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Abstract—Recent studies highlighted the model predictive
control as a promising platform for complex systems manage-
ment and energy efficiency improvement in a large number
of applications, particularly prominent in building climate and
smart grid control. Involvement of microgrids offered great
possibilities of power consumption peak shaving, improved grid
stability and decentralisation, by introducing buildings as active
market participants. To this aim, the paper is focused on the
development of a microgrid optimal control that acts as an
intermediary method for integration of a building to the smart
grid with dynamic pricing of electricity. A multilevel optimal
control is applied on a building cooling system and energy flow
optimization of a DC microgrid that consists of a photovoltaic
array, batteries stack and fuel cells stack with electrolyser, and
that is connected to the utility grid via a bidirectional power
converter. Performance of the proposed approach is verified
through 4-month simulations of a microgrid integrated with a
building cooling system, in actual meteorological and electricity
price data scenario. Microgrid energy storages and the proposed
control method fully exploit possibilities of dynamic pricing and
greatly reduce cooling system operation costs while ensuring the
high level of user comfort.

Index Terms—Multilevel optimal control, Building cooling
system, Microgrid, Smart grid, Dynamic electricity pricing

I. INTRODUCTION

With 40% of the world’s total primary energy consumed
by buildings operation, numerous policies and initiatives have
emerged and are directing towards increase of buildings energy
efficiency [1]. A nearly zero-energy building is a recently
emerged term that indicates the goal of making buildings self-
sustainable when it comes to energy demand. This topic is
tightly followed by utilization of highly variable renewable
energy production integrated through distributed energy stor-
age by means of a microgrid concept [2], [3]. A microgrid
acts as an energy buffer and energy costs reducer between
dynamic profiles of the user energy consumption and variable
electricity prices, and improves stability and decentralization
of the utility grid through distributed storage.

In this paper we propose a multilevel optimal control of a
microgrid-supplied cooling system in a building. Performance
of the proposed approach is verified through 4-month sim-
ulations of a microgrid integrated with a building cooling
system within Laboratory for Renewable Energy Systems
(LARES), in actual meteorological and electricity price data
scenario. The DC microgrid formed in LARES operates at
48 V [4] and consists of: (i) energy production systems –

photovoltaic array (PV) and wind turbine emulator (WT), (ii)
energy storage systems – ultracapacitor (UC), fuel cells stack
(FC) with electrolyser (EL), and batteries stack (BAT), and of
(iii) energy consumption systems, i.e., building cooling system
(L). The microgrid is connected to the utility grid (UG) via a
bidirectional power converter. The cooling system in the case
study is based on a central chiller unit which operates over 23
controllable zones equipped with fan coil units.

The optimal decision when to buy/sell electricity from/to
the utility grid and in which amount, i.e., when to charge
and discharge energy storages, is a complex function of the
predicted local energy production and consumption profiles,
current storages state-of-charge (SoC), as well as of predicted
electricity price profile [4]–[6]. This function is also subject
to various techno-economic constraints like energy storages
capacity, power converters power ratings, and even to utility
grid possibly reduced availability. The described decision
making process is formulated as a linear program (LP).

A building cooling system control problem is defined as a
tracking problem with properly designed weighting matrices
to ensure high level of comfort and minimal energy consump-
tion at the same time. Considered approach has proved to
outperform conventional zone controllers in terms of energy
efficiency even in very strict comfort bounds of ±0.2 ◦C
around a temperature set-point [7]. The described temperature
tracking problem is also formulated as an LP.

These two separate control problems are integrated together
using a model predictive control (MPC) scheme with receding
horizon philosophy, such that energy consumption plan ob-
tained by solving the temperature tracking problem is passed
to the energy flow optimization problem. In this way, energy
storages within the microgrid, together with the proposed
multilevel optimal control method, fully exploit possibilities of
dynamic pricing and greatly reduce cooling system operation
costs while ensuring a high level of user comfort.

This paper is organized as follows. Section II presents
formulation of the energy flow optimization problem for the
considered microgrid, while zone temperature optimization
problem is given in Section III. Both microgrid and building
cooling systems control schemes are integrated in an MPC
scheme with receding horizon philosophy in Section IV.
Section V discusses case study results on 4-month simulations
based on actual meteorological and electricity price data.



II. ENERGY FLOW OPTIMIZATION

An electricity balance equation of the considered DC mi-
crogrid formed in LARES (see Fig. 1) is defined as follows:[
EPV +EWT

]
+
[
EUC +EBAT +

(
EFC−EEL

)]
+EUG = EL. (1)

Note that fuel cells stack with electrolyser is also an energy
storage system: (i) electrolyser produces hydrogen when there
is excess power, while (ii) fuel cells use previously stored
hydrogen to produce electricity when there is power shortage.
For the sake of simplicity, fuel cells stack with electrolyser
system is considered as a single controllable energy storage
unit, denoted as EFC. Since ultracapacitor has a very low
energy storage capacity, we neglect this component in the
subsequent energy flow optimization, as well as the wind
turbine emulator. By convention, we assume that energy com-
ponents are positive when supplying electricity to the DC link,
e.g., energy components EBAT and EFC will be negative for
charging, while the energy component EUG will be negative for
exporting (selling) energy to the utility grid. Load is assumed
always to be unidirectional, i.e., the energy component EL is
always positive.

Energy production
systems

Energy storage
systems

Source Bidirectional Load

EPV EWT EUC EBAT EUG ELEELEFC

Fig. 1. Electricity balance diagram of the DC microgrid formed in LARES.

A. Discrete-time system model
Energy storage systems are modelled as discrete-time first-

order difference equations with a 1 h sampling time [4]:{
xBAT
k+1 = xBAT

k − 1
CBAT
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ch

)
,

xFC
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chE

FC
ch

)
,

(2)

where k denotes discrete time instant, state xk is a normalized
SoC, C is an energy storage capacity, η is charging or
discharging efficiency, while Edch ≥ 0 and Ech ≤ 0 represent
discharge and charge energy components, respectively. Note
that we divide energy components EBAT and EFC to discharge
and charge components due to the different efficiencies ηdch
and ηch, in that way avoiding model formulation with propo-
sitional logic, which would lead to a mixed integer linear
program (MILP), i.e., to a combinatorial optimization problem.
Similarly, the utility grid energy component EUG is divided to
buying and selling components, EUG

buy ≥ 0 and EUG
sell ≤ 0, due to

different electricity prices when buying and selling electricity.
The expression (2) can be written in a matrix form as:

xk+1 = Axk +Buk, A ∈ R2×2, B ∈ R2×6, (3)

where A is the identity matrix I2, B is the system input matrix,
the state vector is defined as xk = [ xBAT

k , xFC
k ]
>, and the input

vector is uk = [EBAT
dch,k, E

FC
dch,k, E

UG
buy,k, E

BAT
ch,k, E

FC
ch,k, E

UG
sell,k ]

>.

B. Optimization problem
The energy flow optimization is formulated based on: (i) the

current state of the microgrid storages x0, (ii) the predicted
local electricity production and consumption profiles in the
microgrid, and (iii) the information obtained from the utility
grid, i.e., predicted electricity price profile. As a result, the
energy flow optimization gives the best values of discharging,
charging, buying, and selling energy profiles throughout pre-
diction horizon 0 ≤ k ≤ N − 1, where N is the length of the
prediction horizon. For the sake of simplicity, in this paper
we neglect electricity predictions uncertainty [4], [5], i.e., we
consider a deterministic system variables description.

The following economic criterion J of the microgrid oper-
ation is considered:

J(u, x0,d, c) =

N−1∑
k=0

ckE
UG
buy,k +

(
0.9ck

)
EUG

sell,k, (4a)

u =
[
u>0 , u>1 , . . . , u>N−1

]>
, (4b)

d =
[
ED

0 , ED
1 , . . . , ED

N−1
]>
, (4c)

c =
[
c0, c1, . . . , cN−1

]>
, (4d)

where ED
k = EL

k−EPV
k is the system disturbance at the discrete

time instant k. Here we assume different electricity prices for
buying and selling electricity, whereas the selling price is equal
to 90% of the buying price.

The microgrid electricity balance equation (1) is imple-
mented in a form of an equality constraint, as follows:

1>uk = ED
k , (5)

where 1 ∈ R6 is a column vector with all elements equal to 1.
Minimization of the criterion (4a) is subject to various

techno-economic constraints on microgrid variables over the
future horizon. Energy storages state xk must always be inside
the corresponding storage capacity limits:

xmin ≤ xk ≤ xmax, 0 ≤ k ≤ N, (6)

where xmin, xmax ∈ R2. Energy components limits are defined
by the corresponding power converter power rating, and by
physical constraints (e.g., EBAT

dch ≥ 0 and EBAT
ch ≤ 0):

umin ≤ uk ≤ umax, 0 ≤ k ≤ N − 1, (7)

where umin, umax ∈ R6. If information about the predicted
utility grid availability is at disposal, one can include this
information simply by modifying variables umin and umax for
a specific time instant k.

Once objective function and constraints have been defined,
one can write down the energy flow optimization problem in
an LP form as follows:

min
u

f>u,

s.t. Iuu ≤ Ixx0 + g,
Euu = Edd,

(8)

whereas vector f, inequality constraints matrices Iu, Ix and
vector g, and equality constraints matrices Eu, Ed, are straight-
forwardly calculated from (4)–(7).



III. OPTIMAL CONTROL PROBLEM FOR
BUILDING ZONES COOLING

In this section an optimization problem used for the closed-
loop optimal control of building cooling system is developed.
Please note that here we use the same variables notation as
in the previous section, e.g., A and B are system matrices, x
and u are state and input vectors, J is criterion function etc.
However, variables in this section are not related in any way
to variables in the previous section.

A. Discrete-time system model

A mathematical model of the considered case-study thermal
system is developed by using the resistor-capacitor (RC) net-
work modelling framework [8]–[10]. It models 23 controllable
zones spanned over cca. 700 m2 area within the skyscraper
building of University of Zagreb Faculty of Electrical Engi-
neering and Computing. Due to a one-hour time resolution of
meteorological variables prediction for the system location, the
model built on RC principles is discretized with the one-hour
sample time as follows:

xk+1 = Axk +Buuk +BTTo,k +B+
T To,k+1 +Bddk, (9a)

yk+1 = Cxk+1, (9b)

where k ∈ Z is the discrete time step, x ∈ Rn is the system
state vector, u ∈ Rq is the system input vector, i.e., vector
of thermal energy inputs to each of q controllable zones,
To ∈ R is the outdoor temperature, d ∈ Rp is the vector
of disturbances that act on the system (e.g., solar insolation,
internal gains etc.), and y ∈ Rq is the system measurements
vector, i.e., the vector of room temperatures. System matrices
A, Bu, B1

d , B2
d , B∗d , and C describe system dynamics and

input-output relationships.

B. Optimization problem

The resulting performance of the MPC operated cooling
system depends completely on the MPC problem formulation.
In building zone temperature control the goal is to achieve the
best possible user comfort with minimum energy consumption.
Thus, the zone level optimization cost J is consisted of two
parts, J1 and J2, as follows:

min
u,σ1,σ2

J1(u, x0,To,d) + J2(u, x0,To,d,σ1,σ2, η), (10a)

s.t. y = Ax0 + Buu + BTTo + Bdd, (10b)
SP−∆− σ1 ≤ y ≤ SP + ∆ + σ2, (10c)
Pmin ≤ u ≤ Pmax, σ1 ≥ 0, σ2 ≥ 0, (10d)

where x0 is the initial state of the system, A, Bu, BT , Bd, u,
To, d, and y are augmented system matrices and vectors over
the prediction horizon of length N , σ1 and σ2 are augmented
vectors used to implement slack variables σ1 and σ2 needed
for proper definition of the optimization problem, whereas SP
and ∆ are augmented vectors of user-defined set points SP
and allowed deviations around them ∆ for each controllable
zone q [7].

The term J1, related to minimization of energy consump-
tion, is defined as:

J1(u, x0,To,d) =

N−1∑
k=0

∣∣Rt+k|tut+k|t∣∣1, (11)

where Rt+k|t ∈ Rq×q is the weighting matrix. Temperature
demands of end-users are forced by the term J2:

J2(u, xo,To, d,σ1,σ2, η) =

N∑
k=1

∣∣G1t+k|tσ1t+k|t
∣∣
1
+

+

N∑
k=1

∣∣G2t+k|tσ2t+k|t
∣∣
1

+ η

N∑
k=1

∣∣Qt+k|t(yt+k|t − SPt+k|t)
∣∣
1
,

(12)

where Qt+k|t ∈ Rq×q is weighting matrix, and η ≥ 0 is an
arbitrary weighting coefficient. To tackle the opposing criteria
of reference following and energy saving, weighting matrices
Rt+k|t and Qt+k|t have to be chosen in a way which enables
smart switching between these two requirements based on
predicted disturbance profiles. In order to be comparable, both
parts of optimization cost have to expressed in the same units.
Since J1 is already defined in watts, weighting matrix Qt+k|t
is utilized to convert temperature related cost part J2 from
degrees Celsius to watts. Sensitivity of the energy consumption
to the zones temperature is defined as:

∂u
∂y

=
∂(B−1u (y− Ax0 − BTTo − Bdd))

∂y
= B−1u . (13)

The matrix B−1u is lower bidiagonal matrix with all elements
on the main diagonal equal to (C ·Bu)−1 and to the −(B−1u ·
A·C−1) on the secondary (−1) diagonal. By setting weighting
matrices along the horizon to:

Qt+k|t =

[
(C ·Bu)−1

−(B−1u ·A · C−1)

]
, k = 1, . . . , N−1, (14)

and Qt+N |t = (C · Bu)−1, J2 is converted from degrees
Celsius to watts. Thus, for η = 1 the same weight is put
on both parts of the criteria, so the controller will decide what
is the best regarding both energy consumption and comfort.
By allowing the change of the weighting factor η, additional
levels of freedom are introduced, so the user can adjust this
factor according to its preferences [7].

IV. CLOSED-LOOP OPTIMAL CONTROL

In this section we formulate the model predictive control
(MPC) scheme with receding horizon philosophy for closed-
loop (i) energy management in the microgrid, and (ii) cooling
system control. Solution to an MPC problem yields a trajectory
of states and inputs (i.e., control signals) that satisfy the
dynamics and constraints of the given system model while
optimizing some given criteria.

A. The cooling system optimal control

Let the real cooling system dynamics in (9) be:

x(t+ 1) = Ax(t) +Buu(t) +BTTo(t)+

+B+
T To(t+ 1) +Bdd(t), t ∈ Z,

(15)



At each time instant t, the MPC scheme com-
putes the optimal control sequence u? given an
initial system state x0 = x(t), and disturbance
sequences To = [ To(t), ..., To(t+N−1), To(t+N) ]

> and
d = [ d>(t), ..., d>(t+N−1) ]

>, as follows:

u? = arg min
u

J(u, x0,To,d),

s.t. (10b), (10c), (10d),
(16)

where J(·) is the criterion function defined in (10a). The op-
timal control sequence u? obtained in this way represents the
best thermal energy profiles for each zone (room) throughout
the prediction horizon, which will keep rooms temperature
inside the specified range. To transform this thermal energy to
electricity consumption profile needed for the energy manage-
ment in the microgrid, the thermal energy profile is scaled with
the coefficient of performance (COP) of the central chiller unit,
which is a nonlinear function of air temperature and required
thermal energy:

EL(t) =

∑q
j=1 u

?
j (t)

COP(u?(t), d1(t))
, ∀t, (17)

For the sake of simplicity here we use a constant COP = 3.5.

B. Energy management in the microgrid

Let the real microgrid system dynamics in (3) be:

x(t+ 1) = Ax(t) +Bu(t), t ∈ Z, (18)

with electricity prices c(t), and disturbances

d(t) = EL(t)− EPV(t), (19)

where EL(t) is defined in (17), and EPV(t) is the electricity
production by the PV array [11]. At each time instant t,
the MPC scheme computes the optimal control sequence u?
given an initial storages state x0 = x(t), electricity prices
c = [ c(t), c(t+1), ..., c(t+N−1) ]

>, and disturbance sequence
d = [ d(t), d(t+1), ..., d(t+N−1) ]

>, as follows:

u? = arg min
u

J(u, x0, c,d),

s.t. (5), (6), (7),
(20)

where J(·) is the criterion function defined in (4a). The opti-
mal control sequence u? obtained in this way represents the
best charging and discharging profiles of microgrid storages
(batteries and fuel cell system), and optimal plan for electricity
exchange with the utility grid.

C. Receding horizon philosophy

According to the receding horizon philosophy, only the first
control vector u?0 from an optimal control sequence u? is
applied, i.e., u(t) = u?0. Optimization problems in (16) and
(20) are repeated again at the next time instant t+1, with new
information on system measurements and outdoor conditions
forecasts. By this approach, the new optimal control plan can
potentially compensate for any disturbance that has meanwhile
acted on the system. To solve optimization problems IBM
ILOG CPLEX 12.6 is used together with YALMIP [12] for
easier control problem implementation.

V. SIMULATION RESULTS

In this section performance of the proposed approach on
the actual meteorological and electricity price data, during the
4-month period from 1 Jun 2014 to 30 Sep 2014 is verified.
Historical meteorological data are provided by Meteorological
and Hydrological Service, Croatia, whereas the electricity
price data are freely available at the EPEX SPOT market web
site [13]. Negative electricity prices that sometimes occur on
the market, usually during holidays, are saturated to 0 e to
preserve an LP formulation of the energy flow optimization
problem. We consider closed-loop control scheme simulations
with receding horizon philosophy as discussed in Section IV,
whereas prediction horizon length is N = 24. Building
operates in two working modes: (i) the daily mode (from 06:00
to 18:00) during which temperature requirements of end-users
are set to 24 ◦C, and (ii) the nigh mode during which cooling
is unavailable. Allowed temperature deviations from set-point
are chosen to be {±0.2, ±0.5, ±0.7} ◦C which corresponds to
limits of cyclic temperature variations of A, B and C classes of
the thermal environment defined by ISO 7730 standard [14].

Revenue, i.e., economic gain, at the end of the 4-month
period can be calculated as:

crev =

2927∑
t=0

c(t)EUG
buy(t) +

(
0.9c(t)

)
EUG

sell(t), (21)

where c(t) is the electricity price data, and 2928 is the total
number of hours in the considered time period. In other words,
revenue at time instant t is defined as a difference between
electricity demand and actually imported electricity from the
utility grid, multiplied by buying/selling electricity price. In
order to be able to evaluate impact of energy storage systems
on the revenue, we also calculate revenue for the case when
there are no energy storage systems involved, defined as:

cD
rev =

2927∑
t=0

c(t)max{0, ED(t)}+
(
0.9c(t)

)
min{ED(t), 0}, (22)

where ED(t) is the difference between the cooling system elec-
tricity consumption and the PV array electricity production.

Figure 2 shows profiles of the microgrid simulation over
72 h exemplary period within the considered 4-month period,
beginning on 6 Jul 2014 at 00:00, whereas the microgrid is
driven by the MPC scheme with receding horizon philosophy
with sampling time of 1 h. It can be seen that control
algorithm uses FCs as little as possible compared to batteries
stack, since overall efficiency of the FCs is below 30%, and
the overall efficiency of the batteries is over 80%. In other
words, FCs are used only when the difference between the
maximum and minimum electricity prices along the prediction
horizon is large enough, so that electricity loss is justified by
economic gain. Similar logic is applied to batteries, i.e., they
are charged during night-hours when electricity price is low,
and are discharged during the daylight when electricity price
is high. In this way, energy storage systems in the microgrid
make it act as energy buffer and energy costs reducer between
dynamic profiles of the cooling system electricity consumption
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and variable electricity prices. This is especially important
considering integration of renewable energy systems, since
their electricity production is highly variable (intermittent) due
to the strong dependence on atmospheric conditions.

Figure 3 shows operating costs of the microgrid and the
electricity exchanged between the microgrid and the utility
grid at the end of the considered 4-month period, for three
considered parameters ∆ (0.2 ◦C, 0.5 ◦C, 0.7 ◦C). It can be
seen that operating costs of the microgrid are significantly less
when using energy storage systems with the proposed multi-
level control. However, total exchanged electricity is higher
when energy storage systems are involved. This behaviour is
logical since storages are used for electricity trading (buy when
low, sell when high), and although economic gain is higher
due to the optimal microgrid control, some electricity is lost
on charging and discharging of storages.

VI. CONCLUSION

In this paper we proposed a multi-level optimal control of
a microgrid-supplied cooling system in a building. The multi-
level optimal control is based on (i) energy flow optimization
in a microgrid, and (ii) optimization of building zones cooling
in the presence of comfort constraints. Performance of the
proposed approach was verified through 4-month simulations
of a microgrid integrated with a building cooling system, in
actual meteorological and electricity price data scenario. It was
shown that a microgrid with integrated energy storage systems,
together with the proposed multi-level optimal control, can
significantly reduce operating costs of the building cooling
system, by enabling electricity trading with the utility grid
via simple principle "buy when low, sell when high". For the
considered case-study, total savings of the microgrid operating
costs are more than 50%.
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