
Hello, and welcome to this presentation of the STM32 Serial
Audio Interface or SAI.
It covers all the features of this interface, which is widely
used to connect external audio devices.

1

The SAI integrated inside STM32 products provides an
interface allowing the microcontroller to communicate with
external audio devices such as amplifiers, ADCs, DACs or
audio processors. This interface is fully configurable and
supports most audio standards, allowing easy connection to
existing audio devices.

Thanks to internal synchronization features, the amount of
I/O pins is reduced to its minimum.

2

The SAI can be programmed in four different modes:

• Free protocol mode allows the SAI to support standards
such as I2S, PCM, TDM, etc. Thanks to its flexibility, it is
possible to customize the serial interface if needed.

• SPDIF protocol mode allows the SAI to transmit audio
samples using the IEC 60958 standard.

• PDM Interface mode allows the SAI to connect up to 8
digital microphones for beamforming or simple speech
capture applications.

• AC’97 protocol.

3

The SAI supports all the usual audio sampling rates,
according to the crystal frequency used for the application.
In addition, the SAI supports the Master and Slave modes, in
half-duplex or full-duplex communication.
It is also possible to synchronize several SAI interfaces
together.
The SAI also provides a FIFO buffer of 8 samples, and up to
two interrupts and DMA interfaces.

4

The SAI is composed of two independent sub-blocks (sub-
block A and B).
Each sub-block has its own APB interface, clock generator,
FIFO buffer, DMA interface, and Interrupt interface.

Each sub-block can be configured in Receiver or Transmitter
mode and in Master or Slave mode with its own protocol.
Internal and external synchronization allows two sub-blocks
to be synchronized, or several SAI interfaces to be
synchronized.

Each sub-block can handle up to four IOs. For each sub-
block, FS is the frame synchronization, SCK is the bit clock,
SD is the serial data, and MCLK is the Master clock.

In addition, a PDM interface allows the connection of up to 8
digital microphones.

5

The STM32H7 embeds 4 SAIs.
Each SAI can receive a kernel clock (SAI_CK_x):
• From DIVQ output of PLL1,
• From DIVP output of PLL2 or PLL3,
• From HSI, CSI or HSE oscillators, or
• From an input PAD: I2S_CKIN.

The kernel clock is used by the SAI in order to generate the
timing of the serial audio interface when configured in Master
mode.
Note that SAI4 has two independent multiplexers for the
kernel clock selection because it is the only one located in
the D3 domain.
It is possible to support 48 kHz and 44.1 kHz audio streams
in parallel.
The PLLs embedded in the STM32H7 can work in Fractional
mode, making the generation of audio frequencies very
flexible.

6

The internal synchronization bus allows the synchronization
of several SAI together if needed, in order to support multi-
lane devices.

6

The Free protocol mode makes it possible to emulate most
of the common audio standard interfaces thanks to the
flexibility of changing the behavior of several parameters
such as:
• Data justification,
• Data size and position,
• Frame size,
• Frame period,
• Frame polarity,
• Sampling edge for the clock,
• Number of slots…

7

The following example shows some of the possibilities of the
interface, for the I2S-like protocols.
In an I2S-like protocol, each edge of the frame
synchronization (FS) is used to align the slot positions.

• The frame length, the duty cycle, and polarity can be
adjusted.

• The clock data strobe edge can be selected as well.
• The position of the slots with respect to the frame edges

can be selected.
• The size of the slots can be also adjusted.
• There must be an even number of slots per frame in

I2S-like protocols.

8

The following example shows some of the possibilities of the
interface for the TDM-like protocols. In a TDM-like protocol:

• Only one edge of the frame synchronization (rising or
falling) is used to align the slots position.

• The frame length, the duty cycle, and polarity can be
adjusted,

• The clock data strobe edge can be selected,
• The position of the slots with respect to the frame active

edge can be selected,
• The size of the slots can be also adjusted,
• The amount of slots per frame (up to 16).

9

The SAI is able to handle up to 16 slots, and each slot can
be individually activated or not. The inactive slots can be set
in HiZ.
The slot size is always bigger than or equal to the data size.
The SAI allows to control the position of the data inside each
slot, and to set the un-used parts of the slots to HiZ if
needed.
This function can be helpful when the data line is shared
between several devices.

10

In Master mode, the SAI can generate the master clock
(MCLK) depending on the audio system configuration.
This master clock provides a reference clock to the external
audio codecs.
In Master mode, the SAI generates the frame
synchronization signal (FS) and the bit clock (SCK). The
data line SD can be either input or output.

In Slave mode, the MCLK signal is not used.
In Slave mode, the SAI receives the frame synchronization
signal (FS) and the bit clock (SCK) from another device
(external or internal). The data line SD can be either input or
output.

11

In Master mode it is up to the SAI to generate the
appropriate timings to provide the correct sampling rate.
In Slave mode, the sampling rate is provided by the external
audio device.

12

The clock generator is needed for Master mode
communications, it is used to adjust the sampling rate of the
serial audio interface.
The clock generator provides the root frequency for the
MCLK, SCK and the FS.

When the master clock (MCLK) is generated, the frame
length must be a power of two.
The ratio between the FS frequency and the MCLK
frequency is set to 256 or 512, according to the OSR bit.

The clock SAI_CK is provided by the STM32H7’s RCC
block.

13

When the MCLK is not generated, the frame length can take
any value from 8 to 256.
In this case, the frequency of the SCK bit clock is directly
given by the clock received on SAI_CK input, divided by the
MCKDIV value.

14

The internal synchronization can be used for
communications needing two data lanes, such as full-duplex
I2S.
The external synchronization can be used for
communications needing more than 2 data lanes (up to 4).
For example, when interfacing HDMI ICs.
All the sub-blocks synchronized together must use the same
protocol characteristics.

15

In order to reduce the data size, it is possible to insert in the
data path, an A-law or micro-law compander.
Note that A-law and micro-law are not lossless compressors.

Companding modes are generally used in telephony:
• The small values are amplified and the big values are

attenuated.
• The SNR tends to be identical for strong and for weak

signals.

16

The SAI also provides a Mute function.
In Transmit mode, the user can choose to send zeroes on
muted slots or the previous transmitted value. The previous
transmitted value is limited to configurations having one or
two slots per frame.
Note that in Transmit mode, the TxFIFO pointer is still
incremented, meaning that data which was present in the
FIFO and for which the Mute mode is requested is
discarded.

The Receive Mute mode can be helpful to detect an amount
of consecutive slots having all data reset to zero.

17

The Anticipated or Late frame error detection function
increases the interface’s reliability by detecting unexpected
frame synchronization misalignment. A status flag is set and
an interrupt can be generated as well. The application
software will have to then re-start the SAI interface.

18

The SAI guarantees the data alignment even if an underrun
or an overrun occurs.

19

The SAI supports the audio IEC 60958 standard, in Transmit
mode when configured for the SPDIF protocol.
The SAI generates the preambles and the parity bit (P)
according to the transmitted data.
The software has to handle the CS, U and V bits.

20

In IEC60958 specifications, the block structure is used to
decode the Channel Status (CS), and User information (U).
• Each block contains 192 frames
• Each frame contains 2 sub-frames

The SAI automatically generates the B, M and W preambles.
• Preamble B detects the start of new block, and the start

of a Channel A
• Preamble M detects the start of a Channel A (when it is

not a block boundary)
• Preamble W detects the start of a Channel B

21

Each sub-frame contains 32 bits divided into 3 fields:
• A synchronization preamble allowing the detection of the

block and sub-frame boundaries
• A payload of 24 bits
• Status bits: V, U, CS and P

22

The Fsai_ck frequency must be adjusted in order to
generate the proper audio sample rate (FS).
The data inside the transmit FIFO must be aligned as shown
in this slide: the MSB of the data must always be at position
23.

23

The PDM interface remaps the bitstream received from the
digital microphones into TDM frames.
The PDM interface waits for the reception of 8 bits from each
microphone, before sending a new TDM frame.
In addition, the PDM interface offers an 8-bit delay line for
each microphone stream.
These delay lines are working with the resolution of the
bitstream clock provided to the microphones.
It enables beamforming applications, and removes
constraints on microphone placements.

When the PDM interface is enabled, the serial interface of
the sub-block A cannot be used to connect an external
device.
This serial interface is connected internally to the PDM
interface, and the sub-block A must be configured in TDM
mode as an RX MASTER.
The figure shows an example of connection of 4 digital

24

microphones. Note that each data line D[1], D[2], D[3] or D[4]
can be connected to one or two digital microphones.

The sub-block B is still available for other applications, and
can be used to connect an external device using TDM, PCM,
I2S, or any other supported protocol.

24

With this PDM interface, the bit clock frequency has to be
adjusted according to the sampling frequency and the
number of microphones. The frame length is also adjusted
according to the number of connected microphones.

25

The SAI is able to work as an AC’97 link controller.
When this protocol is used, the frame length, the slot
number, and slot length are set by the hardware.

26

Several events can be enabled in order to generate
interrupts.
The WCKCFG event can be used in order to inform the user
that the frame length of the SAI has been improperly
programmed. This feature only makes sense in Master
mode.

27

The following table shows an overview of the SAI activity for
the various possible power modes.
The SAI is active in Run and Sleep modes, frozen in Stop
mode or powered-down in Standby mode.
The SAI needs the bus interface clock (APB clock) and the
kernel clock (SAI_CK_x) to work properly.

For a full-duplex Master mode, two data lanes are needed,
so two sub-blocks need to be used.
The master sub-block A provides the synchronization to the
slave sub-block B, using the internal synchronization feature
(IO Line Management).

Note that in this example, the sub-block B only uses the
SD_B.
The amount of IOs is reduced to its minimum thanks to the
internal synchronization.

29

This is another kind of Full-duplex mode, using the TDM
protocol.
Slot 1 is inactive (not used) for sub-block A, the slots 2 and 3
are inactive for sub-block B.
For both sub-blocks, the frame structure has 4 slots.
Sub-block A will generate 3 samples per frame.
Sub-block B will receive 2 samples per frame.

30

This example shows the most important SAI settings in order
to capture the samples provided by 4 digital microphones.
In typical applications, the microphones receive a bitstream
clock frequency 64 times higher than the wanted audio rate.
If the application needs to handle a 16 kHz audio stream,
then the bitstream clock provided to the digital microphones
must be 16 kHz multiplied by 64, which corresponds to a
clock frequency of 1.024 MHz.
As there are 4 data streams, the bitclock SCK_A must be 4
times higher than the bitstream clock provided to the
microphones, which results in a bitclock frequency of 4.096
MHz.
Using this configuration, the SAI_A writes into its RX FIFO
an 8-bit data every time a slot is received.
In order to reconstruct the 16 kHz audio signal, the software
has to perform a low-pass filtering of each microphone
stream, followed by a decimation by 64.

31

