Changes for the Better

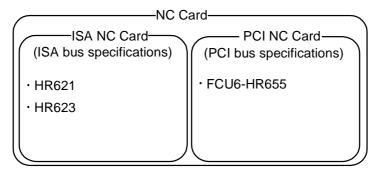
CNC MELD/S/M/GIC64

CONNECTION MANUAL

MELDASMAGIC is a registered trademark of Mitsubishi Electric Corporation. Microsoft and MS-DOS are registered trademarks of Microsoft Corporation U.S.A. Windows is a registered trademark of Microsoft Corporation U.S.A. IBM is a registered trademark of International Business Machines Corporation U.S.A. Other company and product names are trademarks or registered trademarks of the respective companies.

Introduction

This manual is the MELDASMAGIC64 Connection Manual. MELDASMAGIC64 installation and connection methods are explained centered on the NC Card. Refer to the materials below for explanations concerning functions.


MELDASMAGIC64 Setup Instruction Manual	BNP-B2191
MELDASMAGIC64 Maintenance Manual	
MELDAS AC Servo and Spindle MDS-A/B Series Specifications Manual	
MELDAS AC Servo and Spindle MDS-C1 Series Specifications Manual	
MELDAS AC Servo and Spindle MDS-CH Series Specifications Manual	
MELDAS AC Servo MDS-B-SVJ2 Series Specification Manual	
MELDAS AC Servo MDS-B-SPJ2 Series Specification Manual	

General items

- (1) Read this manual carefully before using MELDASMAGIC64. Please have a full understanding of product functions and performance, and use this product correctly.
- (2) All efforts possible have been made to describe any special handling in this manual. Items not described in this manual must be interpreted as "Not Possible".
- (3) When the details described in this instruction manual change, the sub-No. of the cover page instruction manual No. (*, A, B) will be changed.
- (4) The details described in this manual may change without notice. Mitsubishi may not be held responsible for errors in the contents described.

About MELDASMAGIC64

(1) MELDASMAGIC64 includes the ISA NC Card compatible with the ISA bus, and the PCI NC Card compatible with the PCI bus. Either card can be selected. The user can structure a custom-made NC unit by inserting the NC Card supplied from Mitsubishi into the selected personal computer's expansion slot (ISA bus or PCI bus).

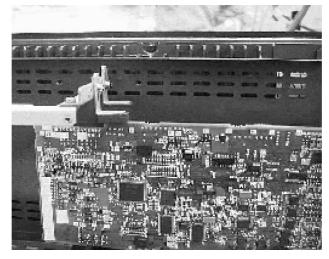
(2) The NC Card supplied by Mitsubishi realizes the equivalent environmental resistance (ambient temperature, noise resistance and vibration resistance) as conventional NC units. However, some environmental resistance equivalent to conventional NC units is not always guaranteed regarding personal computers presumed to be normally used in an office. Therefore, when selecting a personal computer, study this manual well and select an appropriate model responding to the required uses and applications. When required, execute the appropriate countermeasures.

(3) Take care to the working environment when using MELDASMAGIC64.

Working environment

		PCI NC Card	ISA NC Card
Applicable pers	sonal	IBM PC/AT or compatible machine	
Compatible OS	3	• Windows 98SE • Windows 2000 • Windows XP	 Windows 95 Windows 98 Windows 98SE Windows NT Workstation 4.0
CPU		 For Windows 95 Pentium 100MHz or faster (Pentium 150MHz or faster recommended) For Windows 98, Windows 98SE, Windows NT Workstation 4.0 Pentium 200MHz or faster (Pentium 233MHz or faster recommended) For Windows 2000, Windows XP Pentium 300MHz or faster 	
Memory		 For Windows 95, Windows 98 16MB or larger (24MB or larger recommended) For Windows 98SE, Windows NT Workstation 4.0 24MB or larger (32MB or larger recommended) For Windows 2000 64MB or larger (128MB or larger recommended) For Windows XP 128MB or larger 	
Hard disk		20MB or more open space recomm	ended
Floppy disk One 3.5-type 1.44MB drive			
Expansion slot		PCI bus (PCI bus Standards 2.0 or higher)	ISA bus
Electric	+3.3V (*1)	0.2A or more	
characteristics	250 or more	r more	
	+12.0V	0.7A or more	0.5A or more
Power drop characteristics		Time for +5.0V power voltage to dro power is turned OFF takes 1ms or r	

(*1) When using the PCI NC Card, always use a personal computer that supplies +3.3V power to the PCI bus.


(4) Heat radiation-countermeasures for personal computer

A rise in the personal computer's internal temperature could cause NC Card damage or malfunction. Select a personal computer with a fan for circulating the heat in the personal computer, or a personal computer to which a fan can be mounted.

(5) Personal computer vibration

If the expansion slot on the personal computer vibrates greatly, a connector connection fault could occur and result in incorrect operations. Select a personal computer with a fitting for fixing the NC Card, or a personal computer that can be fixed.

<Fixing example>

Precautions for Safety

Always read the specifications issued by the machine maker, this manual, related manuals and enclosed documents before starting installation, operation, programming, maintenance or inspection to ensure correct usage. Thoroughly understand the basics, safety information and precautions of this numerical controller before using the unit.

This manual ranks the safety precautions into "DANGER", "WARNING" and "CAUTION".

When there is a great risk that the user could be subject to fatalities or serious injuries if handling is mistaken.

When the user could be subject to fatalities or serious injuries if handling is mistaken.

When the user could be subject to injuries or when physical damage

Note that even if the items is ranked as "A CAUTION", incorrect handling could lead to serious results. Important information is described in all cases, so please observe the items.

Not applicable in this manual.

1. Items related to prevention of electric shocks

🕂 WARNING			
A	Do not open the front cover while the power is ON or during operation. Failure to observe this could result in electric shocks.		
A	Do not operate the device with the front cover removed. The high voltage terminals and charged sections will be exposed, and could result in electric shocks.		
A	Do not remove the front cover even when the power is OFF except for wiring work or periodic inspections. The controller and servo drive unit are charged internally and could result in electric shocks.		
A	Always wait at least 15 minutes after turning the power OFF and check the voltage with a tester, etc., before starting wiring work or inspections. Failure to observe this could result in electric shocks.		
A	Ground the 200V Series input controller, servo drive unit and servomotor with Class C or higher protective grounding, and the 400V Series input with Class D or higher protective grounding.		
\mathbb{A}	All wiring work and inspections must be carried out by a qualified electrician.		
A	Wire the controller, servo drive unit and servomotor after installation. Failure to observe this could result in electric shocks.		
\mathbb{A}	Do not operate the switches with wet hands, as this may lead to electric shocks.		
A	Do not damage, apply excessive stress, place heavy things on or sandwich the cables, as this may lead to electric shocks.		

2. Items related to prevention of fires

Install the controller, servo drive unit, servomotor and regenerative resistor on non-combustible material. Installation directly on or near combustible materials could result in fires.		
If trouble occurs in the servo drive unit, shut off the power at the servo drive unit's input power side. Fires could result if large current continues to flow.		
When using the regenerative resistor, shut off the power with an error signal. The regenerative resistor could abnormally overheat and cause fires due to a regenerative transistor fault, etc.		
Incorrect wiring or connections could damage the device.		
3. Items related to prevention of damage		

Do not apply voltages other than those indicated in the Controller Connection Manual or Specifications Manual for Servo Drive Unit. Failure to observe this could lead to rupture, or damage, etc.
Do not mistake the terminal connections. Failure to observe this could lead to rupture, or damage, etc.
Do not mistake the polarity $(+, -)$. Failure to observe this could lead to rupture, or damage, etc.

Persons wearing medical devices, such as pacemakers, must not be near this unit. The medical device could be affected by electromagnetic waves.

The servo drive unit fins, regenerative resistor and servomotor, etc., will be hot during operation and for a while after operation is stopped. Touching these sections could result in burns.

4. General Precautions

Always observe the following precautions. Incorrect handling could result in faults, injuries, or electric shocks, etc.

(1) Transportation and installation

<u>∧</u> c	Correctly transport the product according to its weight.
Ο υ	Jse servomotor's suspension bolts only to transport the servomotor.
	To not use suspension bolts of the servomotor on the machine to transport the machine.
<u>∧</u> □	Do not stack products above the indicated limit.
<u>∧</u> □	Do not hold cables, shaft or detector when transporting the servomotor.
<u>∧</u> □	To not suspend or hold the controller or servo drive unit by the connected wires or cables when transporting.
<u>∧</u> □	Do not hold the front cover when transporting the controller or servo drive unit. The device could drop.
	Vhen installing, always observe the installation direction and install on a place which can withstand the veight.
<u>∧</u> □	Do not get on the product, or place heavy objects on it.
	Provide the specified distance between the controller, servo drive unit and inner surface of the control panel and between other devices.
	Do not install or operate a controller, servo drive unit or servomotor that is damaged or that has missing parts.
Та	ake care not to cut hands on the heat radiating fins or metal edges.
<u>∧</u> □	Do not block the intake/outtake ports of the servomotor with cooling fan.
	Do not allow conductive foreign matter such as screws or metal chips or combustible foreign matter such as oil enter the controller, servo drive unit or servomotor.
	The controller, servo drive unit and servomotor are precision devices so do not drop or apply strong mpacts on them.
	Do not install the controller operation board where it may be subject to cutting oil.

(2) Wiring

\wedge	Correctly wire this product. Failure to do so could result in servomotor runaway, etc.
\wedge	Do not install a phase advancing capacitor, surge absorber or radio noise filter on the output side of the servo drive unit.
\wedge	Correctly connect the output side (terminals U, V, W). The servomotor will not operate if incorrectly connected.
\wedge	Do not directly connect a commercial power supply to the servomotor. Failure to observe this could lead to faults.
0	When using an inductive load such as relays, always connect a diode in parallel to the load as a noise measure.
0	When using a capacitive load such as a lamp, always connect a protective resistor serially to the load to suppress rush currents.
⚠	Do not mistake the direction of the surge absorption diode installed on the DC relay for the control output signal. The signal will not be output due to fault and the protective circuit, such as emergency stop, will be disabled.
\bigcirc	Do not connect or disconnect the connection cables between each unit while the power is ON.
\wedge	Securely tighten the cable connector fixing screw or fixing mechanism. Insufficient fixing could result in dislocation during operation.
9	Always treat the shield cables indicated in this manual with grounding measures such as cable clamps.
\wedge	Separate the signal wire from the drive line/power line when wiring.
\wedge	Use wires and cables having a wire diameter, heat resistance level and bending capacity that match the system.
9	Ground the device according to the requirements of the country where the device is to be used.
\wedge	Wire the heat radiating fins and wires so that they do no contact.

(3) Adjustments

A Check and adjust each parameter before staring operation. Unpredictable operations could occur depending on the machine.

/! Do not make marked adjustments or changes as the operation could become unstable.

(4) Usage methods

0	Install an external emergency stop circuit so that the operation can be stopped and the power turns OFF immediately. A contactor, etc., must be used in addition to the shutoff function in the controller.			
\wedge	Turn OFF the power immediately if any smoke, abnormal noise or odor is generated from the controller, servo drive unit or servomotor.			
	Only a qualified technician may disassemble or repair this product.			
\wedge	Do not modify this product.			
\wedge	Use a noise filter, etc., to reduce the effect of electromagnetic disturbances. Electronic devices used near the servo drive unit could be affected by the electromagnetic disturbances.			
\wedge	Use the controller, servo drive unit, servomotor and regenerative resistor in the designated combination. Failure to observe this could result in fires or faults.			
\bigcirc	The brakes (magnetic brakes) assembled in the servomotor are used for holding, and must not be used for normal braking.			
⚠	There may be cases when the magnetic brakes cannot hold the state because of the life or machine structure (when ball screw and servomotor are coupled via a timing belt, etc.). Install a stopping device on the machine side so that safety can be ensured.			
\wedge	After maintenance or inspection, always carry out a trial operation before starting actual operation.			
A	Do not move the machine's movable range during automatic operation. Do not place hands, feet or face near the spindle during rotation.			
⚠	Use the power (input voltage, input frequency, tolerable instantaneous power failure time) under the power specification conditions given in the Specifications.			
	Turn the NC Card's power ON before turning the base I/O unit's power ON. If the base I/O unit's power is turned ON first, the current will be led to the NC Card from the connection cable. This will prevent the personal computer or the cards in the personal computer from starting up properly.			

(5) Measures during a fault

	If a hazardous situation could arise during a power failure or product fault, use the servomotor with magnetic brakes or provide an external brake mechanism for holding purposes.
	Use a double circuit structure for the magnetic brake's operation circuit so that the brakes will activate even when the external emergency stop signal is issued.
<u> </u>	If an alarm occurs, remove the cause, and secure surrounding safety before resetting the alarm and restarting operation.
	The machine could suddenly restart when power is restored after an instantaneous power failure. Do not near the machine in this case. (Design the machine so that operator safety can be ensured even if the machine restarts.)

(6) Maintenance, inspection and part replacement

Â	The electrolytic capacitor's capacity will drop due to deterioration. To prevent secondary damage due to capacitor's faults, Mitsubishi recommends replacing the electrolytic capacitor after approx. five years when used in a general environment. Contact the Service Center or Service Station for replacements.
Λ	Do not perform a megger test (insulation resistance measurement) during inspection.
0	Save the machining programs, tool data and parameters with an input/output device before replacing the battery.
Λ	Do not short-circuit, charge, overheat, incinerate or disassemble the battery.
Λ	The hard disk unit has a service life, and must be replaced when the life is reached.
Â	Always back up the customer's data stored on the hard disk unit. The customer's data stored on the hard disk unit cannot be guaranteed.

(7) Disposal

▲ CAUTION ▲ Handle this product as general industrial waste. Note that some of the MDS Series products use alternate Freon. These corresponding models must not be handled as general industrial waste and must always be returned to the Service Center or Service Station. (Corresponding models have heat radiating fins on the back of the unit.) ▲ Do not disassemble the controller, servo drive unit or servomotor parts. ▲ Collect and dispose of the spent batteries according to local laws.

(8) General precautions

To explain the details, drawings given in this instruction manual, etc., may show the unit with the cover or safety partition removed. When operating the product, always install the cover or partitions at their original position, and operate as indicated in the instruction manual, etc.

1.	Outline	1
2.		2
	2.1 System Configuration	2
	2.2 List of Configuration Units	3
3.	Installation	5
-	3.1 General Specifications	5
	3.2 General System Diagram	6
	3.3 Installation	8
	3.3.1 Installation Direction and Spacing	8
	3.3.2 Prevention of Foreign Matter Entry	9
	3.3.3 Heat Radiation Countermeasures	10
	3.3.4 Noise Countermeasures	12
4.		15
	4.1 NC Card Connection System Diagram	15
	4.2 NC Card Part Names	16
	4.2.1 Names of HR621 Card Parts	16
	4.2.2 Names of HR623 Card Parts	17
	4.2.3 Names of FCU6-HR655 Unit Parts	18
	4.3 Control Unit Connector Pin Assignment4.4 ISA NC Card Mounting	19 23
	4.4.1 Before Mounting the ISA NC Card	23
	4.4.2 ISA NC Card Mounting Procedure	24
	4.5 PCI NC Card Mounting	27
	4.5.1 Before Mounting the PCI NC Card	27
	4.5.2 PCI NC Card Mounting Procedure	28
5.	Base I/O Unit Connection	31
0.	5.1 Base I/O Unit Outline	31
	5.2 Base I/O Connection System Drawing	32
	5.3 Base I/O Unit Part Names	33
	5.4 Base I/O Unit Connector Pin Assignment	35
	5.5 Base I/O Unit Input/Output Specifications	38
	5.5.1 Rotary Switch Settings	38
	5.5.2 RIO1 Terminator	38
	5.5.3 CF31, CF32 Input Circuit	39
	5.5.4 CF33, CF34 Output Circuit5.5.5 Specifications of ADD ON PCB Connected to CR31	39 39
	5.5.6 Connection of Base I/O Unit Power Supply	39 40
	5.5.7 Examples of DI/DO Connection	41
	5.5.8 Connection of Servo Drive Unit	42
	5.5.9 Connection of Spindle Encoder	42
	5.5.10 Connection of Sensor Signal	43
6.	Relay Card Connection	44
0.	6.1 Relay Card Outline	44
	6.2 Relay Card Connection System Diagram	44
	6.3 Relay Card Part Names	45
	6.4 Relay Card Connector Pin Assignment	46
	6.5 Relay Card Input/Output Specifications	48
	6.5.1 Relay Card Power Connection	48
	6.5.2 Emergency Stop Connection	48
	6.5.3 Connection of Spindle Encoder	49
	6.5.4 Manual Pulse Generator Connection	49
	6.5.5 RS-232C Device Connection	49
	6.6 Installation on the Base I/O Unit	50

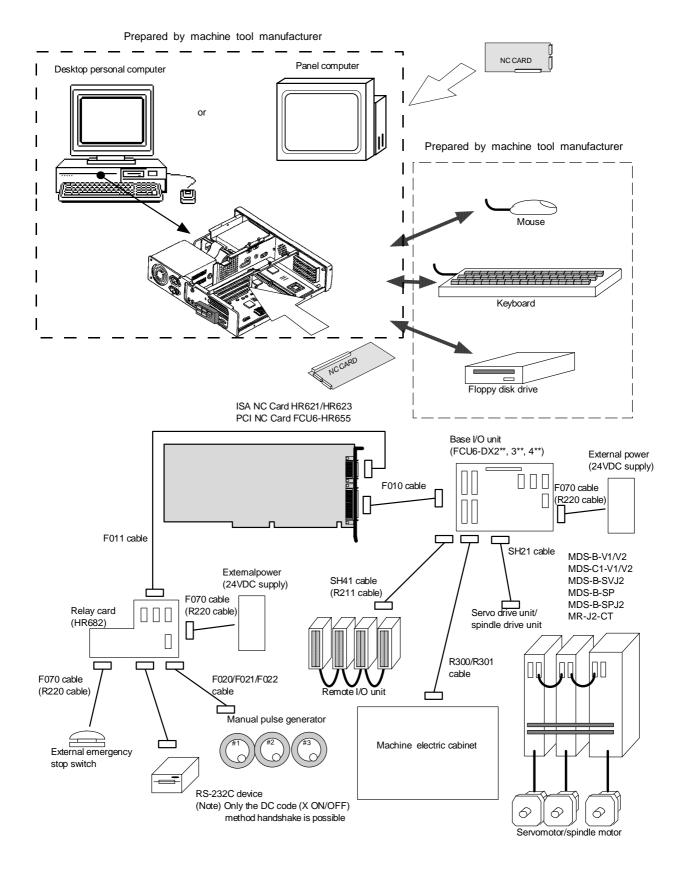
CONTENTS

	nit Connection	51
	Remote I/O Unit	51
	Each Remote I/O Unit Section	52
	n of Remote I/O Power	53
	Digital Signal Input Circuit	54
	Digital Signal Output Circuit	56
7.6 Outline of	Analog Signal Output Circuit	57
	Analog Signal Input Circuit	58
	n of FCUA-DX10*/13*/14* Unit and Machine Control Signal	59
	n of FCUA-DX11* Unit and Machine Control Signal	61
	on of FCUA-DX12* Unit and Machine Control Signal	63
	on of FCUA-DX13* Unit and Handle	65
	f FCUA-DX13* Unit Pulse Input Circuit	66 67
	on of FCUA-DX14* Unit and Analog Input/Output Signal	68
	^f Channel No. when Using Multiple Remote I/O Units /O Unit Input/Output Signal Cables	00 70
	ine Drawings	71
Appendix 1.1	ISA NC Card Outline Drawing (HR621)	71
Appendix 1.2	ISA NC Card Outline Drawing (HR623)	71
Appendix 1.3	PCI NC Card Outline Drawing (FCU6-HR655)	72
Appendix 1.4	Base I/O Unit Outline Drawing	73
Appendix 1.5	Relay Card (independent installation) Outline Drawing	74
Appendix 1.6	Base I/O Unit + Relay Card (add-on) Outline Drawing	75
Appendix 1.7	Remote I/O Unit Outline Drawing	76
Appendix 1.8	Manual Pulse Generator (HD60) Outline Drawing	77
Appendix 1.9	Spindle Encoder (OSE-1024-3-15-68) Outline Drawing	78
Appendix 1.10	Grounding Plate and Clamp Fitting Outline Drawings	79
Appendix 2 Cabl	le Manufacturing Drawings	80
Appendix 2.1	SH21 cable (Servo drive unit)	82
Appendix 2.2	SH41 cable (Remote I/O unit)	83
Appendix 2.3	R031 cable (Analog signal input/output)	84
Appendix 2.4	R041 cable (Manual pulse generator)	85
Appendix 2.5	R042 cable (Manual pulse generator)	86
Appendix 2.6	R211 cable (Remote I/O unit)	87
Appendix 2.7	R220 cable (+24VDC input)	88
Appendix 2.8	R300 cable (Machine input/output)	89
Appendix 2.9	R301 cable (Machine input/output)	90
Appendix 2.10	F010 cable (NC Card)	91
Appendix 2.11	F011 cable (NC Card)	92
Appendix 2.12	F020 cable (Manual pulse generator)	93
Appendix 2.13	F021 cable (Manual pulse generator)	94
Appendix 2.14 Appendix 2.15	F022 cable (Manual pulse generator) F040 cable (Spindle encoder)	95
	F040 cable (Spindle encoder)	96 97
Appendix 2.16 Appendix 2.17	F070 cable (+24VDC input)	97 98
Appendix 2.17 Appendix 2.18	F390 cable (RS232C)	90 99
Appendix 2.18 Appendix 2.19	ENC-SP1 cable (Spindle drive unit)	100
Appendix 2.19 Appendix 2.20	Table of Connector Sets	100
	s for EMC Measures	102
Appendix 3.1	Shield Clamp Fitting	102
Appendix 3.2	Ferrite Core	103
Appendix 3.3	Surge Protector.	104
Appendix 3.4	Selection of Stabilized Power Supply	107

1. Outline

This manual explains MELDASMAGIC64 installation and connection methods centered on the NC Card.

By installing this NC Card in a personal computer expansion slot (ISA bus or PCI bus), and connecting a servo drive unit, servomotor, etc., a custom-made NC unit can be constructed.


This manual assumes that all functions are added, but the actually delivered device may not have all functions.

Refer to the following documents for explanations on the functions.

MELDASMAGIC64 Setup Instruction Manual	BNP-B2191
MELDASMAGIC64 Maintenance Manual	
MELDAS AC Servo and Spindle MDS-A/B Series Specifications Manual	BNP-B3759
MELDAS AC Servo and Spindle MDS-C1 Series Specifications Manual	BNP-C3000
MELDAS AC Servo and Spindle MDS-CH Series Specifications Manual	BNP-C3016
MELDAS AC Servo MDS-B-SVJ2 Series Specification Manual	BNP-B3937
MELDAS AC Servo MDS-B-SPJ2 Series Specification Manual	BNP-B2164

2. Configuration

2.1 System Configuration

2.2 List of Configuration Units

1. NC Card

	Туре	Configuration elements	Details
HR621	NC Card installed in an ISA bus personal computer	HR621	CPU PCB
HR623	NC Card installed in an ISA bus personal computer	HR623	CPU PCB
FCU6-HR655	NC Card installed in an PCI bus personal computer	HR183	CPU PCB
		HR655	I/F PCB

I/O unit (1)		Configuration		
	Туре	Configuration elements	Details	
HR682	HANDLE, ENC, RS-232C,	HR682	With metal spacers. Add-on to FCU6-DX2**	
	emergency stop switch input I/F RS-232C uses only the DC code (X ON/OFF) method handshake.		possible.	
-CU6-DX210	DI (sink/source)/DO (sink) = $48/48$	HR325		
C00-D7210	With servo, RIO, SKIP, ENC I/F		-	
		Aluminum die cast		
-CU6-DX310	DI (sink/source)/DO (sink) = 80/64 With servo, RIO, SKIP, ENC I/F	HR325	Base PCB: DI (sink/source)/DO (sink) = 48/48 Add-on PCB: DI (sink/source)/DO (sink) = 32/1	
		RX323-1		
		Aluminum die cast		
-CU6-DX320	DI (sink/source)/DO (sink) = 80/64 With servo, RIO, SKIP, ENC I/F	HR325	Base PCB: DI (sink/source)/DO (sink) = 48/48 Add-on PCB: DI (sink/source)/DO (sink) = 32/1	
	Analog output 1 point	RX323	Analog output 1 point	
	0 1 1	Aluminum die cast	8 I I	
-CU6-DX330	DI (sink/source)/DO (sink) = 48/48 With servo, RIO, SKIP, ENC I/F	HR325	Base PCB: DI (sink/source)/DO (sink) = 48/48 Add-on PCB: Manual pulse generator 2ch	
	Manual pulse 2ch	RX331	Add-off FCB. Manual pulse generator 201	
	•	Aluminum die cast		
-CU6-DX340	DI (sink/source)/DO (sink) = $48/48$	HR325	Base PCB: DI (sink/source)/DO (sink) = 48/48	
	With servo, RIO, SKIP, ENC I/F Analog input 4 points, analog output	RX341	Add-on PCB: Analog input 4 points, analog output 1 point	
	1 point	Aluminum die cast		
CU6-DX220	DI (sink/source)/DO (sink) = 64/64	HR327		
000 2/1220	With servo, RIO, SKIP, ENC I/F	Aluminum die cast	-	
-CU6-DX410	DI (sink/source)/DO (sink) = 96/80	HR327	Base PCB: DI (sink/source)/DO (sink) = 64/64	
000 07410	With servo, RIO, SKIP, ENC I/F	RX323-1	Add-on PCB: DI (sink/source)/DO (sink) = $32/1$	
	,,,	Aluminum die cast		
CU6-DX420		HR327	Base PCB: DI (sink/source)/DO (sink) = 64/64	
C00-D7420	DI (sink/source)/DO (sink) = 96/80 With servo, RIO, SKIP, ENC I/F Analog output 1 point	RX323	Add-on PCB: DI (sink/source)/DO (sink) = $32/1$	
			Analog output 1 point	
		Aluminum die cast	0 1 1	
-CU6-DX430	DI (sink/source)/DO (sink) = 64/64 With servo, RIO, SKIP, ENC I/F Manual pulse 2ch	HR327	Base PCB: DI (sink/source)/DO (sink) = 64/64 Add-on PCB: Manual pulse generator 2ch	
		RX331		
	•	Aluminum die cast		
-CU6-DX440	DI (sink/source)/DO (sink) = $64/64$	HR327	Base PCB: DI (sink/source)/DO (sink) = 64/64	
	With servo, RIO, SKIP, ENC I/F Analog input 4 points, analog output	RX341	Add-on PCB: Analog input 4 points, analog output 1 point	
	1 point	Aluminum die cast		
-CU6-DX211	DI (sink/source)/DO (source) = 48/48	HR335		
	With servo, RIÓ, SKIP, ENC I/F	Aluminum die cast		
CU6-DX311	DI (sink/source)/DO (source) = 80/64	HR335	Base PCB: DI (sink/source)/DO (source) = 48/	
	With servo, RIÓ, SKIP, ENC I/F	RX324-1	Add-on PCB: DI (sink/source)/DO (source) =	
		Aluminum die cast	32/16	
CU6-DX321	DI (sink/source)/DO (source) = 80/64	HR335	Base PCB: DI (sink/source)/DO (source) = 48/	
000 27021	With servo, RIO, SKIP, ENC I/F	RX324	Add-on PCB: DI (sink/source)/DO (source) =	
	Analog output 1 point	Aluminum die cast	- 32/16 Analog output 1 poir	
-CU6-DX331	DI (sink/source)/DO (source) = 48/48	HR335	Base PCB: DI (sink/source)/DO (source) = 48/	
000 07001	With servo, RIO, SKIP, ENC I/F	RX331	Add-on PCB: Manual pulse generator 2ch	
	Manual pulse 2ch	Aluminum die cast		
CU6-DX341	DI (sink/source)/DO (source) = 48/48	HR335	Base PCB: DI (sink/source)/DO (source) = 48/	
000-07041	With servo, RIO, SKIP, ENC I/F	RX341	Add-on PCB: Analog input 4 points,	
	Analog input 4 points, analog output	Aluminum die cast	analog output 1 point	
	1 point			
-CU6-DX221	DI (sink/source)/DO (source) = 64/64	HR337		
	With servo, RIO, SKIP, ENC I/F	Aluminum die cast		
-CU6-DX411	DI (sink/source)/DO (source) = 96/80	HR337	Base PCB: DI (sink/source)/DO (source) = 64/	
	With servo, RIO, SKIP, ENC I/F	RX324-1	Add-on PCB: DI (sink/source)/DO (source) =	
		Aluminum die cast	32/16	
CU6-DX421	DI (sink/source)/DO (source) = 96/80	HR337	Base PCB: DI (sink/source)/DO (source) = 64/	
	With servo, RIÓ, SKIP, ENC I/F	RX324	Add-on PCB: DI (sink/source)/DO (source) =	
	Analog output 1 point	Aluminum die cast	- 32/16 Ànalog`output 1 po	
CU6-DX431	DI (sink/source)/DO (source) = 64/64	HR337	Base PCB: DI (sink/source)/DO (source) = 64/	
	With servo, RIO, SKIP, ENC I/F	RX331	Add-on PCB: Manual pulse generator 2ch	
	Manual pulse 2ch	Aluminum die cast		
-CU6-DX441	DI (sink/source)/DO (source) = 64/64	HR337	Base PCB: DI (sink/source)/DO (source) = 64/	
200 2/141	With servo, RIO, SKIP, ENC I/F	RX341	Add-on PCB: Analog input 4 points,	
	Analog input 4 points, analog output	Aluminum die cast	analog output 1 point	
	1 point			

2. I/O unit (2)

	Туре	Configuration elements	Details
RX323-1	DI (sink/source)/DO (sink)=32/16	RX323-1	Add-on PCB
RX323	DI (sink/source)/DO (sink)=32/16 Analog output 1 point	RX323	Add-on PCB
RX324-1	DI (sink/source)/DO (source)=32/16	RX324-1	Add-on PCB
RX324	DI (sink/source)/DO (source)=32/16 Analog output 1 point	RX324	Add-on PCB
RX331	Manual pulse generator 2ch	RX331	Add-on PCB
RX341	Analog input 4 points, Analog output 1 point	RX341	Add-on PCB
FCUA-DX100	DI (sink/source)/DO (sink)=32/32	RX311 Case	Base PCB: DI (sink/source)/DO (sink)=32/32
FCUA-DX110	DI (sink/source)/DO (sink)=64/48	RX311	Base PCB: DI (sink/source)/DO (sink)=32/32
		RX321-1	Add-on PCB: DI (sink/source)/ DO (sink)=32/16
		Case	
FCUA-DX120	DI (sink/source)/DO (sink)=64/48	RX311	Base PCB: DI (sink/source)/DO (sink)=32/32
	Analog output 1 point	RX321	Add-on PCB: DI (sink/source)/ DO (sink)=32/16 Analog output 1 point
		Case	
FCUA-DX130	DI (sink/source)/DO (sink)=32/32	RX311	Base PCB: DI (sink/source)/DO (sink)=32/32
	Manual pulse 2ch	RX331	Add-on PCB: Manual pulse generator 2ch
		Case	
FCUA-DX140	DI (sink/source)/DO (sink)=32/32	RX311	Base PCB: DI (sink/source)/DO (sink)=32/32
	Analog input 4 points, Analog output 1 point	RX341	Add-on PCB: Analog input 4 points, analog output 1 point
		Case	
FCUA-DX101	DI (sink/source)/	RX312	Base PCB: DI (sink/source)/DO (source)=32/32
	DO (source)=32/32	Case	
FCUA-DX111	DI (sink/source)/	RX312	Base PCB: DI (sink/source)/DO (source)=32/32
	DO (source)=64/48	RX322-1	Add-on PCB: DI (sink/source)/ DO (source)=32/16
		Case	
FCUA-DX121	DI (sink/source)/	RX312	Base PCB: DI (sink/source)/DO (source)=32/32
	DO (source)=64/48 Analog output 1 point	RX322	Add-on PCB: DI (sink/source)/ DO (source)=32/16 Analog output 1 point
		Case	
FCUA-DX131	DI (sink/source)/	RX312	Base PCB: DI (sink/source)/DO (source)=32/32
	DO (source)=32/32	RX331	Add-on PCB: Manual pulse generator 2ch
	Manual pulse 2ch	Case	
FCUA-DX141	DI (sink/source)/	RX312	Base PCB: DI (sink/source)/DO (source)=32/32
	DO (source)=32/32 Analog input 4 points,	RX341	Add-on PCB: Analog input 4 points, analog output 1 point
	Analog output 1 point	Case	

3. Peripheral devices

Туре		Configuration elements	Details
HD60C	Manual pulse generator		Without MELDAS logo
HD60C-1	Manual pulse generator		With MELDAS logo
Grounding plate D			Grounding plate D set
Grounding plate E			Grounding plate E set

4. Operation unit options

	Туре	Configuration elements	Details
FCU6-HR211	I/O branch plate	HR211 card	
FCU6-HR251	IC card interface	HR251 card	

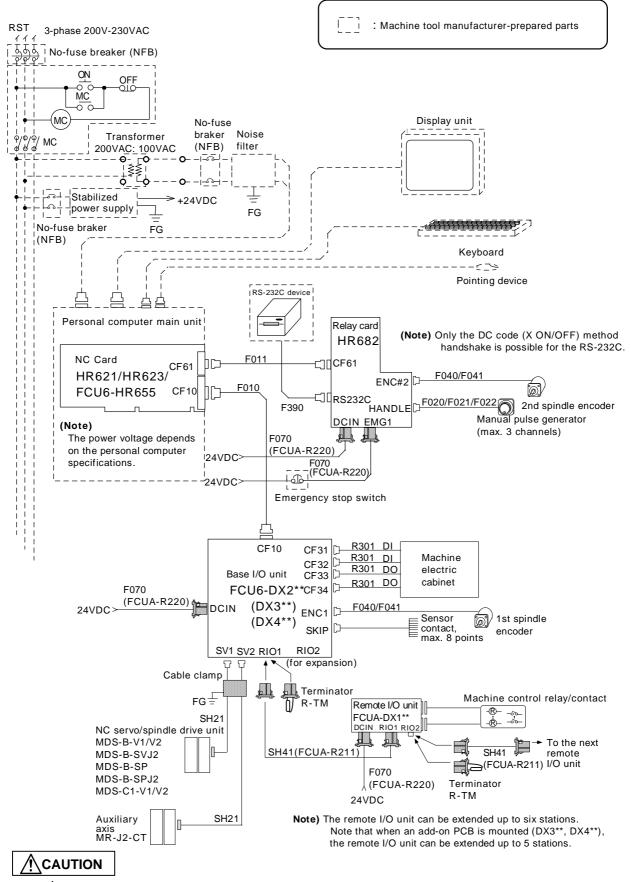
3. Installation

3.1 General Specifications

NC Card peripheral environment conditions

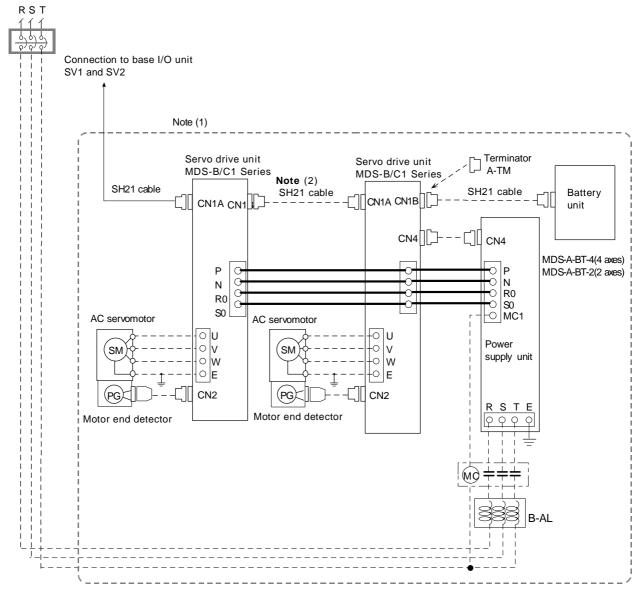
	Type name		HR621/HR623 FCU6-HR655		HR682	
	Unit name		NC Card		Relay card	
			operation		0~55°C	
l	temperature	During	storage		-20~60°C	
era	Ambient	During	operation	40~75%	6 RH (with no dew conde	ensation)
General cificatio	humidity	During	storage	40~75%	6 RH (with no dew conde	ensation)
General specifications	Working atn	nospher	е		No corrosive gas or dus	t
						_
	ହ Power voltage		-	$3.3 \text{VDC} \pm 5\%$		
suo			5VDC ± 2%		24VDC ± 5% Ripple ± 5% (P-P)	
atio				12VDC ± 2%		
specifications			3.3V	-	0.2A (max)	-
Sec	Currei	nt	5V	2.5A (max)		-
ır sl	consump	otion	12V	0.5A (max)	0.7A (max)	-
Power			24V	_		0.5A (max)
Pe	Power drop characteristics			puter 5V: 4.5V s or more (*1)	-	
Heati	Heating value		19W	22W	12W	
Unit size		248.9×107.6×20 (mm)	174.63×106.68×21 (mm)	115×156×30 (mm) (*2)		

(*1) If these characteristics are not satisfied, the NC Card cannot back up the absolute position information of the machine position when the power is turned OFF.


(*2) Excluding spacers

Environmental conditions in electric cabinet

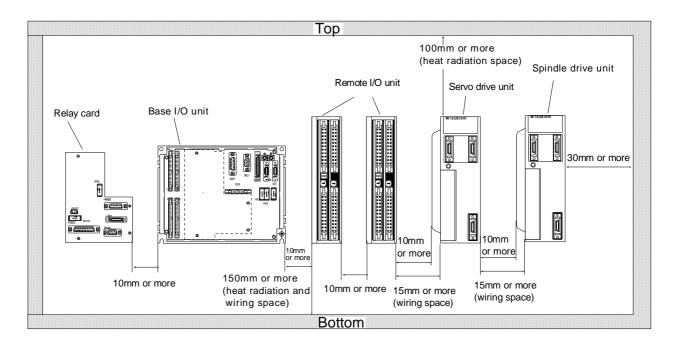
	Туре	name	FCU6-DX210, FCU6-DX211	FCU6-DX220, FCU6-DX221
	Unit name		Base I/O unit	
su	Ambient	During operation	0~5	5°C
General specifications	temperature	During storage	-20~	60°C
ific	Ambient	During operation	45~75% RH (with no	o dew condensation)
bec	humidity	During storage	45~80% RH (with no	o dew condensation)
als	Vibration resistance		4.9m/s ² or less (during operation)
ner	Shock resistance		29.4m/s ² or less (during operation)	
Ge	B Working atmosphere		No corrosive gas or dust	
Power specifications	Power voltage		24VDC ± 5% Ripple ± 5% (P-P)	
Po	Current con	sumption	5V 1A (max), 24V 3.6A (max) (*3)	5V 1A (max), 24V 4.8A (max) (*3)
spe				
Heati	Heating value		90W (*3)	110W (*3)
Mass	Mass		2.0kg	
Unit s	size		220×168×35 (mm)	


(*3) When all DO points are ON

3.2 General System Diagram

A Separate the signal wire from the drive line/power line when wiring.

- (Note) (1) Drive section connections differ according to the configuration of the servo drive unit and motor used.
 - (2) When connecting the spindle drive unit, set the axis No. to the value after the last servo axis.
 - (3) Connect the last axis (the axis to be connected to the battery unit) to the power supply unit.
 - (4) When using a terminator, connect to the last axis.
 - (5) Always wire the control unit's signal wire away from the drive section's drive lines/power lines.

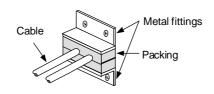

A Separate the signal wire from the drive line/power line when wiring.

3.3 Installation

3.3.1 Installation Direction and Spacing

Each unit is installed in a sealed structure electric cabinet as a principle. Observe the following points when installing into the electric cabinet.

- (1) Install each unit vertically, so that it is visible from the front.
- (2) Consider the heat radiation and wiring of each unit. Refer to the following drawing, and secure space for ventilation.
- (3) Install the personal computer main unit paying particular attention to the specification conditions of the selected personal computer.


(Note) The relay card can be added on to the base I/O unit. Refer to "6.6 Installation to the Base I/O Unit" for the installation method when adding on.

 \triangle Always observe the direction of installation.

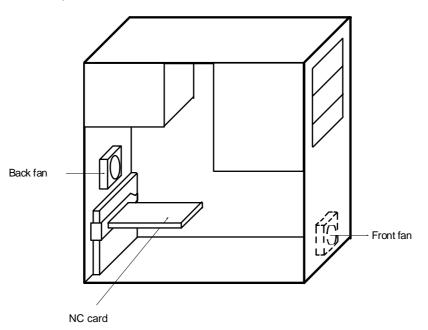
3.3.2 Prevention of Foreign Matter Entry

- (1) The inside of each unit is densely mounted, and is sensitive to dust, etc. Always design a sealed structure electric cabinet, and execute the following measures.
 - Carry out dust-proofing and oil-proofing measures such as sealing the cable inlets with packing.
 - Be particularly careful that outside air does not enter the electric cabinet through heat radiation holes, etc.
 - Seal all gaps.
 - Securely install the door packing.
 - Always install packing around any back cover (when present).
 - Oil can easily accumulate in screw holes on top of the electric cabinet and penetrate into the electric cabinet. Therefore, carry out special countermeasures such as using oil-proof packing.

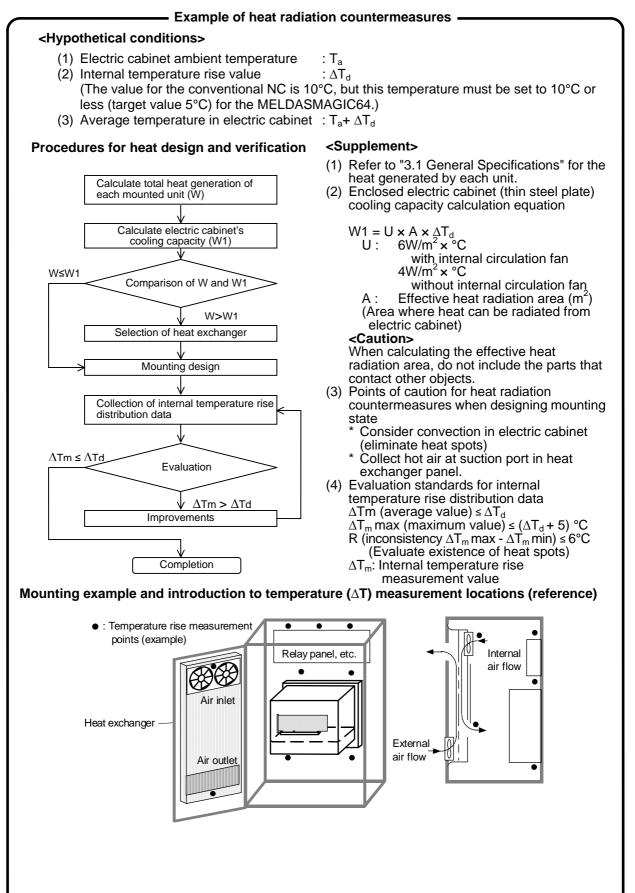
Cable inlet (example)

- (2) After installing each unit, avoid any tool machining in the area surrounding those units. Cutting chips, etc., may adhere to electronic parts and cause a failure.
- (3) Design the electric cabinet so the internal temperature will rise no more than 10°C (target value 5°C or less) over the ambient temperature, and will stay within the temperature conditions of the personal computer, NC Card, etc. (Refer to "3.3.3 Heat Radiation Countermeasures" for details.) Use a panel cooler when required.
- (4) The personal computer display unit may not operate normally due to external magnetic fields. Separate magnetism producing sources (transformers, fans, magnetic switches, solenoid relays, magnet stands, magnetic workpieces, power lines flowing a large current, etc.) from the display unit by 200mm or more.

Note that the magnetism produced by these magnetism producing sources differs individually, and will also differ according to the installation direction, etc. Therefore, the display unit may not operate properly even when separated by 200mm or more from these sources. When determining the layout of magnetism producing sources, also consider the direction, etc., of the magnetism produced, and finally confirm by actual operation of the machine.


A Make sure that conductive foreign matter (screws, metal pieces, etc.) and flammable foreign matter (oil, etc.) does not enter inside any unit.

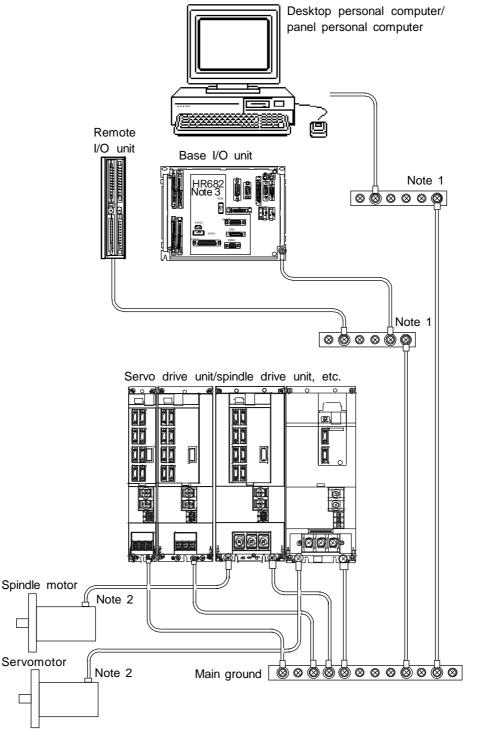
3.3.3 Heat Radiation Countermeasures


In normal NC units, the electric cabinet thermal design is so the electric cabinet ambient temperature is a 0 to 45°C usage condition, and the electric cabinet internal temperature rise is 10°C. However, these conditions do not necessarily apply in MELDASMAGIC64.

This is because the operation of all Mitsubishi-supplied units, including the NC Card, is guaranteed up to 55°C, but the operation of the personal computer is not necessarily guaranteed up to 55°C. Thus, the electric cabinet ambient temperature must first be determined as shown below.

- (1) Determine the electric cabinet ambient temperature $T_a. \ Ex. \ 0 \ to \ 35^{\circ}C$
- (2) Determine the internal temperature rise ΔT . Ex. 5°C
- (3) Select a personal computer. When $T_a max. = 35^{\circ}C$ and $\Delta T = 5^{\circ}C$, the personal computer must have a guaranteed operating temperature of 40°C or more (45°C or more for a margin of safety).
- (4) In this example, the average temperature in the electric cabinet will be 40°C or less according to (1) and (2).
- (Note) 1. When heat accumulates in upper areas, etc., of the unit, circulate the air inside the electric cabinet using a circulation fan.
 - Use an electric cabinet cooler when required.
 Use an electric cabinet cooler type that does not take outside air into the electric cabinet.
 - 3. If the personal computer's heat builds up in the personal computer, circulate the air in the personal computer with a fan.

Please refer to following method for heat radiation countermeasures method.



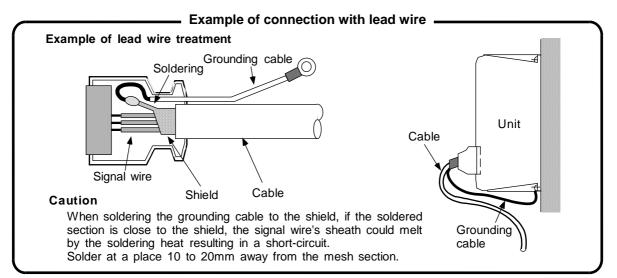
3.3.4 Noise Countermeasures

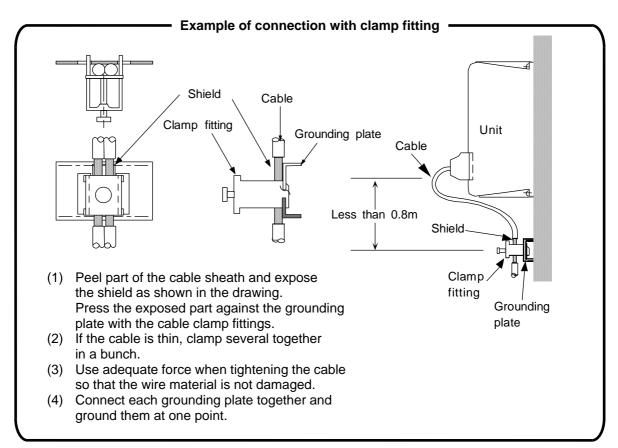
(1) Connection of frame ground (FG)

The frame should basically be grounded at one earth point. When relaying through the grounding plate in the middle of the connection route, separate the desktop personal computer/panel personal computer from the remote I/O unit, and the base I/O unit from the servo drive unit/spindle drive unit, etc.

The NC Card FG is connected to the personal computer electric cabinet with card installation metal fittings.

Note 1: This is not required when directly connecting to the main ground.


Note 2: Connect the motor's grounding cable to the servo drive unit and spindle drive unit.


Note 3: A spacer is used when mounting the HR682 card on the base I/O unit, but when not mounting on the base I/O unit, connect the card to the main ground using the FG terminal.

(2) Shield clamping of cables

The shield of the shield cable connected to the base I/O unit, servo drive unit and spindle drive unit must be connected to the grounding plate to stabilize operation while preventing malfunctioning due to noise.

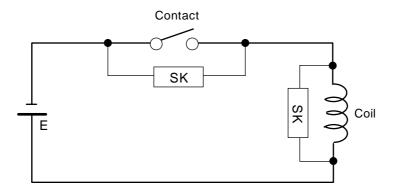
The shield can be connected to the grounding plate with lead wires or clamp fittings. Refer to the following drawings to treat the shield cable.

When manufacturing the clamp fittings and grounding plate, refer to "Appendix 1.10 Grounding Plate and Clamp Fitting Outline Drawings". These can also be ordered from Mitsubishi.

Execute ground treatment by cable clamps, etc., for the shielded cable indicated in this instruction manual.

Cables which require shield clamp with a connector cases are shown following table.

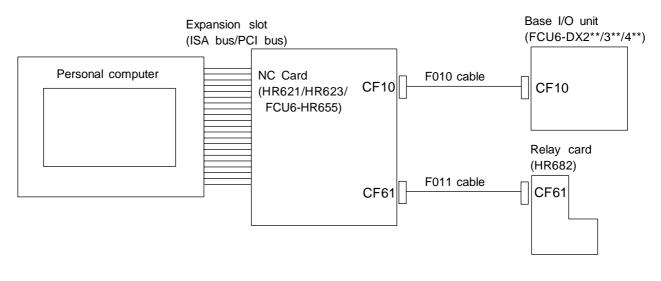
<Shield clamp method>


Fold the wire material shield over the sheath, and wrap copper foil tape over it. Connect the wrapped copper foil tape to the connector case GND plate.

	Connector		Treatment of cable	e ends
Unit name	name	Connection destination	Connection origin	Connection destination
NC Card (HR621/HR623/ FCU6-HR655)	CF10 CF61	Base I/O unit Relay card	(NC Card) Not required (NC Card) Not required	Not required Not required
Base I/O unit (FCU6-DX2**, 3**, 4**)	CF10 SV1 SV2 ENC1 SKIP PI01 PI02	NC Card Servo drive unit Servo drive unit Spindle encoder Skip Remote I/O unit Remote I/O unit	(Base I/O unit) Not required (Base I/O unit) Required	Not required Not required Not required Not required Not required Not required Not required
Relay card (HR682)	CF61 ENC#2 HANDLE RS232C	NC Card Spindle encoder Manual pulse generator RS-232C (I/O device) (Note)	(Relay card) Not required (Relay card) Required (Relay card) Required (Relay card) Required	Not required Not required Not required Not required

(Note) RS-232C uses only the DC code (X ON/OFF) method handshake.

(3) Connecting Spark Killers


Connect a spark killer on the coil or relay contact in parallel for noise countermeasures. Use spark killers which are $0.033 \sim 0.1 \mu$ F, $10 \sim 120 \Omega$.

4. NC Card (HR621/HR623/FCU6-HR655) Connection

4.1 NC Card Connection System Diagram

The NC Card is connected to the personal computer with the expansion slot (ISA bus or PCI bus). The base I/O unit and relay card are connected with a cable.

☆ Turn the NC Card's power ON before turning the base I/O unit's power ON. If the base I/O unit's power is turned ON first, the current will be led to the NC Card from the connection cable. This will prevent the personal computer or the cards in the personal computer from starting up properly.

4.2 NC Card Part Names

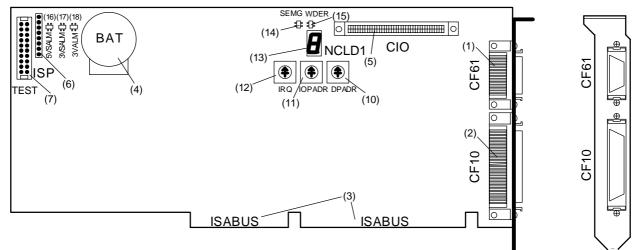
4.2.1 Names of HR621 Card Parts

List of connectors

No.	Name	Function details		
(1)	CF61	This is used in the connection with the relay card (HR682). An F011 cable is connected.		
(2)	CF10	This is used in the connection with the base I/O unit (DX2**, 3**, 4**). An F010 cable is connected.		
(3)	ISABUS	This is connected to the personal computer expansion slot (ISA bus).		
(4)	BAT	This is a battery holder. A Toshiba battery CR2450 is installed.		
(5)	CIO	This is a connector for expansion.		
(6)	ISP	Not used.		
(7)	TEST	Not used.		
(8)	CF62	Not used.		
(9)	S.O. DIMM1, 2	This is the MAGIC 64 memory module connector. Do not remove the memory module.		

List of rotary switches

No.	Name	Function details			
(10)	DPADR	This is used in the address assignment setting of the personal computer expansion region.			
(11)	IOPADR	This is used in the address assignment setting of the personal computer I/O port region.			
(12)	2) IRQ This is used in the level setting of the interrupt request signal to the personal computer CPU.				
<u> </u>					


(Note) Refer to "4.4 ISA NC Card Mounting" for details on setting rotary switches.

LED list

No.	Name	Function details			
(13)	NCLED	This is the 7-segment LED for the NC status display. This LED changes when at startup, during alarms, etc.			
(14)	SEMG	This is the chip LED for the NC system emergency stop display.	When lit (red) : System in emergency stop. When not lit : Normal		
(15)	RWDG	This is the chip LED for the remote communication watchdog display.	When lit (red) : Watchdog alarm. When not lit : Normal		

- ▲ Do not apply voltages on the connector other than those indicated in this manual. Doing so may lead to destruction or damage.
- ▲ Incorrect connections may damage the devices, so connect the cables to the specified connectors.
- \odot Do not connect or disconnect the connection cables between each unit while the power is ON.
- Do not connect or disconnect any PCB while the power is ON.

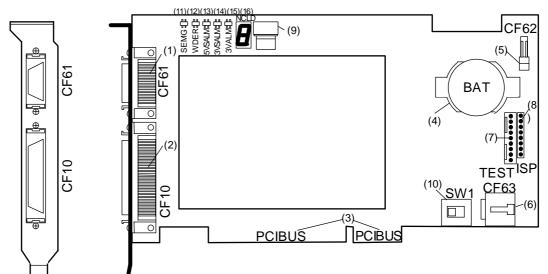
4.2.2 Names of HR623 Card Parts

List of connectors

No.	Name	Function details
(1)	CF61	This is used in the connection with the relay card (HR682). An F011 cable is connected.
(2)	CF10	This is used in the connection with the base I/O unit (DX2**, 3**, 4**). An F010 cable is connected.
(3)	ISABUS	This is connected to the personal computer expansion slot (ISA bus).
(4)	BAT	This is a battery holder. A Toshiba battery CR2450 is installed.
(5)	CIO	This is a connector for expansion.
(6)	ISP	Not used.
(7)	TEST	Not used.

List of rotary switches

No.	Name	Function details				
(10)	DPADR	This is used in the address assignment setting of the personal computer expansion region.				
(11)	IOPADR	This is used in the address assignment setting of the personal computer I/O port region.				
(12)	IRQ	This is used in the level setting of the interrupt request signal to the personal computer CPU.				


(Note) Refer to "4.4 ISA NC Card Mounting" for details on setting rotary switches.

LED list

No.	Name	Function details						
(13)	NCLD1	This is the 7-segment LED for the NC status display. This LED changes when at startup, during alarms, etc.						
(14)	SEMG	This is the chip LED for the NC system emergency stop display.	When lit (red) : System in emergency stop. When not lit : Normal					
(15)	WDER	This is the chip LED for the remote communication watchdog display.	When lit (red) :Watchdog alarm. When not lit :Normal					
(16)	5VSALM	This is the chip LED for the circuit power 5VDC low alarm display.	When lit (red) : 5VDC low When not lit : Normal					
(17)	3VSALM	This is the chip LED for the circuit power 3VDC low alarm display.	When lit (red) :3VDC low When not lit :Normal					
(18)	3VALM	This is the chip LED for the circuit power 3VDC low alarm display.	When lit (red) : 3VDC low When not lit : Normal					

- ▲ Do not apply voltages on the connector other than those indicated in this manual. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections may damage the devices, so connect the cables to the specified connectors.
- \odot Do not connect or disconnect the connection cables between each unit while the power is ON.
- Do not connect or disconnect any PCB while the power is ON.

4.2.3 Names of FCU6-HR655 Unit Parts

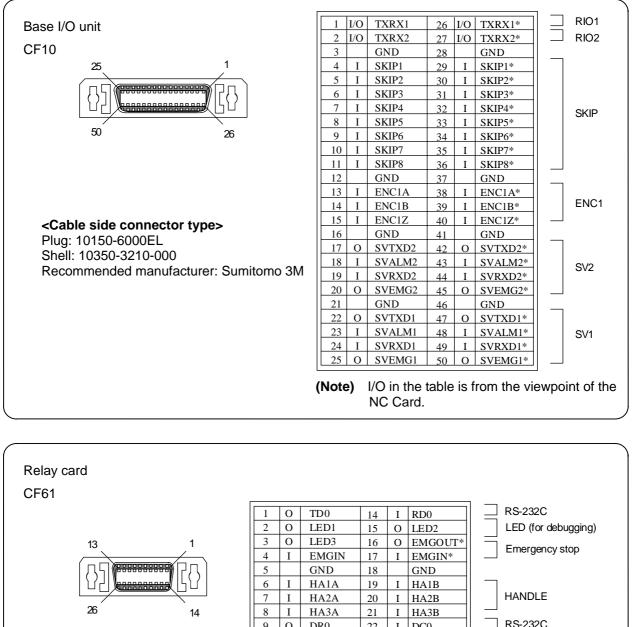
List of connectors

No.	Name	Function details			
(1)	CF61	This is used in the connection with the relay card (HR682). An F011 cable is connected.			
(2)	CF10	This is used in the connection with the base I/O unit (DX2**, 3**, 4**). An F010 cable is connected.			
(3)	PCIBUS	This is connected to the personal computer expansion slot (PCI bus).			
(4)	BAT	This is a battery holder. A Toshiba battery CR2032 is installed.			
(5)	CF62	This is used to input AC FAIL from an external source. (Note 1)			
(6)	CF63	This is used to supply power from an external source. (Note 1)			
(7)	TEST	Not used.			
(8)	ISP	Not used.			

(Note 1) When multiple FCU6-HR655 cards are inserted, the power supplied from the personal computer or panel computer may be insufficient. Supply the power from an external source to CF63 in this case. Input a FAIL signal to CF62 when using an external power supply.

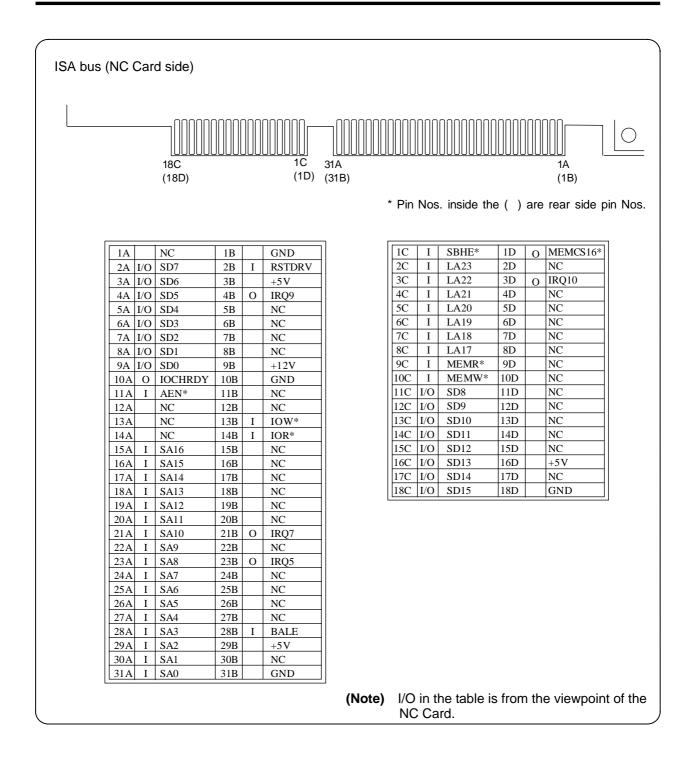
List of switches

No.	Name	Function details
(9)	CDNO	This is used to set the PCI NC Card's station No.
(10)		This sets the power supply method. Set "L" when supplying from the PCI bus, and set "M" when supplying power to CF63 from an external power supply.

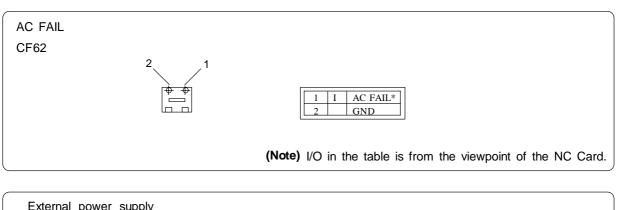

(Note 2) Refer to "4.5 PCI NC Card Mounting" for details on setting rotary switches.

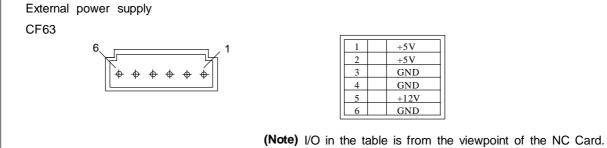
LED list

No.	Name	Function details						
(11)	SEMG	This is the chip LED for the NC system emergency stop display.	When lit (red) : System in emergency stop. When not lit : Normal					
(12)	WDER	This is the chip LED for the remote communication watchdog display.	When lit (red) :Watchdog alarm. When not lit :Normal					
(13)	5VSALM	This is the chip LED for the circuit power 5VDC low alarm display.	When lit (red) : 5VDC low When not lit : Normal					
(14)	3VSALM	This is the chip LED for the circuit power 3VDC low alarm display.	When lit (red) : 3VDC low When not lit : Normal					
(15)	3VALM	This is the chip LED for the circuit power When lit (red) : 3VDC low 3VDC low alarm display. When not lit : Normal						
(16)	NCLD	This is the 7-segment LED for the NC status display. This LED changes when at startup, during alarms, etc.						


- ▲ Do not apply voltages on the connector other than those indicated in this manual. Doing so may lead to destruction or damage.
- \bigtriangleup Incorrect connections may damage the devices, so connect the cables to the specified connectors.
- \odot Do not connect or disconnect the connection cables between each unit while the power is ON.
- \odot Do not connect or disconnect any PCB while the power is ON.

4.3 NC Card Connector Pin Assignment




RS-232C 9 0 DR0 22 I DC0 10 GND 23 GND 11 EN2A 24 Ι EN2A* I ENC#2 12 I EN2B 25 Ι EN2B* EN2Z 13 I 26 I EN2Z* <Cable side connector type> I/O in the table is from the viewpoint of the (Note) Plug: 10126-6000EL NC Card. Shell: 10326-3210-000 Recommended manufacturer: Sumitomo 3M

- ▲ Do not apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections may damage the devices, so connect the cables to the specified connectors.

1												
	ͺͺͺϥϥϥϥϥϥϥ 1Β	ΙΨΑΛΑΛΑΛΑΛΑ	ԱԱԱԱԼ	JŲŲŲ	ԱԴՈՌՈՒՈՒՈՒՈՒ	ιψψψψψψψψι /	JŲŲ IQB	رپر 521	ΙΨΗΨΨΨΨΨΨ Β 6	_ 2B		
	(1A)							.)(52		52A)		
						* Din Noo	in	aida	the () e			ida nin Naa
						PIN NOS	. In	side	ethe () a	re rea	ar s	ide pin Nos.
	IA I	TRST*	1B		N.C.							
	2A	12V	2B	Ι	TCK	5	0A		Connector key	50B		Connector key
	3A I	TMS	3B		GND		1A		Connector key	51B		Connector key
	4A I	TDI	4B	0	TDO		2A	Ι	C/BE0	52B		AD8
	5A 6A O	+5V INTA*	5B 6B		5V 5V		3A 4A	I/O	+3.3V AD6	53B 54B	1/0	AD7 +3.3V
	7A 0	N.C.	7B		N.C.			I/O	AD4	55B	I/O	AD5
	8A	+5 V	8B		N.C.	5	6A		GND	56B		AD3
	9A	N.C.	9B	0	PRSNT1*			I/O	AD2	57B		GND
	10A	 N.C.	10B		N.C.		8A 9A	I/O	Ad0 N.C.	58B 59B	1/0	AD1 N.C.
	11A 12A	GND	11B 12B	0	PRSNT2* GND		0A		N.C.	60B		N.C.
	13A	GMD	12B		GND		1A		+5V	61B		+5V
	14A	N.C.	14B		N.C.	6	2A		+5V	62B		+5 V
	15A I	RST*	15B		GND							
	16A	— N.C	16B	Ι	PCLK							
	17A 18A	N.C. GND	17B 18B		GND N.C.							
	19A	N.C.	19B		N.C.							
	20A I/O	AD30	20B	I/O	AD31							
	21A	+3.3V	21B	I/O	AD29							
	22A I/O	AD28 AD26	22B	1/0	GND							
	23A I/O 24A	GND GND	23B 24B		AD27 AD25							
	25A I/O	AD24	25B	~ ~	+3.3V							
	26A I	IDSEL	26B	Ι	C/BE3*							
	27A	+3.3V AD22	27B	I/O	AD23							
	28A I/O 29A I/O	AD22 AD20	28B 29B	1/0	GND AD21							
	30A	GND	30B		AD19	(No	ote	1) ·	10A and ^r	16A a	are	for +5V (for I
	31A I/O	AD18	31B		+3.3V	-		-				from the
	32A I/O	AD16	32B			(140		_, ,	viewpoint	of th	, is ie N	NC Card.
	33A	+3.3V FRAME*	33B	Ι	C/BE2*							
	34A I 35A	GND	34B 35B	Ι	GND IRDY*							
	36A O	TRDY*	36B		+3.3V							
	37A	GND	37B	0	DEVSEL*							
	38A O	STOP*	38B	_	GND							
	39A	+3.3V N.C.	39B 40B	1 0	LOCK* PERR*							
	40A 41A	N.C.	40B 41B		+3.3V							
	41A 42A	GND	42B	0	SERR*							
	43A I/O	PAR	43B		+3.3V							
	44A I/O	AD15	44B	Ι	C/BE1*							
	45A	+3.3V	45B	I/O								
	46A I/O 47A I/O	AD13 AD11	46B 47B	1/0	GND AD12							
	47A 1/0	GND	47B 48B		AD12 AD10							
	1											

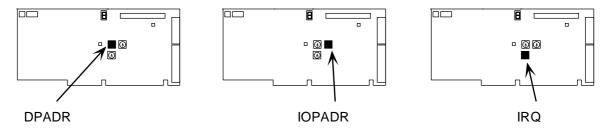
4.4 ISA NC Card Mounting

4.4.1 Before Mounting the ISA NC Card

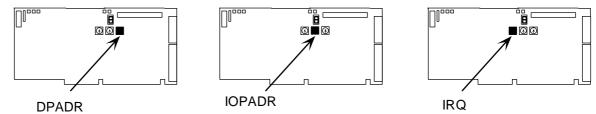
- (1) Before mounting the ISA NC Card, confirm that the control section items below are present.
 - HR621/623 card (ISA bus-compatible NC Card): 1 pc.
 - FCU6-DX2**, DX3** or DX4** unit
 - (Base I/O unit: with aluminum die cast): 1 pc.
 - HR682 card (relay card: L-shaped PCB, with metal spacers): 1 pc.
 - CR2450 (Toshiba button battery): 1 pc.
 - F010 cable (half-pitch 50-pole shielded cable): 1 pc.
 - F011 cable (half-pitch 26-pole shielded cable): 1 pc.
- (2) Insert a battery to the ISA NC Card as shown below.

- ⚠️ Do not short-circuit, charge, overheat, incinerate or disassemble the battery.
- ⚠ Dispose of the spent battery according to local laws.

4.4.2 ISA NC Card Mounting Procedure


Install the software and mount the NC Card following the Setup Instruction Manual (BNP-B2191). The software will not be installed correctly if the software installation and NC Card mounting procedure are mistaken.

Mount the NC Card onto the personal computer with the following procedures.


- (1) Set the DPADR, IOPADR and IRQ rotary switches according to the personal computer memory region, I/O port region and interrupt request signals designated when installing the software.
 - (Note) Before touching the NC Card, touch an exposed metal section of the personal computer to discharge any static electricity.

Pay attention not to touch the NC Card, personal computer chip or circuit.

Location of ISA NC Card (HR621) rotary switches

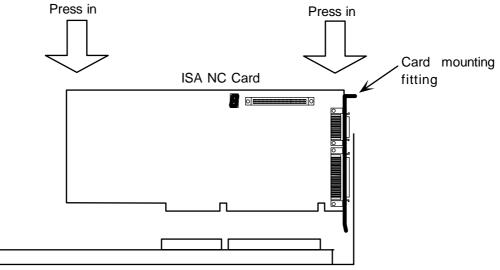
Location of ISA NC Card (HR623) rotary switches

Roles of each rotary switch

- DPADR : This is used in the address setting of the personal computer expansion region.
- IOPADR : This is used in the address setting of the personal computer I/O port region.
- IRQ : This is used in the level setting of the interrupt request signal to the personal computer CPU.

DPADR setting

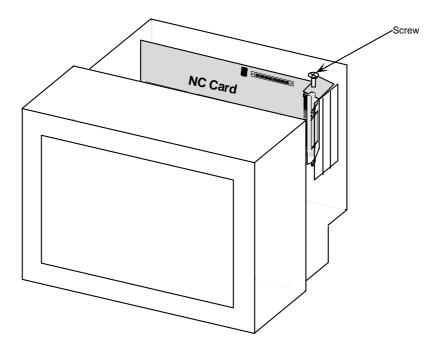
Switch	Expansion region
0	h0D_8000~h0D_FFFF
1	h0D_0000~h0D_7FFF
2	h0C_8000~h0C_FFFF
3	h0C_0000~h0C_7FFF
4	RESERVED
5	RESERVED
6	RESERVED
7	RESERVED
8	RESERVED
9	RESERVED
А	RESERVED
В	RESERVED
С	RESERVED
D	RESERVED
E	RESERVED
F	RESERVED


IOPADR setting

<u> </u>						
Switch	I/O port region					
0	h0120-h0123					
1	h0140-h0143					
2	h0160-h0163					
3	h0180-h0183					
4	h01A0-h01A3					
5	h01C0-h01C3					
6	h01E0-h01E3					
7	h0200-h0203					
8	h0220-h0223					
9	h0240-h0243					
А	h0260-h0263					
В	h0280-h0283					
С	h02A0-h02A3					
D	h02C0-h02C3					
E	h02E0-h02E3					
F	h0300-h0303					

IRQ setting

Switch	Interrupt request signal
0	None
1	IRQ5
2	IRQ7
4	IRQ9
8	IRQ10


- (2) Following the instructions in the personal computer manual, remove the personal computer cover. (Note) Follow the precautions instructed in the personal computer manual. Confirm that the personal computer power is OFF, and that the power cable is disconnected.
- (3) After confirming that there is a vacant ISA bus slot, remove the slot cover of the selected ISA bus slot.
 - (Note) Do not misplace the slot cover screw as it is used to fix the ISA NC Card onto the personal computer.
- (4) Holding the card installation metal fittings and the ends of the ISA NC Card, so as to push in the NC Card upper end, insert the card all the way into the personal computer ISA bus slot.
 - (Note) The ISA BUS slot insertion orientation is predetermined. Insert the card so that the card mounting fitting comes to the slot cover position.

Personal computer ISA bus slot

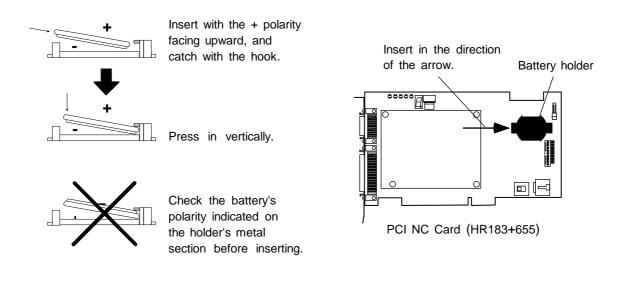
(5) Using the fixing screw of the slot cover removed in mounting step 3, fix the ISA NC Card to the personal computer.

(Note) Securely tighten the screw.

- (6) Following the instructions in the personal computer manual, install the personal computer cover removed in mounting step 2.
- (7) Reconnect the personal computer power cables.(Note) Do not turn the personal computer ON yet.
- (8) Connect the two relay cables (F010 and F011) to the two connectors (CF10 and CF61) on the card installation metal fitting section of the ISA NC Card.
 (Note) Connect the F010 cable to the CF10 connector, and the F011 cable to the CF61 connector.
- (9) Connect the F010 and F011 cables to the base I/O unit and relay card.
 (Note) Connect the F010 cable to the CF10 connector on the base I/O unit, and the F011 cable to

This completes the ISA NC Card (HR621/623) mounting.

the CF61 connector on the relay card.


(10) Install the MELDASMAGIC64 software into the personal computer while the ISA NC Card is mounted.

(Note) Install the software and mount the NC Card following the Setup Instruction Manual (BNP-B2191).

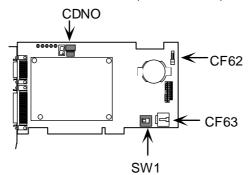
4.5 PCI NC Card Mounting

4.5.1 Before Mounting the PCI NC Card

- (1) Before mounting the PCI NC Card, confirm that the control section items below are present.
 - FCU6-HR655 unit (PCI bus-compatible NC Card): 1 pc.
 - FCU6-DX2**, DX3** or DX4** unit
 - (Base I/O unit: with aluminum die cast): 1 pc.
 - HR682 card (relay card: L-shaped PCB, with metal spacers): 1 pc.
 - CR2032 (Toshiba button battery): 1 pc.
 - F010 cable (half-pitch 50-pole shielded cable): 1 pc.
 - F011 cable (half-pitch 26-pole shielded cable): 1 pc.
- (2) Insert a battery to the PCI NC Card as shown below.

- ⚠️ Do not short-circuit, charge, overheat, incinerate or disassemble the battery.
- ⚠ Dispose of the spent battery according to local laws.

4.5.2 PCI NC Card Mounting Procedure

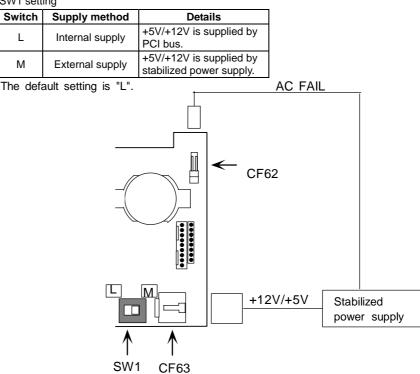

Install the software and mount the NC Card following the Setup Instruction Manual (BNP-B2191). The software will not be installed correctly if the software installation and NC Card mounting procedure are mistaken.

Mount the NC Card onto the personal computer with the following procedures.

- (1) Set the rotary switch CDNO and slide switch SW1.
 - Before touching the NC Card, touch an exposed metal section of the personal computer to (Note) discharge any static electricity.

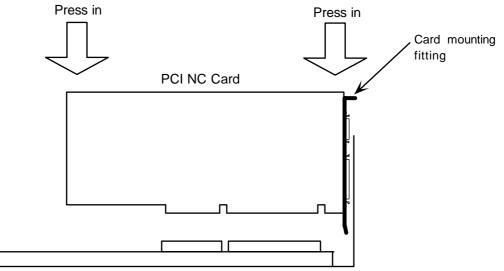
Pay attention not to touch the NC Card, personal computer chip or circuit.

Location of PCI NC Card (FCU6-HR655) switches


Roles of each switch

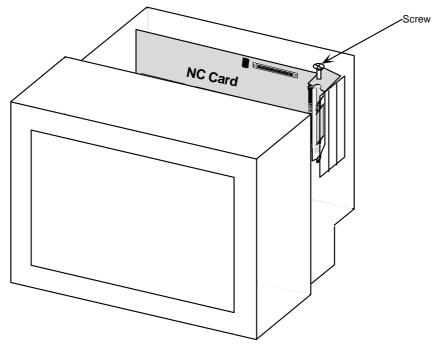
- CDNO (rotary switch): Use to set the PCI NC Card's station No.
- SW1 (slide switch): Use to set the PCI NC Card's power supply (internal/external).

011				
CDNO setting				
Switch	Card			
0	1st card			
1	2nd card			
2	3rd card			
3	4th card			
4	5th card			
5	6th card			
6	7th card			
7	8th card			
8	9th card			
9	10th card			
A	11th card			
В	12th card			
С	13th card			
D	14th card			
E	15th card			
F	16th card			


The default setting is "0".

SW1 setting

Connect a stabilized power supply to the CF62 and CF63 connectors when using an external power supply.


- (2) Following the instructions in the personal computer manual, remove the personal computer cover. (Note) Follow the precautions instructed in the personal computer manual. Confirm that the personal computer power is OFF, and that the power cable is disconnected.
- (3) After confirming that there is a vacant PCI bus slot, remove the slot cover of the selected PCI bus slot.
 - (Note) Do not misplace the slot cover screw as it is used to fix the PCI NC Card onto the personal computer.
- (4) Holding the card installation metal fittings and the ends of the PCI NC Card, so as to push in the NC Card upper end, insert the card all the way into the personal computer PCI bus slot.
 - (Note) There is a set orientation for inserting the PCI NC Card into the PCI bus slot. Insert the card so that the card installation fitting comes to the slot cover's position.

Personal computer PCI bus slot

(5) Using the fixing screw of the slot cover removed in mounting step 3, fix the PCI NC Card to the personal computer.

(Note) Securely tighten the screw.

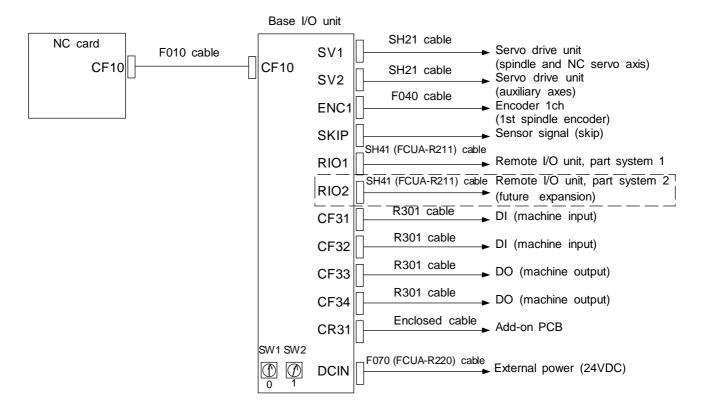
- (6) Following the instructions in the personal computer manual, install the personal computer cover removed in mounting step 2.
- (7) Reconnect the personal computer power cables.(Note) Do not turn the personal computer ON yet.
- (8) Connect the two relay cables (F010 and F011) to the two connectors (CF10 and CF61) on the card installation metal fitting section of the PCI NC Card.
 (Note) Connect the F010 cable to the CF10 connector, and the F011 cable to the CF61 connector.
- (9) Connect the F010 and F011 cables to the base I/O unit and relay card.
 (Note) Connect the F010 cable to the CF10 connector on the base I/O unit, and the F011 cable to

This completes the PCI NC Card (FCU6-HR655) mounting.

the CF61 connector on the relay card.

- (10) Install the MELDASMAGIC64 software into the personal computer while the PCI NC Card is mounted.
 - (Note) Do not change the personal computer's station No. or the power supply method while installing the software. Install the software and mount the NC Card following the Setup Instruction Manual (BNP-B2191).

5. Base I/O Unit (FCU6-DX2**/3**/4**) Connection

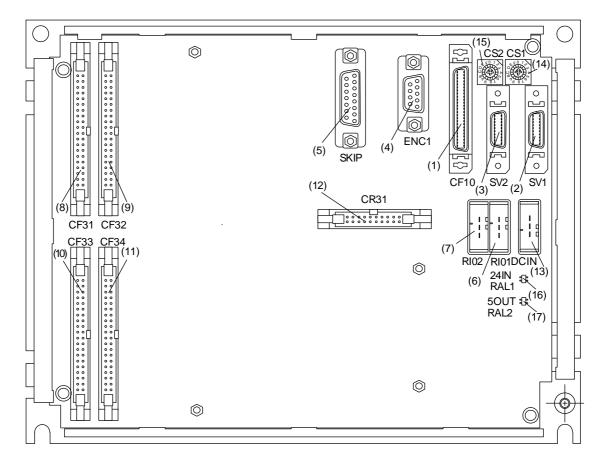

5.1 Base I/O Unit Outline

The base I/O unit is used in the connection of the machine input/output (DI/DO), servo drive unit, spindle encoder, skip and remote I/O unit. There must be one base I/O unit for each NC Card. Depending on the base I/O unit type, connection is possible with analog input, analog output and a manual pulse generator.

The following shows a list of base I/O units and add-on PCBs.

Name	Туре	No. of machine input/ output points	Other interfaces	
Base I/O	FCU6-DX210	DI (sink/source)/DO (sink)=48/48	SV1, SV2, ENC1, SKIP, RIO1, RIO2,	
unit	FCU6-DX211	DI (sink/source)/DO (source)=48/48	CR31 (for add-on PCB)	
	FCU6-DX220	DI (sink/source)/DO (sink)=64/64		
	FCU6-DX221	DI (sink/source)/DO (source)=64/64		
	FCU6-DX310	DI (sink/source)/DO (sink)=80/64	SV1, SV2, ENC1, SKIP, RIO1, RIO2	
	FCU6-DX311	DI (sink/source)/DO (source)=80/64	Add-on PCB: RX323-1 (DO is sink type)	
	FCU6-DX410	DI (sink/source)/DO (sink)=96/80	: RX324-1	
	FCU6-DX411	DI (sink/source)/DO (source)=96/80	(DO is source type)	
	FCU6-DX320	DI (sink/source)/DO (sink)=80/64	SV1, SV2, ENC1, SKIP, RIO1, RIO2,	
	FCU6-DX321	DI (sink/source)/DO (source)=80/64	Analog output 1 point Add-on PCB: RX323	
	FCU6-DX420	DI (sink/source)/DO (sink)=96/80	(DO is sink type) : RX324	
	FCU6-DX421	DI (sink/source)/DO (source)=96/80	(DO is source type)	
	FCU6-DX330	DI (sink/source)/DO (sink)=48/48	SV1, SV2, ENC1, SKIP, RIO1, RIO2,	
	FCU6-DX331	DI (sink/source)/DO (source)=48/48	HANDLE2ch	
	FCU6-DX430	DI (sink/source)/DO (sink)=64/64	Add-on PCB: RX331	
	FCU6-DX431	DI (sink/source)/DO (source)=64/64		
	FCU6-DX340	DI (sink/source)/DO (sink)=48/48	SV1, SV2, ENC1, SKIP, RIO1, RIO2,	
	FCU6-DX341	DI (sink/source)/DO (source)=48/48	Analog input 4 points, analog output	
	FCU6-DX440	DI (sink/source)/DO (sink)=64/64	1 point Add-on PCB: RX341	
	FCU6-DX441	DI (sink/source)/DO (source)=64/64		
Add-on	RX323-1	DI (sink/source)/DO (sink)=32/16	None	
PCB	RX323	DI (sink/source)/DO (sink)=32/16	Analog output 1 point	
	RX324-1	DI (sink/source)/DO (source)=32/16	None	
	RX324	DI (sink/source)/DO (source)=32/16	Analog output 1 point	
	RX331	None	HANDLE2ch	
	RX341	None	Analog input 4 points, analog output 1 point	

(Note) Refer to "7. Remote I/O Unit Connection" for add-on PCB connections.


5.2 Base I/O Connection System Drawing

(Note) Refer to "7. Remote I/O Unit Connection" for add-on PCB connections.

⚠ Turn the NC Card's power ON before turning the base I/O unit's power ON. If the base I/O unit's power is turned ON first, the current will be led to the NC Card from the connection cable. This will prevent the personal computer or the cards in the personal computer from starting up properly.

5.3 Base I/O Unit Part Names

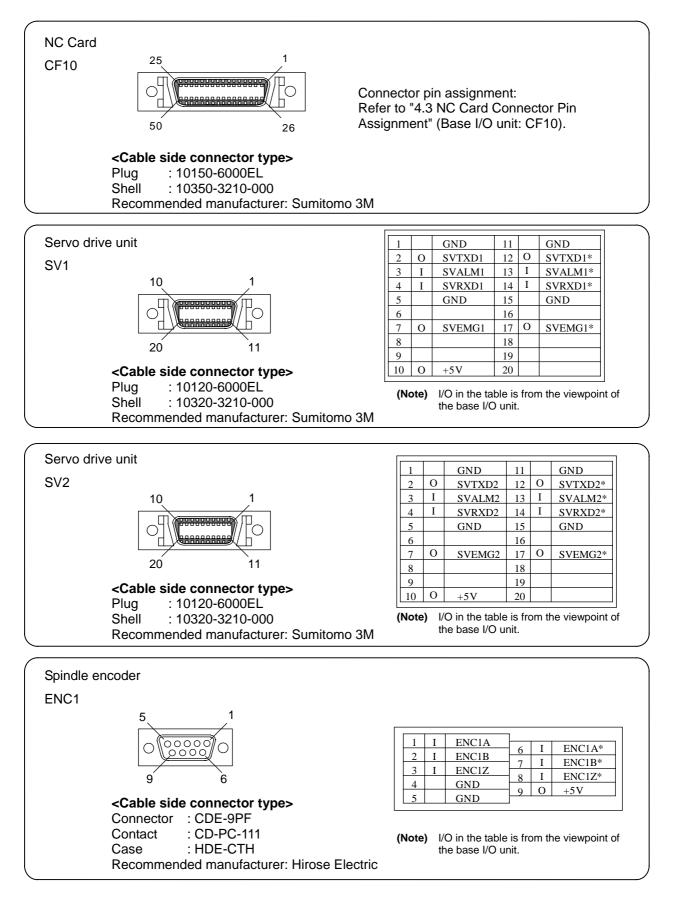
List of connectors

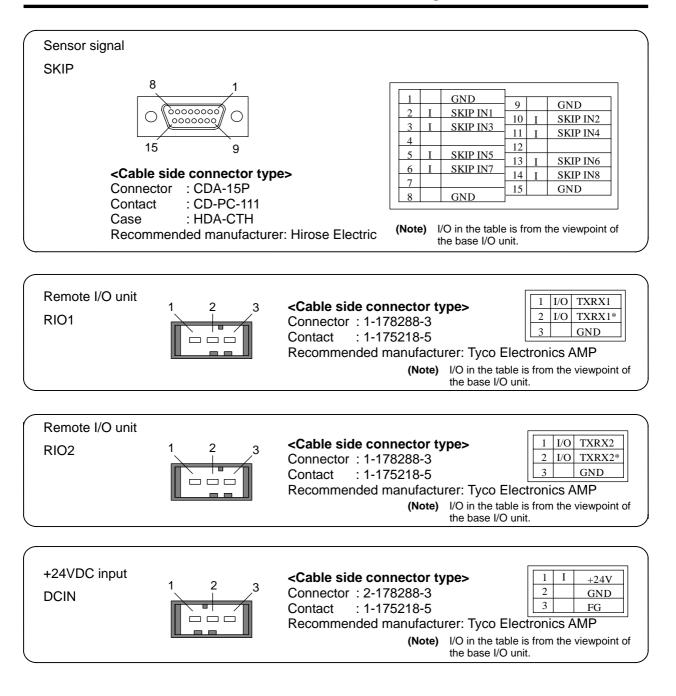
		Unit name					
		FCU6-DX210	FCU6-DX211	FCU6-DX220	FCU6-DX221		
No.	Name	Function					
(1)	CF10	This is used in the connection with the NC Card. An F010 cable is connected.					
(2)	SV1	This is connected to the servo of	drive unit 1st part system (for spi	ndles and NC servo axes).			
(3)	SV2	This is connected to the servo of	drive unit 2nd part system (for au	xiliary axes).			
(4)	ENC1	This is connected to the encode	er 1st channel (1st spindle encoc	ler).			
(5)	SKIP	This is the sensor signal (skip)	input connection. Up to eight poi	nts can be used.			
(6)	RIO1		the remaining six occupied stati		eight. Because two stations are en an add-on PCB is used, the		
(7)	RIO2	This is connected to the remote I/O unit 2nd part system. The max. No. of occupied stations is eight. Eight occupied stations can be used. For future expansion.					
(8)	CF31	This is used in the connection of the station No. (normally station No. 0) machine input signal set by the CS1 rotary switch.					
(0)	CF31	DI: 32 (sink/source)	DI: 32 (sink/source)	DI: 32 (sink/source)	DI: 32 (sink/source)		
(9)	CF32	This is used in the connection of	of the station No. (normally statio	n No. 1) machine input signal se	t by the CS2 rotary switch.		
(9)	0F32	DI: 16 (sink/source)	DI: 16 (sink/source)	DI: 32 (sink/source)	DI: 32 (sink/source)		
(10)	CF33	This is used in the connection of	of the station No. (normally statio	n No. 0) machine output signal s	set by the CS1 rotary switch.		
(10)	0155	DO: 32 (sink type)	DO: 32 (source type)	DO: 32 (sink type)	DO: 32 (source type)		
(11)	CF34	This is used in the connection of	of the station No. (normally statio	n No. 1) machine output signal s	set by the CS2 rotary switch.		
(11)	0154	DO: 16 (sink type)	DO: 16 (source type)	DO: 32 (sink type)	DO: 32 (source type)		
(12)	CR31	This is a connector for an add-	on PCB. It cannot be used unless	s using an add-on PCB.			
(13)	DCIN	24VDC must be supplied by ex	ternal power. Refer to "3.1 Gene	ral Specifications" for power spe	cifications.		

- \triangle Do not apply voltages on the connector other than those indicated in this manual. Doing so may lead to destruction or damage.
- ▲ Incorrect connections may damage the devices, so connect the cables to the specified connectors.
- \odot Do not connect or disconnect the connection cables between each unit while the power is ON.
- Do not connect or disconnect any PCB while the power is ON.

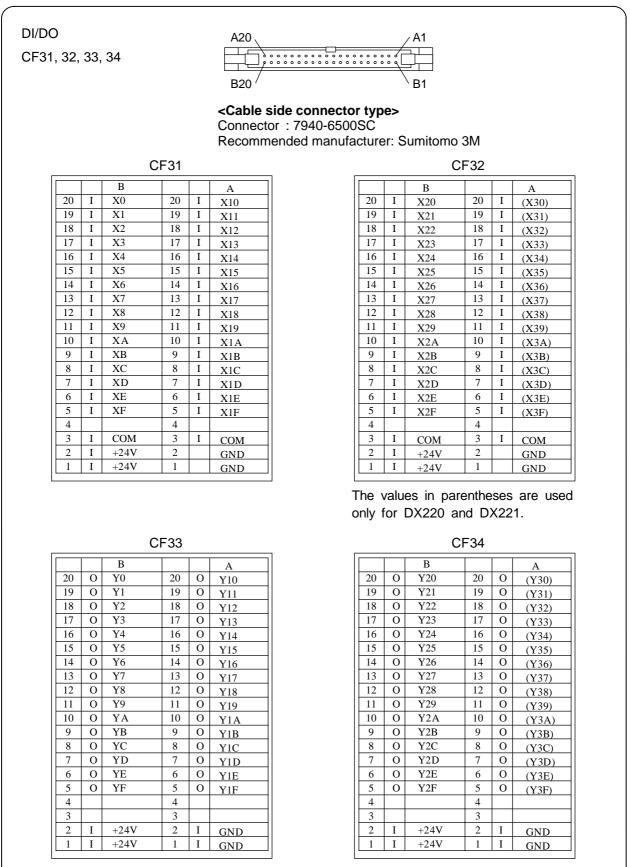
5. Base I/O Unit Connection 5.3 Base I/O Unit Part Names

List of rotary switches


No.	Name	Function
(14)	CS1	This is used in the station No. setting of the CF31 and CF33 machine input/output signals.
(15)	CS2	This is used in the station No. setting of the CF32 and CF34 machine input/output signals.


Rotary switch	Station	Device as	signment
setting value	No.	DI	DO
0	0	X00~X1F	Y00~Y1F
1	1	X20~X3F	Y20~Y3F
2	2	X40~X5F	Y40~Y5F
3	3	X60~X7F	Y60~Y7F
4	4	X80~X9F	Y80~Y9F
5	5	XA0~XBF	YA0~YBF
6	6	XC0~XDF	YC0~YDF
7	7	XE0~XFF	YE0~YFF
8~F	Cannot be used		

LED list


No.	Name	Function					
(16)	24IN	This is the LED for the 24VDC input display.	When lit (green) : 24VDC being supplied. When not lit : 24VDC supply OFF.				
(16)	RAL1	This is the LED for the onboard remote I/O 1st station (CS1 setting station No.) communication alarm display.	When lit (red) : Communication alarm. When not lit : Normal				
(17)	5OUT	This is the LED for the circuit power 5VDC output display.	When lit (green) : Outputting 5VDC. When not lit : 5VDC output OFF.				
(17)	RAL2	This is the LED for the onboard remote I/O 2nd station (CS2 setting station No.) communication alarm display.	When lit (red) : Communication alarm. When not lit : Normal				

5.4 Base I/O Unit Connector Pin Assignment

- ▲ Do not apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections may damage the devices, so connect the cables to the specified connectors.

The values in parentheses are used only for DX220 and DX221.

(Note) I/O in the table is from the viewpoint of the base I/O unit.

5.5 Base I/O Unit Input/Output Specifications

5.5.1 Rotary Switch (CS1 and CS2) Settings

Normal settings

	-
CS1	0
CS2	1

The base I/O unit No. of occupied stations is two (when an add-on PCB is not used).

- (Note) Also refer to "7.14 Setting of Channel No. When Using Multiple Remote I/O Units" for rotary switch (CS1 and CS2) settings of the base I/O unit.
- Relation between rotary switches and DI/DO connectors

CS1	DI: CF31, DO: CF33
CS2	DI: CF32, DO: CF34

• Relation between rotary switches and device assignments

Setting	Station	Device as	No. of I/O	
value	No.	DI	DO	points (max)
0	0	X00~X1F	Y00~Y1F	32 points
1	1	X20~X3F	Y20~Y3F	32 points
2	2	X40~X5F	Y40~Y5F	32 points
3	3	X60~X7F	Y60~Y7F	32 points
4	4	X80~X9F	Y80~Y9F	32 points
5	5	XA0~XBF	YA0~YBF	32 points
6	6	XC0~XDF	YC0~YDF	32 points
7	7	XE0~XFF	YE0~YFF	32 points
8~F	Cannot be	used		

Station No. settings of add-on PCBs

When using an add-on PCB, set the station No. using the rotary switch on the add-on PCB. This rotary switch corresponds to connectors CR21 and CR22 of the add-on PCB. The setting values, station Nos. and device assignments are as shown in the table above.

(Note) Refer to "5.1 Base I/O Unit Outline" for types of add-on PCBs. One station is occupied when using RX331 (manual pulse generator) and RX341 (analog input/output) also.

5.5.2 RIO1 Terminator

Connect a terminator to the final end of the remote I/O unit connected to the RIO1. When not using any remote I/O unit, connect a terminator to the base I/O unit RIO1. Terminator type: R-TM Recommended manufacturer: Tyco Electronics AMP

5.5.3 CF31, CF32 Input Circuit

Refer to "7.4 Outline of Digital Signal Input Circuit" for the base I/O unit CF31 and CF32 input	t circuits.
--	-------------

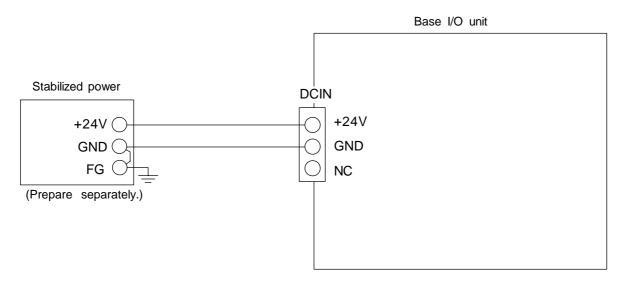
1	Unit name	FCU6-DX210	FCU6-DX211	FCU6-DX220	FCU6-DX221
2	Card name	HR325	HR335	HR327	HR337
3	Input type	Sink/source	Sink/source	Sink/source	Sink/source
4	COM pin connection	+24V/GND	+24V/GND	+24V/GND	+24V/GND
5	No. of input points	48 points	48 points	64 points	64 points
6	Pin used for input	X00~X2F	X00~X2F	X00~X3F	X00~X3F

5.5.4 CF33, CF34 Output Circuit

Refer to "7.5 Outline of Digital Signal Output Circuit" for the base I/O unit CF33 and CF34 output circuits.

1	Unit name	FCU6-DX210	FCU6-DX211	FCU6-DX220	FCU6-DX221
2	Card name	HR325	HR335	HR327	HR337
3	Output type	Sink type	Source type	Sink type	Source type
4	Output current	60mA/point	60mA/point	60mA/point	60mA/point
5	No. of output points	48 points	48 points	64 points	64 points
6	Pin used for output	Y00~Y2F	Y00~Y2F	Y00~Y3F	Y00~Y3F

5.5.5 Specifications of ADD ON PCB Connected to CR31

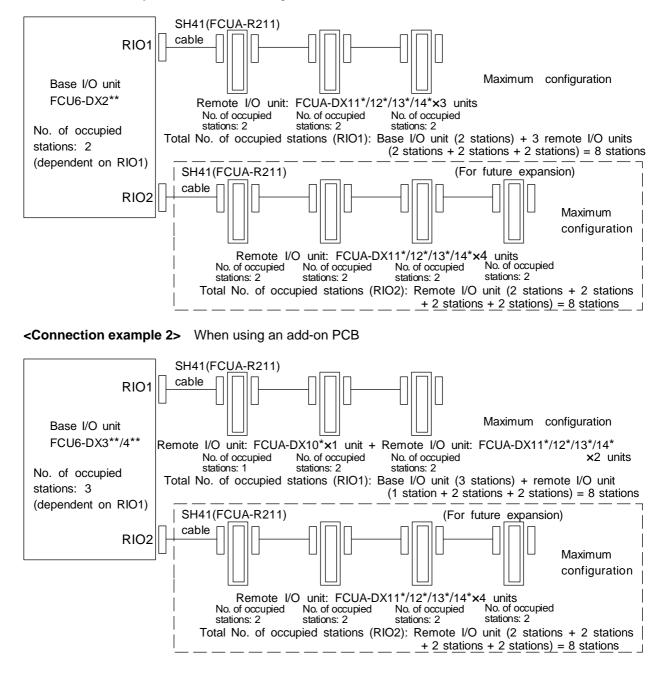

Refer to "7. Remote I/O Unit Connection" for add-on PCB specifications. One add-on PCB can be installed on the base I/O unit, and it occupies one station. Reference items are as in the following table.

	Name	Reference item	Reference connector name
1	RX323-1	7.9 Connection of FCUA-DX11* unit and machine control signal	FCUA-DX110: DI-R, DO-R
2	RX323	7.10 Connection of FCUA-DX12* unit and machine control signal	FCUA-DX120: DI-R, DO-R
3	RX324-1	7.9 Connection of FCUA-DX11* unit and machine control signal	FCUA-DX111: DI-R, DO-R
4	RX324	7.10 Connection of FCUA-DX12* unit and machine control signal	FCUA-DX121: DI-R, DO-R
5	RX331	7.11 Connection of FCUA-DX13* unit and handle	FCUA-DX13*: HANDLE
6	RX341	7.13 Connection of FCUA-DX14* unit and analog input/output signal	FCUA-DX14*: AIO

Refer to "7.6 Outline of Analog Signal Output Circuit" for the analog output specifications. Refer to "7.7 Outline of Analog Signal Input Circuit" for the analog input specifications.

5.5.6 Connection of Base I/O Unit Power Supply

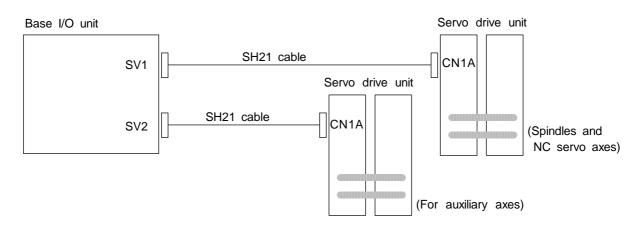
Supply the +24V power to the base I/O unit from the DCIN connector.


(Note) A +24V power supply must be input for both the sink type and source type.

- ▲ Do not apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections may damage the devices, so connect the cables to the specified connectors.

5.5.7 Examples of DI/DO Connection

There are two types of MELDASMAGIC64 DI/DO; the base I/O unit and remote I/O unit. Normally, one base I/O unit is used, a remote I/O unit is connected to RIO1 or RIO2 (for future expansion), and the No. of I/O points is configured in combination with the user specifications. Refer to "7. Remote I/O Unit Connection" for information about remote I/O units.

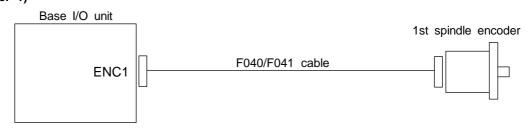


- ▲ Do not apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- ▲ Incorrect connections may damage the devices, so connect the cables to the specified connectors.

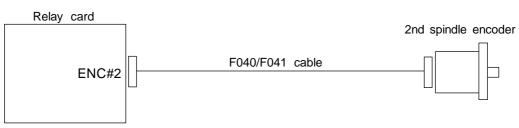
5.5.8 Connection of Servo Drive Unit

Connect the servo drive unit to the base I/O unit SV1 (for spindles and NC servo axes) and SV2 (for peripheral axes).

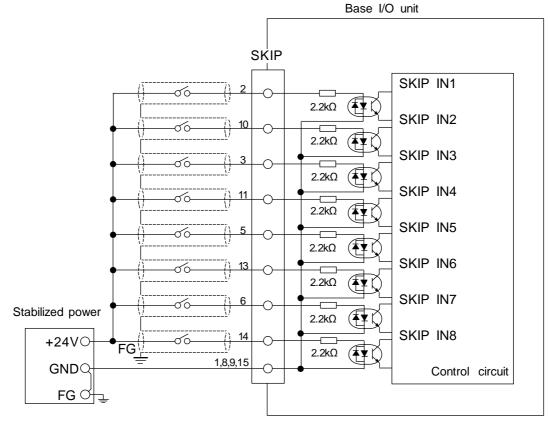
Refer to "MELDAS AC Servo and Spindle MDS-A/B Series Specifications Manual (BNP-B3759) MDS-C1 Series Specifications Manual (BNP-C3000)" for servo drive unit details.


<Related sections>

Cable manufacturing drawing: "Appendix 2.1 SH21 cable" Connector pin assignment: "5.4 Base I/O unit connector pin assignment" - servo drive unit (SV1, SV2)


5.5.9 Connection of Spindle Encoder

Connect the spindle encoder to ENC1 on the base I/O unit. When connecting two channels, connect the second channel to ENC#2 on the relay card (HR682).


<Related sections>

Outline drawing: Appendix 1 Cable manufacturing drawing: "Appendix 2.15 F040 cable", "Appendix 2.16 F041 cable" Connector pin assignment: "5.4 Base I/O unit connector pin assignment" - encoder (ENC1) "6.4 Relay card connector pin assignment" - encoder (ENC#2)

5.5.10 Connection of Sensor Signal (skip)

Connect the sensor signal (skip) to SKIP on the base I/O unit. The sensor signal is used for processing the high-speed signals. Always shield the cable.

(1) Sensor signal (skip) cable

(2) Input conditions

Use the input signal within the following condition range.

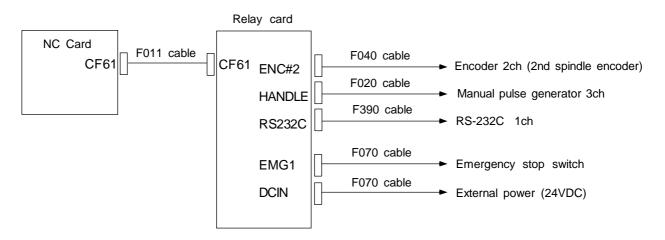
1	Input voltage when external contact is ON	25.2V or more	
2	Input current when external contact is ON	9mA or more	Tan
3	Input voltage when external contact is OFF	4V or less	+24V - Ton
4	Input current when external contact is OFF	1mA or less	
5	Input signal hold time (Ton)	2ms or more	
6	Internal response time	0.08ms or less	
7	Machine side contact capacity	+30V or more, 16mA or more	Ton ≥ 2ms

<Related section>

Connector pin assignment: "5.4 Base I/O unit connector pin assignment" – sensor signal (SKIP)

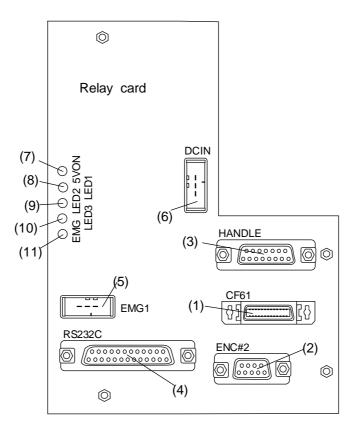
- \triangle Do not apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections may damage the devices, so connect the cables to the specified connectors.

6. Relay Card (HR682) Connection


6.1 Relay Card Outline

The relay card is used in the connection of the spindle encoder, manual pulse generator, RS-232C and external emergency stop.

There must be one relay card for each NC Card.

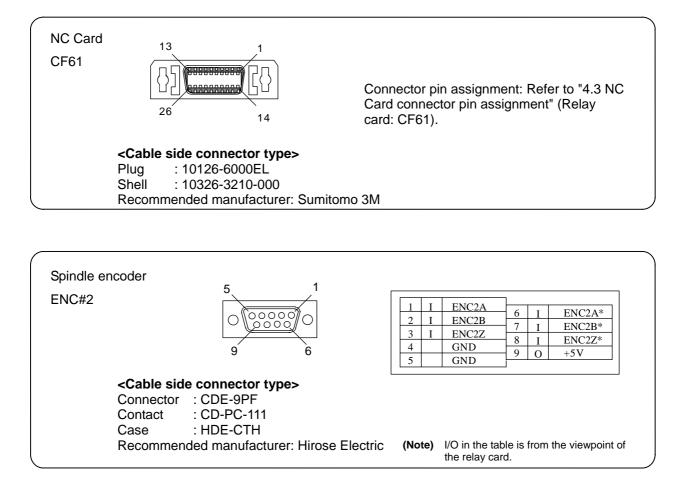

Name	Туре	No. of machine input/ output points	Other interfaces
Relay card	HR682	No DI/DO	EMG, ENC#2, HANDLE 3ch and RS-232C. With metal spacers. Add-On to FCU6-DX2** possible. RS-232C uses only the DC code (X ON/OFF) method handshake.

6.2 Relay Card Connection System Diagram

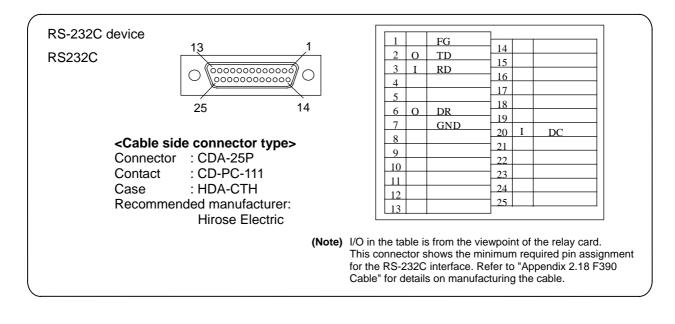
(Note) RS-232C uses only the DC code (X ON/OFF) method handshake.

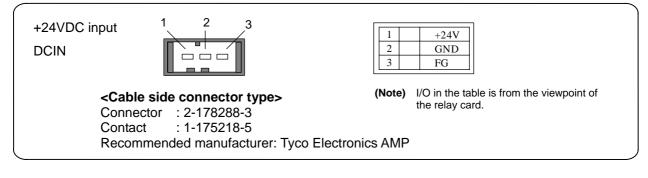
6.3 Relay Card Part Names

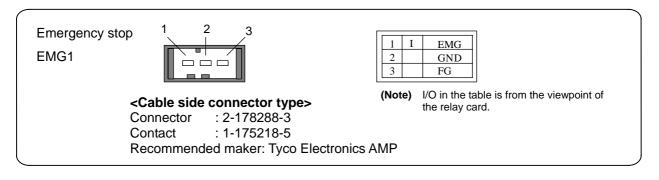
List of connectors


No.	Name	Function details
(1)	CF61	This is used in the connection with the NC Card. An F011 cable is connected.
(2)	ENC#2	This is connected to the encoder 2nd channel (2nd spindle encoder).
(3)	HANDLE	This is connected to the manual pulse generator. Up to 3 channels can be connected.
(4)	RS232C	This is connected to the RS-232C. One channel can be connected. Note that only the DC code (X ON/OFF) method handshake is possible.
(5)	EMG1	This is connected to the external emergency stop switch.
(6)	DCIN	24VDC is supplied by external power. Refer to "3.1 General Specifications" for power specifications.

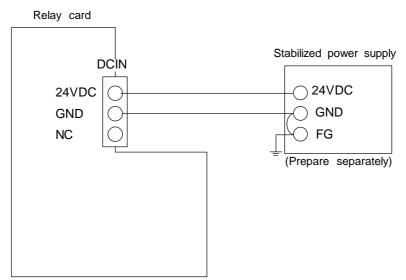
LED list


No.	Name	Function details		
(7)	5VON	This is the LED for the circuit power 5VDC output display.	When lit (green): Outputting 5VDC. When not lit: 5VDC output OFF.	
(8)	LED1	Not in use		
(9)	LED2	Not in use		
(10)	LED3	Not in use		
(11)	EMG	This is the LED for the NC system emergency stop display.	When lit (red): System in emergency stop When not lit: Normal	


- ▲ Do not apply voltages on the connector other than those indicated in this manual. Doing so may lead to destruction or damage.
- ▲ Incorrect connections may damage the devices, so connect the cables to the specified connectors.
- \odot Do not connect or disconnect the connection cables between each unit while the power is ON.
- Do not connect or disconnect any PCB while the power is ON.

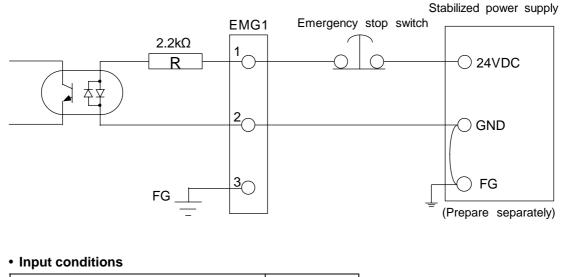

6.4 Relay Card Connector Pin Assignment

Manual pulse gene HANDLE	rator 8 1 0 00000000 00000000 15 9	1 2 3 4 5 6 7	I I I I I I	HA1A HA1B HA2A HA2B HA3A HA3B	9 10 11 12 13 14	GND +12V GND +12V GND +12V H12V	
	side connector type> or :CDA-15P	8			15		
Connec Contact Case Recomr		(No	te)	I/O in the tab the relay car		m the viewpoint	of



- ▲ Do not apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections may damage the devices, so connect the cables to the specified connectors.

6.5 Relay Card Input/Output Specifications

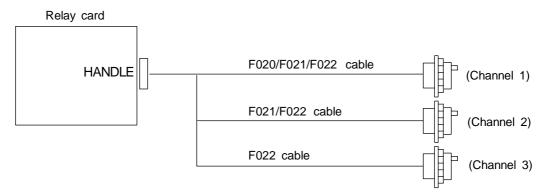

6.5.1 Relay Card Power Connection

Supply the external power (24VDC) input by the DCIN connector.

6.5.2 Emergency Stop Connection

The emergency stop input is connected to the EMG1 connector.

Input voltage when external contact is ON	18V or more		Tson
Input current when external contact is ON	9mA or more	+24V	
Input voltage when external contact is OFF	4V or more		
Input current when external contact is OFF	1mA or more	GND	
Input signal hold time (Tson)	40ms or more	שאט	
Machine side contact capacity	+30V or more, 16mA or more		Tson≥40ms


- ▲ Do not apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections may damage the devices, so connect the cables to the specified connectors.

6.5.3 Connection of Spindle Encoder

Refer to "5.5.9 Connection of Spindle Encoder" for details.

6.5.4 Manual Pulse Generator Connection

Connect the manual pulse generator to the relay card HANDLE connector. The manual pulse generator can be connected to a max. of three channels.

Manual pulse generator connection cables

Cable name		Channel	
Caple name	1	2	3
F020 cable	0		
F021 cable	0	0	
F022 cable	0	0	0

O: Connection possible

<Related sections>

Outline drawing: "Appendix 1.8 Manual Pulse Generator (HD60) Outline Drawing" Cable manufacturing drawing: "Appendix 2.12 F020 Cable", "Appendix 2.13 F021 Cable" and "Appendix 2.14 F022 Cable"

Connector pin assignment: "6.4 Relay Card Connector Pin Assignment"

- Manual Pulse Generator (HANDLE)

6.5.5 RS-232C Device Connection

Connect the RS-232C device to the RS-232C connector on the relay card using an F390 cable. The pin assignment for the RS-232C connector differs from a commercially-available RS-232C cable. Refer to the following related sections for details on manufacturing the cable. Note that only the DC code (X ON/OFF) method handshake is possible.

<Related sections>

Cable manufacturing drawing: "Appendix 2.18 F390 Cable" Connector pin assignment: "6.4 Relay Card Connector Pin Assignment"

- RS-232C Device (RS232C)

- ▲ Do not apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections may damage the devices, so connect the cables to the specified connectors.

6.6 Installation on the Base I/O Unit

A relay card (HR682) can be added on to the base I/O unit. When adding on, install the card using the following procedure.

Adding on is only possible with the FCU6-DX2** base I/O unit.

Note that adding on is not possible with the FCU6-DX3** and 4**.

- 1. Remove screw 1 from the base I/O unit. (Fig. 1)
- 2. Remove screw 2 of the relay card and spacer 1 (screw holes at both ends are female). (Fig. 2)
- 3. Install the attached spacer 2 (screw holes on one side are male) to the hole of screw 1 that was removed from the base I/O unit. (Fig. 3)
- 4. Mount the relay card on the base I/O unit, and fix with screw 1 that was removed in step 1. (Fig. 4)
- 5. Turn the unit over, and fix the screws at the three holes to the three spacer locations. (Fig. 5)

This completes the installation of the relay card to the base I/O unit.

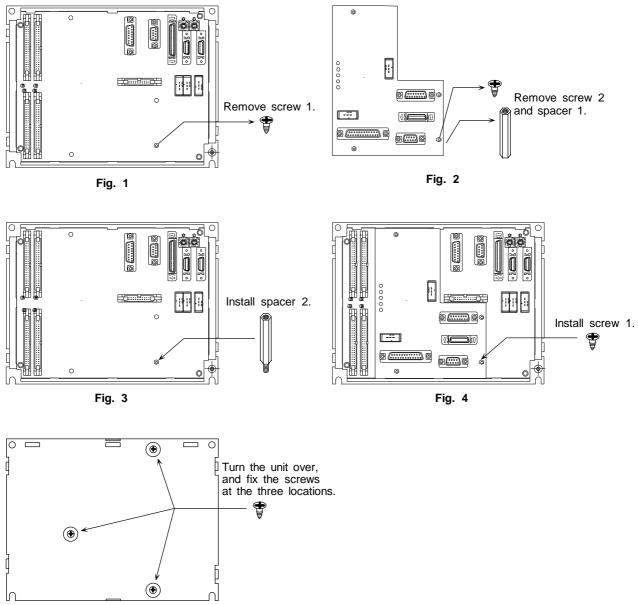
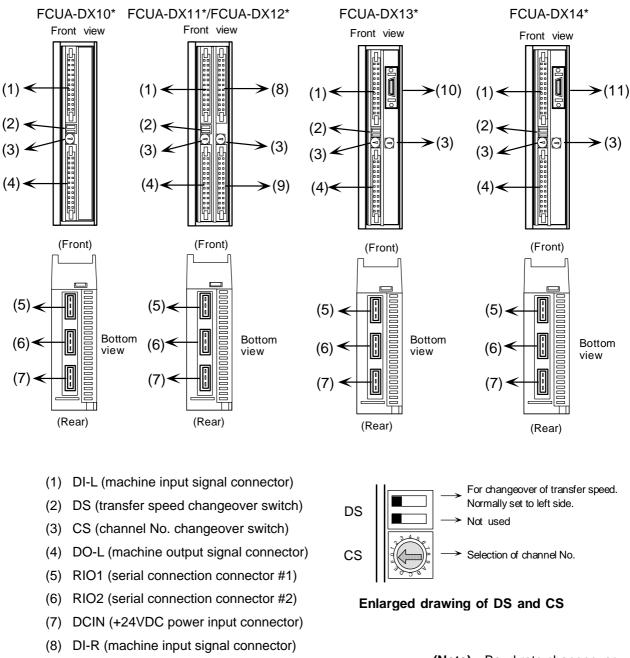
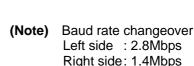


Fig. 5


7. Remote I/O Unit Connection (FCUA-DX1**)

7.1 Outline of Remote I/O Unit

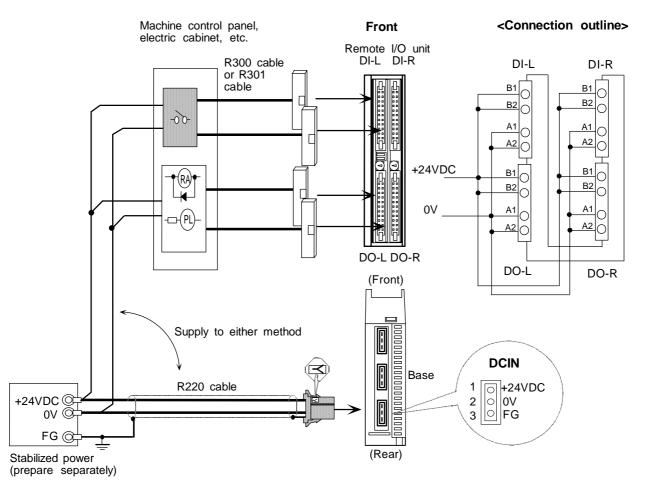
The eight types of signals that can be input/output from the remote I/O unit (FCUA-DX1^{**}) are shown below according to the type and No. of contacts. Use with serial link connections (MC link B) to the NC Card.


When the remote I/O unit is connected with serial links, multiple units can be used as long as the total No. of occupied stations (channels) is within 8 channels. (Refer to "7.14 Setting of Channel No. When Using Multiple Remote I/O Units" for station No. setting details.)

Unit name	Machine co	ontrol signals that can be input/out	put	No. of occupied serial link channels
FCUA-DX100		: 32 points (photo coupler insulation): 32 points (non-insulation)	sink/source type sink type	1
FCUA-DX101		: 32 points (photo coupler insulation): 32 points (non-insulation)	sink/source type source type	1
FCUA-DX110		: 64 points (photo coupler insulation): 48 points (non-insulation)	sink/source type sink type	2
FCUA-DX111		: 64 points (photo coupler insulation) : 48 points (non-insulation)	sink/source type source type	2
FCUA-DX120	Digital output signal (DO)	 : 64 points (photo coupler insulation) : 48 points (non-insulation) : 1 point 	sink/source type sink type	2
FCUA-DX121	Digital output signal (DO)	 : 64 points (photo coupler insulation) : 48 points (non-insulation) : 1 point 	sink/source type source type	2
FCUA-DX130	Digital output signal (DO)	 32 points (photo coupler insulation) 32 points (non-insulation) 2 channels 	sink/source type sink type	2
FCUA-DX131	Digital output signal (DO)	 32 points (photo coupler insulation) 32 points (non-insulation) 2 channels 	sink/source type source type	2
FCUA-DX140	Digital output signal (DO) Analog input (AI)	 32 points (photo coupler insulation) 32 points (non-insulation) 4 points 1 point 	sink/source type sink type	2
FCUA-DX141	Digital output signal (DO) Analog input (AI)	 32 points (photo coupler insulation) 32 points (non-insulation) 4 points 1 point 	sink/source type source type	2

7.2 Names of Each Remote I/O Unit Section

- (9) DO-R (machine output signal connector)(10) HANDLE (manual pulse generator signal input connector)
- (11) AIO (analog signal input/output connector)

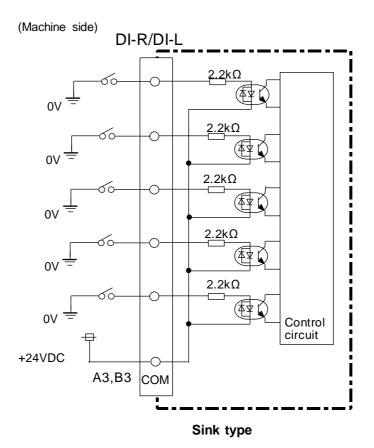

7.3 Connection of Remote I/O Power

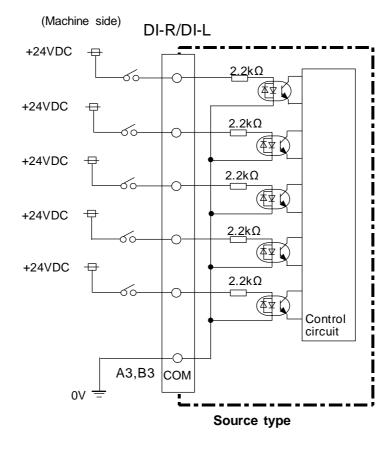
+24VDC is required to run the remote I/O unit. Prepare a stabilized power supply that satisfies the following conditions.

Output voltage	+24V ±5%		
Ripple	±5% (P-P)		
Max. output	FCUA-DX10*	2.4A or more	
current	FCUA-DX11*	3.8A or more	
	FCUA-DX12*	3.8A or more	
	FCUA-DX13*	3.4A or more	
	FCUA-DX14*	3.4A or more	

The +24VDC power for the control circuit is supplied from the connector DCIN on the bottom of the unit or from connectors DI-L, DI-R, DO-L or DO-R on the front. When supplying from the front connector, supply to all corresponding pins.

When manufacturing the R300 cable, use the single-end connector CN300 (optional, with one end), and when manufacturing the R301 cable, use the connector set CS301 (optional, with two ends).

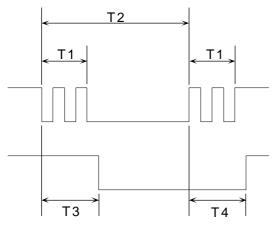



- **Do not** apply voltages other than those indicated in this manual on the connector. Doing so may lead to destruction or damage.
- $\underline{\mathbb{A}}$ Incorrect connections could damage the device, so always connect the cable to the designated connector.

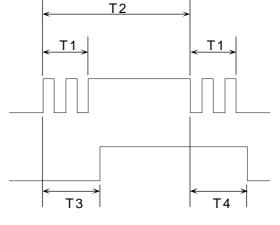
7.4 Outline of Digital Signal Input Circuit

The input circuit can be selected from sink type or source type in card units.

Input circuit



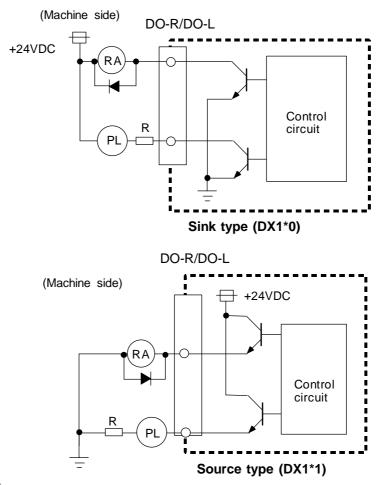
Input conditions


The input signals must be used within the following condition ranges.

Sink type				
Input voltage at external contact ON	6V or less			
Input current at external contact ON	9mA or more			
Input voltage at external contact OFF	20V or more, 25.2V or less			
Input current at external contact OFF	2mA or less			
Tolerable chattering time (T1)	3ms or less			
Input signal hold time (T2)	40ms or more			
Input circuit operation delay time (T3, T4)	$3ms \le T3 \rightleftharpoons T4 \le 16ms$			
Machine side contact capacity	+30V or more, 16mA or more			

Source type				
Input voltage at external contact ON	18V or more, 25.2V or less			
Input current at external contact ON	9mA or more			
Input voltage at external contact OFF	4V or less			
Input current at external contact OFF	2mA or less			
Tolerable chattering time (T1)	3ms or less			
Input signal hold time (T2)	40ms or more			
Input circuit operation delay time (T3, T4)	$3ms \le T3 \rightleftharpoons T4 \le 16ms$			
Machine side contact capacity	+30V or more, 16mA or more			

Sink type



7.5 Outline of Digital Signal Output Circuit

The digital signal output circuit uses a sink type (DX1*0) or source type (DX1*1). Use within the specification ranges shown below.

Output circuit

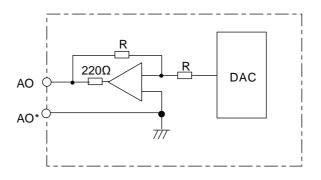
Output conditions

Insulation method	Non-insulation
Rated load voltage	+24VDC
Max. output current	60mA/1 point (fixed value)
Output delay time	40µs

(Note) An output voltage of more than 60mA per point cannot be flowed.

- <CAUTION> -

* When using an inductive load such as a relay, always connect a diode (voltage resistance 100V or more, 100mA or more) in parallel to the load.

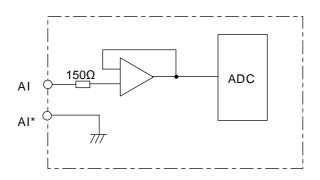

* When using a capacity load such as a ramp, always connect a protective resistor $(R=150 \ \Omega)$ serially to the load to suppress rush currents. (Make sure that the current is less than the above tolerable current including the momentary current.)

- When using an inductive load such as a relay, always connect a diode in parallel to the load.
- When using a capacity load such as a ramp, always connect a protective resistor serially to the load to suppress rush currents.

7.6 Outline of Analog Signal Output Circuit

The analog signal output circuit can be used only for the FCUA-DX120/DX121/DX140/DX141.

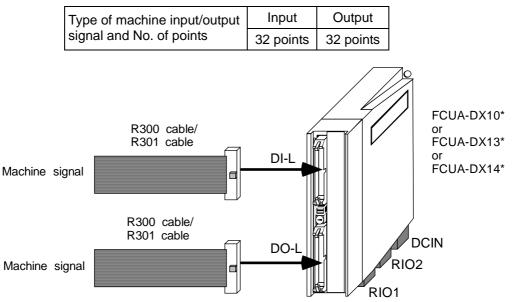
Output circuit


Output conditions

Output voltage	0V~±10V (±5%)
Resolution (polarity included)	12 bit (±10V × n/4096) (n = 2^{0} to 2^{11})
Load conditions	$10k\Omega$ load resistance
Output impedance	220Ω

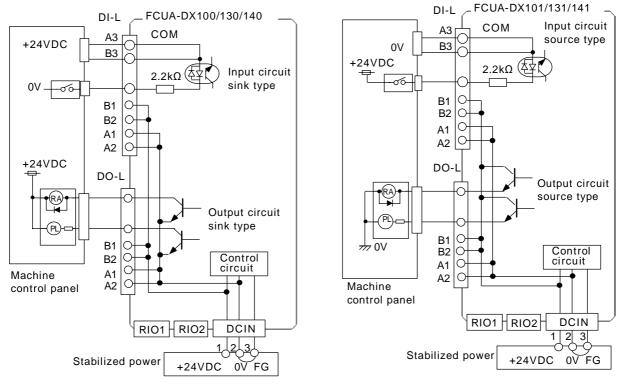
7.7 Outline of Analog Signal Input Circuit

The analog signal output circuit can be used only for the FCUA-DX140/DX141.

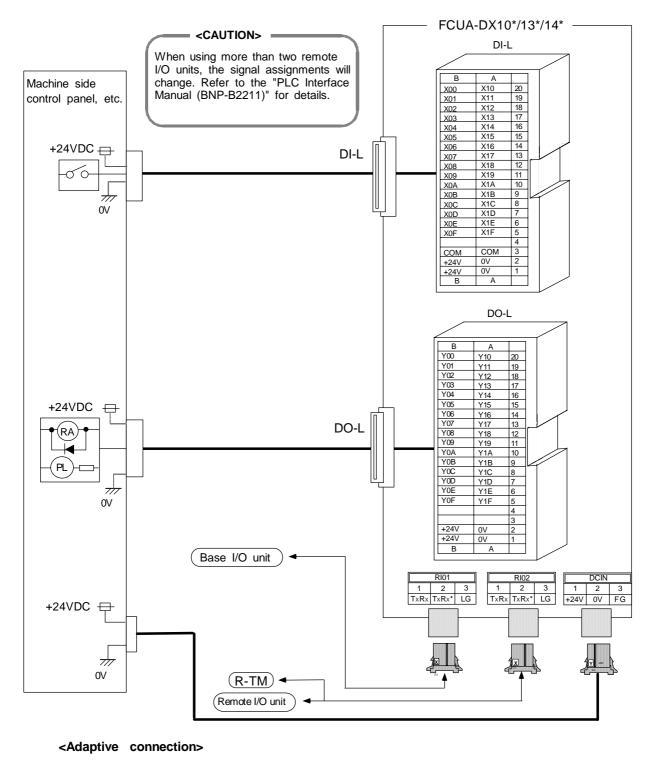

Input circuit

Input conditions

Max. input voltage rating	±15V
Resolution (polarity included)	12 bit (±10V × n/2048) (n = 2^0 to 2^{11})
Precision	Within ±25mV
AD input sampling time (conversion delay)	14.2ms (Al0)/42.6ms (Al1~3)


7.8 Connection of FCUA-DX10*/13*/14* Unit and Machine Control Signal

The single-end connector CN300 (optional, with one end) includes the DI-L and DO-L connectors. The connector set CS301 (optional) includes the DI-L and DO-L connectors, and two connectors for connection with the terminal block * .


* IDEC IZUMI Corporation I/O terminal BX1F-T40

<Outline of connection>

- $\underline{\mathbb{A}}$ Incorrect connections could damage the device, so always connect the cable to the designated connector.
- $\odot\,$ Do not connect or disconnect the connection cables between each unit while the power is ON.

<Signal assignment table>

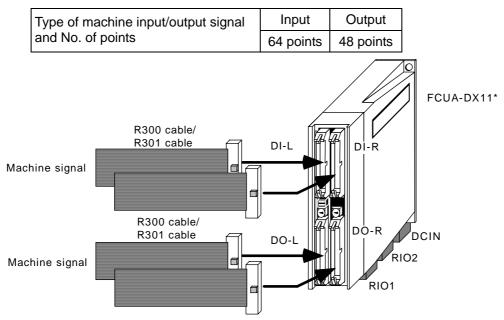
DCIN (CN220)

Connector: 2-178288-3 Contact : 1-175218-5 Manufacturer: Tyco Electronics AMP Connector: 1-178288-3 Contact : 1-175218-2 Manufacturer:

RIO1/RIO2 (CN211)

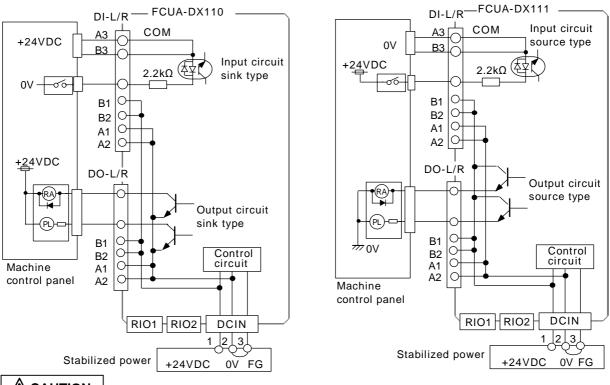
Tyco Electronics AMP

DI-L/DO-L(CN300)


Crimp type connector: 7940-6500SC

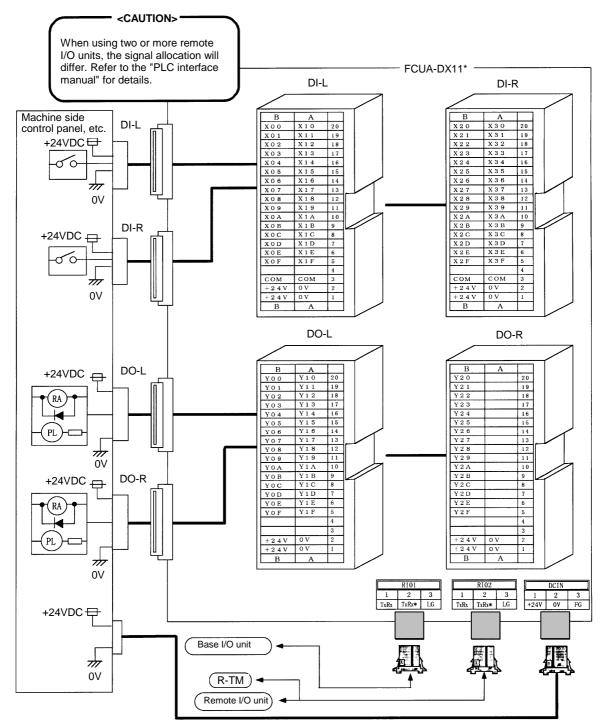
Manufacturer: Sumitomo 3M Terminator (R-TM)

Manufacturer: Tyco Electronics AMP


7.9 Connection of FCUA-DX11* Unit and Machine Control Signal

The single-end connector CN300 (optional, with one end) includes the DI-L (DI-R) and DO-L (DO-R) connectors. The connector set CS301 (optional) includes the DI-L (DI-R) and DO-L (DO-R) connectors, and two connectors for connection with the terminal block ^{*}.

* IDEC IZUMI Corporation I/O terminal BX1F-T40


<Outline of connection>

- ▲ Incorrect connections could damage the device, so always connect the cable to the designated connector.
- $\odot\,$ Do not connect or disconnect the connection cables between each unit while the power is ON.

<Signal assignment table>

<Adaptive connector>

DCIN (CN220)

Connector

Manufacturer:

Contact

: 2-178288-3

: 1-175218-5

Tyco Electronics AMP

RIO1/RIO2 (CN211)

Connector

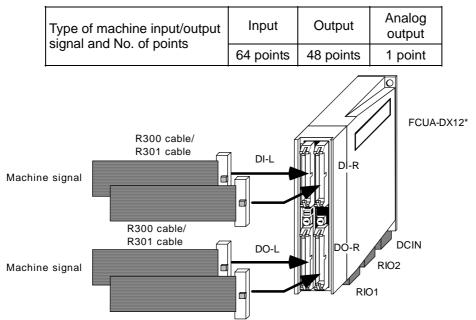
Manufacturer:

Contact

DI-L/DO-L (CN300)

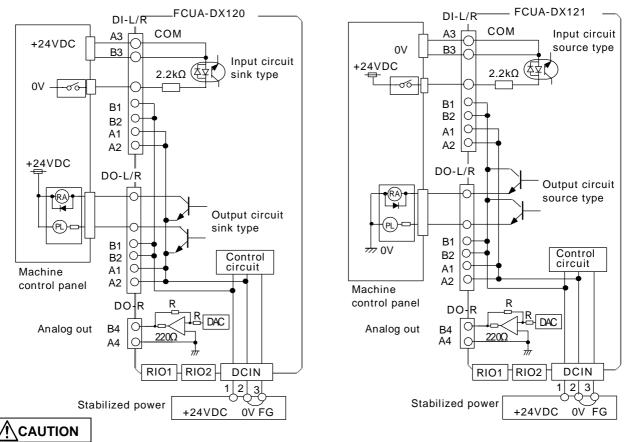
Crimp type connector: 7940-6500SC Manufacturer: Sumitomo 3M

Terminator (R-TM)

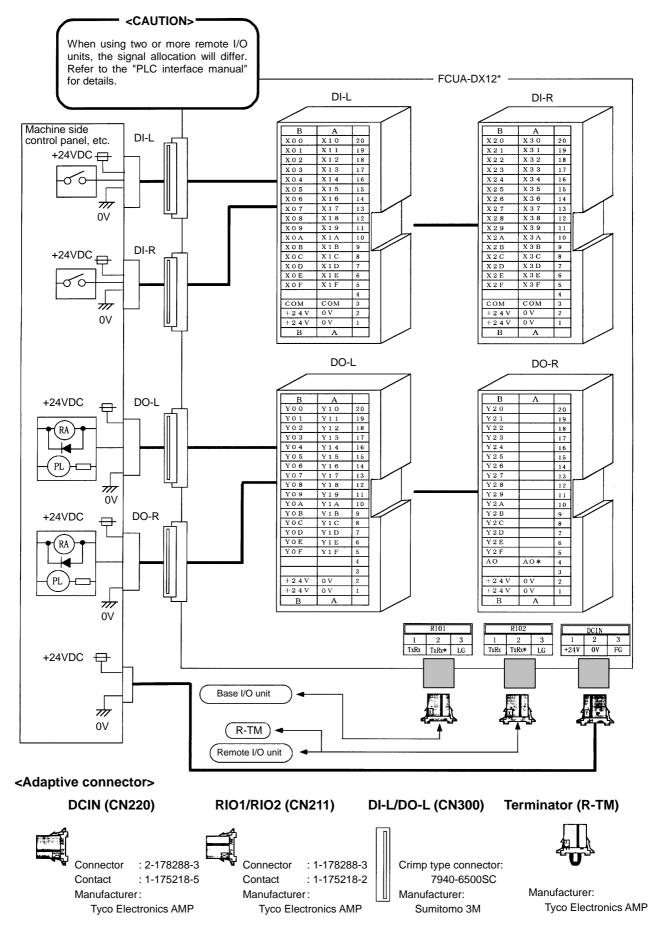

Manufacturer: Tyco Electronics AMP

Tyco Electronics AMP

: 1-178288-3

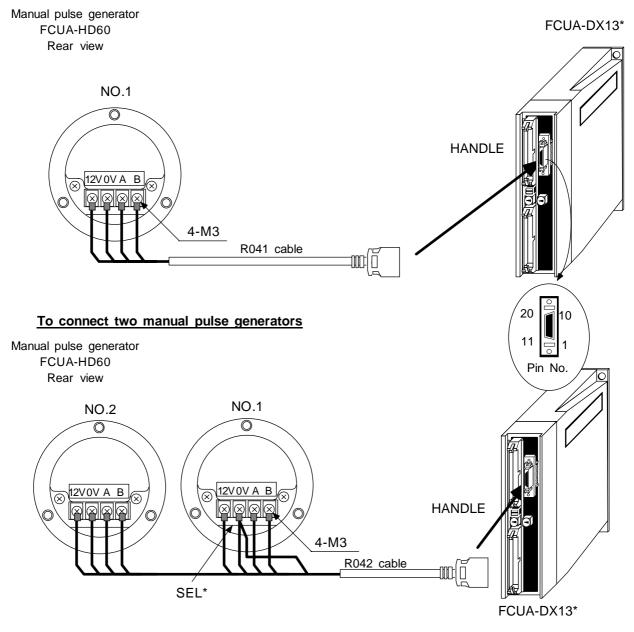

: 1-175218-2

7.10 Connection of FCUA-DX12* Unit and Machine Control Signal


The single-end connector CN300 (optional, with one end) includes the DI-L (DI-R) and DO-L (DO-R) connectors. The connector set CS301 (optional) includes the DI-L (DI-R) and DO-L (DO-R) connectors, and two connectors for * IDEC IZUMI Corporation I/O terminal BX1F-T40

<Outline of connection>

- ${ig {\mathbb A}}$ Incorrect connections could damage the device, so always connect the cable to the designated connector.
- is ON.


<Signal assignment table>

7.11 Connection of FCUA-DX13* Unit and Handle

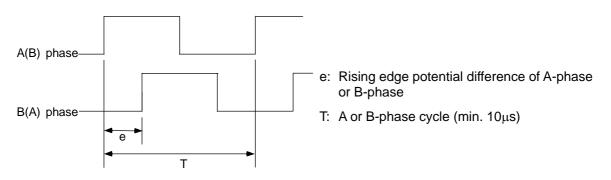
To connect the manual pulse generator, the R041 or R042 cable is connected to "HANDLE". Up to two manual pulse generators can be connected. When manufacturing the R041 or R042 cable, use the connector set CS000 (optional, with two ends). (Refer to Appendix 2.4 R041 Cable, and Appendix 2.5 R042 Cable for cable details.)

To Connect one manual pulse generator

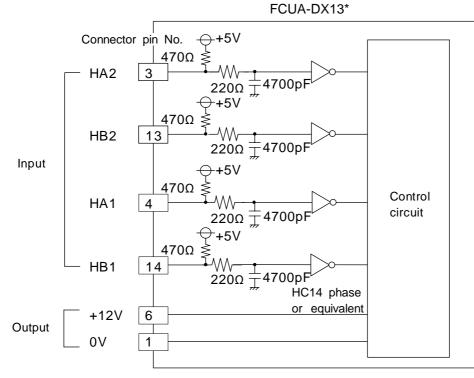
When connecting the second manual pulse generator, connect the SEL* signal to the No. 1's 0V.

- ▲ Incorrect connections could damage the device, so always connect the cable to the designated connector.
- $\odot\,$ Do not connect or disconnect the connection cables between each unit while the power is ON.

7.12 Outline of FCUA-DX13* Unit Pulse Input Circuit

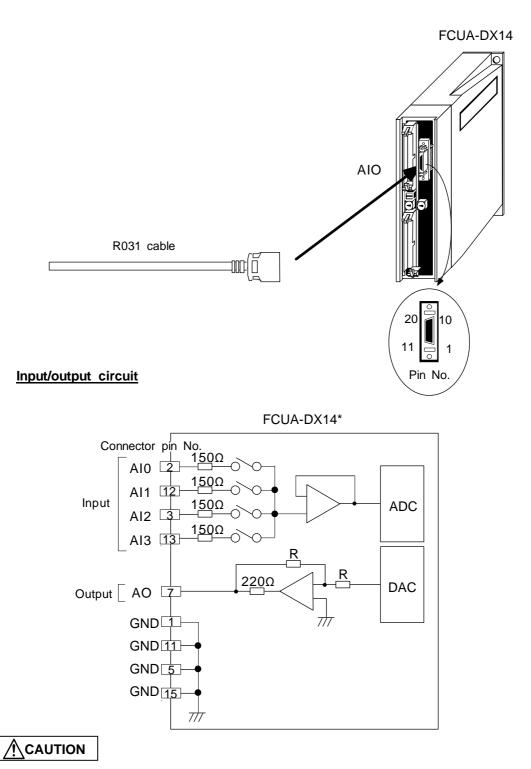

When connecting a device (pulse generator) other than the manual pulse generator to the FCUA-DX13* unit, use within the following specifications.

Input/output conditions


Input pulse signal format	2 signals of A-phase and B-phase potential difference 90 degrees (Refer to waveform below)
Input voltage	H level 3.5V or more, L level 1.0V or less
Max. frequency of input pulse	100kHz
Output voltage	12V ± 10%
Max. output current	300mA

Input waveform

The difference of the input waveform potential must be \pm 45 degrees or less.


Input/output circuit

The R041-3M (for one unit) and R042-3M (for two units) are available for the handle cables.

7.13 Connection of FCUA-DX14* Unit and Analog Input/Output Signal

For the analog input/output signal, the R031 cable is connected to "AIO". Up to four input points and one output point of the analog input/output signal can be connected. When manufacturing the R031, use the connector set CS000 (optional, with two ends). (Refer to the Appendix 2.3. R031 cable.)

- ▲ Incorrect connections could damage the device, so always connect the cable to the designated connector.
- $\odot\,$ Do not connect or disconnect the connection cables between each unit while the power is ON.

7.14 Setting of Channel No. when Using Multiple Remote I/O Units

When the remote I/O unit is connected with serial links (MC link B), multiple units can be used as long as the total No. of occupied channels is within 8 channels.

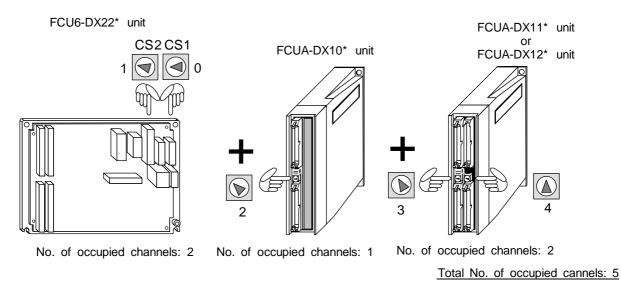
Unit name	No. of occupied serial link channels
FCUA-DX10*	1
FCUA-DX11*	2
FCUA-DX12*	2
FCUA-DX13*	2
FCUA-DX14*	2

When using multiple remote I/O units, a characteristic station No. must be set for each unit. The FCUA-DX10* unit has one station No. setting switch, and FCUA-DX11*, DX12*, DX13* and DX14* units have two switches. Each of these switches must be set to a characteristic station No. The device address in each unit is determined according to the station No. Use the station No. setting switch to set the device address.

 Relatio 	n between	rotary switc	hes and device	assignments			
ſ	Setting Station Device assignment						
	value	No.	וח	DO	poin		

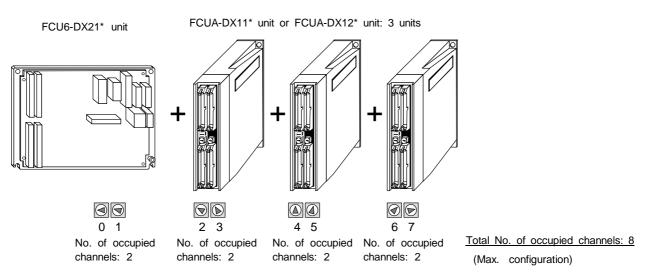
Setting	Station	Device as	No. of I/O		
value	No.	DI	DO	points (max)	
0	0	X00~X1F	Y00~Y1F	32 points	
1	1	X20~X3F	Y20~Y3F	32 points	
2	2	X40~X5F	Y40~Y5F	32 points	
3	3	X60~X7F	Y60~Y7F	32 points	
4	4	X80~X9F	Y80~Y9F	32 points	
5	5	XA0~XBF	YA0~YBF	32 points	
6	6	XC0~XDF	YC0~YDF	32 points	
7	7	XE0~XFF	YE0~YFF	32 points	
8~F	Cannot be used				

<Device assignment example 1>


Rotary switch	Station	Device as	signment
setting value	No.	DI	DO
0	0	X00~X1F	Y00~Y1F
1	1	X20~X3F	Y20~Y3F
2	2	X40~X5F	Y40~Y5F
3	3	X60~X7F	Y60~Y7F
4	4	X80~X9F	Y80~Y9F

(Note) Refer to the next page for a configuration example.

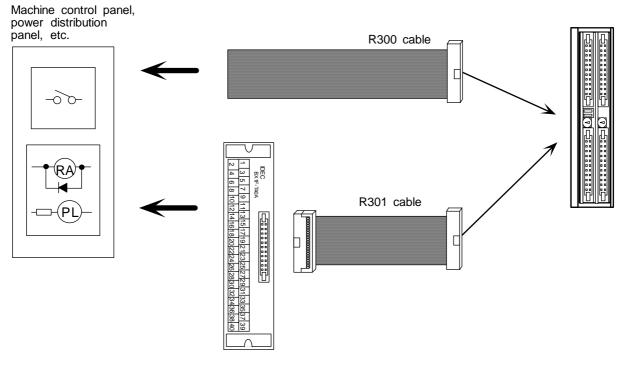
<Device assignment example 2>


Rotary switch	Station	Device as	signment
setting value	No.	DI	DO
0	0	X00~X1F	Y00~Y1F
1	1	X20~X3F	Y20~Y3F
2	2	X40~X5F	Y40~Y5F
3	3	X60~X7F	Y60~Y7F
4	4	X80~X9F	Y80~Y9F
5	5	XA0~XBF	YA0~YBF
6	6	XC0~XDF	YC0~YDF
7	7	XE0~XFF	YE0~YFF

(Note) Refer to the next page for a configuration example.

Configuration for <Device assignment example 1> on the previous page

(Note) In MELDASMAGIC64, the base I/O unit normally occupies station Nos. 0 and 1. Both of the examples above are configuration examples when connected to RIO1 (Part system 1) connectors.

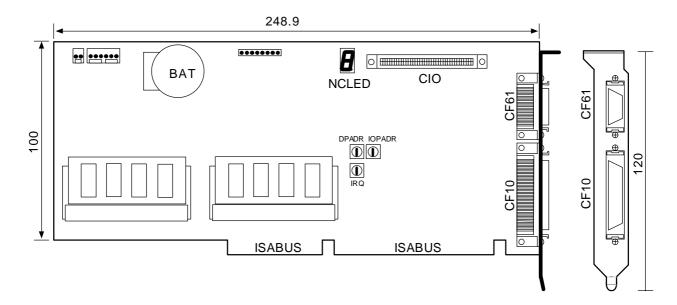

7.15 Remote I/O Unit Input/Output Signal Cables

There are two types of remote I/O unit digital input/output signal cables; the R300 and R301. The R300 cable has one end cut off. The R301 cable is a cable for connecting to the terminal block *. R300-3M and R301-3M are available

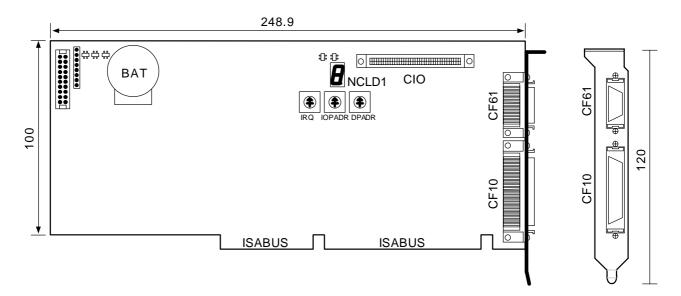
If a cable longer than 3m is required, use the connector set CN300 or CS301.

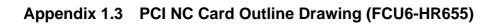
The R041-3M (for one unit) and R042-3M (for two units) are available for the handle cables. For the analog input/output cable, the R031 cable must be manufactured by the user.

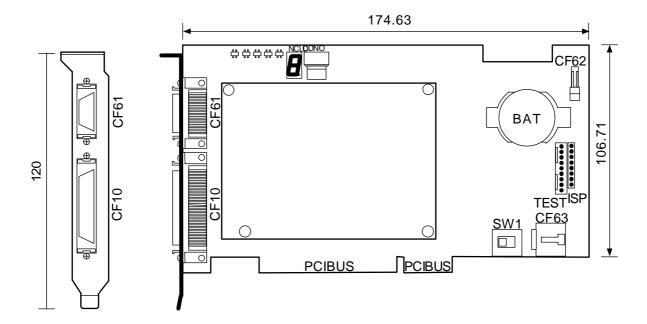
* IDEC IZUMI Corporation I/O terminal BX1F-T40A

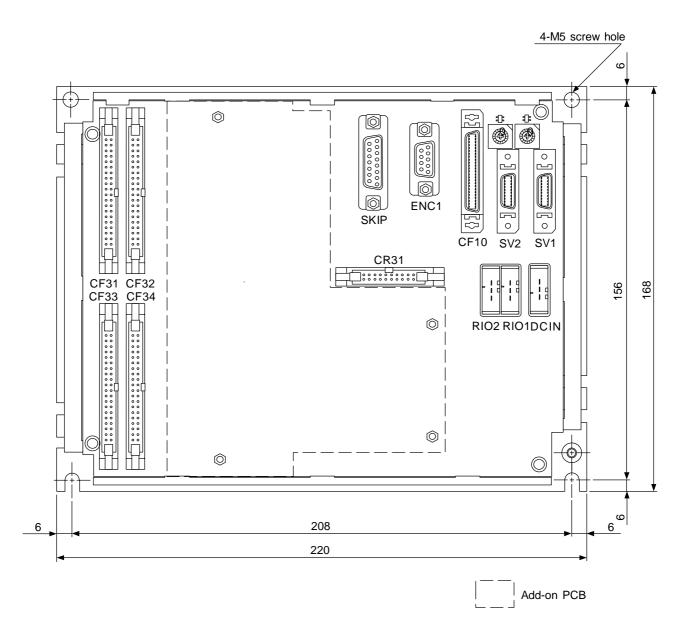


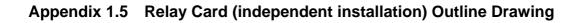
Connector pin correspondence table

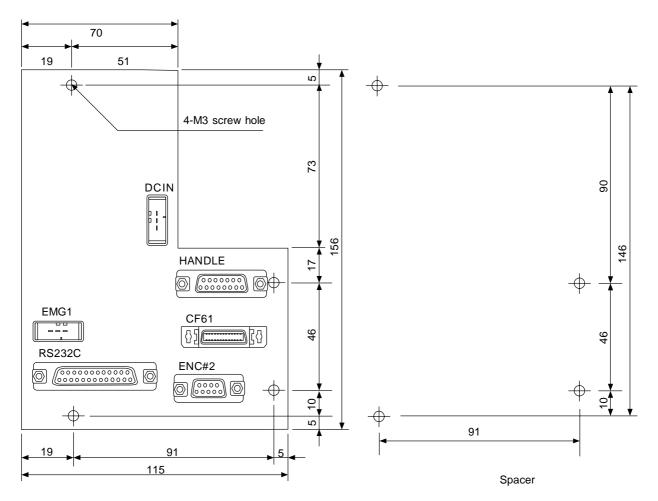

Terminal block BX1F	DX1**	Terminal block BX1F	DX1**
1	A1	2	B1
3	A2	4	B2
5	A3	6	B3
7	A4	8	B4
9	A5	10	B5
11	A6	12	B6
13	A7	14	B7
15	A8	16	B8
17	A9	18	B9
19	A10	20	B10
21	A11	22	B11
23	A12	24	B12
25	A13	26	B13
27	A14	28	B14
29	A15	30	B15
31	A16	32	B16
33	A17	34	B17
35	A18	36	B18
37	A19	38	B19
39	A20	40	B20

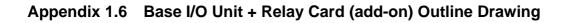

Appendix 1 Outline Drawings

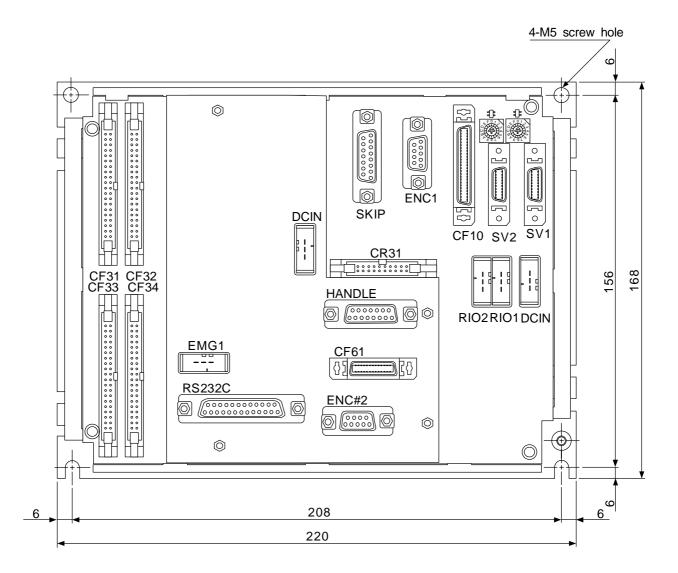

Appendix 1.1 ISA NC Card Outline Drawing (HR621)

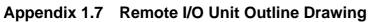

Appendix 1.2 ISA NC Card Outline Drawing (HR623)

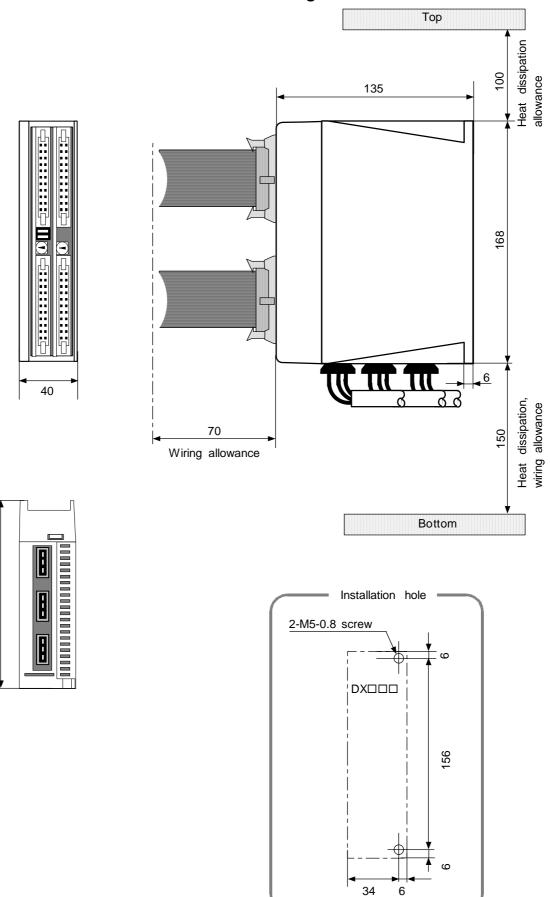




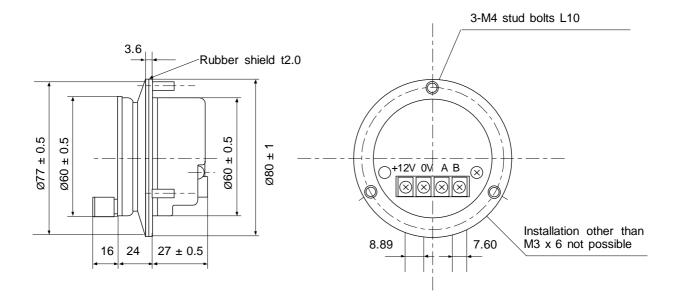

Appendix 1.4 Base I/O Unit Outline Drawing

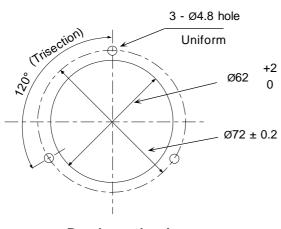


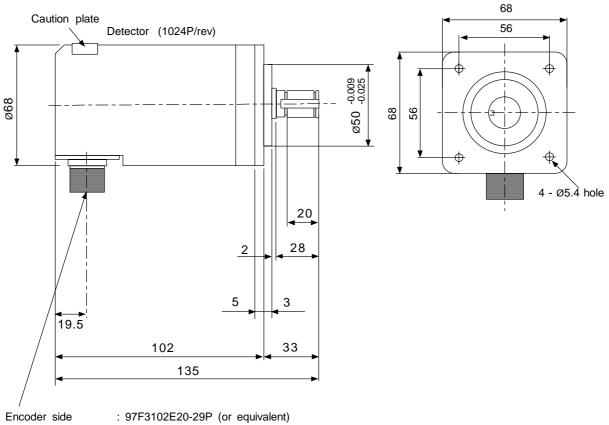


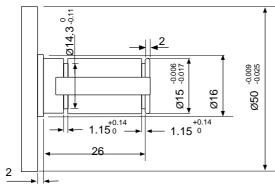


Screw diameter: M3x0.5 Outline diameter: Ø8 or less Length: 6mm or more

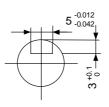


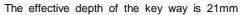






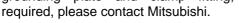
Panel cut drawing

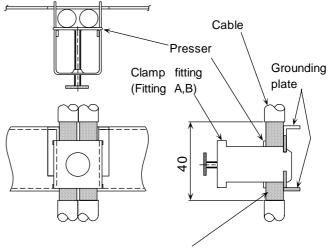

Appendix 1.9 Spindle Encoder (OSE-1024-3-15-68) Outline Drawing


Applicable cable side : MS3106A20-29S

Enlarged view of key

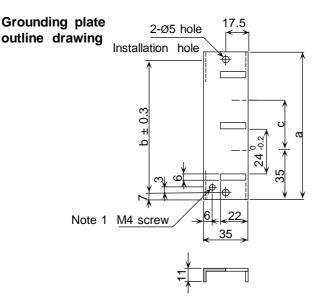
Cross-section BB

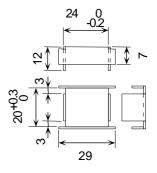

А	1chA	Κ	0V
В	2chZ	L	
С	3chB	М	
D		Ν	1chA
Е	Case grounding	Ρ	2chZ
F		R	3chB
G		S	
Н	+5V	Т	
J			


Appendix 1.10 Grounding Plate and Clamp Fitting Outline Drawings

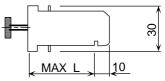
The shield wire generally only needs to be grounded to the connector's case frame. However, the effect can be improved by directly grounding to the grounding plate as shown on the right.

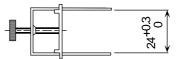
Install the grounding plate near each unit. Peel part of the cable sheath as shown on the right to expose the shield sheath. Press that section against the grounding plate with the clamp fitting. Note that if the cable is thin, several can be clamped together. Install the grounding plate directly onto the


cabinet or connect a grounding wire so that sufficient frame grounding is achieved. If the AERSBAN-DSET, containing the grounding plate and clamp fitting, is



Shield sheath Clamp section drawing


• Outline drawing



Presser outline drawing

Clamp metal fitting outline drawing

	L
Clamp fitting A	70
Clamp fitting B	45

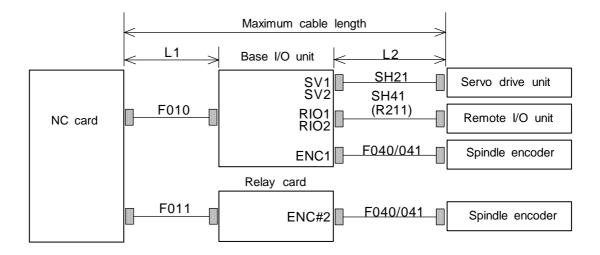
(Note) L in the table is a symbol in the outline drawing of the clamp metal fittings.

Note 1) Screw hole for wiring to cabinet's grounding plate

Note 2) The grounding plate thickness is 1.6mm

	а	b	C	Enclosed fittings
AERSBAN-DSET	100	86	30	Two clamp fittings A
AERSBAN-ESET	70	56	I	One clamp fitting B

(Note) a, b and c in the table are symbols in the outline drawing of the grounding plate.


Appendix 2 Cable Manufacturing Drawings

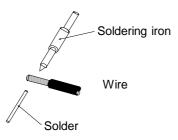
No.	Appendix No.	Cable type	Application	Max. length	Remarks
1	Appendix 2.1	SH21 cable	Servo drive unit	* 30m	
2	Appendix 2.2	SH41 cable	Remote I/O	* 50m	
3	Appendix 2.3	R031 cable	Analog input/output	30m	
4	Appendix 2.4	R041 cable	Manual pulse generator: 1ch	50m	
5	Appendix 2.5	R042 cable	Manual pulse generator: 2ch	50m	
6	Appendix 2.6	R211 cable	Remote I/O	* 50m	
7	Appendix 2.7	R220 cable	DC +24V input, emergency stop	30m	
8	Appendix 2.8	R300 cable	DI/DO: Single-end connector	50m	
9	Appendix 2.9	R301 cable	DI/DO: Double-end connector	50m	
10	Appendix 2.10	F010 cable	I/O interface: Base I/O unit	20m	
11	Appendix 2.11	F011 cable	I/O interface: Relay card	15m	
12	Appendix 2.12	F020 cable	Manual pulse generator: 1ch	50m	
13	Appendix 2.13	F021 cable	Manual pulse generator: 2ch	50m	
14	Appendix 2.14	F022 cable	Manual pulse generator: 3ch	50m	
15	Appendix 2.15	F040 cable	Spindle encoder: Straight	* 50m	
16	Appendix 2.16	F041 cable	Spindle encoder: Right angle	* 50m	
17	Appendix 2.17	F070 cable	DC +24V input, emergency stop	30m	
18	Appendix 2.18	F390 cable	RS232C: 1ch	15m	
19	Appendix 2.19	ENC-SP1 cable	Spindle drive unit	50m	

Cable type name table

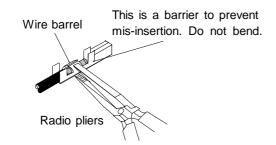
* For the cables marked with * in the Max. length column:

The cable length (L1) is the length from the NC Card to the base I/O unit and relay card. The cable length (L2) is the length from the base I/O unit and relay card to each unit. Keep the total cable length (L1 + L2) within the maximum cable length.

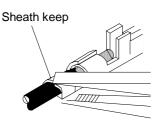
Symbols for writing cable manufacturing drawing The following symbols are used in the cable manufacturing drawing.

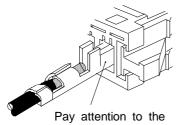


- 3. $\dot{\gamma}$ indicates shield clamping to the ground plate.
- 4. In the cable manufacturing drawings, the partner of the twisted pair cable is given a priority, so the pin Nos. of the connectors at both end are not necessary in number of order.
- 5. Equivalent parts can be used for the connector, contact and wire material.

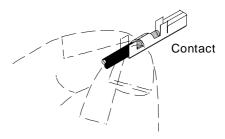

As a rule, the cables used with this product are not available from Mitsubishi, excluding the cables connected between the Mitsubishi devices. Thus, manufacture the required cables using the cable manufacturing drawings on the following pages as a reference. Note that the cable-compatible connectors are available from Mitsubishi as the cable set (Appendix 2.20).

If crimp tools are not available when manufacturing the power supply cable (F070, R220) and RIO communication cable (SH41, R211), the cables can be manufactured by soldering a wire and connector as shown in the following procedure.

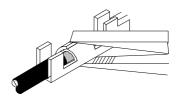

1. Carry out preparatory soldering. (Remove 3.5mm of the sheath.)


3. Lightly press down one side of the wire barrel using radio pliers.

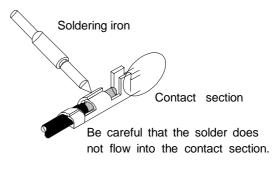
5. Firmly press down the sheath keeps in the same manner as the wire barrel.

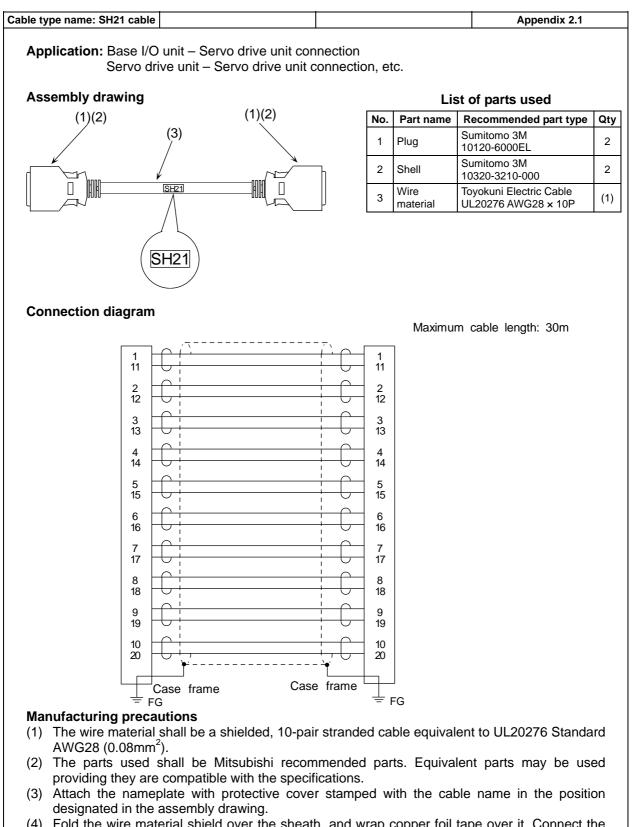


7. Lastly, insert the soldered contact into the housing.

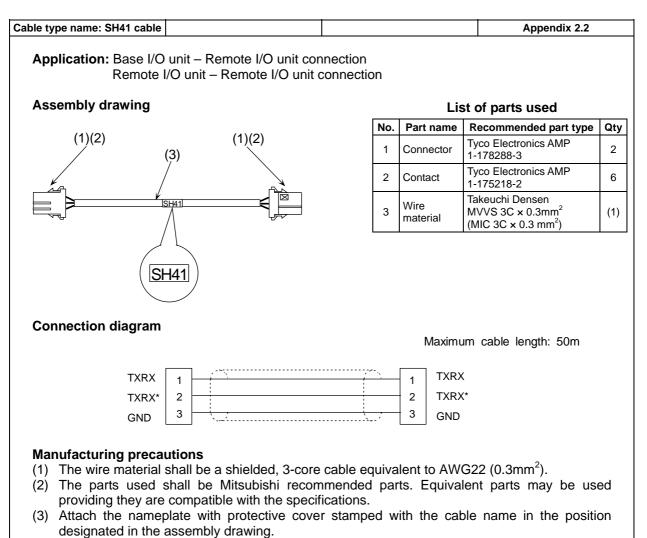

insertion direction.

2. Insert the wire into the contact. Hold the sheath keep.

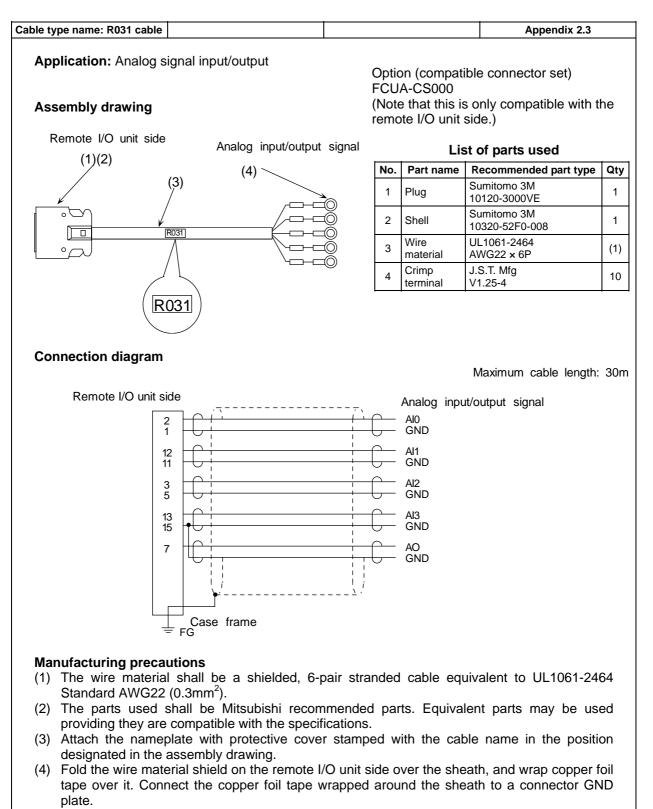


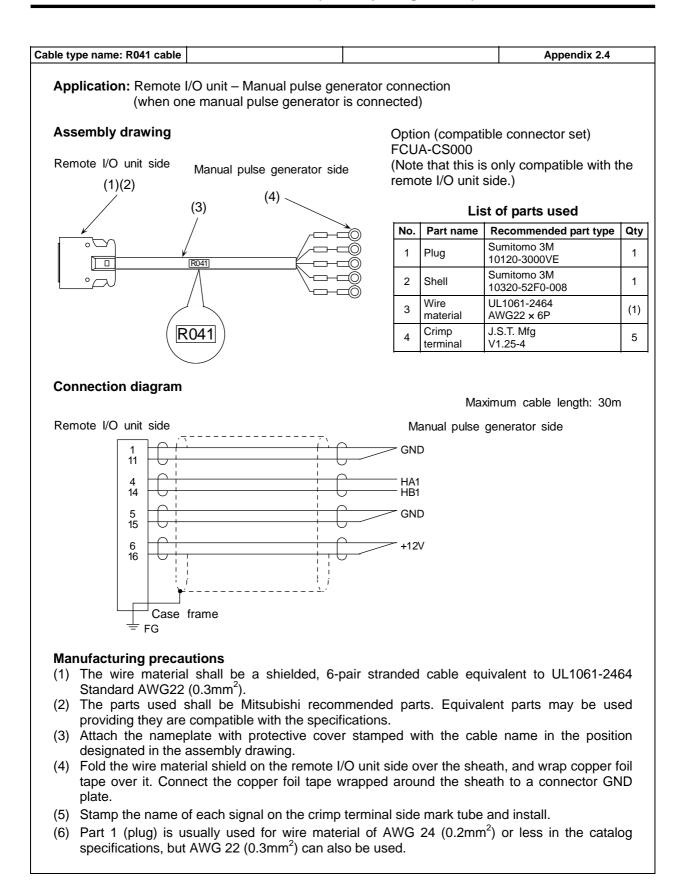

 Firmly press down the other side of the wire barrel. (Press firmly enough that the wire will

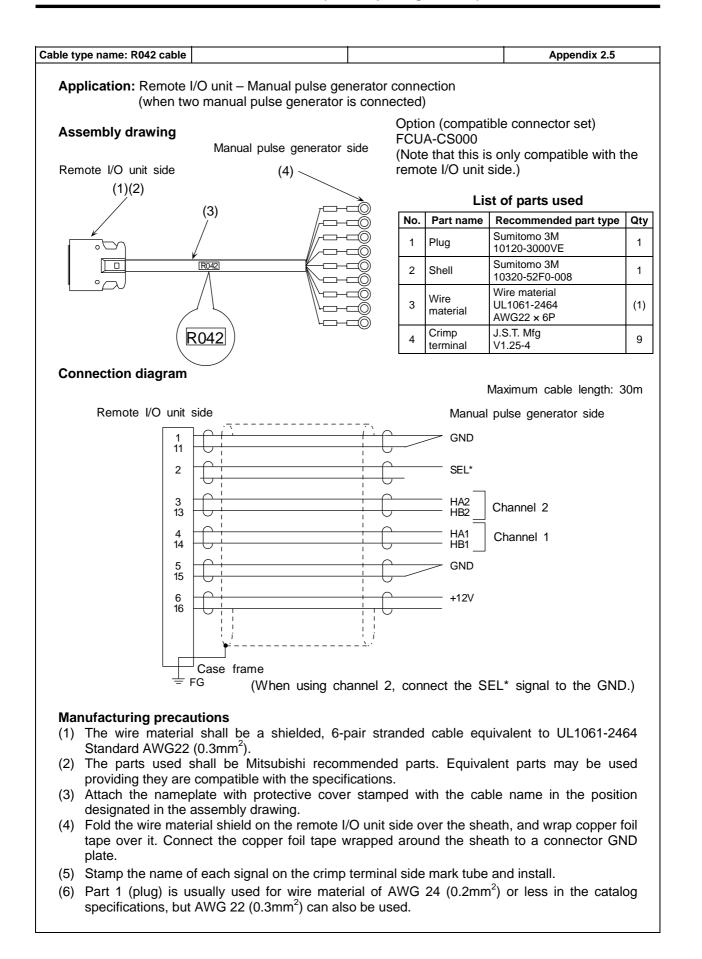
not come out when pulled lightly.)

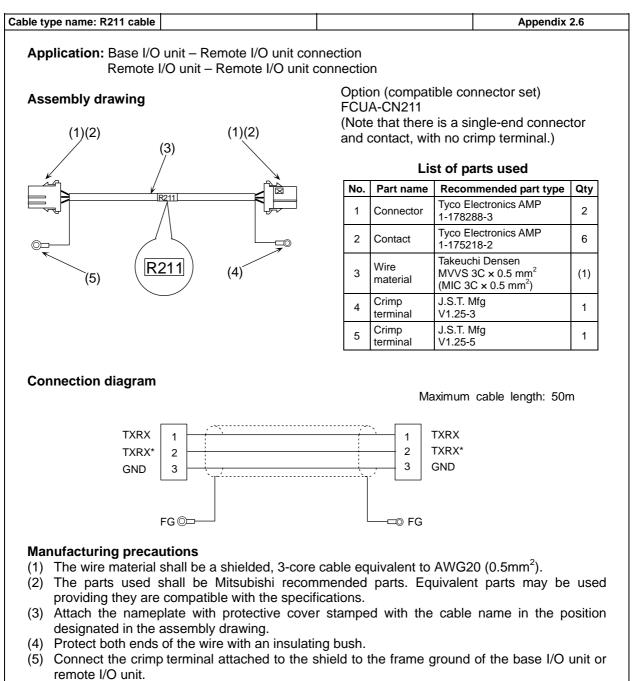


 Apply the soldering iron, and melt the preparatory solder inside.
 Better results will be achieved if an additional, small amount of solder is applied then.

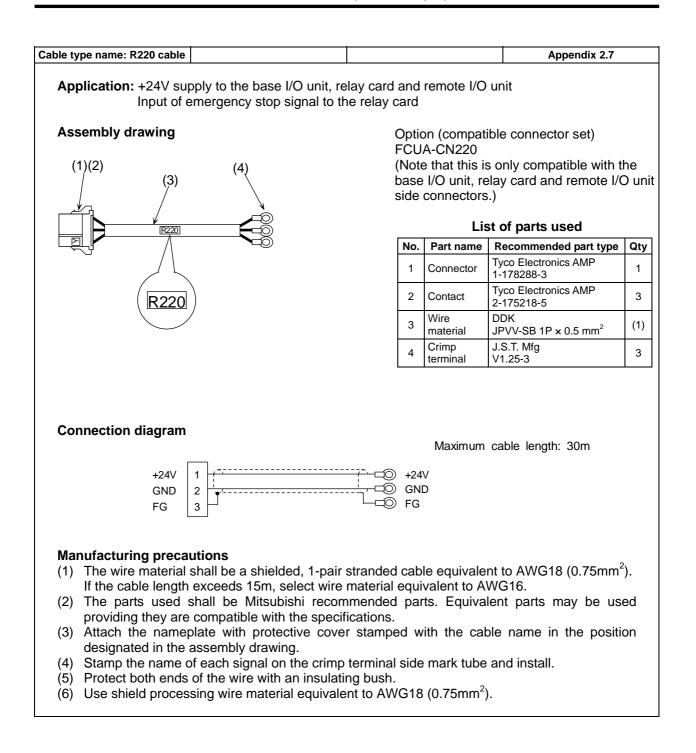



- (4) Fold the wire material shield over the sheath, and wrap copper foil tape over it. Connect the copper foil tape wrapped around the sheath to a connector GND plate.
- (5) Part No. 1 (plug) and part No. 2 (shell) are solderless types. If soldering types are required, use parts equivalent to 10120-3000VE for the plug and 10320-52FO-008 for the shell (both parts manufactured by Sumitomo 3M).

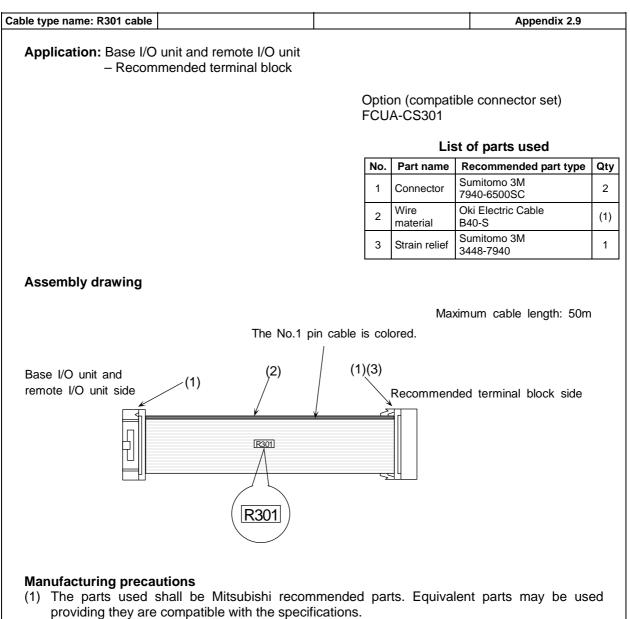

(4) Protect both ends of the wire with an insulating bush.

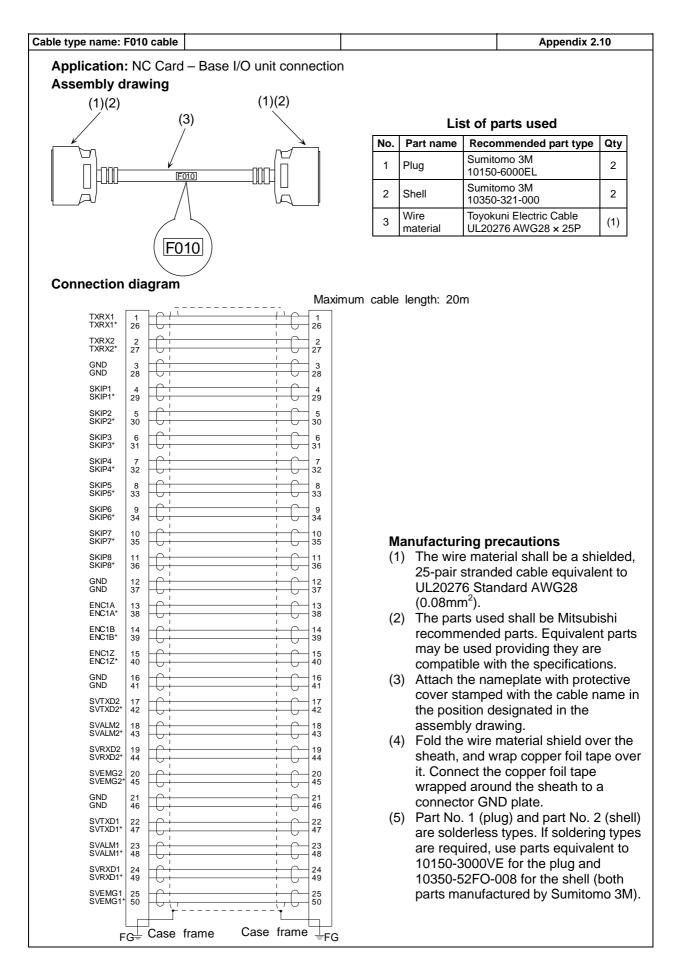


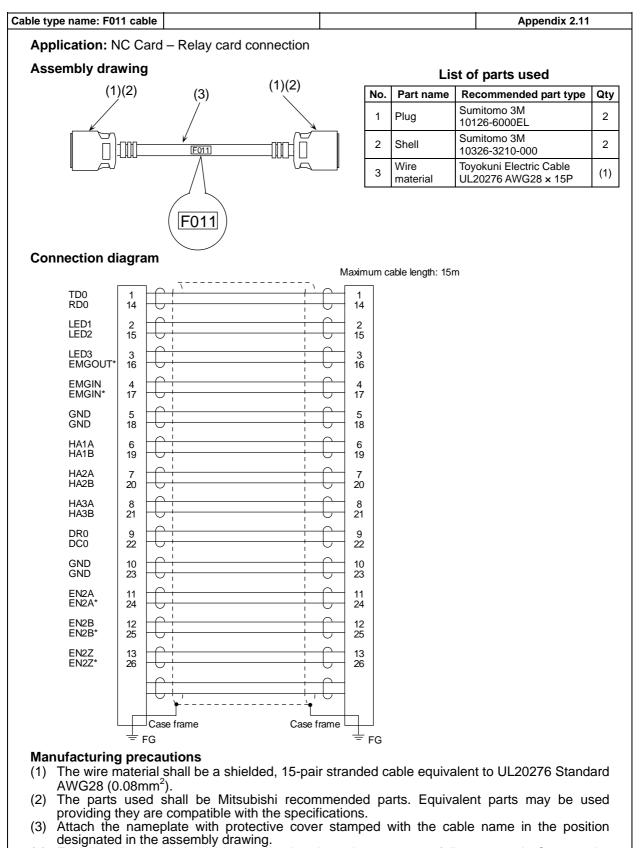
- (5) Stamp the name of each signal on the crimp terminal side mark tube and install.
- (6) Insulate the crimp terminals of unused signal wires with vinyl tape, etc.
- (7) Part 1 (plug) is usually used for wire material of AWG 24 (0.2mm²) or less in the catalog specifications, but AWG 22 (0.3mm²) can also be used.



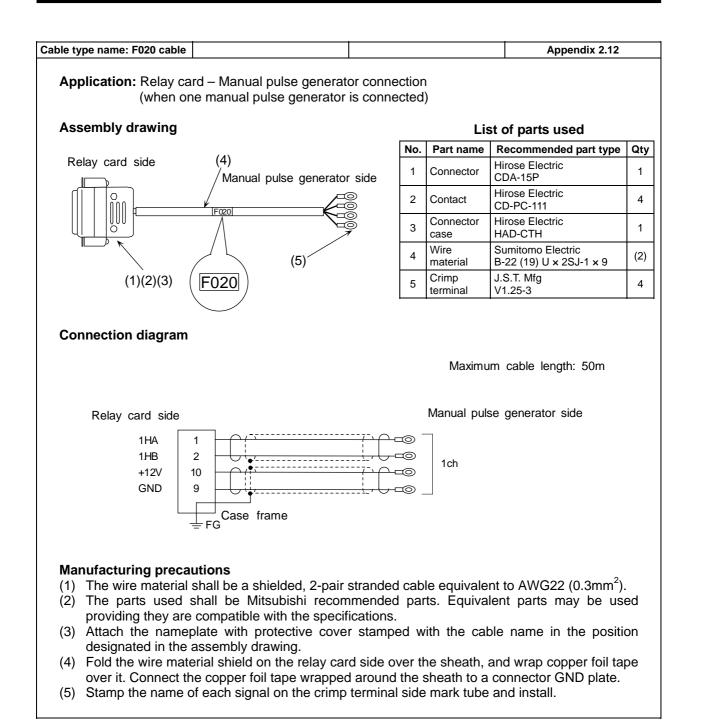
Appendix 2 Cable Manufacturing Drawings 2.5 R042 Cable (Manual pulse generator)

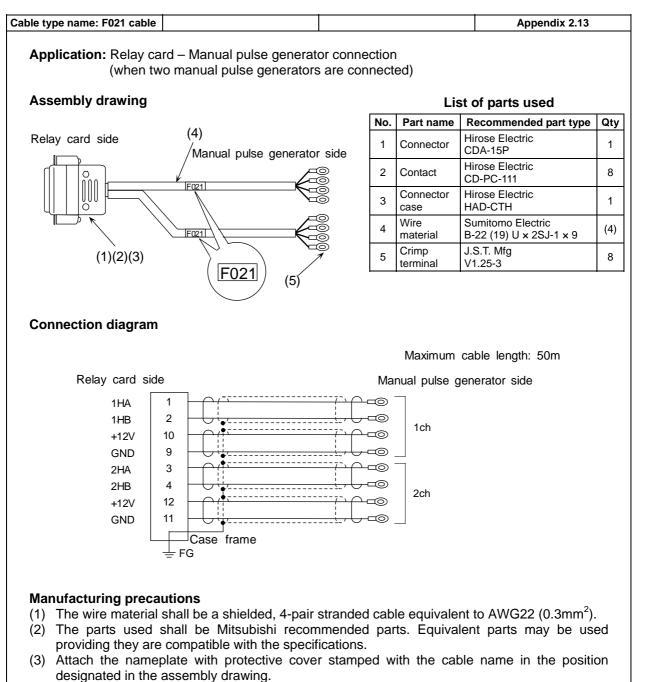


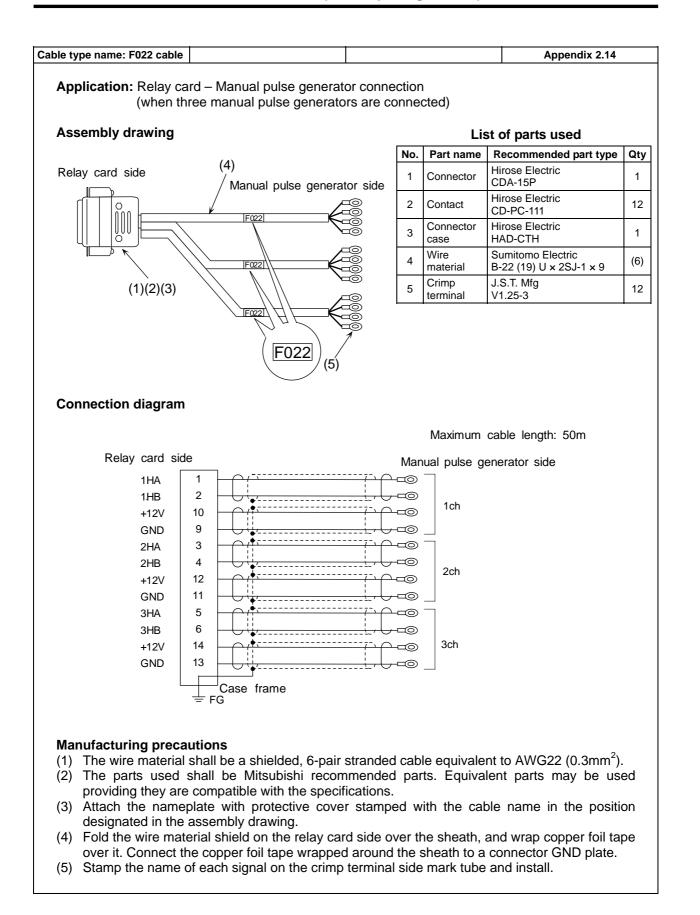

Note that for noise resistance improvement, in some cases only one end is connected, both ends are connected or neither end is connected.

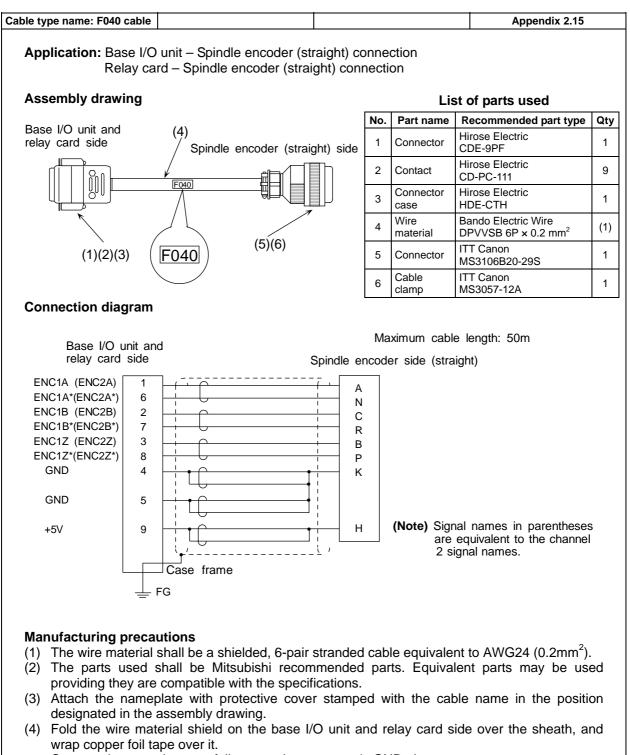


Cable type name: R300 cable				Appendix 2.8	
	unit and remote I/O unit e electric cabinet connectio	n			
		FĊU (Note base	A-CN300 e that this is	ble connector set) s only compatible with t d remote I/O unit side	he
			Lis	at of parts used	
		No.	Part name	Recommended part type	Qty
		1	Connector	Sumitomo 3M 7940-6500SC	1
		2	Wire material	Oki Electric Cable B40-S	(1)
Base I/O unit and remote I/O unit side	The No.1 pin (2)		ed.	aximum cable length: 50r	n
providing they are (2) Attach the name		cations.			

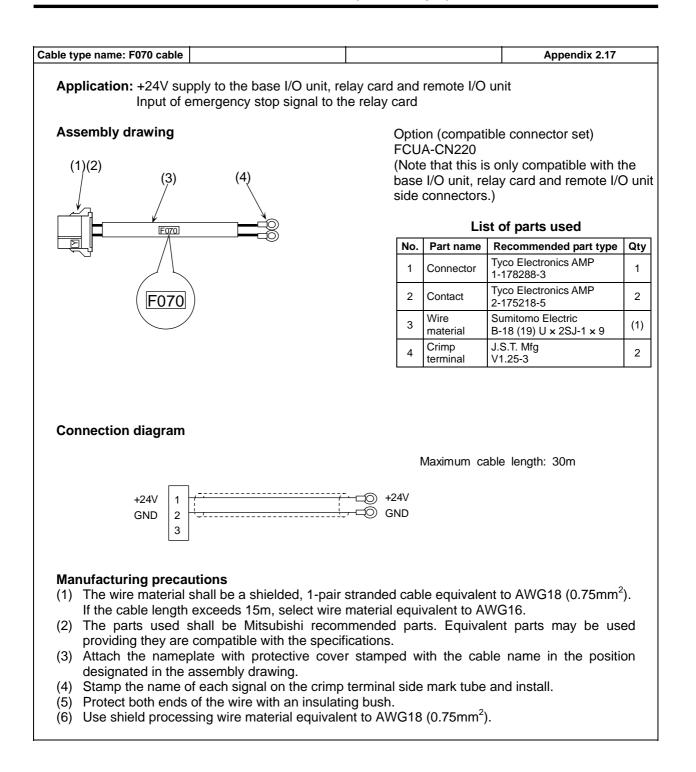


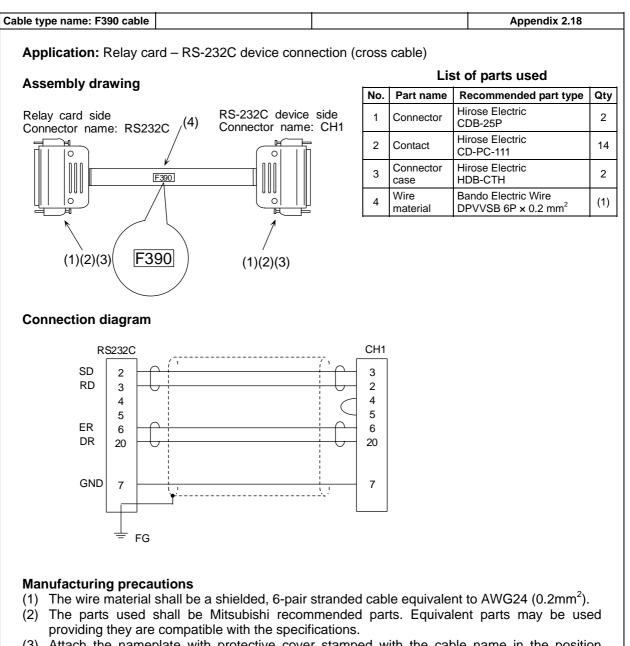

- (2) Attach the nameplate with protective cover stamped with the cable name in the position designated in the assembly drawing.
- (3) The recommended terminal block is the IDEC IZUMI I/O terminal BX1F-T40.



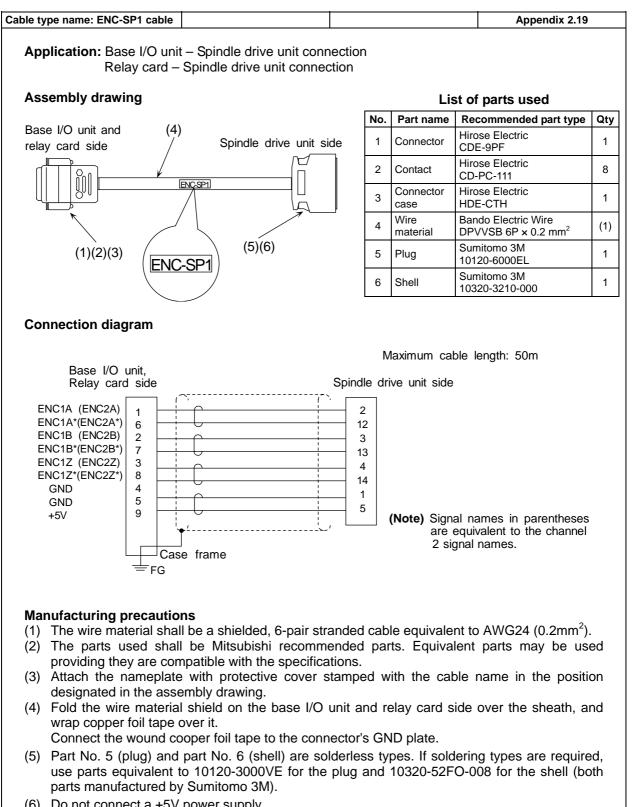

- (4) Fold the wire material shield over the sheath, and wrap copper foil tape over it. Connect the copper foil tape wrapped around the sheath to a connector GND plate.
- (5) Part No. 1 (plug) and part No. 2 (shell) are solderless types. If soldering types are required, use parts equivalent to 10126-3000VE for the plug and 10326-52FO-008 for the shell (both parts manufactured by Sumitomo 3M).

- (4) Fold the wire material shield on the relay card side over the sheath, and wrap copper foil tape over it. Connect the copper foil tape wrapped around the sheath to a connector GND plate.
- (5) Stamp the name of each signal on the crimp terminal side mark tube and install.





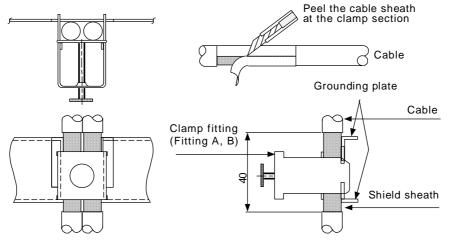
Connect the wound copper foil tape to the connector's GND plate.



(4) Fold the wire material shield on the base I/O unit and relay card side over the sheath, and wrap copper foil tape over it.
 Connect the wound copper foil tape to the connector's GND plate.

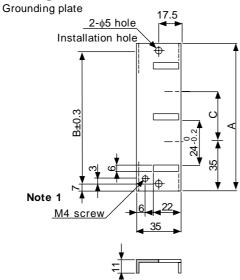
- (3) Attach the nameplate with protective cover stamped with the cable name in the position designated in the assembly drawing.
- (4) Fold the wire material shield on the base I/O unit and relay card side over the sheath, and wrap copper foil tape over it. Connect the wound copper foil tape to the connector's GND plate.

Appendix 2.20 Table of Connector Sets

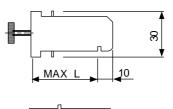

Connector type	Application	Packing details		
FCUA-CS000	Double-ended: Base I/O unit – Servo drive unit Servo drive unit – Servo drive unit Single-ended (* side): Remote I/O unit (*) – Analog input/output Remote I/O unit (*) – Manual pulse generator Base I/O unit – Spindle drive unit (*) Relay card – Spindle drive unit (*)	Plug (Sumitomo 3M) 10120-3000VE × 2pcs.	Shell (Sumitomo 3M) 10320-52F0-008 × 2pcs.	
FCUA-CS301	Remote I/O unit – terminal block Base I/O unit – terminal block	Connector (Sumitomo 3M) 7940-6500SC × 4pcs.	Strain relief (Sumitomo 3M) 3448-7940 × 2pcs.	
FCUA-CN211	Base I/O unit - remote I/O unit Remote I/O unit - remote I/O unit	Connector (Tyco Electronics AMP) 1-178288-3 × 1pc.	Gold contact (Tyco Electronics AMP) 1-175218-2 × 3pcs.	
FCUA-CN220	24VDC power input External emergency stop input	Connector (Tyco Electronics AMP) 2-178288-3 x 1pc.	Tin contact (Tyco Electronics AMP) 1-175218-5 × 3pcs.	
FCUA-CN300	Base I/O unit – Machine electric cabinet Remote I/O unit – Machine electric cabinet	Connector (Sumitomo 3M) 7940-6500SC × 2pcs.		

Appendix 3 Parts for EMC Measures

Appendix 3.1 Shield Clamp Fitting


The effect can be increased by directly connecting the cable's shield sheath to the grounding plate. Install the grounding plate near the outlet (within 10cm) of each panel, and press against the grounding plate with the clamp fitting. If the cables are thin, several can be bundled and clamped together. To provide sufficient frame grounding, install the grounding plate directly on the cabinet or connect with a grounding wire.

If the AERSBAN-□SET, containing the grounding plate and clamp fitting, is required, please contact Mitsubishi.



Clamp section drawing

Outline drawing

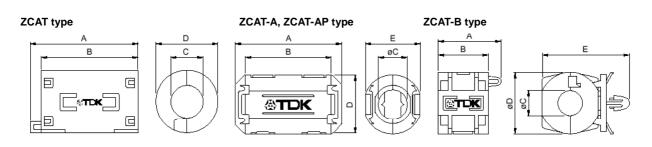
Clamp fitting

Unit: mm

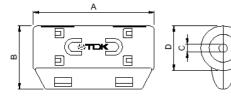
Note 1) Screw hole for wiring to cabinet's grounding plateNote 2) The grounding plate thickness is 1.6mm

	A (mm)	B (mm)	C (mm)	Enclosed fitting
AERSBAN-DSET	100	86	30	Two clamp fittings A
AERSBAN-ESET	70	56	-	One clamp fitting B

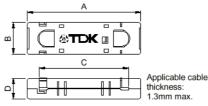
	L (mm)
Clamp fitting A	70
Clamp fitting B	45


Appendix 3.2 Ferrite Core

The ferrite core is mounted integrally with the plastic case.


This can be installed with one touch without cutting the interface cable or power supply cable.

This ferrite core is effective against common mode noise, allowing measures against noise without affecting the quality of the signal.


Recommended ferrite core: TDK ZCAT Series ZCAT3035-1330 (-BK)

ZCAT-C type

ZCAT-D type

Part name	A (mm)	B (mm)	øC (mm)	øD (mm)	E (mm)	Applicable cable outer diameter (mm)	Weight (g)
ZCAT1518-0730-M(-BK)*1	22±1	18±1	7±1	15±1	-	7max.	6
ZCAT1518-0730(BK)*2	22±1	18±1	7±1	15±1	-	7max.	6
ZCAT2017-0930-M(-BK)	21±1	17±1	9±1	20±1	-	9max.	11
ZCAT2032-0930-M(-BK)*1	36±1	32±1	9±1	19.5±1	-	9max.	22
ZCAT2032-0930(-BK)*2	36±1	32±1	9±1	19.5±1	-	9max.	22
ZCAT2132-1130-M(-BK)*1	36±1	32±1	11±1	20.5±1	-	11max.	22
ZCAT2132-1130(-BK)*2	36±1	32±1	11±1	20.5±1	-	11max.	22
ZCAT3035-1330-M(-BK)*1	39±1	34±1	13±1	30±1	-	13max.	63
ZCAT3035-1330(-BK)*2	39±1	34±1	13±1	30±1	-	13max.	63
ZCAT1525-0430AP-M(-BK)	25±1	20±1	4±1	15±1	11.5±1	2.5 to 4(USB)	7
ZCAT1325-0530A-M(-BK)*1	25±1	20±1	5±1	12.8±1	11.2±1	3 to 5(USB)	7
ZCAT1325-0530A(-BK)	25±1	20±1	5±1	12.8±1	11.2±1	3 to 5(USB)	7
ZCAT1730-0730A-M(-BK)	30±1	23±1	7±1	16.5±1	15±1	4 to 7(USB/IEEE1394)	12
ZCAT2035-0930A-M(-BK)*1	35±1	28±1	9±1	19.5±1	17.4±1	6 to 9	22
ZCAT2035-0930A(-BK)	35±1	28±1	9±1	19.5±1	17.4±1	6 to 9	22
ZCAT2235-1030A-M(-BK)	35±1	28±1	10±1	21.5±1	20±1	8 to 10	27
ZCAT2436-1330A-M(-BK)	36±1	29±1	13±1	23.5±1	22±1	10 to 13	29
ZCAT2017-0930B-M(-BK)	21±1	17±1	9±1	20±1	28.5±1	9max.	12
ZCAT2749-0430C-M(-BK)	49±1	27±1	4.5±1	19.5±1	-	4.5max.	26
ZCAT4625-3430D(-BK)	45.5±1	24.5±1	34±1	12±1	-	For 26 core flat cable	32
ZCAT4625-3430DT(-BK)*3	45.5±1	24.5±1	34±1	13±1	-	For 26 core flat cable	32
ZCAT6819-5230D(-BK)	67.5±1	18.5±1	52±1	16±1	-	For 40 core flat cable	58
ZCAT6819-5230DT(-BK)*3	67.5±1	18.5±1	52±1	17±1	-	For 40 core flat cable	58

• ZCAT-C type and ZCAT-D type

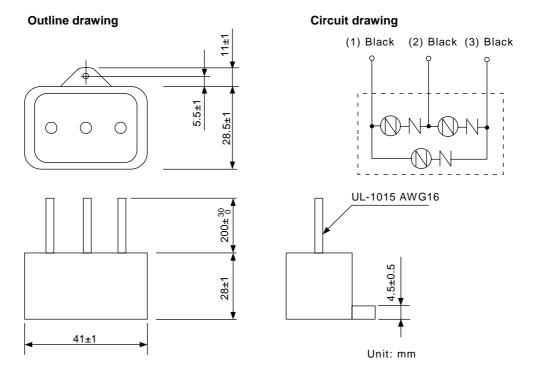
*1 The M stamp is attached.

*2 A fixing band is attached at shipment.

*3 Double sided tape type. (Double sided tape is attached at shipment)

• ZCAT-B type: Cabinet fixing type installation hole ø4.8 to 4.9mm, plate thickness 0.5 to 2mm

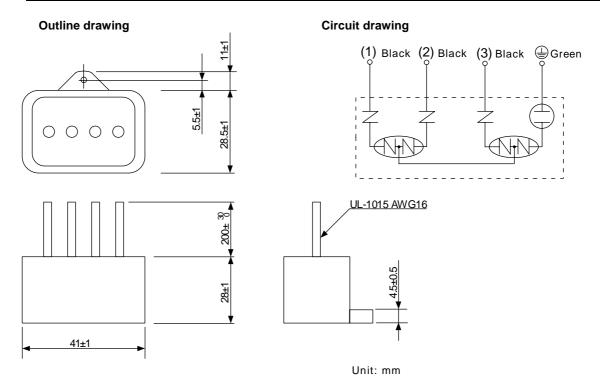
• ZCAT-AP and ZCAT-C type: Structure that prevents easy opening after case is closed.


Appendix 3.3 Surge Protector

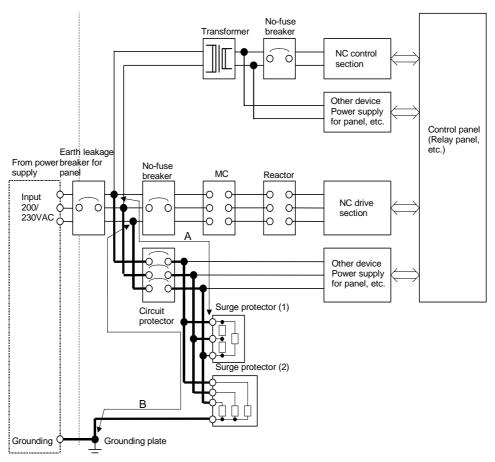
(1) Surge protector

Make sure that surge does not directly enter the AC line of the general-purpose stabilized power supply (prepared by customer) supplied to the control unit and DIO. The following product or equivalent is recommended for the surge protector.

1) Part name : RAV-781BYZ-2 Manufacturer : Okaya Electric Industries


Circuit voltage 50/60Hz Vrms	Max. tolerable circuit voltage	Clamp voltage V±10%	Surge resistance level 8/20µs	Surge withstand voltage 1.2/50µs	Static capacity	Operating temperature range
250V 3ø	300V	783V	2500A	20kV	75pF	-20 to +70°C

* Refer to the manufacturer's catalog for detailed characteristics, outline and connection methods of the surge protector.


2) Part name : RAV-781BXZ-4 Manufacturer : Okaya Electric Industries

Circuit voltage 50/60Hz Vrms	Max. tolerable circuit voltage	Clamp voltage V±10%	Surge resistance level 8/20µs	Surge withstand voltage 1.2/50µs	Static capacity	Operating temperature range
250V 3ø	300V	700V	2500A	2kV	75pF	–20 to +70°C

* Refer to the manufacturer's catalog for detailed characteristics, outline and connection methods of the surge protector.

(2) Surge protector installation example

Surge protector installation method

<Caution>

(1) Thick wires will enhance the lighting surge absorption effect, so keep the wire as thick and short as possible.

-Wire material-

Wire length:

Wire diameter: 2mm² or more

Connection length (A) to surge protector (1) is 2m or less. Connection length (B) to surge protector (2) is 2m or less.

- (2) When carrying out an insulation voltage resistance test with an overvoltage (100VAC, 1500VAC) applied on the power supply line, remove the serge protector (2) since it will function under the applied voltage.
- (3) A short-circuit accident will occur if a surge exceeding the tolerance is applied on the surge protector. Thus, always insert a circuit protector to protect the power supply line. The current does not flow constantly to surge protectors (1) and (2), so the circuit protector can also be used for the other devices.

Appendix 3.4 Selection of Stabilized Power Supply

Consider the following characteristics when selecting the stabilized power supply. (prepared by customer)

Use a power supply that complies with CE Marking or that follows the standards given below.

Stabilized power supply selection items

Item			Conditions
	Voltage fluctuation	±5%	±5% or less of 24VDC output
Output fluctuation	Ripple noise	Max. 120mV	±5% or less of 24VDC output
naotaation	Spike noise	Max. 500mV	
Output current		—	Refer to this manual
Output holding time		Min. 20ms	Instantaneous off time

Standards

Safety Standards: UL1950, CSA C22.2 No. 234 approved, IEC950 compliantNoise Terminal Voltage: FCC Class A, VCCI-1 ClassHigh Harmonics Current Restrictions: IEC1000-3-2

Revision History

Date of revision	Manual No.	Revision details
Feb. 1998	BNP-B2203*	First edition created.
Sept. 1999	BNP-B2203A	
Oct. 2003	BNP-B2203D	 Design of the cover and the back cover were changed. MODEL, MODEL CODE, and Manual No. were added on the back cover. PCI bus specifications (FCU6-HR655) card added. Miswrite is corrected

Notice

Every effort has been made to keep up with software and hardware revisions in the contents described in this manual. However, please understand that in some unavoidable cases simultaneous revision is not possible. Please contact a Mitsubishi business office with any questions or comments regarding the use of this product.

Duplication Prohibited

This instruction manual may not be reproduced in any form, in part or in whole, without written permission from Mitsubishi Electric Corporation.

© 1997-2003 MITSUBISHI ELECTRIC CORPORATION ALL RIGHTS RESERVED

HEAD OFFICE : MITSUBISHI ELECTRIC CORPORATION HEAD OFFICE : MITSUBISHI DENKI BLDG., 2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

 MODEL
 MAGIC64

 MODEL CODE
 008-096

 Manual No.
 BNP-B2203D(ENG)