
 Application Note

R01AN5674EJ0100 Rev.1.00 Page 1 of 35

Feb.10.2021

RE01B Group

Bluetooth Low Energy sample code for batteryless beacon

Introduction

This application note describes the sample code of the Bluetooth® Low Energy Advertising packet
transmission application (hereinafter referred to as the Beacon application) for batteryless environments
using energy harvesting in the RE01B group.

Target Device

RE01B Group

Related Documents

• Bluetooth Core Specification (https://www.bluetooth.com)

• RE01B Group Product with 1.5-Mbyte Flash Memory User’s Manual: Hardware (R01UH0903)

• Getting Started Guide to Development Using CMSIS Package (R01AN5310)

• e2 studio Getting Started Guide (R20UT4204)

• RE01B Group Tuning procedure of Bluetooth dedicated clock frequency (R01AN5488)

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

https://www.bluetooth.com/

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 2 of 35

Feb.10.2021

Contents

1. Overview ... 3

1.1 Beacon stack ... 4

1.2 Software Structure ... 5

1.3 Directory / File structure .. 6

2. Sample code.. 7

2.1 Operating environment .. 7

2.2 Startup procedure .. 8

2.3 Using sample code .. 8

2.4 Programming firmware .. 9

2.5 Importing sample code .. 13

2.5.1 In case of e2 studio .. 13

2.5.2 In case of EWARM .. 14

2.6 Building and debugging ... 15

2.6.1 In case of e2 studio .. 15

2.6.2 In case of EWARM .. 15

2.7 Beacon sample code ... 16

3. Beacon stack detail.. 17

3.1 R_BCN API .. 17

3.1.1 API detail ... 17

3.1.2 Macro/Enum definition ... 22

3.1.3 Structure definition .. 23

3.2 Configuration options .. 24

3.3 MCU low power consumption .. 25

3.4 Code size ... 26

4. Create project .. 27

4.1 Import a project .. 27

4.2 Stack/Heap size configuration ... 27

4.3 Clocks configuration .. 28

4.4 Linker configurations ... 29

5. Optional function .. 31

5.1 Device-specific Data Management .. 31

5.1.1 Specifying Device-specific data location block .. 31

5.1.2 Device-specific data format ... 32

5.1.3 Writing to the code flash memory .. 32

5.1.4 BD address adoption flow ... 34

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 3 of 35

Feb.10.2021

1. Overview

This application note provides the sample code as the example to implement Beacon application. The
Beacon application can be created using Beacon stack. Refer to “2 Sample code” as for the sample code,
“1.1 Beacon stack” and “3 Beacon stack detail” as for Beacon stack, and “4 Create project” or later as for
how to create Beacon application. The package (r01an5674xxYYYY-re01b-bcn.zip) attached to this
application note consists of the directories and files shown in Table 1.1.

Note: The Beacon stack of RE01B group cannot be used together with the BLE protocol stack provided

separately from this application note.

Table 1.1 Package contents

Directory / File Description

ROM_Files\ Sample code’s binary files.

bcn_project_battless.zip
Beacon operation sample code for the EB-RE01B board.

As for detail, refer to “2.7 Beacon sample code”.

r01an5674ejYYYY-re01b-bcn.pdf

r01an5674jjYYYY-re01b-bcn.pdf

This document (English / Japanese).

YYYY is the revision number.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 4 of 35

Feb.10.2021

1.1 Beacon stack

The Beacon stack is the driver and the middleware implemented in a project and providing the API in the
form of a library.

Figure 1.1 Positioning of Beacon stack

Beacon stack performs beacon operation for batteryless environment using Non-Connectable / Non-
Scannable Advertising (ADV_NONCONN_IND) specified by Bluetooth SIG.

The Beacon stack can perform the following extended operations from the Advertising operation
specifications specified by the Bluetooth SIG so that it can send Advertising packets with less power
consumption

⚫ It is possible to specify less than 20ms in the Advertising interval setting.

⚫ Disables the random delay of 0ms to 10ms that is automatically added to the Advertising interval..

Beacon applications should only be used in batteryless environments, as the above extended
behavior can result in more collisions with Advertising packets from nearby devices.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 5 of 35

Feb.10.2021

1.2 Software Structure

Figure 1.2 shows the software structure of this sample code.

Figure 1.2 Software structure

Beacon applications can control the BLE function by calling the R_BCN API function provided by the Beacon
stack. Beacon stacks only send Advertising packets, and Beacon applications cannot have a GATT profile.

Beacon application

program

Beacon Stack

R_BCN API

BLE H/W

H/W Control

R_BCN API

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 6 of 35

Feb.10.2021

1.3 Directory / File structure

Table 1.2 shows the directory / file structure of this sample code.

Table 1.2 Directory / File structure

Directory /File structure Description

CMSIS\ CMSIS

config\ RE01B_1500KB_bcn.icf Linker configuration file for IAR

Device\

BCN\

platform\ Driver for peripheral function

lib\
Beacon stack Library
(GCC ARM/EWARM)

CMSIS_Driver\ CMSIS driver

Config\ r_bcn_cfg.h Configuration option file

Driver\ Include\ r_bcn_api.h

API interface file

All API calls and their supporting interface
definition

qe_gen\ ble\ app_main.c Beacon application main code

script\ RE01B_1500KB_bcn.ld Linker script file for GCC

src\ main.c Project main code

SVD\ RE01B_1500KB.svd Register information of peripheral function

.cproject

.project
ble_project_xxx HardwareDebug.launch

Project file for GCC

bcn_project_xxx.ewd
bcn_project_xxx.ewp
bcn_project_xxx.eww

Project file for IAR

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 7 of 35

Feb.10.2021

2. Sample code

2.1 Operating environment

Table 2.1 shows the hardware requirements for using this sample code.

Table 2.1 Hardware requirements

Hardware Description

Host PC Windows® 10 PC with USB interface.

MCU Board EB-RE01B board

On-chip debugging

emulators

GCC environment: Either of the following emulator.

E2 emulator [RTE0T00020KCE00000R]

E2 emulator Lite [RTE0T0002LKCE00000R]

J-Link

IAR environment: Either of the following emulator.

I-jet®

J-Link

USB cables Used to connect to the MCU board.

1 USB A-microB cable

Table 2.2 shows the software requirements for using this sample code.

Table 2.2 Software requirements

Software Version Description

GCC

environment

e² studio v21.1.0 or

later

Integrated development environment (IDE) for Renesas

devices.

GCC ARM Embedded v6.3.1 or

later

C/C++ Compiler. (download from e2 studio installer)

CMSIS Driver

Package

v1.0.0 or

later

Software package for developing applications for the RE

microcontroller series.

IAR

environment

IAR Embedded

Workbench for ARM

(EWARM)

v8.50.5 or

later

Integrated development environment (IDE) for ARM devices

made by IAR Systems.

IAR C/C++ Compiler

for ARM

v8.50.5 or

later

C/C++ Compiler made by IAR Systems.

CMSIS Driver

Package

v1.0.0 or

later

Software package for developing applications for the RE

microcontroller series.

Renesas Flash Programmer v3.06.01 or

later

Tool for programming the on-chip flash memory of Renesas

microcontrollers.

Integer types It uses ISO C99 “Exact width integer types”. These types are

defined in stdint.h.

Endian Little endian

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 8 of 35

Feb.10.2021

2.2 Startup procedure

The EB-RE01B board supports USB power supply. Confirm that the board switches are as Table 2.3 and
connect USB connector CN4 to the USB port of your PC (or other power supply) with a USB cable.

Table 2.3 Board switch settings

Board switch Setting

JP1 Short (ON)

JP2 Short (ON)

JP3 Short (ON)

JP4 / JP5 2-3 (Regulator Out) / 1-2 (USB)

JP7 / JP8 / JP9 1-2 (Normal mode) / 1-2 (Normal mode) / 1-2 (Normal mode)

JP10 / JP11 2-3 (UART) / 2-3 (UART)

JP12 Open (OFF)

JP13 Short (ON)

SW3 1-2 (S_Chip)

SW4 1-2 (Normal)

After turning on the power, confirm that LED1 lights. If it does not light, check that that the board switches are
as Table 2.3.

2.3 Using sample code

In case of programming and using the sample code’s binary file, refer to “2.4 Programming firmware”. In
case of building and using the sample code, refer to “2.5 Importing sample code” and “2.6 Building and
debugging”.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 9 of 35

Feb.10.2021

2.4 Programming firmware

Use the Renesas Flash Programmer (Hereafter referred to as RFP) to program the firmware to this product.

Note: Use RFP v3.06.01 or later.

1. Change the board switches as Table 2.4 and connect your PC and CN4 connector with an A – micro B

type USB cable.

After connecting to the PC, press the RESET button to start the MCU in Boot mode.

Table 2.4 Board switch settings for using RFP

Board switch Setting

JP1 Short (ON)

JP2 Short (ON)

JP3 Short (ON)

JP4 / JP5 2-3 (Regulator Out) / 1-2 (USB)

JP7 / JP8 / JP9 1-2 (Normal mode) / 1-2 (Normal mode) / 1-2 (Normal mode)

JP10 / JP11 1-2 (RFP) / 1-2 (RFP)

JP12 Open (OFF)

JP13 Short (ON)

SW3 1-3 (Boot)

SW4 1-2 (Normal)

2. Start RFP and select “File” → “New Project…”.

Figure 2.1 Creating New Project

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 10 of 35

Feb.10.2021

3. In the “Create New Project” window, make the following settings and click the “Connect” button.

• Microcontroller: RE

• Project Name: Any name

• Project Folder: Any folder

• Communication Tool: COM port

Figure 2.2 Project Setting

4. If the connection is successful, “Operation completed.” is displayed.

If the connection fails, press the RESET button on the board and click the [Connect] button again.

Figure 2.3 Successful Connection

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 11 of 35

Feb.10.2021

5. Click the “Browse…” button, select hex file in the ROM_Files folder, and click the “Open” button.

Figure 2.4 Selecting File

6. Click the “Start” button on the “Operation” tab to start programming the firmware.

Figure 2.5 Programming Firmware

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 12 of 35

Feb.10.2021

7. When programming is completed normally, “Operation completed.” And “OK” are displayed.

If the programming fails, press the RESET button on the board and click the [Start] button again.

Figure 2.6 Programming Completion

8. After programming is complete, disconnect the USB cable that connected this product to your PC.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 13 of 35

Feb.10.2021

2.5 Importing sample code

How to import a sample code is below.

Refer to “e2 studio Getting Started Guide (R20UT4204)” for installing e2 studio.

2.5.1 In case of e2 studio

(1) Select “File” → ”Import”.

Figure 2.7 File menu

(2) Select “Existing Projects into Workspace” and click “Next” button.

Figure 2.8 Select an import wizard

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 14 of 35

Feb.10.2021

(3) Select “Select archive file”, click “Browse…” button and select the sample code archive file. Click
“Finish” button and the sample code project is imported.

Figure 2.9 Import Projects

2.5.2 In case of EWARM

Click [Project]→[Add Existing Project…] and select the project file (.ewp).

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 15 of 35

Feb.10.2021

2.6 Building and debugging

2.6.1 In case of e2 studio

Refer to “e2 studio Getting Started Guide (R20UT4204)”.

2.6.2 In case of EWARM

Refer to [Help]→[IDE Project Management and Building Guide] and [C-SPY Debugging Guide] on EWARM.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 16 of 35

Feb.10.2021

2.7 Beacon sample code

The EB-RE01B board on which the beacon application is written starts sending Advertising packets. Use a
smartphone as an example of a remote device that receives Advertising packets.

Prepare a smartphone with the OS shown in Table 2.5 and the smartphone app “GATTBrowser” made by
Renesas Electronics.

Table 2.5 Supported OS

OS Version

iOS 9.0 or later

Android 5.0.1 or later

GATTBrowser

iOS version:

https://apps.apple.com/app/gattbrowser/id1163057977

Android version:

https://play.google.com/store/apps/details?id=com.renesas.ble.gattbrowser

⚫ The beacon sample starts sending Advertising packets immediately after the power is turned on.

⚫ When scanning from a remote device, the beacon sample is detected by default with the name "RE01B-
BCN". Beacon samples use random addresses (static addresses) by default.

Figure 2.10 Scan result example

https://apps.apple.com/app/gattbrowser/id1163057977
https://play.google.com/store/apps/details?id=com.renesas.ble.gattbrowser

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 17 of 35

Feb.10.2021

3. Beacon stack detail

3.1 R_BCN API

Table 3.1 shows the R_BCN API provided by the Beacon stack. The R_BCN API can be used by including
r_bcn_api.h and linking the Beacon stack library.

Table 3.1 R_BCN API

API Name Description

R_BCN_SystemInit Initial settings for BLE peripheral functions.

This API needs to be called in BoardInit() function.

R_BCN_Open Open the beacon stack and start sending Advertising packets.

R_BCN_Close Close the beacon stack and stop sending Advertising packets.

R_BCN_UpdateBeaconData Update the beacon data (Advertising data).

R_BCN_LPC_EnterLowPowerMode Transitions the MCU to a low power consumption state and waits for an

interrupt.

3.1.1 API detail

3.1.1.1 R_BCN_SystemInit API

Table 3.2 R_BCN_SystemInit API detail

Format void R_BCN_SystemInit(void);

Description Initial settings for BLE peripheral functions.

Parameter None

Return None

Remarks This API is provided by the library (lib_ble_bcn.a).

This API needs to be called in BoardInit() function in main.c.

[API call example]

#include "r_bcn_api.h"

void BoardInit(void)

{

 R_BCN_SystemInit();

:

}

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 18 of 35

Feb.10.2021

3.1.1.2 R_BCN_Open API

Table 3.3 R_BCN_Open API detail

Format bcn_status_t R_BCN_Open(const st_bcn_param_t *p_param);

Description Open the beacon stack and start sending Advertising packets.

Parameter const st_bcn_param_t * p_param: Beacon parameters

Specifies the parameters of the Advertising packet to send.

See Table 3.8 for the setting range of each element.

Return BCN_SUCCESS(0x0000) Beacon stack open and Advertising packet start successful

BCN_ERR_INVALID_PTR

(0x0001)

Error due to invalid pointer specification

- Specify NULL pointer for p_param

- Specify NULL pointer for p_param-> p_data when

p_param-> data_length is other than zero

BCN_ERR_INVALID_ARG

(0x0003)

Error due to invalid range specification.

Remarks This API is provided by the library (lib_ble_bcn.a).

[API call example]

#include "r_bcn_api.h"

/* beacon data (max 31bytes) */

uint8_t g_bcn_data[] =

{

 /* flags */

 0x02,0x01,0x06,

 /* Complete Name */

 0x0A,0x09,'R','E','0','1','B','-','B','C','N',

 /* Manufacture data */

 0x10,0xFF,0xFF,0xFF,0x11,0x22,0x33,0x44,0x55,

 0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD

};

/* beacon parameter */

const st_bcn_param_t g_bcn_param =

{

 .adv_intv = 0x0020,

 .o_addr_type = BCN_ADDR_RAND,

 .adv_ch_map = BCN_ADV_CH_ALL,

 .data_length = sizeof(g_bcn_data),

 .p_data = &g_bcn_data[0],

};

void app_main(void)

{

 R_BCN_Open(&g_bcn_param);

}

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 19 of 35

Feb.10.2021

3.1.1.3 R_BCN_Close API

Table 3.4 R_BCN_Close API detail

Format bcn_status_t R_BCN_Close(void);

Description Closes the beacon stack and stops sending Advertising packets.

Parameter None

Return BCN_SUCCESS(0x0000) Beacon stack closed successfully

Remarks This API is provided by the library (lib_ble_bcn.a).

[API call example]

#include "r_bcn_api.h"

void app_main(void)

{

 R_BCN_Close();

}

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 20 of 35

Feb.10.2021

3.1.1.4 R_BCN_UpdateBeaconData API

Table 3.5 R_BCN_UpdateBeaconData API detail

Format bcn_status_t R_BCN_UpdateBeaconData(uint8_t *p_data, uint8_t length);

Description Update the beacon data (Advertising data).

When this API is called, Advertising is stopped once, and after updating the Advertising data,

Advertising packet transmission is started again.

Parameter uint8_t * p_data: Beacon data pointer

Specify the pointer of the beacon data to be updated.

If you specify zero for length, you can specify a NULL pointer.

uint8_t length: Beacon data length

Specifies the data length of the beacon data pointer.

range: 0 to 31 [bytes]

Return BCN_SUCCESS(0x0000) Beacon data update successful

BCN_ERR_INVALID_PTR

(0x0001)

Error due to invalid pointer specification

- Specify NULL pointer for p_data when length is other than

zero.

BCN_ERR_INVALID_ARG

(0x0003)

Error due to invalid range specification.

- The value of length is out of range

Remarks This API is provided by the library (lib_ble_bcn.a).

[API call example]

#include "r_bcn_api.h"

uint8_t g_bcn_data2[] =

{

 /* flags */

 0x02,0x01,0x06,

 /* Complete Name */

 0x0A,0x09,'R','E','0','1','B','-','B','C','N',

 /* Manufacture data */

 0x10,0xFF,0xFF,0xFF,0xAA,0xBB,0xCC,0xDD,0xEE,

 0xFF,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF,0xAA

};

void app_main(void)

{

:

 R_BCN_UpdateBeaconData(&g_bcn_data2[0], sizeof(g_bcn_data2));

}

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 21 of 35

Feb.10.2021

3.1.1.5 R_BCN_LPC_EnterLowPowerMode API

Table 3.6 R_BCN_LPC_EnterLowPowerMode API detail

Format void R_BCN_LPC_EnterLowPowerMode(void);

Description Transitions the MCU to a low power consumption state and waits for an interrupt.

Parameter None

Return None

Remarks This API is provided in the source code (r_bcn_pf_lowpower.c).

If you want to repeatedly shift the MCU to low power consumption even after an interrupt

occurs, call this API in the main loop.

[API call example]

#include "r_bcn_api.h"

void app_main(void)

{

 while(1)

 {

 R_BCN_LPC_EnterLowPowerMode();

 }

}

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 22 of 35

Feb.10.2021

3.1.2 Macro/Enum definition

Table 3.7 shows the macro/enum definitions provided by the beacon stack.

Table 3.7 Macro/Enum definition

Name Value Description

BCN_ADDR_PUBLIC (0x00) Set public address

BCN_ADDR_RAND (0x01) Set random address

BCN_ADV_CH_37 (0x01) Use 37 channel

BCN_ADV_CH_38 (0x02) Use 38 channel

BCN_ADV_CH_39 (0x04) Use 39 channel

BCN_ADV_CH_ALL (0x07) Use all channel (37 to 39ch)

BCN_SUCCESS 0x0000 Success

BCN_ERR_INVALID_PTR 0x0001 NULL specified for pointer

BCN_ERR_INVALID_DATA 0x0002 Invalid data specified

BCN_ERR_INVALID_ARG 0x0003 A value outside the range was specified

BCN_ERR_INVALID_FUNC 0x0004 NULL specified in the callback pointer

BCN_ERR_INVALID_CHAN 0x0005 A channel that does not exist is specified

BCN_ERR_INVALID_MODE 0x0006 Executed in invalid mode

BCN_ERR_UNSUPPORTED 0x0007 This API is not supported

BCN_ERR_INVALID_STATE 0x0008 API call status is invalid

BCN_ERR_INVALID_OPERATION 0x0009 Called API without permission

BCN_ERR_ALREADY_IN_PROGRESS 0x000A Performed an action that was already performed

BCN_ERR_CONTEXT_FULL 0x000B Context is full and cannot be newly registered

BCN_ERR_MEM_ALLOC_FAILED 0x000C Memory allocation failed

BCN_ERR_NOT_FOUND 0x000D The specified one cannot be found

BCN_ERR_INVALID_HDL 0x000E Invalid handle specified

BCN_ERR_DISCONNECTED 0x000F Disconnection occurred during processing

BCN_ERR_LIMIT_EXCEEDED 0x0010 Resource exceeded limit

BCN_ERR_RSP_TIMEOUT 0x0011 Response wait timed out

BCN_ERR_NOT_YET_READY 0x0012 Not ready to work

BCN_ERR_UNSPECIFIED 0x0013 An unknown error has occurred

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 23 of 35

Feb.10.2021

3.1.3 Structure definition

3.1.3.1 st_bcn_param_t structure

Beacon parameter structure used by R_BCN_Open API.

Table 3.8 st_bcn_param_t structure

Member Name Type Description

adv_intv uint16_t Specify the Advertising interval.

Interval time (ms) = adv_intv * 0.625

The valid range depends on the number of channels set by the

adv_ch_map parameter.

adv_ch_map Valid range

0x01,0x02,0x04 (Use one channel) 0x0001 to 0x4000

0x03,0x05,0x06 (Use two channels) 0x0002 to 0x4000

0x07 (Use three channels) 0x0003 to 0x4000

o_addr_type uint8_t Specify the BD address type of the local device.

 BCN_ADDR_PUBLIC (0x00) : Public address

 BCN_ADDR_RAND (0x01) : Random address

adv_ch_map uint8_t Specifies the channel to send Advertising packets.

It can be specified by the logical sum of the following macros.

 BCN_ADV_CH_37 (0x01) : Use 37ch

 BCN_ADV_CH_38 (0x02) : Use 38ch

 BCN_ADV_CH_39 (0x04) : Use 39ch

 BCN_ADV_CH_ALL (0x07) : Use 37,38,39ch

reserved uint8_t Reserved area.

data_length uint8_t Specify the Advertising data length.

 Valid range: 0 to 31 [bytes]

*p_data uint8_t Specifies a pointer to the Advertising data.

If data_length is zero, this element is ignored.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 24 of 35

Feb.10.2021

3.2 Configuration options

The configuration options of the Beacon stack can be configured in r_bcn_cfg.h. The option names and
setting values are listed in the table shown as follows.

Table 3.9 Configuration options

Configuration options (r_bcn_cfg..h)

BCN_CFG_RF_DBG_PUB_ADDR
Default : "{0xFF,0xFF,0xFF,0x50,0x90,0x74}"

Initial Public Address. If the public addresses in the Code Flash
Memory are all 0x00 or 0xFF, the device adopts this public
address. If all 0x00 or 0xFF is set, the device uses
74:90:50:FF:FF:FF as public address.

Refer to "5.1 Device-specific Data Management" for details.

BCN_CFG_RF_DBG_RAND_ADDR
Default : “{0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}"

Initial Random Address. If the static addresses in the Code Flash
Memory are all 0x00 or 0xFF, the device adopts this random
address. If all 0x00 or 0xFF is set, the device uses the value
generated with the MCU specific value as the static address.

Refer to "5.1 Device-specific Data Management" for details.

BCN_CFG_RF_CLVAL
Default : "7"

Adjustment value of the 32MHz crystal oscillator.
Set this option according to the board environment.
Range : 0 to 15

Refer to "Tuning procedure of Bluetooth dedicated clock
frequency(R01AN5488)" for details.

BCN_CFG_RF_DDC_EN
Default : "1"

Enable or disable the DC-DC on the RF.

 0: Disable
 1: Enable

BCN_CFG_RF_MAX_TX_POW
Default : "0"

Maximum transmit power configuration.
Range : 0 to 1

 0: max +0dBm
 1: max +4dBm

BCN_CFG_RF_DEF_TX_POW
Default : "0"

Default transmit power level.
Range : 0 to 2
This option depends on the BCN_CFG_RF_MAX_TX_POW
option.

If the BCN_CFG_RF_MAX_TX_POW option is 0(0dBm),
this option is as follows.
 0(High) : 0dBm
 1(Mid) : 0dBm
 2(Low) : -18dBm

If the BCN_CFG_RF_MAX_TX_POW option is 1(+4dBm),
this option is as follows.
 0(High) : +4dBm
 1(Mid) : 0dBm
 2(Low) : -20dBm

BCN_CFG_DEV_DATA_CF_BLOCK
Default : "383"

The Code Flash(ROM) block stored the device specific data.
Range : -1 to 383
If this option is set to -1, the device specific data in the Code Flash
isn't used.
The blocks from "0" to "15" are the Start-Up Program Protection
block. If the Start-Up Program Protection is used, don’t use the
blocks from "0" to "15".

Refer to "5.1 Device-specific Data Management" for details.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 25 of 35

Feb.10.2021

3.3 MCU low power consumption

Beacon stack provides the control API of MCU Low Power Consumption Function (LPC) in the source code
(r_bcn_pf_lowpower.c).

• Use R_BCN_LPC_EnterLowPowerMode() to enter to low power consumption state.

This function is called inside the main loop to do the following:

⎯ Disable MCU interrupts

⎯ Check that there is no problem even if each component shifts to Low power consumption state

⎯ Execute the transition processing to Low power consumption state of each component

⎯ Enter MCU to Low power consumption state..

⎯ After MCU wakes-up from Low power consumption state, resume each component to the normal

state.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 26 of 35

Feb.10.2021

3.4 Code size

Table 3.10 shows the beacon stack code size. This code size does not include the size of application code
or other CMSIS driver code.

Table 3.10 Beacon stack code size

Device Compiler Category Beacon stack size

RE01B

GCC
ROM 24,531 bytes

RAM 2,589 bytes

IAR
ROM 21,900 bytes

RAM 2,586 bytes

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 27 of 35

Feb.10.2021

4. Create project

This section describes how to create a project to develop a Beacon application . For the details about
creating a project, see “Getting Started Guide to Development Using CMSIS Package (R01AN5310)”.

4.1 Import a project

Referring “2.5 Importing sample code”, import a sample code.

4.2 Stack/Heap size configuration

In case of e² studio, set the memory size needed for BLE to the following file in the project.

Device\startup_RE01B_1500KB.c

#define SYSTEM_CFG_STACK_SIZE (0x1000)
#define SYSTEM_CFG_HEAP_SIZE (0x400)

In case of EWARM, set the memory size needed for BLE to [Project]→[Options…]→[Linker]→[Config]
tab→[Linker configuration file]→[Edit…] button→[Stack/Heap Sizes] tab in the project.

Figure 4.1 Scack/Heap size configuration on EWARM

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 28 of 35

Feb.10.2021

4.3 Clocks configuration

Referring “Getting Started Guide to Development Using CMSIS Package (R01AN5310) 6.1.2 Setting
Clock/Power Control Modes on Start of Operation”, configure the clocks to the following file in the project.

Device\Config\r_core_cfg.h

#define SYSTEM_CFG_HOCO_ENABLE (1)
#define SYSTEM_CFG_HOCO_FREQUENCY (1)
#define SYSTEM_CFG_LOCO_ENABLE (1)
#define SYSTEM_CFG_CLOCK_SOURCE (0)
#define SYSTEM_CFG_ICK_PCKA_DIV (0)
#define SYSTEM_CFG_PCKB_DIV (0)
#define SYSTEM_CFG_POWER_CONTROL_MODE (1)

If the Beacon stack is used, set the clocks within the following range.

⚫ System clock / Peripheral module clock A (ICLK/PCLKA): more than 32MHz

⚫ Peripheral module clock B (PCLKB): more than 32MHz

The Beacon stack is optimized with ICLK/PCLKA, PCLKB: 32MHz.

Renesas prerequires configuring the frequency of ICLK and PCLKA to 32MHz to maximize the Beacon stack
performance.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 29 of 35

Feb.10.2021

4.4 Linker configurations

The Beacon stack is provided as static library. Libraries shown in Table 4.1 are included in the
Device\BCN\lib directory.

Table 4.1 Beacon stack libraries

Environment Library

GCC environment /lib_gcc_sotb/lib_ble_bcn.a

IAR environment /lib_iar_sotb/lib_ble_bcn.a

Configure the followings to make the Beacon application project available to the Beacon stack library.

(1) Library configuration

In case of e2 studio, Click [Project] → [Properties].
Select “C/C++ Build” → “Settings” → “Tool Settings” → “Cross ARM C Linker” → “Libraries”.
Confirm that the followings are added (Figure 4.2). If not, add the followings.

User defined archive (library) files (-l): “:lib_ble_bcn.a”
User defined archive search directories (-L): "${ProjDirPath}/Device/BCN/lib/lib_gcc_sotb"

Figure 4.2 Linker configuration

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 30 of 35

Feb.10.2021

In case of EWARM, Select [Project]→[Options…]→[Linker]→[Library].

Confirm that the [Automatic runtime library selection] is checked (Figure 4.3).

Figure 4.3 Linker configuration

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 31 of 35

Feb.10.2021

5. Optional function

5.1 Device-specific Data Management

Bluetooth Device Address (hereinafter referred to as BD address) used by Beacon stack can be written as
device-specific data in the code flash memory. This allows user to set different BD address for multiple
devices using the same firmware.

Device-specific data is placed in a different area from the firmware program area. If the device-specific data
is not deleted when rewriting the firmware, the same BD address can be used continuously. If the device-
specific data is deleted, determine the BD address according to “5.1.4 BD address adoption flow”.

5.1.1 Specifying Device-specific data location block

The block number of the code flash memory where device-specific data is located can be specified with the
BCN_CFG_DEV_DATA_CF_BLOCK configuration options.

The block number of the code flash memory is block 0 at beginning of address (0x00000000) and block 383
at end of address (0x0017F000).

Figure 5.1 shows the code flash memory block configuration.

Figure 5.1 Flash memory block configuration

When placing device-specific data in the code flash memory, it is necessary to specify blocks that are not
used in program code. In addition, it is necessary to write device-specific data to the top address in specified
user area block.

When using MCU Startup Area Select function, do not place device-specific data in blocks 0 to 15 of the
code flash memory.

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 32 of 35

Feb.10.2021

5.1.2 Device-specific data format

Table 5.1 shows the device-specific data format.

Table 5.1 device-specific data format

Offset Size[bytes] Type Description

0 4 uint32_t Data length after magic number (fixed to 0x00000010)

4 4 uint32_t Magic number (fixed 0x12345678)

8 6 uint8_t [6] Public BD address

14 6 uint8_t [6] Random BD address

Each data must be written in little endian. For example, if BD address is “01:02:03:04:05:06”, write to the
flash memory in the order of 0x06,0x05,0x04,0x03,0x02,0x01.

Figure 5.2 shows an example of device-specific data flash memory layout.

Figure 5.2 Device-specific data flash memory layout

5.1.3 Writing to the code flash memory

To write device-specific data to the code flash memory, use Renesas Flash Programmer (RFP) unique code
function to write to the code flash memory at the same time as firmware program data.

Figure 5.3 shows an overview of writing device-specific data using RFP.

Figure 5.3 Writing device-specific data using RFP

+0

0x0000 0x10

+1 +2 +3 +4 +5 +6 +7

0x00 0x00 0x00 0x78 0x56 0x34 0x12

0x06 0x05 0x04 0x03 0x02 0x01 0xD6 0xD5

0xD4 0xD3 0xD2 0xD1

0x0008

0x0010

offset

Data Length

Magic Number

Public BD Address

Random BD Address

0x00000010

0x12345678

01:02:03:04:05:06

D1:D2:D3:D4:D5:D6

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 33 of 35

Feb.10.2021

Figure 5.4 shows an example of setting device-specific data for RFP Unique Code (ruc) file.

format hex

area user flash

address 0x17F000

size 20

index data

000001 1000000078563412060504030201D6D5D4D3D2D1

000002 10000000785634120C0B0A090807E6E5E4E3E2E1

Figure 5.4 Setting device-specific data for RFP Unique Code

Index

ROM address of the block specified by
BCN_CFG_DEV_DATA_CF_BLOCK

Data
Length
(Fixed)

Magic
Number
(Fixed)

Public
BD address

(Unique)

Random
BD address

(Unique)

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 34 of 35

Feb.10.2021

5.1.4 BD address adoption flow

Beacon stack adopts initial value of BD address in following priority order in R_BCN_Open() API.

(1) Code flash memory specified block

(2) Firmware initial value (BCN_CFG_RF_DEB_PUB_ADDR or BCN_CFG_RF_DEB_RAND_ADDR)

For Random BD address, if BD addresses for all areas are not specified, static address is generated from
Unique ID of MCU.

Note: The generated static address is a fixed value that does not change when the MCU power off or reset.

Note: A static address consists of random numbers. The possibility of duplicate values with other devices is

not zero.

Figure 5.5 shows BD address adoption flow of Beacon stack.

Figure 5.5 BD address adoption flow of Beacon stack

Since Beacon stack does not check format of BD address written in each area (1)-(2), when setting static
address, set value that matches the format shown in Figure 5.6.

Figure 5.6 Static address format

RE01B Group Bluetooth Low Energy sample code for batteryless beacon

R01AN5674EJ0100 Rev.1.00 Page 35 of 35

Feb.10.2021

Revision History

Rev. Date Description

Page Summary

1.00 Feb.10.2021 — First edition issued.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2021 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Beacon stack
	1.2 Software Structure
	1.3 Directory / File structure

	2. Sample code
	2.1 Operating environment
	2.2 Startup procedure
	2.3 Using sample code
	2.4 Programming firmware
	2.5 Importing sample code
	2.5.1 In case of e2 studio
	2.5.2 In case of EWARM

	2.6 Building and debugging
	2.6.1 In case of e2 studio
	2.6.2 In case of EWARM

	2.7 Beacon sample code

	3. Beacon stack detail
	3.1 R_BCN API
	3.1.1 API detail
	3.1.1.1 R_BCN_SystemInit API
	3.1.1.2 R_BCN_Open API
	3.1.1.3 R_BCN_Close API
	3.1.1.4 R_BCN_UpdateBeaconData API
	3.1.1.5 R_BCN_LPC_EnterLowPowerMode API

	3.1.2 Macro/Enum definition
	3.1.3 Structure definition
	3.1.3.1 st_bcn_param_t structure

	3.2 Configuration options
	3.3 MCU low power consumption
	3.4 Code size

	4. Create project
	4.1 Import a project
	4.2 Stack/Heap size configuration
	4.3 Clocks configuration
	4.4 Linker configurations
	(1) Library configuration

	5. Optional function
	5.1 Device-specific Data Management
	5.1.1 Specifying Device-specific data location block
	5.1.2 Device-specific data format
	5.1.3 Writing to the code flash memory
	5.1.4 BD address adoption flow

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

