v E » “f'-‘.‘ . > .
e . \
j ‘
- s
sl ‘ ) -

Background and System Description * 11/2015

Programming Guideline for
S7-1200/S7-1500

STEP 7 (TIA Portal) and STEP 7 Safety in TIA Portal

http://www.siemens.com/simatic-programming-quideline



http://www.siemens.com/simatic-programming-guideline

Warranty and Liability

© Siemens AG 2015 All rights reserved

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete with
regard to configuration, equipment or any contingencies. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for the correct
operation of the described products. These Application Examples do not relieve
you of the responsibility of safely and professionally using, installing, operating
and servicing equipment. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time and without prior notice. If there are any
deviations between the recommendations provided in this Application Example
and other Siemens publications — e.g. catalogs — the contents of the other
documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us — based on whatever legal reason — resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this application example will be excluded. Such an exclusion will not
apply in the case of mandatory liability, e.g. under the German Product Liability Act
(“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life, body
or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The compensation for damages due to a breach
of a fundamental contractual obligation is, however, limited to the foreseeable
damage, typical for the type of contract, except in the event of intent or gross
negligence or injury to life, body or health. The above provisions do not imply a
change of the burden of proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens Industry Sector.

_Security Siemens provides products and solutions with industrial security functions that
informa-  support the secure operation of plants, solutions, machines, equipment and/or
tion networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens’ products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
http://support.automation.siemens.com.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 2


http://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/?lc=en-DE

© Siemens AG 2015 All rights reserved

Table of Contents

Table of Contents

Warranty and Liability .......oocciieiiiiii e 2
1 PrETACE ... 6
2 S7-1200/1500 INNOVALIONS ...euviiiiiieiiiiiiieii e e e eea e e 8
21 INEFOAUCHION .....eeiiiiei e 8
2.2 TEOIMS Lo 8
2.3 Programming lanQUAaQES ........ccoeviivviieiiee e e e ee e e e e 11
2.4 Optimized Maching COE........ccveiiiiiiiiiiie e 11
25 BIOCK CreatiON .......veieiiii et 12
2.6 OptiMiIzed DIOCKS .......coiiiiiiii e 13
26.1 S7-1200: Setup of optimized DIOCKS..........coociiiiiiiiieiiieeeee e, 13
26.2 S7-1500: Setup of optimized bIOCKS..........coocviiiiiiiiieiie e, 14
2.6.3 Best possible data storage in the processor on S7-1500 .................. 15
264 Conversion between optimized and non-optimized tags .................. 18
2.6.5 Parameter transfer between blocks with optimized access and
StANAAId BCCESS ....ovviiiiiiiieiieei e 19
2.6.6 Communication with optimized data ..............ceevviiieiiieiiiiiiiiiiieieeeieeens 20
2.7 BIOCK Properties........oovvvvviii e 21
271 BIOCK SIZES ...eeiiiiieii e 21
2.7.2 Number of organization blocks (OB).......c.cccceeviiiiiii 21
2.8 New data types for S7-1200/1500.........cccomureieimimeieiniiiiennineee e 22
28.1 Elementary data tyPesS.......cueeieiieiiieiiiiee e 22
28.2 Date_Time_Long data tyPe .......c.eeeveiiieiieiiieiie e 23
2.8.3 Further time data tyPes ........ovviiieiiieiieee e 23
284 UNICOOE data tYPES.....vveiiiiiiiiie ittt 24
2.8.5 VARIANT data type (S7-1500 and S7-1200 from FW4.1) ................. 25
2.9 INSTIUCTIONS ...ttt e e 28
29.1 CALCULATE ...ttt 28
292 MOVE INSIIUCTIONS.......cviiiiiiiiie ettt 29
2.9.3 VARIANT instructions (S7-1500 and S7-1200 from FW4.1).............. 31
294 RUNTIME ...ttt 31
2.10 Symbolic and COMMENES ..........evviiiiiiiiiiiieeieeeeeeeeeeeeeee e eeeeaeanes 32
2.10.1  Programming €aitOr .......c.ueeeiiiiiiiiiiiie et 32
2.10.2 Commentlinesinwatch table ..........cccociiiiiiiiiii e, 33
211 SYSIEM CONSTANTS ...eeviiiiiiiieei e 34
2.12 USEI CONSTANTS ....iieiiiiii ettt e e e ee e ees 35
2.13 Internal reference ID for controller and HMI tags..........cccceeeeviieeeenns 36
2.14 STOP mode in the event of eIrors ........ccccovieee i, 38
3 General Programming ...t 39
3.1 Operating system and USer ProgramM.........cooocuuuieeeeeeeinniiieeeeeeeeesanenes 39
3.2 Program BIOCKS .......cooiiiii e 39
3.2.1 Organization bIOCKS (OB) ......ccoiiiiiiiiiiiiiee e 40
3.2.2 FUNCHONS (FC) .ttt a e 43
3.2.3 FUNCEION DIOCKS (FB) ..vviiiiiiiiiieiiiiie et 45
3.24 INSTANCES ...t e e e e s 46
3.25 MUIIFINSTANCES ..eveveee e e e e e e e e e e e nnanes 46
3.2.6 Global data bloCKS (DB) .....ccuuviiiiiiiiieiiiiee e 48
3.2.7 Downloading without reinitialization .............cccceiieiie e, 49
3.2.8 Reusability Of BIOCKS. ........ocuiiiiiiiiii e 53
3.2.9 Auto numbering of BIOCKS..........c.ouviiiii e, 54
3.3 BIOCK INterface tyPeS ......eueeeiieieii it 55
3.3.1 Call-by-value with In interface type ........ccccoviiiiiiiiinie s 55
3.3.2 Call-by-reference with InOut interface type........ccccceviniiiiiieieiiinnns 55
3.33 Overview for transfer of parameters.........cccooiiieiinniii s 56
Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 3



© Siemens AG 2015 All rights reserved

Table of Contents

34 ) (0] = 1o [ o] gTod =T o) AP P U UUPPPRPTPNN 56
34.1 Block interfaces as data eXChange .........ccccoecvvviiveee i 56
3.4.2 L€ (0] oF= U ¢ 1T 1 1[0 Y28 SRS 57
3.4.3 (o Tor= 1 I 0 0= 0 o] oY SRS 58
3.4.4 Access speed Of MEMOTY Ar€as.........cccvvereeeeeeiiiiniireee e e e s ssserneeeeee e 59
3.5 RETENTIVITY ..ottt 60
3.6 SymbOolic addreSSiNg .......oooiiiiiiiiii 62
3.6.1 Symbolic instead of absolute addressing..........ccccccvevviiiveiiiiieeennnne. 62
3.6.2 ARRAY data type and indirect field accesses.........cccccvevveeiiniininnnenn. 64
3.6.3 STRUCT data type and PLC data types .......ccceeevvvreerniieeeseiieee e 66
364 Access to /O areas with PLC data types.........cccceeviieeeiiiiiee s 69
3.6.5 S [Tt Lol o L PP 70
3.7 LIDFAIIES .o 71
3.7.1 Types of libraries and library elements ...........ccocccvvveeeeiiiciiieneee, 72
3.7.2 LY L o] Tod T o) PP 73
3.7.3 Differences for typifiable objects for CPU and HMI........................... 74
3.74 Versioning of ablock..............cc 74
3.8 Increasing performance with process interrupts .........cccocveeeeviieeeennns 79
3.9 Additional performance recommendationsS.............ccccvvveeeeeeeieiiieinnnnn. 81
3.10 SCL programming language: Tips and trickS.........ccccovieiniiinennnne. 82
3.10.1  Using call templates .........ooeiiiiiiiiiiiieeie e 82
3.10.2 What instruction parameters are mandatory? ..........cccceceeeeerrreeeennnnne. 83
3.10.3 Drag & drop with entire tag NAMES.........ccceeeiiiiiiiiiiii e 83
3.10.4 Correct application of FOR, REPEAT and WHILE loops.........c.c....... 84
3.10.5 Efficiently inserting CASE iNStruCtion ............cccceeeiieiiiiiiiiiiiiiccccnnn 85
3.10.6  No manipulation of loop counters for FOR [00pD .......ccccceeiiiiiiiiiiicnnnn. 85
3.10.7 FOR l0Op baCKWards...........cuuuuummimiii s 86
3.10.8 Simple creating of instances for calls...........ccccceeiiiiiiiiiiiiiiiiiiccc, 86
3.10.9  Handling of tiMe tagS.......uuveiiiiieeiiiie e 86
4 Hardware-Independent Programming ............eeveevieeeeeeeeiriieeeeeieeeeeeeeeeeeesenennne. 88
4.1 Data types of S7-300/400 and S7-1200/1500...........cccceeeirurerennnneeen 88
4.2 No bit memory but global data bIOCKS ..., 90
4.3 Programming of "Clock bitS" ..........coooiiiiiiiiii e 90
5 STEP 7 Safety in the TIA Portal .......c.c..oeoiiiiiii e 91
51 INEFOAUCTION ... 91
5.2 T IS s 92
5.3 Components of the safety program............cccceevvvvvieiiiieiieeeeiiieeeeeeeeenns 93
54 F runtime group ....ocooveeeeeeeee 94
5.5 FSIgnature ... 94
5.6 Assigning the PROFIsafe address atthe F-1/O.........cccccccceeevviiinnennn. 96
5.7 Evaluation Of F-1/O ...t 96
5.8 Value status (S7-1200F / S7-1500F) .....cccueeeiiiiieeiiiiieee e siieee e 97
5.9 Data tYPES ..o 98
5.10 F-conform PLC data tyPe .....ceeeiveeiieiiieiee e 98
511 TRUE / FALSE ...ttt 100
5.12 Optimizing compilation and program runtime ...........ccccooeecvvveeeeeeennn. 101
5.12.1 Avoiding time-processing blocks: TP, TON, TOF .........cccciieeeeeenn. 102
5.12.2  Avoiding deep call hierarchies ...........cccccceeeiiiiiiiieeee e 102
5.12.3  Separation of standard and safety program............cccccceiiuiieeneaennn. 102
5.12.4  Use of MUItI-INSTANCES ........euviiiiiiieiii e 102
5.12.5 Avoiding JMP/Iabel StrUCIUIES .......cooviuiiiiiiiieeiiiieec e 102
5.13 Data exchange between standard and F-program .............cccceeeneee. 103
5.14 Testing the safety program.........occciieiiiiee e 104
5.15 STOP mode in the event Of F €rrors ........veeevviecceiieiiee e ceiiiieeeee e 105
5.16 Migration of safety programs...........coccueeeiiiieieiiieee e 105
5.17 General recommendations for safety .......ccccccovvcviieive i 105

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015 4



© Siemens AG 2015 All rights reserved

Table of Contents

6 The Most Important Recommendations ..o
7 Related LIiterature .....c..oii i
8 HISTOTY oottt e e et e e

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015



Copyright © Siemens AG 2015 All rights reserved

1 Preface

1 Preface

Aims for the development of the new SIMATIC control generation

e An engineering framework for all automation components (controller, HMI,
drives, etc.)

e Uniform programming

e Increased performance

e Full set of commands for every language
e Fully symbolic program generation

e Data handling even without pointer

e Reusability of created blocks

Aim of the guideline

The new control generation SIMATIC S7-1200 and S7-1500 has an up-to-date
system architecture, and together with the TIA Portal offers new and efficient
options of programming and configuration. It is no longer the resources of the
controller (e.g. data storage in the memory) that are paramount but the actual
automation solution.

This document gives you many recommendations and tips on the optimal
programming of S7-1200/1500 controllers. Some differences in the system
architecture of the S7-300/400, as well as the thus connected new programming
options are explained in an easy to understand way. This helps you to create a
standardized and optimal programming of your automation solutions.

The examples described can be universally used for the controllers S7-1200 and
S7-1500.

Core content of this programming guideline
The following key issues on the TIA Portal are dealt with in this document:
e S7-1200/1500 innovations
- Programming languages
- Optimized blocks
- Data types and instructions
e Recommendation on general programming
- Operating system and user program
- Storage concept
- Symbolic addressing
- Libraries
e Recommendations on hardware-independent programming
e Recommendations on STEP 7 Safety in TIA Portal
e Overview of the most important recommendations

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015



Copyright © Siemens AG 2015 All rights reserved

1 Preface

Advantages and benefits

Numerous advantages arise by applying these recommendations and tips:
e Powerful user program

e Clear program structures

e Intuitive and effective programming solutions

Additional Information

When programming SIMATIC controllers, the task of the programmer is to create
as clear and readable a user program as possible. Each user uses its own
strategy, for example, how to nhame tags or blocks or the way of commenting. The
different philosophies of the programmers create very different user programs that
can only be interpreted by the respective programmer.

The programming styleguide offers you coordinated set of rules for consistent
programming. These specifications for example describe a uniform assignment of
tags and block names up to clear programming in SCL.

You can user these rules and recommendations at will; they serve as a suggestion
(not a standard in programming) for consistent programming.

Hinweis  You will find the programming styleguide for S7-1200 and S7-1500 in the
following entry:

https://support.industry.siemens.com/cs/ww/en/view/81318674

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 7


https://support.industry.siemens.com/cs/ww/en/view/81318674

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2015 All rights reserved

2.1 Introduction

2 S7-1200/1500 Innovations

2.1 Introduction

In general, the programming of SIMATIC controllers has stayed the same from
S7-300/400 to S7-1500. There are the familiar programming languages such as
LAD, FBD, STL, SCL or graph and blocks such as organization blocks (OBs),
function blocks (FBs), functions (FCs) or data blocks (DBs). l.e. already created
S7-300/400 programs can be implemented on S7-1500 and already created LAD,
FBD and SCL programs on S7-1200 controller without any problems.

Additionally, there are many innovations that make programming easier for you and
which allow a powerful and storage-saving code.

We not only recommend implementing programs that are implemented for
S7-1200/1500 controllers 1:1 but also to check them for the new options and where
applicable, to use them. The additional effort is often limited and you get a program
code that is, for example,

+ optimal in terms of memory and runtime for the newer CPUs
» easier to understand,
* and easier to maintain.

Note Information on migrating S7-300/S7-400 to S7-1500 is available in the following
entry:

https://support.industry.siemens.com/cs/ww/en/view/109478811

2.2 Terms

General terms using TIA Portal

Some terms have changed in order to make better handling with the TIA Portal
possible.

Figure 2-1: New terms in the TIA Portal

STEP 7 V5.x STEP 7 (TIA Portal)
@ Symbol table f@ PLC tags
{3 UDT |:> 'S0 PLCdata types
KN VAT table &5 Watch table

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 8


https://support.industry.siemens.com/cs/ww/en/view/109478811

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.2 Terms

Terms for tags and parameters

When it is about tags, functions, and function blocks, many terms are repeatedly
used differently or even incorrectly. The following figure is to clarify these terms.

Figure 2-2: Terms associated with tags and parameters

Globaler DB FC/FB
MainOBGlobal 'Mufvcjiam'
Name Data type  Start value = =
1 <@ > _<Static E
= stathioveVariantEnable fint
MamOBGluha\ MamOEG\DhaI',
@ = statinputint nt statinputint — invariant Ret_Val— STatErmor
o statQutputint nt
5 = statinputReal Feal — N ‘ Ma oBGlobal"
6 s  statOutputReal feal cratOuT oty Type sutintegerj— sTtOuTunt
7 <= » statinputhlyType IMyType®
8 g » statOutputhhType IMyType® N
o lafls  statinputBoal Bool outReaI—StigiiﬁL;::: :
10 -zOf= statError nt
Table 2-1: Terms associated with tags and parameters
Term Description
1. Tag Tags are labeled by a name/identifier and assign an
address in the memory of the controller. Tags are always
defined with a certain data type (Bool, Integer, etc.):
e PLCtags
e Single tags in data blocks
e Complete data blocks
2. Tag value Tag values are values stored in a tag (e.g., 15 as value
of an Integer tag).
3. Actual parameter Actual parameters are tags interconnected at the
interfaces of instructions, functions, and function blocks.
4. Formal parameter Formal parameters are the interface parameters of
(transfer parameter, instructions, functions, and function blocks (Input,
block parameter) Output, InOut, and Ret_Val).

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015




Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.2 Terms

Note

You will find further information in the following entries:

What entries are available on the internet for the migration to STEP 7 (TIA
Portal) and WinCC (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/56314851

What prerequisites have to be fulfilled in order to migrate a STEP 7 V5.x project
into STEP 7 Professional (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/62100731

PLC migration for S7-1500 with STEP 7 (TIA Portal)
https://support.industry.siemens.com/cs/ww/en/view/67858106

How do you efficiently and effectively program for the S7-1200/S7-1500 in
STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67582299

Why is it not possible to mix register passing and explicit parameter transfer with
the S7-1500 in STEP 7 (TIA Portal)?

Among others, the migration of STL programs to S7-1500 is described in this
entry.

https://support.industry.siemens.com/cs/ww/en/view/67655405

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 10


https://support.industry.siemens.com/cs/ww/en/view/56314851
https://support.industry.siemens.com/cs/ww/en/view/62100731
https://support.industry.siemens.com/cs/ww/en/view/67858106
https://support.industry.siemens.com/cs/ww/en/view/67582299
https://support.industry.siemens.com/cs/ww/en/view/67655405

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1

500 Innovations

2.3 Programming languages

2.3

Note

2.4

Advantages

Properties

Programming G

Programming languages

For the programming of a user program, various different programming languages
are available. Each language has its own advantages, which can be variably used,
depending on the application. Every block in the user program can therefore be
created in any programming language.

Table 2-2: Programming languages

Programming language S7-1200 S7-1500

Ladder (LAD) v v

Function block diagram (FBD)

Structured control language (SCL)

Graph

x| %[

v
v
v
v

Statement list (STL)

You will find further information in the following entries:

SIMATIC S7-1200 / S7-1500 Comparison list for programming languages
https://support.industry.siemens.com/cs/ww/en/view/86630375

What has to be observed when migrating a S7-SCL program in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/59784005

What instructions cannot be used in STEP 7 (TIA Portal) in an SCL program?
https://support.industry.siemens.com/cs/ww/en/view/58002709

How can the constants be defined under STEP 7 (TIA Portal) in a S7-SCL
program?
https://support.industry.siemens.com/cs/ww/en/view/52258437

Optimized machine code

TIA Portal and S7-1200/1500 allow an optimized runtime performance in any
programming language. All languages are compiled the same, directly into the
machine code.

e All programming languages have the same high performance (with the same
access types)

¢ No reduced performance through additional compiling with an intermediate
step via STL

The following figure displays the difference of the compilation of S7 programs into
machine code.

uideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4, 11/2015 11


https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/59784005
https://support.industry.siemens.com/cs/ww/en/view/58002709
https://support.industry.siemens.com/cs/ww/en/view/52258437

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.5 Block creation

Figure 2-3: Machine code generation with S7-300/400/WinAC and S7-1200/1500

$7-300/400/winAC | ] I.P $7-1200/1500

G gy e e s
k FBD F ‘
\ FBD | (only S7-1500)
U E 0.0
FARSl sTL
Maschine code Maschine code
$7-300/400/WinAC $7-1200/1500

e For S7-300/400/WinAC controllers LAD and FBD programs are first of all
compiled in STL before the machine code is created.

e For S7-1200/1500 controllers all programming languages are directly compiled
into machine code.

2.5 Block creation

All blocks such as OBs, FBs and FCs can be programmed directly in the desired
programming language. Thus no source has to be created for SCL programming.
You only select the block, and SCL as programming language. The block can then
be directly programmed.

Figure 2-4: “Add new block” dialog

“Add new BIoek %

Name:
|Block_1 |

Language:

E S —

Function blocks are code blocks that stare th EspErmanEn(\ymms(an(?dalab\u[ks,
Function block sulhauheyremamava\ abia aker the bleck has been Ercuted

Function

.}

Data block

more...

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 12



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

2.6 Optimized blocks

S7-1200/1500 controllers have optimized data storage. In optimized blocks, all tags
are automatically sorted by their data type. The sorting ensures that data gaps
between the tags are minimized and that the tags are stored access-optimized for
the processor.

Non-optimized blocks only exist for reasons of compatibility in S7-1200/1500.

Advantages

e The access is always as fast as possible, since the file storage is optimized by
the system and is independent of the declaration.

¢ No danger of inconsistencies due to faulty, absolute accesses since the access
is generally symbolic.

e Declaration changes do not lead to access errors since, for example, HMI
accesses are performed symbolically.

¢ Individual tags can be specifically defined as “retain”.

¢ No settings in the instance data block are necessary. Everything is set in the
assigned FB (e.qg. retentivity).

e Memory reserves in the data block make it possible to change the actual
values without any loss (see chapter 3.2.7 Downloading without reinitialization)

2.6.1 S7-1200: Setup of optimized blocks

Figure 2-5: Optimized block of S7-1200

Standard block Optimized block

Standard

Properties

e No data gaps are formed since larger tags are located at the beginning of the
block and smaller ones at the end.

e Only the symbolic access exists for optimized blocks.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 13



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

2.6.2

Properties

S7-1500: Setup of optimized blocks

Figure 2-6: Optimized block of S7-1500
Standard block

Optimized block

Standard Optimized

M U mm

2../’/’/"//
wxW//ﬁ’m

g l/fx"'"zf/”/-’/f}”
7/,«'me

9

Figure 2-7: Memory space assignment in optimized blocks

optimized 4 Byte are always read at once

W
---IIIIIIIIII
m\“m

\\\\\\ﬁm

1. Structures are stored separately and can thus be copied as one block.

2. Retentive data are stored in a separate area and can be copied as one block.
In the event of a power failure, these data are stored CPU-internally. "MRES"
resets these data to the start values stored in the load memory.

o No data gaps are formed since larger tags are located at the beginning of the
block and smaller ones at the end.

e Fast access due the best possible storage in the processor (All tags are stored
in a way so that the processor of the S7-1500 can directly read or write all tags
with just one machine command).

e Boolean tags are stored as byte for faster access. The controller therefore
does not have to mask the access.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 14



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

e Optimized blocks have a memory reserves for reloading in running operation
(see chapter 3.2.7 Downloading without reinitialization).

e Only the symbolic access exists for optimized blocks.

2.6.3 Best possible data storage in the processor on S7-1500

For reasons of compatibility to the first SIMATIC controllers the “Big-Endian”
principle of data storage was adopted in the S7-300/400 controllers.

The new S7-1500 controller generation always accesses 4 byte (32 bit) in “Little-
Endian” sequence due to the changed processor architecture. This results in the
following system-specific properties.

Figure 2-8: Data access of a S7-1500 controller

Standard block
max. 64kB

Optimized block
C___ 3 max. 16MB

Standard téo
€
01 2 3 45 6 7 9 0 1 2 3 4 5 6 7
o N |
BYTE ; 3 Best possible processor
s
s Conversion for ) 2 data storase:
processor access: o REAL No conversion
0 Big > Little Endian g B 1 [ required.
- = y 0 Little-Endian
~ REAL 8 t 1
/- E e WORD
3<J'/ Big-Endian 1 g S 0 Little-Endian
£ BYTE
s
(2) 5 :
9]
- X
3 WORD 2
- Big-Endian ) Reserve

Table 2-3: Data access of a S7-1500 controller

Standard block Optimized block

1. In the event of an unfavorable offset,

the controller needs 2x16 bit accesses
in order to be able to read a 4 byte
value (e.g. REAL value).

In addition the bytes have to be
changed.

The controller stores the tags, access
optimized. An access is performed with
32 bit (REAL).

A changing of the bytes is not
necessary.

The complete byte is read and masked
per bit access.

The complete byte is blocked for any
other access.

Each bit is assigned a byte.

When accessing, the controller does not
have to mask the byte.

Maximum block size is 64kB.

Maximum block size can be up to
16MB.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

15




Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Recommendation

e Always only use optimized blocks.

- They do not require absolute addressing and can always be addressed
with symbolic data (object related). Indirect addressing is also possible with
symbolic data (see chapter 3.6.2 ARRAY data type and indirect field
accesses).

- The processing of optimized blocks in the controller is much faster than
with standard blocks.

e Avoid the copying/assigning of data between optimized and non-optimized
blocks. The required conversion between source and destination format
requires high processing time.

Example: Setting optimized block access

The optimized block accesses for all newly created blocks for S7-1200/1500 is
enabled by default. Block access can be set for OBs, FBs and global DBs. For
instance DBs, the setting depends on the respective FB.

The block access is not reset automatically when a block is migrated from a
S7-300/400 controller to a S7-1200/1500. You can change the block access later
on to “optimized block access”. You need to recompile the program after changing
the block access. If you change the FBs to “optimized block access”, the assigned
instance data blocks are automatically updated.

Follow the instructions below, in order to set the optimized block access.
Table 2-4: Setting optimized block access

Step Instruction

1. Click the “Maximizes/minimizes the Overview” button in the project navigation.
Project Edit View Insert Online Options Tools
5 i sveproject @ N 2 G2 X O @

Project tree m 4

Devices

2. Navigate to “Program blocks".

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 16



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

status from the respective FB. This is why the “optimized” setting can only be
changed on the FB. After the compilation of the project the DB accepts the
status depending on the respective FB.

Step Instruction

3. This is where you see all blocks in the program and whether they are optimized
or not. In this overview the “Optimized block access” status can be conveniently
changed.
E ]

Name Modified Title Address | Type Languagef] Optimized block acces:

B Add new block
4 Masin [0B1] 8i8i2013-8:33:27 AM  “Main Frogram Sweep (Cycle)” OB1 OB LAD =] 1
HE- Function_Block_1 [FB1] 882013 -8:33:37 AM  Function_block_1 FB1 FB  FBD =] E
@ Function_Block_1_DB [DB1] 882013 -8:33:37 AM  Function_block_1_DB DE1 DE DB 4
@ Global_DB [DB2] 81812013 -8:32:18 AM  Global_DB DB2 DB DB (=]
[ system blocks 'mirzmi ISDAM '

Note: Instance data blocks (here “Function_block_1_DB”) inherit the “optimized”

Display of optimized and non-optimized blocks in the TIA Portal

In the two following figures the differences between an optimized and a non-
optimized instance DB can be seen.

For a global DB there are the same differences.

Figure 2-9: Optimized data block (without offset)

Function_Block_1_DB

MName Dats type Start value Retain Visiblein ... | Setpoint
1 <4 - Input
2 an Input_bool_1 Bool
: - Input_byte_1 Byte
4 @@= Input_bool_2 Bool
5 4= Input_word Word
6 |4 . Input_byte_2 Byte 16#0
7 4l = Output
8 @ Output_bool_1 Bool false
9 4@ InOut
10 -4 Static
Figure 2-10: Non-optimized data blocks (with offset)

Function_Block_1_DB

MName Data type Offset Start value Retain Visiblein .. | Setpoint
1 <@ = Input
2 |@n Input_bool_1 Bool E. 0.0 false D
3 @ne Input_byte_1 Byte 10 1640 (|
4 |qn® Input_bool_2 Boal 20 f B
5 |<1»= Input_word Word 40 =B
6 4= Input_byte_2 Byte 6.0 1640 B
7 <@ - Output
8 @ Output_bool_1 Bool 8.0 false B
9 | InQut
10 @ Static

Table 2-5: Difference: optimized and non-optimized data block

Optimized data block Non-optimized data block
Optimized data blocks are addressed At non-optimized blocks an “offset” is
symbolic. No “offset” is displayed. displayed and can be used for addressing.
In optimized blocks every tag can be In non-optimized blocks only all or no tags
declared with “Retain”. can be declared with “Retain”.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

17




Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

The retentivity of tags of a global DB is defined directly in the global DB. The
default setting is non-retentive.

The retentivity of tags of one instance is defined in the function block (not in the
instance DB).These settings then apply to all instances of this FB.

Access types for optimized and non-optimized blocks

The following table displays all access types to blocks.
Table 2-6: Access types

Access type Optimized block Non-optimized
block

Symbolic v 4
Indexed (fields) v v
Slice accesses v 4
AT instruction x 4

(Alternatively: slice access)
Direct absolute x 4

(Alternatively: ARRAY with

index)
Indirect absolute (pointer) x v
(Alternatively: VARIANT /
ARRAY with index)

Downloading without v x
reinitialization

Note You will find further information in the following entries:

What differences should you watch out for between optimized data storage and
the standard type of block access in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67655611

What properties do you have to pay attention to in STEP 7 (TIA Portal) for the
instructions "READ_DBL" and "WRIT_DBL", when you are using DBs with
optimized access?
https://support.industry.siemens.com/cs/ww/en/view/51434747

264 Conversion between optimized and non-optimized tags

The general recommendation is to work with optimized tags. However, if you want
to keep your previous programming in individual cases, this leads to a mixture of
optimized and non-optimized data storage in the program.

The system recognizes the internal storage of each tag, no matter if structured
(derived from a user-defined data type) or elementary (INT, LREAL, etc.).

In the case of type-identical allocations between two tags with different storage
locations, the system converts automatically. In the case of structured tags, this
conversion requires performance and should therefore be avoided, if possible.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 18


https://support.industry.siemens.com/cs/ww/en/view/67655611
https://support.industry.siemens.com/cs/ww/en/view/51434747

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2015 All rights reserved

2.6 Optimized blocks

2.6.5 Parameter transfer between blocks with optimized access and
standard access

If during a block call, structures are transferred to the called block as InOut
parameter, these are by default transferred as reference (see chapter 3.3.2 Call-
by-reference with InOut interface type).

However, this does not apply if one of the blocks has the property “Optimized
access” and the other block the property “Standard access”. Principally, all
parameters are then transferred as copies (see chapter 3.3.1 Call-by-value with In
interface type).

In this case, the called block always works with the copied values. During block
processing, these values might be changed and, after processing the block call, be
copied back to the original operand.

This may cause problems, if the original operands are changed by asynchronous
processes, e.g. by HMI access or alarm OBs. If, after processing the block, the
copies are returned to the original operand, the asynchronously performed
changes at the original operands are overwritten.

NOTE You will find further information in the following entry:

Why is it possible that data of HMI system or web server are overwritten in
S7-15007?
https://support.industry.siemens.com/cs/ww/en/view/109478253

Recommendation:

e Always set the same access type for both blocks that communicate with each
other.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 19


https://support.industry.siemens.com/cs/ww/en/view/109478253

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.6 Optimized blocks

2.6.6 Communication with optimized data

The interface (CPU, CM) transfers the data as they are arranged (no matter if
optimized or not).

Figure 2-11: CPU-CPU communication

Compatible
data transfer

Send CPU (byte stream) Receive CPU
I [(oa] B1] 32] 39] ar] 60 7a] .. [ FF] S
= | — @ %
e g = e — =
DATA ERROR —| DATA ERROR —|
Send data can be: Receive data can be:
* optimized * optimized
* not optimized * not optimized
+ Tag (any type) * Tag (any type)
» Buffer (byte array) » Buffer (byte array)
Example
e Atag with data type PLC (data record) is to be transferred to a CPU.
¢ Inthe send CPU, the tag is interconnected as actual parameter with the
communication block (TSEND_C).
¢ Inthe receive CPU, the receive data are assigned to a tag of the same type.
e In this case, it is possible to symbolically continue to work directly with the
received data.
Note Any tags or data blocks (derived from PLC data types) can be used as data
records.
Note It is also possible that the send and receive data are not defined identically:
Send data Receive data
optimized --> not optimized
not optimized --> optimized

The controller automatically provides for correct data transmission and storage.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015



2 S7-1200/1500 Innovations

Copyright © Siemens AG 2015 All rights reserved

2.7 Block properties

2.7 Block properties
2.7.1 Block sizes
For S7-1200/1500 controllers the maximum size of blocks was significantly

increased in the main memory.
Table 2-7: Block sizes

Max. size and number S7 -300/400 S7-1200 S7-1500
(regardless of the main memory
size)
DB Max. size 64 kB 64 kB 64 kB (non-optimized)
10 MB (optimized
CPU1518)
Max. number 16.000 65.535 65.535
FC/FB Max. size 64 kB 64 kB 512 kB
3 MB (optimized
CPU1518)
Max. number 7.999 65.535 65.535
FC/FB /DB | Max. number | 4.096 (CPU319) 1.024 10.000 (CPU1518)
6.000 (CPU412)

Recommendation

e Use the DBs for S7-1500 controllers as data container of very large data
volumes.

e Data volumes of > 64 kB can be stored in an optimized DB (max. size 10 MB)
with S7-1500 controllers.

2.7.2 Number of organization blocks (OB)
OBs can be used for creating a hierarchical structure of the user program. Different

OBs are available for this purpose.
Table 2-8: Number of organization blocks

Organization block type S7-1200 S7-1500 Benefit

Modularization of the

Cyclic and startup OBs 100 100
user program

Separator OB possible

Hardware interrupt 50 50
for each event
Time delay interrupt 20 Modularization of the
4+ user program
Cyclic interrupt 20 Modularization of the
user program
Time of day x 20 Modularization of the

user program

* from firmware V4 on 4 delay interrupts and 4 watchdog interrupts each possible.

Recommendation

e Use OBs for structuring the user program hierarchically.

e For further recommendations on using OBs refer please to Chapter
3.2.1 Organization blocks (OB).

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 21



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

2.8

Note

28.1

Note

New data types for S7-1200/1500

S7-1200/1500 controllers support new data types in order to make programming
more convenient. With the new 64 bit data types considerably larger and more
accurate values can be used.

You will find further information in the following entry:

How is the conversion of data types performed in the TIA Portal for the
S7-1200/15007?
https://support.industry.siemens.com/cs/ww/en/view/48711306

Elementary data types

Table 2-9: Integer data types

Type Size Value range
usSint 8 hit 0..255
Sint 8 hit -128 .. 127
Ulint 16 bit 0 .. 65535
UDInt 32 bit 0 .. 4.3 million
ULInt* 64 bit 0 .. 18,4 Trio (10
LInt* 64 bit -9,2 Trio .. 9,2 Trio
LWord 64 bit 16#0000 0000 0000 0000 his
16# FFFF FFFF FFFF FFFF

* only for S7-1500

Table 2-10: Floating-point decimal data types

Type Size Value range

Real 32 bit (1 bit signs, 8 bit exponent, 23 bit mantissa), -3.40e+38 .. 3.40e+38
accurate to 7 decimal places

LReal | 64 bit (1 bit signs, 11 bit exponent, 52 bit -1.79e+308 .. 1.79e+308
mantissa), accurate to 15 decimal places

The TIA Portal contains the global library “Long Functions” with a great scope of
instructions for long data types.

+~ | Global libraries

1 T R
IR ncions
- Master copies
2 ABS_LINT
3 ABS_LREAL
2 ACOS_LREAL
SOk ADD_LINT

|_|-1'_‘"\D L Y |

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 22


https://support.industry.siemens.com/cs/ww/en/view/48711306
http://www.dict.cc/englisch-deutsch/accurate.html
http://www.dict.cc/englisch-deutsch/decimal.html
http://www.dict.cc/englisch-deutsch/places.html
http://www.dict.cc/englisch-deutsch/accurate.html
http://www.dict.cc/englisch-deutsch/decimal.html
http://www.dict.cc/englisch-deutsch/places.html

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Note You will find further information in the following entry:

Why, in STEP 7 (TIA Portal), is the result of the DInt Addition in SCL not
displayed correctly?
https://support.industry.siemens.com/cs/ww/en/view/98278626

2.8.2 Date_Time_Long data type

Table 2-11: Structure of DTL (Date_Time_Long)

‘ Year ‘ Month ‘ Day ‘Weekday‘ Hour ‘ Minute ‘ Second ‘Nanosecond

DTL always reads the current system time. Access to the individual values is
through the symbolic names (e.g. My Timestamp.Hour)

Advantages

e All partial areas (e.g. Year, Month, ...) can be addressed symbolically.

Recommendation

Use the new DTL data type instead of LDT and address symbolically (e.qg.
My Timestamp.Hour).

Note You will find further information in the following entries:

In STEP 7 (TIA Portal), how can you input, read out and edit the date and time
for the CPU modules of S7-300/S7-400/S7-1200/S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/43566349

Which functions are available in STEP 7 V5.5 and in TIA Portal for processing
the data types DT and DTL?
https://support.industry.siemens.com/cs/ww/en/view/63900229

2.8.3 Further time data types
Table 2-12: Time data types (only S7-1500)
Type Size Value range
LT#-106751d23h47m16s854ms775us808ns
LTime 64 bit up to
LT#+106751d23h47m16s854ms775us807ns
LTOD#00:00:00.000000000
LTIME_OF_DAY 64 bit up to
LTOD#23:59:59.999999999

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 23


https://support.industry.siemens.com/cs/ww/en/view/98278626
https://support.industry.siemens.com/cs/ww/en/view/43566349
https://support.industry.siemens.com/cs/ww/en/view/63900229

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2015 All rights reserved

2.8 New data types for S7-1200/1500

284 Unicode data types

Data types WCHAR and WSTRING can be processed using unicode characters.
Table 2-13: Time data types (only S7-1500)

Type Size Value range

WCHAR 2 bytes -

Preset value:
WSTRING (4 + 2*n) byte 0 ..254 characters

Max. value: 0 ..16382

n = length of the character chain

Properties
e Processing characters in Latin Chinese or other languages, for example.
e Line breaks, page feed, tabulator, space character
e Special characters: Dollar sign, quotation marks

Example

(] WCHAR# ‘al
e WSTRING#‘Hello World!:®

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 24



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

2.8.5

Advantages

Properties

VARIANT data type (S7-1500 and S7-1200 from FW4.1)

A parameter of the VARIANT type is a pointer that can point to tags of different
data types. In contrast to the ANY pointer the VARIANT is a pointer with type test.
The target structure and source structure are checked at runtime and have to be

identical.

VARIANT is used, for example, as input for communication blocks (TSEND_C).
Figure 2-12: VARIANT data type as input parameter for the TSEND_C instruction

0 ...CPU 1516-3 PN/IDP] » Program blocks *» 16_TCP Send__OK

Wi e s @D [@EHE teaas
Lo
TSEND_C &%)
EN ENO
#5endl_RQ —REQ DONE — #send_done
TRUE — CONT BUSY —1 -
%B3 ERROR —i#send_error
"PLC_1_Send_DB" —{CONNECT STATUS |— #send_status
"TCP_Send”.
MODBUS —{ paTa .
VARIANT

Beinhaltet in dem Fall die Uberpriifung

auf die Struktur TCON_IP_v4

e Integrated type test prevents faulty access.

e Due to the symbolic addressing of the variant tags, the code can be read

easier.

e Code can be programmed more efficiently and within a shorter time.

e Variant pointers are clearly more intuitive than ANY pointers.

e Variant tags can be used directly using system functions.

¢ Flexible and performant transfer of differently structured tabs is possible.

A comparison between ANY and Variant makes the properties apparent.

Table 2-14: Comparison ANY and Variant

ANY

Variant

Requires 10 Kbytes of memory with defined
structure

Does not require any memory space for the
user

Initialization either via assignment of the
data area or by means of filling the ANY
structure

Initialization by means of assigning the data
area of system instruction

Non-typed — Type of an interconnected
structure cannot be read out

Typed — Interconnected type as well as the
length for arrays can be determined

Partially typed — Length for arrays can be
determined

VARIANT can also be evaluated and
created via system instructions

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4,

11/2015

25




Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Recommendation

e Only use the VARIANT data type for indirect addressing if the data types are
not determined until the program is running.

e Check what you have used the ANY pointer for so far. In many cases, a pointer

is not required (see table below).

e Only use the VARIANT data type for indirect addressing if the data types are
not determined until the program is running.

- Using data type VARIANT as InOut formula parameter for creating generic
blocks which are independent of the data type of the actual parameters

(see example in this chapter).

- Use the VARIANT data type instead of the ANY pointer. Due to the
integrated type test, errors are detected early on. Due to the symbolic
addressing, the program code can be easily interpreted.

- Use the Variant instruction, for example, for type recognition (see following
example and Chapter 2.9.3 VARIANT instructions)

e Use the indexed ARRAYs instead of ANY pointer to address ARRAY elements
(see chapter 3.6.2 ARRAY data type and indirect field accesses).

Table 2-15: Comparison ANY pointer and simplification

What are ANY pointers used for?

Simplification with S7-1200/1500

processing

e e.g. transferring user-defined
structure by means of ANY pointers
to functions

Programming functions which can - | Functions with Variant pointer as InOut
process different data types parameter for blocks
(see following examples)
Processing of arrays -> | Standard array functions
e e.g.reading, initializing, copying of e Reading and writing with
elements of the same type #myArray[#index] (see chapter 3.6.2
ARRAY data type and indirect field
accesses)
e Copy with MOVE_BLK (see chapter
2.9.2 MOVE instructions)
Transferring structures and performant - | Transferring structures as InOut

parameters

e see chapter 3.3.2 Call-by-reference
with InOut interface type

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

26




Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Example

NOTE

With data type VARIANT it is possible to recognize data types in the user program
and react accordingly. The following code of FC “MoveVariant” shows a possible
way of programming.

e The InOut formal parameter “InVar” (data type VARIANT) is used to show a tag
independent of the data type.

e The data type of the actual parameter is recognized with the “Type_Of’
instruction.

e Using the “MOVE_BLK_VARIANT” instruction, the tag value is copied to the
different output formal parameters depending on the data type.

Figure 2-13: Formal parameter of FC “MoveVariant”

MoveVariant
Mame Data type Default value Comment

< b Input

4 = Output

<. Outinteger Int Integer data

= OutReal Real Realdata

<@ = » OuthyType *MyType™ User defined PLC data type

< = InOut

<= InCutVariant Variant Wariable data input

< » Temp

< - Constant

10 4 = MO_CORRECT_DATA_TYFE Word 16%80B4

11 <@ - Return

SR S R SRR R

g
9

]

CASE TypeOf (#InOutVariant) OF // Check datatypes

Int: // Move Integer
#MoveVariant := MOVE BLK VARIANT (SRC := #InOutVariant,
COUNT := 1,
SRC_INDEX := 0,
DEST INDEX := 0,
DEST => #OutlInteger);
Real: // Move Real
#MoveVariant := MOVE_BLK_VARIANT (SRC := #InOutVariant,
COUNT := 1,
SRC_INDEX := 0,
DEST INDEX := 0,

DEST => #OutReal);
MyType: // Move MyType

#MoveVariant := MOVE BLK VARIANT (SRC := #InOutVariant,
COUNT := 1,
SRC_INDEX := 0,
DEST_ INDEX := 0,

DEST => #0utMyType) ;
ELSE // Error, no sufficient data type
#MoveVariant := WORD_TO INT (#NO CORRECT DATA TYPE);
// 80B4: Error code of MOVE BLK VARIANT: Data types do
not correspond

END CASE;

If you want to copy values of not structured VARIANT tags, you can also use
VariantGet instead of MOVE_BLK_VARIANT (see chapter
2.9.3 VARIANT instructions).

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 27



2 S7-1200/1500 Innovations

Copyright © Siemens AG 2015 All rights reserved

2.9 Instructions

2.9 Instructions
2.9.1 CALCULATE

With the CALCULATE instruction you can carry out mathematical calculations (e.g.
(IN1 + IN2) * IN3) that are independent from the data type. The mathematical
formula is programmed in the formula editor of the instruction.

Figure 2-14: CALCULATE instruction with formula editor

Edit "Calculate™ instruction

OUT:: [t + N2y = 1N |
CALCULATE

sl Example

[ G+ 1MZ) * (R - 12) |

ENl ENG
Possible instructions
GIT = {60) o D3 -0 And, OF, X0, Swap, Nat/Inv, +, - ™, f, Mod, Abs, Neg, Exp, ™™, Frac, Ln, Sin, ASin, Cos, ACas, Tan, ATan, ‘

#healint — N1 BB hecl_out Sqr, Sqrt, Round, Ceil, Floor, Trunc

#Real_in2 — (N2 1

#Real_in3 — N3 s¢ F _OK
-

Note For more information refer to the Online Help of the TIA Portal with the

“CALCULATE” instruction.

Advantages

e A mathematical formula only needs one instruction
e Time saving due to simple configuration

Properties

e Supports bit sequences, integers, floating-point numbers

e Supports numerous mathematical functions (all basic arithmetic operations,
trigonometric functions, rounding, logarithm, etc.)

e Number of inputs is extendable

Recommendation

e Always use the CALCULATE instruction for mathematical calculations instead
of many calls of instructions, such as, e.g. ADD, SUB, etc.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 28



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.9 Instructions

2.9.2 MOVE instructions

STEP 7 (TIA) provides the following MOVE instructions. The instruction
MOVE_BLK_VARIANT for S7-1200/1500 is new.

Table 2-16: Move instructions

Instruction

Typical use

Properties

MOVE

Copy value

Copy array

Copy the content of the parameter at
the IN input to the parameter of the
OUT output.

The parameters at the input and output
must be of the same data type.

The parameters can also be structured
tags (PLC data types).

Copy complete arrays and structures.

MOVE_BLK

Copy several
areas

Copy the content of an array to another
array.

The source and target array must be of
the same data type.

Copy complete arrays and structures.
Copy several array elements with
structures as well. In addition, start and
number of elements can be assigned.

UMOVE_BLK

Copy array
without
interruption

Copies the content of an array
consistently without the risk of the OB
interrupting the copying process.

The source and target array must be of
the same data type.

MOVE_BLK_VARIANT

(S7-1500 and
S7-1200 from FW4.1)

Copy array

Copies one or several structured tag(s)
(PLC data types).

Recognizes data types at runtime
Supplies detailed error information

Apart from the elementary and
structured data types, PLC data types,
arrays, and array DBs are also
supported.

Serialize

(S7-1500 and
S7-1200 from FW4.1)

Copy structured
data into byte
array

Several data records can be combined
into a single byte array and be sent to
other devices as a message frame.

Input and output parameters can be
transferred as data type Variant.

Deserialize

(S7-1500 and
S7-1200 from FW4.1)

Copy from a
byte array into
one/several
structure/s

Application case I-Device:

The I-Device receives several data
records in the input area which are
copied to different structures.

Several data records can be combined
into a single byte array. Deserialize
enables copying these to different
structures.

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4, 11/2015

29




Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.9 Instructions

Figure 2-15: Serialize and deserialize (S7-1500 and S7-1200 from FW4.1)

Struct3
Struct2

Array[0..7] of Byte
ByteO
Bytel Structl

Int

Real
Uint

/Deseri

Byte7

Serialize

Recommendation
e Generally, you need to distinguish between MOVE, MOVE_BLK and
MOVE_BLK_VARIANT
- Use the MOVE instruction to copy complete structures.

- Use the MOVE_BLK instruction to copy parts of an ARRAY of a known
data type.

- Only use the MOVE_BLK_VARIANT instruction if you wish to copy parts of
ARRAYs with data types which are only known during program run-time.

Note UMOVE_BLK: The copy process cannot be interrupted by another activity of the
operating system. Therefore, the alarm reaction times of the CPU might increase
during processing of the instruction "Copy array without interruption".

For the complete description of the MOVE instructions, please refer to the TIA
Portal Online Help.

Note You will find further information in the following entry:

In STEP 7 (TIA Portal) how do you copy memory areas and structured data from
one data block to another?
https://support.industry.siemens.com/cs/ww/en/view/42603881

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 30


https://support.industry.siemens.com/cs/ww/en/view/42603881

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.9 Instructions

29.3 VARIANT instructions (S7-1500 and S7-1200 from FW4.1)

Table 2-17: Move instructions

Instruction Typical use Properties

MOVE operations

VariantGet Read value This instruction enables you to read
the value of a tag pointing to a
VARIANT.

VariantPut Write value This instruction enables you to write
the value of a tag pointing to a
VARIANT.

List

CountOfElements Counting elements With this instruction you poll the

number of ARRAY elements of a tag
pointing to a VARIANT.

Compare operations

TypeOf() Determining the data | Use this instruction to poll the data
(only SCL) type type of a tag pointing to a VARIANT.
TypeOfElements() Determining the array | Use this instruction to poll the data
(only SCL) data type type of the ARRAY elements of a tag

pointing to a VARIANT.

Conversion operations

VARIANT_TO_DB_ANY | Determining the data With this instruction you poll the data
(only SCL) block number block number of an instance data
block of a PLC data type, system
data type, or array DB.

DB_ANY_TO_VARIANT | Creates a Variant tag With this instruction you create a
(only SCL) from a data block. Variant tag from an instance data
block of a PLC data type, system
data type, or array DB.

Note For more VARIANT instructions, please refer to the online help of the TIA Portal.

294 RUNTIME

Using the "RUNTIME" instruction you measure the runtime of the complete
program, single blocks or the command sequences. You can call this instruction in
SCL (S7-1200/S7-1500) and in STL (S7-1500).

Note You will find further information in the following entry:

With S7-1200/S7-1500, how do you measure the time of a program section or
the complete program cycle at runtime?
https://support.industry.siemens.com/cs/ww/en/view/87668055

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 31


https://support.industry.siemens.com/cs/ww/en/view/87668055

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.10 Symbolic and comments

2.10 Symbolic and comments
2.10.1 Programming editor

Advantages

You can make the code easy to understand and readable for your colleagues with
the use of symbolic names and comments in your program.

The complete symbolic is saved together with the program code during the
download to the controller and allows fast maintenance of the plant when no offline
project is at hand.

Recommendation

e Use the comments in the programs in order to improve readability. Network title
comments are visible even if networks are collapsed.

e Design the program code in a way so that colleagues can understand the
program straight away.

In the following example you can see the extensive options for commenting the
program in the editors.

Example

In the following figure you can see the options for commenting in the LAD editor
(same functionality in FDB).

Figure 2-16: Commenting in the user program (LAD)

Wi EF e b AER8: dEE CGaBY = T B 3
Interface l
Mame Data type Default value Retain Accessible f.__
1w Iy
2 = s
\ } o
- -M— — 4 '

:I@ .
- Network 1:  Jstart Engine

Startthe engineg|
%0 0 W01 %000
"Activate_1 3 Activate_2" "Start”

— I { —

- Network 2:  Speed_contral

a

Call function block to set speed and acceleration

#Engine_speed_ FE for speed
Instance and

FB2 acceleration
"Engine_speed” 4
EN ENO

Speed

oo
oo

Accaleration

The following comments are possible:

1. Block comment

2. Network title comment

3. Network comment

4. Comment on instructions, blocks and functions (open, close, etc.)

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 32



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.10 Symbolic and comments

In the programming languages SCL and STL, it can be commented with // in every

row.
Example
Filling level := Radius * Radius * PI * height;
// calculation of the filling level for medium tank
Note For further information, refer to the following entry:
In STEP 7 (TIA Portal), why are the display texts, titles and comments no longer
displayed after opening the project in the block editor?
https://support.industry.siemens.com/cs/ww/en/view/41995518
2.10.2 Comment lines in watch table
Advantages

e For better structuring it is possible to create comment lines in the watch table.

Recommendation

e Always use comment lines and sub-divide your watch table.
e Please also comment on the individual tags.

Example
Figure 2-17: Watch table with comment lines
i i 2]
o AW HF T}
i Mame Address Disple

il Building 122 floor 32 room 82
*Building®.FanSpeed1

ol ol
= =B

g

*Building” Temperature
"Building”.Light1

il Building 173 floor 33 room 81

"Building®.FanSpeed2
"Building” Temperature2
"Building”.Light2

if Building 293 floor 69 room 45
"Building”.FanSpeed3

L I s e R o R o B R e

-t ||
- 5

*Building® Temperature3

s i Lk

sy

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 33


https://support.industry.siemens.com/cs/ww/en/view/41995518

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.11 System constants

2.11

System constants

For S7-300/400 controllers the identification of hardware and software components
is performed by logic address or diagnostic addresses.

For S7-1200/1500 the identification is by system constants. All hardware and
software components (e.g. interfaces, modules, OBs, ...) of the S7-1200/1500

controllers have their own system constants. The system constants are

automatically created during the setup of the device configuration for the central

and distributed 1/O.

Advantages

e You can address via module names instead of hardware identification.

Recommendation

e Assign function-related module names in order to identify the modules easily

during programmin

Example

g.

In the following example you can see how system constants are used in the user

program.

Figure 2-18: “System constants” in the user program

1. System constants of a controller can be found in the “PLC tags —
Default tag table” folder.

Devices 5
OO HdiFE p AREE 2ER CEa’ o
Default tag table Interface
~ ] 57-1500_Progrsmming_V12... Name Data type Value Name Data type Comment
B¢ Add new device 42 & rort 1[PNI) Hw_Interface 261 E 1 <@ v Input
B Devices & networks 4z [ Pori_2[Fn] Hw_nterface 66 2 |@s  nital_call Bool Initial call of this O
~ [l Robot_control [CPU 1516... 44 & port_2[PN](1) Hw_nterface 262 2 | Remanence Bosl True, if remanent ¢
JIY Device configuration 45 ] Port_3lPN] Hw_nterface 263 4~ Temp
%/ Online & diagnestics 46 & port_alPN] Hw_Interface 264 [<] [T ] r
» =gl Frogram blacks 47 [ Fort_slFn] Hw_nterface 265 —
» [ Technology objects 48 5l por_s[PN] Hw_Interface 266 =HF A~ - 2
» Ex[emalsnurceﬁ\e; 49l ror7ien) Hw_nterface 267 + Block title:  “Main Fragram Swesp (Cycle)*
~ @ PLC tags 50 [ port_slFn] Hw_nterface 268 ——
%5 show all tags 51 [l PROFINETinterface_1 Hw_nierface &4 —
Eadd pen o bl 52 ] PROFINETinterfsce_2 Hw_interface 72 ~  Network 1:
53[5l PROFINETIOSystem... Hw_loSystem 260 S
Ny FLC 6513 types 54 [ Rising_edge_Moter_1 Eveni_twint  16%C
Watch and force ables 55 Eobor oo D Hw_SubModule 259
Traces 56 Hw SubModule 258 GER
553 Program info 57 R Toborcontontem ey Hw SMegdule 50 EN ENO
A PLC alarms 55 4 =] Robot_centrol[Displ... Hw_Subliodu™agg Bl "Global_DB". “Global_DB".
] Testlists s 15l Robot_control[Exec]  Hw_SubModule 52 Diag_Mode — niope RET_VAL — Diag_Ret val
~ [ Local modules D obot_contral[MC] Hw_SubModule 51 “Glabal DB".
B LANCE_intefface  Hw_Interface 274 LADDR CNT_DIAG — Diag_CNT Diag
itch_1[Head] Hw_Subodule 273 “Global_DB".
H witch_1[I0Device]  Hw_Device 270 Piag_Diag — piag
» [i@i Disgabued I he: ] switch_1[Proxy] S E“hWE 50 272

2. The system constants are in a separate tab in the “Default tag table”.
3. Inthis example the symbolic name “Robot_arm_left” was assigned for a DI

module.

You can also find the module under this name in the system constant tab.
In the user program “Robot_arm_left” is interconnected with the “GET_DIAG”

diagnostic block.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

34



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.12 User constants

Note

Note

2.12

Advantages

Properties

Open the “Device configuration” to quickly find the system constant for each
device.

0 1 2 3 4 5 3 7
Rail_o

<] [ il

General 10 tags |5ystemconstants I Texts

Name Type Herdware identifier |Commen
FIP OB Servo Fip 32768
OB_Main OB_FCYCLE 1
OB_Cyclicinterrupt 0B_Cyclic 30
PLC_2[MC] Hw_SubModule 51
PLC_2[Comman] Hw_SubModule 50
FLC_2[Display] Hw_SubModule 54
FLC_2[Exec] Hw_SubModule 52
PLC_2 Hw_SubModule 49
DP_interface_1 Hw_Interface 60
PROFINET_interface_1 Hw_Interface 64
PROFINET interface_2 Hw_Interface 72
Pore_1[PN](T) Hw_Interface 73
Port_1[PN] Hw_Interface 65
P 2[FN] Hu_Inte-ce 66

You will find further information in the following entry:

What meaning do the system constants have for the S7-1200/1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/78782835

User constants

Using user constants, constant values can be saved. Generally, there are local
constants for OBs, FCs and FBs and global constants for the entire user program
in a controller.

e User constants can be used for changing constant values globally or locally for
all usage locations.

e With user constants, the program can be made more readable.

e Local user constants are defined in the block interface.
e Global user constants are defined at “PLC tags”.
e The user program only enables read access to the user constants.

e For know-how protected blocks the user constants are not visible.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 35


https://support.industry.siemens.com/cs/ww/en/view/78782835

Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.13 Internal reference ID for controller and HMI tags

Recommendation

Example

Note

2.13

e Use the user constants for improved readability of the program and central
changeability of ...

- error codes,

- CASE instructions,
- conversion factors,
- natural constants ...

Figure 2-19: Local user constant of a block for CASE instructions

fb_TestProgram
Name Data type | Default value Retain Ac

<@ « Input

- ErrorNumber Int o Non-retain

<@ » Output @

<l » InOut

40 » Static

<@ » Temp

<] + Constant

| = ERROR_TEMFERATURE Int 10

| = ERROR_VOLTAGE Int 55
0|a)» ERROR_TORQUE Int 89

[<] [T

BRI ST RSP

= @ o

CASE... FOR... WHILE

- oF.. ToD@. po.. O

1 FICASE #ErrorNumber OF

2 #ERROR_TEMPERATURE:| // Error handling for temperature ...
3 ;

4 #ERROR_VOLTAGE: // Error handling for voltage ...

z #ERR;R_IDRQUE: // Error handling for torque ...

8 ELSE: // No error

'_; END_L'ASE::

Figure 2-20: Global user constant of a controller

<@ Tags lEI User constants Ikl:j System constants

& o B B
PLC tags
Name Taq table Data type | Value Comment
1 = GLOBAL_MIN Defaulttag table Int 5.
2 = GLOBAL_MAX Defaulttag table Int 100
3 Add news

@

Another application case of constants is available at the following FAQ:

How can you convert the unit of a tag in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/61928891

Internal reference ID for controller and HMI tags

STEP 7, WinCC, Startdrive, Safety and others integrate into the joint data base of
the TIA Portal engineering framework. Changes of data are automatically accepted
in all the locations in the user program, independent from whether this happens in
a controller, a panel or a drive. Therefore no data inconsistencies can occur.

If you create a tag, the TIA Portal automatically creates a unique reference ID. The
reference ID cannot be viewed or programmed by you. This procedure is internal
referencing. When changing tags (address), the reference ID remains unchanged.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 36


https://support.industry.siemens.com/cs/ww/en/view/61928891

2 S7-1200/1500 Innovations

Copyright © Siemens AG 2015 All rights reserved

2.13 Internal reference ID for controller and HMI tags

In the figure below the internal reference to the data is displayed schematically.
Figure 2-21: Internal reference ID for PLC and HMI
PLC_ 1 HMI_1

PLC Symbol | Absolute | Internal PLC Internal HMI | HMI Symbol |  Access Connection
name address | reference ID reference ID name mode with PLC

Motor_1 000123 009876 Motor_1 <symbolic PLC 1
. access>

Valve_2 Q0.3 000138 000578 Valve 2 | <symbolic | PLC_1
access>

Note The ID will be changed if ...

e name is changed.
e type is changed.
e tagis deleted.

Advantages
e You can rewire tags without changing internal relations. The communication
between controller, HMI and drive also remains unchanged.
e The length of the symbolic name does not have an influence on the
communication load between controller and HMI.
Properties

If you change addresses of PLC tags, you only have to reload the controller. It is
not necessary to reload the HMI devices, since internally, the system addresses
with the reference IDs (see Figure 2-22: Changing address or adding row).

Figure 2-22: Changing address or adding row

PLC Tags

PLC tags
Name Data type Address
1 < Motor_1 Bool %l0.0

Changing addres

DB Elements

MName Data type Offset
1 <@ - Static

2 l@ms g Boal 0.0
B .

PR

Name Data type Offset
1 |40 - Smrtic
newvi tag Bool

Adding row
& PLC

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 37



Copyright © Siemens AG 2015 All rights reserved

2 S7-1200/1500 Innovations

2.14 STOP mode in the event of errors

2.14 STOP mode in the event of errors

In comparison to S7-300/400 there are fewer criteria with the S7-1200/1500 that
lead to the “STOP” mode.

Due to the changed consistency check in the TIA Portal, the “STOP” mode for
S7-1200/1500 controllers can already be excluded in advance in most cases. The
consistency of program blocks is already checked when compiling in the

TIA Portal. This approach makes the S7-1200/1500 controllers more fault tolerant
to errors than their predecessors.

Advantages

There are only three fault situations that put the S7-1200/1500 controllers into the
STOP mode. This makes the programming of the error management clearer and

easier.
Properties
Table 2-18: Responses to errors of S7-1200/1500
Error S7-1200 S7-1500
1. | Cycle monitoring time RUN STOP, when OB80 is
exceeded once not configured
2. | Cycle monitoring time STOP STOP
exceeded twice
3. | Programming errors RUN STOP, when OB121 is
not configured

Error OBs:

e OB80 “Time error interrupt” is called by the operating system when the
maximum cycle time of the controller is exceeded.

e 0OB121 “Programming error” is called by the operating system when an error
occurs during program execution.

For every error, in addition, an entry is automatically created in the diagnostic
buffer.

Note For S7-1200/1500 controllers there are other programmable error OBs
(diagnostic error, module rack failure, etc.).

More information on error responses of S7-1200/1500 can be found in the online
help of the TIA Portal under “Events and OBs”.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 38



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.1 Operating system and user program

3
3.1

3.2

Advantages

General Programming

Operating system and user program

SIMATIC controllers consist of operating system and user program.

e The operating system organizes all functions and sequences of the controller
that are not connected with a specific control task (e.g. handling of restart,
updating of process image, calling the user program, error handling, memory
management, etc.). The operating system is an integral part of the controller.

e The user program includes all blocks that are required for the processing of
your specific automation task. The user program is programmed with program
blocks and loaded onto the controller.

Figure 3-1: Operating system and user program

S = O | FC |

cyclic .
call - Global

For SIMATIC controllers the user program is always executed cyclically. The
“Main” cycle OB already exists in the “Program blocks” folder after a controller was
created in STEP 7. The block is processed by the controller and recalled in an
infinite loop.

Program blocks

In STEP 7 (TIA Portal) there are all familiar block types from the previous STEP 7
versions:

e Organization blocks
e Function blocks

e Functions

e Data blocks

Experienced STEP 7 users will know their way around straight away and new
users can very easily get familiar with the programming.

e You can give your program a good and clear structure with the different block
types.

e Due to a good and structured program you get many function units that can be
multiply reused within a project and also in other projects. These function units
then usually only differ by a different configuration (see chapter
3.2.8 Reusability of blocks).

e You project or your plant becomes more transparent. Error states in a plant
can be more easily detected, analyzed and removed. The maintainability of
your plant becomes easier. This is also the case for errors in programming.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 39



3 General Programming

Copyright © Siemens AG 2015 All rights reserved

3.2 Program blocks

Recommendation

e Structure your automation task.

e Divide the entire function of your plant into individual areas and form sub-
function units. Divide these sub function units again into smaller units and
functions. Divide until you get functions that you can use several times with
different parameters.

e Specify the interfaces between the function units. Define the unique interfaces
for functionalities that are to be delivered by “third party companies”.

All organization blocks, function blocks and functions can be programmed with the
following languages:

Table 3-1: Programming languages

Programming language S7-1200 S7-1500

Ladder (LAD) 4 v

Function block diagram (FBD)

Structured control language (SCL)

Graph

x| X ||

v
v
v
v

Statement list (STL)

: . u » g
Figure 3-2: “Add new block” dialog (OB)
“Add new block X
Name:
[main_1 |
& Frogram cycle Language -
& Startup
Humter
©B & Time delayinterrupt umber [=]
Organiztion & Cyclic interrupt O manual
block 3 Hardwsre interrupt () st
P & Time error interrupt
& Diagnostic error interrupt
#; & Full or plug of modules Description:
LW Racicos ttoile it A*Program cycle® OB is executed cyclically
Function block & Programming error and is the main blac rogram. This is
& 10 access errer where you place the instructions that control
J— B Time ofdey your applicatian, nd call addiionsluier
& MClnterpolator
FC & MCServo
& synchronous Cycle
Function S
& Update
& Frofile
L)
Data block
more
» | Additional information
Sy

OBs are the interface between the operating system and the user program. They
are called by the operating system and control, e.g. the following processes:

e Startup behavior of the controller

e Cyclic program processing

e Interrupt-controlled program processing

e Error handling

Depending on the controller a number of different OB types are available.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 40



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

Properties

e OBs are called by the operating system of the controller.
e Several Main OBs can be created in a program. The OBs are processed

sequentially by OB number.
Figure 3-3: Using several Main OBs

User program

Main_1
OB1
Main_y
0OB200
Main_ X
OB300

m
@

- —

- -

m
@

I

- -

Recommendation

e Encapsulate the different program parts which should maybe be replaceable
from controller to controller, into several Main OBs.

e Avoid the communication between the different Main OBs. They can then be
used independent from each other. If you nevertheless exchange data

between the individual main OBs, use the global DBs (see chapter 4.2 No bit

memory but global data blocks).

e Divide all program parts that belong to each other into folders and store them

for reusability in the project or global library.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

41



3 General Programming

3.2 Program blocks

Figure 3-4: Storing program parts in order in the project library

|- Program blocks

K¢ Add new block
4 Flssh_OFF [0B42]
4 Flash_ON [0B40]
4 Main [OB126]
4 start Labeling [0B41]
| Process Log [DB1]

« [£z] 10_ProcessLOG_OK

4 ProcessLOG_Main [0B125]

b [iz] ModifyLog__OK

w i3] 12 Datalog_ OK

Copyright © Siemens AG 2015 All rights reserved

4 Datalog_Main [OB123] [ Project library
34 Datalog write line [FB3] w3 ﬁ ﬂ Al :
4 Datalog write page [FB4] — = __
@ Datalog process LOG [DB11] = L] Project library
M _Datalog write page DB [DB12 ¥ [ Types

= [%2] 14_Print serial__OK =[] Master copies
4 Print Main [OB3030] = r.;—é Process Log
48 Print line [FB1] r [£z] 14_Print
4 Frint page [FB2] ¥ Copy of 4 Program blocks

L Frinzoane DEIDRE] | (%] 16_TCP Send

« [&2] 16 TCPSend_ OK / 4 Copy of 6 Program blocks
48 TCP send Msin [0B124] / ~ %] 18_Mail
48 TCF send line [FB6] 4 copy of 4 Program blocks
4 TCP send page [FB5) S Mail

For further information, please refer to chapter 3.7 Libraries.

Note You will find further information in the following entry:

Which organization blocks can be used in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/40654862

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015


https://support.industry.siemens.com/cs/ww/en/view/40654862

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

3.2.2 Functions (FC)

Figure 3-5: “Add new block” dialog (FC)

Add new black X

MName:
[Block_1 |
Longuage: [l |+
o e (—
Organiztion O manual
block @ sutomatic
= block Functions are code blocks or subroutines without dedicated memory.
tion blod
%
Function
e
Data block
more...
» | Additional information
Eetimssertiar

FCs are blocks without cyclic data storages. This is why the values of block
parameters cannot be saved until the next call and has to be provided with actual
parameters when called.

Properties
e FCs are blocks without cyclic data storages.

e Temporary tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset to the default value (S7-1500
and S7-1200 Firmware V4). Thus, the resulting behavior is not accidental but
reproducible.

¢ In order to permanently save the data of an FC, the functions of the global data
blocks are available.

e FCs can have several outputs.
e The function value can be directly reused in SCL in a formula.

Recommendation

e Use the functions for continuously recurring applications that are called several
times in different locations of the user program.

e Use the option to directly reuse the function value in SCL.
<Operand> := <FC name> (parameter list);

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 43



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

Example
In the following example a mathematical formula is programmed in a FC. The result
of the calculation is directly declared as return value and the function value can be
directly reused.
Table 3-2: Reusing function value
Step Instruction
4. Create an FC with the mathematical formula (circular segment) and define the
“Return” value as the result for the formula.
Interface
Narne Data type Cornment
b - 1 4 - Input
1 2 an h LReal
3 ane r LReal
4 &] w Output
5 - Add nes
6 4 w InOyt
7 = <Add nes
8 40 v Temp
10 &§ + Return
11 = Circular_segment_return  LRes| i
1 #;”.1:culirisegn.enﬁ i= ﬁ(#:: E ACECI-#h#.#:) - ﬁr(zw:uh-sw(ahn * (#z~#h) l"
wﬂmw‘..)
5. Call the FC with the circular segment calculation in any block (SCL).
<Operand> := <FC name> (parameter list);
Interface
Name Data type Defaultvalue Retain
1 4~ Input
G
4 - <Add new>
5 <40 v InOut
3 L] <Add new>
7 @ v switic [=]
8 @n area_1 LReal Nonretain
9 am area_2 LReal Nen-retain
10 40 = height LReal HNon-retain
M- radius LReal HNon-retain
12<4@n return LReal HNon-retain
13 = Add ne
14 | v Temp
15 = ne
= b
? 4area_l := "Circular segment return"(r := fradius, h := fheight);
Note You will find further information in the following entry:

What is the maximum number of parameters you are allowed to define in
STEP 7 (TIA Portal) for a function in the S7-1200/S7-1500 CPU?
https://support.industry.siemens.com/cs/ww/en/view/99412890

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 44


https://support.industry.siemens.com/cs/ww/en/view/99412890

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

: L« » g
Figure 3-6: “Add new block” dialog (FB)
Add new black X
MName:
[Block_1 |
Lenguage: [l |+
2 ..
Organimtion O manual
block
@ sutomat
Function blocks are code blocks that store their values permanently in instance data blocks,
Function block they remain available sfter the block has been execute
£
Function
L
Data block
more..
» | Additional information
[Ep——

FBs are blocks with cyclic data storage, in which values are permanently stored.
The cyclic data storage is realized in an instance DB.

Figure 3-7: Calling a function block

/ Instance DB

“Wy_FBD_BElock_
DB”

"My_FBD_Block”
~.—EN
"actual_
tempereture” — Jemperaturer Errord -
false = Store ENO 4

Call of a function block in the
block editor

Properties
e FBs are blocks with cyclic data storage.

e Temporary tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset to the default value (S7-1500
and S7-1200 Firmware V4). Thus, the resulting behavior is not accidental but
reproducible.

e Static tags keep the value from cycle to cycle.

Recommendation

e Use the function blocks in order to create subprograms and structure the user
program. A function block can also be called several times in different locations
of the user program. This makes programming of frequently recurring program
parts easier.

e If function blocks are applied multiply in the user program, use separate
instances, preferably multi-instances.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 45



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

3.24

Properties

Instances

The call of a function block is called instance. The data with which the instance is
working is saved in an instance DB.

Instance DBs are always created according to the specifications in the FB interface
and can therefore not be changed in the instance DB.

Figure 3-8: Structure of the interfaces of an FB

Narne Datentyp Defaulteeert Remanenz

» INput
Bx Boal false Non-Retain
Pulse EBool false Non-Retain
54 _Activ Bool false Man-Retain
Mext_Station Int 0 Non-Retain |n p ut

5
2

3

4

El

& Ny Output Output
7 Hx Bool false Norn-Retain

5 By InOut InOUt
9 Act_Station Int 0 Non-Retain

10 SHRN Ulnt il Non-Retain Static
171 B Static

12 FE_Sx Eoal false non-Retain

13 Sx Bool false Non-Retain

14 3 IEC Tirner IEC TmER Mar-Retain

15 & Ternp

16 MinTitne Tirne - -

17 MaxTime Time |

The instance DB consists of a permanent memory with the interfaces input, output,
InOut and static. In a volatile memory (L stack) temporary tags are stored. The

L stack is always only valid for the current process. l.e. temporary tags have to be
initialized in each cycle.

e Instance DBs are always assigned to a FB.

¢ Instance DBs do not have to be created manually in the TIA Portal and are
created automatically when calling an FB.

e The structure of the instance DB is specified in the appropriate FB and can
only be changed there.

Recommendation

3.2.5

e Program it in a way so that the data of the instance DB can only be changed by
the appropriate FB. This is how you can guarantee that the block can be used
universally in all kinds of projects.

For further information, please refer to chapter 3.4 Block interfaces as data

exchange.

Multi-instances

With multi-instances called function blocks can store their data in the instance data
block of the called function block. l.e. if another function block is called in a function
block, it saves its data in the instance DB of the higher-level FBs. The functionality

of the called block is thus maintained even if it is transferred.

The following figure shows an FB that uses another FB (“IEC Timer”). All data is
saved in a multi instance DB. It is thus possible to create a block with an
independent time behavior, for example, a clock generator.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 46



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks
Figure 3-9: Multi-instances

Interface

Narne Data type
1 4@ - Input
2 @n Frequency Real -
3 @~ oupu Multi-instance DB
4 |an Q Bool
5 4= Countdown Time
6 < - InDut
7 = =add oS
§ fam - static =
. ] TOF_on TOF_TIME

Switch-on

delay call i ot Time
1" PT Time
12 ET Time FB Statics
ik Lol RU Bool TOF_TIME
12 IN Bool
15§ Q Bool

Advantages
e Reusability
e Multiple calls are possible
e Clearer program with fewer instance DBs
e Simple copying of programs
e Good options for structuring during programming

Properties

Multi-instances are memory areas within instance DBs.

Recommendation
Use multi-instances in order to ...
e reduce the number of instance DBs.
e create reusable and clear user programs.
e program local functions e.g. timer, counter, edge detection.

Example

If you require the time and counter function, use the “IEC Timer” blocks and the
“IEC Counter” blocks instead of the absolutely addressed SIMATIC Timer. If

possible, also always use multi-instances here. This keeps the number of blocks in

the user program low.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

47



3 General Programming

Copyright © Siemens AG 2015 All rights reserved

3.2 Program blocks

Figure 3-10: Library of the IEC Timer

~ [@] Timer operations
IEC Timers
E i Generate pulse
2 TON Generate on-delay
4 TOF Generate offdelay
4 TONR Time accumulator
H)| TRy Start pulse timer
@ —{TOM}- Start on-delay timer
@ —~(TOF)- start offdelay timer
@ —(TOMR}- Time accumulator
@ —(RT}— Resettimer
— i
SIMATIC Tirmers
S_PULSE Assign pulse timer parameters and start

S_PEXT Assign extended pulse timer parameters and start
5_0DT Assign on-delay timer parameters and start
5 _0DTs Assign retentive on-delay timer parameters and start
S_OFFDT Assign offdelay timer parameters and start
H)| =Ry Start pulse timer
@ —5E) Start extended pulse timer
@ =50} Start on-delay timer
H) —is5) Start retentive on-delay timer
@ —(5F) start offdelay timer
Note You will find further information in the following entry:

How do you declare the timers and counters for the S7-1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67585220

3.2.6 Global data blocks (DB)

Figure 3-11: “Add new block” dialog (DB

Add new block s
Name:

[Data_block_1 J
Tpe # Global 0B [-]
E e | —
Organiaton Number:
block a

| Bk | O manual

@ automatic

e

Function block Description

Data blocks (DBs) are data arcas in the user program which centain user data
select one of the following types:
~Aglobal data block

:.. - Aninstance data block
FC

Function

.

Data block

more...

> | Additional information

ET——

Variable data is located in data blocks that are available to the entire user program.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 48


https://support.industry.siemens.com/cs/ww/en/view/67585220

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

Figure 3-12: Global DB as central data memory

o S el
N

Advantages

e Well-structured memory area
e High access speed

Properties

e All blocks in the user program can access global DBs.
e The structure of the global DBs can be arbitrarily made up of all data types.

e Global DBs are either created via the program editor or according to a
previously created “user-defined PLC data type" (see chapter 0

e STRUCT data type and PLC data types).

Recommendation

o Use the global DBs when data is used in different program parts or blocks.

Note You will find further information in the following entry:

What access types, value columns and operating options are there for the global
data blocks in STEP 7?
https://support.industry.siemens.com/cs/ww/en/view/68015630

3.2.7 Downloading without reinitialization

In order to change user programs that already run in a controller, S7-1200
(firmware V4.0) and S7-1500 controllers offer the option to expand the interfaces of
optimized function or data blocks during operation. You can load the changed
blocks without setting the controller to STOP and without influencing the actual
values of already loaded tags.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 49


https://support.industry.siemens.com/cs/ww/en/view/68015630

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

Figure 3-13: Downloading without reinitialization

Execute the following steps whilst the controller is in RUN mode.

1.
2.
3.

Advantages

Properties

Enable “Downloading without reinitialization”
Insert new defined tags in existing block
Load block into controller

Reloading of new defined tags without interrupting the running process. The
controller stays in “RUN” mode.

Downloading without reinitialization is only possible for optimized blocks.

New defined tags will be initialized. The remaining tags keep their current
values.

A block with reserve requires more memory space in the controller.

The memory reserve depends on the work memory of the controller; however it
is max. 2 MB.

It is assumed that a memory reserve has been defined for block.
By default the memory reserve is set to 100 byte.

The memory reserve is defined individually for every block.

The blocks can be variably expanded.

Recommendation

Define a memory reserve for blocks that are to be expanded during
commissioning (e.g. test blocks). The commissioning process is not interrupted
by download of new defined tags. The current values of already existing tags
are kept.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 50



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

Example: Setting memory reserve in block

The following table describes how you can set the memory reserve for the
downloading without reinitializing.

Table 3-3: Setting memory reserve

Step

Instruction

1.

Right-click any optimized block in the project navigator and select “Properties”.

~ [ PLC_1 [CPU 15163 PNIDF]
[IY Device configuration

1 Online & diagnostics
~ gl Program blocks
I Add new black
& Voin [081]

@ Global_D8 [D82]
08

Applysnapshotvalues as startvalues »

culsc
culy

» [ Watch and force tables | COPY3S ST

% Traces X Delete Del
3§ Program info Rename F2

PLCalarms

=] Compile r
] Telists Download to device 4

» [ Local modules & Go online Curl+k
» (B PLC 2[CPUI511 PNT | ¥ Go offine crriem P
» [ PLC_3 [CPU 1215C DCDC/D
» (g Common data

» [Bf] Dacume nta fion setfings

=» Generate source from blocks

Crosseference information  Shift=F11
3¢ Crosseferences. F11
1| call structure.

=1 Assignment st

DI e e
b [ Online access

b [ Card ReaderiUSB memory
Switch programming language »

Knowhaw protection

GIoBAI_DB_Re-Int X

General

General

Download without reinitializati

Information

Time stamps
Compilation reserve: es
Protection neEle qownioad witou Ton o 2
e retentive tags.
Retentive memory reserve (0 bytes available)

1. Click “Download without reinitialization”.
2. Enter the desired memory reserve for “Memory reserve”.
3. Confirm with "OK".

Note You can also set a default value for the size of the memory reserve for new
blocks in the TIA portal.

In the menu bar, navigate to "Options — Settings" and then to "PLC programming
— General — Download without reinitialization®.

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015 51




Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

Example: Downloading without reinitialization

In the following example it is displayed how to download without reinitialization.

Table 3-4 Downloading without reinitialization

Step Instruction
1. Requirement: a memory reserve has to be set (see above)
2. Open, e.g. an optimized global DB.
3. Click the “Download without reinitialization” button and confirm the dialog with
“OK”
JGlnhaLDBJ._Linit
~ g
s DN
3 4@n Date_ret Int
Check_reinit
4. Add a new tag (retentive tags are also possible).
FH R PeeeD (M
Global_DB_Re-init
Mame Data type Start value Retain
1 <@ ~ Static
2 <@® » Date DL DTL#1970-01-014
3 @nr Date_ret Int
s fa Test_var_1 - E 620 [=) I
c = Test_var_2_retain Byte 620 =
7 = o
5. Download the block to the controller.
6. Result:
e Actual values of the block remain
Note Further information can be found in the online help of the TIA Portal under

“Loading block extensions without reinitialization”.

You will find further information in the following entry:

What options does the S7-1500 provide for downloading data in RUN?
https://support.industry.siemens.com/cs/ww/en/view/68015630

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015

52



https://support.industry.siemens.com/cs/ww/en/view/68015630

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

3.2.8 Reusability of blocks

The block concept offers you a number of options to program in a structured and
effective way.

Advantages

e Blocks can be used universally in any location of the user program.
e Blocks can be used universally in different projects.

e When every block receives an independent task, a clear and well-structured
user program is automatically created.

e There are clearly fewer sources of errors
e Simple error diagnostic possible.

Recommendation
If you want to reuse the block, please note the following recommendations:

e Always look at blocks as encapsulated functions. l.e. each block represents a
completed partial task within of the entire user program.

e Use several cyclic Main OBs to group the plant parts.

e Always execute a data exchange between the blocks via its interfaces and not
via its instances (see chapter 3.4.1 Block interfaces as data exchange).

¢ Do not use project-specific data and avoid the following block contents:
- Access to global DBs and use of individual instance DBs
- Access to tags

- Access to global constants

e Reusable blocks have the same requirements as know-how-protected blocks
in libraries. This is why you have to check the blocks for reusability based on
the “Block can be used as know-how protected library element” block property.
Compile the block before the check.

Figure 3-14: Block attributes

|Attributes |

[FiEC check

[ | Handle errors within block

| lj Elock can be used as know-how protected library element

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 53



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.2 Program blocks

3.2.9 Auto numbering of blocks

For internal processing, required block numbers are automatically assigned by the
system (setting in the block properties).

Figure 3-15: Auto numbering of blocks

Devices
HQQ

Project tree

+[qvi3a
¢ Add new device
i Devices & networks
~ [ FW15 [CPU 15163 PN

Devices

OO

[} Device configuration Brojectitieg

m 4

~Jwviza
%/ Online & diagnostics K Add new device || Deviees |
~ kel Program blocks T Do i HOO 2
I Add new block ~ [l FW15 [CPU 1516-3 PN/DF]
: :Zl‘]’!:::i i IV Device configuration | _ 1y 4
& online & disgnostics B Add new device
= 'k Frogram blocks R e T et
I Add new block ~ [l FW15 [CPU 1516-3 PN/DP]
4 Main [0B1] JIY Device configuration
o FREE R %/ Online & diagnostics
E-¥FIFOQueve 1 [FB4] + [ Program blocks
[ Add new block
4 Main [OB1] I}
8 Kopieren und Einfligen 4 FIFOQueue [FB4]
Konflikt durch gleiche E 3FiFOGueve 1 [FB1]

Blocknummer

Q Beim Ubersetzen nummeriert das

System den kopierten Baustein um und
|6st den Konflikt.

Advantages

e Conflicting block numbers, e.g. as a result of copying, automatically deletes the

TIA Portal during compilation.

Recommendation

e Keep the current setting “automatic” unchanged.

Figure 3-16: Setting in the block

fb_Kiteboard [FBT]

General ;

General
- General
Information
Time stamps
Compilation Mame: |f‘b)(iteboard ‘
Protection Type |FB ‘
Attributes
Download without reinitialization | Language |SCL ‘v‘
. nmber: [T 7]
L ) manual
.
L (#) automatic
< L}

B

oK

1 | Cancel ‘

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

54



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.3 Block interface types

3.3

3.3.1

Properties

3.3.2

Properties

Block interface types

FBs and FCs have three different interface types: In, InOut and Out. Via these
interface types the blocks are provided with parameters. The parameters are
processed and output again in the block. InOut parameters are used to transfer
data to the called block as well as to return results. There are two different options
for this parameter transfer.

Call-by-value with In interface type

When calling the block, the value of the actual parameter is copied onto the input
parameter of the block for the In interface type. For this, additional memory is
allocated in the called block.

Figure 3-17: Copying of the value to the input parameter

e Each block displays the same behavior with connected parameters
e Values are copied when calling the block

Call-by-reference with InOut interface type

When calling the block the address of the actual parameter of the Input parameter
is referenced for the InOut interface type. For this, no additional memory is
required.

Figure 3-18: Referencing the value (pointer to data storage of the parameter)

"My _string"
value: 'test'

e Each block displays the same behavior with connected parameters
e Actual parameters are referenced with the block call

Recommendation

e Generally use the InOut interface type for structured tags (e.g. of the ARRAY,
STRUCT, STRING, type...) in order to avoid enlarging the required data
memory unnecessarily.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 55



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.4 Storage concept

3.3.3 Overview for transfer of parameters

The following table summarizes how S7-1200/1500 block parameters are
transferred by means of elementary or structured data type.

Table 3-5: Overview for transfer of parameters

Block type / formal parameter Elementary data Structured data

type type

FC Input copy reference

Output copy reference

InOut copy reference
FB Input copy copy
Output copy copy

InOut copy reference

Note

If, when calling the block, optimized data is transferred to a block with property
“standard access”, this data is principally transferred as a copy. If the block
contains many structured parameters, this may quickly cause the temporary
memory area (local data stack) of the block to overflow.

This can be prevented by creating the same access type for both blocks (see
chapter 2.6.5 Parameter transfer between blocks with optimized access and
standard access).

3.4 Storage concept

For STEP 7 there is generally the difference between the global and local memory
area. The global memory area is available for each block in the user program. The
local memory area is only available within the respective block.

34.1 Block interfaces as data exchange

If you are encapsulating the functions and program the data exchange between the
blocks only via the interfaces, you will clearly have advantages.

Advantages
[ ]
[ ]

Program can be made up modularly from ready blocks with partial tasks.
Program is easy to expand and maintain.

Program code is easier to read since there are no hidden cross accesses.

Recommendation

If possible, only use the local tags. This is how the blocks can be used
universally and modularly.

Use the data exchange via the block interfaces (In, Out, InOut), to ensure the
reusability of blocks.

Only use the instance data blocks as local memory for the respective function
block. Other blocks shall not be written into instance data blocks.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 56




Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.4 Storage concept

Figure 3-19: Avoiding accesses to instance data blocks

FB

Local

e
ﬂ;.

If only the block interfaces are used for the data exchange it can be ensured that
all blocks can be used independent from each other.

Local

Figure 3-20: Block interfaces for data exchange

-

—v

/ Local
FB

Local

3.4.2 Global memory

Memories are called global when they can be accessed from any location of the
user program. There are hardware-dependent memories (e.g. bit memory, timers,
counters, etc.) and global DBs. For hardware-dependent memory areas there is the
danger that the program may not be portable to any controller because the areas
there may already be used. This is why you should use global DBs instead of
hardware-dependent memory areas.

Advantages

e User programs can be used universally and independent from the hardware.

e The user program can be structured modularly without dividing bit memory
address areas for different users.

e Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

Recommendation
e Do not use any bit memory and use global DBs instead.

e Avoid hardware-dependent memory, such as, for example, clock memory or
counter. Use the IEC counter and timer in connection with multi-instances
instead (see chapter 3.2.5 Multi-instances). The IEC timers can be found under
“Instructions — Basic Instructions — Timer operations”.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 57



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.4 Storage concept

Figure 3-21: IEC Timers

~ [@] Timer operations

IEC Timers

& T Generate pulse

2 TON Generate on-delay

& TOF Generate offdelay

4 TONR Time accumulator

)| (TP} Start pulse timer

)| ~(ToM)- Start on-delay timer

H)| «(TOF}- start offdelay timer

)| —(TOMR}- Time accumulator

H) -(RT}- Rezet timer

) —(FT)— Load time duration
343 Local memory

e Static tags
e Temporary tags

Recommendation

e Use the static tags for values that are required for the next cycle.

e Use the temporary tags as cache memory in current cycle. The access time for

temporary tags is shorter than for static ones.

Note Optimized blocks: Temporary tags are initialized in any block call with the
“default value” (S7-1500 und S7-1200 Firmware V4).
Non-optimized blocks: Temporary tags are undefined for each call of the block.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

58



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.4 Storage concept

344 Access speed of memory areas

STEP 7 offers different options of memory accesses. For system-related reasons
there are faster and slower accesses to different memory areas.

Figure 3-22: Different memory accesses

Access speed

elementary data type FC
parameter

©

wora

-]

Non-retain tags

. fast

Non-structured Interface

Name

O intermediate . slow

Data type

P> Input
b Output
r InOut

Retentive tags

~ Static

Static_Monremanent_Var Int

L Temp_Var

Static_Remanent_Var Int
Static_SetinlDE_Var Int

T t | 7 |
emporary tags BN * > Array Var
Temp

Array[0.10]of Int

Int

Default value Retain W

[

Non-retain
Retain

Setin IDE
Mon-retain

-

Indexed accesses with
runtime tindex

Accesses to checks for at
runtime require
(register, indirect and
indirect DB accesses)

Network 1:

-

#hrray Var["IndexedRccess™]

e OFlf DB [ #Temp_Var]
o L OW [ "IndirectBccess”]

OptimizedDB . P
B Copying between optimized StandardDE
Name Data type d timized block Name Data type Offset .
al~ e ! ancnoMropfimied Poc® filafsee |
2 aiw OptimizedDB_Var Int 2 4w StandardDB_Var Int 0.0

Access to opt

imized DBs

Fastest accesses in the S7-1200/1500 in descending order

Access to non-optimized
blocks

1. Optimized blocks: Temporary tags, parameters of an FC and FB, non-retentive

static tags

2. Optimized blocks whose accesses for compiling are known:

- Retentive FB tags
- Optimized global DBs

3. Access to non-optimized blocks

4. Indexed accesses with index that was calculated at runtime (e.g. Motor [1])

5. Accesses that require checks at runtime

- Accesses to DBs that are created at runtime or which were opened
indirectly (e.g. OPN DBJi])

- Register access or indirect memory access

6. Copying of structures between optimized and non-optimized blocks (apart from

Array of Bytes)

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

59



3 General Programming

Copyright © Siemens AG 2015 All rights reserved

3.5 Retentivity

3.5 Retentivity

In the event of a failure of the power supply, the controller copies the retentive data
with its buffer energy from the controller’'s work memory to a non-volatile memory.
After restarting the controller, the program processing is resumed with the retentive
data. Depending on the controller, the data volume for retentivity has different
sizes.

Table 3-6: Retentive memory for S7-1200/1500

Usable retentive memory for bit memory,
Controller times, counters, DBs and technology
objects
CPU 1211C,1212C, 1214C, 1215C, 1217C 10 Kbytes
CPU 1511-1 PN 88 Kbytes
CPU 1513-1 PN 88 Kbytes
CPU 1515-2 PN, 1516-3 PN/DP 472 Kbytes
CPU 1518-4 PN/DP 768 Kbytes

Table 3-7: Differences of S7-1200 and S7-1500

S7-1200 S7-1500

Retentivity can only be set for bit memory Retentivity can be set for bit memory, times
and counters

Advantages

¢ Retentive data maintain their value when the controller goes to STOP and back
to RUN or in the event of a power failure and a restart of the controller.

Properties

For elementary tags of an optimized DB the retentivity can be set separately. Non-
optimized data blocks can only be defined completely retentive or non-retentive.

The retentive data can be deleted with the actions "memory reset" or "Reset to
factory settings" via:

e Operating switch on the controller (MRES)
e Display of the controller
e Online via STEP 7 (TIA Portal)

Recommendation

e Avoid the setting “Set in IDB”. Always set the retentive data in the function
block and not in the instance data block.
The “Set in IDB” setting increases the processing time of the program
sequence. Always either select “Non-retain” or “Retain” for the interfaces in the
FB.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 60



3 General Programming

Copyright © Siemens AG 2015 All rights reserved

3.5 Retentivity

Figure 3-23: Program editor (Functions block interfaces)

eI T IGOREE ICEE L
Interface

Name Data type Defaultvalue Retain Al
1 | - Input
2 = <Hinufligen:
3 4 - Output
4 L <Hinaufiigens
5 4@ - InOut
5 = <Hinzufligens
7 4@ w Static
8 @@= area_l LReal 0.0 | Non-retain | v |
o @@= area_2 LReal 0.0 Mon-retain
ol@s  height LReal 00
11 | radius LReal 0.0 ————
12 @@ = return LReal 0.0 MNen-retain

Figure 3-24: Program editor (Data block)

FF hEg FeeB B2 S
DBControlPart 7
Hame Dsta type | Startvalue JRetain Access\blefrom}

1 |4l = Smatic = A
2 4= WriteDBL " Bool =) =] >
3 4= WriteDBL_P Bool =) =] é
4 =  WRITRETVAL Int B M 3
5 41  WRTBusy Bool B =M
6 |€0=  ReadDBL Bool =] M &
7 @@ ReadDBL_F Baal ] =) }
g8 |lam= READ_RET_VAL Int =] - .
9 a= READ_Busy Bool fa =] M f
~WW%M\M~_/WM

Example: Retentive of PLC tags

The setting of the retentive data is performed in the tables of the PLC tags, function
blocks and data blocks.

Figure 3-25: Setting of the retentive tags in the table of PLC tags

Projectl » PLC_ 2 [CPU 1214CDUDWUDC] » PLC 2 » PLCtags » Default tag

p—
e B D'
Default tag table
Marne Data type Address Retain  Visibl.  Canb
< Start_1_ Bool %l 0 =] =]
2 @ Stop_1_5 Bool 1 = =
3 < clock_bit_ Eoal = =
4 | cle Baool B B
5 <@ clock_bit_3 Eoal 0 [l LA _
[P T IERRPa Retain memory X
7 < clock_b_5
R : Number of memory bytes starting at MBO:
Number of SIMATIC timers starting at TO: _‘
Number of SIMATIC counters starting at CO: IC' Retentivity can be set from

address 0 onward!

Available retentive memory (Bytes): _434000
[ss000 ] e.g. from MBO, TO or CO

oK Cancel

Example: Retentive counter

You can also declare instances of functions (timer, counter, etc.) retentive. As
already described in chapter 3.2.5 Multi-instances

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 61



3 General Programming

Copyright © Siemens AG 2015 All rights reserved

3.6 Symbolic addressing

Figure 3-26: Retentive counter as multi-instance

Interface 5
Name Data type Default value Retain 15‘5
7 4@ - Static ?
8 < = w IEC_Counter_Instance IEC_COUNTER Retain - I;
9 @ = cu Bool false })

1 " flee Retain ¢
B ;- SR |- ¢
12 a1 L} LD Bool false Retain 5’1
13 a1 (] Qu Boal false Retain 7
14 |4 U QD Bool false Retain {\’
5@ = PV Int 0 Retain ?
sl = o Int 0 Retain 3
[<] n J>
T )
» Blocktitle: .. 5)
- Network 1: ... g‘
7

¢

#IEC_Counter_
Instance

= :
Int {
#CoumtsSignal — cu q
e — v — #CurrentValue P

50 2 Q— f)

R e e T e T P A NP NV

Note If the retentive memory on the PLC is not sufficient, it is possible to store data in

the form of data blocks that are only located in the load memory of the PLC. The
following entry is described by taking the example of an S7-1200. This
programming also works for S7-1500.

You will find further information in the following entry:

In STEP 7 (TIA Portal), how do you configure data blocks with the "Only store in
load memory" attribute for an S7-12007?
https://support.industry.siemens.com/cs/ww/en/view/53034113

3.6 Symbolic addressing

3.6.1 Symbolic instead of absolute addressing

The TIA Portal is optimized for symbolic programming. This results in many
advantages. Due to the symbolic addressing you can program without having to
pay attention to the internal data storage. The controller handles where the best
possible storage is for the data. You can therefore completely concentrate on the
solution for your application task.

Advantages

e Easier to read programs through symbolic tag names
e Automatic update of tag names at all usage locations in the user program

e Memory storage of the program data does not have to be manually managed
(absolute addressing)

e Powerful data access
¢ No manual optimization for performance or program size reasons required
e IntelliSense for fast symbol input

e Fewer program errors due to type checking (validity of data types is checked
for all accesses)

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 62


https://support.industry.siemens.com/cs/ww/en/view/53034113

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.6 Symbolic addressing

Recommendation

Example

e “Don’t bother about the organization of the data storage*

e “Think” symbolically. Enter the “descriptive” name for each function, tag or
data, such as, for example, Pump_boiler_1, heater_room_4, etc. This is how a
generated program can easily be read without requiring many comments.

e Give all the tags used a direct symbolic name and define it afterwards with a

right-click.

Table 3-8: Example for creating symbolic tags

Step Instruction
1. Open the program editor and open any block.
2. Enter a symbolic name directly at the input of an instruction.
%82
“TMAIL_C_DE"
TMAIL_C
EN ENO
_ Q DOME —--
#Mail_TO BUSY =i ...
ERROR — -
<777= — SUBJECT STATUS
TEXT
MAIL_ADDR_
<777 — PARAM -
3. Right-click next to the block and select “Define tag...” in the context menu.
%DB2
“ThMAIL_C_DE"
TMAIL_C
i El ERlt @ Define tag... Ctrl+5hift+l
] falze — REQ DOME _ _ T
#Mail_TO BUSY Fewire 15 hifte
ERRCR — .-
<2775 — SUBIECT STATUS i‘, cut CrrleX
B ;ﬁ Copy Ctrl+C
[Jg| Paste Crrl+v
¥ Delete Cel
MAIL_ADDR_ Goto 4
777> — PARAM - Cross-reference hift+F11
H’;q Insert netwark Ctrl+R
Insert STL network
nsert empty bo hift+
Properties Alt+Enter
Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 63




Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.6 Symbolic addressing

Step

Instruction

4. Define the tag.
Define tag

Section
| Local In -

Local Out

Local InOut
Local Static
Local Temp
Global Memaory
Global Input

Global Output

=Mo tags used=

Address Data type  PLC tag table

string B

Comment

[-]

| Define | | Cancel

There is an elegant method to save time, if you want to define several tags in a
network. Assign all tag names first of all. Then define all tags at the same time with

the dialog of step 4.

Note You will find further information in the following entry:

Why is universal definition and utilization of symbols in STEP 7 (TIA Portal)

obligatory for the S7-15007?

https://support.industry.siemens.com/cs/ww/en/view/6 7598995

3.6.2

ARRAY data type and indirect field accesses

The ARRAY data type represents a data structure that consists of several elements
of the same data type. The ARRAY data type is suitable, for example, for the
storage of recipes, material tracking in a queue, cyclic process acquisition,

protocols, etc.

Figure 3-27: ARRAY with 10 elements of the Integer (INT) data type

...[Write » PLC_1 » Program blocks » Field_|

=k g o
Field_Data
Mame Data type
1w Static
2 Counter Dint
3 « Numbers |array[0 9] oflnt_v
4 Mumbers[0] Int
5 Mumbers[1] Int
& Mumbers[2] Int
7 Mumbers[3] Int
g Mumbers[4] Int
9 Mumbers[5] Int
10 Mumbers[&] Int
11 Mumbers[7] Int
12 Mumbers[&] Int
13 Mumbers[9] Int
4 11

You can indirectly access individual elements in the ARRAY with a runtime tag

(array [“index”]).

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

64



https://support.industry.siemens.com/cs/ww/en/view/67598995

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.6 Symbolic addressing

Figure 3-28: Indirect field access

& ..» PLC_1[CPU 1516-3 PN/DP] » Program blog

.
=

4 = = = 0@ NN R W N =

ok =2

Advantages

Properties

.
=1

LbE Rzl BT

Field_Data
Mame Dats type s
<@ = Static
<4l|® « MNumbers ‘P.rra)’[U..B]... |z|
<40 = Numbers[0] Dint
< = Numbers[1] Dint LAD / FBD MOVE
<20 = Mumbers[2] Dint
] = Numbers[3] Dint EN
- . Mumbers[4] Dint "Field_Data" Numbers[#i] IN 3 QUT1 #Field_Number
<0 = Numnbers[5] Dint
] = Numbers[6] Dint -
Lo = Numbers[7] Dint . . ‘
g = Numbers[8) Dint SCL: 1 #Field Number := "Field Data".Numbers[#1];
4Q =

Mumbers[9] Dint : z

Simple access since the data type of the ARRAY elements is irrelevant for the
access.

No complicated pointer creation required
Fast creation and expansion possible
Useable in all programming languages

Structured data type
Data structure made of fixed number of elements of the same data type
ARRAYs can be created also multi-dimensional

Possible indirect access with runtime tag with dynamic index calculation at
runtime

Recommendation

Use ARRAY for indexed accesses instead of pointer (e.g. ANY pointer). This
makes it easier to read the program since an ARRAY is more meaningful with
a symbolic name than a pointer in a memory area.

As run tag use the DINT data type as temporary tag for highest performance.
Use the “MOVE_BLK” instruction to copy parts of an ARRAY into another one.
Use the “GET_ERR _ID” instruction to catch access errors within the Array.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 65



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.6 Symbolic addressing

Note You will find further information in the following entry:

How do you implement

an array access with an S7-1500 with variable index?

https://support.industry.siemens.com/cs/ww/en/view/6 7598676

How do you address securely and indirectly in STEP 7 (TIA Portal)?

https://support.industry.

siemens.com/cs/ww/en/view/97552147

How, in STEP 7 (TIA Portal), can data be transferred for S7-1500 between two
tags of data type “Array of Bool” and “Word”?

https://support.industry.

siemens.com/cs/ww/en/view/108999241

3.6.3 STRUCT data type and PLC data types

The STRUCT data type represents a data structure which is made up of elements
of different data types. The declaration of a structure is performed in the respective

block.

Figure 3-29: Structure with elements with different data types

& g ReaB I 2

Datablock
Marne Datentyp Startwei

1 <@ = Static
2 Qg - my st Struct i
T | = Interfaceld Ulint 64
4 |4 = D Ulnt 1
5 L ConnectionType Byte 1650
6 < L ActiveEstablished Bool true
7 4 8 » RemoteAddress IP_Vd
g a1 - RemotePort Ulnt 2000
o |-a1 = LocalPort Uint 0

In comparison to structures, PLC data types are defined across the controller in the
TIA Portal and can be centrally changed. All usage locations are automatically

updated.

PLC data types are declared in the “PLC data types” folder in the project navigation

before being used.

Figure 3-30: PLC data types

" = T = |
OO B e YR BT
Engine_Data
= | 7] Projectl Name Data type Default v.. Visiblein ... Setting va..
B Add new device 1 <@ w Fower Struct =]
oy Devices & networks 2 @ MaxFower  Int 1000 =] B8
~ [ PLC_1 [€PU 1516-3 PN/DP] 3 |lag . cosfi Real 0.89 =] B
IIY Device configuration 4 4] ~ Elvalues Struct =]
R Online & diagnostics 5 @n= u Int 10000 =] B
-
} g Program blocks 6 @@= 1 Int 335 =] B8
Fa =
} L Technology objects 7 a@n f Int 50 =] (0]
3 External source files 8 = dd ne
b L@ PLCtags 9 @ n Int 1480 =] ()]
1

w g PLCdata fypes
K Add new data type
'] Engine_Data

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

66


https://support.industry.siemens.com/cs/ww/en/view/67598676
https://support.industry.siemens.com/cs/ww/en/view/97552147
https://support.industry.siemens.com/cs/ww/en/view/108999241

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.6 Symbolic addressing

Advantages

e Achange in a PLC data type is automatically updated in all usage locations in
the user program.

e Simple data exchange via block interfaces between several blocks

Properties

e PLC data types always end at WORD limits (see the figures below).

e Please consider this system property when ...

- using different I/O areas (see chapter 3.6.4 Access to I/O areas with PLC
data types).
- using frames with PLC data types for communication.

- parameter records with PLC data types for 1/O.

- non-optimized blocks absolute addressing.

Figure 3-31: PLC data types always end at WORD limits

PLC datatype  Elements
Ar S a
VarByte_0
1st WORD
Defined size MyType VarByte 1
3 bytes 4
a
VarByte 2
\ 4
' | 2nd woRD
. |
Actual size | :
4 bytes !
L y L : v
Figure 3-32: PLC data type on I/O area
PLC data type 1/O area
MyType Profilschiene_0
Name Data twne
1 4m VvarBye 0 Byte
2 @m  VarByte_1 Byte 3 bytes
3 4@ VarByte_2 Byte
<] i ]
Tag Of | General H 10 tags || System constants || Texts |
PLC data type arne Tvne Address  Tao table Comment
Dafault tag table @ DI_WyType “MyType’ DIDO  Dafaulttag table || 4N
=== =1 Address.| Retain @ * DI_MyType “MyType”  DIO1 Dafaulttag table
Tpe B e I X @ " DI_MyType “MyType™ DIO.2 Dafaulttag table
; “ ?E,M):):_\ %‘UU = @ * DI_MyType "Myype” DIO3  Dafaulttsgtable i i
= wrme ~es nea oo || | Defined size
4 * ul_MyType MyType™  wiZa Lutsui1ag tacle 3 byteS
@ * DI_MyType "Mylype" DI25  Dafoulttag table
: 4 ~ DI_MyType “MyType™ DI2.6 Dafault tag table
An* 0l Tume "pATma" DI 27 Dafault tan rable
Iﬁ\l * DI_hyType *Mylype" DI3.0  Dafoulttag table
40 * DI_MyType “MyType™ DI 3.1 Dafaulttag table
Iﬂ * DI_MyType “MyType™ DI32 Dafaulttag table I
@ * DI_MyType "MyType" DI33  Dafsulttag table
Iﬂ * DI_kyType "MyType" DI3.4  Dafoulttag table I Actual size
€ ~ DI_MyType “MyType™ DI3.5 Dafaulttag table
@ * DI_MyType “MyType® DI36  Dafsulttag table I 4 bytes
ﬂ *%’\A‘Tm _'NNTm' w? _Daﬂffau_fﬂHEJ‘ y

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4, 11/2015

67



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.6 Symbolic addressing

Recommendation

e Use the PLC data types to summarize several associated data, such as, e.g.
frames or motor data (setpoint, speed, rotational direction, temperature, etc.)

e Always use PLC data types instead of structures for the multiple uses in the
user program.

e Use the PLC data types for structuring into data blocks.

e Use the PLC data types in order to specify a structure for a data block. The
PLC data type can be used for any number of DBs. You can easily and
conveniently create as many DBs of the same structure and adjust them
centrally on the PLC data type.

Note You will find further information in the following entries:

How do you initialize structures into optimized memory areas for the S7-1500
STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/78678760

How do you create a PLC data type for an S7-1500 controller?
https://support.industry.siemens.com/cs/ww/en/view/6 7599090

In STEP 7 (TIA Portal), how do you apply your own data types (UDT)?
https://support.industry.siemens.com/cs/ww/en/view/67582844

Why should whole structures instead of many single components be transferred
for the S7-1500 when a block is called?
https://support.industry.siemens.com/cs/ww/de/view/6 7585079

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 68


https://support.industry.siemens.com/cs/ww/en/view/78678760
https://support.industry.siemens.com/cs/ww/en/view/67599090
https://support.industry.siemens.com/cs/ww/en/view/67582844
https://support.industry.siemens.com/cs/ww/de/view/67585079

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.6 Symbolic addressing

With S7-1500 controllers, you can create PLC data types and use them for

PLC data type

e R e

oo

i}

r Engine
Name
1 |1 EngineOn
2 4@ ManualControlActive

N EngineTemp

Data type Defr
Bool -
Bool
Int

4

5 |4 =

6 <@ - Output

FB interface

Interface

Mame

Data type Defau

® w Engine_Param
EngineOn
ManualControlActive
EngineTemp

“Engine”
Bool
Bool

Int

6. PLC tag of the type of the created PLC data type and start address of the I/0O

Transfer of the PLC tag as actual parameter to the function block
8. Input of the function block is of the type of the created PLC data type

3.64 Access to I/O areas with PLC data types
structured and symbolic access to inputs and outputs.
Figure 3-33: Access to I/O areas with PLC data types
PLC tag
¥ & B T
2 Default tag table
MName Data
1 < E:gmeLParam “Engine”
= Add news E]}
FB Ca" 'f‘bEngiBeBlControl_
“fbEngineControl®
—EN ENO —
['EngmeLParam'] lEngine,Paraml
5. PLC data type with all required data
data area (%Ix.0 or %Qx.0, e.g., %10.0, %Q12.0, ...)
Advantages

e High programming efficiency

e Easy multiple usability thanks to PLC data types

Recommendation

e Use PLC data types for access to I/O areas, for example, to symbolically
receive and send drive telegrams.

Note
the user program:

“Enginel_
Faram”. “Enginel_
ManualControlActi Param®.
ve Engine0n

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

Individual elements of a PLC data type of a tag can also be directly accessed in

69



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.6 Symbolic addressing

3.6.5 Slice access
For S7-1200/1500 controllers, you can access the memory area of tags of the Byte,
Word, DWord or LWord data type. The division of a memory area (e.g. byte or
word) into a smaller memory area (e.g. Bool) is also called slice. In the figure below
displays the symbolic bit, byte and word accesses to the operands.
Figure 3-34: Slice access
r
“My| B_Variable| BYTE
Operands in 1
blocks, DBs and “My_W_Variable* | i WORD
E/A/IM %
o+~ “MyIDW_Variable" DWORD
Lee. My LW : Variable* LWORD
\. 52 H
Examples
Slice access: “My_LW_Variable.%D1“ “My_DW_Variable.%W1“ “My_W_Variable.%X0%
6><3 >2< >1< g Bit by bit
B7 B1 BO Bit by bit
W3 w1 Wo Word by word
D1 DO DWord by
DWord
Advantages

e High programming efficiency

¢ No additional definition in the tag declaration required

e Simple access (e.g. control bits)

Recommendation

Note

e Use the slice access rather than AT construct via accessing certain data areas
in operands.

You will find further information in the following entry:

How in STEP 7 (TIA Portal) can you access the unstructured data types bit-by-
bit, byte-by-byte or word-by-word and symbolically?
https://support.industry.siemens.com/cs/ww/en/view/57374718

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015

70


https://support.industry.siemens.com/cs/ww/en/view/57374718

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.7 Libraries

3.7 Libraries

With the TIA Portal you can create independent libraries from different project
elements that can be easily reused.

Advantages

e Simple storage for the data configured in the TIA Portal:
- Complete devices (controller, HMI, drive, etc.)
- Controller programs, blocks, tags, monitoring tables
- HMIlimage, HMI tags, scripts, etc.

e Cross-project exchange via libraries

e Central update function of library elements

e Versioning library elements

e Fewer error sources when using control blocks through system-supported
consideration of dependencies

Recommendations

e Create the master copies for easy reusability of blocks, hardware
configurations, HMI images, etc.

e Create the types for the system-supported reusability of library elements:
- Versioning of blocks
- Central update function of all usage locations

e Use the global library for the exchange with other users or as central storage
for the simultaneous use of several users.

e Configure the storage location of your global library so it can automatically be
opened when starting the TIA Portal.
Further information is available at:
https://support.industry.siemens.com/cs/ww/en/view/100451450

Note You will find further information in the following entries:

Which elements of STEP 7 (TIA Portal) and WinCC (TIA Portal) can you store in
a library as Type or as Master Copy?
https://support.industry.siemens.com/cs/ww/en/view/109476862

How can you open a global library with write access rights in STEP 7 (TIA
Portal)?

https://support.industry.siemens.com/cs/ww/en/view/37364723

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 71


https://support.industry.siemens.com/cs/ww/en/view/100451450
https://support.industry.siemens.com/cs/ww/en/view/109476862
https://support.industry.siemens.com/cs/ww/en/view/37364723

3 General Programming

Copyright © Siemens AG 2015 All rights reserved

3.7 Libraries

3.7.1 Types of libraries and library elements

Generally there are two different types of libraries:
e "Project library"
e "Global library".

The content consists of two storage types each:
e '"Types"

e "Master Copies"

Figure 3-35: Libraries in the TIA Portal

uuuuu ESm—— Totaly Integrated Automation
PORTA!

Options

Devices.

900

| Library view
v | Project library

EHEIT -

w L] Project library,
0
g Add n
~ & FB1
M;v1.01
Mm;V100

< ﬂ" Motor
V101

V100
L@ CopyofPLC_1

Global libraries
,,,,,,,,,, T
» LUl Buttons-and-Switches
» L] Long Functions
» LI Monitaring-and-control-objects

Heage

< TDetatis view
» L[] Documentation templates
» L[] inAC_MP
L[l User_Lib_Versions
- [ Types
ﬁAdd new type
- & FEl
w;VI01
Mm;V100
A ﬂ" Motor

> Linta (Projoct library)

(1) "Project library”
- Integrated in the project and managed with the project
- Allows the reusability within the project
(2) "Global library"
- Independent library
- Use within several projects possible
A library includes two different types of storage of library elements:
(3) "Master copies"

- Copy of configuration elements in the library (e.g. blocks, hardware, PLC
tag tables, etc.)

- Copies are not connected with the elements in the project.
- Master copies can also be made up several configuration elements.
(4) IITypeSII

- Types are connected with your usage locations in the project. When types
are changed, the usage locations in the project can be updated
automatically.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 72



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.7 Libraries

3.7.2

Advantages

Properties

- Supported types are controller blocks (FCs, FBs), PLC data types, HMI
images, HMI faceplates, HMI UDT, scripts).

- Subordinate elements are automatically typified.
- Types are versioned: Changes can be made by creating a newer version.
- There can only be one version of a used type within a controller.

Type concept

The type concept allows the creation of standardized automation functions that you
can use in several plants or machines. The type concept supports you with
versioning and updating functions.

You can use types from the library in the user program. This offers the following
advantages:

e Central update of all usage locations in the project
¢ Unwanted modifications of usage locations of types are not possible.

e The system guarantees that types always remain consistent by hindering
unwanted delete operations.

o If atype is deleted, all usage locations in the user program are deleted.

By using types you can make the changes centrally and update them in the
complete project.

Figure 3-36: Typifying with user libraries

Project 7o~ User library
1 SS
. -~ 1 RN
-
ue @<=~ - N/ Masgwpy without
ue @ typification

Use Central update to

newer version

Update

Use V2 . Typ V1
with typification
Use V2 \‘ yp atio

Typ V2

Use V2

e Types are always marked in the project for better identification

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 73



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.7 Libraries

3.7.3

3.74

Differences for typifiable objects f

or CPU and HMI

There are system-related differences between the typifiable objects for controllers

and HMI:
Table 3-9: Differences of types for controller

and HMI

Controller

HMI

Subordinate control elements are typified.

Subordinate HMI elements are not typified.

Subordinate control elements are
instanced.

Subordinate HMI elements are not
instanced.

Control elements are edited in a test
environment.

HMI images and HMI scripts are edited in a
test environment. Faceplates and HMI -
UDTs are directly edited in the library
without test environment.

Further information on the handling of libraries can be found in the following

example.

Versioning of a block

Example: Creating atype

The following example shows you how the basic functions of the libraries are used

with types.
Table 3-10: Creating a type
Step Instruction
1. Create a new PLC data type with “Add new data type” and create some tags.
Later on this is the subordinate type.
~ 1§ PLC_1 [CPU 1516-3 PN/DP] 3
JI¥ Device configuration
% online & diagnostics L 4
~ Ll Frogram blacks Fg e Reacel B2
I Add new block User_data_type_1
B Hoin [0B1] = i i
» [ Technalogy obiects — e pereuitul
» [} External source files 2 @  speed =
» g pLctgs 3 4@  Position Real JM
~ 78 PLC data types ” m—— =
2. Create a new function block with “Add new Block”. This is the higher-level type.

~ @ PLC_1[CPU1516-3 PN/DR
[IY Device configuration
%/ Online & diagnostics
=

Name:

+ Ll Program blocks |Block_1

B Add new black
IGE

010
Organizmtion
block

-

Function block

Language:

() manual

® automatic

Description:

Function blocks are code blocks that store their vi
sothat theyremain available after the block has be

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4,

11/2015

74




Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.7 Libraries

Step

Instruction

3.

Define an input tag of the data type you have created. The PLC data type is

therefore subordinate to the function block.
~ 1l PLC_1 [CPU 15163 PN/DP] oS =1k 4 e 02 Gy
[IY Device configuration iarace

Narne Dats type Def
s

¢/ online & diagnostics
~ | Program blocks
B Add new block
& Block_1 [FB1]

3 g

IN_1 “User_data_type_1"
ON_OFF
Speed

Fosition
=

Drag the function block via drag & drop into the “Types” folder in the project

library.
| Options

~ _l PLC_1 [CPU 1516-3 PN/DP]
[IY Device configuration

%/ online & diagnostics

~ [ Program blocks.

2 Block_1 [FB1]

-3 gy

SR

Optionally assign: Type name, version, author and comment and confirm the
dialog with “OK”.

‘Add type I3

o Define the properties for the new types.

The selected objects will be stored as new types in the library.
Specify the version, author and comment for this_

Name of type: ]

Author: | User ]

Comment:

There are dependent objects which wil be stored as new types in the library.

The subordinate PLC data type is automatically also stored in the library.

=

Options

#] Library view i

v ‘ Project library

= = [an -

~ L Project library
LI Types
K¢ Add new type

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015

75




Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.7 Libraries

Example: Changing a type

Table 3-11: Changing a type

Step

Instruction

1.

e
~ | Global librai =
o & Y
» L[] Buttons-and
» L[] Long Functi
J =) Print..
* L] Monitering 4
+ [ Decumenta
» L] winac_mP

[ Properties...

Options
# Library view
v | Project library ‘
IEH=ENE -
~ LUl Project library 1'
=[] Types ‘;
B Add new type 4
hE ¥clock g 1r

Assign version...
Library managemen

& Print preview..

Cirl+P

Alt+Enter

Right-click the block in the “Project library” and select “Edit type”

Select which controller is to be used as test environment and confirm the dialog

with “OK”.

Edit type

Instance Type and version
1 48 Block 1[FB1] Block_1V0.0.1

X

o Select a test environment to edit the type.

After a test instance is selected, a new "in testing” type version is created in the library. Select the
testinstance you wantto use:

1 [CPU 1516-3 PNIDP\Program blocks

If several controllers in the project use the selected block, a controller has to be
selected as test environment.

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015

76




Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.7 Libraries

Step

Instruction

3.

The library view opens. A new version of the block has been created and is now
marked with “in test”.

Project Edit View Insert Online Options Tools Wwindow Help

U (Y sveproiert & M E) H X Ds: TS M EH B R coonine F cociline fp IR % 1] 14 1
| I §7-1500_Libraries_V12_SP1 » PLC 1 [CPU 1516-3 PN/DP] » Progrz

Options
[2] Lirery view Blaass o 2= FENGCC
el v | Project library Interface
EHENE - Name Data type Default value
~ L Project library o~ Input
- [ Types 2 @= ~ “User_data_type_1"
A S @ =  ONOFF Bool a
Add new type
- -5aluck1 ke 4 4« = Speed Int 0
T Vo’oz[mmd 5 @ = Position Real
= 6 = In_2 Word
4G v001 e
w [ User_data_nype_1
EjVv0.01 s
s

¥ [7] Master copies

—HF =i =0 — =1
~ | Global libraries

Fd 4 B
» LUl Buttons-and-Switches

» LUl Long Functions v Network 1:
» L] Monitoring-and-contral-objects. Comment

» L[] Documentation templates
¥ LUl winAc_hP |
» Ll User_Lib_Versions

e Y e

~ Block title:

Comment

Add ne : S
v Du(;;u‘(‘ o g

Add another input tag.

AEPE & OECE: A C BB = ¢
Interface

Mame Dt type Default value Retain
<@ ~ Input
- I *User_data_type_1" HNon-retain

. ON_CFF Bool fals HNon-retain
. Speed Int HNon-retain
-

Position Real Non-retain
e =

Word 1 Non-ret...

In this place you have the option to test the change on the block by loading the
project onto a controller. When you have finished testing the block, continue with
the following steps.

Click the “Release version” button.

T L=l B B

Interface

MName Data type Defaultvalue Retain
1 <@~ Input

2 = v N “User_data_type_1"

3 = N2 Word 620

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015 77




Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.7 Libraries

Step

Instruction

6.

A dialog box opens. Here you can store a version-related comment. Confirm the

dialog with “OK”.

Release type version

o Define the properties for the released type version.

Anew version will be released for the selected types.
Assign them common properties or confirm the recommended properties.

x|

Name of type: |Elock_1

Author: |User

Comment:

v | Options

Update instances in the project

[) Delete unused type versions from the library

(D

If there are several usage locations of the block in different controllers of the
project, you can update them all at the same time: “Update instances in the

project”.

If older versions of the element are no longer required you can delete them by
clicking “Delete unused type versions from library”

Close the library view with “Close library view”

-
Project Edit View Insert Online  Opd

Y saveprojer & M 3

| | Libraries

brary view
oject library
Ha [
~ U] Froject library
~ [7] Types
B Add new type
~ & Block_1
E &Y 0.0.2 [in testf
4 V001
v [if user_data_type_1
Iij v 0.0.1

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015

78




3 General Programming

Copyright © Siemens AG 2015 All rights reserved

3.8 Increasing performance with process interrupts

3.8 Increasing performance with process interrupts

The processing of the user program can be influenced by events such as process
interrupts. When you need a fast response of the controller to hardware events
(e.g. arising edge of a channel of a digital input module), configure a process
interrupt. For each process interrupt a separate OB can be programmed. This OB
is called by the operating system of the controller in the event of a process
interrupt. The cycle of the controller is therefore interrupted and continued after
processing the process interrupt.

Figure 3-37: Process interrupt is calling OB

Event

e.g. falling
e.g. rising edge E6.1

edge EO.0

Hardware Hardware
interrupt

OB40

interrupt_1
OBxxx

In the following figure you can see the configuration of a “hardware interrupt” in the
hardware configuration of a digital input module.

Figure 3-38: Configuring hardware interrupt

3 4 5 6 7 <
Rail_0
< [ b
T
Device overview
J General ” 10 tags ” Texts
» General Hardware interrupts
« Module parameters
General
 Channel template [+ Enable rising edge detection:
Inputs
EDEUERE Eventname:
~ DI6
General Hardware interrupt: Hlich\ 0_rising_ed; o
~ Inputs Priarity E gHi_ch | 0 1 _edge [OB40];
g 4 HI_channel_0_falling_edge [0B41]
m—
J Y T T . .
R e il
Advantages

e Fast system response to events (rising, falling edge, etc.)
e Each event can start a separate OB.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 79



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.8 Increasing performance with process interrupts

Recommendation

e Use the process interrupts in order to program fast responses to hardware
events.

e If the system responses are not fast enough despite programming a process
interrupt, you can still accelerate the responses. Set as small an “Input delay”
as possible in the module. A response to an event can always only occur if the
input delay has lapsed. The input delay is used for filtering the input signal in
order to, for example, compensate faults such as contact bounce or chatter.

Figure 3-39: Setting input delay

o 3 4 5 [ 7
Rail_0
< [ I ] ‘
=
Device overview
L
J General ” 10 tags ” Texts '
» General il I'
* Module parameters > s r
General Apply to all channels that use the template 4
* Channel template 1£
Inputs Diagnostics &
DI Configuration I
~ DIl ["] Mo supplyvoltage L+ 1
General [ wire break
* Inputs
GronslE Input parameters
Channel 1
Channel 2 Input delay: | 0.05 ms |-
Channel 3
Channel 4 | L A
Channel 5 L 04
L 1.6
Channel 6 i 32
Channel 7 il 128
Channel 8 20
Pl i, g A il G P AP G P

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 80



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.9 Additional performance recommendations

3.9 Additional performance recommendations

Here you can find some general recommendations that enable faster program
processing of the controller.
Recommendation

Note the following recommendations for programming S7-1200/1500 controllers in
order to achieve a high performance:

e LAD/FBD: Disable “generate ENO” for blocks. This avoids tests at runtime.

e STL: Do not use registers since address and data registers are only emulated
for compatibility reasons by S7-1500.

Note You will find further information in the following entry:

How do you disable the ENO enable output of an instruction?
https://support.industry.siemens.com/cs/ww/en/view/67797146

How can you improve the performance in STEP 7 (TIA Portal) and in the
S7-1200/S7-1500 CPUs?
https://support.industry.siemens.com/cs/ww/en/view/37571372

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 81


https://support.industry.siemens.com/cs/ww/en/view/67797146
https://support.industry.siemens.com/cs/ww/en/view/37571372

Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

3.10 SCL programming language: Tips and tricks

3.10.1

Using call templates

Many instructions of the programming languages offer a call template with a list of
existing formal parameters.

Example

Table 3-12; Easy expanding of the call template

Step

Instruction

Drag an instruction from the library into the SCL program. The editor shows the
complete call template.
eI TE I I E R

Interface Name
» [5i] Bit logic operations.

v | Basic instructions ‘

Name Data type Def
1 <@ - Input » :g'nmemperatmn;
- d4d e = ~ [+i] Counter operations

3 <@ - ouput

b, CASE.. FOR.. WHLE. . .
~ or. Topd. Do. 8

1 EIZTEC Counter 0 Instance (CU

Now fill in the required parameter and finish the entry with the “Return” button.
e L ICEE

Interface
Name Data type
7 4@ - Static
8 40 = » IEC_Counter_0_Instan... CTU_INT
s a@-= Input_cu 8ool
0@ Input_Pv Int

1 = Addnews [E
12 @ v Temp
8l = ddnews

CASE... FOR... WHILE.
oF.

(]

1 ElgIEC_Countex_ Gf.‘ns:an:iw: —#Input CU, I
H d
3 g

The editor automatically reduces the call template.

1 CJRTEC Counter_0_Instance (CU:=21nput_CU, )
2 PV:=¢Inpuc_FV) ;

If you want to edit the complete call later on again, proceed as follows.

Click into the call at any place and then click “CTRL+SHIFT+SPACE”. You are
now in the Call Template mode. The editor expands the call again. You can
navigate with the “TAB” button through the parameters.

I

ZTEC_Congter 0 Instance (CO:=fInpuE CO,

Note: in the “Call Template” mode the writing is in italics.

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015 82




Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

3.10.2 What instruction parameters are mandatory?

If you are expanding the call template, the color coding will show you straight away
what formal parameters of an instruction are optional and which ones are not.
Mandatory parameters are marked dark.

3.10.3 Drag & drop with entire tag names

In the SCL editor you can also use drag & drop functions. For tag nhames you are
additionally supported. If you want to replace one tag for another, proceed as
follows.

Table 3-13: Drag & drop with tags in SCL

Step Instruction

1. Drag the tag via drag & drop to the tag in the program that is to be replaced.
Hold the tag for more than 1 second before releasing it.

Interface

FE DR EN GG G_~E}

Name Data type

7 @~ swiic
& |40 = ) IEC_Counter_0_instan... CTU_INT

9 |l Input_cU Bool

10 4 = Input_Pv int
= )

> hold for 1 second

The complete tag is replaced.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 83



3 General Programming

Copyright © Siemens AG 2015 All rights reserved

3.10 SCL programming language: Tips and tricks

3.10.4 Correct application of FOR, REPEAT and WHILE loops

When using loops, there are different versions and application cases. The following
examples show the differences.

Properties: FOR loop

The FOR loop runs over a defined number of cycles. A start value is assigned to
the runtime tag at the beginning. Then, in each loop cycle, the runtime tag is
counted up with the specified step width up to the end value.

For performance reasons, the start as well as the end values are calculated once
at the beginning. The runtime tag can therefore no longer be influenced in the loop
code.

Syntax
FOR counter := start count TO end count DO
// Statement section ;
END FOR;
Using the EXIT command, the loop can be interrupted at any time.

Properties: WHILE loop

The WHILE loop can be terminated by means of a cancel condition. The cancel
condition is checked at the beginning of the loop code. That is, the loop is not
executed if the condition is fulfilled immediately. In the loop code, each tag can be
adjusted for the next cycle.

Syntax
WHILE condition DO

// Statement section ;
END WHILE;

Properties: REPEAT loop

The REPEAT loop can be terminated by means of a cancel condition. The cancel
condition is checked at the end of the loop code. That is, the loop is run at least
once. In the loop code, each tag can be adjusted for the next cycle.

Syntax
REPEAT
// Statement section ;
UNTIL condition
END REPEAT;

Recommendation
e Use FOR loops if the runtime tag is clearly defined.

e Use WHILE or REPEAT loops if a runtime tag needs to be adjusted during loop
editing.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 84



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

3.10.5 Efficiently inserting CASE instruction

With the CASE instruction in SCL, it will be exactly jumped to the selected CASE
block condition. After executing the CASE block the instruction is finished. This

allows you, for example, to check frequently required value ranges more
specifically and easily.

Example
CASE #myVar OF
5:
FC5 (#myParam) ;
10,12:
FC10 (#myParam) ;
15:
FC15 (#myParam) ;
0..20:

FCGlobal (#myParam) ;

// FCGlobal is never called for the values 5, 10, 12 or 15!

ELSE
END CASE;

Note CASE instructions also work with CHAR, STRING data types, as well as with
elements (see example in Chapter 2.8.5 VARIANT data type ).

3.10.6 No manipulation of loop counters for FOR loop

FOR loops in SCL are pure counter loops, i.e. the number of iterations is fixed
when the loop is entered. In a FOR loop, the loop counter cannot be changed.

With the EXIT instruction a loop can be interrupted at any time.

Advantages

e The compiler can optimize the program better, since it does not know the
number of iterations.

Example
FOR #var := #lower TO #upper DO
#var := #var + 1; // no effect, Compiler -> Warning
END_FOR;

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

85



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

3.10.7

Example

3.10.8

Example

3.10.9

Example

FOR loop backwards

In SCL you can also increment the index of FOR loops backwards or in another
step width. For this, use the optional “BY” key word in the loop head.

FOR f#var := #upper TO #lower BY -2 DO
END FOR;

If you are defining “BY” as “-2”, as in the example, the counter is lowered by 2 in
every iteration. If you omit “BY”, the default setting for “BY” is 1

Simple creating of instances for calls

If you prefer to work with the keyboard, there is a simple possibility to create
instances for blocks in SCL.

Table 3-14: Easy creation of instances

Step Instruction

1. Give the block name a: followed by a "." (dot). The automatic compilation now
shows you the following.

1 "Block 17,

sct 05> 0pen “Call options” dialo... Open “Call opti...

sct s > Create single instance Name:="Elock_..

3 “Block_1_DB" Single instance ~
sct m > Create multiinstance Name=Elock_...

2. On the top you can see the already existing instances. In addition, you can
directly create a new single instance or multi-instance.

Use the shortcuts "s" or "m" to go directly to the respective entries in the
automatic compilation window.

Handling of time tags

You can calculate the time tags in SCL just as with normal numbers i.e. you do not
need to look for additional functions, such as, e.g. T_COMBINE but you can use
simple arithmetic. This approach is called “overload of operands”. The SCL
compiler automatically uses the suitable functions. You can use a reasonable
arithmetic for the time types and can therefore program more efficiently.

timeDifference := timeStampl - timeStamp2;

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 86



Copyright © Siemens AG 2015 All rights reserved

3 General Programming

3.10 SCL programming language: Tips and tricks

The following table summarizes the overloaded operators and which operation is

behind it:
Table 3-15: Overloaded operands for SCL
Overloaded operand Operation
ltime + time T_ADD LTime
ltime + time T_SUB LTime
Itime + lint T_ADD LTime
Itime + lint T_SUB LTime
time + time T_ADD Time
time + time T_SUB Time
time + dint T_ADD Time
time + dint T_SUB Time
Idt + Itime T_ADD LDT/LTime
Idt + Itime T_ADD LDT/LTime
Idt + time T_ADD LDT/ Time
Idt + time T _SUB LDT/ Time
dtl + Itime T_ADD DTL/LTime
dtl + Itime T_SUB DTL/LTime
dtl + time T_ADD DTL/ Time
dtl + time T_SUB DTL/ Time
Itod + Itime T_ADD LTOD/ LTime
Itod + Itime T_SUBLTOD /LTime
ltod + lint T_ADD LTOD/ LTime
[tod + lint T SUBLTOD/LTime
Itod + time T _ADD LTOD / Time
Itod + time T SUBLTOD/ Time
tod + time T _ADD TOD / Time
tod + time T_SUB TOD / Time
tod + dint T_ADD TOD / Time
tod + dint T_SUB TOD / Time
dt + time T_ADD DT/ Time
dt + time T _SUB DT/ Time
Idt — Idt T_DIFF LDT
dtl — dtl T_DIFF DTL
dt—dt T_DIFF DT
date — date T_DIFF DATE
Itod — Itod T_DIFF LTOD
date + Itod T_COMBINE DATE / LTOD
date + tod T_COMBINE DATE / TOD

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

87




Copyright © Siemens AG 2015 All rights reserved

4 Hardware-Independent Programming

4.1 Data types of S7-300/400 and S7-1200/1500

4 Hardware-Independent Programming

To make sure that a block can be used on all controllers without any further
adjustments, it is important not use hardware-dependent functions and properties.

4.1 Data types of S7-300/400 and S7-1200/1500

Below is a list of all elementary data types and data groups.

Recommendation

e Only use the data types that are supported by the controllers on which the

program is to run.

Table 4-1: Elementary data types correspond to standard EN 61131-3

Description S7 - S7-1200 S7-1500
300/400

Bit data types BOOL
BYTE v v v
WORD
DWORD
LWORD x x v

Character type CHAR (8 bit) v v

Numerical data INT (16 bit)

types DINT (32 bit) v 4 4
REAL (32 bit)
SINT (8 bit)
USINT (8 bit)
UINT (16 bit) x v v
UDINT (32 hit)
LREAL (64 bit)
LINT (64 bit) " " v
ULINT (64 bit)

Time types TIME
DATE 4 v v
TIME_OF_DAY
S5TIME v x v
LTIME < < v
L_TIME_OF_DAY

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 88




Copyright © Siemens AG 2015 All rights reserved

4 Hardware-Independent Programming

4.1 Data types of S7-300/400 and S7-1200/1500

Table 4-2: Data groups that are made up of other data types

Description S7 - S7-1200 S7-1500
300/400
Time types e DT v < v
(DATE_AND_TIME)
e DTL x v v
e LDT « x v
(L_DATE_AND_TIME)
Character type e STRING v v v
Field e ARRAY v v v
Structure e STRUCT v v v
Table 4-3: Parameter types for formal parameters that are transferred between blocks
Description S7 - S7-1200 S7-1500
300/400
Pointer e POINTER v « s
e ANY
o VARIANT x v v
Blocks o TIMER v ) v
e COUNTER
e BLOCK FB v x v
e BLOCK_FC
e BLOCK_DB
— v x x
e BLOCK_SDB
e VOID v v v
PLC datatypes |e PLC Data Type v v v

1

For optimized accesses, only symbolic addressing is possible

2 For S7-1200/1500 the TIMER and COUNTER data type is represented by
IEC_TIMER and IEC_Counter.

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4,

11/2015

89




Copyright © Siemens AG 2015 All rights reserved

4 Hardware-Independent Programming

4.2 No bit memory but global data blocks

4.2 No bit memory but global data blocks

Advantages

e Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

Recommendation

e The handling with bit memory (also system and clock memory bits) is
problematic, since every controller has a bit memory address area with a
different size. Do not use bit memory for the programming but always global
data blocks. This is how the program can always be used universally.

4.3 Programming of "clock bits"

Recommendation

For the programming of clock memory bits, the hardware configuration always has
to be correct.

Use a programmed block as clock generator. Below, you can find a programming
example for a clock generator in the SCL programming language.

Example

The programmed block has the following functions. A desired frequency is
specified. The “Q” output is a Boolean value that toggles in the desired frequency.
The “Countdown” output outputs the remaining time of the current state of “Q”.

If the desired frequency is smaller or equal 0.0, then the output Q = FALSE and
Countdown = 0.0.

FB

Lwoe ) L LD L
—

0.5 Period: 2 seconds

= T#0S_703MS

Note The complete programming example is available for free download in the
following entry:

https://support.industry.siemens.com/cs/ww/en/view/87507915

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 90


https://support.industry.siemens.com/cs/ww/en/view/87507915

Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.1 Introduction

5
5.1

Advantages

Note

Note

STEP 7 Safety in the TIA Portal

Introduction

Fail-safe S7-1200F and S7-1500F CPUs are supported from TIA Portal V13 SP1
onward. In these controllers, standard as well as the fail-safe programming in a
device is possible. For programming the fail-safe user programs, the SIMATIC
STEP 7 Safety (TIA Portal) option package is used.

Figure 5-1: Standard and safety program

S7-1500F S7-1200F
=N ——
e L}

87

Standard user
program

-
C
LU

i

Safety program

e Uniform programming in standard and fail-safe program with an engineering
tool: TIA Portal

e Familiar programming in LAD and FBD
e Uniform diagnostics and online functions

Fail-safe does not mean that the program contains no errors. The programmer is
responsible for the correct programming logic.

Fail-safe means that the correct processing of the fail-safe user program in the
controller is ensured.

Further information on the topic of safety, as in the safety requirements or the
principles of safety programs, for example, are available at:

TIA Portal - An Overview of the Most Important Documents and Links - Safety
https://support.industry.siemens.com/cs/ww/en/view/90939626

Applications & Tools — Safety Integrated
https://support.industry.siemens.com/cs/ww/en/ps/14675/ae

STEP 7 Safety (TIA Portal) - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/14675/man

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 91


https://support.industry.siemens.com/cs/ww/en/view/90939626
https://support.industry.siemens.com/cs/ww/en/ps/14675/ae
https://support.industry.siemens.com/cs/ww/en/ps/14675/man

Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.2 Terms

52 Terms

This document consistently uses the terms with the following meaning.

Table 5-1: Safety terms

Term

Description

Standard user program

The standard user program is the program part,
which is not connected with F programming.

Safety program
(F program,
fail-safe user program)

The fail-safe user program is the program part
which is processed fail-safe independently of the
controller.

All fail-safe blocks and instructions are shaded
yellow at the software user interface (e. g. in the
project navigation) in order to distinguish blocks and
instructions of the standard user program.

The fail-safe parameters of F-CPUs and F-I/O are
shaded yellow in the hardware configuration.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

92




Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.3 Components of the safety program

5.3

Components of the safety program

Das safety program always consists of user-generated or system-generated F
blocks and the “Safety administration” editor.

Table 5-2: Components of the safety program

Description

Screen

1. “Safety administration” editor

Status of the safety program

- F collective signature

- Status of the safety operation

- Creating/organizing F run-time
groups

- Information on the F blocks

- Information on F-conform PLC
data types

- Defining/changing the access
protection

2. User-created F blocks

3. System-generated F-runtime blocks

- Blocks contain status information
on the F run-time group.

4. System-generated F-1/0O data blocks

- Blocks contain tags for evaluating
the F modules.

5. “Compiler blocks”
System-generated verification blocks

- These run in the background of
the controller and provide for fail-
safe processing of the safety
program.

- These blocks cannot be
processed by the user.

~ [ PLC_1_Safety [CPU 1516F-3 PN/DP]
[IY Device configuration
%/ Online & diaanostics
I ° Safet}fﬁ.dministrationl

~ |5 Program blocks

B¢ Add new block

& Main [OB1]

@ DataSync [DB2]

- FOB_1 [0B123]

4O Main_Safety [FB1]

@ Main_Safety DB [DE1]
* | System blocks

¥ - Frogram resources
w [ STEP 7 Safety
o8 F_Systeminfo_DE [DB30001] 3
|i' RTG1SysInfo [DB30000]
w |4 FH0 data blocks
4§ FO0D0O_4/BF-DIDC24V_1 [DB30006]
JJ FO0D06_4F-DODC24Vi2A_1 [DB30007] 4
A3 FO0O11_F-DISx24VDCHF_1 [DB30008]
A FO0017_FDQ4x24VDCI2APMHF_1 [DB30009]

4 Compiler blocks
» [ Technology objects 5
» External source files

» [ PLC tags

~ [ PLC data types
¢ Add new data type
lF_sYsINFO
] FayType

» (52l Watch and force tables

-
= Teopes

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

93




Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.4 F runtime group

54 F runtime group

A safety program is always processed in an F-runtime group with defined cycle. An
F run-time group consists of a “Fail-safe organization block” which calls a

“Main safety block”. All user-generated safety functions are called from the

“Main safety block”.

Figure 5-2: F-runtime group in the “Safety administration” editor

F-runtime group 1 [RTG1]

Fail-safe organization block Main safety block
X =
Name calls | 1y i cotery [FB1] [+]
Bamidiss
Number
oledme 100000 .
Fhase shift I-DB '
Priarity [ Main_sofety_DE [DB1] [+]

F-runtime group

Warn cycle time of the runtime group | 120000 "

5
Maximum cycle time of the runtime group |12EIUEIU ps

DB for runtime group communication | one

F-runtime group information DB |RTG1Sysmfn

Advantages

¢ Runtime groups can simply be created and configured in the “Safety
Administrator”.

e F-blocks in the run-time group are automatically created.

Properties

e A maximum of two F run-time groups can be created.

5.5 F signature

Each F component (station, I/O, blocks) has a unique F signature. Using the
F signature it can be quickly detected whether an F device configuration, F blocks
or a complete station still corresponds to the original configuration or programming.

Advantages

e Simple and quick comparison of F blocks and F device configurations

Properties

e F parameter signature (without address of F-1/O)...
- only changed by adjusting the parameters.

- remains unchanged when changing the PROFIsafe address. However, the
F collective signature of the station changes.

e F block signature is only changed when the logic in the F block changes.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 94



Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.5 F signature

e F block signature remains unchanged by changing the
- block number,
- block interface,
- block version.

Example
Figure 5-3: Examples of F signatures
Program signature
Description Offline signature | Time stamp
Collective Fsignature 675CB803 7129(2014 4:20:41 PM (UTC +2:00)
F-blocks N
([ Al F-blacks [~ ( )
Description Used and compiled | Function in safety program | Offline signature | Time :
w |- Program blocks
91' FOB_1 [OB123] Yes F-OB OxB4427972 7129(:
0 FOB_2 [OB124] Yes F-OB OxF6658D19 712902
L+ Main_safety 1 [FB1] Yes F-FB 0x61F8DE42 7i29(7
4 Main_Safety 2 [FEO] Yes F-FB 0x55ED5CE2 71297
@ Main_safety DB_1 [DB1] Yes |-DEB for F-FB 0x27ER59F6 71291,
Feeco g - R 0 TRRZ) [ |P" fapc—r ~ -SFgroTg 7m0
F-parameter
Dl\danual assignment of F-ronitoring time
monitoring time |'5E: ms|
F-source address | |
F-destination address: |65532 |
- -”5:-: '.EE.EE‘_'-“ |'3'33 | I
Behavior after channel fault: | Passivate channel
DF—HO DE manual number assignment
1. F collective signature of the station in the “Safety administration” editor
F block signatures in the “Safety Administration” editor (can also be read out
from the properties of the block)
3. F parameter signature in the “Device view” at “Devices & Networks”
Note For S7-1500F controllers it is possible to read the F overall signature directly on

the installed display or in the integrated web server.

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4, 11/2015 95



5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2015 All rights reserved

5.6 Assigning the PROFIsafe address at the F-1/0

5.6 Assigning the PROFIsafe address at the F-1/0

Each F-1/0 device has a PROFIsafe address for identification and communication
with F controllers. When assigning the PROFIsafe address, two different
configurations are possible.

Table 5-3: Setting the F address

ET 200M / ET 200S ET 200MP / ET 200SP
(PROFIsafe address type 1) (PROFIsafe address type 2)

Assigning the PROFIsafe address directly Assigning the PROFIsafe address
at the modules via DIL switch exclusively via TIA Portal
In the device configuration of the TIA Portal | The configured PROFIsafe address is
and in the DIL switch position at the loaded onto the intelligent coding module of
periphery, the PROFIsafe address must be | the module.
the same.

Advantages

e Replacing an F module is possible without reassigning the PROFIsafe address
at ET 200MP and ET 200SP. The intelligent coding module remains in the
BaseUnit during module exchange.

e Simple configuration since TIA Portal indicates a faulty assignment of the
PROFIsafe address warnings.

e The PROFIsafe address of all F modules can be assigned at the same time
within an ET 200SP.

Note Further information on assigning the PROFIsafe address for the F-1/O is
available at:

SIMATIC Industrial Software SIMATIC Safety — Configuring and Programming
https://support.industry.siemens.com/cs/ww/en/view/54110126

5.7 Evaluation of F-1/0

All of the current states of the respective F-1/0 are saved in the F-1/O blocks. In the
safety program the states can be evaluated and processed. The following
differences exist between S7-1200/1500F and S7-300F/400F.

Table 5-4: Tags in the F-1/0 DB with S7-300F/400F and S7-1500F

Tag in F-1/0 DB F-1/0 with F-1/0 with
or value status in PAE S7-300/400F S7-1200/1500F
ACK_NEC v v

QBAD v v
PASS OUT 4 v
QBAD_|_xx * v x
QBAD_O_xx* v x
Value status x v

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 96


https://support.industry.siemens.com/cs/ww/en/view/54110126

Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.8 Value status (S7-1200F / S7-1500F)

* QBAD_|_xx and QBAD_O_xx show you the validity of the channel value and
correspond to the inverted value status at S7-1200/1500F (further information is
available in the following chapter).

5.8 Value status (S7-1200F / S7-1500F)

In addition to the diagnostic messages and the status and error display, the F
module provides information on the validity of each input and output signal - the
value status. The value status is stored in the same way as the input signal in the
process image:

The value status informs about the validity of the respective channel value.
e 1:avalid process value is output for the channel.
e 0: a substitute value is output for the channel.

Table 5-5: Differences between Q_BAD (S7-300F/400F) and value status (S7-1200/1500F)

Scenario QBAD (S7-300F/400F) Value status
(S7-1200/1500F)
Valid values at the F-1/O (no error) FALSE TRUE
Channel error occurs TRUE FALSE
Channel error going (ACK_REQ) TRUE FALSE
Acknowledgement of the failure FALSE TRUE
(ACK_REI)

Properties

e The value status is entered into the process image of the inputs and outputs.
¢ Channel value and value status of an F-I/O must only be accessed from the
same F run-time group.

Recommendation
e Forimproved readability you assign the ending “ vs”, e.g. “Tag In 1 VS”as
the symbolic name for the value status.
Example

Position of the value status bits in the process image using the example of an F-DI
8x24VDC HF module.

Table 5-6: Value status bits in the process image using the example of an F-DI 8x24VDC HF

Byte in Assigned bits in the F-CPU
the F-
CPU 7 6 5 4 3 2 1 0
x+0 Dl7 Dlg Dls Dly Dl3 Dl» Dl Dlg
X +1 Value Value Value Value Value Value Value Value
status status status status status status status status
for DI7 for Dlg for Dls for Dls for Dl3 for Dl for DIy for Dlp

X = module start address

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 97



5 STEP 7 Safety in the TIA Portal

Copyright © Siemens AG 2015 All rights reserved

5.9 Data types

Note More information about the value status of all ET 200SP modules is available at:

Failsafe CPUs - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/13719/man

Failsafe I1/0 modules - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/14059/man

5.9 Data types

There is an unrestricted scope of data types for the safety programs of the
S7-1200/1500F.

Table: 5-7: Integer data types

Type Size Value range
BOOL 1 bit 0.1
INT 16 Bit -32.768 .. 32.767
WORD 16 Bit -32.768 .. 65.535
DINT 32 bit -2.14 .. 2.14 million
. T#-24d20h31m23s648ms to
TIME 32 bit T#+24d20h31m23s647ms

5.10 F-conform PLC data type

For safety programs it is also possible to structure data optimal with PLC data
types.

Advantages

e Achange in a PLC data type is automatically updated in all usage locations in
the user program.

Properties

e F-PLC data types are declared and used in the same way as PLC data types.

e F-PLC data types can use all data types which are allowed in the safety
program.

¢ Nesting of F-PLC data types within other F-PLC data types is not supported.

e In F-PLC data types, standard user programs can be used in the safety
program as well as in the standard user program.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 98


https://support.industry.siemens.com/cs/ww/en/ps/13719/man
https://support.industry.siemens.com/cs/ww/en/ps/14059/man

Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.10 F-conform PLC data type

Recommendation

Example

For accessing I/O areas you use F-PLC data types (as in Chapter 3.6.4 Access

to I/O areas with PLC data types)

The following rules must be observed here:

- The structure of the tags of the F-conform PLC data type must match the

channel structure of the F-1/O.

- An F-conform PLC data type for an F-1/0O with 8 channels is, for example:

e 8 BOOL tags (channel value)

16 BOOL tags (channel value + value status)

- Access to F-l/O is only permitted for activated channels. When configuring
a 1002 (2v2) evaluation, the higher channel is always deactivated.

Figure 5-4: Access to I/O areas with F-PLC data types

F-PLC Datentyp

F-DI8x24VDCHF

Mame Data type Default value
1l Fnput_cho\ | Boal
2 4 F_Input_Ch_1 Bool
3 < F_Input_Ch_2 Bool
4 i F_Input_Ch_3 Bool
5 4 F_Input_Ch_4 Bool
6 <4 F_Input_Ch_5 Bool
7 4 F_Input_Ch_& Bool
8 |41 F_Input_Ch_7 Bool
9 40 FnputCh_0_VS Bool
10 F_InputCh_1_Vs Bool
11 @@ Fnputch_2_vs Bool
12 40 FnputCh_3_vs Bool
13 40 FnputCh 4 Vs Bool
14 4@ Fnputch 5.vs Bool
15 40 FInputch 6 VS Bool
16 40  F_InputCh_7_Vs Boal
17 e e
PLC Variable
PLC tags
MName Taa table Data tvpe Address
1 [ F_Input_1 Defaulttag table “F-DIBx24VDCHF" %l11.0 |}
2 00 news =7 El

F-Peripherie

(sl e)
(sl e)
(sl e)
(sl e)
(sl e]
(o=
(o))
(o))
(o]

<]

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

General 10 tags ” System constants || Texts

Name Type Address  Tag table
0 F_Input_1 "F-DIBx24VDCHF" | DI 11.0 Defaulttag table
<@l *F_lnput_1 "F-DISx24VDCHF" | DI11.1 Default tag table
<l *F_lnput_1 "F-DIBx24VDCHF" | DI11.2 Default tag table
<@ *F_lnput_1 "F-DIBx24VDCHF® |DI11.3 Defaulttag table
<@ *F_lnput_1 "F-DIBx24VDCHF" | DI11.4 Default tag table
<@ *F_Input_1 "F-DIBXx24VDCHF" |DI11.5 Defaulttag table
<@ *F_Input_1 "F-DIBx24VDCHF" | DI11.6 Default tag table
<@ *F_Input_i "F-DIBx24VDCHF® |DI11.7 Defaulttag table
<@ *F_Input_i "F-DIBx24VDCHF" | DI 12.0 Defaulttag table
< " F_Input_1 “F-DISx24VOCHF™ | DI12.1 Defaulttag table
<@l *F_lnput_1 "F-DISx24VDCHF" | DI12.2 Default tag table
<@ *F_lnput_1 "F-DIBx24VDCHF® | DI12.3 Defaulttag table
<@ *F_lnput_1 "F-DIBx24VDCHF" | DI12.4 Defaulttag table
<@ *F_lnput_1 "F-DIBX24VDCHF® | DI12.5 Default tag table
<@ *F_Input_1 "F-DIBx24VDCHF" | DI12.6 Default tag table
< *F Inout 1 "F-DIBx24VDCHF" | DI127  Defaulttag table

99



Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.11 TRUE / FALSE

5.11 TRUE / FALSE

If you require “TRUE” and “FALSE” signals in the safety programs, there are two
possible cases:

e as actual parameter at blocks
e as assignment to operations

Actual parameter at blocks

For S7-1200/1500F controllers you can use the Boolean constants “FALSE” for 0
and “TRUE” for 1 as actual parameter for supplying formal parameters during block
calls in the safety program. Only the keyword “FALSE” or “TRUE” is written to the
formal parameter.

Figure 5-5: “TRUE” resp. “FALSE” signals as actual parameter

#ESTOP1_
Instance
ESTOP1
o= EM Q—--
FESTOp == E_STOP 0 _DELAY = ..
- ACK_MEC ACK_REQ — -
e — K DIAG
0 — TIME_DEL END —

Assignments to operations

If you require “TRUE” or “FALSE” signals at operations you can create them as in
the figure below.

e Use programming language FBD.

e Create two static or temp tags of datatype bool: “alwaysTrue”, “alwaysFalse”.
e Create the network 1, like the following figure.

e The tags can be used as “True” and “False”-tag in the entire block.

Figure 5-6: “TRUE” and “FALSE” signals

Network 1: Create True and False tags

T R —

#alwaysTrue #alwaysFalse

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 100



Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.12 Optimizing compilation and program runtime

5.12 Optimizing compilation and program runtime

This chapter shows you the various options of reducing the compilation and
program runtime.

Depending on the application, it is not always possible to apply all of the
suggestions. However, they explain why certain programming methods cause
shorter compilation and program runtimes than a standard program.

Apart from blocks programmed by the user, there are also may system-internal
blocks which are created automatically. These blocks ensure that the safety

program is safe. The compilation and program runtime is increased by the system-

internal blocks.

Example

Figure 5-7: User and system-generated F-blocks

User created System created
F-blocks F-blocks

~ | Program blocks w 5 STEP 7 Safety

B Add new block & F_2H_EN[FB211]
4 Main [0B1] & F_ESTOP1 [FB215]
48 Caselightning [FC1] H‘I-‘ F_FDBACK [FB216]
4 HM_Interface [FB3] & F_SFDOOR[FB217]
@ HM_Interface_DB [DB2] 48 F_Systeminfo_DB [DB30001]
2% FOB_1 [0B123] & RTG1SysInfo [DB30000]
48 F_Depassivation [FB2] - F-1O data blocks
4 F_Motor1 [FB4] Sl F00004_F-DIBX24VDCHF_1 [DB30002]
& F_Motor2 [FB5] 4§ FO0O10_FPME24VDCIBAPPMHF_1 [DB30003]
& F_Motor3 [FB6] S FO0017_FDQ4x24VDUZAPMHF_1 [DB30004]
2 Main_Safety [FB1] S5 Fo0022_F-DIBX24VDCHF_2 [DB30005]
@ F_Depassivation_DE [DB3] A N Compiler blocks;
@ F_Motor1_DE [DB4] & SPLIT_FOB_1_1 [FC32767]
@ F_Motor2_DE [DBS] 28 SPLIT_FOB_1_2 [FC32768]
@ F_Motor3_DB [DB6] & F_8BOOL_INPUT [FB32770]
@ Main_safety DB [DB1] \ 4 & F_8BOOL_OUTPUT[FB32773]

~ [ System blocks & F_CTRL_1 [FB32775]

' F_CTRL_2 [FB32786)
& F_CTRL_D[FB32785]
& FET LI[FB32787]

2 F_PSV2_13_RCV [FB32768]
& F_PsV2_13_SEND [FB32769]
| FB1_C[FB32776]

& FB2_C [FB32777]

& FB4_C [FB32780]

& rB5_C [FB32782]

2 FB6_C [FB32784]

2 FB211_C [FB32781]

& FB215_C[FB32778]

28 FB216_C [FB32779]

& FB217_C [FB32783]

& pe1_c[DB30011]

& DB3_C [DB30007]

4§ pBa_c[DB30008]

4§ DB5_C [DB30009]

& Dpe6_c [DE30010]

& FB32785_IDB_C [DB30012]
4§ FB32786_IDB_C [DB30013]
4§ FB32787_IDB_C[DB30014]
& SH_FO0010_F-PRE24VDCIBAPPIMHF_1 [DB30006]

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

101



Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.12 Optimizing compilation and program runtime

5.12.1

Avoiding time-processing blocks: TP, TON, TOF

Each time-processing block (TP, TON, TOF) requires additional blocks and global
data corrections in security code.

Recommendation

5.12.2

Use these blocks as little as possible.

Avoiding deep call hierarchies

Deep call hierarchies enlarge the code of the system-generated F blocks since a
larger scope of security functions and checks becomes necessary. If the nesting
depth of 8 is exceeded, a warning is issued by the TIA Portal during compilation.

Recommendation

5.12.3

Structure your program so unnecessarily deep call hierarchies are avoided.

Separation of standard and safety program

In complex projects it is often necessary to exchange information between
standard and safety program. If the exchange is realized via tags (e.qg. flags),
changes in the standard program may make a compilation of the safety program
necessary. To download the changes, the CPU must then be set to STOP.

Recommendation

5.12.4

Use standard DBs (see chapter 5.13 Data exchange between standard and F-
program). Changes in the standard program then do not affect the safety program.
The controller does not need to be in STOP mode for loading the standard
program.

Use of multi-instances

If an instance DB is called at several locations in the safety program, this DB must
be processed more than once during a cycle. This processing requires a higher
scope of system-internal F blocks.

Recommendation

5.12.5

If possible, always use multi-instances. This may reduce the scope of the system-
internal F blocks.

Avoiding JMP/label structures

If a block call is jumped via IMP/LABEL, it is additionally secured in the system-
internal F blocks. In this case, a correction code to the jumped block call must be
run. This reduces performance and adds time during compilation.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 102



Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.13 Data exchange between standard and F-program

Recommendation

Avoid JMP/Label structures as far as possible to reduce the system-internal F

blocks.

5.13 Data exchange between standard and F-program

In some cases it is necessary to exchange data between the safety program and
the standard user program. The following recommendations should urgently be

noted in order to guarantee data consistency between standard and the safety

program.

Recommendations

¢ No data exchange via flags (see chapter 4.2 No bit memory but global data

blocks

e Concentrate the access between safety program and the standard user
program on two standard DBs.

Figure 5-8: Data exchange between standard safety program

Standard user program

A

Safety program

i

FOB1

£

Main
Data buffer
\ 4
FB
Standard o DataToSafety
DataFrom Safety

Programming Guideline for S7-1200/S7-1500

Entry-ID: 81318674, V1.4, 11/2015

y

n
>

MainSafety

InstMainSafety

103



Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.14 Testing the safety program

5.14 Testing the safety program

In addition to the always controllable data of a standard user program you can
change the following data of a safety program in the deactivated safety mode.

Properties

Process image of F-1/0

F-DBs (except DB for F-run-time group communication), instance-DBs of
F-FBs

F-1/0 DBs

Controlling F-1/O is only possible in F-CPU RUN mode.

From a watch table you can control a maximum of 5 inputs/outputs in a safety
program.

You can use several watch tables.

The trigger point needs to be set to “permanent” or “once” for “cycle start” or
“cycle end”.

Forcing is not possible for the F-1/0.

Setting stop points in the standard user program will lead to errors in the safety
program:

- Expiring of F cycle time monitoring

Error during communication with the F-1/0
- Error at fail-safe CPU-CPU communication
- Internal CPU error

If you still wish to use stop points for testing, you need to deactivate the safety
mode beforehand. This leads to the following errors:

- Error during communication with the F-1/0
- Error at fail-safe CPU-CPU communication

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 104



Copyright © Siemens AG 2015 All rights reserved

5 STEP 7 Safety in the TIA Portal

5.15 STOP mode in the event of F errors

5.15 STOP mode in the event of F errors

In the following cases, the STOP mode is triggered for F-CPUs:

In the "System blocks" folder you must not add, change or delete any blocks.

If the result of an instruction lies outside of the area permitted for the data type
(overflow). The cause of the diagnostic event is entered in the diagnostics
buffer of the F CPU.

There must not be any access to instance DBs of F-FBs which are not called in
the safety program.

If the “Maximal cycle time of the F run-time group” is exceeded, the F-CPU
goes to STOP. Select the maximal permitted time for "Maximum cycle time der
F run-time group" which can elapse between two calls of this F run-time group
(maximal 20,000 ms).

If the F run-time group, from whose DB for F-run-time groups tags shall be
read, is processed (main safety block of the F run-time group), the F-CPU goes
to STOP.

Editing the start values in instance DBs of F-FBs is not permitted online and
offline and can lead to STOP of the F-CPU.

The main safety block must not contain any parameters since they cannot be
supplied.

Outputs of F-FCs must always be initialized.

5.16 Migration of safety programs

Information on migrating safety programs is available at:

https://support.industry.siemens.com/cs/ww/en/view/109475826

5.17 General recommendations for safety

Generally, the following recommendations apply for handling STEP 7 Safety and F
modules.

Whenever possible, always use F controllers. A later expansion of safety
functions can be realized very simply.

Always use one password for the safety program to prevent unauthorized
changes. The password is set in the “Safety administration” editor.

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 105


https://support.industry.siemens.com/cs/ww/en/view/109475826

© Siemens AG 2015 All rights reserved

6 The Most Important Recommendations

6

The Most Important Recommendations

Use optimized blocks

- Chapter 2.6 Optimized blocks

Use data type VARIANT instead of ANY

- Chapter 2.8.5 VARIANT data type

Structuring the program clearly and well

- Chapter 3.2 Organization blocks (OB)

Inserting instructions as multi-instance (TON, TOF ..)
- Chapter 3.2.5 Multi-instances

Reusable programming of blocks

- Chapter 3.2.8 Reusability of blocks

Symbolic programming

- Chapter 3.6 Symbolic addressing

When handling data, work with ARRAY

- Chapter 3.6.2 ARRAY data type and indirect field accesses

Creating PLC data types
- Chapter 3.6.4 Access to I/O areas with PLC data types

Using libraries for storing program elements

- Chapter 3.7 Libraries

No memory bits but global data blocks

- Chapter 4.2 No bit memory but global data blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

106



© Siemens AG 2015 All rights reserved

7 Related Literature

7 Related Literature
Table 7-1
Topic Title
\1\ Siemens Industry Online Support https://support.industry.siemens.com/cs/sta
rt?lc=en-DE
\2\ Download page of the entry https://support.industry.siemens.com/cs/ww
len/view/81318674
\3\ Programmierstyleguide for S7-1200 | https://support.industry.siemens.com/cs/ww
und S7-1500 [en/view/81318674
\4\ | TIA Portal - An Overview of the Most | https://support.industry.siemens.com/cs/ww
Important Documents and Links len/view/65601780
\5\ STEP 7 (TIA Portal) manuals https://support.industry.siemens.com/cs/ww
len/ps/14673/man
\6\ S7-1200 Manuals https://support.industry.siemens.com/cs/ww
len/ps/13683/man
\7\ S7-1500 (F) Manuals https://support.industry.siemens.com/cs/ww
/de/ps/13716/man
\8\ ET 200SP CPU Manuals https://support.industry.siemens.com/cs/ww
/en/ps/13888/man
\9\ S7-1200 Getting Started https://support.industry.siemens.com/cs/ww
[de/view/39644875
\10\ | S7-1500 Getting Started https://support.industry.siemens.com/cs/ww
[de/view/78027451
\11\ | SIMATIC S7-1200 / S7-1500 http://support.automation.siemens.com/WW
Comparison list for programming Iview/en/86630375
languages

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

107



https://support.industry.siemens.com/cs/start?lc=en-DE
https://support.industry.siemens.com/cs/start?lc=en-DE
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/65601780
https://support.industry.siemens.com/cs/ww/en/view/65601780
https://support.industry.siemens.com/cs/ww/en/ps/14673/man
https://support.industry.siemens.com/cs/ww/en/ps/14673/man
https://support.industry.siemens.com/cs/ww/en/ps/13683/man
https://support.industry.siemens.com/cs/ww/en/ps/13683/man
https://support.industry.siemens.com/cs/ww/de/ps/13716/man
https://support.industry.siemens.com/cs/ww/de/ps/13716/man
https://support.industry.siemens.com/cs/ww/en/ps/13888/man
https://support.industry.siemens.com/cs/ww/en/ps/13888/man
https://support.industry.siemens.com/cs/ww/de/view/39644875
https://support.industry.siemens.com/cs/ww/de/view/39644875
https://support.industry.siemens.com/cs/ww/de/view/78027451
https://support.industry.siemens.com/cs/ww/de/view/78027451
http://support.automation.siemens.com/WW/view/en/86630375
http://support.automation.siemens.com/WW/view/en/86630375

© Siemens AG 2015 All rights reserved

8 History

8 History

Table 8-1

Version Date

Modifications

V1.0 09/2013

First version

V11 10/2013

Corrections in the following chapters:
2.6.3 Best possible data storage in the processor on S7-1500

2.13 Internal reference ID for controller and HMI tags

3.2.2 Functions (FC)
3.2.3 Function blocks (FB)
3.4.3 Local memory

V1.2 03/2014

New chapter:

2.6.4 Conversion between optimized and non-optimized tags
2.6.6 Communication with optimized data

2.9.2 MOVE instructions

2.9.3 VARIANT instructions

3.6.4 Access to I/O areas with PLC data types

Extension of following chapter:
2.2 Terms

2.3 Programming languages
2.6 Optimized blocks

2.10 Symbolic and comments
3.2 Program blocks

3.5 Retentivity
4.3 Programming of "clock bits"

Several corrections in different chapter

V1.3 09/2014

New chapter:

2.8.4 Unicode data types

2.10.2 Comment lines in watch table
2.12 User constants

3.2.9 Auto numbering of blocks

5 STEP 7 Safety in the TIA Portal

Extension of following chapter:

2.7 Block sizes

2.8 New data types for S7-1200/1500

2.9 Instructions

2.10 Symbolic and comments

3.6.3 STRUCT data type and PLC data types
3.7 Libraries

Several corrections in different chapter

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015

108



8 History

© Siemens AG 2015 All rights reserved

Version Date Modifications

1.4 11/2015 | New chapter:

2.6.5 Parameter transfer between blocks with optimized access
and standard access

3.3.3 Overview for transfer of parameters

3.10.4 Correct application of FOR, REPEAT and WHILE loops
5.12 Optimizing compilation and program runtime

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 109



	Programming Guideline for 
S7-1200/S7-1500 
	Warranty and Liability
	1 Preface
	2 S7-1200/1500 Innovations
	2.1 Introduction
	2.2 Terms
	2.3 Programming languages
	2.4 Optimized machine code
	2.5 Block creation
	2.6 Optimized blocks
	2.6.1 S7-1200: Setup of optimized blocks
	2.6.2 S7-1500: Setup of optimized blocks
	2.6.3 Best possible data storage in the processor on S7-1500
	2.6.4 Conversion between optimized and non-optimized tags
	2.6.5 Parameter transfer between blocks with optimized access and standard access
	2.6.6 Communication with optimized data

	2.7 Block properties
	2.7.1 Block sizes
	2.7.2 Number of organization blocks (OB)

	2.8 New data types for S7-1200/1500
	2.8.1 Elementary data types
	2.8.2 Date_Time_Long data type
	2.8.3 Further time data types
	2.8.4 Unicode data types
	2.8.5 VARIANT data type (S7-1500 and S7-1200 from FW4.1)

	2.9 Instructions
	2.9.1 CALCULATE
	2.9.2 MOVE instructions
	2.9.3 VARIANT instructions (S7-1500 and S7-1200 from FW4.1)
	2.9.4 RUNTIME

	2.10 Symbolic and comments
	2.10.1 Programming editor
	2.10.2 Comment lines in watch table

	2.11 System constants
	2.12 User constants
	2.13 Internal reference ID for controller and HMI tags
	2.14 STOP mode in the event of errors

	3 General Programming
	3.1 Operating system and user program
	3.2 Program blocks
	3.2.1 Organization blocks (OB)
	3.2.2 Functions (FC)
	3.2.3 Function blocks (FB)
	3.2.4 Instances
	3.2.5 Multi-instances
	3.2.6 Global data blocks (DB)
	3.2.7 Downloading without reinitialization
	3.2.8 Reusability of blocks
	3.2.9 Auto numbering of blocks

	3.3 Block interface types
	3.3.1 Call-by-value with In interface type
	3.3.2 Call-by-reference with InOut interface type
	3.3.3 Overview for transfer of parameters

	3.4 Storage concept
	3.4.1 Block interfaces as data exchange
	3.4.2 Global memory
	3.4.3 Local memory
	3.4.4 Access speed of memory areas

	3.5 Retentivity
	3.6 Symbolic addressing
	3.6.1 Symbolic instead of absolute addressing
	3.6.2 ARRAY data type and indirect field accesses
	3.6.3 STRUCT data type and PLC data types
	3.6.4 Access to I/O areas with PLC data types
	3.6.5 Slice access

	3.7 Libraries
	3.7.1 Types of libraries and library elements
	3.7.2 Type concept
	3.7.3 Differences for typifiable objects for CPU and HMI
	3.7.4 Versioning of a block

	3.8 Increasing performance with process interrupts
	3.9 Additional performance recommendations
	3.10 SCL programming language: Tips and tricks
	3.10.1 Using call templates
	3.10.2 What instruction parameters are mandatory?
	3.10.3 Drag & drop with entire tag names
	3.10.4 Correct application of FOR, REPEAT and WHILE loops
	3.10.5 Efficiently inserting CASE instruction
	3.10.6 No manipulation of loop counters for FOR loop
	3.10.7 FOR loop backwards
	3.10.8 Simple creating of instances for calls
	3.10.9 Handling of time tags


	4 Hardware-Independent Programming
	4.1 Data types of S7-300/400 and S7-1200/1500
	4.2 No bit memory but global data blocks
	4.3 Programming of "clock bits"

	5 STEP 7 Safety in the TIA Portal
	5.1 Introduction
	5.2 Terms
	5.3 Components of the safety program
	5.4 F runtime group
	5.5 F signature
	5.6 Assigning the PROFIsafe address at the F-I/O
	5.7 Evaluation of F-I/O
	5.8 Value status (S7-1200F / S7-1500F)
	5.9 Data types
	5.10 F-conform PLC data type
	5.11 TRUE / FALSE
	5.12 Optimizing compilation and program runtime
	5.12.1 Avoiding time-processing blocks: TP, TON, TOF
	5.12.2 Avoiding deep call hierarchies
	5.12.3 Separation of standard and safety program
	5.12.4 Use of multi-instances
	5.12.5 Avoiding JMP/label structures

	5.13 Data exchange between standard and F-program
	5.14 Testing the safety program
	5.15 STOP mode in the event of F errors
	5.16 Migration of safety programs
	5.17 General recommendations for safety

	6 The Most Important Recommendations
	7 Related Literature
	8 History

