

http://www.siemens.com/simatic-programming-guideline

Background and System Description  11/2015

Programming Guideline for
S7-1200/S7-1500
STEP 7 (TIA Portal) and STEP 7 Safety in TIA Portal

http://www.siemens.com/simatic-programming-guideline

Warranty and Liability

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 2


 S

ie
m

e
n

s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Warranty and Liability

Note The Application Examples are not binding and do not claim to be complete with
regard to configuration, equipment or any contingencies. The Application
Examples do not represent customer-specific solutions. They are only intended
to provide support for typical applications. You are responsible for the correct
operation of the described products. These Application Examples do not relieve
you of the responsibility of safely and professionally using, installing, operating
and servicing equipment. When using these Application Examples, you
recognize that we cannot be made liable for any damage/claims beyond the
liability clause described. We reserve the right to make changes to these
Application Examples at any time and without prior notice. If there are any
deviations between the recommendations provided in this Application Example
and other Siemens publications – e.g. catalogs – the contents of the other
documents have priority.

We do not accept any liability for the information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of
the examples, information, programs, engineering and performance data etc.,
described in this application example will be excluded. Such an exclusion will not
apply in the case of mandatory liability, e.g. under the German Product Liability Act
(“Produkthaftungsgesetz”), in case of intent, gross negligence, or injury of life, body
or health, guarantee for the quality of a product, fraudulent concealment of a
deficiency or breach of a condition which goes to the root of the contract
(“wesentliche Vertragspflichten”). The compensation for damages due to a breach
of a fundamental contractual obligation is, however, limited to the foreseeable
damage, typical for the type of contract, except in the event of intent or gross
negligence or injury to life, body or health. The above provisions do not imply a
change of the burden of proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts
hereof is prohibited without the expressed consent of Siemens Industry Sector.

Security
informa-

tion

Siemens provides products and solutions with industrial security functions that
support the secure operation of plants, solutions, machines, equipment and/or
networks. They are important components in a holistic industrial security
concept. With this in mind, Siemens’ products and solutions undergo continuous
development. Siemens recommends strongly that you regularly check for
product updates.

For the secure operation of Siemens products and solutions, it is necessary to
take suitable preventive action (e.g. cell protection concept) and integrate each
component into a holistic, state-of-the-art industrial security concept. Third-party
products that may be in use should also be considered. For more information
about industrial security, visit http://www.siemens.com/industrialsecurity.

To stay informed about product updates as they occur, sign up for a product-
specific newsletter. For more information, visit
http://support.automation.siemens.com.

http://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/?lc=en-DE

Table of Contents

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 3


 S

ie
m

e
n

s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table of Contents
Warranty and Liability ... 2

1 Preface .. 6

2 S7-1200/1500 Innovations ... 8

2.1 Introduction ... 8
2.2 Terms ... 8
2.3 Programming languages .. 11
2.4 Optimized machine code .. 11
2.5 Block creation ... 12
2.6 Optimized blocks .. 13
2.6.1 S7-1200: Setup of optimized blocks ... 13
2.6.2 S7-1500: Setup of optimized blocks ... 14
2.6.3 Best possible data storage in the processor on S7-1500 15
2.6.4 Conversion between optimized and non-optimized tags 18
2.6.5 Parameter transfer between blocks with optimized access and

standard access ... 19
2.6.6 Communication with optimized data .. 20
2.7 Block properties .. 21
2.7.1 Block sizes ... 21
2.7.2 Number of organization blocks (OB) .. 21
2.8 New data types for S7-1200/1500 .. 22
2.8.1 Elementary data types .. 22
2.8.2 Date_Time_Long data type .. 23
2.8.3 Further time data types .. 23
2.8.4 Unicode data types ... 24
2.8.5 VARIANT data type (S7-1500 and S7-1200 from FW4.1) 25
2.9 Instructions ... 28
2.9.1 CALCULATE .. 28
2.9.2 MOVE instructions .. 29
2.9.3 VARIANT instructions (S7-1500 and S7-1200 from FW4.1) 31
2.9.4 RUNTIME ... 31
2.10 Symbolic and comments .. 32
2.10.1 Programming editor .. 32
2.10.2 Comment lines in watch table .. 33
2.11 System constants ... 34
2.12 User constants ... 35
2.13 Internal reference ID for controller and HMI tags 36
2.14 STOP mode in the event of errors ... 38

3 General Programming ... 39

3.1 Operating system and user program .. 39
3.2 Program blocks .. 39
3.2.1 Organization blocks (OB) ... 40
3.2.2 Functions (FC) .. 43
3.2.3 Function blocks (FB) .. 45
3.2.4 Instances .. 46
3.2.5 Multi-instances ... 46
3.2.6 Global data blocks (DB) ... 48
3.2.7 Downloading without reinitialization ... 49
3.2.8 Reusability of blocks ... 53
3.2.9 Auto numbering of blocks ... 54
3.3 Block interface types .. 55
3.3.1 Call-by-value with In interface type .. 55
3.3.2 Call-by-reference with InOut interface type .. 55
3.3.3 Overview for transfer of parameters ... 56

Table of Contents

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 4


 S

ie
m

e
n

s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.4 Storage concept ... 56
3.4.1 Block interfaces as data exchange .. 56
3.4.2 Global memory ... 57
3.4.3 Local memory ... 58
3.4.4 Access speed of memory areas ... 59
3.5 Retentivity ... 60
3.6 Symbolic addressing .. 62
3.6.1 Symbolic instead of absolute addressing ... 62
3.6.2 ARRAY data type and indirect field accesses 64
3.6.3 STRUCT data type and PLC data types .. 66
3.6.4 Access to I/O areas with PLC data types ... 69
3.6.5 Slice access ... 70
3.7 Libraries .. 71
3.7.1 Types of libraries and library elements .. 72
3.7.2 Type concept .. 73
3.7.3 Differences for typifiable objects for CPU and HMI 74
3.7.4 Versioning of a block .. 74
3.8 Increasing performance with process interrupts 79
3.9 Additional performance recommendations... 81
3.10 SCL programming language: Tips and tricks 82
3.10.1 Using call templates ... 82
3.10.2 What instruction parameters are mandatory? 83
3.10.3 Drag & drop with entire tag names ... 83
3.10.4 Correct application of FOR, REPEAT and WHILE loops 84
3.10.5 Efficiently inserting CASE instruction ... 85
3.10.6 No manipulation of loop counters for FOR loop 85
3.10.7 FOR loop backwards .. 86
3.10.8 Simple creating of instances for calls ... 86
3.10.9 Handling of time tags .. 86

4 Hardware-Independent Programming ... 88

4.1 Data types of S7-300/400 and S7-1200/1500 88
4.2 No bit memory but global data blocks .. 90
4.3 Programming of "clock bits" ... 90

5 STEP 7 Safety in the TIA Portal .. 91

5.1 Introduction ... 91
5.2 Terms ... 92
5.3 Components of the safety program .. 93
5.4 F runtime group .. 94
5.5 F signature ... 94
5.6 Assigning the PROFIsafe address at the F-I/O 96
5.7 Evaluation of F-I/O ... 96
5.8 Value status (S7-1200F / S7-1500F) ... 97
5.9 Data types .. 98
5.10 F-conform PLC data type ... 98
5.11 TRUE / FALSE ... 100
5.12 Optimizing compilation and program runtime 101
5.12.1 Avoiding time-processing blocks: TP, TON, TOF 102
5.12.2 Avoiding deep call hierarchies ... 102
5.12.3 Separation of standard and safety program 102
5.12.4 Use of multi-instances .. 102
5.12.5 Avoiding JMP/label structures .. 102
5.13 Data exchange between standard and F-program 103
5.14 Testing the safety program... 104
5.15 STOP mode in the event of F errors .. 105
5.16 Migration of safety programs .. 105
5.17 General recommendations for safety ... 105

Table of Contents

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 5


 S

ie
m

e
n

s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6 The Most Important Recommendations .. 106

7 Related Literature .. 107

8 History... 108

1 Preface

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 6

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

1 Preface

Aims for the development of the new SIMATIC control generation

 An engineering framework for all automation components (controller, HMI,
drives, etc.)

 Uniform programming

 Increased performance

 Full set of commands for every language

 Fully symbolic program generation

 Data handling even without pointer

 Reusability of created blocks

Aim of the guideline

The new control generation SIMATIC S7-1200 and S7-1500 has an up-to-date
system architecture, and together with the TIA Portal offers new and efficient
options of programming and configuration. It is no longer the resources of the
controller (e.g. data storage in the memory) that are paramount but the actual
automation solution.

This document gives you many recommendations and tips on the optimal
programming of S7-1200/1500 controllers. Some differences in the system
architecture of the S7-300/400, as well as the thus connected new programming
options are explained in an easy to understand way. This helps you to create a
standardized and optimal programming of your automation solutions.

The examples described can be universally used for the controllers S7-1200 and
S7-1500.

Core content of this programming guideline

The following key issues on the TIA Portal are dealt with in this document:

 S7-1200/1500 innovations

– Programming languages

– Optimized blocks

– Data types and instructions

 Recommendation on general programming

– Operating system and user program

– Storage concept

– Symbolic addressing

– Libraries

 Recommendations on hardware-independent programming

 Recommendations on STEP 7 Safety in TIA Portal

 Overview of the most important recommendations

1 Preface

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 7

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Advantages and benefits

Numerous advantages arise by applying these recommendations and tips:

 Powerful user program

 Clear program structures

 Intuitive and effective programming solutions

Additional Information

When programming SIMATIC controllers, the task of the programmer is to create
as clear and readable a user program as possible. Each user uses its own
strategy, for example, how to name tags or blocks or the way of commenting. The
different philosophies of the programmers create very different user programs that
can only be interpreted by the respective programmer.

The programming styleguide offers you coordinated set of rules for consistent
programming. These specifications for example describe a uniform assignment of
tags and block names up to clear programming in SCL.

You can user these rules and recommendations at will; they serve as a suggestion
(not a standard in programming) for consistent programming.

Hinweis You will find the programming styleguide for S7-1200 and S7-1500 in the
following entry:

https://support.industry.siemens.com/cs/ww/en/view/81318674

https://support.industry.siemens.com/cs/ww/en/view/81318674

2 S7-1200/1500 Innovations

2.1 Introduction

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 8

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2 S7-1200/1500 Innovations

2.1 Introduction

In general, the programming of SIMATIC controllers has stayed the same from
S7-300/400 to S7-1500. There are the familiar programming languages such as
LAD, FBD, STL, SCL or graph and blocks such as organization blocks (OBs),
function blocks (FBs), functions (FCs) or data blocks (DBs). I.e. already created
S7-300/400 programs can be implemented on S7-1500 and already created LAD,
FBD and SCL programs on S7-1200 controller without any problems.

Additionally, there are many innovations that make programming easier for you and
which allow a powerful and storage-saving code.

We not only recommend implementing programs that are implemented for
S7-1200/1500 controllers 1:1 but also to check them for the new options and where
applicable, to use them. The additional effort is often limited and you get a program
code that is, for example,

• optimal in terms of memory and runtime for the newer CPUs

• easier to understand,

• and easier to maintain.

Note Information on migrating S7-300/S7-400 to S7-1500 is available in the following
entry:

https://support.industry.siemens.com/cs/ww/en/view/109478811

2.2 Terms

General terms using TIA Portal

Some terms have changed in order to make better handling with the TIA Portal
possible.

Figure 2-1: New terms in the TIA Portal

Symbol table PLC tags

STEP 7 V5.x STEP 7 (TIA Portal)

VAT table Watch table

UDT PLC data types

https://support.industry.siemens.com/cs/ww/en/view/109478811

2 S7-1200/1500 Innovations

2.2 Terms

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 9

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Terms for tags and parameters

When it is about tags, functions, and function blocks, many terms are repeatedly
used differently or even incorrectly. The following figure is to clarify these terms.

Figure 2-2: Terms associated with tags and parameters

FC / FBGlobaler DB

1

2

3 4

Table 2-1: Terms associated with tags and parameters

 Term Description

1. Tag Tags are labeled by a name/identifier and assign an
address in the memory of the controller. Tags are always
defined with a certain data type (Bool, Integer, etc.):

 PLC tags

 Single tags in data blocks

 Complete data blocks

2. Tag value Tag values are values stored in a tag (e.g., 15 as value
of an Integer tag).

3. Actual parameter Actual parameters are tags interconnected at the
interfaces of instructions, functions, and function blocks.

4. Formal parameter
(transfer parameter,
block parameter)

Formal parameters are the interface parameters of
instructions, functions, and function blocks (Input,
Output, InOut, and Ret_Val).

2 S7-1200/1500 Innovations

2.2 Terms

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 10

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note You will find further information in the following entries:

What entries are available on the internet for the migration to STEP 7 (TIA
Portal) and WinCC (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/56314851

What prerequisites have to be fulfilled in order to migrate a STEP 7 V5.x project
into STEP 7 Professional (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/62100731

PLC migration for S7-1500 with STEP 7 (TIA Portal)
https://support.industry.siemens.com/cs/ww/en/view/67858106

How do you efficiently and effectively program for the S7-1200/S7-1500 in
STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67582299

Why is it not possible to mix register passing and explicit parameter transfer with
the S7-1500 in STEP 7 (TIA Portal)?
Among others, the migration of STL programs to S7-1500 is described in this
entry.
https://support.industry.siemens.com/cs/ww/en/view/67655405

https://support.industry.siemens.com/cs/ww/en/view/56314851
https://support.industry.siemens.com/cs/ww/en/view/62100731
https://support.industry.siemens.com/cs/ww/en/view/67858106
https://support.industry.siemens.com/cs/ww/en/view/67582299
https://support.industry.siemens.com/cs/ww/en/view/67655405

2 S7-1200/1500 Innovations

2.3 Programming languages

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 11

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.3 Programming languages

For the programming of a user program, various different programming languages
are available. Each language has its own advantages, which can be variably used,
depending on the application. Every block in the user program can therefore be
created in any programming language.

Table 2-2: Programming languages

Programming language S7-1200 S7-1500

Ladder (LAD)  

Function block diagram (FBD)  

Structured control language (SCL)  

Graph  

Statement list (STL)  

Note You will find further information in the following entries:

SIMATIC S7-1200 / S7-1500 Comparison list for programming languages
https://support.industry.siemens.com/cs/ww/en/view/86630375

What has to be observed when migrating a S7-SCL program in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/59784005

What instructions cannot be used in STEP 7 (TIA Portal) in an SCL program?
https://support.industry.siemens.com/cs/ww/en/view/58002709

How can the constants be defined under STEP 7 (TIA Portal) in a S7-SCL
program?
https://support.industry.siemens.com/cs/ww/en/view/52258437

2.4 Optimized machine code

TIA Portal and S7-1200/1500 allow an optimized runtime performance in any
programming language. All languages are compiled the same, directly into the
machine code.

Advantages

 All programming languages have the same high performance (with the same
access types)

 No reduced performance through additional compiling with an intermediate
step via STL

Properties

The following figure displays the difference of the compilation of S7 programs into
machine code.

https://support.industry.siemens.com/cs/ww/en/view/86630375
https://support.industry.siemens.com/cs/ww/en/view/59784005
https://support.industry.siemens.com/cs/ww/en/view/58002709
https://support.industry.siemens.com/cs/ww/en/view/52258437

2 S7-1200/1500 Innovations

2.5 Block creation

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 12

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 2-3: Machine code generation with S7-300/400/WinAC and S7-1200/1500

Maschine code
S7-300/400/WinAC

SCL
LAD
FBD

STL

Maschine code
S7-1200/1500

LAD
FBD

SCL STL
(only S7-1500)

S7-300/400/WinAC S7-1200/1500

 For S7-300/400/WinAC controllers LAD and FBD programs are first of all
compiled in STL before the machine code is created.

 For S7-1200/1500 controllers all programming languages are directly compiled
into machine code.

2.5 Block creation

All blocks such as OBs, FBs and FCs can be programmed directly in the desired
programming language. Thus no source has to be created for SCL programming.
You only select the block, and SCL as programming language. The block can then
be directly programmed.

Figure 2-4: “Add new block” dialog

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 13

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6 Optimized blocks

S7-1200/1500 controllers have optimized data storage. In optimized blocks, all tags
are automatically sorted by their data type. The sorting ensures that data gaps
between the tags are minimized and that the tags are stored access-optimized for
the processor.

Non-optimized blocks only exist for reasons of compatibility in S7-1200/1500.

Advantages

 The access is always as fast as possible, since the file storage is optimized by
the system and is independent of the declaration.

 No danger of inconsistencies due to faulty, absolute accesses since the access
is generally symbolic.

 Declaration changes do not lead to access errors since, for example, HMI
accesses are performed symbolically.

 Individual tags can be specifically defined as “retain”.

 No settings in the instance data block are necessary. Everything is set in the
assigned FB (e.g. retentivity).

 Memory reserves in the data block make it possible to change the actual
values without any loss (see chapter 3.2.7 Downloading without reinitialization)

2.6.1 S7-1200: Setup of optimized blocks

Figure 2-5: Optimized block of S7-1200

B
y
t
e
s

Bits

0 1 2 3 4 5 6 7

W1

W2

B1

X1 X2 X3 X4

B
y
t
e
s

Bits

0 1 2 3 4 5 6 7

0 X1

1 B1

2 X2 X3

3

4
W1

5

6 X3

7

8
W2

9

OptimizedStandard

Standard block Optimized block

Properties

 No data gaps are formed since larger tags are located at the beginning of the
block and smaller ones at the end.

 Only the symbolic access exists for optimized blocks.

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 14

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6.2 S7-1500: Setup of optimized blocks

Figure 2-6: Optimized block of S7-1500

B
y
t
e
s

Bits

0 1 2 3 4 5 6 7

W1

W2

B1

X1

X2

X3

X4

B
y
t
e
s

Bits

0 1 2 3 4 5 6 7

0 X1

1 B1

2 X2 X3

3

4
W1

5

6 X4

7

8
W2

9

Standard block Optimized block

OptimizedStandard

Reserve

Figure 2-7: Memory space assignment in optimized blocks

B

y

t

e

s

4 Byte are always read at once

0 DW DW W B W W

16 W W W B B B B X X X

32

48

64

80

96

102 DW DW DW W W

128 W B X X

144

Reserve

Reserve

1

2

Optimized

1. Structures are stored separately and can thus be copied as one block.

2. Retentive data are stored in a separate area and can be copied as one block.
In the event of a power failure, these data are stored CPU-internally. "MRES"
resets these data to the start values stored in the load memory.

Properties

 No data gaps are formed since larger tags are located at the beginning of the
block and smaller ones at the end.

 Fast access due the best possible storage in the processor (All tags are stored
in a way so that the processor of the S7-1500 can directly read or write all tags
with just one machine command).

 Boolean tags are stored as byte for faster access. The controller therefore
does not have to mask the access.

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 15

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

 Optimized blocks have a memory reserves for reloading in running operation
(see chapter 3.2.7 Downloading without reinitialization).

 Only the symbolic access exists for optimized blocks.

2.6.3 Best possible data storage in the processor on S7-1500

For reasons of compatibility to the first SIMATIC controllers the “Big-Endian”
principle of data storage was adopted in the S7-300/400 controllers.

The new S7-1500 controller generation always accesses 4 byte (32 bit) in “Little-
Endian” sequence due to the changed processor architecture. This results in the
following system-specific properties.

Figure 2-8: Data access of a S7-1500 controller

B

y

t

e

s

Bits

0 1 2 3 4 5 6 7

0 BYTE

1

2

REAL
3

4

5

6 X X

7

8
WORD

9

B

y

t

e

s

Bits

0 1 2 3 4 5 6 7

REAL

WORD

BYTE

X

X

Standard

1

0 Little-Endian

Optimized

0

1 Big-Endian

0

1

2

3 Big-Endian

3

2

1

0 Little-Endian

1

2

1

Reserve2

Standard block

max. 64kB

Optimized block

max. 16MB

C
o

p
yi

n
g

re
q

u
ir

es
 t

im
e

d
u

e
to

 r
es

o
rt

in
g!

Conversion for
processor access:

Big  Little Endian

Best possible processor
data storage:

No conversion
required.

Table 2-3: Data access of a S7-1500 controller

 Standard block Optimized block

1. In the event of an unfavorable offset,
the controller needs 2x16 bit accesses
in order to be able to read a 4 byte
value (e.g. REAL value).

In addition the bytes have to be
changed.

The controller stores the tags, access
optimized. An access is performed with
32 bit (REAL).

A changing of the bytes is not
necessary.

2. The complete byte is read and masked
per bit access.

The complete byte is blocked for any
other access.

Each bit is assigned a byte.

When accessing, the controller does not
have to mask the byte.

3. Maximum block size is 64kB. Maximum block size can be up to
16MB.

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 16

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 Always only use optimized blocks.

– They do not require absolute addressing and can always be addressed
with symbolic data (object related). Indirect addressing is also possible with
symbolic data (see chapter 3.6.2 ARRAY data type and indirect field
accesses).

– The processing of optimized blocks in the controller is much faster than
with standard blocks.

 Avoid the copying/assigning of data between optimized and non-optimized
blocks. The required conversion between source and destination format
requires high processing time.

Example: Setting optimized block access

The optimized block accesses for all newly created blocks for S7-1200/1500 is
enabled by default. Block access can be set for OBs, FBs and global DBs. For
instance DBs, the setting depends on the respective FB.

The block access is not reset automatically when a block is migrated from a
S7-300/400 controller to a S7-1200/1500. You can change the block access later
on to “optimized block access”. You need to recompile the program after changing
the block access. If you change the FBs to “optimized block access”, the assigned
instance data blocks are automatically updated.

Follow the instructions below, in order to set the optimized block access.

Table 2-4: Setting optimized block access

Step Instruction

1. Click the “Maximizes/minimizes the Overview” button in the project navigation.

2. Navigate to “Program blocks“.

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 17

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

3. This is where you see all blocks in the program and whether they are optimized
or not. In this overview the “Optimized block access” status can be conveniently
changed.

Note: Instance data blocks (here “Function_block_1_DB”) inherit the “optimized”
status from the respective FB. This is why the “optimized” setting can only be
changed on the FB. After the compilation of the project the DB accepts the
status depending on the respective FB.

Display of optimized and non-optimized blocks in the TIA Portal

In the two following figures the differences between an optimized and a non-
optimized instance DB can be seen.

For a global DB there are the same differences.

Figure 2-9: Optimized data block (without offset)

Figure 2-10: Non-optimized data blocks (with offset)

Table 2-5: Difference: optimized and non-optimized data block

Optimized data block Non-optimized data block

Optimized data blocks are addressed
symbolic. No “offset” is displayed.

At non-optimized blocks an “offset” is
displayed and can be used for addressing.

In optimized blocks every tag can be
declared with “Retain”.

In non-optimized blocks only all or no tags
can be declared with “Retain”.

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 18

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The retentivity of tags of a global DB is defined directly in the global DB. The
default setting is non-retentive.

The retentivity of tags of one instance is defined in the function block (not in the
instance DB).These settings then apply to all instances of this FB.

Access types for optimized and non-optimized blocks

The following table displays all access types to blocks.

Table 2-6: Access types

Access type Optimized block Non-optimized
block

Symbolic  

Indexed (fields)  

Slice accesses  

AT instruction 
(Alternatively: slice access)



Direct absolute 
(Alternatively: ARRAY with

index)



Indirect absolute (pointer) 
(Alternatively: VARIANT /

ARRAY with index)



Downloading without
reinitialization

 

Note You will find further information in the following entries:

What differences should you watch out for between optimized data storage and
the standard type of block access in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67655611

What properties do you have to pay attention to in STEP 7 (TIA Portal) for the
instructions "READ_DBL" and "WRIT_DBL", when you are using DBs with
optimized access?
https://support.industry.siemens.com/cs/ww/en/view/51434747

2.6.4 Conversion between optimized and non-optimized tags

The general recommendation is to work with optimized tags. However, if you want
to keep your previous programming in individual cases, this leads to a mixture of
optimized and non-optimized data storage in the program.

The system recognizes the internal storage of each tag, no matter if structured
(derived from a user-defined data type) or elementary (INT, LREAL, etc.).

In the case of type-identical allocations between two tags with different storage
locations, the system converts automatically. In the case of structured tags, this
conversion requires performance and should therefore be avoided, if possible.

https://support.industry.siemens.com/cs/ww/en/view/67655611
https://support.industry.siemens.com/cs/ww/en/view/51434747

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 19

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6.5 Parameter transfer between blocks with optimized access and
standard access

If during a block call, structures are transferred to the called block as InOut
parameter, these are by default transferred as reference (see chapter 3.3.2 Call-
by-reference with InOut interface type).

However, this does not apply if one of the blocks has the property “Optimized
access” and the other block the property “Standard access”. Principally, all
parameters are then transferred as copies (see chapter 3.3.1 Call-by-value with In
interface type).

In this case, the called block always works with the copied values. During block
processing, these values might be changed and, after processing the block call, be
copied back to the original operand.

This may cause problems, if the original operands are changed by asynchronous
processes, e.g. by HMI access or alarm OBs. If, after processing the block, the
copies are returned to the original operand, the asynchronously performed
changes at the original operands are overwritten.

NOTE You will find further information in the following entry:

Why is it possible that data of HMI system or web server are overwritten in
S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/109478253

Recommendation:

 Always set the same access type for both blocks that communicate with each
other.

https://support.industry.siemens.com/cs/ww/en/view/109478253

2 S7-1200/1500 Innovations

2.6 Optimized blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 20

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.6.6 Communication with optimized data

The interface (CPU, CM) transfers the data as they are arranged (no matter if
optimized or not).

Figure 2-11: CPU-CPU communication

Send CPU Receive CPU

Compatible

data transfer

(byte stream)

Receive data can be:

• optimized

• not optimized

• Tag (any type)

• Buffer (byte array)

Send data can be:

• optimized

• not optimized

• Tag (any type)

• Buffer (byte array)

B1 32 39 4F 6D 7A … FF0A

Example

 A tag with data type PLC (data record) is to be transferred to a CPU.

 In the send CPU, the tag is interconnected as actual parameter with the
communication block (TSEND_C).

 In the receive CPU, the receive data are assigned to a tag of the same type.

 In this case, it is possible to symbolically continue to work directly with the
received data.

Note Any tags or data blocks (derived from PLC data types) can be used as data
records.

Note It is also possible that the send and receive data are not defined identically:

Send data Receive data

optimized --> not optimized

not optimized --> optimized

The controller automatically provides for correct data transmission and storage.

2 S7-1200/1500 Innovations

2.7 Block properties

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 21

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.7 Block properties

2.7.1 Block sizes

For S7-1200/1500 controllers the maximum size of blocks was significantly
increased in the main memory.

Table 2-7: Block sizes

Max. size and number
(regardless of the main memory

size)

S7 -300/400 S7-1200 S7-1500

DB Max. size 64 kB 64 kB 64 kB (non-optimized)
10 MB (optimized

CPU1518)

 Max. number 16.000 65.535 65.535

FC/FB Max. size 64 kB 64 kB 512 kB
3 MB (optimized

CPU1518)

 Max. number 7.999 65.535 65.535

FC / FB / DB Max. number 4.096 (CPU319)
6.000 (CPU412)

1.024 10.000 (CPU1518)

Recommendation

 Use the DBs for S7-1500 controllers as data container of very large data
volumes.

 Data volumes of > 64 kB can be stored in an optimized DB (max. size 10 MB)
with S7-1500 controllers.

2.7.2 Number of organization blocks (OB)

OBs can be used for creating a hierarchical structure of the user program. Different
OBs are available for this purpose.

Table 2-8: Number of organization blocks

Organization block type S7-1200 S7-1500 Benefit

Cyclic and startup OBs 100 100
Modularization of the

user program

Hardware interrupt 50 50
Separator OB possible

for each event

Time delay interrupt

4*

20
Modularization of the

user program

Cyclic interrupt 20
Modularization of the

user program

Time of day  20
Modularization of the

user program

* from firmware V4 on 4 delay interrupts and 4 watchdog interrupts each possible.

Recommendation

 Use OBs for structuring the user program hierarchically.

 For further recommendations on using OBs refer please to Chapter
3.2.1 Organization blocks (OB).

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 22

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.8 New data types for S7-1200/1500

S7-1200/1500 controllers support new data types in order to make programming
more convenient. With the new 64 bit data types considerably larger and more
accurate values can be used.

Note You will find further information in the following entry:

How is the conversion of data types performed in the TIA Portal for the
S7-1200/1500?
https://support.industry.siemens.com/cs/ww/en/view/48711306

2.8.1 Elementary data types

Table 2-9: Integer data types

Type Size Value range

USint 8 bit 0 .. 255

SInt 8 bit -128 .. 127

UInt 16 bit 0 .. 65535

UDInt 32 bit 0 .. 4.3 million

ULInt* 64 bit 0 .. 18,4 Trio (10
18

)

LInt* 64 bit -9,2 Trio .. 9,2 Trio

LWord 64 bit 16#0000 0000 0000 0000 bis

16# FFFF FFFF FFFF FFFF

* only for S7-1500

Table 2-10: Floating-point decimal data types

Type Size Value range

Real 32 bit (1 bit signs, 8 bit exponent, 23 bit mantissa),

accurate to 7 decimal places

-3.40e+38 .. 3.40e+38

LReal 64 bit (1 bit signs, 11 bit exponent, 52 bit

mantissa), accurate to 15 decimal places

-1.79e+308 .. 1.79e+308

Note The TIA Portal contains the global library “Long Functions” with a great scope of
instructions for long data types.

https://support.industry.siemens.com/cs/ww/en/view/48711306
http://www.dict.cc/englisch-deutsch/accurate.html
http://www.dict.cc/englisch-deutsch/decimal.html
http://www.dict.cc/englisch-deutsch/places.html
http://www.dict.cc/englisch-deutsch/accurate.html
http://www.dict.cc/englisch-deutsch/decimal.html
http://www.dict.cc/englisch-deutsch/places.html

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 23

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note You will find further information in the following entry:

Why, in STEP 7 (TIA Portal), is the result of the DInt Addition in SCL not
displayed correctly?
https://support.industry.siemens.com/cs/ww/en/view/98278626

2.8.2 Date_Time_Long data type

Table 2-11: Structure of DTL (Date_Time_Long)

Year Month Day Weekday Hour Minute Second Nanosecond

DTL always reads the current system time. Access to the individual values is

through the symbolic names (e.g. My_Timestamp.Hour)

Advantages

 All partial areas (e.g. Year, Month, …) can be addressed symbolically.

Recommendation

Use the new DTL data type instead of LDT and address symbolically (e.g.

My_Timestamp.Hour).

Note You will find further information in the following entries:

In STEP 7 (TIA Portal), how can you input, read out and edit the date and time
for the CPU modules of S7-300/S7-400/S7-1200/S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/43566349

Which functions are available in STEP 7 V5.5 and in TIA Portal for processing
the data types DT and DTL?
https://support.industry.siemens.com/cs/ww/en/view/63900229

2.8.3 Further time data types

Table 2-12: Time data types (only S7-1500)

Type Size Value range

LTime 64 bit

LT#-106751d23h47m16s854ms775us808ns

up to

LT#+106751d23h47m16s854ms775us807ns

LTIME_OF_DAY 64 bit

LTOD#00:00:00.000000000

up to

LTOD#23:59:59.999999999

https://support.industry.siemens.com/cs/ww/en/view/98278626
https://support.industry.siemens.com/cs/ww/en/view/43566349
https://support.industry.siemens.com/cs/ww/en/view/63900229

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 24

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.8.4 Unicode data types

Data types WCHAR and WSTRING can be processed using unicode characters.

Table 2-13: Time data types (only S7-1500)

Type Size Value range

WCHAR 2 bytes -

WSTRING (4 + 2*n) byte

Preset value:
0 ..254 characters

Max. value: 0 ..16382

n = length of the character chain

Properties

 Processing characters in Latin Chinese or other languages, for example.

 Line breaks, page feed, tabulator, space character

 Special characters: Dollar sign, quotation marks

Example

 WCHAR#‘a‘

 WSTRING#‘Hello World!‘

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 25

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.8.5 VARIANT data type (S7-1500 and S7-1200 from FW4.1)

A parameter of the VARIANT type is a pointer that can point to tags of different
data types. In contrast to the ANY pointer the VARIANT is a pointer with type test.
The target structure and source structure are checked at runtime and have to be
identical.

VARIANT is used, for example, as input for communication blocks (TSEND_C).

Figure 2-12: VARIANT data type as input parameter for the TSEND_C instruction

VARIANT
Beinhaltet in dem Fall die Überprüfung

auf die Struktur TCON_IP_v4

Advantages

 Integrated type test prevents faulty access.

 Due to the symbolic addressing of the variant tags, the code can be read
easier.

 Code can be programmed more efficiently and within a shorter time.

 Variant pointers are clearly more intuitive than ANY pointers.

 Variant tags can be used directly using system functions.

 Flexible and performant transfer of differently structured tabs is possible.

Properties

A comparison between ANY and Variant makes the properties apparent.

Table 2-14: Comparison ANY and Variant

ANY Variant

Requires 10 Kbytes of memory with defined
structure

Does not require any memory space for the
user

Initialization either via assignment of the
data area or by means of filling the ANY
structure

Initialization by means of assigning the data
area of system instruction

Non-typed – Type of an interconnected
structure cannot be read out

Typed – Interconnected type as well as the
length for arrays can be determined

Partially typed – Length for arrays can be
determined

VARIANT can also be evaluated and
created via system instructions

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 26

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 Only use the VARIANT data type for indirect addressing if the data types are
not determined until the program is running.

 Check what you have used the ANY pointer for so far. In many cases, a pointer
is not required (see table below).

 Only use the VARIANT data type for indirect addressing if the data types are
not determined until the program is running.

– Using data type VARIANT as InOut formula parameter for creating generic
blocks which are independent of the data type of the actual parameters
(see example in this chapter).

– Use the VARIANT data type instead of the ANY pointer. Due to the
integrated type test, errors are detected early on. Due to the symbolic
addressing, the program code can be easily interpreted.

– Use the Variant instruction, for example, for type recognition (see following
example and Chapter 2.9.3 VARIANT instructions)

 Use the indexed ARRAYs instead of ANY pointer to address ARRAY elements
(see chapter 3.6.2 ARRAY data type and indirect field accesses).

Table 2-15: Comparison ANY pointer and simplification

What are ANY pointers used for? Simplification with S7-1200/1500

Programming functions which can
process different data types

 Functions with Variant pointer as InOut
parameter for blocks
(see following examples)

Processing of arrays

 e.g. reading, initializing, copying of
elements of the same type

 Standard array functions

 Reading and writing with
#myArray[#index] (see chapter 3.6.2
ARRAY data type and indirect field
accesses)

 Copy with MOVE_BLK (see chapter
2.9.2 MOVE instructions)

Transferring structures and performant
processing

 e.g. transferring user-defined
structure by means of ANY pointers
to functions

 Transferring structures as InOut
parameters

 see chapter 3.3.2 Call-by-reference
with InOut interface type

2 S7-1200/1500 Innovations

2.8 New data types for S7-1200/1500

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 27

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example

With data type VARIANT it is possible to recognize data types in the user program
and react accordingly. The following code of FC “MoveVariant” shows a possible
way of programming.

 The InOut formal parameter “InVar” (data type VARIANT) is used to show a tag
independent of the data type.

 The data type of the actual parameter is recognized with the “Type_Of”
instruction.

 Using the “MOVE_BLK_VARIANT” instruction, the tag value is copied to the
different output formal parameters depending on the data type.

Figure 2-13: Formal parameter of FC “MoveVariant”

CASE TypeOf(#InOutVariant) OF // Check datatypes

 Int: // Move Integer

 #MoveVariant := MOVE_BLK_VARIANT(SRC := #InOutVariant,

 COUNT := 1,

 SRC_INDEX := 0,

 DEST_INDEX := 0,

 DEST => #OutInteger);

 Real: // Move Real

 #MoveVariant := MOVE_BLK_VARIANT(SRC := #InOutVariant,

 COUNT := 1,

 SRC_INDEX := 0,

 DEST_INDEX := 0,

 DEST => #OutReal);

 MyType: // Move MyType

 #MoveVariant := MOVE_BLK_VARIANT(SRC := #InOutVariant,

 COUNT := 1,

 SRC_INDEX := 0,

 DEST_INDEX := 0,

 DEST => #OutMyType);

 ELSE // Error, no sufficient data type

 #MoveVariant := WORD_TO_INT(#NO_CORRECT_DATA_TYPE);

 // 80B4: Error code of MOVE_BLK_VARIANT: Data types do

 not correspond

END_CASE;

NOTE If you want to copy values of not structured VARIANT tags, you can also use
VariantGet instead of MOVE_BLK_VARIANT (see chapter
2.9.3 VARIANT instructions).

2 S7-1200/1500 Innovations

2.9 Instructions

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 28

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.9 Instructions

2.9.1 CALCULATE

With the CALCULATE instruction you can carry out mathematical calculations (e.g.
(IN1 + IN2) * IN3) that are independent from the data type. The mathematical
formula is programmed in the formula editor of the instruction.

Figure 2-14: CALCULATE instruction with formula editor

Note For more information refer to the Online Help of the TIA Portal with the
“CALCULATE” instruction.

Advantages

 A mathematical formula only needs one instruction

 Time saving due to simple configuration

Properties

 Supports bit sequences, integers, floating-point numbers

 Supports numerous mathematical functions (all basic arithmetic operations,
trigonometric functions, rounding, logarithm, etc.)

 Number of inputs is extendable

Recommendation

 Always use the CALCULATE instruction for mathematical calculations instead
of many calls of instructions, such as, e.g. ADD, SUB, etc.

2 S7-1200/1500 Innovations

2.9 Instructions

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 29

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.9.2 MOVE instructions

STEP 7 (TIA) provides the following MOVE instructions. The instruction
MOVE_BLK_VARIANT for S7-1200/1500 is new.

Table 2-16: Move instructions

Instruction Typical use Properties

MOVE Copy value

Copy array

 Copy the content of the parameter at
the IN input to the parameter of the
OUT output.

 The parameters at the input and output
must be of the same data type.

 The parameters can also be structured
tags (PLC data types).

 Copy complete arrays and structures.

MOVE_BLK Copy several
areas

 Copy the content of an array to another
array.

 The source and target array must be of
the same data type.

 Copy complete arrays and structures.

 Copy several array elements with
structures as well. In addition, start and
number of elements can be assigned.

UMOVE_BLK Copy array
without
interruption

 Copies the content of an array
consistently without the risk of the OB
interrupting the copying process.

 The source and target array must be of
the same data type.

MOVE_BLK_VARIANT

(S7-1500 and
S7-1200 from FW4.1)

Copy array  Copies one or several structured tag(s)
(PLC data types).

 Recognizes data types at runtime

 Supplies detailed error information

 Apart from the elementary and
structured data types, PLC data types,
arrays, and array DBs are also
supported.

Serialize

(S7-1500 and
S7-1200 from FW4.1)

Copy structured
data into byte
array

 Several data records can be combined
into a single byte array and be sent to
other devices as a message frame.

 Input and output parameters can be
transferred as data type Variant.

Deserialize

(S7-1500 and
S7-1200 from FW4.1)

Copy from a
byte array into
one/several
structure/s

 Application case I-Device:
The I-Device receives several data
records in the input area which are
copied to different structures.

 Several data records can be combined
into a single byte array. Deserialize
enables copying these to different
structures.

2 S7-1200/1500 Innovations

2.9 Instructions

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 30

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 2-15: Serialize and deserialize (S7-1500 and S7-1200 from FW4.1)

Array[0..7] of Byte

Byte0

Byte1

.

.

.

Byte7

Struct1

Int

Real

Uint

.

.

.

Struct2
Struct3

Serialize Deserialize

Recommendation

 Generally, you need to distinguish between MOVE, MOVE_BLK and
MOVE_BLK_VARIANT

– Use the MOVE instruction to copy complete structures.

– Use the MOVE_BLK instruction to copy parts of an ARRAY of a known
data type.

– Only use the MOVE_BLK_VARIANT instruction if you wish to copy parts of
ARRAYs with data types which are only known during program run-time.

Note UMOVE_BLK: The copy process cannot be interrupted by another activity of the
operating system. Therefore, the alarm reaction times of the CPU might increase
during processing of the instruction "Copy array without interruption".

For the complete description of the MOVE instructions, please refer to the TIA
Portal Online Help.

Note You will find further information in the following entry:

In STEP 7 (TIA Portal) how do you copy memory areas and structured data from
one data block to another?
https://support.industry.siemens.com/cs/ww/en/view/42603881

https://support.industry.siemens.com/cs/ww/en/view/42603881

2 S7-1200/1500 Innovations

2.9 Instructions

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 31

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.9.3 VARIANT instructions (S7-1500 and S7-1200 from FW4.1)

Table 2-17: Move instructions

Instruction Typical use Properties

MOVE operations

VariantGet Read value This instruction enables you to read
the value of a tag pointing to a
VARIANT.

VariantPut Write value This instruction enables you to write
the value of a tag pointing to a
VARIANT.

List

CountOfElements Counting elements With this instruction you poll the
number of ARRAY elements of a tag
pointing to a VARIANT.

Compare operations

TypeOf()
(only SCL)

Determining the data
type

Use this instruction to poll the data
type of a tag pointing to a VARIANT.

TypeOfElements()
(only SCL)

Determining the array
data type

Use this instruction to poll the data
type of the ARRAY elements of a tag
pointing to a VARIANT.

Conversion operations

VARIANT_TO_DB_ANY
(only SCL)

Determining the data
block number

With this instruction you poll the data
block number of an instance data
block of a PLC data type, system
data type, or array DB.

DB_ANY_TO_VARIANT
(only SCL)

Creates a Variant tag
from a data block.

With this instruction you create a
Variant tag from an instance data
block of a PLC data type, system
data type, or array DB.

Note For more VARIANT instructions, please refer to the online help of the TIA Portal.

2.9.4 RUNTIME

Using the "RUNTIME" instruction you measure the runtime of the complete
program, single blocks or the command sequences. You can call this instruction in
SCL (S7-1200/S7-1500) and in STL (S7-1500).

Note You will find further information in the following entry:

With S7-1200/S7-1500, how do you measure the time of a program section or
the complete program cycle at runtime?
https://support.industry.siemens.com/cs/ww/en/view/87668055

https://support.industry.siemens.com/cs/ww/en/view/87668055

2 S7-1200/1500 Innovations

2.10 Symbolic and comments

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 32

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.10 Symbolic and comments

2.10.1 Programming editor

Advantages

You can make the code easy to understand and readable for your colleagues with
the use of symbolic names and comments in your program.
The complete symbolic is saved together with the program code during the
download to the controller and allows fast maintenance of the plant when no offline
project is at hand.

Recommendation

 Use the comments in the programs in order to improve readability. Network title
comments are visible even if networks are collapsed.

 Design the program code in a way so that colleagues can understand the
program straight away.

In the following example you can see the extensive options for commenting the
program in the editors.

Example

In the following figure you can see the options for commenting in the LAD editor
(same functionality in FDB).

Figure 2-16: Commenting in the user program (LAD)

4

3

2

1

The following comments are possible:

1. Block comment

2. Network title comment

3. Network comment

4. Comment on instructions, blocks and functions (open, close, etc.)

2 S7-1200/1500 Innovations

2.10 Symbolic and comments

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 33

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

In the programming languages SCL and STL, it can be commented with // in every
row.

Example

Filling level := Radius * Radius * PI * height;

// calculation of the filling level for medium tank

Note For further information, refer to the following entry:

In STEP 7 (TIA Portal), why are the display texts, titles and comments no longer
displayed after opening the project in the block editor?
https://support.industry.siemens.com/cs/ww/en/view/41995518

2.10.2 Comment lines in watch table

Advantages

 For better structuring it is possible to create comment lines in the watch table.

Recommendation

 Always use comment lines and sub-divide your watch table.

 Please also comment on the individual tags.

Example

Figure 2-17: Watch table with comment lines

https://support.industry.siemens.com/cs/ww/en/view/41995518

2 S7-1200/1500 Innovations

2.11 System constants

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 34

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.11 System constants

For S7-300/400 controllers the identification of hardware and software components
is performed by logic address or diagnostic addresses.

For S7-1200/1500 the identification is by system constants. All hardware and
software components (e.g. interfaces, modules, OBs, ...) of the S7-1200/1500
controllers have their own system constants. The system constants are
automatically created during the setup of the device configuration for the central
and distributed I/O.

Advantages

 You can address via module names instead of hardware identification.

Recommendation

 Assign function-related module names in order to identify the modules easily
during programming.

Example

In the following example you can see how system constants are used in the user
program.

Figure 2-18: “System constants” in the user program

1

2

3

1. System constants of a controller can be found in the “PLC tags –
Default tag table” folder.

2. The system constants are in a separate tab in the “Default tag table”.

3. In this example the symbolic name “Robot_arm_left” was assigned for a DI
module.
You can also find the module under this name in the system constant tab.
In the user program “Robot_arm_left” is interconnected with the “GET_DIAG”
diagnostic block.

2 S7-1200/1500 Innovations

2.12 User constants

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 35

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note Open the “Device configuration” to quickly find the system constant for each
device.

Note You will find further information in the following entry:

What meaning do the system constants have for the S7-1200/1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/78782835

2.12 User constants

Using user constants, constant values can be saved. Generally, there are local
constants for OBs, FCs and FBs and global constants for the entire user program
in a controller.

Advantages

 User constants can be used for changing constant values globally or locally for
all usage locations.

 With user constants, the program can be made more readable.

Properties

 Local user constants are defined in the block interface.

 Global user constants are defined at “PLC tags”.

 The user program only enables read access to the user constants.

 For know-how protected blocks the user constants are not visible.

https://support.industry.siemens.com/cs/ww/en/view/78782835

2 S7-1200/1500 Innovations

2.13 Internal reference ID for controller and HMI tags

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 36

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 Use the user constants for improved readability of the program and central
changeability of …

– error codes,

– CASE instructions,

– conversion factors,

– natural constants ...

Example

Figure 2-19: Local user constant of a block for CASE instructions

Figure 2-20: Global user constant of a controller

Note Another application case of constants is available at the following FAQ:

How can you convert the unit of a tag in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/61928891

2.13 Internal reference ID for controller and HMI tags

STEP 7, WinCC, Startdrive, Safety and others integrate into the joint data base of
the TIA Portal engineering framework. Changes of data are automatically accepted
in all the locations in the user program, independent from whether this happens in
a controller, a panel or a drive. Therefore no data inconsistencies can occur.

If you create a tag, the TIA Portal automatically creates a unique reference ID. The
reference ID cannot be viewed or programmed by you. This procedure is internal
referencing. When changing tags (address), the reference ID remains unchanged.

https://support.industry.siemens.com/cs/ww/en/view/61928891

2 S7-1200/1500 Innovations

2.13 Internal reference ID for controller and HMI tags

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 37

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

In the figure below the internal reference to the data is displayed schematically.

Figure 2-21: Internal reference ID for PLC and HMI

PLC_1

Internal HMI

reference ID

HMI Symbol

name

Access

mode

Connection

with PLC

009876 Motor_1 <symbolic

access>

PLC_1

000578 Valve_2 <symbolic

access>

PLC_1

PLC Symbol

name

Absolute

address

Internal PLC

reference ID

Motor_1 I0.0 000123

Valve_2 Q0.3 000138

HMI_1

Note The ID will be changed if …

 name is changed.

 type is changed.

 tag is deleted.

Advantages

 You can rewire tags without changing internal relations. The communication
between controller, HMI and drive also remains unchanged.

 The length of the symbolic name does not have an influence on the
communication load between controller and HMI.

Properties

If you change addresses of PLC tags, you only have to reload the controller. It is
not necessary to reload the HMI devices, since internally, the system addresses
with the reference IDs (see Figure 2-22: Changing address or adding row).

Figure 2-22: Changing address or adding row

Changing address
& PLC

Adding row
& PLC

PLC Tags

DB Elements

Motor_1 Motor_1%I0.0 %I2.0

2 S7-1200/1500 Innovations

2.14 STOP mode in the event of errors

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 38

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

2.14 STOP mode in the event of errors

In comparison to S7-300/400 there are fewer criteria with the S7-1200/1500 that
lead to the “STOP” mode.

Due to the changed consistency check in the TIA Portal, the “STOP” mode for
S7-1200/1500 controllers can already be excluded in advance in most cases. The
consistency of program blocks is already checked when compiling in the
TIA Portal. This approach makes the S7-1200/1500 controllers more fault tolerant
to errors than their predecessors.

Advantages

There are only three fault situations that put the S7-1200/1500 controllers into the
STOP mode. This makes the programming of the error management clearer and
easier.

Properties

Table 2-18: Responses to errors of S7-1200/1500

 Error S7-1200 S7-1500

1. Cycle monitoring time
exceeded once

RUN STOP, when OB80 is

not configured

2. Cycle monitoring time
exceeded twice

STOP STOP

3. Programming errors RUN STOP, when OB121 is

not configured

Error OBs:

 OB80 “Time error interrupt” is called by the operating system when the
maximum cycle time of the controller is exceeded.

 OB121 “Programming error” is called by the operating system when an error
occurs during program execution.

For every error, in addition, an entry is automatically created in the diagnostic
buffer.

Note For S7-1200/1500 controllers there are other programmable error OBs
(diagnostic error, module rack failure, etc.).

More information on error responses of S7-1200/1500 can be found in the online
help of the TIA Portal under “Events and OBs”.

3 General Programming

3.1 Operating system and user program

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 39

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3 General Programming

3.1 Operating system and user program

SIMATIC controllers consist of operating system and user program.

 The operating system organizes all functions and sequences of the controller
that are not connected with a specific control task (e.g. handling of restart,
updating of process image, calling the user program, error handling, memory
management, etc.). The operating system is an integral part of the controller.

 The user program includes all blocks that are required for the processing of
your specific automation task. The user program is programmed with program
blocks and loaded onto the controller.

Figure 3-1: Operating system and user program

Hardware

User
program

OB
Main

Operating
system

cyclic
call

FCFB

FC

FC

Global

Local

For SIMATIC controllers the user program is always executed cyclically. The
“Main” cycle OB already exists in the “Program blocks” folder after a controller was
created in STEP 7. The block is processed by the controller and recalled in an
infinite loop.

3.2 Program blocks

In STEP 7 (TIA Portal) there are all familiar block types from the previous STEP 7
versions:

 Organization blocks

 Function blocks

 Functions

 Data blocks

Experienced STEP 7 users will know their way around straight away and new
users can very easily get familiar with the programming.

Advantages

 You can give your program a good and clear structure with the different block
types.

 Due to a good and structured program you get many function units that can be
multiply reused within a project and also in other projects. These function units
then usually only differ by a different configuration (see chapter
3.2.8 Reusability of blocks).

 You project or your plant becomes more transparent. Error states in a plant
can be more easily detected, analyzed and removed. The maintainability of
your plant becomes easier. This is also the case for errors in programming.

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 40

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 Structure your automation task.

 Divide the entire function of your plant into individual areas and form sub-
function units. Divide these sub function units again into smaller units and
functions. Divide until you get functions that you can use several times with
different parameters.

 Specify the interfaces between the function units. Define the unique interfaces
for functionalities that are to be delivered by “third party companies”.

All organization blocks, function blocks and functions can be programmed with the
following languages:

Table 3-1: Programming languages

Programming language S7-1200 S7-1500

Ladder (LAD)  

Function block diagram (FBD)  

Structured control language (SCL)  

Graph  

Statement list (STL)  

3.2.1 Organization blocks (OB)

Figure 3-2: “Add new block” dialog (OB)

OBs are the interface between the operating system and the user program. They
are called by the operating system and control, e.g. the following processes:

 Startup behavior of the controller

 Cyclic program processing

 Interrupt-controlled program processing

 Error handling

Depending on the controller a number of different OB types are available.

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 41

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Properties

 OBs are called by the operating system of the controller.

 Several Main OBs can be created in a program. The OBs are processed
sequentially by OB number.

Figure 3-3: Using several Main OBs

Main_1

OB1

FB

Local
FC

User program

Main_y

OB200

Main_x

OB300

FB

Local
FC

FB

Local
FC

Recommendation

 Encapsulate the different program parts which should maybe be replaceable
from controller to controller, into several Main OBs.

 Avoid the communication between the different Main OBs. They can then be
used independent from each other. If you nevertheless exchange data
between the individual main OBs, use the global DBs (see chapter 4.2 No bit
memory but global data blocks).

 Divide all program parts that belong to each other into folders and store them
for reusability in the project or global library.

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 42

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-4: Storing program parts in order in the project library

For further information, please refer to chapter 3.7 Libraries.

Note You will find further information in the following entry:

Which organization blocks can be used in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/40654862

https://support.industry.siemens.com/cs/ww/en/view/40654862

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 43

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.2 Functions (FC)

Figure 3-5: “Add new block” dialog (FC)

FCs are blocks without cyclic data storages. This is why the values of block
parameters cannot be saved until the next call and has to be provided with actual
parameters when called.

Properties

 FCs are blocks without cyclic data storages.

 Temporary tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset to the default value (S7-1500
and S7-1200 Firmware V4). Thus, the resulting behavior is not accidental but
reproducible.

 In order to permanently save the data of an FC, the functions of the global data
blocks are available.

 FCs can have several outputs.

 The function value can be directly reused in SCL in a formula.

Recommendation

 Use the functions for continuously recurring applications that are called several
times in different locations of the user program.

 Use the option to directly reuse the function value in SCL.
<Operand> := <FC name> (parameter list);

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 44

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example

In the following example a mathematical formula is programmed in a FC. The result
of the calculation is directly declared as return value and the function value can be
directly reused.

Table 3-2: Reusing function value

Step Instruction

4. Create an FC with the mathematical formula (circular segment) and define the
“Return” value as the result for the formula.

FC

5. Call the FC with the circular segment calculation in any block (SCL).

<Operand> := <FC name> (parameter list);

Note You will find further information in the following entry:

What is the maximum number of parameters you are allowed to define in
STEP 7 (TIA Portal) for a function in the S7-1200/S7-1500 CPU?
https://support.industry.siemens.com/cs/ww/en/view/99412890

https://support.industry.siemens.com/cs/ww/en/view/99412890

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 45

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.3 Function blocks (FB)

Figure 3-6: “Add new block” dialog (FB)

FBs are blocks with cyclic data storage, in which values are permanently stored.
The cyclic data storage is realized in an instance DB.

Figure 3-7: Calling a function block

Call of a function block in the
block editor

Instance DB

Properties

 FBs are blocks with cyclic data storage.

 Temporary tags are undefined when called in non-optimized blocks. In
optimized blocks, the values are always preset to the default value (S7-1500
and S7-1200 Firmware V4). Thus, the resulting behavior is not accidental but
reproducible.

 Static tags keep the value from cycle to cycle.

Recommendation

 Use the function blocks in order to create subprograms and structure the user
program. A function block can also be called several times in different locations
of the user program. This makes programming of frequently recurring program
parts easier.

 If function blocks are applied multiply in the user program, use separate
instances, preferably multi-instances.

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 46

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.4 Instances

The call of a function block is called instance. The data with which the instance is
working is saved in an instance DB.

Instance DBs are always created according to the specifications in the FB interface
and can therefore not be changed in the instance DB.

Figure 3-8: Structure of the interfaces of an FB

Instance

Input
Output
InOut

Static

The instance DB consists of a permanent memory with the interfaces input, output,
InOut and static. In a volatile memory (L stack) temporary tags are stored. The
L stack is always only valid for the current process. I.e. temporary tags have to be
initialized in each cycle.

Properties

 Instance DBs are always assigned to a FB.

 Instance DBs do not have to be created manually in the TIA Portal and are
created automatically when calling an FB.

 The structure of the instance DB is specified in the appropriate FB and can
only be changed there.

Recommendation

 Program it in a way so that the data of the instance DB can only be changed by
the appropriate FB. This is how you can guarantee that the block can be used
universally in all kinds of projects.

For further information, please refer to chapter 3.4 Block interfaces as data
exchange.

3.2.5 Multi-instances

With multi-instances called function blocks can store their data in the instance data
block of the called function block. I.e. if another function block is called in a function
block, it saves its data in the instance DB of the higher-level FBs. The functionality
of the called block is thus maintained even if it is transferred.

The following figure shows an FB that uses another FB (“IEC Timer”). All data is
saved in a multi instance DB. It is thus possible to create a block with an
independent time behavior, for example, a clock generator.

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 47

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-9: Multi-instances

Multi-instance DB

FB Statics

TOF_TIME

FB Parameter

FB

Switch-on

delay call

Advantages

 Reusability

 Multiple calls are possible

 Clearer program with fewer instance DBs

 Simple copying of programs

 Good options for structuring during programming

Properties

 Multi-instances are memory areas within instance DBs.

Recommendation

Use multi-instances in order to …

 reduce the number of instance DBs.

 create reusable and clear user programs.

 program local functions e.g. timer, counter, edge detection.

Example

If you require the time and counter function, use the “IEC Timer” blocks and the
“IEC Counter” blocks instead of the absolutely addressed SIMATIC Timer. If
possible, also always use multi-instances here. This keeps the number of blocks in
the user program low.

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 48

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-10: Library of the IEC Timer

Note You will find further information in the following entry:

How do you declare the timers and counters for the S7-1500 in STEP 7
(TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/67585220

3.2.6 Global data blocks (DB)

Figure 3-11: “Add new block” dialog (DB

Variable data is located in data blocks that are available to the entire user program.

https://support.industry.siemens.com/cs/ww/en/view/67585220

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 49

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-12: Global DB as central data memory

DB

OB

FC

FB

Local

Advantages

 Well-structured memory area

 High access speed

Properties

 All blocks in the user program can access global DBs.

 The structure of the global DBs can be arbitrarily made up of all data types.

 Global DBs are either created via the program editor or according to a
previously created “user-defined PLC data type" (see chapter 0

 STRUCT data type and PLC data types).

Recommendation

 Use the global DBs when data is used in different program parts or blocks.

Note You will find further information in the following entry:

What access types, value columns and operating options are there for the global
data blocks in STEP 7?
https://support.industry.siemens.com/cs/ww/en/view/68015630

3.2.7 Downloading without reinitialization

In order to change user programs that already run in a controller, S7-1200
(firmware V4.0) and S7-1500 controllers offer the option to expand the interfaces of
optimized function or data blocks during operation. You can load the changed
blocks without setting the controller to STOP and without influencing the actual
values of already loaded tags.

https://support.industry.siemens.com/cs/ww/en/view/68015630

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 50

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-13: Downloading without reinitialization

Name

Tag1

Value

3.4

Tag3

Tag4

23

0

Name

Tag1

Tag2

Value

3.4

451

Tag3 23

Tag5 0

Block

in project

Name

Tag1

Tag3

Tag4

Tag5

Tag2 451Tag2

Block in

the controller

Block in

the controller

1

3

2

Execute the following steps whilst the controller is in RUN mode.

1. Enable “Downloading without reinitialization”

2. Insert new defined tags in existing block

3. Load block into controller

Advantages

 Reloading of new defined tags without interrupting the running process. The
controller stays in “RUN” mode.

Properties

 Downloading without reinitialization is only possible for optimized blocks.

 New defined tags will be initialized. The remaining tags keep their current
values.

 A block with reserve requires more memory space in the controller.

 The memory reserve depends on the work memory of the controller; however it
is max. 2 MB.

 It is assumed that a memory reserve has been defined for block.

 By default the memory reserve is set to 100 byte.

 The memory reserve is defined individually for every block.

 The blocks can be variably expanded.

Recommendation

 Define a memory reserve for blocks that are to be expanded during
commissioning (e.g. test blocks). The commissioning process is not interrupted
by download of new defined tags. The current values of already existing tags
are kept.

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 51

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example: Setting memory reserve in block

The following table describes how you can set the memory reserve for the
downloading without reinitializing.

Table 3-3: Setting memory reserve

Step Instruction

1. Right-click any optimized block in the project navigator and select “Properties”.

2.

1

2

3

1. Click “Download without reinitialization”.

2. Enter the desired memory reserve for “Memory reserve”.

3. Confirm with "OK".

Note You can also set a default value for the size of the memory reserve for new
blocks in the TIA portal.

In the menu bar, navigate to "Options – Settings" and then to "PLC programming
– General – Download without reinitialization“.

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 52

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example: Downloading without reinitialization

In the following example it is displayed how to download without reinitialization.

Table 3-4 Downloading without reinitialization

Step Instruction

1. Requirement: a memory reserve has to be set (see above)

2. Open, e.g. an optimized global DB.

3. Click the “Download without reinitialization” button and confirm the dialog with
“OK”

4. Add a new tag (retentive tags are also possible).

5. Download the block to the controller.

6. Result:

 Actual values of the block remain

Note Further information can be found in the online help of the TIA Portal under
“Loading block extensions without reinitialization”.

You will find further information in the following entry:

What options does the S7-1500 provide for downloading data in RUN?
https://support.industry.siemens.com/cs/ww/en/view/68015630

https://support.industry.siemens.com/cs/ww/en/view/68015630

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 53

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.8 Reusability of blocks

The block concept offers you a number of options to program in a structured and
effective way.

Advantages

 Blocks can be used universally in any location of the user program.

 Blocks can be used universally in different projects.

 When every block receives an independent task, a clear and well-structured
user program is automatically created.

 There are clearly fewer sources of errors

 Simple error diagnostic possible.

Recommendation

If you want to reuse the block, please note the following recommendations:

 Always look at blocks as encapsulated functions. I.e. each block represents a
completed partial task within of the entire user program.

 Use several cyclic Main OBs to group the plant parts.

 Always execute a data exchange between the blocks via its interfaces and not
via its instances (see chapter 3.4.1 Block interfaces as data exchange).

 Do not use project-specific data and avoid the following block contents:

– Access to global DBs and use of individual instance DBs

– Access to tags

– Access to global constants

 Reusable blocks have the same requirements as know-how-protected blocks
in libraries. This is why you have to check the blocks for reusability based on
the “Block can be used as know-how protected library element” block property.
Compile the block before the check.

Figure 3-14: Block attributes

3 General Programming

3.2 Program blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 54

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.2.9 Auto numbering of blocks

For internal processing, required block numbers are automatically assigned by the
system (setting in the block properties).

Figure 3-15: Auto numbering of blocks

Kopieren und Einfügen

Konflikt durch gleiche

Blocknummer

Beim Übersetzen nummeriert das

System den kopierten Baustein um und

löst den Konflikt.

Advantages

 Conflicting block numbers, e.g. as a result of copying, automatically deletes the
TIA Portal during compilation.

Recommendation

 Keep the current setting “automatic” unchanged.

Figure 3-16: Setting in the block

3 General Programming

3.3 Block interface types

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 55

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3 Block interface types

FBs and FCs have three different interface types: In, InOut and Out. Via these
interface types the blocks are provided with parameters. The parameters are
processed and output again in the block. InOut parameters are used to transfer
data to the called block as well as to return results. There are two different options
for this parameter transfer.

3.3.1 Call-by-value with In interface type

When calling the block, the value of the actual parameter is copied onto the input
parameter of the block for the In interface type. For this, additional memory is
allocated in the called block.

Figure 3-17: Copying of the value to the input parameter

„My_int“
value: 31

FC / FB

IN

value: 31

IN
Wert: '2'

Properties

 Each block displays the same behavior with connected parameters

 Values are copied when calling the block

3.3.2 Call-by-reference with InOut interface type

When calling the block the address of the actual parameter of the Input parameter
is referenced for the InOut interface type. For this, no additional memory is
required.

Figure 3-18: Referencing the value (pointer to data storage of the parameter)

FC / FB

IN/OUT

Reference to "My_string"

"My_string"
value: 'test'

Properties

 Each block displays the same behavior with connected parameters

 Actual parameters are referenced with the block call

Recommendation

 Generally use the InOut interface type for structured tags (e.g. of the ARRAY,
STRUCT, STRING, type…) in order to avoid enlarging the required data
memory unnecessarily.

3 General Programming

3.4 Storage concept

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 56

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.3.3 Overview for transfer of parameters

The following table summarizes how S7-1200/1500 block parameters are
transferred by means of elementary or structured data type.

Table 3-5: Overview for transfer of parameters

Block type / formal parameter Elementary data
type

Structured data
type

FC Input copy reference

Output copy reference

InOut copy reference

FB Input copy copy

Output copy copy

InOut copy reference

Note If, when calling the block, optimized data is transferred to a block with property
“standard access”, this data is principally transferred as a copy. If the block
contains many structured parameters, this may quickly cause the temporary
memory area (local data stack) of the block to overflow.

This can be prevented by creating the same access type for both blocks (see
chapter 2.6.5 Parameter transfer between blocks with optimized access and
standard access).

3.4 Storage concept

For STEP 7 there is generally the difference between the global and local memory
area. The global memory area is available for each block in the user program. The
local memory area is only available within the respective block.

3.4.1 Block interfaces as data exchange

If you are encapsulating the functions and program the data exchange between the
blocks only via the interfaces, you will clearly have advantages.

Advantages

 Program can be made up modularly from ready blocks with partial tasks.

 Program is easy to expand and maintain.

 Program code is easier to read since there are no hidden cross accesses.

Recommendation

 If possible, only use the local tags. This is how the blocks can be used
universally and modularly.

 Use the data exchange via the block interfaces (In, Out, InOut), to ensure the
reusability of blocks.

 Only use the instance data blocks as local memory for the respective function
block. Other blocks shall not be written into instance data blocks.

3 General Programming

3.4 Storage concept

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 57

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-19: Avoiding accesses to instance data blocks

OB

FB

Local

FC FB

Local

If only the block interfaces are used for the data exchange it can be ensured that
all blocks can be used independent from each other.

Figure 3-20: Block interfaces for data exchange

OB

FB

Local

FC

FB

Local

3.4.2 Global memory

Memories are called global when they can be accessed from any location of the
user program. There are hardware-dependent memories (e.g. bit memory, timers,
counters, etc.) and global DBs. For hardware-dependent memory areas there is the
danger that the program may not be portable to any controller because the areas
there may already be used. This is why you should use global DBs instead of
hardware-dependent memory areas.

Advantages

 User programs can be used universally and independent from the hardware.

 The user program can be structured modularly without dividing bit memory
address areas for different users.

 Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

Recommendation

 Do not use any bit memory and use global DBs instead.

 Avoid hardware-dependent memory, such as, for example, clock memory or
counter. Use the IEC counter and timer in connection with multi-instances
instead (see chapter 3.2.5 Multi-instances). The IEC timers can be found under
“Instructions – Basic Instructions – Timer operations”.

3 General Programming

3.4 Storage concept

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 58

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-21: IEC Timers

3.4.3 Local memory

 Static tags

 Temporary tags

Recommendation

 Use the static tags for values that are required for the next cycle.

 Use the temporary tags as cache memory in current cycle. The access time for
temporary tags is shorter than for static ones.

Note Optimized blocks: Temporary tags are initialized in any block call with the
“default value” (S7-1500 und S7-1200 Firmware V4).
Non-optimized blocks: Temporary tags are undefined for each call of the block.

3 General Programming

3.4 Storage concept

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 59

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.4.4 Access speed of memory areas

STEP 7 offers different options of memory accesses. For system-related reasons
there are faster and slower accesses to different memory areas.

Figure 3-22: Different memory accesses

Access speed fast intermediate slow

1

Temporary tags

1

Non-retain tags

1

Non-structured
elementary data type FC

parameter

2

Accesses to checks for at
runtime require

(register, indirect and
indirect DB accesses)

3

Access to non-optimized
blocks

Indexed accesses with
runtime tindex 4

5

5

5

6

Access to optimized DBs

Retentive tags

Copying between optimized
and non-optimized blocks

2

Fastest accesses in the S7-1200/1500 in descending order

1. Optimized blocks: Temporary tags, parameters of an FC and FB, non-retentive
static tags

2. Optimized blocks whose accesses for compiling are known:

– Retentive FB tags

– Optimized global DBs

3. Access to non-optimized blocks

4. Indexed accesses with index that was calculated at runtime (e.g. Motor [i])

5. Accesses that require checks at runtime

– Accesses to DBs that are created at runtime or which were opened
indirectly (e.g. OPN DB[i])

– Register access or indirect memory access

6. Copying of structures between optimized and non-optimized blocks (apart from
Array of Bytes)

3 General Programming

3.5 Retentivity

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 60

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.5 Retentivity

In the event of a failure of the power supply, the controller copies the retentive data
with its buffer energy from the controller’s work memory to a non-volatile memory.
After restarting the controller, the program processing is resumed with the retentive
data. Depending on the controller, the data volume for retentivity has different
sizes.

Table 3-6: Retentive memory for S7-1200/1500

Controller
Usable retentive memory for bit memory,

times, counters, DBs and technology
objects

CPU 1211C,1212C, 1214C, 1215C, 1217C 10 Kbytes

CPU 1511-1 PN 88 Kbytes

CPU 1513-1 PN 88 Kbytes

CPU 1515-2 PN, 1516-3 PN/DP 472 Kbytes

CPU 1518-4 PN/DP 768 Kbytes

Table 3-7: Differences of S7-1200 and S7-1500

S7-1200 S7-1500

Retentivity can only be set for bit memory Retentivity can be set for bit memory, times
and counters

Advantages

 Retentive data maintain their value when the controller goes to STOP and back
to RUN or in the event of a power failure and a restart of the controller.

Properties

For elementary tags of an optimized DB the retentivity can be set separately. Non-
optimized data blocks can only be defined completely retentive or non-retentive.

The retentive data can be deleted with the actions "memory reset" or "Reset to
factory settings" via:

 Operating switch on the controller (MRES)

 Display of the controller

 Online via STEP 7 (TIA Portal)

Recommendation

 Avoid the setting “Set in IDB”. Always set the retentive data in the function
block and not in the instance data block.
The “Set in IDB” setting increases the processing time of the program
sequence. Always either select “Non-retain” or “Retain” for the interfaces in the
FB.

3 General Programming

3.5 Retentivity

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 61

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-23: Program editor (Functions block interfaces)

Figure 3-24: Program editor (Data block)

Example: Retentive of PLC tags

The setting of the retentive data is performed in the tables of the PLC tags, function
blocks and data blocks.

Figure 3-25: Setting of the retentive tags in the table of PLC tags

Retentivity can be set from
address 0 onward!

e.g. from MB0, T0 or C0

Example: Retentive counter

You can also declare instances of functions (timer, counter, etc.) retentive. As
already described in chapter 3.2.5 Multi-instances

.

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 62

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-26: Retentive counter as multi-instance

Note If the retentive memory on the PLC is not sufficient, it is possible to store data in
the form of data blocks that are only located in the load memory of the PLC. The
following entry is described by taking the example of an S7-1200. This
programming also works for S7-1500.

You will find further information in the following entry:

In STEP 7 (TIA Portal), how do you configure data blocks with the "Only store in
load memory" attribute for an S7-1200?
https://support.industry.siemens.com/cs/ww/en/view/53034113

3.6 Symbolic addressing

3.6.1 Symbolic instead of absolute addressing

The TIA Portal is optimized for symbolic programming. This results in many
advantages. Due to the symbolic addressing you can program without having to
pay attention to the internal data storage. The controller handles where the best
possible storage is for the data. You can therefore completely concentrate on the
solution for your application task.

Advantages

 Easier to read programs through symbolic tag names

 Automatic update of tag names at all usage locations in the user program

 Memory storage of the program data does not have to be manually managed
(absolute addressing)

 Powerful data access

 No manual optimization for performance or program size reasons required

 IntelliSense for fast symbol input

 Fewer program errors due to type checking (validity of data types is checked
for all accesses)

https://support.industry.siemens.com/cs/ww/en/view/53034113

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 63

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 “Don’t bother about the organization of the data storage“

 “Think” symbolically. Enter the “descriptive” name for each function, tag or
data, such as, for example, Pump_boiler_1, heater_room_4, etc. This is how a
generated program can easily be read without requiring many comments.

 Give all the tags used a direct symbolic name and define it afterwards with a
right-click.

Example

Table 3-8: Example for creating symbolic tags

Step Instruction

1. Open the program editor and open any block.

2. Enter a symbolic name directly at the input of an instruction.

3. Right-click next to the block and select “Define tag…” in the context menu.

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 64

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

4. Define the tag.

There is an elegant method to save time, if you want to define several tags in a
network. Assign all tag names first of all. Then define all tags at the same time with
the dialog of step 4.

Note You will find further information in the following entry:

Why is universal definition and utilization of symbols in STEP 7 (TIA Portal)
obligatory for the S7-1500?
https://support.industry.siemens.com/cs/ww/en/view/67598995

3.6.2 ARRAY data type and indirect field accesses

The ARRAY data type represents a data structure that consists of several elements
of the same data type. The ARRAY data type is suitable, for example, for the
storage of recipes, material tracking in a queue, cyclic process acquisition,
protocols, etc.

Figure 3-27: ARRAY with 10 elements of the Integer (INT) data type

You can indirectly access individual elements in the ARRAY with a runtime tag

(array [“index”]).

https://support.industry.siemens.com/cs/ww/en/view/67598995

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 65

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Figure 3-28: Indirect field access

SCL:

LAD / FBD:

Advantages

 Simple access since the data type of the ARRAY elements is irrelevant for the
access.

 No complicated pointer creation required

 Fast creation and expansion possible

 Useable in all programming languages

Properties

 Structured data type

 Data structure made of fixed number of elements of the same data type

 ARRAYs can be created also multi-dimensional

 Possible indirect access with runtime tag with dynamic index calculation at
runtime

Recommendation

 Use ARRAY for indexed accesses instead of pointer (e.g. ANY pointer). This
makes it easier to read the program since an ARRAY is more meaningful with
a symbolic name than a pointer in a memory area.

 As run tag use the DINT data type as temporary tag for highest performance.

 Use the “MOVE_BLK” instruction to copy parts of an ARRAY into another one.

 Use the “GET_ERR_ID” instruction to catch access errors within the Array.

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 66

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note You will find further information in the following entry:

How do you implement an array access with an S7-1500 with variable index?
https://support.industry.siemens.com/cs/ww/en/view/67598676

How do you address securely and indirectly in STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/97552147

How, in STEP 7 (TIA Portal), can data be transferred for S7-1500 between two
tags of data type “Array of Bool” and “Word”?
https://support.industry.siemens.com/cs/ww/en/view/108999241

3.6.3 STRUCT data type and PLC data types

The STRUCT data type represents a data structure which is made up of elements
of different data types. The declaration of a structure is performed in the respective
block.

Figure 3-29: Structure with elements with different data types

In comparison to structures, PLC data types are defined across the controller in the
TIA Portal and can be centrally changed. All usage locations are automatically
updated.

PLC data types are declared in the “PLC data types” folder in the project navigation
before being used.

Figure 3-30: PLC data types

https://support.industry.siemens.com/cs/ww/en/view/67598676
https://support.industry.siemens.com/cs/ww/en/view/97552147
https://support.industry.siemens.com/cs/ww/en/view/108999241

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 67

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Advantages

 A change in a PLC data type is automatically updated in all usage locations in
the user program.

 Simple data exchange via block interfaces between several blocks

Properties

 PLC data types always end at WORD limits (see the figures below).

 Please consider this system property when ...

– using different I/O areas (see chapter 3.6.4 Access to I/O areas with PLC
data types).

– using frames with PLC data types for communication.

– parameter records with PLC data types for I/O.

– non-optimized blocks absolute addressing.

Figure 3-31: PLC data types always end at WORD limits

VarByte_0

VarByte_1

VarByte_2

MyType

…

1st WORD

2nd WORD

Defined size

3 bytes

Actual size

4 bytes

PLC data type Elements

!

Figure 3-32: PLC data type on I/O area

PLC data type I/O area

Tag of

PLC data type

Defined size

3 bytes

Actual size

4 bytes

3 bytes

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 68

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 Use the PLC data types to summarize several associated data, such as, e.g.
frames or motor data (setpoint, speed, rotational direction, temperature, etc.)

 Always use PLC data types instead of structures for the multiple uses in the
user program.

 Use the PLC data types for structuring into data blocks.

 Use the PLC data types in order to specify a structure for a data block. The
PLC data type can be used for any number of DBs. You can easily and
conveniently create as many DBs of the same structure and adjust them
centrally on the PLC data type.

Note You will find further information in the following entries:

How do you initialize structures into optimized memory areas for the S7-1500
STEP 7 (TIA Portal)?
https://support.industry.siemens.com/cs/ww/en/view/78678760

How do you create a PLC data type for an S7-1500 controller?
https://support.industry.siemens.com/cs/ww/en/view/67599090

In STEP 7 (TIA Portal), how do you apply your own data types (UDT)?
https://support.industry.siemens.com/cs/ww/en/view/67582844

Why should whole structures instead of many single components be transferred
for the S7-1500 when a block is called?
https://support.industry.siemens.com/cs/ww/de/view/67585079

https://support.industry.siemens.com/cs/ww/en/view/78678760
https://support.industry.siemens.com/cs/ww/en/view/67599090
https://support.industry.siemens.com/cs/ww/en/view/67582844
https://support.industry.siemens.com/cs/ww/de/view/67585079

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 69

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6.4 Access to I/O areas with PLC data types

With S7-1500 controllers, you can create PLC data types and use them for
structured and symbolic access to inputs and outputs.

Figure 3-33: Access to I/O areas with PLC data types

1

2

3

4

PLC data type

PLC tag

FB call

FB interface

5. PLC data type with all required data

6. PLC tag of the type of the created PLC data type and start address of the I/O
data area (%Ix.0 or %Qx.0, e.g., %I0.0, %Q12.0, …)

7. Transfer of the PLC tag as actual parameter to the function block

8. Input of the function block is of the type of the created PLC data type

Advantages

 High programming efficiency

 Easy multiple usability thanks to PLC data types

Recommendation

 Use PLC data types for access to I/O areas, for example, to symbolically
receive and send drive telegrams.

Note Individual elements of a PLC data type of a tag can also be directly accessed in
the user program:

3 General Programming

3.6 Symbolic addressing

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 70

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.6.5 Slice access

For S7-1200/1500 controllers, you can access the memory area of tags of the Byte,
Word, DWord or LWord data type. The division of a memory area (e.g. byte or
word) into a smaller memory area (e.g. Bool) is also called slice. In the figure below
displays the symbolic bit, byte and word accesses to the operands.

Figure 3-34: Slice access

WORD

DWORD

LWORD

Operands in

blocks, DBs and

E/A/M
“My_W_Variable“

Bit by bit

Word by word

DWord by

DWord

D0D1

W0W1W3

X
0

X
1

X
2

X
63

“My_W_Variable.%X0““My_DW_Variable.%W1“

BYTE“My_B_Variable“

Bit by bitB0B1B7

“My_DW_Variable“

Examples

Slice access: “My_LW_Variable.%D1“

“My_LW_Variable“

Advantages

 High programming efficiency

 No additional definition in the tag declaration required

 Simple access (e.g. control bits)

Recommendation

 Use the slice access rather than AT construct via accessing certain data areas
in operands.

Note You will find further information in the following entry:

How in STEP 7 (TIA Portal) can you access the unstructured data types bit-by-
bit, byte-by-byte or word-by-word and symbolically?
https://support.industry.siemens.com/cs/ww/en/view/57374718

https://support.industry.siemens.com/cs/ww/en/view/57374718

3 General Programming

3.7 Libraries

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 71

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7 Libraries

With the TIA Portal you can create independent libraries from different project
elements that can be easily reused.

Advantages

 Simple storage for the data configured in the TIA Portal:

– Complete devices (controller, HMI, drive, etc.)

– Controller programs, blocks, tags, monitoring tables

– HMI image, HMI tags, scripts, etc.

 Cross-project exchange via libraries

 Central update function of library elements

 Versioning library elements

 Fewer error sources when using control blocks through system-supported
consideration of dependencies

Recommendations

 Create the master copies for easy reusability of blocks, hardware
configurations, HMI images, etc.

 Create the types for the system-supported reusability of library elements:

– Versioning of blocks

– Central update function of all usage locations

 Use the global library for the exchange with other users or as central storage
for the simultaneous use of several users.

 Configure the storage location of your global library so it can automatically be
opened when starting the TIA Portal.
Further information is available at:
https://support.industry.siemens.com/cs/ww/en/view/100451450

Note You will find further information in the following entries:

Which elements of STEP 7 (TIA Portal) and WinCC (TIA Portal) can you store in
a library as Type or as Master Copy?
https://support.industry.siemens.com/cs/ww/en/view/109476862

How can you open a global library with write access rights in STEP 7 (TIA
Portal)?
https://support.industry.siemens.com/cs/ww/en/view/37364723

https://support.industry.siemens.com/cs/ww/en/view/100451450
https://support.industry.siemens.com/cs/ww/en/view/109476862
https://support.industry.siemens.com/cs/ww/en/view/37364723

3 General Programming

3.7 Libraries

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 72

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7.1 Types of libraries and library elements

Generally there are two different types of libraries:

 "Project library"

 "Global library".

The content consists of two storage types each:

 "Types"

 "Master Copies"

Figure 3-35: Libraries in the TIA Portal

1

2

3

4

(1) "Project library"

– Integrated in the project and managed with the project

– Allows the reusability within the project

(2) "Global library"

– Independent library

– Use within several projects possible

A library includes two different types of storage of library elements:

(3) "Master copies"

– Copy of configuration elements in the library (e.g. blocks, hardware, PLC
tag tables, etc.)

– Copies are not connected with the elements in the project.

– Master copies can also be made up several configuration elements.

(4) "Types"

– Types are connected with your usage locations in the project. When types
are changed, the usage locations in the project can be updated
automatically.

3 General Programming

3.7 Libraries

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 73

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

– Supported types are controller blocks (FCs, FBs), PLC data types, HMI
images, HMI faceplates, HMI UDT, scripts).

– Subordinate elements are automatically typified.

– Types are versioned: Changes can be made by creating a newer version.

– There can only be one version of a used type within a controller.

3.7.2 Type concept

The type concept allows the creation of standardized automation functions that you
can use in several plants or machines. The type concept supports you with
versioning and updating functions.

You can use types from the library in the user program. This offers the following
advantages:

Advantages

 Central update of all usage locations in the project

 Unwanted modifications of usage locations of types are not possible.

 The system guarantees that types always remain consistent by hindering
unwanted delete operations.

 If a type is deleted, all usage locations in the user program are deleted.

Properties

By using types you can make the changes centrally and update them in the
complete project.

Figure 3-36: Typifying with user libraries

User libraryProject

Typ V1

Typ V2

Use V2

Use V2

Use V2

Central update to

newer version

Master copy

Update

Use

Use

Use

without

typification

with typification

 Types are always marked in the project for better identification

3 General Programming

3.7 Libraries

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 74

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.7.3 Differences for typifiable objects for CPU and HMI

There are system-related differences between the typifiable objects for controllers
and HMI:

Table 3-9: Differences of types for controller and HMI

Controller HMI

Subordinate control elements are typified. Subordinate HMI elements are not typified.

Subordinate control elements are
instanced.

Subordinate HMI elements are not

instanced.

Control elements are edited in a test
environment.

HMI images and HMI scripts are edited in a
test environment. Faceplates and HMI -
UDTs are directly edited in the library
without test environment.

Further information on the handling of libraries can be found in the following
example.

3.7.4 Versioning of a block

Example: Creating a type

The following example shows you how the basic functions of the libraries are used
with types.

Table 3-10: Creating a type

Step Instruction

1. Create a new PLC data type with “Add new data type” and create some tags.
Later on this is the subordinate type.

2. Create a new function block with “Add new Block”. This is the higher-level type.

3 General Programming

3.7 Libraries

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 75

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

3. Define an input tag of the data type you have created. The PLC data type is
therefore subordinate to the function block.

4. Drag the function block via drag & drop into the “Types” folder in the project
library.

5. Optionally assign: Type name, version, author and comment and confirm the
dialog with “OK”.

6. The subordinate PLC data type is automatically also stored in the library.

3 General Programming

3.7 Libraries

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 76

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Example: Changing a type

Table 3-11: Changing a type

Step Instruction

1. Right-click the block in the “Project library” and select “Edit type”

2. Select which controller is to be used as test environment and confirm the dialog
with “OK”.

If several controllers in the project use the selected block, a controller has to be
selected as test environment.

3 General Programming

3.7 Libraries

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 77

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

3. The library view opens. A new version of the block has been created and is now
marked with “in test”.

4. Add another input tag.

In this place you have the option to test the change on the block by loading the
project onto a controller. When you have finished testing the block, continue with
the following steps.

5. Click the “Release version” button.

3 General Programming

3.7 Libraries

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 78

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Step Instruction

6. A dialog box opens. Here you can store a version-related comment. Confirm the
dialog with “OK”.

If there are several usage locations of the block in different controllers of the
project, you can update them all at the same time: “Update instances in the
project”.

If older versions of the element are no longer required you can delete them by
clicking “Delete unused type versions from library”

7. Close the library view with “Close library view”

3 General Programming

3.8 Increasing performance with process interrupts

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 79

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.8 Increasing performance with process interrupts

The processing of the user program can be influenced by events such as process
interrupts. When you need a fast response of the controller to hardware events
(e.g. a rising edge of a channel of a digital input module), configure a process
interrupt. For each process interrupt a separate OB can be programmed. This OB
is called by the operating system of the controller in the event of a process
interrupt. The cycle of the controller is therefore interrupted and continued after
processing the process interrupt.

Figure 3-37: Process interrupt is calling OB

e.g. rising

edge E0.0

e.g. falling

edge E6.1

Hardware

interrupt

OB40

Hardware

interrupt_1

OBxxx

Event

In the following figure you can see the configuration of a “hardware interrupt” in the
hardware configuration of a digital input module.

Figure 3-38: Configuring hardware interrupt

Advantages

 Fast system response to events (rising, falling edge, etc.)

 Each event can start a separate OB.

3 General Programming

3.8 Increasing performance with process interrupts

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 80

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 Use the process interrupts in order to program fast responses to hardware
events.

 If the system responses are not fast enough despite programming a process
interrupt, you can still accelerate the responses. Set as small an “Input delay”
as possible in the module. A response to an event can always only occur if the
input delay has lapsed. The input delay is used for filtering the input signal in
order to, for example, compensate faults such as contact bounce or chatter.

Figure 3-39: Setting input delay

3 General Programming

3.9 Additional performance recommendations

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 81

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.9 Additional performance recommendations

Here you can find some general recommendations that enable faster program
processing of the controller.

Recommendation

Note the following recommendations for programming S7-1200/1500 controllers in
order to achieve a high performance:

 LAD/FBD: Disable “generate ENO” for blocks. This avoids tests at runtime.

 STL: Do not use registers since address and data registers are only emulated
for compatibility reasons by S7-1500.

Note You will find further information in the following entry:

How do you disable the ENO enable output of an instruction?
https://support.industry.siemens.com/cs/ww/en/view/67797146

How can you improve the performance in STEP 7 (TIA Portal) and in the
S7-1200/S7-1500 CPUs?
https://support.industry.siemens.com/cs/ww/en/view/37571372

https://support.industry.siemens.com/cs/ww/en/view/67797146
https://support.industry.siemens.com/cs/ww/en/view/37571372

3 General Programming

3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 82

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10 SCL programming language: Tips and tricks

3.10.1 Using call templates

Many instructions of the programming languages offer a call template with a list of
existing formal parameters.

Example

Table 3-12: Easy expanding of the call template

Step Instruction

1. Drag an instruction from the library into the SCL program. The editor shows the
complete call template.

2. Now fill in the required parameter and finish the entry with the “Return” button.

3. The editor automatically reduces the call template.

4. If you want to edit the complete call later on again, proceed as follows.

Click into the call at any place and then click “CTRL+SHIFT+SPACE”. You are

now in the Call Template mode. The editor expands the call again. You can
navigate with the “TAB” button through the parameters.

5. Note: in the “Call Template” mode the writing is in italics.

3 General Programming

3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 83

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.2 What instruction parameters are mandatory?

If you are expanding the call template, the color coding will show you straight away
what formal parameters of an instruction are optional and which ones are not.
Mandatory parameters are marked dark.

3.10.3 Drag & drop with entire tag names

In the SCL editor you can also use drag & drop functions. For tag names you are
additionally supported. If you want to replace one tag for another, proceed as
follows.

Table 3-13: Drag & drop with tags in SCL

Step Instruction

1. Drag the tag via drag & drop to the tag in the program that is to be replaced.
Hold the tag for more than 1 second before releasing it.

> hold for 1 second

The complete tag is replaced.

3 General Programming

3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 84

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.4 Correct application of FOR, REPEAT and WHILE loops

When using loops, there are different versions and application cases. The following
examples show the differences.

Properties: FOR loop

The FOR loop runs over a defined number of cycles. A start value is assigned to
the runtime tag at the beginning. Then, in each loop cycle, the runtime tag is
counted up with the specified step width up to the end value.

For performance reasons, the start as well as the end values are calculated once
at the beginning. The runtime tag can therefore no longer be influenced in the loop
code.

Syntax

FOR counter := start_count TO end_count DO

 // Statement section ;

END_FOR;

Using the EXIT command, the loop can be interrupted at any time.

Properties: WHILE loop

The WHILE loop can be terminated by means of a cancel condition. The cancel
condition is checked at the beginning of the loop code. That is, the loop is not
executed if the condition is fulfilled immediately. In the loop code, each tag can be
adjusted for the next cycle.

Syntax

WHILE condition DO

 // Statement section ;

END_WHILE;

Properties: REPEAT loop

The REPEAT loop can be terminated by means of a cancel condition. The cancel
condition is checked at the end of the loop code. That is, the loop is run at least
once. In the loop code, each tag can be adjusted for the next cycle.

Syntax

REPEAT

 // Statement section ;

UNTIL condition

END_REPEAT;

Recommendation

 Use FOR loops if the runtime tag is clearly defined.

 Use WHILE or REPEAT loops if a runtime tag needs to be adjusted during loop
editing.

3 General Programming

3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 85

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.5 Efficiently inserting CASE instruction

With the CASE instruction in SCL, it will be exactly jumped to the selected CASE
block condition. After executing the CASE block the instruction is finished. This
allows you, for example, to check frequently required value ranges more
specifically and easily.

Example

CASE #myVar OF

 5:

 FC5(#myParam);

 10,12:

 FC10(#myParam);

 15:

 FC15(#myParam);

 0..20:

 FCGlobal(#myParam);

// FCGlobal is never called for the values 5, 10, 12 or 15!

 ELSE

END_CASE;

Note CASE instructions also work with CHAR, STRING data types, as well as with
elements (see example in Chapter 2.8.5 VARIANT data type).

3.10.6 No manipulation of loop counters for FOR loop

FOR loops in SCL are pure counter loops, i.e. the number of iterations is fixed
when the loop is entered. In a FOR loop, the loop counter cannot be changed.

With the EXIT instruction a loop can be interrupted at any time.

Advantages

 The compiler can optimize the program better, since it does not know the
number of iterations.

Example

FOR #var := #lower TO #upper DO

 #var := #var + 1; // no effect, Compiler -> Warning

END_FOR;

3 General Programming

3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 86

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

3.10.7 FOR loop backwards

In SCL you can also increment the index of FOR loops backwards or in another
step width. For this, use the optional “BY” key word in the loop head.

Example

FOR #var := #upper TO #lower BY -2 DO

END_FOR;

If you are defining “BY” as “-2”, as in the example, the counter is lowered by 2 in
every iteration. If you omit “BY”, the default setting for “BY” is 1

3.10.8 Simple creating of instances for calls

If you prefer to work with the keyboard, there is a simple possibility to create
instances for blocks in SCL.

Example

Table 3-14: Easy creation of instances

Step Instruction

1. Give the block name a: followed by a "." (dot). The automatic compilation now
shows you the following.

2. On the top you can see the already existing instances. In addition, you can
directly create a new single instance or multi-instance.

Use the shortcuts "s" or "m" to go directly to the respective entries in the
automatic compilation window.

3.10.9 Handling of time tags

You can calculate the time tags in SCL just as with normal numbers i.e. you do not
need to look for additional functions, such as, e.g. T_COMBINE but you can use
simple arithmetic. This approach is called “overload of operands”. The SCL
compiler automatically uses the suitable functions. You can use a reasonable
arithmetic for the time types and can therefore program more efficiently.

Example

timeDifference := timeStamp1 – timeStamp2;

3 General Programming

3.10 SCL programming language: Tips and tricks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 87

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

The following table summarizes the overloaded operators and which operation is
behind it:

Table 3-15: Overloaded operands for SCL

Overloaded operand Operation

ltime + time T_ADD LTime

ltime + time T_SUB LTime

ltime + lint T_ADD LTime

ltime + lint T_SUB LTime

time + time T_ADD Time

time + time T_SUB Time

time + dint T_ADD Time

time + dint T_SUB Time

ldt + ltime T_ADD LDT / LTime

ldt + ltime T_ADD LDT / LTime

ldt + time T_ADD LDT / Time

ldt + time T_SUB LDT / Time

dtl + ltime T_ADD DTL / LTime

dtl + ltime T_SUB DTL / LTime

dtl + time T_ADD DTL / Time

dtl + time T_SUB DTL / Time

ltod + ltime T_ADD LTOD / LTime

ltod + ltime T_SUB LTOD / LTime

ltod + lint T_ADD LTOD / LTime

ltod + lint T_SUB LTOD / LTime

ltod + time T_ADD LTOD / Time

ltod + time T_SUB LTOD / Time

tod + time T_ADD TOD / Time

tod + time T_SUB TOD / Time

tod + dint T_ADD TOD / Time

tod + dint T_SUB TOD / Time

dt + time T_ADD DT / Time

dt + time T_SUB DT / Time

ldt – ldt T_DIFF LDT

dtl – dtl T_DIFF DTL

dt – dt T_DIFF DT

date – date T_DIFF DATE

ltod – ltod T_DIFF LTOD

date + ltod T_COMBINE DATE / LTOD

date + tod T_COMBINE DATE / TOD

4 Hardware-Independent Programming

4.1 Data types of S7-300/400 and S7-1200/1500

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 88

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4 Hardware-Independent Programming
To make sure that a block can be used on all controllers without any further
adjustments, it is important not use hardware-dependent functions and properties.

4.1 Data types of S7-300/400 and S7-1200/1500

Below is a list of all elementary data types and data groups.

Recommendation

 Only use the data types that are supported by the controllers on which the
program is to run.

Table 4-1: Elementary data types correspond to standard EN 61131-3

 Description S7 -
300/400

S7-1200 S7-1500

Bit data types  BOOL

 BYTE

 WORD

 DWORD

  

 LWORD   

Character type  CHAR (8 bit)   

Numerical data
types

 INT (16 bit)

 DINT (32 bit)

 REAL (32 bit)

  

 SINT (8 bit)

 USINT (8 bit)

 UINT (16 bit)

 UDINT (32 bit)

 LREAL (64 bit)

  

 LINT (64 bit)

 ULINT (64 bit)
  

Time types  TIME

 DATE

 TIME_OF_DAY

  

 S5TIME   

 LTIME

 L_TIME_OF_DAY
  

4 Hardware-Independent Programming

4.1 Data types of S7-300/400 and S7-1200/1500

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 89

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Table 4-2: Data groups that are made up of other data types

 Description S7 -
300/400

S7-1200 S7-1500

Time types  DT
(DATE_AND_TIME)

  

 DTL   

 LDT
(L_DATE_AND_TIME)

  

Character type  STRING   

Field  ARRAY   

Structure  STRUCT   

Table 4-3: Parameter types for formal parameters that are transferred between blocks

 Description S7 -
300/400

S7-1200 S7-1500

Pointer  POINTER

 ANY
  

1)

 VARIANT   

Blocks  TIMER

 COUNTER
 

2)


 BLOCK_FB

 BLOCK_FC
  

 BLOCK_DB

 BLOCK_SDB
  

 VOID   

PLC data types  PLC Data Type   

1)
 For optimized accesses, only symbolic addressing is possible

2)
 For S7-1200/1500 the TIMER and COUNTER data type is represented by

IEC_TIMER and IEC_Counter.

4 Hardware-Independent Programming

4.2 No bit memory but global data blocks

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 90

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

4.2 No bit memory but global data blocks

Advantages

 Optimized global DBs are clearly more powerful than the bit memory address
area that is not optimized for reasons of compatibility.

Recommendation

 The handling with bit memory (also system and clock memory bits) is
problematic, since every controller has a bit memory address area with a
different size. Do not use bit memory for the programming but always global
data blocks. This is how the program can always be used universally.

4.3 Programming of "clock bits"

Recommendation

For the programming of clock memory bits, the hardware configuration always has
to be correct.

Use a programmed block as clock generator. Below, you can find a programming
example for a clock generator in the SCL programming language.

Example

The programmed block has the following functions. A desired frequency is
specified. The “Q” output is a Boolean value that toggles in the desired frequency.
The “Countdown” output outputs the remaining time of the current state of “Q”.

If the desired frequency is smaller or equal 0.0, then the output Q = FALSE and
Countdown = 0.0.

Period: 2 seconds

FB

Frequency [Real]

Q [Bool]

Countdown [Time]

0.5

T#0S_703MS

TRUE

Note The complete programming example is available for free download in the
following entry:

https://support.industry.siemens.com/cs/ww/en/view/87507915

https://support.industry.siemens.com/cs/ww/en/view/87507915

5 STEP 7 Safety in the TIA Portal

5.1 Introduction

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 91

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5 STEP 7 Safety in the TIA Portal

5.1 Introduction

Fail-safe S7-1200F and S7-1500F CPUs are supported from TIA Portal V13 SP1
onward. In these controllers, standard as well as the fail-safe programming in a
device is possible. For programming the fail-safe user programs, the SIMATIC
STEP 7 Safety (TIA Portal) option package is used.

Figure 5-1: Standard and safety program

Safety program

Standard user

program

S7-1500F S7-1200F

Advantages

 Uniform programming in standard and fail-safe program with an engineering
tool: TIA Portal

 Familiar programming in LAD and FBD

 Uniform diagnostics and online functions

Note Fail-safe does not mean that the program contains no errors. The programmer is
responsible for the correct programming logic.

Fail-safe means that the correct processing of the fail-safe user program in the
controller is ensured.

Note Further information on the topic of safety, as in the safety requirements or the
principles of safety programs, for example, are available at:

TIA Portal - An Overview of the Most Important Documents and Links - Safety
https://support.industry.siemens.com/cs/ww/en/view/90939626

Applications & Tools – Safety Integrated
https://support.industry.siemens.com/cs/ww/en/ps/14675/ae

STEP 7 Safety (TIA Portal) - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/14675/man

https://support.industry.siemens.com/cs/ww/en/view/90939626
https://support.industry.siemens.com/cs/ww/en/ps/14675/ae
https://support.industry.siemens.com/cs/ww/en/ps/14675/man

5 STEP 7 Safety in the TIA Portal

5.2 Terms

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 92

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.2 Terms

This document consistently uses the terms with the following meaning.

Table 5-1: Safety terms

Term Description

Standard user program The standard user program is the program part,
which is not connected with F programming.

Safety program
(F program,
fail-safe user program)

The fail-safe user program is the program part
which is processed fail-safe independently of the
controller.

All fail-safe blocks and instructions are shaded
yellow at the software user interface (e. g. in the
project navigation) in order to distinguish blocks and
instructions of the standard user program.
The fail-safe parameters of F-CPUs and F-I/O are
shaded yellow in the hardware configuration.

5 STEP 7 Safety in the TIA Portal

5.3 Components of the safety program

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 93

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.3 Components of the safety program

Das safety program always consists of user-generated or system-generated F
blocks and the “Safety administration” editor.

Table 5-2: Components of the safety program

Description Screen

1. “Safety administration” editor

– Status of the safety program

– F collective signature

– Status of the safety operation

– Creating/organizing F run-time
groups

– Information on the F blocks

– Information on F-conform PLC
data types

– Defining/changing the access
protection

2. User-created F blocks

3. System-generated F-runtime blocks

– Blocks contain status information
on the F run-time group.

4. System-generated F-I/O data blocks

– Blocks contain tags for evaluating
the F modules.

5. “Compiler blocks”
System-generated verification blocks

– These run in the background of
the controller and provide for fail-
safe processing of the safety
program.

– These blocks cannot be
processed by the user.

1

2

3

4

5

5 STEP 7 Safety in the TIA Portal

5.4 F runtime group

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 94

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.4 F runtime group

A safety program is always processed in an F-runtime group with defined cycle. An
F run-time group consists of a “Fail-safe organization block” which calls a
“Main safety block”. All user-generated safety functions are called from the
“Main safety block”.

Figure 5-2: F-runtime group in the “Safety administration” editor

Advantages

 Runtime groups can simply be created and configured in the “Safety
Administrator”.

 F-blocks in the run-time group are automatically created.

Properties

 A maximum of two F run-time groups can be created.

5.5 F signature

Each F component (station, I/O, blocks) has a unique F signature. Using the
F signature it can be quickly detected whether an F device configuration, F blocks
or a complete station still corresponds to the original configuration or programming.

Advantages

 Simple and quick comparison of F blocks and F device configurations

Properties

 F parameter signature (without address of F-I/O)…

– only changed by adjusting the parameters.

– remains unchanged when changing the PROFIsafe address. However, the
F collective signature of the station changes.

 F block signature is only changed when the logic in the F block changes.

5 STEP 7 Safety in the TIA Portal

5.5 F signature

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 95

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

 F block signature remains unchanged by changing the

– block number,

– block interface,

– block version.

Example

Figure 5-3: Examples of F signatures

1

2

3

1. F collective signature of the station in the “Safety administration” editor

2. F block signatures in the “Safety Administration” editor (can also be read out
from the properties of the block)

3. F parameter signature in the “Device view” at “Devices & Networks”

Note For S7-1500F controllers it is possible to read the F overall signature directly on
the installed display or in the integrated web server.

5 STEP 7 Safety in the TIA Portal

5.6 Assigning the PROFIsafe address at the F-I/O

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 96

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.6 Assigning the PROFIsafe address at the F-I/O

Each F-I/O device has a PROFIsafe address for identification and communication
with F controllers. When assigning the PROFIsafe address, two different
configurations are possible.

Table 5-3: Setting the F address

ET 200M / ET 200S
(PROFIsafe address type 1)

ET 200MP / ET 200SP
(PROFIsafe address type 2)

Assigning the PROFIsafe address directly
at the modules via DIL switch

In the device configuration of the TIA Portal
and in the DIL switch position at the
periphery, the PROFIsafe address must be
the same.

Assigning the PROFIsafe address
exclusively via TIA Portal

The configured PROFIsafe address is
loaded onto the intelligent coding module of
the module.

Advantages

 Replacing an F module is possible without reassigning the PROFIsafe address
at ET 200MP and ET 200SP. The intelligent coding module remains in the
BaseUnit during module exchange.

 Simple configuration since TIA Portal indicates a faulty assignment of the
PROFIsafe address warnings.

 The PROFIsafe address of all F modules can be assigned at the same time
within an ET 200SP.

Note Further information on assigning the PROFIsafe address for the F-I/O is
available at:

SIMATIC Industrial Software SIMATIC Safety – Configuring and Programming
https://support.industry.siemens.com/cs/ww/en/view/54110126

5.7 Evaluation of F-I/O

All of the current states of the respective F-I/O are saved in the F-I/O blocks. In the
safety program the states can be evaluated and processed. The following
differences exist between S7-1200/1500F and S7-300F/400F.

Table 5-4: Tags in the F-I/O DB with S7-300F/400F and S7-1500F

Tag in F-I/O DB
or value status in PAE

F-I/O with
S7-300/400F

F-I/O with
S7-1200/1500F

ACK_NEC  

QBAD  

PASS_OUT  

QBAD_I_xx *  

QBAD_O_xx *  

Value status  

https://support.industry.siemens.com/cs/ww/en/view/54110126

5 STEP 7 Safety in the TIA Portal

5.8 Value status (S7-1200F / S7-1500F)

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 97

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

* QBAD_I_xx and QBAD_O_xx show you the validity of the channel value and
correspond to the inverted value status at S7-1200/1500F (further information is

available in the following chapter).

5.8 Value status (S7-1200F / S7-1500F)

In addition to the diagnostic messages and the status and error display, the F
module provides information on the validity of each input and output signal - the
value status. The value status is stored in the same way as the input signal in the
process image:

The value status informs about the validity of the respective channel value.

 1: a valid process value is output for the channel.

 0: a substitute value is output for the channel.

Table 5-5: Differences between Q_BAD (S7-300F/400F) and value status (S7-1200/1500F)

Scenario QBAD (S7-300F/400F) Value status
(S7-1200/1500F)

Valid values at the F-I/O (no error) FALSE TRUE

Channel error occurs TRUE FALSE

Channel error going (ACK_REQ) TRUE FALSE

Acknowledgement of the failure
(ACK_REI)

FALSE TRUE

Properties

 The value status is entered into the process image of the inputs and outputs.

 Channel value and value status of an F-I/O must only be accessed from the
same F run-time group.

Recommendation

 For improved readability you assign the ending “_VS”, e.g. “Tag_In_1_VS” as

the symbolic name for the value status.

Example

Position of the value status bits in the process image using the example of an F-DI
8x24VDC HF module.

Table 5-6: Value status bits in the process image using the example of an F-DI 8x24VDC HF

Byte in
the F-
CPU

Assigned bits in the F-CPU

7 6 5 4 3 2 1 0

x + 0 DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

x +1 Value
status
for DI7

Value
status
for DI6

Value
status
for DI5

Value
status
for DI4

Value
status
for DI3

Value
status
for DI2

Value
status
for DI1

Value
status
for DI0

x = module start address

5 STEP 7 Safety in the TIA Portal

5.9 Data types

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 98

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Note More information about the value status of all ET 200SP modules is available at:

Failsafe CPUs - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/13719/man

Failsafe I/O modules - Manuals
https://support.industry.siemens.com/cs/ww/en/ps/14059/man

5.9 Data types

There is an unrestricted scope of data types for the safety programs of the
S7-1200/1500F.

Table: 5-7: Integer data types

Type Size Value range

BOOL 1 bit 0 .. 1

INT 16 Bit -32.768 .. 32.767

WORD 16 Bit -32.768 .. 65.535

DINT 32 bit -2.14 .. 2.14 million

TIME 32 bit
T#-24d20h31m23s648ms to

T#+24d20h31m23s647ms

5.10 F-conform PLC data type

For safety programs it is also possible to structure data optimal with PLC data
types.

Advantages

 A change in a PLC data type is automatically updated in all usage locations in
the user program.

Properties

 F-PLC data types are declared and used in the same way as PLC data types.

 F-PLC data types can use all data types which are allowed in the safety
program.

 Nesting of F-PLC data types within other F-PLC data types is not supported.

 In F-PLC data types, standard user programs can be used in the safety
program as well as in the standard user program.

https://support.industry.siemens.com/cs/ww/en/ps/13719/man
https://support.industry.siemens.com/cs/ww/en/ps/14059/man

5 STEP 7 Safety in the TIA Portal

5.10 F-conform PLC data type

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 99

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

 For accessing I/O areas you use F-PLC data types (as in Chapter 3.6.4 Access
to I/O areas with PLC data types)

 The following rules must be observed here:

– The structure of the tags of the F-conform PLC data type must match the
channel structure of the F-I/O.

– An F-conform PLC data type for an F-I/O with 8 channels is, for example:

 8 BOOL tags (channel value)

 16 BOOL tags (channel value + value status)

– Access to F-I/O is only permitted for activated channels. When configuring
a 1oo2 (2v2) evaluation, the higher channel is always deactivated.

Example

Figure 5-4: Access to I/O areas with F-PLC data types

F-PLC Datentyp

PLC Variable

F-Peripherie

5 STEP 7 Safety in the TIA Portal

5.11 TRUE / FALSE

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 100

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.11 TRUE / FALSE

If you require “TRUE” and “FALSE” signals in the safety programs, there are two
possible cases:

 as actual parameter at blocks

 as assignment to operations

Actual parameter at blocks

For S7-1200/1500F controllers you can use the Boolean constants “FALSE” for 0
and “TRUE” for 1 as actual parameter for supplying formal parameters during block
calls in the safety program. Only the keyword “FALSE” or “TRUE” is written to the
formal parameter.

Figure 5-5: “TRUE” resp. “FALSE” signals as actual parameter

Assignments to operations

If you require “TRUE” or “FALSE” signals at operations you can create them as in
the figure below.

 Use programming language FBD.

 Create two static or temp tags of datatype bool: “alwaysTrue”, “alwaysFalse”.

 Create the network 1, like the following figure.

 The tags can be used as “True” and “False”-tag in the entire block.

Figure 5-6: “TRUE” and “FALSE” signals

5 STEP 7 Safety in the TIA Portal

5.12 Optimizing compilation and program runtime

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 101

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.12 Optimizing compilation and program runtime

This chapter shows you the various options of reducing the compilation and
program runtime.

Depending on the application, it is not always possible to apply all of the
suggestions. However, they explain why certain programming methods cause
shorter compilation and program runtimes than a standard program.

Apart from blocks programmed by the user, there are also may system-internal
blocks which are created automatically. These blocks ensure that the safety
program is safe. The compilation and program runtime is increased by the system-
internal blocks.

Example

Figure 5-7: User and system-generated F-blocks

User created
F-blocks

System created
F-blocks

5 STEP 7 Safety in the TIA Portal

5.12 Optimizing compilation and program runtime

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 102

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.12.1 Avoiding time-processing blocks: TP, TON, TOF

Each time-processing block (TP, TON, TOF) requires additional blocks and global
data corrections in security code.

Recommendation

Use these blocks as little as possible.

5.12.2 Avoiding deep call hierarchies

Deep call hierarchies enlarge the code of the system-generated F blocks since a
larger scope of security functions and checks becomes necessary. If the nesting
depth of 8 is exceeded, a warning is issued by the TIA Portal during compilation.

Recommendation

Structure your program so unnecessarily deep call hierarchies are avoided.

5.12.3 Separation of standard and safety program

In complex projects it is often necessary to exchange information between
standard and safety program. If the exchange is realized via tags (e.g. flags),
changes in the standard program may make a compilation of the safety program
necessary. To download the changes, the CPU must then be set to STOP.

Recommendation

Use standard DBs (see chapter 5.13 Data exchange between standard and F-
program). Changes in the standard program then do not affect the safety program.
The controller does not need to be in STOP mode for loading the standard
program.

5.12.4 Use of multi-instances

If an instance DB is called at several locations in the safety program, this DB must
be processed more than once during a cycle. This processing requires a higher
scope of system-internal F blocks.

Recommendation

If possible, always use multi-instances. This may reduce the scope of the system-
internal F blocks.

5.12.5 Avoiding JMP/label structures

If a block call is jumped via JMP/LABEL, it is additionally secured in the system-
internal F blocks. In this case, a correction code to the jumped block call must be
run. This reduces performance and adds time during compilation.

5 STEP 7 Safety in the TIA Portal

5.13 Data exchange between standard and F-program

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 103

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Recommendation

Avoid JMP/Label structures as far as possible to reduce the system-internal F
blocks.

5.13 Data exchange between standard and F-program

In some cases it is necessary to exchange data between the safety program and
the standard user program. The following recommendations should urgently be
noted in order to guarantee data consistency between standard and the safety
program.

Recommendations

 No data exchange via flags (see chapter 4.2 No bit memory but global data
blocks

 Concentrate the access between safety program and the standard user
program on two standard DBs.

Figure 5-8: Data exchange between standard safety program

Standard user program Safety program

FOB1

MainSafety

Main

InstMainSafety

Data buffer

DataToSafety

DataFromSafety

Standard

5 STEP 7 Safety in the TIA Portal

5.14 Testing the safety program

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 104

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.14 Testing the safety program

In addition to the always controllable data of a standard user program you can
change the following data of a safety program in the deactivated safety mode.

 Process image of F-I/O

 F-DBs (except DB for F-run-time group communication), instance-DBs of

F-FBs

 F-I/O DBs

Properties

 Controlling F-I/O is only possible in F-CPU RUN mode.

 From a watch table you can control a maximum of 5 inputs/outputs in a safety
program.

 You can use several watch tables.

 The trigger point needs to be set to “permanent” or “once” for “cycle start” or
“cycle end”.

 Forcing is not possible for the F-I/O.

 Setting stop points in the standard user program will lead to errors in the safety
program:

– Expiring of F cycle time monitoring

– Error during communication with the F-I/O

– Error at fail-safe CPU-CPU communication

– Internal CPU error

 If you still wish to use stop points for testing, you need to deactivate the safety
mode beforehand. This leads to the following errors:

– Error during communication with the F-I/O

– Error at fail-safe CPU-CPU communication

5 STEP 7 Safety in the TIA Portal

5.15 STOP mode in the event of F errors

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 105

C
o
p

y
ri

g
h

t


 S
ie

m
e

n
s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

5.15 STOP mode in the event of F errors

In the following cases, the STOP mode is triggered for F-CPUs:

 In the "System blocks" folder you must not add, change or delete any blocks.

 If the result of an instruction lies outside of the area permitted for the data type
(overflow). The cause of the diagnostic event is entered in the diagnostics
buffer of the F CPU.

 There must not be any access to instance DBs of F-FBs which are not called in
the safety program.

 If the “Maximal cycle time of the F run-time group” is exceeded, the F-CPU
goes to STOP. Select the maximal permitted time for "Maximum cycle time der
F run-time group" which can elapse between two calls of this F run-time group
(maximal 20,000 ms).

 If the F run-time group, from whose DB for F-run-time groups tags shall be
read, is processed (main safety block of the F run-time group), the F-CPU goes
to STOP.

 Editing the start values in instance DBs of F-FBs is not permitted online and
offline and can lead to STOP of the F-CPU.

 The main safety block must not contain any parameters since they cannot be
supplied.

 Outputs of F-FCs must always be initialized.

5.16 Migration of safety programs

Information on migrating safety programs is available at:

https://support.industry.siemens.com/cs/ww/en/view/109475826

5.17 General recommendations for safety

Generally, the following recommendations apply for handling STEP 7 Safety and F
modules.

 Whenever possible, always use F controllers. A later expansion of safety
functions can be realized very simply.

 Always use one password for the safety program to prevent unauthorized
changes. The password is set in the “Safety administration” editor.

https://support.industry.siemens.com/cs/ww/en/view/109475826

6 The Most Important Recommendations

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 106


 S

ie
m

e
n

s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

6 The Most Important Recommendations

 Use optimized blocks

– Chapter 2.6 Optimized blocks

 Use data type VARIANT instead of ANY

– Chapter 2.8.5 VARIANT data type

 Structuring the program clearly and well

– Chapter 3.2 Organization blocks (OB)

 Inserting instructions as multi-instance (TON, TOF ..)

– Chapter 3.2.5 Multi-instances

 Reusable programming of blocks

– Chapter 3.2.8 Reusability of blocks

 Symbolic programming

– Chapter 3.6 Symbolic addressing

 When handling data, work with ARRAY

– Chapter 3.6.2 ARRAY data type and indirect field accesses

 Creating PLC data types

– Chapter 3.6.4 Access to I/O areas with PLC data types

 Using libraries for storing program elements

– Chapter 3.7 Libraries

 No memory bits but global data blocks

– Chapter 4.2 No bit memory but global data blocks

7 Related Literature

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 107


 S

ie
m

e
n

s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

7 Related Literature

Table 7-1

 Topic Title

\1\ Siemens Industry Online Support https://support.industry.siemens.com/cs/sta
rt?lc=en-DE

\2\ Download page of the entry https://support.industry.siemens.com/cs/ww
/en/view/81318674

\3\ Programmierstyleguide for S7-1200
und S7-1500

https://support.industry.siemens.com/cs/ww
/en/view/81318674

\4\ TIA Portal - An Overview of the Most
Important Documents and Links

https://support.industry.siemens.com/cs/ww
/en/view/65601780

\5\ STEP 7 (TIA Portal) manuals https://support.industry.siemens.com/cs/ww
/en/ps/14673/man

\6\ S7-1200 Manuals https://support.industry.siemens.com/cs/ww
/en/ps/13683/man

\7\ S7-1500 (F) Manuals https://support.industry.siemens.com/cs/ww
/de/ps/13716/man

\8\ ET 200SP CPU Manuals https://support.industry.siemens.com/cs/ww
/en/ps/13888/man

\9\ S7-1200 Getting Started https://support.industry.siemens.com/cs/ww
/de/view/39644875

\10\ S7-1500 Getting Started https://support.industry.siemens.com/cs/ww
/de/view/78027451

\11\ SIMATIC S7-1200 / S7-1500
Comparison list for programming
languages

http://support.automation.siemens.com/WW
/view/en/86630375

https://support.industry.siemens.com/cs/start?lc=en-DE
https://support.industry.siemens.com/cs/start?lc=en-DE
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/81318674
https://support.industry.siemens.com/cs/ww/en/view/65601780
https://support.industry.siemens.com/cs/ww/en/view/65601780
https://support.industry.siemens.com/cs/ww/en/ps/14673/man
https://support.industry.siemens.com/cs/ww/en/ps/14673/man
https://support.industry.siemens.com/cs/ww/en/ps/13683/man
https://support.industry.siemens.com/cs/ww/en/ps/13683/man
https://support.industry.siemens.com/cs/ww/de/ps/13716/man
https://support.industry.siemens.com/cs/ww/de/ps/13716/man
https://support.industry.siemens.com/cs/ww/en/ps/13888/man
https://support.industry.siemens.com/cs/ww/en/ps/13888/man
https://support.industry.siemens.com/cs/ww/de/view/39644875
https://support.industry.siemens.com/cs/ww/de/view/39644875
https://support.industry.siemens.com/cs/ww/de/view/78027451
https://support.industry.siemens.com/cs/ww/de/view/78027451
http://support.automation.siemens.com/WW/view/en/86630375
http://support.automation.siemens.com/WW/view/en/86630375

8 History

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 108


 S

ie
m

e
n

s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

8 History

Table 8-1

Version Date Modifications

V1.0 09/2013 First version

V1.1 10/2013 Corrections in the following chapters:

2.6.3 Best possible data storage in the processor on S7-1500

2.13 Internal reference ID for controller and HMI tags

3.2.2 Functions (FC)

3.2.3 Function blocks (FB)

3.4.3 Local memory

V1.2 03/2014 New chapter:

2.6.4 Conversion between optimized and non-optimized tags

2.6.6 Communication with optimized data

2.9.2 MOVE instructions

2.9.3 VARIANT instructions

3.6.4 Access to I/O areas with PLC data types

Extension of following chapter:

2.2 Terms

2.3 Programming languages

2.6 Optimized blocks

2.10 Symbolic and comments

3.2 Program blocks

3.5 Retentivity

4.3 Programming of "clock bits"

Several corrections in different chapter

V1.3 09/2014 New chapter:

2.8.4 Unicode data types

2.10.2 Comment lines in watch table

2.12 User constants

3.2.9 Auto numbering of blocks

5 STEP 7 Safety in the TIA Portal

Extension of following chapter:

2.7 Block sizes

2.8 New data types for S7-1200/1500

2.9 Instructions

2.10 Symbolic and comments

3.6.3 STRUCT data type and PLC data types

3.7 Libraries

Several corrections in different chapter

8 History

Programming Guideline for S7-1200/S7-1500
Entry-ID: 81318674, V1.4, 11/2015 109


 S

ie
m

e
n

s
 A

G
 2

0
1

5
 A

ll
ri

g
h

ts
 r

e
s
e

rv
e

d

Version Date Modifications

1.4 11/2015 New chapter:

2.6.5 Parameter transfer between blocks with optimized access
and standard access

3.3.3 Overview for transfer of parameters

3.10.4 Correct application of FOR, REPEAT and WHILE loops

5.12 Optimizing compilation and program runtime

	Programming Guideline for
S7-1200/S7-1500
	Warranty and Liability
	1 Preface
	2 S7-1200/1500 Innovations
	2.1 Introduction
	2.2 Terms
	2.3 Programming languages
	2.4 Optimized machine code
	2.5 Block creation
	2.6 Optimized blocks
	2.6.1 S7-1200: Setup of optimized blocks
	2.6.2 S7-1500: Setup of optimized blocks
	2.6.3 Best possible data storage in the processor on S7-1500
	2.6.4 Conversion between optimized and non-optimized tags
	2.6.5 Parameter transfer between blocks with optimized access and standard access
	2.6.6 Communication with optimized data

	2.7 Block properties
	2.7.1 Block sizes
	2.7.2 Number of organization blocks (OB)

	2.8 New data types for S7-1200/1500
	2.8.1 Elementary data types
	2.8.2 Date_Time_Long data type
	2.8.3 Further time data types
	2.8.4 Unicode data types
	2.8.5 VARIANT data type (S7-1500 and S7-1200 from FW4.1)

	2.9 Instructions
	2.9.1 CALCULATE
	2.9.2 MOVE instructions
	2.9.3 VARIANT instructions (S7-1500 and S7-1200 from FW4.1)
	2.9.4 RUNTIME

	2.10 Symbolic and comments
	2.10.1 Programming editor
	2.10.2 Comment lines in watch table

	2.11 System constants
	2.12 User constants
	2.13 Internal reference ID for controller and HMI tags
	2.14 STOP mode in the event of errors

	3 General Programming
	3.1 Operating system and user program
	3.2 Program blocks
	3.2.1 Organization blocks (OB)
	3.2.2 Functions (FC)
	3.2.3 Function blocks (FB)
	3.2.4 Instances
	3.2.5 Multi-instances
	3.2.6 Global data blocks (DB)
	3.2.7 Downloading without reinitialization
	3.2.8 Reusability of blocks
	3.2.9 Auto numbering of blocks

	3.3 Block interface types
	3.3.1 Call-by-value with In interface type
	3.3.2 Call-by-reference with InOut interface type
	3.3.3 Overview for transfer of parameters

	3.4 Storage concept
	3.4.1 Block interfaces as data exchange
	3.4.2 Global memory
	3.4.3 Local memory
	3.4.4 Access speed of memory areas

	3.5 Retentivity
	3.6 Symbolic addressing
	3.6.1 Symbolic instead of absolute addressing
	3.6.2 ARRAY data type and indirect field accesses
	3.6.3 STRUCT data type and PLC data types
	3.6.4 Access to I/O areas with PLC data types
	3.6.5 Slice access

	3.7 Libraries
	3.7.1 Types of libraries and library elements
	3.7.2 Type concept
	3.7.3 Differences for typifiable objects for CPU and HMI
	3.7.4 Versioning of a block

	3.8 Increasing performance with process interrupts
	3.9 Additional performance recommendations
	3.10 SCL programming language: Tips and tricks
	3.10.1 Using call templates
	3.10.2 What instruction parameters are mandatory?
	3.10.3 Drag & drop with entire tag names
	3.10.4 Correct application of FOR, REPEAT and WHILE loops
	3.10.5 Efficiently inserting CASE instruction
	3.10.6 No manipulation of loop counters for FOR loop
	3.10.7 FOR loop backwards
	3.10.8 Simple creating of instances for calls
	3.10.9 Handling of time tags

	4 Hardware-Independent Programming
	4.1 Data types of S7-300/400 and S7-1200/1500
	4.2 No bit memory but global data blocks
	4.3 Programming of "clock bits"

	5 STEP 7 Safety in the TIA Portal
	5.1 Introduction
	5.2 Terms
	5.3 Components of the safety program
	5.4 F runtime group
	5.5 F signature
	5.6 Assigning the PROFIsafe address at the F-I/O
	5.7 Evaluation of F-I/O
	5.8 Value status (S7-1200F / S7-1500F)
	5.9 Data types
	5.10 F-conform PLC data type
	5.11 TRUE / FALSE
	5.12 Optimizing compilation and program runtime
	5.12.1 Avoiding time-processing blocks: TP, TON, TOF
	5.12.2 Avoiding deep call hierarchies
	5.12.3 Separation of standard and safety program
	5.12.4 Use of multi-instances
	5.12.5 Avoiding JMP/label structures

	5.13 Data exchange between standard and F-program
	5.14 Testing the safety program
	5.15 STOP mode in the event of F errors
	5.16 Migration of safety programs
	5.17 General recommendations for safety

	6 The Most Important Recommendations
	7 Related Literature
	8 History

