

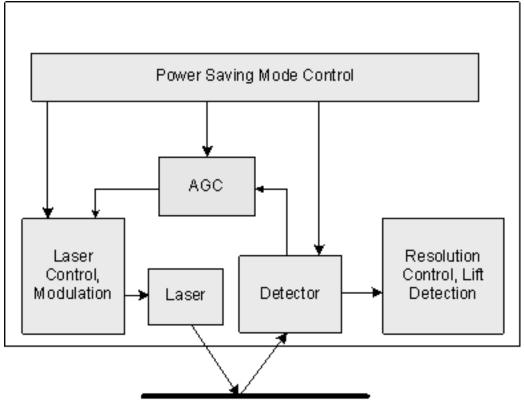
Optical Navigation Datasheet NAV V 0.2

Copyright © 2008-2013 Cypress Semiconductor Corporation. All Rights Reserved.

	API Memo	ory (Bytes)	
Resources	flash	RAM	Pins (per External I/O)
CYONS2010, CYONS2011, CYONSFN2051, CYONSFN2053, CYONSFN2061, CYONSFN2151, CYONSFN2161, CYONSFN2162	3656	39	-

Features and Overview

- Flexible track and sleep modes
- Configurable lift detection threshold
- Track and sleep modes can be software controlled
- Configurable resolution
- Power settings for eye safe levels of work with laser


The optical navigation system can be divided into three blocks:

- The Tracking System Control block manages surface tracking, including the resolution in the x and y directions and lift height.
- The Power Saving Mode Control block configures the various sleep and tracking modes available to the sensor. This block can force the sensor to a certain tracking or sleep mode, and also can set the parameters used by the sensor as it automatically transitions between active and sleep states.
- The Laser Control block controls the settings of the laser, allowing the user to enable/disable AGC and laser modulation, and to enter laser test mode. Laser eye safe requirements are available as a semi-automatic feature of the laser control APIs. Laser calibration is stored in protected rows of flash and can be obtained on the fly, as an API function.

Additionally the AGC block uses velocity data from the DSP block to control the sensor sampling rate. At low speeds the sensor can sample the input signals at a low rate, and hence lower speed, without sacrificing accuracy. At higher speeds the sampling rate must increase to keep up with motion. Since the sampling rate is intimately tied to the frame integration time and the DSP calculations are independent of sampling rate, it makes sense to have the AGC block control the sampling rate.

Figure 1. NAV Block Diagrams

Functional Description

The device has multiple operating modes. These are:

Active Modes

Active mode with highest speed tracking

In this mode, the chip tracks the highest speed motion of the mouse. The rate at which the device captures information from the analog chip can be up to 80KHz. The chip also consumes the highest power.

Active modes with low speed tracking

In these modes, the device modulates frame rate based on detected speed of mouse motion. This reduces active chip power.

Sleep Modes

These are low power modes to enhance battery life. If the device does not detect any motion for a programmable amount of time while in the tracking mode, it transitions to the shallowest sleep modes. The device has been provided with 4 sleep modes. If the chip has been in a sleep mode for long enough time (programmable) without detecting any motion, the chip may enter the next deeper sleep mode if there is one available

Shallowest sleep modes with low wakeup time

This mode is entered when the chip detects no mouse motion for an extended period of time. Once, this mode is entered, the device consumes only leakage power, for a major portion of time. However, the chip needs to detect if mouse movement is happening. Hence, once in a while, the device wakes up the analog super block and takes a few frame samples to check for motion. If no motion is detected, the chip reenters sleep mode. Else, it moves into track mode.

Deep sleep modes with higher wake-up times

These modes are entered when the device detects no mouse motion for a long period of time. There are three such modes. Once a particular deep sleep mode is entered, the chip consumes only leakage power, for a major portion of time. However, the device needs to detect if mouse movement is happening. Hence, once in a while, the chip wakes up the analog superblock and takes a few frame samples to check for motion. If no motion is detected, the device re-enters the same sleep mode. Else, it moves into track mode. This mode differs from the previous mode in the duration between taking frames.

DC and AC Electrical Characteristics

See the device datasheet for your Ovation device for the electrical characteristics of the Navigation block.

Placement

The Optical Navigation User Module can be placed in the dedicated block of CYONS2xxx only.

Parameters and Resources

SleepModes

This sleep modes parameter performs basic power management configuration. Possible values are "enable" or "disable".

Application Programming Interface

The Application Programming Interface (API) functions are provided as part of the user module to allow you to deal with the module at a higher level. This section specifies the interface to each function together with related constants provided by the include files.

The following tables list the NAV supplied API functions.

Table 1. NAV API

Function	Description
General Purpose API	
void NAV_Start(void)	A null function, maintained for user module API consistency
void NAV_Stop(void)	A null function, maintained for user module API consistency.
Tracking API	
BYTE NAV_bTrackInit (BYTE bPowerMode)	Initializes the tracking engine with the built-in register settings.
void NAV_TrackStart(void)	Starts the navigation engine.

Function	Description
void NAV_TrackStop(void)	Stops the navigation engine.
void NAV_SetResolution(WORD wDPI)	Sets desired optical sensor resolution for both X and Y axes
void NAV_SetXResolution(WORD wXDPI)	Sets desired optical sensor resolution for both X axis
void NAV_SetYResolution(WORD wYDPI)	Sets desired optical sensor resolution for both Y axis
WORD NAV_wReadResolution(void)	Returns current resolution. In the axes resolutions are different it returns X axis resolution.
WORD NAV_wReadXResolution(void)	Returns current X-axis resolution.
WORD NAV_wReadYResolution(void)	Returns current Y-axis resolution.
BOOL NAV_fReadXYCounts (POSITION* SXYData)	Reads XY counts and updates the SXYData structure. Returns false if both X and Y are zero, and true otherwise
void NAV_LiftHeightSetThreshold (BYTE bLiftThreshold, BYTE bLiftHysteresis)	Change lift height threshold and hysteresis.
BYTE NAV_bLiftHeightReadData(void)	Returns the current lift height estimation in counts relative to the maximum.
Power-Saving Mode Control API	
void NAV_ForceSleepMode(BYTE bSleepMode)	Go to the sleep mode specified by the given index.
void NAV_ForceTrackMode(BYTE bTrackMode)	Go to the track mode specified by the given index.
void NAV_ConfigureSleepMode (BYTE bSleepMode, WORD wSleepPeriod, WORD wNumSleepPeriods)	Adjust the sleep period before next check-for-motion, and how long to stay in current sleep mode without seeing motion before moving to next deeper sleep mode (number of sleep period repeats), for the sleep mode specified by the given index (0 to 3)
void NAV_SetSleepDelay (WORD wDelayMs)	Adjust the delay in mS when transitioning from the lowest tracking mode to the shallowest sleep mode with no motion being detected.
void NAV_SleepEnableInt(void)	Enables the sleep interrupt that is generated by the navigation module.
void NAV_SleepDisableInt(void)	Disables the sleep interrupt that is generated by the navigation module.
void NAV_WakeEnableInt(void)	Enables the wake-up interrupt that is generated by the Navigation module.
void NAV_WakeDisableInt(void)	Disables the wake-up interrupt that is generated by the Navigation module.
void NAV_VCSELErrorEnableInt(void)	Enables the general interrupt that is generated by the navigation engine as a result of a VCSEL error.
void NAV_VCSELErrorDisableInt(void)	Disables the general interrupt that is generated by the navigation engine as a result of a VCSEL error
void NAV_GlobalEnableInt(void)	Enables Global interrupt

Function	Description
void NAV_GlobalDisableInt(void)	Disables Global interrupt
<pre>void NAV_TrackSleepTransitionEnableInt(void)</pre>	Enables Global subinterrupt: Track/SleepTransition
void NAV_TrackSleepTransitionDisableInt(void)	Disables Global subinterrupt: Track/SleepTransition
BOOL NAV_fHadVcselError(void)	Checks VCSEL Error status bit
BOOL NAV_fHadTrackSleepTransition(void)	Checks Track/Sleep Transition status bit
BOOL NAV_fHadTrackingBlankout(void)	Checks Track/Sleep Blackout status bit
void NAV_ResetVcsel(void)	Performs DSP soft reset
BYTE NAV_bReadCurrentPreviousState(void)	Reads previous and current track/sleep state in sensor
Laser Control API	
void NAV_LaserStart(void)	Turns on the laser driver
void NAV_LaserStop(void)	Turns off the laser drive
void NAV_LaserSetPower (BYTE bPowerSetting)	Manually change the laser power
void NAV_LaserAGCControl(BOOL fAGC)	Turn on/off the AGC loop.
void NAV_LaserModulationControl (BOOL fOnOff)	Turn on/off the laser modulation.
BYTE NAV_bLaserReadPower(void)	Returns the current laser power setting.
BYTE NAV_bLaserReadEyesafe(void)	Returns the laser driver eye-safe level for this sensor part.
BYTE NAV_bLaserReadMaximum(void)	Returns the laser driver maximum current setting for this sensor part.
void NAV_LaserSetTestMode(void)	Sets the laser to CW mode, without modulation and without AGC
void NAV_LaserSetEyesafe(BYTE bPowerSetting)	Assigns eye safety VCSEL current settings for all track modes
void NAV_LaserSetMaximum (BYTE bPowerSetting)	Assigns operating VCSEL current settings for all track modes
void NAV_LaserSetEyesafeMSB (BYTE bPowerSetting)	Sets 3 bits of DAC2 code for VCSEL driver.
void NAV_LaserSetMaximumMSB (BYTE bPowerSetting)	Sets 3 bits of DAC1 code for VCSEL driver.
BYTE NAV_bLaserReadEyesafeMSB(void)	Reads 3 bits of DAC2 code for VCSEL driver
BYTE NAV_bLaserReadMaximumMSB(void)	Reads 3 bits of DAC1 code for VCSEL driver
void NAV_AnalogStart(void)	Clears the power down bits for AGC, sensor1, sensor2, bicells and ASB
void NAV_AnalogStop(void)	Sets the power down bits for AGC, sensor1, sensor2, bicells and ASB

Each time a user module is placed, it is assigned an instance name. By default, PSoC Designer assigns the NAV_1 to the first instance of this user module in a given project. It can be changed to any unique value that follows the syntactic rules for identifiers. The assigned instance name becomes the prefix of every global function name, variable and constant symbol. In the following descriptions the instance name has been shortened to NAV for simplicity.

Note ** In this, as in all user module APIs, the values of the A and X register may be altered by calling an API function. It is the responsibility of the calling function to preserve the values of A and X before the call if those values are required after the call. This "registers are volatile" policy was selected for efficiency reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes care of this requirement. Assembly language programmers must also ensure their code observes the policy. Though some user module API functions may leave A and X unchanged, there is no guarantee they may do so in the future.

General Purpose API

NAV_Start

Description:

A null function, maintained for user module API consistency.

C Prototype:

void NAV Start(void);

Assembly:

lcall NAV Start

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_Stop

Description:

A null function, maintained for user module API consistency.

C Prototype:

void NAV_Stop(void);

Assembly:

lcall NAV_Stop

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

Tracking API

NAV_bTrackInit

Description:

Initializes the tracking engine with the built-in register settings. These settings (flash table) is set by default when the user module is placed and code is generated. This guarantees proper operation after the boot sequence is completed.

C Prototype:

```
BYTE NAV bTrackInit(BYTE bPowerMode);
```

Assembly:

```
mov A, bPowerMode
lcall NAV_TrackInit
;now error code contains is passed through A register
```

Parameters:

bPowerMode - chip power mode

Return Value:

Return value	Description
0	There was no error during tracking engine initialization
1	Check sum is failed
2	bPowerMode doesn't correspond to silicon purpose

Side Effects:

See Note ** at the beginning of the API section.

NAV_TrackStart

Description:

Starts the navigation engine. The NAV_TrackInit() should be called before calling this function. This gives you the ability to modify tracking registers to your own desired values before you call NAV_TrackStart().

C Prototype:

void NAV_TrackStart(void);

Assembly:

lcall NAV_TrackStart

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_TrackStop

Description:

Stops the navigation engine. After the NAV engine is stopped, to restart the engine, call NAV_TrackInit() first, then you have the option to modify tracking registers to your own desired values, before calling NAV_TrackStart().

C Prototype:

```
void NAV TrackStop(void);
```

Assembly:

lcall NAV_TrackStop

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_SetResolution

Description:

Converts the new resolution in DPI to the appropriate X-axis and Y-axis resolution scaling register values (the same value for both registers).

C Prototype:

void NAV_SetResolution(WORD wDPI);

Assembly:

mov X, >wDPI mov A, <wDPI lcall NAV SetResolution

Parameters:

wDPI - specifies the resolution in DPI for both X and Y directions (X <= MSB; A <= LSB)

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_SetXResolution

Description:

Converts the new x-axis resolution in DPI to the appropriate X-axis resolution scaling register value.

C Prototype:

void NAV SetXResolution(WORD wXDPI);

Assembly:

mov X, >wXDPI mov A, <wXDPI lcall NAV SetXResolution

Parameter:

wXDPI - specify the X-axis resolution in DPI (X <= MSB; A <= LSB)

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_SetYResolution

Description:

Converts the new y-axis resolution in DPI to the appropriate Y-axis resolution scaling register value.

C Prototype:

```
void NAV_SetYResolution(WORD wYDPI);
```

Assembly:

```
mov X, >wYDPI
mov A, <wYDPI
lcall NAV SetYResolution
```

Parameters:

wYDPI - specify the Y-axis resolution in DPI (X <= MSB; A <= LSB)

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_wReadResolution

Description:

This function converts the value in the resolution register to the equivalent DPI value and returns the X and Y axis DPI value. This function is identical to NAV_ReadXResolution. If you set the X and Y resolution with the NAV_SetResolution() API function, the X and Y axes are both set to the same

resolution and this function returns the resolution. If the values are not the same, this function returns

the X axis resolution.

C Prototype:

```
WORD NAV wReadResolution(void);
```

Assembly:

lcall NAV_wReadResolution
; now X contains MSB and A - LSB of returned value

Parameters:

None

Return Value:

Returns the current X-axis and Y-axis resolution setting in DPI. X <= MSB part of result; A <= LSB part of result

Side Effects:

See Note ** at the beginning of the API section.

NAV_wReadXResolution

Description:

Returns current X-axis resolution setting in DPI

C Prototype:

```
WORD NAV wReadXResolution(void);
```

Assembly:

lcall NAV_wReadXResolution
; now X contains MSB and A - LSB of returned value

Parameters:

None

Return Value:

Returns the current X-axis resolution setting in DPI. X <= MSB part of result; A <= LSB part of result.

Side Effects:

See Note ** at the beginning of the API section.

NAV_wReadYResolution

Description:

Returns current Y-axis resolution setting in DPI

C Prototype:

WORD NAV wReadYResolution(void);

Assembly:

lcall NAV_wReadYResolution
; now X contains MSB and A - LSB of returned value

Parameters:

None

Return Value:

Returns the current y-axis resolution setting in DPI.

X <= MSB part of result; A <= LSB part of result

Side Effects:

See Note ** at the beginning of the API section.

NAV_fReadXYCounts

Description:

Reads XY counts and updates the SXYData structure. Upon reading, the XY counts register is cleared. This function assumes the following typedef:

typedef struct {INT iX; INT iY;} POSITION;

and POSITION type is supported by NAV user module.

C Prototype:

BOOL NAV_fReadXYCounts(POSITION* SXYData);

Assembly:

```
mov X, <SXYData
mov A, >SXYData
lcall NAV_fReadXYCounts
; now A contains returned value
```

Parameters:

Pointer MSB => A, LSB => X that contains tracking data after function returns

Return Value:

A <= Returns true if non-zero xy_data was read, false if xy data is zero

Side Effects:

See Note ** at the beginning of the API section.

The XY registers of optical navigation system is cleared after this function call. Function modificates value of structure that SXYData points on.

NAV_LiftHeightSetThreshold

Description:

Changes lift height threshold and hysteresis

C Prototype:

```
void NAV_LiftHeightSetThreshold(BYTE bLiftThreshold, BYTE bLiftHysteresis);
```

Assembly:

```
mov X, bLiftHysteresis
mov A, bLiftThreshold
lcall NAV LiftHeightSetThreshold
```


Parameters:

A <= bLiftThreshold (Lift height threshold in relative units where the tracking is cut off. Allowable range is 0 - 7).

X <= bLiftHysteresis (Lift height hysteresis in relative units to stabilize lift detection. bLiftHysteresis uses the same units and can range from 0 (no hysteresis) to bLiftThreshold).

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_bLiftHeightReadData

Description:

Returns the current lift height estimation in counts relative to the maximum. Range is 0 - 7 counts.

C Prototype:

BYTE NAV_bLiftHeightReadData(void);

Assembly:

lcall NAV_bLiftHeightReadData
; now A contains returned value

Parameters:

None

Return Value:

A <= current lift height estimation

Side Effects:

See Note ** at the beginning of the API section.

Power-Saving Mode Control API

NAV_ForceSleepMode

Description:

Goes to the sleep mode specified by the given index from 0 to 3 immediately. This function may be called after you call the NAV_TrackStart() function. Sleep mode with higher index uses longer sleep period, that is, implements deeper sleep and saves more power.

C Prototype:

void NAV_ForceSleepMode(BYTE bSleepMode);

Assembly:

mov A, bSleepMode
lcall NAV ForceSleepMode

Parameters:

bSleepMode - specifies index of the sleep mode to go to immediately. Passed via accumulator.

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_ForceTrackMode

Description:

Jumps to the tracking mode specified by the given index from 0 to 5 immediately. This function may be called only after the NAV_TrackStart() function. Tracking mode with higher index uses higher sampling rate.

C Prototype:

void NAV_ForceTrackMode(BYTE bTrackMode);

Assembly:

mov A, bTrackMode
lcall NAV ForceTrackMode

Parameters:

bTrackMode - specifies index of the tracking mode to jump to immediately. Passed via accumulator.

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_ConfigureSleepMode

Description:

Sets the sleep period (before next check-for-motion), sleep mode duration (without seeing motion before moving to next deeper sleep mode) and number of sleep period repeats for the sleep mode specified by the given index (0 to 3). This function should be called after NAV_TrackInit() function (initializes tracking engine) and before calling the NAV_TrackStart() function (starting tracking engine). Please note that sleep mode with higher index should use longer sleep period, that is, implements deeper sleep and saves more power. Sleep mode 0 is the shallowest sleep mode; sleep mode 3 is the deepest sleep mode.

C Prototype:

void NAV_ConfigureSleepMode(BYTE bSleepMode, WORD wSleepPeriod, WORD
wNumSleepPeriods);

Assembly:

mov	A,	>wNumSleepPeriods	;MSB of last a	argument
push	А			
mov	A,	<wnumsleepperiods< td=""><td>;LSB</td><td></td></wnumsleepperiods<>	;LSB	
push	А			
mov	A,	>wSleepPeriod	;MSB	
push	А			
mov	A,	<wsleepperiod< td=""><td>;LSB</td><td></td></wsleepperiod<>	;LSB	


```
push A
mov A, bSleepMode ;first argument
push A
lcall NAV_ConfigureSleepMode
add SP, -5 ;stack release
```

Parameters:

bSleepMode - specifies the index of the sleep mode to adjust.

wSleepPeriod - sleep period in ms before next check-for-motion activity.

wNumSleepPeriods - number of sleep period repeats before transitioning to next deeper sleep mode

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_SetSleepDelay

Description:

Adjusts the delay in ms when transitioning from the lowest tracking mode (track mode 0) to the shallowest sleep mode (sleep mode 0) with no motion being detected. This function must be called after NAV_Trackinit() and before calling the NAV_TrackStart() function (starting tracking engine).

C Prototype:

```
void NAV SetSleepDelay(WORD wDelayMs);
```

Assembly:

mov X, >wDelayMs
mov A, <wDelayMs
lcall NAV wDelayMs</pre>

Parameters:

wDelayMs - delay in ms before transitioning from tracking mode to sleep mode when no motion is detected (X <= MSB; A <= LSB)

Return Value:

None.

Side Effects:

See Note ** at the beginning of the API section.

NAV_SleepEnableInt

Description:

Enables the sleep interrupt that is generated by the Navigation module. In typical usage this interrupt is used by the NAV user module to tell the CPU core to go to sleep

C Prototype:

```
void NAV_SleepEnableInt(void);
```


Assembly:

lcall NAV_SleepEnableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_SleepDisableInt

Description:

Disables the sleep interrupt that is generated by the Navigation module.

C Prototype:

void NAV SleepDisableInt(void);

Assembly:

lcall NAV_SleepDisableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_WakeEnableInt

Description:

Enables the wake-up interrupt that is generated by the Navigation module. In typical usage this interrupt is used by the Nav module to tell the Krypton controller to wake from sleep, which may occur if the mouse is configured to support wake-on-motion from a USB suspend.

C Prototype:

void NAV WakeEnableInt(void);

Assembly:

lcall NAV_WakeEnableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_WakeDisableInt

Description:

Disables the wake-up interrupt that is generated by the Navigation module.

C Prototype:

void NAV_WakeDisableInt(void);

Assembly:

lcall NAV_WakeDisableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_GlobalEnableInt

Description:

Enables global interrupt.

C Prototype:

```
void NAV_GlobalEnableInt(void);
```

Assembly:

lcall NAV_GlobalEnableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_GlobalDisableInt

Description:

Disables Global interrupt.

C Prototype:

```
void NAV_GlobalDisableInt(void);
```


Assembly:

lcall NAV_GlobalDisableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_TrackSleepTransitionEnableInt

Description:

Enables Track/SleepTransition interrupt.

C Prototype:

void NAV TrackSleepTransitionEnableInt(void);

Assembly:

lcall NAV TrackSleepTransitionEnableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_TrackSleepTransitionDisableInt

Description:

Disables Track/SleepTransition interrupt..

C Prototype:

void NAV_TrackSleepTransitionDisableInt(void);

Assembly:

lcall NAV_TrackSleepTransitionDisableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_fHadVcselError

Description:

Checks VCSEL Error status bit. Clears if set.

C Prototype:

BOOL NAV fHadVcselError(void);

Assembly:

lcall NAV_fHadVcselError

Parameters:

None

Return Value:

Returns (through A register) VCSEL Error status bit

Side Effects:

See Note ** at the beginning of the API section.

NAV_fHadTrackSleepTransition

Description:

Checks Track/Sleep Transition status bit. Clears if set.

C Prototype:

BOOL NAV_fHadTrackSleepTransition(void);

Assembly:

lcall NAV_fHadTrackSleepTransition

Parameters:

None

Return Value:

Returns (through A register) Track/Sleep Transition status bit

Side Effects:

See Note ** at the beginning of the API section.

NAV_fHadTrackingBlankout

Description:

Checks Blankout status bit. Interrupt occurs when signal is too low and tracking output is blanked out.

C Prototype:

BOOL NAV_fHadTrackingBlankout(void);

Assembly:

lcall NAV_fHadTrackingBlankout

Parameters:

None

Return Value:

Returns (through A register) Blankout status bit

Side Effects:

See Note ** at the beginning of the API section.

NAV_ResetVcsel

Description:

Performs ASB and DSP soft reset.

C Prototype:

void NAV ResetVcsel(void);

Assembly:

lcall NAV ResetVcsel

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_bReadCurrentPreviousState

Description:

Reads current and previous track/sleep state in sensor.

C Prototype:

BYTE NAV_bReadCurrentPreviousState(void);

Assembly:

lcall NAV_bReadCurrentPreviousState

Parameters:

None

Return Value:

Returns (through A register) current (7:4 bits) and previous (3:0 bits) track/sleep states.

Side Effects:

See Note ** at the beginning of the API section. Laser Control API

NAV_LaserStart

Description:

Turns on the laser driver. If AGC is off, or if CW mode is on, then the initial power resulting from this command is zero. The firmware must then set the laser power using the NAV_LaserSetPower() call.

C Prototype:

void NAV_LaserStart(void);

Assembly:

lcall NAV_LaserStart

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserStop

Description:

Turns off the laser driver.

C Prototype:

```
void NAV_LaserStop(void);
```

Assembly:

lcall NAV_LaserStop

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_VCSELErrorEnableInt

Description:

Enables the general interrupt that is generated by the navigation engine as a result of a VCSEL error. Note that the general interrupt can also be generated by the power system. It is the firmware's responsibility to manage the different scenarios that are covered by this interrupt.

C Prototype:

```
void NAV VCSELErrorEnableInt(void);
```


Assembly:

lcall NAV_VCSELErrorEnableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_VCSELErrorDisableInt

Description:

Disables the VCSEL error interrupt that is generated by the Navigation module.

C Prototype:

void NAV_VCSELErrorDisableInt(void);

Assembly:

lcall NAV_VCSELErrorDisableInt

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserSetPower

Description:

Manually changes the driver current setting. Should only be used when AGC loop is turned off, otherwise there is no effect.

C Prototype:

void NAV_LaserSetPower(BYTE bPowerSetting);

Assembly:

```
mov A, bPowerSetting
lcall NAV LaserSetPower
```

Parameters:

bPowerSetting - laser driver current setting

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserAGCControl

Description:

Turn on/off the AGC loop.

C Prototype:

void NAV_LaserAGCControl(BOOL fAGC);

Assembly:

mov A, fAGC lcall NAV_LaserAGCControl

Parameters:

fAGC - if non-zero value AGC loop on, otherwise AGC loop off

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserModulationControl

Description:

Turn on or off the laser modulation.

C Prototype:

void NAV_LaserModulationControl(BOOL fOnOff);

Assembly:

mov A, fOnOff
lcall NAV LaserModulationControl

Parameters:

fOnOff - if non-zero value then it takes pulsed mode, otherwise CW mode

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_bLaserReadPower

Description:

Returns the current laser power setting.

C Prototype:

```
BYTE NAV_bLaserReadPower(void);
```


Assembly:

lcall NAV_bLaserReadPower
; now returned value is in A register

Parameters:

None

Return Value:

A <= current laser driver setting

Side Effects:

See Note ** at the beginning of the API section.

NAV_bLaserReadEyesafe

Description:

Returns the laser driver eye-safe level for this sensor part.

C Prototype:

BYTE NAV bLaserReadEyesafe(void);

Assembly:

lcall NAV_bLaserReadEyesafe
; now returned value is in A register

Parameters:

None

Return Value:

A <= laser driver eye_safe level for this sensor part.

Side Effects:

See Note ** at the beginning of the API section.

NAV_bLaserReadMaximum

Description:

Returns the laser driver maximum current setting for this sensor part.

C Prototype:

BYTE NAV bLaserReadMaximum(void);

Assembly:

lcall NAV_bLaserReadMaximum
; now returned value is in A register

Parameters:

None

Return Value:

A <= laser driver maximum current setting for this sensor part

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserSetTestMode

Description:

This command sets the laser to CW mode, without modulation and without AGC. These settings are needed by customers to test the laser output power for eye safety. To exit this mode, the user needs to call NAV_LaserStart.

C Prototype:

void NAV_LaserSetTestMode(void);

Assembly:

lcall NAV LaserSetTestMode

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserSetEyesafe

Description:

Sets eye safety VCSEL current value.

C Prototype:

void NAV_LaserSetEyesafe(BYTE bEyeSafeCurrent);

Assembly:

```
mov A, bEyeSafeCurrent
lcall NAV LaserSetEyesafe
```

Parameters:

bEyeSafeCurrent - eye safety VCSEL current settings

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserSetMaximum

Description:

Sets operating VCSEL current value.

C Prototype:

void NAV_LaserSetMaximum(BYTE bOperatingCurrent);

Assembly:

```
mov A, bOperatingCurrent
lcall NAV_LaserSetMaximum
```

Parameters:

bOperatingCurrent - eye safety VCSEL current settings

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserSetEyesafeMSB

Description:

Sets 3 bits of DAC2 code for VCSEL driver (this is used as MSB 3 bits for the eye safety current provided to VCSEL driver).

C Prototype:

```
void NAV_LaserSetEyesafeMSB(BYTE bEyesafeCurrCode);
```

Assembly:

```
mov A, bEyesafeCurrCode
lcall NAV LaserSetEyesafeMSB
```

Parameters:

bEyesafeCurrCode - eye safety current code (000b - highest current; 111b - lowest current)

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_LaserSetMaximumMSB

Description:

Sets 3 bits of DAC1 code for VCSEL driver (this is used as MSB 3 bits for the oerating current provided to VCSEL driver).

C Prototype:

void NAV_LaserSetMaximumMSB(BYTE bOperatingCurrCode);

Assembly:

```
mov A, bOperatingCurrCode
lcall NAV_LaserSetMaximumMSB
```

Parameters:

bOperatingCurrCode - operating current code (000b - highest current; 111b - lowest current)

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_bLaserReadEyesafeMSB

Description:

Reads 3 bits of DAC2 code for VCSEL driver.

C Prototype:

BYTE NAV_bLaserReadEyesafeMSB(void);

Assembly:

lcall NAV bLaserReadEyesafeMSB

Parameters:

None

Return Value:

Returns (through A register) DAC2 code for VCSEL eyesafe current (000b - highest current; 111b - lowest current)

Side Effects:

See Note ** at the beginning of the API section.

NAV_bLaserReadMaximumMSB

Description:

Reads 3 bits of DAC1 code for VCSEL driver.

C Prototype:

BYTE NAV bLaserReadMaximum(void);

Assembly:

lcall NAV_bLaserReadMaximum

Parameters:

None

Return Value:

Returns (through A register) DAC1 code for VCSEL operating current (000b - highest current; 111b - lowest current)

Side Effects:

See Note ** at the beginning of the API section.

NAV_AnalogStart

Description:

Clears the power down bits for AGC, sensor1, sensor2, bicells and ASB.

C Prototype:

void NAV_AnalogStart(void);

Assembly:

lcall NAV_AnalogStart

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

NAV_AnalogStop

Description:

Sets the power down bits for AGC, sensor1, sensor2, bicells and ASB.

C Prototype:

void NAV_AnalogStop(void);

Assembly:

lcall NAV_AnalogStop

Parameters:

None

Return Value:

None

Side Effects:

See Note ** at the beginning of the API section.

Sample Firmware Source Code

The C code illustrated here shows you how to use the NAV User Module.

```
#define endless_loop 1
#define WIRED 0
// Including the user module header file for POSITION definition.
#include "NAV.h"
void main(void)
{
// Integers to hold our X an Y counts read from the sensor.
//
int iX, iY;
```



```
11
// POSITION is defined in NAV.h.
11
// typedef struct {
// INT x;
// INT y;
// } POSITION;
11
POSITION XYData;
11
// Start the OvationONS II DSP Tracking Mode.
11
// Always call these first three NAV user modules in order.
11
// 1. NAV TrackInit()
// 2. NAV LaserStart()
// 3. NAV TrackStart()
11
NAV bTrackInit(WIRED);
NAV LaserStart();
NAV TrackStart();
do
{
11
// Read the change in X and Y counts from the last read.
11
NAV fReadXYCounts(&XYData);
11
// pXYData now points to X and Y movment counts from the navigation sensor.
// Send XYData.x and XYData.y to USB, SPI, or other reporting protocol.
11
iX = XYData.x;
iY = XYData.y;
} while (endless loop);
}
The Assembly code illustrated here implements a similar function to the C example.
```

```
;-----
; Assembly main line
;-----
include "m8c.inc" ; part specific constants and macros
include "memory.inc" ; Constants & macros for SMM/LMM and Compiler
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules
```



```
area bss
export _NavInfo
export NavInfo
NavInfo:
NavInfo: blk 4
area text
export nav demo init
export _nav_demo_init
export nav demo
export _nav_demo
export main
main:
    ; Insert your main assembly code here.
    lcall nav demo init
.loop:
    lcall nav demo
jmp .loop
.terminate:
    jmp .terminate
nav demo init:
nav demo init:
mov A, NAV 1 WIRED
lcall NAV 1 bTrackInit
lcall NAV 1 LaserStart
lcall NAV 1 TrackStart
ret
nav demo:
_nav demo:
mov X, <NavInfo</pre>
mov A, >NavInfo
lcall NAV 1 fReadXYCounts
; data will be located in NavInfo location
ret
```

Configuration Registers

The following registers are configured in this UM. Symbolic names for these registers are defined in the user module instance C and assembly language interface files (the *.h* and *.inc* files).

Table 2.	SMx_NO_BLKS4TRANS0, Bank 3
----------	----------------------------

Bit	7	6	5	4	3	2	1	0
Value	smx_no_blk	s4trans (LSB)					

smx_no_blks4trans - total number of blocks before transitioning to deeper sleep mode (LSB)

Table 3.		(S4TRANS1,						
Bit	7	6	5	4	3	2	1	0
Value	smx_no_blks	s4trans (MSB)	•					
smx_no_bl	ks4trans - tot	al number of	f blocks be	fore transitio	ning to deep	per sleep m	ode (MSB)	
Table 4.	SMx_CHK_IN	TRVL0, Bank	3					
Bit	7	6	5	4	3	2	1	0
Value	smx_chk_int	rvl (LSB)						
	ntrvl - inactive SMx_CHK_IN		•	4 ms betwe	en two CFN	l slots (LSB)	
Bit	7	6	5	4	3	2	1	0
Value	smx_chk_int	rvl (MSB)						
	ntrvl - inactive				en two CFN	l slots (MSE	3)	
Table 6. Bit	TR0_S0_DOV 7	6	DELAY0, B 5	ank 2 4	3	2	1	0
		-		-	J	2		U
Value		_switch_delay						
	vn_switch_de	•			e master co	ontroller ent	ers sleep (L	SB)
Table 7. Bit	TR0_S0_DOV 7	6	_DELAY I, B 5	4	3	2	1	0
Value		-	· ·	-	•	-	•	•
value	tru su down	n switch delay	(MSB)					
tro oo dou		_switch_delay		in TDO hofer	o mootor oo	ntrollor ont	ara alaan (N	
	vn_switch_de	elay - number	r of blocks		e master co	ontroller ent	ers sleep (N	ISB)
		elay - number	r of blocks		e master co 3	ontroller ent	ers sleep (N 1	ISB) 0
Table 8. Bit	vn_switch_de NUM_BLOCK 7	elay - number S_IN_BLANK 6	r of blocks ING0, Bank 5	2				
Table 8. Bit Value	vn_switch_de NUM_BLOCK 7 num_blocks_ s_in_blanking	elay - numbel S_IN_BLANK 6 _in_blanking (l	r of blocks ING0, Bank 5 LSB)	4	3	2	1	0
Table 8. Bit Value num_blocks sleep mode	vn_switch_de NUM_BLOCK 7 num_blocks_ s_in_blanking	elay - number S_IN_BLANK 6 _in_blanking (i g - number o	r of blocks ING0, Bank 5 LSB) f contiguou	4 4 us blocks for	3	2	1	0
Table 8. Bit Value num_blocks sleep mode	vn_switch_de NUM_BLOCK 7 num_blocks_ s_in_blankin(e 0 (LSB)	elay - number S_IN_BLANK 6 _in_blanking (i g - number o	r of blocks ING0, Bank 5 LSB) f contiguou	4 4 us blocks for	3	2	1	0
Table 8. Bit Value num_blocks sleep mode Table 9.	vn_switch_de NUM_BLOCK 7 num_blocks_ s_in_blanking e 0 (LSB) NUM_BLOCK 7	elay - number S_IN_BLANK 6 _in_blanking (i g - number o	r of blocks ING0, Bank 5 LSB) f contiguou ING1, Bank 5	4 us blocks for 2	3 which blank	2 king is detec	1 cted before i	0 t jumps to
Table 8. Bit Value num_blocks sleep mode Table 9. Bit Value	vn_switch_de NUM_BLOCK 7 num_blocks s_in_blanking 0 (LSB) NUM_BLOCK 7 num_blocks s_in_blanking	elay - number S_IN_BLANK 6 _in_blanking (I g - number o S_IN_BLANK 6 _in_blanking (I	r of blocks ING0, Bank 5 LSB) f contiguou ING1, Bank 5 MSB)	2 4 us blocks for 2 4	3 which blank 3	2 king is detect	1 cted before i	0 t jumps to 0
Table 8. Bit Value num_blocks sleep mode Table 9. Bit Value num_blocks sleep mode	vn_switch_de NUM_BLOCK 7 num_blocks s_in_blanking 0 (LSB) NUM_BLOCK 7 num_blocks s_in_blanking	elay - number S_IN_BLANK 6 _in_blanking (I g - number o S_IN_BLANK 6 _in_blanking (I g - number o	r of blocks ING0, Bank 5 LSB) f contiguou ING1, Bank 5 MSB) f contiguou	2 4 us blocks for 2 4	3 which blank 3	2 king is detect	1 cted before i	0 t jumps to 0
Table 8. Bit Value num_blocks sleep mode Table 9. Bit Value num_blocks sleep mode	vn_switch_de NUM_BLOCK 7 num_blocks s_in_blanking 0 (LSB) NUM_BLOCK 7 num_blocks s_in_blanking 0 (MSB)	elay - number S_IN_BLANK 6 _in_blanking (I g - number o S_IN_BLANK 6 _in_blanking (I g - number o	r of blocks ING0, Bank 5 LSB) f contiguou ING1, Bank 5 MSB) f contiguou	2 4 us blocks for 2 4	3 which blank 3	2 king is detect	1 cted before i	0 t jumps to 0

x_cnt_reg_buf - X count buffer register (LSB)

Table 11.X_CNT_REG_BUF1, Bank 2

			. 2					
Bit	7	6	5	4	3	2	1	0
Value	x_cnt_reg_b	uf (MSB)						
x_cnt_reg_	buf - X count	t buffer regis	ster (MSB)					
Table 12.	Y_CNT_REG	_BUF0, Bank	< 2					
Bit	7	6	5	4	3	2	1	0
Value	y_cnt_reg_b	uf (LSB)						
y_cnt_reg_	buf - X count	t buffer regis	ster (LSB)					
Table 13.	Y_CNT_REG	_BUF1, Bank	< 2					
Bit	7	6	5	4	3	2	1	0
Value	y_cnt_reg_b	uf (MSB)						
y_cnt_reg_	buf - X count	t buffer regis	ster (MSB)					
Table 14.	RES_SCAL_E	DX0, Bank 2						
Bit	7	6	5	4	3	2	1	0
Value	res_scal_dx	(LSB)						

res_scal_dx - used to convert Counts to DX. These can be updated on the fly. These registers can be updated, at any time, but their visibility into the algorithm is synchronized to the next block boundary

Table 15. RES_SCAL_DX1, Bank 2

Bit	7	6	5	4	3	2	1	0
Value	res_scal_dx	(MSB)						

res_scal_dx - used to convert Counts to DX. These can be updated on the fly. These registers can be updated, at any time, but their visibility into the algorithm is synchronized to the next block boundary

Table 16. RES SCAL DY0, Bank 2

Bit	7	6	5	4	3	2	1	0
Value	res_scal_dy	(LSB)						

res_scal_dy - used to convert Counts to DY. These can be updated on the fly. These registers can be updated, at any time, but their visibility into the algorithm is synchronized to the next block boundary

Table 17.	RES_SCAL_	DY1, Bank 2						
Bit	7	6	5	4	3	2	1	0
Value	res_scal_dy	(MSB)						

res_scal_dy - used to convert Counts to DY. These can be updated on the fly. These registers can be updated, at any time, but their visibility into the algorithm is synchronized to the next block boundary

Table 18. DISABLE_TRACK_SLEEP, Bank 2

Bit	7	6	5	4	3	2	1	0
Value	Reserved			mode _in_sl	еер		dis_slsw	dis_tksw

mode_in_sleep - This register is in sync with the T1/T2 programmed values in CFM. The user needs to ensure that "track mode" selected by this 3-bit register (for choosing the appropriate Track mode integration time registers in CFM) are compatible with the programmed frame rate in CFM. The reg mux uses this 3 -bit register to select the integration times ONLY when sleep-mode indication is 1.

dis_slsw - disables all sleep mode switching. Only track force can be used to switch states if this bit is 1

dis_tksw - disables all types of track mode switching. Only track force can be used to enforce switching if this bit is 1

Table 19. FORCE_STATE_CTRL, Bank 2

		,,,						
Bit	7	6	5	4	3	2	1	0
Value	Reserved			force_state				force_en
force_state	- if [0] =1, at	the current	t block boun	dary, switch	to this track	k mode		
force_en - i	f 1, force sta	te machine	to this state	. After switc	h, master co	ontroller res	ets this bit	
Table 20.	PWR_DSP_C	TRL_REG, E	Bank 1					
Bit	7	6	5	4	3	2	1	0
Value	res_cpi_limit	_reg			lvd_trim		tripper_calib	
res_cpi_lim	it_reg - resol	ution/CPI li	miter data					
lvd_trim - L	VD trimming	register						
tripper_cali	b - 3V Trippe	r Calibratio	n Value					
Table 21.	THRESHOLD	1, Bank 3						
Bit	7	6	5	4	3	2	1	0
Value	threshold1							
threshold1	- is the highe	r threshold	used in lift of	detection log	gic.			
Table 22.	THRESHOLD	2, Bank 3						
Bit	7	6	5	4	3	2	1	0
Value	threshold2							
threshold2	- is the lower	threshold u	used in lift d	etection log	c.			
Table 23.	INTR_MASK_	REG, Bank	2					

Bit	7	6	5	4	3	2	1	0
Value	Reserved				StForce	BstUVInit	TripFilOut	vcselErr

StForce - Track/sleep transition interrupt mask (whenever this interrupt is set, it means that there is a change in the track modes. It is set when track to track or sleep to sleep or sleep to track or track to sleep state transition happens).

BstUVInit - Boost UV Init interrupt mask (a low to high or high to low transition is detected as an interrupt).

TripFilOut - Tripper out filter mask (whenever power supply switching happens from wireless to wired, this signal toggles from 0 to 1. Whenever power supply switching happens from wired to wireless, this signal toggles from 1 to 0. During both the transitions, interrupt is set).

vcselErr - VCSEL Error mask (whenever this interrupt is set, it means that VCSEL is ON for more than the desired time interval. This signal makes a transition from 0 to 1 to indicate error).

Table 24.	INT_MSK3, Ba	ank 0						
Bit	7	6	5	4	3	2	1	0
Value	Reserved						glb_ons	wkp_ons
glb_ons - i	mask optical n	avigation s	ystem globa	al interrupt				
wkp_ons -	mask optical	navigation	system wak	eup interrup	t			
Table 25.	EYE_CW_VCS		Bank 3					
Bit	7	6	5	4	3	2	1	0
Value	eye_cw_vcse	el_cur						
eye_cw_v Table 26.	csel_cur0 - co VCSEL_DAC_		•	•				
Bit	7	6	5	4	3	2	1	0
Value	vcsel_dac_cu	urrent_agc						
	_current_agc - t every block b iority GLOBAL_CON	oundry. Th	is is writeat			•		
Bit	7	6	5	4	3	2	1	0
Value	Reserved							•
dsp_start -								dsp_start
Table 28.	- starts tracking GLOBAL_CON		, Bank 2					
• —			, Bank 2 5	4	3	2	1	
Table 28.	GLOBAL_COM	NFIG_REGO		4	3	2	1	dsp_start
Table 28. Bit Value	GLOBAL_COM	NFIG_REGO	5 Reserved		3	2	1	dsp_start
Table 28. Bit Value DeviceID -	GLOBAL_COM 7 DeviceID	NFIG_REG0 6 d/wireless c	5 Reserved levice confi		3	2	1	dsp_start
Table 28. Bit Value DeviceID -	GLOBAL_COM 7 DeviceID - choices wired	NFIG_REG0 6 d/wireless c	5 Reserved levice confi		3	2	1	dsp_start
Table 28. Bit Value DeviceID - Table 29.	GLOBAL_COM 7 DeviceID - choices wired BG_BUFF_LV	NFIG_REG0 6 d/wireless c D_TRIM, Ba	5 Reserved levice configure ank 3	guration			1	dsp_start 0
Table 28. Bit Value DeviceID - Table 29. Bit Value	GLOBAL_CON 7 DeviceID - choices wired BG_BUFF_LV 7 Reserved	NFIG_REG0 6 d/wireless o D_TRIM, Ba 6 D trimming	5 Reserved device config nk 3 5 setting	guration		2	1	dsp_start 0
Table 28. Bit Value DeviceID - Table 29. Bit Value	GLOBAL_CON 7 DeviceID Choices wired BG_BUFF_LV 7 Reserved	NFIG_REG0 6 d/wireless o D_TRIM, Ba 6 D trimming	5 Reserved device config nk 3 5 setting	guration		2	1	dsp_start 0
Table 28. Bit Value DeviceID - Table 29. Bit Value LVD_offse Table 30.	GLOBAL_CON 7 DeviceID - choices wired BG_BUFF_LV 7 Reserved t_Iv_trim - LVE	NFIG_REG0 6 d/wireless of D_TRIM, Ba 6 D trimming FE_CURR0 6	5 Reserved device config nk 3 5 setting , Bank 3	guration 4	3	2 LVD_offset_	1 Iv_trim	dsp_start 0

tmx_eyesaf_curr - Eye safety current for corresponding track mode

Table 31. TMx_MAX_VCSEL_PWR0, Bank 3

			, Dank o					
Bit	7	6	5	4	3	2	1	0
Value	tmx_max_vo	sel_pwr						
tmx_max_	vcsel_pwr - n	nax integrati	ion time. Thi	is is selecte	d based on	the track mo	ode.	
Table 32.	MAX_CW_VC	CSEL_CUR0,	Bank 3					
Bit	7	6	5	4	3	2	1	0
Value	max_cw_vcs	sel_cur						
max_cw_v	csel_cur0 - c	ontinuous w	vave Max VO	CSEL				
Table 33.	AVERAGED_	AGC_TAR_N	IIN0, Bank 3					
Bit	7	6	5	4	3	2	1	0
Value	averaged_a	gc_tar_min (L	_SB)					
			100 1					

averaged_agc_tar_min - averaged AGC target min for the computation of Gain for AGC and differential channels; integration time and VCSEL current.

Table 34. AVERAGED_AGC_TAR_MIN1, Bank 3

Bit	7	6	5	4	3	2	1	0
Value	Reserved							averaged_ agc_tar_mi n (MSB)

averaged_agc_tar_min - averaged AGC target minimum for the computation of Gain for AGC and differential channels; integration time and VCSEL current.

Table 35. AVERAGED_AGC_TAR_MAX0, Bank 3

Bit	7	6	5	4	3	2	1	0
Value	averaged_ag	gc_tar_max ((LSB)					

averaged_agc_tar_max - averaged AGC target maximum for the computation of Gain for AGC and differential channels; integration time and VCSEL current.

Table 36. AVERAGED_AGC_TAR_MAX1, Bank 3

Bit	7	6	5	4	3	2	1	0
Value	Reserved							averaged_ agc_tar_m ax (MSB)

averaged_agc_tar_max - averaged AGC target maximum for the computation of Gain for AGC and differential channels; integration time and VCSEL current.

Bit	7	6	5	4	3	2	1	0
Value	Reserved				peer_pressu	ure_pipeline_	depth	

 Table 37.
 PEER_PRESSURE_PIPELINE_DEPTH, Bank 2

peer_pressure_pipeline_depth - peer pressure depth to be used. If this is programmed to 0, peer pressure is disabled.

TMx BLNK HYST Bank 2 Table 38

Table 38.	TMx_BLNK_I	HYST, Bank 2	2					
Bit	7	6	5	4	3	2	1	0
Value	tmx_blnk_hy	/st						
tmx_blnk_	hyst - blankir	ig hysteresis	s value for e	ach tracking	g mode			
Table 39.	TMx_BLNK_	THRES, Bank	x 2					
Bit	7	6	5	4	3	2	1	0
Value	tmx_blnk_th	res						
tmx_blnk_	thres - blanki	ng threshold	l value for e	ach tracking	g mode (blar	nk out signa	l if dpp < Bla	nk Thrsh)
Table 40.	SMx_BLANK	ING_THRES	HOLD_REG,	Bank 3				
Bit	7	6	5	4	3	2	1	0
Value	smx_blankir	ng_threshold_	_reg					
smx_blank written on	king_threshol the fly.	d_reg - blan	king thresho	old to be use	ed in corresp	oonding slee	ep mode CFI	V. Can be
Table 41.	ADC_CTRL_	REG, Bank 3						
Bit	7	6	5	4	3	2	1	0
Value	Reserved	sel_hi_bw	vbias_en	winshift_hw			winalt_hv	
sel_hi_bw	- When high,	makes the	bandwidth o	of diff. TIA fr	om 40kHz to	o 150kHz		
vbias_en - input	When high, e	enables the	path for vbia	as to ADC. V	Vhen low, er	nable the pa	th for vbias t	o CDS tes
winshift_h	v - This regist	ter is for shif	ting the full	ADC conve	rsion windov	N		
winalt_hv -	- This registe	r is for for al	tering the ra	ange of the A	ADC convers	sion window	1	
Table 42.	CURRENT_V	CSEL_OPP	「_REG0, Bar	nk 3				
Bit	7	•	_		•	-		
	1	6	5	4	3	2	1	0
Value	current_vcs		5	4	3	2	1	0
current_vc		el_oppt_reg J - Current V	CSEL opera	ating current				
current_vc	current_vcs	el_oppt_reg J - Current V nal from the	CSEL opera	ating current k				
current_vc on the VC	current_vcs sel_oppt_reg SEL_ON sigr	el_oppt_reg J - Current V nal from the	CSEL opera	ating current k				

current_vcsel_eyesaf_reg Value

current_vcsel_eyesaf_reg - current VCSEL eye safety current value. These registers are genera-ted based on the VCSEL_ON signal from the analog block

Version History

Version	Originator	Description
0.2	DHA	Added Version History

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section documents high level descriptions of the differences between the current and previous user module versions.

Document Number: 001-54327 Rev. *C

Revised August 6, 2013

Page 36 of 36

Copyright © 2008-2013 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.