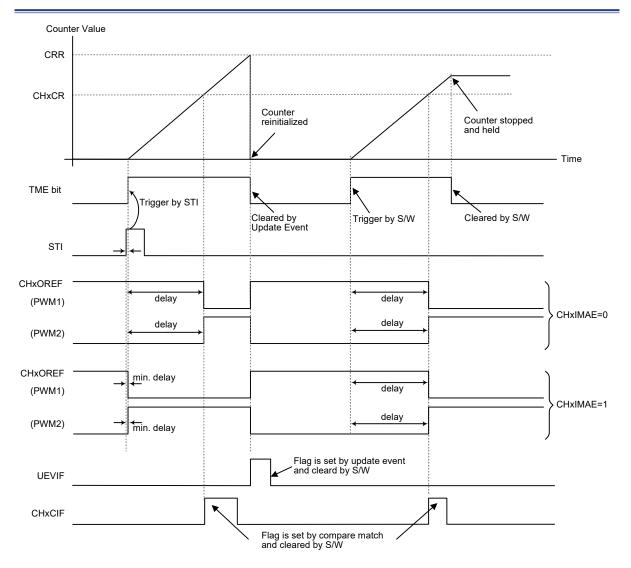
Figure 80. PWM Mode Channel Output Reference Signal and Counter in Up-counting Mode

Figure 81. PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode


Figure 82. PWM Mode Channel Output Reference Signal and Counter in Center-aligned Mode

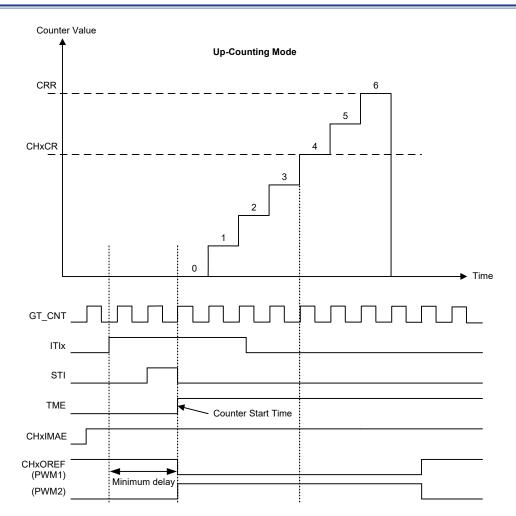
Update Management

The Update event is used to update the CRR, the PSCR, the CHxACR and the CHxCR values from the actual registers to the corresponding shadow registers. An update event occurs when the counter overflows or underflows, the software update control bit is triggered or an update event from the slave controller is generated.


The UEVDIS bit in the CNTCFR register can determine whether the update event occurs or not. When the update event occurs, the corresponding update event interrupt will be generated depending upon whether the update event interrupt generation function is enabled or not by configuring the UGDIS bit in the CNTCFR register. For more detailed description, refer to the UEVDIS and UGDIS bit definition in the CNTCFR register.

Single Pulse Mode

Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit TME in the CTR register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the STI signal rising edge or by setting the TME bit to 1 using software. Setting the TME bit to 1 or a trigger from the STI signal rising edge can generate a pulse and then keep the TME bit at a high state until the update event occurs or the TME bit is written to 0 by software. If the TME bit is cleared to 0 using software, the counter will be stopped and its value held. If the TME bit is automatically cleared to 0 by a hardware update event, the counter will be reinitialized.



In the Single Pulse mode, the STI active edge which sets the TME bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the CHxCR value. In order to reduce the delay to a minimum value, the user can set the CHxIMAE bit in each CHxOCFR register. After a STI rising edge trigger occurs in the single pulse mode, the CHxOREF signal will immediately be forced to the state which the CHxOREF signal will change to as the compare match event occurs without taking the comparison result into account. The CHxIMAE bit is available only when the output channel is configured to operate in the PWM mode 1 or PWM mode 2 and the trigger source is derived from the STI signal.

Asymmetric PWM Mode

Asymmetric PWM mode allows two center-aligned PWM signals to be generated with a programmable phase shift. While the PWM frequency is determined by the value of the CRR register, the duty cycle and the phase-shift are determined by the CHxCR and CHxACR register. When the counter is counting up, the PWM uses the value in CHxCR as up-count compare value. When the counter is into counting down stage, the PWM uses the value in CHxACR as down-count compare value. The Figure 86 is shown an example for asymmetric PWM mode in center-aligned counting mode.

Note: Asymmetric PWM mode can only be operated in center-aligned counting mode.

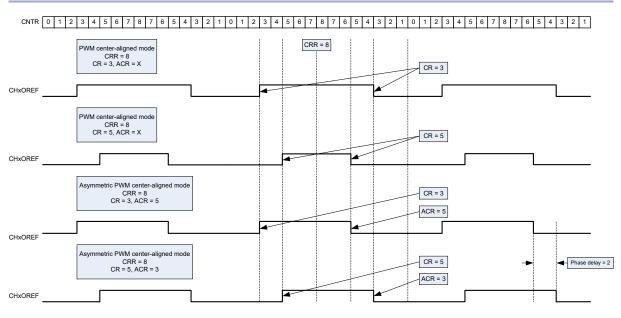
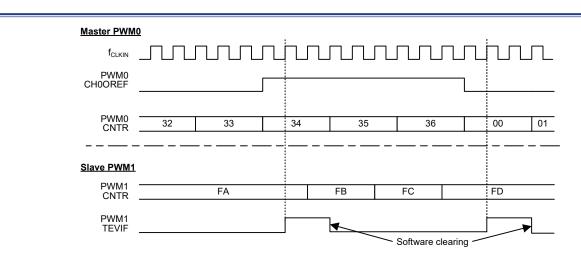


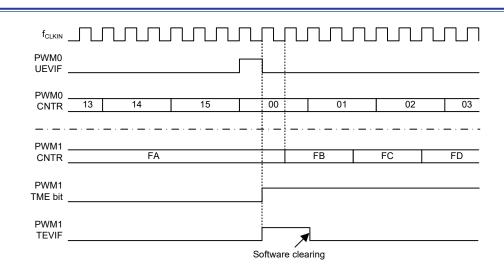
Figure 86. Asymmetric PWM Mode versus Center-aligned Counting Mode


Timer Interconnection

The timers can be internally connected together for timer chaining or synchronization. This can be implemented by configuring one timer to operate in the Master mode while configuring another timer to be in the Slave mode. The following figures present several examples of trigger selection for the master and slave modes.

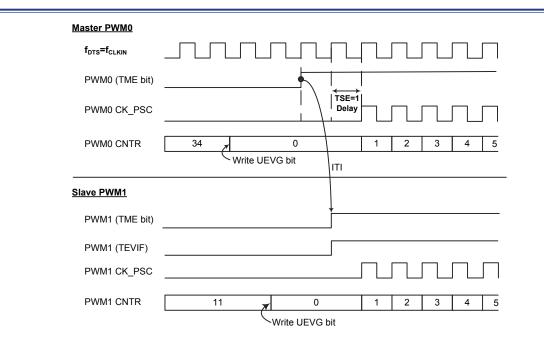
Using one timer to enable/disable another timer start or stop counting

- Configure PWM0 as the master mode to send its channel 0 Output Reference signal CH0OREF as a trigger output (MMSEL = 0x4).
- Configure PWM0 CH0OREF waveform.
- Configure PWM1 to receive its input trigger source from the PWM0 trigger output (TRSEL = 0x9).
- Configure PWM1 to operate in the pause mode (SMSEL = 0x5).
- Enable PWM1 by writing '1' to the TME bit.
- Enable PWM0 by writing '1' to the TME bit.



Using one timer to trigger another timer start counting

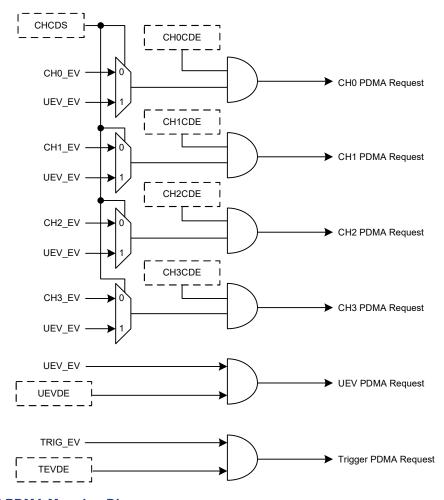
- Configure PWM0 to operate in the master mode to send its Update Event UEV as the trigger output (MMSEL = 0x2).
- Configure the PWM0 period by setting the CRR register.
- Configure PWM1 to get the input trigger source from the PWM0 trigger output (TRSEL = 0x9).
- Configure PWM1 to be in the slave trigger mode (SMSEL = 0x6).
- Start PWM0 by writing '1' to the TME bit.



Starting two timers synchronously with the master enable MTO signal trigger

- Configure PWM0 to operate in the master mode to send its enable signal as a trigger output (MMSEL = 0x1).
- Enable the PWM0 master timer synchronization function by setting the TSE bit in the MDCFR register to 1 to synchronize the slave timer.
- Configure PWM1 to receive its input trigger source from the PWM0 trigger output (TRSEL = 0x9).
- Configure PWM1 to be in the slave trigger mode (SMSEL = 0x6).
- Start PWM0 by writing '1' to the TME bit.

Figure 89. Trigger PWM0 and PWM1 with the PWM0 Timer Enable Signal



Trigger Peripherals Start

To interconnect to the peripherals, such as ADC, Timer and so on, the PWM could output the MTO signal or the channel compare match output signal CHxOREF ($x = 0 \sim 3$) to be used as peripherals input trigger signal and depending on the MCU specification.

PDMA Request

The PWM supports the interface for PDMA data transfer. There are certain events which can generate the PDMA requests if the corresponding enable control bits are set to 1 to enable the PDMA access. These events are the PWM update events, trigger events and channel compare events. When the PDMA request is generated from the PWM channel, it can be derived from the channel compare event or the PWM update event selected by the channel PDMA selection bit, CHCDS, for all channels. For more detailed PDMA configuring information, refer to the corresponding section in the PDMA chapter.

Register Map

The following table shows the PWM registers and reset values.

Table 31. PWM Registe	r Map
-----------------------	-------

Register	Offset	Description	Reset Value
CNTCFR	0x000	Timer Counter Configuration Register	0x0000_0000
MDCFR	0x004	Timer Mode Configuration Register	0x0000_0000
TRCFR	0x008	Timer Trigger Configuration Register	0x0000_0000
CTR	0x010	Timer Control Register	0x0000_0000
CH0OCFR	0x040	Channel 0 Output Configuration Register	0x0000_0000
CH10CFR	0x044	Channel 1 Output Configuration Register	0x0000_0000
CH2OCFR	0x048	Channel 2 Output Configuration Register	0x0000_0000
CH3OCFR	0x04C	Channel 3 Output Configuration Register	0x0000_0000
CHCTR	0x050	Channel Control Register	0x0000_0000
CHPOLR	0x054	Channel Polarity Configuration Register	0x0000_0000
DICTR	0x074	Timer PDMA / Interrupt Control Register	0x0000_0000
EVGR	0x078	Timer Event Generator Register	0x0000_0000
INTSR	0x07C	Timer Interrupt Status Register	0x0000_0000
CNTR	0x080	Timer Counter Register	0x0000_0000
PSCR	0x084	Timer Prescaler Register	0x0000_0000
CRR	0x088	Timer Counter-Reload Register	0x0000_FFFF
CH0CR	0x090	Channel 0 Compare Register	0x0000_0000
CH1CR	0x094	Channel 1 Compare Register	0x0000_0000
CH2CR	0x098	Channel 2 Compare Register	0x0000_0000
CH3CR	0x09C	Channel 3 Compare Register	0x0000_0000
CH0ACR	0x0A0	Channel 0 Asymmetric Compare Register	0x0000_0000
CH1ACR	0x0A4	Channel 1 Asymmetric Compare Register	0x0000_0000
CH2ACR	0x0A8	Channel 2 Asymmetric Compare Register	0x0000_0000
CH3ACR	0x0AC	Channel 3 Asymmetric Compare Register	0x0000_0000

Register Descriptions

Timer Counter Configuration Register – CNTCFR

This register specifies the PWM counter configuration.

Offset: 0x000 Reset value: 0x000_0000

	31	30	29	28	27	26	25		24	
				Reserved					DIR	
Type/Reset									RW	0
	23	22	21	20	19	18	17		16	
				Reserved					CMSE	EL
Type/Reset							RW	0	RW	0
	15	14	13	12	11	10	9		8	
					Reserved					
Type/Reset										
	7	6	5	4	3	2	1		0	
				Reserved			UGDIS	S	UEVD	IS
Type/Reset							RW	0	RW	0

Bits Field Descriptions [24] DIR **Counting Direction** 0: Count-up 1: Count-down Note: This bit is read only when the Timer is configured to be in the Center-aligned mode [17:16] **Counter Mode Selection** CMSEL 00: Edge-aligned mode. Normal up-counting and down-counting available for this mode. Counting direction is defined by the DIR bit. 01: Center-aligned mode 1. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-down period. 10: Center-aligned mode 2. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up period. 11: Center-aligned mode 3. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up and count-down periods. UGDIS Update event interrupt generation disable control [1] 0: Any of the following events will generate an update PDMA request or interrupt - Counter overflow/underflow - Setting the UEVG bit - Update generation through the slave mode 1: Only counter overflow/underflow generates an update PDMA request or interrupt [0] UEVDIS Update event Disable control 0: Enable the update event request by one of following events: - Counter overflow/underflow - Setting the UEVG bit - Update generation through the slave mode 1: Disable the update event (However the counter and the prescaler are reinitialized if the UEVG bit is set or if a hardware restart is received from the slave mode)

This register specifies the PWM master and slave mode selection and single pulse mode.											
Offset:	0x004										
Reset value:	0x0000_0000										
	31	30	29	28	27	26		25		24	
				Reserved						SPMS	ET
Type/Reset										RW	0
	23	22	21	20	19	18		17		16	
			Reserved					MMSE	ΞL	-	
Type/Reset						RW	0	RW	0	RW	0
	15	14	13	12	11	10		9		8	
			Reserved					SMSE	EL		
Type/Reset						RW	0	RW	0	RW	0
	7	6	5	4	3	2		1		0	
				Reserved						TSE	
Type/Reset										RW	0

Bits	Field	Descriptions
[24]	SPMSET	Single Pulse Mode Setting
		 Counter counts normally irrespective of whether the update event occurred or not.
		 Counter stops counting at the next update event and then the TME bit is cleared by hardware.

Timer Mode Configuration Register – MDCFR

Bits	Field	Descriptions							
[18:16] MMSEL		Master mode	Master Mode Selection Master mode selection is used to select the MTO signal source which is used to synchronize the other slave timer.						
		MMSEL [2:0]	Mode	Descriptions					
	000	Reset Mode	 The MTO signal in the Reset mode is an output derived from one of the following cases: 1. Software setting UEVG bit 2. The STI trigger input signal which will be output on the MTO signal line when the Timer is used in the slave Restart mode 						
	001	Enable Mode	The Counter Enable signal is used as the trigger output.						
		010	Update Mode	 The update event is used as the trigger output according to one of the following cases when the UEVDIS bit is cleared to 0: 1. Counter overflow / underflow 2. Software setting UEVG 3. Slave trigger input when used in slave restart mode 					
		011	_	Reserved					
		100	Compare Mode 0	The Channel 0 Output reference signal named CH0OREF is used as the trigger output.					
		101	Compare Mode 1	The Channel 1 Output reference signal named CH1OREF is used as the trigger output.					
		110	Compare Mode 2	The Channel 2 Output reference signal named CH2OREF is used as the trigger output.					
		111	Compare Mode 3	The Channel 3 Output reference signal named CH3OREF is used as the trigger output.					

_. . .

Bits	Field	Descriptions						
[11:8]	SMSEL	Slave Mode S	election					
		SMSEL [2:0]	Mode	Descriptions				
		000	Disable mode	The prescaler is clocked directly by the internal clock.				
		001	—	Reserved				
		010	—	Reserved				
	011	—	Reserved					
		100	Restart Mode	The counter value restarts from 0 or the CRR shadow register value depending upon the counter mode on the rising edge of the STI signal. The registers will also be updated.				
		101	Pause Mode	The counter starts to count when the selected trigger input STI is high. The counter stops counting on the instant, not being reset, when the STI signal changes its state to a low level. Both the counter start and stop control are determined by the STI signal.				
		110	Trigger Mode	The counter starts to count from the original value in the counter on the rising edge of the selected trigger input STI. Only the counter start control is determined by the STI signal.				
		111	STIED	The rising edge of the selected trigger signal STI will clock the counter.				

[0]

_ ...

TSE

Timer Synchronization Enable

0: No action

. .

1: Master timer (current timer) will generate a delay to synchronize its slave timer through the MTO signal.

This register	specifies the tri	igger sourc	e selection of F	PWM.						
Offset:	0x008									
Reset value:	0x0000_0000									
	31	30	29	28	2	7 2	26 25	24		
					Rese	erved				
Type/Reset										
	23	22	21	20	1	9 1	18 17	16		
					Rese	erved				
Type/Reset										
	15	14	13	12	1	1 1	10 9	8		
					Rese	erved				
Type/Reset										
	7	6	5	4		3	2 1	0		
			Reserved				TRS	EL		
Type/Reset					RW	0 RW	0 RW	0 RW 0		
Bits	Field	Descript	ions							
[3:0]	TRSEL	Trigger Sc	urce Selection							
			are used to se		igger ir	nput (STI) fo	r counter sync	hronization.		
		0000: \$	Software Trigge	r by settin	g the l	JEVG bit				
			nternal Timing			. ,				
			nternal Timing							
			nternal Timing	Module Tr	igger 2	2 (ITI2)				
			Reserved	undated		hon thou are	not in uso i c	e. the slave mode		
			se bits must be sabled by setti	-	-	-	e not in use, i.e			
			PWM Internal	-						
			ming Module	ITIO		ITI1	ITI2]		
		L	PWM0	PWM1		GPTM	_	1		
		PWM1 PWM0 GPTM —								

Timer Trigger Configuration Register – TRCFR

Timer Control Register – CTR

This register specifies the timer enable bit (TME), CRR buffer enable bit (CRBE) and Channel PDMA selection bit (CHCDS).

Offset:	0x010							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
				Reserved				CHCDS
Type/Reset								RW 0
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved			CRBE	TME
Type/Reset							RW 0	RW 0
Bits	Field	Descript	tions					
[16]	CHCDS	Channel F	PDMA event	selection				
		0: Cha	nnel PDMA r	request deriv	ved from the o	channel con	npare event.	
		1: Cha	nnel PDMA r	request deriv	ved from the l	Jpdate ever	nt.	
[1]	CRBE		Reload regist					
				•	pe updated in	•		
				egister can r	not be update	d until the u	ipdate event	occurs
[0]	TME	Timer Ena						
		0: PW						
		1: PW		loorod to 0 t	ha aquatar ia	atopped on	d the D\//\/	
					he counter is		nde and the	

14 Pulse-Width-Modulation Timer (PWM)

When the TME bit is cleared to 0, the counter is stopped and the PWM consumes no power in any operation mode except for the single pulse mode and the slave trigger mode. In these two modes the TME bit can automatically be set to 1 by hardware which permits all the PWM registers to function normally.

This register	-	e channel 0 0	αιραι πιοαθ	comiguration	Ι.				
Offset:	0x040								
Reset value:	0x0000_00	00							
	31	30	29	28	27	26	25	24	
					Reserved				
Type/Reset									
	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset									
	15	14	13	12	11	10	9	8	
					Reserved			CHOON	V[3]
Type/Reset								RW	0
	7	6	5	4	3	2	1	0	
		Reserved	CH0IMAE	CH0PRE	Reserved		CH0OM[2:0]		
Type/Reset			RW 0	RW 0		RW (0 RW 0	RW	0
Bits	Field	Descript	tions						
Bits [5]	Field CH0IMAE	-		Active Enab	le				
		Channel (0: No a) Immediate action						
		Channel (0: No a 1: Sing) Immediate action gle pulse Imr	mediate Activ	ve Mode is e				
		Channel (0: No a 1: Sing The) Immediate action gle pulse Imr CH0OREF	mediate Activ signal will be	ve Mode is e e forced to th	ne compare	e matched level		
		Channel (0: No a 1: Sing The afte) Immediate action gle pulse Imr CH0OREF er an availa	mediate Activ signal will be able trigger	ve Mode is e e forced to th event occu	ne compare urs irrespe	ective of the r		
		Channel (0: No a 1: Sing The afte con) Immediate action gle pulse Imi CH0OREF er an availa iparison bet	mediate Activ signal will bo able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	ne compare urs irrespe CH0CR va	ective of the r alues.	esult of	the
		Channel (0: No a 1: Sing The afte con The) Immediate action gle pulse Imm CH0OREF er an availa pparison bet e effective d	mediate Activ signal will bo able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	ne compare urs irrespe CH0CR va	ective of the r	esult of	the
		Channel (0: No a 1: Sing The afte con The eve) Immediate action gle pulse Immediate CH0OREF er an availat parison bet e effective d nt.	mediate Activ signal will be able trigger ween the CN uration ends	ve Mode is e e forced to th event occu NTR and the s automatica	ne compare urs irrespe CH0CR va ally at the	ective of the r alues. next overflow o	esult of or under	the flow
		Channel (0: No a 1: Sing The afte con The eve Note: The) Immediate action gle pulse Immediate e CH0OREF er an availa aparison bet e effective d nt. e CH0IMAE b	mediate Activ signal will be able trigger ween the CN uration ends	ve Mode is e e forced to th event occu NTR and the s automatica le only if the	ne compare urs irrespe CH0CR va ally at the	ective of the r alues.	esult of or under	the flow
[5]		Channel (0: No a 1: Sing The afte con The eve Note: The in t) Immediate action gle pulse Imi e CH0OREF er an availa parison bet e effective d nt. cH0IMAE t he PWM mo	mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWN	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2.	ne compare urs irrespe CH0CR va ally at the channel 0	ective of the r alues. next overflow o	esult of or under	the flow
	CH0IMAE	Channel (0: No a 1: Sing The afte con The eve Note: The in t Channel () Immediate action gle pulse Immediate cH0OREF er an availat parison bet effective d nt. cH0IMAE I he PWM mo) Compare F	mediate Activ signal will be able trigger ween the CN uration ends bit is availabl	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. 0CR) Preloa	ne compare urs irrespe CH0CR va ally at the channel 0	ective of the r alues. next overflow o	esult of or under	the flow
[5]	CH0IMAE	Channel (0: No a 1: Sing The afte con The eve Note: The in t Channel (0: CH() Immediate action gle pulse Immediate cH0OREF er an availat parison bet effective d nt. cH0IMAE t he PWM mo) Compare F 0CR preload	mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWI Register (CH function is c	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. 0CR) Preloa disabled	ne compare urs irrespe CH0CR va ally at the channel 0 d Enable	ective of the r alues. next overflow o	esult of or under be opera	the flow ated
[5]	CH0IMAE	Channel (0: No a 1: Sing The afte con The eve Note: The in t Channel (0: CH0 The) Immediate action gle pulse Immediate cH0OREF er an availate parison bet e effective d nt. cH0IMAE to he PWM mod compare F 0CR preload e CH0CR reference	mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWI Register (CH function is c egister can	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. 0CR) Preloa disabled be immedia	ne compare urs irrespe CH0CR va ally at the channel 0 nd Enable tely assign	ective of the r alues. next overflow o is configured to	esult of or under be opera ue when	the flow ated the
[5]	CH0IMAE	Channel (0: No a 1: Sing The afte con The eve Note: The in t Channel (0: CH(The CH 1: CH() Immediate action gle pulse Immediate e CH0OREF er an availat parison bet e effective d nt. CH0IMAE to he PWM mod Compare F OCR preload e CH0CR re OPRE bit is co	mediate Activisignal will be able trigger ween the CN uration ends bit is available to a lot a validable 1 or PWN Register (CH function is cleared to 0 a fu	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2. 0CR) Preloa disabled be immedia and the upda enabled	ne compare urs irrespe CH0CR va ally at the channel 0 d Enable tely assign ted CH0CF	ective of the r alues. next overflow o is configured to ned a new valu R value is used i	esult of or under be opera ue when immediat	the flow ated the tely.
[5]	CH0IMAE	Channel (0: No a 1: Sing The afte con The eve Note: The in t Channel (0: CH(The CH 1: CH() Immediate action gle pulse Immediate e CH0OREF er an availat parison bet e effective d nt. CH0IMAE to he PWM mod Compare F OCR preload e CH0CR re OPRE bit is co	mediate Activisignal will be able trigger ween the CN uration ends bit is available to a lot a validable 1 or PWN Register (CH function is cleared to 0 a fu	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2. 0CR) Preloa disabled be immedia and the upda enabled	ne compare urs irrespe CH0CR va ally at the channel 0 d Enable tely assign ted CH0CF	ective of the r alues. next overflow o is configured to ned a new valu	esult of or under be opera ue when immediat	the flow ated the tely.

Channel 0 Output Configuration Register – CH0OCFR

Bits	Field	Descriptions
[8][2:0]	CH0OM[3:0]	Channel 0 Output Mode Setting
		These bits define the functional types of the output reference signal CH0OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH0OREF is forced to 0
		0101: Force active – CH0OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 0 has an active level when CNTR < CH0CR or otherwise has an inactive level.
		 During down-counting, channel 0 has an inactive level when CNTR > CH0CR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 0 is has an inactive level when CNTR < CH0CR or otherwise has an active level.
		 During down-counting, channel 0 has an active level when CNTR > CH0CR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 0 has an active level when CNTR < CH0CR or otherwise has an inactive level.
		 During down-counting, channel 0 has an inactive level when CNTR > CH0ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 0 has an inactive level when CNTR < CH0CR or otherwise has an active level.
		 During down-counting, channel 0 has an active level when CNTR > CH0ACR or otherwise has an inactive level.
		Note: When channel 0 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = 0x1/0x2/0x3)

Offset:	0x044								
Reset value:	0x0000_00	00							
	31	30	29	28	27	26	25	:	24
					Reserved				
Type/Reset									
	23	22	21	20	19	18	17		16
					Reserved				
Type/Reset									
	15	14	13	12	11	10	9		8
					Reserved			CH1	OM[3]
Type/Reset								RW	0
	7	6	5	4	3	2	1		0
		Reserved	CH1IMAE	CH1PRE	Reserved		CH1OM		
Type/Reset			RW 0	RW 0		RW	0 RW	0 RW	0
				RW 0		RW	0 RW	0 RW	0
	Field	Descrip	tions			RW	0 RW	0 RW	0
Bits	Field CH1IMAE	Channel	tions 1 Immediate	RW 0 Active Enab	le	RW	0 RW	0 RW	0
Bits		Channel 0: No	tions 1 Immediate action	Active Enab			0 RW	0 RW	0
Bits		Channel 0: No 1: Sing	tions 1 Immediate action gle pulse Imr	Active Enab	ve Mode is e	enabled			
Bits		Channel 0: No 1: Sing The	tions 1 Immediate action gle pulse Imr CH10REF	Active Enab mediate Activ signal will bo	ve Mode is e e forced to th	enabled ne compar	re matched	level imme	diately
Bits		Channel 0: No 1: Sing The afte	tions 1 Immediate action gle pulse Imr e CH1OREF er an availa	Active Enab mediate Activ signal will bo able trigger	ve Mode is e e forced to th event occu	enabled ne compar urs irresp	re matched pective of t	level imme	diately
Bits		Channel 0: No 1: Sing The afte	tions 1 Immediate action gle pulse Imr e CH1OREF er an availa nparison bet	Active Enab mediate Activ signal will bo	ve Mode is e e forced to th event occu NTR and the	enabled ne compar urs irresp CH1CR v	re matched bective of t values.	level imme he result	diately of the
Bits		Channel 0: No 1: Sing The afte	tions 1 Immediate action gle pulse Imme CH10REF er an availa nparison bet e effective d	Active Enab mediate Activ signal will be able trigger ween the CN	ve Mode is e e forced to th event occu NTR and the	enabled ne compar urs irresp CH1CR v	re matched bective of t values.	level imme he result	diately of the
Bits		Channel 0: No 1: Sing The afte con The eve Note: The	tions 1 Immediate action gle pulse Immediate e CH10REF er an availand nparison bet e effective d ent. e CH1IMAE t	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available	ve Mode is e e forced to th event occu NTR and the s automatica le only if the	enabled ne compar urs irresp CH1CR v ally at the	re matched bective of t ralues. a next overf	level imme he result low or und	diately of the lerflow
Bits [5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t	tions 1 Immediate action gle pulse Immediate CH10REF er an availan parison bet e effective d ent. e CH1IMAE to the PWM model the PWM model	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWN	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2.	enabled ne compar urs irresp CH1CR v ally at the channel 1	re matched bective of t ralues. a next overf	level imme he result low or und	diately of the lerflow
Bits [5]		Channel 0: No 1: Sing The afte con The eve Note: The in t Channel	tions 1 Immediate action gle pulse Im CH1OREF er an availa nparison bet e effective d ent. CH1IMAE I he PWM mo 1 Compare F	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is availabl ode 1 or PWI Register (CH	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. 1CR) Preloa	enabled ne compar urs irresp CH1CR v ally at the channel 1	re matched bective of t ralues. a next overf	level imme he result low or und	diately of the lerflow
Bits [5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH	tions 1 Immediate action gle pulse Immediate e CH10REF er an availan parison bet e effective d ent. e CH1IMAE to the PWM mod 1 Compare F 1 CR preload	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWI Register (CH I function is c	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. I1CR) Preloa disabled.	enabled ne compar urs irresp CH1CR v ally at the channel 1 ad Enable	re matched pective of t ralues. next overf is configure	level imme the result flow or und ed to be op	diately of the lerflow erated
Bits [5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH Th	tions 1 Immediate action gle pulse Immediate e CH10REF er an availand nparison bet e effective d ent. e CH1IMAE to the PWM mod 1 Compare For 1 CR preload e CH1CR r	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWI Register (CH I function is c register can	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. 11CR) Preloa disabled. n be immed	enabled ne compar urs irresp CH1CR v ally at the channel 1 ad Enable liately as	re matched bective of t ralues. a next overf is configure signed a r	level imme the result flow or und ed to be op new value	diately of the lerflow erated when
Bits [5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH Th the	tions 1 Immediate action gle pulse Immediate e CH10REF er an availand nparison bet e effective d ent. e CH1IMAE I the PWM mod 1 Compare F 1 CR preload e CH1CR r e CH1PRE I	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available ode 1 or PWI Register (CH I function is c	ve Mode is e e forced to th event occu NTR and the s automatica le only if the M mode 2. 11CR) Preloa disabled. n be immed	enabled ne compar urs irresp CH1CR v ally at the channel 1 ad Enable liately as	re matched bective of t ralues. a next overf is configure signed a r	level imme the result flow or und ed to be op new value	diately of the lerflow erated when
Bits [5]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH ⁺ Th the	tions 1 Immediate action gle pulse Immediate CH10REF er an availand nparison bet e effective d e effective d e cH1IMAE I he PWM moduli 1 Compare F 1 CR preload e CH1CR r e CH1PRE I mediately.	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWN Register (CH function is c register can bit is cleare	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2. I1CR) Preloa disabled. n be immed ed to 0 and	enabled ne compar urs irresp CH1CR v ally at the channel 1 ad Enable liately as	re matched bective of t ralues. a next overf is configure signed a r	level imme the result flow or und ed to be op new value	diately of the lerflow erated when
Type/Reset Bits [5] [4]	CH1IMAE	Channel 0: No 1: Sing The afte con The eve Note: The in t Channel 0: CH Th the imr 1: CH	tions 1 Immediate action gle pulse Immediate CH10REF er an availand nparison bet e effective d ent. CH1IMAE I he PWM module 1 Compare F 1 CR preload e CH1CR r e CH1PRE I mediately. 1 CR preload	Active Enab mediate Activ signal will be able trigger ween the CN uration ends bit is available de 1 or PWI Register (CH I function is c register can	ve Mode is e e forced to th event occu VTR and the s automatica le only if the M mode 2. (1CR) Preloa disabled. to be immed ed to 0 and enabled	enabled ne compar urs irresp CH1CR v ally at the channel 1 ad Enable liately as the upda	re matched pective of t ralues. is configure signed a r ated CH1C	level imme the result flow or und ed to be op new value R value is	diately of the lerflow erated when s used

Channel 1 Output Configuration Register – CH10CFR

Bits	Field	Descriptions
[8][2:0]	CH1OM[3:0]	Channel 1 Output Mode Setting
		These bits define the functional types of the output reference signal CH1OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH1OREF is forced to 0
		0101: Force active – CH1OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 1 has an active level when CNTR < CH1CR or otherwise has an inactive level.
		 During down-counting, channel 1 has an inactive level when CNTR > CH1CR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 1 has an inactive level when CNTR < CH1CR or otherwise has an active level.
		 During down-counting, channel 1 has an active level when CNTR > CH1CR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 1 has an active level when CNTR < CH1CR or otherwise has an inactive level.
		 During down-counting, channel 1 has an inactive level when CNTR > CH1ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		- During up-counting, channel 1 has an inactive level when CNTR < CH1CR or otherwise has an active level.
		- During down-counting, channel 1 has an active level when CNTR > CH1ACR or otherwise has an inactive level.
		Note: When channel 1 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = 0x1/0x2/0x3)

This register	specifies the	channel 2 o	utput mode c	onfiguratior).				
Offset:	0x048		•						
Reset value:	0x0000_000	00							
	31	30	29	28	27	26	25	24	
					Reserved				
Type/Reset									
	23	22	21	20	19	18	17	16	_
					Reserved				
Type/Reset	15	14	13	12	11	10	9	8	
		1-7	10		Reserved	10		CH2OM[3	31
Type/Reset	L				rtooorrou			- · · ·	0
	7	6	5	4	3	2	1	0	
		Reserved	CH2IMAE	CH2PRE	Reserved		CH2OM[2:0]	
Type/Reset			RW 0	RW 0		RW 0	RW 0	RW	0
Bits	Field	Decorint	iono						
[5]	CH2IMAE	Descript	2 Immediate	Activo Ench	10				_
[5]	CHZIIVIAE	-			le				
[4]	CH2PRE	The afte com The eve Note: The in t Channel 2 0: CH2 The CH 1: CH2	Ile pulse Imn CH2OREF er an availa aparison betw effective du nt. CH2IMAE b ne PWM mod COmpare R CCR preload e CH2CR re 2PRE bit is c 2CR preload	signal will be ble trigger veen the CN iration ends it is availabl de 1 or PWN egister (CH function is c gister can I leared to 0 a function is c	2CR) Preload lisabled. De immediat and the updat	e compare n rs irrespec CH2CR valu Ily at the ne channel 2 is d Enable ely assigne ted CH2CR v	tive of the les. ext overflow configured to d a new va value is used	result of th or underflo o be operate ue when th immediately	w ed ne y.

Channel 2 Output Configuration Register – CH2OCFR

Bits	Field	Descriptions
[8][2:0]	CH2OM[3:0]	Channel 2 Output Mode Setting
		These bits define the functional types of the output reference signal CH2OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH2OREF is forced to 0
		0101: Force active – CH2OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 2 has an active level when CNTR < CH2CR or otherwise has an inactive level.
		 During down-counting, channel 2 has an inactive level when CNTR > CH2CR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 2 has an inactive level when CNTR < CH2CR or otherwise has an active level.
		 During down-counting, channel 2 has an active level when CNTR > CH2CR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 2 has an active level when CNTR < CH2CR or otherwise has an inactive level.
		 During down-counting, channel 2 has an inactive level when CNTR > CH2ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 2 has an inactive level when CNTR < CH2CR or otherwise has an active level.
		- During down-counting, channel 2 has an active level when CNTR > CH2ACR or otherwise has an inactive level.
		Note: When channel 2 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = $0x1/0x2/0x3$)

0x04C				Ĩ				
0 0000 00	00							
0x0000_00	00							
31	30	29	28	27	26	25	24	
				Reserved				
23	22	21	20	19	18	17	16	
				Reserved				
15	14	13	12	11	10	9	8	
				Reserved				Л[3]
							RW	0
7	6		4	3	2	1	0	
	Reserved			Reserved		_		
		RW 0	RW 0		RW 0	RW 0	RW	0
Field	Descrip	tions						
CH3IMAE			Active Enab	le				
							l increa e eli e	باما
			-		-			-
							lesuit of	uie
		•					or under	flow
					,			
	Note: The	CH3IMAE	oit is availab	e only if the	channel 3 is	s configured to	be opera	ated
	in t	he PWM mo	de 1 or PWI	/ mode 2.				
CH3PRE	Channel 3	3 Compare F	Register (CH	3CR) Preloa	d Enable			
CH3PRE Channel 3 Compare Register (CH3CR) Preload Enable 0: CH3CR preload function is disabled.								
The CH3CR register can be immediately assigned a new value when the								
			-					
	CH	3PRE bit is o	cleared to 0 a	and the upda		ed a new val value is used		
	CH 1: CH3	3PRE bit is o 3CR preload	cleared to 0 a function is e	and the upda enabled	ited CH3CR		immediat	ely.
	23 15	23 22 15 14 7 6 Reserved Field Descrip CH3IMAE Channel 3 0: No 1: Sing The afte con The eve Note: The	23 22 21 15 14 13 7 6 5 Reserved CH3IMAE RW 0 Field Descriptions CH3IMAE Channel 3 Immediate 0: No action 1: Single pulse Immediate 1: Single pulse Immediate 0: No action 1: Single pulse Immediate 0: No action 1: Single pulse Immediate 1: Single pulse Immediate 0: No action 1: Single pulse Immediate 1: Single pulse Immediate 1: Single pulse Immediate 0: No action 1: Single pulse Immediate <td>23 22 21 20 15 14 13 12 7 6 5 4 Reserved CH3IMAE CH3PRE RW Reserved CH3IMAE CH3PRE RW CH3IMAE CH3PRE CH3PRE CH3IMAE Channel 3 Immediate Active Enable 0: No action 0 1: Single pulse Immediate Active Enable 0: No action 1: Single pulse Immediate Active The CH3OREF signal will be after an available trigger comparison between the CN The effective duration ends event. Note: The CH3IMAE bit is available</td> <td>23 22 21 20 19 Reserved 15 14 13 12 11 Reserved 7 6 5 4 3 Reserved 7 6 5 4 3 Reserved CH3IMAE CH3IMAE CH3PRE Reserved Reserved Reserved Reserved CH3IMAE Channel 3 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is e The CH3OREF signal will be forced to th after an available trigger event occu comparison between the CNTR and the The effective duration ends automatica event.</td> <td>23 22 21 20 19 18 Reserved 15 14 13 12 11 10 Reserved 7 6 5 4 3 2 Reserved Reserved Reserved Reserved RW 0 RW 0 RW 0 RW 0 Field Descriptions CH3IMAE Channel 3 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is enabled The CH3OREF signal will be forced to the compare after an available trigger event occurs irrespe comparison between the CNTR and the CH3CR val The effective duration ends automatically at the r event. Note: The CH3IMAE bit is available only if the channel 3 is</td> <td>23 22 21 20 19 18 17 Reserved 15 14 13 12 11 10 9 Reserved 7 6 5 4 3 2 1 Reserved CH3IMAE CH3PRE Reserved CH3OM[2:0 RW 0 RW 0 RW 0 Field Descriptions CH3IMAE Channel 3 Immediate Active Enable 0 0: No action 1: Single pulse Immediate Active Mode is enabled The CH3OREF signal will be forced to the compare matched leve after an available trigger event occurs irrespective of the comparison between the CNTR and the CH3CR values. The effective duration ends automatically at the next overflow event. Note: The CH3IMAE bit is available only if the channel 3 is configured to the compare duration ends automatically at the next overflow event.</td> <td>Reserved 23 22 21 20 19 18 17 16 Reserved 15 14 13 12 11 10 9 8 Reserved CH30M Reserved CH30M Reserved CH30M Reserved CH30M RW 0 9 8 Reserved CH30M Reserved CH30M RW 0 9 8 Reserved CH30M RW 0 9 8 Reserved CH30M RW 0 RW 0 RW 0 RW Field Descriptions CH3IMAE Channel 3 Immediate Active Enable 0 RW 0 RW R O RW O RW O RW O RW</td>	23 22 21 20 15 14 13 12 7 6 5 4 Reserved CH3IMAE CH3PRE RW Reserved CH3IMAE CH3PRE RW CH3IMAE CH3PRE CH3PRE CH3IMAE Channel 3 Immediate Active Enable 0: No action 0 1: Single pulse Immediate Active Enable 0: No action 1: Single pulse Immediate Active The CH3OREF signal will be after an available trigger comparison between the CN The effective duration ends event. Note: The CH3IMAE bit is available	23 22 21 20 19 Reserved 15 14 13 12 11 Reserved 7 6 5 4 3 Reserved 7 6 5 4 3 Reserved CH3IMAE CH3IMAE CH3PRE Reserved Reserved Reserved Reserved CH3IMAE Channel 3 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is e The CH3OREF signal will be forced to th after an available trigger event occu comparison between the CNTR and the The effective duration ends automatica event.	23 22 21 20 19 18 Reserved 15 14 13 12 11 10 Reserved 7 6 5 4 3 2 Reserved Reserved Reserved Reserved RW 0 RW 0 RW 0 RW 0 Field Descriptions CH3IMAE Channel 3 Immediate Active Enable 0: No action 1: Single pulse Immediate Active Mode is enabled The CH3OREF signal will be forced to the compare after an available trigger event occurs irrespe comparison between the CNTR and the CH3CR val The effective duration ends automatically at the r event. Note: The CH3IMAE bit is available only if the channel 3 is	23 22 21 20 19 18 17 Reserved 15 14 13 12 11 10 9 Reserved 7 6 5 4 3 2 1 Reserved CH3IMAE CH3PRE Reserved CH3OM[2:0 RW 0 RW 0 RW 0 Field Descriptions CH3IMAE Channel 3 Immediate Active Enable 0 0: No action 1: Single pulse Immediate Active Mode is enabled The CH3OREF signal will be forced to the compare matched leve after an available trigger event occurs irrespective of the comparison between the CNTR and the CH3CR values. The effective duration ends automatically at the next overflow event. Note: The CH3IMAE bit is available only if the channel 3 is configured to the compare duration ends automatically at the next overflow event.	Reserved 23 22 21 20 19 18 17 16 Reserved 15 14 13 12 11 10 9 8 Reserved CH30M Reserved CH30M Reserved CH30M Reserved CH30M RW 0 9 8 Reserved CH30M Reserved CH30M RW 0 9 8 Reserved CH30M RW 0 9 8 Reserved CH30M RW 0 RW 0 RW 0 RW Field Descriptions CH3IMAE Channel 3 Immediate Active Enable 0 RW 0 RW R O RW O RW O RW O RW

Channel 3 Output Configuration Register – CH3OCFR

Bits	Field	Descriptions
[8][2:0]	CH3OM[3:0]	Channel 3 Output Mode Setting
		These bits define the functional types of the output reference signal CH3OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH3OREF is forced to 0
		0101: Force active – CH3OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 3 has an active level when CNTR < CH3CR or otherwise has an inactive level.
		 During down-counting, channel 3 has an inactive level when CNTR > CH3CR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 3 has an inactive level when CNTR < CH3CR or otherwise has an active level.
		 During down-counting, channel 3 has an active level when CNTR > CH3CR or otherwise has an inactive level
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 3 has an active level when CNTR < CH3CR or otherwise has an inactive level.
		 During down-counting, channel 3 has an inactive level when CNTR > CH3ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 3 has an inactive level when CNTR < CH3CR or otherwise has an active level.
		 During down-counting, channel 3 has an active level when CNTR > CH3ACR or otherwise has an inactive level
		Note: When channel 3 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = 0x1/0x2/0x3)

Channel Control Register – CHCTR

This register contains the channel compare output function enable control bits.

	contains the							
Offset:	0x050							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
		1			Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	CH3E	Reserved	CH2E	Reserved	CH1E	Reserved	CH0E
Type/Reset		RW 0		RW 0		RW 0		RW 0
Bits	Field	Descriptio	ns					
Bits [6]	Field CH3E	Description Channel 3 C		ble				
		Channel 3 C 0: Off – C	ompare Enal hannel 3 out	put signal Cl				
[6]	CH3E	Channel 3 C 0: Off – C 1: On – C	ompare Enal hannel 3 out hannel 3 out	put signal Cl put signal Cl			correspondir	ng output pin
		Channel 3 C 0: Off – C 1: On – C Channel 2 C	ompare Enal hannel 3 out hannel 3 out apture/Comp	put signal Cl put signal Cl pare Enable	H3O is genei	rated on the	correspondir	ng output pin
[6]	CH3E	Channel 3 C 0: Off – C 1: On – C Channel 2 C 0: Off – C	ompare Enal hannel 3 out hannel 3 out apture/Comp hannel 2 out	put signal Cl put signal Cl pare Enable put signal Cl	H3O is genei H2O is not ad	rated on the ctive		
[6] [4]	CH3E CH2E	Channel 3 C 0: Off – C 1: On – C Channel 2 C 0: Off – C 1: On – C	ompare Enal hannel 3 out hannel 3 out apture/Comp hannel 2 out hannel 2 out	put signal Cl put signal Cl pare Enable put signal Cl put signal Cl	H3O is genei H2O is not ad	rated on the ctive		
[6]	CH3E	Channel 3 C 0: Off – C 1: On – C Channel 2 C 0: Off – C 1: On – C Channel 1 C	ompare Enal hannel 3 out hannel 3 out apture/Comp hannel 2 out hannel 2 out apture/Comp	put signal Cl put signal Cl pare Enable put signal Cl put signal Cl pare Enable	H3O is gener H2O is not ad H2O is gener	rated on the ctive rated on the		
[6] [4]	CH3E CH2E	Channel 3 C 0: Off – C 1: On – C Channel 2 C 0: Off – C 1: On – C Channel 1 C 0: Off – C	ompare Enal hannel 3 out hannel 3 out apture/Comp hannel 2 out hannel 2 out apture/Comp hannel 1 out	put signal Cl put signal Cl pare Enable put signal Cl put signal Cl pare Enable put signal Cl	H3O is gener H2O is not ao H2O is gener H1O is not ao	rated on the ctive rated on the ctive	correspondir	ng output pin
[6] [4] [2]	CH3E CH2E CH1E	Channel 3 C 0: Off – C 1: On – C Channel 2 C 0: Off – C 1: On – C Channel 1 C 0: Off – C 1: On – C	ompare Enal hannel 3 out apture/Comp hannel 2 out hannel 2 out apture/Comp hannel 1 out	put signal Cl put signal Cl pare Enable put signal Cl put signal Cl pare Enable put signal Cl put signal Cl	H3O is gener H2O is not ao H2O is gener H1O is not ao	rated on the ctive rated on the ctive	correspondir	ng output pin
[6] [4]	CH3E CH2E	Channel 3 C 0: Off – C 1: On – C Channel 2 C 0: Off – C 1: On – C Channel 1 C 0: Off – C 1: On – C Channel 0 C	ompare Enal hannel 3 out hannel 3 out apture/Comp hannel 2 out apture/Comp hannel 1 out hannel 1 out apture/Comp	put signal Cl put signal Cl pare Enable put signal Cl put signal Cl pare Enable put signal Cl put signal Cl	H3O is gener H2O is not ao H2O is gener H1O is not ao H1O is gener	rated on the ctive rated on the ctive rated on the	correspondir	ng output pin
[6] [4] [2]	CH3E CH2E CH1E	Channel 3 C 0: Off – C 1: On – C Channel 2 C 0: Off – C 1: On – C Channel 1 C 0: Off – C 1: On – C Channel 0 C 0: Off – C	ompare Enal hannel 3 out hannel 3 out apture/Comp hannel 2 out hannel 2 out hannel 1 out hannel 1 out apture/Comp hannel 0 out	put signal Cl put signal Cl pare Enable put signal Cl put signal Cl pare Enable put signal Cl put signal Cl pare Enable	H3O is gener H2O is not au H2O is gener H1O is not au H1O is gener H0O is not au	rated on the ctive rated on the ctive rated on the ctive	correspondir	ng output pin ng output pin

This register	contains the	channel com	pare output	polarity conti	ol.			
Offset:	0x054							
Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
		1		1	Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset				10			•	•
	15	14	13	12	11	10	9	8
Turne (Decet		I			Reserved			
Type/Reset	7	6	5	4	3	2	1	0
	Reserved	CH3P	ə Reserved	CH2P	ہ Reserved	Z CH1P	Reserved	CHOP
	Reserved	CHIJF	Reserved	CHZF	Reserved	CITIF	Reserved	CITUF
Type/Recet								
Type/Reset		RW 0		RW 0		RW 0		RW 0
	Field		iono	RW 0		RW 0		RW 0
Bits	Field	Descript				RW 0		RW 0
	Field CH3P	Descript	Compare P	olarity		RW 0		RW 0
Bits		Descript Channel 3 0: Cha	3 Compare P nnel 3 Outpu	olarity it is active hig		RW 0		RW 0
Bits [6]		Descript Channel 3 0: Cha 1: Cha	Compare P nnel 3 Outpu nnel 3 Outpu	olarity it is active hight it is active lo		RW 0		RW 0
Bits	СНЗР	Descript Channel 3 0: Cha 1: Cha Channel 2	Compare P nnel 3 Outpu nnel 3 Outpu ? Compare P	olarity it is active hight it is active lo	N	RW 0		RW 0
Bits [6]	СНЗР	Descript Channel 3 0: Cha 1: Cha Channel 2 0: Cha	Compare P nnel 3 Outpu nnel 3 Outpu 2 Compare P nnel 2 Outpu	olarity It is active hig It is active lov olarity	gh	RW 0		RW 0
Bits [6]	СНЗР	Descript Channel 3 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 1	Compare P nnel 3 Outpu nnel 3 Outpu Compare P nnel 2 Outpu nnel 2 Outpu Compare P	olarity ut is active hig ut is active loo olarity ut is active hig ut is active loo olarity	w gh w	RW 0		RW 0
Bits [6] [4]	СНЗР СН2Р	Descript Channel 3 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 1 0: Cha	Compare P nnel 3 Outpu Compare P nnel 2 Outpu nnel 2 Outpu Compare P nnel 1 Outpu	olarity It is active high it is active low olarity It is active high it is active high olarity It is active high olarity It is active high it is active hig	w gh w gh	RW 0		RW 0
Bits [6] [4] [2]	CH3P CH2P CH1P	Descript Channel 3 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 1 0: Cha 1: Cha 1: Cha	Compare P nnel 3 Outpu nnel 3 Outpu Compare P nnel 2 Outpu Compare P nnel 1 Outpu nnel 1 Outpu	olarity It is active high olarity It is active high It is active high olarity It is active high It is	w gh w gh	RW 0		RW 0
Bits [6] [4]	СНЗР СН2Р	Descript Channel 3 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 1 0: Cha 1: Cha 1: Cha Channel 0	Compare P nnel 3 Outpu nnel 3 Outpu Compare P nnel 2 Outpu Compare P nnel 1 Outpu nnel 1 Outpu	olarity It is active high olarity It is active high It is active high olarity It is active high It is active high olarity It is active high olarity	w gh w gh w	RW 0		RW 0
Bits [6] [4] [2]	CH3P CH2P CH1P	Descript Channel 3 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 1 0: Cha 1: Cha Channel 0 0: Cha	Compare P nnel 3 Outpu nnel 3 Outpu Compare P nnel 2 Outpu Compare P nnel 1 Outpu nnel 1 Outpu) Compare P nnel 0 Outpu	olarity It is active high olarity It is active high It is active high olarity It is active high It is	w gh w gh w gh	RW 0		RW 0

Channel Polarity Configuration Register – CHPOLR

Timer PDMA/Interrupt Control Register – DICTR

This register contains the timer PDMA and interrupt enable control bits.

Offset: 0x074

Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
			Reserved			TEVDE	Reserved	UEVDE
Type/Reset						RW 0		RW 0
	23	22	21	20	19	18	17	16
			Reserved		CH3CDE	CH2CDE	CH1CDE	CH0CDE
Type/Reset					RW 0	RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
			Reserved			TEVIE	Reserved	UEVIE
Type/Reset						RW 0		RW 0
	7	6	5	4	3	2	1	0
			Reserved		CH3CIE	CH2CIE	CH1CIE	CH0CIE
Type/Reset					RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[26]	TEVDE	Trigger event PDMA Request Enable 0: Trigger PDMA request is disabled 1: Trigger PDMA request is enabled
[24]	UEVDE	Update event PDMA Request Enable 0: Update event PDMA request is disabled 1: Update event PDMA request is enabled
[19]	CH3CDE	Channel 3 Compare PDMA Request Enable 0: Channel 3 PDMA request is disabled 1: Channel 3 PDMA request is enabled
[18]	CH2CDE	Channel 2 Compare PDMA Request Enable 0: Channel 2 PDMA request is disabled 1: Channel 2 PDMA request is enabled
[17]	CH1CDE	Channel 1 Compare PDMA Request Enable 0: Channel 1 PDMA request is disabled 1: Channel 1 PDMA request is enabled
[16]	CH0CDE	Channel 0 Compare PDMA Request Enable 0: Channel 0 PDMA request is disabled 1: Channel 0 PDMA request is enabled
[10]	TEVIE	Trigger event Interrupt Enable 0: Trigger event interrupt is disabled 1: Trigger event interrupt is enabled
[8]	UEVIE	Update event Interrupt Enable 0: Update event interrupt is disabled 1: Update event interrupt is enabled
[3]	CH3CIE	Channel 3 Compare Interrupt Enable 0: Channel 3 interrupt is disabled 1: Channel 3 interrupt is enabled

Bits	Field	Descriptions
[2]	CH2CIE	Channel 2 Compare Interrupt Enable 0: Channel 2 interrupt is disabled
		1: Channel 2 interrupt is enabled
[1]	CH1CIE	Channel 1 Compare Interrupt Enable 0: Channel 1 interrupt is disabled 1: Channel 1 interrupt is enabled
[0]	CH0CIE	Channel 0 Compare Interrupt Enable 0: Channel 0 interrupt is disabled 1: Channel 0 interrupt is enabled

Timer Event Generator Register – EVGR

This register contains the software event generation bits.

		software ev	ent generatior	h bits.		1	I	
Offset:	0x078							
Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved			TEVG	Reserved	UEVG
Type/Reset						WO 0		WO 0
	7	6	5	4	3	2	1	0
Type/Reset			Reserved		CH3CG WO 0	CH2CG WO 0	CH1CG WO 0	CH0CG WO 0
Bits	Field	Descrip	tions					
[10]	TEVG	The trigg automatio 0: No	vent Generati er event TEV cally. action /IF flag is set		erated by set	ting this bit.	It is cleared	by hardware
[8]	UEVG	The upda automatic 0: No 1: Rei The cou	event Generati ate event UEV cally. action nitialize the co e counter valu unter mode in y related regis er to the corre	can be ger bunter ue returns t which the c sters will als	o 0 or the Cl urrent timer i so be perforr	RR preload v s being used	value, deper I. An update	nding on the operation of

Bits	Field	Descriptions
[3]	CH3CG	Channel 3 Compare Generation A Channel 3 compare event can be generated by software setting this bit. It is cleared by hardware automatically. 0: No action 1: Compare event is generated on channel 3
[2]	CH2CG	Channel 2 Compare Generation A Channel 2 compare event can be generated by software setting this bit. It is cleared by hardware automatically. 0: No action 1: Compare event is generated on channel 2
[1]	CH1CG	Channel 1 Compare Generation A Channel 1 compare event can be generated by software setting this bit. It is cleared by hardware automatically. 0: No action 1: Compare event is generated on channel 1
[0]	CH0CG	 Channel 0 Compare Generation A Channel 0 compare event can be generated by software setting this bit. It is cleared by hardware automatically. 0: No action 1: Compare event is generated on channel 0

Timer Interrupt Status Register – INTSR

This register stores the timer interrupt status.

Offset: 0x07C Reset value: 0x0000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset					·			
	15	14	13	12	11	10	9	8
			Reserved			TEVIF	Reserved	UEVIF
Type/Reset						W0C 0		W0C 0
	7	6	5	4	3	2	1	0
			Reserved		CH3CIF	CH2CIF	CH1CIF	CH0CIF
Type/Reset					W0C 0	W0C 0	W0C 0	W0C 0

Bits	Field	Descriptions
[10]	TEVIF	Trigger Event Interrupt Flag
		This flag is set by hardware on a trigger event and is cleared by software.
		0: No trigger event occurs

1: Trigger event occurs

Bits	Field	Descriptions
[8]	UEVIF	Update Event Interrupt Flag This bit is set by hardware on an update event and is cleared by software. 0: No update event occurs 1: Update event occurs
		Note: The update event is derived from the following conditions: - The counter overflows or underflows - The UEVG bit is asserted - A restart trigger event occurs from the slave trigger input
[3]	CH3CIF	Channel 3 Compare Interrupt Flag 0: No match event occurs 1: The content of the counter CNTR has matched the contents of the CH3CR
		register. This flag is set by hardware when the counter value matches the CH3CR value except in the center-aligned mode. It is cleared by software.
[2]	CH2CIF	Channel 2 Compare Interrupt Flag 0: No match event occurs 1: The content of the counter CNTR has matched the contents of the CH2CR register
		This flag is set by hardware when the counter value matches the CH2CR value except in the center-aligned mode. It is cleared by software.
[1]	CH1CIF	Channel 1 Compare Interrupt Flag 0: No match event occurs 1: The content of the counter CNTR has matched the contents of the CH1CR
		register This flag is set by hardware when the counter value matches the CH1CR value except in the center-aligned mode. It is cleared by software.
[0]	CH0CIF	 Channel 0 Compare Interrupt Flag 0: No match event occurs 1: The content of the counter CNTR has matched the content of the CH0CR register This flag is set by hardware when the counter value matches the CH0CR value
		except in the center-aligned mode. It is cleared by software.

-

-

Timer Counter Register – CNTR

	er cou		gis	ter = C		R											
This register :	stores the	e timer cou	unter	value.													
Offset:	0x080																
Reset value:	0x0000_	0000															
	31	3	0	29		28		2	7	2	26		25			24	
								Rese	rved								
Type/Reset																	
	23	2	2	21		20		19	9		18		17			16	
								Rese	rved								
Type/Reset																	
	15	1	4	13		12		1'	1		10		9			8	
								CN	TV								
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW		0 R\	Ν	0	RW		0
	7	(6	5		4		3	6		2		1			0	
								CN	TV								
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW		0 R\	N	0	RW		0
Bits	Field	Des	scrip	tions													
[15:0]	CNTV	Cou	Inter \	/alue													

Timer Prescaler Register – PSCR

This register specifies the timer prescaler value to generate the counter clock.

Offset: 0x084 Reset value: 0x0000_0000

	31		30		29		:	28		27		26		2	25		24	
										Reser	ved							
Type/Reset																		
	23		22		21		:	20		19		18		1	7		16	
										Reser	ved							
Type/Reset																		
	15		14		13			12		11		10		9	9		8	
										PSC	V							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0
	7		6		5			4		3		2			1		0	
										PSC	V							
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW	0

Bits	Field	Descriptions
[15:0]	PSCV	Prescaler Value
		These bits are used to specify the prescaler value to generate the counter clock frequency $f_{\text{CK_CNT.}}$
		$f_{CK_CNT} = \frac{f_{CK_PSC}}{PSCV[15:0]+1}$, where the f_{CK_PSC} is the prescaler clock source.

Timer Counter-Reload Register – CRR

This register specifies the timer counter-reload value.

Offset:	0x088													
Reset value:	0x0000_	FFFF												
	31	3) :	29	28		27		26		25		24	1
							Reserv	ed			1			
Type/Reset	23	2	2	21	20		19		18		17		16	\$
							Reserv	ed						
Type/Reset							1100011	ou			1			
.)po/	15	14	4 ·	13	12		11		10		9		8	
							CRV							
Type/Reset	RW	1 RW	1 RW	1	I RW	1	RW	1	RW	1	RW	1	RW	1
	7	6		5	4		3		2		1		0	
							CRV							
Type/Reset	RW	1 RW	1 RW	1	I RW	1	RW	1	RW	1	RW	1	RW	1
Bits	Field	Des	criptions											
[15:0]	CRV	Cou	nter-Reload	l Valu	е									

The CRV is the reload value which is loaded into the actual counter register.

Channel 0 Compare Register – CH0CR

This register	specifies	the	timer c	hanr	nel 0 c	om	bare	e valu	le.												
Offset:	0x090																				
Reset value:	0x0000_	000	0																		
	31		30)		29			28		:	27		2	6		25			24	
											Res	erve	ed								
Type/Reset																					
	23		22	2		21			20			19		1	8		17			16	
											Res	erve	ed								
Type/Reset																					
	15		14			13			12			11		1	0		9			8	
											CH	10C\	/								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	C	RW		0	RW		0
	7		6			5			4			3		2	2		1			0	
											CH	10C\	/								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	C	RW		0	RW		0
Bits	Field		Des	crip	tions	\$															
[15:0]	CH0CV		Char	nnel	0 Cor	npai	re∖	/alue													
													unte	er valu	e and	the	com	pari	son r	esul	t is
			used	to ti	igger	the	СН	100R	EF c	outp	ut sig	nal.									

Offset:	0x094							
Reset value:	0x0000_	_0000						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					CH1CV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
					CH1CV			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW 0	RW 0	RW 0

Channel 1 Compare Register – CH1CR

This register specifies the timer channel 1 compare value.

Bits	Field	Descriptions
[15:0]	CH1CV	Channel 1 Compare Value
		The CH1CR value is compared with the counter value and the comparison result is
		used to trigger the CH1OREF output signal.

Channel 2 Compare Register – CH2CR

This register specifies the timer channel 2 capture/compare value.

Offset: 0x098

Reset value: 0x0000_0000

	31		30			29			28		1	27		26			25			24	
											Res	erved									
Type/Reset																					
	23		22			21			20			19		18			17			16	
											Res	erved									
Type/Reset																					
	15		14			13			12			11		10			9			8	
											CH	I2CV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
											CH	I2CV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
Bits	Field		Desc	rip	tions	;															
[15:0]	CH2CV		Chan	nel 2	2 Con	npar	e V	alue													

The CH2CR value is compared with the counter value and the comparison result is used to trigger the CH2OREF output signal.

Offset:	0x09C																		
Reset value:	0x0000_	_0000																	
	31		30		29		2	28		27		26			25		:	24	
									Re	serve	d								
Type/Reset																			
	23		22		21		2	20		19		18			17			16	
									Re	serve	d								
Type/Reset																			
	15		14		13		1	2		11		10			9			8	
									Cl	H3CV									
Type/Reset	RW	0 R	W	0 F	RW	0	RW	C	RW		0 RW	/	0	RW		0	RW		0
	7		6		5			4		3		2			1			0	
									Cl	H3CV									
Type/Reset	RW	0 R	W	0 F	RW	0	RW	C	RW		0 RW	/	0	RW		0	RW		0
Dito	Field		Deee	1															

Channel 3 Compare Register – CH3CR

This register specifies the timer channel 3 compare value.

Bits	Field	Descriptions
[15:0]	CH3CV	Channel 3 Compare Value
		The CH3CR value is compared with the counter value and the comparison result is
		used to trigger the CH3OREF output signal.

Channel 0 Asymmetric Compare Register – CH0ACR

This register	specifies	the	timer ch	ann	el 0 a	syn	• nme	etric c	omp	are	value	÷.									
Offset:	0x0A0																				
Reset value:	0x0000_	000	0																		
	31		30			29			28		2	27		26			25			24	
											Res	erve	ed								
Type/Reset																					
	23		22			21			20		1	19		18			17			16	
											Res	erve	əd								
Type/Reset																					
	15		14			13			12		1	11		10			9			8	
											CHO)AC	;V								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
											CHO	DAC	;V								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions	;															
[15:0]	CH0AC\	/	Chan	nel () Asyı	nme	etric	: Con	npar	e V	alue										
			When	ch	anne	0 1	is d	config	gure	ed a	as asy	/mn	net	ric PWN	1 m	ode a	and	the	e cou	Inte	r is
			counti	ng	down,	the	va	lue w	ritte	n is	this re	egis	ter	will be c	omp	ared	to t	he c	count	er.	

This register	specifies	the	timer ch	ann	el 1 as	symr	me	etric c	omp	are	valu	e.									
Offset:	0x0A4																				
Reset value:	0x0000_	_00	00																		
	31		30		2	29			28			27		26			25			24	
											Res	serv	ed								
Type/Reset																					
	23		22		2	21			20			19		18			17			16	
											Res	serv	ed								
Type/Reset																					
	15		14		1	13			12			11		10			9			8	
											СН	1AC	V								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
											СН	1AC	V								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions																
[15:0]	CH1AC	V	Chan	nel '	1 Asvm	nmet	tric	: Con	nnar	e V	alue										

Channel 1 Asymmetric Compare Register – CH1ACR

Bits	Field	Descriptions
[15:0]	CH1ACV	Channel 1 Asymmetric Compare Value
		When channel 1 is configured as asymmetric PWM mode and the counter is
		counting down, the value written is this register will be compared to the counter.

Channel 2 Asymmetric Compare Register – CH2ACR

This register	specifies	the	timer ch	ann	el 2 a	isyn	nme	etric c	omp	are	value) .									
Offset:	0x0A8																				
Reset value:	0x0000_	_000	00																		
	31		30			29			28		2	27		26			25			24	
											Res	erv	ed						1		
Type/Reset																					
	23		22			21			20			19		18			17			16	
											Res	erv	ed								
Type/Reset																					
	15		14			13			12			11		10			9			8	
											CH2	2AC	V								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW	1	0
	7		6			5			4			3		2			1			0	
											CH2	2AC	V								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW	1	0
Bits	Field		Desc	rip	tions	5															
[15:0]	CH2AC	V	Chanr	nel 2	2 Asyı	mm	etrio	c Cor	npar	e V	alue										
			When	ch	anne	12	is (confi	gure	ed a	is asy	/mr	net	ric PWN	Лm	ode a	and	the	e col	unte	r is
			counti	ng	down,	the	e va	lue w	ritte	n is	this re	egis	ster	will be c	omp	bared	to t	he c	count	ter.	

This register	specifies	the	timer	cha	nn	el 3 as	sym	me	tric c	omp	are	value	e.									
Offset:	0x0AC																					
Reset value:	0x0000_	_00	00																			
	31		3	80		2	29			28			27		26			25			24	
												Res	served									
Type/Reset																						
	23		2	2		2	21			20			19		18			17			16	
									1			Res	served									
Type/Reset																						
	15		1	4		1	3			12			11		10			9			8	
												СН	3ACV				1					
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	0	RW	'	0	RW		0	RW		0
	7			6		4	5			4			3		2			1			0	
												СН	3ACV									
Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	0	RW	1	0	RW		0	RW		0
Bits	Field		De	scr	ipt	ions																
[15:0]	CH3AC	V				B Asym				•				tuia F		1		م بم دا	4 la -		under:	. :

Channel 3 Asymmetric Compare Register – CH3ACR

When channel 3 is configured as asymmetric PWM mode and the counter is counting down, the value written is this register will be compared to the counter.

15 Basic Function Timer (BFTM)

Introduction

The Basic Function Timer Module, BFTM, is a 32-bit up-counting counter designed to measure time intervals, generate one shot pulses or generate repetitive interrupts. The BFTM can operate in two modes which are repetitive and one shot modes. The repetitive mode restarts the counter at each compare match event which is generated by the internal comparator. The BFTM also supports a one shot mode which will force the counter to stop counting when a compare match event occurs.

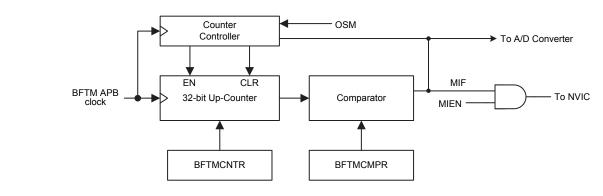
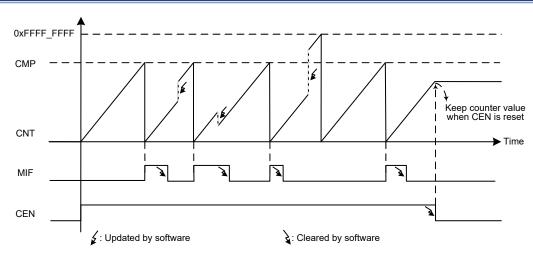
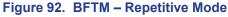


Figure 91. BFTM Block Diagram

Features

- 32-bit up-counting counter
- Compare Match function
- Includes debug mode
- Clock source: BFTM APB clock
- Counter value can be R/W on the fly
- One shot mode: counter stops counting when compare match occurs
- Repetitive mode: counter restarts when compare match occurs
- Compare Match interrupt enable / disable control

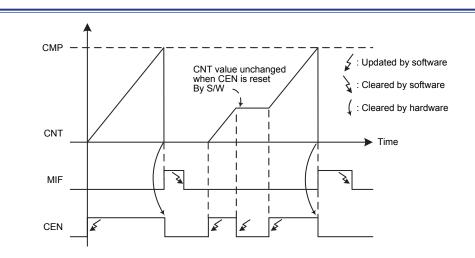


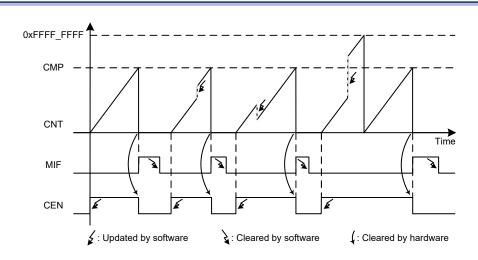

Functional Description

The BFTM is a 32-bit up-counting counter which is driven by the BFTM APB clock, PCLK. The counter value can be changed or read at any time even when the timer is counting. The BFTM supports two operating modes known as the repetitive mode and one shot mode allowing the measurement of time intervals or the generation of periodic time durations.

Repetitive Mode

The BFTM counts up from zero to a specific compare value which is pre-defined by the BFTMCMPR register. When the BFTM operates in the repetitive mode and the counter reaches a value equal to the specific compare value in the BFTMCMPR register, the timer will generate a compare match event signal, MIF. When this occurs, the counter will be reset to 0 and resume its counting operation. When the MIF signal is generated, a BFTM compare match interrupt will also be generated periodically if the compare match interrupt is enabled by setting the corresponding interrupt control bit, MIEN, to 1. The counter value will remain unchanged and the counter will stop counting if it is disabled by clearing the CEN bit to 0.





One Shot Mode

By setting the OSM bit in BFTMCR register to 1, the BFTM will operate in the one shot mode. The BFTM starts to count when the CEN bit is set to 1 by the application program. The counter value will remain unchanged if the CEN bit is cleared to 0 by the application program. However, the counter value will be reset to 0 and stop counting when the CEN bit is cleared automatically to 0 by the internal hardware when a counter compare match event occurs.

Trigger ADC Start

When a BFTM compare match event occurs, a compare match interrupt flag, MIF, will be generated which can be used as an A/D Converter input trigger source.

Register Map

The following table shows the BFTM registers and their reset values.

Table 33. BFTM Register Map

Register	Offset	Description	Reset Value
BFTMCR	0x000	BFTM Control Register	0x0000_0000
BFTMSR	0x004	BFTM Status Register	0x0000_0000
BFTMCNTR	0x008	BFTM Counter Value Register	0x0000_0000
BFTMCMPR	0x00C	BFTM Compare Value Register	0xFFFF_FFF

Register Descriptions

BFTM Control Register – BFTMCR

This register specifies the overall BFTM control bits.

Offset: 0x000 Reset value: 0x000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved			CEN	OSM	MIEN
Type/Reset						RW 0	RW 0	RW 0

Bits	Field	Descriptions
[2]	CEN	BFTM Counter Enable Control
		0: BFTM is disabled
		1: BFTM is enabled
		When this bit is set to 1, the BFTM counter will start to count. The counter will stop counting and the counter value will remain unchanged when the CEN bit is cleared to 0 by the application program regardless of whether it is in the repetitive or one shot mode. However, in the one shot mode, the counter will stop counting and be reset to 0 when the CEN bit is cleared to 0 by the timer hardware circuitry which results from a compare match event.
[1]	OSM	BFTM One Shot Mode Selection
r.1		0: Counter operates in repetitive mode
		1: Counter operates in one shot mode
[0]	MIEN	BFTM Compare Match Interrupt Enable Control 0: Compare Match Interrupt is disabled 1: Compare Match Interrupt is enabled

This register specifies the BFTM status.

BFTM Status Register – BFTMSR

Offset:	0x004							
Reset value:	0x0000_000	0						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved				MIF
Type/Reset								W0C 0

Bits	Field	Descriptions
[0]	MIF	BFTM Compare Match Interrupt Flag
		0: No compare match event occurs
		1: Compare match event occurs
		When the counter value, CNT, is equal to the compare register value, CMP, a

When the counter value, CNT, is equal to the compare register value, CMP, a compare match event will occur and the corresponding interrupt flag, MIF will be set. The MIF bit is cleared to 0 by writing a data "0".

BFTM Counter Value Register – BFTMCNTR

This register specifies the BFTM counter value.

Offset:	0x008	
Reset value:	0x0000_	0000

	31		30		29		28	}	27		26		25		24	
									CNT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	23		22		21		20)	19		18		17		16	
									CNT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	15		14		13		12	2	11		10		9		8	
									CNT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0
	7		6		5		4		3		2		1		0	
									CNT							
Type/Reset	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0	RW	0

Bits	Field	Descriptions
[31:0]	CNT	BFTM Counter Value
		A 32-bit BFTM counter value is stored in this field which can be read or written on
		the fly.

BFTM Compare Value Register – BFTMCMPR

The register specifies the BFTM compare value.

Offset: 0x00C Reset value: 0xFFF_FFF

31 30 29 28 27 26 25 24 CMP 1 RW 1 RW 1 RW 1 RW 1 RW 1 RW Type/Reset RW 1 RW 22 21 20 19 18 23 17 16 CMP Type/Reset RW 1 15 14 13 12 11 10 9 8 CMP 1 RW Type/Reset RW 1 7 6 5 4 3 2 1 0 CMP 1 RW Type/Reset RW 1 Et al al Descriptions D:4-

DILS	Field	Descriptions
[31:0]	CMP	BFTM Compare Value
		This register specifies a 32-bit BFTM compare value which is used for comparison
		with the BFTM counter value.

16 Motor Control Timer (MCTM)

Introduction

The Motor Control Timer consists of one 16-bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter-Reload Register (CRR), one 8-bit Repetition Counter (REPR) and several control/status registers. It can be used for a variety of purposes which include general time measurement, input signal pulse width measurement, output waveform generation for signals such as single pulse generation or PWM generation, including dead time insertion.

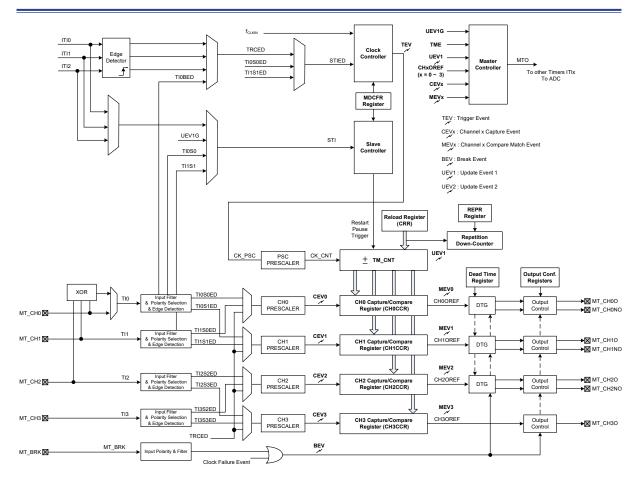
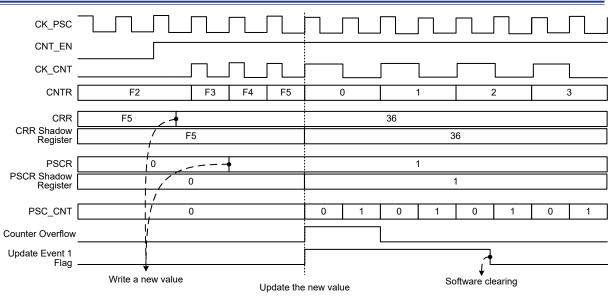


Figure 95. MCTM Block Diagram

Features

- 16-bit up/down auto-reload counter
- 16-bit programmable prescaler that allows division the counter clock frequency by any factor between 1 and 65536
- Up to 4 independent channels for:
 - Input Capture function
 - Compare Match Output
 - PWM waveform Generation Edge and Center-aligned Counting Mode
 - Single Pulse Mode Output
- Complementary Outputs with programmable dead-time insertion
- Repetition counter updates timer registers only after a given number of counter cycles
- Synchronization circuit controls the timer with external signals and can interconnect several timers together
- Interrupt generation on the following events
 - Update event 1
 - Update event 2
 - Trigger event
 - Input capture event
 - Output compare match
 - Break event only interrupt
- MCTM Master/Slave mode controller
- Supports 3-phase motor control and hall sensor interface
- Break input signals to assert the timer output signals in reset state or in a known state

Functional Descriptions


Counter Mode

Up-Counting

In this mode the counter counts continuously from 0 to the counter-reload value, which is defined in the CRR register, in a count-up direction. Once the counter reaches the counter-reload value; then restarts from 0 and generates a counter overflow event. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 0 for the up-counting mode.

When an update event 1 is generated by setting the UEV1G bit in the EVGR register to 1, the counter value will also be initialised to 0.

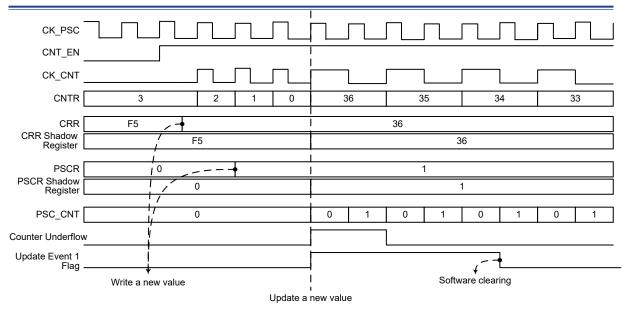


Figure 96. Up-counting Example

Down-Counting

In this mode the counter counts continuously from the counter-reload value, which is defined in the CRR register, to 0 in a count-down direction. Once the counter reaches 0; then restarts from the counter-reload value and generates a counter underflow event. This action will continue repeatedly. The counting direction bit DIR in the CNTCFR register should be set to 1 for the down-counting mode.

When an update event 1 is generated by setting the UEV1G bit in the EVGR register to 1, the counter value will also be initialised to the counter-reload value.

Figure 97. Down-counting Example



Center-Aligned Counting

In the center-aligned counting mode, the counter counts up from 0 to the counter-reload value and then counts down to 0 alternatively. The Timer Module generates an overflow event when the counter counts to the counter-reload value in the up-counting mode and generates an underflow event when the counter counts to 0 in the down-counting mode. The counting direction bit DIR in the CNTCFR register is read-only and indicates the count direction when in the center-aligned counting mode. The count direction is updated by hardware automatically.

Setting the UEV1G bit in the EVGR register will initialise the counter value to 0 irrespective of whether the counter is counting up or down in the center-aligned counting mode.

The update event interrupt flag bit in the INTSR register will be set to 1, when an overflow or underflow event occurs.

Repetition Down-counter Operation

The update event 1 is usually generated at each overflow or underflow event occurrence. However, when the repetition operation is active by assigning a non-zero value into the REPR register, the update event is only generated if the REPR counter has reached zero. The REPR value is decreased when the following conditions occur:

- At each counter overflow in the up-counting mode
- At each counter underflow in the down-counting mode
- At each counter overflow and underflow in the center-aligned counting mode

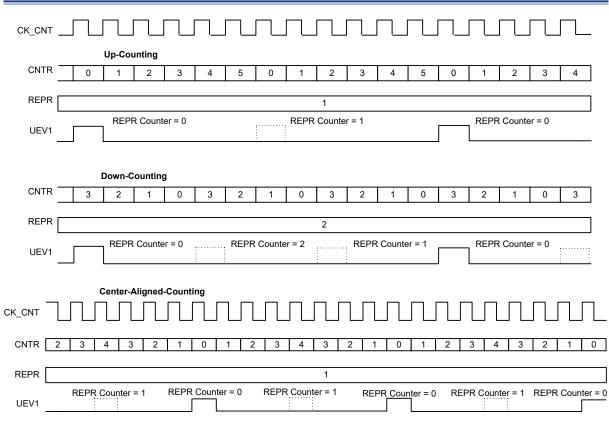


Figure 99. Update Event 1 Dependent Repetition Mechanism Example

Clock Controller

The following describes the Timer Module clock controller which determines the internal prescaler counter clock source.

Internal APB clock f_{CLKIN} :

The default internal clock source is the APB clock f_{CLKIN} which is used to drive the counter prescaler when the slave mode is disabled. When the slave mode selection bits SMSEL are set to 0x4, 0x5 or 0x6, the internal APB clock f_{CLKIN} is the counter prescaler driving clock source.

STIED:

The counter prescaler can count during each rising edge of the STI signal. This mode can be selected by setting the SMSEL field to 0x7 in the MDCFR register. Here the counter will act as an event counter. The input event, known as STI here, can be selected by setting the TRSEL field to an available value except the value of 0x0. When the STI signal is selected as the clock source, the internal edge detection circuitry will generate a clock pulse during each STI signal rising edge to drive the counter prescaler. It is important to note that if the TRSEL field is set to 0x0 to select the software UEV1G bit as the trigger source, then when the SMSEL field is set to 0x7, the counter will be updated instead of counting.

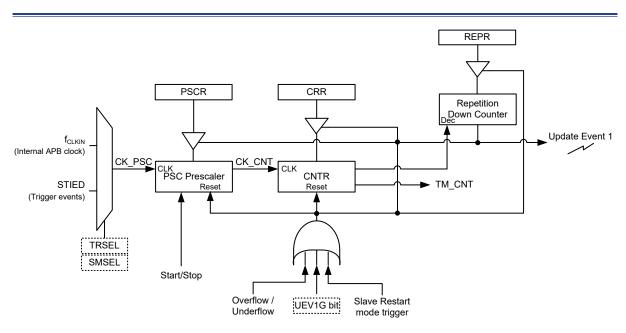
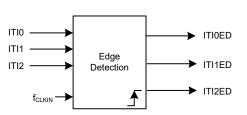
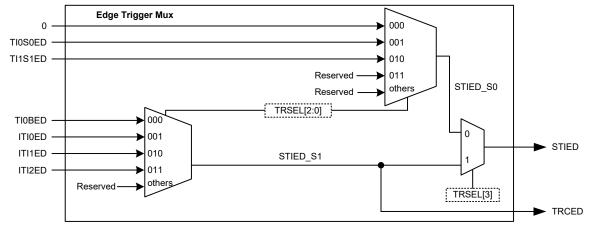


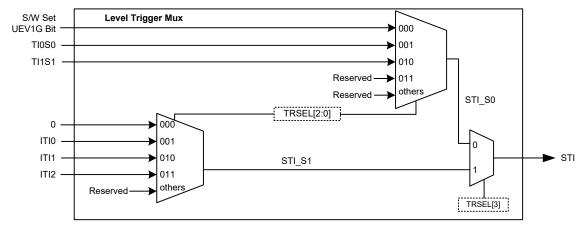
Figure 100. MCTM Clock Source Selection



Trigger Controller


The trigger controller is used to select the trigger source and setup the trigger level and edge trigger conditions. For the internal trigger input (ITIx), it can be selected by the Trigger Selection bits, TRSEL, in the TRCFR register. For all the trigger sources except the UEV1G bit software trigger, the internal edge detection circuitry will generate a clock pulse at each trigger signal rising edge to activate some MCTM functions which are triggered by a trigger signal rising edge.

Trigger Controller Block = Edge Trigger Mux + Level Trigger Mux


Internal Trigger Input

Edge Trigger Source = Internal (ITIx) + Channel input (TIn)

Level Trigger Source = Internal (ITIx) + Channel input (TIn) + Software UEV1G bit

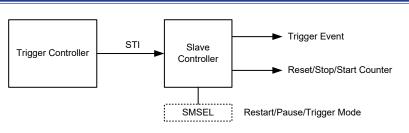


Figure 101. Trigger Controller Block

Slave Controller

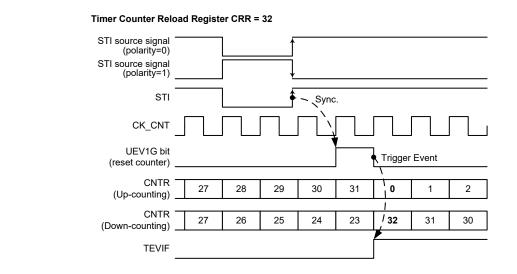
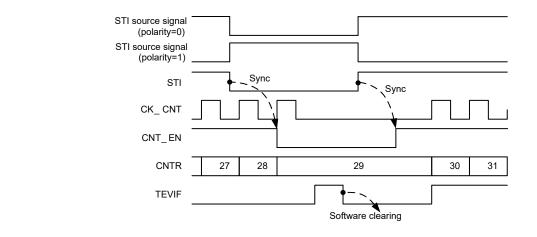

The MCTM can be synchronised with an internal/external trigger in several modes including the Restart mode, the Pause mode and the Trigger mode which are selected by the SMSEL field in the MDCFR register. The trigger input of these modes comes from the STI signal which is selected by the TRSEL field in the TRCFR register. The operation modes in the Slave Controller are described in the accompanying sections.

Figure 102. Slave Controller Diagram

Restart Mode

The counter and its prescaler can be reinitialised in response to an STI signal rising edge. If the UEV1DIS bit is set to 1 to disable the update event, then no update event will be generated, however the counter and prescaler are still reinitialized when an STI rising edge occurs. If the UEV1DIS bit in the CNTCFR register is cleared to enable the update event, then an update event will be generated together with the STI rising edge and all the preloaded registers will be updated.



Pause Mode

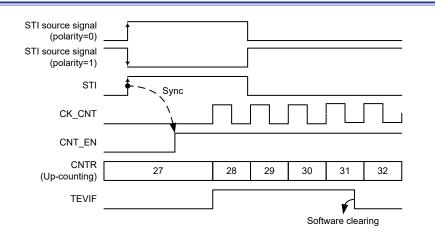

In the Pause Mode, the selected STI input signal level is used to control the counter start/stop operation. The counter starts to count when the selected STI signal is at a high level and stops counting when the STI signal is changed to a low level. When the counter stops, it will maintain its present value and not be reset. Since the Pause function depends upon the STI level to control the counter stop/start operation, the selected STI trigger signal can not be derived from the TI0BED signal.

Figure 104. MCTM in Pause Mode

Trigger Mode

After the counter is disabled to count, the counter can resume counting when an STI rising edge signal occurs. When an STI rising edge occurs, the counter will start to count from the current value in the counter. Note that if the STI signal is selected to be sourced from the UEV1G bit software trigger, the counter will not resume counting. When software triggering using the UEV1G bit is selected as the STI source signal, there will be no clock pulse generated which can be used to make the counter resume counting. Note that the STI signal is only used to enable the counter to resume counting and has no effect to stop counting.

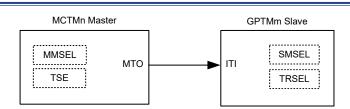
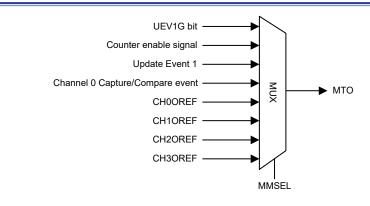


Figure 105. MCTM in Trigger Mode

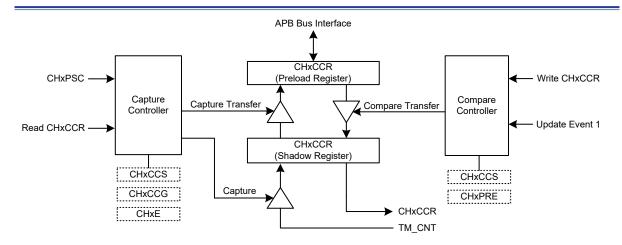

Master Controller

The MCTMs and GPTMs can be linked together internally for timer synchronisation or chaining. When one MCTM is configured to be in the Master Mode, the MCTM Master Controller will generate a Master Trigger Output (MTO) signal which can reset, restart, stop the Slave counter or be a clock source of the Slave Counter. This can be selected by the MMSEL field in the MDCFR register to trigger or drive another MCTM or GPTM, if exists, which should be configured in the Slave Mode.

Figure 106. Master MCTMn and Slave GPTMm Connection

The Master Mode Selection bits, MMSEL, in the MDCFR register are used to select the MTO source for synchronising another slave MCTM or GPTM if exists.

For example, setting the MMSEL field to 0x5 is to select the CH1OREF signal as the MTO signal to synchronise another slave MCTM or GPTM. For a more detailed description, refer to the related MMSEL field definitions in the MDCFR register.



Channel Controller

The MCTM has four independent channels which can be used as capture inputs or compare match outputs. Each capture input or compare match output channel is composed of a preload register and a shadow register. Data access of the APB bus is always implemented by reading/writing the preload register.

When used in the input capture mode, the counter value is captured into the CHxCCR shadow register first and then transferred into the CHxCCR preload register when the capture event occurs.

When used in the compare match output mode, the contents of the CHxCCR preload register is copied into the associated shadow register, the counter value is then compared with the register value.

Figure 108. Capture/Compare Block Diagram

Capture Counter Value Transferred to CHxCCR

When the channel is used as a capture input, the counter value is captured into the Channel Capture/Compare Register (CHxCCR) when an effective input signal transition occurs. Once the capture event occurs, the CHxCCIF flag in the INTSR register is set accordingly. If the CHxCCIF bit is already set, i.e., the flag has not yet been cleared by software, and another capture event on this channel occurs, the corresponding channel Over-Capture flag, named CHxOCF, will be set.

Pulse Width Measurement

The input capture mode can be also used for pulse width measurement from signals on the MT_ CHx pins, TIx. The following example shows how to configure the MCTM when operated in the input capture mode to measure the high pulse width and the input period on the MT_CH0 pin using channel 0 and channel 1. The basic steps are shown as follows.

- Configure the capture channel 0 (CH0CCS = 0x1) to select the TI0 signal as the capture input.
- Configure the CH0P bit to 0 to choose the rising edge of the TI0 input as the active polarity.
- Configure the capture channel 1 (CH1CCS = 0x2) to select the TI0 signal as the capture input.
- Set the CH1P bit to 1 to choose the falling edge of the TI0 input as the active polarity.
- Setup the TRSEL bits to 0x1 to select TI0S0 as the trigger input.
- Configure the Slave controller to operate in the Restart mode by setting the SMSEL field in the MDCFR register to 0x4.
- Enable the input capture mode by setting the CH0E and CH1E bits in the CHCTR register to 1.

As the following diagram shows, the high pulse width on the MT_CH0 pin will be captured into the CH1CCR register while the input period will be captured into the CH0CCR register after an input capture operation.

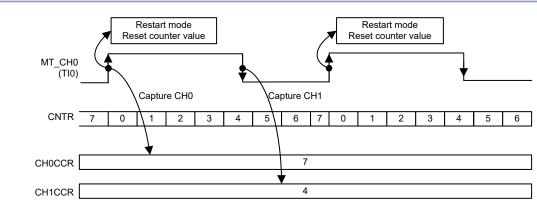
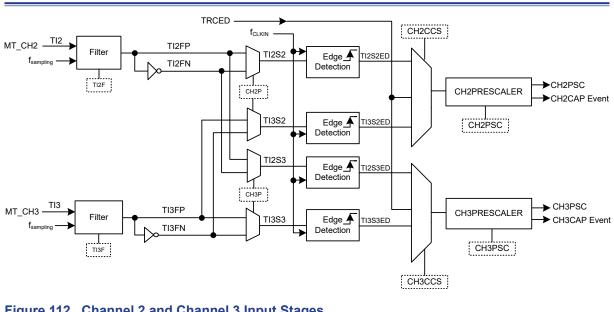
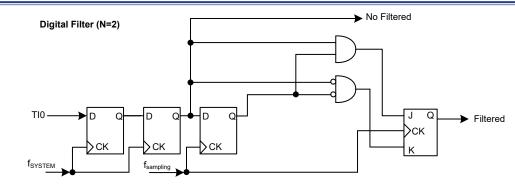



Figure 110. PWM Pulse Width Measurement Example


Input Stage

The input stage consists of a digital filter, a channel polarity selection, edge detection and a channel prescaler. The channel 0 input signal TI0 can be chosen to come from the MT_CH0 signal or the Excusive-OR function of the MT_CH0, MT_CH1 and MT_CH2 signals. The channel input signal TIx is sampled by a digital filter to generate a filtered input signal TIxFP. Then the channel polarity and the edge detection block can generate a TIxSxED signal for the input capture function. The effective input event number can be set by the channel capture input source prescaler setting field CHxPSC.

Figure 111. Channel 0 and Channel 1 Input Stages



Digital Filter

The digital filters are embedded in the input stage and clock controller block for the MT_CH0 \sim MT_CH3 pins. The digital filter in the MCTM is an N-event counter where N refers to how many valid transitions are necessary to output a filtered signal. The N value can be 0, 2, 4, 5, 6 or 8 according to the selection for each filter.

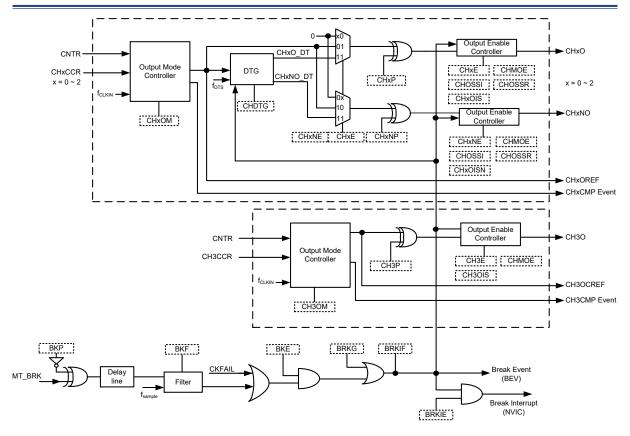


Figure 113. TIO Digital Filter Diagram with N = 2

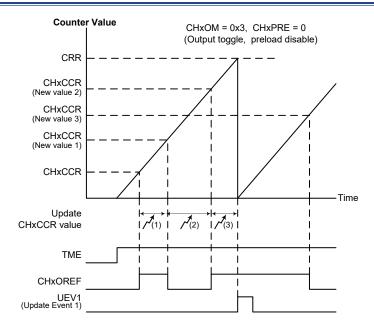
Output Stage

The MCTM supports complementary outputs for channels 0, 1 and 2 with dead time insertion. The MCTM channel 3 output function is almost the same as that of GPTM channel 3 except for the break function.

The channel outputs, CHxO and CHxNO, are referenced to the CHxOREF signal. These channel outputs generate a wide variety of wide waveforms according to the configuration values of corresponding control bits, as shown by the dashed box in the diagram.

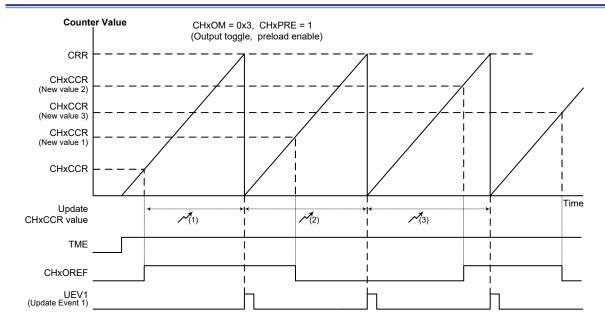
Figure 114. Output Stage Block Diagram

16



Channel Output Reference Signal

When the MCTM is used in the compare match output mode, the CHxOREF signal (Channel x Output Reference signal) is defined by the CHxOM bit setup. The CHxOREF signal has several types of output function which defines what happens to the output when the counter value matches the contents of the CHxCCR register. In addition to the low, high and toggle CHxOREF output types; there are also PWM mode 1 and PWM mode 2 outputs. In these modes, the CHxOREF signal level is changed according to the count direction and the relationship between the counter value and the CHxCCR content. There are also two modes which will force the output into an inactive or active state irrespective of the CHxCCR content or counter values. With regard to a more detailed description refer to the relative bit definition. The Table 34 shows a summary of the output type setup.


Table 34.	Compare	Match	Output Setup	
-----------	---------	-------	--------------	--

CHxOM Value	Compare Match Level
0x0	No change
0x1	Clear Output to 0
0x2	Set Output to 1
0x3	Toggle Output
0x4	Force Inactive Level
0x5	Force Active Level
0x6	PWM Mode 1
0x7	PWM Mode 2

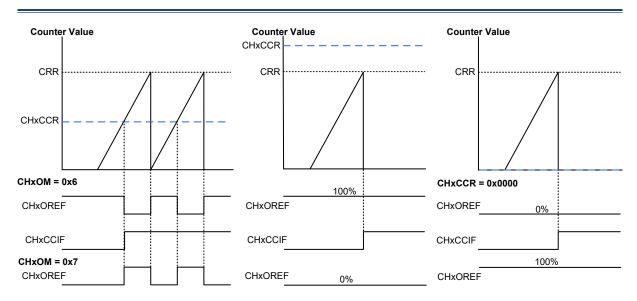
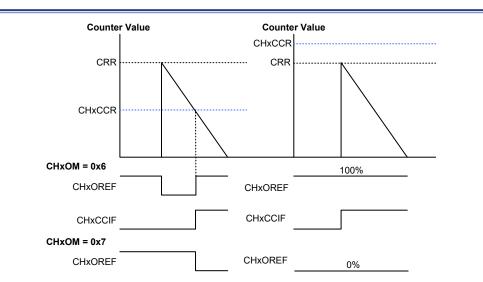
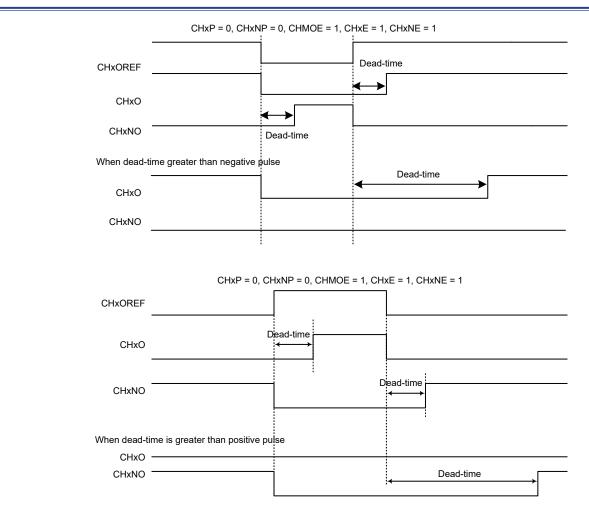



Figure 117. PWM Mode Channel Output Reference Signal and Counter in Up-counting Mode

Figure 118. PWM Mode Channel Output Reference Signal and Counter in Down-counting Mode

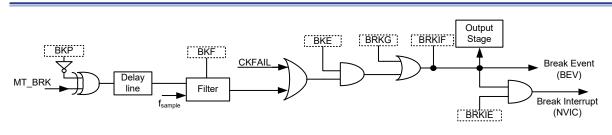
CMSEL= 0	Dx1				CRF	R = 5						
+		Up-counting			■ Down-counting							
	0	1	2	3	4	5	4	3	2	1	0	1
CHxCCR = :	3					 						
CHxCCIF						 						
CHxCCR =	4					 						
CHxCCIF												
CHxCCR >=	= 5	100%				 						
CHxCCIF												
CHxCCR = (0	0%				 						
CHxCCIF												


Figure 119. PWM Mode 1 Channel Output Reference Signal and Counter in Centre-aligned Counting Mode

Dead Time Generator

An 8-bit dead time generator function is included for channels $0 \sim 2$. The dead time insertion is enabled by setting both the CHxE and CHxNE bits. The relationship between the CHxO and CHxNO signals with respect to the CHxOREF signal is as follows:

- The CHxO signal is the same as the CHxOREF signal except for the rising edge which is delayed with a dead time relative to the reference signal rising edge.
- The CHxNO is the opposite of the CHxOREF signal except for the rising edge which is delayed with a dead time relative to the reference signal falling edge.


Figure 120. Dead-time Insertion Performed for Complementary Outputs

If the delay is greater than the width of the active output of CHxO or CHxNO, then the corresponding PWM pulses will not be generated.

Break Function

The MCTM includes break function and one input signal for MCTM break. The MT_BRK is default function and from the external MT_BRK pin. The detailed block diagram is shown as below.

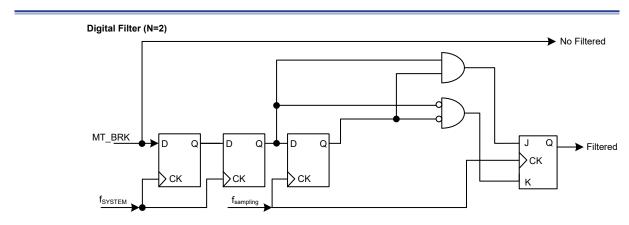


Figure 121. MCTM Break Signal Bolck Diagram

When the MT_BRK input has an active level or the Clock Monitor Circuitry detects a clock failure event, a break event will be generated if the break function is enabled. Meanwhile, each channel output will be forced to a reset state, an inactive or idle state. Moreover, a break event can also be generated by the software asserting the BRKG bit in the EVGR register even if the break function is disabled.

The MT_BRK input signal can be enabled by setting the BKE bit in the CHBRKCTR register. The internal polarity of break activity function is logic high. So the break input polarity can be selected by setting the BKP bit in CHBRKCTR register. The BKE and BKP bits can be modified at the same time.

The digital filters are embedded in the input stage and clock controller block for the break signal. The input filter of the MT_BRK signal can be enabled by setting the BKF bits in the CHBRKCTR register. The digital filter is an N-event counter where N refers to how many valid transitions are necessary to output a filtered signal.

When using the break function, the channel output enable signals and output levels are changed depending on several control bits which include the CHMOE, CHOSSI, CHOSSR, CHXOIS and CHXOISN bits. Once a break event occurs, the output enable bit CHMOE will be cleared asynchronously. The break interrupt flag, BRKIF, will be set and then an interrupt will be generated if the break function interrupt is enabled by setting the BRKIE bit to 1. The channel output behavior is as described below:

- If complementary outputs are used, the channel outputs a level signal first which can be selected to be either a disable or inactive level, selected by configuring the CHOSSI bit in the CHBRKCTR register. After the dead-time duration, the outputs will be changed to the idle state. The idle state is determined by the CHxOIS/CHxOISN bits in the CHBRKCFR register.
- If complementary outputs are not used (Channel 3), the channel will output an idle state.

The main output enable control bit CHMOE can not be set until the break event is cleared.

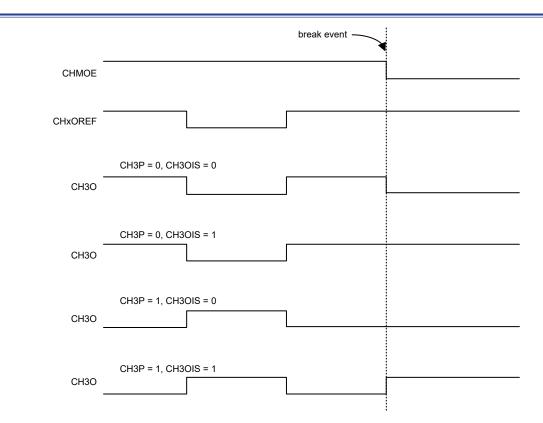
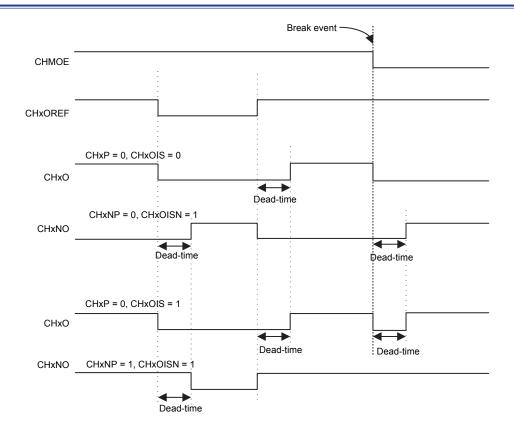



Figure 123. Channel 3 Output with a Break Event Occurrence

The accompanying diagram shows that the complementary output states when a break event occurs where the complementary outputs are enabled by setting both the CHxE and CHxNE bits to 1.

Figure 124. Channel 0 ~ 2 Complementary Outputs with a Break Event Occurrence

The accompanying diagram shows the output states in the case of the output being enabled by setting the CHxE bit to 1 and the complementary output being disabled by clearing the CHxNE to 0 when a break event occurs.

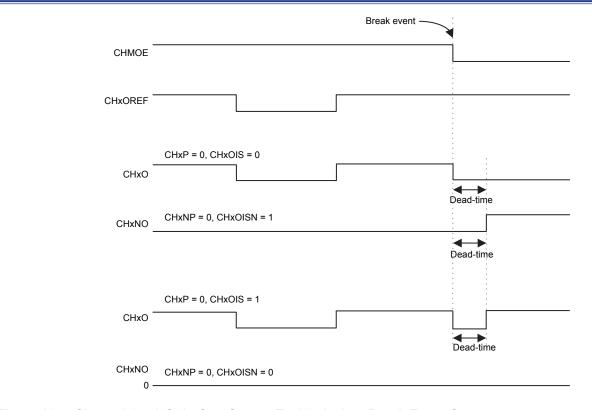
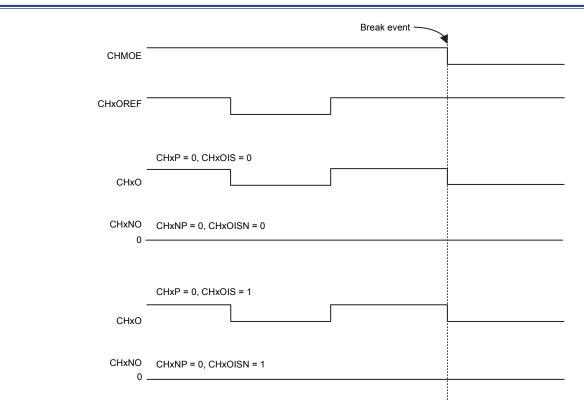



Figure 125. Channel 0 ~ 2 Only One Output Enabled when Break Event Occurs

The CHxO and CHxNO complementary outputs should not be set to an active level at the same time. The hardware will protect the MCTM circuitry to force only one channel output to be in the active state.

Example: Both CHxOIS and CHxOISN are set to active levels after a break event; only the CHxO waveform is generated.

Figure 126. Hardware Protection When Both CHxO and CHxNO are in Active Condition

CHMOE can be set automatically by update event 1 if the automatic output enable function is enabled by setting the CHAOE bit in the CHBRKCTR register to 1.

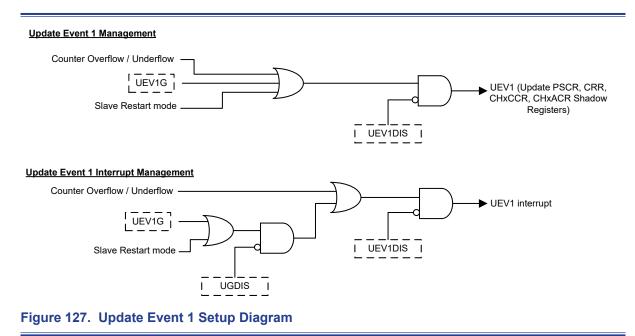
Channel Complementary Output with Break Function

The Channel complementary outputs, CHxO and CHxNO, are enabled by a combination of the CHxE, CHxNE, CHMOE, CHOSSR, CHOSSI control bits.

Control bit				Output status					
CHMOE	CHOSSI	CHOSSR	CHxE	CHxNE	MT_CHx Pin output state	MT_CHxN Pin output state			
1 (Run)	x	0	0	0	Output disabled – floating - not driven by the timer MT_CHx ^(Note 1) = floating MT_CHx_OEN ^(Note 2) = 1	Output disabled – floating - not driven by the timer MT_CHxN = floating MT_CHxN_OEN = 1			
		0	0	1	Output disable – floating - not driven by the timer MT_CHx_OEN = 1	Output enbaled MT_CHxN = CHx_OREF xor CHxNP MT_CHxN_OEN = 0			
		0	1	0	Output enabled MT_CHx = CHx_OREF xor CHxP MT_CHx_OEN = 0	Output disabled – floating - not driven by the timer MT_CHxN = floating MT_CHxN_OEN = 1			
		0	1	1	Output enabled Output enabled MT_CHx = CHx_OREF xor CHxP + MT_CHxN = not CHx_OF dead-time CHxNP + dead-time MT_CHx_OEN = 0 MT_CHxN_OEN = 0				
		1	0	0	Output disabled – floating - not driven by the timerOutput disabled – floating - not driven by the timerMT_CHx = floatingMT_CHxN = floatingMT_CHx_OEN = 1MT_CHxN_OEN = 1				
		1	0	1	Off-State MT_CHx = CHxP MT_CHx_OEN = 0	Output enabled MT_CHxN = CHx_OREF xor CHxNP MT_CHxN_OEN = 0			
		1	1	0	Output enbaled MT_CHx = CHx_OCREF xor CHxP MT_CHx_OEN = 0	Off-State MT_CHxN = CHxNP MT_CHxN_OEN = 0			
		1	1	1	Output enabled MT_CHx = CHx_OREF xor CHxP + dead-time MT_CHx_OEN = 0	Output enabled MT_CHxN = not CHx_OREF xor CHxNP + dead-time MT_CHxN_OEN = 0			
	0		0	0					
	0		0	1	Before dead-time: Output disabled –	d – floating			
	0		1	0		T_CHx = floating, MT_CHxN = floating			
	0		1	1	MT_CHx_OEN = 1, MT_CHxN_OEN = 1				
0 (Idle)	1		0	0					
	1	X	0	1	Before dead-time: Off state MT_CHx = CHxP, MT_CHxN = CHxNP MT_CHx = CHxP = 0 MT_CHxN = CHxNP				
	1		1	0	MT_CHx_OEN = 0, MT_CHxN_OEN After dead-time: Output enabled	N = U			
	1		1	1	MT_CHx = CHxOIS, MT_CHxN = CHxOISN MT_CHx_OEN = 0, MT_CHxN_OEN = 0				

Notes: 1. The MT_CHx pin is the MCTM I/O Pin.

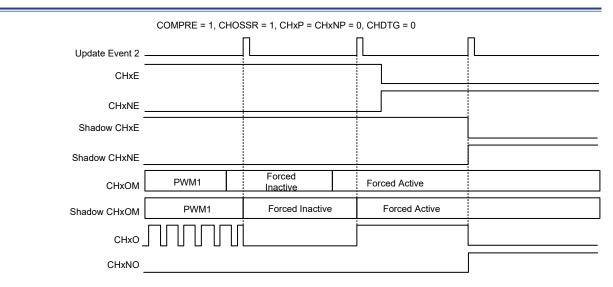
2. The MT_CHx_OEN and MT_CHxN_OEN signals are the MCTM I/O pin output enable combinational logic control signals which are active low.

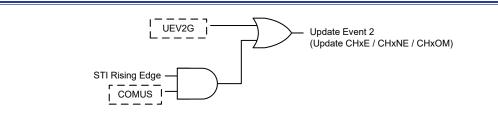


Update Management

The update events are categorised into two different types which are the update event 1, UEV1, and update event 2, UEV2. The update event 1 is used to update the CRR, the PSCR, the CHxACR and the CHxCCR values from the actual registers to the corresponding shadow registers. An update event 1 occurs when the counter overflows or underflows, the UEV1G bit is set or the slave restart mode is triggered. The update event 2 is used to update the CHxE, CHxNE and CHxOM control bits. An update event 2 is generated when a rising edge on the STI occurs or the corresponding software update control bit is set.

Update Event 1


The UEV1DIS bit in the CNTCFR register can determine whether an update event 1 occurs or not. When the update event 1 occurs, the corresponding update event interrupt will be generated depending upon whether the update event 1 interrupt generation function is enabled or not by configuring the UGDIS bit in the CNTCFR register. For a more detailed description, refer to the UEV1DIS and UGDIS bit definition in the CNTCFR register.


Update Event 2

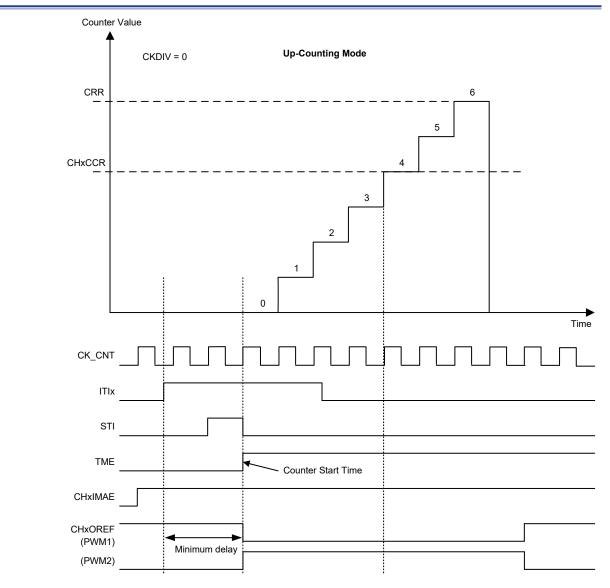
The CHxE, CHxNE, CHxOM control bits for the complementary outputs can be preloaded by setting the COMPRE bit in the CTR register. Here the shadow bits of the CHxE, CHxNE, and CHxOM bits will be updated when an update event 2 occurs.

Figure 128. CHxE, CHxNE and CHxOM Updated by Update Event 2

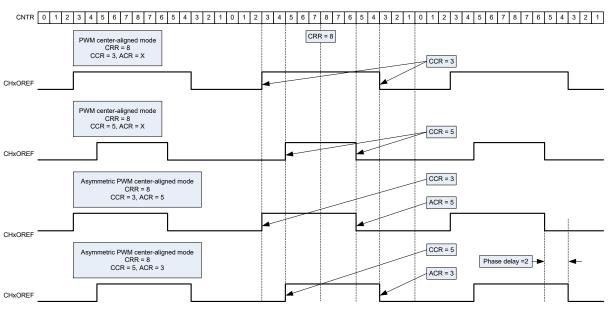
An update event 2 can be generated by setting the software update bit, UEV2G, in the EVGR register or by the rising edge of the STI signal if the COMUS bit is set in the CTR register.

Figure 129. Update Event 2 Setup Diagram

Single Pulse Mode


Once the timer is set to operate in the single pulse mode, it is not necessary to set the timer enable bit TME in the CTR register to 1 to enable the counter. The trigger to generate a pulse can be sourced from the STI signal rising edge or by setting the TME bit to 1 using software. Setting the TME bit to 1 or a trigger from the STI signal rising edge can generate a pulse and then keep the TME bit at a high state until the update event 1 occurs or the TME bit is cleared to 0 by software. If the TME bit is cleared to 0 using software, the counter will be stopped and its value held. If the TME bit is automatically cleared to 0 by a hardware update event 1, the counter will be reinitialised.

In the Single Pulse mode, the STI active edge which sets the TME bit to 1 will enable the counter. However, there exist several clock delays to perform the comparison result between the counter value and the CHxCCR value. In order to reduce the delay to a minimum value, users can set the CHxIMAE bit in each CHxOCFR register. After an STI rising edge trigger occurs in the single pulse mode, the CHxOREF signal will immediately be forced to the state to which the CHxOREF signal will change to as the compare match event occurs without taking the comparison result into account. The CHxIMAE bit is available only when the output channel is configured to operate in the PWM mode 1 or PWM mode 2 and the trigger source is derived from the STI signal.

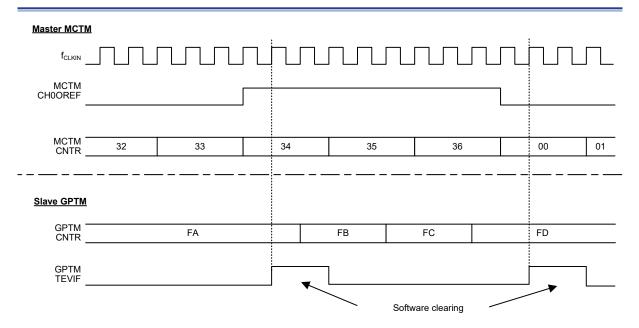


Asymmetric PWM Mode

Asymmetric PWM mode allows two center-aligned PWM signals to be genetated with a programmable phase shift. While the PWM frequency is determined by the value of the CRR register, the duty cycle and the phase-shift are determined by the CHxCCR and CHxACR register. When the counter is counting up, the PWM uses the value in CHxCCR as up-count compare value. When the counter is into the counting down stage, the PWM uses the value in CHxACR as down-count compare value. The figure 132 is shown as an example for asymmetric PWM mode in Center-aligned Counting mode.

Note: Asymmetric PWM mode can only be operated in Center-aligned Counting mode.

Figure 132. Asymmetric PWM Mode versus Center-aligned Counting Mode



Timer Interconnection

The timers can be internally connected together for timer chaining or synchronization. This can be implemented by configuring one timer to operate in the master mode while configuring another timer to be in the slave mode. The following figures present several examples of trigger selection for the master and slave modes.

Using One Timer to Trigger Another Timer to Start or Stop Counting

- Configure MCTM to be in the master mode and to send its channel 0 Output Reference signal CH0OREF as a trigger output (MMSEL = 0x4).
- Configure the MCTM CH0OREF waveform.
- Configure the GPTM to receive its input trigger source from the MCTM trigger output (TRSEL = 0xA).
- Configure GPTM to operate in the pause mode (SMSEL = 0x5).
- Enable GPTM by writing '1' to the TME bit.
- Enable MCTM by writing '1' to the TME bit.

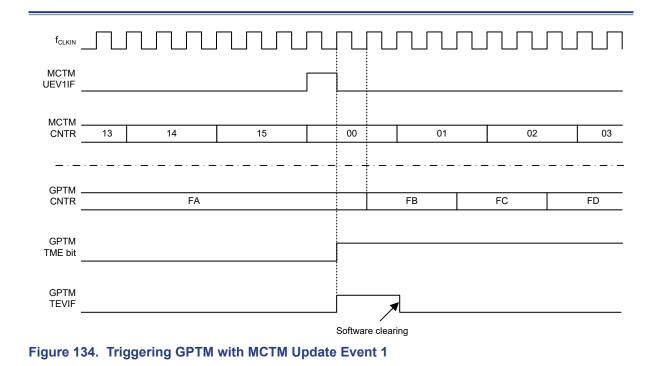


Figure 133. Pausing GPTM using the MCTM CH0OREF Signal

Using One Timer to Trigger Another Timer to Start Counting

- Configure MCTM to operate in the master mode and to send its Update Event UEV as the trigger output (MMSEL = 0x2).
- Configure the MCTM period by setting the CRR register.
- Configure GPTM to get the input trigger source from the MCTM trigger output (TRSEL = 0xA).
- Configure GPTM to be in the slave trigger mode (SMSEL = 0x6).
- Start MCTM by writing '1' to the TME bit.

Starting Two Timers Synchronously in Response to an External Trigger

- Configure MCTM to operate in the master mode to send its enable signal as a trigger output (MMSEL = 0x1).
- Configure MCTM slave mode to receive its input trigger source from MT_CH0 pin (TRSEL = 0x1).
- Configure MCTM to be in the slave trigger mode (SMSEL = 0x6).
- Enable the MCTM master timer synchronisation function by setting the TSE bit in the MDCFR register to 1 to synchronise the slave timer.
- Configure GPTM to receive its input trigger source from the MCTM trigger output (TRSEL = 0xA).
- Configure GPTM to be in the slave trigger mode (SMSEL = 0x6).

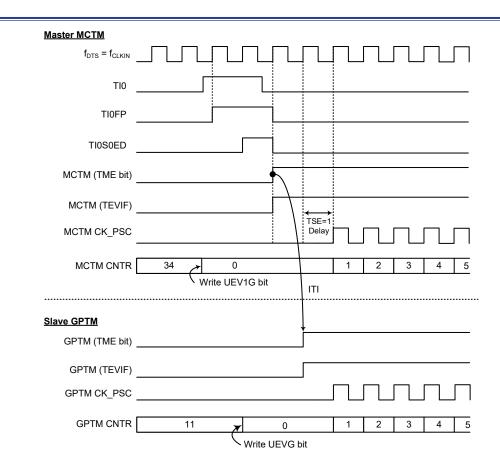
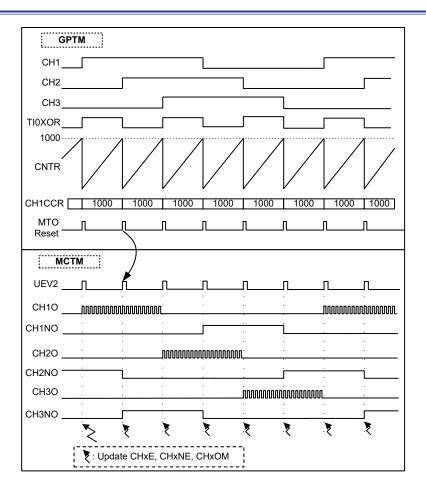


Figure 135. Trigger MCTM and GPTM with the MCTM CH0 Input



Using One Timer as a Hall Sensor Interface to Trigger Another Timer with Update Event 2 GPTM

- Configure channel 0 to choose an input XOR function (TI0SRC = 1)
- Configure channel 0 to be in the input capture mode and TRCED as capture source (CH0CCS = 0x3) and Enable channel 0 (CH0E = 1)
- Configure the UEVG bit as the source of MTO (MMSEL = 0x0)
- Configure TI0BED to be connected to STI (TRSEL = 0x8)
- Configure the counter to be in the slave restart mode (SMSEL = 0x4)
- Enable GPTM (TME = 1)

МСТМ

- Select GPTM MTO to be the STI source of MCTM (TRSEL = 0xA)
- Enable the CHxE, CHxNE and CHxOM preload function (COMPRE = 1)
- Select the rising edge on STI to generate an update event 2 (COMUS = 1)
- Enable the update event 2 interrupt (UEV2IE = 1)
- In the update event 2 ISR: write CHxE, CHxNE and CHxOM register for the next step

Figure 136. CH1XOR Input as Hall Sensor Interface

Trigger Peripherals Start

To interconnect to the peripherals, such as ADC, Timer and so on, the MCTM could output the MTO signal or the channel compare match output signal CHxOREF ($x = 0 \sim 3$) to be used as peripherals input trigger signal, depending on the MCU specification.

Lock Level Table

In addition to the break input and output management, a write protection has been internally implemented in the break circuitry to safeguard the application. Users can choose one protection level selected by the LOCKLV bits to protect the relative control bits of the registers. The LOCKLV bits can only be written once after an MCTM or system reset. Then the protected bits will be locked and can not be changed anymore except by the MCTM reset or when the system is reset.

	•					
Lock Configuration			Protec	ted Bits		
Lock Level 1 (LOCKLV = '01')	CHDTG	CHxOIS	CHxOISN	BKE	BKP	CHAOE
Lock Level 2 (LOCKLV = '10')	CHDTG	CHxOIS	CHxOISN	BKE	BKP	CHAOE
LOCK LEVELZ (LOCKEV - 10)	CHxP	CHxNP	CHOSSI	CHOSSR	MCTMEN ⁽¹⁾	CKMEN ⁽²⁾
	CHDTG	CHxOIS	CHxOISN	BKE	BKP	CHAOE
Lock Level 3 (LOCKLV = '11')	CHxP	CHxNP	CHOSSI	CHOSSR	MCTMEN ⁽¹⁾	CKMEN ⁽²⁾
	CHxPRE	CHxOM				

Table 36. Lock Level Table

Notes: 1. The MCTMEN bit of the APBCCR1 register is located in the CKCU unit and use to control the clock source of the MCTM unit.

- 2. The CKMEN bit of the GCCR register is located in the CKCU unit and use to monitor the high speed external clock (HSE) source. If the CKMEN bit is enabled and when hardware detects HSE clock stuck at low/high state, internal hardware will automatically switch the system clock to internal high speed RC clock (HSI) to protect the system safety.
- 3. When the MCTMEN and CKMEN control bits of the CKCU lock protection mode is enabled in the MCTM unit, the bits will be allowed to enable only and inhibited to disable again.

Register Map

The following table shows the MCTM registers and reset values.

Register	Offset	Description	Reset Value
CNTCFR	0x000	Timer Counter Configuration Register	0x0000_0000
MDCFR	0x004	Timer Mode Configuration Register	0x0000_0000
TRCFR	0x008	Timer Trigger Configuration Register	0x0000_0000
CTR	0x010	Timer Control Register	0x0000_0000
CH0ICFR	0x020	Channel 0 Input Configuration Register	0x0000_0000
CH1ICFR	0x024	Channel 1 Input Configuration Register	0x0000_0000
CH2ICFR	0x028	Channel 2 Input Configuration Register	0x0000_0000
CH3ICFR	0x02C	Channel 3 Input Configuration Register	0x0000_0000
CH0OCFR	0x040	Channel 0 Output Configuration Register	0x0000_0000
CH10CFR	0x044	Channel 1 Output Configuration Register	0x0000_0000
CH2OCFR	0x048	Channel 2 Output Configuration Register	0x0000_0000
CH3OCFR	0x04C	Channel 3 Output Configuration Register	0x0000_0000
CHCTR	0x050	Channel Control Register	0x0000_0000
CHPOLR	0x054	Channel Polarity Configuration Register	0x0000_0000

Table 37. MCTM Register Map

Register	Offset	Description	Reset Value
CHBRKCFR	0x06C	Channel Break Configuration Register	0x0000_0000
CHBRKCTR	0x070	Channel Break Control Register	0x0000_0002
DICTR	0x074	Timer Interrupt Control Register	0x0000_0000
EVGR	0x078	Timer Event Generator Register	0x0000_0000
INTSR	0x07C	Timer Interrupt Status Register	0x0000_0000
CNTR	0x080	Timer Counter Register	0x0000_0000
PSCR	0x084	Timer Prescaler Register	0x0000_0000
CRR	0x088	Timer Counter Reload Register	0x0000_FFFF
REPR	0x08C	Timer Repetition Register	0x0000_0000
CH0CCR	0x090	Channel 0 Capture/Compare Register	0x0000_0000
CH1CCR	0x094	Channel 1 Capture/Compare Register	0x0000_0000
CH2CCR	0x098	Channel 2 Capture/Compare Register	0x0000_0000
CH3CCR	0x09C	Channel 3 Capture/Compare Register	0x0000_0000
CH0ACR	0x0A0	Channel 0 Asymmetric Compare Register	0x0000_0000
CH1ACR	0x0A4	Channel 1 Asymmetric Compare Register	0x0000_0000
CH2ACR	0x0A8	Channel 2 Asymmetric Compare Register	0x0000_0000
CH3ACR	0x0AC	Channel 3 Asymmetric Compare Register	0x0000_0000

Register Descriptions

Timer Counter Configuration Register – CNTCFR

This register specifies the MCTM counter configuration.

 Offset:
 0x000

 Reset value:
 0x0000_0000

	31	30	29	28	27	26	25		24
				Reserved				1	DIR
Type/Reset								RW	0
	23	22	21	20	19	18	17		16
				Reserved				CN	/ISEL
Type/Reset							RW	0 RW	0
	15	14	13	12	11	10	9		8
				Reserved				C	KDIV
Type/Reset							RW	0 RW	0
	7	6	5	4	3	2	1		0
				Reserved			UGDI	S UE'	V1DIS
Type/Reset							RW	0 RW	0

Bits	Field	Descriptions
[24]	DIR	Counting Direction
		0: Count-up

- 0: Count-up 1: Count-down

Note: This bit is read only when the Timer is configured to be in the Center-aligned counting mode.

Bits	Field	Descriptions
[17:16]	CMSEL	 Counter Mode Selection 00: Edge-aligned counting mode. Normal up-counting and down-counting available for this mode. Counting direction is defined by the DIR bit. 01: Center-aligned counting mode 1. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-down period. 10: Center-aligned counting mode 2. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up period. 11: Center-aligned counting mode 3. The counter counts up and down alternatively. The compare match interrupt flag is set during the count-up period.
[9:8]	CKDIV	Clock Division These two bits define the frequency ratio between the timer clock (f_{CLKIN}) and the dead-time clock (f_{DTS}). The dead-time clock is also used as the digital filter sampling clock 00: $f_{DTS} = f_{CLKIN}$ 01: $f_{DTS} = f_{CLKIN} / 2$ 10: $f_{DTS} = f_{CLKIN} / 4$ 11: Reserved
[1]	UGDIS	Update event 1 interrupt generation disable control 0: Any of the following events will generate an update interrupt - Counter overflow / underflow - Setting the UEV1G bit - Update generation through the slave mode 1: Only counter overflow/underflow generates an update interrupt
[0]	UEV1DIS	Update event 1 Disable control 0: Enable the update event 1 request by one of following events - Counter overflow / underflow - Setting the UEV1G bit - Update generation through the slave mode 1: Disable the update event 1 (However the counter and the prescaler are reinitialised if the UEV1G bit is set or if a hardware restart is received from the slave mode)

This register	specifies the M	CTM ma	ster and slave i	mode selec	tion and sing	gle pulse i	mode.				
Offset:	0x004										
Reset value:	0x0000_0000										
	31	30	29	28	27	26		25		24	
				Reserved						SPMS	ET
Type/Reset										RW	0
	23	22	21	20	19	18		17		16	
			Reserved				Ν	/MSE	Ľ		
Type/Reset						RW	0 RV	V	0	RW	0
	15	14	13	12	11	10		9		8	
			Reserved				5	SMSE	L		
Type/Reset						RW	0 RV	V	0	RW	0
	7	6	5	4	3	2		1		0	
				Reserved						TSE	-
Type/Reset										RW	0

Timer Mode Configuration Register – MDCFR

 Bits
 Field
 Descriptions

 [24]
 SPMSET
 Single Pulse Mode Setting 0: Counter counts normally irrespective of whether a update event occurred or not 1: Counter stops counting at the next update event and then the TME bit is cleared by

1: Counter stops counting at the next update event and then the TME bit is cleared by hardware

Bits	Field	Descriptior	าร	
[18:16]	MMSEL			to select the MTO signal source which is used to
		MMSEL [2:0]	Mode	Descriptions
		000	Reset Mode	The MTO in the Reset mode is an output derived from one of the following cases: Software setting UEV1G bit Slave has trigger input when used in slave restart mode
		001	Enable Mode	The Counter Enable signal is used as the trigger output.
		010	Update Mode	The update event 1 is used as the trigger output according to one of the following cases when the UEV1DIS bit is cleared to 0: Counter overflow/underflow Software setting UEV1G Slave has trigger input when used in slave restart mode
		011	Capture/Compare Mode	When a Channel 0 capture or compare match event occurs, it will generate a positive pulse which is used as the master trigger output.
		100	Compare output 0	The Channel 0 Output reference signal named CH0OREF is used as the trigger output.
		101	Compare output 1	The Channel 1 Output reference signal named CH1OREF is used as the trigger output.
		110	Compare output 2	The Channel 2 Output reference signal named CH2OREF is used as the trigger output.
		111	Compare output 3	The Channel 3 Output reference signal named CH3OREF is used as the trigger output.

Bits	Field	Descriptio	ns	
[10:8]	SMSEL	Slave Mode	Selection	
		SMSEL [2:0]	Mode	Descriptions
		000	Disable mode	The prescaler is clocked directly by the internal clock.
		001	Reserved	
		010	Reserved	
		011	Reserved	
		100	Restart Mode	The counter value restarts from 0 or the CRR shadow register value depending upon the counter mode on the rising edge of the STI signal. The registers will also be updated.
		101	Pause Mode	The counter starts to count when the selected trigger input STI is high. The counter stops counting on the instant, not being reset, when the STI signal changes its state to a low level. Both the counter start and stop control are determined by the STI signal.
		110	Trigger Mode	The counter starts to count from the original value in the counter on the rising edge of the selected trigger input STI. Only the start of counter is controlled.
		111	STIED	The rising edge of the selected trigger signal STI will be the counter clock.

[0]

TSE

Timer Synchronisation Enable

0: No action

1: Master timer (current timer) will generate a delay to synchronise its slave timer through the MTO signal.

This register specifies the trigger source selection of MCTM. Offset: 0x008 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 18 17 16 19 Reserved Type/Reset 15 12 14 13 11 10 9 8 Reserved Type/Reset 7 6 5 3 2 1 0 4 Reserved TRSEL RW 0 RW 0 RW 0 RW Type/Reset n **Bits** Field Descriptions [3:0] TRSEL **Trigger Source Selection** These bits are used to select the trigger input (STI) for counter synchronization. 0000: Software Trigger by setting the UEV1G bit 0001: Channel 0 filtered input - TI0S0 0010: Channel 1 filtered input - TI1S1 0011: Reserved 1000: Channel 0 Edge Detector - TI0BED 1001: Internal Timer Trigger 0 - ITI0 1010: Internal Timer Trigger 1 - ITI1 1011: Internal Timer Trigger 2 - ITI2 Others: Reserved Note: These bits must be updated only when they are not in use, i.e. the slave mode is disabled by setting the SMSEL field to 0x0. Table 38. MCTM Internal Trigger Connection Slave Timing Module ITI0 ITI1 ITI2 МСТМ PWM0 GPTM PWM1

Timer Trigger Configuration Register – TRCFR

Timer Control Register – CTR

This register specifies the timer enable bit (TME), CRR buffer enable bit (CRBE) and Capture/compare control bit.

Offset:	0x010							
Reset value:	0x0000_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset	· ·							
	15	14	13	12	11	10	9	8
				Reserved	b		COMUS	COMPRE
Type/Reset							RW (0 RW 0
	7	6	5	4	3	2	1	0
				Reserved	b		CRBE	TME
Type/Reset							RW (0 RW 0

Bits	Field	Descriptions
[9]	COMUS	Capture/Compare Control Update Selection 0: Updated by setting the UEV2G bit only 1: Updated by setting the UEV2G bit or when an STI signal rising edge occurs This bit is only available when the capture/compare preload function is enabled by setting the COMPRE bit to 1.
[8]	COMPRE	Capture/Compare Preload Enable Control 0: CHxE, CHxNE and CHxOM bits are not preloaded 1: CHxE, CHxNE and CHxOM bits are preloaded If this bit is set to 1, the corresponding capture/compare control bits including the CHxE, CHxNE and CHxOM bits will be updated when the update event 2 occurs.
[1]	CRBE	Counter Reload register Buffer Enable 0: Counter reload register can be updated immediately 1: Counter reload register can not be updated until the update event occurs
[0]	TME	Timer Enable bit 0: MCTM off 1: MCTM on – MCTM functions normally When the TME bit is cleared to 0, the counter is stopped and the MCTM consumes no power in any operational mode except for the single pulse mode and the slave trigger mode. In these two modes the TME bit can automatically be set to 1 by hardware which permits all the MCTM registers to function normally.

Offset:	specifies the 0x020							
	0x0000 000	00						
teset value.	0,0000_000	0						
	31	30	29	28	27	26	25	24
	TI0SRC				Reserve	d		
Type/Reset	RW 0							, i
	23	22	21	20	19	18	17	16
			Reserved			CHOPS	SC	CH0CCS
Type/Reset					RW	0 RW	0 RW	0 RW 0
	15	14	13	12	11	10	9	8
					Reserve	d		
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved				TIOF	
Type/Reset					RW	0 RW	0 RW	0 RW 0
	Field	Descript						
					1.000	0 1111	0	0 100 0
Bits		_		e TI0 Selec				
Bits [31]	Field TIOSRC	Channel (ions) Input Source MT_CH0 pin		ction			
		Channel (0: The 1: The) Input Source MT_CH0 pin XOR operat	is connect ion output	ction ted to the ch of the MT_	nannel 0 inp	out TIO	IT_CH2 pins are
[31]	TIOSRC	Channel (0: The 1: The con) Input Source MT_CH0 pin XOR operat nected to the	is connection output channel 0	ction ted to the ch of the MT_ input TI0	nannel 0 inp CH0, MT_0	out TIO	
31]		Channel 0 0: The 1: The con Channel 0) Input Source MT_CH0 pin XOR operat nected to the) Capture Inp	is connect ion output channel 0 ut Source	ction ted to the ch of the MT_ input TI0 Prescaler So	nannel 0 inp CH0, MT_0 etting	out TI0 CH1, and M	IT_CH2 pins are
[31]	TIOSRC	Channel C 0: The 1: The con Channel C These bits) Input Source MT_CH0 pin XOR operat nected to the) Capture Inp s define the e	is connection output channel 0 ut Source l effective ev	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the	nannel 0 inp CH0, MT_0 etting channel 0	out TI0 CH1, and M capture inp	IT_CH2 pins are ut. Note that the
[31]	TIOSRC	Channel C 0: The 1: The con Channel C These bits prescaler) Input Source MT_CH0 pin XOR operat nected to the Capture Inp s define the e is reset once	is connect ion output channel 0 ut Source effective ev e the Char	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa	out TI0 CH1, and M capture inp	IT_CH2 pins are
	TIOSRC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C) Input Source MT_CH0 pin XOR operat nected to the Capture Inp s define the e is reset once Control registe	is connect ion output channel 0 ut Source effective ev e the Char er named 0	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0.	out TI0 CH1, and M capture inp re Enable b	IT_CH2 pins are ut. Note that the bit, CH0E, in the
[31]	TIOSRC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C 00: No) Input Source MT_CH0 pin XOR operat nected to the) Capture Inp s define the e is reset once Control registe prescaler, ch	is connect ion output channel 0 ut Source effective ev e the Char er named (nannel 0 ca	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch	out TI0 CH1, and M capture inp re Enable b osen for ead	IT_CH2 pins are ut. Note that the
[31]	TIOSRC	Channel (0: The 1: The con Channel (These bits prescaler Channel (00: No 01: Ch) Input Source MT_CH0 pin XOR operat nected to the) Capture Inp s define the e is reset once Control registe prescaler, ch annel 0 Capt	is connect ion output channel 0 ut Source l effective ev e the Char er named 0 nannel 0 ca ure input s	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input ignal is chos	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch sen for ever	out TI0 CH1, and M capture inp re Enable b osen for eac y 2 events	IT_CH2 pins are ut. Note that the bit, CH0E, in the
31]	TIOSRC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C 00: No 01: Ch 10: Ch) Input Source MT_CH0 pin XOR operat nected to the) Capture Inp s define the e is reset once Control registe prescaler, ch annel 0 Capt annel 0 Capt	is connect ion output channel 0 ut Source effective ev e the Char er named 0 nannel 0 ca ure input s ure input s	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input ignal is chos ignal is chos	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch sen for ever sen for ever	out TIO CH1, and M capture inp re Enable b osen for eac y 2 events y 4 events	IT_CH2 pins are ut. Note that the bit, CH0E, in the
[31] [19:18]	TI0SRC CH0PSC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C 00: No 01: Ch 10: Ch 11: Ch) Input Source MT_CH0 pin XOR operat nected to the capture Inp s define the e is reset once control registe prescaler, ch annel 0 Capt annel 0 Capt	is connect ion output channel 0 ut Source effective ev e the Char er named 0 nannel 0 ca ure input s ure input s	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input ignal is chos ignal is chos	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch sen for ever sen for ever	out TIO CH1, and M capture inp re Enable b osen for eac y 2 events y 4 events	IT_CH2 pins are ut. Note that the bit, CH0E, in the
[31]	TIOSRC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C 00: No 01: Ch 10: Ch 11: Ch	MT_CH0 pin XOR operat nected to the Capture Inp s define the e is reset once Control registe prescaler, ch annel 0 Capt annel 0 Capt annel 0 Capt	is connect ion output channel 0 ut Source l effective ev e the Char er named 0 nannel 0 ca ure input s ure input s ure input si	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input ignal is chos ignal is chos ection	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch sen for ever sen for ever	out TIO CH1, and M capture inp re Enable b osen for eac y 2 events y 4 events	IT_CH2 pins are ut. Note that the bit, CH0E, in the
[31] [19:18]	TI0SRC CH0PSC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C 00: No 01: Ch 10: Ch 11: Ch Channel C 00: Ch	Input Source MT_CH0 pin XOR operat nected to the Capture Inp s define the e is reset once Control registe prescaler, ch annel 0 Capt annel 0 Capt annel 0 Capt Copture/Col annel 0 is col	is connect ion output channel 0 ut Source l effective ev e the Char er named 0 nannel 0 ca ure input s ure input s ure input s mpare Sele nfigured as	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input ignal is chos ignal is chos ection s an output	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch sen for ever sen for ever	out TI0 CH1, and M capture inp re Enable b osen for eac y 2 events y 4 events y 8 events	IT_CH2 pins are ut. Note that the bit, CH0E, in the ch active event
[31] [19:18]	TI0SRC CH0PSC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C 00: No 01: Ch 10: Ch 11: Ch. Channel C 00: Ch 01: Ch	MT_CH0 pin XOR operat nected to the Capture Inp s define the e is reset once Control registe prescaler, ch annel 0 Capt annel 0 Capt annel 0 Capt	is connect ion output channel 0 ut Source l effective ev e the Char er named 0 nannel 0 ca ure input s ure input s ure input s mpare Sele nfigured as nfigured as	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input ignal is chos ignal is chos ection s an output s an input de	etting channel 0 inp cH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch sen for ever sen for ever sen for ever	out TI0 CH1, and M capture inp re Enable b osen for eac y 2 events y 4 events y 8 events y 8 events the TI0 sign	IT_CH2 pins are ut. Note that the bit, CH0E, in the ch active event
[31] [19:18]	TI0SRC CH0PSC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C 00: No 01: Ch 10: Ch 11: Ch. Channel C 00: Ch 01: Ch 01: Ch) Input Source MT_CH0 pin XOR operat nected to the) Capture Inp s define the e is reset once Control registe prescaler, ch annel 0 Capt annel 0 Capt annel 0 Capture/Con annel 0 is con annel 0 is con annel 0 is con	is connect ion output channel 0 ut Source l effective ev e the Char er named 0 nannel 0 ca ure input s ure input s ure input s mpare Sele nfigured as nfigured as	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input ignal is chos ignal is chos ection s an output s an input de s an input de	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch sen for ever sen for ever sen for ever	out TIO CH1, and M capture inp re Enable b osen for eac y 2 events y 4 events y 8 events y 8 events the TI0 sign the TI1 sign	IT_CH2 pins are ut. Note that the bit, CH0E, in the ch active event
[31] [19:18]	TI0SRC CH0PSC	Channel C 0: The 1: The con Channel C These bits prescaler Channel C 00: No 01: Ch 10: Ch 11: Ch 00: Ch 01: Ch 10: Ch 10: Ch 11: Ch	Input Source MT_CH0 pin XOR operat nected to the Capture Inp s define the e is reset once Control registe prescaler, ch annel 0 Capt annel 0 Capt annel 0 Capt Capture/Con annel 0 is con annel 0 is con	is connect ion output channel 0 ut Source l effective ev e the Char er named 0 nannel 0 ca ure input s ure input s ure input s ure input s nfigured as onfigured as onfigured as	ction ted to the ch of the MT_ input TI0 Prescaler So vents of the nnel 0 Capt CHCTR is cl apture input ignal is chos ignal is chos ection s an output s an input de as an input de as an input	nannel 0 inp CH0, MT_0 etting channel 0 ure/Compa leared to 0. signal is ch sen for ever sen for ever sen for ever sen for ever erived from which com	out TIO CH1, and M capture inp re Enable b osen for eac y 2 events y 4 events y 8 events the TIO sign the TIO sign the TII sign hes from the	IT_CH2 pins are ut. Note that the bit, CH0E, in the ch active event al

Channel 0 Input Configuration Register – CH0ICFR

Bits	Field	Descriptions
[3:0]	TIOF	Channel 0 Input Source TI0 Filter Setting
		These bits define the frequency divided ratio used to sample the TIO signal. The
		Digital filter in the MCTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal.
		0000: No filter, the sampling clock is f _{SYSTEM}
		0001: $f_{sampling} = f_{CLKIN}$, N = 2
		0010: $f_{\text{sampling}} = f_{\text{CLKIN}}$, N = 4
		0011: $f_{sampling} = f_{CLKIN}$, N = 8
		0100: $f_{sampling} = f_{DTS} / 2$, N = 6
		0101: $f_{sampling} = f_{DTS} / 2$, N = 8
		0110: $f_{sampling} = f_{DTS} / 4$, N = 6
		0111: $f_{sampling} = f_{DTS} / 4$, N = 8
		1000: $f_{sampling} = f_{DTS} / 8$, N = 6
		1001: $f_{sampling} = f_{DTS} / 8$, N = 8
		1010: $f_{sampling} = f_{DTS} / 16$, N = 5
		1011: $f_{sampling} = f_{DTS} / 16$, N = 6
		1100: $f_{sampling} = f_{DTS} / 16$, N = 8
		1101: $f_{sampling} = f_{DTS} / 32$, N = 5
		1110: $f_{sampling} = f_{DTS} / 32$, N = 6
		1111: $f_{sampling} = f_{DTS} / 32$, N = 8

Channel 1 Input Configuration Register – CH1ICFR

This register specifies the channel 1 input mode configuration.

Reset value: 0x0000_0000 24 30 29 28 27 26 25 31 Reserved Type/Reset 23 22 21 20 19 18 17 16 CH1CCS CH1PSC Reserved 0 RW 0 RW Type/Reset RW 0 RW 0 15 14 13 12 11 10 9 8 Reserved Type/Reset 3 2 7 6 5 4 1 0 TI1F Reserved RW 0 RW 0 RW 0 RW Type/Reset 0

Offset:

0x024

Bits	Field	Descriptions
[19:18]	CH1PSC	Channel 1 Capture Input Source Prescaler Setting
		These bits define the effective events of the channel 1 capture input. Note that the
		prescaler is reset once the Channel 1 Capture/Compare Enable bit, CH1E, in the
		Channel Control register named CHCTR is cleared to 0.
		00: No prescaler, channel 1 capture input signal is chosen for each active event 01: Channel 1 Capture input signal is chosen for every 2 events
		10: Channel 1 Capture input signal is chosen for every 4 events
		11: Channel 1 Capture input signal is chosen for every 8 events
[17:16]	CH1CCS	Channel 1 Capture/Compare Selection
		00: Channel 1 is configured as an output
		01: Channel 1 is configured as an input derived from the TI1 signal
		10: Channel 1 is configured as an input derived from the TI0 signal
		11: Channel 1 is configured as an input which comes from the TRCED signal derived from the Trigger Controller
		Note: The CH1CCS field can be accessed only when the CH1E bit is cleared to 0.
[3:0]	TI1F	Channel 1 Input Source TI1 Filter Setting
		These bits define the frequency divide ratio used to sample the TI1 signal. The
		Digital filter in the MCTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal
		0000: No filter, the sampling clock is f _{SYSTEM}
		0001: $f_{sampling} = f_{CLKIN}$, N = 2
		0010: $f_{sampling} = f_{CLKIN}$, N = 4
		0011: $f_{sampling} = f_{CLKIN}$, N = 8
		0100: $f_{sampling} = f_{DTS} / 2$, N = 6
		0101: $f_{sampling} = f_{DTS}/2$, N = 8
		0110: $f_{sampling} = f_{DTS} / 4$, N = 6
		$\begin{array}{l} 0111: f_{\text{sampling}} = f_{\text{DTS}} / 4, \text{ N} = 8\\ 1000: f_{\text{max}} = f_{\text{max}} / 8, \text{ N} = 6 \end{array}$
		1000: $f_{sampling} = f_{DTS} / 8$, N = 6 1001: $f_{sampling} = f_{DTS} / 8$, N = 8
		1010: $f_{sampling} = f_{DTS} / 16$, N = 5
		$1010. r_{sampling} = r_{DTS} / 10, N = 3$ $1011: f_{sampling} = f_{DTS} / 16, N = 6$
		1100: $f_{sampling} = f_{DTS} / 16$, N = 8
		$1100. f_{sampling} = f_{DTS} / 32, N = 5$
		1110: $f_{sampling} = f_{DTS} / 32$, N = 6
		1111: $f_{sampling} = f_{DTS} / 32$, N = 8
		camping 2705 - 7 -

- 1 · · ·				.				
i his register	specifies the cl	nannel 2	input mode con	figuration.				
Offset:	0x028							
Reset value:	0x0000_0000	1						
	_							
	31	30	29	28	27	26	25	24
					Reserve	d		
Type/Reset								
	23	22	21	20	19	18	17	16
			Reserved			CH2PSC		CH2CCS
Type/Reset					RW	0 RW 0	RW	0 RW 0
	15	14	13	12	11	10	9	8
					Reserve	d		
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved		Ì		TI2F	
Type/Reset					RW	0 RW 0	RW	0 RW 0
Dite	Field	Decer						

Channel 2 Input Configuration Register – CH2ICFR

Bits	Field	Descriptions
[19:18]	CH2PSC	Channel 2 Capture Input Source Prescaler Setting
		These bits define the effective events of the channel 2 capture input. Note that the
		prescaler is reset once the Channel 2 Capture/Compare Enable bit, CH2E, in the
		Channel Control register named CHCTR is cleared to 0.
		00: No prescaler, channel 2 capture input signal is chosen for each active event
		01: Channel 2 Capture input signal is chosen for every 2 events
		10: Channel 2 Capture input signal is chosen for every 4 events
		11: Channel 2 Capture input signal is chosen for every 8 events
[17:16]	CH2CCS	Channel 2 Capture/Compare Selection
		00: Channel 2 is configured as an output
		01: Channel 2 is configured as an input derived from the TI2 signal
		10: Channel 2 is configured as an input derived from the TI3 signal
		11: Channel 2 is configured as an input which comes from the TRCED signal
		derived from the Trigger Controller

Note: The CH2CCS field can be accessed only when the CH2E bit is cleared to 0.

Bits	Field	Descriptions
[3:0]	TI2F	Channel 2 Input Source TI2 Filter Setting
		These bits define the frequency divide ratio used to sample the TI2 signal. The
		Digital filter in the MCTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal.
		0000: No filter, the sampling clock is f _{SYSTEM}
		0001: $f_{\text{sampling}} = f_{\text{CLKIN}}$, N = 2
		0010: $f_{\text{sampling}} = f_{\text{CLKIN}}$, N = 4
		0011: $f_{\text{sampling}} = f_{\text{CLKIN}}$, N = 8
		0100: $f_{sampling} = f_{DTS} / 2$, N = 6
		0101: $f_{sampling} = f_{DTS} / 2$, N = 8
		0110: $f_{sampling} = f_{DTS} / 4$, N = 6
		0111: $f_{sampling} = f_{DTS} / 4$, N = 8
		1000: $f_{sampling} = f_{DTS} / 8$, N = 6
		1001: $f_{sampling} = f_{DTS} / 8$, N = 8
		1010: $f_{sampling} = f_{DTS} / 16$, N = 5
		1011: $f_{sampling} = f_{DTS} / 16$, N = 6
		1100: $f_{sampling} = f_{DTS} / 16$, N = 8
		1101: $f_{sampling} = f_{DTS} / 32, N = 5$
		1110: $f_{sampling} = f_{DTS} / 32$, N = 6
		1111: $f_{sampling} = f_{DTS} / 32$, N = 8

Channel 3 Input Configuration Register – CH3ICFR

This register specifies the channel 3 input mode configuration.

Reset value:	0x0000_0000)						
	31	30	29	28	27	26	25	24
					Reserv	/ed		
Type/Reset								
	23	22	21	20	19	18	17	16
			Reserved			CH3PSC	;	CH3CCS
Type/Reset					RW	0 RW 0	D RW	0 RW 0
	15	14	13	12	11	10	9	8
					Reserv	red		
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved				TI3F	
Type/Reset					RW	0 RW 0	D RW	0 RW 0

Offset:

0x02C

Bits	Field	Descriptions
[19:18]	CH3PSC	Channel 3 Capture Input Source Prescaler Setting
		These bits define the effective events of the channel 3 capture input. Note that the
		prescaler is reset once the Channel 3 Capture/Compare Enable bit, CH3E, in the
		Channel Control register named CHCTR is cleared to 0.
		00: No prescaler, channel 3 capture input signal is chosen for each active event 01: Channel 3 Capture input signal is chosen for every 2 events
		10: Channel 3 Capture input signal is chosen for every 4 events
		11: Channel 3 Capture input signal is chosen for every 8 events
[17:16]	CH3CCS	Channel 3 Capture/Compare Selection
		00: Channel 3 is configured as an output
		01: Channel 3 is configured as an input derived from the TI3 signal
		10: Channel 3 is configured as an input derived from the TI2 signal
		11: Channel 3 is configured as an input which comes from the TRCED signal derived from the Trigger Controller
		Note: The CH3CCS field can be accessed only when the CH3E bit is cleared to 0.
[3:0]	TI3F	Channel 3 Input Source TI3 Filter Setting
		These bits define the frequency divide ratio used to sample the TI3 signal. The
		digital filter in the GPTM is an N-event counter where N is defined as how many
		valid transitions are necessary to output a filtered signal
		0000: No filter, the sampling clock is f _{SYSTEM}
		0001: $f_{sampling} = f_{CLKIN}$, N = 2
		0010: $f_{sampling} = f_{CLKIN}$, N = 4
		0011: $f_{sampling} = f_{CLKIN}$, N = 8
		0100: $f_{sampling} = f_{DTS} / 2$, N = 6
		0101: $f_{sampling} = f_{DTS} / 2$, N = 8
		0110: $f_{sampling} = f_{DTS} / 4$, N = 6
		0111: $f_{sampling} = f_{DTS} / 4$, N = 8
		1000: $f_{sampling} = f_{DTS} / 8$, N = 6
		1001: $f_{sampling} = f_{DTS} / 8$, N = 8
		1010: $f_{sampling} = f_{DTS} / 16$, N = 5
		1011: $f_{sampling} = f_{DTS} / 16$, N = 6
		1100: $f_{sampling} = f_{DTS} / 16$, N = 8
		1101: $f_{sampling} = f_{DTS} / 32$, N = 5
		1110: $f_{sampling} = f_{DTS} / 32$, N = 6
		1111: $f_{sampling} = f_{DTS} / 32, N = 8$

This register	specifies the	channel 0 o	utput mode c	onfiguration.					
Offset:	0x040								
Reset value:	0x0000_000	00							
	31	30	29	28	27	26	25	24	
		1			Reserved				
Type/Reset									
	23	22	21	20	19	18	17	16	
		1			Reserved				
Type/Reset	45		40	40		10	•		
	15	14	13	<u>12</u>	11	10	9	8	4101
Type/Reset				Reserved				CH0ON RW	/I[3] 0
Type/Reset	7	6	5	4	3	2	1	0	0
		Reserved	CHOIMAE	CHOPRE	Reserved		CH00M[2:	-	
Type/Reset	L			RW 0		RW 0	-) RW	0
Bits	Field	Descript							
[5]	CH0IMAE	Channel 0 0: No a		Active Enable	9				
[4]	CH0PRE	1: Sing The an betw The eve Note: The mod Channel (0: CH(0: CH(1: CH(The imn 1: CH(The	e CH0OREF available trig ween the CN e effective du nt. CH0IMAE to de 1 or PWW Capture/Co CCR preload CH0PRE b nediately. CCR preload	will be forced ger event of TR and the (uration ends bit is available I mode 2. mpare Regis d function is register car it is cleared d function is CR value wil	be immedi to 0 and th	pare matche ctive of the ues. ly at the ne nnel 0 is cou R) Preload E ately assig e updated	result of the ext overflow nfigured ope Enable gned a new CH0CCR v	e compari or underf erate in P ¹ value w value is u	ison flow WM hen sed

Channel 0 Output Configuration Register – CH0OCFR

CH0OM[3:0]	Channel 0 Output Mode Setting These bits define the functional types of the output reference signal CH0OREF. 0000: No Change 0001: Output 0 on compare match 0010: Output 1 on compare match 0011: Output toggles on compare match 0100: Force inactive – CH0OREF is forced to 0 0101: Force active – CH0OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level. - During down-counting, channel 0 has an inactive level when CNTR >
	0000: No Change 0001: Output 0 on compare match 0010: Output 1 on compare match 0011: Output toggles on compare match 0100: Force inactive – CH0OREF is forced to 0 0101: Force active – CH0OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	0001: Output 0 on compare match 0010: Output 1 on compare match 0011: Output toggles on compare match 0100: Force inactive – CH0OREF is forced to 0 0101: Force active – CH0OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	0010: Output 1 on compare match 0011: Output toggles on compare match 0100: Force inactive – CH0OREF is forced to 0 0101: Force active – CH0OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	0011: Output toggles on compare match 0100: Force inactive – CH0OREF is forced to 0 0101: Force active – CH0OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	0100: Force inactive – CH0OREF is forced to 0 0101: Force active – CH0OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	0101: Force active – CH0OREF is forced to 1 0110: PWM mode 1 - During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	0110: PWM mode 1 - During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	 During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	CH0CCR or otherwise has an inactive level.
	- During down-counting, channel 0 has an inactive level when CNTR >
	CH0CCR or otherwise has an active level.
	0111: PWM mode 2
	 During up-counting, channel 0 is has an inactive level when CNTR < CH0CCR or otherwise has an active level.
	 During down-counting, channel 0 has an active level when CNTR > CH0CCR or otherwise has an inactive level.
	1110: Asymmetric PWM mode 1
	 During up-counting, channel 0 has an active level when CNTR < CH0CCR or otherwise has an inactive level.
	 During down-counting, channel 0 has an inactive level when CNTR > CH0ACR or otherwise has an active level.
	1111: Asymmetric PWM mode 2
	 During up-counting, channel 0 has an inactive level when CNTR < CH0CCR or otherwise has an active level.
	 During down-counting, channel 0 has an active level when CNTR > CH0ACR or otherwise has an inactive level
	Note: When channel 0 is used as asymmetric PWM output mode, the Counter Mode
	Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = 0x1 / 0x2 / 0x3).

	specifies the	-	-	-		oon			
Offset:	0x044	1							
Reset value:	0x0000_000	00							
	31	30	29	28	27	26	25	24	
				1	Reserved			1	
Type/Reset	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset	15	14	13	12	11	10	9	8	
				Reserved				CH10M	/[3]
Type/Reset		1					1	RW	0
	7	6	5	4	3	2	1	0	
		Reserved	CH1IMAE	CH1PRE	Reserved		CH1OM[2:	0]	
Type/Reset			RW 0	RW 0		RW 0	RW 0	RW	0
Bits [5]	Field CH1IMAE	Descript		Active Enable					
[4]	CH1PRE	0: No a 1: Sing The an bet The eve Note: The PW Channel 1 0: CH1 The imn 1: CH1 The	action CH10REF available trig ween the CN e effective du nt. CH1IMAE b CAPTURE b CCR preloar CH1PRE b nediately. CCR preloar	nediate Activ will be force gger event of ITR and the our uration ends it is available r PWM mode ompare Regis d function is register car it is cleared d function is CR value wil	e Mode is en d to the comp ccurs irrespe CH1CCR value automatical e only if char e 2. eter (CH1CCI disabled. n be immedi to 0 and th	pare matche ctive of the ues. ly at the ne anel 1 is con R) Preload E ately assig le updated	result of the ext overflow figured to b Enable Ined a new CH1CCR v	e comparia or underf e operated value wh value is us	son Iow d in hen sed

Channel 1 Output Configuration Register – CH10CFR

Bits	Field	Descriptions
[8][2:0]	CH1OM[3:0]	Channel 1 Output Mode Setting
		These bits define the functional types of the output reference signal CH10REF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH1OREF is forced to 0
		0101: Force active – CH1OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 1 has an active level when CNTR < CH1CCR or otherwise has an inactive level.
		 During down-counting, channel 1 has an inactive level when CNTR > CH1CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 1 has an inactive level when CNTR < CH1CCR or otherwise has an active level.
		 During down-counting, channel 1 has an active level when CNTR > CH1CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		- During up-counting, channel 1 has an active level when CNTR < CH1CCR or otherwise has an inactive level.
		 During down-counting, channel 1 has an inactive level when CNTR > CH1ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 1 has an inactive level when CNTR < CH1CCR or otherwise has an active level.
		 During down-counting, channel 1 has an active level when CNTR > CH1ACR or otherwise has an inactive level
		Note: When channel 1 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = $0x1 / 0x2 / 0x3$).
		Selection bit in Counter Configuration Register must

This register	specifies the	channel 2 o	utput mode c	onfiguration.					
Offset:	0x048								
Reset value:	0x0000_00	00							
	31	30	29	28	27	26	25	24	
					Reserved		1	1	
Type/Reset									
	23	22	21	20	19	18	17	16	
T		1		1	Reserved				
Type/Reset	15	14	13	12	11	10	9	8	
				Reserved				CH2ON	/[3]
Type/Reset	L	1						RW	0
51	7	6	5	4	3	2	1	0	
		Reserved	CH2IMAE	CH2PRE	Reserved		CH2OM[2	:0]	
Type/Reset			RW 0	RW 0		RW	0 RW	0 RW	0
		_		1.00			• • • • •	•	Ū
<u>Bits</u> [5] [4]	Field CH2IMAE CH2PRE	0: No a 1: Sing The an bet The eve Note: The in F Channel 2 0: CH2 The the	ions Immediate / action le pulse Imm CH2OREF available trig ween the CN e effective du nt. CH2IMAE b WM mode 1 CApture/Co CCR preloar CCR preloar CH2CCR	Active Enable nediate Active will be forced ger event oc ITR and the (uration ends it is available or PWM mo mpare Regis d function is register car	e Mode is en d to the comp ccurs irrespe CH2CCR value automatical e only if the ch de 2. tter (CH2CCF	abled bare matcl ctive of th ues. ly at the r nannel 2 is R) Preload ately ass	hed level imi e result of th next overflov s configured I Enable igned a new	mediately a ne compari v or underf to be opera w value wl	after son low ated

Channel 2 Output Configuration Register – CH2OCFR

Bits	Field	Descriptions
[8][2:0]	CH2OM[3:0]	Channel 2 Output Mode Setting
		These bits define the functional types of the output reference signal CH2OREF.
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH2OREF is forced to 0
		0101: Force active – CH2OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 2 has an active level when CNTR < CH2CCR or otherwise has an inactive level.
		 During down-counting, channel 2 has an inactive level when CNTR > CH2CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 2 has an inactive level when CNTR < CH2CCR or otherwise has an active level.
		 During down-counting, channel 2 has an active level when CNTR > CH2CCR or otherwise has an inactive level.
		1110: Asymmetric PWM mode 1
		- During up-counting, channel 2 has an active level when CNTR < CH2CCR or otherwise has an inactive level.
		 During down-counting, channel 2 has an inactive level when CNTR > CH2ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 2 has an inactive level when CNTR < CH2CCR or otherwise has an active level.
		 During down-counting, channel 2 has an active level when CNTR > CH2ACR or otherwise has an inactive level
		Note: When channel 2 is used as asymmetric PWM output mode, the Counter Mode Selection bit in Counter Configuration Register must be configured as Center-
		aligned Counting mode (CMSEL = 0x1 / 0x2 / 0x3).

Offset:	specifies the 0x04C								
		00							
Reset value:	0x0000_000	00							
	31	30	29	28	27	26	25	24	
		1			Reserved			1	
Type/Reset	23	22	21	20	19	18	17	16	
					Reserved				
Type/Reset									
	15	14	13	12	11	10	9	8	
		1		Reserved				CH3ON	/[3]
Type/Reset	_	•	_			•		RW	0
	7	6	5	4	3	2		0	
Type/Reset		Reserved	CH3IMAE RW 0	CH3PRE RW 0	Reserved	RW (CH3OM[2: RW (0 <u>]</u>) RW	0
[5]	CH3IMAE	-		Active Enable	e				
[4]	CH3PRE	 0: No action 1: Single pulse Immediate Active Mode is enabled The CH3OREF will be forced to the compare matched level immediately after an available trigger event occurs irrespective of the result of the comparison between the CNTR and the CH3CCR values. The effective duration ends automatically at the next overflow or underflow event. Note: The CH3IMAE bit is available only if channel 3 is configured to be operated in PWM mode 1 or PWM mode 2. 							

Channel 3 Output Configuration Register – CH3OCFR

Bits	Field	Descriptions
[8][2:0]	CH3OM[3:0]	Channel 3 Output Mode Setting
		These bits define the functional types of the output reference signal CH3OREF
		0000: No Change
		0001: Output 0 on compare match
		0010: Output 1 on compare match
		0011: Output toggles on compare match
		0100: Force inactive – CH3OREF is forced to 0
		0101: Force active – CH3OREF is forced to 1
		0110: PWM mode 1
		 During up-counting, channel 3 has an active level when CNTR < CH3CCR or otherwise has an inactive level.
		 During down-counting, channel 3 has an inactive level when CNTR > CH3CCR or otherwise has an active level.
		0111: PWM mode 2
		 During up-counting, channel 3 has an inactive level when CNTR < CH3CCR or otherwise has an active level.
		 During down-counting, channel 3 has an active level when CNTR > CH3CCR or otherwise has an inactive level
		1110: Asymmetric PWM mode 1
		 During up-counting, channel 3 has an active level when CNTR < CH3CCR or otherwise has an inactive level.
		 During down-counting, channel 3 has an inactive level when CNTR > CH3ACR or otherwise has an active level.
		1111: Asymmetric PWM mode 2
		 During up-counting, channel 3 has an inactive level when CNTR < CH3CCR or otherwise has an active level.
		 During down-counting, channel 3 has an active level when CNTR > CH3ACR or otherwise has an inactive level
		Note: When channel 3 is used as asymmetric PWM output mode, the Counter Mode
		Selection bit in Counter Configuration Register must be configured as Center- aligned Counting mode (CMSEL = 0x1 / 0x2 / 0x3)

Channel Control Register – CHCTR

This register contains the channel capture input or compare output function enable control bits.

25	24
17	16
9	8
1	0
CH0NE	CH0E
RW 0	RW 0
0x3)	
	ndina output
-	HOSSR and
- , -	
	CH2NO level
R, CH2OI	S, CH2OISN
ia gapar	atad an tha
•	
	<i>J</i> L, 0110001,
Dx3)	
	level is then
, CHOSS	R, CH2OIS,
- correspo	onding output
SI. CHOSS	SR, CH2OIS,
	CHONE W 0 x3) correspo OSSI, CH tive. The (R, CH2OI: s genera he CHMC x3) e CH2O , CHOSS

Bits	Field	Descriptions
[3]	CH1NE	 Channel 1 Capture/Compare Complementary Enable 0: Off – Channel 1 complementary output CH1NO is not active. The CH1NO level is then determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH1OIS, CH1OISN and CH1E bits. 1: On – Channel 1 complementary output CH1NO is generated on the corresponding output pin determined by the condition of the CHMOE, CHOSSI, CHOSSI, CHOSSR, CH1OIS, CH1OIS, CH1OIS, CH1OIS, CH1OIS, CH1OIS, CH1OISN and CH1E bits.
[2]	CH1E	 Channel 1 Capture/Compare Enable Channel 1 is configured as an input (CH1CCS = 0x1 / 0x2 / 0x3) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled Channel 1 is configured as an output (CH1CCS = 0x0) 0: Off - Channel 1 output signal CH1O is not active. The CH1O level is then determined by the condition of the CHMOE, CHOSSI, CHOSSR, CH1OIS, CH1OISN and CH1NE bits. 1: On - Channel 1 output signal CH1O is generated on the corresponding output pin depending on the condition of the CHMOE, CHOSSI, CHOSSR, CH1OIS, CH1OISN and CH1NE bits.
[1]	CHONE	 Channel 0 Capture/Compare Complementary Enable 0: Off – Channel 0 complementary output CH0NO is not active. The CH0NO level is then determined by the condition of the CHMOE, CHOSSI, CH0SSR, CH0OIS, CH0OISN and CH0E bits. 1: On – Channel 0 complementary output CH0NO is generated on the corresponding output pin depending on the condition of the CHMOE, CH0SSI, CH0SSI, CH0SSI, CH0SSI, CH0OISN and CH0E bits.
[0]	CH0E	 Channel 0 Capture/Compare Enable Channel 0 is configured as an input (CH0CCS = 0x1 / 0x2 / 0x3) 0: Input Capture Mode is disabled 1: Input Capture Mode is enabled Channel 0 is configured as an output (CH0CCS = 0x0) 0: Off – Channel 0 output signal CH0O is not active. The CH0O level is then determined by the condition of the CHMOE, CH0SSI, CH0SSR, CH0OIS, CH0OISN and CH0NE bits. 1: On – Channel 0 output signal CH0O is generated on the corresponding output pin determined by the condition of the CHMOE, CH0SSI, CH0SSR, CH0OIS, CH0OISN and CH0NE bits.

I his register	contains the	channel capt	ture input or	compare ou	tput polarity c	ontrol.		
Offset:	0x054							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset	45		40	40		40	•	•
	15	14	13	12	11 Decemied	10	9	8
Type/Reset					Reserved		1	
Type/Iteset	7	6	5	4	3	2	1	0
	Reserved	СНЗР	CH2NP	CH2P	CH1NP	CH1P	CHONP	CHOP
Type/Reset	L							RW 0
Bits	Field	Descript	ions					
[6]	CH3P	-	Capture/Co	mpare Pola	rity			
				•	s an input (CF		1 / 0x2 / 0x3)
		-			hannel 3 risin			
		1: capt						
		-			hannel 3 fallir s an output (C		NVU)	
		- When Cl	nannel 3 is c	onfigured as	s an output (C		0x0)	
		- When Cl 0: Cha		onfigured as ut is active h	s an output (C igh		0x0)	
[5]	CH2NP	- When Cl 0: Cha 1: Cha Channel 2	nannel 3 is c nnel 3 Outpu nnel 3 Outpu Capture/Co	onfigured as ut is active h ut is active lo ompare Com	s an output (C igh ow plementary P	H3CCS = 0	0x0)	
[5]	CH2NP	- When Cl 0: Cha 1: Cha Channel 2 0: Cha	nannel 3 is c nnel 3 Outpu nnel 3 Outpu Capture/Co nnel 2 Outpu	onfigured as ut is active h ut is active lo ompare Com ut is active h	s an output (C igh w plementary P igh	H3CCS = 0	9x0)	
		- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha	nannel 3 is c nnel 3 Outpu nnel 3 Outpu Capture/Co nnel 2 Outpu nnel 2 Outpu	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active lo	s an output (C igh w plementary P igh w	H3CCS = 0	x0)	
[5]	CH2NP CH2P	- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2	nannel 3 is c nnel 3 Outpu capture/Co nnel 2 Outpu nnel 2 Outpu Capture/Co	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active lo ompare Pola	s an output (C igh w plementary P igh w rity	H3CCS = 0)
		- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu nnel 2 Outpu Capture/Co nannel 2 is c	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active lo ompare Pola onfigured as	s an output (C igh w plementary P igh w	H3CCS = 0 olarity I2CCS = 0x)
		- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 is c ure event oc ure event oc	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active h ut is active lo ompare Pola configured as curs on a C curs on a C	s an output (C igh plementary P igh w rity s an input (CF hannel 2 risin hannel 2 fallir	H3CCS = 0 olarity I2CCS = 0x g edge ng edge	1 / 0x2 / 0x3)
		- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt - When Cl	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 Outpu Capture/Co nannel 2 is c ure event oc nannel 2 is c	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active h to active h ompare Pola configured as cours on a C configured as	s an output (C igh plementary P igh ow rity s an input (CH hannel 2 risin hannel 2 fallir s an output (C	H3CCS = 0 olarity I2CCS = 0x g edge ng edge	1 / 0x2 / 0x3)
		- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt - When Cl 0: Cha	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 Outpu Capture/Co nannel 2 is c ure event oc ure event oc nannel 2 is c nnel 2 Outpu	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active h ompare Pola configured as ccurs on a C ccurs on a C configured as ut is active h	s an output (C igh plementary P igh ww rity s an input (CF hannel 2 risin hannel 2 fallir s an output (C igh	H3CCS = 0 olarity I2CCS = 0x g edge ng edge	1 / 0x2 / 0x3)
[4]	СН2Р	- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt - When Cl 0: capt 1: capt - When Cl 0: Cha 1: Cha	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 Outpu Capture/Co nannel 2 is c ure event oc nannel 2 is c nnel 2 Outpu nnel 2 Outpu	onfigured as ut is active h ut is active h ompare Com ut is active h ut is active h ompare Pola configured as ccurs on a C configured as ut is active h ut is active h	s an output (C igh plementary P igh w rity s an input (CF hannel 2 risin hannel 2 fallir s an output (C igh	H3CCS = 0 olarity l2CCS = 0x g edge ng edge H2CCS = 0	1 / 0x2 / 0x3)
		- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt - When Cl 0: Cha 1: cha 1: Cha	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 Outpu Capture/Co nannel 2 is c ure event oc nannel 2 is c nnel 2 Outpu Capture/Co	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active h ut is active lo configured as cours on a C configured as ut is active h ut is active h ut is active lo	s an output (C igh plementary P igh w rity s an input (CF hannel 2 risin hannel 2 fallir s an output (C igh w plementary P	H3CCS = 0 olarity l2CCS = 0x g edge ng edge H2CCS = 0	1 / 0x2 / 0x3)
[4]	СН2Р	- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt - When Cl 0: Cha 1: Cha 1: Cha Channel 1 0: Cha	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 Outpu Capture/Co nannel 2 is c ure event oc nannel 2 is c nnel 2 Outpu nnel 2 Outpu	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active h ut is active h configured as curs on a C configured as ut is active h ut is active h ompare Com ut is active h	s an output (C igh plementary P igh w rity s an input (CF hannel 2 risin hannel 2 fallir s an output (C igh w plementary P igh	H3CCS = 0 olarity l2CCS = 0x g edge ng edge H2CCS = 0	1 / 0x2 / 0x3)
[4]	СН2Р	- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt - When Cl 0: Cha 1: Cha Channel 1 0: Cha 1: Cha Channel 1	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nanel 2 Outpu Capture/Co nannel 2 is c ure event oc nannel 2 is c nnel 2 Outpu Capture/Co nnel 1 Outpu Capture/Co	onfigured as ut is active h ut is active lo ompare Com ut is active h ut is active h ompare Pola configured as curs on a C configured as ut is active h ut is active h ut is active h ut is active h ut is active h	s an output (C igh plementary P igh w rity s an input (CH hannel 2 risin hannel 2 fallir s an output (C igh w plementary P igh w rity	H3CCS = 0 olarity l2CCS = 0x g edge g edge H2CCS = 0 olarity	1 / 0x2 / 0x3 lx0)	
[4]	CH2P CH1NP	- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt - When Cl 0: Cha 1: Cha Channel 1 0: Cha 1: Cha Channel 1 - Channel 1 - When Cl	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 is c ure event oc nannel 2 is c nnel 2 Outpu Capture/Co nnel 1 Outpu Capture/Co nannel 1 is c	onfigured as ut is active h ut is active h ompare Com ut is active h ut is active h ompare Pola configured as curs on a C configured as ut is active h ut is active h ut is active h ut is active h ut is active h ompare Com ut is active h ompare Pola configured as	an output (C igh plementary P igh w rity an input (CH hannel 2 fallir an output (C igh w plementary P igh w rity an input (CH	H3CCS = 0 olarity l2CCS = 0x g edge H2CCS = 0 olarity l1CCS = 0x	1 / 0x2 / 0x3 lx0)	
[4]	CH2P CH1NP	- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt 0: Cha 1: Cha Channel 1 0: Cha 1: Cha Channel 1 - When Cl 0: capt 0: capt 0: capt 0: capt	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 is c ure event oc nannel 2 Outpu Capture/Co nnel 1 Outpu Capture/Co nannel 1 is c ure event oc	configured as ut is active lo ompare Com- ut is active lo ompare Com- ut is active lo ompare Pola configured as curs on a C configured as ut is active lo ompare Com- ut is active lo ompare Pola configured as configured as configured as configured as configured as	an output (C igh plementary P igh w rity an input (CH hannel 2 fallir an output (C igh w plementary P igh w rity an input (CH hannel 1 risin	H3CCS = 0 olarity l2CCS = 0x g edge g edge H2CCS = 0 olarity l1CCS = 0x g edge	1 / 0x2 / 0x3 lx0)	
[4]	CH2P CH1NP	- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt 2: When Cl 0: Cha 1: Cha Channel 1 0: Cha 1: Cha Channel 1 0: Cha 1: Cha Channel 1 0: capt 1: capt 1: capt 1: capt 1: capt	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 is c ure event oc nnel 2 Outpu Capture/Co nnel 1 Outpu Capture/Co nannel 1 is c ure event oc ure event oc ure event oc	configured as ut is active h ut is active lo ompare Com- ut is active h ut is active h ut is active h configured as curs on a C configured as ut is active h ut is active h	an output (C igh plementary P igh w rity an input (CH hannel 2 fallir an output (C igh w plementary P igh w rity an input (CH	H3CCS = 0 olarity I2CCS = 0x g edge g edge H2CCS = 0 olarity I1CCS = 0x g edge ng edge	1 / 0x2 / 0x3)x0) 1 / 0x2 / 0x3	
[4]	CH2P CH1NP	- When Cl 0: Cha 1: Cha Channel 2 0: Cha 1: Cha Channel 2 - When Cl 0: capt 1: capt - When Cl 0: Cha 1: Cha Channel 1 0: Cha 1: Cha Channel 1 0: Cha 1: Cha Channel 1 0: capt 1: capt - When Cl 0: capt 1: capt - When Cl	nannel 3 is c nnel 3 Outpu Capture/Co nnel 2 Outpu Capture/Co nnel 2 Outpu Capture/Co nannel 2 is c ure event oc nnel 2 Outpu Capture/Co nnel 1 Outpu Capture/Co nannel 1 is c ure event oc ure event oc ure event oc	onfigured as ut is active h ut is active lo ompare Com- ut is active h ut is active h ut is active h onfigured as curs on a C configured as ut is active h ut is active h u	s an output (C igh plementary P igh w rity s an input (CF hannel 2 risin hannel 2 fallir s an output (C igh w plementary P igh w rity s an input (CF hannel 1 risin hannel 1 fallir s an output (C	H3CCS = 0 olarity I2CCS = 0x g edge g edge H2CCS = 0 olarity I1CCS = 0x g edge ng edge	1 / 0x2 / 0x3)x0) 1 / 0x2 / 0x3	

Channel Polarity Configuration Register – CHPOLR

Rev. 1.20

0x06C

Bits	Field	Descriptions
[1]	CH0NP	Channel 0 Capture/Compare Complementary Polarity 0: Channel 0 Output is active high 1: Channel 0 Output is active low
[0]	CH0P	 Channel 0 Capture/Compare Polarity When Channel 0 is configured as an input (CH0CCS = 0x1 / 0x2 / 0x3) 0: capture event occurs on a Channel 0 rising edge 1: capture event occurs on a Channel 0 falling edge When Channel 0 is configured as an output (CH0CCS = 0x0) 0: Channel 0 Output is active high 1: Channel 0 Output is active low

Channel Break Configuration Register – CHBRKCFR

This register specifies the channel output idle state when using the break function.

Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	CH3OIS	CH2OISN	CH2OIS	CH10ISN	CH10IS	CH0OISN	CH00IS
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
Bits	Field	Descrip	tions					
[6]	CH3OIS	MT CH3		State				

Bits	Field	Descriptions
[6]	CH3OIS	MT_CH3O Output Idle State
		0: Channel 3 output CH3O = 0 when CHMOE = 0
		1: Channel 3 output CH3O = 1 when CHMOE = 0
[5]	CH2OISN	MT_CH2NO Output Idle State
		0: Channel 2 complementary output CH2NO = 0 after a dead time when CHMOE = 0
		1: Channel 2 complementary output CH2NO = 1 after a dead time when CHMOE = 0
[4]	CH2OIS	MT_CH2O Output Idle State
		0: Channel 2 output CH2O = 0 after a dead time when CHMOE = 0
		1: Channel 2 output CH2O = 1 after a dead time when CHMOE = 0

Offset:

Bits	Field	Descriptions
[3]	CH10ISN	 MT_CH1NO Output Idle State 0: Channel 1 complementary output CH1NO = 0 after a dead time when CHMOE = 0 1: Channel 1 complementary output CH1NO = 1 after a dead time when CHMOE = 0
[2]	CH10IS	MT_CH1O Output Idle State 0: Channel 1 output CH1O = 0 after a dead time when CHMOE = 0 1: Channel 1 output CH1O = 1 after a dead time when CHMOE = 0
[1]	CH0OISN	 MT_CH0NO Output Idle State 0: Channel 0 complementary output CH1NO = 0 after a dead time when CHMOE = 0 1: Channel 0 complementary output CH1NO = 1 after a dead time when CHMOE = 0
[0]	CH0OIS	MT_CH0O Output Idle State 0: Channel 0 output CH0O = 0 after a dead time when CHMOE = 0 1: Channel 0 output CH0O = 1 after a dead time when CHMOE = 0

Channel Break Control Register – CHBRKCTR

25 2	24			
<i>N</i> 0 RW	0			
17 *	16			
LOC	CKLV			
N 0 RW	0			
9	8			
BKF				
N 0 RW	0			
1	0			
BKP B	KE			
N 1 RW	0			
$_{1}$, with $t_{dta} = t_{DTS}$				
)]) × t _{dtg} ,				
)]) × t _{dtg} ,				
)]) × t_{dtg} ,				
^^ /\/ /\/				

Bits	Field	Descriptions
[21]	CHOSSR	Channel Off State (CHxE, CHxNE = 0) Selection for Normal Run State (CHMOE = 1) 0: When inactive, MT_CHxO/MT_CHxNO output is disabled - not driven by timer 1: When inactive, MT_CHxO/MT_CHxNO output is enabled with their inactive level
[20]	CHOSSI	Channel Off State Selection for Idle Mode (CHMOE = 0) 0: When inactive, MT_CHxO/MT_CHxNO output is disable – not driven by timer 1: When inactive, MT_CHxO/MT_CHxNO output is enabled with their idle level depending upon the condition of the the CHxOIS and CHxOISN bits
[18]	GFSEL	Deglitch Filter Selection for Break 0: No input deglitch filter 1: 50 ns deglitch filter
[17:16]	LOCKLV	Lock Level Setting These bits offer write protection against software errors. The bits can be written only once after a reset. 00: LOCK OFF, Register write protected function is disabled 01: LOCK Level 1 10: LOCK Level 2 11: LOCK Level 3
[11:8]	BKF	Break Input Filter Setting These bits define the frequency ratio used to sample the MT_BRK signal. The digital filter in the MCTM is an N-event counter where N is defined as how many valid transitions are necessary to output a filtered signal. 0000: No filter – do not need sample clock 0001: $f_{sampling} = f_{CLKIN}$, N = 2 0010: $f_{sampling} = f_{CLKIN}$, N = 4 0011: $f_{sampling} = f_{CLKIN}$, N = 8 0100: $f_{sampling} = f_{DTS} / 2$, N = 6 0101: $f_{sampling} = f_{DTS} / 2$, N = 8 0110: $f_{sampling} = f_{DTS} / 4$, N = 8 1000: $f_{sampling} = f_{DTS} / 4$, N = 8 1000: $f_{sampling} = f_{DTS} / 4$, N = 8 1000: $f_{sampling} = f_{DTS} / 8$, N = 6 1001: $f_{sampling} = f_{DTS} / 8$, N = 8 1010: $f_{sampling} = f_{DTS} / 16$, N = 5 1011: $f_{sampling} = f_{DTS} / 16$, N = 6 1100: $f_{sampling} = f_{DTS} / 16$, N = 8 1101: $f_{sampling} = f_{DTS} / 32$, N = 5 1110: $f_{sampling} = f_{DTS} / 32$, N = 8
[5]	CHAOE	Channel Automatic Output Enable 0: CHMOE can be set only by software 1: CHMOE can be set by software or automatically by an update event 1
[4]	CHMOE	Channel Main Output Enable Cleared asynchronously by hardware on a break event occurrence. 0: MT_CHxO and MT_CHxNO are disabled or forced to idle states 1: MT_CHxO and MT_CHxNO are enabled if the enable bits (CHxE, CHxNE) are set
[1]	BKP	Break Input Polarity 0: Break input is active low 1: Break input is active high
[0]	BKE	Break Enable 0: Break inputs is disabled 1: Break inputs is enabled

Timer Interrupt Control Register – DICTR

This register contains the timer interrupt enable control bits.

Offset:	0x074						1	
Reset value:	0x0000_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved		BRKIE	TEVIE	UEV2IE	UEV1IE
Type/Reset					RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserved		CH3CCIE	CH2CCIE	CH1CCIE	CH0CCIE
Type/Reset					RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions	
[11]	BRKIE	Break event Interrupt Enable 0: Break event interrupt is disabled 1: Break event interrupt is enabled	
[10]	TEVIE	Trigger event Interrupt Enable 0: Trigger event interrupt is disabled 1: Trigger event interrupt is enabled	
[9]	UEV2IE	Update event 2 Interrupt Enable 0: Update event 2 interrupt is disabled 1: Update event 2 interrupt is enabled	
[8]	UEV1IE	Update event 1 Interrupt Enable 0: Update event 1 interrupt is disabled 1: Update event 1 interrupt is enabled	
[3]	CH3CCIE	Channel 3 Capture/Compare Interrupt Enable 0: Channel 3 interrupt is disabled 1: Channel 3 interrupt is enabled	
[2]	CH2CCIE	Channel 2 Capture/Compare Interrupt Enable 0: Channel 2 interrupt is disabled 1: Channel 2 interrupt is enabled	
[1]	CH1CCIE	Channel 1 Capture/Compare Interrupt Enable 0: Channel 1 interrupt is disabled 1: Channel 1 interrupt is enabled	
[0]	CH0CCIE	Channel 0 Capture/Compare Interrupt Enable 0: Channel 0 interrupt is disabled 1: Channel 0 interrupt is enabled	

Timer Event Generator Register – EVGR

This register contains the software event generation bits.

Offset:	0x078							
Reset value:	0x0000_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset	· ·							
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset	· ·							
	15	14	13	12	11	10	9	8
			Reserved		BRKG	TEVG	UEV2G	UEV1G
Type/Reset					WO 0	WO 0	WO 0	WO 0
	7	6	5	4	3	2	1	0
			Reserved		CH3CCG	CH2CCG	CH1CCG	CH0CCG
Type/Reset					WO 0	WO 0	WO 0	WO 0

Bits	Field	Descriptions
[11]	BRKG	Software Break Event Generation The break event BEV can be generated by setting this bit. It is automatically cleared by hardware. 0: No action 1: The BRKIF flag is set and then the CHMOE bit will be cleared
[10]	TEVG	Trigger Event Generation The trigger event TEV can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: The TEVIF flag is set
[9]	UEV2G	Update Event 2 Generation The update event 2 UEV2 can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Update the CHxE, CHxNE, and CHxOM bits when COMPRE bit in CTR Register is set to 1
[8]	UEV1G	Update Event 1 Generation The update event 1 UEV1 can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Reinitialise the counter The counter value returns to 0 or the CRR preload value, depending on the counter mode in which the current timer is being used. An update operation on any related registers will also be executed. For a more detailed description, refer to the corresponding section.

Bits	Field	Descriptions
[3]	CH3CCG	Channel 3 Capture/Compare Generation A Channel 3 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Capture/compare event is generated on channel 3 If Channel 3 is configured as an input, the counter value is captured into the CH3CCR register and then the CH3CCIF bit is set. If Channel 3 is configured as an output, the CH3CCIF bit is set.
[2]	CH2CCG	Channel 2 Capture/Compare Generation A Channel 2 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action
		1: Capture/compare event is generated on channel 2 If Channel 2 is configured as an input, the counter value is captured into the CH2CCR register and then the CH2CCIF bit is set. If Channel 2 is configured as an output, the CH2CCIF bit is set.
[1]	CH1CCG	Channel 1 Capture/Compare Generation A Channel 1 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action 1: Capture/compare event is generated on channel 1 If Channel 1 is configured as an input, the counter value is captured into the
[0]	CH0CCG	CH1CCR register and then the CH1CCIF bit is set. If Channel 1 is configured as an output, the CH1CCIF bit is set. Channel 0 Capture/Compare Generation A Channel 0 capture/compare event can be generated by setting this bit. It is cleared by hardware automatically. 0: No action
		1: Capture/compare event is generated on channel 0 If Channel 0 is configured as an input, the counter value is captured into the CH0CCR register and then the CH0CCIF bit is set. If Channel 0 is configured as an output, the CH0CCIF bit is set.

This register stores the timer interrupt status.

Offset:	0x07C							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved		BRKIF	TEVIF	UEV2IF	UEV1IF
Type/Reset					W0C 0	W0C 0	W0C 0	W0C 0
	7	6	5	4	3	2	1	0
	CH3OCF	CH2OCF	CH10CF	CH0OCF	CH3CCIF	CH2CCIF	CH1CCIF	CH0CCIF
Type/Reset	W0C 0	W0C 0	W0C 0	W0C 0	W0C 0	W0C 0	W0C 0	W0C 0
Bits	Field	Descript	ions					
[11]	BRKIF	Break Eve	ent Interrupt I	Flag				

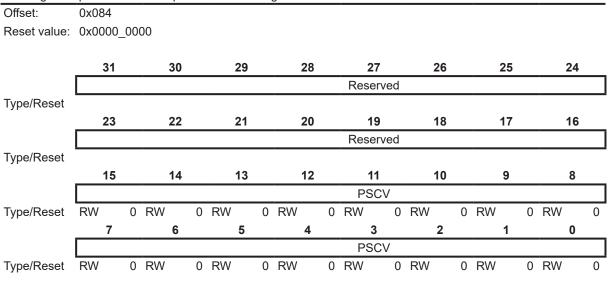
[11]	BRKIF	Break Event Interrupt Flag
		This flag is set by hardware when a break event occurs and is cleared by software.
		0: No break event occurs
		1: Break event occurs
[10]	TEVIF	Trigger Event Interrupt Flag
		This flag is set by hardware when a trigger event occurs and is cleared by software.
		0: No trigger event occurs
		1: Trigger event occurs
[9]	UEV2IF	Update Event 2 Interrupt Flag
		This bit is set by hardware when an update event 2 occurs and is cleared by
		software.
		0: No update event 2 occurs
		1: Update event 2 occurs
[8]	UEV1IF	Update Event 1 Interrupt Flag
		This bit is set by hardware when an update event 1 occurs and is cleared by software.
		0: No update event 1 occurs
		1: Update event 1 occurs
		Note: The update event 1 is sourced from the following conditions:
		- A counter overflow or underflow
		- The UEV1G bit is set with UEV1DIS = 0
		 An STI rising edge is received in slave restart mode with UEV1DIS = 0
[7]	CH3OCF	Channel 3 Over-capture Flag
		This flag is set by hardware and cleared by software.
		0: No over-capture event is detected
		1: Capture event occurs again when the CH3CCIF bit is already set and it is not

Timer Interrupt Status Register – INTSR

yet cleared by software

Bits	Field	Descriptions
[6]	CH2OCF	Channel 2 Over-capture Flag
		This flag is set by hardware and cleared by software.
		0: No over-capture event is detected
		 Capture event occurs again when the CH2CCIF bit is already set and it is not cleared yet by software
[5]	CH10CF	Channel 1 Over-capture Flag
		This flag is set by hardware and cleared by software.
		0: No over-capture event is detected
		 Capture event occurs again when the CH1CCIF bit is already set and it is not cleared yet by software
[4]	CH0OCF	Channel 0 Over-capture Flag
		This flag is set by hardware and cleared by software.
		0: No over-capture event is detected
		 Capture event occurs again when the CH0CCIF bit is already set and it is not yet cleared by software
[3]	CH3CCIF	Channel 3 Capture/Compare Interrupt Flag
		- Channel 3 is configured as an output
		0: No match event occurs
		 The contents of the counter CNTR have matched the contents of the CH3CCR register
		This flag is set by hardware when the counter value matches the CH3CCR value
		with exception in the center-aligned counting mode. It is cleared by software.
		- Channel 3 is configured as an input
		0: No input capture occurs
		1: Input capture occurs
		This bit is set by hardware when a capture event occurs. It is cleared by software or by reading the CH3CCR register.
[2]	CH2CCIF	Channel 2 Capture/Compare Interrupt Flag
		- Channel 2 is configured as an output
		0: No match event occurs
		 The contents of the counter CNTR have matched the contents of the CH2CCR register
		This flag is set by hardware when the counter value matches the CH2CCR value
		with exception in the center-aligned counting mode. It is cleared by software.
		- Channel 2 is configured as an input
		0: No input capture occurs
		1: Input capture occurs
		This bit is set by hardware on a capture event. It is cleared by software or by reading the CH2CCR register.

Bits	Field	Descriptions
[1]	CH1CCIF	Channel 1 Capture/Compare Interrupt Flag - Channel 1 is configured as an output 0: No match event occurs 1: The contents of the counter CNTR have matched the contents of the CH1CCR
		register This flag is set by hardware when the counter value matches the CH1CCR value with exception in the center-aligned counting mode. It is cleared by software. - Channel 1 is configured as an input 0: No input capture occurs
		1: Input capture occurs This bit is set by hardware on a capture event. It is cleared by software or by reading the CH1CCR register.
[0]	CH0CCIF	 Channel 0 Capture/Compare Interrupt Flag Channel 0 is configured as an output 0: No match event occurs 1: The contents of the counter CNTR have matched the content of the CH0CCR register
		 This flag is set by hardware when the counter value matches the CH0CCR value with exception in the center-aligned counting mode. It is cleared by software. Channel 0 is configured as an input 0: No input capture occurs 1: Input capture occurs This bit is set by hardware on a capture event. It is cleared by software or by reading the CH0CCR register.


Timer Counter Register – CNTR

This register	stores the	e tin	ner coun	ter ۱	/alue.																
Offset:	0x080																				
Reset value:	0x0000_	_00	00																		
	31		30			29			28		2	7		26			25			24	
											Rese	erveo	1								
Type/Reset																					
	23		22			21			20		1	9		18			17			16	
											Rese	erved	1								
Type/Reset																					
	15		14			13			12		1	1		10			9			8	
											CN	ITV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	()	RW	0	RW		0	RW		0
	7		6			5			4		3	3		2			1			0	
											CN	ITV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	()	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions																
[15:0]	CNTV		Count	-																	

Timer Prescaler Register – PSCR

This register specifies the timer prescaler value to generate the counter clock.

Bits	Field	Descriptions
[15:0]	PSCV	Prescaler Value
		These bits are used to specify the prescaler value to generate the counter clock
		frequency for our

 $f_{CK_CNT} = \frac{f_{CK_PSC}}{PSCV[15:0]+1}$, where the f_{CK_PSC} is the prescaler input clock source.

Timer Counter Reload Register – CRR

This register specifies the timer counter reload value.

Offset: 0x088 Reset value: 0x0000_FFFF 28 31 30 29 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset 15 14 13 12 10 9 8 11 CRV 1 RW Type/Reset RW 1 7 6 5 4 3 2 1 0 CRV 1 RW 1 RW 1 RW RW 1 RW 1 RW 1 RW 1 RW Type/Reset

Bits	Field	Descriptions
[15:0]	CRV	Counter Reload Value
		The CRV is the reload value which is loaded into the actual counter register.

Timer Repetition Register – REPR

This register	specifies the	timer repetit	ion counte	er value.				
Offset:	0x08C							
Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
					Reserve	d		
Type/Reset								
	23	22	21	20	19	18	17	16
		1			Reserve	d		
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserve	d		
Type/Reset								
	7	6	5	4	3	2	1	0
		1			REPV			
Type/Reset	RW 0	RW 0	RW	0 RW	0 RW	0 RW	0 RW	0 RW 0
Bits	Field	Descript	tions					
[7:0]	REPV	Repetitior	n Counter	Value				
		These bits	s allow the	e user to spe	ecify the upda	te rate of th	e compare re	egisters.

This register	specifies	the	timer cł	nann	el 0 c	apti	ure/	comp	are	val	Je.										
Offset:	0x090																				
Reset value:	0x0000_	00	00																		
	31		30			29			28			27		26			25			24	
											Res	served									
Type/Reset																					
	23		22			21		1	20			19		18			17			16	
											Res	served									
Type/Reset																					
	15		14			13			12		1	11		10			9			8	
			1								0	0CCV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
												0CCV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
Bits	Field		Desc	crip	tions	;															
[15:0]	CH0CC	V	Chan	nel () Cap	ture	/Cc	mpar	re Va	alue	;										

Channel 0 Capture/Compare Register – CH0CCR

 Bits
 Field
 Descriptions

 [15:0]
 CH0CCV
 Channel 0 Capture/Compare Value - When Channel 0 is configured as an output The CH0CCR value is compared with the counter value and the comparison result is used to trigger the CH0OREF output signal. - When Channel 0 is configured as an input The CH0CCR register stores the counter value captured by the last channel 0

This register specifies the timer channel 1 capture/compare value. Offset: 0x094 Reset value: 0x000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset RW 0	[15:0]			Ch	opp	<u> 1</u>	Con	turo		mna	$\sim 1/c$	ماير											—
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reset value: Type/Reset Z3 22 21 20 19 18 17 16 Reserved Type/Reset Type/Reset Type/Reset Type/Reset Type/Reset Type/Reset Type/Reset CH1CCV Type/Reset CH1CCV Type/Reset CH1CCV CH1CCV CH1CCV	Bits	Field		De	scr	ipt	ions																
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset Type/Reset CH1CCV Type/Reset Type/Reset Type/Reset Type/Reset Type/Reset Type/Reset Type/Reset Type/Reset Type/Reset RW 0 RW 0 RW 0 Reserved Type/Reset CH1CCV Type/Reset RW 0 RW 0 RW 0 RW 0 Type/Reset R CH1CCV Type/Reset 0 RW 0 RW <	Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	C	RW		0	RW		0	RW		0
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset 15 14 13 12 11 10 9 8 CH1CCV Type/Reset RW 0 RW <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ĊН</td><td>1CCV</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													ĊН	1CCV									
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset 15 14 13 12 11 10 9 8 CH1CCV		7			6			5			4			3		2			1			0	
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset 15 14 13 12 11 10 9 8	Type/Reset	RW	0	RW		0	RW		0	RW		0	RW	C	RW		0	RW		0	RW		0
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset													СН	1CCV									
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved		15		1	14			13			12			11		10			9			8	
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16	Type/Reset	-																					—
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset													Res	served									
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved	51	23		2	22			21			20			19		18			17			16	
Offset: 0x094 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24	Tvpe/Reset																						
Offset: 0x094 Reset value: 0x0000_0000								-			-		Res	served		-			-				
Offset: 0x094		31		3	30			29			28			27		26			25		:	24	
Offset: 0x094	Reset value:	0x0000_	_000	00																			
			00	00																			
This register specifies the timer channel 1 capture/compare value	-			unior	one			upic	110,	oomp	aro	van											
	This register	specifies	the	timer	cha	nn	el 1 c	anti	ıre/	comr	are	valı	le										

Channel 1 Capture/Compare Register – CH1CCR

Bits	Field	Descriptions
[15:0]	CH1CCV	Channel 1 Capture/Compare Value
		- When Channel 1 is configured as an output
		The CH1CCR value is compared with the counter value and the comparison result
		is used to trigger the CH1OREF output signal.
		- When Channel 1 is configured as an input
		The CH1CCR register stores the counter value captured by the last channel 1

[15:0]	CHOCC	1	Cho	nnol	2 Car	sture		mpol	$\sim 1/c$												
Bits	Field		Des	crip	otions	6															
Type/Reset	RW	0	RW	() RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
											CH	2CCV									
	7		6	6		5			4			3		2			1			0	
Type/Reset	RW	0	RW	(RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
											CH	2CCV									
	15		1	4		13			12			11		10			9			8	
Type/Reset	·																				
											Res	served									Γ
1990/100001	23		2	2		21			20			19		18			17		1	6	
Type/Reset											1100	Scivea									
				•								served									
	31		3	0		29			28			27		26			25		2	24	
Reset value:	0x0000_	_000	00																		
		~~~																			
Offset:	0x098	unc		man		μ	ui C/	comp	arc	van											—
This register	snacifias	tha	timer o	han	۔ 1 2 امn	ranti	ıro/	comr	are	valı											

# Channel 2 Capture/Compare Register – CH2CCR

Bits	Field	Descriptions
[15:0]	CH2CCV	Channel 2 Capture/Compare Value
		- When Channel 2 is configured as an output
		The CH2CCR value is compared with the counter value and the comparison result
		is used to trigger the CH2OREF output signal.
		- When Channel 2 is configured as an input
		The CH2CCR register stores the counter value captured by the last channel 2



This register	specifies	the t	timer c	hann	el 3 c	aptu	ıre/	comp	are	valı	Je.										
Offset:	0x09C					·															
Reset value:	0x0000_	000	0																		
	31		30	)		29			28			27		26			25			24	
											Res	served									
Type/Reset																					
	23		22	2		21			20			19		18			17			16	
											Res	served									
Type/Reset																					
	15		14			13		1	12			11		10			9			8	
											CH	3CCV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
								1			CH	3CCV									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW	0	RW		0	RW		0	RW		0
Bits	Field		Des	crip	tions																
[15:0]	CH3CC	1	Char	nol '	3 Can	turo	ICo	mnar		ميراد											

# Channel 3 Capture/Compare Register – CH3CCR

Bits	Field	Descriptions
[15:0]	CH3CCV	Channel 3 Capture/Compare Value
		- When Channel 3 is configured as an output
		The CH3CCR value is compared with the counter value and the comparison result
		is used to trigger the CH3OREF output signal.
		- When Channel 3 is configured as an input
		The CH3CCR register stores the counter value captured by the last channel 3



This register	specifies	the tin	ner cha	anne	el 0 as	ymm	etric c	omp	are	value.									
Offset:	0x0A0																		
Reset value:	0x0000_	0000																	
	31		30		2	9		28		27	7	26			25			24	
										Rese	rved								
Type/Reset																			
	23		22		2	1		20		19	)	18			17			16	
										Rese	rved								
Type/Reset																			
	15		14		1	3		12		11	I	10			9			8	
										CH0A	ACV								
Type/Reset	RW	0 R	W	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0
	7		6		Ę	5		4		3		2			1			0	
										CH0A	ACV								
Type/Reset	RW	0 R	W	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0

# Channel 0 Asymmetric Compare Register – CH0ACR

Bits	Field	Descriptions
[15:0]	CH0ACV	Channel 0 Asymmetric Compare Value
		When channel 0 is configured as asymmetric PWM mode and the counter is counting down, the value written into this register will be compared to the counter.

# Channel 1 Asymmetric Compare Register – CH1ACR

This register	specifies	the	timer cha	ann	el 1 a	isyn	nme	etric c	comp	bare	value	э.									
Offset:	0x0A4																				
Reset value:	0x0000_	00	00																		
	31		30			29			28			27		26			25			24	
											Res	serv	ed								
Type/Reset																					
	23		22			21			20			19		18			17			16	
											Res	serv	ed								
Type/Reset																					
	15		14			13			12			11		10			9			8	
											СН	1AC	CV (								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
											СН	1AC	V								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions	5															
[15:0]	CH1AC	/	Chanr	nel ´	1 Asyı	mme	etrio	c Cor	npar	e V	alue										
			When	ch	anne	11	is (	confi	gure	ed a	is as	ymr	net	ric PW	Лm	ode	and	the	e cou	nter	· is
			counti	ng o	down,	, the	e va	lue w	ritte	n in	to this	s reg	gist	er will be	e cor	mpare	ed to	o the	e coui	nter.	



This register	specifies	the timer	char	nnel 2 a	symm	etric co	mpar	e value								
Offset:	0x0A8															
Reset value:	0x0000_	0000														
	31	:	30	1	29	2	8	2	27	26			25		24	
								Rese	erved							
Type/Reset																
	23	2	22	:	21	2	20	1	9	18			17		16	
								Rese	erved							
Type/Reset																
	15		4		13	1	2	1	1	10			9		8	
								CH2	ACV							
Type/Reset	RW	0 RW		0 RW	0	RW	C	RW	0	RW	0	RW		0	RW	0
	7		6		5		4	;	3	2			1		0	
								CH2	ACV							
Type/Reset	RW	0 RW		0 RW	0	RW	C	RW	0	RW	0	RW		0	RW	0

# Channel 2 Asymmetric Compare Register – CH2ACR

Bits	Field	Descriptions
[15:0]	CH2ACV	Channel 2 Asymmetric Compare Value
		When channel 2 is configured as asymmetric PWM mode and the counter is
		counting down, the value written into this register will be compared to the counter.

# Channel 3 Asymmetric Compare Register – CH3ACR

This register	specifies	the	timer ch	ann	el 3 a	isyn	nme	etric c	omp	bare	value	э.								
Offset:	0x0AC																			
Reset value:	0x0000_	00	00																	
	31		30			29			28			27		26	;		25		2	4
			1								Res	serv	ed							
Type/Reset																				
	23		22			21			20			19		18	}		17		1	6
											Res	serv	ed							
Type/Reset																				
	15		14			13			12			11		10	)		9			3
											CH	3AC	V							
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW	0
	7		6			5			4			3		2			1		(	)
											CH	3AC	V							
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW	0
Bits	Field		Desc	rip	tions	;														
[15:0]	CH3AC	V	Chanr	nel 3	3 Asy	mm	etric	c Cor	npar	e Va	alue									
			When	ch	anne	13	is d	confi	gure	ed a	is as	ymr	net	ric PW	Мm	ode	and	the	e coun	ter is
			counti	ng o	down	, the	e va	lue w	ritte	n in	to this	s reę	gist	er will b	e col	mpare	ed to	o the	e coun	er.



# **17** Real Time Clock (RTC)

# Introduction

The Real Time Clock, RTC, circuitry includes the APB interface, a 24-bit up-counter, a control register, a prescaler, a compare register and a status register. The RTC circuits are located in the  $V_{DD15}$  Domain, as shown in the accompanying figure. The RTC counter is used as a wakeup timer to let the system resume from the power saving modes. The detailed RTC function will be described in the following sections.

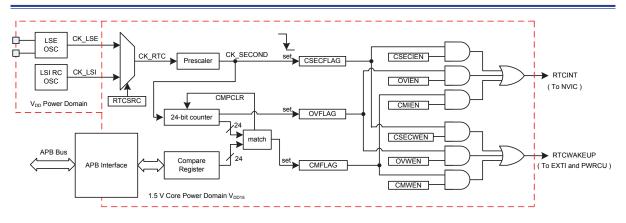



Figure 137. RTC Block Diagram

# **Features**

- 24-bit up-counter for counting elapsed time
- Programmable clock prescaler
  - Division factor: 1, 2, 4, 8..., 32768
- 24-bit compare register for alarm usage
- RTC clock source
  - LSE oscillator clock
  - LSI oscillator clock
- Three RTC Interrupt / wakeup settings
  - RTC second clock interrupt / wakeup
  - RTC compare match interrupt / wakeup
  - RTC counter overflow interrupt / wakeup
- The RTC interrupt / wakeup event can work together with power management to wake up the chip from power saving modes



# **Functional Descriptions**

#### **RTC Related Register Reset**

The RTC registers can only be reset by either a  $V_{DD15}$  Domain power on reset, POR15, or by a PWRCU software reset by setting the PWCURST bit in the PWRCR register. Other reset events have no effect to clear the RTC registers.

#### Low Speed Clock Configuration

The default RTC clock source, CK_RTC, is derived from the LSI oscillator. The CK_RTC clock can be derived from either the external 32,768 Hz crystal oscillator, named the LSE oscillator, or the internal 32 kHz RC oscillator named the LSI oscillator, by setting the RTCSRC bit in the RTCCR register. A prescaler is provided to divide the CK_RTC by a ratio ranged from 2^o to 2¹⁵ determined by the RPRE [3:0] field. For instance, setting the prescaler value RPRE [3:0] to 0xF will generate an exact 1 Hz CK_SECOND clock if the CK_RTC clock frequency is equal to 32,768 Hz. The LSE oscillator can be enabled by the LSEEN control bits in the RTCCR register. In addition, the LSE oscillator startup mode can be selected by configuring the LSESM bit in the RTCCR register. This enables the LSE oscillator to have either a shorter startup time or a lower power consumption, both of which are traded off depending upon specific application requirements. An example of the startup time and the power consumption for different startup modes are shown in the accompanying table for reference.

#### Table 39. LSE Startup Mode Operating Current and Startup Time

Startup Mode	LSESM Setting in the RTCCR Register	Operating Current	Startup Time
Normal startup	0	2.0 µA	Above 500 ms
Fast startup	1	3.5 µA	Below 300 ms
· · ·	0		

@  $V_{DD}$  = 3.3 V and LSE clock = 32,768 Hz; these values are only for reference, actual values are dependent on the specification of the external 32.768 kHz crystal.

#### **RTC Counter Operation**

The RTC provides a 24-bit up-counter which increments at the falling edge of the CK_SECOND clock and whose value can be read from the RTCCNT register asynchronously via the APB bus. A 24-bit compare register, RTCCMP, is provided to store the specific value to be compared with the RTCCNT content. This is used to define a pre-determined time interval. When the RTCCNT register content is equal to the RTCCMP register value, the match flag CMFLAG in the RTCSR register will be set by hardware and an interrupt or wakeup event can be sent according to the corresponding enable bits in the RTCIWEN register. The RTC counter will be either reset to zero or keep counting when the compare match event occurs, dependent upon the CMPCLR bit in the RTCCR register. For example, if the RPRE [3:0] is set to 0xF, the RTCCMP register content is set to a decimal value of 60 and the CMPCLR bit is set to 1, then the CMFLAG bit will be set every minute. In addition, the OVFLAG bit in the RTCSR register will be set when the RTC counter overflows. A read operation on the RTCSR register clears the status flags including the CSECFLAG, CMFLAG and OVFLAG bits.

#### Interrupt and Wakeup Control

The falling edge of the CK_SECOND clock causes the CSECFLAG bit in the RTCSR register to be set and generates an interrupt if the corresponding interrupt enable bit, CSECIEN, in the RTCIWEN register is set. The wakeup event can also be generated to wake up the HSI / HSE





oscillators, the LDO and the CPU core if the corresponding wakeup enable bit CSECWEN is set. When the RTC counter overflows or a compare match event occurs, it will generate an interrupt or a wake up event determined by the corresponding interrupt or wakeup enable control bits, OVIEN / OVWEN or CMIEN / CMWEN bits, in the RTCIWEN register. Refer to the related register definitions for more details.

#### **RTCOUT Output Pin Configuration**

The following table shows RTCOUT output format according to the mode, polarity and event selection setting.

ROWM	ROES		RTCOUT Output Waveform
0	0 Compare match	RTCCMP RTCCNT RTCOUT (ROAP = 0) RTCOUT (ROAP = 1) ROLF	4 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1
(Pulse mode)	1 Second clock	RTCCMP RTCCNT RTCOUT (ROAP = 0) RTCOUT (ROAP = 1) ROLF	$\begin{array}{c c} X \\ \hline 3 \\ \hline T_R \\ \hline \end{array} \\ \hline $
1 (Level mode)	0 Compare match	RTCCMP RTCCNT RTCOUT (ROAP = 0) RTCOUT (ROAP = 1) ROLF	4 3 4 5 
	1 Second clock	RTCCMP RTCCNT RTCOUT (ROAP = 0) RTCOUT (ROAP = 1) ROLF	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$T_R$ : RTCOUT of $\rightarrow$ : Cleared by	⊔ output pulse time v software reading	= 1 / f _{CK_RTC} g ROLF bit	

#### Table 40. RTCOUT Output Mode and Active Level Setting





# **Register Map**

The following table shows the RTC registers and reset values. Note all the registers in this unit are located at the  $V_{DD15}$  power domain.

#### Table 41. RTC Register Map

Register	Offset	Description	Reset Value
RTCCNT	0x000	RTC Counter Register	0x0000_0000
RTCCMP	0x004	RTC Compare Register	0x0000_0000
RTCCR	0x008	RTC Control Register	0x0000_0F04
RTCSR	0x00C	RTC Status Register	0x0000_0000
RTCIWEN	0x010	RTC Interrupt and Wakeup Enable Register	0x0000_0000

# **Register Descriptions**

#### **RTC Counter Register – RTCCNT**

This register defines a 24-bit up-counter which is incremented by the CK_SECOND clock.

Offset: 0x000

Reset value:  $0x0000_{0000}$  (Reset by V_{DD15} Power Domain reset only)

	31		:	30			29			28			27		26	i		25			24	
												Re	serve	d								
Type/Reset																						
	23			22			21			20			19		18			17			16	
												RT	CCN	V								
Type/Reset	RO	0	RO		0	RO		0	RO		0	RO		0	RO	0	RO		0	RO		0
	15			14			13			12			11		10			9			8	
												RT	CCNT	V								
Type/Reset	RO	0	RO		0	RO		0	RO		0	RO		0	RO	0	RO		0	RO		0
	7			6			5			4			3		2			1			0	
												RT	CCNT	V								
Type/Reset	RO	0	RO		0	RO		0	RO		0	RO		0	RO	0	RO		0	RO		0
Bits	Field		De	SCI	ript	ions																
[23:0]	RTCCN	ΤV	RT	СС	our	nter V	alue	e														
			The	e cu	Irrer	nt valu	ue c	of th	e RT	Сс	ount	er is	retur	ne	d when	read	ing th	ne R	тсо	CNT r	egis	ster.
			The	e R	тсо	CNT r	egi	ster	is u	odat	ed (	durin	g the	fa	lling ed	ge o	f the	CK	SE	CON	D. T	his
			reg	iste	r is	reset	by	one	of th	e fo	llow	ing c	onditi	on	s:	-		_	_			
		- Software reset – Set the PWCURST bit in the PWRCR register																				
		- V _{DD15} Power Domain power on reset – POR15																				

- Compare match (RTCCNT = RTCCMP) when CMPCLR = 1 (in the RTCCR register)

- RTCEN bit changed from 0 to 1



#### **RTC Compare Register – RTCCMP**

This register	defines a	spe	cific valu	e t	o be cor	npar	ed wi	th th	e R	TC cour	nter	value.							
Offset:	0x004																		
Reset value:	0x0000_	000	0 (Reset	t by	V _{DD15} P	owe	r Don	nain	res	et only)									
	31		30		29	)		28		27		26			25		:	24	
										Reserv	ved								
Type/Reset																			
	23		22		21			20		19		18			17			16	
										RTCCN	ЛРV								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0
	15		14		13			12		11		10			9			8	
										RTCCN	ЛРV								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0
	7		6		5			4		3		2			1			0	
										RTCCN	ЛРV								
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW		0	RW		0

Bits	Field	Descriptions
[23:0]	RTCCMPV	RTC Compare Match Value
		A match condition happens when the value in

A match condition happens when the value in the RTCCNT register is equal to RTCCMP value. An interrupt can be generated if the CMIEN bit in the RTCIWEN register is set. When the CMPCLR bit in the RTCCR register is set to 0 and a match condition happens, the CMFLAG bit in the RTCSR register is set while the value in the RTCCNT register is not affected and will continue to count until overflow. When the CMPCLR bit is set to 1 and a match condition happens, the CMFLAG bit in the RTCSR register is zero and then the RTCSR register is set and the RTCCNT register is set to zero and then the counter continues to count.



# **RTC Control Register – RTCCR**

This register	specifies a	range	of RTC	circuitrv	control	bits.

Offset:	0x008	
	020000	

Reset value: 0x0000_0F04 (Reset by V_{DD15} Power Domain reset only)

EN.												
0												
0												
1												
'												
EN												
0												
0												
<ol> <li>RTCOUT Output is holding as active level</li> <li>Set by hardware when in the level mode (ROWM = 1) and an RTCOUT output event</li> </ol>												
Set by hardware when in the level mode (ROWM = 1) and an RTCOUT output event												
occurred. Cleared by software reading this flag. The RTCOUT signal will return to the inactive level after software has read this bit.												
the inactive level after software has read this bit. RTCOUT Output Active Polarity												
ared												
the												
CK_												
once												
The												
and												
n will												



Bits	Field	Descriptions
[11:8]	RPRE	RTC Clock Prescaler Select $CK_SECOND = CK_RTC / 2^{RPRE}$ $0000: CK_SECOND = CK_RTC / 2^{0}$ $0001: CK_SECOND = CK_RTC / 2^{1}$ $0010: CK_SECOND = CK_RTC / 2^{2}$ 
		1111: CK_SECOND = CK_RTC / $2^{15}$
[5]	LSESM	LSE oscillator Startup Mode 0: Normal startup and requires less operating power 1: Fast startup but requires higher operating current
[4]	CMPCLR	Compare Match Counter Clear 0: RTC counter is not affected when compare match condition occurs 1: RTC counter is cleared when compare match condition occurs
[3]	LSEEN	LSE oscillator Enable Control 0: LSE oscillator is disabled 1: LSE oscillator is enabled
[1]	RTCSRC	RTC Clock Source Selection 0: LSI oscillator is selected as the RTC clock source 1: LSE oscillator is selected as the RTC clock source
[0]	RTCEN	RTC Enable Control 0: RTC is disabled 1: RTC is enabled



# **RTC Status Register – RTCSR**

This register	stores the counter flags.
Offset:	0x00C

Offset:

Reset value: 0x0000_0000 (Reset by V_{DD15} Power Domain reset and RTCEN bit change from 1 to 0)

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset					·			
	7	6	5	4	3	2	1	0
			Reserved			OVFLAG	CMFLAG	CSECFLAG
Type/Reset						RC 0	RC 0	RC 0

Bits	Field	Descriptions
[2]	OVFLAG	Counter Overflow Flag 0: Counter overflow does not occur since the last RTCSR register read operation 1: Counter overflow has occurred since the last RTCSR register read operation This bit is set by hardware when the counter value in the RTCCNT register changes from 0xFF_FFFF to 0x00_0000 and cleared by read operation. This bit is suggested to read in the RTC IRQ handler and should be taken care when software polling is used.
[1]	CMFLAG	<ul> <li>Compare Match Condition Flag</li> <li>O: Compare match condition does not occur since the last RTCSR register read operation</li> <li>1: Compare match condition has occurred since the last RTCSR register read operation.</li> <li>This bit is set by hardware on the CK_SECOND clock falling edge when the</li> </ul>
[0]	CSECFLAG	RTCCNT register value is equal to the RTCCMP register content. It is cleared by software reading this bit. This bit is suggested for access in the corresponding RTC interrupt routine – do not use software polling during software free running.
[0]		0: CK_SECOND does not occur since the last RTCSR register read operation 1: CK_SECOND has occurred since the last RTCSR register read operation This bit is set by hardware on the CK_SECOND clock falling edge. It is cleared by software reading this bit. This bit is suggested for access in the corresponding RTC interrupt routine – do not use software polling during software free running.



# **RTC Interrupt and Wakeup Enable Register – RTCIWEN**

This register contains the interrupt and wakeup enable bits.

Offset:	0x010							
Reset value:	0x0000_000	00 (Reset by	V _{DD15} Power	Domain re	set only)			
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
			Reserved			OVWEN	CMWEN	CSECWEN
Type/Reset						RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserved			OVIEN	CMIEN	CSECIEN
Type/Reset						RW 0	RW 0	RW 0

Bits	Field	Descriptions
[10]	OVWEN	Counter Overflow Wakeup Enable 0: Counter overflow wakeup is disabled 1: Counter overflow wakeup is enabled
[9]	CMWEN	Compare Match Wakeup Enable 0: Compare match wakeup is disabled 1: Compare match wakeup is enabled
[8]	CSECWEN	Counter Clock CK_SECOND Wakeup Enable 0: Counter Clock CK_SECOND wakeup is disabled 1: Counter Clock CK_SECOND wakeup is enabled
[2]	OVIEN	Counter Overflow Interrupt Enable 0: Counter Overflow Interrupt is disabled 1: Counter Overflow Interrupt is enabled
[1]	CMIEN	Compare Match Interrupt Enable 0: Compare Match Interrupt is disabled 1: Compare Match Interrupt is enabled
[0]	CSECIEN	Counter Clock CK_SECOND Interrupt Enable 0: Counter Clock CK_SECOND Interrupt is disabled 1: Counter Clock CK_SECOND Interrupt is enabled



# **18** Watchdog Timer (WDT)

# Introduction

The Watchdog Timer is a hardware timing circuitry that can be used to detect a system lock-up due to software trapped in a deadlock. The Watchdog Timer can be operated in a reset mode. The Watchdog Timer will generate a reset when the counter counts down to a zero value. Therefore, the software should reload the counter value before a Watchdog Timer underflow occurs. In addition, a reset is also generated if the software reloads the counter before it reaches a delta value. That means that the Watchdog Timer prevents a software deadlock that continuously triggers the Watchdog, the reload must occur when the Watchdog Timer value has a value within a limited window of 0 and WDTD. The Watchdog Timer counter can be stopped when the processor is in the debug or the three sleep modes. The register write protection function can be enabled to prevent an unexpected change in the Watchdog Timer configuration.

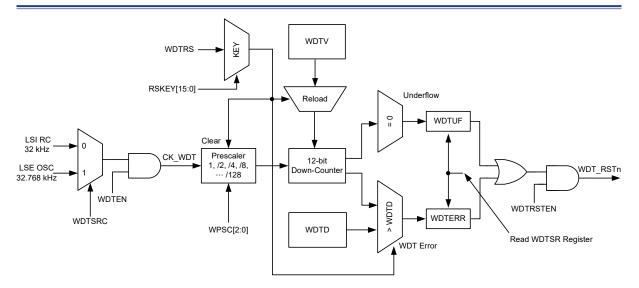



Figure 138. Watchdog Timer Block Diagram



# **Features**

- Clock source from either the internal 32 kHz RC oscillator (LSI) or the external 32,768 Hz oscillator (LSE)
- Can be independently setup to keep running or to stop when entering the Sleep or Deep-Sleep1 mode
- 12-bit down-counter with 3-bit prescaler structure
- Provides reset to the system
- Limited reload window setup function for custom Watchdog Timer reload times
- Watchdog Timer may be stopped when the processor is in the debug mode
- Reload lock key to prevent unexpected operation
- Configuration register write protection function for counter value, reset enable, delta value, and prescaler value

# **Functional Description**

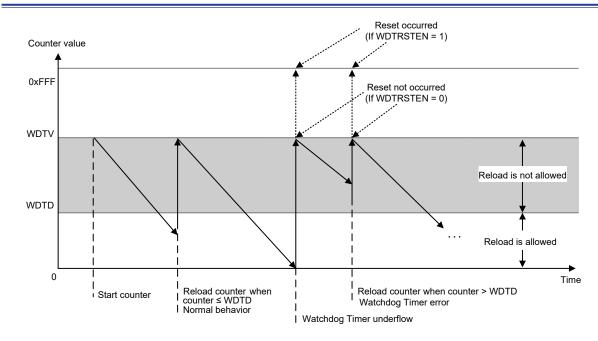
The Watchdog Timer is formed from a 12-bit count-down counter and a fixed 3-bit prescaler. The largest time-out period is 16 seconds, using the LSE or LSI clock and a 1/128 maximum prescaler value.

The Watchdog Timer configuration setup includes programmable counter reload value, reset enable, window value and prescaler value. These configurations are set using the WDTMR0 and WDTMR1 registers which must be properly programmed before the Watchdog Timer starts counting. In order to prevent unexpected write operations to those configurations, a register write protection function can be enabled by writing any value, other than 0x35CA to PROTECT[15:0], in the WDTPR register. A value of 0x35CA can be written to PROTECT[15:0] to disable the register write protection function before accessing any configuration register. A read operation on PROTECT[0] can obtain the enable/disable status of the register write protection function.

During normal operation, the Watchdog Timer counter should be reloaded before it underflows to prevent the generation of a Watchdog reset. The 12-bit count-down counter can be reloaded with the required Watchdog Timer Counter Value (WDTV) by first setting the WDTRS bit tol with the correct key, which is 0x5FA0 in the WDTCR register.

If a software deadlock occurs during a Watchdog Timer reload routine, the reload operation will still go ahead and therefore the software deadlock cannot be detected. To prevent this situation from occurring, the reload operation must be executed in such a way that the value of the Watchdog Timer counter is limited to within a delta value (WDTD). If the Watchdog Timer counter value is greater than the delta value and a reload operation is executed, a Watchdog Timer error will occur. The Watchdog Timer error will cause a Watchdog reset if the related functional control is enabled. Additionally, the above features can be disabled by programming a WDTD value greater than or equal to the WDTV value.

The WDTERR and WDTUF flags in the WDTSR register will be set respectively when the Watchdog Timer error occurs or when a Watchdog Timer underflows. A system reset or writing "1" operation on the WDTSR register will clear the WDTERR and WDTUF flags.


The Watchdog Timer uses two clocks: PCLK and CK_WDT. The PCLK clock is used for APB access to the watchdog registers. The CK_WDT clock is used for the Watchdog Timer functionality and counting. There is some synchronization logic between these two clock domains.



When the system enters the Sleep mode or Deep-Sleep1 mode, the Watchdog Timer counter will either continue to count or stop depending on the WDTSHLT field setup in the WDTMR0 register. However, the Watchdog Timer will always stop when the system is in the Deep-Sleep2 mode. When the Watchdog stops counting, the count value is retained so that it continues counting after the system is woken up from these three sleep modes. A Watchdog reset will occur any time when the Watchdog Timer is running and when it has an operating clock source. When the system enters the debug mode, the Watchdog Timer counter will either continue to count or stop depending on the DBWDT bit of the MCUDBGCR register in the Clock Control Unit.

The Watchdog timer should be used in the following manners:

- Set the Watchdog Timer reload value (WDTV) and reset in the WDTMR0 register.
- Set the Watchdog Timer delta value (WDTD) and prescaler in the WDTMR1 register.
- Start the Watchdog Timer by writing to the WDTCR register with WDTRS = 1 and RSKEY = 0x5FA0.
- Write to the WDTPR register to lock all the Watchdog Timer registers except for WDTCR and WDTPR.



■ The Watchdog Timer counter should be reloaded again within the delta value (WDTD).





# **Register Map**

The following table shows the Watchdog Timer registers and reset values.

Table 42.	Watchdog	Timer	Register	Мар
-----------	----------	-------	----------	-----

		<u> </u>	
Register	Offset	Description	Reset Value
WDTCR	0x000	Watchdog Timer Control Register	0x0000_0000
WDTMR0	0x004	Watchdog Timer Mode Register 0	0x0000_0FFF
WDTMR1	0x008	Watchdog Timer Mode Register 1	0x0000_7FFF
WDTSR	0x00C	Watchdog Timer Status Register	0x0000_0000
WDTPR	0x010	Watchdog Timer Protection Register	0x0000_0000
WDTCSR	0x018	Watchdog Timer Clock Selection Register	0x0000_0000

# **Register Descriptions**

# Watchdog Timer Control Register – WDTCR

This register is used to reload the Watchdog timer.

Offset: 0x000

Reset value: 0x0000_0000

31	30	29	28	27	26	25	24	
				RSKEY				
WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO (	0
23	22	21	20	19	18	17	16	
				RSKEY				
WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO (	0
15	14	13	12	11	10	9	8	_
				Reserved	d	1		
7	6	5	-	_	2	1	0	-
			Reserv	ed				
							WO (	)
Field	Descr	iptions						
RSKEY	Watchc	log Timer Re	eload Lock K	ley				_
	The RS	SKEY [15:0]	bits should	be written wit	th a 0x5FA0	) value to er	nable the WD	Т
	reload	operation fu	unction. Writ	ing any other	value exce	pt 0x5FA0 i	n this field wi	ill
	abort th	ne write opei	ration.					
WDTRS	Watchd	log Timer Re	eload					
WDTRS		log Timer Re	eload					
WDTRS	0: N	-						
WDTRS	0: N 1: R	o effect eload Watch	ndog Timer	Watchdog tir	mer counte	r as a WDT	V value whic	h
WDTRS	0: N 1: R This bi	o effect eload Watch t is used to	ndog Timer o reload the	Watchdog tir ister. It is set				
	WO 23 WO 15 7 Field	WO         0         WO           23         22           WO         0         WO           15         14           7         6           Field         Descr           RSKEY         Watchor           The RS         reload           abort th	WO         0         WO         0         WO           23         22         21           WO         0         WO         0         WO           15         14         13           7         6         5           Field         Descriptions           RSKEY         Watchdog Timer Real The RSKEY [15:0] reload operation for abort the write operation for abort for ab	WO       0       WO       0       WO       0       WO         23       22       21       20         WO       0       WO       0       WO         15       14       13       12         7       6       5       4         Reserve         Field       Descriptions         RSKEY       Watchdog Timer Reload Lock K         The RSKEY [15:0] bits should reload operation function. Writ abort the write operation.	RSKEY           WO         0         WO         0         WO         0         WO           23         22         21         20         19           RSKEY         WO         0         WO         0         WO           WO         0         WO         0         WO         0         WO           15         14         13         12         11           Reserved         Reserved         Reserved           7         6         5         4         3           RSKEY         Watchdog Timer Reload Lock Key         The RSKEY [15:0] bits should be written wir reload operation function. Writing any other abort the write operation.	RSKEY           WO         0         WO         19         18         RSKEY           WO         0         WO         15         14         13         12         11         10         Reserved         Reserved         Reserved         WO         Reserved         WO         Reserved         <	RSKEY         WO       0       WO<	RSKEY           WO         0         WO         0



This register	0x004	0												
Reset value:		FF												
	0,0000_01													
	31	30	29		28	27		26		:	25		24	
						Reserv	ed			-				
Type/Reset												1		
<b>31</b>	23	22	21		20	19		18			17		16	
						Reserv	ed					W	DTE	N
Type/Reset												RW	,	0
	15	14	13		12	11		10			9		8	
		WDTSHL	T WDTRS	TEN	Reserved					W	DTV	Î		
Type/Reset	RW 0	RW (	RW	0		RW	1	RW	1	RW		1 RW	,	1
	7	6	5		4	3		2			1		0	
						WDT	V							
Type/Reset	RW 1	RW [·]	1 RW	1	RW 1	RW	1	RW	1	RW		1 RW		1
Bits	Field	Descri												
	I IEIU	Descill	otions											
		-		unnin	g Enable									
[16]	WDTEN	Watchdo	og Timer Ru		-									
		Watchdo 0: Wa	og Timer Ru atchdog Tin	ner is	disabled	run								
		Watchdo 0: Wa 1: Wa	og Timer Ru atchdog Tin atchdog Tin	ner is ner is	disabled enabled to		e cc	ounter w	rill b	e res	et to	its ha	rdw	are
		Watchdo 0: Wa 1: Wa When th	og Timer Ru atchdog Tin atchdog Tin atchdog Tin ne Watchdo	ner is ner is og Ti	disabled enabled to mer is disal	bled, the								
		Watchdo 0: Wa 1: Wa When th default o	og Timer Ru atchdog Tin atchdog Tin ne Watchdo condition. W	ner is ner is og Ti /hen	disabled enabled to	bled, the I bit is se								
[16]		Watchdo 0: Wa 1: Wa When th default o with the	og Timer Ru atchdog Tin atchdog Tin ne Watchdo condition. W WDTV valu	ner is ner is og Ti /hen ue an	disabled enabled to mer is disal the WDTEN d count dow	bled, the I bit is se								
[16]	WDTEN	Watchdd 0: Wa 1: Wa When th default o with the Watchdd	og Timer Ru atchdog Tin atchdog Tin ne Watchdo condition. W WDTV valu og Timer Slo	ner is ner is og Ti /hen ue an eep H	disabled enabled to mer is disal the WDTEN d count dow	bled, the I bit is se /n.	et, t	he Wato	hdo	g Tim	er wi	ll be re	eloa	ded
[16]	WDTEN	Watchdd 0: Wa 1: Wa When th default o with the Watchdo 00: T	og Timer Ru atchdog Tin atchdog Tin ne Watchdo condition. W WDTV valu og Timer Slo	ner is ner is og Ti /hen ue an eep H	s disabled s enabled to mer is disa the WDTEN id count dow Halt	bled, the I bit is se /n.	et, t	he Wato	hdo	g Tim	er wi	ll be re	eloa	ded
[16]	WDTEN	Watchdd 0: Wa 1: Wa When th default o with the Watchdo 00: T	og Timer Ru atchdog Tim atchdog Tim ne Watchdo condition. W WDTV valu og Timer Slo he Watchd node	ner is og Ti Vhen ue an eep H og ru	s disabled s enabled to mer is disa the WDTEN id count dow Halt	bled, the I bit is se /n. e system	et, t n is	he Wato in the S	hdo Sleep	g Tim o mod	er wi le or	ll be re Deep	eloa Slee	ded ep1
[16]	WDTEN	Watchdo 0: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T	og Timer Ru atchdog Tim atchdog Tim ne Watchdo condition. W WDTV valu og Timer Slo he Watchd node	ner is ner is og Ti Vhen ue an eep H og ru	disabled enabled to mer is disal the WDTEN d count dow Halt uns when th	bled, the I bit is se /n. e system	et, t n is	he Wato in the S	hdo Sleep	g Tim o mod	er wi le or	ll be re Deep	eloa Slee	ded ep1
[16]	WDTEN	Watchdo 0: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or	og Timer Ru atchdog Tin atchdog Tin ne Watchdo condition. W WDTV valu og Timer Sk he Watchd he Watchdo kleep1 mod 11: The W	ner is ner is og Ti /hen ue an ue an eep H og ru og ru e /atch	disabled enabled to mer is disal the WDTEN d count dow Halt uns when th	bled, the I bit is se /n. e system e system	et, t n is is ir	he Wato in the S n the Sle	hdo Sleep ep r	g Tim o mod mode	er wi le or and l	ll be re Deep halts ir	Slee	ded ep1 ep-
[16]	WDTEN	Watchdd 0: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or	og Timer Ru atchdog Tin atchdog Tin ne Watchdo condition. W WDTV valu og Timer Sk be Watchdo he Watchdo bleep1 mod bleep1 mod	ner is ner is og Ti /hen ue an eep H og ru og ru e /atch/ e	disabled enabled to mer is disal the WDTEN d count dow Halt uns when the dog halts wh	bled, the V bit is se vn. e system e system nen the s	et, t is ir syst	he Watc in the S n the Sle em is in	bleep eep r	g Tim o mod mode Sleep	er wi le or and l o moo	ll be re Deep halts ir de and	Slee De	ep-
[16]	WDTEN	Watchdd O: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or S Note th	og Timer Ru atchdog Tim atchdog Tim ne Watchdo condition. W WDTV valu og Timer Slo he Watchdo he Watchdo cleep1 mod cleep1 mod at the Wat	ner is ner is og Ti Vhen ue an eep H og ru e vatch e tchdo	disabled enabled to mer is disal the WDTEN d count dow Halt uns when the dog halts wh og timer alw	bled, the V bit is se (n. e system e system hen the s ways ha	et, t n is is ir syst Its	he Watc in the S n the Sle em is in when th	hdo Sleep the the	g Tim o mod mode Sleep	er wi le or and l o moo n is	ll be re Deep- halts ir de and in the	Slee De De	ded ep1 ep- ep-
[16]	WDTEN	Watchdo 0: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or S Note th Sleep2 o	og Timer Ru atchdog Tim atchdog Tim atchdog Tim we Watchdo condition. W WDTV valu og Timer Slo og Timer Slo o	ner is og Ti Vhen ue an eep H og ru e /atch e tchdo	disabled enabled to mer is disal the WDTEN docount dow Halt uns when the dog halts wh og timer alw chdog stops	bled, the I bit is se In. e system e system nen the s ways ha counting	et, t is is is ir lts g w	he Wato in the S n the Sle em is in when th hen the	bleep eepr the WD	g Tim o mod mode Sleep ysten )TSHL	er wi le or and l o moo n is _T fie	Il be re Deep- halts ir de and in the eld is p	Slee De De	ded ep1 ep- ep- erly
[16]	WDTEN	Watchdo 0: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or S Note th Sleep2 o configur	og Timer Ru atchdog Tim atchdog Tim atchdog Tim we Watchdo condition. W WDTV valu og Timer Slo be Watchdo bleep1 mod the Watchdo cleep1 mod the Watchdo cleep1 mod at the Wat mode. The ed in the S	ner is ner is og Ti Vhen ue an eep H og ru e Vatchde e tichde Wate	disabled enabled to mer is disal the WDTEN d count dow Halt uns when the dog halts when the og timer alw chdog stops o mode or D	bled, the I bit is se In. e system e system hen the s ways ha s counting beep-Sle	et, t n is is ir syst Its g w ep1	he Watc in the S n the Sle em is in when th hen the mode.	hdo Gleep the sep r the S WD WD	g Tim o mode node Sleep ysten DTSHL en the	er wi le or and l o moo n is _T fie e Wa	Il be re Deep- halts ir de and in the eld is p itchdog	-Slee n De De propo g ste	ded ep1 ep- ep- erly ops
[16]	WDTEN	Watchdo 0: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T Si 10 or Si Sileep2 o configur counting	bg Timer Ru atchdog Tim atchdog Tim atchdog Tim e Watchdo wDTV valu og Timer Sk the Watchdo the Watchd	ner is ner is og Ti /hen ue an eep H og ru e /atchde tchdd Sleep t valu	disabled enabled to mer is disal the WDTEN d count dow Halt uns when the dog halts when the og timer alw chdog stops o mode or D ue is retained	bled, the l bit is se rn. e system e system nen the s ways ha counting Deep-Sle d so that	et, t n is is ir syst Its g w ep1 t it	he Watc in the Ste em is in when th hen the mode. continue	hdo Bleep the me s WD Wh	g Tim o mode mode Sleep ysten DTSHL en the	er wi le or and l o moo n is _T fie e Wa g afte	Il be re Deep- halts ir de and in the eld is p itchdo er the	-Slee -Slee De De prope g ste	ep- ep- erly ops
[16]	WDTEN	Watchdd O: Wa 1: Wa When th default o with the Watchdd 00: T n 01: T S 10 or S Note th Sleep2 o configur counting wakes u	bg Timer Ru atchdog Tim atchdog Tim atchdog Tim e Watchdo condition. W WDTV valu og Timer Sk bg Timer Sk bg Timer Sk he Watchdo he Sa he Watchdo he Sa he	ner is og Ti /hen ue an eep H og ru e /atchde & & & & & & & & & & & & & & & & & & &	disabled enabled to mer is disal the WDTEN d count dow Halt uns when the dog halts when chdog stops o mode or D ue is retaine ree sleep mo	bled, the l bit is se in. e system e system nen the s ways ha counting Deep-Sle d so that odes. If a	et, t n is is ir syst Its g w ep1 t it u Wa	he Watc in the Ste em is in when th hen the mode. continue	hdo Bleep the me s WD Wh	g Tim o mode mode Sleep ysten DTSHL en the	er wi le or and l o moo n is _T fie e Wa g afte	Il be re Deep- halts ir de and in the eld is p itchdo er the	-Slee -Slee De De prope g ste	ep- ep- erly ops
[16]	WDTEN	Watchdd O: Wa 1: Wa When th default o with the Watchdd 00: T n 01: T S 10 or S Note th Sleep2 o configur counting wakes u	bg Timer Ru atchdog Tim atchdog Tim atchdog Tim e Watchdo condition. W WDTV valu og Timer Sk bg Timer Sk bg Timer Sk he Watchdo he Sa he Watchdo he Sa he	ner is og Ti /hen ue an eep H og ru e /atchde & & & & & & & & & & & & & & & & & & &	disabled enabled to mer is disal the WDTEN d count dow Halt uns when the dog halts when the og timer alw chdog stops o mode or D ue is retained	bled, the l bit is se in. e system e system nen the s ways ha counting Deep-Sle d so that odes. If a	et, t n is is ir syst Its g w ep1 t it u Wa	he Watc in the Ste em is in when th hen the mode. continue	hdo Bleep the me s WD Wh	g Tim o mode mode Sleep ysten DTSHL en the	er wi le or and l o moo n is _T fie e Wa g afte	Il be re Deep- halts ir de and in the eld is p itchdo er the	-Slee -Slee De De prope g ste	ep- ep- erly ops
[16]	WDTEN	Watchdo O: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or S Note th Sleep2 o configur counting wakes u Deep-SI N Watchdo	bg Timer Ru atchdog Tim atchdog Tim atchdog Tim be Watchdo condition. W WDTV valu bg Timer Slo the Watchdo the State the Watchdo the State the Statet the Statet the Statethe Statethe Statethe Statethe Stateth	ner is og Ti Vhen ue an eep H og ru e kchdo Wato Cachdo Wato Cachdo Vato Cachdo Vato Cachdo Vato Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cachdo Cac	disabled enabled to mer is disal the WDTEN docunt dow Halt uns when the dog halts when chdog stops o mode or D ue is retaine ree sleep mo ill wake up the Enable	bled, the l bit is se (n. e system e system hen the s ways ha counting beep-Sle d so that bdes. If a he device	et, t n is is ir syst Its g w ep1 t it wa e.	he Watc in the S m the Sle em is in when the mode. continue atchdog	hdo bleep r the wE Wh es co rese	g Tim o mode mode Sleep ysten DTSHL en the punting	er wi le or and l o moo n is _T fie e Wa g aftr urs ir	Il be re Deep- halts ir de and in the eld is p tchdog er the n the S	-Slee -Slee De De prope g ste	ep- ep- erly ops
[16]	WDTEN	Watchdo O: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or S Note th Sleep2 o configur counting wakes u Deep-SI N Watchdo O: A N	bg Timer Ru atchdog Tim atchdog Tim atchdog Tim be Watchdo condition. W WDTV valu bg Timer Slo the Watchdo the Watchdo the Watchdo the Watchdo the Watchdo the Watchdog T mode. The ed in the S the count p from these eep1 mode og Timer Re Watchdog T	ner is og Ti Vhen ue an eep H og ru og ru e katchdo Sleep t valu se thr s, it w eset F	disabled enabled to mer is disal the WDTEN do count dow Halt uns when the dog halts when the dog halts when the dog halts when the choog stops o mode or D ue is retained ree sleep mode ill wake up the Enable underflow o	bled, the l bit is se rn. e system e system nen the s ways ha counting Deep-Sle d so that odes. If a he device	et, t n is is ir is ir syst lts g w ep1 t it u Wa e. as r	in the S in the Sle em is in when th hen the mode. continue atchdog	hdo bleep r the wE Wh es co rese	g Time o mode mode Sleep ysten )TSHL en the ounting et occ	er wi le or and l o moo n is _T fie e Wa g aft urs ir stem	Il be re Deep- halts ir de and in the eld is p tchdog er the n the S	-Slee -Slee I De De propo g sto syst	ep- ep- erly pps em
[16] [15:14]	WDTEN	Watchdo O: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or S Note th Sleep2 o configur counting wakes u Deep-SI N Watchdo 0: A V 1: A V	bg Timer Ru atchdog Tim atchdog Tim atchdog Tim e Watchdo condition. W WDTV valu og Timer Sk he Watchdo he Watchdo he Watchdo he Watchdo he Watchdo the Watchdo the Watchdo the Watchdo the Watchdo the Watchdog T mode. The ed in the S the count p from thes eep1 mode og Timer Re Vatchdog T	ner is og Ti Vhen ue an eep H og ru e Vatchde & Chdd Bleep t valu se thr e, it w esset F Timer	disabled enabled to mer is disal the WDTEN do count dow Halt uns when the dog halts when the dog halts when the dog halts when chdog stops o mode or D ue is retained ree sleep mo ill wake up the nable underflow o underflow o	bled, the l bit is se rn. e system e system nen the s ways ha counting Deep-Sle d so that odes. If a he device	et, t n is is ir is ir syst lts g w ep1 t it u Wa e. as r	in the S in the Sle em is in when th hen the mode. continue atchdog	hdo bleep r the wE Wh es co rese	g Time o mode mode Sleep ysten )TSHL en the ounting et occ	er wi le or and l o moo n is _T fie e Wa g aft urs ir stem	Il be re Deep- halts ir de and in the eld is p tchdog er the n the S	-Slee -Slee I De De propo g sto syst	ep ep erly errly ops err
	WDTEN	Watchdo 0: Wa 1: Wa When th default o with the Watchdo 00: T n 01: T S 10 or S Note th Sleep2 o configur counting wakes u Deep-SI N Watchdo 0: A M 1: A M	bg Timer Ru atchdog Tim atchdog Tim atchdog Tim e Watchdo condition. W WDTV valu og Timer Sle he Watchdo the Watchdo the Watchdo the Watchdo the Watchdo the Watchdo the Watchdo the Count p from thes eep1 mode og Timer Re Watchdog T Watchdog T og Timer Co	ner is og Ti Vhen ue an eep H og ru e Vatchde & Vatchde & Sleep t valu se thr se thr set fi Timer Timer ounte	disabled enabled to mer is disal the WDTEN do count dow Halt uns when the dog halts when the dog halts when the dog halts when chdog stops o mode or D ue is retained ree sleep mo ill wake up the nable underflow o underflow o	bled, the l bit is se rn. e system e system hen the s ways ha counting beep-Sle d so that odes. If a he device or error ha	et, t n is is ir syst Its g w ep1 t it w e. Was r was r	he Watch in the Ste em is in when the mode. continue atchdog no effect ers a Wa	hdo bleep the the S WD who es co rese on t	g Time o mode mode Sleep ysten DTSHL en the punting et occ	er wi le or and l o moo n is _T fie e Wa g afte urs ir stem mer s	Il be re Deep- halts ir de and in the eld is p tchdog er the n the S reset system	-Slee -Slee I De De propo g sto syst	ep ep erly errly ops err

#### Watchdog Timer Mode Register 0 – WDTMR0



This register	specifies i	me	valchuo	'y u	ena v	aiue	= ai	ia ine	; pre	SCS	lier se	elec	lion	•								
Offset:	0x008																					
Reset value:	0x0000_	7FF	F																			
	31		30			29			28			27			26			25			24	
											Re	serv	ed									
Type/Reset																						
	23		22			21			20			19			18			17			16	
											Re	serv	ed									
Type/Reset																		-			-	
	15	. 1	14			13			12			11			10			9			8	
- (D )	Reserve					/PS(											1	/DT			,	
Type/Reset	_		RW	1	RW	_	1	RW		1	RW		1	RW	•	1	RW		1	RW		1
	7		6			5			4		10	3 /DTI			2			1			0	Í
Tupo/Repot	RW	1	RW	1	RW		1	RW		1	RW			RW		1	RW		1	RW	/	1
Type/Reset	RVV	I	KVV.	I	RVV		I	RVV		I	RVV		I	RVV		I	RVV		I	RV	/	1
Dite	Field		Deee																			
Bits	Field		Desc	-				! (	0 - 1	- 4:												
<b>Bits</b> [14:12]	Field WPSC		Watch	dog	g Time		reso	caler	Sele	ectio	on											
			Watch 000	dog ): 1,	g Time /1		res	caler	Sele	ectio	on											
			Watch 000 001	dog ): 1, 1: 1,	g Time /1 /2		reso	caler	Sele	ectio	on											
			Watch 000 001 010	dog D: 1, 1: 1, D: 1,	g Time /1 /2 /4		res	caler	Sele	ectio	on											
			Watch 000 001 010 011	dog ): 1, 1: 1, ): 1, 1: 1,	g Time /1 /2 /4 /8		reso	caler	Sele	ectio	on											
			Watch 000 001 010 011 100	dog ): 1, 1: 1, ): 1, l: 1, ): 1,	g Time /1 /2 /4 /8 /16		reso	caler	Sele	ectio	חמ											
			Watch 000 001 010 011 100 101	dog ): 1, 1: 1, ): 1, 1: 1, ): 1, 1: 1,	g Time /1 /2 /4 /8 /16 /32		res	caler :	Sele	ectio	on											
			Watch 000 001 010 011 100 101 110	dog ): 1, 1: 1, ): 1, 1: 1, ): 1, 1: 1, ): 1,	g Time /1 /2 /4 /8 /16 /32 /64		res	caler	Sele	ectio	n											
[14:12]	WPSC		Watch 000 001 010 011 100 101 110 111	dog ): 1, 1: 1, ): 1, 1: 1, ): 1, 1: 1, ): 1, : 1/	g Time /1 /2 /4 /16 /32 /64 /128	er P				ectio	on											
			Watch 000 001 010 011 100 101 110 111 Watch	dog ): 1, 1: 1, ): 1, 1: 1, 1: 1, 1: 1, ): 1, 1: 1, dog	g Time /1 /2 /4 /16 /32 /64 /128 g Time	er P	elta	ı Valu	е			he l	Mat		- Ti		. 16 4	he l	Mat			
[14:12]	WPSC		Watch 000 001 010 011 100 101 110 111 Watch Define	dog ): 1, 1: 1, ): 1, 1: 1, ): 1, 1: 1, ): 1, 1: 1, dog	g Time /1 /2 /4 /16 /32 /64 /128 g Time e per	er P er D	elta ed	ı Valu	e e to	rele	pad t				•						•	
[14:12]	WPSC		Watch 000 001 010 011 100 101 110 111 Watch Define counte	dog ): 1, 1: 1, ): 1, 1: 1, 1: 1, 1: 1, 1: 1, 1: 1, dog e the	g Time /1 /2 /4 /16 /32 /64 /128 g Time e per alue	er P er D mitt	elta ed	ı Valu range than	e e to or e	rele	pad t al to	WD	TD	writi	ng t	o th	ne W	DTO	CR	regis	ster	with
[14:12]	WPSC		Watch 000 001 010 011 100 101 110 111 Watch Define counte WDTR	dog ): 1, 1: 1, ): 1, 1: 1, ): 1, 1: 1, ): 1, 1: 1, dog e the er v S =	g Time /1 /2 /4 /16 /128 /128 g Time e per alue = 1 ar	er P er D mitt is le nd R	elta ed ess SK	range than EY =	e e to or e 0x5	rele equa	oad t al to ) will	WD reloa	TD ad t	writi he tir	ng t ner.	o th If th	ne W ie Wa	/DT( atch	CR Idog	regis Tim	ster er v	with alue
[14:12]	WPSC		Watch 000 001 010 011 100 101 110 111 Watch Define counte WDTR is grea	dog (): 1, 1: 1, 1: 1, 1: 1, 1: 1, 1: 1, 1: 1, 1: 1, dog e the ext v (S =	g Time /1 /2 /4 /16 /32 /64 /128 g Time e per alue = 1 ar than	er P er D mitt is le ND	elta ed ess SK	Value range than EY = , then	e e to or e 0x5 ı wri	rele equa FAC	pad t al to ) will	WD reloa TCR	TD ad t t wit	writi he tir h WE	ng t ner. DTR	oth Ifth S=	ne W ie Wa 1 an	/DT( atch id R	CR Idog SKE	regis Tim Y =	er v ox5	with alue FA0
[14:12]	WPSC		Watch 000 001 010 011 100 101 110 111 Watch Define counte WDTR	dog (): 1, 1: 1, 2: 1, dog e the exter xS = ater use	g Time /1 /2 /4 /16 /128 g Time e per alue = 1 ar than e a W	er P er D mitt is le nd R WD atch	elta ed ess SK TD	value range than EY = , then g Time	e or e 0x5 i wri er e	rele equa FAC ting	bad t al to ) will   WD ⁻ : This	WD reloa TCR s fea	TD ad t t wit atur	writi he tir h W[ c car	ng t ner. DTR n be	oth Ifth S=	ne W ie Wa 1 an	/DT( atch id R	CR Idog SKE	regis Tim Y =	er v ox5	with alue FA0

#### Watchdog Timer Mode Register 1 – WDTMR1 This register specifies the Watchdog delta value and the prescaler selection

This register specifies the Watchdog timer status.



Offset:	0x00C							
Reset value:	0x0000_0000							
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
				Reserved			WDTERR	WDTUF
Type/Reset							WC 0	WC 0

Bits	Field	Descriptions
[1]	WDTERR	<ul> <li>Watchdog Timer Error</li> <li>0: No Watchdog Timer error has occurred since the last read of this register</li> <li>1: A Watchdog Timer error has occurred since the last read of this register</li> <li>Note: A reload operation when the Watchdog Timer counter value is larger than WDTD causes a Watchdog Timer error. Note that this bit is a write-one-clear flag.</li> </ul>
[0]	WDTUF	Watchdog Timer Underflow 0: No Watchdog Timer underflow has occurred since the last read of this register 1: A Watchdog Timer underflow has occurred since the last read of this register Note that this bit is a write-one-clear flag.

# Watchdog Timer Status Register – WDTSR

Rev. 1.20



This register	specifies	the	Watcho	log t	imer p	orote	ect l	key c	onfig	gura	ation.										
Offset:	0x010																				
Reset value:	0x0000_	000	0																		
	31		30	)		29			28			27		26			25			24	
											Res	serve	əd								
Type/Reset																					
	23		22	2		21			20			19		18			17			16	
											Res	serve	ed								
Type/Reset																					
	15		14			13			12			11		10			9			8	
											PRC	DTE	СТ								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
											PRC	DTE	СТ								
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
			_																		

# Watchdog Timer Protection Register – WDTPR

write protection function.

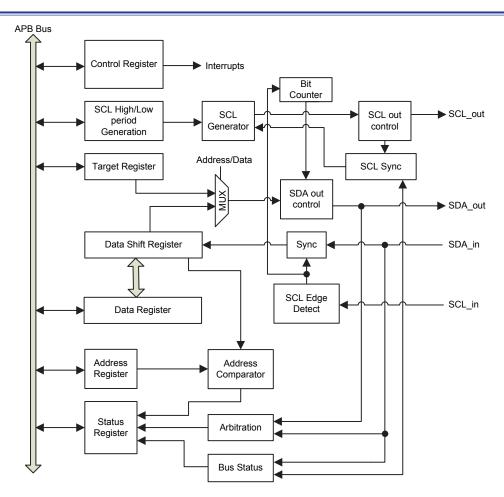
Bits	Field	Descriptions
[15:0]	PROTECT	Watchdog Timer Register Protection
		For write operation:
		0x35CA: Disable the Watchdog Timer register write protection
		Others: Enable the Watchdog Timer register write protection
		For read operation:
		0x0000: Watchdog Timer register write protection is disabled
		0x0001: Watchdog Timer register write protection is enabled
		This register is used to enable/disable the Watchdog timer configuration register
		write protection function. All configuration registers become read only except for
		WDTCR and WDTPR when the register write protection is enabled. Additionally, the

read operation of PROTECT[0] can obtain the enable/disable status of the register



This register	specifies the \	Watchdog ti	mer clock so	ource selection	n and lock o	configuration.						
Offset:	0x018											
Reset value:	0x0000_000	0										
	31	30	29	28	27	26	25	24				
Turne (Decet					Reserved							
Type/Reset	23	22	21	20	19	18	17	16	16			
					Reserved							
Type/Reset	15	14	13	12	11	10	9	8				
					Reserved							
Type/Reset	7	6	5	4	3	2	1	0	0			
		Reserved		WDTLOCK		Reserved		WDTSRC				
Type/Reset				RW 0				RW	0			
Bits	Field	Descript	ions									
[4]	<ul> <li>WDTLOCK Watchdog Timer Lock Mode         <ul> <li>0: This bit is only set to 0 on any reset. It can not be cleared by software.</li> <li>1: This bit is set once only by software and locks the Watchdog Timer function.</li> <li>Software can set this bit to 1 at any time. Once the WDTLOCK bit is set, the function and registers of the Watchdog Timer cannot be modified or disabled, including the Watchdog Timer clock source. The lock mode can only be disabled until a system reset occurs.</li> </ul> </li> </ul>											
[0]	WDTSRC Watchdog Timer Clock Source Selection 0: Internal 32 kHz RC oscillator clock is selected (LSI) 1: External 32.768 kHz crystal oscillator clock is selected (LSE) Select using software to control the Watchdog timer clock source.											

# Watchdog Timer Clock Selection Register – WDTCSR




# **19** Inter-Integrated Circuit (I²C)

# Introduction

The I²C Module is an internal circuit allowing communication with an external I²C interface which is an industry standard two-wire serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I²C module provides three data transfer rates: (1) 100 kHz in the Standard mode, (2) 400 kHz in the Fast mode and (3) 1 MHz in the Fast mode plus. The SCL period generation registers are used to setup different kinds of duty cycle implementation for the SCL pulse.

The SDA line which is connected to the whole  $I^2C$  bus is a bidirectional data line between the master and slave devices used for the transmission and reception of data. The  $I^2C$  module also has an arbitration detection function to prevent the situation where more than one master attempts to transmit data on the  $I^2C$  bus at the same time.



#### Figure 140. I²C Module Block Diagram

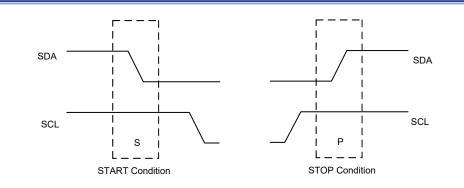


# **Features**

- Two-wire I²C serial interface
  - Serial data line (SDA) and serial clock (SCL)
- Multiple speed modes
  - Standard mode 100 kHz
  - Fast mode 400 kHz
  - Fast mode plus 1 MHz
- Bidirectional data transfer between master and slave
- Multi-master bus no central master
  - The same interface can act as Master or Slave
- Arbitration among simultaneously transmitting masters without corrupting serial data on the bus
- Clock synchronization
  - Allow devices with different bit rates to communicate via one serial bus
- Supports 7-bit and 10-bit addressing mode and general call addressing
- Multiple slave addresses using address mask function
- Timeout function

# **Functional Descriptions**

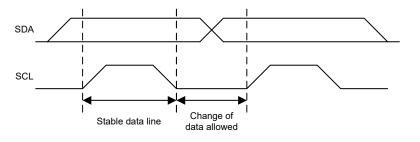
#### **Two-Wire Serial Interface**


The I²C module has two external lines, the serial data SDA and serial clock SCL lines, to carry information between the interconnected devices connected to the bus. The SCL and SDA lines are both bidirectional and must be connected to a pull-high resistor. When the I²C bus is in the free or idle state, both pins are at a high level to perform the required wired-AND function for multiple connected devices.

#### **START and STOP Conditions**

A master device can initialize a transfer by sending a START signal and terminate the transfer with a STOP signal. A START signal is usually referred to as the "S" bit, which is defined as a High to Low transition on the SDA line while the SCL line is high. A STOP signal is usually referred to as the "P" bit, which is defined as a Low to High transition on the SDA line while SCL is high.

A repeated START signal, which is denoted as the "Sr" bit, is functionally identical to the normal START condition. A repeated START signal allows the I²C interface to communicate with another slave device or with the same device but in a different transfer direction without releasing the I²C bus control.






#### Figure 141. START and STOP Condition

#### **Data Validity**

The data on the SDA line must be stable during the high period of the SCL clock. The SDA data state can only be changed when the clock signal on the SCL line is in a low state.







# Addressing Format

The I²C interface starts to transfer data after the master device has sent the address to confirm the targeted slave device. The address frame is sent just after the START signal by the master device. The addressing mode selection bit named ADRM in the I2CCR register should be defined to choose either the 7-bit or 10-bit addressing mode.

#### 7-bit Address Format

The 7-bit address format is composed of the 7-bit length slave address, which the master device wants to communicate, with a  $R/\overline{W}$  bit and an ACK bit. The  $R/\overline{W}$  bit defines the direction of the data transfer.

 $R/\overline{W} = 0$  (Write): The master transmits data to the addressed slave.

 $R/\overline{W} = 1$  (Read): The master receives data from the addressed slave.

The slave address can be assigned through the ADDR field in the I2CADDR register. The slave device sends back the acknowledge bit (ACK) if its slave address matches the transmitted address sent by master.

Note that it is forbidden to own the same address for two slave devices.

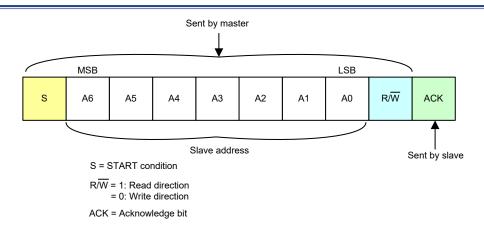
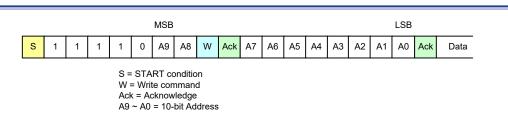




Figure 143. 7-bit Addressing Mode



#### **10-bit Address Format**

In order to prevent address clashes, due to the limited range of the 7-bit addresses, a new 10-bit address scheme has been introduced. This enhancement can be mixed with the 7-bit addressing mode which increases the available address range about ten times. For the 10-bit addressing mode, the first two bytes after a START signal include a header byte and an address byte that usually determines which slave will be selected by the master. The header byte is composed of a leading "11110", the 10th and 9th bits of the slave address. The second byte is the remaining 8 bits of the slave device address.





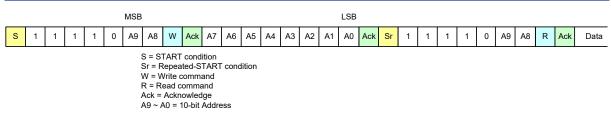



Figure 145. 10-bit Addressing Read Receive Mode



# Data Transfer and Acknowledge

Once the slave device address has been matched, the data can be transmitted to or received from the slave device according to the transfer direction specified by the  $R/\overline{W}$  bit. Each byte is followed by an acknowledge bit on the 9th SCL clock.

If the slave device returns a Not Acknowledge (NACK) signal to the master device, the master device can generate a STOP signal to terminate the data transfer or generate a repeated START signal to restart the transfer.

If the master device sends a Not Acknowledge (NACK) signal to the slave device, the slave device should release the SDA line for the master device to generate a STOP signal to terminate the transfer.

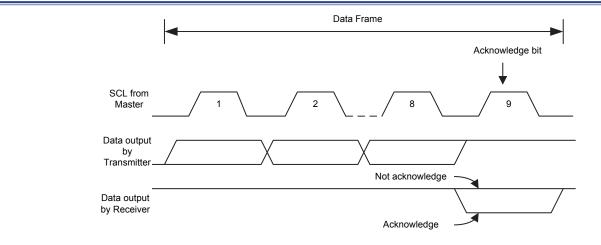
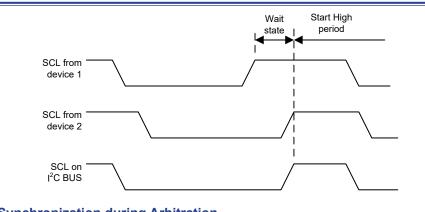
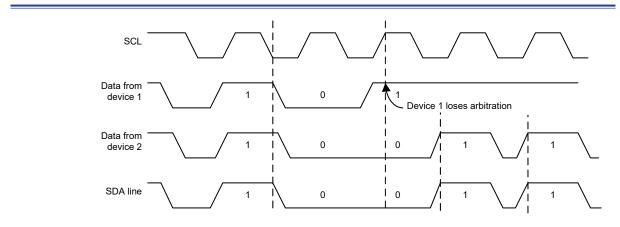




Figure 146. I²C Bus Acknowledge



# **Clock Synchronization**

Only one master device can generate the SCL clock under normal operation. However when there is more than one master trying to generate the SCL clock, the clock should be synchronized so that the data output can be compared. Clock synchronization is performed using the wired-AND connection of the I²C interface to the SCL line.




#### Figure 147. Clock Synchronization during Arbitration

#### Arbitration

A master may start a transfer only if the I²C bus line is in the free or idle mode. If two or more masters generate a START signal at approximately the same time, an arbitration procedure will occur.

Arbitration takes place on the SDA line and can continue for many bits. The arbitration procedure gives a higher priority to the device that transmits serial data with a binary low bit (logic low). Other master devices which want to transmit binary high bits (logic high) will lose the arbitration. As soon as a master loses the arbitration, the I²C module will set the ARBLOS bit in the I2CSR register and generate an interrupt if the interrupt enable bit, ARBLOSIE, in the I2CIER register is set to 1. Meanwhile, it stops sending data and listens to the bus in order to detect an I²C stop signal. When the stop signal is detected, the master which has lost the arbitration may try to access the bus again.





19



### **General Call Addressing**

The general call addressing function can be used to address all the devices connected to the  $I^2C$  bus. The master device can activate the general call function by configuring the TAR field value to zero field and clearing the RWD bit to 0 in the I2CTAR register on the addressing frame.

The device can support the general call addressing function by setting the corresponding enable control bit GCEN to 1. If the GCEN bit is set to 1 to support the general call addressing, the AA bit in the I2CCR register should also be set to 1 to send an acknowledge signal back when the device receives an address frame with a value of 00H. When this condition occurs, the general call flag, GCS, will be set to 1, but the ADRS flag will not be set.

#### **Bus Error**

If an unpredictable START or STOP condition occurs when the data is being transferred on the  $I^2C$  bus, it will be considered as a bus error and the transferring data will be aborted. When a bus error event occurs, the relevant bus error flag BUSERR in the I2CSR register will set to 1 and both the SDA and SCL lines are released. The BUSERR flag should be cleared by writing a 1 to it to initiate the  $I^2C$  module to an idle state.

#### Address Mask Enable

The  $I^2C$  module provides an address mask function for users to decide which address bit can be ignored during the comparison with the address frame sent from the master. The ADRS flag will be asserted when the unmasked address bits and the address frame sent from the master are matched. Note that this function is only available in the slave mode.

For instance, the user sets a data transfer with the 7-bit addressing mode together with the I2CADDMR register value as 0x05h and the I2CADDR register value as 0x55h, this means if an address which is sent by an I²C master on the bus is equal to 0x50h, 0x51h, 0x54h or 0x55h, the I²C slave address will all be considered to be matched and the ADRS flag in the I2CSR register will be asserted after the address frame.

#### **Address Snoop**

The Address Snoop register, I2CADDSR, is used to monitor the calling address on the I²C bus during the whole data transfer operation no matter if the I²C module operates as a master or a slave device. Note that the I2CADDSR register is a read only register and each calling address on the I²C bus will be stored in the I2CADDSR register automatically even if the I²C device is not addressed.

#### **Operation Mode**

The I²C module can operate in the following modes:

- Master Transmitter
- Master Receiver
- Slave Transmitter
- Slave Receiver

The I²C module operates in the slave mode by default. The interface will switch to the master mode automatically after generating a START signal.



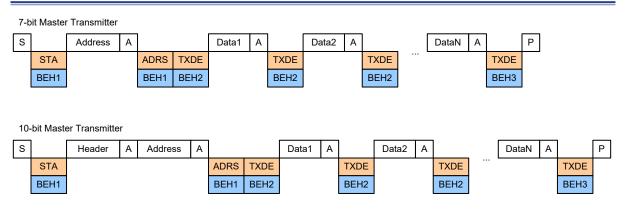
#### Master Transmitter Mode

#### **Start Condition**

Users write the target slave device address and communication direction into the I2CTAR register after setting the I2CEN bit in the I2CCR register. The STA flag in the I2CSR register is set by hardware after a start condition occurs. In order to send the following address frame, the STA flag must be cleared to 0 if it has been set to 1. The STA flag is cleared by reading the I2CSR register.

#### **Address Frame**

The ADRS flag in the I2CSR register will be set after the address frame is sent by the master device and the acknowledge signal from the address matched slave device is received. In order to send the following data frame, the ADRS flag must be cleared to 0 if it has been set to 1. The ADRS bit is cleared by reading the I2CSR register.


#### Data Frame

The data to be transmitted to the slave device must be transferred to the I2CDR register.

The TXDE bit in the I2CSR register is set to indicate that the I2CDR register is empty, which results in the SCL line being held at a logic low state. New data must then be transferred to the I2CDR register to continue the data transfer process. Writing a data into the I2CDR register will clear the TXDE flag.

#### **Close / Continue Transmission**

After transmitting the last data byte, the STOP bit in the I2CCR register can be set to terminate the transmission or re-assign another slave device by configuring the I2CTAR register to restart a new transfer.



BEH1 : cleared by reading I2CSR register

BEH2 : cleared by writing I2CDR register

BEH3 : cleared by HW automatically by sending STOP condition

#### Figure 149. Master Transmitter Timing Diagram



#### Master Receiver Mode

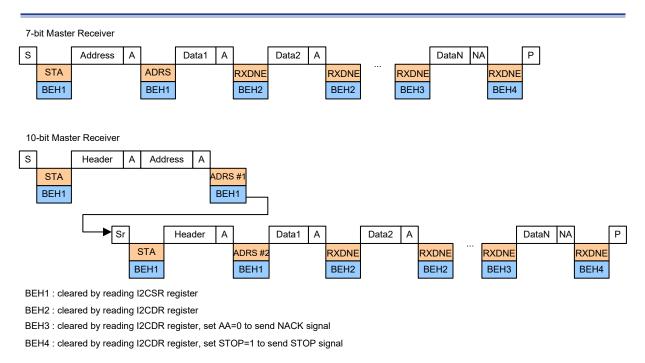
#### **Start Condition**

The target slave device address and communication direction must be written into the I2CTAR register. The STA flag in the I2CSR register is set by hardware after a start condition occurs. In order to send the following address frame, the STA flag must be cleared to 0 if it has been set to 1. The STA flag is cleared by reading the I2CSR register.

#### **Address Frame**

In the 7-bit addressing mode: The ADRS flag is set after the address frame is sent by the master device and the acknowledge signal from the address matched slave device is received. In order to receive the following data frame, the ADRS bit must be cleared to 0 if it has been set to 1. The ADRS bit is cleared after reading the I2CSR register.

In the 10-bit addressing mode: The ADRS bit in the I2CSR register will be set twice in the 10bit addressing mode. The first time the ADRS bit is set is when the 10-bit address is sent and the acknowledge signal from the slave device is received. The second time the ADRS bit is set is when the header byte is sent and the slave acknowledge signal is received. In order to receive the following data frame, the ADRS bit must be cleared to 0 if it has been set to 1. The ADRS bit is cleared after reading the I2CSR register. The detailed master receiver mode timing diagram is shown in the following figure.


#### **Data Frame**

In the master receiver mode, data is transmitted from the slave device. Once a data is received by the master device, the RXDNE flag in the I2CSR register is set but it will not hold the SCL line. However, if the device receives a complete new data byte and the RXDNE flag has already been set to 1, the RXBF bit in the I2CSR register will be set to 1 and the SCL line will be held at a logic low state. When this situation occurs, data from the I2CDR register should be read to continue the data transfer process. The RXDNE flag can be cleared after reading the I2CDR register.



#### **Close / Continue Transmission**

The master device needs to reset the AA bit in the I2CCR register to send a NACK signal to the slave device before the last data byte transfer has been completed. After the last data byte has been received from the slave device, the master device will hold the SCL line at a logic low state following after a NACK signal sent by the master device to the slave device. The STOP bit can be set to terminate the data transfer process or re-assign the I2CTAR register to restart a new transfer.



#### Figure 150. Master Receiver Timing Diagram

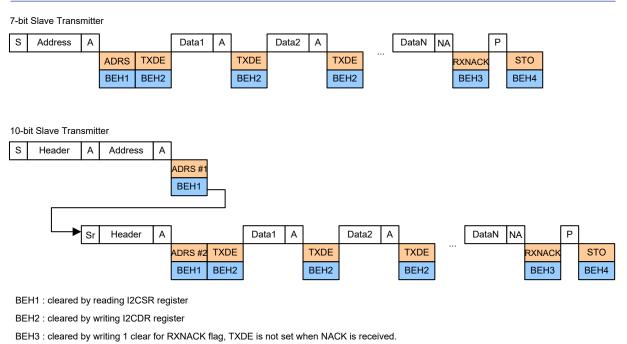


#### Slave Transmitter Mode

#### Address Frame

In the 7-bit addressing mode, the ADRS bit in the I2CSR register is set after the slave device receives the calling address which matches with the slave device address. In the 10-bit addressing mode, the ADRS bit is set for the first time when the first header byte and the second address byte are both matched. Note that when the second header byte is also matched, the ADRS bit will be set again. After the ADRS bit has been set to 1, it must be cleared to 0 to continue the data transfer process. The ADRS bit is cleared after reading the I2CSR register.

#### **Data Frame**


In the Slave transmitter mode, the TXDE bit is set to indicate that the I2CDR is empty, which results in the SCL line being held at a logic low state. New transmission data must then be written into the I2CDR register to continue the data transfer process. Writing a data into the I2CDR register will clear the TXDE bit.

#### **Receive Not-Acknowledge**

When the slave device receives a Not-Acknowledge signal, the RXNACK bit in the I2CSR Register is set but it will not hold the SCL line. Writing "1" to RXNACK will clear the RXNACK flag.

#### **STOP Condition**

When the slave device detects a STOP condition, the STO bit in the I2CSR register is set to indicate that the I²C interface transmission is terminated. Reading the I2CSR register can clear the STO flag.



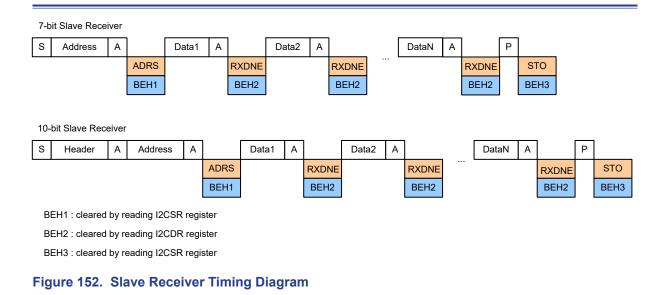
BEH4 : cleared by reading I2CSR register

#### Figure 151. Slave Transmitter Timing Diagram



#### **Slave Receiver Mode**

#### Address Frame


The ADRS bit in the I2CSR register is set after the slave device receives the calling address which matches with the slave device address. After the ADRS bit has been set to 1, it must be cleared to 0 to continue the data transfer process. The ADRS flag is cleared after reading the I2CSR register.

#### Data Frame

In the slave receiver mode, the data is transmitted from the master device. Once a data byte is received by the slave device, the RXDNE flag in the I2CSR register is set but it will not hold the SCL line. However, if the device receives a complete new data byte and the RXDNE bit has been set to 1, the RXBF bit in the I2CSR register will be set to 1 and the SCL line will be held at a logic low state. When this situation occurs, data from the I2CDR register should be read to continue the data transfer process. The RXDNE flag bit can be cleared after reading the I2CDR register.

#### **STOP Condition**

When the slave device detects a STOP condition, the STO flag bit in the I2CSR register is set to indicate that the I²C interface transmission is terminated. Reading the I2CSR register can clear the STO flag bit.





# **Conditions of Holding SCL Line**

The following conditions will cause the SCL line to be held at a logic low state by hardware resulting in all the I²C transfers being stopped. Data transfer will be continued after the creating conditions are eliminated.

Туре	Condition	Description	Eliminated		
	TXDE	I ² C is used in transmitted mode and I2CDR register needs to have data to transmit. (Note: TXDE won't be assert after receiving a NACK)	Master case: Writing data to I2CDR register Set TAR Set STOP Slave case: Writing data to I2CDR register		
	GCS	I ² C is addressed as slave through general call	Reading I2CSR register		
Flag	ADRS	Master: I ² C is sent over address frame and is returned an ACK from slave (Note: Reference Fig.147 and Fig.148) Slave: I ² C is addressed as slave device (Note: Reference Fig.149 and Fig.150)	Reading I2CSR register		
	STA	Master sends a START signal	Reading I2CSR register		
	RXBF	Received a complete new data and meanwhile the RXDNE flag has been set already before.	Reading I2CDR register		
	Master receives NACK	No matter in address or data frame, once received a NACK signal will hold SCL line in master mode.	Set TAR Set STOP		
Event		Occurred when receiving the last data byte in Master receive mode (Note: Reference Fig.148, and RXNACK flag won't be asserted in this case)	Set TAR		

#### Table 43. Conditions of Holding SCL line



# I²C Timeout Function

In order to reduce the occurrence of I²C lockup problem due to the reception of erroneous clock source, a timeout function is provided. If the I²C bus clock source is not received for a certain timeout period, then a corresponding I²C timeout flag will be asserted. This timeout period is determined by a 16-bit down-counting counter with a programmable preload value. The timeout counter is driven by the I²C timeout clock,  $f_{I2CTO}$ , which is specified by the timeout prescaler field in the I2CTOUT register. The TOUT field in the I2CTOUT register is used to define the timeout counter preload value. The timeout function is enabled by setting the ENTOUT bit in the I2CCR register. The timeout counter will start to count down from the preloaded value if the ENTOUT bit is set to 1 and one of the following conditions occurs:

- The I²C master module sends a START signal.
- The I²C slave module detects a START signal.
- The RXBF, TXDE, RXDNE, RXNACK, GCS or ADRS flags is asserted.

The timeout counter will stop counting when the ENTOUT bit is cleared. However, the counter will also stop counting when one of the conditions, listed as follows, occurs:

- The I²C slave module is not addressed.
- The I²C slave module detects a STOP signal.
- The I²C master module sends a STOP signal.
- The ARBLOS or BUSERR flag in the I2CSR register are asserted.

If the timeout counter underflows, the corresponding timeout flag, TOUTF, in the I2CSR register will be set to 1 and a timeout interrupt will be generated if the relevant interrupt is enabled.

# **Register Map**

The following table shows the I²C registers and reset values.

#### Table 44. I²C Register Map

Register	Offset	Description	Reset Value
I2CCR	0x000	I ² C Control Register	0x0000_2000
I2CIER	0x004	I ² C Interrupt Enable Register	0x0000_0000
I2CADDR	0x008	I ² C Address Register	0x0000_0000
I2CSR	0x00C	I ² C Status Register	0x0000_0000
I2CSHPGR	0x010	I ² C SCL High Period Generation Register	0x0000_0000
I2CSLPGR	0x014	I ² C SCL Low Period Generation Register	0x0000_0000
I2CDR	0x018	I ² C Data Register	0x0000_0000
I2CTAR	0x01C	I ² C Target Register	0x0000_0000
I2CADDMR	0x020	I ² C Address Mask Register	0x0000_0000
I2CADDSR	0x024	I ² C Address Snoop Register	0x0000_0000
I2CTOUT	0x028	I ² C Timeout Register	0x0000_0000



# **Register Descriptions**

# I²C Control Register – I2CCR

This register specifies the corresponding  $\mathsf{I}^2\mathsf{C}$  function enable control.

 Offset:
 0x000 (0)

 Reset value:
 0x0000_2000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	4.5		4.0	40	4.4	40	•	0
	15	14	13	12	11	10	9	8
		14 FILTER	13 COMBFILTEREN	12 ENTOUT	11	10	9 Reserved	8
Type/Reset		FILTER			11	10	-	8
Type/Reset	SEQF	FILTER	COMBFILTEREN	ENTOUT	3	2	-	0
Type/Reset	SEQF	FILTER RW 0	COMBFILTEREN RW 1	ENTOUT RW 0			-	

Bits	Field	Descriptions
[15:14]	SEQFILTER	SDA or SCL Input Sequential Filter Configuration Bits
		00: Sequential filter is disabled
		01: 1 PCLK glitch filter
		1x: 2 PCLK glitch filter
		Note: This setting would affect the frequency of SCL. Detail is described in I2CSLPGR register.
[13]	COMBFILTEREN	SDA or SCL Input Combinational Filter Enable Bit
		0: Combinational filter is disabled
		1: Combinational filter is enabled
[12]	ENTOUT	I ² C Timeout Function Enable Control
		0: Timeout Function is disabled
		1: Timeout Function is enabled
		This bit is used to enable or disable the $I^2C$ timeout function. It is
		recommended that users have to properly configure the PSC and TOUT fields
		in the I2CTOUT register before the timeout counter starts to count by setting
		the ENOUT bit to 1.
[7]	ADRM	Addressing Mode
		0: 7-bit addressing mode
		1: 10-bit addressing mode
		When the I ² C master / slave module operates in the 7-bit addressing mode, it
		can only send out and respond to a 7-bit address and vice versa.
[3]	I2CEN	I ² C Interface Enable
		0: I ² C interface is disabled
		1: I ² C interface is enabled



Bits	Field	Descriptions
[2]	GCEN	General Call Enable
		0: General call is disabled
		1: General call is enabled
		When the device receives the calling address with a value of 0x00 and if both
		the GCEN and the AA bits are set to 1, then the I ² C interface is addressed as a
		slave and the GCS bit in the I2CSR register is set to 1.
[1]	STOP	STOP Condition Control
		0: No action
		1: Send a STOP condition in master mode
		This bit is set to 1 by software to generate a STOP condition and automatically
		cleared to 0 by hardware. The STOP bit is only available for the master device.
[0]	AA	Acknowledge Bit
		0: Send a Not Acknowledge (NACK) signal after a byte is received
		1: Send an Acknowledge (ACK) signal after a byte is received

# I²C Interrupt Enable Register – I2CIER

	interrupt		Register –		K			
This register	specifies the o	correspond	ling I ² C interrup	ot enable	bits.			
Offset:	0x004							
Reset value:	0x0000_000	0						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
			Reserved			RXBFIE	TXDEIE	RXDNEIE
Type/Reset						RW 0	RW 0	RW 0
	15	14	13	12	11	10	9	8
			Reserved		TOUTIE	BUSERRIE	RXNACKIE	ARBLOSIE
Type/Reset					RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserved		GCSIE	ADRSIE	STOIE	STAIE
Type/Reset					RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[18]	RXBFIE	RX Buffer Full Interrupt Enable Bit
		0: Interrupt is disabled
		1: Interrupt is enabled
[17]	TXDEIE	Data Register Empty Interrupt Enable Bit in Transmitter Mode 0: Interrupt is disabled 1: Interrupt is enabled
[16]	RXDNEIE	Data Register Not Empty Interrupt Enable Bit in Received Mode 0: Interrupt is disabled 1: Interrupt is enabled



Bits	Field	Descriptions
[11]	TOUTIE	Timeout Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[10]	BUSERRIE	Bus Error Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[9]	RXNACKIE	Received Not Acknowledge Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[8]	ARBLOSIE	Arbitration Loss Interrupt Enable Bit in the I ² C multi-master mode 0: Interrupt is disabled 1: Interrupt is enabled
[3]	GCSIE	General Call Slave Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[2]	ADRSIE	Slave Address Match Interrupt Enable Bit 0: Interrupt is disabled 1: Interrupt is enabled
[1]	STOIE	<ul> <li>STOP Condition Detected Interrupt Enable Bit</li> <li>0: Interrupt is disabled</li> <li>1: Interrupt is enabled</li> <li>The bit is used for the l²C slave mode only.</li> </ul>
[0]	STAIE	<ul> <li>START Condition Transmit Interrupt Enable Bit</li> <li>0: Interrupt is disabled</li> <li>1: Interrupt is enabled</li> <li>The bit is used for the I²C master mode only.</li> </ul>

# I²C Address Register – I2CADDR

This register specifies the I ² C device address.															
Offset:	0x008														
Reset value:	0x0000_	_0000													
	31	30		29		28		27		26		25	5	2	4
								Reserv	ed						
Type/Reset															
	23	22		21		20		19		18		17	7	1	6
								Reserv	ed						
Type/Reset															
	15	14		13		12		11		10		9		8	
						Reserv	ed							ADI	DR
Type/Reset												RW	0	RW	0
	7	6		5		4		3		2		1		0	)
								ADDF	۲						
Type/Reset	RW	0 RW	0 R	W	0	RW	0	RW	0	RW	0	RW	0	RW	0



Bits	Field	Descriptions
[9:0]	ADDR	Device Address
		The register indicates the $I^2C$ device address. When the $I^2C$ device is used in the
		7-bit addressing mode, only the ADDR[6:0] bits will be compared with the received
		address sent from the I ² C master device.

# I²C Status Register – I2CSR

This register	contains the	I ² C operation	n status.					
Offset:	0x00C							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
		Reserved	TXNRX	MASTER	BUSBUSY	RXBF	TXDE	RXDNE
Type/Reset			RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8
			Reserved		TOUTF	BUSERR	RXNACK	ARBLOS
Type/Reset					WC 0	WC 0	WC 0	WC 0
	7	6	5	4	3	2	1	0
			Reserved		GCS	ADRS	STO	STA
Type/Reset					RC 0	RC 0	RC 0	RC 0

Bits	Field	Descriptions
[21]	TXNRX	Transmitter / Receiver Mode 0: Receiver mode 1: Transmitter mode Read only bit.
[20]	MASTER	Master Mode 0: I ² C is in the slave mode or idle 1: I ² C is in the master mode The I ² C interface is switched as a master device on the I ² C bus when the I2CTAR register is assigned and the I ² C bus is idle. The MASTER bit is cleared by hardware when software disables the I ² C bus by clearing the I2CEN bit to 0 or sends a STOP condition to the I ² C bus or the bus error is detected. This bit is set and cleared by hardware and is a read only bit.
[19]	BUSBUSY	Bus Busy 0: I ² C bus is idle 1: I ² C bus is busy The I ² C interface hardware starts to detect the I ² C bus status if the interface is enabled by setting the I2CEN bit to 1. It is set to 1 when the SDA or SCL signal is detected to have a logic low state and cleared when a STOP condition is detected.

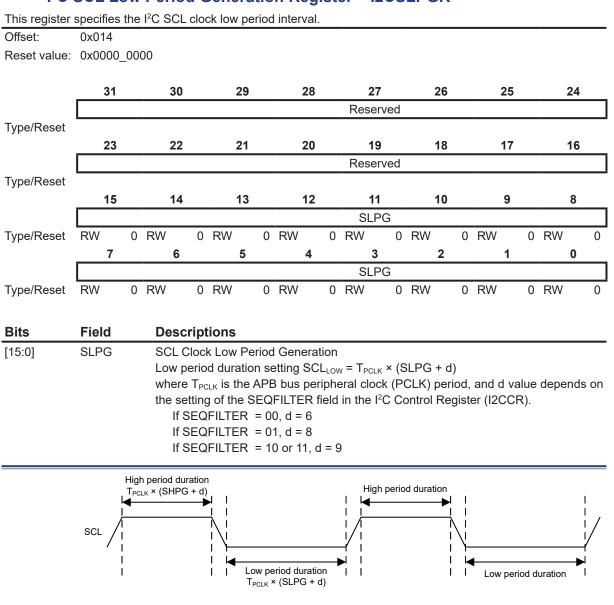


Bits	Field	Descriptions
[18]	RXBF	Buffer Full Flag in Receiver Mode
		0: Data buffer is not full
		1: Data buffer is full
		This bit is set when the data register I2CDR has already stored a data byte and
		meanwhile the data shift register also has been received a complete new data byte. The RXBF bit is cleared by software reading the I2CDR register.
[17]	TXDE	Data Register Empty Using in Transmitter Mode
[17]	TADE	0: Data register I2CDR is not empty
		1: Data register I2CDR is empty
		This bit is set when the I2CDR register is empty in the Transmitter mode. Note that
		the TXDE bit will be set after the address frame is being transmitted to inform that
		the data to be transmitted should be loaded into the I2CDR register. The TXDE bit
		is cleared by software writing data to the I2CDR register in both the master and
		slave mode or cleared automatically by hardware after setting the STOP signal
		to terminate the data transfer or setting the I2CTAR register to restart a new data transfer in the master mode.
[16]	RXDNE	Data Register Not Empty in Receiver Mode
[10]	INDIL	0: Data register I2CDR is empty
		1: Data register I2CDR is not empty
		This bit is set when the I2CDR register is not empty in the receiver mode. The
		RXDNE bit is cleared by software reading the data byte from the I2CDR register.
[11]	TOUTF	Timeout Counter Underflow Flag
		0: No timeout counter underflow occurred
		1: Timeout counter underflow occurred
[10]	BUSERR	Writing "1" to this bit will clear the TOUTF flag.
[10]	DUSERK	Bus Error Flag 0: No bus error has occurred
		1: Bus error has occurred
		This bit is set by hardware when the I ² C interface detects a misplaced START or
		STOP condition in a transfer process. Writing a "1" to this bit will clear the BUSERR
		flag.
		In Master Mode: Once the Bus Error event occurs, both the SDA and SCL lines are
		released by hardware and the BUSERR flag is asserted. The application software
		has to clear the BUSERR flag before the next address byte is transmitted. In Slave Mode: Once a misplaced START or STOP condition has been detected by
		the slave device, the software must clear the BUSERR flag before the next address
		byte is received.
[9]	RXNACK	Received Not Acknowledge Flag
		0: Acknowledge is returned from receiver
		1: Not Acknowledge is returned from receiver
		The RXNACK bit indicates that the not Acknowledge signal is received in master or
[0]		slave transmitter mode. Writing "1" to this bit will clear the RXNACK flag.
[8]	ARBLOS	Arbitration Loss Flag 0: No arbitration loss is detected
		1: Bit arbitration loss is detected
		This bit is set by hardware on the current clock which the I ² C interface loses the bus
		arbitration to another master during the address or data frame transmission. Writing
		"1" to this bit will clear the ARBLOS flag. Once the ARBLOS flag is asserted by
		hardware, the ARBLOS flag must be cleared before the next transmission.



Bits	Field	Descriptions
[3]	GCS	General Call Slave Flag 0: No general call slave occurs 1: I ² C interface is addressed by a general call command When the I ² C interface receives an address with a value of 0x00 or 0x000 in the 7-bit or 10-bit addressing mode, if both the GCEN and the AA bit are set to 1, then it is switched as a general call slave. This flag is cleared automatically after being read.
[2]	ADRS	Address Transmit (master mode) / Address Receive (slave mode) Flag Address Sent in Master Mode 0: Address frame has not been transmitted 1: Address frame has been transmitted For the 7-bit addressing mode, this bit is set after the master device receives the address frame acknowledge bit sent from the slave device. For the 10-bit addressing mode, this bit is set after receiving the acknowledge bits of the first header byte and the second address. Note that when the second header byte, if exists, is acknowledged, this bit will also be set. Address Matched in Slave Mode 0: I ² C interface is not addressed 1: I ² C interface is addressed as slave When the I ² C interface has received the calling address that matches the address defined in the I2CADDR register together with the AA bit being set to 1 in the I2CCR register, it will be switched to a slave mode. This flag is cleared automatically after the I2CSR register has been read.
[1]	STO	<ul> <li>STOP Condition Detected Flag</li> <li>0: No STOP condition detected</li> <li>1: STOP condition detected in slave mode</li> <li>This bit is only available for the slave mode and is cleared automatically after the I2CSR register is read.</li> </ul>
[0]	STA	START Condition Transmit 0: No START condition detected 1: START condition is transmitted in master mode This bit is only available for the master mode and is cleared automatically after the I2CSR register is read.




This register	specifies	the	I ² C SC	CL clo	ock hig	gh pe	erio	d inte	rval												
Offset:	0x010																				
Reset value:	0x0000_	00	00																		
	24		2	0		20			20			07		26			25			24	
	31		<u> </u>	0		29			28		1	27		26			25			24	
											Res	erved									
Type/Reset																					
	23		2	2		21			20			19		18			17			16	
											Res	erved									
Type/Reset																					
	15		1	4		13			12			11		10			9			8	
											Sł	IPG									
Type/Reset	RW	0	RW	C	RW		0	RW		0	RW	C	RW		0	RW		0	RW		0
	7		e	6		5			4			3		2			1			0	
											Sł	HPG									
Type/Reset	RW	0	RW	C	RW		0	RW		0	RW	C	RW		0	RW		0	RW		0
Bits	Field		Des	scrip	otions	\$															

# I²C SCL High Period Generation Register – I2CSHPGR

Bits	Field	Descriptions
[15:0]	SHPG	SCL Clock High Period Generation
		High period duration setting SCL _{HIGH} = T _{PCLK} × (SHPG + d)
		where $T_{PCLK}$ is the APB bus peripheral clock (PCLK) period, and d value depends on
		the setting of the SEQFILTER field in the I ² C Control Register (I2CCR).
		If SEQFILTER = 00, $d = 6$
		If SEQFILTER = 01, d = 8

If SEQFILTER = 10 or 11, d = 9





# I²C SCL Low Period Generation Register – I2CSLPGR



#### Table 45. I²C Clock Setting Example

l ² C Clock	T _{SCL} = T _{PCLK} × [ (SHPG + d) + (SLPG + d) ] (where d = 6) SHPG + SLPG Value at PCLK							
	10 MHz	20 MHz						
100 kHz (Standard Mode)	88	188						
400 kHz (Fast Mode)	13	38						
1 MHz (Fast Mode Plus)	N/A	8						



# I²C Data Register – I2CDR

This register specifies the data to be transmitted or received by the  $\mathsf{I}^2\mathsf{C}$  module.

Offset:	0x018											
Reset value:	0x0000_	0000										
	31	30	29	2	28	27		26	2	5	24	
						Reserve	əd					
Type/Reset												
	23	22	21	2	20	19		18	1	7	16	
						Reserve	əd					
Type/Reset												
	15	14	13		2	11		10	9		8	
						Reserve	əd					
Type/Reset												
	7	6	5		4	3		2	1		0	
						DATA						
Type/Reset	RW	0 RW 0	) RW	0 RW	C	RW	0	RW	0 RW	0	RW	0
Bits	Field	Descrip	otions									
[7:0]	DATA	I ² C Data	Register									

# I²C Data Register

For the transmitter mode, a data byte which is transmitted to a slave device can be assigned to these bits. The TXDE flag is cleared if the application software assigns new data to the I2CDR register. For the receiver mode, a data byte is received bit by bit from MSB to LSB through the I²C interface and stored in the data shift register. Once the acknowledge bit is given, the data shift register value is delivered into the I2CDR register if the RXDNE flag is equal to 0.



# I²C Target Register – I2CTAR

This register specifies the target device address to be communicated.

Offset:	0x01C							
Reset value:	0x0000_	_0000						
	31	30	29	9 28	27	26	25	24
					Reserved			
Type/Reset	<u>ــــــ</u>							
	23	22	2'	1 20	19	18	17	16
					Reserved			
Type/Reset					,			
	15	14	1:	3 12	11	10	9	8
			Rese	rved		RWD		TAR
Type/Reset						RW (	) RW	0 RW 0
	7	6	5	4	3	2	1	0
					TAR			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW 0	RW (	) RW	0 RW 0
Bits	Field	Desc	riptions					
[10]	RWD	Read	or Write Di	rection				
		0:	Write direct	tion to target s	lave address			
		1:	Read direct	tion from targe	et slave address			
		If this	bit is set to	o 1 in the 10-b	oit master receiv	ver mode, th	e l ² C interfa	ace will initiate
		a byte	e with a va	lue of b11110	XX0 in the first	t header fra	me and the	en continue to
					b11110XX1 in th			
		autom	atically					
[9:0]	TAR		natically. t Slave Add	Irees				

The I²C interface will assign a START signal and send a target slave address automatically once the data is written to this register. When the system wants to send a repeated START signal to the I²C bus, the timing is suggested to set the I2CTAR register after a byte transfer is completed. It is not allowed to set TAR in the address frame. I2CTAR[9:7] is not available under the 7-bit addressing mode.



# I²C Address Mask Register – I2CADDMR

This register specifies which bit of the I²C address is masked and not compared with corresponding bit of the received address frame.

Offset:	0x020							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved				ADDMR
Type/Reset							RW	0 RW 0
	7	6	5	4	3	2	1	0
					ADDMR			
Type/Reset	RW 0	RW 0	RW 0	RW 0	RW 0	RW	0 RW	0 RW 0

Bits	Field	Descriptions
[9:0]	ADDMR	Address Mask Control Bit
		The ADDMR[i] is used to specify whether the i th bit of the ADDR in the I2CADDR
		register is masked and is compared with the received address frame or not on the
		I ² C bus. The register is only used for the I ² C slave mode only.
		0: i th bit of the ADDR is compared with the address frame on the I ² C bus
		1. ith hit of the ADDD is marked and not compared with the address frame on the

1:  $i^{th}$  bit of the ADDR is masked and not compared with the address frame on the  $I^2 C \mbox{ bus}$ 



This register	is used to	indicate th	e address fra	ame value ap	peared on the	e I²C bus.		
Offset:	0x024							
Reset value:	0x0000_	0000						
	31	30	29	28	27	26	25	24
					Reserve			
Type/Reset								
.)po,	23	22	21	20	19	18	17	16
					Reserve	ed		
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserv	ved			ADDSR
Type/Reset							RO	0 RO 0
	7	6	5	4	3	2	1	0
					ADDSF	۲		
Type/Reset	RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO	0 RO 0
Bits	Field	Dese	criptions					
[9:0]	ADDSR	Addre	ess Snoop					

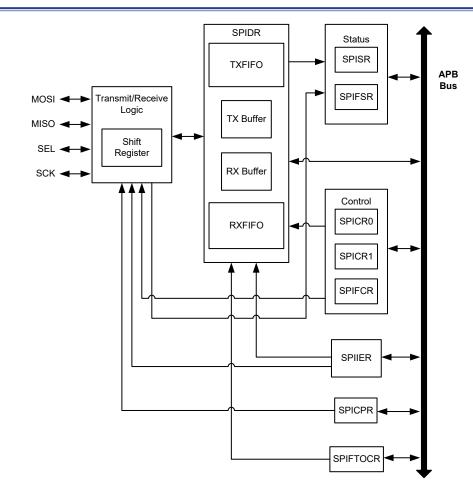
# I²C Address Snoop Register – I2CADDSR

Once the I2CEN bit is enabled, the calling address value on the I²C bus will automatically be loaded into this ADDSR field.



# I²C Timeout Register – I2CTOUT

This register specifies the I²C Timeout counter preload value and clock prescaler ratio.


This register	· ·	the I ² C Time	out count	er pre	eload va	lue a	nd clock p	res	caler	ratio.							
Offset:	0x028																
Reset value:	0x0000_	_0000															
	•									~~						• •	
	31	30	2	29	2	28	27			26			25		1	24	
T							Reserve	ed									
Type/Reset	23	22		21		20	19			18			17			16	
	23			erved		.0	13		I	10			SC			10	
Type/Reset	L		1105						RW		0 R		00	0	RW		0
1)po/100000	15	14	1	13	1	2	11			10	0 1		9	Ŭ		8	Ũ
							TOUT	Γ					-			-	
Type/Reset	RW	0 RW	0 RW	(	RW	0	RW		RW		0 R	W		0	RW		0
	7	6		5		4	3			2			1			0	
							TOUT	Γ									
Type/Reset	RW	0 RW	0 RW	(	RW	0	RW	0	RW		0 R	W		0	RW		0
Bits	Field	Desc	riptions														
[18:16]	PSC	I ² C Tir	neout Cou	unter	Prescal	er Se	lection										
		This P	SC field i	s use	d to sp	ecify t	he I ² C tim	ieo	ut cou	Inter	clocl	k fre	eque	enc	y, f _{i2C}	то	The
				equer	ncy is ol	otaine	d using the	e fo	ormula	a.							
		f _{I2C}	$_{\rm FO} = \frac{{\rm f}_{\rm PCLK}}{2^{\rm PSC}}$														
			$C = \overline{0} \rightarrow f$	і2СТО =	= f _{PCLK} /	$2^{0} = f_{F}$	PCLK										
		PS	$C = 1 \rightarrow f$	і2сто =	= f _{PCLK} /	$2^{1} = f_{F}$	_{PCLK} / 2										
		PS	$C = 2 \rightarrow f$	і2СТО =	= f _{PCLK} /	$2^2 = f_F$	_{PCLK} / 4										
			076		£ (	07 f	1400										
[45.0]	TOUT		$C = 7 \rightarrow f$	2010	. 02.1		0EII										
[15:0]	TOUT	_	neout Cou Clut field				e. he counter	r nr	مامعط	od va	مىلە						
							en any of t	•				tion	s oc	cu	s:		
							RXNACK,			•						regis	ster
			is asserte													•	
		2.	The I ² C m	aster	module	send	ls a STAR	Τs	ignal.								
							s a STAR		•								
					-		any of the		lowing	g con	ditio	ns o	occu	rs:			
							ddressed.										
							ls a STOP	-									
		J.	i i i ⊨ i t. Sl2			toto of		Ci C	nol								
							s a STOP ag in the l2	-		aister	is a	SSP	rted				



# 20 Serial Peripheral Interface (SPI)

# Introduction

The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive functions in both master or slave mode. The SPI interface uses 4 pins, among which are the serial data input and output lines SPI_MISO and SPI_MOSI, the clock line SPI_SCK, and the slave select line SPI_SEL. One SPI device acts as a master who controls the data flow using the SEL and SCK signals to indicate the start of the data communication and the data sampling rate. To receive the data bits, the streamlined data bits which range from 1 bit to 16 bits specified by the DFL field in the SPICR1 register are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried out in a similar way but with the reverse sequence. The mode fault detection provides a capability for multi-master applications.



#### Figure 154. SPI Block Diagram



# **Features**

- Master or slave mode
- Master mode speed up to  $f_{PCLK}/2$
- Slave mode speed up to  $f_{PCLK}/3$
- Programmable data frame length up to 16 bits
- FIFO Depth: 8 levels
- MSB or LSB first shift selection
- Programmable slave select high or low active polarity
- Multi-master and multi-slave operation
- Master mode supports dual output read mode of SPI series NOR Flash
- Four error flags with individual interrupt
  - Read overrun
  - Write collision
  - Mode fault
  - Slave abort
- Support PDMA interface

# **Functional Descriptions**

#### **Master Mode**

Each data frame can range from 1 to 16 bits in data length. The first bit of the transmitted data can be either an MSB or LSB determined by the FIRSTBIT bit in the SPICR1 register. The SPI module is configured as a master or a slave by setting the MODE bit in the SPICR1 register. When the MODE bit is set, the SPI module is configured as a master and will generate the serial clock on the SPI_SCK pin. The data stream will transmit data in the shift register to the SPI_MOSI pin on the serial clock edge. The SPI_SEL pin is active during the full data transmission. When the SELAP bit in the SPICR1 register is set, the SPI_SEL pin is active high during the complete data transactions. When the SELM bit in the SPICR1 register is set, the SPI_SEL pin will be driven by the hardware automatically and the time interval between the active SEL edge and the first edge of SCK is equal to half an SCK period.

#### Slave Mode

In the slave mode, the SPI_SCK pin acts as an input pin and the serial clock will be derived from the external master device. The SPI_SEL pin also acts as an input. When the SELAP bit is cleared to 0, the SEL signal is active low during the full data stream reception. When the SELAP bit is set to 1, the SEL signal will be active high during the full data stream reception.

Note: For the slave mode, the APB clock, known as  $f_{PCLK}$ , must be at least 3 times faster than the external SCK clock input frequency.

#### **SPI Serial Frame Format**

The SPI interface format is based on the Clock Polarity, CPOL, and the Clock Phase, CPHA, configurations.

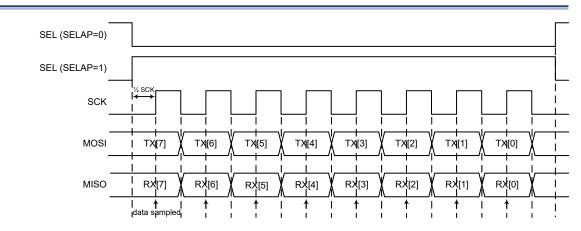
Clock Polarity Bit – CPOL

When the Clock Polarity bit is cleared to 0, the SCK line idle state is low. When the Clock Polarity bit is set to 1, the SCK line idle state is high.



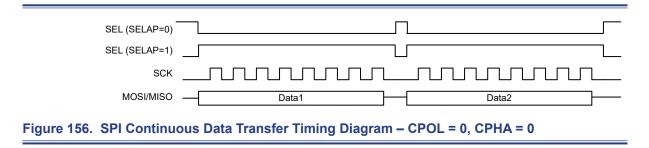
#### ■ Clock Phase Bit – CPHA

When the Clock Phase bit is cleared to 0, the data is sampled on the first SCK clock transition. When the Clock Phase bit is set to1, the data is sampled on the second SCK clock transition.


There are four formats contained in the SPI interface. Table 46 shows how to configure these formats by setting the FORMAT field in the SPICR1 register.

#### Table 46. SPI Interface Format Setup

FORMAT [2:0]	CPOL	СРНА					
001	0	0					
010	0	1					
110	1	0					
101	1	1					
Others	Reserved						


#### **CPOL = 0, CPHA = 0**

In this format, the received data is sampled on the SCK line rising edge while the transmitted data is changed on the SCK line falling edge. In the master mode, the first bit is driven when data is written into the SPIDR Register. In the slave mode, the first bit is driven when the SEL signal goes to an active level. Figure 155 shows the single byte data transfer timing of this format.



#### Figure 155. SPI Single Byte Transfer Timing Diagram – CPOL = 0, CPHA = 0

Figure 156 shows the continuous data transfer timing diagram of this format. Note that the SEL signal must change to an inactive level between each data frame.







#### **CPOL = 0, CPHA = 1**

In this format, the received data is sampled on the SCK line falling edge while the transmitted data is changed on the SCK line rising edge. In the master mode, the first bit is driven when data is written into the SPIDR register. In the slave mode, the first bit is driven at the first SCK clock rising edge. Figure 157 shows the single data byte transfer timing.

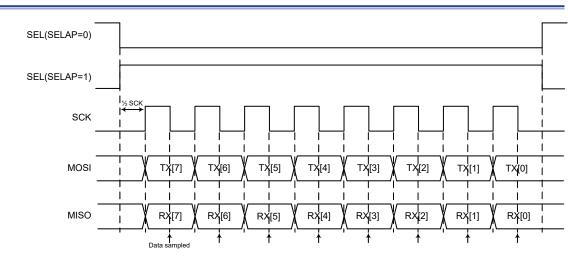
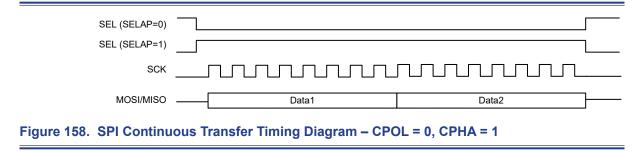
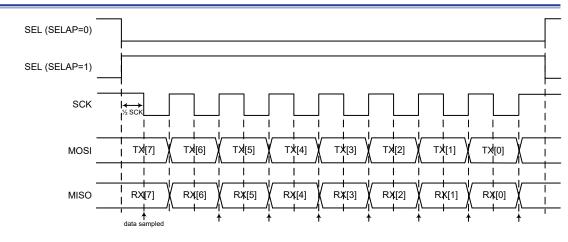
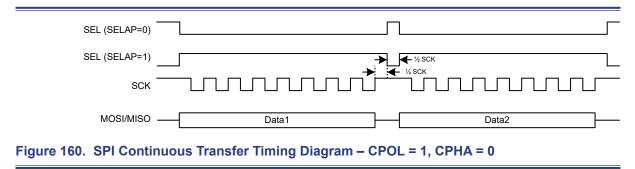




Figure 157. SPI Single Byte Transfer Timing Diagram – CPOL = 0, CPHA = 1


Figure 158 shows the continuous data transfer diagram timing. Note that the SEL signal must remain active until the last data transfer has completed.






#### **CPOL = 1, CPHA = 0**

In this format, the received data is sampled on the SCK line falling edge while the transmitted data is changed on the SCK line rising edge. In the master mode, the first bit is driven when data is written into the SPIDR register. In the slave mode, the first bit is driven when the SEL signal changes to an active level. Figure 159 shows the single byte transfer timing of this format.



#### Figure 159. SPI Single Byte Transfer Timing Diagram – CPOL = 1, CPHA = 0

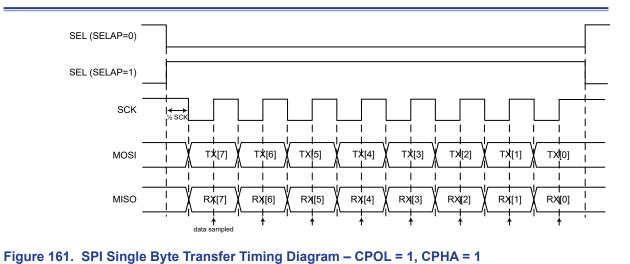
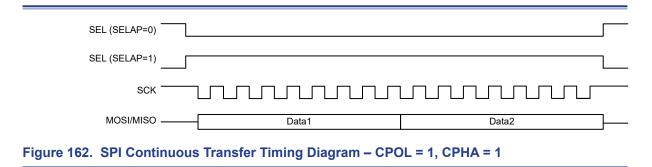
Figure 160 shows the continuous data transfer timing of this format. Note that the SEL signal must change to an inactive level between each data frame.

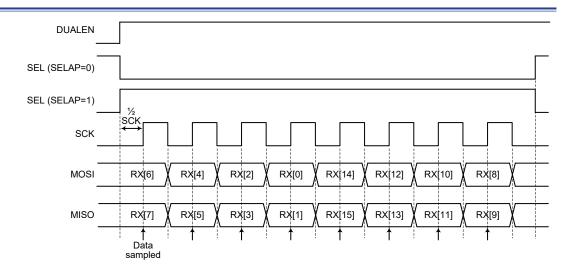




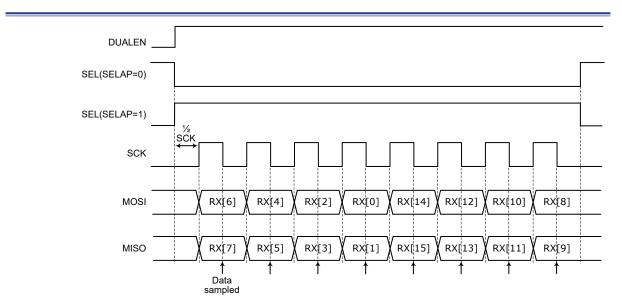
#### **CPOL = 1, CPHA = 1**

In this format, the received data is sampled on the SCK line rising edge while the transmitted data is changed on the SCK line falling edge. In the master mode, the first bit is driven when data is written into the SPIDR register. In the slave mode, the first bit is driven at the first SCK falling edge. Figure 161 shows the single byte transfer timing of this format.

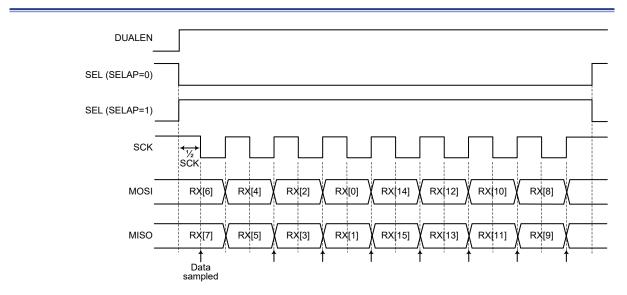


Figure 162 shows the continuous data transfer timing of this format. Note that the SEL signal must remain active until the last data transfer has completed.



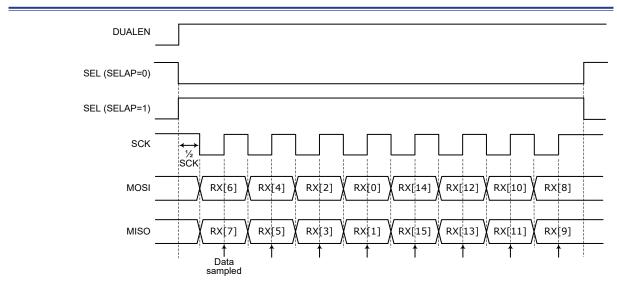



## **SPI Dual Mode**

When in the Master mode, the SPI interface operation can be configured to Dual mode. A more efficient data transfer can then be implemented by using this Dual mode together with the four formats described above. In the Dual mode, the SPI data transmission only supports input direction, that is, the SPI_MOSI pin is also switched from output to an input function. In this way a two-wire transfer method is formed to read data from an external device synchronously. In addition, the Dual mode only supports a data length of 16-bit (DFL = 0x8). The Dual mode is commonly used to read data from an external serial SPI Flash. The following figures show the transfer format bit sequences in the SPI Dual mode.






# Figure 164. SPI Dual Mode Bit Sequence – CPOL = 0, CPHA = 1, DFL = 0x8 (16-bit), MSB Transmitted First





# Figure 165. SPI Dual Mode Bit Sequence – CPOL = 1, CPHA = 0, DFL = 0x8 (16-bit) , MSB Transmitted First



# Figure 166. SPI Dual Mode Bit Sequence – CPOL = 1, CPHA = 1, DFL = 0x8 (16-bit) , MSB Transmitted First



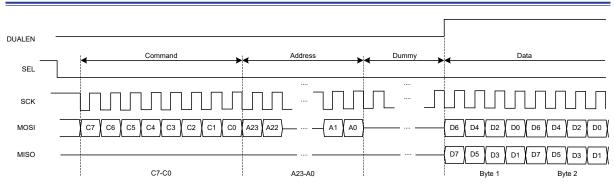



Figure 167 shows the bit sequence of the SPI Dual mode reading data from an external serial SPI Flash.

### Status Flags

#### TX Buffer Empty – TXBE

This TXBE flag is set when the TX buffer is empty in the non-FIFO mode or when the TX FIFO data length is equal to or less than the TX FIFO threshold level as defined by the TXFTLS field in the SPIFCR register in the FIFO mode. The following data to be transmitted can then be loaded into the buffer again. After this, the TXBE flag will be reset when the TX buffer already contains new data in the non-FIFO mode or when the TX FIFO data length is greater than the TX FIFO threshold level determined by the TXFTLS field in FIFO mode.

#### Transmission Register Empty – TXE

This TXE flag is set when both the TX buffer and the TX shift registers are empty. It will be reset when the TX buffer or the TX shift register contains new transmitted data.

#### **RX Buffer Not Empty – RXBNE**

This RXBNE flag is set when there is valid received data in the RX buffer in the non-FIFO mode or the RX FIFO data length is equal to or greater than the RX FIFO threshold level as defined by the RXFTLS field in the SPIFCR register in the SPI FIFO mode. This flag will be automatically cleared by hardware when the received data have been read out from the RX buffer totally in the non-FIFO mode or when the RX FIFO data length is less than the RX FIFO threshold level set in the RXFTLS field.

#### Time Out Flag – TO

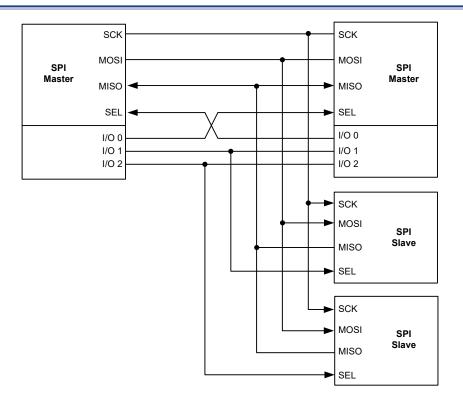

The time out function is only available in the SPI FIFO mode and is disabled by loading a zero value into the TOC field in the Time Out Counter register. The time out counter will start counting if the SPI RX FIFO is not empty, once data is read from the SPIDR register or new data is received, the time out counter will be reset to 0 and count again. When the time out counter value is equal to the value specified by the TOC field in the SPIFTOCR register, the TO flag will be set. The flag is cleared by writing 1 to this bit.

Figure 167. SPI Dual Mode Data Read Example - CPOL = 1, CPHA = 1



#### Mode Fault – MF

The mode fault flag can be used to detect SPI bus usage in the SPI multi-master mode. For the multi-master mode, the SPI module is configured as a master device and the SEL signal is set as an input signal. The mode fault flag is set when the SPI_SEL pin is suddenly changed to an active level by another SPI master. This means that another SPI master is requesting to use the SPI bus. Therefore, when an SPI mode fault occurs, it will force the SPI module to operate in the slave mode and also disable all of the SPI interface signals to avoid SPI bus signal collisions. For the same reason, if the SPI master wants to transfer data, it also needs to inform other SPI masters by driving their SEL signals to an active state. The detailed configuration diagram for the SPI multi-master mode is shown in the following figure.



#### Figure 168. SPI Multi-Master Slave Environment



Table 47. SPI mode Fault Trigger Conditions					
Mode Fault	Descriptions				
Trigger Condition	<ol> <li>SPI Master mode.</li> <li>SELOEN = 0 in the SPICR0 register – SPI_SEL pin is configured to be the input mode.</li> <li>SEL signal changes to an active level when driven by the external SPI master.</li> </ol>				
SPI Behavior	<ol> <li>Mode fault flag is set.</li> <li>The SPIEN bit in the SPICR0 register is reset. This disables the SPI interface and blocks all output signals from the device.</li> <li>The MODE bit in the SPICR1 register is reset. This forces the device into slave mode.</li> </ol>				

#### Table 47. SPI Mode Fault Trigger Conditions

#### Table 48. SPI Master Mode SPI_SEL Pin Status

	SEL as Input	– SELOEN = 0	SEL as Output	– SELOEN = 1
Multi-Master	Supported		Not supported	
SPI SEL Control Signal	Use Another GPIO to replace the SPI_ SEL pin function		SPI_SEL pin in hardware or software control mode – using SELM setting	
Continuous Transfer	Case 1	Case 2	Case 1	Case 2
	Not supported	Supported	Hardware control	Hardware or software control

Case 1: SEL signal must be inactive between each data transfer.

Case 2: SEL signal will not to be inactive until the last data frame has finished.

**Note:** When the SPI is in the slave mode, the SEL signal is always an input and not affected by the SELOEN bit in the SPICR0 register.

#### Write Collision – WC

The following conditions will assert the Write Collision Flag.

■ The FIFOEN bit in the SPIFCR register is cleared

The write collision flag is asserted when new data is written into the SPIDR register while both the TX buffer and the shift register are already full. Any new data written into the TX buffer will be lost.

The FIFOEN bit in the SPIFCR register is set

The write collision flag is asserted to indicate that new data is written into the SPIDR register while both the TX FIFO and the TX shift register are already full. Any new data written into the TX FIFO will be lost.

#### Read Overrun – RO

■ The FIFOEN bit in the SPIFCR register is cleared

The read overrun flag is asserted to indicate that both the RX shift register and the RX buffer are already full, if one more data is received. This will result in the newly received data not being shifted into the SPI shift register. As a result the latest received data will be lost.

■ The FIFOEN bit in the SPIFCR register is set

The read overrun flag is set to indicate that the RX shift register and the RX FIFO are both full, if one more data is received. This means that the latest received data can not be shifted into the SPI shift register. As a result the latest received data will be lost.

#### Slave Abort – SA

In the SPI slave mode, the slave abort flag is set to indicate that the SPI_SEL pin suddenly changed to an inactive state during the reception of a data frame transfer. The data frame length is set by the DFL field in the SPICR1 register.



## PDMA Interface

The PDMA interface is integrated in the SPI module. The PDMA function can be enabled by setting the TXDMAE or RXDMAE bit to 1 in the transmitter or receiver mode respectively. When the transmit buffer empty flag, TXBE, is asserted and the TXDMAE bit is set to 1, the PDMA function will be activated to move data from the memory location that users designated into the SPI data register or the TX FIFO until the TXBE flag is cleared to 0. The TXBE flag will be asserted when the transmit buffer is empty in the non-FIFO mode or the data contained in the TX FIFO is equal to or less than the level defined by the TXFTLS field in the FIFO mode.

Similarly, when the receive buffer not empty flag, RXBNE, is asserted and the RXDMAE bit is set to 1, the PDMA function will be activated to move data from the SPI data register or the RX FIFO to the memory location that users designated until the RXBNE flag is cleared to 0. The RXBNE flag will be asserted when the receive buffer is not empty in the non-FIFO mode or the data contained in the RX FIFO is equal to or greater than the level defined by the RXFTLS field in the FIFO mode.

For a more detailed description about the PDMA configurations, refer to the PDMA chapter.

## **Register Map**

The following table shows the SPI registers and reset values.

Register	Offset	Description	Reset Value
SPICR0	0x000	SPI Control Register 0	0x0000_0000
SPICR1	0x004	SPI Control Register 1	0x0000_0000
SPIIER	0x008	SPI Interrupt Enable Register	0x0000_0000
SPICPR	0x00C	SPI Clock Prescaler Register	0x0000_0000
SPIDR	0x010	SPI Data Register	0x0000_0000
SPISR	0x014	SPI Status Register	0x0000_0003
SPIFCR	0x018	SPI FIFO Control Register	0x0000_0000
SPIFSR	0x01C	SPI FIFO Status Register	0x0000_0000
SPIFTOCR	0x020	SPI FIFO Time Out Counter Register	0x0000_0000

#### Table 49. SPI Register Map



## **Register Descriptions**

## **SPI Control Register 0 – SPICR0**

This register specifies the SEL control and the SPI enable bits.

 Offset:
 0x000

 Reset value:
 0x0000_0000

	31	30	29	28		27	26	2	5	24	
					F	Reserved					
Type/Reset									_		
	23	22	21	20		19	18	1	7	16	_
Type/Reset				1		Reserved				1	
Type/Reset	15	14	13	12		11	10	9		8	
		14	SELHT	12			10	GUA		0	
Type/Reset	RW 0	RW 0		RW	0 R\	W 0	RW	0 RW		RW	0
.)[	7	6	5	4		3	2	1		0	
	GUADTEN	DUALEN	Reserved	SSELC	: 5	SELOEN	RXDM	AE TXDI	MAE	SPIEN	١
Type/Reset	RW 0	RW 0		RW	0 R\	W 0	RW	0 RW	0	RW	0
Bits	Field	Descript	ions								
[15:12]	SELHT	Chip Sele	ct Hold Time								
		0x0: 1/	2 SCK								
		0x1: 1	SCK								
		0x2: 3/									
		0x3: 2	SCK								
		 Noto that		maatarm		باطر					
[44.0]	CUADT		SELHT is for	mastern	ioue c	Jilly.					
[11:8]	GUADT	Guard Tin									
		GUADTEI									
		0x0: 1									
		0x1:2									
		0x2: 3	SCK								
		 Note that	GUADT is fo	r master r	node	only					
[7]	GUADTEN	Guard Tin		i master i	nouc	orny.					
[7]	GUADTEN			2 8 6 1							
			rd Time is 1/		4:		ما امما ا				
			en this bit is s				ntrollea b	y GUAD I			
101			GUADTEN is	s for mast	er mo	ue only.					
[6]	DUALEN	Dual Mod									
			I Mode is dis								
			I Mode is en								~ -
			ol bit is used								
			en this bit is			-		-			
		•	nd receive th	ne series (	data s	stream. Th	nat mean	s the DUA	LEN	control bi	t is
		only for m	aster mode.								



Bits	Field	Descriptions
[4]	SSELC	Software Slave Select Control 0: Set the SEL output to an inactive state 1: Set the SEL output to an active state The application software can set the SEL output to an active or inactive state by configuring the SSELC bit. The active level is configured by the SELAP bit in the SPICR1 register. Note that the SSELC bit is only available when the SELOEN bit is set to 1 for enabling the SEL output meanwhile the SELM bit is cleared to 0 for controlling the SEL signal by software. Otherwise, the SSELC bit has no effect.
[3]	SELOEN	Slave Select Output Enable 0: Set the SEL signal to the input mode for multi-master mode 1: Set the SEL signal to the output mode for slave select The SELOEN is only available in the master mode to set the SEL signal as an input or output signal. When the SEL signal is configured to operate in the output mode, it is used as a slave select signal in either the hardware or software mode according to the SELM bit setting in the SPICR1 register. The SEL signal is used for mode fault detection in the multi-master environment when it is configured to operate in the input mode
[2]	RXDMAE	RX PDMA request enable 0: SPI RX path PDMA request is disabled 1: SPI RX path PDMA request is enabled
[1]	TXDMAE	TX PDMA request enable 0: SPI TX path PDMA request is disabled 1: SPI TX path PDMA request is enabled
[0]	SPIEN	SPI Enable 0: SPI interface is disabled 1: SPI interface is enabled



## **SPI Control Register 1 – SPICR1**

This register specifies the SPI parameters including the data length, the transfer format, the SEL active polarity/ mode, the LSB/MSB control and the master/slave mode.

Offset:	0x004							
Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset					10	10		10
	23	22	21	20	19 December	18	17	16
Type/Reset				1	Reserved			
Type/Reset	15	14	13	12	11	10	9	8
	Reserved	MODE	SELM	FIRSTBIT	SELAP		FORMA	
Type/Reset	rteserved		-		-	RW	0 RW	0 RW 0
.)po///0001	7	6	5	4	3	2	1	0
		1	Reserved	1			DFL	
Type/Reset					RW 0	RW	0 RW	0 RW 0
Bits	Field	Descri	ptions					
Bits [14]	Field MODE	1	<b>ptions</b> or Slave Mod	de				
		Master 0: SI	or Slave Moo lave mode	de				
[14]	MODE	Master 0: SI 1: M	or Slave Moo lave mode aster mode	de				
		Master 0: SI 1: M Slave S	or Slave Moo lave mode aster mode select Mode					
[14]	MODE	Master 0: SI 1: M Slave S 0: S	or Slave Moo lave mode aster mode select Mode EL signal is		by software	e – asser	ted or de-as	sserted by the
[14]	MODE	Master 0: SI 1: M Slave S 0: S S	or Slave Mod lave mode aster mode select Mode EL signal is SELC bit	controlled	-			-
[14]	MODE	Master 0: Sl 1: M Slave S 0: S S 1: S	or Slave Mod lave mode aster mode select Mode EL signal is SELC bit	controlled	-			sserted by the ally by the SPI
[14]	MODE	Master 0: SI 1: M Slave S 0: S S 1: S	or Slave Mod lave mode aster mode delect Mode EL signal is SELC bit EL signal is	controlled	y hardware	– generate	ed automatic	ally by the SPI
[14]	MODE	Master 0: SI 1: M Slave S 0: S S 1: S ha Note tha LSB or	or Slave Mode lave mode aster mode EL signal is SELC bit EL signal is ardware at the SELM MSB Transm	controlled controlled b bit is availa hitted First	y hardware	– generate	ed automatic	ally by the SPI
[14]	MODE	Master 0: SI 1: M Slave S 0: S 0: S 1: S 1: S ha Note tha LSB or 0: M	or Slave Mode lave mode aster mode EL signal is SELC bit EL signal is ardware at the SELM MSB Transm SB is transm	controlled controlled b bit is availa hitted First itted first	y hardware	– generate	ed automatic	ally by the SPI
[14] [13] [12]	MODE SELM FIRSTBIT	Master 0: SI 1: M Slave S 0: S 0: S 1: S ha Note tha LSB or 0: M 1: LS	or Slave Mod lave mode aster mode EL signal is SELC bit EL signal is ardware at the SELM MSB Transm SB is transmi	controlled controlled b bit is availa hitted First hitted first tted first	y hardware	– generate	ed automatic	ally by the SPI
[14]	MODE	Master 0: SI 1: M Slave S 0: S 0: S 1: S ha Note tha LSB or 0: M 1: LS Slave S	or Slave Mod lave mode aster mode EL signal is SELC bit EL signal is ardware at the SELM MSB Transm SB is transmi SB is transmi Select Active I	controlled controlled b bit is availa hitted First hitted first tted first Polarity	y hardware	– generate	ed automatic	ally by the SPI
[14] [13] [12]	MODE SELM FIRSTBIT	Master 0: SI 1: M Slave S 0: S 1: S ha Note tha LSB or 0: M 1: LS Slave S 0: SI	or Slave Mod lave mode aster mode EL signal is SELC bit EL signal is ardware at the SELM MSB Transm SB is transmi	controlled controlled b bit is availa hitted First hitted first tted first Polarity active low	y hardware	– generate	ed automatic	ally by the SPI



Bits		Descriptions											
[10:8]	FORMAT	SPI Data Transf											
			ts are used	to dete	rmine the data tra	ansfer format of the SP							
		interface.											
		FORMAT [2:0]	] CPOL	СРНА	<u> </u>								
		001	0	0									
		010	0	1									
		110	1	0									
		101	1	1									
		Others Reserved											
		CPOL: Clock Polarity											
		0: SCK Idle state is low											
		1: SCK Idle s	state is high										
		CPHA: Clock Pr	nase										
		0: Data is captured on the first SCK clock edge											
		1: Data is ca	ptured on the	e second	SCK clock edge								
3:0]	DFL	Data Frame Length											
		Selects the data transfer frame from 1 bit to 16 bits.											
		DFL[3:0]	SPI Serial	Node	SPI Dual Mode								
		0001	1 bit		—	]							
		0010	2 bits		_								
		0011	3 bits		_								
		0100	4 bits			1							
		0101	5 bits		_	-							
		0110	6 bits			-							
		0111	7 bits		_	-							
		1000	-										
			8 bits		16 bits	-							
		1001	9 bits										
		1001	9 bits			7							
						-							
						-							

2. Taking the 16-bit data transmission for example, the DFL setting can be figured out as follows

In the Serial Mode: Data frame length = 16/1 = 16, DFL = 0x0;

In the Dual SPI Mode: Data frame length = 16/2 = 8, DFL = 0x8;

3. Dual mode only supports 16-bit data length.



#### This register contains the corresponding SPI interrupt enable control bit. Offset: 0x008 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 18 17 16 19 Reserved Type/Reset 15 12 14 13 11 10 9 8 Reserved Type/Reset 7 6 5 4 3 2 1 0 ROIEN TOIEN SAIEN MFIEN WCIEN RXBNEIEN TXEIEN **TXBEIEN** 0 RW RW 0 RW 0 RW 0 RW 0 RW Type/Reset 0 RW 0 RW 0 **Bits** Field **Descriptions** [7] TOIEN Time Out Interrupt Enable 0: Disable 1: Enable SAIEN Slave Abort Interrupt Enable [6] 0: Disable 1: Enable Mode Fault Interrupt Enable [5] MFIEN 0: Disable 1: Enable ROIEN Read Overrun Interrupt Enable [4] 0: Disable 1: Enable Write Collision Interrupt Enable [3] WCIEN 0: Disable 1: Enable RX Buffer Not Empty Interrupt Enable [2] RXBNEIEN 0: Disable 1: Enable An interrupt is generated when the RXBNE flag is set and RXBNEIEN is set. In the FIFO mode, the interrupt being generated depends upon the RX FIFO trigger level setting. TXEIEN Transmission Register Empty Interrupt Enable [1] 0: Disable 1: Enable The transmission register empty interrupt request will be generated when the TXE flag and the TXEIEN bit are set.

## SPI Interrupt Enable Register – SPIIER



Bits	Field	Descriptions
[0]	TXBEIEN	TX Buffer Empty Interrupt Enable
		0: Disable
		1: Enable
		The TX buffer empty interrupt request will be generated when the TXBE flag and
		the TXBEIEN bit are set. In the FIFO mode, the interrupt request being generated
		depends upon the TX FIFO trigger level setting.

## **SPI Clock Prescaler Register – SPICPR**

This register specifies the SPI clock prescaler ratio.																					
Offset:	0x00C																				
Reset value:	0x0000_	_00	00																		
	31		30			29			28			27		26			25			24	
											Re	serv	ed								
Type/Reset																					
	23		22			21			20			19		18			17			16	
											Re	serv	ed								
Type/Reset																					
	15		14			13			12			11		10			9			8	
												СР									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
	7		6			5			4			3		2			1			0	
												СР									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions																
[15:0]	CP																				

The SPI clock (SCK) is determined by the following equation:  $f_{SCK} = f_{PCLK} / (2 \times (CP + 1))$ , where the CP ranges is from 0 to 65535 Note: For the SPI master mode, the APB clock (f_{PCLK}) must be at least 2 times faster

than the SPI SCK output.



## **SPI Data Register – SPIDR**

This register stores the SPI received or transmitted Data.

Offset:	0x010																				
Reset value:	0x0000_	00	00																		
	31		3	30		29			28			27		26		2	25			24	
											Res	serve	d								
Type/Reset																					
	23		2	22		21			20			19		18			17			16	
											Res	serve	d								
Type/Reset																					
	15		1	4		13			12			11		10			9			8	
											[	DR									
Type/Reset	RW	0	RW		0 RV	V	0	RW		0	RW		0	RW	0	RW		0	RW		0
	7			6		5			4			3		2			1			0	
											[	DR									
Type/Reset	RW	0	RW		0 RV	V	0	RW		0	RW		0	RW	0	RW		0	RW		0
Bits	Field		Des	scri	ption	S															

[15:0]

DR

Data Register

The SPI data register is used to store the serial bus transmitted or received data. In the non-FIFO mode, writing data into the SPI data register will also load the data into the data transmission buffer, known as the TX buffer. Reading data from the SPI data register will return the data held in the data received buffer, named RX buffer.

## **SPI Status Register – SPISR**

This register contains the relevant SPI status.												
Offset:	0x014											
Reset value:	0x0000_00	03										
	31	30	29	28	27	26	25	24				
					Reserved							
Type/Reset												
	23	22	21	20	19	18	17	16				
					Reserved							
Type/Reset												
	15	14	13	12	11	10	9	8				
				Reserved				BUSY				
Type/Reset								RO 0				
	7	6	5	4	3	2	1	0				
	ТО	SA	MF	RO	WC	RXBNE	TXE	TXBE				
Type/Reset	WC 0	WC 0	WC 0	WC 0	WC 0	RO 0	RO 1	RO 1				



Bits	Field	Descriptions
[8]	BUSY	SPI Busy flag
		0: SPI not busy
		1: SPI busy
		In the master mode, this flag is reset when the TX buffer and TX shift register are
		both empty and is set when the TX buffer or the TX shift register are not empty.
		In the slave mode, this flag is set when SEL changes to an active level and is reset
		when SEL changes to an inactive level.
[7]	то	Time Out flag
		0: No Rx FIFO time out
		1: Rx FIFO time out has occurred
		Once the time out counter value is equal to the TOC field setting in the SPIFTOCR
		register, the time out flag will be set and an interrupt will be generated if the TOIEN
		bit in the SPIIER register is enabled. This bit is cleared by writing 1.
		Note: This Time Out flag function is only available in the SPI FIFO mode.
[6]	SA	Slave Abort flag
		0: No slave abort
		1: Slave abort has occurred
		This bit is set by hardware and cleared by writing 1.
[5]	MF	Mode Fault flag
		0: No mode fault
		1: Mode fault has occurred
		This bit is set by hardware and cleared by writing 1.
[4]	RO	Read Overrun flag
		0: No read overrun
		1: Read overrun has occurred
		This bit is set by hardware and cleared by writing 1.
[3]	WC	Write Collision flag
		0: No write collision
		1: Write collision has occurred
		This bit is set by hardware and cleared by writing 1.
[2]	RXBNE	RX Buffer Not Empty flag
		0: RX buffer is empty
		1: RX buffer is not empty
		This bit indicates the RX buffer status in the non-FIFO mode. It is also used to
		indicate if the RX FIFO trigger level has been reached in the FIFO mode. This bit will
		be cleared when the SPI RX buffer is empty in the non-FIFO mode or if the number
		of data contained in RX FIFO is less than the trigger level which is specified by the RXFTLS field in the SPIFCR register in the SPI FIFO mode.
[1]	TXE	Transmission Register Empty flag
[']	IXE	0: TX buffer or TX shift register is not empty
		1: TX buffer and TX shift register both are empty
[0]	TXBE	TX Buffer Empty flag
[0]	IXDE	0: TX buffer is not empty
		1: TX buffer is empty
		In the FIFO mode, this bit if set indicates that the number of data contained in TX
		FIFO is equal to or less than the trigger level specified by the TXFTLS field in the
		SPIFCR register.
		5



## **SPI FIFO Control Register – SPIFCR**

This register contains the related SPI FIFO control including the FIFO enable control and the FIFO trigger level selections.

Offset:	0x018								
Reset value:	0x0000_000	00							
	31	30	29	28	27	26	25	24	
					Reserve	ed			
Type/Reset									
	23	22	21	20	19	18	17	16	
					Reserve	ed	1		
Type/Reset	45		40	40		40	•	•	
	15	14	<u>13</u>	12	11		9	8	v a d
Tupo/Pooot			Reserved			FIFOEI RW	0	Reserv	ved
Type/Reset	7	6	5	4	3	r.vv 2	1	0	
	, 	0	RXFTLS	4		Z	TXFTI		
Type/Reset	RW 0	RW 0		RW	0 RW	0 RW	0 RW	0 RW	0
Bits	Field	Descrip	otions						
[10]	FIFOEN	FIFO Ena	able						
[7:4] [3:0]	RXFTLS	1: FIF This bit c RX FIFO 0000: 0001:  1000: Other TX FIFO 0000: 0001:  1000: Other The TXF	O is disabled O is enabled an not be set Trigger Level Trigger level i Trigger level i S: Reserved TLS field is us tained in the F Trigger Level Trigger level i Trigger level i S: Reserved TLS field is us tained in the T	Select is 0 is 1 is 8 sed to sp RX FIFO i RXBNE fI Select is 0 is 1 is 8 sed to sp	ecify the RX s equal to or ag will be se ecify the TX	FIFO trigger greater than t FIFO trigger	r level. Whe the trigger	n the numbe level define n the numbe	d by er of



## SPI FIFO Status Register – SPIFSR

This register contains the relevant SPI FIFO status.

Offset:	0x01C								_
Reset value:	0x0000_	0000							
	31	30	29	28	27	26	25	24	
					Reserv	ed			
Type/Reset									
	23	22	21	20	19	18	17	16	_
					Reserv	ed			
Type/Reset									
	15	14	13	12	11	10	9	8	-
					Reserv	ed	1	1	
Type/Reset	_		_			_			
	7	6	5	4	3	2	1	0	-
			RXFS				TXFS		
Type/Reset	RO	0 RO 0	RO	0 RO	0 RO	0 RO	0 RO	0 RO (	0
Bits	Field	Descrip	tions						
[7:4]	RXFS	RX FIFO							
			RX FIFO e						
		0001:	RX FIFO o	contains 1 da	ta				
		 1000:		contains 8 da	ha				
			s: Reserve		la				
[3:0]	TXFS	TX FIFO		u					
[5.0]	1710		TX FIFO e	mntv					
				contains 1 dat	а				
		1000:	TX FIFO c	ontains 8 dat	а				

Others: Reserved



This register	stores the	e SF	PI RX FII	=O 1	time out	t co	oun	ter va	alue												
Offset:	0x020																				
Reset value:	0x0000_	_000	00																		
	31		30		29	9			28		2	27		26			25			24	
											Rese	erve	ed								
Type/Reset																					
	23		22		2	1			20		1	9		18			17			16	
											Rese	erve	ed								
Type/Reset																					
	15		14		1;	3			12		1	1		10			9		1	8	
											т	C									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
	7		6		5	5			4			3		2			1			0	
											т	C									
Type/Reset	RW	0	RW	0	RW		0	RW		0	RW		0	RW	0	RW		0	RW		0
Bits	Field		Desc	rip	tions																
[15:0]	тос		Time	Out	Counte	er C	on	npare	Va	ue											
			The ti	me	out cou	inte	er e	starts	to a	cou	nt fron	n 0	aft	er the S		X FI	FO I	rece	ives	a da	ata.

## **SPI FIFO Time Out Counter Register – SPIFTOCR**

The time out counter starts to count from 0 after the SPI RX FIFO receives a data, and the counter value is reset once the data is read from the SPIDR register by software or another new data is received. If the FIFO does not receive new data or the software does not read data from the SPIDR register the time out counter value will continuously increase. When the time out counter value is equal to the TOC setting value, the TO flag in the SPISR register will be set and an interrupt will be generated if the TOIEN bit in the SPIIER register is set. The time out counter will be stopped when the RX FIFO is empty. The SPI FIFO time out function can be disabled by setting the TOC field to zero. The time out counter is driven by the system APB clock, named  $f_{PCLK}$ .



## 21 Universal Synchronous Asynchronous Receiver Transmitter (USART)

## Introduction

The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is also commonly used for RS232 standard communication. The USART peripheral function supports a variety of interrupts.

The USART module includes an 8-level transmit FIFO, TX FIFO, and an 8-byte receive FIFO, RX FIFO. Software can detect a USART error status by reading USART Status & Interrupt Flag Register, USRSIFR. The status includes the condition of the transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

The USART includes a programmable baud rate generator which is capable of dividing the USART clock of the CK_APB (CK_USART) to produce a baud rate clock for the USART transmitter and receiver.

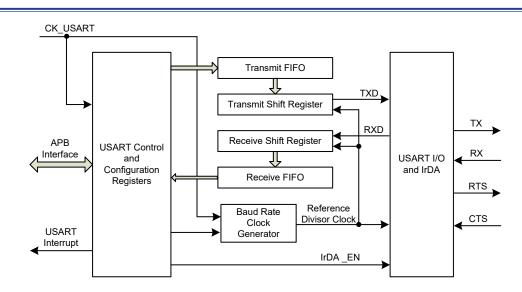
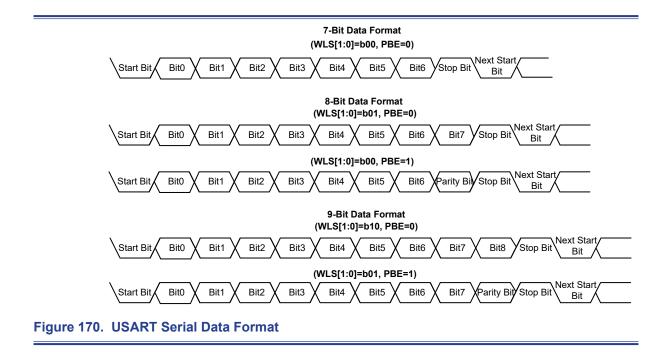



Figure 169. USART Block Diagram



## **Features**

- Supports both asynchronous and clocked synchronous serial communication modes
- Full Duplex Communication Capability
- Programming baud rate clock frequency up to  $(f_{PCLK}/16)$  MHz for asynchronous mode and  $(f_{PCLK}/8)$  MHz for synchronous mode
- IrDA SIR encoder and decoder
  - Support of normal 3/16 bit duration and low-power (1.41  $\sim$  2.23  $\mu s)$  durations
- Supports RS485 mode with output enable
- Auto hardware flow control mode RTS, CTS
- Fully programmable serial communication functions including:
  - Word length: 7, 8 or 9-bit character
  - Parity: Even, odd or no-parity bit generation and detection
  - Stop bit: 1 or 2 stop bits generation
  - Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun and frame error
- FIFO:
  - Receive FIFO: 8 levels
  - Transmit FIFO: 8 levels


## **Functional Descriptions**

## Serial Data Format

The USART module performs a parallel-to-serial conversion on data that is written to the transmit FIFO registers and then sends the data with the following format: Start bit,  $7 \sim 9$  LSB/MSB first data bits, optional Parity bit and finally  $1 \sim 2$  Stop bits. The Start bit has the opposite polarity of the data line idle state. The Stop bit is the same as the data line idle state and provides a delay before the next start situation. Both the Start and Stop bits are used for data synchronization during the asynchronous data transmission.

The USART module also performs a serial-to-parallel conversion on the data that is read from the receive FIFO registers. It will first check the Parity bit and will then look for a Stop bit. If the Stop bit is not found, the USART module will consider the entire word transmission to have failed and respond with a Framing Error.





#### **Baud Rate Generation**

The baud rate for the USART receiver and transmitter are both set with the same values. The baud rate divisor, BRD, has the following relationship with the USART clock which is known as CK_USART.

#### Baud Rate Clock = $CK_USART / BRD$

Where CK_USART clock is the APB clock connected to the USART while the BRD range is from 16 to 65535 for asynchronous mode and 8 to 65535 for synchronous mode.

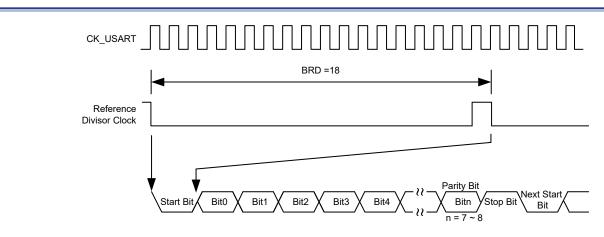



Figure 171. USART Clock CK_USART and Data Frame Timing



Bau	d Rate		CK_USART =	20 MHz
No.	Kbps	Actual	BRD	<b>Deviation Error Rate</b>
1	2.4	2.4	8333	0.00%
2	9.6	9.6	2083	0.02%
3	19.2	19.2	1042	-0.03%
4	57.6	57.6	347	0.06%
5	115.2	114.9	174	-0.22%
6	230.4	229.9	87	-0.22%
7	460.8	465.1	43	0.94%
8	921.6	909.1	22	-1.36%
9	1250	1250	16	0%

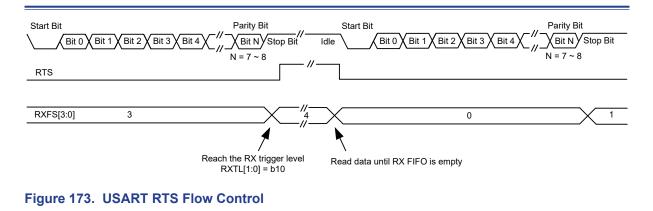
#### Table 50. Baud Rate Deviation Error Calculation – CK_USART = 20 MHz

```
        Table 51. Baud Rate Deviation Error Calculation – CK_USART = 10 MHz
```

Baud	Rate		CK_USART =	10 MHz
No.	Kbps	Actual	BRD	<b>Deviation Error Rate</b>
1	2.4	2.4	4167	-0.01%
2	9.6	9.6	1042	-0.03%
3	19.2	19.2	521	-0.03%
4	57.6	57.6	174	-0.22%
5	115.2	114.9	87	-0.22%
6	230.4	232.6	43	0.94%
7	460.8	454.5	22	-1.36%
8	625	625	16	0%

## Hardware Flow Control

The USART supports the hardware flow control function which is enabled by setting the HFCEN bit in the USRCR register to 1. It is possible to control the serial data flow between 2 USART devices by using the CTS input and the RTS output. The Figure 172 shows the connection diagram in this mode. The hardware flow control function is categorized into two types. One is the RTS flow control function and the other is the CTS flow control function.


USART 1	]	[	USART 2
Transmitter	TX CTS	RX RTS	Receiver
	<	тх	
Receiver	▲	стѕ	Transmitter
		-	

#### Figure 172. Hardware Flow Control between 2 USARTs



#### **RTS Flow Control**

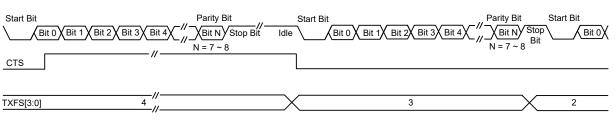
In the RTS flow control, the USART RTS pin is active with a logic low state when the receive data register is empty. It means that the receiver is ready to receive a new data. When the RX FIFO reaches the trigger level which is specified by configuring the RXTL field in the USRFCR register, the USART RTS pin is inactive with a logic high state. Figure 173 shows the example of RTS flow control.

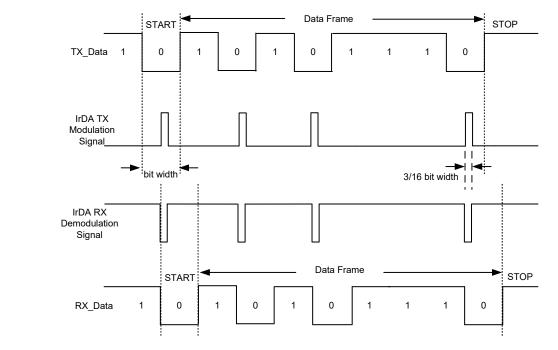


#### **CTS Flow Control**

If the hardware flow control function is enabled, the URTXEN bit in the USRCR register will be controlled by the USART CTS input signal. If the USART CTS pin is forced to a logic low state, the URTXEN bit will automatically be set to 1 to enable the data transmission. However, if the USART CTS pin is forced to a logic high state, the URTXEN bit will be cleared to 0 and then the data transmission will also be disabled.

When the USART CTS pin is forced to a logic high state during a data transmission period, the current data transmission will be continued until the stop bit is completed. The Figure 174 shows an example of communication with CTS flow control.





Figure 174. USART CTS Flow Control

#### **IrDA**

The USART IrDA mode is provided for half-duplex point-to-point wireless communication.

The USART module includes an integrated modulator and demodulator which allow a wireless communication using infrared transceivers. The transmitter specifies a logic data '0' as a 'high' pulse and a logic data '1' as a 'low' level while the receiver specifies a logic data '0' as a 'low' pulse and a logic data '1' as 'high' level in the IrDA mode.





#### Figure 175. IrDA Modulation and Demodulation

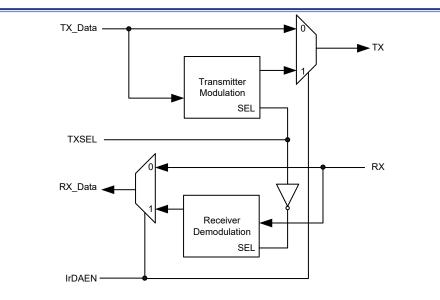
The IrDA mode provides two operation modes, one is the normal mode and the other is the low-power mode.

#### IrDA Normal Mode

For the IrDA normal mode, the width of each transmitted pulse generated by the transmitter modulator is specified as 3/16 of the baud rate clock period. The receiver pulse width for the IrDA receiver demodulator is based on the IrDA receive debounce filter which is implement using an 8-bit down-counting counter. The debounce filter counter value is specified by the IrDAPSC field in the IrDACR register. When a falling edge is detected on the receiver pin, the debounce filter counter starts to count down, driven by the CK_USART clock. If a rising edge is detected on the receiver pin, the counter stops counting and is reloaded with the IrDAPSC value. When a low pulse falling edge on the receiver pin is detected and then before the debounce filter has counted down to zero, a rising edge is also detected, then this low pulse will be considered as glitch noise and will be discarded. If a low pulse falling edge appears on the receiver pin but no rising edge is detected before the debounce counter reaches 0, then the input is regarded as a valid data "0" for this bit duration. The IrDAPSC value must be set to be greater than or equal to 0x01, then the IrDA receiver demodulation operation can function properly. The IrDAPSC value can be adjusted to meet the USART baud rate setting to filter the IrDA received glitch noise of which the width is smaller than the prescaler setting duration.

#### IrDA Low-Power Mode

In the IrDA low-power mode, the transmitted IrDA pulse width generated by the transmitter modulator is not kept at 3/16 of the baud rate clock period. Instead, the pulse width is fixed and is calculated by the following formula. The transmitted pulse width can be adjusted by the IrDAPSC field to meet the minimum pulse width specification of the external IrDA Receiver device.




#### $T_{IrDA_L} = 3 \times IrDAPSC / CK_USART$

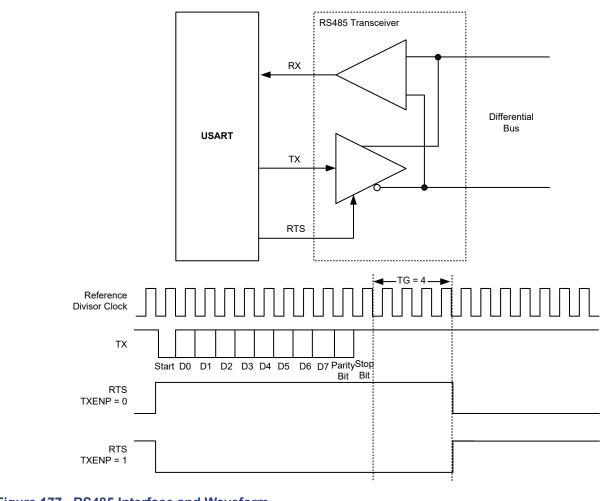
**Note:** T_{IrDA_L} is the transmitted pulse width in the low-power mode. The IrDAPSC filed is the IrDA prescaler value in the IrDA Control Register IrDACR.

The debounce behavior in the IrDA low-power receiving mode is similar to the IrDA normal mode. For glitch detection, the low pulse of which the pulse width is shorter than  $1 \times (IrDAPSC / CK_USART)$  should be discarded in the IrDA receiver demodulation. A valid low data is accepted if its low pulse width is greater than  $2 \times (IrDAPSC / CK_USART)$  duration.

The IrDA physical layer specification specifies a minimum delay with a value of 10 ms between the transmission and reception switch; and this IrDA receiver set-up time also should be managed by the software.






#### RS485 Mode

The RS485 mode of the USART provides the data transmission on the interface transmitted over a 2-wire twisted pair bus. The RS485 transceiver interprets the voltage levels of the differential signals with respect to a third common voltage. Without this common reference, the transceiver may interpret the differential signals incorrectly. This enhances the noise rejection capabilities of the RS485 interface. The USART RTS pin is used to control the external RS485 transceiver whose polarity can be selected by configuring the TXENP bit in the RS485 Control Register, named RS485CR, when the USART operates in the RS485 mode.

#### RS485 Auto Direction Mode – AUD

When the RS485 mode is configured as a master transmitter, it will operate in the Auto Direction Mode, AUD. In the AUD mode the polarity of the USART RTS pin is configurable according to the TXENP bit in the RS485 Control Register in the RS485 mode. This pin can be used to control the external RS485 transceiver to enable the transmitter.







#### RS485 Normal Multi-drop Operation Mode – NMM

When the RS485 mode is configured as an addressable slave, it will operate in the Normal Multidrop Operation Mode, NMM. This mode is enabled when the RSNMM field is set in the RS485CR register. Regardless of the URRXEN value in the USRCR register, all the received data with a parity bit "0" will be ignored until the first address byte is detected with a parity bit "1" and then the received address byte will be stored in the RX FIFO. Once the first address data is detected and stored in the RX FIFO, the RSADD flag in the USRSIFR register will be set and generate an interrupt if the RSADDIE bit in the USRIER register is set to 1. Application software can determine whether the receiver is enabled or disabled to accept the following data by configuring the URRXEN bit. When the receiver is enabled by setting the URRXEN bit to 1, all received data will be stored in the RX FIFO. Otherwise, all received data will be ignored if the receiver is disabled by clearing the URRXEN bit to 0.



#### RS485 Auto Address Detection Operation Mode – AAD

Except in the Normal Multi-drop Operation Mode, the RS485 mode can operate in the Auto Address Detection Operation Mode, AAD, when it is configured as an addressable slave. This mode is enabled by setting the RSAAD filed to 1 in the RS485CR register. The receiver will detect the address frame with a parity bit "1" and then compare the received address data with the ADDMATCH field value which is a programmable 8-bit address value specified in the RS485CR register. If the address data matches the ADDMATCH value, it will be stored in the RX FIFO and the URRXEN bit will be automatically set. When the receiver is enabled, all received data will be stored in the RX FIFO until the next address frame does not match the ADDMATCH value and then the receiver will be automatically disabled. After the receiver is enabled, software can disable the receiver by setting the URRXEN bit to '0'.

#### Synchronous Master Mode

The data is transmitted in a full-duplex style in the USART Synchronous Master Mode, i.e., data transmission and reception both occur at the same time and only support master mode. The USART CTS pin is the synchronous USART transmitter clock output. In this mode, no clock pulses will be sent to the CTS pin during the start bit, parity bit and stop bit duration. The CPS bit in the Synchronous Control Register SYNCR, can be used to determine whether data is captured on the first or the second clock edge. The CPO bit in the SYNCR can be used to configure the clock polarity in the USART Synchronous Mode idle state. Detailed timing information is shown in Figure 178.

In the USART synchronous Mode, the USART CTS/SCK clock output pin is only used to transmit the data to slave device. If the transmission data register USRDR, is written with valid data, the USART synchronous mode will automatically transmit this data with the corresponding clock output and the USART receiver will also receive data on the RX pin. Otherwise the receiver will not obtain synchronous data if no data is transmitted.

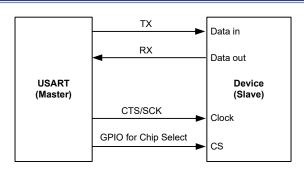
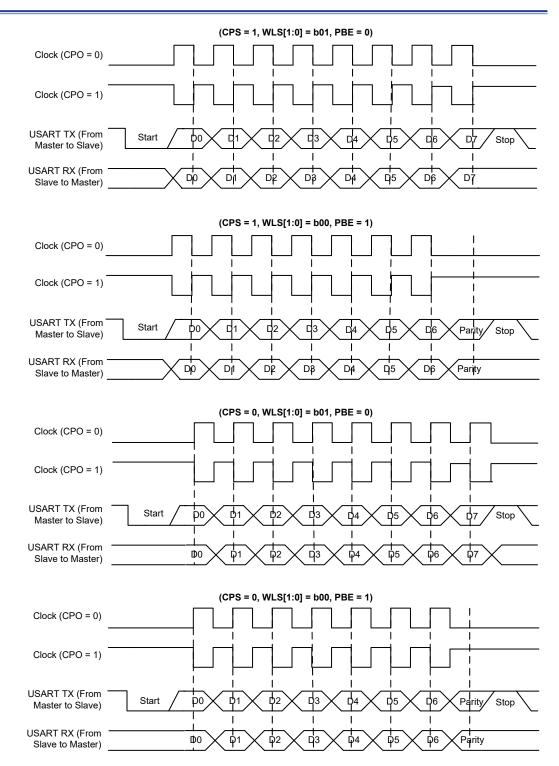




Figure 178. USART Synchronous Transmission Example

**Note:** The USART supports the synchronous master mode only: it cannot receive or send data related to an input clock. The USART CTS/SCK clock is always an output.









## **Interrupts and Status**

The USART can generate interrupts when the following event occurs and corresponding interrupt enable bits are set:

- Receive FIFO time-out interrupt: An interrupt will be generated when the USART receive FIFO is not empty and does not receive a new data package during the specified time-out interval.
- Receiver line status interrupts: The interrupts will be generated when the USART receiver overrun error, parity error, framing error and break events occur.
- Transmit FIFO threshold level interrupt: An interrupt will be generated when the data to be transmitted in the USART Transmit FIFO is less than the specified threshold level.
- Transmit complete interrupt: An interrupt will be generated when the Transmit FIFO is empty and the content of the transmit shift register (TSR) is also completely shifted.
- Receive FIFO threshold level interrupt: An interrupt will be generated when the FIFO received data amount has reached the specified threshold level.

## **Register Map**

The following table shows the USART registers and reset values.

Register	Offset	Description	Reset Value
USRDR	0x000	USART Data Register	0x0000_0000
USRCR	0x004	USART Control Register	0x0000_0000
USRFCR	0x008	USART FIFO Control Register	0x0000_0000
USRIER	0x00C	USART Interrupt Enable Register	0x0000_0000
USRSIFR	0x010	USART Status & Interrupt Flag Register	0x0000_0980
USRTPR	0x014	USART Timing Parameter Register	0x0000_0000
IrDACR	0x018	USART IrDA Control Register	0x0000_0000
RS485CR	0x01C	USART RS485 Control Register	0x0000_0000
SYNCR	0x020	USART Synchronous Control Register	0x0000_0000
USRDLR	0x024	USART Divider Latch Register	0x0000_0010
USRTSTR	0x028	USART Test Register	0x0000_0000

#### Table 52. USART Register Map



## **Register Descriptions**

## **USART Data Register – USRDR**

The register is used to access the USART transmitted and received FIFO data.

**Descriptions** 

Offset: 0x000 Reset value: 0x000_0000

	31	30	29	28	27	26	25	24
					Reserve	ed		
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserve	ed		
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserve	ed			DB
Type/Reset								RW 0
	7	6	5	4	3	2	1	0
					DB			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0	RW 0

Bits	Field
[8:0]	DB

# Reading data via this receiver buffer register will return the data from the receive FIFO. The receive FIFO has a capacity of up to 8 × 9 bits. By reading this register, the USART will return a 7, 8 and 9-bit received data. The DB field bit 8 is valid for 9-bit mode only and is fixed at 0 for the 8-bit mode. For the 7-bits mode, the DB[6:0] field contains the available bits.

Writing data to this buffer register will load data into the Transmit FIFO. The Transmit FIFO has a capacity of up to  $8 \times 9$  bits. By writing to this register, the USART will send out 7, 8 or 9-bit transmitted data. The DB field bit 8 is valid for the 9-bit mode only and will be ignored for the 8-bit mode. For the 7-bit mode, the DB[6:0] field contains the available bits.



## **USART Control Register – USRCR**

The register specifies the serial parameters such as data length, parity and stop bit for the USART. It also contains the USART enable control bits together with the USART mode and data transfer mode selections.

Reset value:       0x0000_0000         Type/Reset       31       30       29       28       27       26       25       24         Type/Reset       23       22       21       20       19       18       17       16         Type/Reset       15       14       13       12       11       10       9       8         Type/Reset       RTS       BCB       SPE       EPE       PBE       NSB       WLS         Type/Reset       RW       0 <rw< td="">       0<rw< td="">       0       RU       0<th>Offset:</th><th>0x004</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<></rw<>	Offset:	0x004							
Reserved         Type/Reset         Field       Descriptions         [15]       RTS       Request-To-Send Signal       0       RW       0 <rw< td="">       0<rw< td="">       0<rw< td="">       0<rw< td="">       0         [15]       RTS       Request-To-Send Signal       0       0       Reserved       0         [15]       RTS       Request-To-Send Signal       0       0       Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset.         [16]       Divis reset.       When the HFCEN bit is stats RTS bit is re</rw<></rw<></rw<></rw<>	Reset value:	0x0000_0	0000						
Reserved         Type/Reset         Field       Descriptions         [15]       RTS       Request-To-Send Signal       0       RW       0 <rw< td="">       0<rw< td="">       0<rw< td="">       0<rw< td="">       0         [15]       RTS       Request-To-Send Signal       0       0       Reserved       0         [15]       RTS       Request-To-Send Signal       0       0       Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset.         [16]       Divis reset.       When the HFCEN bit is stats RTS bit is re</rw<></rw<></rw<></rw<>									
Type/Reset         23       22       21       20       19       18       17       18       17       16       18       17       16       18       17       15       14       13       12       11       10       9       8       WLS         Type/Reset       15       14       13       12       0       RW       0       RW <th< td=""><td></td><td>31</td><td>30</td><td>29</td><td>28</td><td>27</td><td>26</td><td>25</td><td>24</td></th<>		31	30	29	28	27	26	25	24
23       22       21       20       19       18       17       16         Type/Reset         Field       Descriptions         Type/Reset         Type/Reset         Field       Descriptions         Type/Reset         Type/Reset         Field       Descriptions						Reserved			
23       22       21       20       19       18       17       16         Type/Reset         Field       Descriptions         Type/Reset         Type/Reset         Field       Descriptions         Type/Reset         Type/Reset         Field       Descriptions	Type/Reset								
Type/Reset       15       14       13       12       11       10       9       8         Type/Reset       RW       0 RW	51	23	22	21	20	19	18	17	16
15       14       13       12       11       10       9       8         Type/Reset       RTS       BCB       SPE       EPE       PBE       NSB       WLS         Type/Reset       7       6       5       4       3       2       1       0         Type/Reset       Reserved       URRXEN       URTXEN       HFCEN       TRSM       MODE         Type/Reset       RW       0						Reserved			
15       14       13       12       11       10       9       8         Type/Reset       RTS       BCB       SPE       EPE       PBE       NSB       WLS         Type/Reset       7       6       5       4       3       2       1       0         Type/Reset       Reserved       URRXEN       URTXEN       HFCEN       TRSM       MODE         Type/Reset       RW       0	Type/Reset	·							
RTS         BCB         SPE         EPE         PBE         NSB         WLS           Type/Reset         7         6         5         4         3         2         1         0           Type/Reset         7         6         5         4         3         2         1         0           Type/Reset         7         6         5         4         3         2         1         0           Reserved URRXEN URTXEN HFCEN TRSM MODE           Bits         Field         Descriptions           [15]         RTS         Request-To-Send Signal 0: Drive USART RTS pin to logic 1 1: Drive USART RTS pin to logic 0 Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset. When the HFCEN bit is set, this RTS bit is read only, which indicates the pin status that is controlled by hardware flow control function.           [14]         BCB         Break Control Bit When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.           [13]         SPE         Stick Parity Enable         0: Disable stick parity           0: Sitable Arity bit is transmitted         This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. Howeve		15	14	13	12	11	10	9	8
Type/Reset       RW       0			ВСВ		EPE	PBE	NSB		
Type/Reset       7       6       5       4       3       2       1       0         Reserved URXEN URXEN HFCEN TRSM MODE         RW       0       RW       RU       0       RU	Type/Reset				-			RW (	0 RW 0
Reserved         URRXEN         URTXEN         HFCEN         TRSM         MODE           RW         0	51								
Type/Reset       RW       0									
Bits         Field         Descriptions           [15]         RTS         Request-To-Send Signal 0: Drive USART RTS pin to logic 1 1: Drive USART RTS pin to logic 0 Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset. When the HFCEN bit is set, this RTS bit is read only, which indicates the pin status that is controlled by hardware flow control function.           [14]         BCB         Break Control Bit When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.           [13]         SPE         Stick Parity Enable 0: Disable stick parity 1: Stick Parity bit is transmitted This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.           [12]         EPE         Even Parity Enable 0: Odd number of logic 1's are transmitted or checked in the data word and parity bits           [12]         EPE         Even number of logic 1's are transmitted or checked in the data word and parity bits	Type/Reset	L			-			RW (	
<ul> <li>[15] RTS Request-To-Send Signal <ul> <li>D: Drive USART RTS pin to logic 1</li> <li>Drive USART RTS pin to logic 0</li> </ul> </li> <li>Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset. <ul> <li>When the HFCEN bit is set, this RTS bit is read only, which indicates the pin status that is controlled by hardware flow control function.</li> </ul> </li> <li>[14] BCB Break Control Bit <ul> <li>When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.</li> </ul> </li> <li>[13] SPE Stick Parity Enable <ul> <li>D: Disable stick parity</li> <li>Stick Parity bit is transmitted</li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0.</li> </ul> </li> <li>[12] EPE Even Parity Enable <ul> <li>O: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>	.)[								
<ul> <li>[15] RTS Request-To-Send Signal <ul> <li>D: Drive USART RTS pin to logic 1</li> <li>Drive USART RTS pin to logic 0</li> </ul> </li> <li>Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset. <ul> <li>When the HFCEN bit is set, this RTS bit is read only, which indicates the pin status that is controlled by hardware flow control function.</li> </ul> </li> <li>[14] BCB Break Control Bit <ul> <li>When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.</li> </ul> </li> <li>[13] SPE Stick Parity Enable <ul> <li>D: Disable stick parity</li> <li>Stick Parity bit is transmitted</li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0.</li> </ul> </li> <li>[12] EPE Even Parity Enable <ul> <li>O: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>	Bite	Field	Descript	ione					
<ul> <li>i. Drive USART RTS pin to logic 1         <ol> <li>i. Drive USART RTS pin to logic 0</li> <li>Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset.</li> <li>When the HFCEN bit is set, this RTS bit is read only, which indicates the pin status that is controlled by hardware flow control function.</li> </ol> </li> <li>[14] BCB Break Control Bit         When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.         [13] SPE Stick Parity Enable             <ol> <li>Disable stick parity</li> <li>Stick Parity bit is transmitted</li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.</li> </ol> </li> <li>[12] EPE Even Parity Enable         <ol> <li>Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ol> </li> </ul>			-						
1: Drive USART RTS pin to logic 0Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset.When the HFCEN bit is set, this RTS bit is read only, which indicates the pin status that is controlled by hardware flow control function.[14]BCBBreak Control Bit When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.[13]SPEStick Parity Enable 0: Disable stick parity 1: Stick Parity bit is transmitted This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.[12]EPEEven Parity Enable 0: Odd number of logic 1's are transmitted or checked in the data word and parity bits0: Odd number of logic 1's are transmitted or checked in the data word and parity bits	[15]	RIS	•	•		c 1			
<ul> <li>Note that the RTS bit is used to control the USART RTS pin status when the HFCEN bit is reset.</li> <li>When the HFCEN bit is set, this RTS bit is read only, which indicates the pin status that is controlled by hardware flow control function.</li> <li>BCB Break Control Bit When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.</li> <li>SPE Stick Parity Enable         <ul> <li>Disable stick parity</li> <li>Stick Parity Enable</li> <li>Disable stick parity</li> <li>Stick Parity bit is transmitted</li> </ul> </li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.</li> <li>EPE Even Parity Enable             <ul> <li>O Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>					• •				
<ul> <li>bit is reset.</li> <li>When the HFCEN bit is set, this RTS bit is read only, which indicates the pin status that is controlled by hardware flow control function.</li> <li>[14] BCB Break Control Bit When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.</li> <li>[13] SPE Stick Parity Enable         <ul> <li>O: Disable stick parity</li> <li>Stick Parity bit is transmitted</li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1.</li> </ul> </li> <li>[12] EPE Even Parity Enable         <ul> <li>O: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>					• •		ART RTS pin	status whe	en the HFCEN
that is controlled by hardware flow control function.[14]BCBBreak Control Bit When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.[13]SPEStick Parity Enable 0: Disable stick parity 1: Stick Parity bit is transmitted This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.[12]EPEEven Parity Enable 0: Odd number of logic 1's are transmitted or checked in the data word and parity bits 1: Even number of logic 1's are transmitted or checked in the data word and parity bits									
<ul> <li>BCB Break Control Bit When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.</li> <li>SPE Stick Parity Enable         <ul> <li>Disable stick parity</li> <li>Stick Parity bit is transmitted</li> <li>Stick Parity bit is transmitted</li> <li>Stick Parity bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1.</li> </ul> </li> <li>EPE Even Parity Enable         <ul> <li>O' Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>			When the	HFCEN bit	is set, this R	TS bit is rea	d only, which	n indicates	the pin status
<ul> <li>When this bit is set 1, the serial data output on the USART TX pin will be forced to the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.</li> <li>[13] SPE Stick Parity Enable         <ul> <li>0: Disable stick parity</li> <li>1: Stick Parity bit is transmitted</li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.</li> </ul> </li> <li>[12] EPE Even Parity Enable         <ul> <li>0: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>1: Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>			that is cor	trolled by ha	ardware flow	control funct	ion.		
<ul> <li>the Spacing State (logic 0). This bit acts only on USART TX output pin and has no effect on the transmitter logic.</li> <li>[13] SPE Stick Parity Enable         <ul> <li>Disable stick parity</li> <li>Stick Parity bit is transmitted</li> <li>Stick Parity bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.</li> </ul> </li> <li>[12] EPE Even Parity Enable         <ul> <li>Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>	[14]	BCB							
<ul> <li>[13] SPE Stick Parity Enable</li> <li>0: Disable stick parity</li> <li>1: Stick Parity bit is transmitted</li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to</li> <li>1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.</li> <li>[12] EPE Even Parity Enable</li> <li>0: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul>						-		-	
<ul> <li>[13] SPE Stick Parity Enable         <ul> <li>Disable stick parity</li> <li>Stick Parity bit is transmitted</li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to</li> <li>However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.</li> </ul> </li> <li>[12] EPE Even Parity Enable         <ul> <li>Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>			-		- ,	it acts only o	on USART T	X output p	in and has no
<ul> <li>0: Disable stick parity         <ol> <li>1: Stick Parity bit is transmitted</li> <li>This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to</li></ol></li></ul>					er logic.				
1: Stick Parity bit is transmitted         This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.         [12]       EPE         Even Parity Enable       0: Odd number of logic 1's are transmitted or checked in the data word and parity bits         1: Even number of logic 1's are transmitted or checked in the data word and parity bits	[13]	SPE		-	.:				
<ul> <li>[12] This bit is only available when the PBE bit is set to 1. If both the PBE and SPE bits are set to 1 and the EPE bit is cleared to 0, the transmitted parity bit will be stuck to 1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.</li> <li>[12] EPE Even Parity Enable         <ul> <li>O: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul> </li> </ul>									
<ul> <li>[12] EPE</li> <li>EPE</li> <li>Even Parity Enable</li> <li>0: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>1: Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul>						PRF bit is s	et to 1. If bot	th the PRF	and SPF bits
<ul> <li>[12] EPE</li> <li>1. However, when the PBE and SPE bits are set to 1 and also the EPE bit is set to 1, the transmitted parity bit will be stuck to 0.</li> <li>[12] EPE</li> <li>[12] EVE Even Parity Enable</li> <li>0: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>1: Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul>				-					
<ul> <li>[12] EPE Even Parity Enable</li> <li>0: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>1: Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul>									
<ul> <li>0: Odd number of logic 1's are transmitted or checked in the data word and parity bits</li> <li>1: Even number of logic 1's are transmitted or checked in the data word and parity bits</li> </ul>									
bits 1: Even number of logic 1's are transmitted or checked in the data word and parity bits	[12]	EPE	Even Pari	y Enable					
1: Even number of logic 1's are transmitted or checked in the data word and parity bits			0: Odd	number of l	ogic 1's are t	ransmitted o	r checked in	the data w	ord and parity
parity bits									
					f logic 1's a	re transmitte	ed or checke	ed in the d	ata word and
I his bit is only available when PBE is set to 1.			-	•					
			i nis bit is	only availab	ie when PBE	s is set to 1.			



Bits	Field	Descriptions
[11]	PBE	<ul> <li>Parity Bit Enable</li> <li>0: Parity bit is not generated (transmitted data) or checked (received data) during transfer</li> <li>1: Parity bit is generated or checked during transfer</li> <li>Note: When the WLS field is set to "10" to select the 9-bit data format, writing to the</li> </ul>
[10]	NSB	PBE bit has no effect. Number of "STOP bit" 0: One "STOP bit" is generated in the transmitted data 1: Two "STOP bit" is generated when 8-bit and 9-bit word length is selected
[9:8]	WLS	Word Length Select 00: 7 bits 01: 8 bits 10: 9 bits 11: Reserved
[5]	URRXEN	USART RX Enable 0: Disable 1: Enable
[4]	URTXEN	USART TX Enable 0: Disable 1: Enable
[3]	HFCEN	Hardware Flow Control Function Enable 0: Disable 1: Enable
[2]	TRSM	Transfer Mode Selection This bit is used to select the data transfer protocol. 0: LSB first 1: MSB first
[1:0]	MODE	USART Mode Selection 00: Normal operation 01: IrDA 10: RS485 11: Synchronous



## **USART FIFO Control Register – USRFCR**

This register specifies the USART FIFO control and configurations including threshold level and reset function together with the USART FIFO status.

Offset:	0x008											
Reset value:	0x0000_0	0000										
	31	30	29	28	27		26		25		24	
			Reserved						RXFS	3		
Type/Reset	<u> </u>				RO	0	RO	0	RO	0	RO	0
	23	22	21	20	19		18		17		16	
			Reserved						TXFS	3		
Type/Reset					RO	0	RO	0	RO	0	RO	0
	15	14	13	12	11		10		9		8	
					Reserv	ed						
Type/Reset	L											
51	7	6	5	4	3		2		1		0	
		RXTL		TXTL			Reserv	ed	RXR		TXR	
Type/Reset	RW		RW 0	RW 0					WO		WO	0
.)po,										Ū		Ū
Bits	Field	Decoring	liono									
	RXFS	Descript										
[27:24]	KXF5	RX FIFO	Status S field shows	the current	numbor o	f da	ta conta	inoc	l in the P		FO	
			RX FIFO is e			лua		mec			ΓΟ.	
			RX FIFO con									
		1000:	RX FIFO con	tains 8 data								
		Others	: Reserved									
[19:16]	TXFS	TX FIFO	Status									
			6 field shows		number o	f da	ta contai	ned	l in the T	K FIF	<del>-</del> 0.	
			TX FIFO is er									
		0001:	TX FIFO cont	tains 1 data								
			TX FIFO cont	taina 9 data								
			Reserved	lains o uala								
[7:6]	RXTL		Threshold Le	vel Setting								
[7.0]	INTL	00: 1 k		ver Setting								
		01: 2 k	•									
		10: 4 k										
		11: 6 b	ytes									
		The RXTI	field defines	the RX FIF	O trigger	leve	el.					
[5:4]	TXTL	TX FIFO	Threshold Le	vel Setting								
		00: 0 k										
		01: 2 k										
		10: 4 k	•									
		11:6 b										
		IneIXIL	field determi	ines the TX	FIFO trige	ger I	evel.					



Bits	Field	Descriptions
[1]	RXR	RX FIFO Reset
		Setting this bit will generate a reset pulse to reset the RX FIFO which will empty the
		RX FIFO, i.e., the RX pointer will be reset to 0 after a reset signal. This bit returns to
		0 automatically after the reset pulse is generated.
[0]	TXR	TX FIFO Reset
		Setting this bit will generate a reset pulse to reset the TX FIFO which will empty the
		TX FIFO, i.e., the TX pointer will be reset to 0 after a reset signal. This bit returns to
		0 automatically after the reset pulse is generated.

## **USART Interrupt Enable Register – USRIER**

This register is used to enable the related USART interrupt function. The USART module generates interrupts to the controller when the corresponding events occur and the corresponding interrupt enable bits are set.

Offset:	0x00C							
Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								•
	15	14	13	12 Reserved	11	10	9 CTSIE	
Type/Reset				Reserved				RXTOIE RW 0
турс/псэст	7	6	5	4	3	2	1	0
	RSADDIE	BIE	FEIE	PEIE	OEIE	TXCIE	TXDEIE	RXDRIE
Type/Reset		RW 0	RW 0	RW 0	RW 0		-	RW 0
Bits	Field	Descri	ptions					
<b>Bits</b> [9]	Field CTSIE	CTS Cl	ear-To-Send	Interrupt En	able			
		CTS Clo 0: Di	ear-To-Send	ıpt	able			
		CTS Clo 0: Di 1: El	ear-To-Send isable interru nable interru	ıpt pt		ted when th	e CTSC hit	is set in the
		CTS Clo 0: Di 1: Er If this b	ear-To-Send isable interru nable interru	ipt pt		ted when th	e CTSC bit	is set in the
		CTS Clo 0: Di 1: El If this b USRSIF	ear-To-Send sable interru nable interru it is set, an FR register.	ipt pt	ll be generat	ted when th	e CTSC bit	is set in the
[9]	CTSIE	CTS Clu 0: Di 1: El If this b USRSIF Receive 0: Di	ear-To-Send isable interru nable interru it is set, an -R register. e FIFO Time- isable interru	ipt pt interrupt wil Out Interrup ipt	ll be generat	ted when th	e CTSC bit	is set in the
[9]	CTSIE	CTS Clu 0: Di 1: Eu If this b USRSIF Receive 0: Di 1: Eu	ear-To-Send isable interru nable interru it is set, an FR register. PFFO Time- isable interru nable interru	ipt pt interrupt wil Out Interrup ipt pt	ll be generat t Enable			
[9]	CTSIE	CTS Clu 0: Di 1: Eu If this b USRSIF Receive 0: Di 1: Eu If this b	ear-To-Send isable interru nable interru it is set, an FR register. FIFO Time- isable interru nable interru it is set, an	ipt pt interrupt wil Out Interrup ipt pt	ll be generat t Enable			is set in the
[9]	CTSIE	CTS Clu 0: Di 1: El If this b USRSIF Receive 0: Di 1: El If this b USRSIF	ear-To-Send isable interru nable interru it is set, an FR register. FIFO Time- isable interru nable interru it is set, an FR register.	ipt pt interrupt wil Out Interrup ipt pt interrupt will	ll be generat t Enable be generate			
[9]	CTSIE	CTS Clu 0: Di 1: En If this b USRSIF Receive 0: Di 1: En If this b USRSIF RS485	ear-To-Send isable interru nable interru it is set, an FR register. FIFO Time- isable interru nable interru it is set, an FR register.	ipt pt interrupt wil Out Interrup ipt pt	ll be generat t Enable be generate			
[9]	CTSIE	CTS Clu 0: Di 1: El If this b USRSIF Receive 0: Di 1: El If this b USRSIF RS485 0: Disat	ear-To-Send isable interru nable interru it is set, an FR register. FIFO Time- isable interru nable interru nable interru it is set, an FR register. Address Det	ipt pt interrupt wil Out Interrup ipt pt interrupt will	ll be generat t Enable be generate			
[9]	CTSIE	CTS Clu 0: Di 1: Eu If this b USRSIF Receive 0: Di 1: Eu If this b USRSIF RS485 0: Disat 1: Enab If this b	ear-To-Send isable interru nable interru nable interru FR register. FIFO Time- isable interru nable interru it is set, an FR register. Address Det ole interrupt le interrupt	ipt interrupt wil Out Interrup ipt interrupt will ection Interru	ll be generat t Enable be generate upt Enable	ed when the	RXTOF bit	



Bits	Field	Descriptions
[6]	BIE	Break Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt will be generated when the BII bit is set in the USRSIFR register.
[5]	FEIE	Framing Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt will be generated when the FEI bit is set in the URSIFR register.
[4]	PEIE	Parity Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt will be generated when the PEI bit is set in the USRSIFR register.
[3]	OEIE	Overrun Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt will be generated when the OEI bit is set in the USRSIFR register.
[2]	TXCIE	Transmit Complete Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt will be generated when the TXC bit is set in the USRSIFR register.
[1]	TXDEIE	Transmit Data Empty Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt will be generated when the TXDE bit is set in the USRSIFR register.
[0]	RXDRIE	Receive Data Ready Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt will be generated when the RXDR bit is set in the USRSIFR register.



This register	contains the	correspondir	ng USART sta	atus.					
Offset:	0x010								
Reset value:	0x0000_09	80							
	31	30	29	28		27	26	25	24
		50	25	20		Reserved	-		
Type/Reset									
1990/110301	23	22	21	20		19	18	17	16
						Reserved			
Type/Reset	L						_		
51	15	14	13	12		11	10	9	8
			Reserved			CTSS	CTSC	RSADD	TXC
Type/Reset						RO ⁻	I WC (	WC 0	RO 1
	7	6	5	4		3	2	1	0
	TXDE	RXTOF	RXDR	BII		FEI	PEI	OEI	RXDNE
Type/Reset	RO 1	WC 0	RO 0	WC	0	WC (	) WC (	) WC 0	RO 0
Bits	Field	Descripti	ons						
[11]	CTSS	CTS Clear	-To-Send Sta	tus					
		0: CTS	pin is inactive	Э					
		1: CTS	pin is active a	and kept	ata	a logic low	state		
[10]	CTSC		s Change Fla	•					
								anged and an	
		-	ed if the CTS	SIE = 1 in	n th	e USRIER	register. Wri	ting 1 to this	bit clears the
[0]		flag.	drago Dotosti	~~					
[9]	RSADD	0: Addre	dress Detections is not det	ected					
			ess is detecte		ho r	acaivar da	tacts the ad	dress. An inte	arrupt will be
								1 to this bit cl	
		•				•	•	ig the MODE	•
		USRCR re	-					•	
[8]	TXC	Transmit C	omplete						
				•			-	er (TSR) is n	ot empty
			the TX FIFO			-			
								egister. This	bit is cleared
[7]	TYPE	-	the USRDF	-	rwi	In new data	d.		
[7]	TXDE		ata FIFO Em IFO level is h		on tl	areshold			
			IFO level is in IFO level is e	-			eshold		
				•				equal to or le	ess than the
								XTL field in t	
						-	•	n into the US	
		and the TX	FIFO level is	s higher	thai	n threshold	setting.		

## USART Status & Interrupt Flag Register – USRSIFR



Bits	Field	Descriptions
[6]	RXTOF	<ul> <li>Receive FIFO Time-Out Flag</li> <li>0: RX FIFO Time-Out does not occur</li> <li>1: RX FIFO Time-Out occurs</li> <li>The RXTOF bit will be set if the RX FIFO is not empty and no activities have occurred in the RX FIFO during the time-out duration specified by the RXTOC field. If an RX FIFO time-out condition has occurred, this flag must be cleared before reading the RX FIFO. Writing 1 to this bit clears the flag.</li> </ul>
[5]	RXDR	Receive FIFO Ready Flag 0: RX FIFO level is less than threshold 1: RX FIFO level is equal to or higher than threshold The RXDR bit will be set when the FIFO received data amount reaches the specified threshold level which is set by the RXTL field in the USRFCR register. This bit will be cleared when the data is read from the USRDR register and the RX FIFO level is less than threshold setting.
[4]	BII	Break Interrupt Indicator This bit will be set to 1 whenever the received data input is held in the "spacing state" (logic 0) for longer than a full word transmission time, which is the total time of "start bit" + "data bits" + "parity" + "stop bits" duration. Writing 1 to this bit clears the flag.
[3]	FEI	Framing Error Indicator This bit will be set to 1 whenever the received character does not have a valid "stop bit", which means the stop bit following the last data bit or parity bit is detected as a logic 0. Writing 1 to this bit clears the flag.
[2]	PEI	Parity Error Indicator This bit will be set to 1 whenever the received character does not have a valid "parity bit". Writing 1 to this bit clears the flag.
[1]	OEI	Overrun Error Indicator An overrun error will occur only after the RX FIFO is full and when the next character has been completely received in the RX shift register. The character in the shift register will be overwritten if a new character is received in the RX shift register after an overrun event occurs, but the data in the RX FIFO will not be overwritten. The OEI bit is used to indicate the overrun event as soon as it happens. Writing 1 to this bit clears the flag.
[0]	RXDNE	RX FIFO Data Not Empty 0: RX FIFO is empty 1: RX FIFO contains at least 1 received data word

0x014

Offset:



## USART Timing Parameter Register – USRTPR

This register contains the USART timing parameters including the transmitter time guard parameters and the receive FIFO time-out value together with the RX FIFO time-out function enable control.

Reset value:	0x0000_0	000						
	31	30	29	28	27	26	25	24
					Reserved	b		
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved	d		
Type/Reset								
	15	14	13	12	11	10	9	8
					TG			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW (	0 RW	0 RW	0 RW 0
	7	6	5	4	3	2	1	0
	RXTOEN	1			RXTOC			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW 0

Bits	Field	Descriptions
[15:8]	TG	Transmitter Time Guard The transmitter time guard counter is driven by the baud rate clock. When the TX FIFO transmits data, the counter will be reset and then starts to count after a word transmission has completed. Only when the counter content is equal to the TG value, are further word transmission transactions allowed.
[7]	RXTOEN	Receive FIFO Time-Out Counter Enable 0: Receive FIFO Time-Out Counter is disabled 1: Receive FIFO Time-Out Counter is enabled
[6:0]	RXTOC	Receive FIFO Time-Out Counter Compare Value The RX FIFO time-out counter is driven by the baud rate clock. When the RX FIFO receives new data, the counter will be reset and then starts to count. Once the time-out counter content is equal to the time-out counter compare value RXTOC, a receive FIFO time-out interrupt, RXTOI, will be generated if the RXTOIE bit in the USRIER register is set to 1. New received data or the empty RX FIFO after being read will clear the RX FIFO time-out counter.



#### This register is used to control the IrDA mode of USART. Offset: 0x018 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 20 18 23 22 21 19 17 16 Reserved Type/Reset 15 14 13 12 11 10 9 8 IrDAPSC RW 0 RW 0 RW 0 RW 0 RW RW 0 RW 0 RW Type/Reset 0 0 6 5 1 7 4 3 2 0 Reserved **RXINV** TXINV LB TXSEL IrDALP **IrDAEN** Type/Reset RW 0 RW 0 RW 0 RW 0 RW 0 RW 0 **Descriptions** Bits Field [15:8] **IrDAPSC** IrDA Prescaler value This field contains the 8-bit debounce prescaler value. The debounce count-down counter is driven by the USART clock, named as CK USART. The counting period is specified by the IrDAPSC field. The IrDAPSC field must be set to a value equal to or greater than 0x01 for normal debounce counter operation. If the pulse width is less than the duration specified by the IrDAPSC field, the pulse will be considered as glitch noise and discarded. 00000000: Reserved - can not be used. 00000001: CK USART clock divided by 1 00000010: CK_USART clock divided by 2 00000011: CK_USART clock divided by 3 ... [5] **RXINV RX Signal Inverse Control** 0: No inversion 1: RX input signal is inversed [4] **TXINV TX Signal Inverse Control** 0: No inversion 1: TX output signal is inversed [3] LB IrDA Loop Back Mode 0: Disable IrDA loop back mode 1: Enable IrDA loop back mode for self-testing TXSEL Transmit Select [2] 0: Enable IrDA receiver 1: Enable IrDA transmitter [1] IrDALP IrDA Low Power Mode Select the IrDA operation mode. 0: Normal mode 1: IrDA low power mode



Bits	Field	Descriptions
[0]	IrDAEN	IrDA Enable control
		0: Disable IrDA mode
		1: Enable IrDA mode

## USART RS485 Control Register – RS485CR

This register is used to control the RS485 mode of USART.								
Offset:	0x01C							
Reset value:	0x0000_00	000						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					ADDMATCH			
Type/Reset	RW C	RW	0 RW (	0 RW	0 RW 0	RW 0	RW 0	RW 0
	7	6	5	4	3	2	1	0
			Reserved	ł		RSAAD	RSNMM	TXENP
Type/Reset						RW 0	RW 0	RW 0

Bits	Field	Descriptions
[15:8]	ADDMATCH	RS485 Auto Address Match value
		The field contains the address match value for the RS485 auto address detection operation mode.
[2]	RSAAD	RS485 Auto Address Detection Operation Mode Control
		0: Disable
		1: Enable
[1]	RSNMM	RS485 Normal Multi-drop Operation Mode Control
		0: Disable
		1: Enable
[0]	TXENP	USART RTS/TXE Pin Polarity
		0: RTS/TXE is active high in the RS485 transmission mode
		1: RTS/TXE is active low in the RS485 transmission mode



This register	is used to co	ntrol the USA	ART synchro	nous mode.				
Offset:	0x020							
Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
				1	Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
			Reserved		CPO	CPS	Reserved	CLKEN
Type/Reset					RW 0	RW 0		RW 0
Bits	Field	Descript	ions					
<b>Bits</b> [3]	Field CPO	Descript Clock Pola						
		Clock Pola		e state is low	,			
		Clock Pola 0: CTS 1: CTS	arity /SCK pin idle /SCK pin idle	e state is hig	h			
		Clock Pola 0: CTS 1: CTS Selects t	arity /SCK pin idle /SCK pin idle he polarity	e state is hig of the cloc	h k output on			
		Clock Pola 0: CTS 1: CTS Selects t synchrono	arity /SCK pin idle /SCK pin idle he polarity pus mode. V	e state is hig of the cloc	h			
[3]	CPO	Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle	arity /SCK pin idle /SCK pin idle he polarity pus mode. V state.	e state is hig of the cloc	h k output on			
		Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle Clock Pha	arity /SCK pin idle /SCK pin idle he polarity bus mode. V state. ise	e state is hig of the cloc Vorks in cor	h k output on junction with			
[3]	CPO	Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle Clock Pha 0: Data	arity /SCK pin idle /SCK pin idle he polarity pus mode. V state. sse a is captured	e state is hig of the cloc Vorks in cor on the first o	h k output on junction with clock edge	n the CPS b		
[3]	CPO	Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle Clock Pha 0: Data 1: Data	arity /SCK pin idle /SCK pin idle he polarity pus mode. V state. state. a is captured a is captured	e state is hig of the cloc Vorks in cor on the first o on the seco	h k output on junction with clock edge nd clock edg	n the CPS b	it to specify	the desired
[3]	CPO	Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle Clock Pha 0: Data 1: Data This bit a	arity /SCK pin idle /SCK pin idle he polarity pus mode. V state. sse a is captured llows the us	e state is hig of the cloc Vorks in cor on the first o on the seco ser to selec	h k output on junction with clock edge nd clock edg t the phase	n the CPS b e of the clock	it to specify	the desired
[3]	CPO	Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle Clock Pha 0: Data 1: Data This bit a CTS/SCK	arity /SCK pin idle /SCK pin idle he polarity pus mode. V state. sse a is captured llows the us	e state is hig of the cloc Vorks in cor on the first o on the seco ser to selec ynchronous	h k output on junction with clock edge nd clock edg	n the CPS b e of the clock	it to specify	the desired
[3]	CPO	Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle Clock Pha 0: Data 1: Data This bit a CTS/SCK	arity /SCK pin idle /SCK pin idle he polarity pus mode. V state. sse a is captured a is captured llows the us pin in the s the data cap	e state is hig of the cloc Vorks in cor on the first o on the seco ser to selec ynchronous	h k output on junction with clock edge nd clock edg t the phase	n the CPS b e of the clock	it to specify	the desired
[3]	CPO CPS	Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle Clock Pha 0: Data 1: Data This bit a CTS/SCK determine Clock Ena	arity /SCK pin idle /SCK pin idle he polarity pus mode. V state. sse a is captured a is captured llows the us pin in the s the data cap	e state is hig of the cloc Vorks in cor on the first o on the seco ser to selec ynchronous oture edge.	h k output on junction with clock edge nd clock edg t the phase	n the CPS b e of the clock	it to specify	the desired
[3]	CPO CPS	Clock Pola 0: CTS 1: CTS Selects t synchrono clock idle Clock Pha 0: Data 1: Data This bit a CTS/SCK determine Clock Ena 0: CTS 1: CTS	arity /SCK pin idle /SCK pin idle he polarity ous mode. V state. sse a is captured a is captured llows the us pin in the s the data cap	e state is hig of the cloc Vorks in cor on the first of on the seco ser to selec ynchronous oture edge.	h k output on junction with clock edge nd clock edg t the phase mode. Work	n the CPS b e of the clock	it to specify	the desired

## **USART Synchronous Control Register – SYNCR**



#### Offset: 0x024 Reset value: 0x0000_0010 29 28 25 31 30 27 26 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset 12 15 14 13 11 10 9 8 BRD 0 RW Type/Reset RW 0 7 6 5 4 3 2 1 0 BRD 0 RW 0 RW 0 RW 0 RW 0 RW Type/Reset RW 1 RW 0 RW 0

The register is used to determine the USART clock divided ratio to generate the appropriate baud rate.

Bits	Field	Descriptions
[15:0]	BRD	Baud Rate Divider
		The 16 bits define the USART clock divider ratio.
		Baud Rate = CK_USART / BRD
		Where the CK_USART clock is the clock connected to the USART module.
		BRD = 16 ~ 65535 for asynchronous mode

BRD =  $8 \sim 65535$  for synchronous mode.



### USART Test Register – USRTSTR

0x028 Offset: Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset 15 13 12 14 11 10 9 8 Reserved Type/Reset 7 6 5 4 3 2 1 0 Reserved LBM RW 0 RW Type/Reset 0

Bits	Field	Descriptions	
[1:0]	LBM	Loopback Test Mode Select	
		00: Normal Operation	
		01: Reserved	
		10: Automatic Echo Mode	

11: Loopback Mode



## 22 Universal Asynchronous Receiver Transmitter (UART)

## Introduction

The Universal Asynchronous Receiver Transceiver, UART, provides a flexible full duplex data exchange using asynchronous transfer. The UART is used to translate data between parallel and serial interfaces, and is also commonly used for RS232 standard communication. The UART peripheral function supports a variety of interrupts.

The UART module includes a transmit data register TDR and transmit shift register TSR, and a receive data register RDR and receive shift register RSR. Software can detect a UART error status by reading the UART Status & Interrupt Flag Register, URSIFR. The status includes the condition of the transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events.

The UART includes a programmable baud rate generator which is capable of dividing the UART clock of the CK_APB (CK_UART) to produce a baud rate clock for the UART transmitter and receiver.

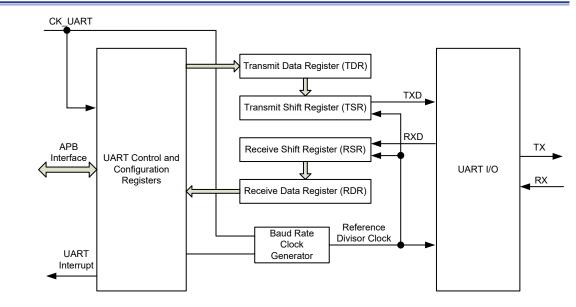
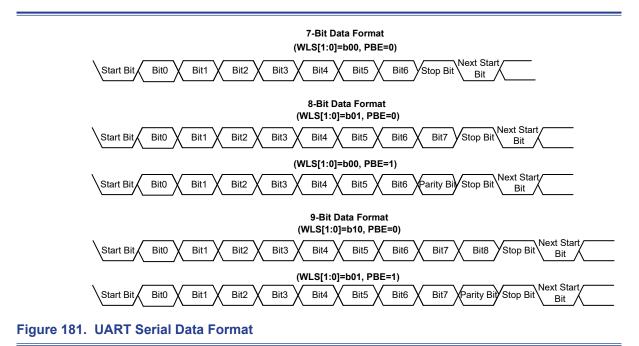



Figure 180. UART Block Diagram



#### **Features**


- Supports asynchronous serial communication modes
- Full Duplex Communication Capability
- **Programming baud rate clock frequency up to**  $(f_{PCLK}/16)$  MHz
- Fully programmable serial communication functions including:
  - Word length: 7, 8 or 9-bit character
  - Parity: Even, odd or no-parity bit generation and detection
  - Stop bit: 1 or 2 stop bits generation
  - Bit order: LSB-first or MSB-first transfer
- Error detection: Parity, overrun and frame error

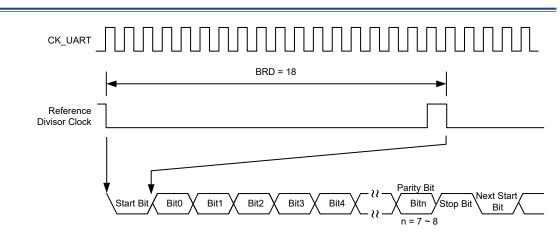
### **Function Descriptions**

#### Serial Data Format

The UART module performs a parallel-to-serial conversion on data that is written to the transmit data register and then sends the data with the following format: Start bit,  $7 \sim 9$  LSB / MSB first data bits, optional Parity bit and finally  $1 \sim 2$  Stop bits. The Start bit has the opposite polarity of the data line idle state. The Stop bit is the same as the data line idle state and provides a delay before the next start situation. Both the Start and Stop bits are used for data synchronization during the asynchronous data transmission.

The UART module also performs a serial-to-parallel conversion on the data that is read from the receive data register. It will first check the Parity bit and will then look for a Stop bit. If the Stop bit is not found, the UART module will consider the entire word transmission to have failed and respond with a Framing Error.






#### **Baud Rate Generation**

The baud rate for the UART receiver and transmitter are both set with the same values. The baud-rate divisor, BRD, has the following relationship with the UART clock which is known as CK_UART.

Baud Rate Clock = CK_UART / BRD

Where CK_UART clock is the APB clock connected to the UART while the BRD range is from 16 to 65535.



#### Figure 182. UART Clock CK_UART and Data Frame Timing

#### Table 53. Baud Rate Deviation Error Calculation – CK_UART = 20 MHz

Bauc	I Rate	CK_UART = 20 MHz				
No.	Kbps	Actual	BRD	<b>Deviation Error Rate</b>		
1	2.4	2.4	8333	0.00%		
2	9.6	9.6	2083	0.02%		
3	19.2	19.2	1042	-0.03%		
4	57.6	57.6	347	0.06%		
5	115.2	114.9	174	-0.22%		
6	230.4	229.9	87	-0.22%		
7	460.8	465.1	43	0.94%		
8	921.6	909.1	22	-1.36%		
9	1250	1250	16	0%		



Baud	Rate		CK_UART = 1	0 MHz
No.	Kbps	Actual	BRD	<b>Deviation Error Rate</b>
1	2.4	2.4	4167	-0.01%
2	9.6	9.6	1042	-0.03%
3	19.2	19.2	521	-0.03%
4	57.6	57.6	174	-0.22%
5	115.2	114.9	87	-0.22%
6	230.4	232.6	43	0.94%
7	460.8	454.5	22	-1.36%
8	625	625	16	0%

#### Table 54. Baud Rate Deviation Error Calculation – CK_UART = 10 MHz

#### **Interrupts and Status**

The UART can generate interrupts when the following event occurs and the corresponding interrupt enable bits are set:

- Receiver line status interrupts: The interrupts are generated when the overrun error, parity error, framing error or break event occurs for the UART receiver.
- Transmit data register empty interrupt: An interrupt is generated when the content of the transmit data register is transferred to the transmit shift register (TSR).
- Transmit complete interrupt: An interrupt is generated when the transmit data register (TDR) is empty and the content of the transmit shift register (TSR) is also completely shifted.
- Receive data ready interrupt: An interrupt is generated when the content of the receive shift register (RSR) has been transferred to the URDR register and is ready to read.

### **Register Map**

The following table shows the UART registers and reset values.

Register	Offset	Description	Reset Value			
URDR	0x000	UART Data Register	0x0000_0000			
URCR	0x004	UART Control Register	0x0000_0000			
URIER	0x00C	UART Interrupt Enable Register	0x0000_0000			
URSIFR	0x010	UART Status & Interrupt Flag Register	0x0000_0180			
URDLR	0x024	UART Divider Latch Register	0x0000_0010			
URTSTR	0x028	UART Test Register	0x0000_0000			

#### Table 55. UART Register Map



## **Register Descriptions**

#### UART Data Register – URDR

The register is used to access the UART transmitted and received data.

Offset: 0x000 Reset value: 0x000_0000

	31	30	29	28	27	26	25	24
					Reserved	d		
Type/Reset					·			
	23	22	21	20	19	18	17	16
					Reserved	d		
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserv	red			DB
Type/Reset								RW 0
	7	6	5	4	3	2	1	0
					DB			
Type/Reset	RW	0 RW	0 RW	0 RW	0 RW	0 RW	0 RW (	0 RW 0

Bits	Field	Descriptions
[8:0]	DB	By reading this register, the UART will return a 7, 8 and 9-bit received data. The DB
		field bit 8 is valid for the 9-bit mode only and is fixed at 0 for the 8-bit mode. For the

7-bit mode, the DB[6:0] contains the available bits. By writing to this register, the UART will send out 7, 8 or 9-bit transmitted data. The DB field bit 8 is valid for the 9-bit mode only and will be ignored for the 8-bit mode. For the 7-bit mode, the DB[6:0] field contains the available bits.



### **UART Control Register – URCR**

The register specifies the serial parameters such as data length, parity and stop bit for the UART.

Offset:								
Ulisel.	0x004							
Reset value:	0x0000_00	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset	L							
1900/100001	23	22	21	20	19	18	17	16
	23		<u> </u>	20	Reserved	10	17	10
Turne (Decet					Reserveu			
Type/Reset	45		40	40		40	•	•
	15	14	13	12	11	10	9	8
	Reserved	BCB	SPE	EPE	PBE	NSB		WLS
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW	0 RW 0
	7	6	5	4	3	2	1	0
		Reserved	URRXEN	URTXEN	Reserved	TRSM		Reserved
Type/Reset			RW 0	RW 0		RW 0		
Bits	Field	Descript	ions					
[14]	BCB	Break Cor						
[14]	BCB	When this	bit is set to		-		-	ill be forced to
[14]	BCB	When this the Spacir	bit is set to ng State (log	gic 0). This bi	-		-	ill be forced to bin and has no
[14]	BCB	When this the Spacir	bit is set to	gic 0). This bi	-		-	
[14]	BCB	When this the Spacir	bit is set to ng State (log he transmitt	gic 0). This bi	-		-	
		When this the Spacir effect on t Stick Parit	bit is set to ng State (log he transmitt	jic 0). This bi er logic.	-		-	
		When this the Spacir effect on t Stick Parit 0: Disa	bit is set to ng State (log he transmitt ty Enable able stick pa	jic 0). This bi er logic.	-		-	
		When this the Spacir effect on t Stick Parit 0: Disa 1: Sticl This bit is	bit is set to ng State (log he transmitt ty Enable ble stick pa < Parity bit is only availab	gic 0). This bi er logic. rity s transmitted ole when the	t acts only or PBE bit is so	n the UART 1	TX output p th the PBE	oin and has no
		When this the Spacir effect on t Stick Parit 0: Disa 1: Stick This bit is are set to	bit is set to ng State (log he transmitt y Enable ble stick pa < Parity bit is only availal 1 and the E	gic 0). This bi er logic. stransmitted ble when the PE bit is clea	t acts only or PBE bit is so ared to 0, the	et to 1. If bot	TX output p th the PBE parity bit v	oin and has no and SPE bits vill be stuck to
		When this the Spacir effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. However	bit is set to ng State (log he transmitt y Enable able stick pa < Parity bit is only availal 1 and the E er, when the	yic 0). This bi er logic. s transmitted ble when the PE bit is clea PBE and SI	PBE bit is so red to 0, the E bits are s	et to 1. If bot	TX output p th the PBE parity bit v	oin and has no
		When this the Spacir effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. However	bit is set to ng State (log he transmitt y Enable able stick pa < Parity bit is only availal 1 and the E er, when the	gic 0). This bi er logic. stransmitted ble when the PE bit is clea	PBE bit is so red to 0, the E bits are s	et to 1. If bot	TX output p th the PBE parity bit v	oin and has no and SPE bits vill be stuck to
		When this the Spacin effect on t Stick Parit 0: Disa 1: Sticl This bit is are set to 1. Howeve 1, the tran Even Pari	bit is set to ng State (log he transmitt ty Enable ble stick pa c Parity bit is only availal 1 and the E er, when the smitted pari ty Enable	yic 0). This bi er logic. s transmitted ble when the PE bit is clea PBE and Sf ty bit will be s	PBE bit is so ared to 0, the PE bits are s stuck to 0.	the UART 1 et to 1. If bot transmitted et to 1 and a	TX output p th the PBE parity bit v also the EF	and SPE bits and SPE bits vill be stuck to PE bit is set to
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Sticl This bit is are set to 1. Howeve 1, the tran Even Pari	bit is set to ng State (log he transmitt ty Enable ble stick pa c Parity bit is only availal 1 and the E er, when the smitted pari ty Enable	yic 0). This bi er logic. s transmitted ble when the PE bit is clea PBE and Sf ty bit will be s	PBE bit is so ared to 0, the PE bits are s stuck to 0.	the UART 1 et to 1. If bot transmitted et to 1 and a	TX output p th the PBE parity bit v also the EF	oin and has no and SPE bits vill be stuck to
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stich This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd	bit is set to ng State (log he transmitt ty Enable ble stick pa < Parity bit is only availat 1 and the E er, when the smitted pari ty Enable number of log	yic 0). This bi er logic. s transmitted ble when the PE bit is cleat PBE and SF ty bit will be s	PBE bit is so ared to 0, the PE bits are s stuck to 0.	et to 1. If bot transmitted et to 1 and a hecked in the	TX output p th the PBE parity bit v also the EF	and SPE bits and SPE bits vill be stuck to PE bit is set to
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stich This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd 1: Eve	bit is set to ng State (log he transmitt ty Enable ble stick pa < Parity bit is only availat 1 and the E er, when the smitted pari ty Enable number of log	yic 0). This bi er logic. s transmitted ble when the PE bit is cleat PBE and SF ty bit will be s	PBE bit is so ared to 0, the PE bits are s stuck to 0.	et to 1. If bot transmitted et to 1 and a hecked in the	TX output p th the PBE parity bit v also the EF	and SPE bits and SPE bits vill be stuck to PE bit is set to and parity bits
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. Howeve 1, the tran Even Parit 0: Odd 1: Eve pari	bit is set to ng State (log he transmitt ty Enable able stick part only availal 1 and the E er, when the smitted part ty Enable number of lo n number of ty bits	yic 0). This bi er logic. s transmitted ble when the PE bit is cleat PBE and SF ty bit will be s	PBE bit is so ared to 0, the PE bits are s stuck to 0. Insmitted or c re transmitte	et to 1. If bot transmitted et to 1 and a hecked in the	TX output p th the PBE parity bit v also the EF	and SPE bits and SPE bits vill be stuck to PE bit is set to and parity bits
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. Howeve 1, the tran Even Parit 0: Odd 1: Eve pari	bit is set to ng State (log he transmitt y Enable able stick park only available and the E er, when the smitted park ty Enable number of log n number of ty bits only available	ic 0). This bi er logic. stransmitted ole when the PE bit is clea PBE and SF ty bit will be s ogic 1's are tra of logic 1's a	PBE bit is so ared to 0, the PE bits are s stuck to 0. Insmitted or c re transmitte	et to 1. If bot transmitted et to 1 and a hecked in the	TX output p th the PBE parity bit v also the EF	and SPE bits and SPE bits vill be stuck to PE bit is set to and parity bits
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Sticl This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd 1: Eve pari This bit is Parity Bit	bit is set to ng State (log he transmitt ty Enable able stick pa c Parity bit is only availat 1 and the E er, when the smitted pari ty Enable number of to n number of ty bits only availab Enable	yic 0). This bi er logic. s transmitted ble when the PE bit is clea PBE and Sf ty bit will be s ogic 1's are tra of logic 1's a ble when PBE	PBE bit is seared to 0, the PE bits are s bits are s stuck to 0. nosmitted or c re transmitte	the UART 1 transmitted et to 1 and a hecked in the	TX output p th the PBE parity bit v also the EF e data word ed in the c	and SPE bits and SPE bits vill be stuck to PE bit is set to and parity bits
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Sticl This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd 1: Eve pari This bit is Parity Bit	bit is set to ng State (log he transmitt ty Enable ble stick pa < Parity bit is only availal 1 and the E er, when the smitted pari ty Enable number of lo n number of ty bits only availab Enable ty bit is not g	yic 0). This bi er logic. s transmitted ble when the PE bit is clea PBE and Sf ty bit will be s ogic 1's are tra of logic 1's a ble when PBE	PBE bit is seared to 0, the PE bits are s bits are s stuck to 0. nosmitted or c re transmitte	the UART 1 transmitted et to 1 and a hecked in the	TX output p th the PBE parity bit v also the EF e data word ed in the c	and SPE bits will be stuck to PE bit is set to and parity bits lata word and
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd 1: Eve pari This bit is Parity Bit 0: Parit tran 1: Pari	bit is set to ng State (log he transmitt ty Enable able stick pa c Parity bit is only availal 1 and the E er, when the smitted pari ty Enable number of lo n number of ty bits only availab Enable ty bit is not of sfer ty bit is gene	gic 0). This bir er logic. rity s transmitted ole when the PE bit is clea PBE and SF ty bit will be s ogic 1's are tra of logic 1's a ole when PBE generated (tra erated and ch	PBE bit is so ared to 0, the PE bits are s stuck to 0. Insmitted or c re transmitted is set to 1. ansmitted dat acked during	the UART 1 transmitted transmitted to 1 and a hecked in the d or checked a) and check	TX output p th the PBE parity bit v also the EF e data word ed in the c ked (receiv	and SPE bits and SPE bits vill be stuck to E bit is set to and parity bits lata word and re data) during
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd 1: Eve pari This bit is Parity Bit 0: Parit tran 1: Pari	bit is set to ng State (log he transmitt ty Enable able stick pa c Parity bit is only availal 1 and the E er, when the smitted pari ty Enable number of lo n number of ty bits only availab Enable ty bit is not of sfer ty bit is gene	gic 0). This bir er logic. rity s transmitted ole when the PE bit is clea PBE and SF ty bit will be s ogic 1's are tra of logic 1's a ole when PBE generated (tra erated and ch	PBE bit is so ared to 0, the PE bits are s stuck to 0. Insmitted or c re transmitted is set to 1. ansmitted dat acked during	the UART 1 transmitted transmitted to 1 and a hecked in the d or checked a) and check	TX output p th the PBE parity bit v also the EF e data word ed in the c ked (receiv	and SPE bits will be stuck to PE bit is set to and parity bits lata word and
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd 1: Eve pari This bit is Parity Bit 0: Parit tran 1: Pari Note: Whe	bit is set to ng State (log he transmitt ty Enable able stick pa c Parity bit is only availal 1 and the E er, when the smitted pari ty Enable number of lo n number of ty bits only availab Enable ty bit is not of sfer ty bit is gene	jic 0). This bi er logic. rity s transmitted ble when the PE bit is clea e PBE and Sf ty bit will be s ogic 1's are tra of logic 1's a ble when PBE generated (tra erated and ch field is set to	PBE bit is so ared to 0, the PE bits are s stuck to 0. Insmitted or c re transmitted is set to 1. ansmitted dat acked during	the UART 1 transmitted transmitted to 1 and a hecked in the d or checked a) and check	TX output p th the PBE parity bit v also the EF e data word ed in the c ked (receiv	and SPE bits and SPE bits vill be stuck to E bit is set to and parity bits lata word and re data) during
[13]	SPE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd 1: Eve pari This bit is Parity Bit 0: Parit tran 1: Parit Note: Whe PBI	bit is set to ng State (log he transmitt ty Enable able stick part only availal 1 and the E er, when the smitted part ty Enable number of lo n number of ty bits only available ty bit is not g sfer ty bit is gene	jic 0). This bi er logic. rity s transmitted ble when the PE bit is clea PBE and Sf ty bit will be s ogic 1's are tra of logic 1's a ble when PBE generated (tra prated and ch field is set to effect.	PBE bit is so ared to 0, the PE bits are s stuck to 0. Insmitted or c re transmitted is set to 1. ansmitted dat acked during	the UART 1 transmitted transmitted to 1 and a hecked in the d or checked a) and check	TX output p th the PBE parity bit v also the EF e data word ed in the c ked (receiv	and SPE bits and SPE bits vill be stuck to E bit is set to and parity bits lata word and re data) during
[13] [12] [11]	SPE EPE PBE	When this the Spacin effect on t Stick Parit 0: Disa 1: Stick This bit is are set to 1. Howeve 1, the tran Even Pari 0: Odd 1: Eve parit This bit is Parity Bit 0: Parit tran 1: Parit Note: Whe PBF	bit is set to a g State (log he transmitt ty Enable ble stick pa < Parity bit is only availab 1 and the E er, when the smitted parity ty Enable number of log n number of ty bits only availab Enable ty bit is not g sfer ty bit is gene en the WLS E bit has no f "STOP bit"	jic 0). This bi er logic. rity s transmitted ble when the PE bit is clea PBE and SF ty bit will be s ogic 1's are tra of logic 1's a ble when PBE generated (tra prated and ch field is set to effect.	PBE bit is seared to 0, the PE bits are s stuck to 0. Insmitted or c re transmitted is set to 1. Ansmitted dat becked during "10" to sele	the UART 1 et to 1. If bot transmitted et to 1 and a hecked in the ed or checked a) and check g transfer ct the 9-bit d	TX output p th the PBE parity bit v also the EF e data word ed in the c ked (receiv	and SPE bits and SPE bits vill be stuck to E bit is set to and parity bits lata word and re data) during



Bits	Field	Descriptions
[9:8]	WLS	Word Length Select
		00: 7 bits
		01: 8 bits
		10: 9 bits
		11: Reserved
[5]	URRXEN	UART RX Enable
		0: Disable
		1: Enable
[4]	URTXEN	UART TX Enable
		0: Disable
		1: Enable
[2]	TRSM	Transfer Mode Selection
		This bit is used to select the data transfer protocol.
		0: LSB first
		1: MSB first

#### **UART Interrupt Enable Register – URIER**

This register is used to enable the related UART interrupt function. The UART module generates interrupts to the controller when the corresponding events occur and the corresponding interrupt enable bits are set.

Reset value:	0x0000_000	00						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	Reserved	BIE	FEIE	PEIE	OEIE	TXCIE	TXDEIE	RXDRIE
Type/Reset		RW 0	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0

Bits	Field	Descriptions
[6]	BIE	Break Interrupt Enable
		0: Disable interrupt
		1: Enable interrupt
		If this bit is set, an interrupt is generated when the break interrupt is enabled and

If this bit is set, an interrupt is generated when the break interrupt is enabled and the BII bit is set in the URSIFR register.

Offset:

0x00C



Bits	Field	Descriptions
[5]	FEIE	Framing Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt is generated when the framing error interrupt is enabled and the FEI bit is set in the URSIFR register.
[4]	PEIE	Parity Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt is generated when the parity error interrupt is enabled and the PEI bit is set in the URSIFR register.
[3]	OEIE	Overrun Error Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt is generated when the overrun error interrupt is enabled and the OEI bit is set in the URSIFR register.
[2]	TXCIE	Transmit Complete Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt is generated when the transmit complete interrupt is enabled and the TXC bit is set in the URSIFR register.
[1]	TXDEIE	Transmit Data Register Empty Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt is generated when the transmit data register empty interrupt is enabled and the TXDE bit is set in the URSIFR register.
[0]	RXDRIE	Receive Data Ready Interrupt Enable 0: Disable interrupt 1: Enable interrupt If this bit is set, an interrupt is generated when the receive data ready interrupt is enabled and the RXDR bit is set in the URSIFR register.

## UART Status & Interrupt Flag Register – URSIFR

This register	contains the co	orrespondi	ng UART sta	tus.				
Offset:	0x010							
Reset value:	0x0000_0180	)						
	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
				Reserved				TXC
Type/Reset								RO 1
	7	6	5	4	3	2	1	0



	TXDE	Reserved	RXDR	BII	FEI		PEI	OEI	Reserved						
Type/Reset	RO 1		RO 0	WC 0	WC	0 W	/C 0	WC	0						
Bits	Field	Descript	ions												
[8]	TXC	Transmit (	Complete												
				-	. ,				R) is not empty						
				-	. ,				SR) are empty						
			-			URIE	-R registe	r. This bit	is cleared by a						
[7]			0	ster with nev	v dala.										
[7]	TXDE		Data Registe smit data re		mntv										
			0: Transmit data register is not empty 1: Transmit data register is empty												
				-	-	conte	ent of the	transmit o	data register is						
				-					ed if TXEIE = 1						
		in the URI	ER register.	This bit is cl	eared by a	a write	e to the U	RDR regis	ster with a new						
		data.													
[5]	RXDR	RX Data F													
			-	ister is empt the receive	-	tor ic	roady to j	road							
					-		-		ster (RSR) has						
								•	RXDRIE = 1 in						
				s cleared by											
[4]	BII	Break Inte	rrupt Indicat	or											
							-		'spacing state"						
		,	-						ne total time of						
			+ "data bits"	+ "parity" +	'stop bits"	dura	tion. Writi	ng 1 to thi	s bit clears the						
[3]	FEI	flag. Framing F	rror Indicato	r											
[0]	1 []	•			eived cha	racte	r does no	t have a v	valid "stop bit",						
									cted as logic 0.						
			o this bit cle						-						
[2]	PEI	Parity Erro	or Indicator												
					ceived cha	aracte	er does no	t have a v	alid "parity bit".						
		-	o this bit cle	-											
[1]	OEI		rror Indicato		oftor the	raaai	va data r	ogiator ia	full and when						
				-				-	full and when ft register. The						
					-				w character is						
				-					but the data in						
			•						gister. The OEI						
				the overrun	event as	soon	as it happ	oens. Writi	ng 1 to this bit						
		clears the	tiag.												



## UART Divider Latch Register – URDLR

The register is used to determine the UART clock divided ratio to generate the appropriate baud rate.

Offset:	0x024															
Reset value:	0x0000_	0010														
	31	3	80	29		28		27		26		2	5		24	
								Reserv	ed							
Type/Reset																
	23	2	22	21		20		19		18		1	7		16	
								Reserv	ed							
Type/Reset																
	15	1	4	13		12		11		10		9	)		8	
		I						BRD								
Type/Reset	RW	0 RW	0	RW	0	RW	0	RW	0	RW	0	RW		0 RW		0
	7		6	5		4		3		2		1			0	
		I						BRD								
Type/Reset	RW	0 RW	0	RW	0	RW	1	RW	0	RW	0	RW		0 RW		0

Bits	Field	Descriptions
[15:0]	BRD	Baud Rate Divider
		The 16 bits define the UART clock divider ratio.
		Baud Rate = CK_UART / BRD
		Where the CK_UART clock is the clock connected to the UART module.

BRD = 16 ~ 65535 for UART mode



#### UART Test Register – URTSTR

Offset: 0x028 Reset value: 0x0000_0000 31 30 29 28 27 26 25 24 Reserved Type/Reset 23 22 21 20 19 18 17 16 Reserved Type/Reset 15 13 12 11 14 10 9 8 Reserved Type/Reset 7 6 5 4 3 2 1 0 Reserved LBM RW 0 RW Type/Reset 0

Bits	Field	Descriptions
[1:0]	LBM	Loopback Test Mode Select
		00: Normal Operation
		01: Reserved
		10: Automatic Echo Mode

11: Loopback Mode

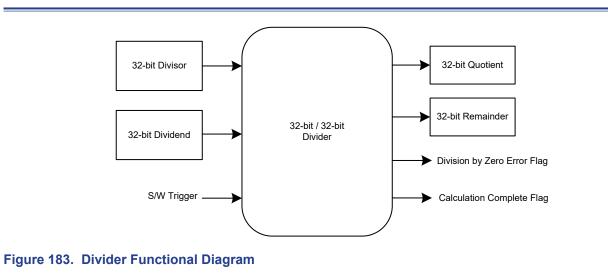


# **23** Divider (DIV)

## Introduction

In order to enhance the MCU performance, a divider is integrated in the devices. The divider can implement the signed or unsigned 32-bit data division operation. An error flag will be generated when the division by zero condition occurs.

### **Features**


- Signed / unsigned 32-bit divider
- Calculate in 8 clock cycles and load in 1 clock cycle
- Division by zero error flag

## **Functional Descriptions**

The division and modulus functions of the truncated division are related in the following way:

$$A / B = Q \dots R$$

Where "A" is Dividend, "B" is Divisor, "Q" is Quotient and "R" is Remainder. The divider requires a software trigger start signal to start a calculation by setting the "START" bit in the Divider Control Register. The divider calculation complete flag will be set to 1 after 8 clock cycles, however, if the divisor register data is zero during the calculation, the division by zero error flag will be set to 1.





## **Register Map**

The following table shows the DIV registers and reset values.

#### Table 56. DIV Register Map

Register	Offset	Description	Reset Value
CR	0x000	Divider Control Register	0x0000_0008
DDR	0x004	Dividend Data Register	0x0000_0000
DSR	0x008	Divisor Data Register	0x0000_0000
QTR	0x00C	Quotient Data Register	0x0000_0000
RMR	0x010	Remainder Data Register	0x0000_0000

## **Register Descriptions**

#### **Divider Control Register – CR**

This register contains the divider trigger control bit and the calculation status.

Offset:	0x000	ivider ungg		nu the calc	uiation status		1								
		<b>`</b>													
Reset value.	3000_000x0	)													
	31	30	29	28	27	26	25	24							
		Reserved													
Type/Reset															
	23	22	17	16											
		Reserved													
Type/Reset															
	15	14	13	12	11	10	9	8							
					Reserved										
Type/Reset	7	6	5	4	3	2	1	0							
		-	Reserved		СОМ	ZEF	Reserved	START							
Type/Reset	·				RO 1	RO 0		RW 0							
Bits	Field	Descrip	tions												
[3]	COM		on Complete F	lag											
			a is invalid												
			v data is valid	ndiaataa th	at the divider	adquiation	ia aamalatad	and data is							
			is set to 1, it ir s bit is cleared												
[2]	ZEF		by Zero Error F	-	uwale allei a	a calculation	is initiated.								
[4]			•	•											
		0: Divisor is not zero													
		1: Divi	1: Divisor is zero This bit will be cleared to 0 by hardware after a calculation is initiated.												
				o 0 by hard	ware after a	calculation is	s initiated.								
[0]	START	This bit w		-		calculation is	s initiated.								
[0]	START	This bit w	vill be cleared t alculation start	-		calculation is	s initiated.								
[0]	START	This bit w Divider ca 0: No 1: Trig	vill be cleared t alculation start	trigger con start calcula	trol bit ation		s initiated.								



#### **Dividend Data Register – DDR**

The register is used to specify the dividend data.

Offset:	0x004
Reset value:	0x0000_0000

31		30		29		2	28		27		26		25		24	
									DDR							
RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW	0	RW	0
23		22		21		2	20		19		18		17		16	
									DDR							
RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW	0	RW	0
15		14		13		1	2		11		10		9		8	
									DDR							
RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW	0	RW	0
7		6		5		4	4		3		2		1		0	
									DDR							
RW	0	RW	0	RW	0	RW		0	RW	0	RW	0	RW	0	RW	0
	RW 23 RW 15 RW RW 7	RW 0 23 RW 0 15 RW 0 7	RW       0       RW         23       22         Q       RW       0         RW       0       RW         15       14         RW       0       RW         RW       0       RW         7       6	RW       0       RW       0         23       22         RW       0       RW       0         15       14         RW       0       RW       0         RW       0       RW       0         7       6       6	RW       0       RW       0       RW         23       22       21         RW       0       RW       0       RW         15       14       13         RW       0       RW       0       RW         7       6       5	RW       0       RW       0       RW       0         23       22       21         RW       0       RW       0       RW       0         RW       0       RW       0       RW       0	RW       0       RW       0<	RW       0       RW       0       RW       0       RW       0       RW         23       22       21       20         RW       0       RW       0       RW       0       RW         15       14       13       12         RW       0       RW       0       RW       0       RW         7       6       5       4	RW       0       RW       0<	RW       0       RW       0<	RW       0       RW       0<	RW       0       RW       0<	RW       0       RW       0<	RW       0       RW       0<	RW       0       RW       0<	RW       0       RW       0<

Bits	Field	Descriptions
[31:0]	DDR	Dividend Data Register This bit field is used to specify the dividend of the divider calculation.

Divi	Divisor Data Register – DSR																			
The register i	The register is used to specify the divisor data.																			
Offset:	0x008																			
Reset value:	0x0000_	00	00																	
	31		30		29			28		27			26			25			24	
										DSF	२									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW		0	RW		0
	23		22		21			20		19			18			17			16	
										DSF	२									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW		0	RW		0
	15		14		13			12		11			10			9			8	
										DSF	२									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW		0	RW		0
	7		6		5			4		3			2			1			0	
										DSF	२									
Type/Reset	RW	0	RW	0	RW	0	RW		0	RW	0	RW		0	RW		0	RW		0
Bits	Field		Desc	rip	tions															

DILS	TIEIU	Descriptions
[31:0]	DSR	Divisor Data Register
		This bit field is used to specify the divisor of the divider calculation.



## **Quotient Data Register – QTR**

Offset:	0x00C
Reset value:	0x0000_0000

	31		30		29		28		27		26		25		24	
									QTR							
Type/Reset	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0
	23		22		21		20		19		18		17		16	
									QTR							
Type/Reset	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0
	15		14		13		12		11		10		9		8	
									QTR							
Type/Reset	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0
	7		6		5		4		3		2		1		0	
									QTR							
Type/Reset	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0

Bits	Field	Descriptions
[31:0]	QTR	Quotient Data Register
		This bit field is used to store the quotient of the divider calculation result.

#### Remainder Data Register – RMR

The register i	s used to store the remainder data.	
Offset:	0x010	

Reset value: 0x0000_0000

	31		30		29		28		27		26		25		24	
									RMR	1						
Type/Reset	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0
	23		22		21		20		19		18		17		16	
									RMR	1						
Type/Reset	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0
	15		14		13		12		11		10		9		8	
									RMR	1						
Type/Reset	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0
	7		6		5		4		3		2		1		0	
									RMR	1						
Type/Reset	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0	RO	0
Bits	Field		Desc	ript	ions											

Bits	Field	Descriptions
[31:0]	RMR	Remainder Data Register
		This bit field is used to store the remainder of the divider calculation result.



# 24 Cyclic Redundancy Check (CRC)

## Introduction

The CRC (Cyclic Redundancy Check) calculation unit is an error detection technique test algorithm and is used to verify data transmission or storage data correctness. A CRC calculation takes a data stream or a block of data as input and generates a 16-bit or 32-bit output remainder. Ordinarily, a data stream is suffixed by a CRC code and used as a checksum when being sent or stored. Therefore, the received or restored data stream is calculated by the same generator polynomial as described above. If the new CRC code result does not match the one calculated earlier, that means data stream contains a data error.

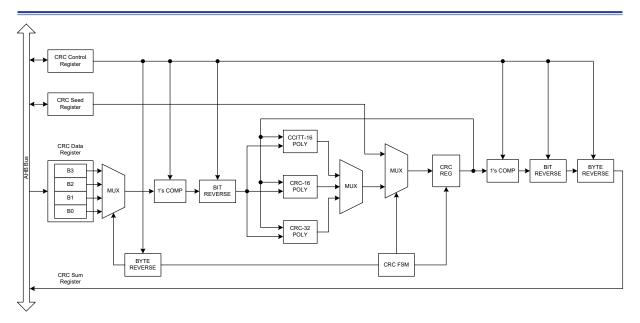



Figure 184. CRC Block Diagram

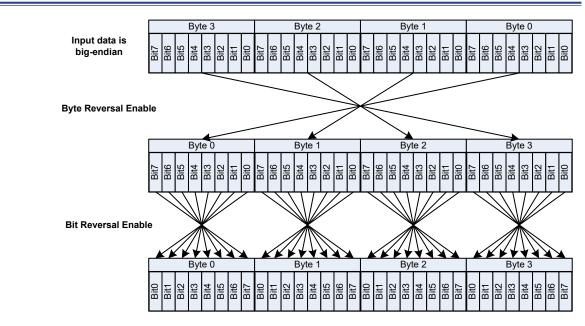
## **Features**

- Supports CRC16 polynomial: 0x8005,  $X^{16} + X^{15} + X^2 + 1$
- Supports CCITT CRC16 polynomial: 0x1021, X¹⁶ + X¹² + X⁵ + 1
- Supports IEEE-802.3 CRC32 polynomial: 0x04C11DB7,  $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$
- Supports 1's complement, byte reverse & bit reverse operation on data and checksum
- Supports byte, half-word & word data size
- Programmable CRC initial seed value
- CRC computation done in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32-bit data



## **Functional Descriptions**

This unit only enables the calculation in the CRC16, CCITT CRC16 and IEEE-802.3 CRC32 polynomials. In this unit, the generator polynomial is fixed to the numeric values for those modes; therefore, the CRC value based on other generator polynomials cannot be calculated.


#### **CRC** Computation

The CRC calculation unit has a 32-bit write CRC data register (CRCDR) and a read CRC checksum register (CRCCSR). The CRCDR register is used to input new data (write access) and the CRCCSR register is used to hold the result of the previous CRC calculation (read access). Each write operation to the CRCDR register creates a combination of the previous CRC value (stored in CRCCSR) and the new one. The CRC block diagram is shown as Figure 184. The CRC unit calculates the CRC data register (CRCDR) value byte by byte and the default byte and bit order is big-endian. The CRCDR register can be written by word, right-aligned half-word and right-aligned byte. For the other registers only 32-bit access is allowed. The duration of the computation depends on data width:

- 4 AHB clock cycles for 32-bit data input
- 2 AHB clock cycles for 16-bit data input
- 1 AHB clock cycle for 8-bit data input

#### Byte and Bit Reversal for CRC Computation

The byte reordering and byte-level bit reversal operation can be occurred before the data is used in the CRC calculation or after the CRC checksum output. They are configurable using the corresponding setting field of the CRCCR register. These operations occur on word or half-word writes. The hardware ignores the DATBYRV bit of the CRCCR register with any byte writes but the bit reversal setting DATBIRV are still applied to the byte. The Figure 185 is shown the byte and bit reversal operation example.



#### Figure 185. CRC Data Bit and Byte Reversal Example



## **Register Map**

The following table shows the CRC registers and reset values.

#### Table 57. CRC Register Map

Register	Offset	Description	Reset Value
CRCCR	0x000	CRC Control Register	0x0000_0000
CRCSDR	0x004	CRC Seed Register	0x0000_0000
CRCCSR	0x008	CRC Checksum Register	0x0000_0000
CRCDR	0x00C	CRC Data Register	0x0000_0000

## **Register Descriptions**

#### **CRC Control Register – CRCCR**

This register specifies the corresponding CRC function enable control.

Offset: 0x000 Reset value: 0x000_0000

	31	30	29	28	27	26	25	24
					Reserved			
Type/Reset								
	23	22	21	20	19	18	17	16
					Reserved			
Type/Reset								
	15	14	13	12	11	10	9	8
					Reserved			
Type/Reset								
	7	6	5	4	3	2	1	0
	SUMCMPL	SUMBYRV	SUMBIRV	DATCMPL	DATBYRV	DATBIRV		POLY
Type/Reset	RW 0	RW 0	RW	0 RW 0				

Bits	Field	Descriptions
[7]	SUMCMPL	1's Complement operation on Checksum Output 0: Disable 1: Enable
[6]	SUMBYRV	Byte Reverse operation on Checksum Output 0: Disable 1: Enable
[5]	SUMBIRV	Bit Reverse operation on Checksum Output 0: Disable 1: Enable
[4]	DATCMPL	1's Complement operation on Data 0: Disable 1: Enable
[3]	DATBYRV	Byte Reverse operation on Data 0: Disable 1: Enable



Bits	Field	Descriptions
[2]	DATBIRV	Bit Reverse operation on Data 0: Disable 1: Enable
[1:0]	POLY	CRC polynomial 00: CRC-CCITT (0x1021) 01: CRC-16 (0x8005) 1x: CRC-32 (0x04C11DB7)

#### **CRC Seed Register – CRCSDR**

This register is used to specify the CRC seed.

 Offset:
 0x004

 Reset value:
 0x0000_0000

	31	30	29	28	27	26	25	24
					SEED			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
	23	22	21	20	19	18	17	16
					SEED			
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
	15	14	13	12	11	10	9	8
	SEED							
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
	7	6	5	4	3	2	1	0
	SEED							
Type/Reset	WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0

Bits	Field	Descriptions
[31:0]	SEED	CRC Seed Data
		Put the 16/32-bit seed value in this register according to the polynomial setting in the CRCCR register.
		the CRCCR register.



### **CRC Checksum Register – CRCCSR**

This register contains the CRC checksum output.

Offset:	0x008
Reset value:	0x0000_0000

30	29	28	27	26	25	24
			CHKSUM			
0 RO	0 RO	0 RO	0 RO 0	RO	0 RO	0 RO 0
22	21	20	19	18	17	16
			CHKSUM			
0 RO	0 RO	0 RO	0 RO 0	RO	0 RO	0 RO 0
14	13	12	11	10	9	8
			CHKSUM			
0 RO	0 RO	0 RO	0 RO 0	RO	0 RO	0 RO 0
6	5	4	3	2	1	0
CHKSUM						
0 RO	0 RO	0 RO	0 RO 0	RO	0 RO	0 RO 0
	22 0 RO 14 0 RO 6	22     21       0     RO     0     RO       14     0     RO     13       0     RO     0     RO       6     6     5	22       21       20         0       RO       0       RO       0       RO         10       RO       14       0       RO       12       12         0       RO       0       RO       0       RO       12       12         0       RO       0       RO       0       RO       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14 <td>0       RO       0       RO       0       RO       0         22       21       20       20       19         0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         10       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         10       RO       0       RO       0       RO       0       RO       0   </td> <td>0       RO       0       RO       0       RO       0       RO       0       RO         22       21       20       19       18         22       21       20       19       18         22       21       20       19       18         0       RO       0       RO       0       RO         10       RO       0       RO       0       RO       10         14       13       12       11       10       10         14       13       12       11       10       10         15       14       13       12       11       10         16       RO       0       RO       0       RO       10         10       RO       0       RO       0       RO       10       10         10       RO       0       RO       0       RO       10       RO       10         10       RO       10       RO       10       RO       10       10         10       RO       10       RO       10       RO       10       10         10       RO</td> <td>0       RO       0       RO       0       RO       0       RO       0       RO       0       RO       10       17         22       21       20       19       18       17         22       21       20       6       19       18       17         0       RO       0       RO       0       RO       0       RO       10         0       RO       0       RO       10       RO       10       RO       10       RO         10       RO       13       12       11       10       10       9         11       13       12       11       10       10       9         10       RO       10       RO       10       RO       9       10         10       RO       10       RO       10       RO       10       RO       10       RO         10       RO       10       RO       10       RO       10       RO       10       RO         10       RO       10       RO       10       RO       10       RO       10       10         10       RO       10&lt;</td>	0       RO       0       RO       0       RO       0         22       21       20       20       19         0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         10       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         0       RO       0       RO       0       RO       0       RO       0         10       RO       0       RO       0       RO       0       RO       0	0       RO       0       RO       0       RO       0       RO       0       RO         22       21       20       19       18         22       21       20       19       18         22       21       20       19       18         0       RO       0       RO       0       RO         10       RO       0       RO       0       RO       10         14       13       12       11       10       10         14       13       12       11       10       10         15       14       13       12       11       10         16       RO       0       RO       0       RO       10         10       RO       0       RO       0       RO       10       10         10       RO       0       RO       0       RO       10       RO       10         10       RO       10       RO       10       RO       10       10         10       RO       10       RO       10       RO       10       10         10       RO	0       RO       0       RO       0       RO       0       RO       0       RO       0       RO       10       17         22       21       20       19       18       17         22       21       20       6       19       18       17         0       RO       0       RO       0       RO       0       RO       10         0       RO       0       RO       10       RO       10       RO       10       RO         10       RO       13       12       11       10       10       9         11       13       12       11       10       10       9         10       RO       10       RO       10       RO       9       10         10       RO       10       RO       10       RO       10       RO       10       RO         10       RO       10       RO       10       RO       10       RO       10       RO         10       RO       10       RO       10       RO       10       RO       10       10         10       RO       10<

Bits	Field	Descriptions
[31:0]	CHKSUM	CRC Checksum Data
		Get the CRC 16 / 32-bit checksum result through this register according to the
		polynomial setting in the CRCCR register after all data are written to the CRCDR

register.



#### **CRC Data Register – CRCDR**

This register is used to specify the CRC input data.

0x000	1 7						
	0000						
0x0000_	0000						
31	30	29	28	27	26	25	24
				CRCD	ATA		
WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
23	22	21	20	19	18	17	16
				CRCD	ATA		
WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
15	14	13	12	11	10	9	8
				CRCD	ATA		
WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
7	6	5	4	3	2	1	0
CRCDATA							
WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO	0 WO 0
Field	Desc	riptions					
	31 WO 23 WO 15 WO 7 WO	0x0000_0000 31 30 WO 0 WO 23 22 WO 0 WO 15 14 WO 0 WO 7 6 WO 0 WO	31       30       29         31       30       29         WO       0       WO       0       WO         23       22       21         WO       0       WO       0       WO         15       14       13         WO       0       WO       0       WO         7       6       5         WO       0       WO       0       WO	31       30       29       28         WO       0       WO       0       WO       0       WO         23       22       21       20         WO       0       WO       0       WO       0       WO         15       14       13       12         WO       0       WO       0       WO       0       WO         7       6       5       4         WO       0       WO       0       WO       0       WO	31       30       29       28       27	31       30       29       28       27       26	31       30       29       28       27       26       25         CRCDATA       CRCDATA       CRCDATA       0       WO       0 <td< td=""></td<>

**CRC** Input Data

Byte, half-word and word writes are allowed. 1's complement, byte reverse and bit reverse operation can be applied.



Copyright[©] 2021 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.