Parallels

Parallels Business
Automation Standard

Software Development Kit

Release 4.2. Revision 1.0

|| Parallels

(c) 1999-2012

Copyright Notice

Parallels IP Holdings, GmbH.

c/o Parallels International GMbH.
Parallels International GmbH
Vordergasse 49

CH - 8200 Schaffhausen
Switzerland

Tel: + 49 (6151) 42996 - 0

Fax: + 49 (6151) 42996 - 255

Copyright © 1999-2012 Parallels IP Holdings GmbH. and its affiliates. All rights reserved.

This product is protected by United States and international copyright laws. The product's underlying
technology, patents, and trademarks are listed at http://www.parallels.com/trademarks

Microsoft, Windows, Windows Server, Windows NT, Windows Vista, and MS-DOS are registered
trademarks of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

Mac is a registered trademark of Apple, Inc.

All other marks and names mentioned herein may be trademarks of their respective owners.

Changes History

Date

Revision

Changes Description

June 19, 1012

1.0

CP Customization methods updated according to PBAS v.4.2.

Contents

Changes History 3
Preface 9
TYPOGraphiCal CONVENTIONSc.viiieiiitiiese ettt e e e e sae s e e besreeteereenseseenaeneesnesreeneens 9
FREUDACK ...ttt bbb b e bbb R R b bbbt R bt n bbb 10
Shell Prompts in Command EXAMPIES........cuciiiiiiiieiiceee et sresresneeneas 10
GENETAL CONVENTIONS.ottt sttt b ettt b et et s btk s b e stk s b e st et e st e st et st e st abe b e s et 11
XML API 12
Introduction to Parallels Business Automation - Standard XML APccocooiiiiiiiiininee e 13
L ST O A = OO 18
ey To] o 0] 1] DTSSR 18
RCET 0] o[]S 19
HSPCAPIHP ...ttt bbbt b b bbbt bbbt bbbt bt b et b en et et b 20
(ol 0Tt S Vo T o114 | SRPR 20

(o 3Tt S TToT=T ST oo 0] o LS 21
get_categorized Plan_ LIStvcieiiii it 22
get_extended _Plan iNfO. ..o e 23
Example of EXTENDED_HP_INFO Hash.......ccccooiiiiiiiiiice s 24
get_full_extended_plan_INTO ... 31
get_plan_promMOtioN_TIST..... ..o et 32

(o T=L A o] fo] 111010] o TSSOSO 32
get_SEllable _PIAN_TISTco.iieee e e bbb 33

A2z Lo Eo U o L= G o o[RSSO 34
HSPC/API/BIIING. ...ttt bbbttt b bbb bbbttt en bbb 35
(o= L [od0 | L= o (0[] RSP 35
Examples 0f ORDER HaShc.cov oo 39

o T=L A 1O (T To = T T=1 LT PSSP 49

0] FToT= T 0] (o [SRS 50
create_OffliNE _PAYMENT ... bbbttt e bbbt b e 56
Example of Test Code for create_offline_payment FUNCLION..........cccooiiiiiiiiiiiiiecee 57

(oL o] o (=T g (=] v 1] USSR USROS 58
get_eXtENAEd_AtIr TiST.. ..o bbb 58

OBL ACCOUNT_SUDSCE ...ttt ettt b e bt bbbt bt et e b sbesbesbe et e s e 59
0|0 od g 1011 OSSR 59

o T=L A0 oot L PSSP 60
Example of get_subscr_info Returned ValUesccccvvveieiicne s 64

(o =T I o105 0] T (Y70 (oSSR 97

06t _ACCOUNT CAMPAIGNS ..o vt eveereeeietestes e stesresseeseesee e stestestesseereeseeseeseessesbesresteaseeseeneenseseeseesreanearensens 98
HSPC/API/ACCOUNE ...ttt b et b bbbt s bbbt s bt en bbb s 99
o= oL 11] o 1= 99

create _dOMAIN_CONTACTcccuiiiiie ettt et e e st e st e teesbeesteesreereesaeesreenas 101
(=TT =11 | LT ST 102

0L ACCOUNT_INTO ..ttt bbbttt e bbbt e e be s 103
Example of ACCOUNT _INFO Hash........ccocoiiiiiiiiiiie e 104
get_domain_CONTACT TIST........oeiiiie it 106

o T= A (L= =T 1 0TS 106

Validate PASSWOITc.viiiiiieiiieiiei ettt bbbttt b e eb e s b e bttt e e et e neesbenbesne et e ne e 106

get_eXtENAed_Attr TiST........ooiieie bbb 107

o T=L A 01=] 6570) S 108
HSPC/API/PEISONcutite ettt ettt ekt b ettt b et b et ekt s b et e e b et et e sbe et e sbe e ebesbe e ebe it 110
T g T 0L o] S 110

o T=L A 011 6570 L1 TS 113
HSPC/API/DOMAIN ...ttt ettt b et sb et b ettt s bt et s bt et e sbe et e sbe e ebesbe e ebennes 114
(ot gL Tod Qo [T o Y[) S 114
Check_dOmAaIN_NAIME_SYNTAXoiiiiiieiiiitiiieie ettt bttt b e bbb be s 115

0L AOMAIN_TIST ...ttt bbbttt b e b bbb 115

A Lo E I TS 1T A SRS 116
o\ 0] 0] = (o S PSPPI 117
validate_ dOmain_data..........ccooiiiieiie e e 118
HSPC/APIIMIAIIET ...ttt b et sb et b et et st e e teeb et et e sbe e etesbe e atesbeeatenes 119
L 1 PSP PR PSPPSR 119
HSPC/API/PP ..ottt bbbtk b etk b ekt s bt ekt e bttt s bttt eb e e ebe et e ebe st 120
get_saved paymethod_liSt.........ccoiiiiiiiiciceee e 120

o L=l o1 8o 110 T L) S 121

o T=L A 0T 2= o S 121

o T=L A (0 LT =01 A g) S 122

S 1Y O OOV RV OURUPPRTTRPN 123

GBE STATUS ...ttt stttk b ettt bt bbbt a et R R e bt bR bR b e b e e bt e be e be R e e e eae e nae e e 124
HSPC/APIFTAUT ...ttt ettt sttt sb et sb et b et et st e beeb et etesbe e etesbe e atesbeeetenns 124
get_warning_NewWpPaYMETNOQooi it 124
get_resume_NEWPAYMETNOMcooiiiiiiiiiieie et b e bbb 125

o T= A (I 0 L1y 1] 0] o] 4 S 125

[ST O o o]) o SRS 126
o T=L Al oL £o)VZTo =Tl oTo o) i To SR 126
HSPC/API/CAMPAIGN .ottt e et e e stestesseasaeseese e eesbesbesseeteeneeneeeeteneeseesteanennens 130
o T=L Ao 441 o UL | o S 130

o T= A (oot LU g L Aoz] 2= Lo 4 131
HSPC/API/SSL ..ottt sttt sb et s bt eb e et e e b et e be e b et e be et et e besbe e etesbe e atesbeeetenrs 131
(0T Aot A (0] 1 1 ISR 131

A Lo F Y ot A (o PSSR 132

0L PArSEA_CST AL .. .eteieietieieie ittt ettt bbbttt e bbbt b b s 133
Online Store Customization and Integration 134
Integrating Store With EXISting WEDSITEcccciviiieieicie sttt 137
Customizing Default Store INStallation.............cocovviiiicicic e 138
Simple Customization of Default Store Installationccccoceviviiiininiiecie e 139
Advanced Customization of Default Store Installation ... 140
Selecting Store Files Customizable via Web INterface..........ccocooiiiiiiiiiiiccc e 141
Manual Store Installation 0N REMOLE SEIVEcoiiiiiiiiie e 143
Customizing Store LOCAIIZALION.coiiiiiiiee et 145
User Interface Customization 148
Screens CUStOMIZAtION OVEIVIEWeiiiruiriiirieieiisieieie sttt ettt bbbttt ene bbb 148
Template Based CUSIOMIZALIONc.ueivieieeieiiesies et se e e et se e et resre e enae s e sestesrenresneenens 153
Customizing Vendor Control Center (PCC/RCC) ...uvivcieieie et seee e ste st e et sreeneens 153
(@00 1 oo 1= 0L =T o111 (0] Y/ 153
Components Repository Structure and FIleSccooeiieiiiiiiiiiiiice e 154

The filter FUNCLION SAMPIE.........oiiiiii e 155

NeW COMPONENT SAMPIE.......cuiiiiiiieie ettt sb e b e sr e 156

Screen Aliases Based Customization in Control CENLENSoovieiiriiieeieiere e e 160
Control Center Screen Customization Module Sample..........ccocoiiiiiiiin i, 162

Customizing Customer CONrol PANEL.........cc.ooiiiiiiii e 162

Control Panel SCrEEN SITUCTUIE........cviiiiie ettt ettt st s srbe e sabe s s rae s snre s enes 162

Control Panel Top Frame and Tabs CUStOMIZAtIONccciiiiiieieiiiese s 166

CUStOMIZING MAIN FIAIME ...ttt ettt bbb bbb enes 167
Customizing Control Panel Dashboard...........ccccoevviiiiieiicieice e 169
Control Panel Dashboard Customization Module LOCation...........cccvvevrnreinnecninnenenn, 169

Control Panel Screens Customization UsiNg SCreeN IDScccevvvereniviieeiieiene e seese e ereeeeee s 180
Customization APL MENOUSccoviiriiieiee e 181

Discovering Screen ID and the Name of Screen Element to Customize...........cc.cceevevvneee. 183

Customizing a Single SCreeN FOMMcii it 185

Customizing @ Group OF SCIEENS........ceciiiiiiie et b 187

Examples of Screen ID Based CUStOMIZAIONcceiiiiiiiiiiie e 187

Customizing Help Bar in Control Panel ... 190
Adding New Fields to Accounts Registration FOMMcooiiiiiiiiiiiie e 190
Extended AttriDULES ODJECLScuiiiieierieiesie ettt bbb bbb eneas 191
Custom Extended Attribute Code SAMPIESc.ooviiiiiiiiiiieee s 191
Extending E-Mail NOtification TeMPIAtES........cviiviiiiieierise s enees 194
Placeholder Creation TOOIS ..o 195
Custom Placeholders SAMPIES........ccviviieiiiee e e neens 202
Creating Placeholders for Custom Extended AtribDULESc.coerviviinieciece e 205
CUStOMIZING LANQUAGE PACKSc.veiviiieiieeeieieie st sie sttt sttt st e st st et sneeteeneensesneneeneesnenreeneans 206
Language Pack Customization TOOISccccviviiveiieiesc s eneas 206
Language Pack Customization SAMPIE.........coiieiiiiiiii e e 210
Integration with External Helpdesk 213
EXtErnal HEIPAESK APo ettt sttt e et et be et e e e ene e e et e neesnesreaneaneas 213
Adding New Language Pack 216
Parallels Business Automation - Standard Translation CapabilitieS............cccccevvvvivireiencnie e 217
Preparing Directories and Files for New Language Packcocooiiiiiiiiiiiiieceee e 218
TranSIating INEITACEoiuiiieie et b e bttt et e bbb beeneas 219
Translating General Labels and MESSAgES.cveueiuireriiriirieiieie ettt 220
Adding @ NEW TranSIAtIONcc.oiiiiiii e 221

Translating TOOITIPS FOr MENU TEEMS.......ciuiiiiieie e 224
Translating the ON-SCreen HINScccooiiiiiiiie i 224
Translating HEIP FIIES ..o.vvieir et reene e 225
Translating the Context Help Pages for Control Panel...........cccocovvvviieievcncc s 225

Translating the Online Help Pages for Control Centersccoovvveveveneveseseseeeeeees 226

Translating Printable DOCUMENTAtION........ccciveiiieiiciee e 226

Plug-Ins Development 227
PlUg-1NS TOOIKIT METNOMS ..ottt bbbt sbe bbb 228
ANTE-FFAUA PIUG-INS ..ottt bttt s b e b e bt b e e e et et sbenbeebeaneas 229
Graphical REPrESENTALIONccuiiiiiiiii et b e bbb 231
Middle TIEr MOGUIE. ..ot b bbb bt eneas 235
HEAAET ... 235

PrOfile HaSN. ..o 236

CIASS INTO .. 238

CheCK HANAIET ... 239

POSE-INSEAll MEENOT ..o 240
Post-Installation Configuration SCIPLcooiiiiiiiiie e 241
Anti-Fraud Manager Valug STIUCLUIEc..eiiiieieiiie ittt 242
Component repository configuration files ... 243
Anti-Fraud Plug-In Package StrUCTUIE.........coiiiiieeiie et 243
Payment Method Plug-Ins Development TOOIScuiiiiiiiiiei s 244
Payment Method PIUg-INS ODJECESoouiiiiiiii et 244
Middle TIEr MOTUIE........ccoiiiecie s 245

WED INEEIFACE MOAUIEccveei ettt ettt e et b s s be s s b e s sabe s s be e snbesenes 246

Payment Plug-1ns DevelopmMENt TOOIS ..ot e 247

Payment PIUG-1NS NAMESPACES.c.uiiiieiieitesieite et et sttt e e sttt b et e b sbe st b sbeanes 247
Methods and Parameters Common for all Payment PIUg-INS........cccoovviivvsieiieeie s 248
Online Payment PIUg-1n MELNOAScccvoviieieicc e 249
Bank Transfer PIUG-IN MELNOUScoiiiiiiieieice st enees 257
Payment Plug-Ins Graphical PreSentationc.cccovereiiiiiieie e 258
Creating a New Promotion PlUG-IN........c.ccoiiiiiiiiie ettt sre e 258
Introductory Notes About Promotion PIUG-INS.........ccccceviiiiireieice e 259
Promotion Plug-Ins Objects and Their Naming COnVeNtionsccocovoeveiinenicns e 261
WED INTErfACE MOTUIEcviiiieiee bbbttt bbb 262
Middle TIEr MOGUIE. ... bbbt e bbbt b eneas 263
CONSTANES ...ttt he e bt bttt a bt e b e bt e s b e e be e bt e neeeae e sre e naeenas 266
Registering a Promotion PIUG-IN ... e 268
Domain Registration Plug-In Development TOOIS.......cc.coiiiiiiiiiiieieiee et 270
Domain PIUG-1N NAMESPACEScvvereerieierieiieiieeteeeeie e ste e sre e sseenaesaessestesrestesreeseeseenseseesressesseasens 270
HSPC::MT::PIugin::DIM MEethOS.......ccueiiiiiieieice s sttt eneas 270
[0 147 VL 10 To] Q0 o TS 270
Operations With DOMAINSccviviiiiieieiese s eee e et sre e e e e sresresresresneenens 273
Operations With NAME SEIVEISvcivcieiire s eee e ettt sre st e enees 277
Operations With Contacts and Domain Extended Information.............cccccevevivivivninnnenn, 279
Supporting "WHOIS Privacy' FEATUIE..........ociiiiiiiiieie ettt 282
Supporting 'LOCK DOMAIN' FEAIUNE........cuiiviiiriiiieieie ettt e 283
Supporting OFffline OPEratioNScceeieiiiiie e b 285
HSPC::PIUGIN::DIM METNOUSccveeiiie et 286
Operations With Contact and Domain Extended Information............ccccccooeieniniiiininenn, 286

DM Plug-In Installation and Configurationc.cccovevvienienie s 290
Required TOOIKIt MEtNOMS.cieieieiescre et resre e eneas 292
COMMON FUNCLIONS ...ttt ettt b e 293

oL LTI (=1 1]] L= PRSP 293
PUrify_ FrOMXMI_ LAoveiicc e s 293

DM Related Checking, Converting, Formatting FUNCLIONS.........c.ccovveierenciene e, 294

gt _dOMAIN_INTO....eiuiiiiic e bbbt 295
Creating @ NEeW DINS PIUG-IN ... ettt bbb 295
Introductory Notes ADOUt DINS PIUG-TN ... 295
DNS Plug-In Objects and Their Naming CONVENLIONS...........cccooerereeieiieneie e 296
Registering @ DINS PIUG-TN ..ot bt eneas 297
WED INTErfACE MOTUIE ... bbbttt b e bbb 298
L0 2 S 299

VIBW. NS() 1evrereereeniesie it iesie et et e st st e st et e e s et st e tesae et e e seen et e st e beaReeteeneen e e nenneneenneerenne e 302

R LY=L SO 304

LI (=TS o= L] PSSP 306
MiIAAIE TIEr IMOAUIE.........ieeiiieieeict bbbttt 306
TNSEATT() et bbbt bbb 307
SYNC_ZOMES() vttt eterterteeteeseesteetesbe st et ebe e es e b e b e sk e e bt e bt e Rt e s e e e et e ebeeb e e bt bt e bt e Rt e b e b ehenbeereeneenes 308
CheCK_iS reaCNADIE() ... ceeieee ittt 309

SSL Certificate Plug-1n Developmet TOOIScoiiiiiiiiieie e 309
SSL Certificate PIUG-1N NAMESPACES.ccueiieieieie ettt ettt bbb enes 309
Middle TIEr MOGUIE. ..ottt bbbt b e bbb eneas 310
Configuration INFOrMAatioNcccoveieiiee e 310

SSL CertifiCate ISSUING.......coeiiiieiieeeeeieseese st e e et sr et sre e re e e e sre st sresreaneenens 313
Graphical Presentation MOUUIEcccviviiiieie e 318
o [0 R LT @0) o T U o o S 318

SSL Certificate CONFIGUrAtION.........cviieieiiec st 320

BUITAING NEW PIUG-IN ... bbbt bt b et se bbbt beeneas 324

Tools 327
Bulk Domain Registration / TIaNSTEI...........ciiviiiiieieieeie ettt snesre e aneas 327
(O3 1=To 11 O 1o I 10110 S 327
Bank ACCOUNES IMPOIToiiiiiiieie et e st e et e s ee st e besseereeseeneesae st e neesresreaneaneas 328
Migration from Parallels PIESK BIllINGcooiiiiiiiiiiiiie et 328
Bulk Parallels Plesk Domains / Clients RESOIVINGc..oouiiiiiiiiiiieieicie et 328
Script Checking Domain Renewal Date Using WHOIS Information.............ccoccooriiininis s, 328
ClEANING TOON ...ttt et b e bbbt e e b e s b e bt e bt ekt e neeneenbesbesbeebeebeene e 329
DINS SYNChroNIZation TOOI.......cooiiiiiiiie ettt et sa bbb st eneas 330
Parallels Virtuozzo Containers INtEgrationccocueeieoie et e 330

Virtuozzo Templates INStalling TOOL.......cccovoviieie e 331
Tools for Actions Execution over/in CONLAINETccoverreiienieeeee s 333
Using Data Import and Export Command Ling TOOIS.........ccccviveiiiireienese e 334
EXporting Data int0 XIML FIlES........ccciiiiieiiceeice s st e e s sre e enens 335
Importing Billing Data in the Form of XML Fil......ccccoviiviiiiieece e 341
Importing Subscriptions USING XML APL.......cvoiiii s 343
Examples of XML Files Used for Billing Data IMPOrtcccoeriiiiieiesineee e, 344
Account Data in XIML FlB......ccoiiiiiiiiiiece e e 345
Document Data in XML Fil......ccooiiii e 348
Example of XML File for Traffic Classes IMPOItccoooiiiiiiiieiiie e 351
Example of XML File for Traffic Statistics IMPOrt...........cooooiiiiiiii e, 353
LaaToTol gt B L S o] 4) SR 356

Index 359

CHAPTER 1

Preface

In This Chapter

Typographical CONVENLIONSciveiiiecic et sre e nre s 9
== 0 |0 o R SS 10
Shell Prompts in Command EXamMPIES........cooeoiiieieieeeee e 10
GENETAl CONVENTIONS.uiitiitiitiitiieieie ettt bbbttt bbb e e nne s 11

Typographical Conventions

Before you start using this guide, it is important to understand the documentation conventions

used in it.

The following kinds of formatting in the text identify special information.

Formatting convention

Type of Information

Example

Special Bold

Italics

Monospace

Items you must select, such
as menu options, command
buttons, or items in a list.

Titles of chapters, sections,
and subsections.

Used to emphasize the
importance of a point, to
introduce a term or to
designate a command line
placeholder, which is to be
replaced with a real name or
value.

The names of commands,
files, directories, and domain
names.

Go to the System tab.

Read the Basic Administration
chapter.

The system supports the so
called wildcard character
search.

The license file is located in
the
http://docs/common/
licenses directory.

Preface 10

Is —al /files
total 14470

Preformatted On-screen computer output in

your command-line sessions;
source code in XML, C++, or
other programming
languages.

Preformatted Bold # cd /root/rpms/php

What you type, contrasted
with on-screen computer

output.
CAPITALS Names of keys on the SHIFT, CTRL, ALT
keyboard.
KEY+KEY Key combinations for which CTRL+P, ALT+F4

the user must press and hold
down one key and then press
another.

Feedback

If you have found a mistake in this guide, or if you have suggestions or ideas on how to improve
this guide, please send your feedback using the online form at
http://www.parallels.com/en/support/usersdoc/. Please include in your report the guide's title,
chapter and section titles, and the fragment of text in which you have found an error.

Shell Prompts in Command
Examples

Command line examples throughout this guide presume that you are using the Bourne-again
shell (bash). Whenever a command can be run as a regular user, we will display it with a dollar
sign prompt. When a command is meant to be run as root, we will display it with a hash mark
prompt:

Bourne-again shell prompt $

Bourne-again shell root prompt #

Preface 11

General Conventions

Be aware of the following conventions used in this book.

= Chapters in this guide are divided into sections, which, in turn, are subdivided into
subsections. For example, Documentation Conventions is a section, and General Conventions
is a subsection.

= When following steps or using examples, be sure to type double-quotes ("), left single-
quotes ("), and right single-quotes (") exactly as shown.

= The key referred to as RETURN is labeled ENTER on some keyboards.

The root path usually includes the /bin, /sbin, Zusr/bin and Zusr/sbin directories, so
the steps in this book show the commands in these directories without absolute path names.
Steps that use commands in other, less common, directories show the absolute paths in the
examples.

12

CHAPTER 2

XML API

XML API has been developed to become primary point of integration with external shopping
carts, billing, and accounting systems and other third-party components.

In This Chapter

Introduction to Parallels Business Automation - Standard XML APlccccccovvvieiiviieeens 13
[ST 207 o SRR 18
[TR 07 N 1 TR 20
HSPC/API/BIIING ...c.veiviieieieieeees ettt st stestesee e eeneenennens 35
[ISR O 7N o 1Ao7 01U] | AR 99
[ST 07 N VT 6o o TR 110
[STl O AN od V11011 1T 11 [T 114
[ST 07 AN o 11V - 1] 1] TSP 119
[FST 07N o V1o = TR TRRTRRIPTR 120
HSPCTAPHFTAUD. ..ottt ettt ettt st e et e st e e et e e st e e sreeessatesreeessseesneesareeesereesns 124
HSPC/ AP CONTIG ...ttt sttt et s re et sbe et 126
HSPC/AP I/ CAMPAIGN....iitiiiiiecie ettt sttt s te e sb e e te e s besbeesaesbesasestesteeeentas 130

HSPC/APIISSL ...t 131

XML API 13

Introduction to Parallels Business
Automation - Standard XML API

Parallels Business Automation - Standard XML API Gate is based on SOAP protocol, currently
maintained by World Wide Web Consortium at http://www.w3c.org and supported by most of
modern programming languages as framework for messages exchange and remote method calls.

Parallels Business Automation - Standard XML API Gate is implemented as mod_perl handler
and inherits from SOAP: : Transport: :HTTP: :Apache, i.e. is based on the functionality
provided by SOAP::Lite module available from CPAN. Please, refer to SOAP::Lite
documentation for general information and this section provides implementation details and
examples.

Module namespaces are package names with "::" included are replaced with /' - see examples
below.

Security

There are two different strategies used by Parallels Business Automation - Standard XML API
Gate in defining security requirements:

= For requests coming from a local machine (directly to backend server without involving
frontend, i.e. originating from the same address space and using http://localhost:8080 or
https://localhost:8443 as Parallels Business Automation - Standard XML API Gate proxy
URL).

= For requests coming from remote machines (using frontend for proxying requests to
backend).

Safe packages and methods:

= local requests: all packages are considered safe and all their methods are public

= remote requests: only packages with namespace starting with HSPC/API are considered as
safe

Authentication and sessions handling:

= local requests: authentication by password is possible, but not required, authentication is
possible by account number only,

*= remote requests: authentication by password is required.

Authentication is done with call to session_open() interface in HSPC/API (on page 18)
namespace and relies on functionality provided by Security Manager.

Interfaces in HSPC/AP 1 namespace:

session_open()

Parameters: account_no, e-mail, password

Performs authentication with given parameters (required for remote requests and optional
for local, except for account_no or server_name) and initializes session.

XML API 14

If account_no is set to 0, first account which user has roles in is chosen automatically,
but in this case e-mai I and password must be set as well.

If server_name is passed and account_no is empty or missing, account_no is
located by vendor's server name located in server_name parameter.

Returns either unique value to be used as HSPC-SID in next requests (see examples of
clients) or SOAP fault envelope with error message.

session_close()

Performs cleanup of session identified by HSPC-SI1D header.

Returns undeT or SOAP fault envelope with error message.
Configuration

Parallels Business Automation - Standard XML API Gate intended for requests from both
local and remote machines is pre-configured at /hspc/xml-api location.

backend

/etc/hspcd/conf/hspc_xml-api .conf

<Location /hspc/xml-api>
SetHandler perl-script
PerlHandler HSPC: :XMLAPI
Order Allow,Deny
Allow from all
</Location>

frontend

/etc/httpd/conft/hspc_frontend.cont:

XML API 15

<VirtualHost _default_:443>
SSLEngine on

<Location /hspc/xml-api>
Order Deny,Allow
Allow from all
</VirtualHost>

<Location /hspc/xml-api>
Order Deny,Allow
Deny from all
</Location>

Security limitation is set by explicitly allowing /hspc/xml-api location for HTTPS
connections and denying for HTTP connections, so that plain text SOAP envelopes couldn't be
read by intruders.

Parallels Business Automation - Standard XML API Gate could be opened at another locations
as well by configuring backend and frontend server in the same way as described above, i.e. by
adding more Location blocks to backend and frontend servers' configurations.

Servers

Exported methods of packages providing API through Parallels Business Automation - Standard
XML API Gate should rely on the following rules:

= in order to be available for remote requests, a package name should start from
HSPC: - API : : prefix and have its version set:

our $VERSION = 1.0;

= first parameter of each call to exported method is always package name, not reference or
whatever;

= $ENV{session} is valid only for requests including session ID returned by
session_open() call, i.e. could be valid for local and always valid for remote requests;

= $ENV{security_obj} isvalid only for requests including session ID and contains valid
account and user IDs identified by call to session_open() (on page 18);

= die with error message to immediately return it in SOAP fault envelope with message as
description, using the call like this:

return fault with:

- error code “ErrorCode*

- error message

die HSPC: :API->fault("ErrorCode®, “Error description.”);

Notes for HSPstore:

If error code starts with the User prefix, its description is shown to PHP Store visitor, so it
must be localized:

die HSPC::API->fault("UserPassword®, string("passwords_do _not_match®));
If error code does not start with the User prefix, its description is not shown to PHP Store
visitor and is only logged to vendor's local log file, so it must not be localized:

XML API 16

die HSPC: :API->fault("AuthenRequired®, "Authentication required.");

feel free to return any data structures that you can theoretically serialize to XML - and do not
expect an object to arrive at remote side by just returning its blessed reference (guess why it's
just ridiculous).

Examples

HSPC/Test. pm (local requests):

package HSPC::Test;
use strict;
use Data: :Dumper;
returns dump of parameters list, including class name
sub method {
return Dumper(\@);
}

i
HSPC/AP1/Test. pm (remote requests):

package HSPC::API::Test;
use strict;
our $VERSION = 1.0;
gets/sets parameter with key passed as a parameter
sub param {
my (undef, $key, $value) = @_;
return defined $value
? $ENV{session}->{$key} = $value
. $ENV{session}->{$key};
}
1;

Clients

In order to initialize stable communication with Parallels Business Automation - Standard XML
API Gate, first call session_open() in HSPC/API (on page 18) namespace to receive
HSPC-SID value and then add HSPC-SID to either HTTP or SOAP headers to each request
before sending SOAP envelope.

Examples

local .pl:

use SOAP::Lite;
use strict;
my $result = SOAP::Lite

->proxy("http://127.0.0.1:8080/hspc/xml-api*) ## Gate URL

->ns("HSPC/Test") ## package namespace

->method ## method name

("paraml®, {param2 => "test", param3 => [1, 2, 3]}, 0); ## parameters

print $result->fault

? "Fault: " . $result->faultstring

"Result: " . $result->result;

local _php:

<?

require_once("nusoap.php®);

$client = new soap_client("http://127.0.0.1:8080/hspc/xml-api*); // Gate URL

$result = $client->call(
"method®, // method name
array (“paraml", array (“param2' => "test', "param3" => array (1, 2, 3)),

0), // parameters
"HSPC/Test" // package namespace

XML API 17

if (Sclient->fault)

die("Fault: {$client->faultstring}');
echo $result;
?>

remote.pl:

use strict;
use SOAP::Lite;
my $client = SOAP::Lite
->proxy("https://192.168.0.100/hspc/xml-api ™)
->on_fault(sub {die "Fault: * . $_ [1]->Faultstring});
pass authentication and receive session ID
my $sid = $client->ns("HSPC/AP1/1.0")->session_open({
email => "email@provider.com®, password => "password”
P ->result->{session_id};
put session ID to outgoing requests®™ HTTP headers
$client->transport->http_request->header("HSPC-SID" => $sid);
make session-dependent calls
$client->ns("HSPC/AP1/Test/1.0%);
$client->param("key" => “value®);
print $client->param(“key")->result;
$client->ns("HSPC/API1/1.0")->session_close;

remote.php

<? require_once("nusoap.php®);
$client = new soap_client("https://192.168.0.100/hspc/xml-api*); // Gate URL
pass authentication and receive session ID
$sid_result = $client->call("session_open®, array (
array ("email®™ => "root@provider.com®, “"password® => "1g2w3e")
), "HSPC/AP1/1.0%);
$sid = $sid_result["session_id"];
if ($client->fault)
die(Fault: {$client->faultstring}");
put session ID to outgoing requests®™ SOAP headers $client-
>setHeaders("'<HSPC-S1D>$sid</HSPC-SI1D>");
make session-dependent calls
$client->call("param®, array (“key", "value"), "HSPC/AP1/Test/1.0%);
if ($client->fault)
die("Fault: {$client->faultstring}");
echo $client->call("param®™, array (“key"), "HSPC/AP1/Test/1.0") . "\n";
if ($client->fault)
die(Fault: {$client->faultstring}");
$client->call("session_close”, undef, "HSPC/AP1/1.0%);
if ($client->fault)
die("Fault: {$client->faultstring}); ?>

XML API

18

HSPC/API

session_open

The function opens session with Parallels Business Automation - Standard XML API server.
The input parameters composition depends on the store installation: (local, i.e. Store is installed
on the same server as Parallels Business Automation - Standard or remote, i.e., the Store
installed on a remote server).

In the function call the namespace must be followed by API version number, e.g. HSPC/API/1.0

Note: Session ID returned by session_open must be included in HTTP Headers or SOAP
Headers for all the other methods called in the frame of each session.

Parameters:

account_id

ID of a vendor account a session is to be
opened for. This parameter is to be passed in
case of a local Store installation. Optional
parameter in case server_name is specified.

Server_name

Vendor server name used for authentication.
This parameter is to be passed in case of a local
Store installation. Optional parameter in case
account_id is specified.

email Registered person e-mail. Parameter is to be
specified in case of the Store remote
installation together with the password
parameter.
password Registered person password. Parameter is to be
specified in case of the Store remote
installation together with the email parameter.
Returns: {
account_id =>
session_id =1}
Parameter Means
account_id The numerical identifier of an account a
session has been opened for. Account ID is
returned in any case, a vendor account ID is
then used by the other Store API functions.
session_id The identifier of the opened session.

XML API

19

Common SOAP Faults codes:

UserError Mandatory parameter missing from SOAP
method call
WrongParams Invalid method parameters

No specific SOAP Faults codes.

session_close

The function closes session.

In the method call the namespace must be followed by API version number, e.g. HSPC/API/1.0

The function usage is not necessary but recommended.

No parameters.
No return value.

Common SOAP Faults codes:

UserError Mandatory parameter missing from SOAP
method call
WrongParams Invalid method parameters

No specific codes.

XML API

20

HSPC/API/HP

check app_compat

The function checks applications compatibility in Plesk and Virtuozzo Container hosting plans.

Parameters:

hp_sid Hosting plan series key

app_list The list of application templates IDs.
os_tmpl Optional parameter: ID of OS template

selected for a hosing plan. If not passed, then
the method will return the result as if OS
template with the lowest ID (from OSes
included in hosting plan) was passed as
os_tmpl.

Returns: result => 1 on success or Fault

SOAP Faults codes:

HPNoApplicationSupport

Hosting plan passed as an argument does not
support an application.

UserAppIncompat

Application(s) passed are incompatible with
each other.

XML API 21

check_license_compat

The function checks licenses compatibility in hosting plans.

Parameters:
hp_sid Hosting plan series key
lic_list The list of licenses IDs

Returns: result => 1 on success or Fault

SOAP Faults codes:

HPNoLicClassSupport Hosting plan does not support at least one
license

HPBaseLicConflict Base licenses specified are incompatible.

HPNoBaseForAddon No base license has been specified for an add-
on license.

XML API 22

get_categorized_plan_list

The method returns the list of hosting plans grouped by categories. Only the basic information is
returned.

The method is similar to get_sellable_plan_list (on page 33). Input parameters are
the same, but output parameters differ: the list of returned hosting plans is grouped by

categories.

Parameters:

type_id Optional parameter: The ID of hosting plan
type. Only hosting plans of the type specified
will be returned.

promo_id Optional parameter: ID of promotion to be
applied to hosting plans prices.

account_id Optional parameter: ID of account the prices
are to be calculated for.

sb_sid Optional parameter: Trial site ID. The
parameter is predefined on redirect from
Sitebuilder.

sb_node Optional parameter:Sitebuilder node numeric
ID assigned in PBAS.

Returns: plan_list => HP list

SOAP Faults codes:

HPProviderNotAllowed Provider account ID is used to get hosting
plan details. Only customer or reseller account
ID is allowed as parameter.

XML API 23

get_extended _plan_info

The function returns extended information about a hosting plan. Extended information is all the
data not shown in hosting plans listing.

Parameters:

hp_sid Optional parameter: Hosting plan series key. If
not specified, the information about default
domain hosting plan will be returned.

promo_id Optional parameter: The ID of promotion to be
applied to hosting plan prices.

account_id Optional parameter: 1D of account the prices
are to be calculated for.

period Optional parameter: Subscription period the
discounts are to be calculated for.

for_trial Optional parameter: If this parameter is
specified then zero prices for add-ons (custom
attributes, applications, etc.) will be returned.

os_tmpl Optional parameter: ID of OS template
selected for a hosing plan. If not passed, then
the method will return the result as if OS
template with the lowest ID (from OSes
included in hosting plan) was passed as
os_tmpl.

Returns: EXTENDED_HP_INFO (on page 24)

SOAP Faults codes:

HPNoTTrial The for_trial parameter has been specified, but
a hosting plan does not support trial periods.

HPNotFound The hosting plan specified is not found.

HPNoDefaultDMPIlan Hosting plan series key is not specified and
default domain hosting plan does exist.

HPProviderNotAllowed Provider account ID is used to get hosting plan
details. Only customer or reseller account ID is
allowed as parameter.

XML API

24

Example of EXTENDED_HP_INFO Hash

$VARL = {
"dns_hosting” => {

"is_unlim®™ => "0°,

"included_value® => "5°,

"max_value® => "10°",

"overuse_rate" => {
"is_discount® => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°7,

"discount_percent® => undef,
"discount_amount® => undef,

"promo_amount® => undef,
"price_original® => {

“price® =>

*1.00",
"is_complimentary®™ => "0°

"price” => "439182056",

“full_discount_period® => undef,

"promo_name® => undef

"assigned_dm _plan® => "2°%,

"is_trial® => "0°,

"vendor_id® => "1°%,

"name” => "Domain Registration Support-”,
"provider_id" => "1°,

"description” => "*",

"question_list" => [

{
"question®™ => "How do you like services

included In your subscription?®,
“answer® => undef,

“id® => "1°
}
1.
"custom_attribute_list®" => [
{

"is_exclusive® => "1°7,
"cat_name®" => "Support®
"cat_id" => "1°
"cat_sort _order® => "1°"
“"option_list" => [

"is_default®™ =>
"sort_order® =>

=>

0",

17",

"name” => "Support
by phone-,

"is_included”
0",

"upgrade_fee" => {

"is_discount®™ => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0-,

"discount_percent® => undef,

XML API

25

"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {

"price® => "50.0000",
"is_complimentary®™ => "0°

}.

"price” => "437640876",
*full_discount_period® => undef,

"promo_name® => undef

"is_discount®™ => "0-°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent® => undef,
"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {
"price® => "20.0000",
"is_complimentary®™ => "0°

}

"price® => "382151368",
"full_discount_period®" => undef,

"promo_name" => undef

"is_discount®™ => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0-,
"discount_percent® => undef,
"discount_amount® => undef,
"promo_amount® => undef,

"price_original® => {

.

"setup_fee™ => {

}.

"subscr_fee" =>

XML API 26

"price® => "50.0000",
"is_complimentary®™ => "0O°

}.

"price" => "440264964",
"full_discount_period®" => undef,

"promo_name" => undef

“id* = 17"

"is_default® => "0",

"sort_order® =>
"18-°,

"name” => "ICQ

Consultant”,
"is_included® =>

o “upgrade_fee" => {
"is_discount®™ => "0-°,

"promo_period® => undef,

"promo_percent® => undef,

"is_promo® => "0°,

"discount_percent® => undef,

"discount_amount® => undef,
"promo_amount® => undef,
‘price_original’ => {
"price®” => "30.0000",
"is_complimentary®™ => "0O°
}.
"price" => "438862184",
"full_discount_period®" => undef,

"promo_name® => undef

"setup_fee™ => {
"is_discount®™ => "0-°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent® => undef,

"discount_amount® => undef,

XML API

27

"promo_amount® => undef,
"price_original® => {

"price® => "20.0000",
"is_complimentary®™ => "0O°

}.

"price® => "440650072",
*full_discount_period® => undef,

"promo_name® => undef

"is_discount®™ => "0-°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent® => undef,
"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {
"price® => "30.0000",
"is_complimentary®™ => "0°
}

"price" => "439183520",

"full_discount_period®" => undef,
"promo_name" => undef
"summary® => "%,
"fee_list™ => [
{

1.

}

"subscr_fee"

"id® => "18"
s
1.
"sort_order® => "0°,
"is_required® => "0°,
"name® => "Miscellaneous”,
-id- => -6-

"setup_fee" => {

"is_discount® => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°7,
"discount_percent®” => undef,
"discount_amount® => undef,
"promo_amount® => undef,

}.

=>

}.

XML API

28

"price_original®™ => {
"price" =>
*10.0000",

"is_complimentary®™ => "0°

"price® => "440550508",
"full_discount_period®" => undef,
"promo_name" => undef
}.
"subscr_fee® =>
"is_discount®™ => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent® => undef,
"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {
"price” =>
*5.0000",

"is_complimentary® => "0°"

"price” => '4405531&8',
*full_discount_period® => undef,
"promo_name" => undef

"period® => "2592000"
3.
{
"setup_fee™ => {
"is_discount® => "0-°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent®” => undef,
“"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {
“price® =>
"20.0000",

"is_complimentary® => "0°"

}-
"price® => "439338076",
“full_discount_period® => undef,
"promo_name® => undef
3.
"subscr_fee" =>
"is_discount®™ => "0-°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent® => undef,
"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {
"price” =>
"10.0000",
"is_complimentary®™ => "0°
}-
"price® => "440307792",

"full_discount_period®" => undef,
"promo_name® => undef

XML API

29

"period® => "7776000"
3
{
"setup_fee" => {
"is_discount®™ => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°7,
"discount_percent® => undef,
"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {
“price® =>

"30.0000",

"is_complimentary®™ => "0°

"price® => "439238836",
"full_discount_period®" => undef,
"promo_name® => undef

"subscr_fee® => {
"is_discount®™ => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent® => undef,
"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {
"price” =>
*15.0000",

"is_complimentary®™ => "0°

"price” => "440439372",
"full_discount_period®" => undef,
"promo_name® => undef

},
"period®" => "15552000"
3.
{
"setup_fee™ => {
"is_discount® => "0-°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°7,
"discount_percent®” => undef,
“"discount_amount® => undef,
"promo_amount® => undef,
"price_original®™ => {
"price" =>
*40.0000",

"is_complimentary®™ => "0°

"price® => "438988552",
"full_discount_period®" => undef,
"promo_name® => undef
3.
"subscr_fee® =>
"is_discount® => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent® => undef,
"discount_amount® => undef,

XML API 30

"promo_amount® => undef,
"price_original® => {
“price” =>
*20.0000",

"is_complimentary® => "0"
3,

"price® => "440380584",

*full_discount_period® => undef,

"promo_name® => undef

"period® => *31104000"
b

1.
id® => "21¢,
"category®™ => undef,

“type” => {
"summary® => "Miscellaneous hosting plans designed for

selling any arbitrary services. It gives highest flexibility together with
Custom Attributes and Questionnaire.”,
"name® => "Miscellaneous”,
“id" => "7,
"description” => "*
3.
"gos_list" => [
{
"is_unlim® => "0°,
"incl_amount® => "5%,
"max_amount® => "10°,
"overuse_rate" => {
"is_discount® => "0°,
"promo_period® => undef,
"promo_percent® => undef,
"is_promo® => "0°,
"discount_percent® => undef,
"discount_amount® => undef,
"promo_amount® => undef,
"price_original® => {
"price” =>

"1.00",

"is_complimentary® => "0°"

"price” => "439020192",
*full_discount_period® => undef,
"promo_name® => undef

}.
"id® => "4000°",
"name” => "Number of domains with DNS hosting
provided”®,
"is_metered® => "0-,
"short_name® => "numdnshosting”,
"units® => “"domain(s)”,
"is_rateable” => "1°,
"multiplier® => "1¢
¥
1

"series_key" => "3"

XML API 31

get_full_extended_plan_info

The method returns extended information about a hosting plan. Extended information is all the
data not shown in hosting plans listing.

The method is similar to the get_extended_plan_info (on page 23).

The difference between these methods is: the get_extended_plan_info method returns
resources and applications for a specified OS. The get_full_extended_plan_info
method returns resources and applications for all OSes enabled for a hosting plan.

Parameters:

hp_sid Optional parameter: Hosting plan series key. If
not specified, the information about default
domain hosting plan will be returned.

promo_id Optional parameter: The ID of promotion to be
applied to hosting plan prices.

account_id Optional parameter: 1D of account the prices
are to be calculated for.

period Optional parameter: Subscription period the
discounts are to be calculated for.

for_trial Optional parameter: If this parameter is
specified then zero prices for add-ons (custom
attributes, applications, etc.) will be returned.

os_tmpl Optional parameter: ID of OS template
selected for a hosing plan. If not passed, then
the method will return the result as if OS
template with the lowest ID (from OSes
included in hosting plan) was passed as
os_tmpl.

Returns: EXTENDED_HP_INFO (on page 24)

SOAP Faults codes:

HPNoTrial The for_trial parameter has been specified, but
a hosting plan does not support trial periods.

HPNotFound The hosting plan specified is not found.

HPNoDefaultDMPlan Hosting plan series key is not specified and
default domain hosting plan does exist.

HPProviderNotAllowed Provider account ID is used to get hosting plan
details. Only customer or reseller account ID is
allowed as parameter.

XML API 32

get plan_promotion_list

The function returns the list of promotions applicable to a hosting plan.

Parameters:

hp_sid Hosting plan series key.

Returns: PROMOTION list

SOAP Faults codes:

HPNoPromoFound No promotions are applied to a hosting plan.

get_promotion

The function returns information about a promotion by a promotion ID.

Parameters:

promo_id Promotion ID.

Returns: PROMOTION:

SOAP Faults codes:

HPNoPromoSeriesFound No promotion with ID specified exists.

XML API 33

get_sellable plan list

The function returns the list of hosting plans for sale. The base information only is returned.

Parameters:

type_id Optional parameter: The ID of hosting plan
type. Only hosting plans of the type specified
will be returned.

promo_id Optional parameter: ID of promotion to be
applied to hosting plans prices.

account_id Optional parameter: 1D of account the prices
are to be calculated for.

sb_sid Optional parameter: Trial site ID. The
parameter is predefined on redirect from
Sitebuilder.

sb_node Optional parameter: Sitebuilder node
numeric ID assigned in PBAS.

Returns: plan_list => HP list

SOAP Faults codes:

HPProviderNotAllowed Provider account ID is used to get hosting
plan details. Only customer or reseller account
ID is allowed as parameter.

XML API 34

validate plesk login

The function checks Plesk Administrator login, password, and forward URL.

Parameters:

login Optional parameter: Plesk Administrator
login.

password Optional parameter: Plesk Administrator
password.

forward_url Optional parameter: Plesk forwarding URL.

Returns: result => 1 on success, Fault otherwise

SOAP Faults codes:

PleskLoginInvalid Plesk Administrator login invalid.

PleskPasswordInvalid Plesk Administrator password invalid.

UserPleskForwardURLInvalid Plesk forwarding URL invalid.

XML API

35

HSPC/API/Billing

calculate_order

The function calculates prices in an order.

Parameters:

account_id ID of account the prices are to be calculated for.

hp_sid Optional parameter: Hosting plan series key.

hp_id Optional parameter: Hosting plan ID.

period Optional parameter in case a period is trial (for_trial
parameter is specified) or if a domain hosting plan is
purchased. Subscription period.

promo_id Optional parameter: The ID of promotion to be applied to
hosting plan prices.

domain_hash Optional parameter: The list of domains.

app_list Optional parameter: The list of application templates IDs.

attribute_list The list of custom attributes.

sb_plan Optional parameter: The parameter is to be used only if
Sitebuilder service is included in a hosting plan.
If a Sitebuilder site already exists, the Sitebuilder site alias
must be passed. If a new Sitebuilder site is to be created,
the 'new" value must be passed.

XML API

36

license_list Optional parameter: List of licenses included in a hosting
plan. The list of licences is presented as the following
hash:
"license_list™ => {
"plugin_1" => {
"SITEBUILDER" => {
"feature_list"™ => [
"500_SITES",
"1YR_PREMIUM_SUPPORT_PACK",
"MULTI_SERVER_CAPABILITY",
"1YR_EMAIL_SUPPORT_PACK*"
1
"PLESK_75_RELOADED® => {
"addon_list" => {
"PLESK_BATTLEFIELD® => {
"feature_list" => [
*5_BATTLEFIELD_SERVERS"
1
3,
"PLESK_CS_GAMESERVER" => {
"feature_list™ => []
S
"feature_list"™ => [
*100_DOMAINS™,
"TROUBLE_TICKETING_SYSTEM",
*1YR_PREMIUM_SUPPORT_PACK",
*COLDFUSION",
" INEXPENSIVE_SERVER",
"EXPENSIVE_SERVER"
1
}
}
bs
login Optional parameter: The list can include three parameters:
= password
= Jogin
= forwarding URL
The parameters composition depends upon hosting plan
type.
answer_list The list of answers on a hosting plan questionnaire. Each
answer is a list consisting of a question ID and an answer
string.
gos_list Optional parameter. The list of billable resources

presented as the following hash:

{

"res_id_1003" => {"res_id" =>
"1003", "value®™ => "27,"multiplier™ => "1"},
"res_id_1012* => {"res_id" =

10127, *value® => "1°,"multiplier® => "1%},

XML API

37

}
Where:

res_id - is a resource numerical identifier assigned in the
Parallels Business Automation - Standard database

multiplier -isaresource units

value - is an additional resource value ordered over the
included value.

Returns: ORDER (on page 39).

SOAP Faults codes:

AFMdenied

Anti-Fraud Manager has stopped an order.

AuthzError

Authorization error.

DomainRequired

Hosting plan requires a domain registration, but no
domains were registered.

HPNoApps

Applications specified are not supported by a hosting
plan.

HPNoDomainAction

A domain operation specified is not supported.

HPNoDomainAvailable

A domain name is not available for registration.

HPNoDomainReg

Hosting plan does not support domain registration.

HPNoDomainSubscrAllowed

No more domains allowed for a hosting plan. Allowed
limit for domains registration is used up.

HPNoLicClasses

Licenses specified are not supported by a hosting plan.

HPNoSB Sitebuilder service specified is not supported by a hosting
plan.
HPNoSecureWhois A domain hosting plan does not support secure whois

service.

HPNoTransferDomainAvailab
le

A domain specified is not available for transfer in a
particular hosting plan.

HPNoTTrial Hosting plan does not support trial periods.

HPSBErrors Errors connected with Sitebuilder site have occurred
during order processing.

InvalidDomain Invalid domain name was specified.

NoOrderForProvider

Provider tries to place order for themselves.

XML API

38

NoPointerAllowed

Domain pointer operation is not available for a domain
specified.

NoQuestion

No question exists in a hosting plan for an answer
specified.

NoSubdomain

Subdomain creation is not available for a domain
specified.

OrderFailed Order creation error.

SubscrNotFound A subscription a domain registration is to be added to
does not exist.

TLDNoSuchPeriod A domain registration period specified does not
supported for a TLD.

UserNoVPSPasswd No password specified for Container.

UserVPSPasswdWeak Container password does not meet the password strength
requirements.

NoHPSidOrID Hosting plan sid or id is not set.

NOPersonld Require person_id but not set in request

XML API 39

Examples of ORDER Hash
Example 1:
$VARL = {
"time_stamp® => "2006-08-07 10:34:59",
"doc_balance_print® => "15.0000°",
"detail_list™ => [
{
"count® => undef,
"period® => "0°,
"taxfree_amount® => "10.0000",
"quantity” => undef,

"taxfree_gross_amount* =>
"10.0000",

"duration® => "0°,
"discount®™ => "0.00",
"rate” => "10.000001",
"amount® => "10.0000",
"unit® => 0",

"comment” => "Dedicated Server
hosting plan setup fee”,

"gross_amount® => "10.0000",

"multiplier® => undef

"count® => "1.000000",
"period® => "2592000",
"taxfree_amount® => "5.0000",
"quantity® => undef,

"taxfree_gross_amount® => *5.0000",

XML API 40

"duration® => "0°,
"discount®™ => "0.00",
"rate” => "5.000001",
"amount®” => "5.0000",
unit® => "0°",

"comment” => "Dedicated Server

hosting plan subscription fee”®,
"gross_amount® => "5.0000",
"multiplier®™ => undef
by

1.
"rperiod® => "2592000°",
"order_type® => "100",
"doc_status_txt® => “open”,
"plan_type® => "37,
"added_by account® => "37,
"bhp_id" => "1°7,
"doc_total®™ => "15.0000°",
"id" => "354057",
"doc_balance™ => "15.0000°",
"doc_subtotal print" => "15.0000",
"subscr_end_date® => undef,
"period” => "2592000°",
"is_tax_included® => undef,
"name® => "order”,
"doc_subscr_prices® => undef,

"description* => "Order on purchase Dedicated
Hosting”,

"plan_id" => "1°7,

XML API 41

"doc_type® => "OR"

Example 2:

XML API 42

$VARL
"doc_balance_print~
"time_stamp®
"detail_list"

{

"count”

"period*
"taxfree_amount®
"quantity”
"taxfree_gross_amount-
"duration”
"discount”

"rate”

"amount”

"unit”

=>
"2007-12-14
=>

=>

{
*0.0000",
16:04:12",
L

undef,
IOI ,
*5.0000°",

“5.0000" .

“0.00" .
= 4.240000" .
“4.2400" .

"comment® => "Virtuozzo Container with lics hosting plan setup

fee",
"gross_amount*
"multiplier”
}-

{

"count”

"period”
"taxfree_amount”
"quantity”
"taxfree_gross_amount*®
"duration®
"discount*
"rate”
"amount”
"unit”
"comment® =>
subscription
"gross_amount*
"multiplier”
3

{

"count”

"period*
"taxfree_amount®
"quantity*
"taxfree_gross_amount*®
"duration®
"discount”
"rate”
"amount”
"unit”
“comment® =>
"gross_amount*
"multiplier”
}»

{

“count”
"period”

"Virtuozzo

"Domain

=>
=>

=>

Container with lics

testdomain.com registration

=>
=>

"4._.2400",
undef

"1.000000",
"2592000°,
*5.0000",
*5.0000",
month(s) ",
*0.00",
"4_.240000",
"4.2300",

hosting plan
fee",
"4.2400",
undef

*1.000000",
"31104000",
"10.0000",

*10.0000",
year(s)",
*0.00",
"8.470000",
"8.4800",

for 1 year-,
"8.4700",
undef

*1.000000",
.O. ,

XML API 43

"taxfree_amount” => "123.0000",
"quantity” => ",
"taxfree_gross_amount*® => "123.0000",
"duration® => ",
"discount” = "0.00",
"rate” => "104.240000",
"amount* => "104.2400°",
"unit” => ",
"comment®™ => "Workgroup Administrator Control Panel setup fee",
"gross_amount* => "104.2400",
"multiplier” => undef
3},

{

"count* = "1.000000",
"period* => "2592000",
"taxfree_amount® => "11.0000",
"quantity” => ",
"taxfree_gross _amount” => "11.0000",
"duration” => "1 month(s)",
"discount*” => "0.00",
"rate- => *9.320000",
"amount” => "9.3200°",
“unit- => -,
"comment®™ => “Workgroup Administrator Control Panel monthly
fee”,

"gross_amount* => "9.3200",
"multiplier” => undef
}-

{

"count” => "1.000000",
"period” => 0",
"taxfree_amount” => "33.0000°",
"quantity” => ",
"taxfree_gross_amount” => *33.0000",
"duration* => ",
"discount” => "0.00",
"rate” => "27.970000",
"amount” => "27.9600",
"unit” => ",
"comment* => *Php As3 setup fee",
"gross_amount” => "27.9700",
"multiplier” => undef
3}

{

"count* = "1.000000",
"period* => "2592000",
"taxfree_amount” => "21.0000",
"quantity” => ",
"taxfree_gross_amount* => "21.0000",
"duration” => "1 month(s)",
"discount*” => "0.00",
"rate” => *17.800000",
"amount” => "17.8000",
“unit- => -,
"comment* => "Php As3 monthly fee”,

XML API 44
"gross_amount* => "17.8000",
"multiplier” => undef
3}
{
"count* => *1.000000",
"period* = 0",
"taxfree_amount” => "23.0000",
"quantity* => ",
"taxfree_gross_amount* => "23.0000",
"duration® => -,
"discount” => *0.00",
"rate” => "19.490000",
"amount® => "19.4900",
"unit- => ",
"comment* => "Psa Sb Publish As3 setup fee”,
"gross_amount* => "19.4900",
"multiplier” => undef
}»
{
“count* => *1.000000",
"period* => "2592000",
"taxfree_amount” => "3.0000°",
"quantity” => ",
"taxfree_gross_amount*® => *3.0000",
"duration® => "1 month(s) ",
"discount” => "0.00",
"rate” => "2.540000",
"amount” => "2.5500",
"unit- => ",
"comment” => "Psa Sb Publish As3 monthly fee”",
"gross_amount- => "2.5400",
"multiplier” => undef
3}
{
"count* => undef,
"period* => "0,
"taxfree_amount* => "5.0000",
"quantity® => ",
"taxfree_gross_amount*® => *5.0000",
"duration” => ",
"discount” = "0.00",
"rate" => "4.240000",
"amount* => "4.2300",
“unit- => ",
"comment* => "512 MB DDR setup fee”,
"gross_amount* => "4.2400",
"multiplier” => undef
3}
{
“count* => *1.000000",
"period* => "2592000°",
"taxfree_amount” => "6.0000",
"quantity” => ",
"taxfree_gross amount” => "6.0000",
"duration” => "1 month(s)",

XML API 45

"discount*
"rate”
“amount”
"unit”
“comment”
"gross_amount”
"multiplier®
3,

{

"count*

"period*
"taxfree_amount®
"quantity”
"taxfree_gross_amount*”
"duration”
"discount*
"rate”
"amount”
"unit”
"comment”
"gross_amount*
"multiplier”
}»

{

“count*

"period*
"taxfree_amount”
"quantity”
"taxfree_gross_amount*®
"duration*
"discount*
"rate”
“amount”
"unit”
“comment”
"gross_amount”
"multiplier”
3,

{

"count*

"period*
"taxfree_amount”
"quantity”
"taxfree_gross_amount*®
"duration”
"discount”
"rate”
"amount”
"unit”
"comment”
monthly
"gross_amount*
"multiplier”
}»

{

=>

=> "Number

"512

=>
=
=
=>
MB DDR
=>
=>
=>
=
=
=>
=
=>
=
=
=
=>
"80 GB
=>
=>
=
=>
=>
=>
=>
=> "1
=
=>
=>
=>
"80 GB
=>
=>
=
==
=
=>
=
=> "1
=
=
=
=
of domains with

=>
=>

"0.00",
*5.080000",
"5.0900",

fee",
*5.0800°",
undef

monthly

undef,
.O.)
"2.0000",

'2.0000':
'0-00':
*1.690000",
"1.6900",
fee':
"1.6900°",
undef

setup

*1.000000",
"2592000°,
"2.0000",
"2.0000",
month(s)",
*0.00",
*1.690000",
*1.7000",

fee",
"1.6900°",
undef

monthly

undef,
"2592000°",
*8.0000",
2",
"8.0000",
month(s) ",
"0.00",
"3.390000",
"6.7800",
"domain®,
DNS hosting provided
fee”,
"6.7800",
*1.000000"

XML API 46

“count” => undef,
"period* => "2592000",
"taxfree_amount” => "2.0000",
"quantity” => "1,
"taxfree_gross_amount*® => "2.0000",
"duration* => "1 month(s)",
"discount” = "0.00",
"rate” => "1.690000",
"amount” => "1.6900",
"unit” => "ip(s)”,
"comment® => “Number of Static IP addresses monthly fee",
"gross_amount* => "1.6900",
"multiplier” => "1.000000"
3}

{

“count” => undef,
"period” => 0",
"taxfree_amount” => "2.0000",
"quantity” => ",
"taxfree_gross _amount” => "2.0000",
"duration”® => -,
"discount*” => "0.00",
"rate- => *1.690000",
"amount” => "1.7000",
-unit' => -',
"comment* => "Plesk 7.5 Plus setup fee",
"gross_amount* => "1.6900",
"multiplier” => undef
}-

{

“count” => undef,
"period* => "2592000",
"taxfree_amount” => "3.0000°",
"quantity” => "1,
"taxfree_gross_amount”® => *3.0000",
"duration® => "1 month(s) ",
"discount” => "0.00",
"rate” => "2.540000",
"amount” => "2.5400°",
"unit” => ",
"comment” => "Plesk 7.5 Plus monthly fee",
"gross_amount* => "2.5400",
"multiplier” => undef
3}

{

"count* => undef,
"period* => "0,
"taxfree_amount” => "2.0000",
"quantity” => ",
"taxfree_gross amount”® => "2.0000",
"duration® => -,
"discount” => "0.00",
"rate” => *1.690000",
"amount” => "1.6900°",

"unit- =>

XML API 47

"comment®™ => “Unlimited Domains w/1 yr SUS (Plesk 7.5 Plus)
setup fee”,
"gross_amount* => "1.6900",
"multiplier” => undef
}-

{

"count” = undef,
"period* => "2592000°",
"taxfree_amount® = "3.0000",
"quantity” => "1,
"taxfree_gross_amount” = "3.0000",
"duration” => "1 month(s)",
"discount” => "0.00",
"rate” => "2.540000",
"amount® => "2.5500",
"unit” => ",
"comment®™ => "Unlimited Domains w/1 yr SUS (Plesk 7.5 Plus)
monthly fee",
"gross_amount* => "2.5400",
"multiplier” => undef
}»

{

"count* => undef,
"period* => "o,
"taxfree_amount® => *5.0000",
"quantity” => ",
"taxfree_gross_amount*® => *5.0000",
"duration” => ",
"discount” => "0.00",
"rate” => "4 .240000",
"amount” => "4.2300",
“unit- => -,
"comment®™ => "1 yr E-mail Support Package (Plesk 7.5 Plus) setup
fee",

"gross_amount* => "4.2400",
"multiplier” => undef
}-

{

"count” = undef,
"period* => "2592000°",
"taxfree_amount® = "4.0000",
"quantity” => "1,
"taxfree_gross_amount” => "4.0000",
"duration” => "1 month(s)",
"discount” => "0.00",
"rate” => "3.390000",
"amount® => "3.3900",
"unit- => ",
"comment®™ => "1 yr E-mail Support Package (Plesk 7.5 Plus)
monthly fee",
"gross_amount* => "3.3900",
"multiplier” => undef
}»

{

“count” => undef,

XML API 48

"period*
"taxfree_amount”
"quantity”
"taxfree_gross_amount*®
"duration”®
"discount”
"rate”

“amount”

"unit-”
“comment”
"gross_amount*
"multiplier”

¥

1.

"rperiod-
"subscr_id"
"order_type"
"doc_date"
"doc_subtotal”
"subscriptions”
{

"ar_doc_id-
"subscr_status”
"applied-
"start _date*
id"

}s

{

"ar_doc_id"
"subscr_status”
"applied”
"start_date"
"id"

¥
]

dded_by account*
"doc_status_txt*
"plan_type-
"plan_type_txt"

"domain*

"bhp_id*

"doc_balance*
"doc_total*

Iid'
"provider_tax_ex_number*®
"doc_subtotal _print*©
"period*
"subscr_end_date”
"is_tax_included”

"name”
"order_id"
"doc_num*®
"description*
"plan_id"
"doc_type-*

=>

==
=>
"2007-12-14
=>
=>

=>

=>
=>
"2007-12-14

=>

=>
=>
"2007-12-14

=>
"Virtuozzo

Container

.O. ,
"0.0000",

~0.0000"
“0.00".
~0.000000" .
“42.4100" .
%
“42.4100" .
undef

18.00

"2592000",
"240°,
"100",

16:03:26",

"235.5900",
L

745",
Il',

IlI,
16:03:56",
240"

745",
Il.,

Il.,
16:04:06",
"241*

“or,
"ds_completed”,
1t

Container”,
"testdomain.com”,
314",
*0.0000",
"278.0000",
745",
"235.5900",
"2592000°",
undef,

1t
"order-,
745",
"1336",
creation”®,
"314°*,
"OR".

XML API 49

"added_by ip- => "10.30.64.209",
"plan_name* => "Virtuozzo Container with lics™
};

get_hosting_target_list
The function returns the list of subscriptions that already exist for an account.

Parameters:

account_id Account ID.

Returns: {hosting_target list => {id => ID, name => STRING, plan_name => STRING,
sites_available => NUMBER} }

SOAP Faults codes:

No specific codes.

XML API

50

place_order

The function places order.

Parameters:

account_id ID of account the prices are to be calculated for.

hp_sid Hosting plan series key.

period Optional parameter in case a period is trial (for_trial
parameter is specified) or if a domain hosting plan is
purchased. Subscription period.

campaign Optional parameter. ID of campaign (Marketing Director >
Campaign Manager > Campaigns). When user is redirected
to store via a Campaign link, redirector adds
HSPC_MM=<campaign_id> parameter to store URL.
Example:
Redirect To URL: http://mystore.host.com
Campaign ID: 25
Redirection is done to URL
http://mystore.host.com?HSPC_MM=25
In this way store gets campaign ID.
When order is placed, campaign ID must be send back to
the server, to add this order to campaign report.

promo_id Optional parameter: The ID of promotion to be applied to
hosting plan prices.

XML API

51

domain_hash

The list of domains. Each domain in this list is presented
by the following hash:

{'domainl' => {

domain_name => ‘example.com' -- self-explanatory
dm_action => 'register_new' -- action over domain
period => 2, -- registration period in years
whois_privacy => 1|0 -- use whois privacy yes|no

is_manual => 1| 0 -- use manual registration yes|no. Use
when importing domain subscription.

expire_time => Expiration date for domain. Use when
importing domains. Format: Use any string parsable by
Date::Manip (which is, well, just about anything).

contact_hash => {admin => 45, billing => 0, owner =>
undef} -- mapping of contact types to use for domain to
contact IDs. If contact id is 'undef' or '0', it will be created
on the basis of account contact information

create_site => 1|0 - create site for this domain or no.

hosting_destination => 56 - Subscription number, for
which this domain is bought.

is_default => 1|0 -- If 1, this domain is specified as the
default one in the order.

ns_list => [[HOSTNAME, IP], [HOSTNAME, IP], ...] --
list of nameservers for domain. If present,
no DNS hosting service will be provided.

b
'‘domain2'=>{ ... },

ext_data => { purpose of domaun usage => 'Business’, ... }
-- any additional information required by a registrar. This
parameter is always the only one in the hash.

}

app_list

The list of application templates IDs.

XML API

52

attribute_list

The list of custom attributes.

sb_plan Optional parameter: The parameter is to be used only if
Sitebuilder service is included in a hosting plan.
If a Sitebuilder site already exists, the Sitebuilder site alias
must be passed. If a new Sitebuilder site is to be created,
the 'new' value must be passed.

license_list List of licenses included in a hosting plan.

login The list can include three parameters:
password
login
forwarding URL
The parameters composition depends upon hosting plan
type.

answer_list The list of answers on a hosting plan questionnaire. Each
answer is a list consisting of a question ID and an answer
string.

for_trial If an order is for trial period.

initiator_email E-mail of a person that has added an order.

initiator_ip IP address of a person that has added an order.

description Optional parameter. Order description.

XML API

53

is_free

1 - yes or 0 - no. Optional parameter that can be used by
provider only. The parameter specifies whether an order
should be free (1) or not (0). If yes, the balance of an order
created on a subscription import is adjusted to zero, that is
a special 'balance correction’ string is added to an order.
This parameter can be used, for example if a provider
wants to import a a subscription or a number of
subscriptions into Parallels Business Automation -
Standard and it is necessary that a corresponding orders to
be generated for these subscriptions will be of a zero
amount.

Note: Only provider is allowed to use the is_free
parameter. If this parameter is used by a reseller, this will
result in SOAP fault (see the list of SOAP Fault Codes
below this table).

ext_data

List of extended attributes

gos_list

Optional parameter. The list of billable resources
presented as the following hash:

{

"res_id_1003" => {"res_id" =>
"1003", "value®™ => "27,"multiplier® => "1"},
"res_id_1012* => {"res_id" =

10127, *value® => "1°,"multiplier® => "1"},

}
Where:

res_id - is a resource numerical identifier assigned in the
Parallels Business Automation - Standard database

multiplier -isaresource units

value - is an additional resource value ordered over the
included value.

Returns: ORDER (on page 39).

SOAP Faults codes:

AFMdenied

Anti-Fraud Manager has stopped an order.

AuthzError

Authorization error.

DomainRequired

Hosting plan requires a domain registration, but no
domains were registered.

HPNoApps

Applications specified are not supported by a hosting
plan.

XML API

54

HPNoDomainAction

A domain operation specified is not supported.

HPNoDomainAvailable

A domain name is not available for registration.

HPNoDomainReg

Hosting plan does not support domain registration.

HPNoDomainSubscrAllowed

No more domains allowed for a hosting plan. Allowed
limit for domains registration is used up.

HPNoLicClasses

Licenses specified are not supported by a hosting plan.

HPNoSB Parallels Sitebuilder service specified is not supported by
a hosting plan.
HPNoSecureWhois A domain hosting plan does not support secure whois

service.

HPNoTransferDomainAvailab
le

A domain specified is not available for transfer in a
particular hosting plan.

HPNoTrial Hosting plan does not support trial periods.

HPSBErrors Errors connected with Parallels Sitebuilder site have
occurred during order processing.

InvalidDomain Invalid domain name was specified.

NoOrderForProvider

Provider tries to place order for themselves.

NoPointerAllowed

Domain pointer operation is not available for a domain
specified.

NoQuestion

No question exists in a hosting plan for an answer
specified.

NoSubdomain

Subdomain creation is not available for a domain
specified.

OrderFailed

Order creation error.

OrderFreeDenied

The is_free parameter is used not by provider (for
example, reseller tries to create a free order).

OrderExtData Extended attribute addition error.

SubscrNotFound A subscription a domain registration is to be added to
does not exist.

TLDNoSuchPeriod A domain registration period specified does not
supported for a TLD.

UserNoVPSPasswd No password specified for Container.

XML API

55

UserVVPSPasswdWeak

Container password does not meet the password strength
requirements.

XML API

56

create_offline_payment

This function allows creating an offline payment and, at the same moment, applying this
payment to a number of documents.

Note: The payment created by this function can be applied to documents with Open or Overdue
status. The payment can be applied only to the following types of documents: Order, Invoice,
Debit Adjustment, and Payment Request. A payment can be applied only to documents assigned
to an account a payment was issued for.

Parameters:

amount A payment total amount.

account_id ID of account a payment is issued for.

ref_num A payment reference number.

doc_list Optional parameter. List of IDs of documents a payment

is to be applied to.

adjust_error_fatal

Optional parameter that defines the function behavior in
case of error, depending of a value assigned to this
parameter :

If 1, then any error that occurs will stop payment
processing and produce SOAP fault DocAdjustError.
Errors will be placed into SOAP details.

If 0, then in case errors occur, the function will keep
trying to pay documents, but all the errors will be
returned.

Returns:

{ result => 1 }ifnoerrorsoccurred, and offline payment has been placed successfully.

or

{ result => 0, error_info => ARRAYREF } if adjust error_fatal=0 and some

errors occurred.

Example of returned value:
{

“error_info" => [

{

“error_message” => "Document 103 has been paid®,

"document® => "103°",
"error_code” => "DocPaid”

XML API

57

}
1.
"result® => 0"

}:
SOAP Faults codes:
DocAdjustError Error adjusting documents!
Document type specific errors:
DoclnvalidAccount Document %DOCID% was not added by the account

trying to pay for it.

DocPaid Document %DOCID% has been paid
DocNotOpen Document %DOCID% is not open
DocWrongType Document %DOCID% is of an inappropriate type.

Example of Test Code for create_offline_payment Function
#1/usr/bin/perl

use strict;
use SOAP::Lite;
use Data: :Dumper;

my $client = SOAP::Lite
->proxy("https://hspc_mn_server_name/hspc/xml-api*)

->on_fault(sub {die "Fault: ".$ [1]->faultstring.® ".$ [1]->faultcode."

".$ [1]->Ffaultdetail});
my $sid = $client->ns("HSPC/AP1/1.0")->session_open(
{

email => "someuser@somehost®, password => "somepassword®
)->result->{session_id};
$client->transport->http_request->header ("HSPC-SID" => $sid);

my %h = (
amount => 5,
account_id => 2,
ref_num => "test offline payment-”,
doc_list => [103],
adjust_error_fatal => 1,

DE

my $obj = $client->ns("HSPC/API/Billing/1.0")->create_offline_payment(%h)-
>result;

print "\nResult: " . Dumper($obj);

$client->ns("HSPC/AP1/1.0")->session_close;

XML API 58

get _order_details

This function allows getting the full information about an order by an order ID.

Parameters:

order_id An order numerical identifier assigned in the
Parallels Business Automation - Standard database.

doc_num An order reference number (optional).

Returns: ORDER (on page 39), see Example 2.

Note: The function can be used to get details of other types of documents, for example, invoice.
To use the function this way, a document ID is to be passed. In this case, th parameter name

remains the same, order_id.

SOAP Faults codes:

OrderNotFound Order not found. This means that no order with the
ID specified.
AuthzError Access Denied.

get extended attr list

The function returns extended attributes available for a particular hosting plan type.

Parameters:

order_type

Order type: corresponds to a hosting plan type, the
parameter value (constant) is a hosting plan code used
in Store.

Returns value: [{ view_name=>, title=>, value=>, type=>}, ..]

SOAP Faults codes:

No specific codes.

XML API 59

get_account_subscr

The function returns the list of account subscriptions.

Parameters:

account_id ID of account the list of subscriptions is requested.

Returns an array of hashes:

{'plan_type_txt' => STRING, 'plan_type' => INT, ‘status' => STRING, 'plan_name' =>
STRING, 'subscr_name' => STRING, 'subscr_id' => ID }

SOAP Faults codes:

MissingAccount No accounts with passed ID has been found.

AccessDenied Function is called by a person not logged in or
logged in with insufficient permissions. Access to
account information is denied.

AccountAccessDenied Access to account information is denied in case a
reseller uses this function, but account belongs to
another reseller. Another match is the situation when
a user is logged in and requests information about
account that does not belong to him/her.

subscr_auth

The function authorizes an account against subscription ID.

Parameters:

account_id ID of account the list of subscriptions is requested.
subscr_id ID of subscription.

Returns:

is_authorized =>1o0r 0

SOAP Faults codes:

SubscrNotFound No subscription with ID passed.

AuthzError Subscription belongs to another account or in case a
reseller uses this function, to another reseller.

XML API

get_subscr_info

The function returns full subscription information.

Parameters:
subscr_id ID of subscription.
account_id Optional parameter. ID of account subscription belongs

to.

If account_id is provided, subscription is verified for belonging to the account.

Returns:

Various outputs depending on Subscription type, see examples (on page 64).

In general, the following parameters are returned.

All subscriptions:

Common output fields for all subscription types:

id ID of subscription.

name Subscription name.

account_no ID of account.

status_txt Subscription status in text form (Active, On Hold,
etc.).

status ID of subscription status.

prev_status

Subscription previous status ID.

plan_type

Hosting plan ID.

plan_type_txt

Hosting plan type in text.

plan_id Hosting plan ID.
plan_sid Hosting plan series key.
plan_name Hosting plan name in text.

create_order_id

ID of order placed for subscription.

period

Subscription period duration (given in seconds).

next_period

If subscription has been renewed, next subscription
period.

XML API

61

renewal_policy

Renewal policy code:

= 0 - Do not generate renewal order automatically;

= 1 - Generate renewal order automatically and try to
pay it.

= 2. - Generate renewal order automatically and do
not to pay it.

trial_period

If subscription is trial, then trial period duration in
seconds is returned.

custom_subscr_fee

Custom subscription fee (if such has been set for
subscription).

start_date Subscription start date.
end_date Subscription end date.
grace_date If subscription is in Graced status, the grace period start

date.

expiration_date

Subscription expiration date.

termination_date

If subscription has been terminated, subscription
termination date is returned.

goaway_date

If subscription has been deleted, the deletion date is
returned.

Common returned parameters for all subscription types except for Domain registration ones:

prom_id

If promotion has been applied to subscription,
promotion ID is returned.

prom_start_date

Promotion period start date (if promotion has been
applied).

prom_end_date

Promotion period end date (if promotion has been
applied).

res_info All resources included in subscription.
bm_attr Custom attributes assigned to subscription (if any).
guestions Questions specified (Questionnaire) for subscription, if

any.

assigned_domains

Domains assigned to subscription, if any.

The following subscription types have some extra output fields:

Domain registration subscription returned parameters:

62

XML API
domain Hash containing information about domain zone.
regdomain Hash containing information about domain registration.

Virtuozzo Container subscription:

platform_id ID of Container platform:

= -1 -Unknown

= 0-All

= 1-LinuxVz2.0

= 3-Linux Vz3.x

= 4 -Windows Vz3.X

= 5-Linux Vz3.x EM64T

= 6-Linux Vz3.x IA64

= 100-Non-VZ

= 201 - Plesk for Unix

= 202 - Plesk for Windows
platform Platform name in text form.
traf _class Traffic class ID, if such has been configured for

subscription.

app_resources

Applications available for subscription.

is_root_access

If root access allowed for Container.

ve_id

Container ID.

ve

Container name.

Plesk Client subscription:

traf_class Traffic class ID, if such has been configured for
subscription.

plesk_client Hash containing information about Plesk client (ID,
node, status, etc.)

platform_id Plesk platform ID (name as for Virtuozzo Container
subscription.

platform Plesk platform name in text form.

app_resources

Applications available for subscription.

Plesk Domain subscription:

XML API

63

traf _class Traffic class ID, if such has been configured for
subscription.

plesk_domain Hash containing information about Plesk domain (1D,
node, status, etc.)

platform_id Plesk platform ID (name as for Virtuozzo Container
subscription.

platform Plesk platform name in text form.

app_resources

Applications available for subscription.

Plesk Dedicated Server subscription:

hw_id

Server ID assigned in Parallels Business Automation.

server_properties

Hash containing information about

configuration.

server

Dedicated Server subscription:

platform_id Server platform ID (name as for Virtuozzo Container
subscription.

platform Platform name in text form.

traf _class Traffic class ID, if such has been configured for

subscription.

server_properties

Hash containing information about

configuration.

server

hw_id

Server ID assigned in Parallels Business Automation.

SOAP Faults codes:

SubscrNotFound

No subscription with 1D passed.

AuthzError

Subscription belongs to another account or in case a
reseller uses this function, to another reseller.

XML API

64

Example of get_subscr_info Returned Values

Examples of get_subscr_info function output depending on a subscription type are presented in

this topic.

Dedicated server
{

"goaway_date® => undef,
"prom_start_date® => "2007-09-10 08:54:12",
*trial_period® => 07,

"traf_class”™ =>
"plan_type® =>

"plan_type_txt"
"account_no* =>
"renewal _policy

undef,

37

=> "Dedicated Server"®,
3%

=S

“assigned_domains® => [],

“id* = 7,
"bm_attr® => [
{

}

"group_id" => "1°7,
"group_name®" => "Hard Disk",
"bm_attr_id" => "2°,

"name® => "80 GB",
"subscr_id® => "7°7,
"is_complimentary® => "0°

"group_id" => "2°7,
"group_name® => “Memory-",
"bm_attr_id" => "5°,
"name® => "512 MB DDR",
"subscr_id® => "7°7,
"is_complimentary® => "0°

"group_id" => "3",
"group_name®" => "Processor”,
“bm_attr_id" => "8",

"name® => "AMD Athlon64 3000°,

"subscr_id® => "7°%,
"is_complimentary® => "0"

“group_id® => "57,

"group_name" => "Operating System-”,

"bm_attr_id" => 14",

"name” => "Windows Server 2003",

"subscr_id® => "7°7,
"is_complimentary® => "0¢

"period® => "2592000",

"prom_id" => "0

"name® => "DS1234",

"questions® =>
"prom_end_date*

1.

=> undef,

"custom_subscr_fee" => undef,
"is_traffic_overused® => "0°7,
"end_date® => "2008-11-30 00:00:00°¢,

"plan_name® =>

"DS",

"next_period® => "2592000",

"base_date® =>
"res_info" => [

{

"2000-01-30 00:00:00",

XML API 65

"short_name® => “numstaticip”,
“is_unlim® => "0%,
"is_advanced® => "0-,

Iid' :> I7I,

"value®™ => "17,

"name” => "Number of Static IP addresses”,
"is_domain® => "0°7,
"is_countable™ => "1°,
"max_value®™ => "1048576",
"overuse_rate® => "0.000000°,
"is_ve_related® => "0°,
"is_metered® => "0",

"res_id" => "201°",
"is_reducible® => "1°,
"multiplier® => "1°,

"units® => "ip(s)”

"short_name® => "numdnshosting”,

“is_unlim®™ => "0%,

Iid' :> I7I,

"is_advanced®™ => "0-°,

*value®™ => "17,

"is_countable® => "1°,

"is_domain® => "0",

"name” => "Number of domains with DNS hosting

provided”®,

"is_ve_related® => "0°,

"overuse_rate® => "0.000000°,

"max_value®™ => "1048576",

"is_metered® => "0",

"res_id" => "208",

"is_reducible®™ => "0",

"units®™ => "domain”,

"multiplier® => 1"

}
1,
"server_properties” => {
"port® => "%,
"identification®™ => "DS1234°",
"switch_id® => "0°,
"ipaddresses” => [
"12.13.14.15",
"12.13.14.16"

“comment®™ => "test dedicated”,
"switch® => undef,

"rack"™ => undef,

“id* => 3",

"attributes® => [

"attr_id" => "6",
"name® => "1024 MB DDR*"

T,

{
"attr_id" => "11°7,
"name® => "VIRUS

Protection”

T

{
"attr_id" => "37,
"name®" => "120 GB"

T

{
"attr_id" => "13",
"name® => "ROOT Access”

}.

66

D 2.8 GHz*

Tools™

e

Miscellaneous Subscription

{

"id® => "166",

“"bm_attr® => [],

"period® => "2592000",
"prom_id" => "0°,

"name” => "Miscellaneous (34)",
"questions® => [

XML API
{
"attr_id" => "97,
"name” => "Dual Intel Xeon
¥,
{
"attr_id" => "12°,
"name® => "Development
¥
{
"attr_id" => "15"7,
"name” => "Fedora Linux"”
s
“form_factor® => "45°

}.

"plan_sid® => "167,

-,
"is_upgrade® => undef,
"is_notify" => undef,
"prev_status® => "10°,
"create_order_id" => "31°",
"status_txt" => "active”,
"grace_date" => "2008-05-14 08:48:21",
"billable_items® => [],
"start_date® => "2007-09-10 08:54:12",
"platform®™ => "Non-VZ©,
"termination_date" => undef,
“hw_id" => "37,
"expiration_date® => "2008-10-26 00:00:00",
"plan_id" => "16",
"platform_id" => "100"

"goaway_date® => undef,

"prom_start_date® => "2008-04-29 11:25:58",
"trial_period® => "0°,

"plan_type® => "7°7,

"plan_type txt" => "Miscellaneous”,
"account_no" => "2%,

"renewal_policy® => "1°,

"assigned_domains® => [

"fdgfdgdfg.com*

{
"guestion®” => "Question 1",
"value™ => "answer 1",
"question_id" => "1°7,
"hp_id" => "238",
"subscr_id®" => "166"

"guestion® => "Question 2°,
"value® => "answer 27,
"question_id" => "27,
“hp_id" => "238~,
"subscr_id® => 166"

XML API 67

"guestion®” => "Question 3",
"value®™ => "answer 3",
"question_id" => "37,
"hp_id" => "238",
"subscr_id®" => "166"

}

"prom_end_date® => undef,
"custom_subscr_fee" => undef,
"end_date® => "2008-05-29 00:00:00",
"plan_name®™ => "Misc 21-,
"next_period® => "7776000",
"base _date® => "2008-05-29 00:00:00",
"res_info" => [
{
"short_name® => "numdnshosting”,
"is_unlim® => "0°,
"is_advanced®™ => "0°,
"id® => "166",
*value®™ => "10~,
"name” => "Number of domains with DNS hosting
provided-®,
"is_domain® => "0°7,
"is_countable™ => "1°,
"max_value®™ => "1048576",
"overuse_rate® => "1.000000°,
"is_ve_related® => "0°,
"is_metered® => "0",
"res_id" => "4000",
"is_reducible®™ => "0°,
"multiplier® => "1,
"units®" => "domain”

}

1.

"plan_sid® => "127",
"status® => "1°%,
"is_upgrade® => undef,
"is_notify" => undef,
"prev_status® => "3°,
"create_order_id" => "922°7,
"status_txt" => "active”,
"grace_date® => undef,
"billable_items® => [],
"start_date® => "2008-04-29 11:25:58",
"termination_date" => undef,
"expiration_date® => undef,
"plan_id" => "241*"

}:

Plesk Client Subscription

{
"goaway_date” => "2008-03-08 00:00:00",
"prom_start_date® => "2007-12-21 13:31:32",
"trial_period® => "0°,
"traf_class®™ => undef,
"plan_type® => 10",
"plan_type_ txt" => "Plesk Client",
"account_no" => "4-°,
"renewal_policy®™ => "0-,
"assigned_domains® => [
"sub-cli-2._.com*
1.
"id®" => "36",
"bm_attr® => [],
"period® => "2592000",
“prom_id" => "0-,

XML API 68

"name” => "Dr. John Lector (4-1047)",

"questions® => [],

"app_resources® => []1,

"prom_end_date® => undef,

"plesk_client™ => {
"status® => "0",
"status_txt" => "active”,
"subscr_id®" => "36",
“hw_id" => "17,
id® => "244°,
"plesk_status® => "0-°,
"plesk_id® => "26",
"plesk_name® => "Dr. John Lector (4-1047)"

"custom_subscr_fee" => undef,
"is_traffic_overused® => "0°7,
"end_date" => "2008-02-21 13:37:43",
"plan_name® => "PC Win Uniq HN-",
"next_period® => "2592000",
"base _date® => "2007-12-21 13:37:43",
"res_info" => [
{
"short_name® => "pc_diskquota®,
"is_unlim® => "0°,
"is_advanced®™ => "0°,
"id®" => "36",
"value®™ => 100",
"name” => "Disk space quota-“,
"is_domain® => "0°",
"is_countable® => "1°,
"max_value® => "1024000",
"overuse_rate® => "0.000000",
"is_ve_related® => "0°",
"is_metered® => "0-,
"res_id" => "1300°",
"is_reducible® => "0-°,
"multiplier® => "1048576",
"units®™ => "MB"

*short_name®™ => "pc_numwebusers”,
"is_unlim® => "0°,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Number of web users”,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value®™ => "32000",
"is_metered® => "0",

"res_id" => "1302"°,
"is_reducible®™ => "0",

"units" => "users”,

"multiplier® => 1"

"short_name® => "pc_nummailbox",
"is_unlim® => "0°,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°7,
"is_domain® => "0°",

"name® => "Number of mailboxes”,
"is_ve_related® => "0°,

XML API

69

3
{

"overuse_rate® => "0.000000",
"max_value®™ => "32000",
"is_metered® => "0-,

"res_id" => "1304",
"is_reducible® => "0°,
"units®™ => "unit",
"multiplier® => "1¢

"short_name® => "pc_mailboxquota®,
"is_unlim® => "0°,

"id® => "36",

"is_advanced®™ => "0-°,

"value®™ => "17,
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Mailbox quota“,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value®™ => "102400",
"is_metered® => "0",

"res_id" => "1305",
"is_reducible®™ => "0",
"units®" => "MB",

"multiplier® => "1048576"

"short_name® => "pc_nummailredir”®,
"is_unlim®™ => "0°,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°,

"is_domain® => "0°7,

"name” => "Number of mail redirects”,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°¢,
"max_value®™ => "32000",
"is_metered® => "0",

"res_id" => "1306",

"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pc_nummailgrp”®,
"is_unlim® => "0°,

"id® => "36°,

"is_advanced®™ => "0-°,

*value®™ => "17,

"is_countable® => "1°,
"is_domain® => "0",

"name” => "Number of mail groups-®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000",
"max_value® => "32000",
"is_metered® => "0-,

"res_id" => "1307",
"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pc_nummailautoresp”,
"is_unlim® => "0°,

“id® => "36",

"is_advanced®™ => "0°,

XML API

70

"value®™ => "17,
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Number of mail autoresponders®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value®™ => "32000",
"is_metered® => "0",

"res_id" => "1308",
"is_reducible®™ => "0",
"units®™ => “unit",
"multiplier® => 1"

"short_name® => "pc_nummaillist",
"is_unlim® => "0°,

"id®" => "36°,

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable® => "1°,
"is_domain® => "0",

"name” => "Number of mailing lists~",
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value®™ => "32000",
"is_metered® => "0-,

"res_id" => "1309°",
"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pc_numwebapp®,
"is_unlim® => "0°,

"id® => "36",

"is_advanced®™ => "0-°,

*value®™ => "17,

"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Number of web applications”,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°¢,
"max_value®™ => "32000",
"is_metered® => "0",

"res_id" => "1310",
"is_reducible®™ => "0",

"units®™ => “unit",

"multiplier® => "1"

"short_name® => "pc_numsubdomains®,
"is_unlim® => "0°,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Number of subdomains®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°¢,
"max_value®™ => "32000",
"is_metered® => "0",

"res_id" => "1311°,
"is_reducible®™ => "0°,

"units® => "subdomains®,
"multiplier® => "1"

XML API

71

"short_name® => "pc_numdomains”,
"is_unlim® => "0°,

"id®" => "36°,

"is_advanced®™ => "0-°,

"value®™ => "2-,

"is_countable® => "1°,
"is_domain® => "0°",

"name® => "Number of domains”,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value® => "32000",
"is_metered® => "0-,

"res_id" => "1312"°,
"is_reducible®™ => "0",

"units" => "domains”,
"multiplier® => 1"

"short_name®™ => "pc_numips”,
"is_unlim® => "0°,

"id®" => "36",

"is_advanced®™ => "0°,
"value®™ => "0",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name® => "Number of IP",
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value®™ => "32000",
"is_metered® => "0",
"res_id" => "1313",
"is_reducible®™ => "0",
*units® => "ip(s)”,
"multiplier® => 1"

"short_name® => "pc_mysqldbquota®,
"is_unlim®™ => "0°,

"id® => "36°,

"is_advanced®™ => "0-°,

"value®™ => 100",

"is_countable® => "1°,
"is_domain® => "0°",

"name” => "mysgl database quota-®,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value® => "1024000",
"is_metered® => "0-,

"res_id" => "1321°",
"is_reducible® => "0°,

units® => "MB-,

"multiplier®™ => "1048576"

"short_name® => "pc_micsqgldbquota“,
"is_unlim® => "0°,

"id® => "36°,

"is_advanced®™ => "0-°,

"value®™ => 100",

"is_countable® => "1°,

"is_domain® => "0",

"name” => "microsoft sql database quota®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value® => "1024000",
"is_metered® => "0",

XML API 72

"res_id" => "1322°,
"is_reducible®™ => "0°,
"units®" => "MB",
"multiplier® => "1048576"

*short_name®™ => "pc_micsglnumdb™,

"is_unlim® => "0°,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°,

"is_domain® => "0°7,

"name” => "maximum number of microsoft sql serever
databases”,

"is_ve_related® => "0°,

"overuse_rate® => "0.000000°,

"max_value®™ => "1024",

"is_metered® => "0",

"res_id" => "1323",

"is_reducible®™ => "0°,

"units®™ => “unit",

"multiplier® => "1°"

"short_name® => "pc_sslshlinksnumber®,
"is_unlim® => "0°,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°,

"is_domain® => "0°7,

"name” => "maximum number of shared ssl links",
"is_ve_related® => "0°,

"overuse_rate® => "0.000000°,
"max_value® => "1000",

"is_metered® => "0",

"res_id" => "1324",

"is_reducible®™ => "0°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pc_subftpusers”,
"is_unlim® => "0°,

"id®" => "36°,

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable® => "1°,
"is_domain® => "0",

"name® => "Maximum number of FTP subaccounts”,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value® => "1000",
"is_metered® => "0-,

"res_id" => "1325",
"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1¢

"short_name® => "pc_fpseusers”,
"is_unlim® => "0°,

"id® => "36°7,

"is_advanced®™ => "0°,

"value®™ => "1°%,

"is_countable®™ => "1°,

XML API 73

"is_domain® => "0°7,

"name” => "Maximum number of Microsoft FrontPage
subaccounts”®,

"is_ve_related® => "0°",

"overuse_rate® => "0.000000",

"max_value® => "1000",

"is_metered® => "0-,

"res_id" => "1326",

"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pc_numodbc”,
"is_unlim®™ => "1°7,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "0",
"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Maximum number of ODBC connections”,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value® => "0°7,
"is_metered® => "0",

"res_id" => "1327",
"is_reducible™ => "1°7,
"units®™ => “unit",
"multiplier® => "1"

*short_name®™ => "pc_numiispools~,
"is_unlim® => "0°,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Maximum number of 1IS application pools”,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value®™ => "1024°",
"is_metered® => "0-,

"res_id" => "1331°",
"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pc_mysqlnumdb”®,
"is_unlim® => "0°,

"id®" => "36°,

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable® => "1°,
"is_domain® => "0°",

"name” => "maximum number of MySQL databases®,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value®™ => "1024°",
"is_metered® => "0-,

"res_id" => "1332",
"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => 1"

XML API 74

"short_name® => "pc_numdomainalias”,
"is_unlim® => "0°,

"id®" => "36",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable®™ => "1°,

"is_domain® => "0°7,

"name” => "maximum number of domain aliases”,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value®™ => "32000",

"is_metered® => "0",

"res_id" => "1333",

"is_reducible® => "0-°,

"units®™ => "alias(es)”,

"multiplier® => "1"

"short_name® => "pc_totalmailbquota”,
"is_unlim® => "0°,

"id®" => "36°,

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable® => "1°,

"is_domain® => "0",

"name” => "Total mailboxes quota®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000",
"max_value®™ => "102400",
"is_metered® => "0-,

"res_id" => "1334",

"is_reducible® => "0°,

"units®™ => "MB",

"multiplier®™ => "1048576"

"short_name® => "numdnshosting”,

"is_unlim® => "0°,

"id" => "36°7,

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°7,

"is_domain® => "0°7,

"name” => "Number of domains with DNS hosting
provided-,

"is_ve_related® => "0°",

"overuse_rate® => "0.000000",

"max_value®™ => "1048576",

"is_metered® => "0-,

"res_id" => "1335",

"is_reducible® => "0°,

"units®" => "domain",

"multiplier® => "1"

"short_name® => "pc_numcfdsn®,

"is_unlim® => "1°,

"id®" => "36°,

"is_advanced®™ => "0-°,

"value®™ => "0",

"is_countable® => "1°,

"is_domain® => "0",

"name” => "Maximum number of ColdFusion DSN
connections”,

"is_ve_related® => "0°,

"overuse_rate® => "0.000000",

"max_value® => "0°",

XML API

75

"is_metered® => "0-,
"res_id" => "1336",
"is_reducible® => "1°,
"units®™ => "unit",
"multiplier® => "1"

}

"plan_sid"® => "49°7,
"status” => "11°,
"is_upgrade® => undef,
"is_notify" => undef,
"add_params® => "76",
"prev_status® => "10°,
"create_order_id" => "151°,
"billable_items® => [],
"grace_date® => "2008-03-08 00:00:00",
"status_txt" => "expired”,
"start_date® => "2007-12-21 13:31:32",
"platform®™ => "Plesk for Windows",
"termination_date® => undef,
"expiration_date® => "2009-03-08 00:00:00",
"plan_id" => "51°,
"platform_id" => "202"

}:

Plesk Domain Subscription
{

"goaway_date" => undef,
"prom_start_date® => "2008-03-03 12:35:00",
"trial_period® => "0°,
"traf_class®™ => undef,
"plan_type_ txt" => "Plesk Domain-,
"plan_type® => "9%,
"account_no" => "57,
"renewal_policy®™ => "0-,
"assigned_domains® => [
"hadelen.com”
1,
"id® => "90",
“"bm_attr® => [],
"period® => "31104000",
"prom_id" => "0°,
"name® => "hadelen.com”,
"questions® => [],
"app_resources® => []1,
"prom_end_date® => undef,
"custom_subscr_fee® => undef,
"is_traffic_overused® => "07,
"end_date® => "2009-11-14 00:00:00",
"plan_name® => "PD check webmail®,
"next_period®™ => "31104000",
"base_date® => "2009-11-14 00:00:00",
"res_info" => [
{
"short_name®" => "pd_diskquota®,
"is_unlim® => "0°,
"id® => "90",
"is_advanced®™ => "0-°,
"value®™ => 100",
"is_countable® => "1°,
"is_domain® => "0",
"name” => "Disk space quota-“,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000",
"max_value® => "1024000",
"is_metered® => "0-,
"res_id" => "1200",

XML API

76

"is_reducible® => "0-°,
"units®™ => "MB",
"multiplier®™ => "1048576"

"short_name® => "pd_numwebusers-”,
"is_unlim® => "0°,

"1d®" => "90°",

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable® => "1°,
"is_domain® => "0°",

"name® => "Number of web users”®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value®™ => "32000",
"is_metered® => "0",

"res_id" => "1202°,
"is_reducible®™ => "0",

"units" => "users",

"multiplier® => 1"

"short_name® => "pd_nummailbox",
"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Number of mailboxes”,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value® => "32000",
"is_metered® => "0",

"res_id" => "1204",
"is_reducible®™ => "0°,

"units®™ => “unit",

"multiplier® => "1"

"short_name® => "pd_mailboxquota®,
"is_unlim® => "0°,

"1d®" => "90°",

"is_advanced®™ => "0-°,

"value®™ => "1-,
"is_countable® => "1°,
"is_domain® => "0",

"name” => "Mailbox quota-®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000",
"max_value®™ => "102400",
"is_metered® => "0-,

"res_id" => "1205",
"is_reducible® => "0-°,
"units®™ => "MB",

"multiplier®™ => "1048576"

"short_name® => "pd_nummailredir”®,
"is_unlim® => "0°,

"1d®" => "90°",

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable™ => "1°,

"is_domain® => "0°7,

"name” => "Number of mail redirects”,

XML API

77

3
{

"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value® => "32000",
"is_metered® => "0",

"res_id" => "1206",
"is_reducible®™ => "0",
"units®™ => “unit",
"multiplier® => "1°"

"short_name® => "pd_nummailgrp”,
"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0-°,

*value®™ => "17,

"is_countable® => "1°,
"is_domain® => "0",

"name” => "Number of mail groups-®,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value® => "32000",
"is_metered® => "0-,

"res_id" => "1207",
"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pd_nummailautoresp”,
"is_unlim® => "0°,

"1d®" => "90°",

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable® => "1°,

"is_domain® => "0",

"name” => "Number of mail autoresponders®,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value® => "32000",

"is_metered® => "0",

"res_id" => "1208",

"is_reducible®™ => "0°,

"units®™ => “unit",

"multiplier® => "1"

"short_name® => "pd_nummaillist®,
"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Number of mailing lists",
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°¢,
"max_value®™ => "32000",
"is_metered® => "0",

"res_id" => "1209",
"is_reducible®™ => "0°,

"units®™ => “unit",

"multiplier® => 1"

"short_name® => "pd_numwebapp®,
"is_unlim® => "0°,
"id® => "90",

XML API 78

"is_advanced®™ => "0-°,

"value®™ => "1-,
"is_countable® => "1°,
"is_domain® => "07,

"name” => "Number of web applications”,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value®™ => "32000",
"is_metered® => "0-,

"res_id" => "1210",
"is_reducible® => "0°,
"units®™ => "unit",
"multiplier® => "1¢

"short_name® => "pd_numsubdomains®,
"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Number of subdomains®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value® => "32000",
"is_metered® => "0",

"res_id" => "1211°,
"is_reducible®™ => "0",

"units® => “"subdomains”®,
"multiplier® => "1"

"short_name®™ => "pd_ip"~,
"is_unlim® => "0°,

"id® => "90",
"is_advanced®™ => "0°,
"value®™ => "0",
"is_countable™ => "1°,
"is_domain® => "0",

"name® => "Dedicated IPs",
"is_ve_related® => "0°,
"overuse_rate® => "0.000000",
"max_value® => "1°7,
"is_metered® => "0-,
"res_id" => "1212°7,
"is_reducible® => "0°,
“units® => "IP",
"multiplier® => "1"

"short_name® => "pd_harddiskquota“,
"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0-°,

"value®™ => 100",

"is_countable® => "1°,

"is_domain® => "0",

"name” => "Hard disk space quota-®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000",
"max_value® => "1024000",
"is_metered® => "0-,

"res_id" => "1219",

"is_reducible®™ => "0",

"units®" => "MB",

"multiplier® => "1048576"

XML API 79

"short_name® => "pd_numdomainalias”,
"is_unlim®™ => "0°,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "0",

"is_countable™ => "1°,

"is_domain® => "0°7,

"name” => "Maximum number of domain aliases”,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value®™ => "32000",

"is_metered® => "0",

"res_id" => "1220",

"is_reducible® => "0°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pd_mysqldbquota®,
"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0-°,

"value®™ => 100",

"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Mysgl database quota-®,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value® => "1024000",
"is_metered® => "0-,

"res_id" => "1221°",
"is_reducible® => "0°,

“units®™ => "MB",

"multiplier®™ => "1048576"

"short_name® => "pd_micsqgldbquota“,
"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "100",

"is_countable™ => "1°,

"is_domain® => "0°7,

"name” => "Microsoft sql database quota®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value® => "1024000",
"is_metered® => "0",

"res_id" => "1222°,

"is_reducible®™ => "0",

"units®" => "MB",

"multiplier® => "1048576"

"short_name® => "pd_micsqglnumdb*®,

"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable®™ => "1°,

"is_domain® => "0°7,

"name” => "Maximum number of microsoft sql serever
databases”,

"is_ve_related® => "0°,

"overuse_rate® => "0.000000°,

XML API

80

"max_value®™ => "1024°",
"is_metered® => "0",
"res_id" => "1223",
"is_reducible®™ => "0",
"units®™ => “unit",
"multiplier® => 1"

"short_name® => "pd_sslshlinksnumber®,
"is_unlim®™ => "0°,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable® => "1°,

"is_domain® => "0°",

"name® => "Maximum number of shared ssl links"®,
"is_ve_related® => "0°,

"overuse_rate® => "0.000000",
"max_value® => "1000",

"is_metered® => "0-,

"res_id" => "1224",

"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1¢

"short_name® => "pd_mysqlnumdb*®,
"is_unlim® => "0°,

"1d®" => "90°",

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable® => "1°,
"is_domain® => "0",

"name” => "Maximum number of MySQL databases®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000",
"max_value®™ => "1024",
"is_metered® => "0-,

"res_id" => "1225",
"is_reducible®™ => "0°,

"units®™ => “unit",

"multiplier® => 1"

"short_name® => "pd_totalmailboxquota“,
"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°,

"is_domain® => "0°7,

"name” => "Total mailboxes quota®,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000°,
"max_value®™ => "102400",
"is_metered® => "0",

"res_id" => "1226",

"is_reducible®™ => "0°,

"units®" => "MB",

"multiplier® => "1048576"

"short_name® => “numdnshosting”,
"is_unlim® => "0°,

“id® => "90",

"is_advanced®™ => "0-°,

*value® => "1°%,

XML API 81

"is_countable® => "1°,

"is_domain® => "0",

"name” => "Number of domains with DNS hosting
provided-®,

"is_ve_related® => "0°,

"overuse_rate® => "0.000000°,

"max_value®™ => "1048576",

"is_metered® => "0",

"res_id" => "1227"°,

"is_reducible®™ => "0",

"units" => "domain”,

"multiplier® => 1"

"short_name® => "pd_subftpusers”,
"is_unlim® => "0°,

"1d®" => "90°",

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable® => "1°,
"is_domain® => "0",

"name® => "Maximum number of FTP subaccounts”,
"is_ve_related® => "0°",
"overuse_rate® => "0.000000",
"max_value® => 10007,
"is_metered® => "0-,

"res_id" => "1228",
"is_reducible® => "0-°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pd_fpseusers”,

"is_unlim® => "0°,

"id® => "90",

"is_advanced®™ => "0-°,

*value™ => "17,

"is_countable® => "1°,

"is_domain® => "0°",

"name” => "Maximum number of Microsoft FrontPage
subaccounts”®,

"is_ve_related® => "0°,

"overuse_rate® => "0.000000",

"max_value® => "1000",

"is_metered® => "0-,

"res_id" => "1229°7,

"is_reducible® => "0°,

"units®™ => "unit",

"multiplier® => "1"

"short_name® => "pd_numodbc*®,
"is_unlim® => "1°,

"1d®" => "90°",

"is_advanced®™ => "0-°,

"value®™ => "0",
"is_countable® => "1°,
"is_domain® => "0",

"name® => "Maximum number of ODBC connections”,
"is_ve_related® => "0°,
"overuse_rate® => "0.000000",
"max_value® => "0°7,
"is_metered® => "0-,

"res_id" => "1230",
"is_reducible™ => "1°7,
"units®™ => “unit",
"multiplier® => 1"

XML API 82

"short_name® => "pd_numcfdsn®,

"is_unlim®™ => "1°7,

"id® => "90",

"is_advanced®™ => "0°,

"value®™ => "0",

"is_countable™ => "1°,

"is_domain® => "0°7,

"name” => "Maximum number of ColdFusion DSN
connections”,

"is_ve_related® => "0°,

"overuse_rate® => "0.000000",

"max_value® => "0°7,

"is_metered® => "0",

"res_id" => "1231",

"is_reducible™ => "1°7,

"units®™ => “unit",

"multiplier® => "1"

}

1.

"plan_sid® => "113",

"status® => "17,

"is_upgrade® => undef,

"is_notify" => undef,

"add_params® => "90°",

"prev_status® => "3°,

"create_order_id" => "424°,

"status_txt" => "active”,

"grace_date® => undef,

"billable_items® => [],

"start_date® => "2008-03-03 12:35:00",

"platform®™ => "Plesk for Windows",

"plesk_domain® => {
"status® => "0°,
“hw_id" => "107,
"subscr_id®" => "90",
"plesk_status® => 07,
"plesk_id" => "102",
"plesk_ip" => "10.26.0.97",
"status_txt" => "active”,
"id" => "206°,
"plesk_name® => “hadelen.com”

}.

"termination_date® => undef,

"expiration_date" => undef,

"plan_id" => "113",

"platform_id" => "202"

}:

Virtuozzo Container Subscription
{

"goaway_date" => undef,

"prom_start_date® => "2008-03-31 13:09:36",

"is_root_access” => "1°,

*trial_period® => 07,

"traf_class” => undef,

"plan_type_ txt" => "Container”,

"plan_type® => "1°7,

"account_no" => "3,

"renewal_policy® => "1°,

"assigned_domains® => [

"app-ssl.Imtest.ru”

1.

"id® => "129°,

“"bm_attr® => [],

"period® => "2592000",

XML API

83

“prom_id" => "0-,
"name® => "Plesk"®,
"questions® => [],
"app_resources® => [

{

"name® => "Majordomo with Autoresponder®,
"is_upgrade® => "0°,

"is_notify®" => "0°,

"setup_fee™ => "0.00",

"app_key" => "autoresponder-majordomo-fc4-,
"subscr_fee®" => "0.00",

"is_complementary® => "0°,

“type" => "1°,

"id® => "129°7,

cid®" => "1°

"name® => "Awstats Fc4-,
"is_upgrade® => "0°,
"is_notify® => "0°,
"setup_fee® => "0.00",
"app_key" => "awstats-fc4",
"subscr_fee" => "0.00",
"is_complementary® => 1%,
“"type® => "1°%,

"id® => "129°7,

cid®" => "1°

"name® => "Jdk Fc4°",
"is_upgrade® => "0°,
"is_notify® => "0°,
"setup_fee® => "0.00",
"app_key" => "jdk-fc4",
"subscr_fee" => "0.00",
"is_complementary® => "0-,
“"type" => "1°%,

"id® => "129°7,

“cid®" => "1°

“name” => "Jre Fc4-,
"is_upgrade® => "0°,
"is_notify®" => "0°,
"setup_fee™ => "0.00",
“app_key" => "jre-fc4-",
"subscr_fee®" => "0.00",
"is_complementary® => "0°,
“type" => "1°,

“id® => "129°,

“cid® => "1"

"name® => “"Mod Perl Fc4-",
"is_upgrade® => "0°,
"is_notify®" => "0°,
"setup_fee™ => "0.00",
"app_key" => "mod_perl-fc4-,
"subscr_fee®" => "0.00",
"is_complementary® => "1°,
“type" => "1°,

"id® => "129°7,

“cid® => "1"

"name® => "Mod Ssl Fc4-,
"is_upgrade® => "0°,

XML API 84

"is_notify® => "0°,
"setup_fee® => "0.00",
"app_key" => "mod_ssl-fc4",
"subscr_fee" => "0.00",
"is_complementary® => 1%,
“type” => "1°,

"id" => 129",

“cid® => "1*

"name® => “"Mysgl Fc4-,
"is_upgrade®” => "0°,
"is_notify® => "0°,
"setup_fee™ => "0.00",
"app_key" => "mysql-fc4-",
"subscr_fee®" => "0.00",
"is_complementary® => "1°,
“type" => "1°,

"id® => "129°,

“cid® => "1°

"name® => "Openwebmail Fc4-",
"is_upgrade® => "0°,
"is_notify®" => "0°,

"setup_fee™ => "0.00",
"app_key" => "openwebmail-fc4",
"subscr_fee®" => "0.00",
"is_complementary® => "0°,
“type” => "1°,

"id" => "129°%,

“cid® => "1"

"name® => "Php Fc4",
"is_upgrade® => "0-",
“is_notify" => "0°,
"setup_fee" => "0.00",
“app_key" => "php-fc4-,
"subscr_fee" => "0.00",
"is_complementary”™ => "1°7,
“type” => "1°,

“idT => "129°,

“cid® => "1°

"name® => "Phpmyadmin Fc4-,
"is_upgrade® => "0°,
"is_notify® => "0°,
"setup_fee® => "0.00",
"app_key" => "phpmyadmin-fc4*,
"subscr_fee" => "0.00",
"is_complementary® => 1%,
“type” => "1°,

"id" => 129",

“cid® => "1*

"name” => "PostgreSQL",
"is_upgrade®” => "0°,
"is_notify® => "0°7,
"setup_fee® => "0.00",
"app_key" => "postgresql-fc4*,
"subscr_fee" => "0.00",
"is_complementary® => "0°,
“type" => "1°,

"id" => "129°,

XML API 85

“cid®" => "1*"

"name® => "Proftpd Fc4-",
"is_upgrade® => "0°,
"is_notify®" => "0°,
"setup_fee™ => "0.00",
"app_key" => "proftpd-fc4-,
"subscr_fee®" => "0.00",
"is_complementary® => 07,
“type” => "1°,

"id® => "129°7,

“cid® => "1"

"name” => "Psa Fc4-,
"is_upgrade®” => "0°,
"is_notify® => "0°,
"setup_fee® => "0.00",
"app_key" => "psa-fc4-,
"subscr_fee" => "0.00",
"is_complementary® => 1%,
“type” => "1°7,

"id® => "129°7,

cid®" => "1°

"name” => "SSH 3.1°",
"is_upgrade® => "0°,
"is_notify® => "0°,
"setup_fee® => "0.00",
"app_key" => "ssh*®,
"subscr_fee" => "0.00",
"is_complementary® => 1%,
“type” => 47,

"id® => "129°7,

"cid® => "3°

"name® => "Usermin Fc4-",
"is_upgrade® => "0°,
"is_notify" => "0°,
"setup_fee™ => "0.00",
"app_key" => "usermin-fc4-,
"subscr_fee®" => "0.00",
"is_complementary® => "0°,
“type" => "1°,

"id" => "129°,

“cid® => "1°"

"name® => "Webmin Fc4-,
"is_upgrade® => "0°,
"is_notify" => "0°,
"setup_fee™ => "0.00",
"app_key" => “"webmin-fc4",
"subscr_fee®" => "0.00",
"is_complementary® => "0°,
“type” => "1°,

"id® => "129°7,

“cid® => "1°*

"name” => "ZendOptimizer"®,
"is_upgrade®” => "0°,
"is_notify® => "0°,
"setup_fee®" => "0.00",

XML API 86

"app_key" => "zend-optimizer-fc4*,
"subscr_fee" => "0.00",
"is_complementary® => "0-,

“type® => "1°%,

"id" => 129",

“cid® => "1*

}

"prom_end_date® => undef,
"custom_subscr_fee" => undef,
"is_traffic_overused® => "0°7,
"end_date®" => "2008-06-01 08:18:06",
"plan_name® => "99026 test",
"ve_id" => "1027°",
"next_period® => "2592000",
"base_date® => "2008-05-01 08:18:06",
"res_info" => [
{
"short_name® => "numstaticip”,
"is_unlim® => "0°,
"id® => "129°,
"is_advanced®™ => "0-°,
*value®™ => "17,
"is_countable® => "1°,
"is_domain® => "0",
"name® => "Number of Static IP addresses”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value®™ => "1048576",
"is_metered® => "0-,
"res_id" => "25°,
"is_reducible® => "0°,
"units® => "ip(s)",
"multiplier® => "1¢

"short_name® => "nummailbox"”,
"is_unlim® => "0°,

"id® => "129°,

"is_advanced®™ => "0°,

"value®™ => "1024",
"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Number of mailboxes”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value®™ => "1048576",
"is_metered® => "0",

"res_id" => "38",
"is_reducible®™ => "0",
"units®™ => "mailbox",
"multiplier® => "1"

"short_name® => “numwebsites"”,
"is_unlim® => "0°,

"id® = "129°,

"is_advanced®™ => "0°,

"value®™ => "17,

"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Number of websites”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°¢,
"max_value® => "1048576",
"is_metered® => "0-,

"res_id" => "69°,

XML API

87

"is_reducible® => "0-°,
"units®™ => “website",
"multiplier® => "1"

"short_name® => "numdbs”,
"is_unlim® => "0°,

"1d® = "129°,

"is_advanced®™ => "0-°,

"value®™ => "1-,
"is_countable® => "1°,
"is_domain® => "0°",

"name® => "Number of databases”,
"is_ve_related® => 17,
"overuse_rate® => "0.000000°,
"max_value®™ => "1048576",
"is_metered® => "0",

"res_id" => "72%,
"is_reducible®™ => "0",
"units" => "database",
"multiplier® => 1"

"short_name® => "numbks”,
"is_unlim® => "0°,

"id® => 71297,

"is_advanced®™ => "0°,

"value®™ => "17,
"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Number of backups®,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value®™ => "1048576",
"is_metered® => "0",

"res_id" => "74%,
"is_reducible®™ => "0°,
“units® => “backup-®,
"multiplier® => "1"

"short_name® => "sizebks",
"is_unlim® => "0°,

"1d® = "129°,

"is_advanced®™ => "0-°,

*value®™ => "100",
"is_countable® => "1°,
"is_domain® => "0",

"name” => "Total size of all backups®,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value®™ => "1048576",
"is_metered® => "0-,

"res_id" => "76",
"is_reducible® => "0-°,
"units®™ => "MB",

"multiplier®™ => "1048576"

"short_name® => "numdnshosting”,
"is_unlim® => "0°,

"1d® = "129°,

"is_advanced®™ => "0-°,

"value®™ => "1-,

"is_countable™ => "1°,
"is_domain® => "0°7,

XML API

88

provided”®,

3
{

"name” => "Number of domains with DNS hosting

"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value®™ => "1048576",
"is_metered® => "0",

"res_id" => "100",
"is_reducible®™ => "0",
"units®™ => "domain”,
"multiplier® => "1°"

"short_name® => “"kmemsize-®,
"is_unlim® => "0°,

"1d® => "129°,

"is_advanced®™ => "1°,

"value®™ => "10800",
"is_countable® => "1°,
"is_domain® => "07,

"name” => "Size of unswappable kernel memory®,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2097151",
"is_metered® => "0-,

"res_id" => "101-°,
"is_reducible® => "1°,
"units®™ => "KB",

"multiplier® => "1024°

"short_name® => "lockedpages”®,
"is_unlim® => "0°,

"id® => "129°,

"is_advanced®™ => "1°,

"value®™ => "256",
"is_countable® => "1°,
"is_domain® => "0°",

"name” => “Unswappable user pages-,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value® => "2147483647",
"is_metered® => "0",

"res_id" => "102",
"is_reducible™ => "1°7,

"units® => "pages”,
"multiplier® => "1"

"short_name®™ => "vmguarpages”,
"is_unlim® => "0°,

"id® => 71297,

"is_advanced® => "1°,

"value™ => "6144",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Memory allocation guarantee”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value®™ => "2147483647",
"is_metered® => "0",

"res_id" => "103",
"is_reducible™ => "1°7,

"units® => "pages”,
"multiplier® => 1"

"short_name® => "shmpages”,

XML API 89

"is_unlim® => "0°,

"id® => "129°,

"is_advanced®™ => "1°,

"value™ => "21504",
"is_countable® => "1°,
"is_domain® => "0",

"name” => "Total size of SysV IPC shared memory"®,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2147483647",
"is_metered® => "0-,

"res_id" => "104-°,
"is_reducible® => "1°,
"units® => "pages”,
"multiplier® => "1°"

"short_name®™ => "privvmpages”,
"is_unlim®™ => "0°,

"id® => 71297,

"is_advanced® => "1°,

"value™ => "655360",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Total size of private pages”,
"is_ve_related® => "1°%,
"overuse_rate® => "0.000000°,
"max_value® => "2147483647",
"is_metered® => "0",

"res_id" => "105",
"is_reducible™ => "1°7,

"units® => "pages”,
"multiplier® => "1"

"short_name® => “numproc-®,
"is_unlim® => "0°,

"id® = "129°,

"is_advanced® => "1°,

"value™ => "240",
"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Number of processes-,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value®™ => "32000",
"is_metered® => "0-,

"res_id" => "106",
"is_reducible® => "1°,
"units® => ",

"multiplier® => "1"

"short_name® => "physpages”,
"is_unlim® => "0°,

"id® => "129°,

"is_advanced®™ => "1°,

"value™ => "2147483647",
"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Total number of physical memory pages-,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2147483647",
"is_metered® => "0",

"res_id" => "107",
"is_reducible® => "1°7,

XML API

90

"units® => "pages”,
"multiplier® => 1"

"short_name® => "oomguarpages”,
"is_unlim®™ => "0°,

"id® => 71297,

"is_advanced® => "1°,

"value®™ => "6144",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Guaranteed allocating address space”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2147483647",
"is_metered® => "0-,

"res_id" => "108",
"is_reducible® => "1°,

"units®™ => "pages”,
"multiplier® => "1"

"short_name® => "numfile”,
"is_unlim® => "0°,

"1d® = "129°,

"is_advanced®™ => "1°,

"value®™ => "9312",
"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Number of open files",
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2147483647",
"is_metered® => "0-,

"res_id" => "109°,
"is_reducible® => "1°,
"units® => "7,

"multiplier® => "1"

"short_name®™ => "numtcpsock”,
"is_unlim® => "0°,

"id® => 71297,

"is_advanced® => "1°,

"value®™ => "360",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Number of TCP/IP sockets"®,
"is_ve_related® => "1°%,
"overuse_rate® => "0.000000°,
"max_value® => "2147483647",
"is_metered® => "0",

"res_id" => "110",
"is_reducible™ => "1°7,
"units® => "*",

"multiplier® => 1"

"short_name® => "numflock”,
"is_unlim® => "0°,

"id® = "129°,

"is_advanced® => "1°,

"value®™ => "206",

"is_countable™ => "1°7,
"is_domain® => "0°",

"name® => "Number of file locks",
"is_ve_related® => "1°7,

XML API 91

"overuse_rate® => "0.000000",
"max_value® => "2147483647",
"is_metered® => "0-,

"res_id" => "111°,
"is_reducible® => "1°,
"units® => "7,

"multiplier® => "1¢

"short_name® => "numpty”,
"is_unlim® => "0°,

"id® => "129°,

"is_advanced®™ => "1°,

"value®™ => "16",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Number of pseudo-terminals”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value®™ => "2147483647",
"is_metered® => "0",

"res_id" => "112",
"is_reducible™ => "1°7,
"units® => "*",

"multiplier® => 1"

"short_name®™ => "numsiginfo~,
"is_unlim®™ => "0°,

"id® => 71297,

"is_advanced® => "1°,

"value®™ => "256",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Number of siginfo structures”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°¢,
"max_value®™ => "2560",
"is_metered® => "0",

"res_id" => "113",
"is_reducible® => "1°,
"units® => "%,

"multiplier® => "1"

"short_name® => "tcpsndbuf”,
"is_unlim® => "0°,
"1d® = "129°,
"is_advanced®™ => "1°,
"value®™ => "1680",
"is_countable® => "1°,
"is_domain® => "0",
"name® => "Total size of TCP send buffers”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2095171",
"is_metered® => "0-,
"res_id" => "114-°,
"is_reducible® => "1°,
"units®™ => "KB",
"multiplier® => "1024°

},

{

"short_name® => "tcprcvbuf”,
"is_unlim® => "0°,

"1d" => "129°,

"is_advanced® => "1°,

XML API 92

3.

"value®™ => "1680",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Total size of TCP receive buffers”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value® => "2095171",
"is_metered® => "0",

"res_id" => "115",
"is_reducible™ => "1°7,
"units®™ => "KB",

"multiplier® => "1024"

"short_name® => "othersockbuf”,
"is_unlim® => "0°,

"1d® => "129°,

"is_advanced®™ => "1°,

"value™ => "2048",
"is_countable® => "1°,
"is_domain® => "0",

"name® => "Total size of other socket buffers”®,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2097151",
"is_metered® => "0-,

"res_id" => "116",
"is_reducible® => "1°,

"units®™ => "KB",

"multiplier® => "1024°

"short_name® => "dgramrcvbuf®,
"is_unlim® => "0°,

"1d® => "129°,

"is_advanced®™ => "1°,

"value®™ => "256",
"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Total size of UDP receive buffers”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°¢,
"max_value® => "2097151",
"is_metered® => "0",

"res_id" => "117",
"is_reducible™ => "1°7,

"units®™ => "KB",

"multiplier® => "1024"

"short_name® => "numiptent”,
"is_unlim® => "0°,

"id® => 71297,

"is_advanced® => "1°,

"value®™ => "128",
"is_countable™ => "1°7,
"is_domain® => "0°7,

"name” => "Number of entries in IP tables”,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°¢,
"max_value® => "3000",
"is_metered® => "0",

"res_id" => "118",
"is_reducible™ => "1°7,
"units® => "%,

"multiplier® => "1"

XML API

93

"short_name® => "netrateguar”,
"is_unlim® => "0°,

"1d® = "129°,

"is_advanced®™ => "1°,

"value®™ => "0",
"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Guaranteed network
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value®™ => "1024",
"is_metered® => "0-,

"res_id" => "119",
"is_reducible™ => "1°7,
"units"™ => "MBit/sec",
"multiplier® => "1024"

"short_name® => "diskspace”,
"is_unlim® => "0°,

"id® => 71297,

"is_advanced®™ => "0°,

"value®™ => "1024",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Disk space quota-“,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value®™ => "4194303",
"is_metered® => "0",

"res_id" => "121°",
"is_reducible™ => "1°7,
"units®" => "MB",

"multiplier® => "1024"

"short_name® => "diskinodes”,
"is_unlim®™ => "0°,

"1d® = "129°,

"is_advanced®™ => "1°,

"value®™ => "200000",
"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Disk iInode quota-“,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2147483647",
"is_metered® => "0-,

"res_id" => "122°,
"is_reducible® => "1°,
"units®™ => "inodes",
"multiplier® => "1"

"short_name® => "cpuunits”,
"is_unlim® => "0°,

"1d®" => "129°,
"is_advanced®™ => "0-°,
"value®™ => "1000",
"is_countable® => "1°,
"is_domain® => "0",

"name®" => "CPU usage-,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value® => "500000",
"is_metered® => "0",

rate”,

XML API 94

"res_id" => "124",
"is_reducible™ => "1°7,
"units®™ => “unit",
"multiplier® => "1"

"short_name® => “dcachesize”,
"is_unlim® => "0°,

"id® => 71297,

"is_advanced® => "1°,

"value™ => "3624960",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Size of busy dentry/inode cache”®,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2147482624",
"is_metered® => "0-,

"res_id" => "125",
"is_reducible® => "1°,
"units® => "bytes",
"multiplier® => "1¢

"short_name® => "quotaugidlimit”,
"is_unlim® => "0°,

"1d® => "129°,

"is_advanced®™ => "1°,

*value®™ => "100",

"is_countable® => "1°,
"is_domain® => "0°",

"name” => "Limit of user quotas-®,
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "2147483647",
"is_metered® => "0-,

"res_id" => "126",

"is_reducible® => "1°,

"units® => "7,

"multiplier® => 1"

"short_name®™ => "numothersock”,
"is_unlim®™ => "0°,

"id® = "129°,

"is_advanced® => "1°,

"value®™ => "360",
"is_countable™ => "1°,
"is_domain® => "0°7,

"name” => "Number of sockets other than TCP/IP",
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value® => "2147483647",
"is_metered® => "0",

"res_id" => "127",
"is_reducible™ => "1°7,

"units® => ",

"multiplier® => 1"

"short_name®™ => “rate_bound~,
"is_unlim® => "0°,

"id® => 71297,

"is_advanced® => "1°,

*value®™ => "0",
"is_countable® => "0-°,
"is_domain® => "0",

XML API

95

"name” => "Guaranteed network rate is network rate

"is_ve_related® => "1°7,
"overuse_rate® => "0.000000°,
"max_value® => "1°%,
"is_metered® => "0",

"res_id" => "178",
"is_reducible™ => "1°7,
"units® => "*",

"multiplier® => "1°"

"short_name® => “cpulimit”,
"is_unlim® => "0°,

"1d® => "129°,
"is_advanced®™ => "1°,
*value®™ => "100",
"is_countable® => "1°,
"is_domain® => "07,

"name® => "CPU limit",
"is_ve_related® => "1°7,
"overuse_rate® => "0.000000",
"max_value® => "100°",
"is_metered® => "0-,
"res_id" => "181",
"is_reducible® => "1°,
"units® => "%",
"multiplier® => "1¢

}

1.

"plan_sid® => "100",

"status® => "1°,

"is_upgrade® => undef,

"is_notify" => undef,

"add_params® => undef,

"prev_status® => "3,

"create_order_id" => "696",

"status_txt" => "active”,

"grace_date" => undef,

"billable_items" => [],

"start_date® => "2008-03-31 13:09:36",

"platform®™ => "Linux Vz3.x",

"termination_date® => undef,

"expiration_date" => undef,

"plan_id" => "206",

"platform_id" => "3°,

“ver => {
"sIm_mode® => "0°,
"hn_ip_address® => "10.30.64.248",
"status” => "running”,
"apps”™ => undef,
"gos" => undef,
"hn_vz_interface®™ => "2°,
"ips" => undef,
"offline_management® => "0-",
"status_txt" => "running”,
"id® => "1027",
"is_root_pwd_syncd® => "1°,
"ip_address®™ => "10.25.41.34",
"vza_status®™ => "running”,
"is_bandwidth_limited® => undef,
"is_custom_resolver® => undef,
"vendor_id® => "1°7,
"hw_id® => "2%,
"os_tmpl_id" => "56°,
"hn_service_ve_ip" => "10.24.8.101",
"account_id" => "3",

XML API 96

"utf_ve_name®" => "Plesk",
"platform_id" => "3°,
"ve_name" => "Plesk”
¥
};

Domain Registration Subscription
{

"goaway_date® => undef,
"plan_sid® => "185",
"status® => "17,
"is_notify" => undef,
"prev_status® => "3°,
"create_order_id" => "884"°,
"plan_type® => "67,
"plan_type_txt" => "Domain Registration”,
"account_no® => "6%,
"domain® => {
"domain® => "ros-test-851.cc",
"dns_enabled” => "1°,
"added_by" => "1°,
"nsset_id" => "1°,
"ns_info" => undef,
"action® => "2°%,
"utf_domain® => "ros-test-85l1.cc”
}.
"renewal_policy®™ => "1%,
"status_txt" => "active”,
"grace_date® => undef,
"id" => "163",
"start_date® => "2008-04-22 16:52:41",
"period®" => "31104000",
"name® => "ros-test-851.cc”,
"termination_date"™ => undef,
"expiration_date® => undef,
"regdomain® => {
"real_expire_time_check®™ => undef,
"reg_status® => "1°7,
"period® => 1%,
"plugin_name® => "WebNIC",
“real_expire_time"™ => undef,
"reg_time" => "2008-04-22 16:52:42",
"domain® => "ros-test-851.cc”,
"id_protect®” => undef,
"registrar® => “"WebNIC",
"action® => "2,
"reg_status_txt" => "registered”,
"expire_time" => "2009-04-22 16:52:42*
}-
"plan_id" => "189",
"custom_subscr_fee® => undef,
"end_date®” => "2009-04-22 16:52:41",
"plan_name® => "[WebNIC] Domain Registration”,
"next_period®™ => "31104000",
"base_date® => "1941-04-01 13:38:32"

XML API

97

create _custom_invoice

The function allows adding an invoice manually, without aforegoing orders. A custom includes

custom items and fees.

Parameters

subscr_id Optional parameter: ID of subscription. Optional
parameter.

vendor _id ID of vendor account.

description Invoice description text.

account_no ID of account an invoice is created for.

items Services or any other items included in an invoice.
Array of hashes of the following kind:
{
rate - fee for an item;
guantity - number of items (optional), 1 by default;
comment - item name or comment to an item;
start_time - item provisioning start date. Optional
parameter. If not specified, invoice creation date is
used.
}

amount Invoice total amount. Optional parameter.

Returns:

In case of success, ID of added invoice is returned.

In case of error, error message is returned.

SOAP Faults codes:

NoOrderForProvider

Provider tries to place invoice for themselves.

InvalidAccount

A person logged in and trying to place an invoice is not
registered for an account that stands as vendor in
respect to an account an invoice is placed for.

Initiator

Failed to find a registered person that places an order
by initiator_email passed.

XML API

98

InvoiceFailed

A list of invoice items has been passed, but amount
specified for at least one of items is negative. In this
case, fees for all invoice items must be positive.

"Wrong amount value'

A list of invoice items has not been passed and invoice
amount passed is zero. In this case, an invoice amount
must be either positive or negative (for credit invoice).

get_account_campaigns

The function allows getting the information about marketing campaigns applied to a given

account.

Parameters:

account_id

ID of account the list of campaigns is needed.

Returns:

List o f arrays, each array consists of campaign ID (in database) and campaign digest (campaign

ID used in campaign URL):
Example of returned value:
return [
[3,'97651bf00117.....]

SOAP Faults codes:

No specific codes.

XML API 99

HSPC/API/Account

create_customer

The function adds a new customer account and person.

Parameters:

addressl Address line 1.

address?2 Optional parameter: Address line 2.

city City.

comment Comment to account.

company_name Optional parameter: If specified, account is
business.

country Customer country.

email Customer administrative e-mail.

fax_src Customer fax number.

first_name Customer first name.

fraud_check Optional parameter: A flag that defines whether
an account is to be checked by anti-fraud
manager or not.

gender Customer gender.

insertion Customer name insertion.

lang Customer personal language.

last_name Customer last name.

middle_name Customer middle name.

mobile_src Customer mobile phone.

password Customer personal password.

phone_src Customer phone number.

prefix Customer name prefix.

XML API

100

state

Customer state of residence.

suffix

Customer name suffix.

tax_ex_number

Customer VAT number.

zip Customer address zip code.
ext_data List of extended attributes
timezone Customer time zone.

Returns: {account_id => NUMBER}

SOAP Faults codes:

NewAccountsDenied

New accounts creation is denied.

UserExtData

Extended attribute addition error.

UserAccount

Account creation error.

XML API 101

create_domain_contact

The function creates domain contacts.

Parameters:

account_id Customer account ID.

address Postal Address.

city Customer city.

country Customer country.

email Customer administrative e-mail.

fax Customer fax number.

first_name Customer first name.

last_name Customer last name.

company_name Optional parameter: If specified, account is
business. Company name

phone Customer phone number.

state Customer state of residence.

zip Customer address zip code.

Returns: {contact_id => NUMBER}
SOAP Faults codes:

No specific codes.

XML API 102

create_reseller

The function creates a partner application.

Parameters:

addressl Address line 1.

address?2 Optional parameter: Address line 2.

city City.

comment Optional parameter: Comment to partner
application.

company_name Company name.

description Optional parameter: The text passed from the
comment parameter and shown in Partner
Application details in PCC.

country Reseller country.

email Reseller administrative e-mail.

ext_date Optional parameter: Any additional information
needed in case specific accounting plug-in is
used.

fax_src Optional parameter: Reseller fax number.

first_name Reseller first name.

gender Optional parameter: Customer gender.

insertion Optional parameter: Reseller name insertion.

lang Optional parameter: Reseller personal language.

last_name Reseller last name.

middle_name Optional parameter: Reseller middle name.

mobile_src Reseller mobile phone.

password Customer personal password.

phone_src Reseller phone number.

prefix Optional parameter: Reseller name prefix.

XML API

103

state Optional parameter (for non USA or Canada
countries): Reseller state of residence.
suffix Optional parameter: Reseller name suffix.

tax_ex_number

Optional parameter: Reseller VAT number.

zip

Reseller address zip code.

Returns: {account_id => NUMBER}

SOAP Faults codes:

NewResellerDenied

New reseller accounts creation denied.

CompanyRegistered

A company with similar name is already
registered.

UserExtData

Extended attribute addition error.

ResellerSaveError

Reseller account creation error.

get_account_info

The function returns information on an account.

Parameters:

account_id

Account ID

Returns: ACCOUNT _INFO (on page 104)

SOAP Faults codes:

No specific codes.

XML API 104

Example of ACCOUNT _INFO Hash
{

"vendor_name® => "Provider-,
"technical_phone® => "+1 1239867",
"technical_fax®™ => "*",
"admin_first_name®" => “Kate",
"address”® => {
"country® => "US",
"country_loc®™ => "United States~”,
"city" => "Karson-,
"zip® => "123456",
"fax" => "",
"state® => "AL",
"state_loc" => "Alabama”,
"addressl® => "Park Lane 45",
"phone® => "+1 1239867",
"mobile” => **",
"address2® => *"*",
"state” => undef
}-
"admin_phone® => "+1 1239867",

"billing prefix" => ,

"admin_prefix" =>)

"billing _mobile"” => ,

"billing_last name®™ => "Green-”,
"lang®™ => "en",

"billing _middle _name® => ,

"technical_middle_name®™ => "7,

XML API 105

"name® => "Kate Green”,
"admin_Rlast _name® => "Green”,
"account_id" => "228315",

"technical_email®™ => "kate@green.com”,

"admin_middle name® => ,
"account_type" => "3,

"technical_iInsertion® => ,

"technical_suffix® => s

"admin_suffix" => s

"billing fax" => =",

"billing_email® => "kate@green.com”,
"billing_phone® => "+1 1239867",
"status® => "active”,
"billing_first_name® => "Kate",
"admin_gender® => **°,

"admin_email® => “kate@green.com”,

"technical_prefix" => ,

"admin_fax® => s
"admin_insertion®™ => "7,
"technical_last name®™ => "Green",
"billing _gender® => "",
"technical_first name®" => "Kate",
*vendor_id" => "1°,
"billing_insertion® => "7,
"technical _gender® => **°,
"billing_suffix® => "7,

"admin_mobile®™ => "7,

"technical_mobile®™ => **,

XML API 106

“comment® => **"

¥

get_domain_contact_list

The function returns the list of domain contacts.

account_id Account ID.

Returns: {contact_list => DM_CONTACT list}
SOAP Faults codes:

No specific codes.

get reseller_terms
The function returns reseller Terms and Conditions.
Returns: {title => STRING, body => STRING}
SOAP Faults codes:

No specific codes.

validate password

The function checks password in accordance with password strength settings.

Parameters:

password Password.

Returns: {result => 1}

SOAP Faults codes:

UserBadPassword Password is invalid or not acceptable.

XML API 107

get extended attr list

The function returns extended attributes needed for customer or reseller account creation if a

specific accounting plug-in is enabled or just some custom extended attributes (on page 190)
are used.

Parameters:

customer_type Account type: customer or reseller, value:

=] - customer account

= 2 -reseller account

Returns value: [{ view_name=>, title=>, value=>, type=>}, ..]
SOAP Faults codes:

No specific codes.

XML API 108

get_person_list

The function returns the detailed information about person(s) associated with a particular

account, i.e., account users.

Parameters:

account_id

Account numerical identifier assigned in the
Parallels Business Automation - Standard
database.

Returns: a hash or a hash of hashes (if several users are associated with an account). A hash per

person looks like:

"person_list"
{
"lang*
"person_id-"
"account_list"
{
"status”
"vendor_id*
"person_id"
"name”
“type"
"account_id"
3
1.
"middle_name*
"last_name*
"email”
"insertion”
“comment”
"suffix”
"gender*
"prefix”
"first_name*
3
1.
};
SOAP Faults codes:

“en",
I2I ,

IOI’
Il.,
I2I,
Last",
I3I’
I2I

"Last",

=> "mail@provider.com”®,

MissingAccount

Account not found.

AccountsDenied

Access denied.

AccountAccessDenied

Access denied.

MissingPerson

Person not found.

PersonsDenied

You are not allowed to access persons.

XML API 109

XML API 110

HSPC/API/Person

auth_person

The function authenticates a person.

Parameters:

email Person e-mail. Together with password can be
replaced with sid.

password Person password. Together with email can be
replaced with sid.

ip Optional parameter. Customer IP. If specified,
the anti-fraud Login Filter is activated.

sid Client CP session ID (SID). Optional
parameter. Can be passed instead of email and
password and in this case a customer will be
authenticated in Store by this session ID.

login_to_cp Optional parameter. The value can be 1 (true)
or O (false). If true, the function will include
the client CP session ID (SID) into the
response.

Returns: PERSON_INFO:
{
"sid® => "e3b09chb237a41b6867bcbb62ac8899da“”,
"person” => {
"lang®™ => "en-,
"person_id" => "57,
"account_list® => [
{
"status® => "0°,
"vendor_id" => "1°,

"person_id" => "57,

XML API 111

Name*®,

¥

SOAP Faults codes:

"hame” => "Account

"type® => "3°,
"account_id"® => "5°
}
1.

"middle_name® => "*,

"last _name®™ => "Smith",
"email®™ => "smith@mail.com”,
“insertion® => "",

“comment® => "%,

"suffix® => "*",

"gender® => “"female”,

"prefix” = "7,

*first_name® => "Jane”

UserAuthen

User authentication error.

The returned hash presents person information:

Parameter

Means

sid

Client CP session ID. Returned in case the sid parameter is
passed with the 'true’ value.

XML API

112

person

Person information. Contains hash:

Parameter

Means

lang

Two-letter ISO 639
(http://www.loc.gov/standards/is0639-
2/php/code_list.php) language codes
abbreviation in lower case of the
interface language set for a person.

person_id

Person numerical identifier assigned in
the Parallels Business Automation -
Standard database.

account_list

Properties of the account a person is
associated with. Contains hash:

status - Account status: O - 'active’,
1 - 'on_hold', 2 - ‘for_approval' (held
by anti-fraud filter and waits for
vendor manual approval), 255 -
'deleted'.

vendor_id -Numerical identifier
of vendor account (provider or
reseller). This is an account ID
assigned automatically in Parallels

Business Automation - Standard.
person_id - Person numerical
identifier assigned in the Parallels
Business Automation - Standard
database.

name - Account name.

type - Account type: 1- Provider
account, 2 -Reseller account, 3 -
Customer account.
account_id - Account numerical
identifier assigned automatically in
Parallels Business Automation -
Standard.

middle_name

Person middle name.

last_name Person last name.

email Person e-mail used as password.

insertion Person last name insertion.

comment Free-form comment that can be added
to a person information.

suffix Person name suffix.

gender Person gender: Male or Female.

prefix Person name prefix (Mr, Mrs, etc.).

first _name

Person first name.

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.loc.gov/standards/iso639-2/php/code_list.php

XML API 113

get_person_info

The function returns a registered person details by a person numerical ID
registration in the Parallels Business Automation - Standard database.

Parameters:

person_id A registered person numerical identifier
assigned in the Parallels Business
Automation - Standard database

SOAP Faults codes:

assigned on

MissingPerson Person not found
PersonsDenied You are not allowed to access persons
Returns:
$VARL = {
"lang” => “en”,
"person_id-" => "2,
"account_list* => [
{
"status” => 0",
vendor_id => "1,
"person_id-" => "2,
"name* => "First Last",
"type-* => "3,
"account_id" => 2"
+
1.
"middle_name~ => ",
"last_name- => "Last”,
"email” => "mail@provider.com”,
"insertion” => ",
“comment*® => s,
"suffix” => -,
"gender* => M,
"prefix” => -,
"first_name" => "First"

¥

XML API

114

HSPC/API/Domain

check domain_list

The function checks domains for availability.

Parameters:
hp_sid Hosting plan series key.
action An action to be performed over a domain:
= ‘'dns_hosting' - Subdomain either in
provider's or in user's domain. Domain
must present in Provider DNS already.
= ‘domain_pointer' - Use domain, registered
elsewhere, new in Provider DNS. It's
equivalent to 'Use existing domain,
registered elsewhere' field in store.
= ‘register_new' - Register a new domain.
= ‘reg_transfer' - Transfer a registered
domain to Provider DNS.
= 'use_existing' - A domain is present in
Provider DNS already, for example a user
already has domain registration
subscription. Now user wants, for
example, to buy a plesk domain with the
same domain name. The action
corresponds to 'Use one of my domains'
field in Store.
account_id Optional parameter in all cases except for the
action='use_existing: ID of an account a
domain is to be registered for.
domain_list List of domains to be checked.

Returns: {available_domain_list => [List of OK domains]}

SOAP Faults codes:

HPDomainOnly

Hosting plan series key passed to the
function does not belong to domain
registration hosting plan.

NoAccountldSpecified

action='use_existing', but ID of account is
not specified.

XML API 115

check domain_name_syntax

The function checks domain name syntax.

Parameters:

domain Domain name.

Returns: {result=>1 | 0}
SOAP Faults codes:

No specific codes.

get_domain_list

The function returns the list of domains a customer can use for subdomains creation.

Parameters:

account_id ID of an account for which the
information is returned.

for_trial If this parameter is specified, then only
those domains which allow creation of
trial subscriptions are returned.

Returns: {domain_list => [List of domains for subdomain]}
SOAP Faults codes:

No specific codes.

XML API 116

validate ns_list

The function checks validity of name servers list.

Parameters:

ns_list List of name servers. Each list item
consists of two elements:

= pame server hostname
= name server IP address

Returns: {result => 1 } or Fault

SOAP Faults codes:

UserNoNS Name server hostname is not specified.
UserNolP Name server IP address is not specified.
UserInvalidNSName Name server hostname is invalid.

UserlPInvalid Name server IP address is invalid.

XML API

117

Save contact

The function creates or saves changes to an existing domain contact.

Parameters (all optional except for account_id):

hp_sid Hosting plan series key.
domain A domain name.
action An action performed over a domain:

domain registration or transfer.

contact_type

Contact type (administrative, billing,
technical, etc., depending on a plug-in).
The plug-in specific contact types are
also specified using this parameter.

account_id Account numerical ID assigned in
Parallels Business Automation -
Standard database.

contact_id Contact ID in database (used for contact
editing only since when a new contact is
created, no ID yet exists)

form_data Domain contacts screen form data hash.

In other words, the data to be filled into
a domain contact dorm. If not provided,
then a contact form is filled by data
taken from account.

Returns: {contact_id => [new contact ID]} or Fault

SOAP Faults codes:

HPTypelnvalid

HP SID does not correspond to a
hosting plan type

DMContactError

Error saving contact data

XML API

118

validate_domain_data

The function validates data for a domain or domains list.

Parameters (all optional, but at least domain, action, contact_hash or domain_data_hash must be

used):

hp_sid Hosting plan series key.

domain A domain name.

action An action performed over a domain:

domain registration or transfer.

contact_hash

Contact data hash (all contact data:
administrative, billing, technical, other
additional types of contact data,
depending on a plug-in)

account_id Account numerical ID assigned in
Parallels Business Automation -
Standard database. Used only if no
contacts found in database and domain
contact data is to be taken from account
profile.

form_data A domain form data hash (extdata). In

other words, any extended data besides
the base contacts needed for a domain
registration. If extended data is required,
his hash is used to fill the extended data
form.

domain_data_hash

This parameter allows validating a
number of domains at once. The hash
looks like:

{
domain_name => $h{domain},
contact_hash => $h{contact_hash},
action => $h{action},

¥

Returns: {result => 1 } or Fault

SOAP Fault Codes:

XML API 119

UserDomainDataError Invalid data in domain contacts or
extdata.

HSPC/API/Mailer

send

This function sends e-mail.

Parameters:

to_email Recipient's e-mail.

to_name Recipient's name.

subject Message subject.

body Message body.

from_email Sender's e-mail.

from_name Sender's name, by default is set in mailer.

Returns: {result => 1}
SOAP Faults codes:

No specific codes.

XML API 120

HSPC/API/PP

get saved paymethod list

The method provides a list of payment methods saved in Parallels Business Automation -
Standard database the owner (customer) could choose from.

Parameters:

plugin_id A payment plug-in alphabetical ID internally
used in Parallels Business Automation -
Standard.

account_id Numerical identifier (ID) of account owning a
payment method.

Returns:

PAYMETHOD_LIST =

paymethod_id => NUMBER,
name => STRING,
paytype => STRING,
paytype_id => STRING,
expire_date => STRING,
¥

Note: The expire_date is returned for credit cards only.

SOAP Faults codes:

No specific codes.

XML API 121

get_plugin_list

The method provides a list of plug-ins available for payment.

No parameters.
Returns:

PLUGIN

{

plugin_id

title

is_redirect

has_form
paymethod_category _titles
description

}
SOAP Faults codes:

No specific codes.

get_layout hash

= [STRING,

The method provides the form to be filled by customer in Store.

Parameters.

plugin_id A payment plug-in alphabetical ID internally
used in Parallels Business Automation -
Standard.

account_id Numerical identifier (ID) of account owning a
payment method.

Returns:

LAYOUT

{

form =>

check_javascript =>

param_list => [STRING, STRING,

¥

SOAP Faults codes:

No specific codes.

STRING,
STRING,
BOOLEAN,
BOOLEAN,

1
STRING,

STRING,
STRING,

1

XML API 122

get redirect_hash

The method registers an attempt to pay by redirect or INIpay plug-in and returns back the
redirect information.

Parameters:
plugin_id A payment plug-in alphabetical ID internally

used in Parallels Business Automation -

Standard.
order_id Numerical identifier (ID) of an order.
url_back Store URL a customer is to be redirected from

an external payment gateway.
Returns:
REDIRECT =
{
url => STRING,
method => STRING,
params => {paraml => STRING, param2 => STRING, .}
onload_js_func => STRING,
content => STRING,
}

SOAP Faults codes:

No specific codes.

XML API 123

pay

The method registers an attempt to pay by direct plug-in and does nothing in case of redirect

payment.

Parameters:

plugin_id A payment plug-in alphabetical ID internally
used in Parallels Business Automation -
Standard.

order_id Numerical identifier (ID) of order.

$paymethod_id For saved payment methods: a payment
method numerical identifier (ID) assigned in
Parallels Business Automation - Standard.

$form_args Arguments for the form to be filled by a
customer obtained from get_layout_hash.

$fraud_query

In case a new payment method has been submitted, the PHP Store picks up the form_args for
pay () method from the param_l1ist returned by the get_layout_hash method. In case
a customer wants to use that payment method already saved in Parallels Business Automation -
Standard database, the additional argument is paymethod_id. So, either paymethod_id or
$form_args->{paytype_id} must be specified . The fraud_query are arguments
gathered from client (if any) regarding anti-fraud check. The required fields are obtained via
HSPC: :API : :Fraud->get_warning_newpaymethod.

XML API 124

get_status

The method returns the current status of a document in Parallels Business Automation -
Standard Payment Processing.

Parameters:

order_id Numerical identifier (ID) of an order.

Returns:

STATUS =

{
code => NUMBER,

string => STRING,
}

SOAP Faults codes:

No specific codes.

HSPC/API/Fraud

get_warning_newpaymethod

The method provides a form to be displayed in the Store to query a user information related to
Anti-Fraud check of his/her order, when he/she pays by a new payment method.

Parameters:

order_id Numerical identifier (ID) of an order.

Returns:

{
form => STRING,
check_javascript => STRING,
param_list => [STRING, STRING, 1,

b

SOAP Faults codes:

No specific codes.

XML API 125

get_resume_newpaymethod

The method returns the current status for a given order in case an asynchronous Anti-Fraud
check is performed.

Parameters:

order_id Numerical identifier (ID) of an order.

Returns:
HTML string (with formatting).
SOAP Faults codes:

No specific codes.

get_safe_description
The method returns the reason the order was declined by Anti-Fraud system.

Parameters:

order_id Numerical identifier (ID) of an order.

Returns string.
SOAP Faults codes:

No specific codes.

XML API 126

HSPC/API/Config

get_provider _config

Parameters:
No parameters
Returns (returned data structure is described later in this section):
$VARL = {
"currency” => {
"currency_radix® => "_",
"currency_sign_code® => "90;36",
"separator_char™ => ",",
"currency” => "Dollar”,
"iso_alfa® => “ZWD",
"entity” => "Zimbabwe-~,
"currency_alignment® => "1°7,
“currency_minor® => "2°
}.
"default_lang®™ => "en",

"lang_list® => [

{
“title® => "English”,
"id® => “en"

}

{

"title® => "Spanish”,

Iid. = IeSI

XML API 127

"title® => "Russian-,
id® => “ru-
by
1.
"store® => {

"referral®™ => {
"question® => undef,
"option_list® => []

}
"is_opened” => "1°%,
"provider_name® => "Provider-Provider”,

"text_info" => {

"account_agreement_text" =>
undef,

"offline_header® => undef,

"agreement_text" => undef

3,
"iIs use ssl®™ => "1°7,
"is_use _ssl _cp® => "0°,
"tax_info" => {
"is_taxation_enabled® => "0",
"tax_zone" => undef,

"is_tax_included® => "0*

XML API

SOAP Faults codes:

No specific codes.

The returned hash presents provider configuration and store settings:

Parameter

Means

currency

System-wide currency settings. Includes the hash:

Parameter

Means

currency_radix

Decimal separator character.

currency_sign_cod
e

Currency sign ASCII code.

separator_char

Thousand separator character.

currency Currency name.
iso_alfa Alphabetical currency ISO code.
entity Country name.

currency_alignmen
t

Currency sign alignment, to the
right or to the left of the amount
(1 - to the left, 2 - to the right).

currency_minor

Format of the fractional part of
prices, i.e., number of digits
after comma.

default_lang

Provider default language.

lang list

Language packs enabled. Contains hash of hashes each of
them specifying a language pack enabled. Each hash looks

like:

Parameter Means

title Language name shown in store.
id ISO language code in lower-

case, just like a language pack
directory name (en for English,
de for German)..

XML API

129

store Basic Store settings. Includes the hash of hashes:

Parameter Means

referral Referral question parameters
hash:
guestion - referral question
option_list - referral
answers list

is_opened Is store opened. 1 - yes, 0 - no.

provider_name Provider company name shown
in store

text_info User Agreements and offline
payment system description.
Contains hash:
account_agreement_text
- User Agreement to accept on
account registration
offline_header - Offline
payment systems descriptin
shown on Payment page.
agreement_text - User
Agreement to accept before
placing order.

is_use_ssl If SSL is enabled for store. 1 - yes, 0 - no.

is_use_ssl_cp

If SSL is enabled for Control Panel. 1 - yes, 0 - no. The
parameter passes to store, how customers should be redirected

from store to CP: by http or by https.

XML API

130

tax_info

Taxation settings. Contains hash:

Parameter

Means

is_taxation_enabl
ed

If taxation is enabled as system-
wide setting. 1 - yes, 0 - no.

tax_zone

Name of a tax zone to be
mentioned in store.

is_tax_included

If hosting plan prices include
taxes (1) or not (0). If not then if
taxation is enabled, taxes will be
added to an order total upon
checkout.

HSPC/API/Campaign

get_campaign

Parameters:

digest

identifier.

Campaign key used as a unique campaign

Returns ID (numerical identifier assigned in Parallels Business Automation - Standard database)
of the promotion associated with a given Campaign:

{

"promo_id" => "1°

¥
SOAP Faults codes:

NoCampaignFound

No campaign exists for the digest specified

XML API 131

get_account_campaigns

The method allows finding campaigns that belong to an account.

Parameters:

account_id ID of an account.

Returns a reference to array of [1d, digest] pairs,
where id is internal Campaign 1D, digest - Campaign identifier used in redirector URL.
SOAP Faults codes:

No specific codes.

HSPC/API/SSL

get_cert_form

The function returns the SSL certificate configuration form in HTML format.

Parameters:

hp_sid Hosting plan series key.

form_data Prefill values for the HTML form.

account_id ID of an account an SSL certificate is to be
registered for.

Returns:

“<table><SSL certificate configuration form and fields></table>"
SOAP Faults codes:

No specific codes.

XML API 132

validate cert_form

The function checks the SSL certificate configuration form data for validity.

Parameters:

hp_sid Hosting plan series key.

form_data The values filled out by the customer using
the Form from get_cert_form.

account_id ID of an account an SSL certificate is to be
registered for.

Returns:

{ field_with_error => “Field with error: error description” }
SOAP Faults codes:

No specific codes.

XML API 133

get parsed_csr_data

The function parses the CSR submitted by user in order to show the parsed CSR content on the
"Submit Order" step in store.

Parameters:

hp_sid Hosting plan series key.

form_data The values filled out by the customer using
the Form from get_cert_form.

account_id ID of an account an SSL certificate is to be
registered for.

Returns the parsed CSR data as follows:

{
parse_error => if exists,
country => string,
state => string,
city => string,
organization_name => string,
organizational _unit_name => string,
common_hame => string,
};

SOAP Faults codes:

No specific codes.

134

CHAPTER 3

Online Store Customization and
Integration

Store and website is presented as a set of *.php files that define both the website pages and store
steps logic and some other related files. The HTML templates (*.inc files) are provided for each
store page. This makes website re-branding and customization much easier. Default store files
can always stay untouched since customized files are put into a special directory inside the store
folder. Customized files simply override the default ones. To get back to default configuration,
you should move customized files from a special custom directory into some other location.

Thus, website and store customization is to be performed mostly beyond web interface.

The store simple settings are made via web interface in Commerce Director > Store Manager:
= > Configure Store:
= Open or close store.
= Adjust hosting plans listing
= Enter referrer question.
= > Reseller Stores:
= Open or close a reseller store.
= > File Manager used for simple store redesign:
= Upload a default stylesheet file
= Upload website header and footer
= Upload site logotype
= Edit site pages preloader and loading icon
= Upload a favicon image.
= Add offline payment conditions description.

File Manager is described in details in the Parallels Business Automation - Standard
Provider's guide (HTML context help).

Online Store Customization and Integration 135

By default, store is installed together with Parallels Business Automation - Standard software
and is ready for use right after the Parallels Business Automation - Standard initial configuration
is finished.

However, store can also be installed on a separate server. Provider can have several stores
installed on different servers. Resellers can also be given a separate store installation.Store
installation on a separate server requires redefining some constants in store configuration file.

By default, Resellers that use provider's store get a limited access to store customization via the
Parallels Business Automation - Standard web interface and implemented as a simple File
Manager.

Note on using store by resellers: By default, the full access to store configuration is available
for Parallels Business Automation - Standard installation owner, i.e., for provider only.
Resellers can use simple tools for store customization provided in web interface under the Store
Manager (open/close store, upload some files like logo, header/footer, etc.). Files uploaded in
such a way are placed into a special directory for custom files (see directory structure
description below) and override the existing default settings for reseller store. However,
provider can allow a reseller to have an own store installation, on a separate server, for example.
This issue is up to provider policy and provider/reseller relations.

By default, store is installed into the
/var/opt/hspc-frontend
directory.

Store files directory structure is the following:

Directory Contains files

/var/opt/hspc-frontend |*.php files for store pages and the
stylesheet.cssfile.

images/ Images used in store and other site pages (site logo,
buttons, icons, purchase steps numbers, etc.)

includes/ Configuration ~ files. The most important
configuration file is settings.ini file. This
directory also contains the languages/
subdirectory that contains store localization.

templates/ *.inc files that contain HTML templates for website
and store pages.

Online Store Customization and Integration 136

vendor/Account_I1D/ Directory where customized files must be placed.
Account ID is replaced with actual ID of store owner
account (provider - always 1 - and reseller accounts 2
and greater). This directory is created automatically
for provider account and all reseller accounts.

Note: The vendor/1/ directory is created for provider
by default. Directories for resellers are created during
reseller account creation. Custom files uploaded using the
Store Manager > File Manager are placed into these
directories.

Note 2: The customization.xml file located in the
vendor/ directory defines what store files and directories
can be customized using the web interface - the File
Manager integrated into the Store Manager.

In This Chapter

Integrating Store With EXisting WEDBSILEc.cccevveiiiiiiccc e 137
Customizing Default Store INStallationccooiiieieiicic e 138
Manual Store Installation 0N REMOLE SEIVENccocveiiiiiieereee e 143

Customizing Store LOCAHZAIONcoiiieieci et 145

Online Store Customization and Integration 137

Integrating Store With Existing
Website

This section describes how to place pre-selected hosting packages (domains, subscription
periods, purchase steps) composed in the Parallels Business Automation - Standard PHP store
into a ready website.

Using the parameters described below, it is possible to construct an URL or FORM data, that
can be placed at a ready website. This URL redirects a customer to a particular step of PHP
store.

The URL is to be composed as follows:

http://<PHP_Store_hostname>/hspc/index.php?action=preselect&<parameter=value><paramete
r=value><parameter=value>....

where <PHP_Store_hostname> is hostmane of server where PHP store is deployed, and the
sequence <parameter=value> is a chain of parameters that set a hosting package.

Pre-selected parameters are divided into two classes:

= action - should be always named as 'action’ and pass parameters to PHP Store using the
GET method, by this parameter the index.php will decide what it should do.

= set - should always start with the ps_ prefix,i.e., pre-select to prevent mixing it with
parameters selected by a customer. Every parameter is unique. If one parameter contains a
list of values (like applications set), values in a list are to be joined by some delimiter, for
example, comma, semicolon, pipe.

List of parameters and their values:

action
1. <action=preselect> (always should be set)
domain scope set

1. [ps_domain_name=domain-name.tld] (well-formed domain name)
2. [ps_tld=netjcom|org|...] (supported by plugin tld)

3. [ps_domain_names=domain-namel.tld domain-name2.tld ...] (list of well-formed domain
names, separated by space(s))

4. <<ps_dm_action=register_new|reg_transferj[domain_pointer>> (always should be set, if you
want to check something)

5. [ps_dm_period=1|2|3|5|...] (Domain Registration period in years, can differ from one plug-in
to another, default - first set up period)

hosting package scope set

1. [ps_series_key=1|2|3|...] (Hosting Plan series key)

Online Store Customization and Integration 138

3.
4,

Note: To know out a hosting plan series key, log in to the Provider Control Center, go to
Billing Director > Product Manager > Hosting Plans. Select a hosting plan you want to link to
your website, then select the General Settings tab within a hosting plan properties. See the
Series Key field value.

[ps_period=2592000|7776000|15552000/31104000|...] (Hosting Plan period, in seconds,
default - first set up period)

[ps_for_trial=0|1] (Trial registration, default - 0)
[ps_os_tmpl=1|2|3|4|5...] (ID of OS template)

Legend:

[] - optional parameter

<> - mandatory parameter

<<>> - mandatory parameter in scope

Example of URL

For example, your store hostname is mystore.com. Then, the URL that redirects a customer to a
particular hosting package with pre-selected subscription period of one month looks as follows:

http://mystore.com/hspc/index.php?action=preselect&ps_series_key=5&ps_period=31104000

In our example, the hosting plan series key is 5.

Customizing Default Store
Installation

There are two ways of store customization:

Simple customization (on page 139). Customize store per account. In this case, customized
files are put into a special customization directories that are not affected by upgrades
installation. But this customization is applicable only for store header, footer, images, and
stylesheet.

Advanced customization (on page 140). Applicable for absolutely all store files. Customize
store globally, apply it to your store only and leave resellers stores' customization in the
default location.

Online Store Customization and Integration 139

Simple Customization of Default Store Installation

If you use the simple customization, you can customize only:
1. Two templates: site header and footer.

2. Images (site logo, etc.)

3. The stylesheet.css file

Store simple customization works as follows:

= First the special customization directories are checked. If custom files are found there, then
these files are applied to store. To be applied instead of the default files, the custom files
must have the same names as default ones.

= If no custom files are found, then the files containing in default store directories are applied.

We recommend to customize the default store installation by uploading custom files into a
special directories under the store directory:

/var/opt/hspc-frontend/vendor/Account_ID/

Important: Files placed into a special customization directory are not cleared during Parallels
Business Automation - Standard upgrades installation. Thus, if you customize the original store
files in the /var/opt/hspc-frontend/ directory we strongly recommend to back up the
customized files and save them in a location beyond Parallels Business Automation - Standard.

The vendor/ directory is created by default. Provider account always has the ID=1. Thus,
after the Parallels Business Automation - Standard installation, the directory for Provider store
customization is

/var/opt/hspc-frontend/vendor/1

Actually, all the tools for the simple customization are provided in Parallels Business
Automation - Standard web interface, Commerce Director > Store Manager > File Manager.

You can see your customization root at the File Manager screen, and your reseller can see their
default customization directories at the File Manager screen in their Reseller Control Centers.
All files uploaded using the File Manager are saved in corresponding customization directories.

The customization directories structure must follow the basic store directories (on page 134).
For example, if provider wants to customize store templates, they must create the

/var/opt/hspc-frontend/vendor/1/templates

directory and place custom templates there. The custom icons must be put into the 1cons/
directory, etc.

When a reseller account is created, the corresponding customization directory for reseller
account is created automatically. For example, if a new reseller account has ID=2, then the

/var/opt/hspc-frontend/vendor/2

directory will be created.

Online Store Customization and Integration 140

By default, resellers have no access to the original store files. Resellers can only use web
interface for store customization. File Manager provided under Commerce Director > Store
Manager allows resellers to upload custom stylesheet, site header/footer templates, and site
logotype. The root directory shown in the File Manager is actually the customization root, for a
particular account (Provider or reseller)i.e.:

/var/opt/hspc-frontend/vendor/accountlD
where the AccountlD is replaced with an actual ID of Provider account or a reseller account.

The hints on the File Manager screen explain what directory structure is to be created for custom
files to take effect.

Advanced Customization of Default Store Installation

If you need to make the Store simple customization you can customize footer.inc,
header.inc for provider, reseller in /var/opt/hspc-
frontend/vendor/1/templates/, images in /var/opt/hspc-
frontend/vendor/1/images/, stylesheet.css in /var/opt/hspc-
frontend/vendor/1/ directories.

If you put other customized templates into the /var/opt/hspc-frontend/vendor/1/
directory, they won't be applied. In this case, your customization will take effect if you modify
these files in their original location - /var/opt/hspc-frontend/templates/. But it is
no good to modify store files in /var/opt/hspc-frontend/templates/, because this
directory will be overwritten during upgrade installation.

How to Customize all Store Templates

It is recommended to copy the store directory content into any other directory on the same
server and change the hspcd configuration file. Alternatively, you can install store on a remote
server (on page 143), but this is a separate issue.

For example, let us move store files into the /var/opt/store/ directory.

1. Copy all the files from /var/opt/hspc-frontend/ into /var/opt/store/

cp -r /var/opt/hspc-frontend/* /var/opt/store/
1. Modify Zetc/hspcd/conf/hspc_frontend.conf as follows:

Alias /hspc/ /var/opt/hspc-frontend/vendor/1/

Alias /hspc/ /var/opt/store/

2. Restart httpd:

service httpd restart

Now you can customize templates for your provider account in
/var/opt/store/templates/. Your store is available at
http://yourdomain/hspc/index.php. Resellers default shop content stays at
/var/opt/hspc-frontend/vendor/<reseller_account_id>.

Online Store Customization and Integration 141

Selecting Store Files Customizable via Web Interface

Using the File Manager (on page 134), provider can quickly upload some basic templates and
images, and resellers can use the store File Manager as a place to start and a default tool to
perform their own customization.

File Manager provides the same customization capabilities both for provider and resellers.
However, only provider (or store installation owner) can define what files can be customized
using the File Manager.

Store files and directories allowed for customization

The File Manager screen shows the customizable Store files and directories. The set of files and
directories allowed for customization using the File Manager is defined in the special file
customization.xml located in the

/var/opt/hspc-frontend/vendor/
directory.

The customization.xml file defines what Store files and directories are to be customizable
using the File Manager for all vendors that use default Store installation.

By default, the customization.xml file allows customizing only the basic Store files and
looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>

<customization>

<file name="stylesheet.css" editable="1" default="/var/opt/hspc-
frontend/stylesheet.css'>Stylesheet of PHP pages.</file>

<directory name="templates>

<file name="header.inc" editable="1" default="/var/opt/hspc-
frontend/templates/header.inc"">HTML code for page header.</file>

<file name="footer.inc" editable="1" default="/var/opt/hspc-
frontend/templates/footer.inc'">HTML code for page footer.</file>

</directory>

<directory name="images'>

<file name="logo.gif" default="/var/opt/hspc-frontend/images/logo.gif"'>Logo
for default header of PHP pages.-</file>

</directory>

</customization>

Tag Used For

<customization> Opens and closes the customizable files description.

<file> Add a customizable file. Parameters:

File description = name - file name.

</file> » editable - whether a file can be edited (=1) or not
(=0).

= default - the default file location starting from the root

directory.

Online Store Customization and Integration 142

<directory> Add a customizable directory. Parameters:
Directory description * name - directory name.

<file> </file> |[Files located inside a directory must be specified using the <file>
tag inside the <directory> tag.

</directory>

Upload custom files or use the default ones

The root directory shown at the File Manager screen is actually the customization root, i.e.:
/var/opt/hspc-frontend/vendor/accountlD

where the AccountlD is replaced with an actual ID or Provider account or a reseller account.

Files and directories shown are only the hints saying to a customer that these particular files
with these particular names are used for Store pages. These 'hint' files and directories are shown
in italic font.

Management Node.

Default Store files location:

varfopt/hspc-frontend/php *css
images/*.gif
Includes/*.php *.ini
templates/*.inc
vendor/customization.xml

Mapping on the File
Manager screen:

Commerce Director > Store Manager > File Manager

images/
templates/
stylesheet.css *

*The set of files shown, file names and their description
are taken from the customization xml file

A vendor (i.e., a person who has access to all Store files and templates) can add into the Store
code some more features (for example, a banner) and leave a place for a custom file in this
custom code.

Having been uploaded, a banner file builds into a banner code and enabled banner appears at a
Store page. Using the customization.xml file you can specify such files. In this case, a
user will see only the default file name and its description at the File Manager screen. This will
be a hint for a customer that the default file does not actually exist, but there is a place or a
piece of code for this file in one of the Store templates. For example, let us continue with
banner. A customer uploads a banner file and the banner appears on a Store pages. To add hints
about files that can be uploaded additionally, do not specify a file location (<default> tag) in a
file definition. For example,

<file name="banner.gif''>Place this file here to enable
banner.</file>

Online Store Customization and Integration 143

Manual Store Installation on Remote
Server

In case of remote installation, store works as a client and Parallels Business Automation -
Standard Management Node works as server.

For store to work remotely, the Management Node URL, store http root path, and either a
vendor account login/password or (for Parallels Business Automation - Standard version no
lower than 3.3.2) vendor Secure Key must be specified in the store configuration file.

If you use a remote store installation, you can customize the original store files, because in this
case, store is independent from Parallels Business Automation - Standard and its files are not
affected by any of Parallels Business Automation - Standard upgrades.

Note: For remote Store installation the File Manager available in Provider (or Reseller) Control
Center does not affect Store and can be used for uploading static content to vendor's site.

If a remote store installation is allowed for reseller, then reseller can customize all store files.

> Toinstall store on a remote server:

1. At the sever that runs Parallels Business Automation - Standard (i.e., your Management
Node), edit the Zetc/hspcd/conf/hspc_ssl . conT file:

Change Allow from none
Into Allow from store_hostname|store_ip

where store_hostname|store_ip must be replaced with either your store hostname, or store
IP address, or both store hostname and IP in one string divided with space.

Save the changes to hspc_ssl . conf file.
Restart httpd.

2. Copy all the store files, saving the directories structure, to a computer you are planing to use
for your store. The files must be copied into a web server document root directory or into
some directory located under a web server document root.

3. Adjust the settings. ini file (in this example, the path to this file is specified starting
from the store root directory hspc-frontend/)

includes/settings.ini
a Adjust the Parallels Business Automation - Standard server (i.e., Management Node) URL.:
HSPCOMPLETE_SERVER = https://store_server_hostname

where store_server_hostname must be replaced with hostname of the server where store
files are copied. Do not forget that secure connection (https) must be used.

Online Store Customization and Integration 144

b Set the http root for your store installation. The http root is set via the HTTP_ROOT
parameter. The store http root is a relative path to the store installation starting from the web
server document root. Default is Zhspc/ and it works for store default local installation. For
store remote installation, HTTP_ROOT MUST BE REDEFINED according to an actual store
files location. This is very important for correct work of store payment page in case of redirect
payment, to correctly redirect a customer back to store after entering payment data at a payment
gateway secure page.

For example, if you have copied store files directly into web server document root then
specify:
HTTP_ROOT= /

If you have copied store files into some directory under web server document root, for
example, into var/www/html/store directory, then specify:

HTTP_ROOT= /store/

¢ Discomment and set your account administrator e-mail you use to log in to Parallels
Business Automation - Standard Provider Control Center or, if a remote installation is
configured for reseller, specify the reseller administrator e-mail:

VENDOR_EMAIL = e-mail
where e-mail must be replaced with an actual e-mail address.

d Discomment and set the account administrator password used to log in to the Parallels
Business Automation - Standard Provider Control Center or if a remote installation is
configured for reseller, specify the reseller administrator password:

VENDOR_PASSWORD = password
where password must be replaced with an actual password.

e Attention! For the product version no older than 3.3.2: Vendor authorization by secure
key is implemented. If the product version is 3.3.2 or newer, your store (even if store is of a
previous version) can be configured for keys authorization; in this case some additional code
adjustment is needed, and we recommend you to contact support on this issue.

Important: If you use secure key for authorization and thus, you specify the secure key
in the store configuration file, then DO NOT SET login/password, comment these
strings.

If both Parallels Business Automation - Standard and store version is 3.3.2 or newer,
you can specify the key generated for your store hostname using the tools provided in
PCC > Commerce Director > Store Manager > Configure Store > Security Settings. To
specify the key, discomment and set:

SECURE_KEY =your_key
where your_key must be replaced with an actual key.

4. Save the changes you have made to the settings. ini file.

Online Store Customization and Integration 145

Customizing Store Localization

To customize store localization strings for an existing language pack, edit a PHP file located in
the /var/opt/hspc-frontend/includes/languages directory. In this case, please
keep in mind that your customization will be re-written with standard strings during upgrade. To
avoid this, back up the file before upgrade installation and after an upgrade is installed, merge
the customized strings back.

Flags icons are located in the /var/opt/hspc-frontend/images/flags directory.
Flags icons are named like flag_<country code>.gif. It is required that a flag icon must be
named like this and be in the GIF format. Flag size is to be 18x12 pxls.

If you want to add a new language to be used in store, then you will need to:

= Add a language definition to Parallels Business Automation - Standard to make a new
language visible.

= Add a new PHP file with translated strings to store.

The procedure of Parallels Business Automation - Standard language packs customization is
described in details later in this document (on page 206). Please look through this chapter
before you start customizing store localization.

Now we describe this procedure in details.

» To add a new language definition:

1. Add a new language pack directory in the /var/opt/hspc-root/i118n/ directory.
Remember that a new directory must be named by a two-letter language code in upper case,
following the 1SO 639 (http://www.loc.gov/standards/iso639-2/php/code_list.php) language
codes.

2. Put a standard language pack files into this directory. You can copy these files from any of
the existing language packs:

language - xml
strings.xml
countries.xml
states_ca.xml
states_us.xml
3. Open each file except for the language . xml and do the following:

a Edit a file header, it includes the lang parameter, this parameter must be re-set to a
new language pack:

<?xml version="1.0" encoding=""1s0-8859-1""7>

<strings lang=""new_language_ code"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi :noNamespaceSchemalLocation="strings.xsd">

Where new_language_code is a two-letter language definition according to , but in
lower case.

http://www.loc.gov/standards/iso639-2/php/code_list.php

Online Store Customization and Integration 146

b Inthe strings.xml file leave only one definition for a new language name, the string 1D
you add will be later used in a language definition file:

<string>

<id>lang_<country code>_uc</id>
<c>interface language name</c>
<val>New language name</val>
</string>

Where <country code> is to be replaced with a language ISO 639 two-letter code in
lower case to form a string ID, and New language name is a language name to be shown
in interface, for example, like English.

¢ Delete all the other strings in the other files, so that a file contents will be:
<?xml version="1.0" encoding=""1s0-8859-1"7>

<strings lang=""new_language_code"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi :noNamespaceSchemalLocation=""strings.xsd">

</strings>

These strings are used in Parallels Business Automation - Standard tools only and since
you do not need to use a new language pack in any Parallels Business Automation -
Standard tools except for store (store uses own localization), leave empty files in a new
language pack directory. Now you need only a language pack definition.

4. Open and edit the language . xml file:

<?xml version="1.0" encoding="is0-8859-1"?>

String Comment

<language id="<language code>" title="New Set parameters' values in the
language title"> <language> tag: replace <language
code> with a language 1SO 639 two-
letter code in lower case, and New
language title - with a new language
name.

<title_id>Language name string ID</title_id> Replace the Language name string 1D
with a language name string IS you
have assigned in the strings.xml file,
see item 3b.

<flag_icon_id>flag_<language code></flag_icon_id> Replace <language code> with
language 1SO 639 two-letter code in
lower case

<charset>is0-8859-1</charset> These tags can be left unchanged

<utf8_map>ISO_8859-1</utf8_map> unless you exactly know what values
- - - to use. Since you customize store

<dateformat>%d-%Db-%Y </dateformat> localization, these settings do not play
<datetimeformat>%d-%b-%Y, an important role. In case of

Online Store Customization and Integration 147

5.

%H:%M</datetimeformat> problems, contact support.
<timeformat>%H:%M</timeformat>

<posixlocale>en_US.utf8</posixlocale>

</language>

Restart web server, so Parallels Business Automation - Standard will load newly created
localization file.

/etc/init.d/hspcd restart

To add a new language to PHP store:

1.
2.

Go to the store directory and then open the includes/ languages directory.

As a sample for translation, take the English file since is is the most full one. Copy the
EN.php file into a new file named by a new language two-letter code in upper case,
following the 1SO 639 (http://www.loc.gov/standards/iso639-2/php/code_list.php) language
codes standard. For example, for Japanese localization file the name must be JA.php, for
Chinese - ZH.php, etc.

Translate the strings in a new file. The number of strings is 350-400.

Important: Store localization file is a PHP file containing constants definition. Thus, it is
very important to escape quotation marks in constants values. Back slash is to be escaped as
well.

Put the translated file in the store includes/ languages directory.

Add a flag icon. Flags are stored as GIF (and only GIF!) images in the store
images/Tlags directory. Flag icons are to be named strictly as follows: flag_<language
ISO 639 two-letter code in lower case>. For example, for English language, flag icon is to
be named flag_en.giT. Flag icon size is to be 18x12 pxIs.

Language file and flag icon added are to be accessible by user apache. Please change files
ownership into apache. A new language must become available right after files are placed
into the store directories.

http://www.loc.gov/standards/iso639-2/php/code_list.php

148

CHAPTER 4

User Interface Customization

Parallels Business Automation - Standard customization tools are described in this chapter.

In This Chapter

Screens CustoMIZation OVEIVIEWcccoiiriiriiiniiinieinieeee e 148
Template Based CUSTOMIZALION...........coiiiiiiiie et 153
Customizing Vendor Control Center (PCC/RCC)eiivieeieieieee e 153
Customizing Customer CoNntrol PAnel...........ccviiiiiiieieiecc s 162
Adding New Fields to Accounts Registration FOrmccccovoieiiiiiiininieeneeee e 190
Extending E-Mail Notification TeMPIAtes........c.cooviieiiieeeceee e 194
Customizing Language PaCKSc..coviiiiiiiiieieeeeees st 206

Screens Customization Overview

You can customize any of Parallels Business Automation - Standard screens in a way that suits
your needs.

The following customization types are available:

Template based customization (on page 153). Allows customizing Control Panel frames
and dashboards.

Screen aliases based customization (on page 153). Applicable to Provider and Reseller
Control Centers screens only. Allows customizing any of PCC or RCC screens.

Adding, hiding or changing interface items in the Control Panel dashboards by means of CP
customization module (on page 169).

Screen ID based customization (on page 180). Applicable to Control Panel screens.Allows
customizing the screens displaying objects properties, lists of objects and the like - all
screens accessible by clicking on CP dashboards items.

Editing the context help for any of the Parallels Business Automation - Standard screens.
Context help files are located in the /var/opt/hspc-root/help/ and sorted by
language packs directories. Help files names exactly match its screen ID.

Context help opens after clicking Help link at the Control Panel top:

User Interface Customization 149

= Parallels® ‘_:suhscr'?helr Leroy Anderson (A
= 1 Panel — TN I o iyl Machine (vm.hos

Home System

htkp:/fop.myvhspe, com/help/E

IE’J]

Account »

Balance

|2

Balance % Re

| This screen provides vou with the summary of vour

This screen provides you with |§
account balance.

Balance
| The balance is calculated as a difference between the

| total balance of both your pavments and credit

| adfustments and the total balance of vour pavahles
(orders, invoices, debit adjustments). Zero balance

| means that payments total equals to payables total. =~ —
| However, this does not mean that no unpaid

| documents exist.

Total balance

Make Payment

ments to be paid (5166

Pay Rocuments by Mew | To enter a new pavment, click the Make Payvment

| button. You can increase vour account balance by

D~ Do, Murm § placing an arbitrary pavment (credit card or bank Docurnent Date
transfer).
10 1002) b
MHTERHET Fhow Ho00% T
12 1003 e S

= Editing the on-screen help bars for the Control Panels your customers use. Onscreen help
files are located in the /var/opt/hspc-root/hints/ and sorted by language packs
directories. Help files names exactly match its screen ID.

Onscreen help is embossed on most of Control Panel screen and provides short hints:

. Parallels®
o

=1 Panel

Home System Help and Support

Account >

Balance

This screen provides you with a summary of your account balance.

Balance

Total balance -5166.92 (You owe money to the provider)

Make Payment

User Interface Customization 150

Warning: Please carefully follow both the directories structure and naming conventions offered
below to store your customization. Otherwise the customized files will be overwritten after the
next Parallels Business Automation - Standard update installation. Do not customize files inside
the original directories because such changes will be also lost after the Parallels Business
Automation - Standard update installation.

We strongly recommend to copy into the custom directories only the files that you really
customize. Do not copy the surrounding template files into the custom directories. Considerable
number of template files in custom directories can result in the necessity for a lot of extra
checks during Parallels Business Automation - Standard upgrade installation, because during
upgrade each template in custom directories is checked in respect to compatibility with a new
Parallels Business Automation - Standard version.

Customized files should be stored in the single subdirectory created specially:

/var/opt/hspc-root/ Parallels Business Automation -
Standard base directory defined

by HSPCROOT_ROOT
parameter in hspc.conf file.

/var/opt/hspc-root/custom/ Parallels Business Automation -
Standard customization base

directory.

/var/opt/hspc-root/custom/templates |The subdirectory —containing
customized templates.

/var/opt/hspc-root/custom/help/ The subdirectory containing
customized context help files.

/var/opt/hspc-root/custom/hints/ The subdirectory containing
customized onscreen help files.

/var/opt/hspc-root/custom/screen/ The subdirectory containing
screen ID based customization
files.

/var/opt/hspc-root/custom/localization/ |The subdirectory containing the
language pack customization
files.

User Interface Customization 151

It is also possible to perform the account-specific and language-specific customization. Such
customization can be applied to screen templates, context help, and onscreen help only.

The account-specific customization calls for creation of the following subdirectories in
/var/opt/hspc-root/custom/template/, /var/opt/hspc-
root/custom/help/,and /var/opt/hspc-root/custom/hints/:

default/ The directory to put templates customized for all Providers

1/ The directory to put templates customized for Provider only

RESELLER_1D/ The directory to put templates customized for particular
Reseller, where RESELLER ID represents a Reseller
Account ID.

Example 1:

To customize screen templates for a particular reseller account (let us assume that this reseller
account ID is 123), it is necessary to:

1. Create a subdirectory 123/ under the /var/opt/hspc-root/custom/template/
directory.

2. Under the /var/opt/hspc-root/custom/template/123 directory, create
subdirectories that exactly follow the path to the original files you want to customize. For
example, if you want to customize store frontpage templates, that are originally located in
/var/opt/hspc-root/template/HSPC/EM/Plans/, you must create the
HSPC/EM/Plans/ subdirectory under the 123/ directory and put the customized files
there.

Thus, following our example, the final path for customized store frontpage templates must
be:

/var/opt/hspc-root/custom/template/123/HSPC/EM/Plans/

Always create the corresponding subdirectories for customized files to let your
customization be applied.

User Interface Customization 152

Example 2:

To perform the language-specific customization, you should create the subdirectory named by
the language two-letter abbreviation, e.g., EN/ for English, FR/ - for French, etc. For example,

/var/opt/hspc-root/custom/hints/FR/

to store the customized onscreen help files in French. And to store the french customization for
your Provider account only:

/var/opt/hspc-root/custom/hints/1/FR/

To perform the language dependent customization for a particular Reseller account (for
example, with account ID 127), you should create the directory:

/var/opt/hspc-root/custom/hints/127/FR/

For example, In accordance with the rules outlined above, the location of the custom on-screen
help file for all French customers of the Reseller with account ID 127 on page with screen 1D
01.04.18.02.16 should be the following:

/var/opt/hspc-root/custom/hints/127/FR/01.04.18.02.16_html

The procedure of customization file lookup looks as follows:

= Parallels Business Automation - Standard searches through the default subdirectory for the
Reseller language specific customization:

/var/opt/hspc-root/custom/hints/127/FR/01.04.18.02.16.html

= |f customization file was not found, the Parallels Business Automation - Standard searches
in the Reseller language specific directory, but in this case, not in the custom language
directory (FR/) but in the directory that corresponds to the default language used by
Provider. For example if the default language used by Provider is English, then the
customized file will be searched in the following directory:

/var/opt/hspc-root/custom/hints/127/EN/01.04.18.02.16._html

= If customization file was not found in the Reseller language-specific directory, then just the
Reseller-specific directory is checked:

/var/opt/hspc-root/custom/hints/127/01.04.18.02.16_html

= |f the customization file is still not found, then the Parallels Business Automation - Standard
searches in the default directory for French customized onscreen help:

/var/opt/hspc-root/custom/hints/fr/01.04.18.02.16.html

= If the customization file is not found again, then the Parallels Business Automation -
Standard searches in the default directory for the customized onscreen help in the default
language used by Provider (for example, a Provider uses English):

/var/opt/hspc-root/custom/hints/en/01.04.18.02.16.html

= Finally, the Parallels Business Automation - Standard searches in the default directory used
for customized onscreen help:

/var/opt/hspc-root/custom/hints/01.04.18.02.16.html

User Interface Customization 153

Template Based Customization

Most of elements used at Parallels Business Automation - Standard screens can be customized
using the screen aliases (in Provider and Reseller Control Centers) or screen IDs (both
PCC/RCC and Control Panel) based approaches. This method is reliable and absolutely safe.

However, some elements of Parallels Business Automation - Standard graphical interface
cannot be customized using screen aliases or screen ID based method. For example, login pages,
links at tabs, some documents used in specific accounting plug-ins.

Templates are widely used in Parallels Business Automation - Standard interface. The template
files *.tmpl and *.html are stored in different directories under /var/opt/hspc-
root/template or /var/opt/hspc-root/skins directory.

The name of a template used at a Parallels Business Automation - Standard screen can be found
from a page HTML source code. Alternatively, it is possible to find the needed template file by
localization string IDs used at the screen you want to customize.

Similarly to the other customization, to prevent the customized templates from having been re-
written during Parallels Business Automation - Standard upgrade installation, the customized
templates must be placed into the /var/opt/hspc-root/custom/<path to original
template location> directory.

For example, if the path to the Russian accounting documents is
/var/opt/hspc-root/template/HSPC/ACC/Plugin/Ru/Ul/

then the customized templates are to be placed into the
/var/opt/hspc-root/custom/template/HSPC/ACC/Plugin/Ru/Ul/

directory.

Warning: The same template can be used in a number of Parallels Business Automation -
Standard screens and in most cases it is actually used. This means that a single customized
template may emerge at a number of Parallels Business Automation - Standard pages. Please be
very careful when customizing templates.

Customizing Vendor Control Center
(PCC/RCC)

Components Repository

Below we describe how to add or customize Parallels Business Automation - Standard screens
using the XML Components Repository.

User Interface Customization 154

Components Repository Structure and Files

Parallels Business Automation - Standard Component Repository Configuration is presented as
a set of XML documents with the structure described below.

All configuration files are located in one directory and named arbitrary, but with .xml
extension and in a valid format.

Parallels Business Automation - Standard Component Repository Configuration offers the
following vision of Parallels Business Automation - Standard logical structure (in descending
order):

director
First level grouping set with power limited to a reasonable number for main menu to be
observable.

manager
Second level grouping set usually based on independent lines of work.

screen
Atomic element of structure, any webpage: a dashboard, an edit form, a wizard
step, whatever.

Screens can be nested within other screens to form any URIs and navigation paths. Screens
nested within screens do not have entries in main menu, could be presented only by higher level
nodes.

Nodes have the following attributes:

title_id (default: alias)lLocalization ID of component's external name;
string(id => ~“title_id") visually appears in site path, main menu and so on. See
note for set_node_context($) interface below.

alias String unique throughout the configuration; unambiguously identifies a node for direct
referencing. Used when inserting other nodes on-the-fly, filling some parameters with default
value, etc.

1d Number unique on its level; forms a uri (as well as Screen ID) as a concatenation of higher
level nodes' id and this id. If id is not set for a node, it is set automatically to some of spare
values (incrementally).

class Name of handler class.
method Name of handler method from class.

filter Name of static filter function (on page 155) from class. Defines on what conditions an
element must be shown. If present, a function is run with node_descriptor (see below) as
a parameter on menu tree creation or a screen lookup. Should return a non-zero result for a node
to be visible and accessible, otherwise a node is hidden. Value of filtered_out property of
node_descriptor is set to 1 in case Filter property presented and filter method return
zero result on call to node(). Thus, other modules don't have to handle i I'ter property but
just check Filtered_out.

User Interface Customization 155

groups Security groups as comma separated list. Refer to Security Manager documentation
for details.

icon (default: alias) Component's page icon.

before IDREF to some node's al ias. Points to node of the same logical level to insert a
new node before it.

helper Topic ID of corresponding helper's page.

ssl SSL mode for node. If presents, the parameter's value (on or off) specifies whether to force
enabled or disabled SSL for this node (the corresponding ‘force SSL' option must be enabled in
provider's configuration).

Each configuration XML document has root as its root element and nodes of any level as its
children. Use the before attribute to point to exact place for a node insertion.

All optional parameters are inherited from higher level nodes.

Files

Location

All configuration files must be located in one directory. Currently it is
/var/opt/hspc-data/Core/CompRep

Defaults

Main configuration file must be named _ . xml.

Order

Files are sorted in alphabetical order before reading. Use it for organizing sequences of
dependent configuration blocks.

Inheritance

To add a record to a block, reproduce the whole nesting scheme of the block, using the only
alias parameter for matching of parent nodes, and place the record inside the scheme. If a record
with such alias already exists, the old record is overrode.

The filter Function Sample

sub filter {
my $node = shift;
ifT ($node->{alias} eq "node_aliasl®) {
return tell_us_whether_to_show_this_node();
} elsift ($node->{alias} eq "node_alias2") {
return get_some_option() == "some_value-;
¥

return 1;

User Interface Customization 156

New Component Sample

Parallels Business Automation - Standard Components Repository provides an opportunity of
creating new screens in Parallels Business Automation - Standard.

The very first thing you need to do to create a new screen is add your xml file with definition of
new screen. This definition consists of entry in menu hierarchy, perl class name and method of
this class, which will be responsible for forming a new page content.

After this, you need to code your perl class and provide specified method in it. Place package
with this class so perl can find it (you can check search directory seeing content of your @ INC
variable:

/usr/bin/perl -V

Finally, to let a new screen appear in Parallels Business Automation - Standard, restart the last
thing to do One thing that remains new screen arriving is hspcd restart:

/etc/init.d/hspcd restart

Note: If you want to add a number of screens one-by-one, you can do without restarting hspcd
each time you want a new screen to appear in the Parallels Business Automation - Standard
interface. To this effect, edit the Parallels Business Automation - Standard configuration file
/etc/hspc/hspc.conf. Set COMPREP_NOCACHE=1, save changes and restart hspcd.
After this new components start appearing in the interface right after you add a new screen
definition. However, this degrades the Parallels Business Automation - Standard performance.
Thus, when you finish with new components addition, set the COMPREP_NOCACHE=0 in
/etc/hspc/hspce.conf and restart hsped.

Now we describe a simple example demonstrating how you can add a new screen.

Place following xml file:

<root>
<director alias="account_director'>
<manager alias="‘customer_manager'>
<screen alias="custom_component"
method="some_teaser"™ class="Custom::Component""
icon=""icon_hp"™ title_id="pdct_mgr_uc"
filter="filter"
/>
</manager>
</director>
</root>

into the
/var/opt/hspc-data/Core/CompRep/cc/account_director_custom.xml
file.

The director and manager tags were copied from the original account_director.xml, they are
already shown in Parallels Business Automation - Standard menu entries (you can see them in
Provider Control Center, they are Account Director and Account Director > Customer Manager
accordingly.

The new entry is the screen tag. It defines

= alias for screen: custom_component;

User Interface Customization 157

= method of this perl class that will form the page content: some_teaser;
= perl class: Custom: : Component; We describe the perl class later in this topic.

= jcon and title for the screen, (we take here already existed examples); As for the screen title,
S0 you can achieve it customizing language packs. Just add the id of your customized string
in the screen tag:

<screen alias="custom_component' ... title="YOUR_CUSTOMIZED_ STRING_ID" />

For more information about customizing strings please refer to the corresponding SDK topic (on
page 206), where you can know out how to specify a string ID and assign a text value to this
string ID.

= filter function, this function manages the screen visibility in the interface. The filter function
is needed only if you want to set a strict rules for a screen visibility. If you want a screen to
be visible all the time, do not define this function.

Place the following perl class definition into the
/usr/lib/perl5/site_perl/5.8.8/Custom/Component.pm

file:

package Custom::Component;
use strict;

use HSPC::Application;
use HSPC::WebPage;

draw page for custom component
< returns:
{ STATUS => ..., CONTENT => ... } structure
sub some_teaser {
my $class = shift;
my $page = HSPC::WebPage->new();
$page->title();
$page->tab();
$page->statuses();

$page->post_info_text (

title => "custom_component_title",
content => "custom_component_under_construction”
)
return
STATUS => "0OK*,
CONTENT => $page->get_content()
}:

check if screen is needed to be shown
< returns:
TRUE -- 1f screen is needed to be shown, FALSE -- otherwise
sub filter {
return 1 if $ENV{SHOW_CUSTOM_COMPONENT};
T

1;

Note: Don't forget to check that Zusr/lib/perl5/site_perl/5.8_8/ directory is in
your @ INC paths.

User Interface Customization 158

Now you need to restart hspcd in order to make changes available.

If everything is ok, you will see a new entry under the Account Director > Customer Manager
menu in Provider Control Center.

Now let's focus on the perl module Custom::Component.

The main thing that this module must provide, is the some_teaser method, which has been
specified as method option in the screen tag in our xml example). The return value of this
method is the following reference on a hash with entries:

= "STATUS" - possible values: "OK", "ERROR", "REDIRECT", "CUSTOM", "POSTED";

= "CONTENT" - the web page source that is needed to be shown, used if STATUS is "OK" or
"CUSTOM";

= "ERROR" - error number, used if STATUS is "ERROR";

Here are the examples illustrating how to use different return values:

STATUS "OK™:
return { STATUS => "OK", CONTENT => "CONTENT ..." }

Normal page is shown in this case.

STATUS "ERROR™:
return { STATUS => "ERROR™, ERROR => 403 }

Notify about error.

STATUS "REDIRECT":

$ENV{system_obj}->{redirect_local} = "some_local URL";
$ENV{system obj}->{redirect} = "some_ URL";
return {STATUS => "REDIRECT"};

Use one of the environment variables (redirect_local or redirect) to initiate a local
(to one of your site pages) or internal (to other website pages) redirection respectively. For
example, if your new custom page is a screen form, let say New Obiject, then you can use local
redirect: after a 'New Object' form is filled and then follows the click on the Save button - a
local redirect brings you on the page with the list of such Objects, as this is done in Parallels
Business Automation - Standard for new Accounts, new payments, and so on. Then it is
necessary to specify in the Component.pm module:

$ENV{system_obj}->{redirect_local} = "some_local URL";
return {STATUS => "REDIRECT"};

If you use an internal redirect, for example on some other website, then it is necessary to write
the following:

$ENV{system obj}->{redirect} = "full _resirect URL";
return {STATUS => "REDIRECT"};

Of course, words some_local_URL and full_resirect URL must be replaced with real path or
real full URL.

User Interface Customization 159

STATUS "CUSTOM™:
return {STATUS => "CUSTOM", CONTENT => "some_content"}

Almost the same as STATUS "OK", the only difference is that no http headers will be added.
They are to be added manually.

STATUS "POSTED™":
return {STATUS => "POSTED"}

Nothing will be output at all. System will assume that both headers and content will be output
manually.

CONTENT of the returned page can be formed as you would like it to be. Parallels Business
Automation - Standard GUI methods are not used in this case, but you need to provide localized
content. The easiest way to do this is the following:

Use the string method from HSPC: :Local ization package. In this case, the module
described above will look as following:

(# cat /usr/lib/perl5/site_perl/5.8.8/Custom/Component.pm):

package Custom::Component;
use strict;

use HSPC::Console;
use HSPC: :WebPage;
use HSPC::Localization gqw(string);

draw page for custom component
< returns:
{ STATUS => ..., CONTENT => ... } structure
sub some_teaser {
my $class = shift;
my $page = HSPC::WebPage->new();
$page->title();
$page->tab();
$page->statuses();

$page->post_info_text (

title => string(“custom_component_title"),
content => string("“custom_component_under_construction”
)
):
return
STATUS => "0OK",
CONTENT => $page->get_content()
}:
¥

check if screen is needed to be shown
< returns:
TRUE -- 1f screen is needed to be shown, FALSE -- otherwise
sub filter {
return 1;
T

1;

--snap

User Interface Customization 160

Please note, that string IDs used as arguments for string method must be valid. These IDs can
belong to already existing strings in Parallels Business Automation - Standard or customized
ones. In the latter case, please provide customization for all languages your system will support
(on page 206).

Screen Aliases Based Customization in Control Centers

Together with screen IDs, the Control Centers screens have alphabetical names called aliases.
Screen alias is not shown anywhere on a screen, but exactly an alias defines a particular screen
in a Control Center hierarchy.

You can find a screen alias by clicking on screen ID. For example, screen ID is 01.01.03.04.01
(in our example, this is Billing Director > Discount Manager > Promotions):

Top = Confiquration Directar = Logging and Errars = @ Help I I P II I .
Screens Viewer This screen ID: 01,01,06 06,05 aralieis
Screen ID 01,01.03.04.01
Screen description Billing Director (billing_director)

Discount Manager {discount_manager)
Promokions (promotion)

Screen ID* 01.01.03.04.01

User Interface Customization 161

Screen alias in this case is shown in brackets and its value is promotion.

Please pay attention to the fact that the full nesting structure, in accordance with the Control
Center menu structure, is shown for a target screen.

How customization is applied: Customization is applied in a cumulative order - starting from a
‘child' screen and up to a 'parent' screen. Parent screens customization affects all the child ones.
First, the ending screen module is parsed (in our example, this is the promotion screen, if
customization is found, it is applied, then the parent screens are parsed: first
discount_manager, then billing_director. If customization is found for these
screens, it is added to a previously found one. Customization found for a 'parent' screens is
applied to all the child screens. For example, if you customize the discount_manager
screen, this customization will be applied to all screens under the Discount Manager. Thus, to
customize a group of screens, use a Manager or a Director alias as a customization module
name.

You can customize any screen in Provider or Reseller Control Center by writing a customization
module for the corresponding screen. The name of a module should follow the screen alias.

For example, for the screen with ID 01.01.01.01 (Account Director > Customer Manager >
Customers) with screen alias customers the module name should be customers. pm.

PBAS Control Centers components nesting level and belonging are also reflected in their screen
IDs. Any screen ID consists of five digits:

Component Product |Tool ID Director ID |Manager |Screen

ID ID
Director Director ID |00 00
Manager on a|Constant. [Constant. |Director ID |Manager |00
second nesting level |Always |01 for ID

must be|PCC, 02
Component under a|01 for RCC Director ID|Manager |Component
Manager or other or component | ID or(ID
component without ID component

nested ones. ID

User Interface Customization 162

Control Center Screen Customization Module Sample
A special method called customi ze should be defined in a customization module.

This method should accept an HTML text as an argument and return the customized HTML text
to be sent to a client browser. This method will be called right before sending out an HTML
page to a client.

Example: Customizing screen in Provider Control Center

We customize the Support > Contacts screen. Screen ID is 01.01.09.10.00. By clicking on
screen ID we discover screen alias. The screen alias is support_tab_con. Thus, the
customization module must be named by its alias and placed here::

/var/opt/hspc-root/custom/screen/support_tab con.pm

Module text:

package HSPC::Custom::Screen::support_tab_con;
use strict;
use HSPC::Custom::Screen;
sub customize {
my ($stream, $alias) = @ ;
1Insert the message
my $msg = "This message was inserted by screen alias customization in
PCC.
\n";
$stream = $msg . $stream;
return customized text
return $stream;
}#/customize
g

After you will place the customization module into the right directory, you will need to restart
hspcd for changes to take effect:
/etc/init.d/hspcd restart

If everything goes right, you will see This message was inserted by screen alias customization in
PCC. message at the top of the Support screen.

Customizing Customer Control
Panel

Control Panel Screen Structure

The Control Panel screen consists of the two main parts:
= Top frame (1) that displays the following:

= Logotype

= Tabs

= Subscription selector

= Logout link

User Interface Customization 163

Set of tabs shown on the top frame differs depending on the type of the subscription

selected.

Top frame can be customized by means of template based customization (on page 153). Top

frame template is located here:
/var/opt/hspc-

root/skins/panel/template/HSPC/CP/Visual/top_ frame.tmpl
= Main frame (2) that displays links to services according to the selected subscription and the

selected tab.

; Parallels®
&= 1 Panel

Account Help and Support

Leroy Anderson (Account ID: 2
HIEIER irtual thachine (wm.hosting. myhspc.com) ID: &

Select another service.

Hasting plan Wirtual Machine

Subscription status (D Active
Expiration date O6-Jul-2012
Billing pericd 12 Manths
server status (3 Running
Hhare —

mp Parallels Power Panel

E [] ‘ thanage Virtual Machine with Parallels Power Panel,
¥ Login

L'@ Subscription vm.hosting.myhspc.com (ID:

Account

Outstanding documents $166.92

» Billing History
+ Subscriptions

» Payment Methods

Store

i, Here you can buy additional services, domains and more,
)

= Register New Domain
» Buy 551 certificate
= Buy More Services

: Domain Management
tanage your domains and DS,
» all My Domains
D

= Buy Resources
» Change Hosting Plan

SSL Certificate Management

Manage your S50 certificates.

= All My S5L Certificates

User Interface Customization 164

For Parallels Plesk Panel (Plesk) and Parallels Operations Automation (POA) subscriptions the
Main frame parts aside letting Plesk or POA original panel be shown on center. Thus, in this
case the Main frame appears to be subdivided into three areas:

= Left frame (3) that belongs to PBAS and can be customized.

= Service specific frame (4) that displays original Plesk or POA panel that opens in PBAS
Control Panel window and thus, it should be customized on Plesk or POA side, if needed.

= Right frame (5) that also belongs to PBAS and can be customized.

= Parallels® riber - PressHeads {Account ID: 3

= 1 Panel riptio Plask Domain (Linu:) (mysite. hosting. myhspc.com) (001

Statistics Users Applications Websites & Domains Mail Setup Account Help and Support

Statistics on Resource Usage

Wiew detailed reports on disk space and traffic usage by services
and by maonths.

- Applications

“ Install apps on your websites, Assign administrative privileges to
selected users,

Disk space There are no installed applications.
1.0 WB used of 100 MEB [1%)

» Install Applications
Traffic

0 Bfmonth used of 100 GB/month (03) £r Featured Applications

More — Try out these most recormmended applications. Hide the apps.

. . ; joomla
E;,- Ei WebSIteS & Doma|ns & Content management system

and Web application
Add domain names and set up websites, Manage website content PR

framewark

and wiew statistics on how people visit your websites,

. . . khore

ejemplodeprueba. mysite, hosting. ryhspo, com [=

» Add Domain » File Manager
» Secure Your Site with SSL » Statistics

Certificate
Mare —
Mail

Create e-mail addresses and mailing lists. Set up mail
forwarding, e-mail aliases, auto-replies, and protection from
sparn and viruses,

» E-mail Addresses = Create E-mail Address

Shro —

Left and Right frames can be customized by means of template based customization (on page
153). Left and Right frames templates are located here:

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Visual/leftframe.tmpl - Left
frame (3).

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Visual/rightframe.tmpl - Right
frame (5).

User Interface Customization 165

Note: If you want your customization be shown for all subscription types (for example PVC,
Plesk, and POA), you will need to customize Main Frame and Left or Right frames, because
Main frame is replaced with service area for Plesk and POA subscriptions.

Depending on the selected tab and type of the subscription, the Main frame area of the Control
Panel displays different types of interface elements:

= Home (2). The Home tab is selected. The Subscription type selected is non Plesk or POA.
This screen can be customized by means of the template based customization. Original
template location is:

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Menu/home . tmpl

= Dashboard. The Account, Help and Support, or System tab. This screen can be customized
either by one of the following ways:

= Template based customization. Original template location:

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Menu/dash.tmpl

= CP customization module (on page 169).

Control Panel dashboards are shown under the Account, Help and Support tabs and also under
the System tab. The Account dashboard is shown on the screenshot below:

= Parallels : er Leroy Anderson (Account ID: 2 4 lnzout

5 i Panel E 0 Al iy Domaing

Home All My Domains Domain Contacts Reverse DNS Help and Support

Account : Request Support @ Help

This is wour Account Dashboard. The screen is divided into sections: Store - buy new or upgrade existing subscription; Billing Management - make payments and
manage payment methods; Account Management - manage your account contacts and settings and adjust e-mail notifications settings.

Store
3 Register New Domain Buy S5L certificate Buy More Services
Register or transfer more domain names. Issue new SSL certificate. #== ‘You can order new service or subscription
from here.
ga‘ Change Hosting Plan % Buy Resources Add Application
_.I ‘fou can change vour service plan here, == Here you can buy more resources to improve Order more Applications for your Server,

YOUr service.,

Billing Management

lﬂi Balance —- Billing History : Statements
Your balance: -US54,92, — | Financial documents issued for your account. Mext staternent will be generated 30-Jun-
Documents to be paid amount: US518s. 16, 2012,
T Payment Methods
visE
ll—-—J Manage your payment methods [credit cards,
bank accounts) here.
Account Management
.. Account Contacts 2y Account Settings .+ Notification Settings
® . : i . Py = :
tanage your account contacts infromation. J Here wou can manage your account settings, b tanage wour e-mail notifications settings.

check Tax Exernption verification status.

User Interface Customization 166

Dashboard consists of sections (6). For example, Store, Billing Management, Account
Management are sections of the Account dashboard.

Dashboard sections contain items (7). For example, Balance, Billing History, Payment Methods
are items in the Billing Management section. Dashboard elements can be added or hidden using
customization module (on page 169). See also: Control Panel Dashboard IDs Table (on page
170).

= The rest of CP screens that can be reached clicking on dashboards' items, such as lists of
objects or objects details, can be customized by means of screen ID based customization (on
page 180).

Control Panel Top Frame and Tabs Customization

Tabs can be customized by means of the Top frame template. Top frame template is located
here:

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Visual/top_ frame.tmpl

Example: Hide Domain Contacts tab:

1. Copy the template to custom location:

/var/opt/hspc-
root/custom/template/HSPC/CP/Visual/top_frame.tmpl

2. Discover the Domain Contacts tab ID:

a Loginto Control Panel and select All my domains from the subscription selector located
at the CP top frame to the right. View HTML code of the Top frame.

b Search for the sample: Domain Contacts. The surrounding code contains tab ID:

<li class id="'system_domains_domconts'>
<a
onclick="topTab(this) ;showButtonlndicator(this) ;doSubmit(*/cp/index.cgi/subscr
iption/domconts”®, "main®);" href="javascript:void(0)"
Domain Contacts

Tab ID is system_domains_domconts.
¢ Open the file:

/var/opt/hspc-
root/custom/template/HSPC/CP/Visual/top_frame.tmpl.

Search for the following sample:

User Interface Customization 167

foreach my $m (@{$menu}) {
my $url = $m->{url} || "/cp/index.cgi/top/zone,$m->{tab}";
my $name = $m->{title};
my $tab = $m->{tab};
$OUT .= qqf
<li class="" id="$tab">
<a
onclick="topTab(this) ;showButtonlndicator(this) ;doSubmit("$url®,"main®);"
href="javascript:void(0)'>$name
</1i>};
¥

}

d Add the string "next if ($tab eq "system_domains_domconts®);" so that
the code looks as follows:
{
foreach my $m (@{$menu}) {
my $url = $m->{url} || "/cp/index.cgi/top/zone,$m->{tab}";
my $name = $m->{title};
my $tab = $m->{tab};
next if ($tab eq "system_domains_domconts™);
$OUT .= qqf
<li class="" id="$tab">
<a
onclick="topTab(this) ;showButtonlndicator(this) ;doSubmit("$url®, " main®);"
href="javascript:void(0)'>$name
</1i>};
¥

The added string skips the Domain Contacts tab, so that it is not rendered.

e Save the changes. Refresh the Control Panel screen to see the customization result.

Customizing Main Frame

Main frame can be customized by means of template based customization. Possible templates
are:
= Right and left frames. Original templates location:

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Visual/leftframe.tmpl

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Visual/rightframe._tmpl

= Dashboards. Original template location:

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Menu/dash_tmpl

= Home. Original template location:

/var/opt/hspc-
root/skins/panel/template/HSPC/CP/Menu/home . tmpl

User Interface Customization 168

= Other screens. Original template location:

/var/opt/hspc-
root/skins/panel/template/site_7/HSPC/Site/Layout/service_def
ault._tmpl

Before starting customization, copy the templates to customization directories. To get the
custom path, drop /skins/panel directories and create the /custom directory instead. For
example:

/var/opt/hspc-root/custom/template/HSPC/CP/Menu/home. tmpl

Example: Add site badge to Control Panel main frame.

1. Get site badge code. If you would like to add a site badge to CP main frame, for example
Kayako live chat or Twitter, you can generate the needed code at their websites using tag
generator.

2. Add code to template. Open the template and search for the <body tag. Insert your code
inside the body tag.

3. Save the changes and refresh the screen to view the customization.

The customized screen will look as follows (for example, we added the Kayako live chat):

= Parallels® i r Leroy Anderson (Account ID: 2
= i Panel A[EIB irtual Mhachine (wvm.hosting. myhspe.com) 10 & b

System Account Help and Support

@ Subscription vm.hosting.myhspc.com (1D: Account
Cw@— : 6) Outstanding documents $166.92
select another service, = Billing History = Payrment tethods

+ subscriptions

Hosting plan Wirtual Machine
Subscription status (@ Active
Expiration date 06-Jul-2012 Store
\ Here you can buy additional services, domains and more.,
Billing period 12 tanths))
= Register Mew Domain = Buy Resources
Server status (@ Running » Buy %EL certificate + Change Hosting Plan
» Buy More Services
Parallels Power Panel 73 Domain Management
tanage Yirtual Machine with Parallels Pawer Panel. Manage your domains and DS,
= Al My Dornains

= Lagin

===n SSL Certificate Management
4 Manage your S5L certificates,

= All by S5L Certificates

Note: If you want to show your customization for all types of subscriptions in CP, then you
need to add your custom code to all the four templates mentioned above.

User Interface Customization 169

Customizing Control Panel Dashboard

This section describes how you can add, delete, or customize the interface elements available in
the Parallels Business Automation - Standard Control Panel user interface.

Control Panel Dashboard Customization Module Location
The CP dashboard customization file is named CP . pm and located under the directory:
/var/opt/hspc-root/custom/dash

To customize the Control Panel dashboard, it is needed to add a custom code in the CP . pm file.
The method called customize is to be used.

The basic methods are:

= add_item_to_section used to add an item or a section

= delete_menu_itemordelete_menu_section used to remove an item or a section
respectively.

Below we will show what you should add to this function in order to customize dashboard
controls.

User Interface Customization 170

Access Method
The HSPC::CP::Menu package is used for Control Panel dashboards.

To add items to an existing section of the dashboard or to add a new section and items to a
dashboard, use the add_item_to_section method.

Input parameters are:

Required parameters:

" menu-menu

= section_id - id of section. This is unique section ID. If section with specified ID not found it
will be created.

= section_tab — control panel tab (available values are: system, account, help)
= jtems — items for adding (reference to array of hashes)

Optional parameters:

= section_title — section title. Require only if section not yet exists

= dup_mode — action for duplicate items: 'skip' or 'replace’. This parameter specifies what to
do if one (or several) passed items are already exists in the menu. If “dup_mode” not present
or undefined the method returns error message “duplicate_item_id”. If the value is “skip”
the method will not return error and will not add duplicate items to the menu. If the value is
“replace” the method will replace existing item(s).

Return value:
= undef (if success) or error message (if something goes wrong).

This method will create a new section if the passed section_id does not match any of the
existing sections IDs. Please refer to the Control Panel Dashboard 1Ds Table (on page 170) for
full list of section and item IDs used in the Control Panel.

Important: If you are sure that section ID does not exist, always specify the “section_title”
parameter in order to give a title for a newly created section. If the title was not passed, the
method uses “NoName” as a section title.

Control Panel Dashboard IDs

Below is the List of common dashboards IDs. You can examine the raw dashboard structure to
learn more about sections and items IDs.

ID Type
person_header section
person_header_head item
person_header _title item
person_header_logout item
person_management section
person_management_head item

User Interface Customization

171

person_manage_profile item
person_email section
person_email_head item
person_email_openwebmail item
account_header section
account_header_head item
account_header _title item
account_header_change item
account_management section
account_management_head item
account_account_management_contacts item
account_account_management_settings item
billing_management section
billing_management_head item
account_billing_management_balance item
account_billing_management_history item
account_billing_management_subscrs item
account_billing_management_orders item
account_billing_management_statements item
account_billing_management_creditcards item
campaigns_management section
campaigns_list item
campaign_sales item
site_header section
site_header_head item
site_header _title item
site_header_change item
site_header_new item
site_website_management section
site_website_management_head item
site_website_management_settings item

User Interface Customization

172

site_website_management_files item
site_website_management_stat item
upgrade_header section
upgrade_header_head item
upgrade_header_hosting_plan item
upgrade_header_buy_resources item
upgrade_header_add_application item
upgrade_header_registar_domain item
system_subscr_header section
system_subscr_header_head item
system_subscr_header _title item
system_subscr_header_change item
system_subscr_header_upgrade_my_hosting_plan item
system_subscr_header_buy new_hp item
system_server_mgmt section
system_server_mgmt_head item
system_server_mgmt_info item
system_server_mgmt_apache item
system_server_mgmt_fm item
system_server_mgmt_proftpd item
system_server_mgmt_webmin item
system_server_mgmt_backup item
system_dbmanagement section
system_dbmanagement_head item
system_dbmanagemnt_mysq|l item
system_ftp section
system_ftp_head item
system_ftp_account item
system_ugm section
system_ugm_head item
system_ugm_users item

User Interface Customization

173

system_ugm_groups item
system_ve_services section
system_ve_services_head item
system_ve_services_list item
system_ve_sevices_log_files item
system_mail_mgmt section
system_mail_mgmt_head item
system_mail_mgmt_server_link item
system_mail_mgmt_mailboxes_link item
system_mail_mgmt_forwards_link item
system_mail_mgmt_maillists_link item
system_mail_mgmt_spam_filters_link item
system_pc_dash_tools section
system_pc_dash_tools_preferences item
system_pc_dash_tools_skeleton item
system_pc_dash_tools_logo item
system_pc_dash_tools_edit item
system_pc_dash_tools_extras item
system_pc_dash_tools_custom_buttons item
system_pc_dash_tools_manage item
system_pc_dash_tools_ip_pool item
system_pc_dash_tools_limits item
system_pc_dash_tools_new_domain item
system_pc_dash_tools_domain_templates item
system_pc_dash_tools_permissions item
system_pc_dash_tools_report item
system_pc_dash_tools_traffic item
site_mail_mgmt section
site_mail_mgmt_head item
site_mail_mgmt_mailboxes_link item
site_mail_mgmt_forwards_link item
domains section
system_domains_domains item

User Interface Customization

174

system_domains_domconts item
site_other section
site_other_head item
site_other_crontab item
site_other_testadd item
help_header section
help_header_head item
help_main_doc item
help_main_support item
help_main_ftse item
help_main_ts item
Samples

Below are code samples for basic use cases.

User Interface Customization 175

Add New Section

The example offered below illustrates how to create a new section and add items to this section.
Below is a custom code to be added to the CP - pm (on page 169) file.

add new item to existing section

#t

my $menu_tab = "system-”;

my $section_id = "system_test section”;

B R
create new section and add two items to it
H#

my $items = [];

define items for addition
push @$items, {
title => "Test ltem 1",
title_desc => "The Item 1 Description”,
url_title => “test_iteml URL_title~",
url => "/test_iteml"”,
icon => "icon_srvs",
id => $menu_tab."_ test_section_testaddl”,
tab => $menu_tab,
}:
push @$items, {
title => "Test ltem 2",
title_desc => "The ltem 2 Description”,
url_title => “test_item2_URL_title~",
url => "/test_item2",
icon => "icon_srvs",
id => $menu_tab."_test_section_testadd2”,
tab => $menu_tab,
};
add new section and items to it.
my $error = HSPC::CP::Menu->add_item to_section (
menu => $menu,
section_id => $section_id,
section_tab => $menu_tab,
section_title => "Test section”,
items => $items,

);

In this example the “add_item_to_section” method adds a new section with ID

'system_test_section’. This new section will be visible at the Control Panel System tab with the
“Test section” title and will contain two items inside.

In order to add a new menu item to existing section you have to know its ID. The list of section
IDs is attached.

User Interface Customization 176

Add New Item to Existing Section

The example below illustrates how to add a new item to the existing section (for example,
section ID="site_other’). Below is a custom code to be added to the CP . pm (on page 169) file.

my $menu_tab = "system-”;
my $section_id = "site_other”;

my S$items = [];

add new item to existing section
#Ht

my $menu_tab = "site”;
my $section_id = "site other”;

my $items = [];
define item for addition
push @$items, {
title => "Additional Element",
title_desc => "Additional Element Description™,
url_title => "URL title of additional element”,
url => "/additional_element",
icon => "Icon_srvs",
id => "site_other_testadd”,
tab => $menu_tab,
};
add item.
my $error = HSPC::CP::Menu->add_item to_section (
menu => $menu,
section_id => $section_id,
section_tab => $menu_tab,
items => S$items,

User Interface Customization 177

Replace Item in Existing Section

This section advises how to replace the existing item with a new one. Below is a custom code to
be added to the CP.pm (on page 169) file.

The code example replaces the “Crontab” item in “Site” tab with a new one.

my $menu_tab = "site”;
my $section_id = "site other”;

my $items = [];

HHHEHEHEHHEH
replace the Crontab item (id="site_other_crontab”)

to a new item

##

$menu_tab = "site";

my $item_id = "site_other_crontab®;

push @$items, {
title => "Replaced Test Item2",

title_desc => "The Item 2 Description™,

url_title => "replaced_test_item2-",
url => "/replaced_test_item2",
icon => "icon_srvs",
id => $item_id,
tab => $menu_tab,

replace item

my $error = HSPC::CP::Menu->add_item to_section (
menu => $menu,
section_id => $section_id,
section_tab => $menu_tab,
items => S$items,
dup_mode => “replace”,

Delete Item and Section

To delete a menu or a dashboard item or section, use the “delete_menu_item” or
“delete_menu_section” methods respectively. Below is a custom code to be added to the
CP_pm (on page 169) file.

The example below illustrates how these methods can be used.

delete menu item

my $error = HSPC::CP::Menu->delete_menu_item (
menu => $menu,
item_id => $item_id,

DE

delete menu section

my $error = HSPC::CP::Menu->delete_menu_section (
menu => $menu,
section_id => $section_id,

):
The full source code of the example is attached (on page 178).

User Interface Customization 178

Full Source Code of the HSPC::Custom::Menu::CP

Below is the full source code of the example package HSPC::Custom::Menu::CP.
package HSPC::Custom::Menu: :CP;

use strict;

use HSPC::CP::Menu;
use HSPC::Logger gw(sw_die);

>> class

=>> menu : ref to array

sub customize {
my ($self,%h) = @_;
sw_die("menu => undefined”) unless $h{menu};
my $menu = $h{menu};

##

add new item to existing section
#t

my $menu_tab = "site”;

my $section_id = "site_other”;

my S$items = [];
define i1tem for addition
push @$items, {
title => "Additional Element",
title_desc => "The element description’,
url_title => "URL title of additional element”,
url => "/additional_element",
icon => "Icon_srvs",
id => "site_other_testadd”,
tab => $menu_tab,
};
add item.
my $error = HSPC::CP::Menu->add_item to_section (
menu => $menu,
section_id => $section_id,
section_tab => $menu_tab,
items => S$items,

B
create new section and add two items to it
HH
$section_id = "site_test_section”;
$items = []1;
define items for addition
push @$items, {
title => "Test Item 1",
url_title => “test_iteml URL_title~",
url => "/test_iteml"”,
icon => "Icon_srvs",
id => $menu_tab."_test_section_testaddl”,
tab => $menu_tab,
};
push @$items, {
title => "Test ltem 2",
url_title => “test_item2_URL_title~",
url => "/test_item2",
icon => "Icon_srvs",
id => $menu_tab."_test_section_testadd2”,
tab => $menu_tab,

User Interface Customization

179

add new section and items to it.

my $error = HSPC::CP::Menu->add_item to_section (
menu => $menu,
section_id => $section_id,
section_tab => $menu_tab,
section_title => "Test section”,
items => $items,

P
replace the last element in previously added section
to a new item

##

define item for replace (this element will replace the testadd2
element)

$menu_tab = "site";

1;

my $item_id = "site_hekima_testadd2”;
push @$items, {
title => "Replaced Test Item2",
url_title => “replaced_test_item2-°,
url => "/replaced_test_item2",
icon => "icon_srvs",
id => $item_id,
tab => $menu_tab,

}:

replace item

my $error = HSPC::CP::Menu->add_item to_section (
menu => $menu,
section_id => $section_id,
section_tab => $menu_tab,
items => $items,
dup_mode => “replace”,

);
Hit
delete menu item
Hit

my $error = HSPC::CP::Menu->delete_menu_item (
menu => $menu,
item_id => S$item_id,

);
H#t
delete menu section
H#t

my $error = HSPC::CP::Menu->delete_menu_section (
menu => $menu,
section_id => $section_id,

);

return 1;

User Interface Customization 180

Control Panel Screens Customization Using Screen IDs

All Parallels Business Automation - Standard screens have the unique screen ID that consists of
five numbers divided with dots (e.g.,). You can find the screen ID by viewing the source code
of the screen and searching by the 'screen’ keyword.

You can customize PBAS Control Panel screens by writing a customization module for the
corresponding screen.

For Control Panel screens, the name of a customization module should follow the screen ID but
with dots replaced with underscores (e.g., for screen with ID 01.04.20.01.05 the module name
should be 01_04_20_01_05.pm).

Important: Please carefully follow both the directories structure and naming conventions
outlined earlier (on page 148) to store your customized files.

A special method called customize should be defined in a customization module. This
method should accept an HTML text as an argument and return the customized HTML text to
be sent to a client browser. This method will be called right before sending out an HTML page
to aclient.

A special APl is provided to facilitate screens customization.

User Interface Customization 181

Customization API Methods
In this paragraph we explain how you can discover the name of CP screen element

Here we introduce a notion of control that should be understood as one of the elements at the
screen (e.g., an editable field, a checkbox, an option button, form heading, etc.).

The following four methods are available and automatically exported from the
HSPC::Custom::Screen module:

= sw_cu_insert_before - insert a custom text before some control;
= sw_cu_insert_after - insert a custom text after some control;

= sw_cu_replace - replace a control with custom text;

= sw_cu_TFind -find a control, return a control HTML text.

Methods sw_cu_insert_before, sw_cu_insert_after, and sw_cu_replace
accept the following arguments:

= ctrl_type - type of the control (see below for details)
= ctrl_id- ID of the control

= stream - original HTML text

» custom_text - custom text

and return the customized HTML text.

The sw_cu_Tfind method accepts the following arguments:

= ctrl_type - type of the control (see below for details)
= ctrl_id - ID of the control
= stream-original HTML text

and returns the control HTML text.

The customization module should be placed in the following directory:
/var/opt/hspc-root/custom/screen/

The following controls' types are available for customization:

General page controls:

= path - path at the very top of the page

= title - title of the page shown right below path

= top_link - top links like Help (id ‘open_help"), Add Comment (id 'add_comment'), etc
» page_description - page description shown in Control Panel

= tabs - page tabs (id = 'item’)

= page_title - the whole page header including tabs and everything above

Listing page controls:

= paging - paging bar above lists (includes page numbers and switches number of items per
page)

User Interface Customization 182

actions_bar - the bar at the bottom of the screen that allows performing actions over
Containers (create, start, stop, etc.)

browse - the whole listing section starting from column names and till the last row of the list

frequency_bar - bar for setting up time frequency (shown in Billing Manager - Reports -
Summary - Aged A/R Reports)

ranges_bar - bar for setting up date/time range (for instance, it is shown in the Action Log)

search_bar - search bar shown right above the list; it includes both the Search and the Filter
options

Edit form controls:

cell_title - field title
cell_check - checkbox

cell_combo - drop-down menu or combo-box (i.e, a drop-down menu with ability both to
select one of pre-defined variants or type a new one)

cell_datetime - several drop-down boxes and input fields for setting up a date/time (e.g., in
Promotion edit form or in Tax Rates)

cell_file - file upload
cell_input - input field where you can type something
cell_textarea - text area field, i.e., an input field for several strings

cell_list - multi-select box with button add/remove like in "Available Card Types" in
payment plug-ins settings

cell_lists2 - two multi-select boxes with '<<'and '>>' buttons and optional Up/Down buttons
cell_period - input field and select box with Minute/Hour/Day/Month

cell_popup - input field with button which opens the popup window

cell_radio - radio button

edit_open - the entire form

Other controls:

form - the whole edit form (e.g., a form for editing a Promotion properties)
view - the whole view form (e.g., a form for viewing a Promotion properties)
button - any button on the screen.

User Interface Customization 183

Discovering Screen ID and the Name of Screen Element to Customize

Discover Screen ID

To know out the screen ID, view the scren HTML code and search for the word screen. You
will get the sample as:

<I--This screen ID: 01.04.25.03.01-->
Discover Screen Element Name

Internally, the Parallels Business Automation - Standard marks all of the elements (i.e.,
controls) on the page with the special metatags:

<I-- TAG type="X" id="Y" -->
and
<I-- /TAG type="X" id="Y" -->

where "X" represents the type of control (e.g., “cell_combo™ or "cell_check™ and "Y"
represents the control ID. The control ID is an alphabetical identifier that explicitly identifies a
particular control and allows you to explicitly define a particular field you want to customize
since an edit form can include several controls of the same type. For example, in the Account
Settings form in the Control Panel My Account zone, there are several controls of cell_combo
type: State (US or Canada), State (other countries), and Country. If you want to customize the
Country field, you need to use the cell_combo control with the address_country ID. We provide
the example of the Country field customization module (on page 185).

The metatags mentioned above allow you to fetch the name of control and customize it using
the facilities described in this section. By default, all the metatags are removed from an HTML
output right before sending an HTML to a client browser. However, if you want to see these
tags, you can temporary disable the metatags automated removal by turning on the setting Do
not remove metatags from page content in PCC -> Configuration Director -> Miscellaneous
Settings > Inteface Settings.

To know out the type and ID if the control you want to customize:
1. Turn on the Do not remove metatags from page content setting as this described above

2. Go to the screen you want to customize, right-click somewhere on the screen and select the
View Source option from the context menu that appears.

3. Inthe HTML code, look for the needed metatag.

For example, let us look at the piece of HTML code describing the Account Settings form (Edit
screen) under the Account tab in the Control Panel:

<I-- TAG type="cell_combo" id="address__country" -->
<select name="address__country" class=SWs width=""" >
<option value="AF" >Afghanistan</option>

<option value="AL" >Albania</option>

<option value="DZ" >Algeria</option>

<option value="AS" >American Samoa</option>

<option value="AD" >Andorra</option>

User Interface Customization 184

The needed element is the Country drop-down menu:

= Parallels® : Leroy Anderson (Account ID: 2

i Panel _-Jtl':-l_.I"iFIt'iIZIFI Private \irtual Server. Silver package. (vps.hosting. myhspe.com) 10: 4

Home System Account Help and Support

hooount =

Demo HOSting, Inc. L Request support % Refresh @ Help o Up Level

Here you can edityour current account profile, Please, do not mix the account contacts with vour personal information, account contacts [names and e-mails) have
nothing cornrmon with wour login credentials and do not affect them,
In addition, here you can enter your personal Tax Exemption Code [if any]. &)

Marme Demo Hosting, Inc,

Address line 1%

1th Street
Address line 2
G Fenton
State [US or Canada) Washington 7
Ltate [other countries]
country United States hd

Zip/Postal code 98050

User Interface Customization 185

Customizing a Single Screen Form

Let us consider the module used to customize the Account Settings form in the Control Panel ->
Account tab - Account Management section - Account Settings - Edit (screen ID 01.04.18.02.16).

The location of the customization module is the following:
/var/opt/hspc-root/custom/screen/01_04 18 02_16.pm

The text of the customization module is the following:

User Interface Customization

186

package HSPC::Custom::Screen::01_04_18 02 _16;
use HSPC::Custom::Screen;

sub customize {

my ($stream) = @_;

replace countries drop-down with read-only text "USA"
$stream = sw_cu_replace(

ctrl_id => "address__country”,

ctrl_type => “cell_combo”,

stream => $stream,

custom_text=> “USA".

"<input type=hidden name="‘address__country"
value="US">",

DE

remove ''State (Other countries)"™ field name
$stream = sw_cu_replace(

ctrl_id => " address__state_alt",

ctrl_type => "cell_title",

stream => $stream,

custom_text=> ",

DE

remove ''State (Other countries)™ input field
$stream = sw_cu_replace(

ctrl_id => " address__state_alt",

ctrl_type => "cell_input",

stream => $stream,

custom_text=> ",

DE

find cancel button

my $cancel = sw_cu_Ffind(
ctrl_id => " btn_cancel”,
ctrl_type => "button”,
stream => $stream,

):
add "'disable™ property to the button tag
$cancel =~ s/<input/<input disabled/;

disable cancel button
$stream = sw_cu_replace(
ctrl_id => ° btn_cancel”,
ctrl_type => “button”,
stream => $stream,
custom_text=> $cancel,

DE

return customized text
return $stream;

+
L

User Interface Customization 187

Customizing a Group of Screens

You can also apply the same customization to a group of screens. For example, you can apply
customization to all pages with screen IDs beginning with 01.04.18 - this corresponds to all
screens accessible from the Account tab in the Control Panel. Let us consider how you can insert
a banner at the top of every screen under the Account tab.

The location of the customization module is the following:
/var/opt/hspc-root/custom/screen/01_04 18.pm

The text of the customization module is the following:

package HSPC::Custom::Screen::01_04_18;

use HSPC::MT::Core;

sub customize {

my ($stream) = @_;

banner HTML code

my $banner = <<BANNER;

BANNER

add banner at the top of the page
$stream = $banner.$stream;

return customized text

return $stream;

}
1;

Examples of Screen ID Based Customization
Example 1: Change Content of the Documentation Screen.

The default content of CP Documentation screen is following:

= Parallels® riber Leroy Anderson (Account ID: 2 o8 lozout

¥E ! Panel ription e

Home All My Domains Domain Contacts Account Help and Support

Help and Support =

Documentation L Request Support @ Help o Up Level

This screen lets wou access user's docurnentaion,

The docurmentation is in the Adobe Acrobat format, Please right-click on the link below and save this document locally,

[FJrarallels Business Autornation - Standard Subscriber’s Guide
The docurnent is intended for the customers who have purchased hosting services in Provider®s or Reseller's Parallels Business Automation - Standard-based
online stores and describes the tasks [excluding Plesk domains management] a customer can perform in Parallels Business Automation - Standard Control Panel,
Plesk dornain administration is described in a separate guide.

[FJPlesk sdministrator’s tanoal
The Plesk original manual is intended for customers who have purchased the Plesk Hosting Plans in the Parallels Business Autormation - Standard online store,

To customize;

1. Discover the screen ID (on page 183). Documentation screen 1D is 01.04.25.03.01.
2. Place the customization module to the custom directory:
/var/opt/hspc-root/custom/screen/01_04 25 03 01.pm

User Interface Customization 188

3. Add the following code to the customization module:
package HSPC::Custom::Screen::01_04 25 03 01;

use strict;
use HSPC: :Custom: :Screen;

sub customize

{
my ($stream) = @_;

my $new_content=<<CONTENT;
HHHHHH R R R
Put your new content for Documentation page here, as is.
HHHHHH AR
<p> My custom content is placed here.
</p>
CONTENT

$stream =~ s/<!-- \/Page description --
>(C- \n)*)<\/td><\/tr><\/table>/$new_content/m;
return $stream;
}#/customize

1;
4. Save the changes to customization module and restart hspcd to apply customization:
/etc/init.d/hspcd restart

The customized content for Documentation page looks as follows:

= Parallels® :'_Eu scriber PressHeads (Account ID: 3 = lazout
b= 1 Panel BNl IR (1A R Flesk Domain (Linus) (mysite. hosting.myhspe,com) I0: 1

Home Statistics Users Applications Websites & Domains Mail Setup Account Help and Support

Help and Support =

Documentation L Request support @ Help Jff Up Level

This screen lets you access user's docurentaion,

iy custom content is placed here.

The documentation is in the Adobe Acrobat format. Please right-click on the link below and save this document locally,

[#}Parallels Business sutornation - Standard Subscriber’s Guide
The document 1= intended for the customers who have purchased hosting services in Provider’s or Reseller’s Parallels Business sutomation - standard-based
online stares and describes the tasks [excluding Plesk domains management] a customer can perform in Parallels Business Automation - Standard Control Panel,
Plesk domain administration is described in a separate guide.

[}Plesk sdministrator's shanual
The Plesk ariginal manual is intended for customers who have purchased the Plesk Hosting Plans in the Parallels Business Automation - Standard online stare.

Example 2: Hide the Request Subscription Termination link from the subscription details screen.

1. Discover the screen ID (on page 183). Subscription details screen ID is 01.04.18.14.01.
2. Place the customization module to the custom directory:
/var/opt/hspc-root/custom/screen/01_04_18 14 01.pm

User Interface Customization 189

3. Add the following code to the customization module:
package HSPC::Custom::Screen::01_04 18 14 01;

use strict;
use HSPC::Custom::Screen;
use Data: :Dumper;

sub customize

{
my ($stream) = @ ;
warn Dumper (\%ENV) ;

$stream =~ s/<td(-*)request_subscr_termination(-*)<\/td>//g;
return $stream;
}#/customize

1;

4. Save the changes to customization module and restart hspcd to apply customization (see
item 4 from Example 1).

The customized screen will look as follows:

; Parallels® er Leroy Anderson (Account ID: 2
&= 1 Panel = ORATOERR i sl daching fum hosting. myhspe. com) I0: &

Home System Account Help and Support

Account = Subscriptions -

vm. hOSting. thSpC.Com % Request Support % Refresh @ Help o Up Level

Sumrnary

This screen shows the most general settings of the subscription vou have selected. Here you can adjust the subscription renewal settings, upgrade hosting plan, ar
request subscription termination.

#=Subscription

Subscription He EdGenerate Renewal Order

Subscription status 3 Active EJRenewal Settings

Hosting plan wirtual Machine Edchange Plan

Hosting plan type Wirtual bachine Here used ta be 'Request Subscription Termination' link
Trial subscription x

Renewal order generation Generate renewal orders automatically, |

agree that renewal orders are to be paid
automatically by ry pavment methods
selected for recurring billing

Start date 0g-Jul-2011

Expiration date Of-Jul-2012

User Interface Customization 190

Customizing Help Bar in Control Panel

If needed, you can provide additional help for each screen of the Control Panels your customers
use. To this effect, log in to the Control Panel (your management node name with /cp tool iD)
using one of the logins of your Provider Account (as a staff member). In this case, at every
Control Panel screen (excluding dashboards) a special icon appears at the upper right corner of
the screen.

Click Help at the screen you want to add a help topic for. The pop-up window with the help bar
text appears. Type in the text and click the Update button.

Adding New Fields to Accounts
Registration Form

The set of fields used in customer or reseller accounts registration forms in Parallels Business
Automation - Standard graphical interface is composed with a glance to a typical and widely
used scope of data required for personal authorization. These fields allow entering not only an
account owner personal data, but also some specific attributes like VAT number. In some cases
it is needed to add more attributes to account registration forms.

The API described below allows adding custom attributes to accounts, which results in
appearance of new fields in accounts' registration forms. In Parallels Business Automation -
Standard, such an additional attributes are called extended attributes. Extended attributes can be
added not only to accounts, but also to documents and some other Parallels Business
Automation - Standard objects, but this requires a special API. In this document we describe
extended attributes usage in accounts, because this kind of customization is mostly in demand
among our customers.

Each extended attribute presents a specific data of a particular type (integer, boolean, string) and
particular access permissions to this data (read/write, read-only, no access). The type of data
defines the type of input field in account registration form (input field, checkbox, etc.).

The API provided allows specifying the type of account (or a particular account) a custom field
is to be added, set access permissions for this field (visible or not, editable or read-only).

The set of Accounting plug-ins shipped with Parallels Business Automation - Standard is the
example of extended attributes usage. In this case, extended attributes allow adding to accounts
profile the data required for Parallels Business Automation - Standard billing to match a
country-specific accounting.

The type of object an extended attribute is assigned to (provider account, reseller account,
customer account) must be passed on an extended attribute registration.

If needed, you can create a placeholder for a custom extended attribute (on page 205).

User Interface Customization 191

Extended Attributes Objects

Extended attributes are assigned to the following object types:

Provider account
Reseller account
Customer account

The types of objects an extended attribute is assigned is to be passed during an extended
attribute registration in Parallels Business Automation - Standard.

Custom Extended Attribute Code Samples

An extended attribute module creates and registers an attribute. Web presentation is
automatically provided by the other Parallels Business Automation - Standard modules as soon
as an attribute is registered. There is no need to change the Components Repository
configuration file since no new screens are added.

The following parameters are used in an extended attribute module:

vendor_id - ID of the account that adds an extended attribute.

name - extended attribute internal name assigned in Parallels Business Automation -
Standard. This name is used to find an attribute.

title_id -thestring ID, i.e., an extended attribute name to be shown on the screen. The
string must be added to strings.xml file (on page 206) and then the string ID specified
there must ne used in extended attribute module.

base_type - the type of extended attribute value:

= HSPC::Core::Type::String -astring,

= HSPC::Core::Type::Int -an integer value,

» HSPC::Core::Type::Bool -aboolean value (yes/no).

vendor_data_access and customer_data_access - access permissions for
vendor and customer in web interface:

= SW_EXT_ATTR_RW_ACCESS - an attribute value can be viewed and edited from web
interface

= SW _EXT_ATTR_RO_ACCESS - an attribute value can be viewed only from web
interface

= SW _EXT_ATTR_NO_ACCESS - an attribute value cannot be viewed from web
interface and can be managed only internally.

User Interface Customization 192

= plugin_id - an extended attribute relation to an Accounting plug-in. The value of this
parameter must be O if this is a standalone attribute or corresponding Accounting plug-in ID
if an attribute is to be included into a particular Accounting plug-in.

= obj_types - the types of objects an extended attribute can be assigned:

Object Type

Object Name

Provider account

SW_OBJTYPE_CORE_HSP

Reseller account

SW_OBJTYPE_CM_RESELLER

Customer account

SW_OBJTYPE_AM_CUSTOMER

Virtuozzo Container Subscription

SW_OBJTYPE_BM_SUBSCR_VE

Domain Subscription

SW_OBJTYPE_BM_SUBSCR_DOMAIN

Virtuozzo Dedicated Node Subscription

SW_OBJTYPE_BM_SUBSCR_HW_VZ

Dedicated Server Subscription

SW_OBJTYPE_BM_SUBSCR_HW_GENERIC

Dedicated Plesk Server Subscription

SW_OBJTYPE_BM_SUBSCR_HW_PLESK

Plesk Domain Subscription

SW_OBJTYPE_BM_SUBSCR_PLESK_SHARED

Plesk Client Subscription

SW_OBJTYPE_BM_SUBSCR_PLESK_CLIENT

Plesk Virtual Node Subscription

SW_OBJTYPE_BM_SUBSCR_VE_PLESK

Miscellaneous Subscription

SW_OBJTYPE_BM_SUBSCR_MISC

Example 1 Creates the extended attribute named app_logins2 of string type, both
visible/editable from web interface for provider and read-only for customers.

#1/usr/bin/perl

use strict;

use HSPC::MT::Core::ExtAttrFactory;

use HSPC::MT::Core::ExtAttrType;

use HSPC::MT::Core::Constants qw(SW_HSP SW_HSP_ID SW_OBJTYPE_CORE_HSP
SW_OBJTYPE_CM_RESELLER SW_OBJTYPE_AM_CUSTOMER SW_OBJTYPE_BM_SUBSCR_VE

SW_OBJTYPE_BM__]
SW_OBJTYPE_BM_SUBSCR_
SW_OBJTYPE_BM N

SUBSCR_DOMAIN SW_OBJTYPE_BM_SUBSCR_HW_VZ
HW_GENERIC SW_OBJTYPE_BM_SUBSCR_HW_PLESK
SUBSCR_PLESK_SHARED SW_OBJTYPE_BM_SUBSCR_PLESK_CLIENT

SW_OBJTYPE_BM_SUBSCR_VE_PLESK SW_OBJTYPE_BM_SUBSCR_MISC SW_EXT_ATTR_RW_ACCESS
SW_EXT_ATTR_NO_ACCESS SW_EXT_ATTR_RO_ACCESS);

my $ext_attr_type =

HSPC: :MT: :Core: :ExtAttrFactory->find_ext_attr_type_ by name(

vendor_id => 1,
name => "app_logins2°*,

uﬁless($ext_attr_type) {

$ext_attr_type = HSPC::MT::Core::ExtAttrType->new();
$ext_attr_type->name("app_logins2®); ## internal unique name
$ext_attr_type->title_id("app_logins2®); ## string_id to show in web

interface

$ext_attr_type->base_ type("HSPC::Core::Type::String");

User Interface Customization 193

$ext_attr_type->plugin_id(0);
$ext_attr_type->vendor_id(1);

by

$ext_attr_type->vendor_data_access(SW_EXT_ATTR_RW_ACCESS);
$ext_attr_type->customer_data_access(SW_EXT _ATTR_NO_ACCESS);
$ext_attr_type->obj types([

map ({"obj_type® =>$ }, (

&SW_OBJTYPE_CORE_HSP,

&SW_OBJTYPE_CM_RESELLER,

&SW_OBJTYPE_AM_CUSTOMER

)

)

1):;

$ext_attr_type->save();

Example 2 Creates the extended attribute named app_logins2 of string type, with pre-set
value 'new value of app_logins2 attribute’. The attribute is assigned to a particular account with
ID 4, visible from web interface and read-only for provider and customer.

#1/usr/bin/perl

use strict;

use HSPC::MT::Core::ExtAttrFactory;

use HSPC::MT::Core::Constants qw(
SW_OBJTYPE_AM_CUSTOMER

);

my $ext _attr = HSPC::MT::Core: :ExtAttrFactory->find_ext_attr(
obj type => SW_OBJTYPE_AM_CUSTOMER,
obj id => 4, ## account_no of customer
name => "app_logins2*©
s
if ($ext_attr) {
print "Old value: ". $ext_attr->value obj->value()-"\n";
$ext_attr->value_obj->set value("new value of app_logins2 attribute®);
print "New value: ". $ext _attr->value_obj->value()-"\n";
$ext_attr->save();

User Interface Customization 194

Extending E-Mail Notification
Templates

Placeholders are special expressions used in Parallels Business Automation - Standard in e-mail
notification templates and print forms.

Having been inserted in the addressee fields or a message template text, a placeholder
automatically drops appropriate value to the actual text generated.

Parallels Business Automation - Standard offers a wide range of placeholders, but if you think
you need new ones, you can add them using the API provided.

Note: To replace or customize an existing placeholder, create a placeholder with the same name.
To restore the default placeholder, remove a custom one.

Placeholders can be used for a single value insertion (customer name or a hosting plan name) or
for inserting a table with an order or other documents details (vector placeholders). You can add
placeholders of both types.

User Interface Customization 195

Placeholder Creation Tools

To create custom placeholders, it is necessary to add a definition of a custom placeholder into

the file:

/var/opt/hspc-root/custom/EV/PlaceHolder.pm

This file contains a hash:

PLACEHOLDERS=>{
}:

To add new placeholder, add a placeholder key into this hash and a function below the hash.

A placeholder key has the following structure:

customer .newplaceholdername=>{
method=>phmethodname,

explain_id=>"new_placeholder",

is_vector=>1]0,

obj type_ id=>"HSPC::MT: :Core: :Customer”,

def _value=>
attrs=>[

{attribute=>"attr_name-",

ph_type=>0-6,

align=>1-3,
length=>10,

explain=>"1ts
def value=>"Default
col _name=>"Colname

}
}s

value of .-
value”
intable”

The table below explains every string in a placeholder key:

Placeholder Key Text

Description

customer.newplaceholdername=>{

A placeholder name as it will be displayed in
Parallels Business Automation - Standard
interface. The first word before a dot is the name
of object a placeholder will be used for. The
second word after a dot is the placeholder key,
similarly to printable forms key, it is used to
distinguish placeholders created for the same
object.

Note: In this example, the placeholder is to
be added for the object customer. In the
actual code, you must replace the word
customer with the object name you are
creating a placeholder for. The object types
that can be used are enlisted at the end of this
section.

User Interface Customization 196

method=>phmethodname, The call of a function that defines what a
placeholder must insert into a text. In this
example, the function name is phmethodname.
The function itself must be added into the
PlaceHolder . pm file below the hash.

explain_id=>"new_placeholder", A placeholder description shown in the interface.
A placeholder description text is specified using a
string ID. In this case, this string ID must be
correctly specified in the strings.xml file located
in a Language Pack customization directory (on
page 206). In this example, the string ID is
new_placeholder.

is_vector=>1|0, Is it a vector a placeholder (1) or not (0). A
placeholder inserts some text or a value into the
text. Vector placeholders insert a block of data
into the text, like order or invoice itemization.
Thus, vector placeholders often have additional
attributes. We describe these attributes later (see
the attrs parameter description)

obj_type_id=>'HSPC::MT::Core::Customer’, The class a placeholder belongs to. A class
defines a particular object subtype (for example,
type of an account) a placeholder will be available
for. For example, you can create a placeholder
available for all customers (specify the parent
class HSPC::MT::Core::AbstractAccount) or for
customer accounts only
(HSPC::MT::Core::Customer), or for resellers
only (HSPC::MT::Core::Reseller). For the
detailed description of classes and objects relation
please refer to the table at the end of this section.

def_value=> The default value for a scalar placeholder. Default
value is needed for testing, to provide a value that
a placeholder inserts into a text.

attrs=>[This string and all the strings below are to be
added ONLY if you are adding a vector
placeholder and this placeholder has additional
attributes. Each attribute is described by a
separate parameters block in

{attribute=>"attr_name’, The name of a vector placeholder attribute. In this
example the name is attr_name. Replace it with
the name you need.

ph_type=>0, The type of an attribute value format: You can
refer to HSPC::MT::EV::TmplParse. Replace 0 in
our example with one of formats (a digit from 0 to
6). Shortly, format types are:

= 0-none.
= 1 -integer value.
= 2 -non-integer value with fractional part.

= 3 - money (short currency name will be
added)

= 4 - money (long currency name will be
added)

User Interface Customization 197

= 5 -time period (show time period in days
or months or years)

= 6 - date format.
= 7 -add a percent sign.
= 8- adjust data size (Kb into Mb, Mb into

Gb, etc)
align=>1, A table column alignment (in our example. left
alignment is used):
= 1-left.
= 2 -center.
= 3-right.
length=>10, Column width in characters. In this example it is

10 characters.

explain=>"The value of', Placeholder attribute short description shown in
interface. In this example, the description is The
value of .

def_value=>'Default value', This is an optional parameter that allows filling a

table in the message preview with some values. In
this example the default value is Default value. If
you do not want to use default values, skip this
parameter.

col_name=>'Colname in table', The name of column in the table where an
attribute value is displayed.

User Interface Customization 198

The function is like:

sub phmethodname {
my $account = shift;
retu rn $ph_value;
¥

Parallels Business Automation - Standard Objects You Can Create Placeholders For:

= 0s_template - Virtuozzo OS template

= template - Virtuozzo application template

= statement - statement

= invoice - invoice (debit or credit)

= payment - payment (online or offline) or a credit adjustment
= order - order

= subscription - subscription

= hp - hosting plan

= translog - transaction

= provider - provider or reseller

= customer - customer or reseller (as provider's customer)

= person - a registered person (assigned to an account or not)
= domain - domain

= store - HSP store

= providerconfig - provider configuration

= license - sellable license

= hnlicense - Parallels Virtuozzo Containers license

= mnlicense - Parallels Business Automation - Standard license
= plesklicense - Plesk license

= campaign - marketing campaign

» ds - dedicated server

= hw - hardware node

= traffclass - traffic class

= ve - Virtuozzo Container

= ticket - trouble ticket

= ticket_ev - trouble ticket event

Obiject defines the general object type a placeholder is available for (for example, subscription

or payment). And a class allows to filter a placeholder availability down to a particular type of
object.

For example, in the Control Center > Configuration Director > Event Manager > Events when you
create an e-mail notification for an event that involves a subscription object, you can select
whether to add an action (notification in this case) for all subscription types or for a particular
subscription type.

User Interface Customization 199

If you add an action just for Subscription (i.e., all subscriptions), you will see placeholders
available for the HSPC::MT::Billing::Subscription_base class. And if you add an action for a
particular subscription type (domain, for example), you will see placeholders available both for
the HSPC::MT::Billing::Subscription_base class and some additional placeholders available for
domain subscriptions, i.e., for HSPC::MT::Billing::Subscription_domain class only.

Thus, for notifications created for each type of subscription you can use a basic placeholders set
and a specific placeholders that are not available for subscriptions of the other types.

Parallels Business Automation - Standard Classes and Objects Relation:

Class Object Particular object(s)
Name Name a placeholder
is available for use in
notifications

HSPC::MT::AD::0OSTemplate os_template All Virtuozzo (O]
templates
HSPC::MT::AD::Template template All Virtuozzo application
templates.
HSPC::MT::Billing::Ar_statement statement Statements
HSPC::MT::Billing::Bill invoice Invoices
HSPC::MT::Billing::Payment payment All payments types, credit
invoices, and credit
adjustments
HSPC::MT::Billing::CreditAdjustment payment Credit adjustments
HSPC::MT::Billing::CreditInvoice payment Credit invoices
HSPC::MT::Billing::OffLinePayment payment Offline payments
HSPC::MT::Billing::OnLinePayment payment Online payments
HSPC::MT::Billing::Order order All orders for all types of

subscriptions and one-
time fee orders.

HSPC::MT::Billing::Order_dm order Domain subscription
orders

HSPC::MT::Billing::Order_hw_generic order

HSPC::MT::Billing::Order_hw_vz order

HSPC::MT::Billing::Order_misc order Miscellaneous
subscriptions orders

HSPC::MT::Billing::Order_onetime order One-time fee orders

HSPC::MT::Billing::Order_ve order Virtuozzo Container
subscription orders.

HSPC::MT::Billing::Order_ve_pleskserver order Plesk Virtual Node

subscription orders.

HSPC::MT::Billing::Subscription_base subscription All types of subscriptions.

User Interface Customization 200

HSPC::MT::Billing::Subscription_domain subscription Domain subscription only
HSPC::MT::Billing::Subscription_hw_generic subscription
HSPC::MT::Billing::Subscription_hw_vz subscription
HSPC::MT::Billing::Subscription_misc subscription Miscellaneous

subscriptions only.
HSPC::MT::Billing::Subscription_ve subscription Virtuozzo Container

subscriptions only.
HSPC::MT::Billing::Subscr_ve_pleskserver subscription Plesk Virtual Node

subscriptions only.

HSPC::MT::BM::HP hp All types of hosting plans.
HSPC::MT::BM::HP::DMGen hp Domain registration
hosting plans.
HSPC::MT::BM::HP::DSGen hp Dedicated server hosting
plans.
HSPC::MT::BM::HP::HNVZ hp Dedicated Virtuozzo node
hosting plans.
HSPC::MT::BM::HP::MiscGen hp Miscellaneous hosting
plans.
HSPC::MT::BM::HP::PleskClient hp Plesk Client hosting
plans.
HSPC::MT::BM::HP::PleskDomain hp Plesk Domain hosting
plans.
HSPC::MT::BM::HP::PleskServer hp Dedicated Plesk node
hosting plans.
HSPC::MT::BM::HP::VEGen hp Virtuozzo Container
hosting plans.
HSPC::MT::BM::HP::VEPleskHN hp Plesk Virtual Node
hosting plans.
HSPC::MT::BM::Order::PleskClient order Orders on Plesk Client.
HSPC::MT::BM::Order::PleskDomain order Orders on Plesk Domain.
HSPC::MT::BM::Order::PleskServer order Orders on Plesk
Dedicated Node.
HSPC::MT::BM::Subscription::PleskClientSubscription | subscription Plesk Client
subscriptions.
HSPC::MT::BM::Subscription::PleskDomainSubscripti | subscription Plesk Domain

on

subscriptions.

HSPC::MT::BM::Subscription::PleskServerSubscription

subscription

Plesk Dedicated Node
subscriptions.

HSPC::MT::CCP::TransLog

translog

All transactions (both
credit card and bank
transfer).

User Interface Customization

201

HSPC::MT::Core::AbstractAccount

customer

All accounts (both
customer and reseller).

HSPC::MT::Core::Reseller

customer if

Reseller account.

reseller is
considered as
provider's
customer, or
provider is
reseller is
considered as
customer's
vendor
HSPC::MT::Core::HSP provider HSP provider
HSPC::MT::Core::Customer customer Customer accounts only.
HSPC::MT::Core::Person person Persons registered in
Parallels Business
Automation - Standard.
HSPC::MT::Core::Reseller customer Reseller accounts only.
HSPC::MT::DM::Domain domain Domains.
HSPC::MT::EM::Store store Store.
HSPC::MT::GM::ProviderConfig providerconfig | Provider configuration.
HSPC::MT::LM::AbstractLicense license All types of licenses.
HSPC::MT::.LM::HN hnlicense Parallels Virtuozzo
Containers licenses only.
HSPC::MT::LM::MN mnlicense Parallels Business
Automation - Standard
licenses only.
HSPC::MT::LM::Plesk plesklicense Plesk licenses only.
HSPC::MT::MM::Campaign campaign Marketing campaigns.
HSPC::MT::OM::DS ds Dedicated servers.
HSPC::MT::OM::HN hw Hardware Nodes.
HSPC::MT::OM::TraffClass traffclass Traffic classes.
HSPC::MT::OM::VE ve Virtuozzo Containers.
HSPC::MT::PP::BT::TransLog translog Bank transfer transactions

only.

User Interface Customization

202

HSPC::MT::PP::TransLog translog Credit card transactions
only.

HSPC::MT::UM::TS::Ticket ticket Trouble tickets.

HSPC::MT::UM::TS::TicketEvent ticket_ev Trouble ticket events (like

"Ticket was rejected by
Mail Gate" etc.).

Custom Placeholders Samples

Below is the example of the PlaceHolder.pm file that contains two customized

placeholders:

= A placeholder that inserts a customer administrative contact name.

Customization:

Placeholder calls the cname function and adds the custom string both before and after a
placeholder value. In preview it will look like custom name! custom, where namel is
the default value of placeholder used for preview only.

= A vector placeholder that inserts a table with an invoice details.

Customization:

Placeholder calls the ctable function and adds a row named Custom Service to the

table.

User Interface Customization 203

Important: A placeholder description shown in the graphical interface is defined using the
string ID via the explain_id parameter. In this case, the string ID must be correctly specified
in the strings.xml file located in the Language Pack customization directory (on page 206). In
the examples below,

package HSPC::Custom::EV::PlaceHolder;

use constant PLACEHOLDERS=>{
"customer.admin_name"=>{
method=>"cname",

ph_type=>0,

is_vector=>0,

def_value=>"name!”,

obj type i1d=>"HSPC::MT::Core: :AbstractAccount”,
explain_id=>"my_placeholder""

},

"invoice.doc_det"=>{
method=>"ctable”,ph_type=>0,
is_vector=>1,
explain_id=>"my_vector_placeholder™,
obj type id=>"HSPC::MT::Billing::Bill",
attrs=>[

{

attribute=>"comment”,

ph_type=>0,

align=>1,

length=>25,

col_name=>"CustName",
explain_id=>"my_custom_string",
def_value=>"Value®,

3.

attribute=>"amount"”,

ph_type=>3,

align=>2,

length=>5,

col_name=>"Total",
explain_id=>"ev_ph_invoice_doc_det_amount,
def_value=>"12",

3,

{

attribute=>"discount”,

ph_type=>7,

align=>2,

length=>8,

col_name=>"Discount”,
explain_id=>"ev_ph_invoice_doc_det_discount™,
def_value=>"10",

3.

attribute=>"duration”,
ph_type=>0,

align=>2,

length=>11,
explain_id=>"ev_ph_invoice_doc_det_duration™,
col_name=>"Duration’,
def _value=>"1 Month",
3

{
attribute=>"quantity",
ph_type=>0,

align=>2,

length=>8,
col_name=>"Quantity",

User Interface Customization 204

explain_id=>"ev_ph_invoice_doc_det_quantity",
def _value=>"4",

3

{

attribute=>"rate",

ph_type=>4,

align=>2,

length=>7,
explain_id=>"ev_ph_invoice_doc_det_rate",
col_name=>"Price",

def_value=>"2",

3.

attribute=>"tax_amount”,
ph_type=>3,

align=>2,

length=>5,
explain_id=>"tax_amount_uc",
col_name=>"Tax Amount",
def_value=>"7",

3.

attribute=>"tax_rate",
ph_type=>7,

align=>2,

length=>5,
explain_id=>"tax_rate_uc",
col_name=>"Tax Rate",
def_value=>"10%",

3.

{

attribute=>"unit",
ph_type=>0,

align=>2,

length=>5,
explain_id=>"ev_ph_invoice_doc_det_unit",
col_name=>"Units",
def_value=>"MB",

}

1

}
}i##

sub cname {
my $acc = shift;
return "custom ".$acc->admin_name()." custom";

}

sub ctable {

my $bill = shift;

my $r = $bill->get_ar_doc_details_print();

push @{$r},{comment=>"Custom Service", quantity=>10,
unit=>"units”,rate=>"myrate” ,duration=>"10", discount=>10, amount=>5};
return $r;

}

1;

Note: The comment attribute of a vector placeholder serves for showing the name of a billed
item. For example, an application name or domain registration.

User Interface Customization 205

Creating Placeholders for Custom Extended Attributes

If you have created a new extended attribute (on page 190) that allows adding some specific
data to an account profile, you can create a custom placeholder for this attribute and make it
possible to insert this additional data in e-mail notifications.

To create a placeholder for custom extended attribute, please place a placeholder key into the
/var/opt/hspc-root/custom/EV/PlaceHolder .pm
file as this described earlier in this guide (on page 195).

Important Notes on creating placeholders for custom extended attributes:

Objects a placeholder must be created for. Since custom extended attributes are created
for account objects (Provider, Reseller, or Customer), the object name a placeholder must be
created for can be either customer (a customer or a reseller as provider's customer) or
provider (provider or reseller as customer's vendor).

Extended attribute name to be specified: The only parameter to be passed to a placeholder
key is an extended attribute name defined in an extended attribute module by the name
parameter. In the extended attribute sample (on page 191) offered in this document we have
used the name custom _ext attribute. In the example below we create a custom
placeholder for this very attribute.

Placeholder type: Extended attributes have a single value, they are not presented as tables
(like order details, for example). Thus, placeholders for extended attributes must be not of a
vector type. Specify is_vector=>0 in the placeholder key. In addition, for non-vector
placeholder you do not need the attrs block in the placeholder key.

Example of placeholder for extended attribute (object type is customer):

PLACEHOLDERS=>{
customer .customextattribute=>{
method=>ext_attr,
explain=>"Placeholder for custom extended attribute”,
is_vector=>0,
obj type_ id=>"HSPC::MT::Core::Customer"”,
def value=>"test _value~

}

sub ext_attr {

my $account = shift;

my $name = "custom_ext attribute”;

require HSPC::MT::Core: :ExtAttrFactory;

my $value = HSPC::MT::Core: :ExtAttrFactory->find_ext_attr(
obj type=>%account->obj type id(),

obj_id =>$%account->id(),

name =>$name

)
return $value;

}

User Interface Customization 206

Customizing Language Packs

Parallels Business Automation - Standard supports a number of interface languages. You can
know about language packs (http://www.parallels.com/en/products/hspcomplete/lp/) set and
download a language pack at the official Parallels website.

Below we describe how you can customize or add any localization string for any of the
language packs you use in Parallels Business Automation - Standard.

The same approach is used to add a new language pack. (on page 216)

Language packs can be customized using the XML strings.

Language Pack Customization Tools

At first, we tell how a language pack works and then describe how you can customize
localization strings.

How a Language Pack Works
A language pack strings are stored in XML files located at your Management Node.

Localization files directories

Localization files for each language pack are stored in a special directories, each set of files in a
separate directory. The common path for such directories is

/var/opt/hspc-root/i18n

and further, each language pack is stored in a separate directory named by the two-letter
language identification string in accordance with the ISO 639
(http://www.loc.gov/standards/iso639-2/php/code_list.php) language codes, so the directory

name is EN for the English language pack, DE - for the German one, etc. All the country-code
directory names should be in upper-case.

For example, the English language pack is stored in the
/var/opt/hspc-root/i118n/EN

directory. And the German language pack is stored in the
/var/opt/hspc-root/i18n/DE

directory, and so on.

Localization pack files

http://www.parallels.com/en/products/hspcomplete/lp/
http://www.loc.gov/standards/iso639-2/php/code_list.php

User Interface Customization 207

The localization files are always stored in directories described above. However, some files
containing localization strings come from a language pack and some do not. Let's puzzle it out.

Each language pack includes the following basic files:

= language.xml - the file that contains a language pack definition. Without definition, a
language pack does not work. This file consists of the standard tags and is required for each
language pack.

= strings.xml - the main localization file for a given language pack. Contains all
commonly used strings.

= ev_subject_xml - strings for e-mail notifications subject. These strings are used in
Event Manager.

= countries.xml - the default strings for countries' names.
= states_ca.xml - the default strings for Canadian states' names.
= states_us.xml - the default strings for US states' names.

Additional XML files in a localization directory that can be added not during a localization pack
installation, but by some other Parallels Business Automation - Standard modules, for example
during Control Panels or plug-ins installation:

= Plug-ins are shipped as a separate modules independent from Parallels Business Automation
- Standard functionality. Thus, localization strings for each plug-in are included into a plug-
in RPM. Localization for plug-ins in separate files named by plug-in names and other non-
commonly used modules. Localization file for pug-ins are included in a plug-in RPM.
Localization files for plug-ins appear in a language pack directory as soon as a plug-in is
installed. For example, file containing localization strings for eNom domain registration
plug-n is named hspc-plugin-dm-enom.xml.

= Commonly used strings for payment plug-ins in the hspc-pp . xml file.

= The cp_left_menu.xml file containing strings for the Control Panel left menu used for
Plesk subscriptions management. Since the Plesk original controls and options are used in

the Parallels Business Automation - Standard Control Panel when Plesk client or Plesk
domain subscriptions are managed, the special file for these strings localization is provided.

Note: When XML files containing localization for some language are added, a corresponding
directory named by a language two-letter code is created. However, this does not mean that
Parallels Business Automation - Standard will use this language as a localization pack, because
Parallels Business Automation - Standard 'does not know' about a language until a language
definition file is placed into a language pack directory.

Parallels Business Automation - Standard loads the localization files on startup and uses them in
accordance with personal interface settings of a user logged in to the Parallels Business
Automation - Standard.

What's in a localization file

User Interface Customization 208

Localization files are not encrypted, and represented in a native language encoding, so anyone
can see which string 1Ds and values are used in Parallels Business Automation - Standard.

For example the XML file containing strings for the Dummy plug-in looks like (in this example,
strings are shown in part, the missing ones are replaced with ...):

<?xml version="1.0" encoding="i1s0-8859-1"?>
<strings lang="en" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xxsi:noNamespaceSchemalLocation=""strings.xsd">

<string>

<id>dm_dummy_no_reglock</i1d>

<c>PCC | Domain Manager| Dummy plugin</c>

<val>Dummy plug-in doesn"t have the registrar lock operating ability.</val>
</string>

<string>

<id>dm_dummy</id>

<c>PCC | Domain Manager| Dummy plugin</c>
<val>Dummy</val>

</string>

<string>

<id>dm_dummy_mode_tr</id>

<c>PCC | Domain Manager| Dummy plugin</c>
<val>Domain lookup mode (for Transfer)</val>
</string>

<string>

<id>dm_dummy_mode</id>

<c>PCC | Domain Manager| Dummy plugin</c>
<val>Domain lookup mode (for Registration)</val>
</string>

</strings>

The <strings> tag opens and closes the localization file and has the following parameter:

= [ang - the required parameter specifying the language. The lang value is a two-letters lower-
case language identification, according to ISO 639. For example,

<strings lang="en" > for English localization.

The format for a localization string is the following (for example, we consider the English
localization):

String Description

<string> A string description starts.

<id>string_id</id> The <id> tag contains a string alphanumerical identifier (ID). The string-id
can be replaced with any combination of letters, digits, or underscores (A-
Z, a-z,0-9,). This must be the one line, without line breaks.

<c>comment</c> The <c> tag contains a free-form comment to a string. Letters, digits,
spaces and any other symbols can be used in a comment. This must be the
one line, without line breaks. Usually, a string comment is a path to a
component a string is used for, for example, PCC | Domain Manager |
Dummy plugin.

<val>string</val> This tag contains a string value, i.e., a text to be shown on the screen.

User Interface Customization 209

</string> A string description is finished.

How to Customize Localization Strings

Customized strings MUST be placed into a specially created directory called custom/i118n/
under the /var/opt/hspc-root/ directory. Then the directory named by a two-letter
language code (in upper-case) is to be added under the /var/opt/hspc-
root/custom/i118n/ directory. As you can see, the directories structure for customized
strings is similar to a basic language pack path, but for customization, the custom/ directory is
to be added.

Custom strings placed into a customization directory are not re-wrote during upgrade
installation. So, if you are adding a new language pack (as described later in this guide), it is
reasonable to add a language definition XML file into a basic directory, and then place the new
language pack files under a customization directory custom\, to protect a new language pack
from corrupting in case of upgrades installation.

The strings.xml files are the main localization files for any language pack. We recommend
to create the strings.xml file in the

Strings can be added by placing the strings.xml file containing new or customized strings
into the

/var/opt/hspc-root/custom/il8n/country _code/

directory (where the country_code must be replaced with the ISO 639 two-letter code of the
country you are customizing the language pack).

Note: You can create several files containing custom localization. For example, separate files
for plug-ins. However, custom strings containing in strings.xml have higher priority. Thus, you
can place custom strings for non-commonly used objects in strings.xml, one-by-one.

User Interface Customization 210

Language Pack Customization Sample

To customize a string, add a record with the same string ID into the customization file. To add a
new string, add a record with new string ID into the customization file.

For example, you want to customize the Dummy domain registration plug-in localization strings
for English language.

Open the /var/opt/hspc-root/i18n/EN/hspc-plugin-dm-dummy.xml file. You
can see all the strings used in Parallels Business Automation - Standard interface for this plug-
in:

<?xml version="1.0" encoding="i1so0-8859-1"?>

<strings lang="en" convert_to_utf="0"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xsi :noNamespaceSchemalLocation="'strings.xsd">

<string>

<id>dm_dummy_no_reglock</id>

<c>PCC | Domain Manager|] Dummy plugin</c>

<val>Dummy plug-in doesn®"t have the registrar lock operating ability.</val>
</string>

<string>

<id>dm_dummy</id>

<c>PCC | Domain Manager|] Dummy plugin</c>
<val>Dummy</val>

</string>

<string>

<id>dm_dummy_mode_tr</id>

<c>PCC | Domain Manager|] Dummy plugin</c>
<val>Domain lookup mode (for Transfer)</val>
</string>

<string>

<id>dm_dummy_mode</id>

<c>PCC | Domain Manager|] Dummy plugin</c>
<val>Domain lookup mode (for Registration)</val>
</string>

<string>

<id>dm_dummy_avai l</id>

<c>PCC | Domain Manager| Dummy plugin</c>
<val>Always available</val>

</string>

<string>

<id>dm_dummy_occ</id>

<c>PCC | Domain Manager| Dummy plugin</c>
<val>Always unavailable</val>

</string>

<string>

<id>dm_dummy_use_whois</id>

<c>PCC | Domain Manager| Dummy plugin</c>
<val>Check using whois server</val>
</string>

<string>

<id>dm_dummy_not_conf</id>

<c>PCC | Domain Manager| Dummy plugin</c>
<val>Not configured</val>

User Interface Customization 211

</string>

<string>

<id>dm_dummy_sup_reg</id>

<c>PCC | Domain Manager|] Dummy plugin</c>

<val>Always reject domains registration. Domains can be marked as "Registered”
only manually.</val>

</string>

<string>

<id>dm_dummy_sup_tr</id>

<c>PCC | Domain Manager| Dummy plugin</c>

<val>Always reject domains transfer. Domains can be marked as "Registered”
only manually.</val>

</string>

<string>

<id>dm_dummy_sup_ns_sync</id>

<c>PCC | Domain Manager| Dummy plugin</c>

<val>Always report error on NS synchronization. Name servers will never be
marked as "Synchronized with the Registrar®.</val>

</string>

<string>

<id>dm_dummy_common_error</id>

<c>PCC | Domain Manager|] Dummy plugin</c>

<val>Error occurred during the domain registration. Refer to the Action Log
for details</val>

</string>

<string>
<id>dm_dummy_err_cant_find_domain_with_id</id>
<c>PCC | Domain Manager| Dummy plugin</c>
<val>Cannot find domain "%domain_id%"</val>
</string>

<string>

<id>dm_dummy_err_suppressed_reg</id>

<c>PCC | Domain Manager| Dummy plugin</c>

<val>Domain registration via Dummy plug-in could not be completed. You should
turn off the "Always reject domains registration™ option in order to register
domain or mark it as "Registered” manually.</val>

</string>

<string>

<id>dm_dummy_err_suppressed_tr</id>

<c>PCC | Domain Manager|] Dummy plugin</c>

<val>Domain transfer via Dummy plug-in could not be completed. You should turn
off the "Always reject domains transfer'™ option in order to transfer domain or
mark it as "Registered” manually.</val>

</string>

<string>

<id>dm_dummy_err_suppressed_ns_sync</id>

<c>PCC | Domain Manager|] Dummy plugin</c>

<val>NS synchronization via Dummy plug-in could not be completed. You should
turn off the "Always report error on NS synchronization option™ in order to
mark name servers as "Synchronized with the Registrar®.</val>

</string>

</strings>

User Interface Customization 212

» To customize the domain registration error message (string ID is
dm_dummy_common_error) for example, as "Domain registration has failed. See Action
Log for details.":

1. Create a new file named strings.xml.
2. Copy the string into this new file and customize its value:

<?xml version="1.0" encoding="1s0-8859-1"?>

<strings lang="en" convert_to_utf="0" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="strings.xsd">

<string>

<id>dm_dummy_common_error</id>

<c>PCC | Domain Manager| Dummy plugin</c>

<val>Domain registration has failed. See Action Log for details.</val>

</string>

</strings>
3. Put the customization file strings . xml into the directory:
/var/opt/hspc-root/custom/il8n/EN/

4. Restart hspcd for changes to take effect:
/etc/init.d/hspcd restart

213

CHAPTER 5

Integration with External Helpdesk

Parallels Business Automation - Standard is integrated with external Helpdesks:

= Cerberus
= Kayako
In This Chapter
External HelPAesk API ...ttt sttt nae 213

External Helpdesk API

Parallels Business Automation - Standard interaction with external trouble ticket systems is
implemented via the SOAP protocol, using an open Application Programming Interface (API).

The Parallels Business Automation - Standard - External Helpdesk integration is implemented
as two modules:

= Parallels Business Automation - Standard side module (SOAP client) built in Parallels
Business Automation - Standard. The Parallels Business Automation - Standard side module
is common for all Helpdesk systems.

= Helpdesk-side module (SOAP server) must be placed to a Helpdesk SOAP server.

Messages are sent from the Parallels Business Automation - Standard side module to an external
Helpdesk as SOAP envelopes. SOAP is an open protocol and thus, no secret data is passed.
However, each envelope is protected with a security HTTP header generated using the secret
phrase set by you to prevent intrusions and fake envelopes from unauthorized sources.

If you would like to use secure HTTP protocol for communication between Parallels Business
Automation - Standard and an external Helpdesk server, you can enable SSL for Helpdesk-side
module only. Please, refer to the SOAP:Lite documentation available from CPAN
(http://www.cpan.org/) for detailed instructions on enabling the Parallels Business Automation -
Standard side SOAP::Lite to support SSL.

Note: The Crypt::SSLeay module is included in Parallels Business Automation - Standard
distribution.

External HelpDesk side module - SOAP server

greet()

Function checks if required tables exist and creates them if needed, i.e. performs initial
installation, if it hasn't been done yet.

http://www.cpan.org/

Integration with External Helpdesk 214

Returns identification string of HelpDesk system for displaying in Parallels Business
Automation - Standard Control Centers.

alter_contacts(contacts)

Function retrieves data required to alter records in HelpDesk database from a person
contacts structure that contains the following fields:

id (person ID in Parallels Business Automation - Standard)
email

prefix

first _name

insertion

middle_name

last _name

suffix

accounts (comma separated list of person's account names)

HelpDesk side must check each record in respect to its conformity with its internal Parallels
Business Automation - Standard to HelpDesk mapping to define whether to insert a new
record or update an existing one.

Returns the number of altered records.
list_contacts()

Function returns all records from HelpDesk database mapped from Parallels Business
Automation - Standard database as an array of Parallels Business Automation - Standard

record IDs.
Returns list of IDs already synchronized with Parallels Business Automation - Standard.

init_session(id, ip, act)

Function initializes new session for account identified by Parallels Business Automation -
Standard ID §d and visitor's IP address ip (e.g. for protecting a session) and action code
act (could be add for ticket creation page or st for tickets list) and returns session
URL which is either HelpDesk native URL for processing session or additional HelpDesk-
specific module shipped with Parallels Business Automation - Standard. Thus, pointing user
to this URL guarantees transparent login to page according to action code.

Returns redirection URL for logging in to an External Helpdesk from Parallels Business
Automation - Standard Control Panels.

Integration with External Helpdesk 215

Parallels Business Automation - Standard side - SOAP client

According to SOAP server design, SOAP client doesn't depend on HelpDesk type and relies on
common configuration options for all HelpDesk types.

Security

Security of communication is guaranteed using the following technique:

= HelpDesk side: HTTP-header Secur ity is checked for validity against MD5 (hex) digest
of envelope plus HSPC_SECRET concatenation, and connection is accepted only on
positive check.

= Parallels Business Automation - Standard side includes HSPC_ SECRET option on
HelpDesk plug-in setup page (in Provider (or Reseller) Control Center Support Manager -
Setup). Provider must set HSPC_SECRET to the same value for both Parallels Business
Automation - Standard and HelpDesk sides. Parallels Business Automation - Standard side:
each SOAP envelope is concatenated with HSPC_SECRET to produce a base for Security
HTTP-header, which is MD5 (hex) digest of this concatenation:

$header = md5_hex($envelope . $HSPC_SECRET)

Thus, no intruder could send fake SOAP requests without knowing HSPC_SECRET. Besides,
scheme implementation is too easy to be impossible for almost any language.

Sample

The sample Kayako SupportSuite HelpDesk side module shipped with Parallels Business
Automation - Standard is located in samples/external_helpdesk directory.

216

CHAPTER 6

Adding New Language Pack

This chapter outlines the rules and standards applied to translation of Parallels Business
Automation - Standard interface, help files and other materials.

Following our instructions you can add a new language pack.

In This Chapter
Parallels Business Automation - Standard Translation Capabilities..........ccccccocveveiicnnnne. 217
Preparing Directories and Files for New Language Packc.ccccccveveveiiveveviccicse s 218

Translating INTEITACEcovi it 219

Adding New Language Pack 217

Parallels Business Automation -
Standard Translation Capabilities

Parallels Business Automation - Standard can be completely translated into another language.
Translation process consists of two main steps - "Translation of Interface™ and "Translation of
Help files".

Translation of interface includes:

= translation of labels and messages shown in the interface;

= translation of e-mail notifications subject templates;

= translation of tool-tips shown for menu items in the Control Panel;

= translation of onscreen hints shown on each page in the Control Panel.

Translation of help files includes:

= translation of help pages shown in the pop-up windows in the Control Panel;

= translation of PDF guides;

= translation of help pages shown in the online HTML help in Provider and Reseller Control
Centers.

The basics of language pack management as well as both files and directories structure are
described earlier in this guide (on page 206). Please read this subsection.

Important: Custom strings placed into a customization directory are not re-wrote during
upgrade installation. So, if you are adding a new language pack (as described later in this
guide), it is reasonable to add a language definition XML file and empty basic XML files into a
language pack basic directory, and then place the new language pack files into a customization
directory, to protect a new language pack from corrupting in case of upgrades installation.

Each language is identified by 2-letter identification string (e.g., the English language
corresponds to the “en” string). This string is widely used in the Parallels Business Automation -
Standard database, in names of the directories where translation files are located, etc. Please
refer to the ISO 639 (http://www.loc.gov/standards/iso639-2/php/code_list.php) regarding
correct 2-letter language codes.

http://www.loc.gov/standards/iso639-2/php/code_list.php

Adding New Language Pack 218

Preparing Directories and Files for
New Language Pack

A language pack directory structure and basic files are described in details earlier in this guide,
in the subsection telling about existing language packs customization (on page 206). Please read
this subsection, it will help you to understand how a language pack works.

» To prepare the place for a new language pack:

1. Create the directory for new language pack. For example, to create directory for Chinese
localization, the following directory is to be created at the server that runs Parallels Business
Automation - Standard:

/var/opt/hspc-root/i118n/ZH
2. Create language pack files in this directory:

= language.xml - the file that contains a language pack definition. Without a definition, a
language pack does not work. This file consists of the standard tags and is required for each
language pack. You can copy the language.xml file from any other language pack and edit
this file.

= strings.xml - the main localization file for a given language pack. Contains all
commonly used strings.

= ev_subject._xml - strings for e-mail notifications subject. These strings are used in
Event Manager.

= countries.xml - the default strings for countries' names.
» states_ca.xml - the default strings for Canadian states' names.
= states_us.xml - the default strings for US states' names.

1. Edit the language.xml file. The tags used in this file are described in the Example (on page
221).

2. Edit the other language pack files. Insert the XML header and the <strings> tag (in this
sample, we follow our example with Chinese language and assign zh value to the lang
parameter). Please specify the needed language code:

<?xml version="1.0" encoding="i1so0-8859-1"?>

<strings lang="zh" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Xxsi:noNamespaceSchemalLocation=""strings.xsd">

</strings>
Important: Now you can start adding strings localization definitions. You can copy-paste
them from the English files and translate strings' values. However, if the same language
pack will be available with future Parallels Business Automation - Standard releases, your
localization will be re-written during upgrade installation. To ensure that your localization
will stay in place after upgrades installation, it is better to store the strings in a
customization directory

/var/opt/hspc-root/custom/i18n/country_code/

In this case, your language pack strings will be considered as customization and thus, they
will be not touched in case of upgrades.

Adding New Language Pack 219

» To protect your localization from re-writing after upgrades installation:

1.

4.

Leave the language definition file language .xml in the language pack directory. Leave
the empty localization files (prepared as described above, item 4) in the language pack
directory.

Create the customization directory (let us go on with our example - Chinese language):
/var/opt/hspc-root/custom/i18n/ZH

Copy the localization files except for the language definition file language . xml into this
customization directory.

Add strings' definitions into files stored in the customization directory.

The format for a localization string is the following:

String Description

<string> A string description starts.

<id>string_id</id> The <id> tag contains a string alphanumerical identifier (ID). The string-id
can be replaced with any combination of letters, digits, or underscores (A-
Z, a-z, 0-9,). This must be the one line, without line breaks.

<c>comment</c> The <c> tag contains a free-form comment to a string. Letters, digits,
spaces and any other symbols can be used in a comment. This must be the
one line, without line breaks.

<val>string</val> This tag contains a string value, i.e., a text to be shown on the screen.

</string> A string description finished.

Translating Interface

You can translate all the Parallels Business Automation - Standard interface elements including:

General labels, i.e., everything that composes the static screens content (hames of fields,
textboxes, menus, option buttons, list titles, etc.)

Messages, i.e., all the system messages and warnings that appear on Parallels Business
Automation - Standard screens.

ToolTips, i.e., descriptive information displayed in popup boxes when you hover the mouse
pointer over links, images, or other screen elements.

Onscreen hints that can be shown on each screen in the Control Panel.

Adding New Language Pack 220

Translating General Labels and Messages

Below we describe how to translate the Parallels Business Automation - Standard general
localization. In general, the translation consists of the following steps:

= Place a new XML file containing strings for a new language pack into a special directory.

= Prepare for a new language presentation in the Parallels Business Automation - Standard
interface:

Add a string containing a language name into the language localization file. This allows
selecting a new language via the Parallels Business Automation - Standard web-based
interface.

Specify a new language by adding a new language definition file.

Adding New Language Pack 221

Adding a new Translation

As a translation source, we recommend to use the English files, because the English localization
in Parallels Business Automation - Standard is the basic and thus, it is the most full one.

We describe the procedure of a new language pack addition using the example. For example, let
us consider how to translate the Parallels Business Automation - Standard interface into the
Chinese language.

Create a special directory for a new localization

First of all, create a separate subdirectory to store a new localization file. Create a new directory
named by a corresponding two-letter country code (upper-case), in our example with Chinese
language, the directory must be named ZH:

/var/opt/hspc-root/i118n/ZH

Save the translated XML files (strings.xml, countries.xml, states_ca.xml, and states_us.xml into
the newly created directory (for Chinese, /var/opt/hspc-root/il8n/ZH).

Edit the language definition

The language definition is a special file located in the
/var/opt/hspc-root/il8n/<Language_code>/language.xml
file.

The language definition makes a language available for Parallels Business Automation -
Standard interface. Namely, a language can be selected as a personal setting, as a default
language, and as a personal notifications language.

For example, for the French language:

<language id="fr" title="French" ready="1">
<title_id>lang_fr_uc</title_id>
<flag_icon_id>flag_fr</flag_icon_id>
<charset>i1s0-8859-1</charset>
<utf8_map>1S0_8859-1</utf8_map>
<dateformat>%d-%b-%Y</dateformat>
<datetimeformat>%d-%b-%Y, %H:%M</datetimeformat>
<timeformat>%H:%M</timeformat>
<posixlocale>fr_FR.1S0-8859-1</posixlocale>
</language>

To add a language definition, just add the special strings block into the language -xml file
and place this file into the language pack directory. Since string blocks are almost similar, you
can copy and paste any of the language definition blocks and then edit it to match a particular
language.

Below we consider our example with Chinese language.

String Description

Adding New Language Pack 222

<language id="zh" title="Chinese" ready="1">

The tag that opens a language definition block.

Change the id value into the corresponding two-letter
country code, lower-case. In out example, the id must be
"zh" for China.

<title_id>lang_zh_uc</title_id>

The <title_id> tag contains the ID of the localization
string in the corresponding strings.xml file. Please. make
sure that the strings.xml for Chinese language contains
the string (if needed, correct the string 1D:

<string>
<id>lang_zh_uc</id>

<c>interface language name</c>

<zh>':':l j{</zh>

</string>

<flag_icon_id>flag_zh</flag_icon_id>

The language flag icon ID. To use this option, please,
contact your vendor.

<charset>is0-8859-1</charset>

The default character set used for a language.

<utf8_map>1SO_8859-1</utf8_map>

The special charset option for UTF-8.

<dateformat>%d-%b-%Y </dateformat>

The format the date is shown in the interface.

Adding New Language Pack 223

<datetimeformat>%d-%b-%Y,
%H:%M</datetimeformat>

The format the date-time is shown in the interface.

<timeformat>%H:%M</timeformat>

The format the time is shown in the interface.

<posixlocale>zh_ZH.1SO-8859-1</posixlocale>

Posix locale for a language.

</language>

The language definition block closed.

Finally, restart web server at your Management Node to load the newly added language:

Now restart web server, so Parallels Business Automation - Standard will load newly created

localization file.
/etc/init.d/hspcd restart

Please make the new language available. To this effect log in to the Provider Control Center and
go to the System Director - Configuration Manager - Interface Settings.

Now you will see the new language in the drop-down menu on the login form. Please select this
new language to see all your changes in the interface translation immediately after you logging
in to the Parallels Business Automation - Standard tools.

When you translate new strings, please do not forget to restart the web server every time you

want to see your changes in the interface.

Adding New Language Pack 224

Translating ToolTips for Menu Items

Text messages for tooltips are stored in XML files located under the
/var/opt/hspc-root/tool-tips/country_code

directory, where country_code is to be replaced with a two-letter country code in upper-
case according to the ISO 639 (http://www.loc.gov/standards/iso639-2/php/code_list.php)
standard.

1. First of all, create the subdirectory under /var/opt/hspc-root/tool-tips/ with
the name that is similar to the relevant two-letter language code. We shall go on with the
example used earlier in this guide and below we consider translation into Chinese language:

[root@47 root]# cd /var/opt/hspc-root/tool-tips/

[root@47 tool-tips]# mkdir ZH

2. Please copy XML files into the newly created subdirectory.
[root@47 tool-tips]# cp *.xml ZH/

3. Finally, please translate tool-tips text message.

Each XML file contains typical blocks, such as:

<tip id="billing_management_statements' data="View statements"' />

where:

= billing_management_statements - is the unique ID of the tool-tip;
= View statements - the text that appears in the tooltip box and has to be translated.
Therefore, you need to go through each XML file and replace each text that corresponds to the

“data” parameter with the string in the new language. Other data (including formatting) should
not be changed.

You can see the result of your translation in the Customer Control Panel if you will hover the
mouse pointer to a menu item and hold it for a while.

Note 1: Please make sure you’ve turned on “Show tool tips on menu items” option in the
Provider Control Center under the Configuration Director - Miscellaneous Settings - Interface
Settings.

Note 2: Restart of web server is not needed to see changes made to the tool-tips translation.

Translating the On-Screen Hints

On-screen hints are stored as HTML files included in each page of the Control Panel. All these
HTML files are located under the /var/opt/hspc-root/hints/ directory. Name of the
hint file consists of the screen ID of the page this hint is shown on.

1. First of all, create the subdirectory under /var/opt/hspc-root/hints/ with the
name that is similar to the two-letter language code. Again, we will continue with the
example used before in this guide and below we consider translation to Chinese language:

[root@47 root]# cd /var/opt/hspc-root/hints/

http://www.loc.gov/standards/iso639-2/php/code_list.php

Adding New Language Pack 225

[root@47 hints]# mkdir ZH
2. Please copy HTML files into the newly created subdirectory.
[root@47 hints]# cp *.html ZH/

3. Finally, please translate the content of HTML hint-files. Please do not change HTML
formatting while translating.

You can see the result of your translation immediately in the Customer Control Panel.

Note 1: Restart of web server is not needed to see changes made to the hints translation.

Note 2: Please use “Screen Viewer” available in the Provider Control Center: System Director -
Support Manager to lookup the location of a particular page by its screen ID.

Translating Help Files

This chapter describes how to translate the context HTML help that is available in Parallels
Business Automation - Standard tools by clicking on the Help link at the upper-right corner of
each screen.

Translating the Context Help Pages for Control Panel
Context help pages for Control Panel are stored as SHTML files under directory
/var/opt/hspc-root/help/

Help files are named exactly by the numerical screen ID of the Control Panl screen a help topic
is shown on.

1. First of all, create the subdirectory under /var/opt/hspc-root/help/ with the name
similar to the relevant two-letter language code. Again, we will continue with the example
used before in this guide and below we consider translation to Chinese language:

[root@47 root]# cd /var/opt/hspc-root/help/

[root@47 screens]# mkdir ZH

2. Please copy SHTML files into newly created subdirectory.

[root@47 screens]# cp *.shtml ZH/

3. Finally, translate content of help files. Please do not change HTML formatting while
translating.

You can see the result of your translation immediately in the Customer Control Panel by
clicking on the Help link at the upper right corner of each page.

Note: Restart of web server is not needed to see changes made to the hints translation.

Adding New Language Pack 226

Translating the Online Help Pages for Control Centers
Online help pages for Control Centers are stored as HTML files under the directory
/var/opt/hspc-root/help _cc/

Names of the help files consist of several words related to the subject of particular help page
concatenated with underscores.

1. First of all, create subdirectory under /var/opt/hspc-root/help_cc/ with the name similar to
the relevant two-letter language code. Again, we will continue with the example used before
in this guide and below we consider translation to Chinese language:

[root@47 root]# cd /var/opt/hspc-root/help_cc/

[root@47 help_ccl# mkdir ZH

2. Please copy HTML files into newly created subdirectory.

[root@47 screens]# cp *.htm ZH/

3. Finally, translate content of help files. Please do not change HTML formatting while
translating.

You can see the result of your translation immediately in the Provider Control Center by
clicking on the Help link at the upper right corner of each page.

Note: Restart of web server is not needed to see changes to the translation of the help files.

Translating Printable Documentation

Please contact your Parallels sales representative to get the Microsoft Word version of Parallels
Business Automation - Standard user documentation.

The PDF files themselves are located under the /var/opt/hspc-root/doc/ directory.
You can create the subdirectory named similarly to the two-letter language code and put the
translated PDF guides there.

227

CHAPTER 7

Plug-Ins Development

This chapter describes how to develop new pluggable modules (plug-ins) for anti-fraud
screening, payments processing (both online and bank account payment and payment methods),
SSL certificates provisioning, promotions, domain registration, and name servers registration.

In This Chapter

Plug-Ins TOOIKIt METNOUSooveiiiiiee e 228
ANLFIAUA PIUGAINS ...ttt te et e sta et e sreeraenne s 229
Payment Method Plug-Ins Development TOOIS ... 244
Payment Plug-Ins Development TOOIS. ... 247
Creating a New Promotion PIUG-IN.........ccooviiiiiiii i 258
Domain Registration Plug-In Development TOOIS.........cccccveieiiiiieieiiie e 270
Creating @ NeW DINS PIUG-IN......ooiiie e 295
SSL Certificate Plug-In Developmet TOOIScovviriiiiiiiierieee s 309

BUITAING NEW PIUG-IN ..ottt 324

Plug-Ins Development 228

Plug-Ins Toolkit Methods

The methods that belong to the HSPC::PluginToolkit::General are used in the PM, PP, and DM
plug-ins toolkit are:

string

argparam

uriparam

geo_get_countries

geo_get_states

geo_get_country_name

geo_get_state_name

last_month_day

geo_get_states_us

geo_get_states_ca

split_date_string

str_to_time

datetime_gmt_now

compare_dates

encode_base64

decode_base64

encode_hase64_safe

log

log_debug

HSPC::PluginToolkit:: Translit namespace:

translit - transliterate data from a specified encoding (the encoding table identifier is passed as a
constant) into ASCII, additional options - delete non ASCII characters in a source data (either
all or a particular ones)

translit_utf - transliterate data from UTF into ASCII.

log_warn

Plug-Ins Development 229

throw_exception

Anti-Fraud Plug-ins

Typical Anti-Fraud plug-in consists of the following.

Two perl modules

For, example, modules for the Dummy anti-fraud plug-in are named as follows:

Graphical representation:

HSPC::Fraud::Plugin::Dummy

This module is responsible for plug-ins' configuration screens representation.

Middle Tier module (MT-module):

HSPC::MT::Fraud::Plugin::Dummy

This module is responsible for input data checking and per-vendor plug-in's configurations.

Modules' names include a plug-in ID in the form of a text constant. For the Dummy anti-fraud
plug-in this ID is Dummy. For the other anti-fraud plug-ins the string 1Ds are the following:

Plug-In Name Plug-In ID
Country Black List BlackCountry
IP Black List BlacklIPs
Phone Black List BlackPhone
Credit Card Black List CardNumber
Credit Card Validation CreditCard
Email Check EmailCheck
Email Black List EmailList

IP Country IPCountry
Domain Name Black List IPLookup
Phone Country PhoneCountry
Proxy Check ProxyCheck
Try Count TryCount
USA Phone USAPhone
ZIP Check ZIPCheck

Plug-Ins Development 230

Post-Installation Configuration Script

The post-installation configuration script creates a necessary storage for a plug-in internal use
and fills it with an initial data. After this the script registers a new plug-in in Parallels Business
Automation - Standard Anti-Fraud System. If there is a need to install some third-party
software, this script installs it as well.

Please, refer to the Package Structure (on page 243) for the complete list of files included in an
anti-fraud plug-in distribution.

Plug-Ins Development 231

Graphical Representation

We describe the graphical representation module using the example of the Dummy anti-fraud
plug-in.

package HSPC::Fraud::Plugin::Dummy;

use strict;

use HSPC::SystemLib;

use HSPC::WebSystemLib;

use HSPC::Fraud::Plugin: :Abstract;
use HSPC::Localization;

Mark this class as a child of HSPC::Fraud::Plugin::Abstract.
use base "HSPC::Fraud::Plugin::Abstract”;

Provide constant:
use constant SMHDM => [1, 60, 3600, 86400, 2592000];

This constant defines custom tabs for the plug-in in addition to a predefined one(s). If the
Dummy plug-in consists of only one tab, it is placed in the LAYOUT-array.
my @LAYOUT = (

{

caption => string("afmp_dummy_ tab_title"),
page_id => "dummy”,

edit => {
handler => sub {my ($1) = @_; $1->_edit_handler},
alias => "fraud_plugin_tab_dummy_act_edit",

-

view => {
handler => sub {my ($1) = @_; $1->_view_handler},
alias => "fraud_plugin_tab_dummy",

uﬁdate = {

handler => sub {my ($1) = @_; $1->_update_handler},
},
3,
)

Each LAYOUT's member consists of fields:

= caption - Title for a tab (text placed on a tab).

= page_id - Used in URL as reference to a tab (for internal use only, you should take care of
not using already allocated ID in current layout).

= edit -This item represents Edit for the tab.

= view - This item represents View for the tab.

= update - Update the method introduced here to be called after clicking the Save button on
the Edit screen.

Each item enlisted above has the fields:

» handler - anonymous method definition, where we show the layout method for drawing a
current screen.

= alias — component repository alias name (on page 153).

As you can correctly conclude, for update item you can leave the alias field empty.

Plug-Ins Development 232

The new constructor creates a new visual plug-ins' instance and adds to predefined tabs a new
one defined above.

sub new {
my $class = shift;

my $obj = $class->SUPER: :new(@);

if ($obj) {
push @{$obj->layout}, @LAYOUT;
}

return $obj;

sub _edit_handler {

my $self = shift;
my $page = $self->page || sw_die('page undefined™);
my $data = $self->data || sw_die('data undefined™);

$self->header(title => $data->name);

$page->edit_open(
form_url => $page->get_browse_url
. $self->url_ext(
act => "edit",
tab => $self-

>cur_page,
id => $data->id
)
):
$page->edit_view_combo(
title_id => “"afmp_dummy_ result”,
view_name => "dummy_result"®,
value => $data->dummy_result,
no_default = 1,
options => $data->get_result_options,
):

my $has_no_score = ($data->score < 0) ? 1 : O;

$page->{edit_enable_views}->{score} = $page->{edit_enable views}-
>{score_factor} = ! $has_no_score;
$page->edit_view_check(
full_row = 1

title_id => "afmp_dummy_has no_score®,
view_name => "has_nho_score”",
value => $has_no_score,

enable_views => ["score”, "score_factor®,],
disable_views => ["score”, "score_factor”®,],

E
$page->edit_view_input(
title => string("afmp_dummy_score®),
view_name => "score”,
max_length = 10,
value => $data->score,
)
$page—>edit_view_input(
title => string("afmp_dummy_score_factor®),
view_name => "score_factor”",
max_length = 10,
value => $data->score_factor,

Plug-Ins Development

233

}

$page->row_close();
$page->cell_text(value => string("afmp_dummy_async_desc"));
$page->row_close();

$page->edit_view_input(

title => string("afmp_dummy_ count®),
view_name => "max_count”,
max_length = 10,
value => $data->max_count,
):
$page->edit_view period(
title => string("afmp_dummy period®),
view_name => "period”,
max_length = 10,
value => $data->period,
type => "period”,
):
$page->edit_view_period(
title => string("afmp_dummy Lim®),
view_name = "lim",
max_length = 10,
value => $data->lim,
type => "period”,
):

$page->edit_close;

sub _view_handler {

my $self = shift;
my $page = $self->page or sw_die("page undefined™);
my $data = $self->data or sw_die("data undefined®);

$self->header(title => $data->name);
$page->view_info_header();

$page->view_info_text(
title_id => "afmp_dummy_result"®,
value => string($data->result_str),

);

my $has_no_score = ($data->score < 0);
$page->view_info_text(

full_row = 1,

title_id => "afmp_dummy_has_no_score~,
value => $has_no_score,

type => "bool"

);

it (! $has_no_score) {
$data->score(0) if ($data->score < 0);
$page->view_info_text(
title_id => "afmp_dummy_score-®,
value => $data->score,
):
$page->view_info_text(

title_id => "afmp_dummy_score_factor”,
value => $data->score_factor,

}

$page->view_info_text(

Plug-Ins Development 234

title => string("afmp_dummy_ count®),
value => $data->max_count,

DE

$page->view_info_text(
title_id => "afmp_dummy_period®,
value => $data->period,
type => "period”,

$page->view_info_text(
title_id => "afmp_dummy_lim",
value => $data->lim,
type => "period”,

$page->view_info_footer();
$page->view_info_button(
url_ext => $self->url_ext(act => "edit”, tab => $self-
>cur_page, id => $data->id),
show_cancel = 1,
show_edit = 1,

}

_update_handler used in the update item can return string, in this case the plug-in data will not
be changed and the string looking like "Red Banner Text" will appear on the View screen.
sub _update handler {

my $self = shift;
my $data = $self->data or sw_die('data undefined™);

my $result = sw_argparam("dummy_result®);
$data->dummy_result(sw_argparam(“dummy_result®™));

my $has_no_score = sw_argparam("has_no_score");

my $score = sw_argparam(“score”);

my $score_factor = sw_argparam(“score_factor®);

return string("afmp_dummy_score_factor_must_nonnegative®) if
$score_factor < 0;

ifT ($has_no_score) {

$score = -1;
} else {
return string("afmp_dummy_ score_must_nonnegative®) if $score <
0;
$data->score_factor($score_factor);
}
$data->score($score) ;
my $max_count = sw_argparam("max_count®);
my $number_period = sw_argparam("“number_period”);
my $interval_period = sw_argparam("interval_period");
my $number_lim = sw_argparam(“number_lim");
my $interval_lim = sw_argparam("interval_lim");
$data->max_count($max_count);
$data->period($number_period * SMHDMQ->[$interval_period]);
$data->1im($number_lim * SMHDMQ->[$interval_l1im]);
return undef;
¥

And each perl module must return true value in its last operand:

Plug-Ins Development 235

1;

Middle Tier Module

We describe the Middle Tier (MT) module using the example of the Dummy plug-in. We list
the whole MT module for the Dummy plug-in with comments inline.

Header

#

This file contains middletier methods
of class HSPC::MT::Fraud::Plugin: :Dummy
package HSPC::MT::Fraud: :Plugin: :Dummy;
use strict;

All modules we are going to use:

use HSPC::SystemLib;
use HSPC::WebSystemLib;
use HSPC::MT::Fraud::Constants qw(:all);

Include the Data::Dumper which is useful for debugging.

use Data: :Dumper;

Declare here the parent class for the current one:

use base qw(HSPC::MT::Fraud::Plugin::Abstract HSPC::MT::Fraud::Service);

Avoid the use of a magic string/numeric values. Use constants defined here!

Plug-Ins Development

236

Profile Hash

Declare constants:

use constant PLUGIN_NAME => "Dummy" ;

use constant DUMMY_RETURN_OPTIONS => {
&FRAUD_CODE_ERROR => "afmp_dummy_error_result®,
&FRAUD_CODE_MATCHED => "afmp_dummy_matched_result”,

&FRAUD_CODE_NOTMATCHED => “afmp_dummy_notmatched_result*®
}:

use constant DEFAULT TYPE => [
&FRAUD_ACTION_TYPE_ALERT, &FRAUD_ACTION_TYPE_BONUS,
&FRAUD_ACTION_TYPE_PROHIBIT, &FRAUD_ACTION_TYPE_NEED_APPROVAL,
&FRAUD_ACTION_TYPE_APPROVE,

1;

use constant DEFAULT TYPE_ASYNC => [
&FRAUD_ACTION_TYPE_ALERT, &FRAUD_ACTION_TYPE_BONUS,
&FRAUD_ACTION_TYPE_NEED_APPROVAL,

1;

use constant DEFAULT_CHECK => sub {
my $p = shift;
my %h = @_;
my ($d, $c, $v) = ($h{conf}, $h{cond}, $h{value});
$p->_check_handler(conf => $d, cond => $c, value => $v);

e

Core profile hash, which defines all the options and behavior of the plug-in:

use constant CONDITIONS => {
dummy_login => {
activity => &FRAUD_ACTIVITY_LOGIN,

name => "afm_cond_dummy_ login-,
types => DEFAULT_TYPEQ),
check => DEFAULT_CHECKQ),

proc_type => FRAUD_PROC_TYPE_NORMAL(Q),
3,
dummy_newacc => {
activity => &FRAUD_ACTIVITY_ACCOUNT REG,

name => "afm_cond_dummy_regacc”,
types => DEFAULT_TYPEQ),
check => DEFAULT_CHECKQ),

proc_type => FRAUD_PROC_TYPE_NORMALQ),
¥
dummy_neword => {
activity => &FRAUD_ACTIVITY_NEW_ORDER_CREATION,

name => "afm_cond_dummy_ new_order_place®,
types => DEFAULT_TYPEQ),
check => DEFAULT_CHECKQ),

proc_type => FRAUD_PROC_TYPE_NORMAL(Q),
3,
dummy_reneword => {
activity => &FRAUD_ACTIVITY_RECURRING_ORDER_CREATION,

name => "afm_cond_dummy_renew_order_place”,
types => DEFAULT_TYPEQ,
check => DEFAULT_CHECK(Q),

proc_type => FRAUD_PROC_TYPE_NORMALQ),
3,
dummy_newpm => {
activity => &FRAUD_ACTIVITY_UNCHECK PAYMENT_METHOD,

name => "afm_cond_dummy_new_paymethod"”,
types => DEFAULT_TYPEQ),
check => DEFAULT_CHECKQ),

proc_type => FRAUD_PROC_TYPE_NORMAL(),

Plug-Ins Development

237

e

Here:

dummy_apprpm => {

3.

dummy_newacc_async

3.

dummy_neword_async

3.

activity =>
name =>
types =>
check =>
proc_type =>

activity
name
types
check

>
>
>
>
proc_type =>

activity =>
name =>
types =>
check =>
proc_type =>

dummy_reneword_async

3.

activity =>
name =>
types =>
check =>
proc_type =>

&FRAUD_ACTIVITY_APPROVED_PAYMENT_METHOD,
"afm_cond_dummy_approved_paymethod*®,
DEFAULT_TYPEQ),

DEFAULT_CHECKQ),
FRAUD_PROC_TYPE_NORMALQ),

&FRAUD_ACTIVITY_ACCOUNT_REG,
"afm_cond_dummy_regacc_async”,
DEFAULT_TYPE_ASYNCQ),
DEFAULT_CHECKQ),
FRAUD_PROC_TYPE_ASYNC(Q),

:>{

&FRAUD_ACTIVITY_NEW_ORDER_CREATION,
"afm_cond_dummy_new_order_place_async”,
DEFAULT_TYPE_ASYNCQ),

DEFAULT_CHECKQ),
FRAUD_PROC_TYPE_ASYNC(Q),

:>{
&FRAUD_ACTIVITY_RECURRING_ORDER_CREATION,
"afm_cond_dummy_renew_order_place _async®,
DEFAULT_TYPE_ASYNCQ),

DEFAULT_CHECKQ),

FRAUD_PROC_TYPE_ASYNC(Q),

dummy_newpm_async => {

3.

activity =>
name =>
types =>
check =>
proc_type =>

&FRAUD_ACTIVITY_UNCHECK_ PAYMENT_METHOD,
"afm_cond_dummy_new_paymethod_async*®,
DEFAULT_TYPE_ASYNCQ),

DEFAULT_CHECKQ),
FRAUD_PROC_TYPE_ASYNC(Q),

dummy_apprpm_async => {

activity =>
name =
types =>
check =>
proc_type =>

&FRAUD_ACTIVITY_APPROVED_PAYMENT_METHOD,
"afm_cond_dummy_approved_paymethod_async®,
DEFAULT_TYPE_ASYNCQ),

DEFAULT_CHECKQ),

FRAUD_PROC_TYPE_ASYNCQ),

= dummy_login/dummy_newacc/etc. - condition keys for internal structure organization. Each
condition has its own unique key.

= activity (scalar/reference to array of scalars) - defines chains that current condition supports.

= types (scalar/reference to array of scalars) - defines the action types a given condition
supports.

= name - string_id of a title to be shown in the ‘New Rule' wizard. The Select Condition
screen.

= check - magic code-string, the only thing you should pay attention to is a method name
mentioned here. You should define this method below in your code.

= proc_type - shows the type of condition (synchronous\asynchronous)

Plug-Ins Development 238

Class Info
use constant CLASS INFO => {
props => {
"id- => {col => "id", table => "data”, key
= 1},
"vendor_id" => {col => "vendor_id", table => "data”, key
= 1},
"dummy_result® => {col => “dummy_result®, table => "data"},
"score” => {col => "score”, table => "data"},
"score_factor®™ => {col => "score_factor®, table => "data"},
"max_count* => {col => "max_count”, table => "data"},
"period* => {col => "period”, table => "data"},
“lim" => {col => "lim", table => "data"},
s
tables => {
"data“ => {name => “fraud_plugin_dummy®, replace => 1},

"plugin® => {

name => “"fraud_plugin®,
replace = 1,
delete = 1,

rel_table => "data”,
join_where =>

"plugin.id=data.id AND

plugin.vendor_id=data.vendor_id*"

3}
+

Plug-Ins Development 239

Check Handler

Below is the object-method mentioned in profile-hash. It takes three parameters:

cond - Condition key to define that condition started this method.

value - Value hash. For more information, please refer to the Anti-Fraud Manager Value
structure (see page 242). In addition, the value parameter includes the references to the
current rule-object, chain-object, and activity type.

conf - plug-in specific rule configuration hash.

sub _check _handler {

}

my $self = shift;

my %h = 0_;

my $cond = $h{cond} or sw_die("data undefined");

my $conf = $h{conf}; ##]| sw_die("conf undefined");
my $value = $h{value}; ##]] sw_die('value undefined™);
my $details = {};

my $code;

my $descr;

$code = $self->dummy_result(Q);

it ($cond =~ /_async$/) {
sw_die("either max_count or limit must be positive®)
unless $self->max_count() > 0 || $self->1im() > O;
$self->set_async(
score => ($self->score() >= 0) ? $self->score : O,
descr => "afm_postponed_result”,

):
return;
} elsift (&FRAUD_CODE_ERROR == $code) {
$descr = "afmp_dummy_error_result”;
} elsift (&FRAUD_CODE_MATCHED == $code) {
$code = &FRAUD_CODE_SCORE if $self->score() >= 0;
$descr = "afmp_dummy_matched_result”;
} elsit (&FRAUD_CODE_NOTMATCHED == $code) {
$descr = "afmp_dummy_notmatched_result”®;
}
$self->set_result(
score => ($self->score() >= 0) ? $self->score : O,
code => $code,
descr => $descr,
):
return;

Result that is set in the object consists of three parts:

1.

2.

score - this value is returned by plug-in and will be multiplied by corresponding coefficient
(set in plugin's config);

code - result code of plugin execution, possible values:

FRAUD_CODE_MATCHED - plug-in matched the data for the corresponding rule

(e.g. country is blacklisted)

FRAUD_CODE_NOTMATCHED - plugin did not match anything for the

corresponding rule

FRAUD_CODE_ERROR - error has occurred during the plug-in execution
FRAUD_CODE_POSTPONED - plug-in is asynchronous - result has not arrived yet

Plug-Ins Development 240

FRAUD_CODE_SCORE - plug-in matched the data for the corresponding rule (e.g.
country is blacklisted), and it also returned some value that will take part in score recounting

3. descry — description of return value.

Post-Install Method

If a plug-in needs some extra action just after installation, developer should define the
post_install method. Here is an example illustrating how to install the list object for the plug-ins
managing 'Black’ lists.

This method must be defined only in the blacklist (IP Black List, Phone Black List etc.) plug-in.

sub post_install {
my $self = shift;
my $list;
my $error;

Find_install_list method makes an attempt to find already installed list
for the plugin/vendor. If it fails (in the case when the plugin was not
installed before),
the method installs new one.
$list = HSPC::MT::Fraud: :Factory->find_install_list(
plugin_id => $self->id,
vendor_id => $self->vendor_id,
name => &PLUGIN_NAME,
condition => "account_in_stop_ list",

):

Optional action. We can transfer error (if any) to $self->error to
have an ability to view errors from caller method.
$error = HSPC::MT::Fraud: :Factory->error;

it (I$list || $error) {
$error = "Cannot install list for TLDList Fraud Plugin."
- ($error ? " Error: $error” : ");
$self->error($error);

} else {
$self->list_id($list->id(Q));

}

return;

+
1;

Plug-Ins Development 241

Post-Installation Configuration Script

We use the example of the Dummy anti-fraud plug-in. Below is the listing of hspc-config-
fraud-plugin-dummy script with comments inline.

#1/usr/bin/perl

$1d: AntiFraudAPl,v 1.1 2006/05/17 12:53:53 cvs Exp $
#

#

Parallels Business Automation - Standard Fraud Prevention System Dummy
plugin

post-installation configuration script

#

Remarks:

1t is safe to run this script more than once,

since it checks everything before any modifications.

#

use strict;

use HSPC::Console;

use HSPC: :WebDB;

use HSPC::SystemLib;

use HSPC::MT::Core::Constants;
use HSPC::MT::Fraud::Factory;

"install®™ or “remove”
my $mode = $ARGV[O];

print help screen
unless ($mode eq “install”™ |] $mode eq "remove") {

print "Usage: hspc-config-fraud-plugin-dummy [install | remove
J\n\n"";

exit 1;

}
if ($mode eq “install®) {

new table format, must delete old one
ane create new table for storing plugin configuration
select_run(g{DROP TABLE IF EXISTS fraud_plugin_dummy});
select_run(qg{
CREATE TABLE IF NOT EXISTS fraud_plugin_dummy(

vendor_id int(11) NOT NULL,

id varchar(100) NOT NULL,
name varchar(32),
dummy_result int(11),

score int(11) default -1,
score_Tfactor float,

max_count int(11) default O,
period varchar(100),

lim int(11),

PRIMARY KEY (vendor_id,id)
) ENGINE=InnoDB

s

HSPC: :MT: :Fraud: :Factory->install_plugin(
id => "'Dummy"*,
name => "Dummy Plugin®,
score = -1,

score_factor => 1.0,
max_count => 0,

Plug-Ins Development 242

period = 5,
1im => 300,
);

register plugin
} elsift ($mode eq “"remove™) {
unregister plugin
}

Here is an agreement to not drop or clean up the table Ffraud_plugin_dummy during plug-
ins deinstallation. This script is used in the spec file responsible for RPM creation, so if we
place the cleaning code here, after each rpm-update of the plug-in, we will get an empty
configurations for all vendors (both provider and their resellers) who have configured it.

exit 0;

Attention: HSPC: :MT: :Fraud: :Factory->install_plugin method uses a string
constant as a value for id input parameter (this is Plug-in ID). This string constant MUST be
equal to the last chunk without "::' of MT/GUI modules names.

Anti-Fraud Manager Value Structure

Anti-Fraud Manager (AFM) uses a unified VALUE data structure. This structure includes all
parameters to be checked by an AFM Filter. This structure must have a predefined format so
that any of AFM plug-ins could know where the data to be verified is located.

These data-objects are composed as hash with keys:
Payment with Unchecked Payment Method and

Payment with Approved Payment Method

= order - Object order.

= account - Object account.

= address - Object address.

= paymethod - Object paymethod.

New Order Creation and Recurring Order Creation

= order — Object order.

= address - Object address.
= account - Object account.
Login Filter

= address - Object address.
= account - Object account.

Plug-Ins Development 243

Component repository configuration files

.Ihspc-fraud-plugin-dummy/comprep/commerce_director_fraud_plugin_dummy.xml:

<root>
<director alias="commerce_director">
<manager alias="fraud_manager'>
<screen alias="fraud_plugins'>
<screen alias="fraud_plugin'>
<screen
alias="fraud_plugin_tab_dummy*/>
<screen
alias="fraud_plugin_tab_dummy_act edit"/>
</screen>
</screen>
</manager>
</director>
</root>

Anti-Fraud Plug-In Package Structure

Below we have inserted the example of the Dummy anti-fraud plug-in.
Localization:

-/hspc-fraud-plugin-dummy/i118n/EN/hspc-config-fraud-plugin-
dummy . xml

Graphical representation. Module HSPC::Fraud::Plugin::Dummy
-/hspc-fraud-plugin-dummy/lib/Fraud/Plugin/Dummy . pm
Middle Tier module. Module HSPC::MT::Fraud::Plugin::Dummy
./hspc-fraud-plugin-dummy/1ib/MT/Fraud/Plugin/Dummy . pm
Other mandatory files required for an anti-fraud plug-in building/installation:
-/hspc-fraud-plugin-dummy/lib/Makefile
./hspc-fraud-plugin-dummy/lib/Makefile.PL
-/hspc-fraud-plugin-dummy/il18n/Makefile
-/hspc-fraud-plugin-dummy/Makefile
-/hspc-fraud-plugin-dummy/build.sh
-/hspc-fraud-plugin-dummy/hspc-config-fraud-plugin-dummy
-/hspc-fraud-plugin-dummy/hspc-fraud-plugin-dummy .spec

-/hspc-fraud-plugin-
dummy/comprep/commerce_director_fraud_plugin_dummy.xml

Plug-Ins Development 244

Payment Method Plug-Ins
Development Tools

The methods used for payment method plug-ins (credit cards, bank accounts, etc.) are described
in this chapter.

Payment Method Plug-Ins Objects

Payment method plug-ins are represented by objects of classes enlisted below. For example, for
the plug-in named CCardSimple, the classes should be named as follows:

HSPC::Plugin::PM::0P_CCardSimple responsible for a plug-in presentation level,

HSPC::MT::Plugin::PM::0P_CCardSimple responsible for working with database and plug-in
specific logic.

HSPC::PluginToolkit::General - the standard toolkit functions (on page 228) used in Payment
Method plug-ins as well all in Payment and Domain Manager plug-ins.

Important: A plug-in id MUST CONTAIN ONLY ONE UNDERSCORE that divides a
payment plug-in type definition OP from a plug-in name, otherwise, a plug-in name will be
recognized incorrectly.

A ready payment plug-in is an RPM package.
The directories structure is the following:
1ib/Plugin/PM/ contains module(s) responsible for presentation level of the plug-in.

Lib/MT/Plugin/PM contains module(s) responsible for work with database and plug-in
specific logic.

118n/ contains directories with localization.

It is necessary to have one module for graphical presentation and one for a plug-in specific logic
each named OP_CCard<PluginName>.pm and placed in the 1ib/Plugin/PM/ and
Lib/MT/Plugin/PM directories respectively. For example, if you would like to develop a
new plug-in module for Simple payment gateway you should have two modules with the same
names placed in:

lib/Plugin/PM/0P_CCardSimple.pm

1ib/MT/Plugin/PM/0OP_CCardSimple._pm

Plug-Ins Development 245

Middle Tier Module

provided payment_method_types - the hash with supported payment method types.

title_id - mandatory method that returns a string_id that defines localization name of an
attribute.

get public_data- mandatory method that returns reference to an array of public attributes
of a payment method type.

get_secure_data - mandatory method that returns the reference to an array of attributes of
a payment method type that will be encrypted on the save operation.

validate — optional method that validates values of all payment method's attributes for
correctness, values are provided to the method via parameter.

get_public_number - mandatory method that returns public number representation of a
payment method.

get_secure_number - mandatory method that returns full set of identification characters
(secure number) of the payment method. For a credit card it should return full credit card
number, for a bank account it should return concatenation of all account number fields
(including bank code and branch identification number).

get_expiration_date - optional method that returns an expiration date of a payment
method in format of MM/YY.

get_paymethod_type - mandatory method that returns the type of a payment method
object (for exmaple, Visa, Switch, etc.). This method gets a payment method information hash
as a parameter. This is required only for plug-ins that support a few payment method types in
one code and type of payment method can be defined only by analysing of payment method
properties.

Plug-Ins Development 246

Web Interface Module

view_Fform - defines HTML code for attributes, defined in the plug-in. This code will be
concatenated with main view form of the payment method. The view_form method requires the
following parameters:

= secure_data

= public_data
= type

= expire_date
= name

= type_info

= Kkeep_secure_code
= number_link

edit_form - defines HTML code for attributes, defined in the plug-in. This code will be
concatenated with main edit and add form of the payment method.

add_form - draws the form for adding a new plug-in.

Both the edit_form and add_form methods require the following parameters:

= secure_data

= public_data

= type

= expire_date

= name

= allowed_types

= Kkeep_secure_code

= help_js

collect_data - method collects data received through CGI parameters. This method is
called during processing the result of the add or edit form. Required parameters:
= secure data

= public_data

= account_data

= only public

Return value:
= reference to a Perl structype with collected data.

get _help_page - optional method that returns content of help page.

Plug-Ins Development 247

Payment Plug-Ins Development
Tools

This chapter describes the tools and methods used for payment plug-ins development.
The code samples for Dummy Online Payment plug-in and Dummy Bank Transfer Payment

plug-in are available in the samples/plugins/hspc-plugin-pp-op-dummy and
samples/plugins/hspc-plugin-pp-bt-dummy SDK directories respectively.

Payment Plug-Ins Namespaces

Payment plug-ins are represented by objects of classes:

HSPC::MT::Plugin::PP::<plugin_id> responsible for working with database and payment gateway
specific logic

HSPC::Plugin::PP::<plugin_id> responsible for a plug-in presentation level

where <plugin_id> is replaced with a plug-in unique identifier that consists of the two parts
divided by underscore: payment method abbreviation (OP for Online Payment or BT for Bank
Transfer) and a plug-in textual ID that should follow a payment system name (for example
PayPal or DTAUS).

Important: A plug-in id MUST CONTAIN ONLY ONE UNDERSCORE that divides a
payment plug-in type definition from a plug-in name, otherwise, a plug-in name will be
recognized incorrectly. For example, a plug-in id may look like OP_PayPal or BT_DTAUS, but
never OP_Pay_Pal or the like.

Thus, for the online payment plug-in called, for example, SimpleCard, classes should be named
like:

HSPC::MT::Plugin::PP::OP_SimpleCard and HSPC::Plugin::PP::0P_SimpleCard

For the bank transfer payment plug-in called, for example, SimpleBank, classes should be
named like:

HSPC::MT::Plugin::PP::BT_SimpleBank and HSPC::Plugin::PP::BT_SimpleBank
The plug-in modules must be called in accordance with the same naming conventions:
OP_<plugin_id> for online payment plug-in or BT_<plugin_id> for bank transfer plug-

n.

HSPC::PluginToolkit::General - the standard toolkit functions (on page 228) used in Payment
Method plug-ins as well all in Payment and Domain Manager plug-ins.

Plug-Ins Development 248

Methods and Parameters Common for all Payment Plug-Ins

Common methods:

get _currencies_supported - defines currency codes supported by plug-in. Required
parameters: none. Return value: reference to an array of supported currency I1SO codes.

get _supported_payment_method_types - defines payment method types supported
by a plug-in. This method is mandatory only for plug-ins that require stored payment methods -
the direct subtype. The redirect one does not require this method. Required parameters: none.
Return value: reference to an array of payment method types supported by a plug-in.

Common Parameters:

All payment plug-in methods have a common input parameter - config. This parameter passes
the plug-in specific configuration, i,e, the data entered into a plug-in configuration screen form.

Plug-Ins Development 249

Online Payment Plug-In Methods

In this section we describe transactions processing methods used in online payment plug-ins.
The Dummy and Dummy Redirect plug-ins code samples are shipped in the SDK directory
samples/plugins/. Dummy plug-ins can serve as an example of a plug-in code, but to get more
information of payment plug-ins methods usage, you can look into the other plug-ins code
shipped with Parallels Business Automation - Standard as RPM modules.

Different methods are to be realized in a plug-in module for different transaction types. Thus, it
is not necessary to implement all of these methods, but only the ones that correspond to
transaction types supported by a particular payment plug-in.

The transaction types used for online payments processing are:

= Sale - a single-step transaction without pre-authorization. Money are just withdrawn from a
card.

= Credit - refund after funds have been settled, i.e. a transaction data have been passed from a
payment gateway to an acquiring bank.

= Preauth - a purchase amount is reserved at a card and authorization is needed to withdraw
money and finish a payment.

= PreauthReversal’ - a transaction is cancelled on the ‘Preauth’ stage, i.e., pre-authorized
funds are released.

= Capture - the reserved amount was withdrawn after authorization.

= Capture Reversal’ - a transaction was cancelled on the “Capture’ stage, but before funds are
settled.

Methods for transactions processing:

process_preauthorize - this method is responsible for processing a Preauthorize
transaction with a payment gateway. Required parameters: document_info, payment_method,
account_info, transaction_id, transaction_amount, currency_iso. Returned value: reference to a
result hash.

process_capture - this method is responsible for processing a Capture transaction with a
payment gateway. Required parameters: document_info, payment_method, account_info,
previous_transaction_data, transaction_id, transaction_amount, currency_iso. Returned value:
reference to a result hash.

process_sale - this method is responsible for processing a Sale transaction with a payment
gateway. Required parameters: document_info, payment_method, account_info, transaction_id,
transaction_amount, currency_iso. Returned value: reference to a result hash.

process_preauthorize_ void - this method is responsible for processing a Preauthorize
Reversal transaction with a payment gateway. Required parameters: document_info,
payment_method, account_info, previous_transaction_data, transaction_id, transaction_amount,
currency_iso. Returned value: reference to a result hash.

process_capture_void - this method is responsible for processing a Capture Reversal
transaction with a payment gateway. Required parameters: document_info, payment_method,
account_info, previous_transaction_data, transaction_id, transaction_amount, currency_iso.
Returned value: reference to a result hash.

Plug-Ins Development 250

process_credit - this method is responsible for processing a Credit transaction with a
payment gateway. Required parameters: document_info, payment_method, account_info,
previous_transaction_data, transaction_id, transaction_amount, currency_iso. Returned value:
reference to a result hash.

process_check status - check a transaction current status on a payment gateway.
Required parameters: previous_transaction_data, transaction_id. Returned value: reference to a
result hash.

Redirect methods

For plug-ins that redirect a payer to a payment gateway secure page, the following methods are
used:

collect_transaction_refno — this method parses a transaction id received from a
payment gateway. This transaction id is not the same as a transaction identifier shown in
Parallels Business Automation - Standard Transaction Log. Instead, it is a special complex
reference number. By this identifier, a payment plug-in engine restores the information about a
transaction and passes it to the process_cal lback method. Required parameters: web-
parameters from a payment gateway. Returned value: transaction_refno.

process_cal Iback - this method gets a transaction_refno, parses it, identities a transaction
(payment gateway, customer account, amount, etc.) and restores the information about a
transaction from the Parallels Business Automation - Standard Transaction Log. In addition, this
method is responsible for transaction verification (check whether the amount stored in
transaction details in Parallels Business Automation - Standard matches the amount reported by
a payment gateway, or check transaction by an MD5 signature, or perform any other check).
This method also defines, what framework will be processed (restore_session or only update a
transaction status) depending on a payment gateway response (customer redirect or payment
accepted, or both). Required parameters: document_info, payment_method, account_info,
previous_transaction_data, transaction_id, transaction_amount, currency_iso. Returned value:
reference to a result hash.

How payments are processed and how the described methods are used

There are two online payment types:

= Direct - when customer enters credit card data on your store page

= Redirect - when customer is redirected to a secure page of a payment gateway, enters a
credit card data there and then is redirected back to the store page.

Direct payments can be of the two types:

= Sale - a single step payment without funds preauthorization. In this case only the
process_sale — method is called.

= Preauth - a payment that consists of two transactions when the amount to be paid pay is first
pre-authorized on a credit card and then captured after a transaction is authorized. In this
case the process_preauthorize — method is called and then if the capture delay is set in
Parallels Business Automation - Standard, the process_capture — method is called after the
delay defined by NEXT_TRANSACTION_GAP.

Note: The NEXT_TRANSACTION_GAP defines both the delay for pre-authorized funds
capture and frequency of transaction status check. In the latter case, the transaction status check
timeout can be defined in a plug-in module.

Plug-Ins Development 251

Redirect payments are processed as follows.

When a customer clicks the Pay button in your store, the method that corresponds to a type of
transaction to be executed is called. This method generates parameters for redirect and a
customer is redirected to a payment gateway web page. After a customer has paid, a payment
gateway redirects a customer back to your store page and then the
collect _transaction_refno method is called. This method returns transaction
ref_no and then then process_cal Iback method is called with the corresponding config.

Periodical checking of transaction

Some plug-ins require transactions status periodical check. To this effect, a plug-in must return
the PENDING transaction status with the NEXT_TRANSACTION_GAP delay. Then after the
NEXT_TRANSACT ION_GAP delay is over, the process_check_status method is called.

If a transaction status has been defined, then it is necessary to return this status. If a transaction
status is still not defined, then it is necessary to return PENDING with
NEXT_TRANSACT ION_GAP delay in order to repeat the process_check_status method
call.

For example, the transaction status check can look as follows:

PREAUTH>NEXT_TRANSACTION_GAP delay>PENDING>NEXT_TRANSACTION_GAP
delay>ERROR

Or:

PREAUTH>NEXT_TRANSACTION_GAP delay>PENDING>NEXT_TRANSACT ION_GAP
delay>

>APPROVED>NEXT_TRANSACT ION_GAP delay>CAPTURE
How do I know a transaction status check period?

The NEXT_TRANSACTION_GAP period is specific for each payment gateway. You can know
this period from a payment gateway interface documentation or ask a payment gateway support
to inform you about this period. Then the NEXT_TRANSACT ION_GAP must be hardcoded in
the process_preauthorize method.

Important for Redirect Plug-Ins: Referral and Callback URL

Some payment gateways accept payments only from known URLs called Referral URL. Thus,
in such a situation it is necessary to pass to a payment gateway your store payment page URL.

To generate a Referral URL and Callback URL the payment plug-in toolkit methods
referral_url and cal lback_url are to be called in a corresponding transaction method,
process_preauthorize or process_sale, depending on transaction types supported
by a plug-in. These toolkit methods belong to the HSPC: :PluginToolkit: : PP namespace.

The referral_url method is used to generate the referral URL for a plug-in.

To correctly redirect a customer from a gateway payment page back to your store page and
restore a session, the Callback URL is to be passed to a payment gateway.

Plug-Ins Development 252

The cal Iback_url method is used to generate the callback URL for a plug-in.

It depends on an interface that is in use at a particular payment gateway, but in many cases, the
Callback URLs MUST BE PASSED to a payment gateway. Referral URL can be a required
parameter or not, depending on a payment gateway security policy.

To pass these URLSs to a payment gateway, you can include both or only a Callback URL in a
payment request, or display these URLSs at a plug-in screen view form, or submit URLS via your
merchant interface at a payment gateway side or pass them via a payment gateway support.

In any case, a Referral URL is needed but not necessarily, and Callback URLS is critical for a
redirect payment plug-in functionality. Thus, we recommend to call the corresponding methods
in any case.

Transaction log

The TRANSACTION_DETAILS hash is used to display a transaction details in the transaction
log.

Additional Information

If CVV or AVS is required for a credit card data, then you can use the explain_avs method.
If the ccp_avs_code key exists in TRANSACTION_DETAILLS, this method should be used
to get the input value avs_code and return the string (i.e. the context help) explaining what is
CVV to a customer.

Return values description

All transaction processing methods of Credit Card plug-ins must return reference to a hash with
the following keys:

STATUS - (mandatory) scalar value that identifies result of transaction. Possible values are:
APPROVED, FRAUD, DECLINED, PENDING, REDIRECT;

TEXT - (mandatory) reference to a hash with two keys: customer_message — contains text that
will be showed to customer as status message, vendor_message — contains text that will be
showed to vendor;

TRANSACTION_DETAILS - (optional) any structure that will be associated with current
transaction and will be represented back in unchanged form as value of
previous_transaction_data parameter at the next call of transaction processing methods of the

plug-in.

Note: The TRANSACTION_DETAILS hash is also shown in web interface, in a transaction
details form. The keys in this case are localization strings IDs.

NEXT_TRANSACTION_GAP — (optional) if this key exists in the result hash and value greater
than O then the next call to a processing transaction method of plug-in will be not earlier that
number of seconds specified as value for this key.

ACTION - (optional) indicate action that will be performed by framework: restore_session,
update or both. Returned only by redirect plug-ins. If action is not defined, framework must start
both actions.

Plug-Ins Development 253

CUSTOM_RESPONSE - (optional) custom response to payment gate after receiving
notification for redirect plug-in.

REDIRECT_HASH - (optional) hash used for building a button used to redirect a customer to a
payment gateway. Hash details:

url - the URL to redirect to.
method - the type of request a customer to be redirected. The default method is POST.

ref_no - the optional parameter. If ref_no value is changed in the
process_redirect method, a new ref_no value is returned.

attrs - parameters a hash is to be redirected with.

charset - encoding to be applied to the text sent to the redirect form. This parameter
is to be specified if a payment gateway uses a specific encoding for their payment page.
If this parameter is not specified, then the text will be sent to a gateway secure payment
page in the default encoding set in HSPcomlete by that moment. The default encoding
used in Parallels Business Automation - Standard is UTF-8, but it can be changed.

Plug-Ins Development 254

Description of parameters for the processing transactions methods (Online Payments)

Transaction processing methods parameters:

document_info - reference to a hash with details of document that is to be processed.
Content of the hash is following:

id — internal document number;

type;

number — official document humber;

name — name of document, ex. Order, Invoice, etc.;
date — date when the document has been created;
period;

added_by_ip — IP address document creator;
vendor_tax_number;

plan_name — hosting plan name;

plan_type — hosting plan type;

domain — name of the domain;

description — document comment;

payment_method - reference to a hash. Contents of the hash:

secure_data
public_data
type
expired_data
name
account_no
enabled
recurring
status
customer_ip

not_check_avs - the parameter used to disable AVS check in case a credit card already has
been checked and found reliable.

vendor_info - reference to a hash of vendor account details. See account_info for
details.

account_info - reference to a hash of customer account details. Content of the hash is
following:

id;
type;
vendor _id;

is_corporate — flag that identify type of account. 1 — stands for a corporate account, 0 —
personal;

name;

Plug-Ins Development

255

admin_prefix;

admin_fname;

admin_mname;

admin_Iname;

admin_suffix;

admin_email,

admin_gender;

admin_phone;

admin_mobile;

admin_fax;

billing_prefix — name prefix of billing contact;
billing_fname — first name of billing contact;
billing_mname — middle name of billing contact;
billing_Iname — last name of billing contact;
billing_suffix — name suffix of billing contact;
billing_gender;

billing_email — email of billing contact;
billing_phone — phone number of billing contact;
billing_mobile;

billing_fax;

technical_prefix;

technical_fname;

technical_mname;

technical_Iname;

technical_suffix;

technical_gender;

technical_email,

technical_phone;

technical_mobile;

technical_fax;

tax_ex_number;

address_address1 — the first line of account address;
address_address2 — (optional) the second line of account address;
address_house_num;

address_house_suff;

address_city — name of the city from account address;
address_state_uscanada;

address_state — name of the state from account address;
address_zip — zip/postal code from account address;
address_country — country code from account address;
address_phone;

Plug-Ins Development 256

= address_mobile;
= address_fax;

previous_transaction_data - structure that has been returned with previous
transaction result hash as value of TRANSACTION_DETAILS key.

transaction_id - current transaction id.
transaction_amount — amount of transaction.

currency_i1so - ISO code of of transaction currency.

Plug-Ins Development 257

Bank Transfer Plug-In Methods

Bank Transfer plug-ins should have at least one method responsible for payment transaction
processing or, to be more precise, for a batch content generation:

process_batch_content - this method is responsible for building of a batch file content.

Required parameters:

= transactions_list,
= file_id.

Returned value:
= reference to a result hash.

Return values description:

The format of the result hash returned by this method differs from the described above in the
following way:

BATCH_CONTENT - (mandatory) scalar value that contains complete content of the newly
generated batch file;

BATCH_FILE_NAME - (mandatory) scalar value that contains name of the file which content
is in the value for the previous key;

Description of parameters for the batch generation method:

config - the configuration structure that has been generated by presentation part of the plug-in
while plug-in creation.

transaction_list - reference to an array of hashes with details of document that is to be
processed. Content of the hash is following:

= document_info — reference to a hash with details of document that is to be processed. See
description of document_info in online payment plug-in description.

= payment_method - reference to the hash described for Online Payment Plug-in Methods (on
page 249).

= account_info — reference to a hash of customer account details. See description of
account_info in online payment plug-in description.

= transaction_id — current transaction id.
= transaction_amount — amount of transaction.
= currency_iso — ISO code of currency of transaction.

vendor_info - reference to a hash of customer account details. See description of
account_info in online payment plug-in description.

file_id - unique auto-incremented identification number of the batch file that is to be
generated.

Plug-Ins Development 258

Payment Plug-Ins Graphical Presentation

The most of payment plug-ins standard settings are drawn by plug-ins framework. Only specific
settings (payment gateway URL(s), merchant ID, password) are to be drawn by a plug-in itself.
To this effect, the following three methods are used:

= view_Torm - method for building a view form for Required parameters: configuration
object, Returned value: html code for screen form.

= edit_form - method for building an edit form for Required parameters: configuration
object, Returned value: html code for screen form.

= collect_data - restoring and composing parameters from user-defined form.
Required parameters: none, Returned value: configuration object for saving.

Supported transaction types of a plug-in

Supported transaction type of an online payment plug-in can be detected by the ‘can' Perl
method. If a plug-in has two methods, for example, process_preauth and process_sale, Parallels
Business Automation - Standard will show the Preauth enable checkbox at a plug-in screen
form.

Note: The supported transaction types are defined in accordance with corresponding methods
(on page 249). Thus, please do not create methods that are not actually supported by a payment
gateway.

Creating a New Promotion Plug-In

A promotion plug-in is a set of modules, which allow applying a discount to a customer
subscription.

Plug-Ins Development 259

Introductory Notes About Promotion Plug-Ins

Promotions are discounts applied to hosting plans on a particular conditions. Promotions have a
particular application period when a promotion is active and discount is offered. A customer
who subscribes for a promoted hosting plan grants a discount.

For example, if a customer purchases a subscription for a particular period, he/she can get a
discount for a part of his/her subscription period or free domain registration.

A promotion conditions are defined by:

= General settings that define the most of conditions of promotion application. General
settings options are common for every promotion. You can vary a promotion settings in the
frame of pre-defined options, but it's not possible to add a new option or remove an existing
one. General settings define a promotion period, promotion activation conditions (by
default, by coupon code, by agreement), number of accounts that can get a promotion
(optionally) and how many times the same account can get a promotion.

= A set of discounts and bonuses (free domain registration, free subscription period). Each
discount offering is a pluggable module, in other words, a promotion plug-in.

Thus, promotion plug-ins are modules that allow composing discounts included in a promotion.
Each promotion plug-in can be enabled/disabled and configured separately. The main advantage
of pluggable promotions is that you can easily vary the types and composition of discounts
included in each promotion and create new promotion plug-ins that meet your needs in a best
way.

By default, three types of promotion plug-ins are provided:

= Percent Discount. Discounts applied to all charge connected with subscription setup and
renewal (hosting plan setup/recurring fees, applications setup/recurring fees, resource
overusage fees, etc).

= Waiving domain registration fee. Providing a particular period os domain registration for
free.

= Free subscription period. Granting a customer an additional free subscription period in
addition to a purchased one.

Using the API described in this chapter you can create any discount/bonus offering. For
example, on the basis of the Percent Discount plug-in you can create a new promotion plug-in
that affects only a particular application recurring fees.

Important: Promotion Plug-Ins Application Order

Each promotion plug-in provides its own discount and contributes to a total discount applied to
a document amount. Thus, the order of promotion plug-in application does matter.

The order of promotion plug-ins application is defined by a plug-in priority. Priority is a
positive number. The lower this number is, the higher is a plug-in priority. A plug-in with a
lowest priority is applied first, and a plug-in with a greatest priority is applied last. The order of
promotion plug-ins application is also reflected in web interface (a higher-priority plug-in
configuration form is shown above the other plug-ins).

Promotion plug-in priority is defined in installer (on page 268) using the apply_priority
parameter.

Plug-Ins Development

260

For correct discount calculation, the Free Subscription Period promotion plug-in MUST be
always applied the last.

The scheme below illustrates how a promotion works:

Purchase: Hosting Plan 1,

Subscription period 3
months.

NS

/Promotion General Settings\

|

o %

Conditions of Promotion
Activation:

Promotion period

Promotion activation conditions
(by default, by coupon code, by
agreement),

Number of accounts that can
get a promotion (optionally)
How many times the same
account can get a promotion.
What particular hosting plans
are to be promoted (list: Hosting

Promotion Plug-Ins:
Both discounts and
discounted period for each of
subscription periods can be
defined

Enabled
Percent Discount: discounted
subscription periods: 1,3,6 months.

Disabled
Waive Domain Registration Period:
discounted subscription periods: 3,6
months

Enabled
Custom Promotion Plug-In: discounted
subscription periods: 6, 12 months

Plan 1, Hosting Plan 2, ..)).

<>

Promotion activated. Promotions applied:
Percent Discount
Free Subscription period
Note: A promotion plug-in configuration
allows supporting or not a discount for a

particular subscription period. In our example,
custom plug-in does not support subscription
period 3 months. Thus, three promotion plug-
ins were activated, but only two of them have

gave a discount.

T T T 7

Enabled
Free Subscription Period: discounted
subscription periods: 1, 3, 6 months.

Plug-Ins Development 261

Promotion Plug-Ins Objects and Their Naming Conventions

A ready-to-use promotion plug-in is an RPM package.

Promotion plug-ins are represented by objects of classes described below. These classes must be
named accordingly. For example, for the plug-in named SpecialPercent, the classes should be
named as follows:

HSPC::MT::BM::PromoPlugin::SpecialPercent responsible for applying a discount to a document.

HSPC::BM::PromoPlugin::SpecialPercent responsible for plug-in presentation.

The directories structure for a promotion plug-in modules is the following:

1ib/BM/PromoPlugin/ contains module(s) responsible for presentation level of the
plug-in.

= lib/MT/BM/PromoPlugin/ contains module(s) responsible for applying a discount to
a document.

= comprep/ contains component repository configuration.

= 118n/ contains directories with localization.

It is necessary to have at least two modules named <PluginName>.pm (in our example, the
module name is SpecialPercent.pm) in each of the two first directories to be HSPC

compliant. For example, if you would like to develop new plug-in module Special Percent, you
should have two modules with the same names placed in:

1ib/BM/PromoPlugin/SpecialPercent.pm

1ib/MT/BM/PromoPlugin/SpecialPercent.pm

Plug-Ins Development 262

Web Interface Module

The module responsible for web interface (presentation level) must contain the following
methods:

= sub teaser_view: This method is responsible for displaying the plug-in settings when
you click on a corresponding promotion in the plug-in list. If a plug-in is enabled, it shows a
plug-in current settings view form, if a plug-in is disabled, it shows a bar with a plug-in
name and the Enable button on it.

= sub teaser_edit: This method is responsible for displaying the plug-in configuration
form when you click Edit, for changing the plug-in settings.

= sub update: This method is responsible for saving the data entered by you into the plug-
in configuration form. In other words, this method saves the plug-in settings and displays
the updated plug-in configuration.

Please note that in order to develop presentation for a promotion plug-in, you need to add
corresponding localization strings into XML file. Alphabetical string IDs defined in this
localization file are to be used in a new promotion plug-in presentation module.

The sample of the Percent Discount promotion plug-in presentation module and localization file
is located in the

samples/plugins/hspc-promo-plug-in-percent

directory.

Plug-Ins Development 263

Middle Tier Module

The middle tier module is responsible for applying a promotion discount to a customer
document total and for correct refund calculation for a discounted document.

Important: The following must be defined in the promotion plug-in middle tier module:

= The PROMO_COMP_TYPE constant that defines the alphabetical plug-in ID. This ID is
necessary for successful plug-in registration and further usage in Parallels Business
Automation - Standard. A promotion plug-in ID must consist of latin letters, underscores
allowed, no spaces, length no greater that 64 characters.

= The apply_to_doc() function that applies a discount to a document total. The
document item a discount is to be applied to is defined using the corresponding constant.

The sample of the Percent Discount middle tier module is located into the
samples/plugins/hspc-promo-plug-in-percent
directory.

The Example below illustrates how you should edit the apply_to_doc function in the
middle tier module to get a promotion that provides a discount not for all applications included
in a hosting plan, but only for MySQL application subscription fees. We call this new
promotion plug-in SpecialPercent.

In the SpecialPercent promotion plug-in example, to define the order item the discount is to be
applied to, we use the TT_PROMO_APP_SUBSCR constant.The full list of constants is attached
(on page 266). In addition, to define the application a discount must be applied to, we use the
Application ID (in our example, mysqgl) that you can easily find in Parallels Business
Automation - Standard wen interface, for each installed application.

= For Virtuozzo applications, an application IDs are alphanumerical, they are shown under
Service Director > Virtuozzo Manager > Applications. Application IDs are shown in the
Package column.

= For Plesk applications, an application IDs are numerical and shown under Service
Director > Plesk Manager > Applications. Application IDs are shown in the ID column.

Plug-Ins Development

264

Example of apply_to_doc function:

package HSPC::MT::BM::PromoPlugin: :SpecialPercent;

use strict;

use HSPC::Logger qgw(sw_atrace sw_die);

use HSPC::Math gw(percent percent_to_str);

use HSPC::Localization::Date qw(min_time);

use HSPC::Localization;

use HSPC::MT::Billing::Constants;

use HSPC::MT::BM::OrderPrice;

e e L e E e e e
Constants
e

use constant PROMO_COMP_TYPE => "'special_percent";

apply promotion component to order or bill
sub apply_to_doc {

my $self = shift;

my %h = (

DE

doc => undef,
@

my $trace = sw_atrace();

my $doc = $h{doc} || sw_die('No document specified);

my @detailes = @{$doc->doc_det};
foreach my $det (@detailes) {

my $promo_amount = O;
if ($prom_det->tran_type eq TT_PROMO_APP_SUBSCR && $prom_det-

>ref _id eq "mysql®) {

>comment,

$promo_amount = 1.00;

}

ifT (abs($promo_amount) >= 0.01) {
add detail
my $prom_det = $doc->prepare_doc_det();
$prom_det->tran_type(&TT_PROMO_APP_SUBSCR);
$prom_det->gross_amount($promouted->{amount});
$prom_det->ref_id($det->ref_id);
$prom_det->period($promouted->{period});
$prom_det->amount($prom_det->gross_amount);
$prom_det->ext_info($det->ext_info);
$prom_det->set_comment(
string => loc_string(
"promotion_for",
prom_name => $self->promo_name,
prom_item => $det->comment_id || $det-

prom_percent => sw_percent_to_str(

$promouted->{percent})

)

)
$doc->add_det(det => $prom_det);

{
my $op = new HSPC::MT::BM::OrderPrice;
$op->action(SP_ADD);
$op->subj_type($prom_det->tran_type);
$op->price($prom_det->amount);
$op->rperiod($prom_det->period);

Plug-Ins Development 265

$op->subj_key($prom_det->ref_id || "");

if ($doc->order_type eq SW_BM_OT_RENEW) {
$op->start_time($doc->subscr->end_date);
$op->end_time(

HSPC: :MT::Billing: :Datecalc::add_interval (
date => $doc->subscr-
>end_date(),
interval => $op->rperiod

)
):
} elsif ($doc->order_type eq SW_BM_OT_UPDATE &&
1$doc->plan_id) {
$op->start_time(sw_gmt_now());
} else {
otherwise start and end times will be
calculated while copy_from doc
by
$op->set_comment(string => $det->comment_id ||
$det->comment);
$op->dev_comment("Promotion detail™);

$doc->add_doc_subscr_price(price_obj => $op);

}

$trace->addok();
return undef;

Plug-Ins Development 266

Constants

Constants module provides constants storage area shared by all modules related to promotions.
Constants allow using friendly named variables instead of numbers or letters.

Constants allow defining what items of an order are to be discounted.

There is a number of constants and constant groups in the HSPC::MT::Billing::Constants module.

Note: It is necessary to include the HSPC::MT::Billing::Constants module into the plug-in being
created.

Transaction types (tran_type) are used in ar_doc_det table. tran_type points on the type of item
fee is in documents details and helps defining why ar_doc_det.amount is positive or negative. It
can be negative for promotions items and in case of refund.

Constants:

use constant TT_HP_SETUP_FEE => "PS*"; ## hosting plan setup fee

use constant TT_HP_SUBSCR_FEE => "PM"; ## hosting plan subscription fee
use constant TT_REFUND_HP => "DR"; ## refund for hosting plan

subscription fee

use constant TT_PROMO_HP_SUBSCR => "PP"; ## promotion amount on hosting
plan subscription fee

use constant TT_PROMO_HP_SETUP => "PPSE"; ## promotion amount on hosting
plan setup fee

use constant TT_APP_SETUP_FEE => "FS*; ## application setup fee
use constant TT_APP_SUBSCR_FEE => "FM"; ## application subscription fee
use constant TT_REFUND_APP => "RA"; ## refund for application

subscription fee

use constant TT_PROMO_APP_SETUP => "PASE"; ## promotion amount on application
setup fee

use constant TT_PROMO_APP_SUBSCR => "PA"; ## promotion amount on application
subscription fee

use constant TT_NRES_SETUP_FEE => "NRS"; ## Sitebuilder site setup fee and
licenses setup fee specified in a hosting plan

use constant TT_NRES_SUBSCR_FEE => "NRM"; ## Sitebuilder site subscription
fee and licenses subscription fee specified in a hosting plan

use constant TT_NRES_REFUND => "NRR"; ## refund for Sitebuilder site and
licenses subscription fee

use constant TT_PROMO_REFUND NRES => “PRNRM®";## refund for promotion amount on
Sitebuilder site and licenses subscription fee

use constant TT_RES USAGE_FEE => "RF"; ## resources fee

use constant TT_REFUND_RES => "RR"; ## refund for resources fee

use constant TT_PROMO_RES_SUBSCR => “PR"; ## promotion amount on resources
fee

use constant TT_TRAF_USAGE_FEE => "TF"; ## traffic usage fee
use constant TT_TRAF_USAGE REFUND => "TR"; ## refund for traffic usage fee

use constant TT_ATTR_SUBSCR_FEE => “"AU"; ## attribute subscription fee
use constant TT_ATTR_SETUP_FEE => "AE"; ## attribute setup fee

use constant TT_PROMO_ATTR_SUBSCR => "PT"; ## promotion amount on attribute
subscription fee

use constant TT_PROMO_ATTR_SETUP => "PTSE"; ## promotion amount on
attribute setup fee

use constant TT_REFUND_ATTRIBUTE => "RT"; ## refund for attribute
subscription fee

Plug-Ins Development 267

use
use

use
use

use
use
use
use
use

constant TT_DOMAIN_REG
constant TT_DOMAIN_TRANSFER

constant TT_TAX

=>
=>

=>

constant TT_MANUAL_ENTERED_VALUE =>
entered for a document

constant TT_FIN_CHARGE =>
constant TT_CREDIT_ADJ =>
constant TT_DEBIT_ADJ =>
constant TT_OLINE_PAYM =>
constant TT_OFFLINE_PAYM =>

“FC":
"CA";
"DA" :
"PO";
"PE" -

“"DB"; ## domain registration fee
*DT"; ## domain transfer fee

b I = ## tax rate
“"ME"; ## any custom value manually

fine amount

credit adjustment amount
debit adjustment amount
online payment amount
offline payment amount

Plug-Ins Development 268

Registering a Promotion Plug-In

A promotion plug-in installer creates or deletes a registry record about a new promotion plug-in
in the Parallels Business Automation - Standard database.

Sample of the Percent Discount promotion plug-in installer is located in the
samples/plugins/hspc-promo-plug-in-percent

directory.

A promotion plug-in installer must be located in the
1ib/MT/BM/PromoPlugin/

directory and named accordingly. For example, for for the new promotion plug-in
SpecialPercent, the installer must be named SpecialPercentlnstaller.pm.

Important:Defining a plug-in application order

As is was already mentioned in introduction to this chapter, the order of promotion plug-ins
application is critical for correct discount calculation.

The order of promotion plug-ins application is defined by a plug-in priority. Priority is a
positive number starting, for example, from 100 (highest priority) and up to a billion.

A plug-in with a lowest priority value is applied first, and a plug-in with a greatest priority value
is applied last.

Promotion plug-in priority is defined in installer using the apply_priority parameter.

For correct discount calculation, the Free Subscription Period promotion plug-in MUST be
always applied the last. By default, it has the greatest apply_priority value.

You can check the registered promotion plug-ins priority by MySQL request:

mysql> select * from promo_registry order by apply priority;

promo_comp_type apply_priority |name mt_class presents
percent 100 Percent discount HSPC: :MT: :BM: :PromoPlugin: : |HSPC: :BN
Percent
domainwaivee 200 Domain Waivee HSPC: :MT: :BM: :PromoPlugin: : |HSPC: :BN
discount DomainWaivee ee
freeperiod 2000000000 Free period HSPC: :MT: :BM: :PromoPlugin: : |HSPC: :BN
discount FreePeriod

promo_comp_type is a plug-in ID set in the Middle tier module.

apply_priority is a plug-in priority that defines its application order. As you can see,
The Free Subscription period (freeperiod) plug-in has the greatest apply_priority
value and will be applied the last. Assign smaller priorities to your custom plug-ins.

Plug-Ins Development 269

Example of the installer of the SpecialPercent promotion plug-in:
package HSPC::MT::BM::PromoPlugin::SpecialPercentinstaller;

use strict;

use HSPC::SystemLib;

use HSPC: :WebDB;

use HSPC::MT::Billing::PromoRegistry;

use HSPC::MT::BM::PromoPlugin::SpecialPercent;

sub install_plugin {
my $trace = sw_atrace();

make_registry_record();

$trace->addok();
return undef;

sub deinstall_plugin {
my $trace = sw_atrace();

delete_registry_record();

$trace->add();
return undef;

sub delete_registry_record {
my $trace = sw_atrace();

my $trans = sw_atrans();

my $plug_registry = HSPC::MT::Billing: :PromoRegistry->new() ;
$plug_registry-

>promo_comp_type(HSPC: :MT: :BM: :PromoPlugin: :Percent: : PROMO_COMP_TYPE) ;
$plug_registry->delete();

$trans->commit();

$trace->addok();
return undef;

}

sub make_registry_record {
my $trace = sw_atrace();

my $trans = sw_atrans();

my $plug_registry = HSPC::MT::Billing: :PromoRegistry->new() ;

$plug_registry-
>promo_comp_type(HSPC: :MT: :BM: :PromoPlugin: :Percent: : PROMO_COMP_TYPE) ;

$plug_registry->apply_priority(100); ## High priority. Should be applied

before freeperiod

$plug_registry->name(*'Percent discount™); ## Not shown in interface

$plug_registry->mt_class("'HSPC: :MT: :BM: :PromoPlugin: :Percent');

$plug_registry->presentation_class("'"HSPC: :BM: :PromoPlugin: :Percent');

$plug_registry->save();

$trans->commit();

$trace->addok();
return undef;

Plug-Ins Development 270

Domain Registration Plug-In
Development Tools

This chapter describes the methods used in any domain registration plug-in. Some methods are
optional (i.e., a plug-in can provide a given functionality or can work without it) and some are
mandatory (i.e., any plug-in uses a given method).

The Dummy DM plug-in code sample is located in the samples/plugins/hspc-
plugin-dm-dummy directory.

Domain Plug-In Namespaces

Namespace for modules responsible for a non-visual part of a domain plug-in is
HSPC: :MT: :Plugin: :DM: :<NAME>.

Namespace for modules responsible for visual part (i.e., graphical presentation) of domain plug-
inis HSPC: :Plugin: :DM: : <NAME>.

Where <NAME> is a plug-in Template name, that normally should follow a domain registrar
name, for example eNom or OpenSRS.

HSPC::MT::Plugin::DM Methods

The methods that belong to the HSPC::MT::Plugin::DM namespace are described below.

Domain Lookup

The methods responsible for domain lookup are described below.

Plug-Ins Development 271

check_register

check_register is an optional method.

A plug-in should use this method if it supports domains lookup via registrar APl to check
domains before registration. Otherwise this method should be dropped and Parallels Business
Automation - Standard first tries to use the check transfer method (on page 272) that also
helps recognizing whether a domain is available for registration or not (if a domain is available
for transfer, this means that a domain is already registered and thus a given domain name is
already used). If the check_transfer method is not available, then a plug-in will use a
standard lookup via whois.

Note: Some plug-ins cannot lookup domains, but may need to do some checks during lookup
procedure (for domain name in test-mode, etc.). So they can implement this method, perform
necessary checks, and return value 3 for necessary domains (see comments for output values).

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domains => ref to array of strings
Output:
= HASHREF of the type {domain => result}
where result can be:
= (0 -not available,
= 1 -domain is available,
= 2 -error during lookup,

= 3 - lookup has been skipped by a plug-in (e.g. if plug-in cannot lookup domains via
registrar API or skipped lookup due to its settings, etc.)

For example: {"aaa.com'=> 1, 'bbb.com' => 0, 'ccc.com' => 2, 'ddd.com' => 3}

Plug-Ins Development 272

can_check_register

The can_check_register method is optional.

This method is called before check register to determine whether a plug-in uses
registrar's APl to check a domain for registration. It returns 1, if plug-in can lookup domains
before registration. If result was 0, then Parallels Business Automation - Standard uses whois to
check the domains.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domains => ref to array of strings

Output:
HASHREF of kind {'domainl' => 1, 'domain2' => 0}

check_transfer

The check_transfer method is optional.

If this method is not implemented, then Parallels Business Automation - Standard first tries to
use the inverse result of the check_register method to check whether a given domain
exists and then, if the check register method is not available Parallels Business
Automation - Standard will just inverse 'lookup_domain' result (as for a most of plug-ins
needed). If a plug-in should perform some extra actions to check transferrability of domain, then
it should use this method.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domains => ref to array of strings

Output:
HASHREF of kind {domain => result}

where result can be:

= (0 -not available,

= 1-domain is available,

= 2 -error during lookup,

= 4 - lookup was skipped by plug-in (e.g. if plug-in cannot lookup domains via registrar API
or skipped lookup due to its settings, etc.)

For example: {'aaa.com' => 1, 'bbb.com' => 0, 'ccc.com' => 2, 'ddd.com' => 3}

Plug-Ins Development 273

can_check_transfer

The can_check_transfter method is optional.

This method is called before check transfer to determine whether a plug-in uses
registrar's API to check a domain for transfer. It returns 1, if plug-in can lookup domains before
transfer. If result was 0, then system uses whois to check the domains.

Input:

config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

domains => ref to array of strings

Output:

HASHREF of kind {'domainl’' => 1, 'domain2' => 0}

Operations With Domains

Methods used for domains registration, transfer, and other operations related to domains
management are described below.

register_domain

The register_domain method is mandatory.

The method registers a domain.

Input:

config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

domain => string

period => int (years)

nses => ARRAYREF ({hostname => 'nsl.domain.com’, ip ='192.192.192.192'},...)
contacts => HASHREF {typel => HASHREF, type2 => HASHREF, ...},
contacts_extdata => HASHREF {typel => REF, type2 => REF, ...},

contacts_ids => HASHREF {typel => INT(SCALAR), type2 => INT(SCALAR), ...},
domain_extdata => ARRAYREF (optional),

Output:

is_success => 10,
message => ", ## if is_success =0
domain_status => string, ## registered|registering|error

Plug-Ins Development 274

can_transfer_domain

The can_transfer_domain method is mandatory.

The method recognizes whether a plug-in supports transfer operation for a domain specified.
(Usually transfer operation is forbidden for some specific TLDs).

Input :

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string
Output :

= 1]0
transfer_domain

The transfter_domain method is optional.
The method transfers a domain.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string

= period => int (years)

= nses => ARRAYREF ({hostname => 'nsl.domain.com’, ip = '192.192.192.192'},...)

= contacts => HASHREF {typel => HASHREF, type2 => HASHREF, ...},

= contacts_extdata => HASHREF {typel => REF, type2 => REF, ...},

= contacts_ids => HASHREF {typel => INT(SCALAR), type2 => INT(SCALAR), ...},
= domain_extdata => ARRAYREF (optional)

Output:

= js_success=>1]|0,

* message => ", ## if is_success = 0

= domain_status => string, ## registered|transferring|error
= expire_date => (optional)

Plug-Ins Development 275

renew_domain

The renew_domain method is optional.
The method renews a domain registration.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string

= period => int (years) (optional)

Output:

= js_success=>1]|0,

= message =>", ## if is_success =0

= domain_status => string, ## registered|renewing|error
= expiration_date => (optional)

can_terminate_domain

The can_terminate_domain method is optional.

The method recognizes whether a plug-in supports domains registration termination for a
specified domain. (Usually domain termination is forbidden for some specific TLDs).

Input :

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string
Output :
= 1|0

Plug-Ins Development 276

terminate_domain

The terminate_domain method is optional.

The method terminates a domain registration on a registrar's side (or sends a request for domain
termination, if an operation is offline).

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string

Output:

= js_success=>1|0

= message =>", ## if is_success =0

= domain_status => ‘terminating|terminated’
get_domain_status

The get_domain_status method is optional.

The method is used for offline operations status check. When domain is in Registering,
Transferring, or Renewing status, a periodical task calls a corresponding method, if available,
and returns to Parallels Business Automation - Standard an actual domain status (for example,
still in progress, operation cancelled, operation completed).

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,

= action => 'register|transfer' - process identifier, passes an operation to be performed with a
domain (registration or transfer).

Output:

= js_success => 1|0, if 0, this is an internal error and this error must not affect a domain status
in Parallels Business Automation - Standard.

= message => string

= domain_status => 'registered|transferred|error’ (optional)

Note: If domain_status is not specified, then domain_status is not changed.

Plug-Ins Development 277

get_domain_details

The get_domain_detai Is method is optional.
The method is used to get a domain registration information.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string

Output:

= js_success=>1]|0,

= message =>", ## if is_success =0
= registration_date => (optional)

= expiration_date => (optional)
get_domain_prices

The get_domain_prices method is optional.
The method gets the pricing information from a Registrar, if such an information is available.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= periods => HASHREF {domainl => ARRAYREF [periodl,period2,...], domain2 =>
ARRAYREF [periodl,period2,...], ...}

Output:

= js_success=>1]|0,
= message => string, ## if is_success = 0

= prices => HASHREF {domainl => HASHREF {periodl => pricel,period2 => price2,...},
domain2 => HASHREF {periodl => pricel,period2 => price2,...}, ...}

Operations With Name Servers

The methods used for name servers management are described below.

Plug-Ins Development 278

register_ns

The register_ns method is optional.
The method adds a name server to the list of available name servers at registrar side.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= hostname => string

= jp=>string

Output:

= js_success=>1]|0

= message => string, ## if is_success=0
synchronize_domain_ns

The synchronize_domain_ns method is optional.
The method changes name servers set as primary ones for a delegated zone.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string
= nses => ARRAYREF ({hostname => 'nsl.domain.com’, ip ='192.192.192.192'},...)

Output:

= js_success=>1]|0,
= message => string, ## if is_success = 0

Plug-Ins Development 279

Operations With Contacts and Domain Extended Information

Plug-ins can work without contacts related methods. In this case Parallels Business Automation
- Standard only can fetch a customer contact information from his/her account profile, draw a
standard contacts form and pre-fill this form with customer contacts available in the database.
However, in this case the additional contact information must be entered every time a domain is
registered and, which is also important, contact data cannot be shared between different plug-
ins. Generally, the contacts management can be implemented even internally in a plug-in,
including contacts storage, drawing screen forms and other issues.

Parallels Business Automation - Standard provides a special facilities for plug-ins to store and
manage contact information. This facility consists of the following:

Standardized storage for contact information called Base Contacts. It consists of the
standard set of fields (optional or mandatory, with a unified input format) supported by most
of plug-ins. Having been saved in Parallels Business Automation - Standard database, Base
Contacts can be used by a number of plug-ins and, in addition, are used for the Contacts
screen form pre-filling. When a customer registers a domain, the Base Contacts are called
by a customer account ID. A customer can have several Base Contacts blocks and select
what one to use during domain registration. Other Base Contacts (if any) can be selected
from the drop-down menu.

Note: The plug-ins that require contact information within the Base Contacts only, can be
implemented without any contacts-related visual methods - Parallels Business Automation -
Standard will draw and pre-fill the form automatically.

An additional contact information called Extended Data, which is usually Registrar-
specific. Any additional data (and data specific presentation) required by a Registrar can be
stored here. The Extended Data provides the flexibility for the contact data composition.
Not only customer contacts can be stored as Extended Data, but the domain related data
required by some registrars as well.

Contact Types

The possible Contact Types:

Type Should be pre-filled from

owner Parallels Business Automation - Standard Account General
Information

admin Parallels Business Automation - Standard Account
Administrative Information

billing Parallels Business Automation - Standard Account Billing
Information

technical Parallels Business Automation - Standard Account Technical

Information

Plug-Ins Development 280

A plug-in informs about the Contact Types required by means of the get_contact_types
(on page 281) method. The structure returned by this method is illustrated by the following
example:
return [
{ type => "owner®, title => "Owner Contact” },
{ type => "admin®, title => "Admin Contact” },
{ type => "technical®, title => "Technical Contact" }

Base Contact Information

Base Contact fields:

Name Type | Restrictions Mandatory (default) Description
is_corporate | bool {0[1} yes Personal/Corporate
Account
org_name char yes if is_corporate Organization Name
fname char yes First Name
Iname char yes Last Name
address char yes Address Line
city char yes City
state char yes State
zip char ZIP/Postal Code
country char ISO 3166 country|yes Country
designation
email char Valid email address yes E-mail Address
phone char Parallels Business | yes Phone Number
Automation - Standard
phone number format
fax char Parallels Business Fax Number
Automation - Standard
phone number format

Plug-Ins Development 281

get_contact_types

The get_contact_types method is optional.

The method returns the arrayref of hashes {type_name => ‘admin’, type_title_id => 'admin_uc'}

?)
Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string
Output:
= ARRAYREF of HASHREFS {type => AVAILABLE_TYPE, title => string}

Where AVAILABLE_TYPE is one string from following list: ‘owner’, ‘admin’, 'technical’,
'billing’, 'zone'".

validate_data

The val idate_data method is optional.
The method checks whether all required fields have been filled according to a registrar rules.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,

= action => string,

= contacts => HASHREF {'admin’' => HASHREF, 'tech’ => HASHREF, ...},
= contacts_extdata => HASHREF {'admin' => REF, 'tech' => REF, ...}

= domain_extdata => REF

Output:

= js_valid=>1|0 -ifitis valid data.

= error_list => arrayref to hashes {form => contactjdomain_extdata, contact type =>
ownerladmin|..., field => name , message => localized_message_string}, ## if is_valid = 0

Plug-Ins Development 282

update_contacts

The update_contacts method is optional.
The method is used to modify contact information at a registrar side.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => SCALAR

= contacts => HASHREF { owner => HASHREF, admin => HASHREF, ... }

= contacts_extdata => HASHREF { owner => REF, admin => REF, ... }

= contacts_ids => HASHREF { owner => INT(SCALAR), admin => INT(SCALAR), ... }

Output:

= js_success=>1]|0

= error_list => arrayref to hashes {contact_type => ownerladmin|..., message =>
error_mess_localiz_id}, ## if is_valid =0

The contacts argument should contain all the contacts supported by a plug-in, These
contacts can be obtained using the get_contact_types (on page 281) method.

Supporting 'WHOIS Privacy' Feature

When one registers a domain name, ICANN requires that his/her address, e-mail and phone
number be published in the public WHOIS database which is available for anybody to view on
the Web. Private Registration hides a customer personal information from public view and
keeps this information private:

The methods that allow supporting a WHOIS information privacy service are described below.

can_idprotect

The can_idprotect method optional.
The method recognizes whether a plug-in supports WHOIS privacy service for a given domain.

Input :

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string
Output :
= 1]0

Plug-Ins Development 283

get_idprotect

The get_idprotect method is optional.

The method gets the WHOIS privacy setting for a domain name.

Input:

config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

domain => string

Output:

is_success => 1|0,
value => 1|0 ## if is_success = 1
message => string, ## if is_success =0

set_idprotect

The set_idprotect method is optional.

The method enables the whois privacy for a domain.

Input:

config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

domain => string,
value => 1|0

Output:

is_success => 1|0,
message => string, ## if is_success=0

Supporting 'Lock Domain' Feature

The Registrar lock feature allows temporarily disallowing domains transfer from a registrar.

The methods used to support the ‘Lock domain' feature are described below.

Plug-Ins Development 284

can_reglock

The can_reglock method is optional.
The method recognizes whether a plug-in supports registrar lock for a specified domain.

Input :

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string

Output :

= 1|0

get_reglock

The get_reglock method is optional.

The method is used to get the registrar lock setting for a domain name.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string
Output:

= js_success => 1|0,
= value => 1|0 ## if is_success = 1
= message => string, ## if is_success = 0

Plug-Ins Development 285

set_reglock

The set_reglock method is optional.
The method sets registrar lock for a given domain.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,
= value => 1|0 =1 to lock, =0 to unlock.

Output:

= js_success => 1|0,
= message => string, ## if is_success=0

Supporting Offline Operations

The method(s) that allow supporting offline operations over domains described below.

process_callback

The process_cal Iback method is optional.

The method processes an e-mail response received from registrar. An e-mail is caught by a gate
in Parallels Business Automation - Standard and sent to an appropriate plug-in (plug-in is
determined from callback e-mail).

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= data =>string
Output:

= js_success => 1|0,

= message => string, ## if is_success=0

= domain => string,

= domain_status => 'registered|registering|error]...",
= expiration_date => datetime,

= registration_date => datetime,

= ns_synchronized =>1|0

Plug-Ins Development 286

HSPC::Plugin::DM Methods

The methods that belong to the HSPC::Plugin::DM namespace are described below.

Operations With Contact and Domain Extended Information

The methods used for visual part contacts and domain extended information management are
described below.

view_contact_form

The view_contact_form method is optional.

The method draws a full view form for contacts including standard fields and extended contact
fields ("contact extdata").

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,

= action => string (optional),

= contact_type => string (e.g. 'admin’...),
= contact => HASHREF,

= contact_extdata => REF

Output:
= HTML

Plug-Ins Development 287

edit_contact_form

The edit_contact_form method is optional.

The method draws a full edit form for contacts including standard fields and extended contact
fields (‘contact extdata’).

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,
= action => string (optional),
= contact_type => string (e.g. 'admin’...),

= contact => HASHREF, (optional, if not empty, then it can be used for form fields pre-
filling).

= contact_extdata => REF, (optional, if not empty, then it can be used for form fields pre-
filling).

= error_list => arrayref (optional)

Output:

= HTML

view_contact_extdata_form

The view_contact_extdata_ form method is optional.

The method draws a view form for contact extended data (this is needed for bulk domain
registration, when minimum of input fields is preferred to be drawn).

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,

= action => string,

= contact_type => string (e.g. 'admin’'...),
= contact => HASHREF,

= contact_extdata => REF,

Output:
= HTML

Plug-Ins Development 288

edit_contact_extdata_form

The edit_contact_extdata_formis optional.

The method draws an edit form for contacts extended data (this is needed for bulk domain
registration, minimum of input fields are preferred tp be drawn).

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,
= action => string,
= contact_type => string (e.g. 'admin’...),

= contact_extdata => REF, (optional, if not empty, then it can be used for the form fields pre-
filling).

= error_list => arrayref (optional)
Output:

= HTML
view_domain_extdata_form

The view_domain_extdata_form method is optional.
The method draws a view form for a domain extended data.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,

= action => string,

= domain_extdata => REF
Output:

= HTML

Plug-Ins Development 289

edit_domain_extdata_form

The edit_domain_extdata_fTorm method is optional.

The method draws an edit form for a domain extended data.

Input:

config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

domain => string,

action => string,

domain_extdata => REF, (optional, if not empty, then can be used for the form fields pre-
fill).

error_list => arrayref (optional)

Output:

HTML

collect_contacts_data

The collect_contacts_data method is optional.

The method collects contacts data and contacts extended data from web parameters.

Input:

config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

domain => string
action => string

Output:

contacts => HASHREF (e.g. {owner => HASHREF, admin => HASHREF, ... })
contacts_extdata => HASHREF (e.g. {owner => REF, admin => REF, ... })

Plug-Ins Development 290

collect_contact_extdata

The collect_contact_extdata method is optional.
The method collects contact extended data from web parameters.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,

= action => string,

= contact_type => string (e.g. 'admin’...),
Output:

= contact_extdata REF
collect_domain_extdata

The collect_domain_extdata method is optional.
The method collects domain data from web parameters.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= domain => string,
= action => string,

Output:

= domain_extdata => REF

DM Plug-In Installation and Configuration

The methods used for a domain plug-in registration are described below.

Plug-Ins Development 291

view_config_form

The view_config_Torm method is optional.
The method draws the view form for a plug-in configuration screen.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= config=> REF
Output:

= HTML
edit_config_form

The edit_config_form method is optional.
The method draws the edit form for a plug-in configuration screen.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= config => REF

= error_list => arrayref (optional)
Output:

= HTML

Plug-Ins Development 292

collect_config_data

The collect_confTig_data method is optional.
The method collects data from a plug-in configuration screen.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= config => REF, which contains a plug-in configuration data.
Output:

= config => REF, which contains a new data collected from a plug-in configuration screen
= callback_email => string (optional)

Note:If it is planned to use incoming e-mails in a plug-in, then you should specify the output
parameter ‘callback_email' and implement the process_callback (on page 285) method in plug-
in template.

validate_config_data

The val idate_config_data method is optional.
The method collects data from a plug-in configuration screen.

Input:

= config => REF, this input parameter must be passed to all methods used for DM plug-ins
development. This parameter passes a plug-in configuration data, which normally should
include a visible data (a plug-in settings entered into a its configuration form) and non-
visible data passed by a plug-in additionally. The structure of the data passed is defined by a
plug-in developer in the collect_config_data (on page 292) method.

= config=> REF
Output:

= js_valid => 1|0,

= error_list => arrayref to hashes {field => config_field_name, message =>
localized_message_string}, ## if is_valid =0

Required Toolkit Methods

The toolkit methods needed for domain plug-ins are described below.

Plug-Ins Development 293

Common Functions

= HSPC::Plugin::Toolkit->log

= HSPC::Plugin::Toolkit->log_warn
= HSPC::Plugin::Toolkit->log_debug
= HSPC::Plugin::Toolkit->string

parse_template
HSPC::Plugin::Toolkit->parse_template

The function is used for HTML generation from a list of predefined templates or templates
implemented in a plug-in.

Input:

= tmpl => string,
= data => HASHREF

Output:
= raw HTML

purify_fromxml_data

use HSPC::Plugin::Toolkit qw(purify_fromxml_data);

$plugindata=purify_fromxml_data($plugindata);

The function is used for clearing UTF8 flag from Perl variables.

Input:
= scalar
Output:

= gcalar

Plug-Ins Development 294

DM Related Checking, Converting, Formatting Functions

is_fqdn

is_ascii_fqdn

domain2utf

domain2ascii

extract_tld_from_domain

extract_shortname_from_domain
phone_as_el64/phone_string_as_el164
check_pnonecountry, phone_like_de, phone_as_tollfree (?)
is_idn_domain

is_cc_tld

phone_as_str

Converts phone from internal format '7|095|1234567|123" into human readable format "+7
(095) 1234567 ext. 123"
Input : phone_src (string)
Output : converted phone

get_contact_related_domains({domain=>string(mandatory),
contact_type=>string(mandatory)})
returns ARRAYREF of related domain names

get_contact({domain=>string(mandatory), contact_type=>string(mandatory)})
returns HASHREF {contact => HASHREF, contact_extdata => REF}
set_contact_extdata({domain=>string, contact_type=>string(mandatory),

contact_extdata=>REF(mandatory)})
returns undef

get_domain_extdata({domain=>string(mandatory)})
returns domain extended data as HASHREF {domain_extdata => REF}

set_domain_extdata({domain=>string, domain_extdata=>REF(mandatory)})
returns undef

make_login
make_password

whois_query (some common function(s) for: HSPC::MT::DM::WhoisClient->whois_query;
HSPC::MT::DM::RegEngine->get_whois; HSPC::MT::DM->lookup_domain;)

Plug-Ins Development 295

get_domain_info

The method gets the domain related information that is needed for a plug-in from Parallels
Business Automation - Standard database.

HSPC: :PluginToolkit: :DM->get_domain_info(
domain => “"domain.org"

)
The get_domain_info method output result:
{

domain => string,

domain_status => string,

registration_date => string,

expiration_date => string,

nses => arrayref of hashes [{ip => , hostname => }, _..]

Creating a New DNS Plug-In

DNS plug-in API allow adding a new method of name servers registration and management into
Parallels Business Automation - Standard.

Introductory Notes About DNS Plug-In

DNS plug-in modules can be divided into three parts:

= Presentation module responsible for drawing plug-in settings screen and plug-in
configuration screen,

= Middle tier module responsible for database interactions.

Plug-Ins Development 296

DNS Plug-In Objects and Their Naming Conventions

DNS plug-ins are represented by objects of classes enlisted below. For example, for the plug-in
named Simple, the classes should be named as follows:

= HSPC::DM::NS::SlaveNS::Simple responsible for a plug-in presentation level.

= HSPC::MT::DM::NS::SlaveNS::Simple responsible for working with database and name server
specific logic.

The ready DNS plug-in is an RPM package.

The directories structure is the following:

1ib/DM/NS/SlaveNS/ contains module responsible for presentation level of the plug-
in.

= lib/MT/DM/NS/SlaveNS/ contains module responsible for work with database and
nameserver specific logic.

= comprep/ contains component repository configuration.
= conf/ contains files for plug-in registering/removing.
= 118n/ contains directories with localization.

It is necessary to have at least two modules named like <PluginName>.pm in each of the two
first directories mentioned above for a plug-in to be HSPC compliant. For example, if you
would like to develop a new plug-in module for Simple nameserver you must have two modules
with the same names placed in:

1ib/DM/NS/SlaveNS/Simple.pm

1ib/MT/DM/NS/SHaveNS/Simple.pm

Plug-Ins Development 297

Registering a DNS Plug-In

Every DNS plug-in must be registered in Parallels Business Automation - Standard. Here are
the sample scripts for plug-in register/remove:

Register a Plug-In:

#1/usr/bin/perl
use strict;

use HSPC::Console;
use HSPC: :WebDB;
use HSPC::MT::DM::NS::SlaveNS::Simple;

my $type_id = &HSPC: :MT::DM: :NS::SlaveNS: :SIMPLE: :DM_NS_TYPE_SIMPLE;

select_run(qq]

create table if not exists dm _ns_simple (
ns_id int unsigned NOT NULL,
root_passwd varchar(255),
named_conf varchar(255),
proto varchar(10) NOT NULL default "1,2"%,
proto_new varchar(10),
ssh_install_mode varchar(10) NOT NULL default "password®,
to_connect_use_ip varchar(10) NOT NULL default "0-,
PRIMARY KEY (ns_id)

) type=Innobase;

D:

select_run(qq]
replace into dm_ns_type (
ns_type_id,
name,
short_name,
class,
visual_class,
is_manageable,
allowed_for_resellers
) values (
"$type_id",
"ssh_ns_type-,
"ssh_ns_type_sh*",
"HSPC: :MT::DM: :NS::SlaveNS::SIMPLE",
"HSPC: :DM: :NS: :SlaveNS: :SIMPLE",
1,
1
M|
)

where
- DM_NS_TYPE_SIMPLE — constant defining plug-in type

dm_ns_simple — plug-in table name, containing name servers configuration
HSPC: :MT::DM: :NS: :SlaveNS: :SIMPLE — middle-tier class name

HSPC: :DM: :NS: :SlaveNS: :SIMPLE — representation class name

Remove a Plug-In:

#1/usr/bin/perl
use strict;

use HSPC::Console;
use HSPC: :WebDB;
use HSPC::MT::DM::NS::SlaveNS: :SIMPLE;

my $type_id = &HSPC::MT::DM::NS::SlaveNS: :SIMPLE: :DM_NS_TYPE_SIMPLE;

Plug-Ins Development 298

select_run(qq|delete from dm_ns_type where ns_type_id = "$type_id";|);

Web Interface Module

Let

us consider the module responsible for web interface (presentation level)

HSPC::DM::NS::SlaveNS::Simple. This module must contain the following methods:

sub form_ns This method is responsible for displaying the name server configuration
form when you click the Edit button at a name server settings screen, in other words, for
changing the name server settings.

sub view_ns This method is responsible for displaying the name server settings when
you click on its name in the Name Servers list, in other words, for viewing the name server
settings.

sub save_ns This method saves name server settings.

sub is_reinstall_reqg The method checks if significant parameters were changed
during saving a server settings and returns 1 if a server is to be reinstalled.

Plug-Ins Development 299

form_ns()

The form_ns is responsible for displaying the name server configuration form when you click
the Edit button at a name server settings screen Service Director > Domain Manager > Name
Servers > select a name server, in other words, for changing a name server settings.

Input parameters are:

= >> class object
= =>>page - HSPC::WebPage object
= =>>id - name server ID

Return undef on success or error message on fail.

Example of method implementation:

sub form_ns {

my $class = shift;

my %h = (
page => undef,
id => undef,
hostname => sw_param(“hostname®) || undef,
title => sw_param(“title®) || undef,
ip => sw_param("ip") || undef,
is_available => sw_param(“is_available®) || undef,
root_passwd => sw_param(“root_passwd®) || undef,
named_conf => sw_param("named_conf") || undef,
proto_new => sw_param(“proto_new®) || undef,
to_connect_use_ip => sw_param("to_connect_use_ip") || undef,
@

);
my $page = $h{page};

my $ns_obj;
my $is_protected = O;
it ($h{id}){
$ns_obj = HSPC::MT::DM->Ffind_nameserver(id => $h{id});
$is_protected = scalar grep {$_->{is_locked}} @{$ns_obj-
>nsset_list(Q)};
$page->edit_view_input(
title_id => "title",
view_name => "title",
value => s$h{title} || $ns_obj->title(),
max_length => 55,
size => 20,
not_empty => 1,
)

$page->edit_view_check(
title_id => "ns_is_avail”,
view_name => "is_available®,
is_checked => $h{is_available} || $ns_obj->is_available()

disabled => $is_protected,
value => 1

);

$page->edit_view_hidden(
view_name => "id",
value => $ns_obj->id()

DE

Plug-Ins Development 300

$page->edit_view_input(
title_id => "hostname”,
view_name => "hostname-”,
value => $h{hostname} || ((ref $ns_obj) ? $ns_obj->utf_hostname()

max_length => 255,

size => 15,

not_empty => 1,

disabled => $is_protected,

$page->edit_view_input(
title_id => "ip_address”,
view_name => "ip-,
value => $h{ip} || ((ref $ns_obj) ? $ns_obj-—>ip() : "),
max_length => 15,
size => 15,
disabled => $is_protected,
not_empty => 1,

DE

$page->edit_view_check(
title_id => "to_connect_use_ip",
view_name => "to_connect_use_ip”°,
is_checked => ($h{to_connect_use_ip}
|l (ref $ns_obj && $ns_obj->to_connect_use_ ip())) ? 1 : O,
value => 1,

my $init_proto_new = $h{proto_new} ||
((ref $ns_obj) ? $ns_obj->proto() : "7);
my $dbl_slash = */"."/";
my $jvs proto_store =
aql
<script language="JavaScript'>
<i__
proto_keys_init = "$init_proto_new";
proto_store = "$init_proto_new";
$dbl_slash-->
</script>

$page->eait_append(content => $jvs_proto_store);

my $keys checked =
(ref $ns_obj && ($ns_obj->ssh_install_mode() eq “"keys®)) ?
1 : 0;

$page->edit_view_info(value => string("ssh_install_mode"),
right_line => 1);
{
$page->cell_radio(
view_name => "ssh_install_mode®,
value => "keys",
align => “left",
cols => 3,
is_checked => $keys_ checked,
close => 0,
js_on_click => qg~proto_store =
document.getElementByld("item™).proto_new.value;
document.getElementByld("“item™)._proto_new.value = proto_keys init~,
enable_views => [],
disable_views => [qw(root_passwd proto_new)],

$6age—>ce|l_text(
value => string("ssh_use already_set_keys"),
open => 0,

Plug-Ins Development 301

align => "left”
E

$page->row_close;

$page->cell_radio(
view_name => "ssh_install_mode®,
value => "password®,
align => “left",
cols => 3,
is_checked => 1$keys checked,
close => 0,
Js_on_click =>
qg~document.getElementByld("item") .proto_new.value = proto_store-,
enable_views => [qw(root_passwd proto_new)],
disable views => [],
E
$page->cell_text(
value => string("ssh_use_root pass®),
open => 0,
align => "left”
E
$page->row_close;
$page->cell_skip(width => 20);
$page->edit_view_input(
title_id => "password-”,
value => $h{root_passwd},
not_empty => 1,
view_name => "root_passwd",
max_length => 100,
is_password => 1,
size => 15,
E
$page->row_close;
$page->cell_skip(width => 20);
$page->cell_text(value => string("ssh_proto®"), is _aster =>
1);
$page->cell_skip(width => 60);
$page->cell_combo(
check_title_id => "ssh_proto”,
view_name => "proto_new",
not_empty => 1,
value => $init_proto_new,
options => &PROTOS,
options_plain => 1
E

$page->row_close;

by
$page->edit_view_hidden(
view_name => "proto”,
value => $h{proto} || ((ref $ns_obj)
? $ns_obj->proto() : "7),
E
$page->edit_view_info(value => "", right_line => 1);
$page->edit_view_input(
title_id => "named_conf",
view_name => "named_conf",
value => $h{named_conf} || ((ref $ns_obj)
? $ns_obj->named_conf() : "/etc/named.conf"),
max_length => 255,
size => 25,
not_empty => 1,
)

return undef;

Plug-Ins Development 302

view_ns()

This method is responsible for displaying the name server settings when you click on its name
in the Name Servers list, in other words, for viewing a name server settings at Service Director >
Domain Manager > Name Servers > select a name server.

Input parameters are:

= >>class object

= =>>page — HSPC::WebPage object
= =>> 1d - Name server ID

= =>>0obj - Name server object

Return undef on success or error message on fail.

Example of method implementation:

sub view_ns {
my $self = shift;
my %h = (
page => undef,
id => undef,
obj => undef,

o_
):
my $page = $h{page};
my $ns_obj;
it ($h{id}){
$ns_obj = HSPC::MT::DM->find_nameserver(id => $h{id});
sw_die ('NS #$h{id} not found™) unless ($h{id} == $ns_obj->id());

} elsift ($h{obj}) {

$ns_obj = $h{obj};
} else {

sw_die ('NS id or obj should be specified™);
}

$page->view_info_text (
title_id => "to_connect_use_ip",
type => “bool*,
value => $ns_obj->to_connect_use_ip(),
)
$page->view_info_text(
title_id => "named_conf",
value => $ns_obj->named_conf(),
)
$page->view_info_text(
title_id => "ssh_proto-,
value => $ns_obj->proto(),
)
$page->edit_view_hidden(
view_name => "ssh_install_mode*,
value => $ns_obj->ssh_install_mode()
)
Name server properties can not be modified if belongs to locked NS
set
my $is_protected = scalar grep {$_->{is_locked}} @{$ns_obj-
>nsset_list(Q)};
my $buttons = {
show_edit => 1,
show_delete => $is_protected ? 0 : 1,
show_cancel => 1,

Plug-Ins Development 303

e

if ($ns_obj->status() == NS_STATUS_ERROR){
push @{$buttons->{right_buttons}}, [
"item_reinstall”,
string(“recreate®),
"SWIButtonX”®,
"submit”,

1;
} elsif (

$ns_obj->status() == &NS_STATUS_INSTALLED
Il $ns_obj->status() == &NS_STATUS_UNREACHABLE

1
push @{$buttons->{right_buttons}}, [
"check_status”,
string("check_status®),
"SWIButtonX®,
"submit”®,
1;
}

return $buttons;

Plug-Ins Development

304

save_ns()

This method is responsible for saving name server data.

Input parameters are:

>>class object

=>> page — HSPC::WebPage object

=>> title - Name server title

=>> 1d — Name server ID

=>>ns_type — Name server type

=>> provider_id - Provider ID

=>> is_available - node availability status
=>> pol icy — Name server rights policy

Return ID of saved name server on success or undef on fail.

Here is an example of method implementation:

sub save_ns

{

my $self = shift;
my %h = (
common params
page => undef,
id => undef,
title => undef,
ns_type => undef,
provider_id => undef,
is_available => undef,
provider_id => undef,
own params

ip => sw_param("ip") || undef,

hostname => sw_param(“hostname®) || undef,

root_passwd => sw_param(“root_passwd") || undef,
ssh_install_mode => sw_param(“ssh_install_mode") || undef,
named_conf => sw_param(“named_conf") || undef,

proto => sw_param("proto®) || undef,

proto_new => sw_param(“proto_new®) || undef,
to_connect_use_ip => sw_param("to_connect_use_ip") || O,

@

);
my $page = $h{page};
my $ns_obj;

if($h{id}) {
$ns_obj = HSPC::MT::DM->find_nameserver(id => $h{id});
} else {
$ns_obj = HSPC::MT::DM::NS::SlaveNS: :SSH->new();
$ns_obj->type_id($h{ns_type});
$ns_obj->provider_id($h{provider_id});
$ns_obj->status(&NS_STATUS_PENDING);
¥

if($ns_obj->ip ne $h{ipH{

my $ns_obj chk = HSPC::MT::DM->Find_nameserver(ip => $h{ip});

iT($ns_obj_chk){
error_ext (
mod => &MOD_DM,
smod => &SMOD_DM_NS,

Plug-Ins Development

305

err => 6,
params => {id => $ns_obj_chk->id}
)

}

$h{hostname} = HSPC: :MT: :DM->domain2ascii(
domain => $h{hostname}
):

my $domain_error = 0;
if ($ENV{security_obj}->account_type() = &SW_HSP){
Check for idn enabled
$domain_error = HSPC::MT::DM::ToolsInt->check_domain(
domain => ("hostname®),
provider_id => $ENV{security_obj}->account_no,

);

if ($domain_error) {
error(MOD_OD_DM, 12);
return undef;

}

$ns_obj->title($h{title});
$ns_obj->hostname($h{hostname}) ;
$ns_obj->ip($h{ip});
$ns_obj->is_available($h{is_available} ? 1 : 0);
$ns_obj->named_conf($h{named_conf});
$ns_obj->to_connect_use_ip($h{to_connect_use_ip});
if ($h{proto}){
edit already created ssh NS
$ns_obj->proto($h{proto});
} elsift (I$h{proto} and $h{proto_new}){
create new ssh NS server
so old protocol not exist, save new protocol
$ns_obj->proto($h{proto_new});
} else {
$ns_obj->proto("2,1%);
}

$ns_obj->root_passwd($h{root_passwd});
$ns_obj->policy($h{policy});
$ns_obj->ssh_install_mode($h{ssh_install_mode});

1f some errors happen
return undef if last _error();
my $res = $ns_obj->save();

return ('last_error() && $ns_obj-—>id()) ? $ns_obj->id() : undef;

Plug-Ins Development 306

is_reinstall_ns()

The method checks if significant parameters were changed during saving and returns 1 if server
is to be reinstalled.

Input parameters are:

= >>class object
= =>> id - Name server ID
= =>> Other name server specific parameters

Return 1 if reinstall is required or O otherwise.

Example of method implementation:

sub is_reinstall_req{
my $self = shift;
my %h = (
id => undef,

ip => sw_param("ip") || undef,
hostname => sw_param(“hostname®) || undef,
root_passwd => sw_param("root_passwd®") || undef,
named_conf => sw_param(“named_conf") || undef,
proto => sw_param("proto”) || undef,
o_

)

sw_die("is_reinstall_req(): NS ID expected™) unless $h{id};

my $ns_obj = HSPC::MT::DM->Ffind_nameserver(id => $h{id});

try to guess if we should reinstall NS or just save object
Reinstall required if some of significant values are changed or
NS status was ERROR

my $reinstall_req = ($ns_obj->status() == &NS_STATUS ERROR);
unless ($reinstall_req){
foreach my $item (gw]ip hostname root passwd named_conf proto]){
$reinstall_req = ($ns_obj->$item ne $h{$item});
last if $reinstall_req;

}

return $reinstall_req;

}

Middle Tier Module

We consider in details the module responsible for integration with the Commerce Director
HSPC::MT::CCP::Plugins::CCard_Simple. This module has to contain a number of methods to be
HSPC compliant. These methods are:

= sub install This method is called by Domain Manager during first-time installation.

= sub sync_zones This method synchronize specified zones.

= sub check_is_reachable The method checks if the name server is reachable from
Parallels Business Automation - Standard node.

Plug-Ins Development 307

install()
This method is called by Domain Manager during first-time installation.

Input parameters are:
= >>class object

Method must return a Task Manager task ID on success, or 0 on success if task not needed, or
undef on error.

sub install {
my $self = shift;
my $ns_id = $self->id();

$selF->status(&NS_STATUS_INSTALLING);
$self->save();

my $task i1d = HSPC::TaskExec: :task_add(
descr => "VPS Name Server installation”,
class => "HSPC::MT::DM: :NS: :SlaveNS: :VPS",
method => "install_async_task",
param => [id => $ns_id],
priority => 128,
timeout => 600,
mutex => "install_ns_$ns_id"
)

return $task id;

Plug-Ins Development

308

sync_zones()
This method synchronizes the specified zones.

Input parameters are:

= >>class object
= =>>zones - Array of zone names to be synchronized
= =>>delete_old_zones - Boolean, shows if old zones deleting is required

Method must return 1 on success, or 0 otherwise.

sub sync_zones {

my $self = shift;

my %arg = (
zones => undef,
delete_old_zones => 1,

e_

):

my $file;

my @remote_zone_files;

my @zones = @{$arg{zones}};

my $named_zones = HSPC::MT::DM::NS::NSTools->generate_named_zones(
zones => \@zones

):

my $out;
my @local_zone_files = map { $.= ".zone" } @zones;
my $res = $self->__ sh_exec(
cmd => "Is -la /" _.$self->named_dir(Q),
out => \$out
):

return 0 unless $res;

@remote_zone_files = split ("\n", $out);
Filter only real zone files
@remote_zone_files = grep /\.zone$/, @remote_zone_files;

Remove old files from remote DNS host
if ($arg{delete_old_zones}) {
my @unlink Files;
foreach $file (@remote_zone_files) {
unless (grep /7$file$/, @local_zone_files) {
push @unlink_files, $self->named_dir()."/$file";
¥

by
$self->_ unlink(@unlink_files);
}

Put zones list file and reload

$self->__ put_zoneslist_file(content => $named_zones);
my $res = $self->_ sh_exec(cmd => INITD. "named reload");
return 0 unless $res;

Plug-Ins Development 309

check_is_reachable()

The method checks if the name server is reachable from Parallels Business Automation -
Standard node.

Input parameters are:
= >>class object

Method must return 1 on success, or 0 otherwise.

sub check_is_reachable{
my $self = shift;

my $ve gate;
eval {
$ve_gate = $self->_ ve gate();

};
if (‘ref($ve _gate) || $0) {

return O;
ks

if ($self->ve_obj()->status() eq
&HSPC: MT: :OM: :VE: : STATUS->{SW_VE_STATUS_RUNNINGQO})

{

return 1;
ks
return O;

SSL Certificate Plug-In Developmet
Tools

This chapter describes the methods used in SSL certificate plug-ins. Some methods are optional
(i.e., a plug-in can provide a given functionality or can work without it) and some are mandatory
(i.e., any plug-in uses a given method).

SSL Certificate Plug-In Namespaces

The namespace for modules responsible for the non-visual part of an SSL certificate plug-in is
HSPC: :MT: :Plugin: :SSL: :<NAME>.

The namespace for modules responsible for the visual part (i.e., graphical representation) of an
SSL certificate plug-in is HSPC: :Plugin: :SSL: - <NAME>.

Where <NAME> is a plug-in Template name, that normally should follow a SSL certificate
authority name, for example eNom or GeoTrust.

Plug-Ins Development 310

Middle Tier Module

The methods that belong to the HSPC: :MT: :Plugin: :SSL namespace (middle tier) are
described below.

Common Parameter: plugin_config

Each of these methods is passed the plugin_conFfig parameter. This parameter passes the
plug-in configuration data. The structure of the data passed is defined by the plug-in developer
in the col lect_data method (on page 319).

Configuration Information

The methods responsible for retrieving configuration information are described below.
get_title

The get_title method is mandatory.

Input:

= plugin_config=> HASHREF.

Output:

= “Name of SSL Certificate Plug-In”

get_product_list
The get_product_list method is mandatory.

You can add extra SSL product names in the i18n/<language code>/<plug-in-name>.xml file,
e.g.: i18n/EN/hspc-plugin-ssl-enom.xml. Remember they should start with “ssl_product_".

Input:
= plugin_config=> HASHREF.
Output:

= {internal_ssl_product_name => { name => “SSL product name”, external => “Identifier as
per the SSL registrar API”, periods => [supported registration periods in years], bits => [
supported number of bits] }

For example: { geotrust_quickssl => { name => “GeoTrustQuickSSL”,
external => “Certificate-GeoTrust-QuickSSL”, periods => [1,
2, 3, 4,517, bits => [1024, 2048] } }

Plug-Ins Development 311

get_price_list

The get_price_list method is mandatory.
The method returns the prices per supported SSL product for both new registration and renewal.

Input:

= plugin_config=> HASHREF.

= product =>string, the internal SSL product name, as received from get_product_list.
Output:

= { new =>price_for_new_registration, renew =>price_for_renewal, currency => currency
code }

For example: { new => 15, renew => 10, currency => “USD” }

get_server_software_type_list

The get_server_software_type_ list method is mandatory.
The method returns the supported server software types for a given product.

Input:

= plugin_config=> HASHREF.

= product =>string, the internal SSL product name, as received from get_product_list, for
which to receive the supported server software types.

Output:

= { “external identifier as per the SSL registrar API” => “Name of server software type”, etc.

}

For example: { 1 => *“Apache + ModSSL”, microsoft_iis 7 =>
“Microsoft 1IS 7” }

get_approver_email_list

The get_approver_email_list method is optional.

The method returns the supported email addresses for the SSL approval procedure. This method
may be called in the validate_csr_data method.

Input:

= plugin_config=> HASHREF.

= domain_name=>string, the domain name for which the SSL certificate is being
bought.

Output:

= [“email address 17, “email address 27,]

Plug-Ins Development 312

get_buttons
The get_buttons method is optional.

The method adds a button to PBAS GUI and by means of this button makes it possible to call
custom methods from the module in Provider Control Center or Control Panel.

Input:

= plugin_config=> HASHREF.

= product =>string, the internal SSL product name, as received from get_product_list, for
which to receive the supported server software types.

= Is_admin => boolean, shows if the method is called by administrator.

= ext_attr => HASHREF, { “extended attribute 1” => value, “array of values” => [],
etc. }

Output:

L
{

command => name_of_ the methodl,

label => labell

3}

{
command => name_of_the method2,
label => label2

+»

1

The method returns the list of hashes, where {command} contains the name of the function in
the middle-tier module of the Plug-in and {label} is the name of the button which will be
shown in Control Panel or Provider Control Center,

The 1s_admin input parameter is 0 for Control Panel and 1 for Provider Control Center, so the
Plug-in developer can customize where the button must be shown.

Plug-Ins Development 313

update_ext_attr

The update_ext_attr method is optional.

The method is called while updating extended attributes for SSL certificate from Provider
Control Center or Control Panel.

Input:

= ext_attr => HASHREF, { “extended attribute 1” => value, “array of values” => [],
etc. }

= product => string, the internal SSL product name, as received from get_product_list.
= plugin_config=> HASHREF.

Output:

is_success => 1]0,
error_message => text,

}

error_message is applied if the {is_success} is 0. The error message text will be
shown in Provider Control Center or Control Panel as it is specified in the method output.

SSL Certificate Issuing

The methods described below are used to validate SSL configuration information and issue SSL
certificates.

validate_csr_data

The validate_csr_data method is mandatory.
The method checks the supplied CSR data for validity.

Input:

= plugin_config => HASHREF.

= product => string, the internal SSL product name, as received from
get_product_list, for which to receive the supported server software types.

= csr_data => HASHREF, { country => string, state => string,
city => string, organization_name => string,
organizational _unit name => string, common_name => string,
email => string, bits => string }

Output:

= { field with_error => “Field with error: error description” }

Plug-Ins Development 314

issue_certificate

The issue_certificate method is mandatory.

The method issues the certificate request to the registrar.

Input:

domain => string, the domain name for which the SSL certificate is being bought.

product => string, the internal SSL product name, as received from
get_product_list.

period => iInteger, the number of years to register the SSL certificate for.
private_key => string (optional)

csr => string (required if csr_data missing), the Certificate Signing Request
(CSR) file

csr_data => HASHREF (required if csr is missing), { country => string, state =>
string, city => string, organization_name => string, organizational_unit_name => string,
common_name => string, email => string, bits => string }

approver_email => string (optional), as per get_approver_email_list.

software_type (optional) => string, the identifier of the server software type
as per get_server_software_type_list.

ext_attr => HASHREF (optional), { “extended attribute 1” => value, “array of values”
=>[], etc. }, as per extract_ext_attr.

contact_data => HASHREF (optional), { contact_type => { contact_fname => “First
Name”, etc. }, e.g. Admin => { fname => 'Peter’, Iname => 'Johnson' } }

plugin_config => HASHREF.

Output:

{ status => OK]ERROR, error_message => “Error description”,
ext_attr => {} }

The ext_attr value will be merged with the already existing extended attribute data. This can
be used e.g. to store the ID generated by the registrar's APl when later fetching the
certificate.

Plug-Ins Development 315

check_available

The check_avai lable method is mandatory.

The method is called regularly to chec if the requested SSL certificate is available. The method
is first called after the number of days specified in the “Wait x days for issuance of SSL
certificate” field in the SSL plug-in configuration. Checks are done hourly, until the number of
days specified in the “Duration of checking SSL certificate availability” field in the SSL plug-in
configuration has elapsed.

Input:

= plugin_config => HASHREF.

= ext_attr => HASHREF, { “extended attribute 1” => value, “array of values” => [],
etc. }, this input parameter may contain the 1D required to check availability, see also
issue_certificate (on page 314).

Output:

= { status => OK|NOT_ISSUED]JERROR, error_message => “Error
description” }

= Status 'OK' indicates the SSL certificate is available and can be fetched. The check no
longer repeats.

= Status 'NOT_ISSUED' indicates the SSL certificate is not yet available. The check
repeats.

= Status 'ERROR' indicates the check failed. The check no longer repeats, and the status of
the SSL certificate is set to 'ERROR".

fetch_certificate

The fetch_certificate method is mandatory.
The method fetches the SSL certificate from the registrar when it is available.

Input:

= plugin_config => HASHREF.

= ext_attr => HASHREF, { “extended attribute 1” => value, “array of values” => [],
etc. }, this input parameter may contain the ID required to fetch the certificate.

Output:

= { status => OK|ERROR, error_message => “Error description”,
certbody => “Certificate body” }

= Status 'OK' indicates the SSL certificate was successfully fetched.

= Status 'ERROR' indicates fetching the certificate failed. The status of the SSL certificate
is set to 'ERROR".

= The certbody value contains the actual SSL certificate body.

Plug-Ins Development 316

renew_certificate

The renew_certificate method is mandatory.

The method issues a renewal request to the registrar. Note that the ext_attr input parameter
contains the data returned by issue_certificate. This may e.g. be used to refer to the old order ID,
stored during issuing.

Input:

domain => string, the domain name for which the SSL certificate is being bought.

product => string, the internal SSL product name, as received from
get_product_list.

period => integer, the number of years to register the SSL certificate for.
private_key => string (optional)

csr => string (required if csr_data missing), the Certificate Signing Request
(CSR) file

csr_data => HASHREF (required if csr is missing), { country => string, state =>
string, city => string, organization_name => string, organizational_unit_name => string,
common_name => string, email => string, bits => string }

approver_email => string (optional), as per get_approver_email_list.
software_type (optional) => string, the identifier of the server software type
as per get_server_software_type_list.

ext_attr => HASHREF (optional), { “extended attribute 1” => value, “array of values”
=>[], etc. }, as per extract_ext_attr.

contact_data => HASHREF (optional), { contact_type => { contact_fname => “First
Name”, etc. }, e.g. Admin => { fname => 'Peter’, Iname => 'Johnson' } }

plugin_config => HASHREF.

Output:

{ status => OK]ERROR, error_message => “Error description”,
ext_attr => {} }

The ext_attr value will be merged with the already existing extended attribute data. This
can be used e.g. to store the ID generated by the registrar's APl when later fetching the
certificate.

Plug-Ins Development 317

get_product_attributes

The get_product_attributes method is optional.

The method returns the attributes of the specified SSL product. There are two supported types of
attributes: server_count and wi ldcard.

Input:

= plugin_config=> HASHREF.

= product =>string, the internal SSL product name, as received from get_product_list, for
which to receive the supported server software types.

Output:

{

server_count => 0]1,
wildcard => 0]1,

}

If server_count attribute is set for some product type it means that Number of servers
combobox will be shown in the store, so that buyer can specify the number of servers for which
the requested SSL certificate will be issued. Generally it is the multiplier to the actual product
price.

If wi ldcard attribute is set, then the wildcard prefix "*." will be applied to the domain name
(common name) automatically if the user forgets to add this prefix himself, and in case the
customer submits CSR, this CSR will be checked if this common domain name contains this
wildcard prefix.

Plug-Ins Development 318

cancel_certificate

The cancel _certificate method is optional.
The method cancels a not completed certificate order.

Input:

= ext_attr => HASHREF, { “extended attribute 1” => value, “array of values” => [],
etc. }

= plugin_config=> HASHREF.
Output:

{
status => "0OK"] "ERROR",
error_message => text,

}

error_message is applied if the {status} is 'ERROR'. The error message text will be
shown in Provider Control Center as it is specified in the method output.

Graphical Presentation Module

The methods that belong to the HSPC::Plugin::SSL namespace (the plug-in graphical
presentation) are described below.

Common Parameters: config, plugin_config

Each of the visual part methods is passed the config or plugin_config parameter. These
parameters pass the plug-in configuration data. The structure of the data passed is defined by the
plug-in developer in the col lect_data method (on page 319).

Plug-In Configuration
The methods described below are used for configuring the SSL certificate plug-in itself.

get_config_view

The get_config_view method is mandatory.
The method returns a view of the plug-in configuration.

Input:
= config => HASHREF.
Output:

= “<SSL certificate plug-in configuration information>"

Plug-Ins Development

319

get_config_form

The get_config_form method is mandatory.
The method returns the editing form for the plug-in configuration.

Input:

= config => HASHREF.

Output:

= “<SSL certificate plug-in configuration form and fields>"

validate_config_data

The val idate_config_data method is mandatory.

The method checks the validity of the plug-in configuration data entered using the

get_config_form method.

Input:

= config => HASHREF.

Output:

= {is_valid => 0|1, error_list => [errorl, error2] }
collect_data

The col lect_data method is mandatory.
The method collects the plug-in configuration data and returns it ready for storing.

Input:

= config => HASHREF.

Output:

= { configuration_option_1 =>valuel, etc. }
get_help_page

The get_help_page method is mandatory.

The method returns the help page based on the specified action.

Input:
= config => HASHREF.

= action => string, “about”|”new”’|”view”|”edit”
= [language => string, the language code of the help page

Output:

= “Help information in the specified language about the specified action.”

Plug-Ins Development 320

SSL Certificate Configuration
The methods described below are used for configuring the SSL certificates themselves.

get_contact_types

The get_contact_types method is mandatory.

The method returns the different internal contact types for the SSL certificate. If an SSL
registrar does not support contact types, an empty list is returned. The internal contact types are
listed in the internationalization file of the plug-in and always start with “ssl_type . The
mapping to the contact types used by the SSL registrar can be placed where they are necessary,
e.g. in the issue_certificate method.

Input:

= plugin_config => HASHREF.

= product => string, the internal SSL product name, as received from get_product_list.
Output:

= [E.g. “admin”, “technical”, “billing”]

get_contact_view

The get_contact_view method is mandatory.
The method returns a view of the SSL certificate contact data.

Input:

= plugin_config => HASHREF.

= prefix => string (optional), the prefix used in the names of the form fields (see also
get_contact_form)

= product => string, the internal SSL product name, as received from
HSPC::MT::Plugin::SSL's get_product_list.

= type =>string, as received from get_contact_types.

= contact_data => HASHREF, { contact_fname => “First Name”, etc. }, e.g. { fname
=> 'Peter’, Iname => 'Johnson' }

Output:

= “<SSL certificate contact information>"

Plug-Ins Development 321

get_contact_form

The get_contact_form method is mandatory.

The method returns the editing form for the SSL certificate contact data.

Input:

plugin_config => HASHREF.

prefix => string (optional), the prefix used in the names of the form fields. E.g., the
“forename” field with prefix “domain_1" would be called “domain_1forename”.

product => string, the internal SSL product name, as received from
HSPC::MT::Plugin::SSL's get_product_list.

type => string, as received from get_contact_types.

contact_data => HASHREF, { contact_fname => “First Name”, etc. }, e.g. { fname
=> 'Peter’, Iname => 'Johnson' }

Output:

“<SSL certificate contact form>"

collect_contacts

The collect_contacts method is mandatory.

The method collects all the contact data from the form_data parameter, as per the
get_contact_form function, and returns it ready for storing in an SSL certificate object.

Input:

plugin_config => HASHREF.
product => string, the internal SSL product name, as received from get_product_list

prefix => string (optional), the prefix used in the names of the form fields (see also
get_contact_form)

form_data => HASHREF, the values filled out by the customer using the form from
get_contact_form.

Output:

{ contact_type => { contact_fhame => “First Name”, etc. }, e.g. Admin => { fname =>
'Peter’, Iname => "Johnson' } }

Plug-Ins Development 322

validate_contact_form

The val idate_contact_form method is mandatory.

The method checks the validity of the SSL certificate contact data entered using the
get_contact_form method.

Input:

= plugin_config => HASHREF.

= prefix => string (optional), the prefix used in the names of the form fields (see also
get_contact_form)

= product => string, the internal SSL product name, as received from
HSPC::MT::Plugin::SSL's get_product_list.

= type => string, as received from get_contact_types.

= contact_data => HASHREF, { contact_fname => “First Name”, etc. }, e.g. { fname
=> 'Peter’, Iname => "Johnson' }

Output:

= {field_with_error => “Field with error: error description” }
get_ext attr_view

The get_ext_attr_view method is mandatory.

The method returns a view of the SSL certificate extended attribute data.

Input:

= plugin_config => HASHREF.

= prefix => string (optional), the prefix used in the names of the form fields (see also
get_ext_attr_form)

= product => string, the internal SSL product name, as received from
HSPC::MT::Plugin::SSL's get_product_list

= ext_attr => HASHREF, { “extended attribute 1” => value, “array of values” => [],
etc. }

Output:

= “<SSL certificate extended attribute information>”

Plug-Ins Development 323

get_ext attr_form

The get_ext_attr_form method is mandatory.
The method returns the editing form for the SSL certificate extended attribute data.

Input:

= plugin_config => HASHREF.

= prefix => string (optional), the prefix used in the names of the form fields. E.g., the
“forename” field with prefix “domain_1" would be called “domain_1forename”.

= product => string, the internal SSL product name, as received from
HSPC::MT::Plugin::SSL's get_product_list

= ext_attr => HASHREF, { “extended attribute 1” => value, “array of values” => [],
etc. }

Output:
= “<SSL certificate extended attribute form>"

collect_ext_attr

The collect_ext_attr method is mandatory.

The method collects the extended attribute data from the form_data parameter, as per the
HSPC::Plugin::SSL's get_ext_attr_form function, and returns it ready for storing in an SSL
certificate object.

Input:

= plugin_config => HASHREF.

= prefix => string (optional), the prefix used in the names of the form fields (see also
get_ext_attr_form)

= form_data => HASHREF, the values filled out by the customer using the form from
get_ext_attr_form.

Output:

= { “extended attribute 1” => value, “array of values” =>[], etc. }

Plug-Ins Development 324

validate_ext_attr_form
The validate_ext_attr_form method is mandatory.

The method checks the validity of the SSL certificate extended attribute data entered using the
get_ext_attr_form method.

Input:

= plugin_config => HASHREF.

= prefix => string (optional), the prefix used in the names of the form fields (see also
get_ext_attr_form)

= product => string, the internal SSL product name, as received from
HSPC::MT::Plugin::SSL's get_product_list.

= ext_attr => HASHREF, { “extended attribute 1” => value, “array of values” => [],
etc. }

Output:

= {field_with_error => “Field with error: error description” }

Building New Plug-In

A ready to use plug-in is an RPM package. In this section we describe the final step of a new
plug-in development - building a plug-in RPM.

After you have prepared modules and all the necessary files for a new plug-in, it is necessary to
place these files into a special directory. The correct subdirectories structure and naming is
important for successful plug-in build. Please, carefully follow the directories structure and
general naming conventions described below. As an example, we'll take a Dummy Online
Payment plug-in directories structure. The Dummy Online Payment plug-in sample is in the
SDK directory samples/plugins/hspc-plugin-pp-op-dummy/ so you can copy it
and rename folders and files in a way you need. In addition, you will need to edit some files. We
describe this procedure step-by-step. Let us assume that a new plug-in name is myplugin.

1. First of all, to build a plug-in, you need a version file. This text file contains a few strings
that specify the Parallels Business Automation - Standard version a plug-in is built for. A
version number is used in an output RPM package name. Thus, for a plug-in compatibility, a
plug-in version does not matter, but the build script requires it. The Parallels Business
Automation - Standard version must be specified in a special format. To know out the
version of Parallels Business Automation - Standard you use, log in to Provider Control
Center and click Support on the left menu. The Build ID will be shown in the right frame in
the format Build ID <version>-<release>. In the version file, specify the version in the
following way:

File contents, the example Description

HSPC_VERSION=3.3.1 Specify the Parallels Business
Automation - Standard version
shown at the Support screen
before hyphen.

Plug-Ins Development 325

HSPC_RELEASE=00.114 Specify the Parallels Business
Automation - Standard release
shown at the Support screen

after hyphen.
HSPC_TAGNAME="3.3 Service Pack This is a required parameter
1 for the build script, but its

value does not matter. Type
some phrase in quotation
marks. For example, 3.3
With New PRug-1In, or My
Package, or anything else.
Do not leave it empty.

Important: The version file must be placed into a folder above a plug-in directory. For
example:

D:/
plug-in build/version
hspc-plugin-pp-op-myplugin/

2. A plug-in directories structure should be the following:

We've took the Dummy Online Payment

SR] h=pc-plugin-pp-op-rmyplugin

= I itan plug-in structure as an example and
[R renamed the plug-in directory.

) DE The 118n directory includes the plug-in

j?g localization strings in XML files. In our

& Fr example, 118n contains directories for

o Iang_uages officiall_y supported in Parallels

o 14 Business Automation - Standard. You can

o LT create as many custom language packs (on

& RU page 2_16) as you need. Remove the

= Tw directories you (_jo not need and add the ones

S 20 you need. -But in any case, there must be at

- !east one d|rectqry for the Ianguage you use

S) Plugin in Parallels Business 'Auton?atlon - Sta?dard

B po as a default one. Directories under 118n

= [Plugin must be named exactly as ISO 2-letter

& e country codes.

=l [template The 1ib directory contains the plug-in
=3 EN middle tier and presentation modules.

8 “jgg;aiel The template directory contains HTML

help topics for the plug-in. Place help topics
by language directories, like in 118n.

The upgrade directory is used to build
upgrades, if you need to upgrade a plug-in,
create a directory named by an upgrade
version and place the upgrade scripts here
and run the build script. If you just build a

Plug-Ins Development 326

plug-in with no upgrades, leave the upgrade
directory empty. But do not remove the
upgrade directory thinking that it is
redundant - it is required by the build script.

3. Now, an important step. You need to edit some files in the plug-in directory and specify an
actual plug-in name in all files where it is needed. Please, be very attentive:

a Edit the spec file. All plug-in name entries must be replaced with your plug-in name,
in our example, myplugin.

b Check and edit in the same way ALL the MakeTfi le files in ALL subdirectories under the
plug-in directory.

4. Download the rpmbuild utility compatible with OS you use and install it at your
computer.

5. Runthe bui Id. sh script from the directory it is located.

327

CHAPTER 8

Tools

All tools are situated in the tools directory of SDK. Every tool has a README file, so you
should check it first. Some tools have sample files which might be used for testing purposes.

Attention: tools act on behalf of provider, so, say, if you run domain registration, then domains
are registered as if you have registered them from PCC.

In This Chapter

Bulk Domain Registration / Transfer.........cccccvoieiiiicie i 327
Credit Card IMPOITottt ettt e seesreeneeseeereenee e 327
Bank ACCOUNES IMPOITcviiieie ittt re e te et sre e e nras 328
Migration from Parallels Plesk Billingc.cccooeiiiiiiiiiccce e 328
Bulk Parallels Plesk Domains / Clients ReSOIVING........c.cooiiiiiieiiieeieseceee e 328
Script Checking Domain Renewal Date Using WHOIS Information.............cccceoevveeennene 328
ClEANING TOOL.....c. ittt b bbb ene s 329
DNS Synchronization TOOL........cccoviiieiieie et ree e e neenre e 330
Parallels Virtuozzo Containers INtegrationcccciveiieeiieeiie s 330
Using Data Import and Export Command Line TOOISccccccveveiviiieri i 334

Bulk Domain Registration / Transfer

The tool is intended for mass domains registering. This tool is useful when you cannot use
Import/Export tools for domain registration. This case can occur when you make new domain
registrations / transfers using plug-in required ext data. You can learn more about ext data in Ext
Data Description section.

The tool is located in tools/hspc-domain-reg directory.

Credit Card Import

This tool is designed for importing credit cards into Parallels Business Automation - Standard.
The tool is located in the tools/hspc-cc-import directory.

Tools 328

Bank Accounts Import

This tool is designed for importing bank accounts into Parallels Business Automation -
Standard. The tool is located in the tools/hspc-ba-i1mport directory.

Migration from Parallels Plesk
Billing
This tool helps you to migrate accounts and Plesk clients subscriptions from Parallels Plesk

Billingl to Parallels Business Automation - Standard. The tool is located in the
tools/modernbi 1 directory.

Bulk Parallels Plesk Domains /
Clients Resolving

This package is used for migrating / resolving data from Parallels Plesk to Parallels Business
Automation - Standard. The tool can resolve accounts, Parallels Plesk domains and Parallels
Plesk clients into Parallels Business Automation - Standard.

The tool is located in the tools/hspc-plesk-resolver directory.

Script Checking Domain Renewal
Date Using WHOIS Information

The script can check whether all domains’ renewal dates in Parallels Business Automation -
Standard match the renewal dates from the WHOIS database.

The tool is located in the tools/hspc-correct-by-whois directory.

Tools 329

Cleaning Tool

The tool is intended for cleaning all the test data from Parallels Business Automation - Standard
after Parallels Business Automation - Standard configuring completion. Please make a fresh
backup of Parallels Business Automation - Standard databases (aspc, ss, sk) before using the
script.

Usage:

/usr/sbin/hspc-clean.pl FLAG[FLAGI...]]

Flags description:

[-] - no trace info

[+] - do not confirm deletion of elements

Name Description

- No trace info

+ Do not confirm deletion of items
P [P]ersons

A [A]ccounts

D [D]ocuments

Y pa[Y]ments

N i[N]voices

J debit ad[JJustment
S [S]ubscriptions

C [C]reditcards

T s[T]atements

H [H]osting plans

R [R]esellers

U c[U]stomers

E [E]vents

M pro[M]otions

Tools 330
Vv [V]irtual environments
W hard[W]are nodes
0 d[O]mains
I [1Tppool
m credit ter[m]s
a [a]ction log
Example:

/usr/sbin/hspc-clean.pl RE - erases resellers and events

DNS Synchronization Tool

The tool forces DNS zones synchronization.

Usage:

/usr/sbin/hspc-dns-sync.pl

Parallels Virtuozzo Containers

Integration

The tools used to integrate Parallels Business Automation - Standard with Parallels Virtuozzo

Containers technology are described in this section.

Tools 331

Virtuozzo Templates Installing Tool

You can use the Parallels Business Automation - Standard Provider Control Center (/pcc)
web interface to install Virtuozzo templates. If you need to install many templates at once, you
can use Zusr/sbin/hspcpkgctl _pl script. The script can be ran in the mode when it
recognizes and installs all the templates from the specified directory.

The hspcpkgctl.pl script handles generic operations of the Parallels Business Automation -
Standard Application

Director. Using this script the following operations can be performed:

= Get information about a Virtuozzo template, i.e., read a template configuration from a
source RPM file or from the Parallels Business Automation - Standard database

= Register and install OS or Application templates at the Parallels Business Automation -
Standard Management Node

= Synchronize OS or Application templates with Virtuozzo Hardware Nodes
= Import OS/Application templates from Virtuozzo Hardware Nodes

= List OS/Application templates registered/installed over Parallels Business Automation -
Standard

Usage:
lusr/sbin/hspcpkgctl.pl operation operation_arguments templates_directory
To get help:
{usr/shin/hspcpkgctl.pl help_args
hspcpkgctl.pl {-h|--help}
hspcpkgcetl.pl {-V|--version}
hspcpkgcetl.pl -H OPERATION
To view a fill manual:
perldoc /Zusr/sbin/hspcpkgctl.pl

Operations:

info - print information about OS/application template

install - install OS/application template(s) on Management Node
sync - synchronize OS/application templates with Hardware Node(s)
import - import OS/application templates from Hardware Nodes
list - list OS/application templates on Management Node

config - show XML configuration file content for given template
Arguments:

-A Process ordinary application templates only.

-D|--distrib DISTRIB Distribution name for EZ templates, like ‘fedora-core-4-x86'. Note
that if -the D argument is specified, only EZ templates will be processed.

Tools 332

-H OPERATION Show help for given OPERATION.
-O Process OS templates only.
-V|--version Show script version.

--async Do operation using Task Manager where applicable. Script completes execution
after all necessary tasks are scheduled.

-d|--dir DIR Full path to directory with Virtuozzo templates.
-f|--file FILE Full path to Virtuozzo template file.
-h|--help Show usage and exit.

-n|--nodes NID1 NID2 ...IDs of Virtuozzo Hardware Nodes registered in Parallels Business
Automation - Standard.

-p|--package PKG1[/VER1] PKG2[/VERZ2] ...Process only templates with given packages
and, optionally, configuration versions. If configuration version is not specified, default
value '00000000' (eight zeros) will be taken.

--plain Show plain XML config. If not specified, output will be composed of several lines in
a form of 'key: value'.

-t|--tmpl_id ID1 ID2 ...Process only templates with given IDs.
-item --quiet Work quietly - do not print any status messages to standard output.
-r Process directory recursively.

-u If template in process is upgrade to some existing template, default prices will be taken
from the latest one. If option is not specified, default prices will be set to zero values.

Examples:

hspcpkgctl.pl install -d /tmp/templates
Installs all templates from given directory /tmp/templates.
hspcpkgctl.pl install -f /tmp/redhat-as4-x86-ez-3.0.0-2.swsoft.noarch.rpm
Installs single EZ OS template.
hspcpkgcetl.pl list

List ordinary application templates. Each line of output is tab-separated list of the following
template properties:

= Template ID

= Package

= Configuration version (8-digit one).

= Flag specifying if template is OS template (1/0).

= Flag specifying if template was installed on Management Node from source (1/0). '0'
means template was imported from Hardware Node.

= EZ distribution. Empty for non-EZ templates.

Tools 333

Tools for Actions Execution over/in Container

The tool executes actions over/in the Container registered in Parallels Business Automation -

Standard.

Usage:

/usr/sbin/hspcvpsctl.pl operation ve_id [options]

/usr/sbin/hspcvpsctl.pl migrate ve_id --dest_hw dest_hw_id [options]

/usr/sbin/hspcvpsctl_pl tmpl-upgrade ve_id [template_packages] [options]

Operations descriptions:

Operation Description

start Starts Container

stop Stops Container

repair Repairs Container

create Creates Container

migrate Migrates Container to destination hardware node

tmpl-upgrade

Upgrades specified templates in Container to required versions

Migration options:

Name

Value

Description

--dest_hw

dest_hw _id

Destination Hardware Node
Business Automation - Standard

ID in Parallels

Templates upgrade options:

Name Value

Description

--tmpl

package/target_conf_version

Package and target conf version

General options:

Name Description
-V, --Version Prints version
--verbose Prints information about execution process

--async

Executes operations asynchronously

Tools 334

Using Data Import and Export
Command Line Tools

The possibility of importing and exporting the billing data (accounts, financial documents,
hosting plans) in/from Parallels Business Automation - Standard can considerably facilitate
migration of customer's data and reduce cost. If you provide Virtuozzo Containers or/and Plesk
domains to your customers and feel like it is the right time to automate your business, or in case
you want to merge two Parallels Business Automation - Standard databases, you can import the
customer billing data in Parallels Business Automation - Standard (or export data from Parallels
Business Automation - Standard) without the need to use special plug-ins or other complex
tools.

In addition, to control and bill traffic usage on dedicated servers, it is possible to import a
special configuration of traffic classes and after this, import traffic statistics collected internally.

All you need is to represent the data as an XML structure and then run the import script with
this XML file as a parameter. The script processes one XML file per one run. To convert the
billing data containing in Parallels Business Automation - Standard database into XML, the
Export script is provided. If you need to import the data into Parallels Business Automation -
Standard from some other, non Parallels Business Automation - Standard database, you need to
represent this data in the form of XML file manually or using some other tools. Examples of
XML files are provided at the end of this chapter.

Note: Parallels Business Automation - Standard provides web-based tools for XML data
import/export (Import-Export Manager in Provider Control Center). If you would like to, you can
use this tool (please refer to the Parallels Business Automation - Standard Provider's guide fo
more information or go to Provider Control Center and click Help link for detailed HTML help).

After the Parallels Business Automation - Standard installation, both import and export scripts
location on your Management Node is /usr/sbin/hspc-import.pl and
/usr/sbin/hspc-export.pl respectively.

Tools 335

Exporting Data into XML Files

Below we describe command line tools for exporting the billing data from the Parallels Business
Automation - Standard database into XML file. Traffic classes and traffic statistics can be
imported only.

Note: Parallels Business Automation - Standard provides web-based tools for XML data
import/export (Import-Export Manager in Provider Control Center). If you would like to, you
can use this tool (please refer to the Parallels Business Automation - Standard Provider's guide
fo more information or go to Provider Control Center and click Help link for detailed HTML
help).

How Export Script Works

For the Export script to fetch the data, the indication of data type is necessary, so in the
command line you must use the relevant key (described below) and either explicitly indicate the
type of data to be exported or indicate the name of a special file called filter that includes
information about the type of data to export and, as its name says, allows filtering a particular
type of data (accounts, documents, etc.) down to a type, ID or ID range, and other parameters,
depending on a type of data you are going to export.

If you do not specify the type of data to export, the Export script will not collect the data due to
the input parameters incompleteness and just print you the help page.

The structure of a filter file is described later in this topic. However , if you are not sure, which
tags to use, you can train using web-based tools.

When you export data using the web-based interface, filters are created automatically, while you
pass a simple wizard that requires selecting the type of data and allows further filtering. In this
case, the XML filter is created in accordance with your settings and the corresponding XML
structure is added to the beginning of the resulting XML file. You can pass the wizard several
times and take a look, what XML filters are produced by your selection. Later you can copy the
filter block from an XML file, save it in a separate file, and this will be the filter you can use
with the Export script in command line.

To train with filter files using the web interface, log in to the Provider Control Center, go to the
Migration Director - Import-Export Manager and select Export Data from the Import-Export
Manager submenu. You will be offered to select the type of data to export (in our example,
Documents):

Tools 336

| . HSP:.urnplete Top = Confiquration Director > Import-Export Manager >
"UWP provider Control Center ﬁ
Export data
= #& HSP P
‘3_ John Smith
&I Account Director Select type of data you want to export
2% Service Directar ' Accounts

£ Billing Director

E Commerce Director % Documents
M. Marketing Director . eerio
4L Configuration Director Bubscriptions
= £ Migration Director £ ez plens

@ Conflicts Resolver

= 1], Irmport-Export Manage
j.) Export data
8 Import data

After you click the Next button you will be offered to filter the selected data type:

.:: .- ;ISPFOI'I'IP‘EM Top = configuration Director > Import-Export Manager =
rovider Control Center Export data
= #g HSP
3_ John =mith
& Account Director
2% Service Directar Select document types

£ Billing Directar

E Commerce Director [Invaoices
Ff', Marketing Directar ¥ online Payments
4% Configuration Director [offline Payments

= £ Migration Director

W conflicts Resalver

= 1], Import-Expaort Manage [T Debit Adjustment
J.J] Export data
8 Import data

A Migration Manager

'Lj Action Log

é}, Support

= Sign Out

[T Credit &djustrnent

Filter

f" Export all docurments

C Export docurnents within ID range

From 1

Tao 30

{~ Export documents within creation date range

From | aug =] |29 =] | 2005 =] Mo
To |aug =] |29 =] | 2005 =] Mo

Tools 337

For example, you have filtered documents by types (Online Payments and Offline Payments) and
then set the additional filter to Export documents within ID range from 1 to 30.

After this, you can finish the wizard and save the resulting XML to your local computer. When
you open this XML, you will see that the first block of the XML file inside the <data> tag is
<filters>:

<filters>
<objects_name>documents</objects_name>
<filter>
<property_name>type</property_name>
<where>
<in>PO,PF</in>
</where>
</filter>
<filter>
<property_name>id</property_name>
<where>
<start>l1</start>
<end>30</end>
</where>
</Tilter>

</filters>

Copy this block into a separate file, add the string
<?xml version="1.0" encoding="UTF-8"?>

to the beginning and save the file. You have a ready to use filter with the functionality you are
clearly understand:

= The <objects_name> tag holds the information about the type of objects you have selected
on the first screen of the export wizard (Documents, in our example), the <filter> tags hold
the information about the further filtering you have set on the second screen of the wizard.

= The first <filter> tag holds the information about the type of documents to export (in our
example, online payments - PO and offline payments - PF). This selection is required,
without this basic filter the filter file will be not valid.

= The second filter tag is optional and have appeared because in our example, the option
button in the Filter part of the form was set not to Export all documents, but to the
documents ID range, which have resulted in creation of the additional <filter> block
containing, in its turn, the property_name (id) and the IDs range specified using the
<where> tag. Note that if the additional filter is set to All, i.e., you want to export all objects
of the selected type, the second <filter> is omitted.

The Export script reads a filters file, exports data, converts it in XML format, saves and
compresses (GZip) an XML file.

After the Parallels Business Automation - Standard installation, the export script location on
your Management Node is

/usr/sbin/hspc-export.pl.

By default, the script places an XML file in the current directory. Errors, if any, are put in
STDERR.

Command Line Syntax For Export Script
/usr/sbin/hspc-export.pl -f filters.xml

Tools 338

where Fi lters.xml must be replaced with the actual name of a filter file, and —F is a key.

Or

/usr/sbin/hspc-export.pl -all accounts
where —al I is the key and accounts is the data type specified explicitly.
Export Script Keys

-h see help page
-f file with filters

-all export all (parameters can be one of accounts, or documents, or subscriptions,
or hosting plans)

If the filters.xml file is not defined, filters are got from STDIN.
Filter File Structure

When composing a filter, please carefully follow the filter file structure diagram:

Epn:-pnt:rI:j.|r_nam~=.!

_|. filter [7‘1‘]—[{53-

1.0

where [%]—(—/ el

| filters EI—(—EEEI—)EI—

rnain container

Tools 339

Thus, the filter file structure is always looks like follows:

<?xml version="1.0" encoding="UTF-8"?>

<filters>

<objects_name> OBJECT </objects_name>

<filter>

<property_name> PROPERTY </property_name>
<where>

<!-- WHERE -->

</where>

</filter>

</filters>

Tag

Description

<filters>

The single tag that opens and closes the filter.

<objects_name>

The tag containing the information about the kind of objects to export:
accounts,documents, subscriptions, or hosting plans. There can be only one kind
of object specified in one filter file The kind of object inside the objects_name
tag must be specified exactly as follows:

= account to filter accounts

= document to filter documents

= subscription to filter subscriptions
= hp to filter hosting plans.

<filter>

At least one filter tag must be in the filter file. This tag holds the information
about the type of objects to export. Without the information about objects type
the filter file is not valid.

In general a filter file can contain two filter tags:

= The filter containing information about type of objects to export (type of
documents, accounts, subscriptions, or hosting plans).

= The additional and optional filter that narrows the set of objects to be
exported down to an ID range or creation date, or other property, depending
on the type of objects.

Tools 340

<property_name>

The tag nested into any <filter> tag. The <property_name> tag specifies the
filter itself:

= For the first and required <filter> tag, the <property_name> tag always
contains the type word, which means that below in the <where> tag the
type(s) of objects to be exported must be specified.

= For the second and optional <filter> tag, the <property _name> tag contains
the type of additional filter:

= 1d to export objects within the pre-defined ID range or to export the
selected objects by their IDs;

= date to export objects created between particular dates;

= start_date - for subscriptions only, to export subscriptions with
particular subscription period start date;

= end_date - for subscriptions only, to export subscriptions with
particular subscription period end date.

<where> The tag that must be nested into any <filter> tag , below the <property _name>
tag. The <where> tag contains a particular filter settings specified either in the
<in> tag (if objects are filtered by IDs) or using the <start> <end> tags (if
objects are filtered by creation date or ID range) nested into the <where> tag.

<in> The tag nested into the <where> tag and containing the filter settings. The <in>

tag is used in all cases except for filtering subscriptions by subscription period
start or end date. In the latter case, the <date>

For the first and required <filter> tag, the <in> tag contains the information
about type(s) of object(s) to be exported. The object types must be specified in
the form of special abbreviations, exactly as this written below, several object
types must be specified in one string, divided by comma:

= For documents: IN - for invoices, PO for online payments, PF for offline
payments, CA for credit adjustments, DA for debit adjustments, C1 for credit
invoices.

= For accounts: customer - for customer accounts, reseller - for
reseller accounts, res_customers - for accounts of your resellers'
customers.

= For hosting plans: VE - for Virtuozzo Container, HN - for Dedicated
server, HNVZ - for Dedicated Parallels Virtuozzo Containers server, MI1SC
- for Miscellaneous plans, DM - for Domain Registration, PLSRV - for
Dedicated Plesk server, PLCLT - for Plesk Client, PLDM - for Plesk
domain, VEPLHN - for Plesk Server in Virtuozzo Container plans.

= For subscriptions' types abbreviations are the same as for corresponding
hosting plans.

For the second and optional <filter> tag, the <in> tag contains particular
filtering data:

= Object ID or IDs (in a string, divided by comma, for example, if filtering is
by hosting plans or subscriptions selection).

Tools 341

<start>

<end>

These tags are used instead of the <in> tag if filtering is by object ID range
(first 1D in the range is specified in the <start> tag, last ID in the range is
specified in the <end> tag) or a subscription period start or end date (the time
frame of subscription periods start or end date is specified similarly, using the
<start> and <end> tags). In the latter case, the date format is year-month-day
time, like YYYY-MM-DD hh:mm:ss (YYYY - year, MM - month, DD - date,
hh - hour, mm - minute, ss - second)

Importing Billing Data in the Form of XML File

Below we describe command line tools for importing data in the form of XML file into Parallels
Business Automation - Standard database.

Only accounts, documents, and hosting plans can be imported as an XML file. Subscriptions are
imported using a special script that uses the Parallels Business Automation - Standard XML API
(on page 343).

Note: Parallels Business Automation - Standard provides web-based tools for XML data import
(Import-Export Manager in Provider Control Center). If you would like to, you can use this tool
(please refer to the Parallels Business Automation - Standard Provider's guide fo more
information or go to Provider Control Center and click Help link for detailed HTML help).

After the Parallels Business Automation - Standard installation, the import script location on
your Management Node is Zusr/sbin/hspc-import.pl.

The Import script reads an XML file that contains the data to be imported, imports data Parallels
Business Automation - Standard database, after the XML file is validated and the data
correctness is checked. Errors (if any) are put in STDERR.

Command line syntax:

/usr/sbin/hspc-import.pl [keys] File.xml

where file.xml must be replaced with the name of an actual xml file containing billing data to be
imported.

Keys:
-h, --help see help page

Tools 342

If an XML file is not defined the data is read from STDIN.

If something goes wrong, e.g., an XML structure is not valid, the script stops and rolls back all
the changes made before an outage.

To prepare for the billing data import, you will need to create a set of relevant hosting plans in
Parallels Business Automation - Standard to "move" customers to these hosting plans. When
you create such hosting plans, you should take into account the fees, resources configuration,
applications set, and all the other parameters of the subscription you are going to move to
Parallels Business Automation - Standard for future management and billing.

When you create hosting plans in Parallels Business Automation - Standard, each of these plans
gets the unique numerical identifier (ID) assigned automatically in Parallels Business
Automation - Standard to all objects (including hosting plans). This ID should be indicated with
the relevant tag in the XML file so that the import script could fetch the fees and other data from
this hosting plan when creating the subscription.

The import script creates accounts and, for each account imported - one or more subscriptions
that correspond to the preset Parallels Business Automation - Standard hosting plans. As a
result, a customer obtains the "empty" Container or Plesk domain that is managed and billed by
Parallels Business Automation - Standard. The personal customer data (websites, mailboxes,
home directory contents, etc.) can be manually moved into a newly created Container or Plesk
domain.

Tools 343

Importing Subscriptions Using XML AP

Subscriptions import consists in placing a corresponding order an creating a new subscription
after this order is completed. An order can be free or not, and this can be defined using the
is_Tree parameter in the place_order function (on page 35) called in the subscription import
script. The script is located in the Zusr/sbin directory on the Management Node.

Example of subscription import script:

#1/usr/bin/perl
use strict;

Below is the sample script for order generation based on Parallels Business
Automation - Standard XML API.

Feel free to modify it according to inline comments and XML API
documentation.

my $order = place_order({

hp_sid = 1, # hosting plan series key

account_id = 2, # subscription owner

period => 2592000, # subscription period

app_list = [1, # IDs of application templates to
include in order

attribute_list = [1, # IDs of custom attributes to include
in order

license_list => [], # IDs of licenses to include in order

login = [# login parameters for order:

password, login, URL
"password”,

"login-®,
"URL",
1.
domain_hash = { # domain hash: per-domain
configuration hashes, “ext_data®" for registrar
"domain.com” = {
dm_action => "dns_hosting", # domain
action
period => undef, #
registration period in years
dns_hosting = 1, # is
DNS hosting enabled?
is_default = 1, # is
default domain in this order?
hosting_destination => undef, # 1D of
subscription to assign domain to
ns_list = [1

list of nameservers (non-empty disables DNS hosting!): [hostname, IP],
[hostname, IP],
contact_hash = {3}, # domain
contacts, 0 or undef to get from account contacts: { admin => NN, billing =>
undef, owner => undef }

whois_privacy = 0, # is WHOIS
privacy enabled?
=
ext_data = {3},
T,
for_trial = 0, # 1s subscription trial?
sb_plan => undef, # Sitebuilder site ID for
provisioning
description => "Generated through XML API",

s
print "Order #$order->{id} has been successfully generated, provisioning
initiated.\n";

Tools 344

HHHHHH R R AR R R R R R R R R R R R
Hit

below is code for order generation, alter it *only* to archieve special
functionality

use SOAP::Lite ;
my $client;

sub place_order {
my $order_details = shift;
$order_details->{is_free} = 1;

place order and return its structure
return $client->ns("HSPC/API1/Billing/1.0")->place_order($order_details)-
>result;

}

BEGIN {
create XML APl client object
$client = SOAP::Lite
->proxy("http://localhost:8080/hspc/xml-api*)
->on_fault(sub {
print "SOAP Fault: " . $ [1]->faultcode . " - " . $ [1]-
>faultstring . "\n";

Texit(1);
D:;

open session: receive session ID for provider
my $sid = $client->ns("HSPC/AP1/1.0")->session_open({ account_id => 1
P ->result->{session_id};

put session ID to outgoing requests®™ HTTP headers
$client->transport->http_request->header ("HSPC-SID" => $sid);

}
END {
close session
$client->ns("HSPC/AP1/1.0")->session_close;
}

Examples of XML Files Used for Billing Data Import

Below are examples for XML files that can be used for data import in Parallels Business
Automation - Standard.

Note: All types of data except hosting plans require the corresponding account information to be
present in an XML file, because an account is the basic billing notion in Parallels Business
Automation - Standard, and all the subscriptions and financial documents are bound to
accounts.

Tools 345

Account Data in XML File

The example below includes absolutely al tags used to represent an account data. If you do not
know what to write in one or another tag, you must leave such tags empty, but do not remove
them from your XML file.

The account data can include information about documents and subscriptions existing for this
account.

Note 1. Phone Number Format: Since phone numbers syntax may differ from country to
country (for example, a country code can be written as +code or without +, or a regional code
can be written in round brackets or without them, etc.), we recommend that you specify the
phone and fax numbers in the unified format like

country code]regional code|number|extension.

and use not the tag like <admin_phone> for an account administrator phone number, but the
special tag named like <admin_phone_src>.

Note 2. User Password Import:: The export script exports a user password exactly as it is
stored in the Parallels Business Automation - Standard database, as a hash. The export script
places a password hash into the <password_hash> tag and this is reflected in the example
below. If you manually create an XML file to import an account data and use the
<password_hash> tag to specify a user password, the import script considers this password as a
hash and this results in the impossibility to view a user password in Parallels Business
Automation - Standard web interface after import is finished. You can manually redefine a user
password in XML file using the <password> tag, as this shown in the example below. In this
case the password is actually redefined after import is finished with Parallels Business
Automation - Standard database update and corresponding hash creation.

Example of XML account data:

<?xml version="1.0" encoding=""utf-8"?>
<data>
<account i1d="29">

<admin_contact>
<admin_suffix />
<admin_JIname>Smith</admin_Iname>
<admin_fname>John</admin_fname>
<admin_mname />
<admin_mobile />
<admin_fax_src>| | |</admin_fax_src>
<admin_gender />
<admin_emai I>john@mail .com</admin_email>
<admin_phone_src>1]112]12312312|</admin_phone_src>
<admin_mobile_src>|||</admin_mobile_src>
<admin_fax />
<admin_phone>+1 (112) 12312312</admin_phone>
<admin_insertion />
<admin_prefix />

</admin_contact>

<enroll_date>2005-07-28</enroll_date>

<is_corporate>0</is_corporate>

<status>active</status>

<documents />

<persons>
<person id="17">

<last_login>0000-00-00 00:00:00</last_login>
<mname />

Tools 346

<fname>John</fname>
<created by acct_no>29</created_by acct_no>
<emai I>john@smith.com</email>
<suffix />
<address i1d="14"">
<fax_src>1]114]1234569|5678</fax_src>
<status>0</status>
<mobile>+1 (113) 1234567</mobile>
<state />
<city>London</city>
<fax>+1 (114) 1234569 5678</fax>
<id>14</id>
<country>GB</country>
<house_num />
<mobile_src>1]113]1234567|</mobile_src>
<house_suff />
+64 21 555 2624+1 (112) 1234567 9876</phone>
<address2 />
<zip>12AA-BB34</zip>
<state_alt />
<phone_src>1]112]1234567|9876</phone_src>
<address1>17, Baiker street</addressl>
</address>
<id>17</id>
<gender />
<lang>en</lang>

<timezone>/usr/share/zoneinfo/Europe/London</timezone>
<last_modified>2005-07-28 13:27:24</last_modified>
<comment>Person&apos;s comment</comment>
<Iname>Smith</Iname>
<password_hash>kfKawxdUOFfSSauxj 1GXJXayGq8</password_hash>
<password>1g2w3e</password>
<roles>
<role id="9">
<name>customer_adm_uc</name>
<id>9</id>
<account_type>3</account_type>
<description />
<admin_level>8</admin_level>
</role>
</roles>
<skin_id>1</skin_id>
<prefix>Mr.</prefix>
</person>
</persons>
<address i1d="45">
<fax_src>1]114]1234569|5678</fax_src>
<status>2</status>
<mobile>+1 (113) 1234568</mobile>
<state />
<city>London</city>
<fax>+1 (114) 1234569 5678</fax>
<id>45</id>
<country>GB</country>
<house_num />
<mobile_src>1]113]1234568]</mobile_src>
<house_suff />
+64 21 555 2624+1 (112) 1234567 9876</phone>
<address2 />
<zip>12AA-BB34</zip>
<state_alt />
<phone_src>1]112]1234567]9876</phone_src>
<address1>17, Baiker street</addressl>
</address>
<id>29</id>
<subscriptions />

Tools

347

<name>John Smith Jr.</name>

<technical_contact>
<technical_suffix />
<technical_insertion />
<technical_fax_src>]]|</technical_fax_src>
<technical _phone>+1 (112) 12312312</technical_phone>
<technical_gender />
<technical_mname />
<technical_mobile />
<technical_emai l>jomnen@hhh7.com</technical_email>
<technical_mobile_src>|||</technical_mobile_src>
<technical_prefix />
<technical_fax />

<technical_phone_src>1]112]12312312]</technical_phone_src>

<technical_Iname>Mnemonic 7</technical_lIname>
<technical_fname>Johnny</technical_fname>
</technical_contact>
<tax_ex_status>0</tax_ex_status>
<billing_contact>
<billing_gender />
<billing_lIname>Mnemonic 7</billing_Iname>
<billing_fax />

<billing_phone_src>1]112]12312312|</billing_phone_src>

<billing_phone>+1 (112) 12312312</billing_phone>
<billing_email>jomnen@hhh7.com</billing_email>
<billing_fname>Johnny</billing_fname>
<billing_insertion />
<billing_fax_src>|]|</billing_fax_src>
<billing_suffix />
<billing_mname />
<billing_mobile_src>|||</billing_mobile_src>
<billing_prefix />
<billing_mobile />

</billing_contact>

<comment />

<type>3</type>

<tax_ex_number />

<vendor_id>1</vendor_id>

<vendor_name>Provider-Provider</vendor_name>

</account>

</data>

Tools 348

Document Data in XML File

<?xml version="1.0" encoding=""utf-8"?>
<data>
<account i1d="29">
<admin_contact>
<admin_suffix />
<admin_lIname>Mi les</admin_Iname>
<admin_fname>Johnny</admin_fname>
<admin_mname />
<admin_mobile />
<admin_fax_src>| | |</admin_fax_src>
<admin_gender />
<admin_emai l>jomnen@hhh7.com</admin_email>
<admin_phone_src>1]112]12312312|</admin_phone_src>
<admin_mobile_src>|||</admin_mobile_src>
<admin_fax />
<admin_phone>+1 (112) 12312312</admin_phone>
<admin_insertion />
<admin_prefix />
</admin_contact>
<enroll_date>2005-07-28</enroll_date>
<is_corporate>0</is_corporate>
<status>active</status>
<documents>
<document id="152">
<docdetai ls>
<details>
<amount>0.8500</amount>
<count>1.000000</count>
<comment>Container 1 hosting plan
setup fee</comment>
<period>0</period>
<quantity />
<gross_amount>0.8500</gross_amount>
<discount>0.00</discount>
</details>
<details>
<amount>20.6700</amount>
<count>24_390000</count>
<comment>Container 1 hosting plan
monthly subscription fee</comment>
<period>63218880</period>
<quantity />
<gross_amount>20.6700</gross_amount>
<discount>0.00</discount>
</details>
<details>
<amount>-0.0000</amount>
<count>1.000000</count>
<comment>Sub-domain john.testl1l11l.com
in provider domain</comment>
<period>0</period>
<quantity />
<gross_amount>0.0000</gross_amount>
<discount>0.00</discount>
</details>
<details>
<amount>3.8700</amount>
<count>1.000000</count>
<comment>+ NDS (18.00%)
included</comment>
<period>0</period>
<quantity />
<gross_amount>3.8700</gross_amount>
<discount>0.00</discount>

Tools 349

</details>

</docdetails>

<doc_num>1040</doc_num>

<doc_date>2005-07-28 13:41:02</doc_date>

<doc_type>IN</doc_type>

<due_date>2005-08-28 13:41:02</due_date>

<doc_status>0</doc_status>

<doc_status_prev />

<doc_balance>25.3900</doc_balance>

<id>152</id>

<doc_total>25.3900</doc_total>

</document>
</documents>
<persons>
<person id="17">

<last_login>0000-00-00 00:00:00</last_login>

<mname />

<fname>John</fname>

<created by acct_no>29</created_by acct_no>

<emai I>john@smith.com</email>

<suffix />

<address id="14">
<fax_src>1]114]1234569|5678</fax_src>
<status>0</status>
<mobile>+1 (113) 1234567</mobile>
<state />
<city>London</city>
<fax>+1 (114) 1234569 5678</fax>
<id>14</id>
<country>GB</country>
<house_num />
<mobile_src>1]113]1234567|</mobile_src>
<house_suff />
+64 21 555 2624+1 (112) 1234567 9876</phone>
<address2 />
<zip>12AA-BB34</zip>
<state_alt />
<phone_src>1]112]1234567]9876</phone_src>
<address1>17, Baiker street</addressl>

</address>

<id>17</id>

<gender />

<lang>en</lang>

<timezone>/usr/share/zoneinfo/Europe/London</timezone>
<last_modified>2005-07-28 13:27:24</last_modified>
<comment>Person&apos;s comment</comment>
<Iname>Smith</Iname>

<password_hash>kfKawxdUOFfSSauxj IGXJXayGg8</password_hash>
<roles>
<role id="9">
<name>customer_adm_uc</name>
<id>9</id>
<account_type>3</account_type>
<description />
<admin_level>8</admin_level>
</role>
</roles>
<skin_id>1</skin_id>
<prefix>Mr._</prefix>
</person>
</persons>
<address i1d="45">
<fax_src>1]114]1234569|5678</fax_src>
<status>2</status>
<mobile>+1 (113) 1234568</mobile>

Tools

350

<state />
<city>London</city>
<fax>+1 (114) 1234569 5678</fax>
<id>45</id>
<country>GB</country>
<house_num />
<mobile_src>1]113]1234568]</mobile_src>
<house_suff />
+64 21 555 2624+1 (112) 1234567 9876</phone>
<address2 />
<zip>12AA-BB34</zip>
<state_alt />
<phone_src>1]112]1234567]9876</phone_src>
<address1>17, Baiker street</addressl>
</address>
<id>29</id>
<subscriptions />
<name>John Smith Jr.</name>
<technical_contact>
<technical_suffix />
<technical_insertion />
<technical_fax_src>]]|</technical_fax_src>
<technical_phone>+1 (112) 12312312</technical_phone>
<technical_gender />
<technical_mname />
<technical_mobile />
<technical_emai l>jomnen@hhh7.com</technical_email>
<technical_mobile_src>|||</technical_mobile_src>
<technical_prefix />
<technical_fax />

<technical_phone_src>1]112]12312312]</technical_phone_src>

<technical_lIname>Mnemonic 7</technical_lIname>
<technical_fname>Johnny</technical_fname>
</technical_contact>
<tax_ex_status>0</tax_ex_status>
<billing_contact>
<billing_gender />
<billing_Iname>Mnemonic 7</billing_Iname>
<billing_fax />

<billing_phone_src>1]112]12312312|</billing_phone_src>

<billing_phone>+1 (112) 12312312</billing_phone>
<billing_email>jomnen@hhh7.com</billing_email>
<billing_fname>Johnny</billing_fname>
<billing_insertion />
<billing_fax_src>|]|</billing_fax_src>
<billing_suffix />
<billing_mname />
<billing_mobile_src>|||</billing_mobile_src>
<billing_prefix />
<billing_mobile />

</billing_contact>

<comment />

<type>3</type>

<tax_ex_number />

<vendor_id>1</vendor_id>

<vendor_name>Provider-Provider</vendor_name>

</account>

</data>

Tools 351

Example of XML File for Traffic Classes Import

Parallels Business Automation - Standard allows accounting traffic by different IP ranges called

traffic classes.

A traffic class is a set of IP ranges for which traffic must be accounted and billed in accordance
with prices and restrictions set for each particular IP range.

To be imported in Parallels Business Automation - Standard, traffic classes must be presented in
the form of XML file. Below we describe all tags used for traffic classes description.

Tag

Description

<data>

The tag that always must open and close any XML file for data import in Parallels
Business Automation - Standard.

<traffclass>

The tag that opens and closes a particular traffic class description. There can be
several <traffclass> blocks inside the <data> tag.

<id>

A traffic class number. Please, do not mix with numerical ID assigned
automatically to all objects in Parallels Business Automation - Standard (a traffic
class gets only number). There can be up to 15 traffic classes in Parallels Business
Automation - Standard. Thus, a traffic class number can vary from 1 to 15.
Please note that class 1 and class 2 have special meanings and cannot be edited or
removed from Parallels Business Automation - Standard.
Class 1 defines the IP address range for which no accounting is done. Usually, it
corresponds to the Virtuozzo Hardware Node subnet (the Node itself and its VES).
Class 2 is defined to match any IP address. It must be always present in the
network classes definition file. Other classes should be defined after Class 2. They
represent exceptions from the "matching-everything" rule of Class 2.

<mode>

A traffic class importing mode. This tag can contain one of the two values:

= update - in this mode, the IP ranges specified for a traffic class in XML file
will be added to the existing ones, in case you are importing additional ranges
for a traffic class already existing in Parallels Business Automation - Standard.

Warning: The update mode means that ip-ranges from this file will be added
further to the existing. No any range existing and overlapping checkup will be
performed.

= replace - in this mode the IP ranges specified for a traffic class in XML file
will replace the existing IP ranges. Existing IP ranges will be deleted and new
IP ranges will be created.

<name>

This tag carries a short friendly name of a traffic class. This name just helps to
recognize a class.

<description>

The tag that contains a detailed description (plain text) of a traffic class.

<range>

The tag that contains description of one IP range in a traffic class. There can be
several ranges in a traffic class and thus, several <range> blocks can be inside the
<traffclass> tag. The <range> tag contains: <ip>, <prefix>, <description>

Tools 352

<ip> The starting IP address of an IP range.

<prefix> The netmask in the bit form. For example 24 corresponds to the 255.255.255.0
netmask.

<description> IP range description (plain text). Description can be empty.

Example of the XML file for traffic classes:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation=""import_class_info.xsd">
<traffclass>
<id>4</id>
<mode>update</mode>
<name>Name of traffic class #4</name>
<description> Description of the traffic class.</description>
<range>
<ip>66.6.6.0</ip>
<prefix>24</prefix>
<description>Desc. Can be empty</description>

</range>
<range>
<ip>75.0.0.0</ip>
<prefix>8</prefix>
<description>Desc. Can be empty</description>
</range>
<range>
<ip>120.12.0.0</ip>
<prefix>16</prefix>
</range>
</traffclass>
<traffclass>
<id>6</id>

<mode>replace</mode>
<name>Name of traffic class #6</name>
<description> Description of the traffic class.</description>
<range>
<ip>66.6.6.0</ip>
<prefix>24</prefix>
<description>Description can be empty.</description>
</range>
<range>
<ip>75.0.0.0</ip>
<prefix>8</prefix>
<description>Description can be empty.</description>
</range>
<range>
<ip>120.12.0.0</ip>
<prefix>16</prefix>
</range>
</traffclass>
</data>

Tools 353

Example of XML File for Traffic Statistics Import

Traffic usage statistics import is needed in case it is not possible for Parallels Business
Automation - Standard to collect the needed traffic statistics automatically. For example, traffic
statistics import can be used to control and bill traffic usage by dedicated servers, in the
situation when traffic usage statistics are collected by some internal devices.

Below we describe all tags used in XML file to describe traffic usage statistics.

Tag Description

<data> The tag that always must open and close any XML file for data import in
Parallels Business Automation - Standard.

<trafficstat> |The tag that contains traffic statistics description. There can be only one
<trafficstat> container per one XML file describing traffic statistics. All traffic
statistics description is placed inside this tag.

<node> The tag that opens and closes the traffic statistics description for a particular
server (node). All the tags described below are inside the <node> tag.

<type> The type of a server in terms of Parallels Business Automation - Standard. The
value inside this tag can be one of the following:
= HN - anode registered in Parallels Business Automation - Standard (e.g.,

Plesk node or Virtuozzo Node).

= DS -third-party dedicated server.
= VE - Virtuozzo Container.
= PC - Plesk Client
= PD - Plesk Domain

<id> A server (node) numerical identifier (ID) assigned in Parallels Business
Automation - Standard during registration.

<data> The tag that contains description of one traffic statistics block. Contains:
<interval>, <bytes>, <class>, <interface>.

<interval> The tag that contains the starting and ending dates of traffic statistics collection
period. Contains: <from>, <to>

<from> Traffic statistics collection starting date and time.

<to> Traffic statistics collection ending date and time.

<bytes> Traffic statistics for the specified period. Contains: <in>, <out>.

<in> Incoming traffic for the specified period, in bytes.

<out> Outgoing traffic for the specified period, in bytes.

Tools 354

<class> The number of traffic class the statistics was collected in. In terms of Parallels
Business Automation - Standard, a traffic class number is called 1D, but please
do not mix this ID with numerical identifiers assigned to all objects in Parallels
Business Automation - Standard. Traffic classes import is described in details
earlier in this guide.

<interface> The description of network adapter on a node traffic statistics was collected.
You can use any denotation (e.g., eth0).

Example of XML file for traffic usage statistics import:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation=""import_traffic_stat.xsd">

<trafficstat>
<node>
<type>HN</type>
<id>4</id>
<data>
<interval>
<from>2005-06-29 12:21:23</from>
<t0>2005-06-29 14:01:12</to>
</interval>
<bytes>
<in>111111123</in>
<out>1111111223</out>
</bytes>
<class>2</class>
<interface>ethO</interface>
</data>
<data>
<interval>
<from>2005-06-29 15:00:23</from>
<t0>2005-06-29 16:01:12</to>
</interval>
<bytes>
<in>11131111</in>
<out>1114541111</out>
</bytes>
<class>2</class>
<interface>ethO</interface>
</data>
<data>
<interval>
<from>2005-06-29 16:21:23</from>
<t0>2005-06-29 17:01:12</to>
</interval>
<bytes>
<in>113411111</in>
<out>111321111</out>
</bytes>
<class>2</class>
<interface>ethO</interface>
</data>
<data>
<interval>

<from>2005-06-29 16:21:23</from>
<t0>2005-06-29 17:01:12</to>
</interval>
<bytes>
<in>33411111</in>
<out>441321111</out>
</bytes>
<class>3</class>

Tools

355

<interface>ethO</interface>

</data>
<data>
<interval>
<from>2005-06-29 16:21:23</from>
<t0>2005-06-29 17:01:12</to>
</interval>
<bytes>
<in>53411111</in>
<out>541321111</out>
</bytes>
<class>4</class>
<interface>ethO</interface>
</data>
</node>
</trafficstat>

</data>

Tools 356

Import-Data Script

The possibility of importing the billing data (accounts and subscriptions) in Parallels Business
Automation - Standard can considerably facilitate migration of customer's data and reduce cost.
If you provide Virtuozzo Containers or/and Plesk domains to your customers and feel like it is
the right time to automate your business, you can import the customer billing data in Parallels
Business Automation - Standard without the need to use special plug-ins or other complex tools.

All you need is to represent your customers billing data as a simple XML structure and then run
the import script provided with this XML file as a parameter. The script processes one XML file
per one run.

After the Parallels Business Automation - Standard installation, the import script location on
your Management Node is

/usr/sbin/hspc-import/import.pl.

The sample XML file (example.xml) you can use to check how the import script works is
located in the same directory.

Thus, the command line syntax to run the import script is the following:

/usr/sbin/hspc-import/import.pl filename.xml

where filename.xml should be replaced with the actual name of XML file containing
customer's billing data. Please always indicate the full path to the XML file in the command
line.

If something goes wrong, e.g., an XML structure is not valid, the script stops and rolls back all
the changes made before an outage.

To prepare for the billing data import, you will need to create a set relevant of hosting plans in
Parallels Business Automation - Standard to "move" customers to these hosting plans. When
you create such hosting plans, you should take into account the fees, resources configuration,
applications set, and all the other parameters of the subscription you are going to move to
Parallels Business Automation - Standard for future management and billing.

When you create hosting plans in Parallels Business Automation - Standard, each of these plans
gets the unique numerical identifier (ID) assigned automatically in Parallels Business
Automation - Standard to all objects (including hosting plans). This ID should be indicated with
the relevant tag in the XML file so that the import script could fetch the fees and other data from
this hosting plan when creating the subscription.

The import script creates accounts and, for each account, one or more subscriptions that
correspond to the preset Parallels Business Automation - Standard hosting plans. As a result, a
customer obtains the "empty" Virtuozzo Container or Plesk domain that is managed and billed
by Parallels Business Automation - Standard. The personal customer data (websites, mailboxes,
home directory contents, etc.) can be manually moved into a newly created Virtuozzo Container
or Plesk domain.

Tools 357

The structure of XML file is very simple. All XML data is placed in the <DATA> tag that
opens and closes the file. The <DATA> tag contains the set of <ACCOUNT> tags. The
<DATA-> tag can contain as many account data (placed inside the <ACCOUNT?> tags) as you
need to import in one run of the import.pl script. Every <ACCOUNT> tag contains the
information about account itself.

Below we describe each tag in details.

= <DATA> - this tag contains all the data to be imported. This tag opens and closes the file
containing the billing data to be imported.

Below we describe all the tags containing inside the <DATA> tag:

= <ACCOUNT> - this tag contains the information about an account itself and about all the
subscriptions existing on this account. The XML file can contain the data on as many
accounts as you need, each account described in the <ACCOUNT> tag, all the
<ACCOUNT?> tags are placed inside the single <DATA> tag.

Now we describe all the tags that contain inside each of the <ACCOUNT> tags:

<ACC_NAME> - the name of an account should be specified inside this tag. This name
is used for corporate accounts mostly and in this case, the name is the company name.
For personal accounts the customer's name is used. However, how the imported account
will be finally named depends upon the special data placed inside the
<ACC_CORPORATE> tag (see description below).

<ACC_BALANCE> - the balance of the account.

<ACC_ADDRESS> - The part of the account owner postal address. This particular tag
should contain the street and howse number. Note that you can specify two addresses.

<ACC_CITY> - Again, the part of an account owner postal address. Please specify the
account owner city or town here.

<ACC_STATE> - Part of the account address. For USA and Canada addresses only, it is
necessary to specify the State in this tag (use abbreviations). For NON US AND NON
CANADA ADDRESSES, please DO NOT USE THIS TAG. In this case, please use
another tag <ACC_STATEALT> to specify the State or district, etc.

<ACC_ZIP> - The account owner address zip code.

<ACC_COUNTRY> - The part of an account owner address. Please specify the country
in the form of a two-chars country code. Please, follow the I1SO 639
(http://www.loc.gov/standards/iso639-2/langcodes.html) standard.

<ACC_PHONE> - The account owner contact phone number in the format as country
code|local code|number|extention.

<ACC_FNAME> - The account owner first name.
<ACC_LNAME> - The account owner last name.
<ACC_EMAIL> - The account owner e-mail address.

<ACC_CORPORATE> - This tag is intended to indicate whether the account is
corporate (1) or personal (0). If you indicate 1 then the data placed inside the
<ACC_NAME> tag will be used as the imported account name. If you indicate 1 then
the account name will be composed of the data placed in the two tags <ACC_FNAME>
and <ACC_LNAME>, which as a result will give the customer full name.

http://www.loc.gov/standards/iso639-2/langcodes.html

Tools

358

The example of XML file:

<DATA>

<ACCOUNT>

<ACC_NAME>Hosting Inc.</ACC_NAME>
<ACC_BALANCE>10.45</ACC_BALANCE>
<ACC_ADDRESS>0One str., 2</ACC_ADDRESS>
<ACC_CITY>Karson</ACC_CITY>
<ACC_STATEALT>Distr of</ACC_STATEALT>
<ACC_ZI1P>141700</ACC_ZIP>
<ACC_COUNTRY>US</ACC_COUNTRY>
<ACC_PHONE>8]1]1292627 | </ACC_PHONE>
<ACC_FNAME>John</ACC_FNAME>
<ACC_LNAME>Smith</ACC_LNAME
<ACC_EMAIL>smith@mail .com</ACC_EMAIL>
<ACC_CORPORATE>0</ACC_CORPORATE>

</ACCOUNT>

<ACCOUNT>

</ACCOUNT>

</DATA>

Index

A

Access Method « 171

Account Data in XML File 346

Add New Item to Existing Section 177

Add New Section 176

Adding a new Translation ¢ 222

Adding New Fields to Accounts Registration
Forme 191

Adding New Language Pack « 217

Advanced Customization of Default Store
Installation ¢ 141

Anti-Fraud Manager Value Structure ¢ 243

Anti-Fraud Plug-In Package Structure « 244

Anti-Fraud Plug-ins ¢ 230

auth_person ¢ 111

B

Bank Accounts Import ¢ 329

Bank Transfer Plug-In Methods « 258

Building New Plug-In « 325

Bulk Domain Registration / Transfer « 328

Bulk Parallels Plesk Domains / Clients
Resolving « 329

C

calculate_order ¢ 35
can_check_register ¢ 273
can_check_transfer « 274
can_idprotect ¢ 283
can_reglock ¢ 285
can_terminate_domain « 276
can_transfer_domain « 275
cancel_certificate » 319
Changes History « 3
Check Handler « 240
check _app_compat « 20
check_available « 316
check _domain_list ¢ 115
check_domain_name_syntax ¢ 116
check_is_reachable() « 310
check_license_compat ¢ 21
check_register « 272
check_transfer « 273

Class Info « 239

Cleaning Tool « 330
collect_config_data « 293

collect_contact_extdata * 291

collect_contacts » 322

collect_contacts_data 290

collect_data « 320

collect_domain_extdata « 291

collect_ext_attr « 324

Common Functions ¢ 294

Component repository configuration files ¢ 244

Components Repository « 154

Components Repository Structure and Files ¢
155

Configuration Information ¢ 311

Constants 267

Control Center Screen Customization Module
Sample « 163

Control Panel Dashboard Customization
Module Location ¢ 170

Control Panel Dashboard IDs « 171

Control Panel Screen Structure « 163

Control Panel Screens Customization Using
Screen IDs » 181

Control Panel Top Frame and Tabs
Customization « 167

Copyright Notice » 2

create_custom_invoice ¢ 98

create_customer ¢ 100

create_domain_contact « 102

create_offline_payment ¢ 57

create_reseller « 103

Creating a New DNS Plug-In « 296

Creating a New Promotion Plug-In ¢ 259

Creating Placeholders for Custom Extended
Attributes « 206

Credit Card Import « 328

Custom Extended Attribute Code Samples ¢
192

Custom Placeholders Samples ¢ 203

Customization APl Methods « 182

Customizing a Group of Screens « 188

Customizing a Single Screen Form « 186

Customizing Control Panel Dashboard ¢ 170

Customizing Customer Control Panel ¢ 163

Customizing Default Store Installation ¢ 139

Customizing Help Bar in Control Panel « 191

Customizing Language Packs ¢ 207

Customizing Main Frame ¢ 168

Customizing Store Localization 146

Customizing Vendor Control Center
(PCC/RCC) » 154

D

Delete Item and Section « 178

Discovering Screen ID and the Name of
Screen Element to Customize « 184

DM Plug-In Installation and Configuration ¢
291

DM Related Checking, Converting, Formatting
Functions « 295

DNS Plug-In Objects and Their Naming
Conventions « 297

DNS Synchronization Tool ¢ 331

Document Data in XML File 349

Domain Lookup « 271

Domain Plug-In Namespaces ¢ 271

Domain Registration Plug-In Development
Tools » 271

E

edit_config_form 292

edit_contact_extdata_form « 289

edit_contact_form « 288

edit_domain_extdata_form « 290

Example of ACCOUNT _INFO Hash « 105

Example of EXTENDED_HP_INFO Hash
24

Example of get_subscr_info Returned Values *
65

Example of Test Code for
create_offline_payment Function ¢ 58

Example of XML File for Traffic Classes
Import 352

Example of XML File for Traffic Statistics
Import « 354

Examples of ORDER Hash « 40

Examples of Screen ID Based Customization ¢
188

Examples of XML Files Used for Billing Data
Import « 345

Exporting Data into XML Files ¢ 336

Extended Attributes Objects ¢ 192

Extending E-Mail Notification Templates »
195

External Helpdesk APl « 214

F

Feedback « 10
fetch_certificate « 316
form_ns() « 300

Full Source Code of the HSPC

Custom

Menu
CP « 179

G

General Conventions « 11
get_account_campaigns ¢ 99, 132
get_account_info ¢ 104
get_account_subscr « 60
get_approver_email_list » 312
get_buttons « 313

get_campaign ¢ 131
get_categorized_plan_list 22
get_cert_form e 132
get_config_form ¢ 320
get_config_view ¢ 319
get_contact_form e 322
get_contact_types ¢ 282, 321
get_contact_view « 321
get_domain_contact_list » 107
get_domain_details « 278
get_domain_info « 296
get_domain_list « 116
get_domain_prices » 278
get_domain_status ¢ 277
get_ext_attr_form e 324
get_ext_attr view ¢ 323
get_extended_attr_list » 59, 108
get_extended_plan_info « 23
get_full_extended_plan_info ¢ 31
get_help_page ¢ 320
get_hosting_target_list » 50
get_idprotect 284
get_layout_hash ¢ 122
get_order_details * 59
get_parsed_csr_data » 134
get_person_info 114
get_person_list » 109
get_plan_promotion_list * 32
get_plugin_list ¢ 122
get_price_list ¢ 312
get_product_attributes » 318
get_product_list » 311
get_promotion e 32
get_provider_config 127
get_redirect_hash ¢ 123
get_reglock ¢ 285
get_reseller_terms ¢ 107
get_resume_newpaymethod « 126
get_safe_description « 126
get_saved paymethod_list » 121
get_sellable_plan_list » 33
get_server_software_type_list » 312
get_status « 125
get_subscr_info « 61
get_title « 311

get_warning_newpaymethod ¢ 125
Graphical Presentation Module ¢ 319
Graphical Representation ¢ 232

H
Header « 236
HSPC
MT
Plugin
DM Methods = 271
Plugin

DM Methods = 287
HSPC/API « 18
HSPC/API/Account « 100
HSPC/API/Billing ¢ 35
HSPC/API/Campaign » 131
HSPC/API/Config » 127
HSPC/API/Domain » 115
HSPC/API/Fraud » 125
HSPC/API/HP « 20
HSPC/API/Mailer « 120
HSPC/API/Person » 111
HSPC/API/PP « 121
HSPC/API/SSL » 132

Import-Data Script « 357

Importing Billing Data in the Form of XML
File » 342

Importing Subscriptions Using XML API ¢
344

install() » 308

Integrating Store With Existing Website « 138

Integration with External Helpdesk « 214

Introduction to Parallels Business Automation
- Standard XML APl « 13

Introductory Notes About DNS Plug-In « 296

Introductory Notes About Promotion Plug-Ins
* 260

is_reinstall_ns() » 307

issue_certificate ¢ 315

L

Language Pack Customization Sample « 211
Language Pack Customization Tools ¢ 207

M

Manual Store Installation on Remote Server ¢
144

Methods and Parameters Common for all
Payment Plug-Ins « 249

Middle Tier Module « 236, 246, 264, 307, 311

Migration from Parallels Plesk Billing 329

N
New Component Sample ¢ 157
@)

Online Payment Plug-In Methods « 250

Online Store Customization and Integration ¢
135

Operations With Contact and Domain
Extended Information 287

Operations With Contacts and Domain
Extended Information « 280

Operations With Domains « 274

Operations With Name Servers » 278

P

Parallels Business Automation - Standard
Translation Capabilities « 218

Parallels Virtuozzo Containers Integration o
331

parse_template ¢ 294

pay 124

Payment Method Plug-Ins Development Tools
245

Payment Method Plug-Ins Objects ¢ 245

Payment Plug-Ins Development Tools ¢ 248

Payment Plug-Ins Graphical Presentation ¢ 259

Payment Plug-Ins Namespaces » 248

place_order ¢ 51

Placeholder Creation Tools ¢ 196

Plug-In Configuration « 319

Plug-Ins Development ¢ 228

Plug-Ins Toolkit Methods 229

Post-Install Method « 241

Post-Installation Configuration Script « 242

Preface « 9

Preparing Directories and Files for New
Language Pack « 219

process_callback « 286

Profile Hash ¢ 237

Promotion Plug-Ins Objects and Their Naming
Conventions * 262

purify_fromxml_data « 294

R

register_domain ¢ 274

register_ns ¢ 279

Registering a DNS Plug-In « 298
Registering a Promotion Plug-In « 269
renew_certificate » 317

renew_domain ¢ 276

Replace Item in Existing Section « 178
Required Toolkit Methods « 293

S

Samples ¢ 175

save_contact e 118

save_ns() « 305

Screen Aliases Based Customization in
Control Centers « 161

Screens Customization Overview ¢ 149

Script Checking Domain Renewal Date Using
WHOIS Information ¢ 329

Selecting Store Files Customizable via Web
Interface « 142

send ¢ 120

session_close ¢ 19

session_open ¢ 18

set_idprotect « 284

set_reglock « 286

Shell Prompts in Command Examples ¢ 10

Simple Customization of Default Store
Installation ¢ 140

SSL Certificate Configuration ¢ 321

SSL Certificate Issuing ¢ 314

SSL Certificate Plug-In Developmet Tools *
310

SSL Certificate Plug-In Namespaces ¢ 310

subscr_auth « 60

Supporting 'Lock Domain' Feature » 284

Supporting Offline Operations * 286

Supporting 'WHOIS Privacy' Feature « 283

sync_zones() 309

synchronize_domain_ns ¢ 279

T

Template Based Customization ¢ 154

terminate_domain ¢ 277

The filter Function Sample « 156

Tools « 328

Tools for Actions Execution over/in Container
* 334

transfer_domain ¢ 275

Translating General Labels and Messages ¢
221

Translating Help Files « 226

Translating Interface ¢ 220

Translating Printable Documentation « 227

Translating the Context Help Pages for Control
Panel « 226

Translating the Online Help Pages for Control
Centers « 227

Translating the On-Screen Hints 225

Translating ToolTips for Menu ltems « 225

Typographical Conventions « 9

U

update_contacts « 283

update_ext_attr » 314

User Interface Customization ¢ 149

Using Data Import and Export Command Line
Tools « 335

\Y,

validate cert_form e 133
validate_config_data « 293, 320
validate_contact_form ¢ 323
validate_csr_data * 314
validate_data « 282
validate_domain_data ¢ 119
validate_ext_attr_form « 325
validate_ns_list 117
validate_password ¢ 107
validate_plesk_login « 34
view_config_form ¢ 292
view_contact_extdata_form ¢ 288
view_contact_form « 287
view_domain_extdata_form « 289
view_ns() « 303

Virtuozzo Templates Installing Tool ¢ 332

W

Web Interface Module » 247, 263, 299
X

XML AP| » 12

	Changes History
	Preface
	Typographical Conventions
	Feedback
	Shell Prompts in Command Examples
	General Conventions

	XML API
	Introduction to Parallels Business Automation - Standard XML API
	HSPC/API
	session_open
	session_close

	HSPC/API/HP
	check_app_compat
	check_license_compat
	get_categorized_plan_list
	get_extended_plan_info
	Example of EXTENDED_HP_INFO Hash

	get_full_extended_plan_info
	get_plan_promotion_list
	get_promotion
	get_sellable_plan_list
	validate_plesk_login

	HSPC/API/Billing
	calculate_order
	Examples of ORDER Hash

	get_hosting_target_list
	place_order
	create_offline_payment
	Example of Test Code for create_offline_payment Function

	get_order_details
	get_extended_attr_list
	get_account_subscr
	subscr_auth
	get_subscr_info
	Example of get_subscr_info Returned Values

	create_custom_invoice
	get_account_campaigns

	HSPC/API/Account
	create_customer
	create_domain_contact
	create_reseller
	get_account_info
	Example of ACCOUNT_INFO Hash

	get_domain_contact_list
	get_reseller_terms
	validate_password
	get_extended_attr_list
	get_person_list

	HSPC/API/Person
	auth_person
	get_person_info

	HSPC/API/Domain
	check_domain_list
	check_domain_name_syntax
	get_domain_list
	validate_ns_list
	save_contact
	validate_domain_data

	HSPC/API/Mailer
	send

	HSPC/API/PP
	get_saved_paymethod_list
	get_plugin_list
	get_layout_hash
	get_redirect_hash
	pay
	get_status

	HSPC/API/Fraud
	get_warning_newpaymethod
	get_resume_newpaymethod
	get_safe_description

	HSPC/API/Config
	get_provider_config

	HSPC/API/Campaign
	get_campaign
	get_account_campaigns

	HSPC/API/SSL
	get_cert_form
	validate_cert_form
	get_parsed_csr_data

	Online Store Customization and Integration
	Integrating Store With Existing Website
	Customizing Default Store Installation
	Simple Customization of Default Store Installation
	Advanced Customization of Default Store Installation
	Selecting Store Files Customizable via Web Interface

	Manual Store Installation on Remote Server
	Customizing Store Localization

	User Interface Customization
	Screens Customization Overview
	Template Based Customization
	Customizing Vendor Control Center (PCC/RCC)
	Components Repository
	Components Repository Structure and Files
	The filter Function Sample
	New Component Sample

	Screen Aliases Based Customization in Control Centers
	Control Center Screen Customization Module Sample

	Customizing Customer Control Panel
	Control Panel Screen Structure
	Control Panel Top Frame and Tabs Customization
	Customizing Main Frame
	Customizing Control Panel Dashboard
	Control Panel Dashboard Customization Module Location
	Access Method
	Control Panel Dashboard IDs
	Samples
	Add New Section
	Add New Item to Existing Section
	Replace Item in Existing Section
	Delete Item and Section
	Full Source Code of the HSPC::Custom::Menu::CP

	Control Panel Screens Customization Using Screen IDs
	Customization API Methods
	Discovering Screen ID and the Name of Screen Element to Customize
	Customizing a Single Screen Form
	Customizing a Group of Screens
	Examples of Screen ID Based Customization

	Customizing Help Bar in Control Panel

	Adding New Fields to Accounts Registration Form
	Extended Attributes Objects
	Custom Extended Attribute Code Samples

	Extending E-Mail Notification Templates
	Placeholder Creation Tools
	Custom Placeholders Samples
	Creating Placeholders for Custom Extended Attributes

	Customizing Language Packs
	Language Pack Customization Tools
	Language Pack Customization Sample

	Integration with External Helpdesk
	External Helpdesk API

	Adding New Language Pack
	Parallels Business Automation - Standard Translation Capabilities
	Preparing Directories and Files for New Language Pack
	Translating Interface
	Translating General Labels and Messages
	Adding a new Translation

	Translating ToolTips for Menu Items
	Translating the On-Screen Hints
	Translating Help Files
	Translating the Context Help Pages for Control Panel
	Translating the Online Help Pages for Control Centers
	Translating Printable Documentation

	Plug-Ins Development
	Plug-Ins Toolkit Methods
	Anti-Fraud Plug-ins
	Graphical Representation
	Middle Tier Module
	Header
	Profile Hash
	Class Info
	Check Handler
	Post-Install Method

	Post-Installation Configuration Script
	Anti-Fraud Manager Value Structure
	Component repository configuration files
	Anti-Fraud Plug-In Package Structure

	Payment Method Plug-Ins Development Tools
	Payment Method Plug-Ins Objects
	Middle Tier Module
	Web Interface Module

	Payment Plug-Ins Development Tools
	Payment Plug-Ins Namespaces
	Methods and Parameters Common for all Payment Plug-Ins
	Online Payment Plug-In Methods
	Bank Transfer Plug-In Methods
	Payment Plug-Ins Graphical Presentation

	Creating a New Promotion Plug-In
	Introductory Notes About Promotion Plug-Ins
	Promotion Plug-Ins Objects and Their Naming Conventions
	Web Interface Module
	Middle Tier Module
	Constants

	Registering a Promotion Plug-In

	Domain Registration Plug-In Development Tools
	Domain Plug-In Namespaces
	HSPC::MT::Plugin::DM Methods
	Domain Lookup
	check_register
	can_check_register
	check_transfer
	can_check_transfer

	Operations With Domains
	register_domain
	can_transfer_domain
	transfer_domain
	renew_domain
	can_terminate_domain
	terminate_domain
	get_domain_status
	get_domain_details
	get_domain_prices

	Operations With Name Servers
	register_ns
	synchronize_domain_ns

	Operations With Contacts and Domain Extended Information
	get_contact_types
	validate_data
	update_contacts

	Supporting 'WHOIS Privacy' Feature
	can_idprotect
	get_idprotect
	set_idprotect

	Supporting 'Lock Domain' Feature
	can_reglock
	get_reglock
	set_reglock

	Supporting Offline Operations
	process_callback

	HSPC::Plugin::DM Methods
	Operations With Contact and Domain Extended Information
	view_contact_form
	edit_contact_form
	view_contact_extdata_form
	edit_contact_extdata_form
	view_domain_extdata_form
	edit_domain_extdata_form
	collect_contacts_data
	collect_contact_extdata
	collect_domain_extdata

	DM Plug-In Installation and Configuration
	view_config_form
	edit_config_form
	collect_config_data
	validate_config_data

	Required Toolkit Methods
	Common Functions
	parse_template
	purify_fromxml_data
	DM Related Checking, Converting, Formatting Functions
	get_domain_info

	Creating a New DNS Plug-In
	Introductory Notes About DNS Plug-In
	DNS Plug-In Objects and Their Naming Conventions

	Registering a DNS Plug-In
	Web Interface Module
	form_ns()
	view_ns()
	save_ns()
	is_reinstall_ns()

	Middle Tier Module
	install()
	sync_zones()
	check_is_reachable()

	SSL Certificate Plug-In Developmet Tools
	SSL Certificate Plug-In Namespaces
	Middle Tier Module
	Configuration Information
	get_title
	get_product_list
	get_price_list
	get_server_software_type_list
	get_approver_email_list
	get_buttons
	update_ext_attr

	SSL Certificate Issuing
	validate_csr_data
	issue_certificate
	check_available
	fetch_certificate
	renew_certificate
	get_product_attributes
	cancel_certificate

	Graphical Presentation Module
	Plug-In Configuration
	get_config_view
	get_config_form
	validate_config_data
	collect_data
	get_help_page

	SSL Certificate Configuration
	get_contact_types
	get_contact_view
	get_contact_form
	collect_contacts
	validate_contact_form
	get_ext_attr_view
	get_ext_attr_form
	collect_ext_attr
	validate_ext_attr_form

	Building New Plug-In

	Tools
	Bulk Domain Registration / Transfer
	Credit Card Import
	Bank Accounts Import
	Migration from Parallels Plesk Billing
	Bulk Parallels Plesk Domains / Clients Resolving
	Script Checking Domain Renewal Date Using WHOIS Information
	Cleaning Tool
	DNS Synchronization Tool
	Parallels Virtuozzo Containers Integration
	Virtuozzo Templates Installing Tool
	Tools for Actions Execution over/in Container

	Using Data Import and Export Command Line Tools
	Exporting Data into XML Files
	Importing Billing Data in the Form of XML File
	Importing Subscriptions Using XML API
	Examples of XML Files Used for Billing Data Import
	Account Data in XML File
	Document Data in XML File

	Example of XML File for Traffic Classes Import
	Example of XML File for Traffic Statistics Import
	Import-Data Script

	Index

