Audiovox II To The Manual 9c9cba1e 50fc 4181 8920 9730fb00c217

User Manual: Audiovox II to the manual

Open the PDF directly: View PDF PDF.
Page Count: 257 [warning: Documents this large are best viewed by clicking the View PDF Link!]

Apple II Original ROM Information
Source
http://members.buckeye-express.com/marksm/6502/
27 June 2004
The 6502 Firmware Page
This site is mostly about the firmware -- software in ROM -- that came with the
original Apple II, not the II+, IIe, IIc, or IIgs. The original Apple II had 4K of
RAM and 8K of ROM. The ROM contains software, such as the Monitor and Integer
BASIC, appropriate for a SBC.
Red Book refers to the original Apple II Reference Manual dated 1978.
WOZPAK refers to the WOZPAK II, a publication by Call-A.P.P.L.E., an Apple II user
group.
DDJ refers to Dr. Dobbs Journal, a computer magazine.
IA refers to Interface Age, a publication of the SCCS (Southern California
Computer Society).
SYM and AIM refer to early 6502 single board computers.
Contents
* Apple II ROM (12 KB binary)
* Memory map of the Apple II ROMs
* Summary of Monitor Commands
* Red Book Monitor listing
* Red Book Sweet-16 listing
* WOZPAK Sweet-16 article by Steve Wozniak
* WOZPAK Sweet-16 article by Dick Sedgewick
* Red Book Mini-Assembler listing
* Red Book Floating point listing
* WOZPAK Floating point routines description
* DDJ Floating point article
* IA Floating point article
* SYM Monitor listing
* AIM Monitor listing
* AIM BASIC Language Reference Manual
------------------------------------------------------------------------
Questions or comments? Email me at
paulrsm@buckeye-express.com
------------------------------------------------------------------------
Updates
* 2000-09-01 -- Added AIM BASIC Language Reference Manual
+------------------------------------------------------------------------
| TOPIC -- Apple II -- Apple II ROM (12 KB binary)
+------------------------------------------------------------------------
File ............. "a2rom.bin"
Fork ............. DATA
Size (bytes) ..... 12,288 (12KB) / $00003000
Created .......... Sunday, December 8, 2002 -- 8:47:53 PM
Modified ......... Sunday, December 8, 2002 -- 8:47:53 PM
D/000000: A9208D26 03AD57C0 AD53C0AD 50C0A900 [...&..W..S..P...]
D/000010: 851CAD26 03851BA0 00841AA5 1C911A20 [...&............]
D/000020: A2D0C8D0 F6E61BA5 1B291FD0 EE608D22 [.........)...`."]
D/000030: 038E2003 8C210348 29C08526 4A4A0526 [.....!.H)..&JJ.&]
D/000040: 85266885 270A0A0A 26270A26 270A6626 [.&h.'...&'.&'.f&]
D/000050: A527291F 0D260385 278AC000 F005A023 [.')..&..'......#]
D/000060: 6904C8E9 07B0FB8C 2503AABD EAD08530 [i.......%......0]
D/000070: 984AAD24 03851CB0 2960202E D0A51C51 [.J.$....)`.....Q]
D/000080: 26253051 26912660 1024A530 4AB00549 [&%0Q&.&`.$.0J..I]
D/000090: C0853060 881002A0 27A9C085 308C2503 [..0`....'...0.%.]
D/0000A0: A51C0AC9 C01006A5 1C497F85 1C60A530 [.........I...`.0]
D/0000B0: 0A498030 DCA981C8 C02890DF A000B0DB [.I.0.....(......]
D/0000C0: 18A55129 04F027A9 7F253031 26D01BEE [..Q)..'..%01&...]
D/0000D0: 2A03A97F 25301012 18A55129 04F00FB1 [*...%0....Q)....]
D/0000E0: 26451C25 30D003EE 2A035126 9126A551 [&E.%0...*.Q&.&.Q]
D/0000F0: 65532903 C9026AB0 8F303018 A5272CEA [eS)...j..00..',.]
D/000100: D1D02206 26B01A2C F3D0F005 691F38B0 [..".&..,....i.8.]
D/000110: 12692348 A52669B0 B00269F0 852668B0 [.i#H.&i...i..&h.]
D/000120: 02691F66 2669FC85 276018A5 2769042C [.i.f&i..'`..'i.,]
D/000130: EAD1D0F3 06269019 69E0182C 2ED1F013 [.....&..i..,....]
D/000140: A5266950 49F0F002 49F08526 AD260390 [.&iPI...I..&.&..]
D/000150: 0269E066 2690D048 A9008D20 038D2103 [.i.f&..H......!.]
D/000160: 8D220368 4838ED20 03488AED 21038553 [.".hH8...H..!..S]
D/000170: B00A6849 FF690148 A900E553 85518555 [..hI.i.H...S.Q.U]
D/000180: 68855085 54688D20 038E2103 9818ED22 [h.P.Th....!...."]
D/000190: 03900449 FF69FE85 528C2203 665338E5 [...I.i..R.".fS8.]
D/0001A0: 50AAA9FF E551851D AC2503B0 050A2088 [P....Q...%......]
D/0001B0: D038A554 65528554 A555E900 8555B126 [.8.TeR.T.U...U.&]
D/0001C0: 451C2530 51269126 E8D004E6 1DF06BA5 [E.%0Q&.&......k.]
D/0001D0: 53B0DA20 F9D018A5 54655085 54A55565 [S.......TeP.T.Ue]
D/0001E0: 5150D981 82848890 A0C01CFF FEFAF4EC [QP..............]
D/0001F0: E1D4C5B4 A18D7861 493118FF A5260AA5 [......xaI1...&..]
D/000200: 2729032A 05260A0A 0A8D2203 A5274A4A [').*.&...."..'JJ]
D/000210: 29070D22 038D2203 AD25030A 6D25030A [)..".."..%..m%..]
D/000220: AACAA530 297FE84A D0FC8D21 038A186D [...0)..J...!...m]
D/000230: 25039003 EE21038D 20036086 1A841BAA [%....!....`.....]
D/000240: 4A4A4A4A 85538A29 0FAABCEB D1845049 [JJJJ.S.)......PI]
D/000250: 0FAABCEC D1C88452 AC2503A2 008E2A03 [.......R.%....*.]
D/000260: A11A8551 A2808654 8655AE27 03A55438 [...Q...T.U.'..T8]
D/000270: 65508554 900420D8 D018A555 65528555 [eP.T.......UeR.U]
D/000280: 900320D9 D0CAD0E5 A5514A4A 4AD0D3E6 [.........QJJJ...]
D/000290: 1AD002E6 1BA11AD0 C960861A 841BAA4A [.........`.....J]
D/0002A0: 4A4A4A85 538A290F AABCEBD1 8450490F [JJJ.S.)......PI.]
D/0002B0: AABCECD1 C88452AC 2503A200 8E2A03A1 [......R.%....*..]
D/0002C0: 1A8551A2 80865486 55AE2703 A5543865 [..Q...T.U.'..T8e]
D/0002D0: 50855490 0420C0D0 18A55565 52855590 [P.T.......UeR.U.]
D/0002E0: 0320D9D0 CAD0E5A5 514A4A4A D0D3E61A [........QJJJ....]
D/0002F0: D002E61B A11AD0C9 602090D3 8D240320 [........`....$..]
D/000300: AFD34820 9AD36820 2ED0AE23 036020F9 [..H...h....#.`..]
D/000310: D24C7DD0 AD25034A 2090D320 75D0209A [.L}..%.J....u...]
D/000320: D38A4898 AA20AFD3 A8682064 D1AE2303 [..H......h.d..#.]
D/000330: 602090D3 4C10D020 F9D22051 D3203BD2 [`...L......Q..;.]
D/000340: AE230360 20F9D220 51D3209A D2AE2303 [.#.`....Q.....#.]
D/000350: 608E2303 A0322092 D38D2703 A0282092 [`.#..2....'..(..]
D/000360: D348AD28 03851AAD 2903851B A0202092 [.H.(....).......]
D/000370: D3F039A2 00C11AF0 02B0310A 9003E61B [..9.......1.....]
D/000380: 18A8B11A 651AAAC8 B11A6D29 03A86860 [....e.....m)..h`]
D/000390: A016B14A D01688B1 4A608E23 03A005B1 [...J....J`.#....]
D/0003A0: 4AAAC8B1 4AA8E018 E90190ED 4C68EEA0 [J...J.......Lh..]
D/0003B0: 0D2092D3 C9C0B0F4 608E2303 201EF120 [........`.#.....]
D/0003C0: FDFEA900 853C8D28 031865CE A8A90885 [.....<.(..e.....]
D/0003D0: 3D8D2903 65CFB025 C4CA48E5 CB68B01D [=.).e..%..H..h..]
D/0003E0: 843E853F C8D00269 01844A85 4B84CC85 [.>.?...i..J.K...]
D/0003F0: CD20FAFC A9032002 FFAE2303 604C6BE3 [..........#.`Lk.]
D/000400: 2089F6B0 3334F400 2089F618 4C006838 [....34......L.h8]
D/000410: 19CE00C9 3536213B 3CC93739 29D80346 [....56!;<.79)..F]
D/000420: 3A26E0D7 03384AA9 396AD302 2AD40202 [:&...8J.9j..*...]
D/000430: 07307600 A501A600 201BE5A9 AD20EDFD [.0v.............]
D/000440: A9BE20ED FDA517A6 16201BE5 208EFD20 [................]
D/000450: 8CF62B3C A23B0DD1 02C2004C 68EE004C [..+<.;.....Lh..L]
D/000460: 6BE3ECDC 02F419B0 001AC000 27D80363 [k...........'..c]
D/000470: E7673D25 3B211C2C A23C2BB6 03076BBD [.g=%;!.,.<+...k.]
D/000480: 07F5C72C 771B2800 1C67FC08 E547D902 [...,w.(..g...G..]
D/000490: 09DA02F5 F76705FC F747DB06 F71C5D00 [.....g...G....].]
D/0004A0: DC06F108 13FDFD06 0F1D2400 DD0609F0 [..........$.....]
D/0004B0: 06BA1D74 00BD0901 B03C01D1 2089F61C [...t.....<......]
D/0004C0: 4E00CC38 19CA0069 7C0020DF F02089F6 [N..8...i|.......]
D/0004D0: CC287C00 60A9DCA0 D44CB0D5 A434B900 [.(|.`....L...4..]
D/0004E0: 02C9AAD0 0CE634A2 07B53C95 02CA10F9 [......4...<.....]
D/0004F0: 60A002B1 3C990B00 8810F820 8EF8A62F [`...<........../]
D/000500: CAD00CA5 0B290DF0 142908D0 10850D20 [.....)...)......]
D/000510: 89F622D6 020626B1 0202A436 00A200B5 [.."...&....6....]
D/000520: 0B9142E8 20B4FCC6 2F10F490 C460A954 [..B...../....`.T]
D/000530: A0D54CB0 D586D838 A2FFB54D F5CB95CF [..L....8...M....]
D/000540: E8F0F720 1EF12054 D5A20120 2CF12054 [.......T....,..T]
D/000550: D5A6D860 20FAFCA9 1620C9FC 852E20FA [...`............]
D/000560: FCA02420 FDFCB0F9 20FDFCA0 3B20ECFC [..$.........;...]
D/000570: F00E452E 852E20BA FCA03490 F04C26FF [..E.......4..L&.]
D/000580: EAEAEAC1 3CF0EB48 202DFF20 92FDB13C [....<..H.-.....<]
D/000590: 20DAFDA9 A020EDFD A9A820ED FD6820DA [.............h..]
D/0005A0: FDA9A920 EDFDA98D 4CEDFDA9 8D4CEDFD [........L....L..]
D/0005B0: 8DF9038C FA03A94C 8DF80360 A9C3A0D5 [.......L...`....]
D/0005C0: 4CB0D5A9 0020D0D5 A9FF20D0 D54C3AFF [L............L:.]
D/0005D0: 850049FF 8501A53D 85078509 850BA000 [..I....=........]
D/0005E0: 84068408 840AA63E A5009108 C8D0FBE6 [.......>........]
D/0005F0: 09CAD0F6 A63EB106 C500F013 48A50720 [.....>......H...]
D/000600: DAFD9820 8AD6A500 208AD668 2092D6C8 [...........h....]
D/000610: D0E4E607 CAD0DFA6 3EA50191 0A840D84 [........>.......]
D/000620: 0CE60CA5 012045D6 A5002045 D6060C26 [......E....E...&]
D/000630: 0DA50DC5 3E90ECA5 00910AE6 0AD0DAE6 [....>...........]
D/000640: 0BCAD0D5 608502A5 0A450C85 08A50B45 [....`....E.....E]
D/000650: 0D8509A5 029108B1 0AC501F0 E748A50B [.............H..]
D/000660: 20DAFDA5 0A208AD6 A501910A 208AD668 [...............h]
D/000670: 4CCB02A5 0920DAFD A508208A D6A50220 [L...............]
D/000680: 8AD6202D FFA98D4C EDFD20DA FDA9A04C [...-...L.......L]
D/000690: EDFD840F 850E208A D6202DFF A500450E [..........-...E.]
D/0006A0: 850EA007 460E9023 A9A020ED FDA53DC9 [....F..#......=.]
D/0006B0: 50A9C469 0020EDFD A9AD20ED FD98D005 [P..i............]
D/0006C0: A9B120ED FDB9D3D6 20EDFD88 10D6A40F [................]
D/0006D0: 4C85D6B0 B9B8B7B6 B5B4B3B2 B1A00084 [L...............]
D/0006E0: 06840788 98D00EA0 1A200ED7 85068407 [................]
D/0006F0: A021200E D7850884 09A00820 0ED78502 [.!..............]
D/000700: 8403A011 200ED785 0484054C 08D4B14A [...........L...J]
D/000710: 48C8B14A A868604C 4ED7A401 AD30C0E6 [H..J.h`LN....0..]
D/000720: 02D005E6 03D00560 EA4C2CD7 88F0054C [.......`.L,....L]
D/000730: 32D7D0EB A400AD30 C0E602D0 05E603D0 [2......0........]
D/000740: 0560EA4C 46D788F0 D14C4CD7 D0EBADFF [.`.LF....LL.....]
D/000750: 020AA8B9 96D78500 ADFD024A F0044600 [...........J..F.]
D/000760: D0F9B996 D738E500 8501C8B9 96D76500 [.....8........e.]
D/000770: 8500A900 38EDFE02 8503A900 8502A501 [....8...........]
D/000780: D098EAEA 4C87D7E6 02D005E6 03D00560 [....L..........`]
D/000790: EA4C94D7 D0EC0000 F6F6E8E8 DBDBCFCF [.L..............]
D/0007A0: C3C3B8B8 AEAEA4A4 9B9B9292 8A8A8282 [................]
D/0007B0: 7B7B7474 6D6E6768 61625C5C 57575252 [{{ttmnghab\\WWRR]
D/0007C0: 4D4E4949 45454141 3D3E3A3A 36373334 [MNIIEEAA=>::6734]
D/0007D0: 30312E2E 2B2C2929 26272425 22232021 [01..+,))&'$%"#.!]
D/0007E0: 1E1F1D1D 1B1C1A1A 18191717 15161415 [................]
D/0007F0: 13141212 11111010 0F100E0F FFFFFFFF [................]
D/000800: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000810: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000820: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000830: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000840: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000850: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000860: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000870: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000880: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000890: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0008A0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0008B0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0008C0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0008D0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0008E0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0008F0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000900: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000910: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000920: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000930: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000940: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000950: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000960: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000970: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000980: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000990: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0009A0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0009B0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0009C0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0009D0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0009E0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/0009F0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A00: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A10: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A20: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A30: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A40: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A50: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A60: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A70: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A80: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000A90: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000AA0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000AB0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000AC0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000AD0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000AE0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000AF0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B00: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B10: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B20: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B30: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B40: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B50: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B60: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B70: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B80: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000B90: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000BA0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000BB0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000BC0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000BD0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000BE0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000BF0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C00: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C10: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C20: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C30: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C40: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C50: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C60: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C70: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C80: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000C90: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000CA0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000CB0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000CC0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000CD0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000CE0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000CF0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D00: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D10: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D20: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D30: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D40: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D50: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D60: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D70: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D80: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000D90: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000DA0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000DB0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000DC0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000DD0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000DE0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000DF0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E00: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E10: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E20: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E30: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E40: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E50: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E60: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E70: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E80: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000E90: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000EA0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000EB0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000EC0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000ED0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000EE0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000EF0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F00: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F10: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F20: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F30: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F40: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F50: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F60: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F70: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F80: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000F90: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000FA0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000FB0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000FC0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000FD0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000FE0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/000FF0: FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF [................]
D/001000: 2000F04C B3E28533 4CEDFD60 8A2920F0 [...L...3L..`.)..]
D/001010: 23A9A085 E44CEDFD A920C524 B00CA98D [#....L.....$....]
D/001020: A00720ED FDA9A088 D0F8A000 B1E2E6E2 [................]
D/001030: D002E6E3 602015E7 2076E5A5 E2C5E6A5 [....`....v......]
D/001040: E3E5E7B0 EF206DE0 4C3BE0A5 CA85E2A5 [......m.L;......]
D/001050: CB85E3A5 4C85E6A5 4D85E7D0 DE2015E7 [....L...M.......]
D/001060: 206DE5A5 E485E2A5 E585E3B0 C786D8A9 [.m..............]
D/001070: A085FA20 2AE09885 E4202AE0 AA202AE0 [....*.....*...*.]
D/001080: 201BE520 18E084FA AA10180A 10E9A5E4 [................]
D/001090: D0032011 E08A20ED FDA92520 1AE0AA30 [..........%....0]
D/0010A0: F585E4C9 01D005A6 D84C8EFD 4884CEA2 [.........L..H...]
D/0010B0: ED86CFC9 519004C6 CFE95048 B1CEAA88 [....Q.....PH....]
D/0010C0: B1CE10FA E0C0B004 E00030F2 AA68E901 [..........0..h..]
D/0010D0: D0E924E4 300320F8 EFB1CE10 10AA293F [..$.0.........)?]
D/0010E0: 85E41869 A020EDFD 88E0C090 EC200CE0 [...i............]
D/0010F0: 68C95DF0 A4C928D0 8AF09E20 18E19550 [h.]...(........P]
D/001100: D5789011 A02B4CE0 E32034EE D55090F4 [.x...+L...4..P..]
D/001110: 20E4EF95 784C23E8 2034EEF0 E738E901 [....xL#..4...8..]
D/001120: 602018E1 955018F5 784C02E1 A014D0D6 [`....P..xL......]
D/001130: 2018E1E8 B55085DA 65CE48A8 B57885DB [.....P..e.H..x..]
D/001140: 65CF48C4 CAE5CBB0 E3A5DA69 FE85DAA9 [e.H........i....]
D/001150: FFA865DB 85DBC8B1 DAD9CC00 D00F98F0 [..e.............]
D/001160: F56891DA 99CC0088 10F7E860 EAA080D0 [.h.........`....]
D/001170: 95A90020 0AE7A002 9478200A E786D8AA [.........x......]
D/001180: E6332051 F3C6338A A6D89578 B55185CE [.3.Q..3....x.Q..]
D/001190: B57985CF E8E820BC E1B54ED5 76B015F6 [.y........N.v...]
D/0011A0: 4EA8B1CE B450C4E4 9004A083 D0C191DA [N....P..........]
D/0011B0: F65090E5 B4508A91 DA4C23F2 B55185DA [.P...P...L#..Q..]
D/0011C0: 38E90285 E4B57985 DBE90085 E5A000B1 [8.....y.........]
D/0011D0: E418E5DA 85E460B5 5385CEB5 7B85CFB5 [......`.S...{...]
D/0011E0: 5185DAB5 7985DBE8 E8E8A000 947894A0 [Q...y........x..]
D/0011F0: C89450B5 4DD57508 48B54FD5 77900768 [..P.M.u.H.O.w..h]
D/001200: 28B00256 5060A8B1 CE85E468 A828B0F3 [(..VP`.....h.(..]
D/001210: B1DAC5E4 D0EDF64F F64DB0D7 20D7E14C [.......O.M.....L]
D/001220: 36E72054 E206CE26 CF900D18 A5E665DA [6..T...&......e.]
D/001230: 85E6A5E7 65DB85E7 88F00906 E626E710 [....e........&..]
D/001240: E44C7EE7 A5E62008 E7A5E795 A006E590 [.L~.............]
D/001250: 284C6FE7 A95585E5 205BE2A5 CE85DAA5 [(Lo..U...[......]
D/001260: CF85DB20 15E784E6 84E7A5CF 1009CA06 [................]
D/001270: E5206FE7 2015E7A0 1060206C EEF0C5FF [..o......`.l....]
D/001280: E633A000 20CEE3C6 33602034 EE4A0820 [.3......3`.4.J..]
D/001290: 47F82034 EEA8B126 2890044A 4A4A4A29 [G..4...&(..JJJJ)]
D/0012A0: 0FA00020 08E794A0 8884D760 FFFFFFFF [...........`....]
D/0012B0: 20D3EF20 8EFD46D9 A9BE2006 E0A00084 [......F.........]
D/0012C0: FA24F810 0CA6F6A5 F7201BE5 A9A020ED [.$..............]
D/0012D0: FDA2FF9A 20CEE384 F18A85C8 A2202091 [................]
D/0012E0: E4A5C869 0085E0A9 00AA6902 85E1A1E0 [...i......i.....]
D/0012F0: 29F0C9B0 F0034C83 E8A002B1 E099CD00 [).....L.........]
D/001300: 88D0F820 8AE3A5F1 E5C8C904 F0A891E0 [................]
D/001310: A5CAF1E0 85E4A5CB E90085E5 A5E4C5CC [................]
D/001320: A5E5E5CD 9045A5CA F1E085E6 A5CBE900 [.....E..........]
D/001330: 85E7B1CA 91E6E6CA D002E6CB A5E2C5CA [................]
D/001340: A5E3E5CB B0E0B5E4 95CACA10 F9B1E0A8 [................]
D/001350: 88B1E091 E698D0F8 24F81009 B5F775F5 [........$.....u.]
D/001360: 95F7E8F0 F7107E00 000000A0 14D07120 [......~.......q.]
D/001370: 15E7A5E2 85E6A5E3 85E72075 E5A5E285 [...........u....]
D/001380: E4A5E385 E5D00E20 15E7206D E5A5E685 [...........m....]
D/001390: E2A5E785 E3A000A5 CAC5E4A5 CBE5E5B0 [................]
D/0013A0: 16A5E4D0 02C6E5C6 E4A5E6D0 02C6E7C6 [................]
D/0013B0: E6B1E491 E690E0A5 E685CAA5 E785CB60 [...............`]
D/0013C0: 20EDFDC8 B900EB30 F709804C EDFD98AA [.......0...L....]
D/0013D0: 2075FD8A A8A9DF99 0002A2FF 6060A006 [.u..........``..]
D/0013E0: 20D3EE24 D930034C B6E24C9A EB2A69A0 [...$.0.L..L..*i.]
D/0013F0: DD0002D0 53B1FE0A 300688B1 FE3029C8 [....S...0....0).]
D/001400: 86C89848 A200A1FE AA4A4940 11FEC9C0 [...H.....JI@....]
D/001410: 9001E8C8 D0F368A8 8A4CF8F2 E6F1A6F1 [......h..L......]
D/001420: F0BC9D00 0260A6C8 A9A0E8DD 0002B0FA [.....`..........]
D/001430: B1FE293F 4AD0B6BD 0002B006 693FC91A [..)?J.......i?..]
D/001440: 906F694F C90A9069 A6FDC8B1 FE29E0C9 [.oiO...i.....)..]
D/001450: 20F07AB5 A885C8B5 D185F188 B1FE0A10 [..z.............]
D/001460: FA88B038 0A3035B4 5884FFB4 80E810DA [...8.05.X.......]
D/001470: F0B3C97E B022CA10 04A00610 299480A4 [...~."......)...]
D/001480: FF9458A4 C894A8A4 F194D129 1FA8B997 [..X........)....]
D/001490: F10AA8A9 762A85FF D001C8C8 86FDB1FE [....v*..........]
D/0014A0: 3084D005 A00E4CE0 E3C903B0 C34AA6C8 [0.....L......J..]
D/0014B0: E8BD0002 9004C9A2 F00AC9DF F00686C8 [................]
D/0014C0: 201CE4C8 88A6FDB1 FE880A10 CFB45884 [..............X.]
D/0014D0: FFB480E8 B1FE299F D0ED85F2 85F39848 [......)........H]
D/0014E0: 86FDB4D0 84C918A9 0A85F9A2 00C8B900 [................]
D/0014F0: 02290F65 F2488A65 F3301CAA 68C6F9D0 [.).e.H.e.0..h...]
D/001500: F285F286 F3C4F1D0 DEA4C9C8 84F1201C [................]
D/001510: E468A8A5 F3B0A9A0 00108B85 F386F2A2 [.h..............]
D/001520: 0486C9A9 B085F9A5 F2DD63E5 A5F3FD68 [..........c....h]
D/001530: E5900D85 F3A5F2FD 63E585F2 E6F9D0E7 [........c.......]
D/001540: A5F9E8CA F00EC9B0 F00285C9 24C93004 [............$.0.]
D/001550: A5FAF00B 20EDFD24 F8100499 0002C8CA [.......$........]
D/001560: 10C16001 0A64E810 00000003 27A5CA85 [..`..d......'...]
D/001570: E6A5CB85 E7E8A5E7 85E5A5E6 85E4C54C [...............L]
D/001580: A5E5E54D B026A001 B1E4E5CE C8B1E4E5 [...M.&..........]
D/001590: CFB019A0 00A5E671 E485E690 03E6E718 [.......q........]
D/0015A0: C8A5CEF1 E4C8A5CF F1E4B0CA 6046F8A5 [............`F..]
D/0015B0: 4C85CAA5 4D85CBA5 4A85CCA5 4B85CDA9 [L...M...J...K...]
D/0015C0: 0085FB85 FC85FEA9 00851D60 A5D04C6B [...........`..Lk]
D/0015D0: E3A0FF84 D8C8B1E0 3006C940 D06885D8 [........0..@.h..]
D/0015E0: D1D0F0F1 B1D0C84A D0FAB1D0 48C8B1D0 [.......J....H...]
D/0015F0: A86885D0 84D1C5CC D0D7C4CD D0D3A000 [.h..............]
D/001600: C8B1E030 FB4940F0 F7986904 4865D0A8 [...0.I@...i.He..]
D/001610: A5D16900 48C4CAE5 CBB0B384 CC6885CD [..i.H........h..]
D/001620: 68A8A900 8891D088 91D088A5 CD91D088 [h...............]
D/001630: A5CC91D0 88A90091 D0883097 B1E0D0F7 [..........0.....]
D/001640: A54AA44B D0ACB1D0 C940B09A 959F9869 [.J.K.....@.....i]
D/001650: 034865D0 200AE720 FFE688D0 FA9865D1 [.He...........e.]
D/001660: 95786824 D8301DA8 A900200A E79578B1 [.xh$.0........x.]
D/001670: D0100FF6 78C8D0F7 09A90085 D485D5A2 [....x...........]
D/001680: 2048A000 B1E01018 0A30B520 FFE62008 [.H.......0......]
D/001690: E720FFE6 95A024D4 1001CA20 FFE6B0E6 [......$.........]
D/0016A0: C928D01F A5E0200A E7A5E195 7824D430 [.(..........x$.0]
D/0016B0: 0BA90120 0AE7A900 9578F678 20FFE630 [.........x.x...0]
D/0016C0: F9B0D324 D41006C9 04B0D046 D4A885D6 [...$.......F....]
D/0016D0: B980E929 550A85D7 68A8B980 E929AAC5 [...)U...h....)..]
D/0016E0: D7B00998 4820EBF3 A5D69095 B900EA85 [....H...........]
D/0016F0: CEB980EA 85CF20FC E64CD8E6 6CCE00E6 [.........L..l...]
D/001700: E0D002E6 E1B1E060 9477CA30 03955060 [.......`.w.0..P`]
D/001710: A0664CE0 E3A000B5 5085CEB5 A085CFB5 [.fL.....P.......]
D/001720: 78F00E85 CFB1CE48 C8B1CE85 CF6885CE [x......H.....h..]
D/001730: 88E86020 4AE72015 E7982008 E795A0C5 [..`.J...........]
D/001740: CED006C5 CFD002F6 50602082 E72059E7 [........P`....Y.]
D/001750: 2015E724 CF301BCA 602015E7 A5CFD004 [...$.0..`.......]
D/001760: A5CEF0F3 A9FF2008 E795A024 CF30E920 [...........$.0..]
D/001770: 15E79838 E5CE2008 E798E5CF 5023A000 [...8........P#..]
D/001780: 1090206F E72015E7 A5CE85DA A5CF85DB [...o............]
D/001790: 2015E718 A5CE65DA 2008E7A5 CF65DB70 [......e......e.p]
D/0017A0: DD95A060 2034EEA8 D0034CCB EE884CF4 [...`.4....L...L.]
D/0017B0: F3A52409 07A8C8D0 F5C8D0F5 B0F96000 [..$...........`.]
D/0017C0: 0020B1E7 2015E7A5 CF100AA9 AD20EDFD [................]
D/0017D0: 2072E750 EF8884D5 86CFA6CE 201BE5A6 [.r.P............]
D/0017E0: CF602015 E7A5CE85 F6A5CF85 F78884F8 [.`..............]
D/0017F0: C8A90A85 F484F560 2015E7A5 CEA4CF10 [.......`........]
D/001800: F22015E7 B55085DA B57885DB A5CE91DA [.....P...x......]
D/001810: C8A5CF4C 07F26068 6824D510 05208EFD [...L..`hh$......]
D/001820: 46D560A0 FF84D760 20CDEFF0 07A92585 [F.`....`......%.]
D/001830: D68884D4 E860A5CA A4CBD05A A041A5FC [.....`.....Z.A..]
D/001840: C910B05E A8E6FCA5 E0990001 A5E19910 [...^............]
D/001850: 01A5DC99 2001A5DD 99300120 15E7206D [.........0.....m]
D/001860: E59004A0 37D03BA5 E4A4E585 DC84DD18 [....7.;.........]
D/001870: 69039001 C8A2FF86 D99A85E0 84E1202E [i...............]
D/001880: F0A00020 79E624D9 104918A0 00A5DC71 [....y.$..I.....q]
D/001890: DCA4DD90 01C8C54C D0D1C44D D0CDA031 [.......L...M...1]
D/0018A0: 46D94CE0 E3A04AA5 FCF0F7C6 FCA8B91F [F.L...J.........]
D/0018B0: 0185DCB9 2F0185DD BEFF00B9 0F01A88A [..../...........]
D/0018C0: 4C75E8A0 6320C4E3 A001B1DC AAC8B1DC [Lu..c...........]
D/0018D0: 201BE54C B3E2C6FB A05BA5FB F0C4A8B5 [...L.....[......]
D/0018E0: 50D93F01 D0F0B578 D94F01D0 E9B95F01 [P.?....x.O...._.]
D/0018F0: 85DAB96F 0185DB20 15E7CA20 93E72001 [...o............]
D/001900: E8CAA4FB B9CF0195 9FB9BF01 A0002008 [................]
D/001910: E72082E7 2059E720 15E7A4FB A5CEF005 [.....Y..........]
D/001920: 596F0110 12B97F01 85DCB98F 0185DDBE [Yo..............]
D/001930: 9F01B9AF 01D087C6 FB60A054 A5FBC910 [.........`.T....]
D/001940: F09AE6FB A8B55099 4001B578 4C88F260 [......P.@..xL..`]
D/001950: 2015E7A4 FBA5CE99 BF01A5CF 99CF01A9 [................]
D/001960: 01995F01 A900996F 01A5DC99 7F01A5DD [.._....o........]
D/001970: 998F01A5 E0999F01 A5E199AF 01602015 [.............`..]
D/001980: 000000AB 03030303 03030303 03030303 [................]
D/001990: 03033F3F C0C03C3C 3C3C3C3C 3C300FC0 [..??..<<<<<<<0..]
D/0019A0: C3FF5500 ABAB0303 FFFF55FF FF55CFCF [..U.......U..U..]
D/0019B0: CFCFCFFF 55C6C6C6 55F0F0CF CF550155 [....U...U....U.U]
D/0019C0: FFFF5503 03030303 03030303 03030303 [..U.............]
D/0019D0: 03030303 03030303 03030303 0300AB03 [................]
D/0019E0: 57030303 03070303 03030303 03030303 [W...............]
D/0019F0: 0303AAFF 03030303 03030303 03030303 [................]
D/001A00: 17FFFF19 DF420AF2 EC876FAD B7E2F854 [.....B....o....T]
D/001A10: 4DC98582 2210334A 5B4E534A 49666D7A [M...".3J[NSJIfmz]
D/001A20: 71FF2309 5B16B6CB FFFFFBFF FF24F64E [q.#.[........$.N]
D/001A30: 59503BFF 23A36F36 23D71C22 1D8AAB23 [YP;.#.o6#.."...#]
D/001A40: FFFF2130 1E03C420 00C1BA39 40A0301E [..!0.......9@.0.]
D/001A50: A4D3B6BC AA3A0150 79D8D8A5 3CFF165B [.....:.Py...<..[]
D/001A60: 2803C41D 08004E00 3E00A6B0 00BCC657 [(.....N.>......W]
D/001A70: 8C0127FF 5D354B67 E0E17604 0571C91A [..'.]5Kg..v..q..]
D/001A80: E8FFFFE8 F0F1F3EF EFE3E3E5 E5E7E7EE [................]
D/001A90: F0F0E7E7 E2EFE7E7 F2F2F2E7 F2F2F2E2 [................]
D/001AA0: F3FFE8E1 E8E8EFEB FFFFE0FF FFEFEEEF [................]
D/001AB0: E7E7F3FF E8E7E7E7 E8E1E2EE F3E2E2E8 [................]
D/001AC0: FFFFE1E1 EFEEE7E8 EEE7F3FB FBEEE1EF [................]
D/001AD0: E7E8EFEF EBE9E8E9 F2E8E8E8 E8FFE8E8 [................]
D/001AE0: E8EEE7E8 EFEFEEEF EEEFEEEE EFEEEEEE [................]
D/001AF0: E1E8E8FF E0E0E0F1 F2F2F1F3 F3F1F3F4 [................]
D/001B00: BEB3B2B7 B637D4CF CFA0CCCF CE47D3D9 [.....7.......G..]
D/001B10: CED4C158 CDC5CDA0 C6D5CC4C D4CFCFA0 [...X.......L....]
D/001B20: CDC1CED9 A0D0C1D2 C5CE53D3 D4D2C9CE [..........S.....]
D/001B30: 47CECFA0 C5CE44C2 C1C4A0C2 D2C1CEC3 [G.....D.........]
D/001B40: 48B1B6A0 C7CFD3D5 C253C2C1 C4A0D2C5 [H........S......]
D/001B50: D4D5D24E B1B6A0C6 CFD253C2 C1C4A0CE [...N......S.....]
D/001B60: C5D854D3 D4CFD0D0 C5C4A0C1 D420AAAA [..T.............]
D/001B70: AA20A0C5 D2D20DBE B2B535D2 C1CEC745 [..........5....E]
D/001B80: C4C94DD3 D4D2A0CF D6C64CDC 0DD2C5D4 [..M.......L.....]
D/001B90: D9D0C5A0 CCC9CEC5 8D3F46D9 90034CC3 [.........?F...L.]
D/001BA0: E8A6CF9A A6CEA08D D002A099 20C4E386 [................]
D/001BB0: CEBA86CF 2066F384 F1A9FF85 C80A85D9 [.....f..........]
D/001BC0: A220A915 2091E4E6 D9A6CEA4 C80A85CE [................]
D/001BD0: C8B90002 C980F0D2 49B0C90A B0F0C8C8 [........I.......]
D/001BE0: 84C8B900 0248B9FF 01A00020 08E76895 [.....H........h.]
D/001BF0: A0A5CEC9 33D00320 6FE74C01 E8FFFFFF [....3...o.L.....]
D/001C00: 50204FC0 F4A1E4AF ADF2AFE4 AEA1F0A5 [P.O.............]
D/001C10: B4B3EFB4 EEA5A8B4 5C800040 608D608B [........\..@`.`.]
D/001C20: 7F1D207E 8C330000 6003BF12 4783AEA9 [...~.3..`...G...]
D/001C30: 6783B2B0 E5A3A1B2 B479B0B3 A469B0B3 [g........y...i..]
D/001C40: A4E5A3A1 B2B4AFAE 79B0B3A4 AFAE69B0 [........y.....i.]
D/001C50: B3A4AFAE F0AFB0F4 B3A9AC60 8C20B4B3 [...........`....]
D/001C60: A9AC0040 89C9479D 17689D0A 587B67A2 [...@..G..h..X{g.]
D/001C70: A1B4B667 B4A1078C 07AEA9AC B667B4A1 [...g.........g..]
D/001C80: 078C07AE A9ACA867 8C07B4AF ACB0679D [.......g......g.]
D/001C90: B2AFACAF A3678C07 A5ABAFB0 F4AEA9B2 [.....g..........]
D/001CA0: B07F0E27 B4AEA9B2 B07F0E28 B4AEA9B2 [...'.......(....]
D/001CB0: B06407A6 A967AFB4 AFA778B4 A5AC6B7F [.d...g....x...k.]
D/001CC0: 02ADA5B2 67A2B5B3 AFA7EEB2 B5B4A5B2 [....g...........]
D/001CD0: 7E8C39B4 B8A5AE67 B0A5B4B3 27AFB407 [~.9....g....'...]
D/001CE0: 9D19B2AF A67F0537 B4B5B0AE A97F0528 [.......7.......(]
D/001CF0: B4B5B0AE A97F052A B4B5B0AE A9E4AEA5 [.......*........]
D/001D00: 0047A2A1 B47F0D30 ADA9A47F 0D23ADA9 [.G.....0.....#..]
D/001D10: A467ACAC A1A3F2A7 F4B8A5B4 004DCC67 [.g...........M.g]
D/001D20: 8C688CDB 679B689B 508C638C 7F015107 [.h..g.h.P.c...Q.]
D/001D30: 88298480 C4195771 07881471 078C0788 [.)....Wq...q....]
D/001D40: AEB2A3B3 710888A3 B3A17108 88AEA5AC [....q.....q.....]
D/001D50: 68830868 9D087107 886075B4 AFAE758D [h..h..q..`u...u.]
D/001D60: 758B5107 8819B8A4 AEB2ECA4 B0F3A2A1 [u.Q.............]
D/001D70: EEA7B3E4 AEB2EBA5 A5B05107 883981C1 [..........Q..9..]
D/001D80: 4F7F0F2F 00510688 29C20C82 578C6A8C [O../.Q..)...W.j.]
D/001D90: 42AEA5A8 B460AEA5 A8B44F7E 1E358C27 [B....`....O~.5.']
D/001DA0: 51078809 8BFEE4AF ADF2AFE4 AEA1DCDE [Q...............]
D/001DB0: 9CDD9CDE DD9EC3DD CFCACDCB 00479AAD [.............G..]
D/001DC0: A5ADAFAC 679AADA5 ADA9A8EE A1AD608C [....g.........`.]
D/001DD0: 20AFB4B5 A1F2ACA3 F7A5AE60 8C20ACA5 [...........`....]
D/001DE0: A4EEB5B2 60AEB5B2 EEAFA3E5 B6A1B3E4 [....`...........]
D/001DF0: A1AFAC7A 7E9A2220 006003BF 6003BF1F [...z~."..`..`...]
D/001E00: 20B1E7E8 E8B54F85 DAB57785 DBB44E98 [......O...w...N.]
D/001E10: D576B009 B1DA20ED FDC84C0F EEA9FF85 [.v........L.....]
D/001E20: D560E8A9 00957895 A0B57738 F54F9550 [.`....x...w8.O.P]
D/001E30: 4C23E8FF 2015E7A5 CFD028A5 CE602034 [L#........(..`.4]
D/001E40: EEA4C8C9 30B021C0 28B01D4C 00F82034 [....0.!.(..L...4]
D/001E50: EE4C64F8 46F86020 B3F3C918 B00A8525 [.Ld.F.`........%]
D/001E60: 4C22FCA0 774CE0E3 A07BD0F9 2054E2A5 [L"..wL...{...T..]
D/001E70: DAD007A5 DBD0034C 7EE706CE 26CF26E6 [.......L~...&.&.]
D/001E80: 26E7A5E6 C5DAA5E7 E5DB900A 85E7A5E6 [&...............]
D/001E90: E5DA85E6 E6CE88D0 E160FFFF FFFFFFFF [.........`......]
D/001EA0: 2015E76C CE002034 EEC5C890 BB852C60 [...l...4......,`]
D/001EB0: 2034EEC9 30B0B1A4 C84C19F8 2034EEC5 [.4..0....L...4..]
D/001EC0: C890A585 2D602034 EEC928B0 9BA8A5C8 [....-`.4..(.....]
D/001ED0: 4C28F898 AAA06E20 C4E38AA8 20C4E3A0 [L(....n.........]
D/001EE0: 724C61F1 203FF206 CE26CF30 FAB0DCD0 [rLa..?...&.0....]
D/001EF0: 04C5CEB0 D6602015 E7B1CE94 9F4C08E7 [.....`.......L..]
D/001F00: 2034EEA5 CE85C860 2015E7A5 C891CE60 [.4.....`.......`]
D/001F10: 206CEEA5 CE85E6A5 CF85E74C 44E220E4 [.l.........LD...]
D/001F20: EE4C34E1 20E4EEB4 78B55069 FEB00188 [.L4.....x.Pi....]
D/001F30: 85DA84DB 1865CE95 509865CF 9578A000 [.....e..P.e..x..]
D/001F40: B550D1DA C8B578F1 DAB0804C 23E82015 [.P....x....L#...]
D/001F50: E7A54E20 08E7A54F D004C54E 6900297F [..N....O...Ni.).]
D/001F60: 854F95A0 A011A54F 0A186940 0A264E26 [.O.....O..i@.&N&]
D/001F70: 4F88D0F2 A5CE2008 E7A5CF95 A04C7AE2 [O............Lz.]
D/001F80: 2015E7A4 CEC44AA5 CFE54B90 1E844CA5 [......J...K...L.]
D/001F90: CF854D4C ADE52015 E7A4CEC4 4CA5CFE5 [..ML........L...]
D/001FA0: 4DB00884 4AA5CF85 4B90E84C CBEEFFFF [M...J...K..L....]
D/001FB0: FFFFFFFF FFFF2071 E14CBFEF 2003EEA9 [.......q.L......]
D/001FC0: FF85C8A9 808D0002 602036E7 E82036E7 [........`.6...6.]
D/001FD0: B55060A9 00854A85 4CA90885 4BA91085 [.P`...J.L...K...]
D/001FE0: 4D4CADE5 D578D001 184C02E1 20B7E54C [ML...x...L.....L]
D/001FF0: 36E820B7 E54C5BE8 E080D001 884C0CE0 [6....L[......L..]
D/002000: A00084A0 844A844C A908854B 854DE64D [.....J.L...K.M.M]
D/002010: B14C49FF 914CD14C D00849FF 914CD14C [.LI..L.L..I..L.L]
D/002020: F0EC4CAD E54C79F1 2032F04C BEE8A6E0 [..L..Ly..2.L....]
D/002030: A5E1AC00 C0C083D0 EC2C10C0 86508551 [.........,...P.Q]
D/002040: A5DC8578 A5DD8579 4CC3E8FF FF2015E7 [...x...yL.......]
D/002050: 86D8A2FE 38B5D095 E6B54EF5 D095DCE8 [....8.....N.....]
D/002060: D0F3904B CAB5CB95 E7F5DB95 E5E8F0F5 [...K............]
D/002070: 900AA5CC C5E4A5CD E5E59013 4C6BE3B1 [............Lk..]
D/002080: E691E4E6 E4D002E6 E5E6E6D0 02E6E7A5 [................]
D/002090: E6C54CA5 E7E54D90 E6A2FEB5 E6954EB5 [..L...M.......N.]
D/0020A0: CCF5DC95 CCE8D0F3 A6D860B1 4C91CEA5 [..........`.L...]
D/0020B0: CED002C6 CFC6CEA5 4CD002C6 4DC64CC5 [........L...M.L.]
D/0020C0: CAA54DE5 CB90E4B0 D02015E7 A4CEC0CA [..M.............]
D/0020D0: A5CFE5CB B0A6844A A5CF854B 4CB7E586 [.......J...KL...]
D/0020E0: D8201EF1 20FDFEA2 FF38B54D F5CF95DB [.........8.M....]
D/0020F0: E8F0F790 87A5CCC5 DAA5CDE5 DBB0D5A5 [................]
D/002100: CED004A5 CFF011A5 DA85CAA5 DB85CB20 [................]
D/002110: 2CF120FD FEA6D860 203AFF4C 15F1A0CE [,......`.:.L....]
D/002120: 843CC884 3EA00084 3D843F60 B5CA953C [.<..>...=.?`...<]
D/002130: B44C943E CA10F5A5 3ED002C6 3FC63E60 [.L.>....>...?.>`]
D/002140: 86D838A2 FFB54DF5 CB95CFE8 F0F7201E [..8...M.........]
D/002150: F120CDFE A201202C F1A91A20 CFFEA6D8 [.......,........]
D/002160: 6020C4E3 4C3AFFA5 FCD0034C A5E8C6FC [`...L:.....L....]
D/002170: 60A9FF85 A06046A0 6024A010 19A9A320 [`....`F.`$......]
D/002180: EDFDA001 B1DCAAC8 B1DC201B E5A9A04C [...............L]
D/002190: EDFDA5DC A4DD60C1 007FD1CC C7CFCEC5 [......`.........]
D/0021A0: 9A988D96 9593BFB2 32120FBC B0ACBE35 [........2......5]
D/0021B0: 0C613010 0BDDFBA0 0020C7E7 A9A04CED [.a0...........L.]
D/0021C0: FD000000 00000000 00A44AA5 4B48C4DA [..........J.KH..]
D/0021D0: E5DBB01C 6884D085 D1A0FFC8 B1D030FB [....h.........0.]
D/0021E0: C940F0F7 C8C8B1D0 4888B1D0 A868D0DD [.@......H....h..]
D/0021F0: 68A000B1 D030054A F008A9A4 20EDFDC8 [h....0.J........]
D/002200: D0F1A9BD 4CEDFD91 DAE8B59F F0304CD5 [....L........0L.]
D/002210: F3A03007 A5DCA4DD 207DF120 C9F1A6D8 [..0......}......]
D/002220: 4CB7F1E8 E8B59FF0 1F4CE0F3 3007A5DC [L........L..0...]
D/002230: A4DD207D F120C9F1 A6D84C09 F4E86020 [...}......L...`.]
D/002240: 15E7E6CE D002E6CF 60205BF2 D0152053 [........`.[....S]
D/002250: F2D01020 82E7206F E7500320 82E72059 [.......o.P.....Y]
D/002260: E756504C 36E720C9 EF154F10 0520C9EF [.VPL6.....O.....]
D/002270: 354F9550 10ED4CC9 EF2015E7 A4FBA5CE [5O.P..L.........]
D/002280: 995F01A5 CF4C66E9 99500188 3051B940 [._...Lf..P..0Q.@]
D/002290: 01D550D0 F6B95001 D578D0EF C6FBB941 [..P...P..x.....A]
D/0022A0: 01994001 B9510199 5001B9C1 0199C001 [..@..Q..P.......]
D/0022B0: B9D10199 D001B961 01996001 B9710199 [.......a..`..q..]
D/0022C0: 7001B981 01998001 B9910199 9001B9A1 [p...............]
D/0022D0: 0199A001 B9A10199 A001C8C4 FB90BF60 [...............`]
D/0022E0: E8A90048 B55038E9 0385CEB5 78E90085 [...H.P8.....x...]
D/0022F0: CF68A000 91CEE860 C985B003 4CC0E4A0 [.h.....`....L...]
D/002300: 024C48E4 E8A901D0 DAE8A578 85DCA579 [.LH........x...y]
D/002310: 85DDA550 A4514C75 E8A901D0 C6B550D5 [...P.QLu......P.]
D/002320: 7890034C 68EEA8B5 5185CEB5 7985CFB1 [x..Lh...Q...y...]
D/002330: CEA000E8 E82008E7 4C04F420 34EE86D8 [........L...4...]
D/002340: 2903AA20 1EFBA6D8 98A00020 08E794A0 [)...............]
D/002350: 602075FD 8A48BD00 02C983D0 034C03E0 [`.u..H.......L..]
D/002360: CA10F368 AA602080 E298AA20 54F38AA8 [...h.`......T...]
D/002370: 602015E7 A5CF1008 98CA2008 E794A060 [`..............`]
D/002380: 85D1A5CE 85D02015 E7A5CE85 D2A5CF85 [................]
D/002390: D3A90120 08E794A0 A5D0D004 C6D130DF [..............0.]
D/0023A0: C6D0A5D2 A0002008 E7A5D395 A02022E2 [..............".]
D/0023B0: 4C98F320 34EE1869 FF6020B1 E746D560 [L...4..i.`...F.`]
D/0023C0: 86D99A20 2EF04C83 E82034EE 86D82095 [......L...4.....]
D/0023D0: FEA6D860 FE24D910 E086D824 A04C12F2 [...`.$.....$.L..]
D/0023E0: 24D910D5 86D824A0 4C2CF2A0 004CFFE6 [$.....$.L,...L..]
D/0023F0: A8208EFD 9838E521 B0F68424 60000000 [.....8.!...$`...]
D/002400: FFFFFFFF 94A04C23 E8A000F0 0420EDFD [......L#........]
D/002410: C8B1DA30 F8A9FF85 D5602034 EE86D820 [...0.....`.4....]
D/002420: 8BFEA6D8 6018A202 B5F975F5 95F9CA10 [....`.....u.....]
D/002430: F76006F3 2037F424 F9100520 A4F4E6F3 [.`...7.$........]
D/002440: 38A20494 FBB5F7B4 F394F795 F3CAD0F3 [8...............]
D/002450: 60A98E85 F8A5F9C9 C0300CC6 F806FB26 [`........0.....&]
D/002460: FA26F9A5 F8D0EE60 20A4F420 7BF4A5F4 [.&.....`....{...]
D/002470: C5F8D0F7 2025F450 EA700590 C4A5F90A [.....%.P.p......]
D/002480: E6F8F075 A2FA76FF E8D0FB60 2032F465 [...u..v....`.2.e]
D/002490: F820E2F4 182084F4 90032025 F48810F5 [...........%....]
D/0024A0: 46F390BF 38A203A9 00F5F895 F8CAD0F7 [F...8...........]
D/0024B0: F0C52032 F4E5F820 E2F438A2 02B5F5F5 [...2......8.....]
D/0024C0: FC48CA10 F8A2FD68 900295F8 E8D0F826 [.H.....h.......&]
D/0024D0: FB26FA26 F906F726 F626F5B0 1C88D0DA [.&.&...&.&......]
D/0024E0: F0BE86FB 86FA86F9 B00D3004 686890B2 [..........0.hh..]
D/0024F0: 498085F8 A0176010 F74CF503 FFFFFFFF [I.....`..L......]
D/002500: E9814AD0 14A43FA6 3ED00188 CA8A18E5 [..J...?.>.......]
D/002510: 3A853E10 01C898E5 3BD06BA4 2FB93D00 [:.>.....;.k./.=.]
D/002520: 913A8810 F8201AFC 201AFC20 D0F82053 [.:.............S]
D/002530: F9843B85 3A4C95F5 20BEFFA4 3420A7FF [..;.:L......4...]
D/002540: 8434A017 88304BD9 CCFFD0F8 C015D0E8 [.4...0K.........]
D/002550: A531A000 C6342000 FE4C95F5 A53D208E [.1...4...L...=..]
D/002560: F8AABD00 FAC542D0 13BDC0F9 C543D00C [......B......C..]
D/002570: A544A42E C09DF088 C52EF09F C63DD0DC [.D...........=..]
D/002580: E644C635 F0D6A434 98AA204A F9A9DE20 [.D.5...4...J....]
D/002590: EDFD203A FFA9A185 332067FD 20C7FFAD [...:....3.g.....]
D/0025A0: 0002C9A0 F013C8C9 A4F09288 20A7FFC9 [................]
D/0025B0: 93D0D58A F0D22078 FEA90385 3D2034F6 [.......x....=.4.]
D/0025C0: 0AE9BEC9 C290C10A 0AA2040A 26422643 [............&B&C]
D/0025D0: CA10F8C6 3DF0F410 E4A20520 34F68434 [....=.......4..4]
D/0025E0: DDB4F9D0 132034F6 DDBAF9F0 0DBDBAF9 [......4.........]
D/0025F0: F007C9A4 F003A434 18882644 E003D00D [.......4..&D....]
D/002600: 20A7FFA5 3FF001E8 8635A203 88863DCA [....?....5....=.]
D/002610: 10C9A544 0A0A0535 C920B006 A635F002 [...D...5.....5..]
D/002620: 09808544 8434B900 02C9BBF0 04C98DD0 [...D.4..........]
D/002630: 804C5CF5 B90002C8 C9A0F0F8 60207DF4 [.L\.........`.}.]
D/002640: A5F81013 C98ED0F5 24F9100A A5FBF006 [........$.......]
D/002650: E6FAD002 E6F960A9 0085F985 FA60FFFF [......`......`..]
D/002660: FFFFFFFF FFFF4C92 F5845886 57855608 [......L...X.W.V.]
D/002670: 688559BA E8E8BD00 010A0A0A 0A60A458 [h.Y..........`.X]
D/002680: A657A559 48A55628 60204AFF 68851E68 [.W.YH.V(`.J.h..h]
D/002690: 851F2098 F64C92F6 E61ED002 E61FA9F7 [.....L..........]
D/0026A0: 48A000B1 1E290F0A AA4A511E F00B861D [H....)...JQ.....]
D/0026B0: 4A4A4AA8 B9E1F648 60E61ED0 02E61FBD [JJJ....H`.......]
D/0026C0: E4F648A5 1D4A6068 68203FFF 6C1E00B1 [..H..J`hh.?.l...]
D/0026D0: 1E950188 B11E9500 9838651E 851E9002 [.........8e.....]
D/0026E0: E61F6002 F9049D0D 9E25AF16 B247B951 [..`......%...G.Q]
D/0026F0: C02FC95B D285DD6E 0533E870 931EE765 [./.[...n.3.p...e]
D/002700: E7E7E710 CAB50085 00B50185 0160A500 [.............`..]
D/002710: 9500A501 950160A5 008100A0 00841DF6 [......`.........]
D/002720: 00D002F6 0160A100 8500A000 8401F0ED [.....`..........]
D/002730: A000F006 2066F7A1 00A82066 F7A10085 [.....f.....f....]
D/002740: 008401A0 00841D60 2026F7A1 0085014C [.......`.&.....L]
D/002750: 1FF72017 F7A50181 004C1FF7 2066F7A5 [.........L...f..]
D/002760: 0081004C 43F7B500 D002D601 D60060A0 [...LC.........`.]
D/002770: 0038A500 F5009900 00A501F5 01990100 [.8..............]
D/002780: 98690085 1D60A500 75008500 A5017501 [.i...`..u.....u.]
D/002790: A000F0E9 A51E2019 F7A51F20 19F718B0 [................]
D/0027A0: 0EB11E10 0188651E 851E9865 1F851F60 [......e....e...`]
D/0027B0: B0EC600A AAB50110 E8600AAA B50130E1 [..`......`....0.]
D/0027C0: 600AAAB5 001501F0 D8600AAA B5001501 [`........`......]
D/0027D0: D0CF600A AAB50035 0149FFF0 C4600AAA [..`....5.I...`..]
D/0027E0: B5003501 49FFD0B9 60A21820 66F7A100 [..5.I...`...f...]
D/0027F0: 851F2066 F7A10085 1E604CC7 F6F6FFFF [...f.....`L.....]
D/002800: 4A082047 F828A90F 900269E0 852EB126 [J..G.(....i....&]
D/002810: 4530252E 51269126 602000F8 C42CB011 [E0%.Q&.&`....,..]
D/002820: C8200EF8 90F66901 482000F8 68C52D90 [......i.H...h.-.]
D/002830: F560A02F D002A027 842DA027 A9008530 [.`./...'.-.'...0]
D/002840: 2028F888 10F66048 4A290309 04852768 [.(....`HJ)....'h]
D/002850: 29189002 697F8526 0A0A0526 852660A5 [)...i..&...&.&`.]
D/002860: 30186903 290F8530 0A0A0A0A 05308530 [0.i.)..0.....0.0]
D/002870: 604A0820 47F8B126 2890044A 4A4A4A29 [`J..G..&(..JJJJ)]
D/002880: 0F60A63A A43B2096 FD2048F9 A13AA84A [.`.:.;....H..:.J]
D/002890: 90096AB0 10C9A2F0 0C29874A AABD62F9 [..j......).J..b.]
D/0028A0: 2079F8D0 04A080A9 00AABDA6 F9852E29 [.y.............)]
D/0028B0: 03852F98 298FAA98 A003E08A F00B4A90 [../.).........J.]
D/0028C0: 084A4A09 2088D0FA C888D0F2 60FFFFFF [.JJ.........`...]
D/0028D0: 2082F848 B13A20DA FDA20120 4AF9C42F [...H.:......J../]
D/0028E0: C890F1A2 03C00490 F268A8B9 C0F9852C [.........h.....,]
D/0028F0: B900FA85 2DA900A0 05062D26 2C2A88D0 [....-.....-&,*..]
D/002900: F869BF20 EDFDCAD0 EC2048F9 A42FA206 [.i........H../..]
D/002910: E003F01C 062E900E BDB3F920 EDFDBDB9 [................]
D/002920: F9F00320 EDFDCAD0 E7608830 E720DAFD [.........`.0....]
D/002930: A52EC9E8 B13A90F2 2056F9AA E8D001C8 [.....:...V......]
D/002940: 9820DAFD 8A4CDAFD A203A9A0 20EDFDCA [.....L..........]
D/002950: D0F86038 A52FA43B AA100188 653A9001 [..`8./.;....e:..]
D/002960: C8600420 54300D80 04900322 54330D80 [.`..T0....."T3..]
D/002970: 04900420 54330D80 04900420 543B0D80 [....T3......T;..]
D/002980: 04900022 44330DC8 44001122 44330DC8 [..."D3..D.."D3..]
D/002990: 44A90122 44330D80 04900122 44330D80 [D.."D3....."D3..]
D/0029A0: 04902631 879A0021 81820000 594D9192 [..&1...!....YM..]
D/0029B0: 864A859D ACA9ACA3 A8A4D900 D8A4A400 [.J..............]
D/0029C0: 1C8A1C23 5D8B1BA1 9D8A1D23 9D8B1DA1 [...#]......#....]
D/0029D0: 002919AE 69A81923 24531B23 245319A1 [.)..i..#$S.#$S..]
D/0029E0: 001A5B5B A5692424 AEAEA8AD 29007C00 [..[[.i$$....).|.]
D/0029F0: 159C6D9C A5692953 84133411 A56923A0 [..m..i)S..4..i#.]
D/002A00: D8625A48 26629488 5444C854 6844E894 [.bZH&b..TD.ThD..]
D/002A10: 00B40884 74B4286E 74F4CC4A 72F2A48A [....t.(nt..Jr...]
D/002A20: 00AAA2A2 74747472 4468B232 B2002200 [....tttrDh.2..".]
D/002A30: 1A1A2626 727288C8 C4CA2648 4444A2C8 [..&&rr....&HDD..]
D/002A40: FFFFFF20 D0F86885 2C68852D A208BD10 [......h.,h.-....]
D/002A50: FB953CCA D0F8A13A F042A42F C920F059 [..<....:.B./...Y]
D/002A60: C960F045 C94CF05C C96CF059 C940F035 [.`.E.L.\.l.Y.@.5]
D/002A70: 291F4914 C904F002 B13A993C 008810F8 [).I......:.<....]
D/002A80: 203FFF4C 3C008545 68480A0A 0A30036C [.?.L<..EhH...0.l]
D/002A90: FE032820 4CFF6885 3A68853B 2082F820 [..(.L.h.:h.;....]
D/002AA0: DAFA4C65 FF186885 4868853A 68853BA5 [..Le..h.Hh.:h.;.]
D/002AB0: 2F2056F9 843B1890 14182054 F9AA9848 [/.V..;.....T...H]
D/002AC0: 8A48A002 18B13AAA 88B13A86 3B853AB0 [.H....:...:.;.:.]
D/002AD0: F3A52D48 A52C4820 8EFDA945 8540A900 [..-H.,H....E.@..]
D/002AE0: 8541A2FB A9A020ED FDBD1EFA 20EDFDA9 [.A..............]
D/002AF0: BD20EDFD B54A20DA FDE830E8 6018A001 [.....J....0.`...]
D/002B00: B13A2056 F9853A98 38B0A220 4AFF38B0 [.:.V..:.8...J.8.]
D/002B10: 9EEAEA4C 0BFB4CFD FAC1D8D9 D0D3AD70 [...L..L........p]
D/002B20: C0A000EA EABD64C0 1004C8D0 F88860A9 [......d.......`.]
D/002B30: 008548AD 56C0AD54 C0AD51C0 A900F00B [..H.V..T..Q.....]
D/002B40: AD50C0AD 53C02036 F8A91485 22A90085 [.P..S..6...."...]
D/002B50: 20A92885 21A91885 23A91785 254C22FC [..(.!...#...%L".]
D/002B60: 20A4FBA0 10A5504A 900C18A2 FEB55475 [......PJ......Tu]
D/002B70: 569554E8 D0F7A203 7650CA10 FB88D0E5 [V.T.....vP......]
D/002B80: 6020A4FB A0100650 26512652 265338A5 [`......P&Q&R&S8.]
D/002B90: 52E554AA A553E555 90068652 8553E650 [R.T..S.U...R.S.P]
D/002BA0: 88D0E360 A000842F A25420AF FBA250B5 [...`.../.T....P.]
D/002BB0: 01100D38 98F50095 0098F501 9501E62F [...8.........../]
D/002BC0: 60484A29 03090485 29682918 9002697F [`HJ)....)h)...i.]
D/002BD0: 85280A0A 05288528 60C987D0 12A94020 [.(...(.(`.....@.]
D/002BE0: A8FCA0C0 A90C20A8 FCAD30C0 88D0F560 [..........0....`]
D/002BF0: A4249128 E624A524 C521B066 60C9A0B0 [.$.(.$.$.!.f`...]
D/002C00: EFA810EC C98DF05A C98AF05A C988D0C9 [.......Z...Z....]
D/002C10: C62410E8 A5218524 C624A522 C525B00B [.$...!.$.$.".%..]
D/002C20: C625A525 20C1FB65 20852860 49C0F028 [.%.%...e..(`I..(]
D/002C30: 69FD90C0 F0DA69FD 902CF0DE 69FD905C [i.....i..,..i..\]
D/002C40: D0E9A424 A5254820 24FC209E FCA00068 [...$.%H.$......h]
D/002C50: 6900C523 90F0B0CA A5228525 A0008424 [i..#.....".%...$]
D/002C60: F0E4A900 8524E625 A525C523 90B6C625 [.....$.%.%.#...%]
D/002C70: A5224820 24FCA528 852AA529 852BA421 [."H.$..(.*.).+.!]
D/002C80: 88686901 C523B00D 482024FC B128912A [.hi..#..H.$..(.*]
D/002C90: 8810F930 E1A00020 9EFCB086 A424A9A0 [...0.........$..]
D/002CA0: 9128C8C4 2190F960 3848E901 D0FC68E9 [.(..!..`8H....h.]
D/002CB0: 01D0F660 E642D002 E643A53C C53EA53D [...`.B...C.<.>.=]
D/002CC0: E53FE63C D002E63D 60A04B20 DBFCD0F9 [.?.<...=`.K.....]
D/002CD0: 69FEB0F5 A02120DB FCC8C888 D0FD9005 [i....!..........]
D/002CE0: A03288D0 FDAC20C0 A02CCA60 A2084820 [.2.......,.`..H.]
D/002CF0: FAFC682A A03ACAD0 F56020FD FC88AD60 [..h*.:...`.....`]
D/002D00: C0452F10 F8452F85 2FC08060 A424B128 [.E/..E/./..`.$.(]
D/002D10: 48293F09 40912868 6C3800E6 4ED002E6 [H)?.@.(hl8..N...]
D/002D20: 4F2C00C0 10F59128 AD00C02C 10C06020 [O,.....(...,..`.]
D/002D30: 0CFD202C FC200CFD C99BF0F3 60A53248 [...,........`.2H]
D/002D40: A9FF8532 BD000220 EDFD6885 32BD0002 [...2......h.2...]
D/002D50: C988F01D C998F00A E0F89003 203AFFE8 [.............:..]
D/002D60: D013A9DC 20EDFD20 8EFDA533 20EDFDA2 [...........3....]
D/002D70: 018AF0F3 CA2035FD C995D002 B128C9E0 [......5......(..]
D/002D80: 900229DF 9D0002C9 8DD0B220 9CFCA98D [..).............]
D/002D90: D05BA43D A63C208E FD2040F9 A000A9AD [.[.=.<....@.....]
D/002DA0: 4CEDFDA5 3C090785 3EA53D85 3FA53C29 [L...<...>.=.?.<)]
D/002DB0: 07D00320 92FDA9A0 20EDFDB1 3C20DAFD [............<...]
D/002DC0: 20BAFC90 E8604A90 EA4A4AA5 3E900249 [.....`J..JJ.>..I]
D/002DD0: FF653C48 A9BD20ED FD68484A 4A4A4A20 [.e<H.....hHJJJJ.]
D/002DE0: E5FD6829 0F09B0C9 BA900269 066C3600 [..h).......i.l6.]
D/002DF0: C9A09002 25328435 4820FDFB 68A43560 [....%2.5H...h.5`]
D/002E00: C634F09F CAD016C9 BAD0BB85 31A53E91 [.4..........1.>.]
D/002E10: 40E640D0 02E64160 A434B9FF 01853160 [@.@...A`.4....1`]
D/002E20: A201B53E 95429544 CA10F760 B13C9142 [...>.B.D...`.<.B]
D/002E30: 20B4FC90 F760B13C D142F01C 2092FDB1 [.....`.<.B......]
D/002E40: 3C20DAFD A9A020ED FDA9A820 EDFDB142 [<..............B]
D/002E50: 20DAFDA9 A920EDFD 20B4FC90 D9602075 [.............`.u]
D/002E60: FEA91448 20D0F820 53F9853A 843B6838 [...H....S..:.;h8]
D/002E70: E901D0EF 608AF007 B53C953A CA10F960 [....`....<.:...`]
D/002E80: A03FD002 A0FF8432 60A90085 3EA238A0 [.?.....2`...>.8.]
D/002E90: 1BD008A9 00853EA2 36A0F0A5 3E290FF0 [......>.6...>)..]
D/002EA0: 0609C0A0 00F002A9 FD940095 0160EAEA [.............`..]
D/002EB0: 4C00E04C 03E02075 FE203FFF 6C3A004C [L..L...u..?.l:.L]
D/002EC0: D7FAC634 2075FE4C 43FA4CF8 03A94020 [...4.u.LC.L...@.]
D/002ED0: C9FCA027 A200413C 48A13C20 EDFE20BA [...'..A<H.<.....]
D/002EE0: FCA01D68 90EEA022 20EDFEF0 4DA2100A [...h..."....M...]
D/002EF0: 20D6FCD0 FA602000 FE6868D0 6C20FAFC [.....`...hh.l...]
D/002F00: A91620C9 FC852E20 FAFCA024 20FDFCB0 [...........$....]
D/002F10: F920FDFC A03B20EC FC813C45 2E852E20 [.....;....<E....]
D/002F20: BAFCA035 90F020EC FCC52EF0 0DA9C520 [...5............]
D/002F30: EDFDA9D2 20EDFD20 EDFDA987 4CEDFDA5 [............L...]
D/002F40: 4848A545 A646A447 28608545 86468447 [HH.E.F.G(`.E.F.G]
D/002F50: 08688548 BA8649D8 602084FE 202FFB20 [.h.H..I.`..../..]
D/002F60: 93FE2089 FED8203A FFA9AA85 332067FD [.......:....3.g.]
D/002F70: 20C7FF20 A7FF8434 A0178830 E8D9CCFF [.......4...0....]
D/002F80: D0F820BE FFA4344C 73FFA203 0A0A0A0A [......4Ls.......]
D/002F90: 0A263E26 3FCA10F8 A531D006 B53F953D [.&>&?....1...?.=]
D/002FA0: 9541E8F0 F3D006A2 00863E86 3FB90002 [.A........>.?...]
D/002FB0: C849B0C9 0A90D369 88C9FAB0 CD60A9FE [.I.....i.....`..]
D/002FC0: 48B9E3FF 48A531A0 00843160 BCB2BEED [H...H.1...1`....]
D/002FD0: EFC4ECA9 BBA6A406 95070205 F000EB93 [................]
D/002FE0: A7C699B2 C9BEC135 8CC396AF 17172B1F [.......5......+.]
D/002FF0: 837F5DCC B5FC1717 F503FB03 59FF86FA [..].........Y...]
Brought to you by:
dtcdumpfile 1.0.0 (Apple Macintosh File Hex Dumper) Sunday, July 6, 1997
+------------------------------------------------------------------------
| TOPIC -- Apple II -- Memory map of the Apple II ROMs
+------------------------------------------------------------------------
Memory map of the Apple II ROMs
* $F800-$FFFF
Monitor. Handles screen I/O and keyboard input. Also has a disassembler, memory
dump, memory move, memory compare, step and trace functions, lo-res graphics
routines, multiply and divide routines, and more. This monitor has the cleanest
code of all the Apple II monitors. Every one after this had to patch the monitor
to add functions while still remaining (mostly) compatible. Complete source code
is in the manual.
$F689-F7FC
Sweet-16 interpreter. Sweet-16 code has been benchmarked to be about half the size
of pure 6502 code but 5-8 times slower. The renumber routine in the Programmer's
Aid #1 is written in Sweet-16, where small size was much more important than
speed. Complete source code is in the manual.
$F500-F63C and $F666-F668
Mini-assembler. This lets you type in assembly code, one line at a time, and it
will assemble the proper bytes. No labels or equates are supported--it is a MINI
assembler. Complete source code is in the manual.
$F425-F4FB and $F63D-F65D
Floating point routines. Woz's first plans for his 6502 BASIC included floating
point, but he abandoned them when he realized he could finish faster by going
integer only. He put these routines in the ROMs but they are not called from
anywhere. Complete source code is in the manual.
$E000-F424
Integer BASIC by Woz (Steve Wozniak, creator of the Apple II). "That BASIC, which
we shipped with the first Apple II's, was never assembled--ever. There was one
handwritten copy, all handwritten, all hand assembled." Woz, October 1984.
$D800-DFFF
Empty ROM socket. There was at least one third party ROM add-on.
$D000-D7FF
Programmer's Aid #1--missing from the original Apple II, this is a ROM add-on
Apple sold that contains Integer BASIC utilities such as high-resolution graphics
support, renumber, append, tape verify, music, and a RAM test. Complete source
code is in the manual.
+------------------------------------------------------------------------
| TOPIC -- Apple II -- Summary of Monitor Commands
+------------------------------------------------------------------------
Summary of Apple II Monitor Commands
Examining Memory.
* {adrs}
Examines the value contained in one location.
* {adrs1}.{adrs2}
Displays the values contained in all locations between {adrs1} and {adrs2}.
* [RETURN]
Displays the values in up to eight locations following the last opened location.
Changing the Contents of Memory.
* {adrs}:{val} {val} ...
Stores the values in consecutive memory locations starting at {adrs}.
* :{val} {val}
Stores values in memory starting at the next changeable location.
Moving and Comparing.
* {dest}<{start}.{end}M
Copies the values in the range {start}.{end} into the range beginning at {dest}.
(M=move)
* {dest}<{start}.{end}V
Compares the values in the range {start}.{end} to those in the range beginning at
{dest}. (V=verify)
Saving and Loading via Cassette Tape.
* {start}.{end}W
Writes the values in the memory range {start}.{end} onto tape, preceded by a ten-
second leader.
* {start}.{end}R
Reads values from tape, storing them in memory beginning at {start} and stopping
at {end}. Prints "ERR" if an error occurs.
Running and Listing Programs.
* {adrs}G
Transfers control to the machine language program beginning at {adrs}. (G=go)
* {adrs}L
Disassembles and displays 20 instructions, starting at {adrs}. Subsequent L's will
display 20 more instructions each. (L=list)
Miscellaneous.
* {adrs}S
Disassemble, display, and execute the instruction at {adrs}, and display the
contents of the 6502's internal registers. Subsequent S's will display and execute
successive instructions. (S=step)
* {adrs}T
Step infinitely. The TRACE command stops only when it executes a BRK instruction
or when you press RESET. (T=trace)
* Contrl-E
Displays the contents of the 6502's registers. (E=examine)
* I
Set Inverse display mode.
* N
Set Normal display mode. Also useful as a delimiter for putting multiple commands
on one line.
* Control-B
Enter the language currently installed in the Apple's ROM (cold start at $E000).
* Control-C
Reenter the language currently installed in the Apple's ROM (warm start at $E003).
* {val1}+{val2}
Add the two values and print the result.
* {val2}-{val1}
Subtract the second value from the first and print the result.
* {slot} Control-P
Divert output to the device whose interface card in in slot number {slot}. If
{slot}=0, then route output to the Apple's screen.
* {slot} Control-K
Accept input from the device whose interface card is in slot number {slot}. If
{slot}=0, then accept input from the Apple's keyboard.
* Control-Y
Jump to the machine language subroutine at location $03F8. This lets you add your
own commands to the Monitor.
The Mini-Assembler.
* F666G
Invoke the Mini-Assembler.
* ${command}
Execute a Monitor command from the Mini-Assembler.
* FF69G
Leave the Mini-Assembler.
+------------------------------------------------------------------------
| TOPIC -- Apple II -- Red Book Monitor listing
+------------------------------------------------------------------------
1 ***************************
2 * *
3 * APPLE II *
4 * SYSTEM MONITOR *
5 * *
6 * COPYRIGHT 1977 BY *
7 * APPLE COMPUTER, INC. *
8 * *
9 * ALL RIGHTS RESERVED *
10 * *
11 * S. WOZNIAK *
12 * A. BAUM *
13 * *
14 ***************************
15 ; TITLE "APPLE II SYSTEM MONITOR"
16 LOC0 EQU $00
17 LOC1 EQU $01
18 WNDLFT EQU $20
19 WNDWDTH EQU $21
20 WNDTOP EQU $22
21 WNDBTM EQU $23
22 CH EQU $24
23 CV EQU $25
24 GBASL EQU $26
25 GBASH EQU $27
26 BASL EQU $28
27 BASH EQU $29
28 BAS2L EQU $2A
29 BAS2H EQU $2B
30 H2 EQU $2C
31 LMNEM EQU $2C
32 RTNL EQU $2C
33 V2 EQU $2D
34 RMNEM EQU $2D
35 RTNH EQU $2D
36 MASK EQU $2E
37 CHKSUM EQU $2E
38 FORMAT EQU $2E
39 LASTIN EQU $2F
40 LENGTH EQU $2F
41 SIGN EQU $2F
42 COLOR EQU $30
43 MODE EQU $31
44 INVFLG EQU $32
45 PROMPT EQU $33
46 YSAV EQU $34
47 YSAV1 EQU $35
48 CSWL EQU $36
49 CSWH EQU $37
50 KSWL EQU $38
51 KSWH EQU $39
52 PCL EQU $3A
53 PCH EQU $3B
54 XQT EQU $3C
55 A1L EQU $3C
56 A1H EQU $3D
57 A2L EQU $3E
58 A2H EQU $3F
59 A3L EQU $40
60 A3H EQU $41
61 A4L EQU $42
62 A4H EQU $43
63 A5L EQU $44
64 A5H EQU $45
65 ACC EQU $45
66 XREG EQU $46
67 YREG EQU $47
68 STATUS EQU $48
69 SPNT EQU $49
70 RNDL EQU $4E
71 RNDH EQU $4F
72 ACL EQU $50
73 ACH EQU $51
74 XTNDL EQU $52
75 XTNDH EQU $53
76 AUXL EQU $54
77 AUXH EQU $55
78 PICK EQU $95
79 IN EQU $0200
80 USRADR EQU $03F8
81 NMI EQU $03FB
82 IRQLOC EQU $03FE
83 IOADR EQU $C000
84 KBD EQU $C000
85 KBDSTRB EQU $C010
86 TAPEOUT EQU $C020
87 SPKR EQU $C030
88 TXTCLR EQU $C050
89 TXTSET EQU $C051
90 MIXCLR EQU $C052
91 MIXSET EQU $C053
92 LOWSCR EQU $C054
93 HISCR EQU $C055
94 LORES EQU $C056
95 HIRES EQU $C057
96 TAPEIN EQU $C060
97 PADDL0 EQU $C064
98 PTRIG EQU $C070
99 BASIC EQU $E000
100 BASIC2 EQU $E003
101 ORG $F800 ;ROM START ADDRESS
F800: 4A 102 PLOT LSR ;Y-COORD/2
F801: 08 103 PHP ;SAVE LSB IN CARRY
F802: 20 47 F8 104 JSR GBASCALC ;CALC BASE ADR IN GBASL,H
F805: 28 105 PLP ;RESTORE LSB FROM CARRY
F806: A9 0F 106 LDA #$0F ;MASK $0F IF EVEN
F808: 90 02 107 BCC RTMASK
F80A: 69 E0 108 ADC #$E0 ;MASK $F0 IF ODD
F80C: 85 2E 109 RTMASK STA MASK
F80E: B1 26 110 PLOT1 LDA (GBASL),Y ;DATA
F810: 45 30 111 EOR COLOR ; EOR COLOR
F812: 25 2E 112 AND MASK ; AND MASK
F814: 51 26 113 EOR (GBASL),Y ; EOR DATA
F816: 91 26 114 STA (GBASL),Y ; TO DATA
F818: 60 115 RTS
F819: 20 00 F8 116 HLINE JSR PLOT ;PLOT SQUARE
F81C: C4 2C 117 HLINE1 CPY H2 ;DONE?
F81E: B0 11 118 BCS RTS1 ; YES, RETURN
F820: C8 119 INY ; NO, INC INDEX (X-COORD)
F821: 20 0E F8 120 JSR PLOT1 ;PLOT NEXT SQUARE
F824: 90 F6 121 BCC HLINE1 ;ALWAYS TAKEN
F826: 69 01 122 VLINEZ ADC #$01 ;NEXT Y-COORD
F828: 48 123 VLINE PHA ; SAVE ON STACK
F829: 20 00 F8 124 JSR PLOT ; PLOT SQUARE
F82C: 68 125 PLA
F82D: C5 2D 126 CMP V2 ;DONE?
F82F: 90 F5 127 BCC VLINEZ ; NO, LOOP
F831: 60 128 RTS1 RTS
F832: A0 2F 129 CLRSCR LDY #$2F ;MAX Y, FULL SCRN CLR
F834: D0 02 130 BNE CLRSC2 ;ALWAYS TAKEN
F836: A0 27 131 CLRTOP LDY #$27 ;MAX Y, TOP SCREEN CLR
F838: 84 2D 132 CLRSC2 STY V2 ;STORE AS BOTTOM COORD
133 ; FOR VLINE CALLS
F83A: A0 27 134 LDY #$27 ;RIGHTMOST X-COORD (COLUMN)
F83C: A9 00 135 CLRSC3 LDA #$00 ;TOP COORD FOR VLINE CALLS
F83E: 85 30 136 STA COLOR ;CLEAR COLOR (BLACK)
F840: 20 28 F8 137 JSR VLINE ;DRAW VLINE
F843: 88 138 DEY ;NEXT LEFTMOST X-COORD
F844: 10 F6 139 BPL CLRSC3 ;LOOP UNTIL DONE
F846: 60 140 RTS
F847: 48 141 GBASCALC PHA ;FOR INPUT 000DEFGH
F848: 4A 142 LSR
F849: 29 03 143 AND #$03
F84B: 09 04 144 ORA #$04 ; GENERATE GBASH=000001FG
F84D: 85 27 145 STA GBASH
F84F: 68 146 PLA ; AND GBASL=HDEDE000
F850: 29 18 147 AND #$18
F852: 90 02 148 BCC GBCALC
F854: 69 7F 149 ADC #$7F
F856: 85 26 150 GBCALC STA GBASL
F858: 0A 151 ASL
F859: 0A 152 ASL
F85A: 05 26 153 ORA GBASL
F85C: 85 26 154 STA GBASL
F85E: 60 155 RTS
F85F: A5 30 156 NXTCOL LDA COLOR ;INCREMENT COLOR BY 3
F861: 18 157 CLC
F862: 69 03 158 ADC #$03
F864: 29 0F 159 SETCOL AND #$0F ;SETS COLOR=17*A MOD 16
F866: 85 30 160 STA COLOR
F868: 0A 161 ASL ;BOTH HALF BYTES OF COLOR EQUAL
F869: 0A 162 ASL
F86A: 0A 163 ASL
F86B: 0A 164 ASL
F86C: 05 30 165 ORA COLOR
F86E: 85 30 166 STA COLOR
F870: 60 167 RTS
F871: 4A 168 SCRN LSR ;READ SCREEN Y-COORD/2
F872: 08 169 PHP ;SAVE LSB (CARRY)
F873: 20 47 F8 170 JSR GBASCALC ;CALC BASE ADDRESS
F876: B1 26 171 LDA (GBASL),Y ;GET BYTE
F878: 28 172 PLP ;RESTORE LSB FROM CARRY
F879: 90 04 173 SCRN2 BCC RTMSKZ ;IF EVEN, USE LO H
F87B: 4A 174 LSR
F87C: 4A 175 LSR
F87D: 4A 176 LSR ;SHIFT HIGH HALF BYTE DOWN
F87E: 4A 177 LSR
F87F: 29 0F 178 RTMSKZ AND #$0F ;MASK 4-BITS
F881: 60 179 RTS
F882: A6 3A 180 INSDS1 LDX PCL ;PRINT PCL,H
F884: A4 3B 181 LDY PCH
F886: 20 96 FD 182 JSR PRYX2
F889: 20 48 F9 183 JSR PRBLNK ;FOLLOWED BY A BLANK
F88C: A1 3A 184 LDA (PCL,X) ;GET OP CODE
F88E: A8 185 INSDS2 TAY
F88F: 4A 186 LSR ;EVEN/ODD TEST
F890: 90 09 187 BCC IEVEN
F892: 6A 188 ROR ;BIT 1 TEST
F893: B0 10 189 BCS ERR ;XXXXXX11 INVALID OP
F895: C9 A2 190 CMP #$A2
F897: F0 0C 191 BEQ ERR ;OPCODE $89 INVALID
F899: 29 87 192 AND #$87 ;MASK BITS
F89B: 4A 193 IEVEN LSR ;LSB INTO CARRY FOR L/R TEST
F89C: AA 194 TAX
F89D: BD 62 F9 195 LDA FMT1,X ;GET FORMAT INDEX BYTE
F8A0: 20 79 F8 196 JSR SCRN2 ;R/L H-BYTE ON CARRY
F8A3: D0 04 197 BNE GETFMT
F8A5: A0 80 198 ERR LDY #$80 ;SUBSTITUTE $80 FOR INVALID OPS
F8A7: A9 00 199 LDA #$00 ;SET PRINT FORMAT INDEX TO 0
F8A9: AA 200 GETFMT TAX
F8AA: BD A6 F9 201 LDA FMT2,X ;INDEX INTO PRINT FORMAT TABLE
F8AD: 85 2E 202 STA FORMAT ;SAVE FOR ADR FIELD FORMATTING
F8AF: 29 03 203 AND #$03 ;MASK FOR 2-BIT LENGTH
204 ; (P=1 BYTE, 1=2 BYTE, 2=3 BYTE)
F8B1: 85 2F 205 STA LENGTH
F8B3: 98 206 TYA ;OPCODE
F8B4: 29 8F 207 AND #$8F ;MASK FOR 1XXX1010 TEST
F8B6: AA 208 TAX ; SAVE IT
F8B7: 98 209 TYA ;OPCODE TO A AGAIN
F8B8: A0 03 210 LDY #$03
F8BA: E0 8A 211 CPX #$8A
F8BC: F0 0B 212 BEQ MNNDX3
F8BE: 4A 213 MNNDX1 LSR
F8BF: 90 08 214 BCC MNNDX3 ;FORM INDEX INTO MNEMONIC TABLE
F8C1: 4A 215 LSR
F8C2: 4A 216 MNNDX2 LSR ;1) 1XXX1010->00101XXX
F8C3: 09 20 217 ORA #$20 ;2) XXXYYY01->00111XXX
F8C5: 88 218 DEY ;3) XXXYYY10->00110XXX
F8C6: D0 FA 219 BNE MNNDX2 ;4) XXXYY100->00100XXX
F8C8: C8 220 INY ;5) XXXXX000->000XXXXX
F8C9: 88 221 MNNDX3 DEY
F8CA: D0 F2 222 BNE MNNDX1
F8CC: 60 223 RTS
F8CD: FF FF FF 224 DFB $FF,$FF,$FF
F8D0: 20 82 F8 225 INSTDSP JSR INSDS1 ;GEN FMT, LEN BYTES
F8D3: 48 226 PHA ;SAVE MNEMONIC TABLE INDEX
F8D4: B1 3A 227 PRNTOP LDA (PCL),Y
F8D6: 20 DA FD 228 JSR PRBYTE
F8D9: A2 01 229 LDX #$01 ;PRINT 2 BLANKS
F8DB: 20 4A F9 230 PRNTBL JSR PRBL2
F8DE: C4 2F 231 CPY LENGTH ;PRINT INST (1-3 BYTES)
F8E0: C8 232 INY ;IN A 12 CHR FIELD
F8E1: 90 F1 233 BCC PRNTOP
F8E3: A2 03 234 LDX #$03 ;CHAR COUNT FOR MNEMONIC PRINT
F8E5: C0 04 235 CPY #$04
F8E7: 90 F2 236 BCC PRNTBL
F8E9: 68 237 PLA ;RECOVER MNEMONIC INDEX
F8EA: A8 238 TAY
F8EB: B9 C0 F9 239 LDA MNEML,Y
F8EE: 85 2C 240 STA LMNEM ;FETCH 3-CHAR MNEMONIC
F8F0: B9 00 FA 241 LDA MNEMR,Y ; (PACKED IN 2-BYTES)
F8F3: 85 2D 242 STA RMNEM
F8F5: A9 00 243 PRMN1 LDA #$00
F8F7: A0 05 244 LDY #$05
F8F9: 06 2D 245 PRMN2 ASL RMNEM ;SHIFT 5 BITS OF
F8FB: 26 2C 246 ROL LMNEM ; CHARACTER INTO A
F8FD: 2A 247 ROL ; (CLEARS CARRY)
F8FE: 88 248 DEY
F8FF: D0 F8 249 BNE PRMN2
F901: 69 BF 250 ADC #$BF ;ADD "?" OFFSET
F903: 20 ED FD 251 JSR COUT ;OUTPUT A CHAR OF MNEM
F906: CA 252 DEX
F907: D0 EC 253 BNE PRMN1
F909: 20 48 F9 254 JSR PRBLNK ;OUTPUT 3 BLANKS
F90C: A4 2F 255 LDY LENGTH
F90E: A2 06 256 LDX #$06 ;CNT FOR 6 FORMAT BITS
F910: E0 03 257 PRADR1 CPX #$03
F912: F0 1C 258 BEQ PRADR5 ;IF X=3 THEN ADDR.
F914: 06 2E 259 PRADR2 ASL FORMAT
F916: 90 0E 260 BCC PRADR3
F918: BD B3 F9 261 LDA CHAR1-1,X
F91B: 20 ED FD 262 JSR COUT
F91E: BD B9 F9 263 LDA CHAR2-1,X
F921: F0 03 264 BEQ PRADR3
F923: 20 ED FD 265 JSR COUT
F926: CA 266 PRADR3 DEX
F927: D0 E7 267 BNE PRADR1
F929: 60 268 RTS
F92A: 88 269 PRADR4 DEY
F92B: 30 E7 270 BMI PRADR2
F92D: 20 DA FD 271 JSR PRBYTE
F930: A5 2E 272 PRADR5 LDA FORMAT
F932: C9 E8 273 CMP #$E8 ;HANDLE REL ADR MODE
F934: B1 3A 274 LDA (PCL),Y ;SPECIAL (PRINT TARGET,
F936: 90 F2 275 BCC PRADR4 ; NOT OFFSET)
F938: 20 56 F9 276 RELADR JSR PCADJ3
F93B: AA 277 TAX ;PCL,PCH+OFFSET+1 TO A,Y
F93C: E8 278 INX
F93D: D0 01 279 BNE PRNTYX ;+1 TO Y,X
F93F: C8 280 INY
F940: 98 281 PRNTYX TYA
F941: 20 DA FD 282 PRNTAX JSR PRBYTE ;OUTPUT TARGET ADR
F944: 8A 283 PRNTX TXA ; OF BRANCH AND RETURN
F945: 4C DA FD 284 JMP PRBYTE
F948: A2 03 285 PRBLNK LDX #$03 ;BLANK COUNT
F94A: A9 A0 286 PRBL2 LDA #$A0 ;LOAD A SPACE
F94C: 20 ED FD 287 PRBL3 JSR COUT ;OUTPUT A BLANK
F94F: CA 288 DEX
F950: D0 F8 289 BNE PRBL2 ;LOOP UNTIL COUNT=0
F952: 60 290 RTS
F953: 38 291 PCADJ SEC ;0=1-BYTE, 1=2-BYTE
F954: A5 2F 292 PCADJ2 LDA LENGTH ; 2=3-BYTE
F956: A4 3B 293 PCADJ3 LDY PCH
F958: AA 294 TAX ;TEST DISPLACEMENT SIGN
F959: 10 01 295 BPL PCADJ4 ; (FOR REL BRANCH)
F95B: 88 296 DEY ;EXTEND NEG BY DEC PCH
F95C: 65 3A 297 PCADJ4 ADC PCL
F95E: 90 01 298 BCC RTS2 ;PCL+LENGTH(OR DISPL)+1 TO A
F960: C8 299 INY ; CARRY INTO Y (PCH)
F961: 60 300 RTS2 RTS
301 * FMT1 BYTES: XXXXXXY0 INSTRS
302 * IF Y=0 THEN LEFT HALF BYTE
303 * IF Y=1 THEN RIGHT HALF BYTE
304 * (X=INDEX)
F962: 04 20 54 305 FMT1 DFB $04,$20,$54,$30,$0D
F965: 30 0D
F967: 80 04 90 306 DFB $80,$04,$90,$03,$22
F96A: 03 22
F96C: 54 33 0D 307 DFB $54,$33,$0D,$80,$04
F96F: 80 04
F971: 90 04 20 308 DFB $90,$04,$20,$54,$33
F974: 54 33
F976: 0D 80 04 309 DFB $0D,$80,$04,$90,$04
F979: 90 04
F97B: 20 54 3B 310 DFB $20,$54,$3B,$0D,$80
F97E: 0D 80
F980: 04 90 00 311 DFB $04,$90,$00,$22,$44
F983: 22 44
F985: 33 0D C8 312 DFB $33,$0D,$C8,$44,$00
F988: 44 00
F98A: 11 22 44 313 DFB $11,$22,$44,$33,$0D
F98D: 33 0D
F98F: C8 44 A9 314 DFB $C8,$44,$A9,$01,$22
F992: 01 22
F994: 44 33 0D 315 DFB $44,$33,$0D,$80,$04
F997: 80 04
F999: 90 01 22 316 DFB $90,$01,$22,$44,$33
F99C: 44 33
F99E: 0D 80 04 317 DFB $0D,$80,$04,$90
F9A1: 90
F9A2: 26 31 87 318 DFB $26,$31,$87,$9A ;$ZZXXXY01 INSTR'S
F9A5: 9A
F9A6: 00 319 FMT2 DFB $00 ;ERR
F9A7: 21 320 DFB $21 ;IMM
F9A8: 81 321 DFB $81 ;Z-PAGE
F9A9: 82 322 DFB $82 ;ABS
F9AA: 00 323 DFB $00 ;IMPLIED
F9AB: 00 324 DFB $00 ;ACCUMULATOR
F9AC: 59 325 DFB $59 ;(ZPAG,X)
F9AD: 4D 326 DFB $4D ;(ZPAG),Y
F9AE: 91 327 DFB $91 ;ZPAG,X
F9AF: 92 328 DFB $92 ;ABS,X
F9B0: 86 329 DFB $86 ;ABS,Y
F9B1: 4A 330 DFB $4A ;(ABS)
F9B2: 85 331 DFB $85 ;ZPAG,Y
F9B3: 9D 332 DFB $9D ;RELATIVE
F9B4: AC A9 AC 333 CHAR1 ASC ",),#($"
F9B7: A3 A8 A4
F9BA: D9 00 D8 334 CHAR2 DFB $D9,$00,$D8,$A4,$A4,$00
F9BD: A4 A4 00
335 *CHAR2: "Y",0,"X$$",0
336 * MNEML IS OF FORM:
337 * (A) XXXXX000
338 * (B) XXXYY100
339 * (C) 1XXX1010
340 * (D) XXXYYY10
341 * (E) XXXYYY01
342 * (X=INDEX)
F9C0: 1C 8A 1C 343 MNEML DFB $1C,$8A,$1C,$23,$5D,$8B
F9C3: 23 5D 8B
F9C6: 1B A1 9D 344 DFB $1B,$A1,$9D,$8A,$1D,$23
F9C9: 8A 1D 23
F9CC: 9D 8B 1D 345 DFB $9D,$8B,$1D,$A1,$00,$29
F9CF: A1 00 29
F9D2: 19 AE 69 346 DFB $19,$AE,$69,$A8,$19,$23
F9D5: A8 19 23
F9D8: 24 53 1B 347 DFB $24,$53,$1B,$23,$24,$53
F9DB: 23 24 53
F9DE: 19 A1 348 DFB $19,$A1 ;(A) FORMAT ABOVE
F9E0: 00 1A 5B 349 DFB $00,$1A,$5B,$5B,$A5,$69
F9E3: 5B A5 69
F9E6: 24 24 350 DFB $24,$24 ;(B) FORMAT
F9E8: AE AE A8 351 DFB $AE,$AE,$A8,$AD,$29,$00
F9EB: AD 29 00
F9EE: 7C 00 352 DFB $7C,$00 ;(C) FORMAT
F9F0: 15 9C 6D 353 DFB $15,$9C,$6D,$9C,$A5,$69
F9F3: 9C A5 69
F9F6: 29 53 354 DFB $29,$53 ;(D) FORMAT
F9F8: 84 13 34 355 DFB $84,$13,$34,$11,$A5,$69
F9FB: 11 A5 69
F9FE: 23 A0 356 DFB $23,$A0 ;(E) FORMAT
FA00: D8 62 5A 357 MNEMR DFB $D8,$62,$5A,$48,$26,$62
FA03: 48 26 62
FA06: 94 88 54 358 DFB $94,$88,$54,$44,$C8,$54
FA09: 44 C8 54
FA0C: 68 44 E8 359 DFB $68,$44,$E8,$94,$00,$B4
FA0F: 94 00 B4
FA12: 08 84 74 360 DFB $08,$84,$74,$B4,$28,$6E
FA15: B4 28 6E
FA18: 74 F4 CC 361 DFB $74,$F4,$CC,$4A,$72,$F2
FA1B: 4A 72 F2
FA1E: A4 8A 362 DFB $A4,$8A ;(A) FORMAT
FA20: 00 AA A2 363 DFB $00,$AA,$A2,$A2,$74,$74
FA23: A2 74 74
FA26: 74 72 364 DFB $74,$72 ;(B) FORMAT
FA28: 44 68 B2 365 DFB $44,$68,$B2,$32,$B2,$00
FA2B: 32 B2 00
FA2E: 22 00 366 DFB $22,$00 ;(C) FORMAT
FA30: 1A 1A 26 367 DFB $1A,$1A,$26,$26,$72,$72
FA33: 26 72 72
FA36: 88 C8 368 DFB $88,$C8 ;(D) FORMAT
FA38: C4 CA 26 369 DFB $C4,$CA,$26,$48,$44,$44
FA3B: 48 44 44
FA3E: A2 C8 370 DFB $A2,$C8 ;(E) FORMAT
FA40: FF FF FF 371 DFB $FF,$FF,$FF
FA43: 20 D0 F8 372 STEP JSR INSTDSP ;DISASSEMBLE ONE INST
FA46: 68 373 PLA ; AT (PCL,H)
FA47: 85 2C 374 STA RTNL ;ADJUST TO USER
FA49: 68 375 PLA ; STACK. SAVE
FA4A: 85 2D 376 STA RTNH ; RTN ADR.
FA4C: A2 08 377 LDX #$08
FA4E: BD 10 FB 378 XQINIT LDA INITBL-1,X ;INIT XEQ AREA
FA51: 95 3C 379 STA XQT,X
FA53: CA 380 DEX
FA54: D0 F8 381 BNE XQINIT
FA56: A1 3A 382 LDA (PCL,X) ;USER OPCODE BYTE
FA58: F0 42 383 BEQ XBRK ;SPECIAL IF BREAK
FA5A: A4 2F 384 LDY LENGTH ;LEN FROM DISASSEMBLY
FA5C: C9 20 385 CMP #$20
FA5E: F0 59 386 BEQ XJSR ;HANDLE JSR, RTS, JMP,
FA60: C9 60 387 CMP #$60 ; JMP (), RTI SPECIAL
FA62: F0 45 388 BEQ XRTS
FA64: C9 4C 389 CMP #$4C
FA66: F0 5C 390 BEQ XJMP
FA68: C9 6C 391 CMP #$6C
FA6A: F0 59 392 BEQ XJMPAT
FA6C: C9 40 393 CMP #$40
FA6E: F0 35 394 BEQ XRTI
FA70: 29 1F 395 AND #$1F
FA72: 49 14 396 EOR #$14
FA74: C9 04 397 CMP #$04 ;COPY USER INST TO XEQ AREA
FA76: F0 02 398 BEQ XQ2 ; WITH TRAILING NOPS
FA78: B1 3A 399 XQ1 LDA (PCL),Y ;CHANGE REL BRANCH
FA7A: 99 3C 00 400 XQ2 STA XQT,Y ; DISP TO 4 FOR
FA7D: 88 401 DEY ; JMP TO BRANCH OR
FA7E: 10 F8 402 BPL XQ1 ; NBRANCH FROM XEQ.
FA80: 20 3F FF 403 JSR RESTORE ;RESTORE USER REG CONTENTS.
FA83: 4C 3C 00 404 JMP XQT ;XEQ USER OP FROM RAM
FA86: 85 45 405 IRQ STA ACC ; (RETURN TO NBRANCH)
FA88: 68 406 PLA
FA89: 48 407 PHA ;**IRQ HANDLER
FA8A: 0A 408 ASL
FA8B: 0A 409 ASL
FA8C: 0A 410 ASL
FA8D: 30 03 411 BMI BREAK ;TEST FOR BREAK
FA8F: 6C FE 03 412 JMP (IRQLOC) ;USER ROUTINE VECTOR IN RAM
FA92: 28 413 BREAK PLP
FA93: 20 4C FF 414 JSR SAV1 ;SAVE REG'S ON BREAK
FA96: 68 415 PLA ; INCLUDING PC
FA97: 85 3A 416 STA PCL
FA99: 68 417 PLA
FA9A: 85 3B 418 STA PCH
FA9C: 20 82 F8 419 XBRK JSR INSDS1 ;PRINT USER PC.
FA9F: 20 DA FA 420 JSR RGDSP1 ; AND REG'S
FAA2: 4C 65 FF 421 JMP MON ;GO TO MONITOR
FAA5: 18 422 XRTI CLC
FAA6: 68 423 PLA ;SIMULATE RTI BY EXPECTING
FAA7: 85 48 424 STA STATUS ; STATUS FROM STACK, THEN RTS
FAA9: 68 425 XRTS PLA ;RTS SIMULATION
FAAA: 85 3A 426 STA PCL ; EXTRACT PC FROM STACK
FAAC: 68 427 PLA ; AND UPDATE PC BY 1 (LEN=0)
FAAD: 85 3B 428 PCINC2 STA PCH
FAAF: A5 2F 429 PCINC3 LDA LENGTH ;UPDATE PC BY LEN
FAB1: 20 56 F9 430 JSR PCADJ3
FAB4: 84 3B 431 STY PCH
FAB6: 18 432 CLC
FAB7: 90 14 433 BCC NEWPCL
FAB9: 18 434 XJSR CLC
FABA: 20 54 F9 435 JSR PCADJ2 ;UPDATE PC AND PUSH
FABD: AA 436 TAX ; ONTO STACH FOR
FABE: 98 437 TYA ; JSR SIMULATE
FABF: 48 438 PHA
FAC0: 8A 439 TXA
FAC1: 48 440 PHA
FAC2: A0 02 441 LDY #$02
FAC4: 18 442 XJMP CLC
FAC5: B1 3A 443 XJMPAT LDA (PCL),Y
FAC7: AA 444 TAX ;LOAD PC FOR JMP,
FAC8: 88 445 DEY ; (JMP) SIMULATE.
FAC9: B1 3A 446 LDA (PCL),Y
FACB: 86 3B 447 STX PCH
FACD: 85 3A 448 NEWPCL STA PCL
FACF: B0 F3 449 BCS XJMP
FAD1: A5 2D 450 RTNJMP LDA RTNH
FAD3: 48 451 PHA
FAD4: A5 2C 452 LDA RTNL
FAD6: 48 453 PHA
FAD7: 20 8E FD 454 REGDSP JSR CROUT ;DISPLAY USER REG
FADA: A9 45 455 RGDSP1 LDA #ACC ; CONTENTS WITH
FADC: 85 40 456 STA A3L ; LABELS
FADE: A9 00 457 LDA #ACC/256
FAE0: 85 41 458 STA A3H
FAE2: A2 FB 459 LDX #$FB
FAE4: A9 A0 460 RDSP1 LDA #$A0
FAE6: 20 ED FD 461 JSR COUT
FAE9: BD 1E FA 462 LDA RTBL-$FB,X
FAEC: 20 ED FD 463 JSR COUT
FAEF: A9 BD 464 LDA #$BD
FAF1: 20 ED FD 465 JSR COUT
FAF4: B5 4A 466 LDA ACC+5,X
FAF6: 20 DA FD 467 JSR PRBYTE
FAF9: E8 468 INX
FAFA: 30 E8 469 BMI RDSP1
FAFC: 60 470 RTS
FAFD: 18 471 BRANCH CLC ;BRANCH TAKEN,
FAFE: A0 01 472 LDY #$01 ; ADD LEN+2 TO PC
FB00: B1 3A 473 LDA (PCL),Y
FB02: 20 56 F9 474 JSR PCADJ3
FB05: 85 3A 475 STA PCL
FB07: 98 476 TYA
FB08: 38 477 SEC
FB09: B0 A2 478 BCS PCINC2
FB0B: 20 4A FF 479 NBRNCH JSR SAVE ;NORMAL RETURN AFTER
FB0E: 38 480 SEC ; XEQ USER OF
FB0F: B0 9E 481 BCS PCINC3 ;GO UPDATE PC
FB11: EA 482 INITBL NOP
FB12: EA 483 NOP ;DUMMY FILL FOR
FB13: 4C 0B FB 484 JMP NBRNCH ; XEQ AREA
FB16: 4C FD FA 485 JMP BRANCH
FB19: C1 486 RTBL DFB $C1
FB1A: D8 487 DFB $D8
FB1B: D9 488 DFB $D9
FB1C: D0 489 DFB $D0
FB1D: D3 490 DFB $D3
FB1E: AD 70 C0 491 PREAD LDA PTRIG ;TRIGGER PADDLES
FB21: A0 00 492 LDY #$00 ;INIT COUNT
FB23: EA 493 NOP ;COMPENSATE FOR 1ST COUNT
FB24: EA 494 NOP
FB25: BD 64 C0 495 PREAD2 LDA PADDL0,X ;COUNT Y-REG EVERY
FB28: 10 04 496 BPL RTS2D ; 12 USEC
FB2A: C8 497 INY
FB2B: D0 F8 498 BNE PREAD2 ; EXIT AT 255 MAX
FB2D: 88 499 DEY
FB2E: 60 500 RTS2D RTS
FB2F: A9 00 501 INIT LDA #$00 ;CLR STATUS FOR DEBUG
FB31: 85 48 502 STA STATUS ; SOFTWARE
FB33: AD 56 C0 503 LDA LORES
FB36: AD 54 C0 504 LDA LOWSCR ;INIT VIDEO MODE
FB39: AD 51 C0 505 SETTXT LDA TXTSET ;SET FOR TEXT MODE
FB3C: A9 00 506 LDA #$00 ; FULL SCREEN WINDOW
FB3E: F0 0B 507 BEQ SETWND
FB40: AD 50 C0 508 SETGR LDA TXTCLR ;SET FOR GRAPHICS MODE
FB43: AD 53 C0 509 LDA MIXSET ; LOWER 4 LINES AS
FB46: 20 36 F8 510 JSR CLRTOP ; TEXT WINDOW
FB49: A9 14 511 LDA #$14
FB4B: 85 22 512 SETWND STA WNDTOP ;SET FOR 40 COL WINDOW
FB4D: A9 00 513 LDA #$00 ; TOP IN A-REG,
FB4F: 85 20 514 STA WNDLFT ; BTTM AT LINE 24
FB51: A9 28 515 LDA #$28
FB53: 85 21 516 STA WNDWDTH
FB55: A9 18 517 LDA #$18
FB57: 85 23 518 STA WNDBTM ; VTAB TO ROW 23
FB59: A9 17 519 LDA #$17
FB5B: 85 25 520 TABV STA CV ;VTABS TO ROW IN A-REG
FB5D: 4C 22 FC 521 JMP VTAB
FB60: 20 A4 FB 522 MULPM JSR MD1 ;ABS VAL OF AC AUX
FB63: A0 10 523 MUL LDY #$10 ;INDEX FOR 16 BITS
FB65: A5 50 524 MUL2 LDA ACL ;ACX * AUX + XTND
FB67: 4A 525 LSR ; TO AC, XTND
FB68: 90 0C 526 BCC MUL4 ;IF NO CARRY,
FB6A: 18 527 CLC ; NO PARTIAL PROD.
FB6B: A2 FE 528 LDX #$FE
FB6D: B5 54 529 MUL3 LDA XTNDL+2,X ;ADD MPLCND (AUX)
FB6F: 75 56 530 ADC AUXL+2,X ; TO PARTIAL PROD
FB71: 95 54 531 STA XTNDL+2,X ; (XTND)
FB73: E8 532 INX
FB74: D0 F7 533 BNE MUL3
FB76: A2 03 534 MUL4 LDX #$03
FB78: 76 535 MUL5 DFB $76
FB79: 50 536 DFB $50
FB7A: CA 537 DEX
FB7B: 10 FB 538 BPL MUL5
FB7D: 88 539 DEY
FB7E: D0 E5 540 BNE MUL2
FB80: 60 541 RTS
FB81: 20 A4 FB 542 DIVPM JSR MD1 ;ABS VAL OF AC, AUX.
FB84: A0 10 543 DIV LDY #$10 ;INDEX FOR 16 BITS
FB86: 06 50 544 DIV2 ASL ACL
FB88: 26 51 545 ROL ACH
FB8A: 26 52 546 ROL XTNDL ;XTND/AUX
FB8C: 26 53 547 ROL XTNDH ; TO AC.
FB8E: 38 548 SEC
FB8F: A5 52 549 LDA XTNDL
FB91: E5 54 550 SBC AUXL ;MOD TO XTND.
FB93: AA 551 TAX
FB94: A5 53 552 LDA XTNDH
FB96: E5 55 553 SBC AUXH
FB98: 90 06 554 BCC DIV3
FB9A: 86 52 555 STX XTNDL
FB9C: 85 53 556 STA XTNDH
FB9E: E6 50 557 INC ACL
FBA0: 88 558 DIV3 DEY
FBA1: D0 E3 559 BNE DIV2
FBA3: 60 560 RTS
FBA4: A0 00 561 MD1 LDY #$00 ;ABS VAL OF AC, AUX
FBA6: 84 2F 562 STY SIGN ; WITH RESULT SIGN
FBA8: A2 54 563 LDX #AUXL ; IN LSB OF SIGN.
FBAA: 20 AF FB 564 JSR MD3
FBAD: A2 50 565 LDX #ACL
FBAF: B5 01 566 MD3 LDA LOC1,X ;X SPECIFIES AC OR AUX
FBB1: 10 0D 567 BPL MDRTS
FBB3: 38 568 SEC
FBB4: 98 569 TYA
FBB5: F5 00 570 SBC LOC0,X ;COMPL SPECIFIED REG
FBB7: 95 00 571 STA LOC0,X ; IF NEG.
FBB9: 98 572 TYA
FBBA: F5 01 573 SBC LOC1,X
FBBC: 95 01 574 STA LOC1,X
FBBE: E6 2F 575 INC SIGN
FBC0: 60 576 MDRTS RTS
FBC1: 48 577 BASCALC PHA ;CALC BASE ADR IN BASL,H
FBC2: 4A 578 LSR ; FOR GIVEN LINE NO
FBC3: 29 03 579 AND #$03 ; 0<=LINE NO.<=$17
FBC5: 09 04 580 ORA #$04 ;ARG=000ABCDE, GENERATE
FBC7: 85 29 581 STA BASH ; BASH=000001CD
FBC9: 68 582 PLA ; AND
FBCA: 29 18 583 AND #$18 ; BASL=EABAB000
FBCC: 90 02 584 BCC BSCLC2
FBCE: 69 7F 585 ADC #$7F
FBD0: 85 28 586 BSCLC2 STA BASL
FBD2: 0A 587 ASL
FBD3: 0A 588 ASL
FBD4: 05 28 589 ORA BASL
FBD6: 85 28 590 STA BASL
FBD8: 60 591 RTS
FBD9: C9 87 592 BELL1 CMP #$87 ;BELL CHAR? (CNTRL-G)
FBDB: D0 12 593 BNE RTS2B ; NO, RETURN
FBDD: A9 40 594 LDA #$40 ;DELAY .01 SECONDS
FBDF: 20 A8 FC 595 JSR WAIT
FBE2: A0 C0 596 LDY #$C0
FBE4: A9 0C 597 BELL2 LDA #$0C ;TOGGLE SPEAKER AT
FBE6: 20 A8 FC 598 JSR WAIT ; 1 KHZ FOR .1 SEC.
FBE9: AD 30 C0 599 LDA SPKR
FBEC: 88 600 DEY
FBED: D0 F5 601 BNE BELL2
FBEF: 60 602 RTS2B RTS
FBF0: A4 24 603 STOADV LDY CH ;CURSOR H INDEX TO Y-REG
FBF2: 91 28 604 STA (BASL),Y ;STORE CHAR IN LINE
FBF4: E6 24 605 ADVANCE INC CH ;INCREMENT CURSOR H INDEX
FBF6: A5 24 606 LDA CH ; (MOVE RIGHT)
FBF8: C5 21 607 CMP WNDWDTH ;BEYOND WINDOW WIDTH?
FBFA: B0 66 608 BCS CR ; YES CR TO NEXT LINE
FBFC: 60 609 RTS3 RTS ; NO,RETURN
FBFD: C9 A0 610 VIDOUT CMP #$A0 ;CONTROL CHAR?
FBFF: B0 EF 611 BCS STOADV ; NO,OUTPUT IT.
FC01: A8 612 TAY ;INVERSE VIDEO?
FC02: 10 EC 613 BPL STOADV ; YES, OUTPUT IT.
FC04: C9 8D 614 CMP #$8D ;CR?
FC06: F0 5A 615 BEQ CR ; YES.
FC08: C9 8A 616 CMP #$8A ;LINE FEED?
FC0A: F0 5A 617 BEQ LF ; IF SO, DO IT.
FC0C: C9 88 618 CMP #$88 ;BACK SPACE? (CNTRL-H)
FC0E: D0 C9 619 BNE BELL1 ; NO, CHECK FOR BELL.
FC10: C6 24 620 BS DEC CH ;DECREMENT CURSOR H INDEX
FC12: 10 E8 621 BPL RTS3 ;IF POS, OK. ELSE MOVE UP
FC14: A5 21 622 LDA WNDWDTH ;SET CH TO WNDWDTH-1
FC16: 85 24 623 STA CH
FC18: C6 24 624 DEC CH ;(RIGHTMOST SCREEN POS)
FC1A: A5 22 625 UP LDA WNDTOP ;CURSOR V INDEX
FC1C: C5 25 626 CMP CV
FC1E: B0 0B 627 BCS RTS4 ;IF TOP LINE THEN RETURN
FC20: C6 25 628 DEC CV ;DEC CURSOR V-INDEX
FC22: A5 25 629 VTAB LDA CV ;GET CURSOR V-INDEX
FC24: 20 C1 FB 630 VTABZ JSR BASCALC ;GENERATE BASE ADR
FC27: 65 20 631 ADC WNDLFT ;ADD WINDOW LEFT INDEX
FC29: 85 28 632 STA BASL ;TO BASL
FC2B: 60 633 RTS4 RTS
FC2C: 49 C0 634 ESC1 EOR #$C0 ;ESC?
FC2E: F0 28 635 BEQ HOME ; IF SO, DO HOME AND CLEAR
FC30: 69 FD 636 ADC #$FD ;ESC-A OR B CHECK
FC32: 90 C0 637 BCC ADVANCE ; A, ADVANCE
FC34: F0 DA 638 BEQ BS ; B, BACKSPACE
FC36: 69 FD 639 ADC #$FD ;ESC-C OR D CHECK
FC38: 90 2C 640 BCC LF ; C, DOWN
FC3A: F0 DE 641 BEQ UP ; D, GO UP
FC3C: 69 FD 642 ADC #$FD ;ESC-E OR F CHECK
FC3E: 90 5C 643 BCC CLREOL ; E, CLEAR TO END OF LINE
FC40: D0 E9 644 BNE RTS4 ; NOT F, RETURN
FC42: A4 24 645 CLREOP LDY CH ;CURSOR H TO Y INDEX
FC44: A5 25 646 LDA CV ;CURSOR V TO A-REGISTER
FC46: 48 647 CLEOP1 PHA ;SAVE CURRENT LINE ON STK
FC47: 20 24 FC 648 JSR VTABZ ;CALC BASE ADDRESS
FC4A: 20 9E FC 649 JSR CLEOLZ ;CLEAR TO EOL, SET CARRY
FC4D: A0 00 650 LDY #$00 ;CLEAR FROM H INDEX=0 FOR REST
FC4F: 68 651 PLA ;INCREMENT CURRENT LINE
FC50: 69 00 652 ADC #$00 ;(CARRY IS SET)
FC52: C5 23 653 CMP WNDBTM ;DONE TO BOTTOM OF WINDOW?
FC54: 90 F0 654 BCC CLEOP1 ; NO, KEEP CLEARING LINES
FC56: B0 CA 655 BCS VTAB ; YES, TAB TO CURRENT LINE
FC58: A5 22 656 HOME LDA WNDTOP ;INIT CURSOR V
FC5A: 85 25 657 STA CV ; AND H-INDICES
FC5C: A0 00 658 LDY #$00
FC5E: 84 24 659 STY CH ;THEN CLEAR TO END OF PAGE
FC60: F0 E4 660 BEQ CLEOP1
FC62: A9 00 661 CR LDA #$00 ;CURSOR TO LEFT OF INDEX
FC64: 85 24 662 STA CH ;(RET CURSOR H=0)
FC66: E6 25 663 LF INC CV ;INCR CURSOR V(DOWN 1 LINE)
FC68: A5 25 664 LDA CV
FC6A: C5 23 665 CMP WNDBTM ;OFF SCREEN?
FC6C: 90 B6 666 BCC VTABZ ; NO, SET BASE ADDR
FC6E: C6 25 667 DEC CV ;DECR CURSOR V (BACK TO BOTTOM)
FC70: A5 22 668 SCROLL LDA WNDTOP ;START AT TOP OF SCRL WNDW
FC72: 48 669 PHA
FC73: 20 24 FC 670 JSR VTABZ ;GENERATE BASE ADR
FC76: A5 28 671 SCRL1 LDA BASL ;COPY BASL,H
FC78: 85 2A 672 STA BAS2L ; TO BAS2L,H
FC7A: A5 29 673 LDA BASH
FC7C: 85 2B 674 STA BAS2H
FC7E: A4 21 675 LDY WNDWDTH ;INIT Y TO RIGHTMOST INDEX
FC80: 88 676 DEY ; OF SCROLLING WINDOW
FC81: 68 677 PLA
FC82: 69 01 678 ADC #$01 ;INCR LINE NUMBER
FC84: C5 23 679 CMP WNDBTM ;DONE?
FC86: B0 0D 680 BCS SCRL3 ; YES, FINISH
FC88: 48 681 PHA
FC89: 20 24 FC 682 JSR VTABZ ;FORM BASL,H (BASE ADDR)
FC8C: B1 28 683 SCRL2 LDA (BASL),Y ;MOVE A CHR UP ON LINE
FC8E: 91 2A 684 STA (BAS2L),Y
FC90: 88 685 DEY ;NEXT CHAR OF LINE
FC91: 10 F9 686 BPL SCRL2
FC93: 30 E1 687 BMI SCRL1 ;NEXT LINE (ALWAYS TAKEN)
FC95: A0 00 688 SCRL3 LDY #$00 ;CLEAR BOTTOM LINE
FC97: 20 9E FC 689 JSR CLEOLZ ;GET BASE ADDR FOR BOTTOM LINE
FC9A: B0 86 690 BCS VTAB ;CARRY IS SET
FC9C: A4 24 691 CLREOL LDY CH ;CURSOR H INDEX
FC9E: A9 A0 692 CLEOLZ LDA #$A0
FCA0: 91 28 693 CLEOL2 STA (BASL),Y ;STORE BLANKS FROM 'HERE'
FCA2: C8 694 INY ; TO END OF LINES (WNDWDTH)
FCA3: C4 21 695 CPY WNDWDTH
FCA5: 90 F9 696 BCC CLEOL2
FCA7: 60 697 RTS
FCA8: 38 698 WAIT SEC
FCA9: 48 699 WAIT2 PHA
FCAA: E9 01 700 WAIT3 SBC #$01
FCAC: D0 FC 701 BNE WAIT3 ;1.0204 USEC
FCAE: 68 702 PLA ;(13+27/2*A+5/2*A*A)
FCAF: E9 01 703 SBC #$01
FCB1: D0 F6 704 BNE WAIT2
FCB3: 60 705 RTS
FCB4: E6 42 706 NXTA4 INC A4L ;INCR 2-BYTE A4
FCB6: D0 02 707 BNE NXTA1 ; AND A1
FCB8: E6 43 708 INC A4H
FCBA: A5 3C 709 NXTA1 LDA A1L ;INCR 2-BYTE A1.
FCBC: C5 3E 710 CMP A2L
FCBE: A5 3D 711 LDA A1H ; AND COMPARE TO A2
FCC0: E5 3F 712 SBC A2H
FCC2: E6 3C 713 INC A1L ; (CARRY SET IF >=)
FCC4: D0 02 714 BNE RTS4B
FCC6: E6 3D 715 INC A1H
FCC8: 60 716 RTS4B RTS
FCC9: A0 4B 717 HEADR LDY #$4B ;WRITE A*256 'LONG 1'
FCCB: 20 DB FC 718 JSR ZERDLY ; HALF CYCLES
FCCE: D0 F9 719 BNE HEADR ; (650 USEC EACH)
FCD0: 69 FE 720 ADC #$FE
FCD2: B0 F5 721 BCS HEADR ;THEN A 'SHORT 0'
FCD4: A0 21 722 LDY #$21 ; (400 USEC)
FCD6: 20 DB FC 723 WRBIT JSR ZERDLY ;WRITE TWO HALF CYCLES
FCD9: C8 724 INY ; OF 250 USEC ('0')
FCDA: C8 725 INY ; OR 500 USEC ('0')
FCDB: 88 726 ZERDLY DEY
FCDC: D0 FD 727 BNE ZERDLY
FCDE: 90 05 728 BCC WRTAPE ;Y IS COUNT FOR
FCE0: A0 32 729 LDY #$32 ; TIMING LOOP
FCE2: 88 730 ONEDLY DEY
FCE3: D0 FD 731 BNE ONEDLY
FCE5: AC 20 C0 732 WRTAPE LDY TAPEOUT
FCE8: A0 2C 733 LDY #$2C
FCEA: CA 734 DEX
FCEB: 60 735 RTS
FCEC: A2 08 736 RDBYTE LDX #$08 ;8 BITS TO READ
FCEE: 48 737 RDBYT2 PHA ;READ TWO TRANSITIONS
FCEF: 20 FA FC 738 JSR RD2BIT ; (FIND EDGE)
FCF2: 68 739 PLA
FCF3: 2A 740 ROL ;NEXT BIT
FCF4: A0 3A 741 LDY #$3A ;COUNT FOR SAMPLES
FCF6: CA 742 DEX
FCF7: D0 F5 743 BNE RDBYT2
FCF9: 60 744 RTS
FCFA: 20 FD FC 745 RD2BIT JSR RDBIT
FCFD: 88 746 RDBIT DEY ;DECR Y UNTIL
FCFE: AD 60 C0 747 LDA TAPEIN ; TAPE TRANSITION
FD01: 45 2F 748 EOR LASTIN
FD03: 10 F8 749 BPL RDBIT
FD05: 45 2F 750 EOR LASTIN
FD07: 85 2F 751 STA LASTIN
FD09: C0 80 752 CPY #$80 ;SET CARRY ON Y
FD0B: 60 753 RTS
FD0C: A4 24 754 RDKEY LDY CH
FD0E: B1 28 755 LDA (BASL),Y ;SET SCREEN TO FLASH
FD10: 48 756 PHA
FD11: 29 3F 757 AND #$3F
FD13: 09 40 758 ORA #$40
FD15: 91 28 759 STA (BASL),Y
FD17: 68 760 PLA
FD18: 6C 38 00 761 JMP (KSWL) ;GO TO USER KEY-IN
FD1B: E6 4E 762 KEYIN INC RNDL
FD1D: D0 02 763 BNE KEYIN2 ;INCR RND NUMBER
FD1F: E6 4F 764 INC RNDH
FD21: 2C 00 C0 765 KEYIN2 BIT KBD ;KEY DOWN?
FD24: 10 F5 766 BPL KEYIN ; LOOP
FD26: 91 28 767 STA (BASL),Y ;REPLACE FLASHING SCREEN
FD28: AD 00 C0 768 LDA KBD ;GET KEYCODE
FD2B: 2C 10 C0 769 BIT KBDSTRB ;CLR KEY STROBE
FD2E: 60 770 RTS
FD2F: 20 0C FD 771 ESC JSR RDKEY ;GET KEYCODE
FD32: 20 2C FC 772 JSR ESC1 ; HANDLE ESC FUNC.
FD35: 20 0C FD 773 RDCHAR JSR RDKEY ;READ KEY
FD38: C9 9B 774 CMP #$9B ;ESC?
FD3A: F0 F3 775 BEQ ESC ; YES, DON'T RETURN
FD3C: 60 776 RTS
FD3D: A5 32 777 NOTCR LDA INVFLG
FD3F: 48 778 PHA
FD40: A9 FF 779 LDA #$FF
FD42: 85 32 780 STA INVFLG ;ECHO USER LINE
FD44: BD 00 02 781 LDA IN,X ; NON INVERSE
FD47: 20 ED FD 782 JSR COUT
FD4A: 68 783 PLA
FD4B: 85 32 784 STA INVFLG
FD4D: BD 00 02 785 LDA IN,X
FD50: C9 88 786 CMP #$88 ;CHECK FOR EDIT KEYS
FD52: F0 1D 787 BEQ BCKSPC ; BS, CTRL-X
FD54: C9 98 788 CMP #$98
FD56: F0 0A 789 BEQ CANCEL
FD58: E0 F8 790 CPX #$F8 ;MARGIN?
FD5A: 90 03 791 BCC NOTCR1
FD5C: 20 3A FF 792 JSR BELL ; YES, SOUND BELL
FD5F: E8 793 NOTCR1 INX ;ADVANCE INPUT INDEX
FD60: D0 13 794 BNE NXTCHAR
FD62: A9 DC 795 CANCEL LDA #$DC ;BACKSLASH AFTER CANCELLED LINE
FD64: 20 ED FD 796 JSR COUT
FD67: 20 8E FD 797 GETLNZ JSR CROUT ;OUTPUT CR
FD6A: A5 33 798 GETLN LDA PROMPT
FD6C: 20 ED FD 799 JSR COUT ;OUTPUT PROMPT CHAR
FD6F: A2 01 800 LDX #$01 ;INIT INPUT INDEX
FD71: 8A 801 BCKSPC TXA ; WILL BACKSPACE TO 0
FD72: F0 F3 802 BEQ GETLNZ
FD74: CA 803 DEX
FD75: 20 35 FD 804 NXTCHAR JSR RDCHAR
FD78: C9 95 805 CMP #PICK ;USE SCREEN CHAR
FD7A: D0 02 806 BNE CAPTST ; FOR CTRL-U
FD7C: B1 28 807 LDA (BASL),Y
FD7E: C9 E0 808 CAPTST CMP #$E0
FD80: 90 02 809 BCC ADDINP ;CONVERT TO CAPS
FD82: 29 DF 810 AND #$DF
FD84: 9D 00 02 811 ADDINP STA IN,X ;ADD TO INPUT BUF
FD87: C9 8D 812 CMP #$8D
FD89: D0 B2 813 BNE NOTCR
FD8B: 20 9C FC 814 JSR CLREOL ;CLR TO EOL IF CR
FD8E: A9 8D 815 CROUT LDA #$8D
FD90: D0 5B 816 BNE COUT
FD92: A4 3D 817 PRA1 LDY A1H ;PRINT CR,A1 IN HEX
FD94: A6 3C 818 LDX A1L
FD96: 20 8E FD 819 PRYX2 JSR CROUT
FD99: 20 40 F9 820 JSR PRNTYX
FD9C: A0 00 821 LDY #$00
FD9E: A9 AD 822 LDA #$AD ;PRINT '-'
FDA0: 4C ED FD 823 JMP COUT
FDA3: A5 3C 824 XAM8 LDA A1L
FDA5: 09 07 825 ORA #$07 ;SET TO FINISH AT
FDA7: 85 3E 826 STA A2L ; MOD 8=7
FDA9: A5 3D 827 LDA A1H
FDAB: 85 3F 828 STA A2H
FDAD: A5 3C 829 MODSCHK LDA A1L
FDAF: 29 07 830 AND #$07
FDB1: D0 03 831 BNE DATAOUT
FDB3: 20 92 FD 832 XAM JSR PRA1
FDB6: A9 A0 833 DATAOUT LDA #$A0
FDB8: 20 ED FD 834 JSR COUT ;OUTPUT BLANK
FDBB: B1 3C 835 LDA (A1L),Y
FDBD: 20 DA FD 836 JSR PRBYTE ;OUTPUT BYTE IN HEX
FDC0: 20 BA FC 837 JSR NXTA1
FDC3: 90 E8 838 BCC MODSCHK ;CHECK IF TIME TO,
FDC5: 60 839 RTS4C RTS ; PRINT ADDR
FDC6: 4A 840 XAMPM LSR ;DETERMINE IF MON
FDC7: 90 EA 841 BCC XAM ; MODE IS XAM
FDC9: 4A 842 LSR ; ADD, OR SUB
FDCA: 4A 843 LSR
FDCB: A5 3E 844 LDA A2L
FDCD: 90 02 845 BCC ADD
FDCF: 49 FF 846 EOR #$FF ;SUB: FORM 2'S COMPLEMENT
FDD1: 65 3C 847 ADD ADC A1L
FDD3: 48 848 PHA
FDD4: A9 BD 849 LDA #$BD
FDD6: 20 ED FD 850 JSR COUT ;PRINT '=', THEN RESULT
FDD9: 68 851 PLA
FDDA: 48 852 PRBYTE PHA ;PRINT BYTE AS 2 HEX
FDDB: 4A 853 LSR ; DIGITS, DESTROYS A-REG
FDDC: 4A 854 LSR
FDDD: 4A 855 LSR
FDDE: 4A 856 LSR
FDDF: 20 E5 FD 857 JSR PRHEXZ
FDE2: 68 858 PLA
FDE3: 29 0F 859 PRHEX AND #$0F ;PRINT HEX DIG IN A-REG
FDE5: 09 B0 860 PRHEXZ ORA #$B0 ; LSB'S
FDE7: C9 BA 861 CMP #$BA
FDE9: 90 02 862 BCC COUT
FDEB: 69 06 863 ADC #$06
FDED: 6C 36 00 864 COUT JMP (CSWL) ;VECTOR TO USER OUTPUT ROUTINE
FDF0: C9 A0 865 COUT1 CMP #$A0
FDF2: 90 02 866 BCC COUTZ ;DON'T OUTPUT CTRL'S INVERSE
FDF4: 25 32 867 AND INVFLG ;MASK WITH INVERSE FLAG
FDF6: 84 35 868 COUTZ STY YSAV1 ;SAV Y-REG
FDF8: 48 869 PHA ;SAV A-REG
FDF9: 20 FD FB 870 JSR VIDOUT ;OUTPUT A-REG AS ASCII
FDFC: 68 871 PLA ;RESTORE A-REG
FDFD: A4 35 872 LDY YSAV1 ; AND Y-REG
FDFF: 60 873 RTS ; THEN RETURN
FE00: C6 34 874 BL1 DEC YSAV
FE02: F0 9F 875 BEQ XAM8
FE04: CA 876 BLANK DEX ;BLANK TO MON
FE05: D0 16 877 BNE SETMDZ ;AFTER BLANK
FE07: C9 BA 878 CMP #$BA ;DATA STORE MODE?
FE09: D0 BB 879 BNE XAMPM ; NO, XAM, ADD, OR SUB
FE0B: 85 31 880 STOR STA MODE ;KEEP IN STORE MODE
FE0D: A5 3E 881 LDA A2L
FE0F: 91 40 882 STA (A3L),Y ;STORE AS LOW BYTE AS (A3)
FE11: E6 40 883 INC A3L
FE13: D0 02 884 BNE RTS5 ;INCR A3, RETURN
FE15: E6 41 885 INC A3H
FE17: 60 886 RTS5 RTS
FE18: A4 34 887 SETMODE LDY YSAV ;SAVE CONVERTED ':', '+',
FE1A: B9 FF 01 888 LDA IN-1,Y ; '-', '.' AS MODE.
FE1D: 85 31 889 SETMDZ STA MODE
FE1F: 60 890 RTS
FE20: A2 01 891 LT LDX #$01
FE22: B5 3E 892 LT2 LDA A2L,X ;COPY A2 (2 BYTES) TO
FE24: 95 42 893 STA A4L,X ; A4 AND A5
FE26: 95 44 894 STA A5L,X
FE28: CA 895 DEX
FE29: 10 F7 896 BPL LT2
FE2B: 60 897 RTS
FE2C: B1 3C 898 MOVE LDA (A1L),Y ;MOVE (A1 TO A2) TO
FE2E: 91 42 899 STA (A4L),Y ; (A4)
FE30: 20 B4 FC 900 JSR NXTA4
FE33: 90 F7 901 BCC MOVE
FE35: 60 902 RTS
FE36: B1 3C 903 VFY LDA (A1L),Y ;VERIFY (A1 TO A2) WITH
FE38: D1 42 904 CMP (A4L),Y ; (A4)
FE3A: F0 1C 905 BEQ VFYOK
FE3C: 20 92 FD 906 JSR PRA1
FE3F: B1 3C 907 LDA (A1L),Y
FE41: 20 DA FD 908 JSR PRBYTE
FE44: A9 A0 909 LDA #$A0
FE46: 20 ED FD 910 JSR COUT
FE49: A9 A8 911 LDA #$A8
FE4B: 20 ED FD 912 JSR COUT
FE4E: B1 42 913 LDA (A4L),Y
FE50: 20 DA FD 914 JSR PRBYTE
FE53: A9 A9 915 LDA #$A9
FE55: 20 ED FD 916 JSR COUT
FE58: 20 B4 FC 917 VFYOK JSR NXTA4
FE5B: 90 D9 918 BCC VFY
FE5D: 60 919 RTS
FE5E: 20 75 FE 920 LIST JSR A1PC ;MOVE A1 (2 BYTES) TO
FE61: A9 14 921 LDA #$14 ; PC IF SPEC'D AND
FE63: 48 922 LIST2 PHA ; DISEMBLE 20 INSTRS
FE64: 20 D0 F8 923 JSR INSTDSP
FE67: 20 53 F9 924 JSR PCADJ ;ADJUST PC EACH INSTR
FE6A: 85 3A 925 STA PCL
FE6C: 84 3B 926 STY PCH
FE6E: 68 927 PLA
FE6F: 38 928 SEC
FE70: E9 01 929 SBC #$01 ;NEXT OF 20 INSTRS
FE72: D0 EF 930 BNE LIST2
FE74: 60 931 RTS
FE75: 8A 932 A1PC TXA ;IF USER SPEC'D ADR
FE76: F0 07 933 BEQ A1PCRTS ; COPY FROM A1 TO PC
FE78: B5 3C 934 A1PCLP LDA A1L,X
FE7A: 95 3A 935 STA PCL,X
FE7C: CA 936 DEX
FE7D: 10 F9 937 BPL A1PCLP
FE7F: 60 938 A1PCRTS RTS
FE80: A0 3F 939 SETINV LDY #$3F ;SET FOR INVERSE VID
FE82: D0 02 940 BNE SETIFLG ; VIA COUT1
FE84: A0 FF 941 SETNORM LDY #$FF ;SET FOR NORMAL VID
FE86: 84 32 942 SETIFLG STY INVFLG
FE88: 60 943 RTS
FE89: A9 00 944 SETKBD LDA #$00 ;SIMULATE PORT #0 INPUT
FE8B: 85 3E 945 INPORT STA A2L ; SPECIFIED (KEYIN ROUTINE)
FE8D: A2 38 946 INPRT LDX #KSWL
FE8F: A0 1B 947 LDY #KEYIN
FE91: D0 08 948 BNE IOPRT
FE93: A9 00 949 SETVID LDA #$00 ;SIMULATE PORT #0 OUTPUT
FE95: 85 3E 950 OUTPORT STA A2L ; SPECIFIED (COUT1 ROUTINE)
FE97: A2 36 951 OUTPRT LDX #CSWL
FE99: A0 F0 952 LDY #COUT1
FE9B: A5 3E 953 IOPRT LDA A2L ;SET RAM IN/OUT VECTORS
FE9D: 29 0F 954 AND #$0F
FE9F: F0 06 955 BEQ IOPRT1
FEA1: 09 C0 956 ORA #IOADR/256
FEA3: A0 00 957 LDY #$00
FEA5: F0 02 958 BEQ IOPRT2
FEA7: A9 FD 959 IOPRT1 LDA #COUT1/256
FEA9: 94 00 960 IOPRT2 STY LOC0,X
FEAB: 95 01 961 STA LOC1,X
FEAD: 60 962 RTS
FEAE: EA 963 NOP
FEAF: EA 964 NOP
FEB0: 4C 00 E0 965 XBASIC JMP BASIC ;TO BASIC WITH SCRATCH
FEB3: 4C 03 E0 966 BASCONT JMP BASIC2 ;CONTINUE BASIC
FEB6: 20 75 FE 967 GO JSR A1PC ;ADR TO PC IF SPEC'D
FEB9: 20 3F FF 968 JSR RESTORE ;RESTORE META REGS
FEBC: 6C 3A 00 969 JMP (PCL) ;GO TO USER SUBR
FEBF: 4C D7 FA 970 REGZ JMP REGDSP ;TO REG DISPLAY
FEC2: C6 34 971 TRACE DEC YSAV
FEC4: 20 75 FE 972 STEPZ JSR A1PC ;ADR TO PC IF SPEC'D
FEC7: 4C 43 FA 973 JMP STEP ;TAKE ONE STEP
FECA: 4C F8 03 974 USR JMP USRADR ;TO USR SUBR AT USRADR
FECD: A9 40 975 WRITE LDA #$40
FECF: 20 C9 FC 976 JSR HEADR ;WRITE 10-SEC HEADER
FED2: A0 27 977 LDY #$27
FED4: A2 00 978 WR1 LDX #$00
FED6: 41 3C 979 EOR (A1L,X)
FED8: 48 980 PHA
FED9: A1 3C 981 LDA (A1L,X)
FEDB: 20 ED FE 982 JSR WRBYTE
FEDE: 20 BA FC 983 JSR NXTA1
FEE1: A0 1D 984 LDY #$1D
FEE3: 68 985 PLA
FEE4: 90 EE 986 BCC WR1
FEE6: A0 22 987 LDY #$22
FEE8: 20 ED FE 988 JSR WRBYTE
FEEB: F0 4D 989 BEQ BELL
FEED: A2 10 990 WRBYTE LDX #$10
FEEF: 0A 991 WRBYT2 ASL
FEF0: 20 D6 FC 992 JSR WRBIT
FEF3: D0 FA 993 BNE WRBYT2
FEF5: 60 994 RTS
FEF6: 20 00 FE 995 CRMON JSR BL1 ;HANDLE A CR AS BLANK
FEF9: 68 996 PLA ; THEN POP STACK
FEFA: 68 997 PLA ; AND RTN TO MON
FEFB: D0 6C 998 BNE MONZ
FEFD: 20 FA FC 999 READ JSR RD2BIT ;FIND TAPEIN EDGE
FF00: A9 16 1000 LDA #$16
FF02: 20 C9 FC 1001 JSR HEADR ;DELAY 3.5 SECONDS
FF05: 85 2E 1002 STA CHKSUM ;INIT CHKSUM=$FF
FF07: 20 FA FC 1003 JSR RD2BIT ;FIND TAPEIN EDGE
FF0A: A0 24 1004 RD2 LDY #$24 ;LOOK FOR SYNC BIT
FF0C: 20 FD FC 1005 JSR RDBIT ; (SHORT 0)
FF0F: B0 F9 1006 BCS RD2 ; LOOP UNTIL FOUND
FF11: 20 FD FC 1007 JSR RDBIT ;SKIP SECOND SYNC H-CYCLE
FF14: A0 3B 1008 LDY #$3B ;INDEX FOR 0/1 TEST
FF16: 20 EC FC 1009 RD3 JSR RDBYTE ;READ A BYTE
FF19: 81 3C 1010 STA (A1L,X) ;STORE AT (A1)
FF1B: 45 2E 1011 EOR CHKSUM
FF1D: 85 2E 1012 STA CHKSUM ;UPDATE RUNNING CHKSUM
FF1F: 20 BA FC 1013 JSR NXTA1 ;INC A1, COMPARE TO A2
FF22: A0 35 1014 LDY #$35 ;COMPENSATE 0/1 INDEX
FF24: 90 F0 1015 BCC RD3 ;LOOP UNTIL DONE
FF26: 20 EC FC 1016 JSR RDBYTE ;READ CHKSUM BYTE
FF29: C5 2E 1017 CMP CHKSUM
FF2B: F0 0D 1018 BEQ BELL ;GOOD, SOUND BELL AND RETURN
FF2D: A9 C5 1019 PRERR LDA #$C5
FF2F: 20 ED FD 1020 JSR COUT ;PRINT "ERR", THEN BELL
FF32: A9 D2 1021 LDA #$D2
FF34: 20 ED FD 1022 JSR COUT
FF37: 20 ED FD 1023 JSR COUT
FF3A: A9 87 1024 BELL LDA #$87 ;OUTPUT BELL AND RETURN
FF3C: 4C ED FD 1025 JMP COUT
FF3F: A5 48 1026 RESTORE LDA STATUS ;RESTORE 6502 REG CONTENTS
FF41: 48 1027 PHA ; USED BY DEBUG SOFTWARE
FF42: A5 45 1028 LDA ACC
FF44: A6 46 1029 RESTR1 LDX XREG
FF46: A4 47 1030 LDY YREG
FF48: 28 1031 PLP
FF49: 60 1032 RTS
FF4A: 85 45 1033 SAVE STA ACC ;SAVE 6502 REG CONTENTS
FF4C: 86 46 1034 SAV1 STX XREG
FF4E: 84 47 1035 STY YREG
FF50: 08 1036 PHP
FF51: 68 1037 PLA
FF52: 85 48 1038 STA STATUS
FF54: BA 1039 TSX
FF55: 86 49 1040 STX SPNT
FF57: D8 1041 CLD
FF58: 60 1042 RTS
FF59: 20 84 FE 1043 RESET JSR SETNORM ;SET SCREEN MODE
FF5C: 20 2F FB 1044 JSR INIT ; AND INIT KBD/SCREEN
FF5F: 20 93 FE 1045 JSR SETVID ; AS I/O DEV'S
FF62: 20 89 FE 1046 JSR SETKBD
FF65: D8 1047 MON CLD ;MUST SET HEX MODE!
FF66: 20 3A FF 1048 JSR BELL
FF69: A9 AA 1049 MONZ LDA #$AA ;'*' PROMPT FOR MON
FF6B: 85 33 1050 STA PROMPT
FF6D: 20 67 FD 1051 JSR GETLNZ ;READ A LINE
FF70: 20 C7 FF 1052 JSR ZMODE ;CLEAR MON MODE, SCAN IDX
FF73: 20 A7 FF 1053 NXTITM JSR GETNUM ;GET ITEM, NON-HEX
FF76: 84 34 1054 STY YSAV ; CHAR IN A-REG
FF78: A0 17 1055 LDY #$17 ; X-REG=0 IF NO HEX INPUT
FF7A: 88 1056 CHRSRCH DEY
FF7B: 30 E8 1057 BMI MON ;NOT FOUND, GO TO MON
FF7D: D9 CC FF 1058 CMP CHRTBL,Y ;FIND CMND CHAR IN TEL
FF80: D0 F8 1059 BNE CHRSRCH
FF82: 20 BE FF 1060 JSR TOSUB ;FOUND, CALL CORRESPONDING
FF85: A4 34 1061 LDY YSAV ; SUBROUTINE
FF87: 4C 73 FF 1062 JMP NXTITM
FF8A: A2 03 1063 DIG LDX #$03
FF8C: 0A 1064 ASL
FF8D: 0A 1065 ASL ;GOT HEX DIG,
FF8E: 0A 1066 ASL ; SHIFT INTO A2
FF8F: 0A 1067 ASL
FF90: 0A 1068 NXTBIT ASL
FF91: 26 3E 1069 ROL A2L
FF93: 26 3F 1070 ROL A2H
FF95: CA 1071 DEX ;LEAVE X=$FF IF DIG
FF96: 10 F8 1072 BPL NXTBIT
FF98: A5 31 1073 NXTBAS LDA MODE
FF9A: D0 06 1074 BNE NXTBS2 ;IF MODE IS ZERO
FF9C: B5 3F 1075 LDA A2H,X ; THEN COPY A2 TO
FF9E: 95 3D 1076 STA A1H,X ; A1 AND A3
FFA0: 95 41 1077 STA A3H,X
FFA2: E8 1078 NXTBS2 INX
FFA3: F0 F3 1079 BEQ NXTBAS
FFA5: D0 06 1080 BNE NXTCHR
FFA7: A2 00 1081 GETNUM LDX #$00 ;CLEAR A2
FFA9: 86 3E 1082 STX A2L
FFAB: 86 3F 1083 STX A2H
FFAD: B9 00 02 1084 NXTCHR LDA IN,Y ;GET CHAR
FFB0: C8 1085 INY
FFB1: 49 B0 1086 EOR #$B0
FFB3: C9 0A 1087 CMP #$0A
FFB5: 90 D3 1088 BCC DIG ;IF HEX DIG, THEN
FFB7: 69 88 1089 ADC #$88
FFB9: C9 FA 1090 CMP #$FA
FFBB: B0 CD 1091 BCS DIG
FFBD: 60 1092 RTS
FFBE: A9 FE 1093 TOSUB LDA #GO/256 ;PUSH HIGH-ORDER
FFC0: 48 1094 PHA ; SUBR ADR ON STK
FFC1: B9 E3 FF 1095 LDA SUBTBL,Y ;PUSH LOW-ORDER
FFC4: 48 1096 PHA ; SUBR ADR ON STK
FFC5: A5 31 1097 LDA MODE
FFC7: A0 00 1098 ZMODE LDY #$00 ;CLR MODE, OLD MODE
FFC9: 84 31 1099 STY MODE ; TO A-REG
FFCB: 60 1100 RTS ; GO TO SUBR VIA RTS
FFCC: BC 1101 CHRTBL DFB $BC ;F("CTRL-C")
FFCD: B2 1102 DFB $B2 ;F("CTRL-Y")
FFCE: BE 1103 DFB $BE ;F("CTRL-E")
FFCF: ED 1104 DFB $ED ;F("T")
FFD0: EF 1105 DFB $EF ;F("V")
FFD1: C4 1106 DFB $C4 ;F("CTRL-K")
FFD2: EC 1107 DFB $EC ;F("S")
FFD3: A9 1108 DFB $A9 ;F("CTRL-P")
FFD4: BB 1109 DFB $BB ;F("CTRL-B")
FFD5: A6 1110 DFB $A6 ;F("-")
FFD6: A4 1111 DFB $A4 ;F("+")
FFD7: 06 1112 DFB $06 ;F("M") (F=EX-OR $B0+$89)
FFD8: 95 1113 DFB $95 ;F("<")
FFD9: 07 1114 DFB $07 ;F("N")
FFDA: 02 1115 DFB $02 ;F("I")
FFDB: 05 1116 DFB $05 ;F("L")
FFDC: F0 1117 DFB $F0 ;F("W")
FFDD: 00 1118 DFB $00 ;F("G")
FFDE: EB 1119 DFB $EB ;F("R")
FFDF: 93 1120 DFB $93 ;F(":")
FFE0: A7 1121 DFB $A7 ;F(".")
FFE1: C6 1122 DFB $C6 ;F("CR")
FFE2: 99 1123 DFB $99 ;F(BLANK)
FFE3: B2 1124 SUBTBL DFB BASCONT-1
FFE4: C9 1125 DFB USR-1
FFE5: BE 1126 DFB REGZ-1
FFE6: C1 1127 DFB TRACE-1
FFE7: 35 1128 DFB VFY-1
FFE8: 8C 1129 DFB INPRT-1
FFE9: C3 1130 DFB STEPZ-1
FFEA: 96 1131 DFB OUTPRT-1
FFEB: AF 1132 DFB XBASIC-1
FFEC: 17 1133 DFB SETMODE-1
FFED: 17 1134 DFB SETMODE-1
FFEE: 2B 1135 DFB MOVE-1
FFEF: 1F 1136 DFB LT-1
FFF0: 83 1137 DFB SETNORM-1
FFF1: 7F 1138 DFB SETINV-1
FFF2: 5D 1139 DFB LIST-1
FFF3: CC 1140 DFB WRITE-1
FFF4: B5 1141 DFB GO-1
FFF5: FC 1142 DFB READ-1
FFF6: 17 1143 DFB SETMODE-1
FFF7: 17 1144 DFB SETMODE-1
FFF8: F5 1145 DFB CRMON-1
FFF9: 03 1146 DFB BLANK-1
FFFA: FB 1147 DFB NMI ;NMI VECTOR
FFFB: 03 1148 DFB NMI/256
FFFC: 59 1149 DFB RESET ;RESET VECTOR
FFFD: FF 1150 DFB RESET/256
FFFE: 86 1151 DFB IRQ ;IRQ VECTOR
FFFF: FA 1152 DFB IRQ/256
1153 XQTNZ EQU $3C
+------------------------------------------------------------------------
| TOPIC -- Apple II -- Red Book Sweet-16 listing
+------------------------------------------------------------------------
1 ***********************
2 * *
3 * APPLE-II PSEUDO *
4 * MACHINE INTERPRETER *
5 * *
6 * COPYRIGHT 1977 *
7 * APPLE COMPUTER INC *
8 * *
9 * ALL RIGHTS RESERVED *
10 * S. WOZNIAK *
11 * *
12 ***********************
13 ; TITLE "SWEET16 INTERPRETER"
14 R0L EQU $0
15 R0H EQU $1
16 R14H EQU $1D
17 R15L EQU $1E
18 R15H EQU $1F
19 SW16PAG EQU $F7
20 SAVE EQU $FF4A
21 RESTORE EQU $FF3F
22 ORG $F689
F689: 20 4A FF 23 SW16 JSR SAVE ;PRESERVE 6502 REG CONTENTS
F68C: 68 24 PLA
F68D: 85 1E 25 STA R15L ;INIT SWEET16 PC
F68F: 68 26 PLA ;FROM RETURN
F690: 85 1F 27 STA R15H ; ADDRESS
F692: 20 98 F6 28 SW16B JSR SW16C ;INTERPRET AND EXECUTE
F695: 4C 92 F6 29 JMP SW16B ;ONE SWEET16 INSTR.
F698: E6 1E 30 SW16C INC R15L
F69A: D0 02 31 BNE SW16D ;INCR SWEET16 PC FOR FETCH
F69C: E6 1F 32 INC R15H
F69E: A9 F7 33 SW16D LDA #SW16PAG
F6A0: 48 34 PHA ;PUSH ON STACK FOR RTS
F6A1: A0 00 35 LDY #$0
F6A3: B1 1E 36 LDA (R15L),Y ;FETCH INSTR
F6A5: 29 0F 37 AND #$F ;MASK REG SPECIFICATION
F6A7: 0A 38 ASL ;DOUBLE FOR TWO BYTE REGISTERS
F6A8: AA 39 TAX ;TO X REG FOR INDEXING
F6A9: 4A 40 LSR
F6AA: 51 1E 41 EOR (R15L),Y ;NOW HAVE OPCODE
F6AC: F0 0B 42 BEQ TOBR ;IF ZERO THEN NON-REG OP
F6AE: 86 1D 43 STX R14H ;INDICATE'PRIOR RESULT REG'
F6B0: 4A 44 LSR
F6B1: 4A 45 LSR ;OPCODE*2 TO LSB'S
F6B2: 4A 46 LSR
F6B3: A8 47 TAY ;TO Y REG FOR INDEXING
F6B4: B9 E1 F6 48 LDA OPTBL-2,Y ;LOW ORDER ADR BYTE
F6B7: 48 49 PHA ;ONTO STACK
F6B8: 60 50 RTS ;GOTO REG-OP ROUTINE
F6B9: E6 1E 51 TOBR INC R15L
F6BB: D0 02 52 BNE TOBR2 ;INCR PC
F6BD: E6 1F 53 INC R15H
F6BF: BD E4 F6 54 TOBR2 LDA BRTBL,X ;LOW ORDER ADR BYTE
F6C2: 48 55 PHA ;ONTO STACK FOR NON-REG OP
F6C3: A5 1D 56 LDA R14H ;'PRIOR RESULT REG' INDEX
F6C5: 4A 57 LSR ;PREPARE CARRY FOR BC, BNC.
F6C6: 60 58 RTS ;GOTO NON-REG OP ROUTINE
F6C7: 68 59 RTNZ PLA ;POP RETURN ADDRESS
F6C8: 68 60 PLA
F6C9: 20 3F FF 61 JSR RESTORE ;RESTORE 6502 REG CONTENTS
F6CC: 6C 1E 00 62 JMP (R15L) ;RETURN TO 6502 CODE VIA PC
F6CF: B1 1E 63 SETZ LDA (R15L),Y ;HIGH-ORDER BYTE OF CONSTANT
F6D1: 95 01 64 STA R0H,X
F6D3: 88 65 DEY
F6D4: B1 1E 66 LDA (R15L),Y ;LOW-ORDER BYTE OF CONSTANT
F6D6: 95 00 67 STA R0L,X
F6D8: 98 68 TYA ;Y-REG CONTAINS 1
F6D9: 38 69 SEC
F6DA: 65 1E 70 ADC R15L ;ADD 2 TO PC
F6DC: 85 1E 71 STA R15L
F6DE: 90 02 72 BCC SET2
F6E0: E6 1F 73 INC R15H
F6E2: 60 74 SET2 RTS
F6E3: 02 75 OPTBL DFB SET-1 ;1X
F6E4: F9 76 BRTBL DFB RTN-1 ;0
F6E5: 04 77 DFB LD-1 ;2X
F6E6: 9D 78 DFB BR-1 ;1
F6E7: 0D 79 DFB ST-1 ;3X
F6E8: 9E 80 DFB BNC-1 ;2
F6E9: 25 81 DFB LDAT-1 ;4X
F6EA: AF 82 DFB BC-1 ;3
F6EB: 16 83 DFB STAT-1 ;5X
F6EC: B2 84 DFB BP-1 ;4
F6ED: 47 85 DFB LDDAT-1 ;6X
F6EE: B9 86 DFB BM-1 ;5
F6EF: 51 87 DFB STDAT-1 ;7X
F6F0: C0 88 DFB BZ-1 ;6
F6F1: 2F 89 DFB POP-1 ;8X
F6F2: C9 90 DFB BNZ-1 ;7
F6F3: 5B 91 DFB STPAT-1 ;9X
F6F4: D2 92 DFB BM1-1 ;8
F6F5: 85 93 DFB ADD-1 ;AX
F6F6: DD 94 DFB BNM1-1 ;9
F6F7: 6E 95 DFB SUB-1 ;BX
F6F8: 05 96 DFB BK-1 ;A
F6F9: 33 97 DFB POPD-1 ;CX
F6FA: E8 98 DFB RS-1 ;B
F6FB: 70 99 DFB CPR-1 ;DX
F6FC: 93 100 DFB BS-1 ;C
F6FD: 1E 101 DFB INR-1 ;EX
F6FE: E7 102 DFB NUL-1 ;D
F6FF: 65 103 DFB DCR-1 ;FX
F700: E7 104 DFB NUL-1 ;E
F701: E7 105 DFB NUL-1 ;UNUSED
F702: E7 106 DFB NUL-1 ;F
F703: 10 CA 107 SET BPL SETZ ;ALWAYS TAKEN
F705: B5 00 108 LD LDA R0L,X
109 BK EQU *-1
F707: 85 00 110 STA R0L
F709: B5 01 111 LDA R0H,X ;MOVE RX TO R0
F70B: 85 01 112 STA R0H
F70D: 60 113 RTS
F70E: A5 00 114 ST LDA R0L
F710: 95 00 115 STA R0L,X ;MOVE R0 TO RX
F712: A5 01 116 LDA R0H
F714: 95 01 117 STA R0H,X
F716: 60 118 RTS
F717: A5 00 119 STAT LDA R0L
F719: 81 00 120 STAT2 STA (R0L,X) ;STORE BYTE INDIRECT
F71B: A0 00 121 LDY #$0
F71D: 84 1D 122 STAT3 STY R14H ;INDICATE R0 IS RESULT NEG
F71F: F6 00 123 INR INC R0L,X
F721: D0 02 124 BNE INR2 ;INCR RX
F723: F6 01 125 INC R0H,X
F725: 60 126 INR2 RTS
F726: A1 00 127 LDAT LDA (R0L,X) ;LOAD INDIRECT (RX)
F728: 85 00 128 STA R0L ;TO R0
F72A: A0 00 129 LDY #$0
F72C: 84 01 130 STY R0H ;ZERO HIGH-ORDER R0 BYTE
F72E: F0 ED 131 BEQ STAT3 ;ALWAYS TAKEN
F730: A0 00 132 POP LDY #$0 ;HIGH ORDER BYTE = 0
F732: F0 06 133 BEQ POP2 ;ALWAYS TAKEN
F734: 20 66 F7 134 POPD JSR DCR ;DECR RX
F737: A1 00 135 LDA (R0L,X) ;POP HIGH ORDER BYTE @RX
F739: A8 136 TAY ;SAVE IN Y-REG
F73A: 20 66 F7 137 POP2 JSR DCR ;DECR RX
F73D: A1 00 138 LDA (R0L,X) ;LOW-ORDER BYTE
F73F: 85 00 139 STA R0L ;TO R0
F741: 84 01 140 STY R0H
F743: A0 00 141 POP3 LDY #$0 ;INDICATE R0 AS LAST RESULT REG
F745: 84 1D 142 STY R14H
F747: 60 143 RTS
F748: 20 26 F7 144 LDDAT JSR LDAT ;LOW-ORDER BYTE TO R0, INCR RX
F74B: A1 00 145 LDA (R0L,X) ;HIGH-ORDER BYTE TO R0
F74D: 85 01 146 STA R0H
F74F: 4C 1F F7 147 JMP INR ;INCR RX
F752: 20 17 F7 148 STDAT JSR STAT ;STORE INDIRECT LOW-ORDER
F755: A5 01 149 LDA R0H ;BYTE AND INCR RX. THEN
F757: 81 00 150 STA (R0L,X) ;STORE HIGH-ORDER BYTE.
F759: 4C 1F F7 151 JMP INR ;INCR RX AND RETURN
F75C: 20 66 F7 152 STPAT JSR DCR ;DECR RX
F75F: A5 00 153 LDA R0L
F761: 81 00 154 STA (R0L,X) ;STORE R0 LOW BYTE @RX
F763: 4C 43 F7 155 JMP POP3 ;INDICATE R0 AS LAST RSLT REG
F766: B5 00 156 DCR LDA R0L,X
F768: D0 02 157 BNE DCR2 ;DECR RX
F76A: D6 01 158 DEC R0H,X
F76C: D6 00 159 DCR2 DEC R0L,X
F76E: 60 160 RTS
F76F: A0 00 161 SUB LDY #$0 ;RESULT TO R0
F771: 38 162 CPR SEC ;NOTE Y-REG = 13*2 FOR CPR
F772: A5 00 163 LDA R0L
F774: F5 00 164 SBC R0L,X
F776: 99 00 00 165 STA R0L,Y ;R0-RX TO RY
F779: A5 01 166 LDA R0H
F77B: F5 01 167 SBC R0H,X
F77D: 99 01 00 168 SUB2 STA R0H,Y
F780: 98 169 TYA ;LAST RESULT REG*2
F781: 69 00 170 ADC #$0 ;CARRY TO LSB
F783: 85 1D 171 STA R14H
F785: 60 172 RTS
F786: A5 00 173 ADD LDA R0L
F788: 75 00 174 ADC R0L,X
F78A: 85 00 175 STA R0L ;R0+RX TO R0
F78C: A5 01 176 LDA R0H
F78E: 75 01 177 ADC R0H,X
F790: A0 00 178 LDY #$0 ;R0 FOR RESULT
F792: F0 E9 179 BEQ SUB2 ;FINISH ADD
F794: A5 1E 180 BS LDA R15L ;NOTE X-REG IS 12*2!
F796: 20 19 F7 181 JSR STAT2 ;PUSH LOW PC BYTE VIA R12
F799: A5 1F 182 LDA R15H
F79B: 20 19 F7 183 JSR STAT2 ;PUSH HIGH-ORDER PC BYTE
F79E: 18 184 BR CLC
F79F: B0 0E 185 BNC BCS BNC2 ;NO CARRY TEST
F7A1: B1 1E 186 BR1 LDA (R15L),Y ;DISPLACEMENT BYTE
F7A3: 10 01 187 BPL BR2
F7A5: 88 188 DEY
F7A6: 65 1E 189 BR2 ADC R15L ;ADD TO PC
F7A8: 85 1E 190 STA R15L
F7AA: 98 191 TYA
F7AB: 65 1F 192 ADC R15H
F7AD: 85 1F 193 STA R15H
F7AF: 60 194 BNC2 RTS
F7B0: B0 EC 195 BC BCS BR
F7B2: 60 196 RTS
F7B3: 0A 197 BP ASL ;DOUBLE RESULT-REG INDEX
F7B4: AA 198 TAX ;TO X REG FOR INDEXING
F7B5: B5 01 199 LDA R0H,X ;TEST FOR PLUS
F7B7: 10 E8 200 BPL BR1 ;BRANCH IF SO
F7B9: 60 201 RTS
F7BA: 0A 202 BM ASL ;DOUBLE RESULT-REG INDEX
F7BB: AA 203 TAX
F7BC: B5 01 204 LDA R0H,X ;TEST FOR MINUS
F7BE: 30 E1 205 BMI BR1
F7C0: 60 206 RTS
F7C1: 0A 207 BZ ASL ;DOUBLE RESULT-REG INDEX
F7C2: AA 208 TAX
F7C3: B5 00 209 LDA R0L,X ;TEST FOR ZERO
F7C5: 15 01 210 ORA R0H,X ;(BOTH BYTES)
F7C7: F0 D8 211 BEQ BR1 ;BRANCH IF SO
F7C9: 60 212 RTS
F7CA: 0A 213 BNZ ASL ;DOUBLE RESULT-REG INDEX
F7CB: AA 214 TAX
F7CC: B5 00 215 LDA R0L,X ;TEST FOR NON-ZERO
F7CE: 15 01 216 ORA R0H,X ;(BOTH BYTES)
F7D0: D0 CF 217 BNE BR1 ;BRANCH IF SO
F7D2: 60 218 RTS
F7D3: 0A 219 BM1 ASL ;DOUBLE RESULT-REG INDEX
F7D4: AA 220 TAX
F7D5: B5 00 221 LDA R0L,X ;CHECK BOTH BYTES
F7D7: 35 01 222 AND R0H,X ;FOR $FF (MINUS 1)
F7D9: 49 FF 223 EOR #$FF
F7DB: F0 C4 224 BEQ BR1 ;BRANCH IF SO
F7DD: 60 225 RTS
F7DE: 0A 226 BNM1 ASL ;DOUBLE RESULT-REG INDEX
F7DF: AA 227 TAX
F7E0: B5 00 228 LDA R0L,X
F7E2: 35 01 229 AND R0H,X ;CHECK BOTH BYTES FOR NO $FF
F7E4: 49 FF 230 EOR #$FF
F7E6: D0 B9 231 BNE BR1 ;BRANCH IF NOT MINUS 1
F7E8: 60 232 NUL RTS
F7E9: A2 18 233 RS LDX #$18 ;12*2 FOR R12 AS STACK POINTER
F7EB: 20 66 F7 234 JSR DCR ;DECR STACK POINTER
F7EE: A1 00 235 LDA (R0L,X) ;POP HIGH RETURN ADDRESS TO PC
F7F0: 85 1F 236 STA R15H
F7F2: 20 66 F7 237 JSR DCR ;SAME FOR LOW-ORDER BYTE
F7F5: A1 00 238 LDA (R0L,X)
F7F7: 85 1E 239 STA R15L
F7F9: 60 240 RTS
F7FA: 4C C7 F6 241 RTN JMP RTNZ
+------------------------------------------------------------------------
| TOPIC -- Apple II -- WOZPAK Sweet-16 article by Steve Wozniak
+------------------------------------------------------------------------
SWEET 16: A Pseudo 16 Bit Microprocessor
by Steve Wozniak
Description:
------------
While writing APPLE BASIC for a 6502 microprocessor, I repeatedly
encountered a variant of MURPHY'S LAW. Briefly stated, any routine
operating on 16-bit data will require at least twice the code that
it should. Programs making extensive use of 16-bit pointers (such
as compilers, editors, and assemblers) are included in this
category. In my case, even the addition of a few double-byte
instructions to the 6502 would have only slightly alleviated the
problem. What I really needed was a 6502/RCA 1800 hybrid - an
abundance of 16-bit registers and excellent pointer capability.
My solution was to implement a non-existant (meta) 16-bit
processor in software, interpreter style, which I call SWEET 16.
SWEET 16 is based on sixteen 16-bit registers (R0-15), which are
actually 32 memory locations. R0 doubles as the SWEET 16
accumulator (ACC), R15 as the program counter (PC), and R14 as the
status register. R13 holds compare instruction results and R12 is
the subroutine return stack pointer if SWEET 16 subroutines are
used. All other SWEET 16 registers are at the user's unrestricted
disposal.
SWEET 16 instructions fall into register and non-register categories.
The register ops specify one of the sixteen registers to be used as
either a data element or a pointer to data in memory, depending
on the specific instruction. For example INR R5 uses R5 as data
and ST @R7 uses R7 as a pointer to data in memory. Except for the
SET instruction, register ops take one byte of code each. The
non-register ops are primarily 6502 style branches with the second
byte specifying a +/-127 byte displacement relative to the address
of the following instruction. Providing that the prior register op
result meets a specified branch condition, the displacement is
added to the SWEET 16 PC, effecting a branch.
SWEET 16 is intended as a 6502 enhancement package, not a stand
alone processor. A 6502 program switches to SWEET 16 mode with a
subroutine call and subsequent code is interpreted as SWEET 16
instructions. The nonregister op RTN returns the user program to
6502 mode after restoring the internal register contents
(A, X, Y, P, and S). The following example illustrates how to use
SWEET 16.
300 B9 00 02 LDA IN,Y ;get a char
303 C9 CD CMP #"M" ;"M" for move
305 D0 09 BNE NOMOVE ;No. Skip move
307 20 89 F6 JSR SW16 ;Yes, call SWEET 16
30A 41 MLOOP LD @R1 ;R1 holds source
30B 52 ST @R2 ;R2 holds dest. addr.
30C F3 DCR R3 ;Decr. length
30D 07 FB BNZ MLOOP ;Loop until done
30F 00 RTN ;Return to 6502 mode.
310 C9 C5 NOMOVE CMP #"E" ;"E" char?
312 D0 13 BEQ EXIT ;Yes, exit
314 C8 INY ;No, cont.
NOTE: Registers A, X, Y, P, and S are not disturbed by SWEET 16.
Instruction Descriptions:
-------------------------
The SWEET 16 opcode listing is short and uncomplicated. Excepting
relative branch displacements, hand assembly is trivial. All
register opcodes are formed by combining two Hex digits, one for the
opcode and one to specify a register. For example, opcodes 15 and
45 both specify register R5 while codes 23, 27, and 29 are all ST
ops. Most register ops are assigned in complementary pairs to
facilitate remembering them. Therefore, LD ans ST are opcodes 2N
and 3N respectively, while LD @ and ST @ are codes 4N and 5N.
Opcodes 0 to C (Hex) are assigned to the thirteen non-register ops.
Except for RTN (opcode 0), BK (0A), and RS (0B), the non register
ops are 6502 style branches. The second byte of a branch instruction
contains a +/-127 byte displacement value (in two's complement form)
relative to the address of the instruction immediately following
the branch.
If a specified branch condition is met by the prior register op
result, the displacement is added to the PC effecting a branch.
Except for the BR (Branch always) and BS (Branch to a Subroutine),
the branch opcodes are assigned in complementary pairs, rendering
them easily remembered for hand coding. For example, Branch if Plus
and Branch if Minus are opcodes 4 and 5 while Branch if Zero and
Branch if NonZero are opcodes 6 and 7.
SWEET 16 Opcode Summary:
------------------------
Register OPS-
1n SET Rn Constant (Set)
2n LD Rn (Load)
3n ST Rn (Store)
4n LD @Rn (Load Indirect)
5n ST @Rn (Store Indirect)
6n LDD @Rn (Load Double Indirect)
7n STD @Rn (Store Double Indirect)
8n POP @Rn (Pop Indirect)
9n STP @Rn (Store POP Indirect)
An ADD Rn (Add)
Bn SUB Rn (Sub)
Cn POPD @Rn (Pop Double Indirect)
Dn CPR Rn (Compare)
En INR Rn (Increment)
Fn DCR Rn (Decrement)
Non-register OPS-
00 RTN (Return to 6502 mode)
01 BR ea (Branch always)
02 BNC ea (Branch if No Carry)
03 BC ea (Branch if Carry)
04 BP ea (Branch if Plus)
05 BM ea (Branch if Minus)
06 BZ ea (Branch if Zero)
07 BNZ ea (Branch if NonZero)
08 BM1 ea (Branch if Minus 1)
09 BNM1 ea (Branch if Not Minus 1)
0A BK (Break)
0B RS (Return from Subroutine)
0C BS ea (Branch to Subroutine)
0D (Unassigned)
0E (Unassigned)
0F (Unassigned)
Register Instructions:
----------------------
SET:
SET Rn,Constant [ 1n Low High ]
The 2-byte constant is loaded into Rn (n=0 to F, Hex) and
branch conditions set accordingly. The carry is cleared.
EXAMPLE:
15 34 A0 SET R5 $A034 ;R5 now contains $A034
LOAD:
LD Rn [ 2n ]
The ACC (R0) is loaded from Rn and branch conditions set
according to the data transferred. The carry is cleared and
contents of Rn are not disturbed.
EXAMPLE:
15 34 A0 SET R5 $A034
25 LD R5 ;ACC now contains $A034
STORE:
ST Rn [ 3n ]
The ACC is stored into Rn and branch conditions set according
to the data transferred. The carry is cleared and the ACC
contents are not disturbed.
EXAMPLE:
25 LD R5 ;Copy the contents
36 ST R6 ;of R5 to R6
LOAD INDIRECT:
LD @Rn [ 4n ]
The low-order ACC byte is loaded from the memory location
whose address resides in Rn and the high-order ACC byte is
cleared. Branch conditions reflect the final ACC contents
which will always be positive and never minus 1. The carry
is cleared. After the transfer, Rn is incremented by 1.
EXAMPLE
15 34 A0 SET R5 $A034
45 LD @R5 ;ACC is loaded from memory
;location $A034
;R5 is incr to $A035
STORE INDIRECT:
ST @Rn [ 5n ]
The low-order ACC byte is stored into the memory location
whose address resides in Rn. Branch conditions reflect the
2-byte ACC contents. The carry is cleared. After the transfer
Rn is incremented by 1.
EXAMPLE:
15 34 A0 SET R5 $A034 ;Load pointers R5, R6 with
16 22 90 SET R6 $9022 ;$A034 and $9022
45 LD @R5 ;Move byte from $A034 to $9022
56 ST @R6 ;Both ptrs are incremented
LOAD DOUBLE-BYTE INDIRECT:
LDD @Rn [ 6n ]
The low order ACC byte is loaded from memory location whose
address resides in Rn, and Rn is then incremented by 1. The
high order ACC byte is loaded from the memory location whose
address resides in the incremented Rn, and Rn is again
incremented by 1. Branch conditions reflect the final ACC
contents. The carry is cleared.
EXAMPLE:
15 34 A0 SET R5 $A034 ;The low-order ACC byte is loaded
65 LDD @R6 ;from $A034, high-order from
;$A035, R5 is incr to $A036
STORE DOUBLE-BYTE INDIRECT:
STD @Rn [ 7n ]
The low-order ACC byte is stored into memory location
whose address resides in Rn, and Rn is the incremented
by 1. The high-order ACC byte is stored into the memory
location whose address resides in the incremented Rn, and Rn
is again incremented by 1. Branch conditions reflect the ACC
contents which are not disturbed. The carry is cleared.
EXAMPLE:
15 34 A0 SET R5 $A034 ;Load pointers R5, R6
16 22 90 SET R6 $9022 ;with $A034 and $9022
65 LDD @R5 ;Move double byte from
76 STD @R6 ;$A034-35 to $9022-23.
;Both pointers incremented by 2.
POP INDIRECT:
POP @Rn [ 8n ]
The low-order ACC byte is loaded from the memory location
whose address resides in Rn after Rn is decremented by 1,
and the high order ACC byte is cleared. Branch conditions
reflect the final 2-byte ACC contents which will always be
positive and never minus one. The carry is cleared. Because
Rn is decremented prior to loading the ACC, single byte
stacks may be implemented with the ST @Rn and POP @Rn ops
(Rn is the stack pointer).
EXAMPLE:
15 34 A0 SET R5 $A034 ;Init stack pointer
10 04 00 SET R0 4 ;Load 4 into ACC
55 ST @R5 ;Push 4 onto stack
10 05 00 SET R0 5 ;Load 5 into ACC
55 ST @R5 ;Push 5 onto stack
10 06 00 SET R0 6 ;Load 6 into ACC
55 ST @R5 ;Push 6 onto stack
85 POP @R5 ;Pop 6 off stack into ACC
85 POP @R5 ;Pop 5 off stack
85 POP @R5 ;Pop 4 off stack
STORE POP INDIRECT:
STP @Rn [ 9n ]
The low-order ACC byte is stored into the memory location
whose address resides in Rn after Rn is decremented by 1.
Branch conditions will reflect the 2-byte ACC contents which
are not modified. STP @Rn and POP @Rn are used together to
move data blocks beginning at the greatest address and
working down. Additionally, single-byte stacks may be
implemented with the STP @Rn ops.
EXAMPLE:
14 34 A0 SET R4 $A034 ;Init pointers
15 22 90 SET R5 $9022
84 POP @R4 ;Move byte from
95 STP @R5 ;$A033 to $9021
84 POP @R4 ;Move byte from
95 STP @R5 ;$A032 to $9020
ADD:
ADD Rn [ An ]
The contents of Rn are added to the contents of ACC (R0),
and the low-order 16 bits of the sum restored in ACC. the
17th sum bit becomes the carry and the other branch
conditions reflect the final ACC contents.
EXAMPLE:
10 34 76 SET R0 $7634 ;Init R0 (ACC) and R1
11 27 42 SET R1 $4227
A1 ADD R1 ;Add R1 (sum=B85B, C clear)
A0 ADD R0 ;Double ACC (R0) to $70B6
;with carry set.
SUBTRACT:
SUB Rn [ Bn ]
The contents of Rn are subtracted from the ACC contents by
performing a two's complement addition:
ACC = ACC + Rn + 1
The low order 16 bits of the subtraction are restored in the
ACC, the 17th sum bit becomes the carry and other branch
conditions reflect the final ACC contents. If the 16-bit
unsigned ACC contents are greater than or equal to the 16-bit
unsigned Rn contents, then the carry is set, otherwise it is
cleared. Rn is not disturbed.
EXAMPLE:
10 34 76 SET R0 $7634 ;Init R0 (ACC)
11 27 42 SET R1 $4227 ;and R1
B1 SUB R1 ;subtract R1
;(diff=$340D with c set)
B0 SUB R0 ;clears ACC. (R0)
POP DOUBLE-BYTE INDIRECT:
POPD @Rn [ Cn ]
Rn is decremented by 1 and the high-order ACC byte is loaded
from the memory location whose address now resides in Rn. Rn is
again decremented by 1 and the low-order ACC byte is loaded from
the corresponding memory location. Branch conditions reflect the
final ACC contents. The carry is cleared. Because Rn is
decremented prior to loading each of the ACC halves, double-byte
stacks may be implemented with the STD @Rn and POPD @Rn ops
(Rn is the stack pointer).
EXAMPLE:
15 34 A0 SET R5 $A034 ;Init stack pointer
10 12 AA SET R0 $AA12 ;Load $AA12 into ACC
75 STD @R5 ;Push $AA12 onto stack
10 34 BB SET R0 $BB34 ;Load $BB34 into ACC
75 STD @R5 ;Push $BB34 onto stack
C5 POPD @R5 ;Pop $BB34 off stack
C5 POPD @R5 ;Pop $AA12 off stack
COMPARE:
CPR Rn [ Dn ]
The ACC (R0) contents are compared to Rn by performing the 16
bit binary subtraction ACC-Rn and storing the low order 16
difference bits in R13 for subsequent branch tests. If the 16
bit unsigned ACC contents are greater than or equal to the 16
bit unsigned Rn contents, then the carry is set, otherwise it
is cleared. No other registers, including ACC and Rn, are
disturbed.
EXAMPLE:
15 34 A0 SET R5 $A034 ;Pointer to memory
16 BF A0 SET R6 $A0BF ;Limit address
B0 LOOP1 SUB R0 ;Zero data
75 STD @R5 ;clear 2 locations
;increment R5 by 2
25 LD R5 ;Compare pointer R5
D6 CPR R6 ;to limit R6
02 FA BNC LOOP1 ;loop if C clear
INCREMENT:
INR Rn [ En ]
The contents of Rn are incremented by 1. The carry is cleared
and other branch conditions reflect the incremented value.
EXAMPLE:
15 34 A0 SET R5 $A034 ;(Pointer)
B0 SUB R0 ;Zero to R0
55 ST @R5 ;Clr Location $A034
E5 INR R5 ;Incr R5 to $A036
55 ST @R5 ;Clrs location $A036
;(not $A035)
DECREMENT:
DCR Rn [ Fn ]
The contents of Rn are decremented by 1. The carry is cleared
and other branch conditions reflect the decremented value.
EXAMPLE: (Clear 9 bytes beginning at location A034)
15 34 A0 SET R5 $A034 ;Init pointer
14 09 00 SET R4 9 ;Init counter
B0 SUB R0 ;Zero ACC
55 LOOP2 ST @R5 ;Clear a mem byte
F4 DCR R4 ;Decrement count
07 FC BNZ LOOP2 ;Loop until Zero
Non-Register Instructions:
--------------------------
RETURN TO 6502 MODE:
RTN 00
Control is returned to the 6502 and program execution continues
at the location immediately following the RTN instruction. the
6502 registers and status conditions are restored to their
original contents (prior to entering SWEET 16 mode).
BRANCH ALWAYS:
BR ea [ 01 d ]
An effective address (ea) is calculated by adding the signed
displacement byte (d) to the PC. The PC contains the address
of the instruction immediately following the BR, or the address
of the BR op plus 2. The displacement is a signed two's
complement value from -128 to +127. Branch conditions are not
changed.
NOTE: The effective address calculation is identical to that
for 6502 relative branches. The Hex add & Subtract features of
the APPLE ][ monitor may be used to calculate displacements.
d = $80 ea = PC + 2 - 128
d = $81 ea = PC + 2 - 127
d = $FF ea = PC + 2 - 1
d = $00 ea = PC + 2 + 0
d = $01 ea = PC + 2 + 1
d = $7E ea = PC + 2 + 126
d = $7F ea = PC + 2 + 127
EXAMPLE:
$300: 01 50 BR $352
BRANCH IF NO CARRY:
BNC ea [ 02 d ]
A branch to the effective address is taken only is the carry is
clear, otherwise execution resumes as normal with the next
instruction. Branch conditions are not changed.
BRANCH IF CARRY SET:
BC ea [ 03 d ]
A branch is effected only if the carry is set. Branch conditions
are not changed.
BRANCH IF PLUS:
BP ea [ 04 d ]
A branch is effected only if the prior 'result' (or most
recently transferred dat) was positive. Branch conditions are
not changed.
EXAMPLE: (Clear mem from A034 to A03F)
15 34 A0 SET R5 $A034 ;Init pointer
14 3F A0 SET R4 $A03F ;Init limit
B0 LOOP3 SUB R0
55 ST @R5 ;Clear mem byte
;Increment R5
24 LD R4 ;Compare limit
D5 CPR R5 ;to pointer
04 FA BP LOOP3 ;Loop until done
BRANCH IF MINUS:
BM ea [ 05 d ]
A branch is effected only if prior 'result' was minus (negative,
MSB = 1). Branch conditions are not changed.
BRANCH IF ZERO:
BZ ea [ 06 d ]
A Branch is effected only if the prior 'result' was zero. Branch
conditions are not changed.
BRANCH IF NONZERO
BNZ ea [ 07 d ]
A branch is effected only if the priot 'result' was non-zero
Branch conditions are not changed.
BRANCH IF MINUS ONE
BM1 ea [ 08 d ]
A branch is effected only if the prior 'result' was minus one
($FFFF Hex). Branch conditions are not changed.
BRANCH IF NOT MINUS ONE
BNM1 ea [ 09 d ]
A branch effected only if the prior 'result' was not minus 1.
Branch conditions are not changed.
BREAK:
BK [ 0A ]
A 6502 BRK (break) instruction is executed. SWEET 16 may be
re-entered non destructively at SW16d after correcting the
stack pointer to its value prior to executing the BRK.
RETURN FROM SWEET 16 SUBROUTINE:
RS [ 0B ]
RS terminates execution of a SWEET 16 subroutine and returns to the
SWEET 16 calling program which resumes execution (in SWEET 16 mode).
R12, which is the SWEET 16 subroutine return stack pointer, is
decremented twice. Branch conditions are not changed.
BRANCH TO SWEET 16 SUBROUTINE:
BS ea [ 0c d ]
A branch to the effective address (PC + 2 + d) is taken and
execution is resumed in SWEET 16 mode. The current PC is pushed
onto a SWEET 16 subroutine return address stack whose pointer is
R12, and R12 is incremented by 2. The carry is cleared and branch
conditions set to indicate the current ACC contents.
EXAMPLE: (Calling a 'memory move' subroutine to move A034-A03B
to 3000-3007)
15 34 A0 SET R5 $A034 ;Init pointer 1
14 3B A0 SET R4 $A03B ;Init limit 1
16 00 30 SET R6 $3000 ;Init pointer 2
0C 15 BS MOVE ;Call move subroutine
45 MOVE LD @R5 ;Move one
56 ST @R6 ;byte
24 LD R4
D5 CPR R5 ;Test if done
04 FA BP MOVE
0B RS ;Return
Theory of Operation:
--------------------
SWEET 16 execution mode begins with a subroutine call to SW16. All
6502 registers are saved at this time, to be restored when a SWEET
16 RTN instruction returns control to the 6502. If you can tolerate
indefinate 6502 register contents upon exit, approximately 30 usec
may be saved by entering at SW16 + 3. Because this might cause an
inadvertant switch from Hex to Decimal mode, it is advisable to enter
at SW16 the first time through.
After saving the 6502 registers, SWEET 16 initializes its PC (R15)
with the subroutine return address off the 6502 stack. SWEET 16's
PC points to the location preceding the next instruction to be
executed. Following the subroutine call are 1-,2-, and 3-byte
SWEET 16 instructions, stored in ascending memory like 6502
instructions. the main loop at SW16B repeatedly calls the 'execute
instruction' routine to execute it.
Subroutine SW16C increments the PC (R15) and fetches the next opcode,
which is either a register op of the form OP REG with OP between 1
and 15 or a non-register op of the form 0 OP with OP between 0 and 13.
Assuming a register op, the register specification is doubled to
account for the 3 byte SWEET 16 registers and placed in the X-reg
for indexing. Then the instruction type is determined. Register ops
place the doubled register specification in the high order byte of
R14 indicating the 'prior result register' to subsequent branch
instructions. Non-register ops treat the register specifcation
(right-hand half-byte) as their opcode, increment the SWEET 16 PC
to point at the displacement byte of branch instructions, load the
A-reg with the 'prior result register' index for branch condition
testing, and clear the Y-reg.
When is an RTS really a JSR?
----------------------------
Each instruction type has a corresponding subroutine. The subroutine
entry points are stored in a table which is directly indexed into by
the opcode. By assigning all the entries to a common page, only a
single byte to address need be stored per routine. The 6502 indirect
jump might have been used as follows to transfer control to the
appropriate subroutine.
LDA #ADRH ;High-order byte.
STA IND+1
LDA OPTBL,X ;Low-order byte.
STA IND
JMP (IND)
To save code, the subroutine entry address (minus 1) is pushed onto
the stack, high-order byte first. A 6502 RTS (return from subroutine)
is used to pop the address off the stack and into the 6502 PC (after
incrementing by 1). The net result is that the desired subroutine is
reached by executing a subroutine return instruction!
Opcode Subroutines:
-------------------
The register op routines make use of the 6502 'zero page indexed by X'
and 'indexed by X direct' addressing modes to access the specified
registers and indirect data. The 'result' of most register ops is left
in the specified register and can be sensed by subsequent branch
instructions, since the register specification is saved in the high-
order byte of R14. This specification is changed to indicate R0 (ACC)
for ADD and SUB instructions and R13 for the CPR (compare) instruction.
Normally the high-order R14 byte holds the 'prior result register'
index times 2 to account for the 2-byte SWEET 16 registers and the
LSB is zero. If ADD, SUB, or CPR instructions generate carries, then
this index is incremented, setting the LSB.
The SET instruction increments the PC twice, picking up data bytes in
the specified register. In accordance with 6502 convention, the
low-order data byte precedes the high-order byte.
Most SWEET 16 non-register ops are relative branches. The corresponding
subroutines determine whether or not the 'prior result' meets the
specified branch condition and if so, update the SWEET 16 PC by adding
the displacement value (-128 to +127 bytes).
The RTN op restores the 6502 register contents, pops the subroutine
return stack and jumps indirect through the SWEET 16 PC. This transfers
control to the 6502 at the instruction immediately following the
RTN instruction.
The BK op actually executes a 6502 break instruction (BRK), transferring
control to the interrupt handler.
Any number of subroutine levels may be implemented within SWEET 16 code
via the BS (Branch to Subroutine) and RS (Return from Subroutine)
instructions. The user must initialize and otherwise not disturb R12 if
the SWEET 16 subroutine capability is used since it is utilized as the
automatic return stack pointer.
Memory Allocation:
------------------
The only storage that must be allocated for SWEET 16 variables are 32
consecutive locations in page zero for the SWEET 16 registers, four
locations to save the 6502 register contents, and a few levels of the
6502 subroutine return address stack. if you don't need to preserve the
6502 register contents, delete the SAVE and RESTORE subroutines and the
corresponding subroutine calls. This will free the four page zero
locations ASAV, XSAV, YSAV, and PSAV.
User Modifications:
-------------------
You may wish to add some of your own instructions to this implementation of
SWEET 16. If you use the unassigned opcodes $0E and $0F, remember that
SWEET 16 treats these as 2-byte instructions. You may wish to handle the
break instruction as a SWEET 16 call, saving two bytes of code each time
you transfer into SWEET 16 mode. Or you may wish to use the SWEET 16
BK (break) op as a 'CHAROUT' call in the interrupt handler. You can perform
absolute jumps within SWEET 16 by loading the ACC (R0) with the address
you wish to jump to (minus 1) and executing a ST R15 instruction.
+------------------------------------------------------------------------
| TOPIC -- Apple II -- WOZPAK Sweet-16 article by Dick Sedgewick
+------------------------------------------------------------------------
SWEET 16 - INTRODUCTION
by Dick Sedgewick
Sweet 16 is probably the least used and least understood seed
in the Apple ][.
In exactly the same sense that Integer and Applesoft Basics
are languages, SWEET 16 is a language. Compared to the
Basics, however, it would be classed as low level with a
strong likeness to conventional 6502 Assembly language.
To use SWEET 16, you must learn the language - and to quote
"WOZ", "The opcode list is short and uncomplicated". "WOZ"
(Steve Wozniak), of course is Mr. Apple, and the creator of
SWEET 16.
SWEET 16 is ROM based in every Apple ][ from $F689 to $F7FC.
It has it's own set of opcodes and instruction sets, and uses
the SAVE and RESTORE routines from the Apple Monitor to
preserve the 6502 registers when in use, allowing SWEET 16 to
be used as a subroutine.
It uses the first 32 locations on zero page to set up its 16
double byte registers, and is therefore not compatible with
Applesoft Basic without some additional efforts.
The original article, "SWEET 16: The 6502 Dream Machine",
first appeared in Byte Magazine, November 1977 and later in
the original "WOZ PAK". The article is included here and
again as test material to help understand the use and
implementation of SWEET 16.
Examples of the use of SWEET 16 are found in the Programmer's
Aid #1, in the Renumber, Append, and Relocate programs. The
Programmer's Aid Operating Manual contains complete source
assembly listings, indexed on page 65.
The demonstration program is written to be introductory and
simple, consisting of three parts:
1. Integer Basic Program
2. Machine Language Subroutine
3. SWEET 16 Subroutine
The task of the program will be to move data. Parameters of
the move will be entered in the Integer Basic Program.
The "CALL 768" ($300) at line 120, enters a 6502 machine
language subroutine having the single purpose of entering
SWEET 16 and subsequently returning to BASIC (addresses $300,
$301, $302, and $312 respectively). The SWEET 16 subroutine
of course performs the move, and is entered at Hex locations
$303 to $311 (see listing Number 3).
After the move, the screen will display three lines of data,
each 8 bytes long, and await entry of a new set of parameters.
The three lines of data displayed on the screen are as
follows:
Line 1: The first 8 bytes of data starting at $800, which
is the fixed source data to be moved (in this
case, the string A$).
Line 2: The first 8 bytes of data starting at the hex
address entered as the destination of the
move (high order byte only).
Line 3: The first 8 bytes of data starting at $0000 (the
first four SWEET 16 registers).
The display of 8 bytes of data was chosen to simplify the
illustration of what goes on.
Integer Basic has its own way of recording the string A$.
Because the name chosen for the string "A$" is stored in 2
bytes, a total of five housekeeping bytes precede the data
entered as A$, leaving only three additional bytes available
for display. Integer Basic also adds a housekeeping byte at
the end of a string, known as the "string terminator".
Consequently, for convenience purposes of the display, and to
see the string terminator as the 8th byte, the string data
entered via the keyboard should be limited to two characters,
and will appear as the 6th and 7th bytes. Additionally,
parameters to be entered include the number of bytes to be
moved. A useful range for this demonstration would be 1-8
inclusive, but of course 1-255 will work.
Finally, the starting address of the destination of the move
must be entered. Again, for simplicity, only the high-order
byte is entered, and the program allows a choice between
Decimal 9 and high-order byte of program pointer 1, to avoid
unnecessary problems (in this demonstration enter a decimal
number between 9 and 144 for a 48K APPLE).
The 8 bytes of data displayed starting at $00 will enable one
to observe the condition of the SWEET 16 registers after a
move has been accomplished, and thereby understand how the
SWEET 16 program works.
From the article "SWEET 16: A 6502 Dream Machine", remember
that SWEET 16 can establish 16 double byte registers starting
at $00. This means that SWEET 16 can use the first 32
addresses on zero page.
The "events" occurring in this demonstration program can be
studied in the first four SWEET 16 registers. Therefore, the
8 byte display starting at $0000 is large enough for this
purpose.
These four registers are established as R0, R1, R2, R3:
R0 $0000 & 0001 -SWEET 16 accumulator
R1 $0002 & 0003 -Source address
R2 $0004 & 0005 -Destination address
R3 $0006 & 0007 -Number of bytes to move
.
.
.
R14 $001C & 001D -Prior result register
R15 $001E & 001F -SWEET 16 Program counter
Additionally, an examination of registers R14 and R15 will
extend and understanding of SWEET 16, as fully explained in
the "WOZ" text. Notice that the high order byte of R14,
(located at $1D) contains $06, and is the doubled register
specification (3X2=$06). R15, the SWEET 16 program counter
contains the address of the next operation as it did for each
step during execution of the program, which was $0312 when
execution ended and the 6502 code resumed.
To try a sample run, enter the Integer Basic program as shown
in Listing #1. Of course, REM statements can be omitted, and
line 10 is only helpful if the machine code is to be stored
on disk. Listing #2 must also be entered starting at $300.
NOTE: A 6502 disassembly does not look like listing #3, but
the SOURCEROR disassembler would create a correct disassembly.
Enter "RUN" and hit RETURN
Enter "12" and hit RETURN (A$ - A$ string data)
Enter "18" and hit RETURN (high-order byte of destination)
The display should appear as follows:
$0800-C1 40 00 10 08 B1 B2 1E (SOURCE)
$0A00-C1 40 00 10 08 B1 B2 1E (Dest.)
$0000-1E 00 08 08 08 0A 00 00 (SWEET 16)
NOTE: The 8 bytes stored at $0A00 are identical to the 8
bytes starting at $0800, indicating that an accurate move of 8
bytes length has been made. They are moved one byte at a
time starting with token C1 and ending with token 1E. If
moving less than 8 bytes, the data following the moved data
would be whatever existed at those locations before the move.
The bytes have the following significance:
A Token$
C1 40 00 10 08 B1 B2 1E
--------- ---- -------- --------- --
| | | | | String
VN DSP NVA DATA DATA Terminator
The SWEET 16 registers are as shown:
low high low high low high low high
$0000 1E 00 08 08 08 0A 00 00
---------- ---------- ---------- ----------
| | | |
register register register register
R0 R1 R2 R3
(acc) (source) (dest) (#bytes)
The low order byte of R0, the SWEET 16 accumulator, has $1E
in it, the last byte moved (the 8th).
The low order byte of the source register R1 started as $00
and was incremented eight times, once for each byte of moved
data.
The high order byte of the destination register R2 contains
$0A, which was entered at 10 (the variable) and poked into
the SWEET 16 code. The low-order byte of R2 was incremented
exactly like R1.
Finally, register R3, the register that stores the number of
bytes to be moved, has been poked to 8 (the variable B) and
decremented eight times as each byte got moved, ending up
$0000.
By entering character strings and varying the number of bytes
to be moved, the SWEET 16 registers can be observed and the
contents predicted.
Working with this demonstration program, and study of the
text material will enable you to write SWEET 16 programs that
perform additional 16 bit manipulations. The unassigned
opcodes mentioned in the "WOZ Dream Machine" article should
present a most interesting opportunity to "play".
SWEET 16 as a language - or tool - opens a new direction to
Apple ][ owners without spending a dime, and it's been there
all the time.
"Apple-ites" who desire to learn machine language programming,
can use SWEET 16 as a starting point. With this text
material to use, and less opcodes to learn, a user can
quickly be effective.
Listing #1
>List
10 PRINT "[D]BLOAD SWEET": REM CTRL D
20 CALL - 936: DIM A $ (10)
30 INPUT "ENTER STRING A $ " , A $
40 INPUT "ENTER # BYTES " , B
50 IF NOT B THEN 40 : REM AT LEAST 1
60 POKE 778 , B : REM POKE LENGTH
70 INPUT "ENTER DESTINATION " , A
80 IF A > PEEK (203) - 1 THEN 70
90 IF A < PEEK (205) + 1 THEN 70
100 POKE 776 , A : REM POKE DESTINATION
110 M = 8 : GOSUB 160 : REM DISPLAY
120 CALL 768 : REM GOTO $0300
130 M = A : GOSUB 160 : REM DISPLAY
140 M = O : GOSUB 160 : REM DISPLAY
150 PRINT : PRINT : GOTO 30
160 POKE 60 , 0 : POKE 61 , M
170 CALL -605 : RETURN : REM XAM8 IN MONITOR
Listing #2
300:20 89 F6 11 00 08 12 00 00 13 00 00 41 52
F3 07 FB 00 60
Listing #3
SWEET 16
$300 20 89 F6 JSR $F689
$303 11 00 08 SET R1 source address
$306 12 00 00 SET R2 destination address
A
$309 13 00 00 SET R3 length
B
$30C 41 LD @R1
$30D 52 ST @R2
$30E F3 DCR R3
$30F 07 BNZ $30C
$311 00 RTN
$312 60 RTS
Data will be poked from the Integer Basic program:
"A" from Line 100
"B" from Line 60
+------------------------------------------------------------------------
| TOPIC -- Apple II -- Red Book Mini-Assembler listing
+------------------------------------------------------------------------
1 ***********************
2 * *
3 * APPLE-II *
4 * MINI-ASSEMBLER *
5 * *
6 * COPYRIGHT 1977 BY *
7 * APPLE COMPUTER INC. *
8 * *
9 * ALL RIGHTS RESERVED *
10 * *
11 * S. WOZNIAK *
12 * A. BAUM *
13 ***********************
14 ; TITLE "APPLE-II MINI-ASSEMBLER"
15 FORMAT EQU $2E
16 LENGTH EQU $2F
17 MODE EQU $31
18 PROMPT EQU $33
19 YSAV EQU $34
20 L EQU $35
21 PCL EQU $3A
22 PCH EQU $3B
23 A1H EQU $3D
24 A2L EQU $3E
25 A2H EQU $3F
26 A4L EQU $42
27 A4H EQU $43
28 FMT EQU $44
29 IN EQU $200
30 INSDS2 EQU $F88E
31 INSTDSP EQU $F8D0
32 PRBL2 EQU $F94A
33 PCADJ EQU $F953
34 CHAR1 EQU $F9B4
35 CHAR2 EQU $F9BA
36 MNEML EQU $F9C0
37 MNEMR EQU $FA00
38 CURSUP EQU $FC1A
39 GETLNZ EQU $FD67
40 COUT EQU $FDED
41 BL1 EQU $FE00
42 A1PCLP EQU $FE78
43 BELL EQU $FF3A
44 GETNUM EQU $FFA7
45 TOSUB EQU $FFBE
46 ZMODE EQU $FFC7
47 CHRTBL EQU $FFCC
48 ORG $F500
F500: E9 81 49 REL SBC #$81 ;IS FMT COMPATIBLE
F502: 4A 50 LSR ;WITH RELATIVE MODE?
F503: D0 14 51 BNE ERR3 ; NO.
F505: A4 3F 52 LDY A2H
F507: A6 3E 53 LDX A2L ;DOUBLE DECREMENT
F509: D0 01 54 BNE REL2
F50B: 88 55 DEY
F50C: CA 56 REL2 DEX
F50D: 8A 57 TXA
F50E: 18 58 CLC
F50F: E5 3A 59 SBC PCL ;FORM ADDR-PC-2
F511: 85 3E 60 STA A2L
F513: 10 01 61 BPL REL3
F515: C8 62 INY
F516: 98 63 REL3 TYA
F517: E5 3B 64 SBC PCH
F519: D0 6B 65 ERR3 BNE ERR ;ERROR IF >1-BYTE BRANCH
F51B: A4 2F 66 FINDOP LDY LENGTH
F51D: B9 3D 00 67 FNDOP2 LDA A1H,Y ;MOVE INST TO (PC)
F520: 91 3A 68 STA (PCL),Y
F522: 88 69 DEY
F523: 10 F8 70 BPL FNDOP2
F525: 20 1A FC 71 JSR CURSUP
F528: 20 1A FC 72 JSR CURSUP ;RESTORE CURSOR
F52B: 20 D0 F8 73 JSR INSTDSP ;TYPE FORMATTED LINE
F52E: 20 53 F9 74 JSR PCADJ ;UPDATE PC
F531: 84 3B 75 STY PCH
F533: 85 3A 76 STA PCL
F535: 4C 95 F5 77 JMP NXTLINE ;GET NEXT LINE
F538: 20 BE FF 78 FAKEMON3 JSR TOSUB ;GO TO DELIM HANDLER
F53B: A4 34 79 LDY YSAV ;RESTORE Y-INDEX
F53D: 20 A7 FF 80 FAKEMON JSR GETNUM ;READ PARAM
F540: 84 34 81 STY YSAV ;SAVE Y-INDEX
F542: A0 17 82 LDY #$17 ;INIT DELIMITER INDEX
F544: 88 83 FAKEMON2 DEY ;CHECK NEXT DELIM
F545: 30 4B 84 BMI RESETZ ;ERR IF UNRECOGNIZED DELIM
F547: D9 CC FF 85 CMP CHRTBL,Y ;COMPARE WITH DELIM TABLE
F54A: D0 F8 86 BNE FAKEMON2 ;NO MATCH
F54C: C0 15 87 CPY #$15 ;MATCH, IS IT CR?
F54E: D0 E8 88 BNE FAKEMON3 ;NO, HANDLE IT IN MONITOR
F550: A5 31 89 LDA MODE
F552: A0 00 90 LDY #$0
F554: C6 34 91 DEC YSAV
F556: 20 00 FE 92 JSR BL1 ;HANDLE CR OUTSIDE MONITOR
F559: 4C 95 F5 93 JMP NXTLINE
F55C: A5 3D 94 TRYNEXT LDA A1H ;GET TRIAL OPCODE
F55E: 20 8E F8 95 JSR INSDS2 ;GET FMT+LENGTH FOR OPCODE
F561: AA 96 TAX
F562: BD 00 FA 97 LDA MNEMR,X ;GET LOWER MNEMONIC BYTE
F565: C5 42 98 CMP A4L ;MATCH?
F567: D0 13 99 BNE NEXTOP ;NO, TRY NEXT OPCODE.
F569: BD C0 F9 100 LDA MNEML,X ;GET UPPER MNEMONIC BYTE
F56C: C5 43 101 CMP A4H ;MATCH?
F56E: D0 0C 102 BNE NEXTOP ;NO, TRY NEXT OPCODE
F570: A5 44 103 LDA FMT
F572: A4 2E 104 LDY FORMAT ;GET TRIAL FORMAT
F574: C0 9D 105 CPY #$9D ;TRIAL FORMAT RELATIVE?
F576: F0 88 106 BEQ REL ;YES.
F578: C5 2E 107 NREL CMP FORMAT ;SAME FORMAT?
F57A: F0 9F 108 BEQ FINDOP ;YES.
F57C: C6 3D 109 NEXTOP DEC A1H ;NO, TRY NEXT OPCODE
F57E: D0 DC 110 BNE TRYNEXT
F580: E6 44 111 INC FMT ;NO MORE, TRY WITH LEN=2
F582: C6 35 112 DEC L ;WAS L=2 ALREADY?
F584: F0 D6 113 BEQ TRYNEXT ;NO.
F586: A4 34 114 ERR LDY YSAV ;YES, UNRECOGNIZED INST.
F588: 98 115 ERR2 TYA
F589: AA 116 TAX
F58A: 20 4A F9 117 JSR PRBL2 ;PRINT ^ UNDER LAST READ
F58D: A9 DE 118 LDA #$DE ;CHAR TO INDICATE ERROR
F58F: 20 ED FD 119 JSR COUT ;POSITION.
F592: 20 3A FF 120 RESETZ JSR BELL
F595: A9 A1 121 NXTLINE LDA #$A1 ;'!'
F597: 85 33 122 STA PROMPT ;INITIALIZE PROMPT
F599: 20 67 FD 123 JSR GETLNZ ;GET LINE.
F59C: 20 C7 FF 124 JSR ZMODE ;INIT SCREEN STUFF
F59F: AD 00 02 125 LDA IN ;GET CHAR
F5A2: C9 A0 126 CMP #$A0 ;ASCII BLANK?
F5A4: F0 13 127 BEQ SPACE ;YES
F5A6: C8 128 INY
F5A7: C9 A4 129 CMP #$A4 ;ASCII '$' IN COL 1?
F5A9: F0 92 130 BEQ FAKEMON ;YES, SIMULATE MONITOR
F5AB: 88 131 DEY ;NO, BACKUP A CHAR
F5AC: 20 A7 FF 132 JSR GETNUM ;GET A NUMBER
F5AF: C9 93 133 CMP #$93 ;':' TERMINATOR?
F5B1: D0 D5 134 ERR4 BNE ERR2 ;NO, ERR.
F5B3: 8A 135 TXA
F5B4: F0 D2 136 BEQ ERR2 ;NO ADR PRECEDING COLON.
F5B6: 20 78 FE 137 JSR A1PCLP ;MOVE ADR TO PCL, PCH.
F5B9: A9 03 138 SPACE LDA #$3 ;COUNT OF CHARS IN MNEMONIC
F5BB: 85 3D 139 STA A1H
F5BD: 20 34 F6 140 NXTMN JSR GETNSP ;GET FIRST MNEM CHAR.
F5C0: 0A 141 NXTM ASL
F5C1: E9 BE 142 SBC #$BE ;SUBTRACT OFFSET
F5C3: C9 C2 143 CMP #$C2 ;LEGAL CHAR?
F5C5: 90 C1 144 BCC ERR2 ;NO.
F5C7: 0A 145 ASL ;COMPRESS-LEFT JUSTIFY
F5C8: 0A 146 ASL
F5C9: A2 04 147 LDX #$4
F5CB: 0A 148 NXTM2 ASL ;DO 5 TRIPLE WORD SHIFTS
F5CC: 26 42 149 ROL A4L
F5CE: 26 43 150 ROL A4H
F5D0: CA 151 DEX
F5D1: 10 F8 152 BPL NXTM2
F5D3: C6 3D 153 DEC A1H ;DONE WITH 3 CHARS?
F5D5: F0 F4 154 BEQ NXTM2 ;YES, BUT DO 1 MORE SHIFT
F5D7: 10 E4 155 BPL NXTMN ;NO
F5D9: A2 05 156 FORM1 LDX #$5 ;5 CHARS IN ADDR MODE
F5DB: 20 34 F6 157 FORM2 JSR GETNSP ;GET FIRST CHAR OF ADDR
F5DE: 84 34 158 STY YSAV
F5E0: DD B4 F9 159 CMP CHAR1,X ;FIRST CHAR MATCH PATTERN?
F5E3: D0 13 160 BNE FORM3 ;NO
F5E5: 20 34 F6 161 JSR GETNSP ;YES, GET SECOND CHAR
F5E8: DD BA F9 162 CMP CHAR2,X ;MATCHES SECOND HALF?
F5EB: F0 0D 163 BEQ FORM5 ;YES.
F5ED: BD BA F9 164 LDA CHAR2,X ;NO, IS SECOND HALF ZERO?
F5F0: F0 07 165 BEQ FORM4 ;YES.
F5F2: C9 A4 166 CMP #$A4 ;NO,SECOND HALF OPTIONAL?
F5F4: F0 03 167 BEQ FORM4 ;YES.
F5F6: A4 34 168 LDY YSAV
F5F8: 18 169 FORM3 CLC ;CLEAR BIT-NO MATCH
F5F9: 88 170 FORM4 DEY ;BACK UP 1 CHAR
F5FA: 26 44 171 FORM5 ROL FMT ;FORM FORMAT BYTE
F5FC: E0 03 172 CPX #$3 ;TIME TO CHECK FOR ADDR.
F5FE: D0 0D 173 BNE FORM7 ;NO
F600: 20 A7 FF 174 JSR GETNUM ;YES
F603: A5 3F 175 LDA A2H
F605: F0 01 176 BEQ FORM6 ;HIGH-ORDER BYTE ZERO
F607: E8 177 INX ;NO, INCR FOR 2-BYTE
F608: 86 35 178 FORM6 STX L ;STORE LENGTH
F60A: A2 03 179 LDX #$3 ;RELOAD FORMAT INDEX
F60C: 88 180 DEY ;BACKUP A CHAR
F60D: 86 3D 181 FORM7 STX A1H ;SAVE INDEX
F60F: CA 182 DEX ;DONE WITH FORMAT CHECK?
F610: 10 C9 183 BPL FORM2 ;NO.
F612: A5 44 184 LDA FMT ;YES, PUT LENGTH
F614: 0A 185 ASL ;IN LOW BITS
F615: 0A 186 ASL
F616: 05 35 187 ORA L
F618: C9 20 188 CMP #$20
F61A: B0 06 189 BCS FORM8 ;ADD "$" IF NONZERO LENGTH
F61C: A6 35 190 LDX L ;AND DON'T ALREADY HAVE IT
F61E: F0 02 191 BEQ FORM8
F620: 09 80 192 ORA #$80
F622: 85 44 193 FORM8 STA FMT
F624: 84 34 194 STY YSAV
F626: B9 00 02 195 LDA IN,Y ;GET NEXT NONBLANK
F629: C9 BB 196 CMP #$BB ;';' START OF COMMENT?
F62B: F0 04 197 BEQ FORM9 ;YES
F62D: C9 8D 198 CMP #$8D ;CARRIAGE RETURN?
F62F: D0 80 199 BNE ERR4 ;NO, ERR.
F631: 4C 5C F5 200 FORM9 JMP TRYNEXT
F634: B9 00 02 201 GETNSP LDA IN,Y
F637: C8 202 INY
F638: C9 A0 203 CMP #$A0 ;GET NEXT NON BLANK CHAR
F63A: F0 F8 204 BEQ GETNSP
F63C: 60 205 RTS
206 ORG $F666
F666: 4C 92 F5 207 MINIASM JMP RESETZ
+------------------------------------------------------------------------
| TOPIC -- Apple II -- Red Book Floating point listing
+------------------------------------------------------------------------
Apple II Reference Manual (Red Book), January 1978, pages 94-95.
***********************
* *
* APPLE-II FLOATING *
* POINT ROUTINES *
* *
* COPYRIGHT 1977 BY *
* APPLE COMPUTER INC. *
* *
* ALL RIGHTS RESERVED *
* *
* S. WOZNIAK *
* *
***********************
TITLE "FLOATING POINT ROUTINES"
SIGN EPZ $F3
X2 EPZ $F4
M2 EPZ $F5
X1 EPZ $F8
M1 EPZ $F9
E EPZ $FC
OVLOC EQU $3F5
ORG $F425
F425: 18 ADD CLC CLEAR CARRY
F426: A2 02 LDX #$2 INDEX FOR 3-BYTE ADD.
F428: B5 F9 ADD1 LDA M1,X
F42A: 75 F5 ADC M2,X ADD A BYTE OF MANT2 TO MANT1
F42C: 95 F9 STA M1,X
F42E: CA DEX INDEX TO NEXT MORE SIGNIF. BYTE.
F42F: 10 F7 BPL ADD1 LOOP UNTIL DONE.
F431: 60 RTS RETURN
F432: 06 F3 MD1 ASL SIGN CLEAR LSB OF SIGN.
F434: 20 37 F4 JSR ABSWAP ABS VAL OF M1, THEN SWAP WITH M2
F437: 24 F9 ABSWAP BIT M1 MANT1 NEGATIVE?
F439: 10 05 BPL ABSWAP1 NO, SWAP WITH MANT2 AND RETURN.
F43B: 20 A4 F4 JSR FCOMPL YES, COMPLEMENT IT.
F43E: E6 F3 INC SIGN INCR SIGN, COMPLEMENTING LSB.
F440: 38 ABSWAP1 SEC SET CARRY FOR RETURN TO MUL/DIV.
F441: A2 04 SWAP LDX #$4 INDEX FOR 4 BYTE SWAP.
F443: 94 FB SWAP1 STY E-1,X
F445: B5 F7 LDA X1-1,X SWAP A BYTE OF EXP/MANT1 WITH
F447: B4 F3 LDY X2-1,X EXP/MANT2 AND LEAVE A COPY OF
F449: 94 F7 STY X1-1,X MANT1 IN E (3 BYTES). E+3 USED
F44B: 95 F3 STA X2-1,X
F44D: CA DEX ADVANCE INDEX TO NEXT BYTE
F44E: D0 F3 BNE SWAP1 LOOP UNTIL DONE.
F450: 60 RTS RETURN
F451: A9 8E FLOAT LDA #$8E INIT EXP1 TO 14,
F453: 85 F8 STA X1 THEN NORMALIZE TO FLOAT.
F455: A5 F9 NORM1 LDA M1 HIGH-ORDER MANT1 BYTE.
F457: C9 C0 CMP #$C0 UPPER TWO BITS UNEQUAL?
F459: 30 0C BMI RTS1 YES, RETURN WITH MANT1 NORMALIZED
F45B: C6 F8 DEC X1 DECREMENT EXP1.
F45D: 06 FB ASL M1+2
F45F: 26 FA ROL M1+1 SHIFT MANT1 (3 BYTES) LEFT.
F461: 26 F9 ROL M1
F463: A5 F8 NORM LDA X1 EXP1 ZERO?
F465: D0 EE BNE NORM1 NO, CONTINUE NORMALIZING.
F467: 60 RTS1 RTS RETURN.
F468: 20 A4 F4 FSUB JSR FCOMPL CMPL MANT1,CLEARS CARRY UNLESS 0
F46B: 20 7B F4 SWPALGN JSR ALGNSWP RIGHT SHIFT MANT1 OR SWAP WITH
F46E: A5 F4 FADD LDA X2
F470: C5 F8 CMP X1 COMPARE EXP1 WITH EXP2.
F472: D0 F7 BNE SWPALGN IF #,SWAP ADDENDS OR ALIGN MANTS.
F474: 20 25 F4 JSR ADD ADD ALIGNED MANTISSAS.
F477: 50 EA ADDEND BVC NORM NO OVERFLOW, NORMALIZE RESULT.
F479: 70 05 BVS RTLOG OV: SHIFT M1 RIGHT, CARRY INTO SIGN
F47B: 90 C4 ALGNSWP BCC SWAP SWAP IF CARRY CLEAR,
* ELSE SHIFT RIGHT ARITH.
F47D: A5 F9 RTAR LDA M1 SIGN OF MANT1 INTO CARRY FOR
F47F: 0A ASL RIGHT ARITH SHIFT.
F480: E6 F8 RTLOG INC X1 INCR X1 TO ADJUST FOR RIGHT SHIFT
F482: F0 75 BEQ OVFL EXP1 OUT OF RANGE.
F484: A2 FA RTLOG1 LDX #$FA INDEX FOR 6:BYTE RIGHT SHIFT.
F486: 76 FF ROR1 ROR E+3,X
F488: E8 INX NEXT BYTE OF SHIFT.
F489: D0 FB BNE ROR1 LOOP UNTIL DONE.
F48B: 60 RTS RETURN.
F48C: 20 32 F4 FMUL JSR MD1 ABS VAL OF MANT1, MANT2
F48F: 65 F8 ADC X1 ADD EXP1 TO EXP2 FOR PRODUCT EXP
F491: 20 E2 F4 JSR MD2 CHECK PROD. EXP AND PREP. FOR MUL
F494: 18 CLC CLEAR CARRY FOR FIRST BIT.
F495: 20 84 F4 MUL1 JSR RTLOG1 M1 AND E RIGHT (PROD AND MPLIER)
F498: 90 03 BCC MUL2 IF CARRY CLEAR, SKIP PARTIAL PROD
F49A: 20 25 F4 JSR ADD ADD MULTIPLICAND TO PRODUCT.
F49D: 88 MUL2 DEY NEXT MUL ITERATION.
F49E: 10 F5 BPL MUL1 LOOP UNTIL DONE.
F4A0: 46 F3 MDEND LSR SIGN TEST SIGN LSB.
F4A2: 90 BF NORMX BCC NORM IF EVEN,NORMALIZE PROD,ELSE COMP
F4A4: 38 FCOMPL SEC SET CARRY FOR SUBTRACT.
F4A5: A2 03 LDX #$3 INDEX FOR 3 BYTE SUBTRACT.
F4A7: A9 00 COMPL1 LDA #$0 CLEAR A.
F4A9: F5 F8 SBC X1,X SUBTRACT BYTE OF EXP1.
F4AB: 95 F8 STA X1,X RESTORE IT.
F4AD: CA DEX NEXT MORE SIGNIFICANT BYTE.
F4AE: D0 F7 BNE COMPL1 LOOP UNTIL DONE.
F4B0: F0 C5 BEQ ADDEND NORMALIZE (OR SHIFT RT IF OVFL).
F4B2: 20 32 F4 FDIV JSR MD1 TAKE ABS VAL OF MANT1, MANT2.
F4B5: E5 F8 SBC X1 SUBTRACT EXP1 FROM EXP2.
F4B7: 20 E2 F4 JSR MD2 SAVE AS QUOTIENT EXP.
F4BA: 38 DIV1 SEC SET CARRY FOR SUBTRACT.
F4BB: A2 02 LDX #$2 INDEX FOR 3-BYTE SUBTRACTION.
F4BD: B5 F5 DIV2 LDA M2,X
F4BF: F5 FC SBC E,X SUBTRACT A BYTE OF E FROM MANT2.
F4C1: 48 PHA SAVE ON STACK.
F4C2: CA DEX NEXT MORE SIGNIFICANT BYTE.
F4C3: 10 F8 BPL DIV2 LOOP UNTIL DONE.
F4C5: A2 FD LDX #$FD INDEX FOR 3-BYTE CONDITIONAL MOVE
F4C7: 68 DIV3 PLA PULL BYTE OF DIFFERENCE OFF STACK
F4C8: 90 02 BCC DIV4 IF M2<E THEN DON'T RESTORE M2.
F4CA: 95 F8 STA M2+3,X
F4CC: E8 DIV4 INX NEXT LESS SIGNIFICANT BYTE.
F4CD: D0 F8 BNE DIV3 LOOP UNTIL DONE.
F4CF: 26 FB ROL M1+2
F4D1: 26 FA ROL M1+1 ROLL QUOTIENT LEFT, CARRY INTO LSB
F4D3: 26 F9 ROL M1
F4D5: 06 F7 ASL M2+2
F4D7: 26 F6 ROL M2+1 SHIFT DIVIDEND LEFT
F4D9: 26 F5 ROL M2
F4DB: B0 1C BCS OVFL OVFL IS DUE TO UNNORMED DIVISOR
F4DD: 88 DEY NEXT DIVIDE ITERATION.
F4DE: D0 DA BNE DIV1 LOOP UNTIL DONE 23 ITERATIONS.
F4E0: F0 BE BEQ MDEND NORM. QUOTIENT AND CORRECT SIGN.
F4E2: 86 FB MD2 STX M1+2
F4E4: 86 FA STX M1+1 CLEAR MANT1 (3 BYTES) FOR MUL/DIV.
F4E6: 86 F9 STX M1
F4E8: B0 0D BCS OVCHK IF CALC. SET CARRY,CHECK FOR OVFL
F4EA: 30 04 BMI MD3 IF NEG THEN NO UNDERFLOW.
F4EC: 68 PLA POP ONE RETURN LEVEL.
F4ED: 68 PLA
F4EE: 90 B2 BCC NORMX CLEAR X1 AND RETURN.
F4F0: 49 80 MD3 EOR #$80 COMPLEMENT SIGN BIT OF EXPONENT.
F4F2: 85 F8 STA X1 STORE IT.
F4F4: A0 17 LDY #$17 COUNT 24 MUL/23 DIV ITERATIONS.
F4F6: 60 RTS RETURN.
F4F7: 10 F7 OVCHK BPL MD3 IF POSITIVE EXP THEN NO OVFL.
F4F9: 4C F5 03 OVFL JMP OVLOC
ORG $F63D
F63D: 20 7D F4 FIX1 JSR RTAR
F640: A5 F8 FIX LDA X1
F642: 10 13 BPL UNDFL
F644: C9 8E CMP #$8E
F646: D0 F5 BNE FIX1
F648: 24 F9 BIT M1
F64A: 10 0A BPL FIXRTS
F64C: A5 FB LDA M1+2
F64E: F0 06 BEQ FIXRTS
F650: E6 FA INC M1+1
F652: D0 02 BNE FIXRTS
F654: E6 F9 INC M1
F656: 60 FIXRTS RTS
F657: A9 00 UNDFL LDA #$0
F659: 85 F9 STA M1
F65B: 85 FA STA M1+1
F65D: 60 RTS
+------------------------------------------------------------------------
| TOPIC -- Apple II -- WOZPAK Floating point routines description
+------------------------------------------------------------------------
Wozpak ][, November 1979, pages 109-115.
FLOATING POINT PACKAGE
The mantissa-exponent, or 'floating point' numerical representation is
widely used by computers to express values with a wide dynamic range. With
floating point representation, the number 7.5 x 10^22 requires no more
memory to store than the number 75 does. We have allowed for binary
floating point arithmetic on the APPLE ][ computer by providing a useful
subroutine package in ROM, which performs the common arithmetic functions.
Maximum precision is retained by these routines and overflow conditions
such as 'divide by zero' are trapped for the user. The 4-byte floating
point number representation is compatible with future APPLE products such
as floating point BASIC.
A small amount of memory in Page Zero is dedicated to the floating point
workspace, including the two floating-point accumulators, FP1 and FP2.
After placing operands in these accumulators, the user calls subroutines in
the ROM which perform the desired arithmetic operations, leaving results in
FP1. Should an overflow condition occur, a jump to location $3F5 is
executed, allowing a user routine to take appropriate action.
FLOATING POINT REPRESENTATION
_____ _____ _____ _____
| | | | | | | |
| | | HI | | | | LOW |
|_____| |_____| |_____| |_____|
Exponent Signed Mantissa
1. Mantissa
The floating point mantissa is stored in two's complement representation
with the sign at the most significant bit (MSB) position of the high-order
mantissa byte. The mantissa provides 24 bits of precision, including sign,
and can represent 24-bit integers precisely. Extending precision is simply
a matter of adding bytes at the low order end of the mantissa.
Except for magnitudes less than 2^-128 (which lose precision) mantissa are
normalized by the floating point routines to retain maximum precision.
That is, the numbers are adjusted so that the upper two high-order mantissa
bits are unequal.
HIGH-ORDER MANTISSA BYTE
01.XXXXXX Positive mantissa.
10.XXXXXX Negative mantissa.
00.XXXXXX Unnormalized mantissa.
11.XXXXXX Exponent = -128.
2. Exponent.
The exponent is a binary scaling factor (power of two) which is applied to
the mantissa. Ranging from -128 to +127, the exponent is stored in
standard two's complement representation except for the sign bit which is
complemented. This representation allows direct comparison of exponents,
since they are stored in increasing numerical sequence. The most negative
exponent, corresponding to the smallest magnItude, -128, is stored as $00
($ means hexidecimal) and the most positive, +127, is stored as $FF (all
ones).
EXPONENT STORED AS
+127 11111111 ($FF)
+3 10000011 ($83)
+2 10000010 ($82)
+1 10000001 ($81)
0 10000000 ($80)
-1 01111111 ($7F)
-2 01111110 ($7E)
-3 01111101 ($7D)
-128 00000000 ($00)
The smallest magnitude which can be represented is 2^-150.
_____ _____ _____ _____
| | | | | | | |
| 0 | | 0 | | 0 | | 1 |
|_____| |_____| |_____| |_____|
HIGH LOW
EXP MANTISSA
The largest positive magnitude which can be represented is +2^128-1.
_____ _____ _____ _____
| | | | | | | |
| $7F | | $7F | | $FF | | $FF |
|_____| |_____| |_____| |_____|
EXP MANTISSA
FLOATING POINT REPRESENTATION EXAMPLES
DECIMAL HEX HEX
NUMBER EXPONENT MANTISSA
+ 3 81 60 00 00
+ 4 82 40 00 00
+ 5 82 50 00 00
+ 7 82 70 00 00
+12 83 60 00 00
+15 83 78 00 00
+17 84 44 00 00
+20 84 50 00 00
+60 85 78 00 00
- 3 81 A0 00 00
- 4 81 80 00 00
- 5 82 B0 00 00
- 7 82 90 00 00
-12 83 A0 00 00
-15 83 88 00 00
-17 84 BC 00 00
-20 84 B0 00 00
-60 85 88 00 00
FLOATING POINT SUBROUTINE DESCRIPTIONS
FCOMPL subroutine (address $F4A4)
Purpose: FCOMPL is used to negate floating point numbers.
Entry: A normalized or unnormalized value is in FP1 (floating point
accumulator 1).
Uses: NORM, RTLOG.
Exit: The value in FP1 is negated and then normalized to retain precision.
The 3-byte FP1 extension, E, may also be altered but FP2 and SIGN are not
disturbed. The 6502 A-REG is altered and the X-REG is cleared. The Y-REG
is not disturbed.
Caution: Attempting to negate -2^128 will result in an overflow since
+2^128 is not representable, and a jump to location $3F5 will be executed,
with the following contents in FP1.
_____ _____ _____ _____
| | | | | | | |
FP1: | 0 | | $80 | | 0 | | 0 |
|_____| |_____| |_____| |_____|
X1 M1
Example: Prior to calling FCOMPL, FP1 contains +15.
_____ _____ _____ _____
| | | | | | | |
FP1: | $83 | | $78 | | 0 | | 0 | (+15)
|_____| |_____| |_____| |_____|
X1 M1
After calling FCOMPL as a subroutine, FP1 contains -15.
_____ _____ _____ _____
| | | | | | | |
FP1: | $83 | | $88 | | 0 | | 0 | (+15)
|_____| |_____| |_____| |_____|
X1 M1
FADD subroutine (address $F46E)
Purpose: To add two numbers in floating point form.
Entry: The two addends are in FP1 and FP2 respectively. For maximum
precision, both should be normalized.
Uses: SWPALGN, ADD, NORM, RTLOG.
Exit: The normalized sum is left in FP1. FP2 contains the addend of
greatest magnitude. E is altered but sign is not. The A-REG is altered
and the X-REG is cleared. The sum mantissa is truncated to 24 bits.
Caution: Overflow may result if the sum is less that -2^128 or greater than
+2^128-1. If so, a jump to location $3F5 is executed leaving 0 in X1, and
twice the proper sum in the mantissa M1. The sign bit is left in the
carry, 0 for positive, 1 for negative.
_____ __________
| | | |
FP1: | 0 | | X.YYY... |
|_____| |__________|
X1 M1
(For carry=0, true sum=+X.YYY x 2^128)
Example: Prior to calling FADD, FP1 contains +12 and FP2 contains -5.
_____ _____ _____ _____
| | | | | | | |
FP1: | $83 | | $60 | | 0 | | 0 | (+12)
|_____| |_____| |_____| |_____|
X1 M1
_____ _____ _____ _____
| | | | | | | |
FP2: | $82 | | $B0 | | 0 | | 0 | (-5)
|_____| |_____| |_____| |_____|
X2 M2
After calling FADD, FP1 contains +7 (FP2 contains +12).
_____ _____ _____ _____
| | | | | | | |
FP1 | $82 | | $70 | | 0 | | 0 | (+7)
|_____| |_____| |_____| |_____|
X1 M1
FSUB subroutine (address $F468)
Purpose: To subtract two floating point numbers.
Entry: The minuend is in FP1 and the subtrahend is in FP2. Both should be
normalized to retain maximum precision prior to calling FSUB.
Uses: FCOMPL, ALGNSWP, FADD, ADD, NORM, RTLOG.
Exit: The normalized difference is in FP1 with the mantissa truncated to 24
bits. FP2 holds either the minued or the negated subtrahend, whichever is
of greater magnitude. E is altered but SIGN and SCR are not. the A-REG is
altered and the X-REG is cleared. The Y-REG is not disturbed.
Cautions: An exit to location S3F5 is taken if the result is less than
-2^128 or greater than +2^128-1. or if the subtrahend is -2^128.
Example: Prior to calling FSUB, FP1 contains +7 (minuend) and FP2 contalns
-5 (subtrahend).
_____ _____ _____ _____
| | | | | | | |
FP1: | $82 | | $70 | | 0 | | 0 | (+12)
|_____| |_____| |_____| |_____|
X1 M1
_____ _____ _____ _____
| | | | | | | |
FP2: | $82 | | $B0 | | 0 | | 0 | (- 5)
|_____| |_____| |_____| |_____|
X2 M2
After calling FSUB, FP1 contains +12 and FP2 contains +7.
_____ _____ _____ _____
| | | | | | | |
FP1: | $83 | | $60 | | 0 | | 0 | (+12)
|_____| |_____| |_____| |_____|
X1 M1
FMUL subroutine (address $F48C)
Purpose: To multiply floating point numbers.
Entry: The multiplicand and multiplier must reside in FP1 and FP2
respectively. Both should be normalized prior to calling FMUL to retain
maximum precision.
Uses: MD1, MD2, RTLOG1, ADD, MDEND.
Exit: The signed normalized floating point product is left in FP1. M1 is
truncated to contain the 24 most significant mantissa bits (including
sign). The absolute value of the multiplier mantissa (M2) is left in FP2.
E, SIGN, and SCR are altered. The A- and X-REGs are altered and the Y-REG
contains $FF upon exit.
Cautions: An exit to location $3F5 is taken if the product is less than
-2^128 or greater than +2^128-1.
Notes: FMUL will run faster if the absolute value of the multiplier
mantissa contains fewer '1's than the absolute value of the multiplicand
mantissa.
Example: Prior to calling FMUL, FP1 contains +12 and FP2 contains -5.
_____ _____ _____ _____
| | | | | | | |
FP1: | $83 | | $60 | | 0 | | 0 | (+12)
|_____| |_____| |_____| |_____|
X1 M1
_____ _____ _____ _____
| | | | | | | |
FP2: | $82 | | $B0 | | 0 | | 0 | (- 5)
|_____| |_____| |_____| |_____|
X2 M2
After calling FMUL, FP1 contains -60 and FP2 contains +5.
_____ _____ _____ _____
| | | | | | | |
FP1: | $85 | | $88 | | 0 | | 0 | (-60)
|_____| |_____| |_____| |_____|
X1 M1
_____ _____ _____ _____
| | | | | | | |
FP2: | $82 | | $50 | | 0 | | 0 | (+ 5)
|_____| |_____| |_____| |_____|
X2 M2
FDIV subroutine (addr $F4B2)
Purpose: To perform division of floating point numbers.
Entry: The normalized dividend is in FP2 and the normalized divisor is in
FP1.
Exit: The signed normalized floating point quotient is left in FP1. The
mantissa (M1) is truncated to 24 bits. The 3-bit M1 extension (E) contains
the absolute value of the divisor mantissa. MD2, SIGN, and SCR are
altered. The A- and X-REGs are altered and the Y-REG is cleared.
Uses: MD1, MD2, MDEND.
Cautions: An exit to location $3F5 is taken if the quotient is less than
-2^128 or greater than +2^128-1
Notes: MD2 contains the remainder mantissa (equivalent to the MOD
function). The remainder exponent is the same as the quotient exponent, or
1 less if the dividend mantissa magnitude is less than the divisor mantissa
magnitude.
Example: Prior to calling FDIV, FP1 contains -60 (dividend), and FP2
contains +12 (divisor).
_____ _____ _____ _____
| | | | | | | |
FP1: | $85 | | $80 | | 0 | | 0 | (-60)
|_____| |_____| |_____| |_____|
X1 M1
_____ _____ _____ _____
| | | | | | | |
FP2 | $83 | | $60 | | 0 | | 0 | (+12)
|_____| |_____| |_____| |_____|
X1 M1
After calling FMUL, FP1 contains -5 and M2 contains 0.
_____ _____ _____ _____
| | | | | | | |
FP1: | $82 | | $B0 | | 0 | | 0 | (-5)
|_____| |_____| |_____| |_____|
X1 M1
FLOAT Subroutine (address $F451)
Purpose: To convert integers to floating point representation.
Entry: A signed (two's complement) 2-byte integer is stored in M1
(high-order byte) and M1+1 (low-order byte). M1+2 must be cleared by user
prior to entry.
Uses: NORM1.
Exit: The normalized floating point equivalent is left in FP1. E, FP2,
SIGN, and SCR are not disturbed. The A-REG contains a copy of the
high-order mantissa byte upon exit but the X- and Y-REGs are not disturbed.
The carry is cleared.
Notes: To float a 1-byte integer, place it in M1+1 and clear M1 as well as
M1+2 prior to calling FLOAT.
FLOAT takes approximately 3 msec. lonqer to convert zero to floating point
form than other arguments. The user may check for zero prior to calling
FLOAT and increase throughput.
*
* LOW-ORDER INT. BYTE IN A-REG
* HIGH-ORDER BYTE IN Y-REG
*
85 FA XFLOAT STA M1+1
84 F9 STY M1 INIT MANT1
A0 00 LDY #$0
84 FB STY M1+2
05 D9 ORA M1 CHK BOTH
BYTES FOR
D0 03 BNE TOFLOAT ZERO
85 F8 STA X1 IF SO CLR X1
60 RTS AND RETURN
4C 51 F4 TOFLOAT JMP FLOAT ELSE FLOAT
INTEGER
Example: Float +274 ($0112 hex)
CALLING SEQUENCE
A0 01 LDY #$01 HIGH-ORDER
INTEGER BYTE
A9 12 LDA #$12 LOW-ORDER
INTEGER BYTE
84 F9 STY M1
85 FA STA M1+1
A9 00 LDA #$00
85 F8 STA M1+2
20 51 F4 JSR FLOAT
Upon returning from FLOAT, FP1 contains the floating point representation
of +274.
_____ _____ _____ _____
| | | | | | | |
FP1 | $88 | | $44 | | $80 | | 0 | (+274)
|_____| |_____| |_____| |_____|
X1 M1
FIX subroutine (address $F640)
Purpose: To extract the integer portion of a floating point number with
truncation (ENTIER function).
Entry: A floating point value is in FP1. It need not be normalized.
Uses: RTAR.
Exit: The two-byte signed two's complement representation of the integer
portion is left in M1 (high-order byte) and M1+1 (low-order byte). The
floating point values +24.63 and -61.2 are converted to the integers +24
and -61 respectively. FP1 and E are altered but FP2, E, SIGN, and SCR are
not. The A- and X-REGs are altered but the Y-REG is not.
Example: The floating point value +274 is in FP1 prior to calling FIX.
_____ _____ _____ _____
| | | | | | | |
FP1: | $88 | | $44 | | $80 | | 0 | (+274)
|_____| |_____| |_____| |_____|
X1 M1
After calling FIX, M1 (high-order byte) and M1+1 (low-order byte) contain
the integer representation of +274 ($0112).
_____ _____ _____ _____
| | | | | | | |
FP1: | $8E | | $01 | | $12 | | 0 |
|_____| |_____| |_____| |_____|
X1 M1
Note: FP1 contains an unnormalized representation of +274 upon exit.
NORM Subroutine (address $F463)
Purpose: To normalize the value in FP1, thus insuring maximum precision.
Entry: A normalized or unnormalized value is in FP1.
Exit: The value in FP1 is normalized. A zero mantissa will exit with X1=0
(2 exponent). If the exponent on exit is -128 (X1=0) then the mantissa
(M1) is not necessarily normalized (with the two high-order mantissa bits
unequal). E, FP2, SIGN, AND SCR are not distubed. The A-REG is disturbed
but the X- and Y-REGs are not. The carry is set.
Example: FP1 contains +12 in unnormalized form (as .0011 x 2 ).
_____ _____ _____ _____
| | | | | | | |
FP1: | $86 | | $0C | | 0 | | 0 | (+12)
|_____| |_____| |_____| |_____|
x1 M1
Upon exit from NORM, FP1 contains +12 in normalized form (as 1.1 x 2 ).
_____ _____ _____ _____
| | | | | | | |
FP1: | $83 | | $60 | | 0 | | 0 | (+12)
|_____| |_____| |_____| |_____|
X1 M1
NORM1 subroutine (address $F455)
Purpose: To normalize a floating point value in FP1 when it is known the
exponent is not -128 (X1=0) upon entry.
Entry: An unnormalized number is in FP1. The exponent byte should not be 0
for normal use.
Exit: The normalized value is in FP1. E, FP2, SIGN, and SCR are not not
disturbed. The A-REG is altered but the X- and Y-REGs are not.
ADD Subroutine (address $F425)
Purpose: To add the two mantissas (M1 and M2) as 3-byte integers.
Entry: Two mantissas are in M1 (through M1+2) and M2 (through M2+2). They
should be aligned, that is with identical exponents, for use in the FADD
and FSUB subroutines.
Exit: the 24-bit integer sum is in M1 (high-order byte in M1, low-order
byte in M1+2). FP2, X1, E, SIGN and SCR are not disturbed. The A-REG
contains the high-order byte of the sum, the X-REG contains $FF and the
Y-REG is not altered. The carry is the '25th' sum bit.
Example: FP1 contains +5 and FP2 contains +7 prior to calling ADD.
_____ _____ _____ _____
| | | | | | | |
FP1: | $82 | | $50 | | 0 | | 0 | (+5)
|_____| |_____| |_____| |_____|
X1 M1
_____ _____ _____ _____
| | | | | | | |
FP2: | $82 | | $70 | | 0 | | 0 | (+7)
|_____| |_____| |_____| |_____|
Upon exit, M1 contains the overflow value for +12. Note that the sign bit
is incorrect. This is taken care of with a call to the right shift
routine.
_____ _____ _____ _____
| | | | | | | |
FP: | $82 | | $C0 | | 0 | | 0 | (+12)
|_____| |_____| |_____| |_____|
ABSWAP Subroutine (address $F437)
Purpose: To take the absolute value of FP1 and then swap FP1 with FP2.
Note that two sequential calls to ABSWAP will take the absolute values of
both FP1 and FP2 in preparation for a multiply or divide.
Entry: FP1 and FP2 contain floating point values.
Exit: The absolute value of the original FP1 contents are in FP2 and the
original FP2 contents are in FP1. The least significant bit of SIGN is
complemented if a negation takes place (if the original FP1 contents are
negative) by means of an increment. SCR and E are used. The A-REG
contains a copy of X2, the X-REG is cleared, and the Y-REG is not altered.
RTAR Subroutine (address $F47D)
Purpose: To shift M1 right one bit position while incrementing X1 to
compensate for scale. This is roughly the opposite of the NORM subroutine.
Entry: A normalized or unnormalized floating point value is in FP1.
Exit: The 6-byte field MANT1 and E is shifted right one bit arithmetically
and X1 is incremented by 1 to retain proper scale. The sign bit of MANT1
(MSB of M1) is unchanged. FP2, SIGN, and SCR are not disturbed. The A-REG
contains the least significant byte of E (E+2), the X-REG is cleared, and
the Y-REG is not disturbed.
Caution: If X1 increments of 0 (overflow) then an exit to location $3F5 is
taken, the A-REG contains the high-order MANT1 byte, M1 and X1 is cleared.
FP2, SIGN, SCR, and the X- and Y-REGs are not disturbed.
Uses: RTLOG
Example: Prior to calling RTAR, FP1 contains the normalized value -7.
_____ _____ _____ _____
| | | | | | | |
FP1 | $83 | | $A0 | | 0 | | 0 | (-7)
|_____| |_____| |_____| |_____|
X1 M1
After calling RTAR, FP1 contains the unnormalized value -7 (note that
precision is lost off the low-order end of M1).
_____ _____ _____ _____
| | | | | | | |
FP1 | $84 | | $D0 | | 0 | | 0 | (-7)
|_____| |_____| |_____| |_____|
X1 M1
Note: M1 sign bit is unchanged.
RTLOG subroutine (address $F480)
Purpose: To shift the 6-byte field MANT1 and E one bit to the right (toward
the least significant bit). The 6502 carry bit is shifted into the
high-order M1 bit. This is useful in correcting binary sum overflows.
Entry: A normalized or unnormalized floating point value is in FP1. The
carry must be cleared or set by the user since it is shifted Into the sign
bit of M1.
Exit: Same as RTAR except that the sign of M1 is not preserved (it is set
to the value of the carry bit on entry)
Caution: Same as RTAR.
Example: Prior to calling RTLOG, FP1 contains the normalized value -12 and
the carry is clear.
_____ _____ _____ _____
| | | | | | | |
FP1: | $83 | | $A0 | | 0 | | 0 | (-12)
|_____| |_____| |_____| |_____|
X1 M1
After calling RTLOG, M1 is shifted one bit to the right and the sign bit is
clear. X1 is incremented by 1.
_____ _____ _____ _____
| | | | | | | |
FP1: | $84 | | $50 | | 0 | | 0 | (+20)
|_____| |_____| |_____| |_____|
X1 M1
Note: The bit shifted off the end of MANT1 is rotated into the high-order
bit of the 3-byte extension E. The 3-byte E field is also shifted one bit
to the right.
RTLOG1 subroutine (address $F484)
Purpose: To shift MANT1 and E right one bit without adjusting X1. This is
used by the multiply loop. The carry is shifted into the sign bit of
MANT1.
Entry: M1 and E contain a 6-byte unsigned field. E is the 3-byte low-order
extension of MANT1.
Exit: Same as RTLOG except that X1 is not altered and an overflow exit
cannot occur.
MD2 subroutine (address $F4E2)
Purpose: To clear the 3-byte MANT1 field for FMUL and FDIV, check for
inital result exponent overflow (and underflow), and initialize the X-REG
to $17 for loop counting.
Entry: the X-REG is cleared by the user since it is placed in the 3 bytes
of MANT1. The A-REG contains the result of an exponent addition (FMUL) or
subtraction (FDIV). The carry and sign status bits should be set according
to this addition or subtraction for overflow and underflow determination.
Exit: The 3 bytes of M1 are cleared (or all set to the contents of the
X-REG on Entry) and the Y-REG is loaded with $17. The sign bit of the
A-REG is complemented and a copy of the A-REG is stored in X1. FP2, SIGN,
SCR, and the X-REG are not disturbed.
Uses: NORM.
Caution: Exponent overflow results in an exit to location $3F5. Exponent
underflow results in an early return from the calling subroutine (FDIV or
FMUL) with a floating point zero in FP1. Because MD2 pops a return address
off the stack, it may only be called by another subroutine.
+------------------------------------------------------------------------
| TOPIC -- Apple II -- DDJ Floating point article
+------------------------------------------------------------------------
Dr. Dobb's Journal, August 1976, pages 17-19.
Floating Point Routines for the 6502
by Roy Rankin, Department of Mechanical Engineering,
Stanford University, Stanford, CA 94305
(415) 497-1822
and
Steve Wozniak, Apple Computer Company
770 Welch Road, Suite 154
Palo Alto, CA 94304
(415) 326-4248
Editor's Note: Although these routines are for the 6502, it
would appear that one could generate equivalent routines for
most of the "traditional" microprocessors, relatively easily,
by following the flow of the algorithms given in the excellent
comments included in the program listing. This is particularly
true of the transcendental functions, which were directly modeled
after well-known and proven algorithms, and for which, the
comments are relatively machine independent.
These floating point routines allow 6502 users to perform
most of the more popular and desired floating point and
transcendental functions, namely:
Natural Log - LOG
Common Log - LOG10
Exponential - EXP
Floating Add - FADD
Floating Subtract - FSUB
Floating Multiply - FMUL
Floating Divide - FDIV
Convert Floating to Fixed - FIX
Convert Fixed to Floating - FLOAT
They presume a four-byte floating point operand consisting of
a one-byte exponent ranging from -128 to +127 and a
24-bit two's complement mantissa between 1.0 and 2.0.
The floating point routines were done by Steve Wozniak,
one of the principals in Apple Computer Company. The
transcendental functions were patterned after those offered by
Hewlett-Packard for their HP2100 minicomputer (with some
modifications), and were done by Roy Rankin, a Ph.D. student
at Stanford University.
There are three error traps; two for overflow, and one for
prohibited logarithm argument. ERROR (1D06) is the error
exit used in the event of a non-positive log argument. OVFLW
(1E3B) is the error exit for overflow occuring during calculation
of e to some power. OVFL (1FE4) is the error exit for
overflow in all of the floating point routines. There is no
trap for underflow; in such cases, the result is set to 0.0.
All routines are called and exited in a uniform manner:
The arguments(s) are placed in the specified floating point
storage locations (for specifics, see the documentation preceeding
each routine in the listing), then a JSR is used to
enter the desired routine. Upon normal completion, the
called routine is exited via a subroutine return instruction (RTS).
Note: The preceeding documentation was written by the Editor, based
on phone conversations with Roy and studying the listing. There is a
high probability that it is correct. However, since it was not written
nor reviewed by the authors of these routines, the preceeding
documentation may contain errors in concept or in detail.
-- JCW, Jr.
In the Exponent:
00 Represents -128
...
7F Represents -1
80 Represents 0
81 Represents +1
...
FF Represents +127
Exponent Two's Complement Mantissa
SEEEEEEE SM.MMMMMM MMMMMMMM MMMMMMMM
n n+1 n+2 n+3
* JULY 5, 1976
* BASIC FLOATING POINT ROUTINES
* FOR 6502 MICROPROCESSOR
* BY R. RANKIN AND S. WOZNIAK
*
* CONSISTING OF:
* NATURAL LOG
* COMMON LOG
* EXPONENTIAL (E**X)
* FLOAT FIX
* FADD FSUB
* FMUL FDIV
*
*
* FLOATING POINT REPRESENTATION (4-BYTES)
* EXPONENT BYTE 1
* MANTISSA BYTES 2-4
*
* MANTISSA: TWO'S COMPLIMENT REPRESENTATION WITH SIGN IN
* MSB OF HIGH-ORDER BYTE. MANTISSA IS NORMALIZED WITH AN
* ASSUMED DECIMAL POINT BETWEEN BITS 5 AND 6 OF THE HIGH-ORDER
* BYTE. THUS THE MANTISSA IS IN THE RANGE 1. TO 2. EXCEPT
* WHEN THE NUMBER IS LESS THAN 2**(-128).
*
* EXPONENT: THE EXPONENT REPRESENTS POWERS OF TWO. THE
* REPRESENTATION IS 2'S COMPLIMENT EXCEPT THAT THE SIGN
* BIT (BIT 7) IS COMPLIMENTED. THIS ALLOWS DIRECT COMPARISON
* OF EXPONENTS FOR SIZE SINCE THEY ARE STORED IN INCREASING
* NUMERICAL SEQUENCE RANGING FROM $00 (-128) TO $FF (+127)
* ($ MEANS NUMBER IS HEXADECIMAL).
*
* REPRESENTATION OF DECIMAL NUMBERS: THE PRESENT FLOATING
* POINT REPRESENTATION ALLOWS DECIMAL NUMBERS IN THE APPROXIMATE
* RANGE OF 10**(-38) THROUGH 10**(38) WITH 6 TO 7 SIGNIFICANT
* DIGITS.
*
*
0003 ORG 3 SET BASE PAGE ADRESSES
0003 EA SIGN NOP
0004 EA X2 NOP EXPONENT 2
0005 00 00 00 M2 BSS 3 MANTISSA 2
0008 EA X1 NOP EXPONENT 1
0009 00 00 00 M1 BSS 3 MANTISSA 1
000C E BSS 4 SCRATCH
0010 Z BSS 4
0014 T BSS 4
0018 SEXP BSS 4
001C 00 INT BSS 1
*
1D00 ORG $1D00 STARTING LOCATION FOR LOG
*
*
* NATURAL LOG OF MANT/EXP1 WITH RESULT IN MANT/EXP1
*
1D00 A5 09 LOG LDA M1
1D02 F0 02 BEQ ERROR
1D04 10 01 BPL CONT IF ARG>0 OK
1D06 00 ERROR BRK ERROR ARG<=0
*
1D07 20 1C 1F CONT JSR SWAP MOVE ARG TO EXP/MANT2
1D0A A5 04 LDA X2 HOLD EXPONENT
1D0C A0 80 LDY =$80
1D0E 84 04 STY X2 SET EXPONENT 2 TO 0 ($80)
1D10 49 80 EOR =$80 COMPLIMENT SIGN BIT OF ORIGINAL EXPONENT
1D12 85 0A STA M1+1 SET EXPONENT INTO MANTISSA 1 FOR FLOAT
1D14 A9 00 LDA =0
1D16 85 09 STA M1 CLEAR MSB OF MANTISSA 1
1D18 20 2C 1F JSR FLOAT CONVERT TO FLOATING POINT
1D1B A2 03 LDX =3 4 BYTE TRANSFERS
1D1D B5 04 SEXP1 LDA X2,X
1D1F 95 10 STA Z,X COPY MANTISSA TO Z
1D21 B5 08 LDA X1,X
1D23 95 18 STA SEXP,X SAVE EXPONENT IN SEXP
1D25 BD D1 1D LDA R22,X LOAD EXP/MANT1 WITH SQRT(2)
1D28 95 08 STA X1,X
1D2A CA DEX
1D2B 10 F0 BPL SEXP1
1D2D 20 4A 1F JSR FSUB Z-SQRT(2)
1D30 A2 03 LDX =3 4 BYTE TRANSFER
1D32 B5 08 SAVET LDA X1,X SAVE EXP/MANT1 AS T
1D34 95 14 STA T,X
1D36 B5 10 LDA Z,X LOAD EXP/MANT1 WITH Z
1D38 95 08 STA X1,X
1D3A BD D1 1D LDA R22,X LOAD EXP/MANT2 WITH SQRT(2)
1D3D 95 04 STA X2,X
1D3F CA DEX
1D40 10 F0 BPL SAVET
1D42 20 50 1F JSR FADD Z+SQRT(2)
1D45 A2 03 LDX =3 4 BYTE TRANSFER
1D47 B5 14 TM2 LDA T,X
1D49 95 04 STA X2,X LOAD T INTO EXP/MANT2
1D4B CA DEX
1D4C 10 F9 BPL TM2
1D4E 20 9D 1F JSR FDIV T=(Z-SQRT(2))/(Z+SQRT(2))
1D51 A2 03 LDX =3 4 BYTE TRANSFER
1D53 B5 08 MIT LDA X1,X
1D55 95 14 STA T,X COPY EXP/MANT1 TO T AND
1D57 95 04 STA X2,X LOAD EXP/MANT2 WITH T
1D59 CA DEX
1D5A 10 F7 BPL MIT
1D5C 20 77 1F JSR FMUL T*T
1D5F 20 1C 1F JSR SWAP MOVE T*T TO EXP/MANT2
1D62 A2 03 LDX =3 4 BYTE TRANSFER
1D64 BD E1 1D MIC LDA C,X
1D67 95 08 STA X1,X LOAD EXP/MANT1 WITH C
1D69 CA DEX
1D6A 10 F8 BPL MIC
1D6C 20 4A 1F JSR FSUB T*T-C
1D6F A2 03 LDX =3 4 BYTE TRANSFER
1D71 BD DD 1D M2MB LDA MB,X
1D74 95 04 STA X2,X LOAD EXP/MANT2 WITH MB
1D76 CA DEX
1D77 10 F8 BPL M2MB
1D79 20 9D 1F JSR FDIV MB/(T*T-C)
1D7C A2 03 LDX =3
1D7E BD D9 1D M2A1 LDA A1,X
1D81 95 04 STA X2,X LOAD EXP/MANT2 WITH A1
1D83 CA DEX
1D84 10 F8 BPL M2A1
1D86 20 50 1F JSR FADD MB/(T*T-C)+A1
1D89 A2 03 LDX =3 4 BYTE TRANSFER
1D8B B5 14 M2T LDA T,X
1D8D 95 04 STA X2,X LOAD EXP/MANT2 WITH T
1D8F CA DEX
1D90 10 F9 BPL M2T
1D92 20 77 1F JSR FMUL (MB/(T*T-C)+A1)*T
1D95 A2 03 LDX =3 4 BYTE TRANSFER
1D97 BD E5 1D M2MHL LDA MHLF,X
1D9A 95 04 STA X2,X LOAD EXP/MANT2 WITH MHLF (.5)
1D9C CA DEX
1D9D 10 F8 BPL M2MHL
1D9F 20 50 1F JSR FADD +.5
1DA2 A2 03 LDX =3 4 BYTE TRANSFER
1DA4 B5 18 LDEXP LDA SEXP,X
1DA6 95 04 STA X2,X LOAD EXP/MANT2 WITH ORIGINAL EXPONENT
1DA8 CA DEX
1DA9 10 F9 BPL LDEXP
1DAB 20 50 1F JSR FADD +EXPN
1DAE A2 03 LDX =3 4 BYTE TRANSFER
1DB0 BD D5 1D MLE2 LDA LE2,X
1DB3 95 04 STA X2,X LOAD EXP/MANT2 WITH LN(2)
1DB5 CA DEX
1DB6 10 F8 BPL MLE2
1DB8 20 77 1F JSR FMUL *LN(2)
1DBB 60 RTS RETURN RESULT IN MANT/EXP1
*
* COMMON LOG OF MANT/EXP1 RESULT IN MANT/EXP1
*
1DBC 20 00 1D LOG10 JSR LOG COMPUTE NATURAL LOG
1DBF A2 03 LDX =3
1DC1 BD CD 1D L10 LDA LN10,X
1DC4 95 04 STA X2,X LOAD EXP/MANT2 WITH 1/LN(10)
1DC6 CA DEX
1DC7 10 F8 BPL L10
1DC9 20 77 1F JSR FMUL LOG10(X)=LN(X)/LN(10)
1DCC 60 RTS
*
1DCD 7E 6F LN10 DCM 0.4342945
2D ED
1DD1 80 5A R22 DCM 1.4142136 SQRT(2)
02 7A
1DD5 7F 58 LE2 DCM 0.69314718 LOG BASE E OF 2
B9 0C
1DD9 80 52 A1 DCM 1.2920074
80 40
1DDD 81 AB MB DCM -2.6398577
86 49
1DE1 80 6A C DCM 1.6567626
08 66
1DE5 7F 40 MHLF DCM 0.5
00 00
*
1E00 ORG $1E00 STARTING LOCATION FOR EXP
*
* EXP OF MANT/EXP1 RESULT IN MANT/EXP1
*
1E00 A2 03 EXP LDX =3 4 BYTE TRANSFER
1E02 BD D8 1E LDA L2E,X
1E05 95 04 STA X2,X LOAD EXP/MANT2 WITH LOG BASE 2 OF E
1E07 CA DEX
1E08 10 F8 BPL EXP+2
1E0A 20 77 1F JSR FMUL LOG2(3)*X
1E0D A2 03 LDX =3 4 BYTE TRANSFER
1E0F B5 08 FSA LDA X1,X
1E11 95 10 STA Z,X STORE EXP/MANT1 IN Z
1E13 CA DEX
1E14 10 F9 BPL FSA SAVE Z=LN(2)*X
1E16 20 E8 1F JSR FIX CONVERT CONTENTS OF EXP/MANT1 TO AN INTEGER
1E19 A5 0A LDA M1+1
1E1B 85 1C STA INT SAVE RESULT AS INT
1E1D 38 SEC SET CARRY FOR SUBTRACTION
1E1E E9 7C SBC =124 INT-124
1E20 A5 09 LDA M1
1E22 E9 00 SBC =0
1E24 10 15 BPL OVFLW OVERFLOW INT>=124
1E26 18 CLC CLEAR CARRY FOR ADD
1E27 A5 0A LDA M1+1
1E29 69 78 ADC =120 ADD 120 TO INT
1E2B A5 09 LDA M1
1E2D 69 00 ADC =0
1E2F 10 0B BPL CONTIN IF RESULT POSITIVE CONTINUE
1E31 A9 00 LDA =0 INT<-120 SET RESULT TO ZERO AND RETURN
1E33 A2 03 LDX =3 4 BYTE MOVE
1E35 95 08 ZERO STA X1,X SET EXP/MANT1 TO ZERO
1E37 CA DEX
1E38 10 FB BPL ZERO
1E3A 60 RTS RETURN
*
1E3B 00 OVFLW BRK OVERFLOW
*
1E3C 20 2C 1F CONTIN JSR FLOAT FLOAT INT
1E3F A2 03 LDX =3
1E41 B5 10 ENTD LDA Z,X
1E43 95 04 STA X2,X LOAD EXP/MANT2 WITH Z
1E45 CA DEX
1E46 10 F9 BPL ENTD
1E48 20 4A 1F JSR FSUB Z*Z-FLOAT(INT)
1E4B A2 03 LDX =3 4 BYTE MOVE
1E4D B5 08 ZSAV LDA X1,X
1E4F 95 10 STA Z,X SAVE EXP/MANT1 IN Z
1E51 95 04 STA X2,X COPY EXP/MANT1 TO EXP/MANT2
1E53 CA DEX
1E54 10 F7 BPL ZSAV
1E56 20 77 1F JSR FMUL Z*Z
1E59 A2 03 LDX =3 4 BYTE MOVE
1E5B BD DC 1E LA2 LDA A2,X
1E5E 95 04 STA X2,X LOAD EXP/MANT2 WITH A2
1E60 B5 08 LDA X1,X
1E62 95 18 STA SEXP,X SAVE EXP/MANT1 AS SEXP
1E64 CA DEX
1E65 10 F4 BPL LA2
1E67 20 50 1F JSR FADD Z*Z+A2
1E6A A2 03 LDX =3 4 BYTE MOVE
1E6C BD E0 1E LB2 LDA B2,X
1E6F 95 04 STA X2,X LOAD EXP/MANT2 WITH B2
1E71 CA DEX
1E72 10 F8 BPL LB2
1E74 20 9D 1F JSR FDIV T=B/(Z*Z+A2)
1E77 A2 03 LDX =3 4 BYTE MOVE
1E79 B5 08 DLOAD LDA X1,X
1E7B 95 14 STA T,X SAVE EXP/MANT1 AS T
1E7D BD E4 1E LDA C2,X
1E80 95 08 STA X1,X LOAD EXP/MANT1 WITH C2
1E82 B5 18 LDA SEXP,X
1E84 95 04 STA X2,X LOAD EXP/MANT2 WITH SEXP
1E86 CA DEX
1E87 10 F0 BPL DLOAD
1E89 20 77 1F JSR FMUL Z*Z*C2
1E8C 20 1C 1F JSR SWAP MOVE EXP/MANT1 TO EXP/MANT2
1E8F A2 03 LDX =3 4 BYTE TRANSFER
1E91 B5 14 LTMP LDA T,X
1E93 95 08 STA X1,X LOAD EXP/MANT1 WITH T
1E95 CA DEX
1E96 10 F9 BPL LTMP
1E98 20 4A 1F JSR FSUB C2*Z*Z-B2/(Z*Z+A2)
1E9B A2 03 LDX =3 4 BYTE TRANSFER
1E9D BD E8 1E LDD LDA D,X
1EA0 95 04 STA X2,X LOAD EXP/MANT2 WITH D
1EA2 CA DEX
1EA3 10 F8 BPL LDD
1EA5 20 50 1F JSR FADD D+C2*Z*Z-B2/(Z*Z+A2)
1EA8 20 1C 1F JSR SWAP MOVE EXP/MANT1 TO EXP/MANT2
1EAB A2 03 LDX =3 4 BYTE TRANSFER
1EAD B5 10 LFA LDA Z,X
1EAF 95 08 STA X1,X LOAD EXP/MANT1 WITH Z
1EB1 CA DEX
1EB2 10 F9 BPL LFA
1EB4 20 4A 1F JSR FSUB -Z+D+C2*Z*Z-B2/(Z*Z+A2)
1EB7 A2 03 LDX =3 4 BYTE TRANSFER
1EB9 B5 10 LF3 LDA Z,X
1EBB 95 04 STA X2,X LOAD EXP/MANT2 WITH Z
1EBD CA DEX
1EBE 10 F9 BPL LF3
1EC0 20 9D 1F JSR FDIV Z/(**** )
1EC3 A2 03 LDX =3 4 BYTE TRANSFER
1EC5 BD E5 1D LD12 LDA MHLF,X
1EC8 95 04 STA X2,X LOAD EXP/MANT2 WITH .5
1ECA CA DEX
1ECB 10 F8 BPL LD12
1ECD 20 50 1F JSR FADD +Z/(***)+.5
1ED0 38 SEC ADD INT TO EXPONENT WITH CARRY SET
1ED1 A5 1C LDA INT TO MULTIPLY BY
1ED3 65 08 ADC X1 2**(INT+1)
1ED5 85 08 STA X1 RETURN RESULT TO EXPONENT
1ED7 60 RTS RETURN ANS=(.5+Z/(-Z+D+C2*Z*Z-B2/(Z*Z+A2))*2**(INT+1)
1ED8 80 5C L2E DCM 1.4426950409 LOG BASE 2 OF E
55 1E
1EDC 86 57 A2 DCM 87.417497202
6A E1
1EE0 89 4D B2 DCM 617.9722695
3F 1D
1EE4 7B 46 C2 DCM .03465735903
FA 70
1EE8 83 4F D DCM 9.9545957821
A3 03
*
*
* BASIC FLOATING POINT ROUTINES
*
1F00 ORG $1F00 START OF BASIC FLOATING POINT ROUTINES
1F00 18 ADD CLC CLEAR CARRY
1F01 A2 02 LDX =$02 INDEX FOR 3-BYTE ADD
1F03 B5 09 ADD1 LDA M1,X
1F05 75 05 ADC M2,X ADD A BYTE OF MANT2 TO MANT1
1F07 95 09 STA M1,X
1F09 CA DEX ADVANCE INDEX TO NEXT MORE SIGNIF.BYTE
1F0A 10 F7 BPL ADD1 LOOP UNTIL DONE.
1F0C 60 RTS RETURN
1F0D 06 03 MD1 ASL SIGN CLEAR LSB OF SIGN
1F0F 20 12 1F JSR ABSWAP ABS VAL OF MANT1, THEN SWAP MANT2
1F12 24 09 ABSWAP BIT M1 MANT1 NEG?
1F14 10 05 BPL ABSWP1 NO,SWAP WITH MANT2 AND RETURN
1F16 20 8F 1F JSR FCOMPL YES, COMPLIMENT IT.
1F19 E6 03 INC SIGN INCR SIGN, COMPLEMENTING LSB
1F1B 38 ABSWP1 SEC SET CARRY FOR RETURN TO MUL/DIV
*
* SWAP EXP/MANT1 WITH EXP/MANT2
*
1F1C A2 04 SWAP LDX =$04 INDEX FOR 4-BYTE SWAP.
1F1E 94 0B SWAP1 STY E-1,X
1F20 B5 07 LDA X1-1,X SWAP A BYTE OF EXP/MANT1 WITH
1F22 B4 03 LDY X2-1,X EXP/MANT2 AND LEAVEA COPY OF
1F24 94 07 STY X1-1,X MANT1 IN E(3BYTES). E+3 USED.
1F26 95 03 STA X2-1,X
1F28 CA DEX ADVANCE INDEX TO NEXT BYTE
1F29 D0 F3 BNE SWAP1 LOOP UNTIL DONE.
1F2B 60 RTS
*
*
*
* CONVERT 16 BIT INTEGER IN M1(HIGH) AND M1+1(LOW) TO F.P.
* RESULT IN EXP/MANT1. EXP/MANT2 UNEFFECTED
*
*
1F2C A9 8E FLOAT LDA =$8E
1F2E 85 08 STA X1 SET EXPN TO 14 DEC
1F30 A9 00 LDA =0 CLEAR LOW ORDER BYTE
1F32 85 0B STA M1+2
1F34 F0 08 BEQ NORM NORMALIZE RESULT
1F36 C6 08 NORM1 DEC X1 DECREMENT EXP1
1F38 06 0B ASL M1+2
1F3A 26 0A ROL M1+1 SHIFT MANT1 (3 BYTES) LEFT
1F3C 26 09 ROL M1
1F3E A5 09 NORM LDA M1 HIGH ORDER MANT1 BYTE
1F40 0A ASL UPPER TWO BITS UNEQUAL?
1F41 45 09 EOR M1
1F43 30 04 BMI RTS1 YES,RETURN WITH MANT1 NORMALIZED
1F45 A5 08 LDA X1 EXP1 ZERO?
1F47 D0 ED BNE NORM1 NO, CONTINUE NORMALIZING
1F49 60 RTS1 RTS RETURN
*
*
* EXP/MANT2-EXP/MANT1 RESULT IN EXP/MANT1
*
1F4A 20 8F 1F FSUB JSR FCOMPL CMPL MANT1 CLEARS CARRY UNLESS ZERO
1F4D 20 5D 1F SWPALG JSR ALGNSW RIGHT SHIFT MANT1 OR SWAP WITH MANT2 ON CARRY
*
* ADD EXP/MANT1 AND EXP/MANT2 RESULT IN EXP/MANT1
*
1F50 A5 04 FADD LDA X2
1F52 C5 08 CMP X1 COMPARE EXP1 WITH EXP2
1F54 D0 F7 BNE SWPALG IF UNEQUAL, SWAP ADDENDS OR ALIGN MANTISSAS
1F56 20 00 1F JSR ADD ADD ALIGNED MANTISSAS
1F59 50 E3 ADDEND BVC NORM NO OVERFLOW, NORMALIZE RESULTS
1F5B 70 05 BVS RTLOG OV: SHIFT MANT1 RIGHT. NOTE CARRY IS CORRECT SIGN
1F5D 90 BD ALGNSW BCC SWAP SWAP IF CARRY CLEAR, ELSE SHIFT RIGHT ARITH.
1F5F A5 09 RTAR LDA M1 SIGN OF MANT1 INTO CARRY FOR
1F61 0A ASL RIGHT ARITH SHIFT
1F62 E6 08 RTLOG INC X1 INCR EXP1 TO COMPENSATE FOR RT SHIFT
1F64 F0 7E BEQ OVFL EXP1 OUT OF RANGE.
1F66 A2 FA RTLOG1 LDX =$FA INDEX FOR 6 BYTE RIGHT SHIFT
1F68 A9 80 ROR1 LDA =$80
1F6A B0 01 BCS ROR2
1F6C 0A ASL
1F6D 56 0F ROR2 LSR E+3,X SIMULATE ROR E+3,X
1F6F 15 0F ORA E+3,X
1F71 95 0F STA E+3,X
1F73 E8 INX NEXT BYTE OF SHIFT
1F74 D0 F2 BNE ROR1 LOOP UNTIL DONE
1F76 60 RTS RETURN
*
*
* EXP/MANT1 X EXP/MANT2 RESULT IN EXP/MANT1
*
1F77 20 0D 1F FMUL JSR MD1 ABS. VAL OF MANT1, MANT2
1F7A 65 08 ADC X1 ADD EXP1 TO EXP2 FOR PRODUCT EXPONENT
1F7C 20 CD 1F JSR MD2 CHECK PRODUCT EXP AND PREPARE FOR MUL
1F7F 18 CLC CLEAR CARRY
1F80 20 66 1F MUL1 JSR RTLOG1 MANT1 AND E RIGHT.(PRODUCT AND MPLIER)
1F83 90 03 BCC MUL2 IF CARRY CLEAR, SKIP PARTIAL PRODUCT
1F85 20 00 1F JSR ADD ADD MULTIPLICAN TO PRODUCT
1F88 88 MUL2 DEY NEXT MUL ITERATION
1F89 10 F5 BPL MUL1 LOOP UNTIL DONE
1F8B 46 03 MDEND LSR SIGN TEST SIGN (EVEN/ODD)
1F8D 90 AF NORMX BCC NORM IF EXEN, NORMALIZE PRODUCT, ELSE COMPLEMENT
1F8F 38 FCOMPL SEC SET CARRY FOR SUBTRACT
1F90 A2 03 LDX =$03 INDEX FOR 3 BYTE SUBTRACTION
1F92 A9 00 COMPL1 LDA =$00 CLEAR A
1F94 F5 08 SBC X1,X SUBTRACT BYTE OF EXP1
1F96 95 08 STA X1,X RESTORE IT
1F98 CA DEX NEXT MORE SIGNIFICANT BYTE
1F99 D0 F7 BNE COMPL1 LOOP UNTIL DONE
1F9B F0 BC BEQ ADDEND NORMALIZE (OR SHIFT RIGHT IF OVERFLOW)
*
*
* EXP/MANT2 / EXP/MANT1 RESULT IN EXP/MANT1
*
1F9D 20 0D 1F FDIV JSR MD1 TAKE ABS VAL OF MANT1, MANT2
1FA0 E5 08 SBC X1 SUBTRACT EXP1 FROM EXP2
1FA2 20 CD 1F JSR MD2 SAVE AS QUOTIENT EXP
1FA5 38 DIV1 SEC SET CARRY FOR SUBTRACT
1FA6 A2 02 LDX =$02 INDEX FOR 3-BYTE INSTRUCTION
1FA8 B5 05 DIV2 LDA M2,X
1FAA F5 0C SBC E,X SUBTRACT A BYTE OF E FROM MANT2
1FAC 48 PHA SAVE ON STACK
1FAD CA DEX NEXT MORE SIGNIF BYTE
1FAE 10 F8 BPL DIV2 LOOP UNTIL DONE
1FB0 A2 FD LDX =$FD INDEX FOR 3-BYTE CONDITIONAL MOVE
1FB2 68 DIV3 PLA PULL A BYTE OF DIFFERENCE OFF STACK
1FB3 90 02 BCC DIV4 IF MANT2<E THEN DONT RESTORE MANT2
1FB5 95 08 STA M2+3,X
1FB7 E8 DIV4 INX NEXT LESS SIGNIF BYTE
1FB8 D0 F8 BNE DIV3 LOOP UNTIL DONE
1FBA 26 0B ROL M1+2
1FBC 26 0A ROL M1+1 ROLL QUOTIENT LEFT, CARRY INTO LSB
1FBE 26 09 ROL M1
1FC0 06 07 ASL M2+2
1FC2 26 06 ROL M2+1 SHIFT DIVIDEND LEFT
1FC4 26 05 ROL M2
1FC6 B0 1C BCS OVFL OVERFLOW IS DUE TO UNNORMALIZED DIVISOR
1FC8 88 DEY NEXT DIVIDE ITERATION
1FC9 D0 DA BNE DIV1 LOOP UNTIL DONE 23 ITERATIONS
1FCB F0 BE BEQ MDEND NORMALIZE QUOTIENT AND CORRECT SIGN
1FCD 86 0B MD2 STX M1+2
1FCF 86 0A STX M1+1 CLR MANT1 (3 BYTES) FOR MUL/DIV
1FD1 86 09 STX M1
1FD3 B0 0D BCS OVCHK IF EXP CALC SET CARRY, CHECK FOR OVFL
1FD5 30 04 BMI MD3 IF NEG NO UNDERFLOW
1FD7 68 PLA POP ONE
1FD8 68 PLA RETURN LEVEL
1FD9 90 B2 BCC NORMX CLEAR X1 AND RETURN
1FDB 49 80 MD3 EOR =$80 COMPLIMENT SIGN BIT OF EXP
1FDD 85 08 STA X1 STORE IT
1FDF A0 17 LDY =$17 COUNT FOR 24 MUL OR 23 DIV ITERATIONS
1FE1 60 RTS RETURN
1FE2 10 F7 OVCHK BPL MD3 IF POS EXP THEN NO OVERFLOW
1FE4 00 OVFL BRK
*
*
* CONVERT EXP/MANT1 TO INTEGER IN M1 (HIGH) AND M1+1(LOW)
* EXP/MANT2 UNEFFECTED
*
1FE5 20 5F 1F JSR RTAR SHIFT MANT1 RT AND INCREMENT EXPNT
1FE8 A5 08 FIX LDA X1 CHECK EXPONENT
1FEA C9 8E CMP =$8E IS EXPONENT 14?
1FEC D0 F7 BNE FIX-3 NO, SHIFT
1FEE 60 RTRN RTS RETURN
END
***************************************************************************
Dr. Dobb's Journal, November/December 1976, page 57.
ERRATA FOR RANKIN'S 6502
FLOATING POINT ROUTINES
Sept. 22, 1976
Dear Jim,
Subsequent to the publication of "Floating Point
Routines for the 6502" (Vol.1, No.7) an error which I made in
the LOG routine came to light which causes improper results
if the argument is less than 1. The following changes will
correct the error.
1. After: CONT JSR SWAP (1D07)
Add: A2 00 LDX =0 LOAD X FOR HIGH BYTE OF EXPONENT
2. After: STA M1+1 (1D12)
Delete: LDA =0
STA M1
Add: 10 01 BPL *+3 IS EXPONENT NEGATIVE
CA DEX YES, SET X TO $FF
86 09 STX M1 SET UPPER BYTE OF EXPONENT
3. Changes 1 and 2 shift the code by 3 bytes so add 3 to the
addresses of the constants LN10 through MHLF whenever
they are referenced. For example the address of LN10 changes
from 1DCD to 1DD0. Note also that the entry point for
LOG10 becomes 1DBF. The routines stays within the page
and hence the following routines (EXP etc.) are not affected.
Yours truly,
Roy Rankin
Dep. of Mech. Eng.
Stanford University
+------------------------------------------------------------------------
| TOPIC -- Apple II -- IA Floating point article
+------------------------------------------------------------------------
Interface Age, November 1976, pages 103-111.
Floating Point Routines for the 6502*
by Roy Rankin
Department of Mechanical Engineering, Stanford University
and Steve Wozniak
Apple Computer Company
*First appeared in Dr. DOBB's Journal of Computer Calisthenics &
Orthodontia, Box 310, Menlo Park, CA 94025
The following floating point routines represent a joint
effort between Steve Wozniak who wrote the basic float-
ing point routines of FADD, FSUB, FMUL, FDIV and
their support routines and myself, Roy Rankin, who
added FIX, FLOAT, LOG, LOG10, and EXP. The basic
floating point routines are failry Machine dependent, but
the transcendental programs should be very easy to
transport from one machine to another. The routines
consist of the following math functions
* LOG Natural log
* LOG10 Base 10 log
* EXP Exponential
* FADD Floating add
* FSUB Floating subtraction
* FMUL Floating multiplication
* FDIV Floating division
* FIX Convert floating to fixed
* FLOAT Convert fixed to floating
Two additional routines exchange the contents of
exp/mant1 with exp/mant2 and compliments exp/
mant1. These routines are
SWAP Exchange the contents of exp/mant 1 with
exp/mant 2
FCOMPL Compliment exp/mant 1
Floating point numbers are represented by 4 bytes as
shown in the following
+- SIGN BIT +- SIGN BIT
| 0 = + | 0 = +
| 1 = - | 1 = -
v v
|S| |S| +- PRESUMED DECIMAL POINT
|B| |B| v
|_|_ _ _ _ _ _ _|_|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
|7 6 5 4 3 2 1 0|7 6.5 4 3 2 1 0|7 6 5 4 3 2 1 0|7 6 5 4 3 2 1 0|
| | | | |
| BYTE N | BYTE N+1 | BYTE N+2 | BYTE N+3 |
| | | | |
| | MOST SIG BYTE | | LEAST SIG BYTE|
| | MANTISSA | | MANTISSA |
| | | | |
|<- EXPONENT ->|<--- THREE BYTE MANTISSA --->|
| (TWOS COMPLEMENT REPRESENTATION) |
|<---- FOUR-BYTE FLOATING POINT OPERAND ---->|
The exponent byte is a binary scaling factor for the
Mantissa. The exponent is a standard two's comple-
ment representation except that the sign bit is comple-
mented and runs from +128 to +127. For example:
$00 is -128
$01 is -127
*
*
$7F is -1
$80 is 0
$81 is -1
*
*
$FF is 127
The mantissa is standard two's complement repre-
sentation with the sign bit in the most significant bit of
the high order byte. The assumed decimal point is be-
tween bits 6 and 7 of the most significant byte. Thus the
normalized mantissa ranges in absolute value from 1 to
2. Except when the exponent has a value of +128 the
mantissa is normalized to retain maximum precision.
The mantissa is normalized if the upper two bits of the
high-order mantissa byte are unequal. Thus a normal-
ized mantissa is of the following form:
01.xxxxxx positive mantissa (high byte)
10.xxxxxx negative mantissa (high byte)
Assumed binary point
Some sample floating point numbers in hex
83 50 00 00 10.
80 40 00 00 1.
7C 66 66 66 .1
00 00 00 00 0.
FC 99 99 9A -.1
7F 80 00 00 -1.
83 B0 00 00 -10.
The routines are all entered using a JSR instruction.
Base page locations $004-$007 are referred to as
exp/mant2 while $0008-000b are referred to as exp/
mant1 and act as floating point registers. On entry to
the subroutines these registers contain the numbers to
be operated upon and contain the result on return, The
function of the registers is given before each entry point
in the source listing. There are three error traps which
will cause a software interrupts. ERROT (1D06) is
encountered if the argument in the log routine is less
than or equal to zero. OVFLW (1E3B) will be executed if
the argument of EXP is too large. Overflow detected by
the basic floating point routines will cause OVFL (1FE4)
to be executed. The routines do not give underflow
errors, but set the number to zero if underflow occurs.
Readers of Dr. Dobbs's journal should note that when
these routines were published in that journal the math
function LOG contained an error which prevented the
correct result from being given if the argument was less
than 1. This error has been correted in the present list-
ing and marked with "MOD 9/76."
1 * SEPTEMBER 11, 1976
2 * BASIC FLOATING POINT ROUTINES
3 * FOR 6502 MICROPROCESSOR
4 * BY R. RANKIN AND S. WOZNIAK
5 *
6 * CONSISTING OF:
7 * NATURAL LOG
8 * COMMON LOG
9 * EXPONENTIAL (E**X)
10 * FLOAT FIX
11 * FADD FSUB
12 * FMUL FDIV
13 *
14 *
15 * FLOATING POINT REPRESENTATION (4-BYTES)
16 * EXPONENT BYTE 1
17 * MANTISSA BYTES 2-4
18 *
19 * MANTISSA: TWO'S COMPLIMENT REPRESENTATION WITH SIGN IN
20 * MSB OF HIGH-ORDER BYTE. MANTISSA IS NORMALIZED WITH AN
21 * ASSUMED DECIMAL POINT BETWEEN BITS 5 AND 6 OF THE HIGH-ORDER
22 * BYTE. THUS THE MANTISSA IS IN THE RANGE 1. TO 2. EXCEPT
23 * WHEN THE NUMBER IS LESS THAN 2**(-128).
24 *
25 * EXPONENT: THE EXPONENT REPRESENTS POWERS OF TWO. THE
26 * REPRESENTATION IS 2'S COMPLIMENT EXCEPT THAT THE SIGN
27 * BIT (BIT 7) IS COMPLIMENTED. THIS ALLOWS DIRECT COMPARISON
28 * OF EXPONENTS FOR SIZE SINCE THEY ARE STORED IN INCREASING
29 * NUMERICAL SEQUENCE RANGING FROM $00 (-128) TO $FF (+127)
30 * ($ MEANS NUMBER IS HEXADECIMAL).
31 *
32 * REPRESENTATION OF DECIMAL NUMBERS: THE PRESENT FLOATING
33 * POINT REPRESENTATION ALLOWS DECIMAL NUMBERS IN THE
APPROXIMATE
34 * RANGE OF 10**(-38) THROUGH 10**(38) WITH 6 TO 7 SIGNIFICANT
35 * DIGITS.
36 *
37 *
38 0003 ORG 3 SET BASE PAGE ADRESSES
39 0003 EA SIGN NOP
40 0004 EA X2 NOP EXPONENT 2
41 0005 00 00 00 M2 BSS 3 MANTISSA 2
42 0008 EA X1 NOP EXPONENT 1
43 0009 00 00 00 M1 BSS 3 MANTISSA 1
44 000C E BSS 4 SCRATCH
45 0010 Z BSS 4
46 0014 T BSS 4
47 0018 SEXP BSS 4
48 001C 00 INT BSS 1
49 *
50 1D00 ORG $1D00 STARTING LOCATION FOR LOG
51 *
52 * NATURAL LOG OF MANT/EXP1 WITH RESULT IN MANT/EXP1
53 *
54 1D00 A5 09 LOG LDA M1
55 1D02 F0 02 BEQ ERROR
56 1D04 10 01 BPL CONT IF ARG>0 OK
57 1D06 00 ERROR BRK ERROR ARG<=0
58 *
59 1D07 20 1C 1F CONT JSR SWAP MOVE ARG TO EXP/MANT2
60 1D0A A2 00 LDX =0 MOD 9/76: LOAD X FOR LATER
61 1D0C A5 04 LDA X2 HOLD EXPONENT
62 1D0E A0 80 LDY =$80
63 1D10 84 04 STY X2 SET EXPONENT 2 TO 0 ($80)
64 1D12 49 80 EOR =$80 COMPLIMENT SIGN BIT OF ORIGINAL EXPONENT
65 1D14 85 0A STA M1+1 SET EXPONENT INTO MANTISSA 1 FOR FLOAT
66 1D16 10 01 BPL *+3 MOD 9/76: IS EXPONENT ZERO?
67 1D18 CA DEX MOD 9/76: YES SET X TO $FF
68 1D19 86 09 STX M1 MOD 9/76: SET UPPER BYTE OF EXPONENT
69 1D1B 20 2C 1F JSR FLOAT CONVERT TO FLOATING POINT
70 1D1E A2 03 LDX =3 4 BYTE TRANSFERS
71 1D20 B5 04 SEXP1 LDA X2,X
72 1D22 95 10 STA Z,X COPY MANTISSA TO Z
73 1D24 B5 08 LDA X1,X
74 1D26 95 18 STA SEXP,X SAVE EXPONENT IN SEXP
75 1D28 BD D4 1D LDA R22,X LOAD EXP/MANT1 WITH SQRT(2)
76 1D2B 95 08 STA X1,X
77 1D2D CA DEX
78 1D2E 10 F0 BPL SEXP1
79 1D30 20 4A 1F JSR FSUB Z-SQRT(2)
80 1D33 A2 03 LDX =3 4 BYTE TRANSFER
81 1D35 B5 08 SAVET LDA X1,X SAVE EXP/MANT1 AS T
82 1D37 95 14 STA T,X
83 1D39 B5 10 LDA Z,X LOAD EXP/MANT1 WITH Z
84 1D3B 95 08 STA X1,X
85 1D3D BD D4 1D LDA R22,X LOAD EXP/MANT2 WITH SQRT(2)
86 1D40 95 04 STA X2,X
87 1D42 CA DEX
88 1D43 10 F0 BPL SAVET
89 1D45 20 50 1F JSR FADD Z+SQRT(2)
90 1D48 A2 03 LDX =3 4 BYTE TRANSFER
91 1D4A B5 14 TM2 LDA T,X
92 1D4C 95 04 STA X2,X LOAD T INTO EXP/MANT2
93 1D4E CA DEX
94 1D4F 10 F9 BPL TM2
95 1D51 20 9D 1F JSR FDIV T=(Z-SQRT(2))/(Z+SQRT(2))
96 1D54 A2 03 LDX =3 4 BYTE TRANSFER
97 1D56 B5 08 MIT LDA X1,X
98 1D58 95 14 STA T,X COPY EXP/MANT1 TO T AND
99 1D5A 95 04 STA X2,X LOAD EXP/MANT2 WITH T
100 1D5C CA DEX
101 1D5D 10 F7 BPL MIT
102 1D5F 20 77 1F JSR FMUL T*T
103 1D62 20 1C 1F JSR SWAP MOVE T*T TO EXP/MANT2
104 1D65 A2 03 LDX =3 4 BYTE TRANSFER
105 1D67 BD E4 1D MIC LDA C,X
106 1D6A 95 08 STA X1,X LOAD EXP/MANT1 WITH C
107 1D6C CA DEX
108 1D6D 10 F8 BPL MIC
109 1D6F 20 4A 1F JSR FSUB T*T-C
110 1D72 A2 03 LDX =3 4 BYTE TRANSFER
111 1D74 BD E0 1D M2MB LDA MB,X
112 1D77 95 04 STA X2,X LOAD EXP/MANT2 WITH MB
113 1D79 CA DEX
114 1D7A 10 F8 BPL M2MB
115 1D7C 20 9D 1F JSR FDIV MB/(T*T-C)
116 1D7F A2 03 LDX =3
117 1D81 BD DC 1D M2A1 LDA A1,X
118 1D84 95 04 STA X2,X LOAD EXP/MANT2 WITH A1
119 1D86 CA DEX
120 1D87 10 F8 BPL M2A1
121 1D89 20 50 1F JSR FADD MB/(T*T-C)+A1
122 1D8C A2 03 LDX =3 4 BYTE TRANSFER
123 1D8E B5 14 M2T LDA T,X
124 1D90 95 04 STA X2,X LOAD EXP/MANT2 WITH T
125 1D92 CA DEX
126 1D93 10 F9 BPL M2T
127 1D95 20 77 1F JSR FMUL (MB/(T*T-C)+A1)*T
128 1D98 A2 03 LDX =3 4 BYTE TRANSFER
129 1D9A BD E8 1D M2MHL LDA MHLF,X
130 1D9D 95 04 STA X2,X LOAD EXP/MANT2 WITH MHLF (.5)
131 1D9F CA DEX
132 1DA0 10 F8 BPL M2MHL
133 1DA2 20 50 1F JSR FADD +.5
134 1DA5 A2 03 LDX =3 4 BYTE TRANSFER
135 1DA7 B5 18 LDEXP LDA SEXP,X
136 1DA9 95 04 STA X2,X LOAD EXP/MANT2 WITH ORIGINAL EXPONENT
137 1DAB CA DEX
138 1DAC 10 F9 BPL LDEXP
139 1DAE 20 50 1F JSR FADD +EXPN
140 1DB1 A2 03 LDX =3 4 BYTE TRANSFER
141 1DB3 BD D8 1D MLE2 LDA LE2,X
142 1DB6 95 04 STA X2,X LOAD EXP/MANT2 WITH LN(2)
143 1DB8 CA DEX
144 1DB9 10 F8 BPL MLE2
145 1DBB 20 77 1F JSR FMUL *LN(2)
146 1DBE 60 RTS RETURN RESULT IN MANT/EXP1
147 *
148 * COMMON LOG OF MANT/EXP1 RESULT IN MANT/EXP1
149 *
150 1DBF 20 00 1D LOG10 JSR LOG COMPUTE NATURAL LOG
151 1DC2 A2 03 LDX =3
152 1DC4 BD D0 1D L10 LDA LN10,X
153 1DC7 95 04 STA X2,X LOAD EXP/MANT2 WITH 1/LN(10)
154 1DC9 CA DEX
155 1DCA 10 F8 BPL L10
156 1DCC 20 77 1F JSR FMUL LOG10(X)=LN(X)/LN(10)
157 1DCF 60 RTS
158 *
159 1DD0 7E 6F LN10 DCM 0.4342945
2D ED
160 1DD4 80 5A R22 DCM 1.4142136 SQRT(2)
82 7A
161 1DD8 7F 58 LE2 DCM 0.69314718 LOG BASE E OF 2
B9 0C
162 1DDC 80 52 A1 DCM 1.2920074
B0 40
163 1DE0 81 AB MB DCM -2.6398577
86 49
164 1DE4 80 6A C DCM 1.6567626
08 66
165 1DE8 7F 40 MHLF DCM 0.5
00 00
166 *
167 1E00 ORG $1E00 STARTING LOCATION FOR EXP
168 *
169 * EXP OF MANT/EXP1 RESULT IN MANT/EXP1
170 *
171 1E00 A2 03 EXP LDX =3 4 BYTE TRANSFER
172 1E02 BD D8 1E LDA L2E,X
173 1E05 95 04 STA X2,X LOAD EXP/MANT2 WITH LOG BASE 2 OF E
174 1E07 CA DEX
175 1E08 10 F8 BPL EXP+2
176 1E0A 20 77 1F JSR FMUL LOG2(3)*X
177 1E0D A2 03 LDX =3 4 BYTE TRANSFER
178 1E0F B5 08 FSA LDA X1,X
179 1E11 95 10 STA Z,X STORE EXP/MANT1 IN Z
180 1E13 CA DEX
181 1E14 10 F9 BPL FSA SAVE Z=LN(2)*X
182 1E16 20 E8 1F JSR FIX CONVERT CONTENTS OF EXP/MANT1 TO AN INTEGER
183 1E19 A5 0A LDA M1+1
184 1E1B 85 1C STA INT SAVE RESULT AS INT
185 1E1D 38 SEC SET CARRY FOR SUBTRACTION
186 1E1E E9 7C SBC =124 INT-124
187 1E20 A5 09 LDA M1
188 1E22 E9 00 SBC =0
189 1E24 10 15 BPL OVFLW OVERFLOW INT>=124
190 1E26 18 CLC CLEAR CARRY FOR ADD
191 1E27 A5 0A LDA M1+1
192 1E29 69 78 ADC =120 ADD 120 TO INT
193 1E2B A5 09 LDA M1
194 1E2D 69 00 ADC =0
195 1E2F 10 0B BPL CONTIN IF RESULT POSITIVE CONTINUE
196 1E31 A9 00 LDA =0 INT<-120 SET RESULT TO ZERO AND RETURN
197 1E33 A2 03 LDX =3 4 BYTE MOVE
198 1E35 95 08 ZERO STA X1,X SET EXP/MANT1 TO ZERO
199 1E37 CA DEX
200 1E38 10 FB BPL ZERO
201 1E3A 60 RTS RETURN
202 *
203 1E3B 00 OVFLW BRK OVERFLOW
204 *
205 1E3C 20 2C 1F CONTIN JSR FLOAT FLOAT INT
206 1E3F A2 03 LDX =3
207 1E41 B5 10 ENTD LDA Z,X
208 1E43 95 04 STA X2,X LOAD EXP/MANT2 WITH Z
209 1E45 CA DEX
210 1E46 10 F9 BPL ENTD
211 1E48 20 4A 1F JSR FSUB Z*Z-FLOAT(INT)
212 1E4B A2 03 LDX =3 4 BYTE MOVE
213 1E4D B5 08 ZSAV LDA X1,X
214 1E4F 95 10 STA Z,X SAVE EXP/MANT1 IN Z
215 1E51 95 04 STA X2,X COPY EXP/MANT1 TO EXP/MANT2
216 1E53 CA DEX
217 1E54 10 F7 BPL ZSAV
218 1E56 20 77 1F JSR FMUL Z*Z
219 1E59 A2 03 LDX =3 4 BYTE MOVE
220 1E5B BD DC 1E LA2 LDA A2,X
221 1E5E 95 04 STA X2,X LOAD EXP/MANT2 WITH A2
222 1E60 B5 08 LDA X1,X
223 1E62 95 18 STA SEXP,X SAVE EXP/MANT1 AS SEXP
224 1E64 CA DEX
225 1E65 10 F4 BPL LA2
226 1E67 20 50 1F JSR FADD Z*Z+A2
227 1E6A A2 03 LDX =3 4 BYTE MOVE
228 1E6C BD E0 1E LB2 LDA B2,X
229 1E6F 95 04 STA X2,X LOAD EXP/MANT2 WITH B2
230 1E71 CA DEX
231 1E72 10 F8 BPL LB2
232 1E74 20 9D 1F JSR FDIV T=B/(Z*Z+A2)
233 1E77 A2 03 LDX =3 4 BYTE MOVE
234 1E79 B5 08 DLOAD LDA X1,X
235 1E7B 95 14 STA T,X SAVE EXP/MANT1 AS T
236 1E7D BD E4 1E LDA C2,X
237 1E80 95 08 STA X1,X LOAD EXP/MANT1 WITH C2
238 1E82 B5 18 LDA SEXP,X
239 1E84 95 04 STA X2,X LOAD EXP/MANT2 WITH SEXP
240 1E86 CA DEX
241 1E87 10 F0 BPL DLOAD
242 1E89 20 77 1F JSR FMUL Z*Z*C2
243 1E8C 20 1C 1F JSR SWAP MOVE EXP/MANT1 TO EXP/MANT2
244 1E8F A2 03 LDX =3 4 BYTE TRANSFER
245 1E91 B5 14 LTMP LDA T,X
246 1E93 95 08 STA X1,X LOAD EXP/MANT1 WITH T
247 1E95 CA DEX
248 1E96 10 F9 BPL LTMP
249 1E98 20 4A 1F JSR FSUB C2*Z*Z-B2/(Z*Z+A2)
250 1E9B A2 03 LDX =3 4 BYTE TRANSFER
251 1E9D BD E8 1E LDD LDA D,X
252 1EA0 95 04 STA X2,X LOAD EXP/MANT2 WITH D
253 1EA2 CA DEX
254 1EA3 10 F8 BPL LDD
255 1EA5 20 50 1F JSR FADD D+C2*Z*Z-B2/(Z*Z+A2)
256 1EA8 20 1C 1F JSR SWAP MOVE EXP/MANT1 TO EXP/MANT2
257 1EAB A2 03 LDX =3 4 BYTE TRANSFER
258 1EAD B5 10 LFA LDA Z,X
259 1EAF 95 08 STA X1,X LOAD EXP/MANT1 WITH Z
260 1EB1 CA DEX
261 1EB2 10 F9 BPL LFA
262 1EB4 20 4A 1F JSR FSUB -Z+D+C2*Z*Z-B2/(Z*Z+A2)
263 1EB7 A2 03 LDX =3 4 BYTE TRANSFER
264 1EB9 B5 10 LF3 LDA Z,X
265 1EBB 95 04 STA X2,X LOAD EXP/MANT2 WITH Z
266 1EBD CA DEX
267 1EBE 10 F9 BPL LF3
268 1EC0 20 9D 1F JSR FDIV Z/(**** )
269 1EC3 A2 03 LDX =3 4 BYTE TRANSFER
270 1EC5 BD E8 1D LD12 LDA MHLF,X
271 1EC8 95 04 STA X2,X LOAD EXP/MANT2 WITH .5
272 1ECA CA DEX
273 1ECB 10 F8 BPL LD12
274 1ECD 20 50 1F JSR FADD +Z/(***)+.5
275 1ED0 38 SEC ADD INT TO EXPONENT WITH CARRY SET
276 1ED1 A5 1C LDA INT TO MULTIPLY BY
277 1ED3 65 08 ADC X1 2**(INT+1)
278 1ED5 85 08 STA X1 RETURN RESULT TO EXPONENT
279 1ED7 60 RTS RETURN ANS=(.5+Z/(-Z+D+C2*Z*Z-
B2/(Z*Z+A2))*2**(INT+1)
280 1ED8 80 5C L2E DCM 1.4426950409 LOG BASE 2 OF E
55 1E
281 1EDC 86 57 A2 DCM 87.417497202
6A E1
282 1EE0 89 4D B2 DCM 617.9722695
3F 1D
283 1EE4 7B 46 C2 DCM .03465735903
4A 70
284 1EE8 83 4F D DCM 9.9545957821
A3 03
285 *
286 *
287 * BASIC FLOATING POINT ROUTINES
288 *
289 1F00 ORG $1F00 START OF BASIC FLOATING POINT ROUTINES
290 1F00 18 ADD CLC CLEAR CARRY
291 1F01 A2 02 LDX =$02 INDEX FOR 3-BYTE ADD
292 1F03 B5 09 ADD1 LDA M1,X
293 1F05 75 05 ADC M2,X ADD A BYTE OF MANT2 TO MANT1
294 1F07 95 09 STA M1,X
295 1F09 CA DEX ADVANCE INDEX TO NEXT MORE SIGNIF.BYTE
296 1F0A 10 F7 BPL ADD1 LOOP UNTIL DONE.
297 1F0C 60 RTS RETURN
298 1F0D 06 03 MD1 ASL SIGN CLEAR LSB OF SIGN
299 1F0F 20 12 1F JSR ABSWAP ABS VAL OF MANT1, THEN SWAP MANT2
300 1F12 24 09 ABSWAP BIT M1 MANT1 NEG?
301 1F14 10 05 BPL ABSWP1 NO,SWAP WITH MANT2 AND RETURN
302 1F16 20 8F 1F JSR FCOMPL YES, COMPLIMENT IT.
303 1F19 E6 03 INC SIGN INCR SIGN, COMPLEMENTING LSB
304 1F1B 38 ABSWP1 SEC SET CARRY FOR RETURN TO MUL/DIV
305 *
306 * SWAP EXP/MANT1 WITH EXP/MANT2
307 *
308 1F1C A2 04 SWAP LDX =$04 INDEX FOR 4-BYTE SWAP.
309 1F1E 94 0B SWAP1 STY E-1,X
310 1F20 B5 07 LDA X1-1,X SWAP A BYTE OF EXP/MANT1 WITH
311 1F22 B4 03 LDY X2-1,X EXP/MANT2 AND LEAVEA COPY OF
312 1F24 94 07 STY X1-1,X MANT1 IN E(3BYTES). E+3 USED.
313 1F26 95 03 STA X2-1,X
314 1F28 CA DEX ADVANCE INDEX TO NEXT BYTE
315 1F29 D0 F3 BNE SWAP1 LOOP UNTIL DONE.
316 1F2B 60 RTS
317 *
318 *
319 *
320 * CONVERT 16 BIT INTEGER IN M1(HIGH) AND M1+1(LOW) TO F.P.
321 * RESULT IN EXP/MANT1. EXP/MANT2 UNEFFECTED
322 *
323 *
324 1F2C A9 8E FLOAT LDA =$8E
325 1F2E 85 08 STA X1 SET EXPN TO 14 DEC
326 1F30 A9 00 LDA =0 CLEAR LOW ORDER BYTE
327 1F32 85 0B STA M1+2
328 1F34 F0 08 BEQ NORM NORMALIZE RESULT
329 1F36 C6 08 NORM1 DEC X1 DECREMENT EXP1
330 1F38 06 0B ASL M1+2
331 1F3A 26 0A ROL M1+1 SHIFT MANT1 (3 BYTES) LEFT
332 1F3C 26 09 ROL M1
333 1F3E A5 09 NORM LDA M1 HIGH ORDER MANT1 BYTE
334 1F40 0A ASL UPPER TWO BITS UNEQUAL?
335 1F41 45 09 EOR M1
336 1F43 30 04 BMI RTS1 YES,RETURN WITH MANT1 NORMALIZED
337 1F45 A5 08 LDA X1 EXP1 ZERO?
338 1F47 D0 ED BNE NORM1 NO, CONTINUE NORMALIZING
339 1F49 60 RTS1 RTS RETURN
340 *
341 *
342 * EXP/MANT2-EXP/MANT1 RESULT IN EXP/MANT1
343 *
344 1F4A 20 8F 1F FSUB JSR FCOMPL CMPL MANT1 CLEARS CARRY UNLESS ZERO
345 1F4D 20 5D 1F SWPALG JSR ALGNSW RIGHT SHIFT MANT1 OR SWAP WITH MANT2 ON CARRY
346 *
347 * ADD EXP/MANT1 AND EXP/MANT2 RESULT IN EXP/MANT1
348 *
349 1F50 A5 04 FADD LDA X2
350 1F52 C5 08 CMP X1 COMPARE EXP1 WITH EXP2
351 1F54 D0 F7 BNE SWPALG IF UNEQUAL, SWAP ADDENDS OR ALIGN MANTISSAS
352 1F56 20 00 1F JSR ADD ADD ALIGNED MANTISSAS
353 1F59 50 E3 ADDEND BVC NORM NO OVERFLOW, NORMALIZE RESULTS
354 1F5B 70 05 BVS RTLOG OV: SHIFT MANT1 RIGHT. NOTE CARRY IS CORRECT
SIGN
355 1F5D 90 BD ALGNSW BCC SWAP SWAP IF CARRY CLEAR, ELSE SHIFT RIGHT ARITH.
356 1F5F A5 09 RTAR LDA M1 SIGN OF MANT1 INTO CARRY FOR
357 1F61 0A ASL RIGHT ARITH SHIFT
358 1F62 E6 08 RTLOG INC X1 INCR EXP1 TO COMPENSATE FOR RT SHIFT
359 1F64 F0 7E BEQ OVFL EXP1 OUT OF RANGE.
360 1F66 A2 FA RTLOG1 LDX =$FA INDEX FOR 6 BYTE RIGHT SHIFT
361 1F68 A9 80 ROR1 LDA =$80
362 1F6A B0 01 BCS ROR2
363 1F6C 0A ASL
364 1F6D 56 0F ROR2 LSR E+3,X SIMULATE ROR E+3,X
365 1F6F 15 0F ORA E+3,X
366 1F71 95 0F STA E+3,X
367 1F73 E8 INX NEXT BYTE OF SHIFT
368 1F74 D0 F2 BNE ROR1 LOOP UNTIL DONE
369 1F76 60 RTS RETURN
370 *
371 *
372 * EXP/MANT1 X EXP/MANT2 RESULT IN EXP/MANT1
373 *
374 1F77 20 0D 1F FMUL JSR MD1 ABS. VAL OF MANT1, MANT2
375 1F7A 65 08 ADC X1 ADD EXP1 TO EXP2 FOR PRODUCT EXPONENT
376 1F7C 20 CD 1F JSR MD2 CHECK PRODUCT EXP AND PREPARE FOR MUL
377 1F7F 18 CLC CLEAR CARRY
378 1F80 20 66 1F MUL1 JSR RTLOG1 MANT1 AND E RIGHT.(PRODUCT AND MPLIER)
379 1F83 90 03 BCC MUL2 IF CARRY CLEAR, SKIP PARTIAL PRODUCT
380 1F85 20 00 1F JSR ADD ADD MULTIPLICAN TO PRODUCT
381 1F88 88 MUL2 DEY NEXT MUL ITERATION
382 1F89 10 F5 BPL MUL1 LOOP UNTIL DONE
383 1F8B 46 03 MDEND LSR SIGN TEST SIGN (EVEN/ODD)
384 1F8D 90 AF NORMX BCC NORM IF EXEN, NORMALIZE PRODUCT, ELSE COMPLEMENT
385 1F8F 38 FCOMPL SEC SET CARRY FOR SUBTRACT
386 1F90 A2 03 LDX =$03 INDEX FOR 3 BYTE SUBTRACTION
387 1F92 A9 00 COMPL1 LDA =$00 CLEAR A
388 1F94 F5 08 SBC X1,X SUBTRACT BYTE OF EXP1
389 1F96 95 08 STA X1,X RESTORE IT
390 1F98 CA DEX NEXT MORE SIGNIFICANT BYTE
391 1F99 D0 F7 BNE COMPL1 LOOP UNTIL DONE
392 1F9B F0 BC BEQ ADDEND NORMALIZE (OR SHIFT RIGHT IF OVERFLOW)
393 *
394 *
395 * EXP/MANT2 / EXP/MANT1 RESULT IN EXP/MANT1
396 *
397 1F9D 20 0D 1F FDIV JSR MD1 TAKE ABS VAL OF MANT1, MANT2
398 1FA0 E5 08 SBC X1 SUBTRACT EXP1 FROM EXP2
399 1FA2 20 CD 1F JSR MD2 SAVE AS QUOTIENT EXP
400 1FA5 38 DIV1 SEC SET CARRY FOR SUBTRACT
401 1FA6 A2 02 LDX =$02 INDEX FOR 3-BYTE INSTRUCTION
402 1FA8 B5 05 DIV2 LDA M2,X
403 1FAA F5 0C SBC E,X SUBTRACT A BYTE OF E FROM MANT2
404 1FAC 48 PHA SAVE ON STACK
405 1FAD CA DEX NEXT MORE SIGNIF BYTE
406 1FAE 10 F8 BPL DIV2 LOOP UNTIL DONE
407 1FB0 A2 FD LDX =$FD INDEX FOR 3-BYTE CONDITIONAL MOVE
408 1FB2 68 DIV3 PLA PULL A BYTE OF DIFFERENCE OFF STACK
409 1FB3 90 02 BCC DIV4 IF MANT2<E THEN DONT RESTORE MANT2
410 1FB5 95 08 STA M2+3,X
411 1FB7 E8 DIV4 INX NEXT LESS SIGNIF BYTE
412 1FB8 D0 F8 BNE DIV3 LOOP UNTIL DONE
413 1FBA 26 0B ROL M1+2
414 1FBC 26 0A ROL M1+1 ROLL QUOTIENT LEFT, CARRY INTO LSB
415 1FBE 26 09 ROL M1
416 1FC0 06 07 ASL M2+2
417 1FC2 26 06 ROL M2+1 SHIFT DIVIDEND LEFT
418 1FC4 26 05 ROL M2
419 1FC6 B0 1C BCS OVFL OVERFLOW IS DUE TO UNNORMALIZED DIVISOR
420 1FC8 88 DEY NEXT DIVIDE ITERATION
421 1FC9 D0 DA BNE DIV1 LOOP UNTIL DONE 23 ITERATIONS
422 1FCB F0 BE BEQ MDEND NORMALIZE QUOTIENT AND CORRECT SIGN
423 1FCD 86 0B MD2 STX M1+2
424 1FCF 86 0A STX M1+1 CLR MANT1 (3 BYTES) FOR MUL/DIV
425 1FD1 86 09 STX M1
426 1FD3 B0 0D BCS OVCHK IF EXP CALC SET CARRY, CHECK FOR OVFL
427 1FD5 30 04 BMI MD3 IF NEG NO UNDERFLOW
428 1FD7 68 PLA POP ONE
429 1FD8 68 PLA RETURN LEVEL
430 1FD9 90 B2 BCC NORMX CLEAR X1 AND RETURN
431 1FDB 49 80 MD3 EOR =$80 COMPLIMENT SIGN BIT OF EXP
432 1FDD 85 08 STA X1 STORE IT
433 1FDF A0 17 LDY =$17 COUNT FOR 24 MUL OR 23 DIV ITERATIONS
434 1FE1 60 RTS RETURN
435 1FE2 10 F7 OVCHK BPL MD3 IF POS EXP THEN NO OVERFLOW
436 1FE4 00 OVFL BRK
437 *
438 *
439 * CONVERT EXP/MANT1 TO INTEGER IN M1 (HIGH) AND M1+1(LOW)
440 * EXP/MANT2 UNEFFECTED
441 *
442 1FE5 20 5F 1F JSR RTAR SHIFT MANT1 RT AND INCREMENT EXPNT
443 1FE8 A5 08 FIX LDA X1 CHECK EXPONENT
444 1FEA C9 8E CMP =$8E IS EXPONENT 14?
445 1FEC D0 F7 BNE FIX-3 NO, SHIFT
446 1FEE 60 RTRN RTS RETURN
447 END
OBJECT CODE DUMP
1D00 A5 09 F0 02 10 01 00 20 1C 1F A2 00 A5 04 A0 80
1D10 84 04 49 80 85 0A 10 01 CA 86 09 20 2C 1F A2 03
1D20 B5 04 95 10 B5 08 95 18 BD D4 1D 95 08 CA 10 F0
1D30 20 4A 1F A2 03 B5 08 95 14 B5 10 95 08 BD D4 1D
1D40 95 04 CA 10 F0 20 50 1F A2 03 B5 14 95 04 CA 10
1D50 F9 20 9D 1F A2 03 B5 08 95 14 95 04 CA 10 F7 20
1D60 77 1F 20 1C 1F A2 03 BD E4 1D 95 08 CA 10 F8 20
1D70 4A 1F A2 03 BD E0 1D 95 04 CA 10 F8 20 9D 1F A2
1D80 03 BD DC 1D 95 04 CA 10 F8 20 50 1F A2 03 B5 14
1D90 95 04 CA 10 F9 20 77 1F A2 03 BD E8 1D 95 04 CA
1DA0 10 F8 20 50 1F A2 03 B5 18 95 04 CA 10 F9 20 50
1DB0 1F A2 03 BD D8 1D 95 04 CA 10 F8 20 77 1F 60 20
1DC0 00 1D A2 03 BD D0 1D 95 04 CA 10 F8 20 77 1F 60
1DD0 73 6F 2D ED 80 5A 82 7A 7F 58 B9 0C 80 52 B0 40
1DE0 81 AB 86 49 80 6A 08 66 7F 40 00 00
1E00 A2 03 BD D8 1E 95 04 CA 10 F8 20 77 1F A2 03 B5
1E10 08 95 10 CA 10 F9 20 E8 1F A5 0A 85 1C 38 E9 7C
1E20 A5 09 E9 00 10 15 18 A5 0A 69 78 A5 09 69 00 10
1E30 0B A9 00 A2 03 95 08 CA 10 FB 60 00 20 2C 1F A2
1E40 03 B5 10 95 04 CA 10 F9 20 4A 1F A2 03 B5 08 95
1E50 10 95 04 CA 10 F7 20 77 1F A2 03 BD DC 1E 95 04
1E60 B5 08 95 18 CA 10 F4 20 50 1F A2 03 BD E0 1E 95
1E70 04 CA 10 F8 20 9D 1F A2 03 B5 08 95 14 BD E4 1E
1E80 95 08 B5 18 95 04 CA 10 F0 20 77 1F 20 1C 1F A2
1E90 03 B5 14 95 08 CA 10 F9 20 4A 1F A2 03 BD E8 1E
1EA0 95 04 CA 10 F8 20 50 1F 20 1C 1F A2 03 B5 10 95
1EB0 08 CA 10 F9 20 4A 1F A2 03 B5 10 95 04 CA 10 F9
1EC0 20 9D 1F A2 03 BD E8 1D 95 04 CA 10 F8 20 50 1F
1ED0 38 A5 1C 65 08 85 08 60 80 5C 55 1E 86 57 6A E1
1EE0 89 4D 3F 1D 7B 46 FA 70 83 4F A3 03
1F00 18 A2 02 B5 09 75 05 95 09 CA 10 F7 60 06 03 20
1F10 12 1F 24 09 10 05 20 8F 1F E6 03 38 A2 04 94 0B
1F20 B5 07 B4 03 94 07 95 03 CA D0 F3 60 A9 8E 85 08
1F30 A9 00 85 0B F0 08 C6 08 06 0B 26 0A 26 09 A5 09
1F40 0A 45 09 30 04 A5 08 D0 ED 60 20 8F 1F 20 5D 1F
1F50 A5 04 C5 08 D0 F7 20 00 1F 50 E3 70 05 90 BD A5
1F60 09 0A E6 08 F0 7E A2 FA A9 80 B0 01 0A 56 0F 15
1F70 0F 95 0F E8 D0 F2 60 20 0D 1F 65 08 20 CD 1F 18
1F80 20 66 1F 90 03 20 00 1F 88 10 F5 46 03 90 AF 38
1F90 A2 03 A9 00 F5 08 95 08 CA D0 F7 F0 BC 20 0D 1F
1FA0 E5 08 20 CD 1F 38 A2 02 B5 05 F5 0C 48 CA 10 F8
1FB0 A2 FD 68 90 02 95 08 E8 D0 F8 26 0B 26 0A 26 09
1FC0 06 07 26 06 26 05 B0 1C 88 D0 DA F0 BE 86 0B 86
1FD0 0A 86 09 B0 0D 30 04 68 68 90 B2 49 80 85 08 A0
1FE0 17 60 10 F7 00 20 5F 1F A5 08 C9 8E D0 F7 60
+------------------------------------------------------------------------
| TOPIC -- SYM Computer -- SYM Monitor listing
+------------------------------------------------------------------------
SYM-1 SUPERMON AND AUDIO CASSETTE INTERFACE SOURCES
COMBINED AND CONVERTED TO TELEMARK ASSEMBLER (TASM) V3.1
0002 0000 ;
0003 0000 ;*****
0004 0000 ;***** COPYRIGHT 1979 SYNERTEK SYSTEMS CORPORATION
0005 0000 ;***** VERSION 2 4/13/79 "SY1.1"
0006 A600 *=$A600 ;SYS RAM (ECHOED AT TOP OF MEM)
0007 A600 SCPBUF .BLOCK $20 ;SCOPE BUFFER LAST 32 CHARS
0008 A620 RAM =* ;DEFAULT BLK FILLS STARTING HERE
0009 A620 JTABLE .BLOCK $10 ; 8JUMPS - ABS ADDR, LO HI ORDER
0010 A630 TAPDEL .BLOCK 1 ;KH TAPE DELAY
0011 A631 KMBDRY .BLOCK 1 ;KIM TAPE READ BOUNDARY
0012 A632 HSBDRY .BLOCK 1 ;HS TAPE READ BOUNDARY
0013 A633 SCR3 .BLOCK 1 ;RAM SCRATCH LOCS 3-F
0014 A634 SCR4 .BLOCK 1
0015 A635 TAPET1 .BLOCK 1 ;HS TAPE 1/2 BIT TIME
0016 A636 SCR6 .BLOCK 1
0017 A637 SCR7 .BLOCK 1
0018 A638 SCR8 .BLOCK 1
0019 A639 SCR9 .BLOCK 1
0020 A63A SCRA .BLOCK 1
0021 A63B SCRB .BLOCK 1
0022 A63C TAPET2 .BLOCK 1 ;HS TAPE 1/2 BIT TIME
0023 A63D SCRD .BLOCK 1
0024 A63E RC =SCRD
0025 A63E SCRE .BLOCK 1
0026 A63F SCRF .BLOCK 1
0027 A640 DISBUF .BLOCK 5 ;DISPLAY BUFFER
0028 A645 RDIG .BLOCK 1 ;RIGHT MOST DIGIT OF DISPLAY
0029 A646 .BLOCK 3 ;NOT USED
0030 A649 PARNR .BLOCK 1 ;NUMBER OF PARMS RECEIVED
0031 A64A ;
0032 A64A ; 3 16 BIT PARMS, LO HI ORDER
0033 A64A ; PASSED TO EXECUTE BLOCKS
0034 A64A ;
0035 A64A P3L .BLOCK 1
0036 A64B P3H .BLOCK 1
0037 A64C P2L .BLOCK 1
0038 A64D P2H .BLOCK 1
0039 A64E P1L .BLOCK 1
0040 A64F P1H .BLOCK 1
0041 A650 PADBIT .BLOCK 1 ;PAD BITS FOR CARRIAGE RETURN
0042 A651 SDBYT .BLOCK 1 ;SPEED BYTE FOR TERMINAL I/O
0043 A652 ERCNT .BLOCK 1 ; ERROR COUNT (MAX $FF)
0044 A653 ; BIT 7 = ECHO /NO ECHO, BIT 6 = CTL O TOGGLE SW
0045 A653 TECHO .BLOCK 1 ;TERMINAL ECHO LAG
0046 A654 ; BIT7 =CRT IN, 6 =TTY IN, 5 = TTY OUT, 4 = CRT OUT
0047 A654 TOUTFL .BLOCK 1 ;OUTPUT FLAGS
0048 A655 KSHFL .BLOCK 1 ;KEYBOARD SHIFT FLAG
0049 A656 TV .BLOCK 1 ;TRACE VELOCITY (0=SINGLE STEP)
0050 A657 LSTCOM .BLOCK 1 ;STORE LAST MONITOR COMMAND
0051 A658 MAXRC .BLOCK 1 ;MAXIMUM REC LENGTH FOR MEM DUMP
0052 A659 ;
0053 A659 ; USER REG'S FOLLOW
0054 A659 ;
0055 A659 PCLR .BLOCK 1 ;PROG CTR
0056 A65A PCHR .BLOCK 1
0057 A65B SR .BLOCK 1 ;STACK
0058 A65C FR .BLOCK 1 ;FLAGS
0059 A65D AR .BLOCK 1 ;AREG
0060 A65E XR .BLOCK 1 ;XREG
0061 A65F YR .BLOCK 1 ;YREG
0062 A660 ;
0063 A660 ; I/O VECTORS FOLLOW
0064 A660 ;
0065 A660 INVEC .BLOCK 3 ;IN CHAR
0066 A663 OUTVEC .BLOCK 3 ;OUT CHAR
0067 A666 INSVEC .BLOCK 3 ;IN STATUS
0068 A669 URSVEC .BLOCK 3 ;UNRECOGNIZED SYNTAX VECTOR
0069 A66C URCVEC .BLOCK 3 ;UNRECOGNIZED CMD/ERROR VECTOR
0070 A66F SCNVEC .BLOCK 3 ;SCAN ON-BOARD DISPLAY
0071 A672 ;
0072 A672 ; TRACE, INTERRUPT VECTORS
0073 A672 ;
0074 A672 EXEVEC .BLOCK 2 ; EXEC CMD ALTERNATE INVEC
0075 A674 TRCVEC .BLOCK 2 ;TRACE
0076 A676 UBRKVC .BLOCK 2 ;USER BRK AFTER MONITOR
0077 A678 UBRKV =UBRKVC
0078 A678 UIRQVC .BLOCK 2 ;USER NON-BRK IRQ AFTER MONITOR
0079 A67A UIRQV =UIRQVC
0080 A67A NMIVEC .BLOCK 2 ;NMI
0081 A67C RSTVEC .BLOCK 2 ;RESET
0082 A67E IRQVEC .BLOCK 2 ;IRQ
0083 A680 ;
0084 A680 ;
0085 A680 ;I/O REG DEFINITIONS
0086 A680 PADA =$A400 ;KEYBOARD/DISPLAY
0087 A680 PBDA =$A402 ;SERIAL I/O
0088 A680 OR3A =$AC01 ;WP, DBON, DBOFF
0089 A680 DDR3A =OR3A+2 ;DATA DIRECTION FOR SAME
0090 A680 OR1B =$A000
0091 A680 DDR1B =$A002
0092 A680 PCR1 =$A00C ; POR/TAPE REMOTE
0093 A680 ;
0094 A680 ; MONITOR MAINLINE
0095 A680 ;
0096 8000 *=$8000
0097 8000 4C 7C 8B MONITR JMP MONENT ;INIT S, CLD, GET ACCESS
0098 8003 20 FF 80 WARM JSR GETCOM ;GET COMMAND + PARMS (0-3)
0099 8006 20 4A 81 JSR DISPAT ;DISPATCH CMD,PARMS TO EXEC BLKS
0100 8009 20 71 81 JSR ERMSG ;DISP ER MSG IF CARRY SET
0101 800C 4C 03 80 JMP WARM ;AND CONTINUE
0102 800F ;
0103 800F ; TRACE AND INTERRUPT ROUTINES
0104 800F ;
0105 800F 08 IRQBRK PHP ;IRQ OR BRK ?
0106 8010 48 PHA
0107 8011 8A TXA
0108 8012 48 PHA
0109 8013 BA TSX
0110 8014 BD 04 01 LDA $0104,X ;PICK UP FLAGS
0111 8017 29 10 AND #$10
0112 8019 F0 07 BEQ DETIRQ
0113 801B 68 PLA ;BRK
0114 801C AA TAX
0115 801D 68 PLA
0116 801E 28 PLP
0117 801F 6C F6 FF JMP ($FFF6)
0118 8022 68 DETIRQ PLA ;IRQ (NON BRK)
0119 8023 AA TAX
0120 8024 68 PLA
0121 8025 28 PLP
0122 8026 6C F8 FF JMP ($FFF8)
0123 8029 20 86 8B SVIRQ JSR ACCESS ;SAVE REGS AND DISPLAY CODE
0124 802C 38 SEC
0125 802D 20 64 80 JSR SAVINT
0126 8030 A9 31 LDA #'1'
0127 8032 4C 53 80 JMP IDISP
0128 8035 08 USRENT PHP ;USER ENTRY
0129 8036 20 86 8B JSR ACCESS
0130 8039 38 SEC
0131 803A 20 64 80 JSR SAVINT
0132 803D EE 59 A6 INC PCLR
0133 8040 D0 03 BNE *+5
0134 8042 EE 5A A6 INC PCHR
0135 8045 A9 33 LDA #'3'
0136 8047 4C 53 80 JMP IDISP
0137 804A 20 86 8B SVBRK JSR ACCESS
0138 804D 18 CLC
0139 804E 20 64 80 JSR SAVINT
0140 8051 A9 30 LDA #'0'
0141 8053 ; INTRPT CODES 0 = BRK
0142 8053 ; 1 = IRQ
0143 8053 ; 2 = NMI
0144 8053 ; 3 = USER ENTRY
0145 8053 48 IDISP PHA ;OUT PC, INTRPT CODE (FROM A)
0146 8054 20 D3 80 JSR DBOFF ;STOP NMI'S
0147 8057 20 4D 83 JSR CRLF
0148 805A 20 37 83 JSR OPCCOM
0149 805D 68 PLA
0150 805E 20 47 8A JSR OUTCHR
0151 8061 4C 03 80 JMP WARM
0152 8064 8D 5D A6 SAVINT STA AR ;SAVE USER REGS AFTER INTRPT
0153 8067 8E 5E A6 STX XR
0154 806A 8C 5F A6 STY YR
0155 806D BA TSX
0156 806E D8 CLD
0157 806F BD 04 01 LDA $104,X
0158 8072 69 FF ADC #$FF
0159 8074 8D 59 A6 STA PCLR
0160 8077 BD 05 01 LDA $105,X
0161 807A 69 FF ADC #$FF
0162 807C 8D 5A A6 STA PCHR
0163 807F BD 03 01 LDA $103,X
0164 8082 8D 5C A6 STA FR
0165 8085 BD 02 01 LDA $102,X
0166 8088 9D 05 01 STA $105,X
0167 808B BD 01 01 LDA $101,X
0168 808E 9D 04 01 STA $104,X
0169 8091 E8 INX
0170 8092 E8 INX
0171 8093 E8 INX
0172 8094 9A TXS
0173 8095 E8 INX
0174 8096 E8 INX
0175 8097 8E 5B A6 STX SR
0176 809A 60 RTS
0177 809B 20 86 8B SVNMI JSR ACCESS ;TRACE IF TV NE 0
0178 809E 38 SEC
0179 809F 20 64 80 JSR SAVINT
0180 80A2 20 D3 80 JSR DBOFF ;STOP NMI'S
0181 80A5 AD 56 A6 LDA TV
0182 80A8 D0 05 BNE TVNZ
0183 80AA A9 32 LDA #'2'
0184 80AC 4C 53 80 JMP IDISP
0185 80AF 20 37 83 TVNZ JSR OPCCOM ;TRACE WITH DELAY
0186 80B2 AD 5D A6 LDA AR
0187 80B5 20 4A 83 JSR OBCRLF ;DISPLAY ACC
0188 80B8 20 5A 83 JSR DELAY
0189 80BB 90 10 BCC TRACON ;STOP IF KEY ENTERED
0190 80BD 4C 03 80 JMP WARM
0191 80C0 20 86 8B TRCOFF JSR ACCESS ;DISABLE NMIS
0192 80C3 38 SEC
0193 80C4 20 64 80 JSR SAVINT
0194 80C7 20 D3 80 JSR DBOFF
0195 80CA 6C 74 A6 JMP (TRCVEC) ;AND GO TO SPECIAL TRACE
0196 80CD 20 E4 80 TRACON JSR DBON ;ENABLE NMI'S
0197 80D0 4C FD 83 JMP GO1ENT+3 ;AND RESUME (NO WRITE PROT)
0198 80D3 AD 01 AC DBOFF LDA OR3A ;PULSE DEBUG OFF
0199 80D6 29 DF AND #$DF
0200 80D8 09 10 ORA #$10
0201 80DA 8D 01 AC STA OR3A
0202 80DD AD 03 AC LDA DDR3A
0203 80E0 09 30 ORA #$30
0204 80E2 D0 0F BNE DBNEW-3 ;RELEASE FLIP FLOP SO KEY WORKS
0205 80E4 AD 01 AC DBON LDA OR3A ;PULSE DEBUG ON
0206 80E7 29 EF AND #$EF
0207 80E9 09 20 ORA #$20
0208 80EB 8D 01 AC STA OR3A
0209 80EE AD 03 AC LDA DDR3A
0210 80F1 09 30 ORA #$30
0211 80F3 8D 03 AC STA DDR3A
0212 80F6 AD 03 AC DBNEW LDA DDR3A ;RELEASE FLIP FLOP
0213 80F9 29 CF AND #$CF
0214 80FB 8D 03 AC STA DDR3A
0215 80FE 60 RTS
0216 80FF ;
0217 80FF ; GETCOM - GET COMMAND AND 0-3 PARMS
0218 80FF ;
0219 80FF 20 4D 83 GETCOM JSR CRLF
0220 8102 A9 2E LDA #'.' ;PROMPT
0221 8104 20 47 8A JSR OUTCHR
0222 8107 20 1B 8A GETC1 JSR INCHR
0223 810A F0 F3 BEQ GETCOM ;CARRIAGE RETURN?
0224 810C C9 7F CMP #$7F ;DELETE?
0225 810E F0 F7 BEQ GETC1
0226 8110 C9 00 CMP #0 ;NULL?
0227 8112 F0 F3 BEQ GETC1
0228 8114 ; L,S,U NEED TO BE HASHED 2 BYTES TO ONE
0229 8114 C9 53 CMP #'S'
0230 8116 F0 1B BEQ HASHUS
0231 8118 C9 55 CMP #'U'
0232 811A F0 17 BEQ HASHUS
0233 811C C9 4C CMP #'L'
0234 811E F0 0F BEQ HASHL
0235 8120 8D 57 A6 STOCOM STA LSTCOM
0236 8123 20 42 83 JSR SPACE
0237 8126 20 08 82 JSR PSHOVE ;ZERO PARMS
0238 8129 20 08 82 JSR PSHOVE
0239 812C 4C 20 82 JMP PARM ;AND GO GET PARMS
0240 812F A9 01 HASHL LDA #$01 ;HASH LOAD CMDS TO ONE BYTE
0241 8131 10 02 BPL HASHUS+2
0242 8133 0A HASHUS ASL A ;HASH 'USER' CMDS TO ONE BYTE A
0243 8134 0A ASL A ;U0 = $14 THRU U17 =$1B
0244 8135 8D 57 A6 STA LSTCOM
0245 8138 20 1B 8A JSR INCHR ;GET SECOND
0246 813B F0 C2 BEQ GETCOM
0247 813D 18 CLC
0248 813E 6D 57 A6 ADC LSTCOM
0249 8141 29 0F AND #$0F
0250 8143 09 10 ORA #$10
0251 8145 10 D9 BPL STOCOM
0252 8147 FF FF FF .DB $FF,$FF,$FF ;NOT USED
0253 814A ;
0254 814A ;DISPATCH TO EXEC BLK 0PARM, 1PARM, 2PARM, OR 3PARM
0255 814A ;
0256 814A C9 0D DISPAT CMP #$0D ;C/R IF OK ELSE URSVEC
0257 814C D0 20 BNE HIPN
0258 814E AD 57 A6 LDA LSTCOM
0259 8151 AE 49 A6 LDX PARNR
0260 8154 D0 03 BNE M12
0261 8156 4C 95 83 JMP BZPARM ;0 PARM BLOCK
0262 8159 E0 01 M12 CPX #$01
0263 815B D0 03 BNE M13
0264 815D 4C DA 84 JMP B1PARM ;1 PARM BLOCK
0265 8160 E0 02 M13 CPX #$02
0266 8162 D0 03 BNE M14
0267 8164 4C 19 86 JMP B2PARM ;2 PARM BLOCK
0268 8167 E0 03 M14 CPX #$03
0269 8169 D0 03 BNE HIPN
0270 816B 4C 14 87 JMP B3PARM ;3 PARM BLOCK
0271 816E 6C 6A A6 HIPN JMP (URSVEC+1) ;ELSE UNREC SYNTAX VECTOR
0272 8171 ;
0273 8171 ; ERMSG - PRINT ACC IN HEX IF CARRY SET
0274 8171 ;
0275 8171 90 44 ERMSG BCC M15
0276 8173 48 PHA
0277 8174 20 4D 83 JSR CRLF
0278 8177 A9 45 LDA #'E'
0279 8179 20 47 8A JSR OUTCHR
0280 817C A9 52 LDA #'R'
0281 817E 20 47 8A JSR OUTCHR
0282 8181 20 42 83 JSR SPACE
0283 8184 68 PLA
0284 8185 4C FA 82 JMP OUTBYT
0285 8188 ;
0286 8188 ; SAVER - SAVE ALL REG'S + FLAGS ON STACK
0287 8188 ; RETURN WITH F,A,X,Y UNCHANGED
0288 8188 ; STACK HAS FLAGS,A,X,Y, PUSHED
0289 8188 08 SAVER PHP
0290 8189 48 PHA
0291 818A 48 PHA
0292 818B 48 PHA
0293 818C 08 PHP
0294 818D 48 PHA
0295 818E 8A TXA
0296 818F 48 PHA
0297 8190 BA TSX
0298 8191 BD 09 01 LDA $0109,X
0299 8194 9D 05 01 STA $0105,X
0300 8197 BD 07 01 LDA $0107,X
0301 819A 9D 09 01 STA $0109,X
0302 819D BD 01 01 LDA $0101,X
0303 81A0 9D 07 01 STA $0107,X
0304 81A3 BD 08 01 LDA $0108,X
0305 81A6 9D 04 01 STA $0104,X
0306 81A9 BD 06 01 LDA $0106,X
0307 81AC 9D 08 01 STA $0108,X
0308 81AF 98 TYA
0309 81B0 9D 06 01 STA $0106,X
0310 81B3 68 PLA
0311 81B4 AA TAX
0312 81B5 68 PLA
0313 81B6 28 PLP
0314 81B7 60 M15 RTS
0315 81B8 ; RESTORE EXCEPT A,F
0316 81B8 08 RESXAF PHP
0317 81B9 BA TSX
0318 81BA 9D 04 01 STA $0104,X
0319 81BD 28 PLP
0320 81BE ; RESTORE EXCEPT F
0321 81BE 08 RESXF PHP
0322 81BF 68 PLA
0323 81C0 BA TSX
0324 81C1 9D 04 01 STA $0104,X
0325 81C4 ; RESTORE ALL 100%
0326 81C4 68 RESALL PLA
0327 81C5 A8 TAY
0328 81C6 68 PLA
0329 81C7 AA TAX
0330 81C8 68 PLA
0331 81C9 28 PLP
0332 81CA 60 RTS
0333 81CB ;
0334 81CB ; MONITOR UTILITIES
0335 81CB ;
0336 81CB C9 20 ADVCK CMP #$20 ;SPACE?
0337 81CD F0 02 BEQ M1
0338 81CF C9 3E CMP #'>' ;FWD ARROW?
0339 81D1 38 M1 SEC
0340 81D2 60 RTS
0341 81D3 20 FA 82 OBCMIN JSR OUTBYT ;OUT BYTE, OUT COMMA, IN BYTE
0342 81D6 20 3A 83 COMINB JSR COMMA ;OUT COMMA, IN BYTE
0343 81D9 20 1B 8A INBYTE JSR INCHR
0344 81DC 20 75 82 JSR ASCNIB
0345 81DF B0 14 BCS OUT4
0346 81E1 0A ASL A
0347 81E2 0A ASL A
0348 81E3 0A ASL A
0349 81E4 0A ASL A
0350 81E5 8D 33 A6 STA SCR3
0351 81E8 20 1B 8A JSR INCHR
0352 81EB 20 75 82 JSR ASCNIB
0353 81EE B0 11 BCS OUT2
0354 81F0 0D 33 A6 ORA SCR3
0355 81F3 18 GOOD CLC
0356 81F4 60 RTS
0357 81F5 C9 3A OUT4 CMP #':' ;COLON ?
0358 81F7 D0 05 BNE OUT1
0359 81F9 20 1B 8A JSR INCHR
0360 81FC D0 F5 BNE GOOD ;CARRIAGE RETURN?
0361 81FE B8 OUT1 CLV
0362 81FF 50 03 BVC CRCHK
0363 8201 2C 04 82 OUT2 BIT CRCHK
0364 8204 C9 0D CRCHK CMP #$0D ;CHECK FOR C/R
0365 8206 38 SEC
0366 8207 60 RTS
0367 8208 A2 10 PSHOVE LDX #$10 ;PUSH PARMS DOWN
0368 820A 0E 4A A6 PRM10 ASL P3L
0369 820D 2E 4B A6 ROL P3H
0370 8210 2E 4C A6 ROL P2L
0371 8213 2E 4D A6 ROL P2H
0372 8216 2E 4E A6 ROL P1L
0373 8219 2E 4F A6 ROL P1H
0374 821C CA DEX
0375 821D D0 EB BNE PRM10
0376 821F 60 RTS
0377 8220 20 88 81 PARM JSR SAVER ;GET PARMS - RETURN ON C/R OR ERR
0378 8223 A9 00 LDA #0
0379 8225 8D 49 A6 STA PARNR
0380 8228 8D 33 A6 STA SCR3
0381 822B 20 08 82 PM1 JSR PSHOVE
0382 822E 20 1B 8A PARFIL JSR INCHR
0383 8231 C9 2C CMP #',' ;VALID DELIMETERS - ,
0384 8233 F0 04 BEQ M21
0385 8235 C9 2D CMP #'-'
0386 8237 D0 11 BNE M22
0387 8239 A2 FF M21 LDX #$FF
0388 823B 8E 33 A6 STX SCR3
0389 823E EE 49 A6 INC PARNR
0390 8241 AE 49 A6 LDX PARNR
0391 8244 E0 03 CPX #$03
0392 8246 D0 E3 BNE PM1
0393 8248 F0 1D BEQ M24
0394 824A 20 75 82 M22 JSR ASCNIB
0395 824D B0 18 BCS M24
0396 824F A2 04 LDX #4
0397 8251 0E 4A A6 M23 ASL P3L
0398 8254 2E 4B A6 ROL P3H
0399 8257 CA DEX
0400 8258 D0 F7 BNE M23
0401 825A 0D 4A A6 ORA P3L
0402 825D 8D 4A A6 STA P3L
0403 8260 A9 FF LDA #$FF
0404 8262 8D 33 A6 STA SCR3
0405 8265 D0 C7 BNE PARFIL
0406 8267 2C 33 A6 M24 BIT SCR3
0407 826A F0 03 BEQ M25
0408 826C EE 49 A6 INC PARNR
0409 826F C9 0D M25 CMP #$0D
0410 8271 18 CLC
0411 8272 4C B8 81 JMP RESXAF
0412 8275 C9 0D ASCNIB CMP #$0D ;C/R?
0413 8277 F0 19 BEQ M29
0414 8279 C9 30 CMP #'0'
0415 827B 90 0C BCC M26
0416 827D C9 47 CMP #'G'
0417 827F B0 08 BCS M26
0418 8281 C9 41 CMP #'A'
0419 8283 B0 08 BCS M27
0420 8285 C9 3A CMP #':'
0421 8287 90 06 BCC M28
0422 8289 C9 30 M26 CMP #'0'
0423 828B 38 SEC ;CARRY SET - NON HEX
0424 828C 60 RTS
0425 828D E9 37 M27 SBC #$37
0426 828F 29 0F M28 AND #$0F
0427 8291 18 CLC
0428 8292 60 M29 RTS
0429 8293 EE 4A A6 INCP3 INC P3L ;INCREMENT P3 (16 BITS)
0430 8296 D0 03 BNE *+5
0431 8298 EE 4B A6 INC P3H
0432 829B 60 RTS
0433 829C AE 4D A6 P2SCR LDX P2H ;MOVE P2 TO FE,FF
0434 829F 86 FF STX $FF
0435 82A1 AE 4C A6 LDX P2L
0436 82A4 86 FE STX $FE
0437 82A6 60 RTS
0438 82A7 AE 4B A6 P3SCR LDX P3H ;MOVE P3 TO FE,FF
0439 82AA 86 FF STX $FF
0440 82AC AE 4A A6 LDX P3L
0441 82AF 86 FE STX $FE
0442 82B1 60 RTS
0443 82B2 E6 FE INCCMP INC $FE ;INCREM FE,FF, COMPARE TO P3
0444 82B4 D0 14 BNE COMPAR
0445 82B6 E6 FF INC $FF
0446 82B8 D0 10 WRAP BNE COMPAR ;TEST TO WRAP AROUND
0447 82BA 2C BD 82 BIT EXWRAP
0448 82BD 60 EXWRAP RTS
0449 82BE A5 FE DECCMP LDA $FE ;DECREM FE,FF AND COMPARE TO P3
0450 82C0 D0 06 BNE M32
0451 82C2 A5 FF LDA $FF
0452 82C4 F0 F2 BEQ WRAP
0453 82C6 C6 FF DEC $FF
0454 82C8 C6 FE M32 DEC $FE
0455 82CA 20 88 81 COMPAR JSR SAVER ;COMPARE FE,FF TO P3
0456 82CD A5 FF LDA $FF
0457 82CF CD 4B A6 CMP P3H
0458 82D2 D0 05 BNE EXITCP
0459 82D4 A5 FE LDA $FE
0460 82D6 CD 4A A6 CMP P3L
0461 82D9 B8 EXITCP CLV
0462 82DA 4C BE 81 JMP RESXF
0463 82DD 08 CHKSAD PHP ;16 BIT CKSUM IN SCR6,7
0464 82DE 48 PHA
0465 82DF 18 CLC
0466 82E0 6D 36 A6 ADC SCR6
0467 82E3 8D 36 A6 STA SCR6
0468 82E6 90 03 BCC M33
0469 82E8 EE 37 A6 INC SCR7
0470 82EB 68 M33 PLA
0471 82EC 28 PLP
0472 82ED 60 RTS
0473 82EE AD 59 A6 OUTPC LDA PCLR ;OUTPUT PC
0474 82F1 AE 5A A6 LDX PCHR
0475 82F4 48 OUTXAH PHA
0476 82F5 8A TXA
0477 82F6 20 FA 82 JSR OUTBYT
0478 82F9 68 PLA
0479 82FA 48 OUTBYT PHA ;OUTPUT 2 HEX DIGS FROM A
0480 82FB 48 PHA
0481 82FC 4A LSR A
0482 82FD 4A LSR A
0483 82FE 4A LSR A
0484 82FF 4A LSR A
0485 8300 20 44 8A JSR NBASOC
0486 8303 68 PLA
0487 8304 20 44 8A JSR NBASOC
0488 8307 68 PLA
0489 8308 60 RTS
0490 8309 29 0F NIBASC AND #$0F ;NIBBLE IN A TO ASCII IN A
0491 830B C9 0A CMP #$0A ;LINE FEED
0492 830D B0 04 BCS NIBALF
0493 830F 69 30 ADC #$30
0494 8311 90 02 BCC EXITNB
0495 8313 69 36 NIBALF ADC #$36
0496 8315 60 EXITNB RTS
0497 8316 20 4D 83 CRLFSZ JSR CRLF ;PRINT CRLF, FF, FE
0498 8319 A6 FF LDX $FF
0499 831B A5 FE LDA $FE
0500 831D 4C F4 82 JMP OUTXAH
0501 8320 A9 3F OUTQM LDA #'?'
0502 8322 4C 47 8A JMP OUTCHR
0503 8325 20 3A 83 OCMCK JSR COMMA ;OUT COMMA, CKSUM LO
0504 8328 AD 36 A6 LDA SCR6
0505 832B 4C FA 82 JMP OUTBYT
0506 832E A9 00 ZERCK LDA #0 ;INIT CHECKSUM
0507 8330 8D 36 A6 STA SCR6
0508 8333 8D 37 A6 STA SCR7
0509 8336 60 RTS
0510 8337 20 EE 82 OPCCOM JSR OUTPC ;PC OUT, COMMA OUT
0511 833A 48 COMMA PHA ;COMMA OUT
0512 833B A9 2C LDA #','
0513 833D D0 06 BNE SPCP3
0514 833F 20 42 83 SPC2 JSR SPACE ;2 SPACES OUT
0515 8342 48 SPACE PHA ;1 SPACE OUT
0516 8343 A9 20 LDA #$20 ;SPACE
0517 8345 20 47 8A SPCP3 JSR OUTCHR
0518 8348 68 PLA
0519 8349 60 RTS
0520 834A 20 FA 82 OBCRLF JSR OUTBYT ;BYTE OUT, CRLF OUT
0521 834D 48 CRLF PHA
0522 834E A9 0D LDA #$0D
0523 8350 20 47 8A JSR OUTCHR
0524 8353 A9 0A LDA #$0A ;LINE FEED
0525 8355 20 47 8A JSR OUTCHR
0526 8358 68 PLA
0527 8359 60 RTS
0528 835A AE 56 A6 DELAY LDX TV ;DELAY DEPENDS ON TV
0529 835D 20 88 81 DL1 JSR SAVER
0530 8360 A9 FF LDA #$FF
0531 8362 8D 39 A6 STA SCR9
0532 8365 8D 38 A6 STA SCR8
0533 8368 0E 38 A6 DLY1 ASL SCR8 ;(SCR9,8)=FFFF-2**X
0534 836B 2E 39 A6 ROL SCR9
0535 836E CA DEX
0536 836F D0 F7 BNE DLY1
0537 8371 20 03 89 DLY2 JSR IJSCNV ;SCAN DISPLAY
0538 8374 20 86 83 JSR INSTAT ;SEE IF KEY DOWN
0539 8377 B0 0A BCS DLY0
0540 8379 EE 38 A6 INC SCR8 ;SCAN 2**X+1 TIMES
0541 837C D0 03 BNE *+5
0542 837E EE 39 A6 INC SCR9
0543 8381 D0 EE BNE DLY2
0544 8383 4C BE 81 DLY0 JMP RESXF
0545 8386 ; INSTAT - SEE IF KEY DOWN, RESULT IN CARRY
0546 8386 ; KEYSTAT, TSTAT RETURN IMMEDIATELY W/STATUS
0547 8386 ; INSTAT WAITS FOR RELEASE
0548 8386 20 92 83 INSTAT JSR INJISV
0549 8389 90 06 BCC INST2
0550 838B 20 92 83 INST1 JSR INJISV
0551 838E B0 FB BCS INST1
0552 8390 38 SEC
0553 8391 60 INST2 RTS
0554 8392 6C 67 A6 INJISV JMP (INSVEC+1)
0555 8395 ;
0556 8395 ;
0557 8395 ; *** EXECUTE BLOCKS BEGIN HERE
0558 8395 ;
0559 8395 BZPARM =*
0560 8395 ; ZERO PARM COMMANDS
0561 8395 ;
0562 8395 C9 52 REGZ CMP #'R' ;DISP REGISTERS
0563 8397 D0 5A BNE GOZ ;PC,S,F,A,X,Y
0564 8399 20 4D 83 RGBACK JSR CRLF
0565 839C A9 50 LDA #'P'
0566 839E 20 47 8A JSR OUTCHR
0567 83A1 20 42 83 JSR SPACE
0568 83A4 20 EE 82 JSR OUTPC
0569 83A7 20 D6 81 JSR COMINB
0570 83AA B0 13 BCS NH3
0571 83AC 8D 34 A6 STA SCR4
0572 83AF 20 D9 81 JSR INBYTE
0573 83B2 B0 0B BCS NH3
0574 83B4 8D 59 A6 STA PCLR
0575 83B7 AD 34 A6 LDA SCR4
0576 83BA 8D 5A A6 STA PCHR
0577 83BD 90 09 BCC M34
0578 83BF D0 02 NH3 BNE NOTCR
0579 83C1 18 EXITRG CLC
0580 83C2 60 EXRGP1 RTS
0581 83C3 20 CB 81 NOTCR JSR ADVCK
0582 83C6 D0 FA BNE EXRGP1
0583 83C8 A0 00 M34 LDY #0
0584 83CA C8 M35 INY
0585 83CB C0 06 CPY #6
0586 83CD F0 CA BEQ RGBACK
0587 83CF 20 4D 83 JSR CRLF
0588 83D2 B9 99 8F LDA RGNAM-1,Y ;GET REG NAME
0589 83D5 ; OUTPUT 3 SPACES TO LINE UP DISPLAY
0590 83D5 20 47 8A JSR OUTCHR
0591 83D8 20 42 83 JSR SPACE
0592 83DB 20 3F 83 JSR SPC2
0593 83DE B9 5A A6 LDA PCHR,Y
0594 83E1 20 D3 81 JSR OBCMIN
0595 83E4 B0 05 BCS M36
0596 83E6 99 5A A6 STA PCHR,Y
0597 83E9 90 DF BCC M35
0598 83EB F0 D4 M36 BEQ EXITRG
0599 83ED 20 CB 81 JSR ADVCK
0600 83F0 F0 D8 BEQ M35
0601 83F2 60 RTS
0602 83F3 C9 47 GOZ CMP #'G'
0603 83F5 D0 20 BNE LPZB
0604 83F7 20 4D 83 JSR CRLF
0605 83FA 20 9C 8B GO1ENT JSR NACCES ;WRITE PROT MONITOR RAM
0606 83FD AE 5B A6 LDX SR ;RESTORE REGS
0607 8400 9A TXS
0608 8401 AD 5A A6 LDA PCHR
0609 8404 48 PHA
0610 8405 AD 59 A6 LDA PCLR
0611 8408 48 NR10 PHA
0612 8409 AD 5C A6 LDA FR
0613 840C 48 PHA
0614 840D AC 5F A6 LDY YR
0615 8410 AE 5E A6 LDX XR
0616 8413 AD 5D A6 LDA AR
0617 8416 40 RTI
0618 8417 C9 11 LPZB CMP #$11 ;LOAD PAPER TAPE
0619 8419 F0 03 BEQ *+5
0620 841B 4C A7 84 JMP DEPZ
0621 841E 20 88 81 JSR SAVER
0622 8421 20 4D 83 JSR CRLF
0623 8424 A9 00 LDA #0
0624 8426 8D 52 A6 STA ERCNT
0625 8429 20 2E 83 LPZ JSR ZERCK
0626 842C 20 1B 8A LP1 JSR INCHR
0627 842F C9 3B CMP #$3B ;SEMI COLON
0628 8431 D0 F9 BNE LP1
0629 8433 20 A1 84 JSR LDBYTE
0630 8436 B0 56 BCS TAPERR
0631 8438 D0 09 BNE NUREC
0632 843A AD 52 A6 LDA ERCNT ;ERRORS ?
0633 843D F0 01 BEQ *+3
0634 843F 38 SEC
0635 8440 4C B8 81 JMP RESXAF
0636 8443 8D 3D A6 NUREC STA SCRD
0637 8446 20 A1 84 JSR LDBYTE
0638 8449 B0 43 BCS TAPERR
0639 844B 85 FF STA $FF
0640 844D 20 A1 84 JSR LDBYTE
0641 8450 B0 D7 BCS LPZ
0642 8452 85 FE STA $FE
0643 8454 20 A1 84 MORED JSR LDBYTE
0644 8457 B0 35 BCS TAPERR
0645 8459 A0 00 LDY #0
0646 845B 91 FE STA ($FE),Y
0647 845D D1 FE CMP ($FE),Y
0648 845F F0 0C BEQ LPGD
0649 8461 AD 52 A6 LDA ERCNT
0650 8464 29 0F AND #$0F
0651 8466 C9 0F CMP #$0F
0652 8468 F0 03 BEQ *+5
0653 846A EE 52 A6 INC ERCNT
0654 846D 20 B2 82 LPGD JSR INCCMP
0655 8470 CE 3D A6 DEC SCRD
0656 8473 D0 DF BNE MORED
0657 8475 20 D9 81 JSR INBYTE
0658 8478 B0 14 BCS TAPERR
0659 847A CD 37 A6 CMP SCR7
0660 847D D0 0C BNE BADDY
0661 847F 20 D9 81 JSR INBYTE
0662 8482 B0 0A BCS TAPERR
0663 8484 CD 36 A6 CMP SCR6
0664 8487 F0 A0 BEQ LPZ
0665 8489 D0 03 BNE TAPERR ;(ALWAYS)
0666 848B 20 D9 81 BADDY JSR INBYTE
0667 848E AD 52 A6 TAPERR LDA ERCNT
0668 8491 29 F0 AND #$F0
0669 8493 C9 F0 CMP #$F0
0670 8495 F0 92 BEQ LPZ
0671 8497 AD 52 A6 LDA ERCNT
0672 849A 69 10 ADC #$10
0673 849C 8D 52 A6 STA ERCNT
0674 849F D0 88 BNE LPZ
0675 84A1 20 D9 81 LDBYTE JSR INBYTE
0676 84A4 4C DD 82 JMP CHKSAD
0677 84A7 C9 44 DEPZ CMP #'D' ;DEPOSIT, 0 PARM - USE (OLD)
0678 84A9 D0 03 BNE MEMZ
0679 84AB 4C E1 84 JMP NEWLN
0680 84AE C9 4D MEMZ CMP #'M' ;MEM, 0 PARM - USE (OLD)
0681 84B0 D0 03 BNE VERZ
0682 84B2 4C 17 85 JMP NEWLOC
0683 84B5 C9 56 VERZ CMP #'V' ;VERIFY, 0 PARM - USE (OLD)
0684 84B7 D0 0D BNE L1ZB ; ... DO 8 BYTES (LIKE VER 1 PARM)
0685 84B9 A5 FE LDA $FE
0686 84BB 8D 4A A6 STA P3L
0687 84BE A5 FF LDA $FF
0688 84C0 8D 4B A6 STA P3H
0689 84C3 4C 9A 85 JMP VER1+4
0690 84C6 C9 12 L1ZB CMP #$12 ;LOAD KIM, ZERO PARM
0691 84C8 D0 05 BNE L2ZB
0692 84CA A0 00 LDY #0 ;MODE = KIM
0693 84CC 4C 78 8C L1J JMP LENTRY ;GO TO CASSETTE ROUTINE
0694 84CF C9 13 L2ZB CMP #$13 ;LOAD HS, ZERO PARM
0695 84D1 D0 04 BNE EZPARM
0696 84D3 A0 80 LDY #$80 ;MODE - HS
0697 84D5 D0 F5 BNE L1J ;(ALWAYS)
0698 84D7 6C 6D A6 EZPARM JMP (URCVEC+1) ;ELSE UNREC COMMAND
0699 84DA B1PARM =*
0700 84DA ;
0701 84DA ; 1 PARAMETER COMMAND EXEC BLOCKS
0702 84DA ;
0703 84DA C9 44 DEP1 CMP #'D' ;DEPOSIT, 1 PARM
0704 84DC D0 32 BNE MEM1
0705 84DE 20 A7 82 JSR P3SCR
0706 84E1 20 16 83 NEWLN JSR CRLFSZ
0707 84E4 A0 00 LDY #0
0708 84E6 A2 08 LDX #8
0709 84E8 20 42 83 DEPBYT JSR SPACE
0710 84EB 20 D9 81 JSR INBYTE
0711 84EE B0 11 BCS NH41
0712 84F0 91 FE STA ($FE),Y
0713 84F2 D1 FE CMP ($FE),Y ;VERIFY
0714 84F4 F0 03 BEQ DEPN
0715 84F6 20 20 83 JSR OUTQM ;TYPE "?" IF NG
0716 84F9 20 B2 82 DEPN JSR INCCMP
0717 84FC CA DEX
0718 84FD D0 E9 BNE DEPBYT
0719 84FF F0 E0 BEQ NEWLN
0720 8501 F0 0B NH41 BEQ DEPEC
0721 8503 C9 20 CMP #$20 ;SPACE = FWD
0722 8505 D0 4C BNE DEPES
0723 8507 70 F0 BVS DEPN
0724 8509 20 42 83 JSR SPACE
0725 850C 10 EB BPL DEPN
0726 850E 18 DEPEC CLC
0727 850F 60 RTS
0728 8510 C9 4D MEM1 CMP #'M' ;MEMORY, 1 PARM
0729 8512 D0 65 BNE GO1
0730 8514 20 A7 82 JSR P3SCR
0731 8517 20 16 83 NEWLOC JSR CRLFSZ
0732 851A 20 3A 83 JSR COMMA
0733 851D A0 00 LDY #0
0734 851F B1 FE LDA ($FE),Y
0735 8521 20 D3 81 JSR OBCMIN
0736 8524 B0 11 BCS NH42
0737 8526 A0 00 LDY #$00
0738 8528 91 FE STA ($FE),Y
0739 852A D1 FE CMP ($FE),Y ;VERIFY MEM
0740 852C F0 03 BEQ NXTLOC
0741 852E 20 20 83 JSR OUTQM ;TYPE ? AND CONTINUE
0742 8531 20 B2 82 NXTLOC JSR INCCMP
0743 8534 18 CLC
0744 8535 90 E0 BCC NEWLOC
0745 8537 F0 3E NH42 BEQ EXITM1
0746 8539 50 04 BVC *+6
0747 853B C9 3C CMP #'<'
0748 853D F0 D8 BEQ NEWLOC
0749 853F C9 20 CMP #$20 ;SPACE ?
0750 8541 F0 EE BEQ NXTLOC
0751 8543 C9 3E CMP #'>'
0752 8545 F0 EA BEQ NXTLOC
0753 8547 C9 2B CMP #'+'
0754 8549 F0 10 BEQ LOCP8
0755 854B C9 3C CMP #'<'
0756 854D F0 06 BEQ PRVLOC
0757 854F C9 2D CMP #'-'
0758 8551 F0 16 BEQ LOCM8
0759 8553 38 DEPES SEC
0760 8554 60 RTS
0761 8555 20 BE 82 PRVLOC JSR DECCMP ;BACK ONE BYT
0762 8558 18 CLC
0763 8559 90 BC BCC NEWLOC
0764 855B A5 FE LOCP8 LDA $FE ;GO FWD 8 BYTES
0765 855D 18 CLC
0766 855E 69 08 ADC #$08
0767 8560 85 FE STA $FE
0768 8562 90 02 BCC M42
0769 8564 E6 FF INC $FF
0770 8566 18 M42 CLC
0771 8567 90 AE BCC NEWLOC
0772 8569 A5 FE LOCM8 LDA $FE ;GO BACKWD 8 BYTES
0773 856B 38 SEC
0774 856C E9 08 SBC #$08
0775 856E 85 FE STA $FE
0776 8570 B0 02 BCS M43
0777 8572 C6 FF DEC $FF
0778 8574 18 M43 CLC
0779 8575 90 A0 BCC NEWLOC
0780 8577 18 EXITM1 CLC
0781 8578 60 RTS
0782 8579 C9 47 GO1 CMP #'G' ;GO, 1 PARM (RTRN ADDR ON STK)
0783 857B D0 19 BNE VER1 ; ... PARM IS ADDR TO GO TO
0784 857D 20 4D 83 JSR CRLF
0785 8580 20 9C 8B JSR NACCES ;WRITE PROT MONITR RAM
0786 8583 A2 FF LDX #$FF ;PUSH RETURN ADDR
0787 8585 9A TXS
0788 8586 A9 7F LDA #$7F
0789 8588 48 PHA
0790 8589 A9 FF LDA #$FF
0791 858B 48 PHA
0792 858C AD 4B A6 LDA P3H
0793 858F 48 PHA
0794 8590 AD 4A A6 LDA P3L
0795 8593 4C 08 84 JMP NR10
0796 8596 C9 56 VER1 CMP #'V' ;VERIFY, 1 PARM (8 BYTES, CKSUM)
0797 8598 D0 1A BNE JUMP1
0798 859A AD 4A A6 LDA P3L
0799 859D 8D 4C A6 STA P2L
0800 85A0 18 CLC
0801 85A1 69 07 ADC #$07
0802 85A3 8D 4A A6 STA P3L
0803 85A6 AD 4B A6 LDA P3H
0804 85A9 8D 4D A6 STA P2H
0805 85AC 69 00 ADC #0
0806 85AE 8D 4B A6 STA P3H
0807 85B1 4C 40 86 JMP VER2+4
0808 85B4 C9 4A JUMP1 CMP #'J' ;JUMP (JUMP TABLE IN SYS RAM)
0809 85B6 D0 1F BNE L11B
0810 85B8 AD 4A A6 LDA P3L
0811 85BB C9 08 CMP #8 ;0-7 ONLY VALID
0812 85BD B0 26 BCS JUM2
0813 85BF 20 9C 8B JSR NACCES ;WRITE PROT SYS RAM
0814 85C2 0A ASL A
0815 85C3 A8 TAY
0816 85C4 A2 FF LDX #$FF ;INIT STK PTR
0817 85C6 9A TXS
0818 85C7 A9 7F LDA #$7F ;PUSH COLD RETURN
0819 85C9 48 PHA
0820 85CA A9 FF LDA #$FF
0821 85CC 48 PHA
0822 85CD B9 21 A6 LDA JTABLE+1,Y ;GET ADDR FROM TABLE
0823 85D0 48 PHA ;PUSH ON STACK
0824 85D1 B9 20 A6 LDA JTABLE,Y
0825 85D4 4C 08 84 JMP NR10 ;LOAD UP USER REG'S AND RTI
0826 85D7 C9 12 L11B CMP #$12 ;LOAD KIM FMT, 1 PARM
0827 85D9 D0 14 BNE L21B
0828 85DB A0 00 LDY #0 ;MODE = KIM
0829 85DD AD 4A A6 L11C LDA P3L
0830 85E0 C9 FF CMP #$FF ;ID MUST NOT BE FF
0831 85E2 D0 02 BNE *+4
0832 85E4 38 SEC
0833 85E5 60 JUM2 RTS
0834 85E6 20 08 82 JSR PSHOVE ;FIX PARM POSITION
0835 85E9 20 08 82 L11D JSR PSHOVE
0836 85EC 4C 78 8C JMP LENTRY
0837 85EF C9 13 L21B CMP #$13 ;LOAD TAPE, HS FMT, 1 PARM
0838 85F1 D0 04 BNE WPR1B
0839 85F3 A0 80 LDY #$80 ;MODE = HS
0840 85F5 D0 E6 BNE L11C
0841 85F7 C9 57 WPR1B CMP #'W' ;WRITE PROT USER RAM
0842 85F9 D0 1B BNE E1PARM
0843 85FB AD 4A A6 LDA P3L ; FIRST DIG IS 1K ABOVE 0,
0844 85FE 29 11 AND #$11 ; SECOND IS 2K ABOVE 0
0845 8600 C9 08 CMP #8 ; THIRD IS 3K ABOVE 0.
0846 8602 2A ROL A
0847 8603 4E 4B A6 LSR P3H
0848 8606 2A ROL A
0849 8607 0A ASL A
0850 8608 29 0F AND #$0F
0851 860A 49 0F EOR #$0F ;0 IS PROTECT
0852 860C 8D 01 AC STA OR3A
0853 860F A9 0F LDA #$0F
0854 8611 8D 03 AC STA DDR3A
0855 8614 18 CLC
0856 8615 60 RTS
0857 8616 4C 27 88 E1PARM JMP CALC3
0858 8619 B2PARM =*
0859 8619 ;
0860 8619 ; 2 PARAMETER EXEC BLOCKS
0861 8619 ;
0862 8619 C9 10 STD2 CMP #$10 ;STORE DOUBLE BYTE
0863 861B D0 12 BNE MEM2
0864 861D 20 A7 82 JSR P3SCR
0865 8620 AD 4D A6 LDA P2H
0866 8623 A0 01 LDY #1
0867 8625 91 FE STA ($FE),Y
0868 8627 88 DEY
0869 8628 AD 4C A6 LDA P2L
0870 862B 91 FE STA ($FE),Y
0871 862D 18 CLC
0872 862E 60 RTS
0873 862F C9 4D MEM2 CMP #'M' ;CONTINUE MEM SEARCH W/OLD PTR
0874 8631 D0 09 BNE VER2
0875 8633 AD 4C A6 LDA P2L
0876 8636 8D 4E A6 STA P1L
0877 8639 4C 08 88 JMP MEM3C
0878 863C C9 56 VER2 CMP #'V' ;VERIFY MEM W/CHKSUMS , 2 PARM
0879 863E D0 48 BNE L12B
0880 8640 20 9C 82 JSR P2SCR
0881 8643 20 2E 83 JSR ZERCK
0882 8646 20 16 83 VADDR JSR CRLFSZ
0883 8649 A2 08 LDX #8
0884 864B 20 42 83 V2 JSR SPACE
0885 864E A0 00 LDY #0
0886 8650 B1 FE LDA ($FE),Y
0887 8652 20 DD 82 JSR CHKSAD
0888 8655 20 FA 82 JSR OUTBYT
0889 8658 20 B2 82 JSR INCCMP
0890 865B 70 11 BVS V1
0891 865D F0 02 BEQ *+4
0892 865F B0 0D BCS V1
0893 8661 CA DEX
0894 8662 D0 E7 BNE V2
0895 8664 20 25 83 JSR OCMCK
0896 8667 20 86 83 JSR INSTAT
0897 866A 90 DA BCC VADDR
0898 866C 18 CLC
0899 866D 60 RTS
0900 866E 20 BE 82 V1 JSR DECCMP
0901 8671 E0 08 CPX #8
0902 8673 F0 03 BEQ *+5
0903 8675 E8 INX
0904 8676 10 F6 BPL V1
0905 8678 20 25 83 JSR OCMCK
0906 867B 20 4D 83 JSR CRLF
0907 867E 20 42 83 JSR SPACE
0908 8681 AE 37 A6 LDX SCR7
0909 8684 20 F4 82 JSR OUTXAH
0910 8687 60 RTS
0911 8688 C9 12 L12B CMP #$12 ;LOAD KIM FMT TAPE, 2 PARMS
0912 868A D0 0C BNE SP2B
0913 868C AD 4C A6 LDA P2L
0914 868F C9 FF CMP #$FF ;ID MUST BE FF
0915 8691 D0 F4 BNE L12B-1 ;ERR
0916 8693 A0 00 LDY #0 ;MODE = HS
0917 8695 4C E9 85 JMP L11D
0918 8698 C9 1C SP2B CMP #$1C ;SAVE PAPER TAPE, 2 PARMS
0919 869A D0 75 BNE E2PARM
0920 869C 18 CLC
0921 869D 20 88 81 JSR SAVER
0922 86A0 20 9C 82 JSR P2SCR
0923 86A3 20 FA 86 SP2C JSR DIFFZ
0924 86A6 B0 03 BCS SP2D
0925 86A8 4C C4 81 SPEXIT JMP RESALL
0926 86AB 20 4D 83 SP2D JSR CRLF
0927 86AE CD 58 A6 CMP MAXRC
0928 86B1 90 05 BCC SP2E
0929 86B3 AD 58 A6 LDA MAXRC
0930 86B6 B0 02 BCS SP2F
0931 86B8 69 01 SP2E ADC #1
0932 86BA 8D 3D A6 SP2F STA RC
0933 86BD A9 3B LDA #$3B ;SEMI COLON
0934 86BF 20 47 8A JSR OUTCHR
0935 86C2 AD 3D A6 LDA RC
0936 86C5 20 F4 86 JSR SVBYTE
0937 86C8 A5 FF LDA $FF
0938 86CA 20 F4 86 JSR SVBYTE
0939 86CD A5 FE LDA $FE
0940 86CF 20 F4 86 JSR SVBYTE
0941 86D2 A0 00 MORED2 LDY #$00
0942 86D4 B1 FE LDA ($FE),Y
0943 86D6 20 F4 86 JSR SVBYTE
0944 86D9 20 86 83 JSR INSTAT ;STOP IF KEY DEPRESSED
0945 86DC B0 CA BCS SPEXIT
0946 86DE 20 B2 82 JSR INCCMP
0947 86E1 70 C5 BVS SPEXIT
0948 86E3 CE 3D A6 DEC RC
0949 86E6 D0 EA BNE MORED2
0950 86E8 AE 37 A6 LDX SCR7
0951 86EB AD 36 A6 LDA SCR6
0952 86EE 20 F4 82 JSR OUTXAH
0953 86F1 18 CLC
0954 86F2 90 AF BCC SP2C
0955 86F4 20 DD 82 SVBYTE JSR CHKSAD
0956 86F7 4C FA 82 JMP OUTBYT
0957 86FA 20 2E 83 DIFFZ JSR ZERCK
0958 86FD AD 4A A6 DIFFL LDA P3L
0959 8700 38 SEC
0960 8701 E5 FE SBC $FE
0961 8703 48 PHA
0962 8704 AD 4B A6 LDA P3H
0963 8707 E5 FF SBC $FF
0964 8709 F0 04 BEQ DIFF1
0965 870B 68 PLA
0966 870C A9 FF LDA #$FF
0967 870E 60 RTS
0968 870F 68 DIFF1 PLA
0969 8710 60 RTS
0970 8711 4C 27 88 E2PARM JMP CALC3 ;MAY BE CALC OR EXEC
0971 8714 B3PARM =*
0972 8714 ;
0973 8714 ; 3 PARAMETER COMMAND EXECUTE BLOCKS
0974 8714 ;
0975 8714 C9 46 FILL3 CMP #'F' ;FILL MEM
0976 8716 D0 21 BNE BLK3
0977 8718 20 9C 82 JSR P2SCR
0978 871B A9 00 LDA #0
0979 871D 8D 52 A6 STA ERCNT ;ZERO ERROR COUNT
0980 8720 AD 4E A6 LDA P1L
0981 8723 A0 00 F1 LDY #0
0982 8725 91 FE STA ($FE),Y
0983 8727 D1 FE CMP ($FE),Y ;VERIFY
0984 8729 F0 03 BEQ F3
0985 872B 20 C1 87 JSR BRTT ;INC ERCNT (UP TO FF)
0986 872E 20 B2 82 F3 JSR INCCMP
0987 8731 70 7C BVS B1
0988 8733 F0 EE BEQ F1
0989 8735 90 EC BCC F1
0990 8737 B0 76 F2 BCS B1 ;(ALWAYS)
0991 8739 C9 42 BLK3 CMP #'B' ;BLOCK MOVE (OVERLAP OKAY)
0992 873B F0 03 BEQ *+5
0993 873D 4C CD 87 JMP S13B
0994 8740 A9 00 LDA #0
0995 8742 8D 52 A6 STA ERCNT
0996 8745 20 9C 82 JSR P2SCR
0997 8748 AD 4E A6 LDA P1L
0998 874B 85 FC STA $FC
0999 874D AD 4F A6 LDA P1H
1000 8750 85 FD STA $FD
1001 8752 C5 FF CMP $FF ;WHICH DIRECTION TO MOVE?
1002 8754 D0 06 BNE *+8
1003 8756 A5 FC LDA $FC
1004 8758 C5 FE CMP $FE
1005 875A F0 53 BEQ B1 ;16 BITS EQUAL THEN FINISHED
1006 875C B0 14 BCS B2 ;MOVE DEC'NG
1007 875E 20 B7 87 BLP JSR BMOVE ;MOVE INC'NG
1008 8761 E6 FC INC $FC
1009 8763 D0 02 BNE *+4
1010 8765 E6 FD INC $FD
1011 8767 20 B2 82 JSR INCCMP
1012 876A 70 43 BVS B1
1013 876C F0 F0 BEQ BLP
1014 876E 90 EE BCC BLP
1015 8770 B0 3D BCS B1
1016 8772 A5 FC B2 LDA $FC ;CALC VALS FOR MOVE DEC'NG
1017 8774 18 CLC
1018 8775 6D 4A A6 ADC P3L
1019 8778 85 FC STA $FC
1020 877A A5 FD LDA $FD
1021 877C 6D 4B A6 ADC P3H
1022 877F 85 FD STA $FD
1023 8781 38 SEC
1024 8782 A5 FC LDA $FC
1025 8784 E5 FE SBC $FE
1026 8786 85 FC STA $FC
1027 8788 A5 FD LDA $FD
1028 878A E5 FF SBC $FF
1029 878C 85 FD STA $FD
1030 878E 20 A7 82 JSR P3SCR
1031 8791 AD 4C A6 LDA P2L
1032 8794 8D 4A A6 STA P3L
1033 8797 AD 4D A6 LDA P2H
1034 879A 8D 4B A6 STA P3H
1035 879D 20 B7 87 BLP1 JSR BMOVE ;MOVE DEC'NG
1036 87A0 A5 FC LDA $FC
1037 87A2 D0 02 BNE *+4
1038 87A4 C6 FD DEC $FD
1039 87A6 C6 FC DEC $FC
1040 87A8 20 BE 82 JSR DECCMP
1041 87AB 70 02 BVS B1
1042 87AD B0 EE BCS BLP1
1043 87AF AD 52 A6 B1 LDA ERCNT ;FINISHED, TEST ERCNT
1044 87B2 38 SEC
1045 87B3 D0 01 BNE *+3
1046 87B5 18 CLC
1047 87B6 60 RTS
1048 87B7 A0 00 BMOVE LDY #0 ;MOVE 1 BYT + VER
1049 87B9 B1 FE LDA ($FE),Y
1050 87BB 91 FC STA ($FC),Y
1051 87BD D1 FC CMP ($FC),Y
1052 87BF F0 0B BEQ BRT
1053 87C1 AC 52 A6 BRTT LDY ERCNT ;INC ERCNT, DONT PASS FF
1054 87C4 C0 FF CPY #$FF
1055 87C6 F0 04 BEQ *+6
1056 87C8 C8 INY
1057 87C9 8C 52 A6 STY ERCNT
1058 87CC 60 BRT RTS
1059 87CD C9 1D S13B CMP #$1D ;SAVE KIM FMT TAPE, 3 PARMS
1060 87CF D0 15 BNE S23B
1061 87D1 A0 00 LDY #$0 ;MODE = KIM
1062 87D3 AD 4E A6 S13C LDA P1L
1063 87D6 D0 02 BNE *+4 ;ID MUST NOT = 0
1064 87D8 38 SEC
1065 87D9 60 RTS
1066 87DA C9 FF CMP #$FF ;ID MUST NOT = FF
1067 87DC D0 02 BNE *+4
1068 87DE 38 S1NG SEC
1069 87DF 60 RTS
1070 87E0 20 93 82 JSR INCP3 ;USE END ADDR + 1
1071 87E3 4C 87 8E JMP SENTRY
1072 87E6 C9 1E S23B CMP #$1E ;SAVE HS FMT TAPE, 3 PARMS
1073 87E8 D0 04 BNE L23P
1074 87EA A0 80 LDY #$80 ;MODE = HS
1075 87EC D0 E5 BNE S13C ;(ALWAYS)
1076 87EE C9 13 L23P CMP #$13 ;LOAD HS, 3 PARMS
1077 87F0 D0 0F BNE MEM3
1078 87F2 AD 4E A6 LDA P1L
1079 87F5 C9 FF CMP #$FF ;ID MUST BE FF
1080 87F7 D0 E5 BNE S1NG ;ERROR RETURN
1081 87F9 20 93 82 JSR INCP3 ;USE END ADDR + 1
1082 87FC A0 80 LDY #$80 ;MODE = HS
1083 87FE 4C 78 8C JMP LENTRY
1084 8801 C9 4D MEM3 CMP #'M' ;MEM 3 SEARCH - BYTE
1085 8803 D0 22 BNE CALC3
1086 8805 20 9C 82 JSR P2SCR
1087 8808 AD 4E A6 MEM3C LDA P1L
1088 880B A0 00 LDY #0
1089 880D D1 FE CMP ($FE),Y
1090 880F F0 0B BEQ MEM3E ;FOUND SEARCH BYTE?
1091 8811 20 B2 82 MEM3D JSR INCCMP ;NO, INC BUFFER ADDR
1092 8814 70 04 BVS MEM3EX
1093 8816 F0 F0 BEQ MEM3C
1094 8818 90 EE BCC MEM3C
1095 881A 18 MEM3EX CLC
1096 881B 60 RTS ;SEARCHED TO BOUND
1097 881C 20 17 85 MEM3E JSR NEWLOC ;FOUND SEARCH BYTE
1098 881F 90 05 BCC MEM3F
1099 8821 C9 47 CMP #'G' ;ENTERED G?
1100 8823 F0 EC BEQ MEM3D
1101 8825 38 SEC
1102 8826 60 MEM3F RTS
1103 8827 C9 43 CALC3 CMP #'C' ;CALCULATE, 1, 2 OR 3 PARMS
1104 8829 D0 26 BNE EXE3 ;RESULT = P1+P2+P3
1105 882B 20 4D 83 C1 JSR CRLF
1106 882E 20 42 83 JSR SPACE
1107 8831 18 CLC
1108 8832 AD 4E A6 LDA P1L
1109 8835 6D 4C A6 ADC P2L
1110 8838 A8 TAY
1111 8839 AD 4F A6 LDA P1H
1112 883C 6D 4D A6 ADC P2H
1113 883F AA TAX
1114 8840 38 SEC
1115 8841 98 TYA
1116 8842 ED 4A A6 SBC P3L
1117 8845 A8 TAY
1118 8846 8A TXA
1119 8847 ED 4B A6 SBC P3H
1120 884A AA TAX
1121 884B 98 TYA
1122 884C 20 F4 82 JSR OUTXAH
1123 884F 18 CLC
1124 8850 60 RTS
1125 8851 C9 45 EXE3 CMP #'E' ;EXECUTE FROM RAM, 1-3 PARMS
1126 8853 D0 57 BNE E3PARM
1127 8855 ; SEE IF VECTOR ALREADY MOVED
1128 8855 AD 62 A6 LDA INVEC+2 ;INVEC MOVED TO SCRA, SCRB
1129 8858 ; HI BYTE OF EXEVEC MUST BE DIFFERENT FROM INVEC
1130 8858 CD 73 A6 CMP EXEVEC+1 ;$FA, $FB USED AS RAM PTR
1131 885B F0 15 BEQ PTRIN
1132 885D 8D 3B A6 STA SCRA+1 ;SAVE INVEC IN SCRA,B
1133 8860 AD 61 A6 LDA INVEC+1
1134 8863 8D 3A A6 STA SCRA
1135 8866 AD 72 A6 LDA EXEVEC ;PUT ADDR OF RIN IN INVEC
1136 8869 8D 61 A6 STA INVEC+1
1137 886C AD 73 A6 LDA EXEVEC+1
1138 886F 8D 62 A6 STA INVEC+2
1139 8872 AD 4B A6 PTRIN LDA P3H ;INIT RAM PTR IN $FA, $FB
1140 8875 85 FB STA $FB
1141 8877 AD 4A A6 LDA P3L
1142 887A 85 FA STA $FA
1143 887C 18 CLC
1144 887D 60 RTS
1145 887E 20 88 81 RIN JSR SAVER ;GET INPUT FROM RAM
1146 8881 A0 00 LDY #$0 ;RAM PTR IN $FA, $FB
1147 8883 B1 FA LDA ($FA),Y
1148 8885 F0 12 BEQ RESTIV ;IF 00 BYTE, RESTORE INVEC
1149 8887 E6 FA INC $FA
1150 8889 D0 02 BNE *+4
1151 888B E6 FB INC $FB
1152 888D 2C 53 A6 BIT TECHO ;ECHO CHARS IN ?
1153 8890 10 03 BPL *+5
1154 8892 20 47 8A JSR OUTCHR
1155 8895 18 CLC
1156 8896 4C B8 81 JMP RESXAF
1157 8899 AD 3A A6 RESTIV LDA SCRA ;RESTORE INVEC
1158 889C 8D 61 A6 STA INVEC+1
1159 889F AD 3B A6 LDA SCRA+1
1160 88A2 8D 62 A6 STA INVEC+2
1161 88A5 18 CLC
1162 88A6 20 1B 8A JSR INCHR
1163 88A9 4C B8 81 JMP RESXAF
1164 88AC 6C 6D A6 E3PARM JMP (URCVEC+1) ;... ELSE UNREC CMD
1165 88AF ; ***
1166 88AF ; *** HEX KEYBOARD I/O
1167 88AF ; ***
1168 88AF 20 88 81 GETKEY JSR SAVER ;FIND KEY
1169 88B2 20 CF 88 JSR GK
1170 88B5 C9 FE CMP #$FE
1171 88B7 D0 13 BNE EXITGK
1172 88B9 20 CF 88 JSR GK
1173 88BC 8A TXA
1174 88BD 0A ASL A
1175 88BE 0A ASL A
1176 88BF 0A ASL A
1177 88C0 0A ASL A
1178 88C1 8D 3E A6 STA SCRE
1179 88C4 20 CF 88 JSR GK
1180 88C7 8A TXA
1181 88C8 18 CLC
1182 88C9 6D 3E A6 ADC SCRE
1183 88CC 4C B8 81 EXITGK JMP RESXAF
1184 88CF A9 00 GK LDA #0
1185 88D1 8D 55 A6 STA KSHFL
1186 88D4 20 03 89 GK1 JSR IJSCNV ;SCAN KB
1187 88D7 F0 FB BEQ GK1
1188 88D9 20 2C 89 JSR LRNKEY ;WHAT KEY IS IT?
1189 88DC F0 F6 BEQ GK1
1190 88DE 48 PHA
1191 88DF 8A TXA
1192 88E0 48 PHA
1193 88E1 20 72 89 JSR BEEP
1194 88E4 20 23 89 GK2 JSR KEYQ
1195 88E7 D0 FB BNE GK2 ;Z=1 IF KEY DOWN
1196 88E9 20 9B 89 JSR NOBEEP ;DELAY (DEBOUNCE) W/O BEEP
1197 88EC 20 23 89 JSR KEYQ
1198 88EF D0 F3 BNE GK2
1199 88F1 68 PLA
1200 88F2 AA TAX
1201 88F3 68 PLA
1202 88F4 C9 FF CMP #$FF ;IF SHIFT, SET FLAG + GET NEXT KEY
1203 88F6 D0 07 BNE EXITG
1204 88F8 A9 19 LDA #$19
1205 88FA 8D 55 A6 STA KSHFL
1206 88FD D0 D5 BNE GK1
1207 88FF 60 EXITG RTS
1208 8900 20 C1 89 HDOUT JSR OUTDSP ;CHAR OUT, SCAN KB
1209 8903 6C 70 A6 IJSCNV JMP (SCNVEC+1)
1210 8906 A9 09 SCAND LDA #$9 ;SCAN DISPLAY FROM DISBUF
1211 8908 20 A5 89 JSR CONFIG
1212 890B A2 05 LDX #5
1213 890D A0 00 SC1 LDY #0
1214 890F BD 40 A6 LDA DISBUF,X
1215 8912 8C 00 A4 STY PADA
1216 8915 8E 02 A4 STX PBDA
1217 8918 8D 00 A4 STA PADA
1218 891B A0 10 LDY #$10
1219 891D 88 SC2 DEY
1220 891E D0 FD BNE SC2
1221 8920 CA DEX
1222 8921 10 EA BPL SC1
1223 8923 20 A3 89 KEYQ JSR KSCONF ; KEY DOWN ? (YES THEN Z=1)
1224 8926 AD 00 A4 H8926 LDA PADA
1225 8929 49 7F EOR #$7F
1226 892B 60 RTS
1227 892C 29 3F LRNKEY AND #$3F ;DETERMINE WHAT KEY IS DOWN
1228 892E 8D 3F A6 STA SCRF
1229 8931 A9 05 LDA #$05
1230 8933 20 A5 89 JSR CONFIG
1231 8936 AD 02 A4 LDA PBDA
1232 8939 29 07 AND #$07
1233 893B 49 07 EOR #$07
1234 893D D0 05 BNE LK1
1235 893F 2C 00 A4 BIT PADA
1236 8942 30 1A BMI NOKEY
1237 8944 C9 04 LK1 CMP #$04
1238 8946 90 02 BCC LK2
1239 8948 A9 03 LDA #$03
1240 894A 0A LK2 ASL A
1241 894B 0A ASL A
1242 894C 0A ASL A
1243 894D 0A ASL A
1244 894E 0A ASL A
1245 894F 0A ASL A
1246 8950 18 CLC
1247 8951 6D 3F A6 ADC SCRF
1248 8954 A2 19 LDX #$19
1249 8956 DD D6 8B LK3 CMP SYM,X
1250 8959 F0 05 BEQ FOUND
1251 895B CA DEX
1252 895C 10 F8 BPL LK3
1253 895E E8 NOKEY INX
1254 895F 60 RTS
1255 8960 8A FOUND TXA
1256 8961 18 CLC
1257 8962 6D 55 A6 ADC KSHFL
1258 8965 AA TAX
1259 8966 BD EF 8B LDA ASCII,X
1260 8969 60 RTS
1261 896A 20 23 89 KYSTAT JSR KEYQ ;KEY DOWN? RETURN IN CARRY
1262 896D 18 CLC
1263 896E F0 01 BEQ *+3
1264 8970 38 SEC
1265 8971 60 RTS
1266 8972 20 88 81 BEEP JSR SAVER ;DELAY (BOUNCE) W/BEEP
1267 8975 A9 0D BEEPP3 LDA #$0D
1268 8977 20 A5 89 BEEPP5 JSR CONFIG
1269 897A A2 70 LDX #$70 ;DURATION CONSTANT
1270 897C A9 08 BE1 LDA #8
1271 897E 8D 02 A4 STA PBDA
1272 8981 20 95 89 JSR BE2
1273 8984 A9 06 LDA #6
1274 8986 8D 02 A4 STA PBDA
1275 8989 20 95 89 JSR BE2
1276 898C CA DEX
1277 898D D0 ED BNE BE1
1278 898F 20 A3 89 JSR KSCONF
1279 8992 4C C4 81 JMP RESALL
1280 8995 A0 1A BE2 LDY #$1A
1281 8997 88 BE3 DEY
1282 8998 D0 FD BNE BE3
1283 899A 60 RTS
1284 899B 20 88 81 NOBEEP JSR SAVER ;DELAY W/O BEEP
1285 899E A9 01 LDA #$01
1286 89A0 4C 77 89 JMP BEEPP5 ;(BNE BEEPP5, $FF)
1287 89A3 A9 01 KSCONF LDA #$1 ;CONFIGURE FOR KEYBOARD
1288 89A5 20 88 81 CONFIG JSR SAVER ;CONFIGURE I/O FROM TABLE VAL
1289 89A8 A0 01 LDY #$01
1290 89AA AA TAX
1291 89AB BD C8 8B CON1 LDA VALSP2,X
1292 89AE 99 02 A4 STA PBDA,Y
1293 89B1 BD C6 8B LDA VALS,X
1294 89B4 99 00 A4 STA PADA,Y
1295 89B7 CA DEX
1296 89B8 88 DEY
1297 89B9 10 F0 BPL CON1
1298 89BB 4C C4 81 JMP RESALL
1299 89BE 20 AF 88 HKEY JSR GETKEY ;GET KEY FROM KB AND ECHO ON KB
1300 89C1 20 88 81 OUTDSP JSR SAVER ;DISPLAY OUT
1301 89C4 29 7F AND #$7F
1302 89C6 C9 07 CMP #$07 ;BELL?
1303 89C8 D0 03 BNE NBELL
1304 89CA 4C 75 89 JMP BEEPP3 ;YES - BEEP
1305 89CD 20 06 8A NBELL JSR TEXT ;PUSH INTO SCOPE BUFFER
1306 89D0 C9 2C CMP #$2C ;COMMA?
1307 89D2 D0 0A BNE OUD1
1308 89D4 AD 45 A6 LDA RDIG
1309 89D7 09 80 ORA #$80 ;TURN ON DECIMAL PT
1310 89D9 8D 45 A6 STA RDIG
1311 89DC D0 25 BNE EXITOD
1312 89DE A2 3A OUD1 LDX #$3A
1313 89E0 DD EE 8B OUD2 CMP ASCIM1,X
1314 89E3 F0 05 BEQ GETSGS
1315 89E5 CA DEX
1316 89E6 D0 F8 BNE OUD2
1317 89E8 F0 19 BEQ EXITOD
1318 89EA BD 28 8C GETSGS LDA SEGSM1,X ;GET CORR SEG CODE FROM TABLE
1319 89ED C9 F0 CMP #$F0
1320 89EF F0 12 BEQ EXITOD
1321 89F1 A2 00 LDX #0
1322 89F3 48 PHA
1323 89F4 BD 41 A6 OUD3 LDA DISBUF+1,X ;SHOVE DOWN DISPLAY BUFFER
1324 89F7 9D 40 A6 STA DISBUF,X
1325 89FA E8 INX
1326 89FB E0 05 CPX #5
1327 89FD D0 F5 BNE OUD3
1328 89FF 68 PLA
1329 8A00 8D 45 A6 STA RDIG
1330 8A03 4C C4 81 EXITOD JMP RESALL
1331 8A06 48 TEXT PHA ;UPDATE SCOPE BUFFER
1332 8A07 8A TXA ;SAVE X
1333 8A08 48 PHA
1334 8A09 A2 1E LDX #$1E ;PUSH DOWN 32 CHARS
1335 8A0B BD 00 A6 TXTMOV LDA SCPBUF,X
1336 8A0E 9D 01 A6 STA SCPBUF+1,X
1337 8A11 CA DEX
1338 8A12 10 F7 BPL TXTMOV
1339 8A14 68 PLA ;RESTORE X
1340 8A15 AA TAX
1341 8A16 68 PLA ;RESTORE CHR
1342 8A17 8D 00 A6 STA SCPBUF ;STORE CHR IN EMPTY SLOT
1343 8A1A 60 RTS
1344 8A1B ;
1345 8A1B ;***
1346 8A1B ;*** TERMINAL I/O
1347 8A1B ;***
1348 8A1B 20 88 81 INCHR JSR SAVER ;INPUT CHAR
1349 8A1E 20 41 8A JSR INJINV
1350 8A21 29 7F AND #$7F ;DROP PARITY
1351 8A23 C9 61 CMP #$61 ;ALPHA?
1352 8A25 90 06 BCC INRT1
1353 8A27 C9 7B CMP #$7B
1354 8A29 B0 02 BCS INRT1
1355 8A2B 29 DF AND #$DF ;CVRT TO UPPER CASE
1356 8A2D C9 0F INRT1 CMP #$0F ;CTL O ?
1357 8A2F D0 0B BNE INRT2
1358 8A31 AD 53 A6 LDA TECHO
1359 8A34 49 40 EOR #$40 ;TOGGLE CTL O BIT
1360 8A36 8D 53 A6 STA TECHO
1361 8A39 18 CLC
1362 8A3A 90 E2 BCC INCHR+3 ;GET GET ANOTHER CHAR
1363 8A3C C9 0D INRT2 CMP #$0D ;CARRIAGE RETURN?
1364 8A3E 4C B8 81 JMP RESXAF
1365 8A41 6C 61 A6 INJINV JMP (INVEC+1)
1366 8A44 20 09 83 NBASOC JSR NIBASC ;NIBBLE TO ASCII, OUTCHR
1367 8A47 20 88 81 OUTCHR JSR SAVER
1368 8A4A 2C 53 A6 BIT TECHO ;LOOK AT CTRL O FLAG
1369 8A4D 70 03 BVS *+5
1370 8A4F 20 55 8A JSR INJOUV
1371 8A52 4C C4 81 JMP RESALL
1372 8A55 6C 64 A6 INJOUV JMP (OUTVEC+1)
1373 8A58 20 88 81 INTCHR JSR SAVER ;IN TERMINAL CHAR
1374 8A5B A9 00 LDA #0
1375 8A5D 85 F9 STA $F9
1376 8A5F AD 02 A4 LOOK LDA PBDA ;FIND LEADING EDGE
1377 8A62 2D 54 A6 AND TOUTFL
1378 8A65 38 SEC
1379 8A66 E9 40 SBC #$40
1380 8A68 90 F5 BCC LOOK
1381 8A6A 20 E9 8A TIN JSR DLYH ;TERMINAL BIT
1382 8A6D AD 02 A4 LDA PBDA
1383 8A70 2D 54 A6 AND TOUTFL
1384 8A73 38 SEC
1385 8A74 E9 40 SBC #$40 ;OR BITS 7,7 (TTY,CRT)
1386 8A76 2C 53 A6 BIT TECHO ;ECHO BIT?
1387 8A79 10 06 BPL DMY1
1388 8A7B 20 D4 8A JSR OUT
1389 8A7E 4C 87 8A JMP SAVE
1390 8A81 A0 07 DMY1 LDY #7
1391 8A83 88 TLP1 DEY
1392 8A84 D0 FD BNE TLP1
1393 8A86 EA NOP
1394 8A87 66 F9 SAVE ROR $F9
1395 8A89 20 E9 8A JSR DLYH
1396 8A8C 48 PHA ;TIMING
1397 8A8D B5 00 LDA 0,X
1398 8A8F 68 PLA
1399 8A90 90 D8 BCC TIN
1400 8A92 20 E9 8A JSR DLYH
1401 8A95 18 CLC
1402 8A96 20 D4 8A JSR OUT
1403 8A99 A5 F9 LDA $F9
1404 8A9B 49 FF EOR #$FF
1405 8A9D 4C B8 81 JMP RESXAF
1406 8AA0 85 F9 TOUT STA $F9 ;TERMINAL CHR OUT
1407 8AA2 20 88 81 JSR SAVER
1408 8AA5 20 E9 8A JSR DLYH ;DELAY 1/2 BIT TIME
1409 8AA8 A9 30 LDA #$30 ;SET FOR OUTPUT
1410 8AAA 8D 03 A4 STA PBDA+1 ;DATA DIRECTION
1411 8AAD A5 F9 LDA $F9 ;RECOVER CHR DATA
1412 8AAF A2 0B LDX #$0B ;START BIT,8DATA, 3STOPS
1413 8AB1 49 FF EOR #$FF ;INVERT DATA
1414 8AB3 38 SEC ;START BIT
1415 8AB4 20 D4 8A OUTC JSR OUT ;OUTPUT BIT FROM CARRY
1416 8AB7 20 E6 8A JSR DLYF ;WAIT FULL BIT TIME
1417 8ABA A0 06 LDY #$06
1418 8ABC 88 PHAKE DEY
1419 8ABD D0 FD BNE PHAKE
1420 8ABF EA NOP
1421 8AC0 4A LSR A
1422 8AC1 CA DEX
1423 8AC2 D0 F0 BNE OUTC
1424 8AC4 A5 F9 LDA $F9
1425 8AC6 C9 0D CMP #$0D ;CARRIAGE RETURN?
1426 8AC8 F0 04 BEQ GOPAD ;YES-PAD IT
1427 8ACA C9 0A CMP #$0A ;PAD LINE FEED TOO
1428 8ACC D0 03 BNE LEAVE
1429 8ACE 20 32 8B GOPAD JSR PAD
1430 8AD1 4C C4 81 LEAVE JMP RESALL
1431 8AD4 48 OUT PHA ;TERMINAL BIT OUT
1432 8AD5 AD 02 A4 LDA PBDA
1433 8AD8 29 0F AND #$0F
1434 8ADA 90 02 BCC OUTONE
1435 8ADC 09 30 ORA #$30
1436 8ADE 2D 54 A6 OUTONE AND TOUTFL ;MASK OUTPUT
1437 8AE1 8D 02 A4 STA PBDA
1438 8AE4 68 PLA
1439 8AE5 60 RTS
1440 8AE6 ;
1441 8AE6 20 E9 8A DLYF JSR DLYH ;DELAY FULL
1442 8AE9 08 DLYH PHP ;DELAY HALF
1443 8AEA 48 PHA
1444 8AEB 8A TXA
1445 8AEC 48 PHA
1446 8AED 98 TYA
1447 8AEE AE 51 A6 LDX SDBYT
1448 8AF1 A0 03 DLYX LDY #3
1449 8AF3 88 DLYY DEY
1450 8AF4 D0 FD BNE DLYY
1451 8AF6 CA DEX
1452 8AF7 D0 F8 BNE DLYX
1453 8AF9 A8 TAY
1454 8AFA 68 PLA
1455 8AFB AA TAX
1456 8AFC 68 PLA
1457 8AFD 28 PLP
1458 8AFE 60 RTS
1459 8AFF A9 00 BAUD LDA #0 ;DETERMINE BAUD RATE ON PB7
1460 8B01 A8 TAY
1461 8B02 AD 02 A4 SEEK LDA PBDA
1462 8B05 0A ASL A
1463 8B06 B0 FA BCS SEEK
1464 8B08 20 27 8B CLEAR JSR INK
1465 8B0B 90 FB BCC CLEAR
1466 8B0D 20 27 8B SET JSR INK
1467 8B10 B0 FB BCS SET
1468 8B12 8C 51 A6 STY SDBYT
1469 8B15 BD 63 8C DEAF LDA DECPTS,X
1470 8B18 CD 51 A6 CMP SDBYT
1471 8B1B B0 07 BCS AGAIN
1472 8B1D BD 69 8C LDA STDVAL,X ;LOAD CLOSEST STD VALUE
1473 8B20 8D 51 A6 STA SDBYT
1474 8B23 60 RTS
1475 8B24 E8 AGAIN INX
1476 8B25 10 EE BPL DEAF
1477 8B27 C8 INK INY
1478 8B28 A2 1C LDX #$1C
1479 8B2A CA INK1 DEX
1480 8B2B D0 FD BNE INK1
1481 8B2D AD 02 A4 LDA PBDA
1482 8B30 0A ASL A
1483 8B31 60 RTS
1484 8B32 AE 50 A6 PAD LDX PADBIT ;PAD CARRIAGE RETURN OR LF
1485 8B35 20 E6 8A PAD1 JSR DLYF ;WITH EXTRA STOP BITS
1486 8B38 CA DEX
1487 8B39 D0 FA BNE PAD1
1488 8B3B 60 RTS
1489 8B3C 20 A3 89 TSTAT JSR KSCONF ;SEE IF BREAK KEY DOWN
1490 8B3F AD 02 A4 LDA PBDA
1491 8B42 2D 54 A6 AND TOUTFL
1492 8B45 38 SEC
1493 8B46 E9 40 SBC #$40
1494 8B48 60 RTS
1495 8B49 FF .DB $FF ;NOT USED
1496 8B4A ; ***
1497 8B4A ; *** RESET - TURN OFF POR, INIT SYS RAM, ENTER MONITOR
1498 8B4A ; ***
1499 8B4A ;
1500 8B4A A2 FF RESET LDX #$FF
1501 8B4C 9A TXS ;INIT STACK PTR
1502 8B4D A9 CC LDA #$CC
1503 8B4F 8D 0C A0 STA PCR1 ;DISABLE POR, TAPE OFF
1504 8B52 A9 04 LDA #4
1505 8B54 48 PHA
1506 8B55 28 PLP ;INIT F, DISABLE IRQ DURING DFTXFR
1507 8B56 20 86 8B JSR ACCESS ;UN WRITE PROT SYS RAM
1508 8B59 A2 5F DFTXFR LDX #$5F ;INIT SYS RAM (EXCPT SCPBUF)
1509 8B5B BD A0 8F LDA DFTBLK,X
1510 8B5E 9D 20 A6 STA RAM,X
1511 8B61 CA DEX
1512 8B62 10 F7 BPL DFTXFR+2
1513 8B64 A9 07 NEWDEV LDA #7 ;CHANGE DEVC/BAUD RATE
1514 8B66 20 47 8A JSR OUTCHR ;BEEP
1515 8B69 20 A3 89 SWITCH JSR KSCONF ;KEYBOARD OR TERMINAL?
1516 8B6C 20 26 89 SWLP JSR KEYQ+3
1517 8B6F D0 0B BNE MONENT
1518 8B71 2C 02 A4 BIT PBDA
1519 8B74 10 F6 BPL SWLP
1520 8B76 20 B7 8B JSR VECSW ;SWITCH VECTORS
1521 8B79 20 FF 8A JSR BAUD
1522 8B7C A2 FF MONENT LDX #$FF ;MONITOR ENTRY
1523 8B7E 9A TXS
1524 8B7F D8 CLD
1525 8B80 20 86 8B JSR ACCESS ;UNWRITE PROT MONITOR RAM
1526 8B83 4C 03 80 JMP WARM
1527 8B86 20 88 81 ACCESS JSR SAVER ;UN WRITE PROT SYS RAM
1528 8B89 AD 01 AC LDA OR3A
1529 8B8C 09 01 ORA #1
1530 8B8E 8D 01 AC ACC1 STA OR3A
1531 8B91 AD 03 AC LDA DDR3A
1532 8B94 09 01 ORA #1
1533 8B96 8D 03 AC STA DDR3A
1534 8B99 4C C4 81 JMP RESALL
1535 8B9C 20 88 81 NACCES JSR SAVER ;WRITE PROT SYS RAM
1536 8B9F AD 01 AC LDA OR3A
1537 8BA2 29 FE AND #$FE
1538 8BA4 18 CLC
1539 8BA5 90 E7 BCC ACC1
1540 8BA7 20 86 8B TTY JSR ACCESS ;UN WRITE PROT RAM
1541 8BAA A9 D5 LDA #$D5 ;110 BAUD
1542 8BAC 8D 51 A6 STA SDBYT
1543 8BAF AD 54 A6 LDA TOUTFL
1544 8BB2 09 40 ORA #$40
1545 8BB4 8D 54 A6 STA TOUTFL
1546 8BB7 20 86 8B VECSW JSR ACCESS ;UN WRITE PROT RAM
1547 8BBA A2 08 LDX #$8
1548 8BBC BD 6F 8C SWLP2 LDA TRMTBL,X
1549 8BBF 9D 60 A6 STA INVEC,X
1550 8BC2 CA DEX
1551 8BC3 10 F7 BPL SWLP2
1552 8BC5 60 RTS
1553 8BC6 ;
1554 8BC6 ;***
1555 8BC6 ;*** TABLES (I/O CONFIGURATIONS, KEY CODES, ASCII CODES)
1556 8BC6 ;***
1557 8BC6 00 80 08 37 VALS .DB $00,$80,$08,$37 ;KB SENSE, A=1
1558 8BCA 00 7F 00 30 .DB $00,$7F,$00,$30 ;KB LRN, A=5
1559 8BCE 00 FF 00 3F .DB $00,$FF,$00,$3F ;SCAN DSP, A=9
1560 8BD2 00 00 07 3F .DB $00,$00,$07,$3F ;BEEP, A=D
1561 8BD6 VALSP2 =VALS+2
1562 8BD6 SYM =* ;KEY CODES RETURNED BY LRNKEY
1563 8BD6 TABLE =*
1564 8BD6 01 .DB $01 ;0/U0
1565 8BD7 41 .DB $41 ;1/U1
1566 8BD8 81 .DB $81 ;2/U2
1567 8BD9 C1 .DB $C1 ;3/U3
1568 8BDA 02 .DB $02 ;4/U4
1569 8BDB 42 .DB $42 ;5/U5
1570 8BDC 82 .DB $82 ;6/U6
1571 8BDD C2 .DB $C2 ;7/U7
1572 8BDE 04 .DB $04 ;8/JMP
1573 8BDF 44 .DB $44 ;9/VER
1574 8BE0 84 .DB $84 ;A/ASCII
1575 8BE1 C4 .DB $C4 ;B/BLK MOV
1576 8BE2 08 .DB $08 ;C/CALC
1577 8BE3 48 .DB $48 ;D/DEP
1578 8BE4 88 .DB $88 ;E/EXEC
1579 8BE5 C8 .DB $C8 ;F/FILL
1580 8BE6 10 .DB $10 ;CR/SD
1581 8BE7 50 .DB $50 ;-/+
1582 8BE8 90 .DB $90 ;>/<
1583 8BE9 D0 .DB $D0 ;SHIFT
1584 8BEA 20 .DB $20 ;GO/LP
1585 8BEB 60 .DB $60 ;REG/SP
1586 8BEC A0 .DB $A0 ;MEM/WP
1587 8BED 00 .DB $00 ;L2/L1
1588 8BEE 40 .DB $40 ;S2/S1
1589 8BEF ASCIM1 =*-1
1590 8BEF ASCII =* ;ASCII CODES AND HASH CODES
1591 8BEF 30 .DB $30 ;ZERO
1592 8BF0 31 .DB $31 ;ONE
1593 8BF1 32 .DB $32 ;TWO
1594 8BF2 33 .DB $33 ;THREE
1595 8BF3 34 .DB $34 ;FOUR
1596 8BF4 35 .DB $35 ;FIVE
1597 8BF5 36 .DB $36 ;SIX
1598 8BF6 37 .DB $37 ;SEVEN
1599 8BF7 38 .DB $38 ;EIGHT
1600 8BF8 39 .DB $39 ;NINE
1601 8BF9 41 .DB $41 ;A
1602 8BFA 42 .DB $42 ;B
1603 8BFB 43 .DB $43 ;C
1604 8BFC 44 .DB $44 ;D
1605 8BFD 45 .DB $45 ;E
1606 8BFE 46 .DB $46 ;F
1607 8BFF 0D .DB $0D ;CR
1608 8C00 2D .DB $2D ;DASH
1609 8C01 3E .DB $3E ;>
1610 8C02 FF .DB $FF ;SHIFT
1611 8C03 47 .DB $47 ;G
1612 8C04 52 .DB $52 ;R
1613 8C05 4D .DB $4D ;M
1614 8C06 13 .DB $13 ;L2
1615 8C07 1E .DB $1E ;S2
1616 8C08 ; KB UPPER CASE
1617 8C08 14 .DB $14 ;U0
1618 8C09 15 .DB $15 ;U1
1619 8C0A 16 .DB $16 ;U2
1620 8C0B 17 .DB $17 ;U3
1621 8C0C 18 .DB $18 ;U4
1622 8C0D 19 .DB $19 ;U5
1623 8C0E 1A .DB $1A ;U6
1624 8C0F 1B .DB $1B ;U7
1625 8C10 4A .DB $4A ;J
1626 8C11 56 .DB $56 ;V
1627 8C12 FE .DB $FE ;ASCII
1628 8C13 42 .DB $42 ;B
1629 8C14 43 .DB $43 ;C
1630 8C15 44 .DB $44 ;D
1631 8C16 45 .DB $45 ;E
1632 8C17 46 .DB $46 ;F
1633 8C18 10 .DB $10 ;SD
1634 8C19 2B .DB $2B ;+
1635 8C1A 3C .DB $3C ;<
1636 8C1B 00 .DB $00 ;SHIFT
1637 8C1C 11 .DB $11 ;LP
1638 8C1D 1C .DB $1C ;SP
1639 8C1E 57 .DB $57 ;W
1640 8C1F 12 .DB $12 ;L1
1641 8C20 1D .DB $1D ;S1
1642 8C21 2E .DB $2E ;.
1643 8C22 20 .DB $20 ;BLANK
1644 8C23 3F .DB $3F ;?
1645 8C24 50 .DB $50 ;P
1646 8C25 07 .DB $07 ;BELL
1647 8C26 53 .DB $53 ;S
1648 8C27 58 .DB $58 ;X
1649 8C28 59 .DB $59 ;Y
1650 8C29 ; SEGMENT CODES FOR ON-BOARD DISPLAY
1651 8C29 SEGSM1 =*-1
1652 8C29 3F .DB $3F ;ZERO
1653 8C2A 06 .DB $06 ;ONE
1654 8C2B 5B .DB $5B ;TWO
1655 8C2C 4F .DB $4F ;THREE
1656 8C2D 66 .DB $66 ;FOUR
1657 8C2E 6D .DB $6D ;FIVE
1658 8C2F 7D .DB $7D ;SIX
1659 8C30 07 .DB $07 ;SEVEN
1660 8C31 7F .DB $7F ;EIGHT
1661 8C32 67 .DB $67 ;NINE
1662 8C33 77 .DB $77 ;A
1663 8C34 7C .DB $7C ;B
1664 8C35 39 .DB $39 ;C
1665 8C36 5E .DB $5E ;D
1666 8C37 79 .DB $79 ;E
1667 8C38 71 .DB $71 ;F
1668 8C39 F0 .DB $F0 ;CR
1669 8C3A 40 .DB $40 ;DASH
1670 8C3B 70 .DB $70 ;>
1671 8C3C 00 .DB $00 ;SHIFT
1672 8C3D 6F .DB $6F ;G
1673 8C3E 50 .DB $50 ;R
1674 8C3F 54 .DB $54 ;M
1675 8C40 38 .DB $38 ;L2
1676 8C41 6D .DB $6D ;S2
1677 8C42 01 .DB $01 ;U0
1678 8C43 08 .DB $08 ;U1
1679 8C44 09 .DB $09 ;U2
1680 8C45 30 .DB $30 ;U3
1681 8C46 36 .DB $36 ;U4
1682 8C47 5C .DB $5C ;U5
1683 8C48 63 .DB $63 ;U6
1684 8C49 03 .DB $03 ;U7
1685 8C4A 1E .DB $1E ;J
1686 8C4B 72 .DB $72 ;V
1687 8C4C 77 .DB $77 ;A
1688 8C4D 7C .DB $7C ;B
1689 8C4E 39 .DB $39 ;C
1690 8C4F 5E .DB $5E ;D
1691 8C50 79 .DB $79 ;E
1692 8C51 71 .DB $71 ;F
1693 8C52 6D .DB $6D ;SD
1694 8C53 76 .DB $76 ;+
1695 8C54 46 .DB $46 ;<
1696 8C55 00 .DB $00 ;SHIFT
1697 8C56 38 .DB $38 ;LP
1698 8C57 6D .DB $6D ;SP
1699 8C58 1C .DB $1C ;W
1700 8C59 38 .DB $38 ;L1
1701 8C5A 6D .DB $6D ;S1
1702 8C5B 80 .DB $80 ;.
1703 8C5C 00 .DB $00 ;SPACE
1704 8C5D 53 .DB $53 ;?
1705 8C5E 73 .DB $73 ;P
1706 8C5F 49 .DB $49 ;BELL
1707 8C60 6D .DB $6D ;S
1708 8C61 64 .DB $64 ;X
1709 8C62 6E .DB $6E ;Y
1710 8C63 973D1F100800DECPTS .DB $97,$3D,$1F,$10,$08,$00 ; TO DETERMINE BAUD RATE
1711 8C69 .MSFIRST
1712 8C69 D54C24100601STDVAL .DW $D54C,$2410,$0601 ;STD VALS FOR BAUD RATES
1713 8C6F .LSFIRST
1714 8C6F ; 110,300,600,1200,2400,4800 BAUD
1715 8C6F 4C 58 8A TRMTBL JMP INTCHR
1716 8C72 4C A0 8A JMP TOUT
1717 8C75 4C 3C 8B JMP TSTAT
1718 8C78 ;
1719 8C78
1720 8C78 ;****** VERSION 2 4/13/79 "SY1.1"
1721 8C78 ;****** COPYRIGHT 1978 SYNERTEK SYSTEMS CORPORATION
1722 8C78 ;******
1723 8C78 BDRY =$F8 ;0/1 BDRY FOR READ TIMING
1724 8C78 OLD =$F9 ;HOLD PREV INPUT LEVEL IN GETTR
1725 8C78 CHAR =$FC ;CHAR ASSY AND DISASSY
1726 8C78 MODE =$FD ;BIT7=1 IS HS, 0 IS KIM
1727 8C78 ;... BIT6=1 - IGNORE DATA
1728 8C78 BUFADL =$FE ;RUNNING BUFFER ADR
1729 8C78 BUFADH =$FF
1730 8C78 ;TAPDEL =$A630 ;HI SPEED TAPE DELAY
1731 8C78 ;KMBDRY =$A631 ;KIM READ BDRY
1732 8C78 ;HSBDRY =$A632 ;HS READ BDRY
1733 8C78 ;TAPET1 =$A635 ;HS FIRST 1/2 BIT
1734 8C78 ;TAPET2 =$A63C ;HS SECOND 1/2 BIT
1735 8C78 ;SCR6 =$A636 ;SCR6
1736 8C78 ;SCR7 =$8637 ;SCR7
1737 8C78 ;SCR8 =$A638 ;SCR8
1738 8C78 ;SCR9 =$A639 ;SCR9
1739 8C78
1740 A64A *=$A64A
1741 A64A EAL .BLOCK 1 ;P3L - END ADDR +1 (LO)
1742 A64B EAH .BLOCK 1 ;P3H - (HI)
1743 A64C SAL .BLOCK 1 ;P2L - START ADDR (LO)
1744 A64D SAH .BLOCK 1 ;P2H - (HI)
1745 A64E ID .BLOCK 1 ;P1L - ID
1746 A64F
1747 A64F EOT = $04
1748 A64F SYN = $16
1749 A64F TPBIT =%1000 ;BIT 3 IS ENABLE/DISABLE TO DECODER
1750 A64F FRAME =$FF ;ERROR MSG # FOR FRAME ERROR
1751 A64F CHECK =$CC ;ERROR # FOR CHECKSUM ERROR
1752 A64F LSTCHR =$2F ;LAST CHAR NOT '/'
1753 A64F NONHEX =$FF ;NON HEX CHAR IN KIM REC
1754 A64F
1755 A64F ;ACCESS =$8BB6 ;UNRITE PROTECT SYSTEM RAM
1756 A64F ;P2SCR =$829C ;MOVE P2 TO $FF,$FE IN PAGE ZERO
1757 A64F ;ZERCK =$832E ;MOVE ZERO TO CHECK SUM
1758 A64F ;CONFIG =$89A5 ;CONFIGURE I/O
1759 A64F
1760 A64F ; I/O - TAPE ON/OFF IS CB2 ON VIA 1 (A000)
1761 A64F ; TAPE IN IS PB6 ON VIA 1 (A000)
1762 A64F ; TAPE OUT IS CODE 7 TO DISPLAY DECODER, THRU 6532,
1763 A64F ; PB0-PB3 (A400)
1764 A64F
1765 A64F VIAACR =$A00B
1766 A64F VIAPCR =$A00C ;CONTROL CB2 TAPE ON/OFF, POR
1767 A64F TPOUT =$A402
1768 A64F TAPOUT =TPOUT
1769 A64F DDROUT =$A403
1770 A64F TAPIN =$A000
1771 A64F DDRIN =$A002
1772 A64F TIMER =$A406 ;6532 TIMER READ
1773 A64F TIM8 =$A415 ;6532 TIMER SET (8US)
1774 A64F DDRDIG =$A401
1775 A64F DIG =$A400
1776 A64F
1777 A64F ; LOADT ENTER W/ID IN PARM 2, MODE IN [Y]
1778 A64F
1779 8C78 *=$8C78
1780 8C78 20 A9 8D LOADT JSR START ;INITIALIZE
1781 8C7B 20 52 8D LOADT2 JSR SYNC ;GET IN SYNC
1782 8C7E 20 E1 8D LOADT4 JSR RDCHTX
1783 8C81 C9 2A CMP #'*' ;START OF DATA?
1784 8C83 F0 06 BEQ LOAD11
1785 8C85 C9 16 CMP #SYN ;NO - SYN?
1786 8C87 D0 F2 BNE LOADT2 ;IF NOT, RESTART SYNC SEARCH
1787 8C89 F0 F3 BEQ LOADT4 ;IF YES, KEEP LOOKING FOR *
1788 8C8B
1789 8C8B 06 FD LOAD11 ASL MODE ;GET MODE IN A, CLEAR BIT6
1790 8C8D 6A ROR A
1791 8C8E 85 FD STA MODE
1792 8C90 20 26 8E JSR RDBYTX ;READ ID BYTE ON TAPE
1793 8C93 8D 00 A4 STA DIG ;DISPLAY ON LED (NOT DECODED)
1794 8C96 CD 4E A6 CMP ID ;COMPARE WITH REQUESTED ID
1795 8C99 F0 29 BEQ LOADT5 ;LOAD IF EQUAL
1796 8C9B AD 4E A6 LDA ID ;COMPARE WITH 0
1797 8C9E C9 00 CMP #0
1798 8CA0 F0 22 BEQ LOADT5 ;IF 0, LOAD ANYWAY
1799 8CA2 C9 FF CMP #$FF ;COMPARE WITH FF
1800 8CA4 F0 07 BEQ LOADT6 ;IF FF, USE REQUEST SA TO LOAD
1801 8CA6
1802 8CA6 24 FD BIT MODE ;UNWANTED RECORD, KIM OR HS?
1803 8CA8 30 16 BMI HWRONG
1804 8CAA 4C 7B 8C JMP LOADT2 ;IF KIM, RESTART SEARCH
1805 8CAD
1806 8CAD ; SA (&EA IF USED) COME FROM REQUEST. DISCARD TAPE VALUES
1807 8CAD ; (BUFAD ALREADY SET TO SA BY 'START')
1808 8CAD ;
1809 8CAD 20 74 8E LOADT6 JSR RDCHK ;GET SAL FROM TAPE
1810 8CB0 20 74 8E JSR RDCHK ;GET SAH FROM TAPE
1811 8CB3 24 FD BIT MODE ;HS OR KIM?
1812 8CB5 10 52 BPL LOADT7 ;IF KIM, START READING DATA
1813 8CB7 20 74 8E JSR RDCHK ;HS, GET EAH, EAL FROM TAPE
1814 8CBA 20 74 8E JSR RDCHK ; ... BUT IGNORE
1815 8CBD 4C DE 8C JMP LT7H ;START READING HS DATA
1816 8CC0
1817 8CC0 ; SA ( & EA IF USED) COME FROM TAPE. SA REPLACES BUFAD
1818 8CC0
1819 8CC0 A9 C0 HWRONG LDA #$C0 ;READ THRU TO GE TO NEXT REC
1820 8CC2 85 FD STA MODE ;BUT DON'T CHECK CKSUM, NO FRAME ERR
1821 8CC4
1822 8CC4 20 74 8E LOADT5 JSR RDCHK ;GET SAL FROM TAPE
1823 8CC7 85 FE STA BUFADL ;PUT IN BUF START L
1824 8CC9 20 74 8E JSR RDCHK ;SAME FOR SAH
1825 8CCC 85 FF STA BUFADH
1826 8CCE ;(SAL - H STILL HAVE REQUEST VALUE)
1827 8CCE 24 FD BIT MODE ;HS OR KIM?
1828 8CD0 10 37 BPL LOADT7 ;IF KIM, START READING RECORD
1829 8CD2 20 74 8E JSR RDCHK ;HS. GET & SAVE EAL,EAH
1830 8CD5 8D 4A A6 STA EAL
1831 8CD8 20 74 8E JSR RDCHK
1832 8CDB 8D 4B A6 STA EAH
1833 8CDE
1834 8CDE ; READ HS DATA
1835 8CDE
1836 8CDE 20 E5 8D LT7H JSR RDBYTH ;GET NEXT BYTE
1837 8CE1 A6 FE LDX BUFADL ;CHECK FOR END OF DATA + 1
1838 8CE3 EC 4A A6 CPX EAL
1839 8CE6 D0 07 BNE LT7HA
1840 8CE8 A6 FF LDX BUFADH
1841 8CEA EC 4B A6 CPX EAH
1842 8CED F0 14 BEQ LT7HB
1843 8CEF 20 77 8E LT7HA JSR CHKT ;NOT END, UPDATE CHECKSUM
1844 8CF2 24 FD BIT MODE ;WRONG RECORD?
1845 8CF4 70 04 BVS LT7HC ;IF SO, DONT STORE BYTE
1846 8CF6 A0 00 LDY #0 ;STORE BYTE
1847 8CF8 91 FE STA (BUFADL),Y
1848 8CFA E6 FE LT7HC INC BUFADL ;BUMP BUFFER ADDR
1849 8CFC D0 E0 BNE LT7H
1850 8CFE E6 FF INC BUFADH ;CARRY
1851 8D00 4C DE 8C JMP LT7H
1852 8D03
1853 8D03 C9 2F LT7HB CMP #'/' ;EA, MUST BE "/"
1854 8D05 D0 29 BNE LCERR ;LAST CHAR NOT '/'
1855 8D07 F0 15 BEQ LT8A ;(ALWAYS)
1856 8D09
1857 8D09 ; READ KIM DATA
1858 8D09
1859 8D09 20 2A 8E LOADT7 JSR RDBYT
1860 8D0C B0 26 BCS LDT7A ;NONHEX OR LAST CHAR
1861 8D0E 20 77 8E JSR CHKT ;UPDATE CHECKSUM (PACKED BYTE)
1862 8D11 A0 00 LDY #0 ;STORE BYTE
1863 8D13 91 FE STA (BUFADL),Y
1864 8D15 E6 FE INC BUFADL ;BUMP BUFFER ADR
1865 8D17 D0 F0 BNE LOADT7 ;CARRY?
1866 8D19 E6 FF INC BUFADH
1867 8D1B 4C 09 8D JMP LOADT7
1868 8D1E
1869 8D1E ; TEST CHECKSUM & FINISH
1870 8D1E
1871 8D1E LOADT8 =*
1872 8D1E 20 26 8E LT8A JSR RDBYTX ;CHECK SUM
1873 8D21 CD 36 A6 CMP SCR6
1874 8D24 D0 16 BNE CKERR
1875 8D26 20 26 8E JSR RDBYTX
1876 8D29 CD 37 A6 CMP SCR7
1877 8D2C D0 0E BNE CKERR ;CHECK SUM ERROR
1878 8D2E F0 11 BEQ OKEXIT ;(ALWAYS)
1879 8D30
1880 8D30 A9 2F LCERR LDA #LSTCHR ;LAST CHAR IS NOT '/'
1881 8D32 D0 0A BNE NGEXIT ;(ALWAYS)
1882 8D34
1883 8D34 C9 2F LDT7A CMP #'/' ;LAST OR NONHEX?
1884 8D36 F0 E6 BEQ LOADT8 ;LAST
1885 8D38 FRERR ;FRAMING ERROR
1886 8D38 A9 FF NHERR LDA #NONHEX ;KIM ONLY, NON HEX CHAR READ
1887 8D3A D0 02 BNE NGEXIT ;(ALWAYS)
1888 8D3C
1889 8D3C A9 CC CKERR LDA #CHECK ;CHECKSUM ERROR
1890 8D3E
1891 8D3E 38 NGEXIT SEC ;ERROR INDICATOR TO MONITOR IS CARRY
1892 8D3F B0 01 BCS EXIT ;(ALWAYS)
1893 8D41
1894 8D41 18 OKEXIT CLC ;NO ERROR
1895 8D42
1896 8D42 24 FD EXIT BIT MODE
1897 8D44 50 08 BVC EX10 ;READING WRONG REC?
1898 8D46 A0 80 LDY #$80
1899 8D48 4C 78 8C JMP LOADT ;RESTART SEARCH
1900 8D4B
1901 8D4B 68 USRREQ PLA ;USER REQUESTS EXIT
1902 8D4C 68 PLA
1903 8D4D 38 SEC
1904 8D4E A2 CC EX10 LDX #$CC
1905 8D50 D0 69 BNE STCC ;STOP TAPE, RETURN
1906 8D52 AD 02 A0 SYNC LDA DDRIN ;CHANGE DATA DIRECTION
1907 8D55 29 BF AND #$BF
1908 8D57 8D 02 A0 STA DDRIN
1909 8D5A A9 00 LDA #0
1910 8D5C 8D 0B A0 STA VIAACR
1911 8D5F AD 31 A6 LDA KMBDRY ;SET UP BOUNDARY
1912 8D62 24 FD BIT MODE
1913 8D64 10 03 BPL SY100
1914 8D66 AD 32 A6 LDA HSBDRY
1915 8D69 85 F8 SY100 STA BDRY
1916 8D6B A9 6D LDA #$6D
1917 8D6D 8D 00 A4 STA DIG ;INDICATE NO SYNC ON LEDS
1918 8D70 A5 FD LDA MODE ;TURN ON OUT OF SYNC MODE
1919 8D72 09 40 ORA #$40 ;BIT6
1920 8D74 85 FD STA MODE
1921 8D76 A9 7F SYNC5 LDA #$7F ;TEST FOR CR DOWN ON HKB
1922 8D78 8D 01 A4 STA DDRDIG
1923 8D7B 2C 00 A4 BIT DIG
1924 8D7E 10 CB BPL USRREQ ;CR KEY DOWN - EXIT (ERRORS)
1925 8D80 20 9F 8D JSR SYNBIT
1926 8D83 66 FC ROR CHAR
1927 8D85 A5 FC LDA CHAR
1928 8D87 C9 16 CMP #SYN
1929 8D89 D0 EB BNE SYNC5
1930 8D8B A2 0A SYNC10 LDX #10 ;NOW MAKE SURE CAN GET 10 SYNS
1931 8D8D 20 E1 8D JSR RDCHTX
1932 8D90 C9 16 CMP #SYN
1933 8D92 D0 E2 BNE SYNC5
1934 8D94 CA DEX
1935 8D95 D0 F6 BNE SYNC10+2
1936 8D97 8E 00 A4 STX DIG ;TURN OFF DISPLAY
1937 8D9A CA DEX ;X=$FF
1938 8D9B 8E 01 A4 STX DDRDIG
1939 8D9E 60 RTS
1940 8D9F ;SYNBIT - GET BIT IN SYN SEARCH. IF HS, ENTER WITH
1941 8D9F ; TIMER STARTED BY PREV BIT, BIT RETURNED IN CARRY.
1942 8D9F
1943 8D9F 24 FD SYNBIT BIT MODE ;KIM OR HS?
1944 8DA1 10 69 BPL RDBITK ;KIM
1945 8DA3 20 CA 8D JSR GETTR ;HS
1946 8DA6 B0 22 BCS GETTR ;IF SHORT, GET NEXT TRANS
1947 8DA8 60 RTS ;BIT IS ZERO
1948 8DA9
1949 8DA9 84 FD START STY MODE ;MODE PARM PASSED IN [Y]
1950 8DAB 20 86 8B JSR ACCESS ;FIX BASIC WARM START BUG
1951 8DAE A9 09 LDA #9
1952 8DB0 20 A5 89 JSR CONFIG ;PARTIAL I/O CONFIGURATION
1953 8DB3 20 2E 83 JSR ZERCK ;ZERO THE CHECK SUM
1954 8DB6 20 9C 82 JSR P2SCR ;MOVE SA TO FE,FF IN PAGE ZERO
1955 8DB9 A2 EC LDX #$EC
1956 8DBB 8E 0C A0 STCC STX VIAPCR ;TAPE ON
1957 8DBE 60 RTS
1958 8DBF
1959 8DBF ; GETTR - GET TRANSITION TIME FROM 6532 CLOCK
1960 8DBF ; DESTROYS A,Y
1961 8DBF
1962 8DBF A9 00 KGETTR LDA #0 ;KIM GETTR - GET FULL CYCLE
1963 8DC1 85 F9 STA OLD ;FORCE GETTR POLARITY
1964 8DC3 AD 00 A0 KG100 LDA TAPIN ;WAIT TIL INPUT LO
1965 8DC6 29 40 AND #$40
1966 8DC8 D0 F9 BNE KG100
1967 8DCA
1968 8DCA A0 FF GETTR LDY #$FF
1969 8DCC AD 00 A0 NOTR LDA TAPIN
1970 8DCF 29 40 AND #$40
1971 8DD1 C5 F9 CMP OLD
1972 8DD3 F0 F7 BEQ NOTR ;NO CHANGE
1973 8DD5 85 F9 STA OLD
1974 8DD7 AD 06 A4 LDA TIMER
1975 8DDA 8C 15 A4 STY TIM8 ;RESTART CLOCK
1976 8DDD 18 CLC
1977 8DDE 65 F8 ADC BDRY
1978 8DE0 60 RTS
1979 8DE1
1980 8DE1 24 FD RDCHTX BIT MODE ;READ HS OR KIM CHARACTER
1981 8DE3 10 7A BPL RDCHT ;KIM
1982 8DE5
1983 8DE5 ; RDBYTH - READ HS BYTE
1984 8DE5 ; Y DESTROYED, BYTE RETURNED IN CHAR AND A
1985 8DE5 ; TIME FROM ONE CALL TO NEXT MUST BE LESS THAN
1986 8DE5 ; START BIT TIME (TIMER STILL RUNNING)
1987 8DE5
1988 8DE5 8E 38 A6 RDBYTH STX SCR8 ;SAVE X
1989 8DE8 A2 08 LDX #8
1990 8DEA 20 CA 8D JSR GETTR ;GET START BIT TIME
1991 8DED B0 14 BCS RDBH90 ;IF NOT 0, FRAMING ERR
1992 8DEF 20 CA 8D RDBH10 JSR GETTR ;GET BIT IN CARRY
1993 8DF2 90 04 BCC RDASSY
1994 8DF4 20 CA 8D JSR GETTR ;BIT IS ONE, WAIT HALF CYC
1995 8DF7 38 SEC ;MAKE SURE "1"
1996 8DF8 66 FC RDASSY ROR CHAR
1997 8DFA CA DEX
1998 8DFB D0 F2 BNE RDBH10
1999 8DFD A5 FC LDA CHAR ;GET IN ACC
2000 8DFF AE 38 A6 H8DFF LDX SCR8 ;RESTORE X
2001 8E02 60 RTS
2002 8E03 24 FD RDBH90 BIT MODE ;NO ERR IF NOT IN SYNC
2003 8E05 70 F8 BVS RDBH90-4 ;OR READING WRONG REC
2004 8E07 68 PLA ;FIX STACK
2005 8E08 68 PLA
2006 8E09 4C 38 8D JMP FRERR
2007 8E0C
2008 8E0C ; RDBITK - READ KIM BIT - X,Y,A DESTROYED, BIT RETURNED IN C
2009 8E0C
2010 8E0C 20 BF 8D RDBITK JSR KGETTR ;WAIT FOR LF
2011 8E0F B0 FB BCS RDBITK
2012 8E11 20 BF 8D JSR KGETTR ;GET SECOND
2013 8E14 B0 F6 BCS RDBITK
2014 8E16 A2 00 LDX #0
2015 8E18 E8 RDB100 INX ;COUNT LF FULL CYCLES
2016 8E19 20 BF 8D JSR KGETTR
2017 8E1C 90 FA BCC RDB100
2018 8E1E 20 BF 8D JSR KGETTR ;GET SECOND
2019 8E21 90 F5 BCC RDB100
2020 8E23 E0 08 CPX #$08 ;GET BIT TO CARRY
2021 8E25 60 RTS
2022 8E26
2023 8E26 24 FD RDBYTX BIT MODE ;READ HS OR KIM BYTE
2024 8E28 30 BB BMI RDBYTH ;HS
2025 8E2A
2026 8E2A 20 5F 8E RDBYT JSR RDCHT ;READ KIM BYTE INTO CHAR AND A
2027 8E2D C9 2F CMP #'/' ;READ ONE CHAR IF LAST
2028 8E2F F0 2C BEQ PACKT3 ;SET CARRY AND RETURN
2029 8E31 20 3C 8E JSR PACKT
2030 8E34 B0 26 BCS RDRTN ;NON HEX CHAR?
2031 8E36 AA TAX ;SAVE MSD
2032 8E37 20 5F 8E JSR RDCHT
2033 8E3A 86 FC STX CHAR ;MOVE MSD TO CHAR
2034 8E3C ; AND FALL INTO PACKT AGAIN
2035 8E3C
2036 8E3C ;PACKT - ASCII HEX TO 4 BITS
2037 8E3C ;INPUT IN A, OUTPUT IN CHAR AND A, CARRY SET = NON HEX
2038 8E3C
2039 8E3C C9 30 PACKT CMP #$30 ;LT "0"?
2040 8E3E 90 1D BCC PACKT3
2041 8E40 C9 47 CMP #$47 ;GT "F" ?
2042 8E42 B0 19 BCS PACKT3
2043 8E44 C9 40 CMP #$40 ;A-F?
2044 8E46 F0 15 BEQ PACKT3 ;40 NOT VALID
2045 8E48 90 03 BCC PACKT1
2046 8E4A 18 CLC
2047 8E4B 69 09 ADC #9
2048 8E4D 2A PACKT1 ROL A ;GET LSD INTO LEFT NIBBLE
2049 8E4E 2A ROL A
2050 8E4F 2A ROL A
2051 8E50 2A ROL A
2052 8E51 A0 04 LDY #4
2053 8E53 2A RACKT2 ROL A ;ROTATE 1 BIT AT A TIME INTO CHAR
2054 8E54 26 FC ROL CHAR
2055 8E56 88 DEY
2056 8E57 D0 FA BNE RACKT2
2057 8E59 A5 FC LDA CHAR ;GET INTO ACCUM ALSO
2058 8E5B 18 CLC ;OK
2059 8E5C 60 RDRTN RTS
2060 8E5D 38 PACKT3 SEC ;NOT HEX
2061 8E5E 60 RTS
2062 8E5F
2063 8E5F ; RDCHT - READ KIM CHAR
2064 8E5F ; PRESERVES X, RETURNS CHAR IN CHAR (W/PARITY)
2065 8E5F ; AND A (W/O PARITY)
2066 8E5F
2067 8E5F 8A RDCHT TXA ;SAVE X
2068 8E60 48 PHA
2069 8E61 A9 FF LDA #$FF ;USE A TO COUNT BITS (BY SHIFTING)
2070 8E63 48 KBITS PHA ;SAVE COUNTER
2071 8E64 20 0C 8E JSR RDBITK
2072 8E67 66 FC ROR CHAR
2073 8E69 68 PLA
2074 8E6A 0A ASL A
2075 8E6B D0 F6 BNE KBITS ;DO 8 BITS
2076 8E6D 68 PLA ;RESTORE X
2077 8E6E AA TAX
2078 8E6F A5 FC LDA CHAR
2079 8E71 2A ROL A
2080 8E72 4A LSR A ;DROP PARITY
2081 8E73 60 RTS
2082 8E74
2083 8E74 ; RDCHK - READ ONE BYT, INCLUDE IN CKSUM
2084 8E74
2085 8E74 20 26 8E RDCHK JSR RDBYTX ;FALL INTO CHKT
2086 8E77
2087 8E77 ; CHKT - UPDATE CHECK SUM FROM BYTE IN A
2088 8E77 ; DESTROYS Y
2089 8E77
2090 8E77 A8 CHKT TAY ;SAVE ACCUM
2091 8E78 18 CLC
2092 8E79 6D 36 A6 ADC SCR6
2093 8E7C 8D 36 A6 STA SCR6
2094 8E7F 90 03 BCC CHKT10
2095 8E81 EE 37 A6 INC SCR7 ;BUMP HI BYTE
2096 8E84 98 CHKT10 TYA ;RESTORE A
2097 8E85 60 RTS
2098 8E86
2099 8E86 FF .DB $FF ;NOT USED
2100 8E87 *=$8E87 ;KEEP OLD ENTRY POINT
2101 8E87 20 A9 8D DUMPT JSR START ;INIT VIA & CKSUM, SA TO BUFAD & START
2102 8E8A A9 07 LDA #7 ;CODE FOR TAPE OUT
2103 8E8C 8D 02 A4 STA TAPOUT ;BIT 3 USED FOR HI/LO
2104 8E8F A2 01 LDX #1 ;KIM DELAY CONSTANT (OUTER)
2105 8E91 A4 FD LDY MODE ;128 KIM, 0 HS
2106 8E93 10 03 BPL DUMPT1 ;KIM - DO 128 SYNS
2107 8E95 AE 30 A6 LDX TAPDEL ;HS INITIAL DELAY (OUTER)
2108 8E98 8A DUMPT1 TXA
2109 8E99 48 PHA
2110 8E9A A9 16 DMPT1A LDA #SYN
2111 8E9C 20 0A 8F JSR OUTCTX
2112 8E9F 88 DEY
2113 8EA0 D0 F8 BNE DMPT1A ;INNER LOOP (HS OR KIM)
2114 8EA2 68 PLA
2115 8EA3 AA TAX
2116 8EA4 CA DEX
2117 8EA5 D0 F1 BNE DUMPT1
2118 8EA7 A9 2A LDA #'*' ;WRITE START
2119 8EA9 20 0A 8F JSR OUTCTX
2120 8EAC
2121 8EAC AD 4E A6 LDA ID ;WRITE ID
2122 8EAF 20 3F 8F JSR OUTBTX
2123 8EB2
2124 8EB2 AD 4C A6 LDA SAL ;WRITE SA
2125 8EB5 20 3C 8F JSR OUTBCX
2126 8EB8 AD 4D A6 LDA SAH
2127 8EBB 20 3C 8F JSR OUTBCX
2128 8EBE
2129 8EBE ;
2130 8EBE 24 FD BIT MODE ;KIM OR HS
2131 8EC0 10 0C BPL DUMPT2
2132 8EC2
2133 8EC2 AD 4A A6 LDA EAL ;HS, WRITE EA
2134 8EC5 20 3C 8F JSR OUTBCX
2135 8EC8 AD 4B A6 LDA EAH
2136 8ECB 20 3C 8F JSR OUTBCX
2137 8ECE
2138 8ECE A5 FE DUMPT2 LDA BUFADL ;CHECK FOR LAST BYTE
2139 8ED0 CD 4A A6 CMP EAL
2140 8ED3 D0 25 BNE DUMPT4
2141 8ED5 A5 FF LDA BUFADH
2142 8ED7 CD 4B A6 CMP EAH
2143 8EDA D0 1E BNE DUMPT4
2144 8EDC
2145 8EDC A9 2F LDA #'/' ;LAST, WRITE "/"
2146 8EDE 20 0A 8F JSR OUTCTX
2147 8EE1 AD 36 A6 LDA SCR6 ;WRITE CHECK SUM
2148 8EE4 20 3F 8F JSR OUTBTX
2149 8EE7 AD 37 A6 LDA SCR7
2150 8EEA 20 3F 8F JSR OUTBTX
2151 8EED
2152 8EED A9 04 LDA #EOT ;WRITE TWO EOT'S
2153 8EEF 20 3F 8F JSR OUTBTX
2154 8EF2 A9 04 LDA #EOT
2155 8EF4 20 3F 8F JSR OUTBTX
2156 8EF7
2157 8EF7 DT3E =* ;(SET "OK" MARK)
2158 8EF7 4C 41 8D JMP OKEXIT
2159 8EFA
2160 8EFA A0 00 DUMPT4 LDY #0 ;GET BYTE
2161 8EFC B1 FE LDA (BUFADL),Y
2162 8EFE 20 3C 8F JSR OUTBCX ;WRITE IT W/CHK SUM
2163 8F01 E6 FE INC BUFADL ;BUMP BUFFER ADDR
2164 8F03 D0 C9 BNE DUMPT2
2165 8F05 E6 FF INC BUFADH ;CARRY
2166 8F07 4C CE 8E JMP DUMPT2
2167 8F0A 24 FD OUTCTX BIT MODE ;HS OR KIM?
2168 8F0C 10 48 BPL OUTCHT ;KIM
2169 8F0E
2170 8F0E ; OUTBTH - NO CLOCK
2171 8F0E ; A,X DESTROYED
2172 8F0E ; MUST RESIDE ON ONE PAGE - TIMING CRITICAL
2173 8F0E A2 09 OUTBTH LDX #9 ;8 BITS + START BIT
2174 8F10 8C 39 A6 STY SCR9
2175 8F13 85 FC STA CHAR
2176 8F15 AD 02 A4 LDA TAPOUT ;GET PREV LEVEL
2177 8F18 46 FC GETBIT LSR CHAR
2178 8F1A 49 08 EOR #TPBIT
2179 8F1C 8D 02 A4 STA TAPOUT ;INVERT LEVEL
2180 8F1F ; *** HERE STARTS FIRST HALF CYCLE
2181 8F1F AC 35 A6 LDY TAPET1
2182 8F22 88 A416 DEY ;TIME FOR THIS LOOP IS 5Y-1
2183 8F23 D0 FD BNE A416
2184 8F25 90 12 BCC NOFLIP ;NOFLIP IF BIT ZERO
2185 8F27 49 08 EOR #TPBIT ;BIT IS ONE - INVERT OUTPUT
2186 8F29 8D 02 A4 STA TAPOUT
2187 8F2C ; *** END OF FIRST HALF CYCLE
2188 8F2C AC 3C A6 B416 LDY TAPET2
2189 8F2F 88 B416B DEY ;LENGTH OF LOOP IS 5Y-1
2190 8F30 D0 FD BNE B416B
2191 8F32 CA DEX
2192 8F33 D0 E3 BNE GETBIT ;GET NEXT BIT (LAST IS 0 START BIT)
2193 8F35 AC 39 A6 LDY SCR9 ; (BY 9 BIT LSR)
2194 8F38 60 RTS
2195 8F39 EA NOFLIP NOP ;TIMING
2196 8F3A 90 F0 BCC B416 ;(ALWAYS)
2197 8F3C ;
2198 8F3C 20 77 8E OUTBCX JSR CHKT ;WRITE HS OR KIM BYTE & CKSUM
2199 8F3F 24 FD OUTBTX BIT MODE ;WRITE HS OR KIM BYTE
2200 8F41 30 CB BMI OUTBTH ;HS
2201 8F43
2202 8F43 ;OUTBTC - OUTPUT ONE KIM BYTE
2203 8F43
2204 8F43 OUTBTC =*
2205 8F43 A8 OUTBT TAY ;SAVE DATA BYTE
2206 8F44 4A LSR A
2207 8F45 4A LSR A
2208 8F46 4A LSR A
2209 8F47 4A LSR A
2210 8F48 20 4B 8F JSR HEXOUT ;MORE SIG DIGIT
2211 8F4B ; FALL INTO HEXOUT
2212 8F4B
2213 8F4B 29 0F HEXOUT AND #$0F ;CVT LSD OF [A] TO ASCII, OUTPUT
2214 8F4D C9 0A CMP #$0A
2215 8F4F 18 CLC
2216 8F50 30 02 BMI HEX1
2217 8F52 69 07 ADC #$07
2218 8F54 69 30 HEX1 ADC #$30
2219 8F56
2220 8F56 ; OUTCHT - OUTPUT ASCII CHAR (KIM)
2221 8F56 ; CLOCK NOT USED
2222 8F56 ; X,Y PRESERVED
2223 8F56 ; MUST RESIDE ON ONE PAGE - TIMING CRITICAL
2224 8F56
2225 8F56 8E 38 A6 OUTCHT STX SCR8 ;PRESERVE X
2226 8F59 8C 39 A6 STY SCR9 ;DITTO Y
2227 8F5C 85 FC STA CHAR
2228 8F5E A9 FF LDA #$FF ;USE FF W/SHIFTS TO COUNT BITS
2229 8F60 48 KIMBIT PHA ;SAVE BIT CTR
2230 8F61 AD 02 A4 LDA TPOUT ;GET CURRENT OUTPUT LEVEL
2231 8F64 46 FC LSR CHAR ;GET DATA BIT IN CARRY
2232 8F66 A2 12 LDX #18 ;ASSUME 'ONE'
2233 8F68 B0 02 BCS HF
2234 8F6A A2 24 LDX #36 ;BIT IS ZERO
2235 8F6C A0 19 HF LDY #25
2236 8F6E 49 08 EOR #TPBIT ;INVERT OUTPUT
2237 8F70 8D 02 A4 STA TPOUT
2238 8F73 88 HFP1 DEY ;PAUSE FOR 138 USEC
2239 8F74 D0 FD BNE HFP1
2240 8F76 CA DEX ;COUNT HALF CYCS OF HF
2241 8F77 D0 F3 BNE HF
2242 8F79 A2 18 LDX #24 ;ASSUME BIT IS ONE
2243 8F7B B0 02 BCS LF20
2244 8F7D A2 0C LDX #12 ;BIT IS ZERO
2245 8F7F A0 27 LF20 LDY #39
2246 8F81 49 08 EOR #TPBIT ;INVERT OUTPUT
2247 8F83 8D 02 A4 STA TPOUT
2248 8F86 88 LFP1 DEY ;PAUSE FOR 208 USEC
2249 8F87 D0 FD BNE LFP1
2250 8F89 CA DEX ;COUNT HALF CYCS
2251 8F8A D0 F3 BNE LF20
2252 8F8C 68 PLA ;RESTORE BIT CTR
2253 8F8D 0A ASL A ;DECREMENT IT
2254 8F8E D0 D0 BNE KIMBIT ;FF SHIFTED 8X = 0
2255 8F90 AE 38 A6 LDX SCR8
2256 8F93 AC 39 A6 LDY SCR9
2257 8F96 98 TYA ;RESTORE DATA BYTE
2258 8F97 60 RTS
2259 8F98
2260 8F98 FF FF .DB $FF,$FF ;NOT USED
2261 8F9A
2262 8F9A ; REGISTER NAME PATCH
2263 8F9A *=$8F9A
2264 8F9A 53 .DB "S"
2265 8F9B 46 .DB "F"
2266 8F9C 41 .DB "A"
2267 8F9D 58 .DB 'X'
2268 8F9E 59 .DB "Y"
2269 8F9F 01 .DB $01
2270 8FA0 ;
2271 8FA0 ;
2272 8FA0 ;***
2273 8FA0 ;*** DEFAULT TABLE
2274 8FA0 ;***
2275 8FA0 *=$8FA0
2276 8FA0 DFTBLK =*
2277 8FA0 00 C0 .DW $C000 ;BASIC *** JUMP TABLE
2278 8FA2 A7 8B .DW TTY
2279 8FA4 64 8B .DW NEWDEV
2280 8FA6 00 00 .DW $0000 ;PAGE ZERO
2281 8FA8 00 02 .DW $0200
2282 8FAA 00 03 .DW $0300
2283 8FAC 00 C8 .DW $C800
2284 8FAE 00 D0 .DW $D000
2285 8FB0 04 .DB $04 ;TAPE DELAY (9.0 SEC)
2286 8FB1 2C .DB $2C ;KIM TAPE BOUNDARY
2287 8FB2 46 .DB $46 ;HS TAPE BOUNDARY
2288 8FB3 00 00 .DB $00,$00 ;SCR3,SCR4
2289 8FB5 33 .DB $33 ;HS TAPE FIRST 1/2 BIT
2290 8FB6 00 00 .DB $00,$00 ;SCR6,SCR7
2291 8FB8 00 00 00 00 .DB $00,$00,$00,$00 ;SCR8-SCRB
2292 8FBC 5A .DB $5A ;HS TAPE SECOND 1/2 BIT
2293 8FBD 00 00 00 .DB $00,$00,$00 ;SCRD-SCRF
2294 8FC0 00006D6E8606 .DB $00,$00,$6D,$6E,$86,$06 ;DISP BUFFER (SY1.1)
2295 8FC6 00 00 00 .DB $00,$00,$00 ;NOT USED
2296 8FC9 00 .DB $00 ;PARNR
2297 8FCA 000000000000 .DW $0000,$0000,$0000 ;PARMS
2298 8FD0 01 .DB $01 ;PADBIT
2299 8FD1 4C .DB $4C ;SDBYT
2300 8FD2 00 .DB $00 ;ERCNT
2301 8FD3 80 .DB $80 ;TECHO
2302 8FD4 B0 .DB $B0 ;TOUTFL
2303 8FD5 00 .DB $00 ;KSHFL
2304 8FD6 00 .DB $00 ;TV
2305 8FD7 00 .DB $00 ;LSTCOM
2306 8FD8 10 .DB $10 ;MAXRC
2307 8FD9 4A 8B .DW RESET ;USER REG'S
2308 8FDB FF .DB $FF ;STACK
2309 8FDC 00 .DB $00 ;FLAGS
2310 8FDD 00 .DB $00 ;A
2311 8FDE 00 .DB $00 ;X
2312 8FDF 00 .DB $00 ;Y
2313 8FE0 ;VECTORS
2314 8FE0 4C BE 89 JMP HKEY ;INVEC
2315 8FE3 4C 00 89 JMP HDOUT ;OUTVEC
2316 8FE6 4C 6A 89 JMP KYSTAT ;INSVEC
2317 8FE9 4C D1 81 JMP M1 ;UNRECOGNIZED SYNTAX (ERROR)
2318 8FEC 4C D1 81 JMP M1 ;UNRECOGNIZED COMMAND (ERROR)
2319 8FEF 4C 06 89 JMP SCAND ;SCNVEC
2320 8FF2 7E 88 .DW RIN ;IN PTR FOR EXEC FROM RAM
2321 8FF4 C0 80 .DW TRCOFF ;USER TRACE VECTOR
2322 8FF6 4A 80 .DW SVBRK ;BRK
2323 8FF8 29 80 .DW SVIRQ ;USER IRQ
2324 8FFA 9B 80 .DW SVNMI ;NMI
2325 8FFC 4A 8B .DW RESET ;RESET
2326 8FFE 0F 80 .DW IRQBRK ;IRQ
2327 9000
2328 9000 LENTRY =$8C78
2329 9000 SENTRY =$8C78+$20F
2330 9000 RGNAM =$8F9A ;REGISTER NAME PATCH
2331 9000
2332 9000 .END
tasm: Number of errors = 0
+------------------------------------------------------------------------
| TOPIC -- AIM Computer -- AIM Monitor listing
+------------------------------------------------------------------------
0001 0000 ;TELEMARK CROSS ASSEMBLER (TASM) http://www.halcyon.com/squakvly/
0002 0000
0003 0000 ;***************************************************
0004 0000 ;***************************************************
0005 0000 ;** **
0006 0000 ;** PL-PA00-JOO1A **
0007 0000 ;** **
0008 0000 ;** ROCKWELL R6500 MICROCOMPUTER SYSTEM **
0009 0000 ;** **
0010 0000 ;** AIM 65 MONITOR **
0011 0000 ;** **
0012 0000 ;** PROGRAM LISTING **
0013 0000 ;** **
0014 0000 ;** REVISION A AUG 22, 1978 **
0015 0000 ;** **
0016 0000 ;***************************************************
0017 0000 ;***************************************************
0018 0000
0019 0000 ;ROCKWELL INTERNATIONAL
0020 0000 ;MICROELECTRONIC DEVICES
0021 0000 ;3310 MIRALOMA AVENUE
0022 0000 ;P. O. BOX 3669
0023 0000 ;ANAHEIM CA U.S.A. 92803
0024 0000
0025 0000 ; **************************************
0026 0000 ; * USER 6522 ADDRESSES (A000-A00F) *
0027 0000 ; **************************************
0028 A000 *=$A000
0029 A000 UDRB .BLOCK 1 ;DATA REG B
0030 A001 UDRAH .BLOCK 1 ;DATA REG A
0031 A002 UDDRB .BLOCK 1 ;DATA DIR REG B
0032 A003 UDDRA .BLOCK 1 ;DATA DIR REG A
0033 A004 UT1L .BLOCK 1 ;TIMER 1 COUNTER LOW
0034 A005 UT1CH .BLOCK 1 ;TIMER 1 COUNTER HIGH
0035 A006 UT1LL .BLOCK 1 ;TIMER 1 LATCH LOW
0036 A007 UT1LH .BLOCK 1 ;TIMER 1 LATCH HIGH
0037 A008 UT2L .BLOCK 1 ;TIMER 2 LATCH & COUNTER LOW
0038 A009 UT2H .BLOCK 1 ;TIMER 2 COUNTER HIGH
0039 A00A USR .BLOCK 1 ;SHIFT REGISTER
0040 A00B UACR .BLOCK 1 ;AUX CONTROL REGISTER
0041 A00C UPCR .BLOCK 1 ;PERIPHERAL CONTROL REGISTER
0042 A00D UIFR .BLOCK 1 ;INTERRUPT FLAG REGISTER
0043 A00E UIER .BLOCK 1 ;INTERRUPT ENABLE REGISTER
0044 A00F UDRA .BLOCK 1 ;DATA REGISTER A
0045 A010
0046 A010 ASSEM =$D000 ;ASSEMBLER ENTRY
0047 A010 BASIEN =$B000 ;BASIC ENTRY (COLD)
0048 A010 BASIRE =$B003 ;BASIC ENTRY (WARM)
0049 A010
0050 A010 ; MONITOR RAM
0051 A010 ;TEXT EDITOR EQUATES (PAG 0)
0052 A010 ;OVERLAPS TABUF2+50 (TAPE OUTPUT BUFFER $AD-$FF)
0053 00DF *=$00DF
0054 00DF NOWLN .BLOCK 2 ;CURRENT LINE
0055 00E1 BOTLN .BLOCK 2 ;LAST ACTIVE , SO FAR
0056 00E3 TEXT .BLOCK 2 ;LIMITS OF BUFFER (START)
0057 00E5 END .BLOCK 2 ;LIMITS OF BUFFER (END)
0058 00E7 SAVE .BLOCK 2 ;USED BY REPLACE
0059 00E9 OLDLEN .BLOCK 1 ;ORIG LENGTH
0060 00EA LENGTH .BLOCK 1 ;NEW LENGTH
0061 00EB STRING .BLOCK 20 ;FIND STRING
0062 00FF
0063 0100 *=$0100
0064 0100 ;BREAKPOINTS AND USER I/O HANDLERS
0065 0100 BKS .BLOCK 8 ;BRK LOCATIONS
0066 0108 UIN .BLOCK 2 ;USER INPUT HANDLER (VECTOR)
0067 010A UOUT .BLOCK 2 ;USER OUTPUT HANDLER (VECTOR)
0068 010C
0069 010C ;UNUSED KEYS TO GO TO USER ROUTINE
0070 010C KEYF1 .BLOCK 3 ;USER PUTS A JMP INSTRUCTION TO...
0071 010F KEYF2 .BLOCK 3 ;GO TO HIS ROUTINE ON EITHER KEY..
0072 0112 KEYF3 .BLOCK 3 ;ENTRY
0073 0115
0074 0115 ;EQUATES FOR DISASSEMBLER (PAG 1)
0075 0116 *=$0116 ;SAME AS TAPE BUFFER I/O (TABUFF)
0076 0116 FORMA .BLOCK 1
0077 0117 LMNEM .BLOCK 1
0078 0118 RMNEM .BLOCK 14
0079 0126
0080 0126 ;EQUATES FOR MNEMONIC ENTRY
0081 0126 MOVAD .BLOCK 8
0082 012E TYPE .BLOCK 2
0083 0130 TMASK1 =MOVAD
0084 0130 TMASK2 =MOVAD+1
0085 0130 CH .BLOCK 3
0086 0133 ADFLD .BLOCK 20
0087 0147 HISTM =$A42E ;SHARE WITH NAME & HIST
0088 0147 BYTESM =HISTM+1
0089 0147 TEMPX =HISTM+3
0090 0147 TEMPA =HISTM+5
0091 0147 OPCODE =HISTM+6
0092 0147 CODFLG =HISTM+9
0093 0147
0094 0147 ; **********************************
0095 0147 ; * 6532 ADDRESSES (A400-A7FF) *
0096 0147 ; **********************************
0097 A400 *=$A400
0098 A400 MONRAM *=*
0099 A400 ;JUMP VECTORS
0100 A400 IRQV4 .BLOCK 2 ;IRQ AFTER MONITOR (NO BRK)
0101 A402 NMIV2 .BLOCK 2 ;NMI
0102 A404 IRQV2 .BLOCK 2 ;IRQ
0103 A406
0104 A406 ;I/O DEVICES
0105 A406 DILINK .BLOCK 2 ;DISPL LINKAGE (TO ECHO TO DISP)
0106 A408 TSPEED .BLOCK 1 ;TAPE SPEED (C7,5B,5A)
0107 A409 GAP .BLOCK 1 ;TIMING GAP BETWEEN BLOCKS
0108 A40A ;END OF USER ALTERABLE LOCATIONS
0109 A40A NPUL .BLOCK 1 ;# OF HALF PULSES...
0110 A40B TIMG .BLOCK 3 ;FOR TAPE
0111 A40E REGF .BLOCK 1 ;REGS FLG FOR SINGLE STEP MODE
0112 A40F DISFLG .BLOCK 1 ;DISASSEM FLG FOR SINGLE STEP MODE
0113 A410 BKFLG .BLOCK 1 ;ENABLE OR DIS BREAKPOINTS
0114 A411 PRIFLG .BLOCK 1 ;ENABLE OR DIS PRINTER
0115 A412 INFLG .BLOCK 1 ;INPUT DEVICE
0116 A413 OUTFLG .BLOCK 1 ;OUTPUT DEVICE
0117 A414 HISTP .BLOCK 1 ;HISTORY PTR (SINGLE STEP) (Y)
0118 A415 CURPO2 .BLOCK 1 ;DISPLAY POINTER
0119 A416 CURPOS .BLOCK 1 ;PRINTER POINTER
0120 A417 CNTH30 .BLOCK 1 ;BAUD RATE &...
0121 A418 CNTL30 .BLOCK 1 ;DELAY FOR TTY
0122 A419 COUNT .BLOCK 1 ;# OF LINES (0-99)
0123 A41A S1 .BLOCK 2 ;START ADDRESS
0124 A41C ADDR .BLOCK 2 ;END ADDRESS
0125 A41E CKSUM .BLOCK 2 ;CHECKSUM
0126 A420 S2 =BKS+6 ;VERTICAL COUNT (ONLY ON DUMP)
0127 A420
0128 A420 ;MONITOR REGISTERS
0129 A420 SAVPS .BLOCK 1 ;STATUS
0130 A421 SAVA .BLOCK 1 ;ACCUM
0131 A422 SAVX .BLOCK 1 ;X REG
0132 A423 SAVY .BLOCK 1 ;Y REG
0133 A424 SAVS .BLOCK 1 ;STACK POINTER
0134 A425 SAVPC .BLOCK 2 ;PROGR COUNTER
0135 A427
0136 A427 ;WORK AREAS FOR PAGE ZERO SIMULATION
0137 A427 ;SIMULATE LDA (NNNN),Y ,WHERE NNNN IS ABSOLUTE
0138 A427 STIY .BLOCK 3 ;STA NM,Y
0139 A42A CPIY .BLOCK 3 ;CMP NM,Y OR LDA NM,Y
0140 A42D .BLOCK 1 ;RTS
0141 A42E LDIY =CPIY ;LDA NM,Y
0142 A42E
0143 A42E ;VARIABLES FOR TAPE
0144 A42E NAME .BLOCK 6 ;FILE NAME
0145 A434 TAPIN .BLOCK 1 ;IN FLG (TAPE 1 OR 2)
0146 A435 TAPOUT .BLOCK 1 ;OUT FLG (TAPE 1 OR 2)
0147 A436 TAPTR .BLOCK 1 ;TAPE BUFF POINTER
0148 A437 TAPTR2 .BLOCK 1 ;TAPE OUTPUT BUFF PTR
0149 A438 HIST =NAME ;FOUR LAST ADDR + NEXT (SINGL STEP)`
0150 A438 BLK =$0115 ;BLOCK COUNT
0151 A438 TABUFF =$0116 ;TAPE BUFFER (I/O)
0152 A438 BLKO =$0168 ;OUTPUT BLOCK COUNT
0153 A438 TABUF2 =$00AD ;OUTPUT BUFF WHEN ASSEMB (PAG0)
0154 A438 DIBUFF .BLOCK 40 ;DISPLAY BUFFER
0155 A460
0156 A460 ;VARIABLES USED IN PRINTING
0157 A460 IBUFM .BLOCK 20 ;PRINTER BUFFER
0158 A474 IDIR .BLOCK 1 ;DIRECTION == 0=>+ , FF=>-
0159 A475 ICOL .BLOCK 1 ;COLUMN LEFTMOST=0,RIGHTMOST=4
0160 A476 IOFFST .BLOCK 1 ;OFFSET 0=LEFT DGT,1=RIGHT DGT
0161 A477 IDOT .BLOCK 1 ;# OF LAST DOT ENCOUNTERED
0162 A478 IOUTL .BLOCK 1 ;LOWER 8 OUTPUTS(8 COLS ON RIGHT)
0163 A479 IOUTU .BLOCK 1 ;UPPER 2 DIGITS
0164 A47A IBITL .BLOCK 1 ;1 BIT MSK FOR CURRENT OUTPUT
0165 A47B IBITU .BLOCK 1
0166 A47C IMASK .BLOCK 1 ;MSK FOR CURRENT ROW
0167 A47D JUMP .BLOCK 2 ;INDIR & ADDR OF TABL FOR CURR ROW
0168 A47F
0169 A47F ;VARIABLES FOR KEYBOARD
0170 A47F ROLLFL .BLOCK 1 ;SAVE LAST STROBE FOR ROLLOVER
0171 A480 KMASK =CPIY ;TO MASK OFF CTRL OR SHIFT
0172 A480 STBKEY =CPIY+1 ;STROBE KEY (1-8 COLUMNS)
0173 A480
0174 A480 ; I/O ASSIGNMENT
0175 A480 *=$A480
0176 A480 DRA2 .BLOCK 1 ;DATA REG A
0177 A481 DDRA2 .BLOCK 1 ;DATA DIR REG A
0178 A482 DRB2 .BLOCK 1 ;DATA REG B
0179 A483 DDRB2 .BLOCK 1 ;DATA DIR REG B
0180 A484
0181 A484 ; WRITE EDGE DETECT CONTROL (NOT USED BECAUSE KB)
0182 A484 *=$A484
0183 A484 DNPA7 .BLOCK 1 ;DISABLE PA7 INT ,NEG EDGE DET
0184 A485 DPPA7 .BLOCK 1 ;DIS PA7 INT ,POS EDGE DETE
0185 A486 ENPA7 .BLOCK 1 ;ENA PA7 INT ,NEG EDG DET
0186 A487 EPPA7 .BLOCK 1 ;ENA PA7 INT ,POS EDG DET
0187 A488
0188 A488 ; READ AND CLEAR INTERRUPT
0189 A485 *=$A485
0190 A485 RINT .BLOCK 1 ;BIT 7=TIMER FLG , BIT 6=PA7 FLG
0191 A486
0192 A486 ; TIMER INTERRUPT
0193 A494 *=$A494
0194 A494 ;WRITE COUNT TO INTERVAL TIMER
0195 A494 ;INTERRUPT DISABLE FOR THESE ADDRS
0196 A494 DIV1 .BLOCK 1 ;DIV BY 1 (DISABLE);ADD 8 TO ENA
0197 A495 DIV8 .BLOCK 1 ;DIV BY 8 (DIS) ; ADD 8 TO ENA
0198 A496 DIV64 .BLOCK 1 ;DIV BY 64 (DIS) ; ADD 8 TO ENA
0199 A497 DI1024 .BLOCK 1 ;DIV BY 1024 (DIS) ; ADD 8 TO ENA
0200 A498
0201 A498 ; *********************************************
0202 A498 ; * 6522 ADDRESSES (MONIT) (A800-ABFF) *
0203 A498 ; *********************************************
0204 A800 *=$A800
0205 A800 DRB .BLOCK 1 ;DATA REG B
0206 A801 DRAH .BLOCK 1 ;DATA REG A
0207 A802 DDRB .BLOCK 1 ;DATA DIR REG B
0208 A803 DDRA .BLOCK 1 ;DATA DIR REG A
0209 A804 T1L .BLOCK 1 ;TIMER 1 COUNTER LOW
0210 A805 T1CH .BLOCK 1 ;TIMER 1 COUNTER HIGH
0211 A806 T1LL .BLOCK 1 ;TIMER 1 LATCH LOW
0212 A807 T1LH .BLOCK 1 ;TIMER 1 LATCH HIGH
0213 A808 T2L .BLOCK 1 ;TIMER 2 LATCH & COUNTER LOW
0214 A809 T2H .BLOCK 1 ;TIMER 2 COUNTER HIGH
0215 A80A SR .BLOCK 1 ;SHIFT REGISTER
0216 A80B ACR .BLOCK 1 ;AUX CONTROL REGISTER
0217 A80C PCR .BLOCK 1 ;PERIPHERAL CONTROL REGISTER
0218 A80D IFR .BLOCK 1 ;INTERRUPT FLAG REGISTER
0219 A80E IER .BLOCK 1 ;INTERRUPT ENABLE REGISTER
0220 A80F DRA .BLOCK 1 ;DATA REGISTER A
0221 A810
0222 A810 ;DEFINE I/O CONTROL FOR PCR (CA1,CA2,CB1,CB2)
0223 A810 DATIN =$0E ;DATA IN CA2=1
0224 A810 DATOUT =$0C ;DATA OUT CA2=0
0225 A810 PRST =$00 ;PRINT START (CB1) ,NEG DETEC
0226 A810 SP12 =$01 ;STROBE P1,P2 (CA1) ,POS DETEC
0227 A810 MON =$C0 ;MOTOR ON (CB2=0)
0228 A810 MOFF =$E0
0229 A810 ;MSKS TO OBTAIN EACH INTERRUPT
0230 A810 MPRST =$10 ;INT FLG FOR CB1
0231 A810 MSP12 =$02 ;INT FLG FOR CA1
0232 A810 MT2 =$20 ;INT FLG FOR T2
0233 A810
0234 A810 ;DEFINE I/O CONTROL FOR ACR (TIMERS,SR)
0235 A810 PRTIME =1700 ; PRINTING TIME =1.7M MSEC
0236 A810 DEBTIM =5000 ; DEBOUNCE TIME (5 MSEC)
0237 A810 T2I =$00 ;T2 AS ONE SHOT (PRI,KB,TTY,TAPE)
0238 A810 T1I =$00 ;T1 AS ONE SHOT,PB7 DIS (TAPES)
0239 A810 T1FR =$C0 ;T1 IN FREE RUNNING (TAPE)
0240 A810
0241 A810 ; ******************************
0242 A810 ; * DISPLAY (AC00-AFFF) *
0243 A810 ; ******************************
0244 A810 ; REGISTERS FOR DISPLAY (6520)
0245 AC00 *=$AC00
0246 AC00 RA .BLOCK 1 ;REGISTER A
0247 AC01 CRA .BLOCK 1 ;CONTROL REG A
0248 AC02 RB .BLOCK 1 ;REG B
0249 AC03 CRB .BLOCK 1 ;CONTROL REG B
0250 AC04
0251 AC04 ;CHR 00-03 ENA BY $AC04-AC07
0252 AC04 ;CHR 04-07 ENA BY $AC08-AC0B
0253 AC04 ;CHR 08-11 ENA BY $AC10-AC13
0254 AC04 ;CHR 12-15 ENA BY $AC20-AC23
0255 AC04 ;CHR 16-19 ENA BY $AC40-AC43
0256 AC04
0257 AC04 NULLC =$FF
0258 AC04 CR =$0D
0259 AC04 LF =$0A
0260 AC04 ESCAPE =$1B
0261 AC04 RUB =$08
0262 AC04 EQS =$BD
0263 AC04 ;.FILE A1
0264 AC04
0265 AC04 ; E=ENTER EDITOR
0266 AC04 ; T=RE-ENTER EDITOR TO RE-EDIT SOURCE
0267 AC04 ; R=SHOW REGISTERS
0268 AC04 ; M=DISPLAY MEMORY
0269 AC04 ; =SHOW NEXT 4 ADDRESSES
0270 AC04 ; G=GO AT CURRENT P.C. (COUNT)
0271 AC04 ; /=ALTER CURRENT MEMORY
0272 AC04 ; L=LOAD OBJECT
0273 AC04 ; D=DUMP OBJECT
0274 AC04 ; N=ASSEMBLE
0275 AC04 ; *=ALTER P.C.
0276 AC04 ; A=ALTER ACCUMULATOR
0277 AC04 ; X=ALTER X REGISTER
0278 AC04 ; Y=ALTER Y REGISTER
0279 AC04 ; P=ALTER PROCESSOR STATUS
0280 AC04 ; S=ALTER STACK POINTER
0281 AC04 ; B=SET BREAK ADDR
0282 AC04 ; ?=SHOW BREAK ADDRESSES
0283 AC04 ; #=CLEAR BREAK ADDRESSES
0284 AC04 ; H=SHOW TRACE HISTORY STACK
0285 AC04 ; V=TOGGLE REGISTER PRINT WITH DIS.
0286 AC04 ; Z=TOGGLE DISASSEMBLER TRACE
0287 AC04 ; \=TURN ON/OFF PRINTER
0288 AC04 ; =ADV PAPER
0289 AC04 ; I=MNEMONIC ENTRY
0290 AC04 ; K=DISASSEMBLE MEMORY
0291 AC04 ; 1=TOGGLE TAPE 1 CONTRL (ON OR OFF)
0292 AC04 ; 2=TOGGLE TAPE 2 CONTRL
0293 AC04 ; 3=VERIFY CKSUM FOR TAPES
0294 AC04 ; 4=ENABLE BREAKS
0295 AC04 ; 5=BASIC ENTRY (COLD)
0296 AC04 ; 6=BASIC REENTRY (WARM)
0297 AC04
0298 AC04 ;FOLLOWING KEYS ARE UNUSED BUT 'HOOKS'
0299 AC04 ;ARE PROVIDED IN LOCATIONS 010C-0114
0300 AC04 ;
0301 AC04 ; KEYF1,KEYF2,KEYF3
0302 AC04
0303 E000 *=$E000
0304 E000 ;ALL MSGS HAVE MSB=1 OF LAST CHAR TO END IT
0305 E000 46524F4DBD M1 .DB "FROM",EQS
0306 E005 54 4F BD M3 .DB "TO",EQS
0307 E008 202A2A2A2A20M4 .DB " **** PS AA XX YY S",$D3
0307 E00E 50532041412058582059592053D3
0308 E01C 4D4F5245BF M5 .DB "MORE",$BF
0309 E021 4F 4E A0 M6 .DB "ON",$A0 ;"ON "
0310 E024 4F 46 C6 M7 .DB "OF",$C6 ;"OFF"
0311 E027 42 52 CB M8 .DB "BR",$CB ;"BRK"
0312 E02A 49 4E BD M9 .DB "IN",EQS
0313 E02D 4F 55 54 BD M10 .DB "OUT",EQS
0314 E031 204D454D2046M11 .DB " MEM FAIL",$A0
0314 E037 41494CA0
0315 E03B 205052494E54M12 .DB " PRINTER DOW",$CE
0315 E041 455220444F57CE
0316 E048 2053524348 TMSG0 .DB " SRCH"
0317 E04D 20 46 BD TMSG1 .DB " F",EQS
0318 E050 54 BD TMSG2 .DB "T",EQS
0319 E052 A0 C5 D2 D2 TMSG3 .DB $A0,$C5,$D2,$D2 ;PRINT " ERROR" ,MSB=1
0320 E056 CFD2A0A0A0A0 .DB $CF,$D2,$A0,$A0,$A0,$A0,$A0,$A0,";"
0320 E05C A0A03B
0321 E05F 41 BD TMSG5 .DB "A",EQS
0322 E061 424C4B3DA0 TMSG6 .DB "BLK=",$A0
0323 E066 A0CCCFC1C43BTMSG7 .DB $A0,$CC,$CF,$C1,$C4,";"
0324 E06C 454449544FD2EMSG1 .DB "EDITO",$D2 ;EDITOR MESSAGES
0325 E072 45 4E C4 EMSG2 .DB "EN",$C4
0326 E075
0327 E075 ;VECTORS COME HERE FIRST AFTER JUMP THRU FFFA-FFFF
0328 E075 6C 02 A4 NMIV1 JMP (NMIV2) ;NMIV2 IS A VECTOR TO NMIV3
0329 E078 6C 04 A4 IRQV1 JMP (IRQV2) ;IRQV2 IS A VECTOR TO IRQV3
0330 E07B
0331 E07B ;SINGLE STEP ENTRY POINT (NMI)
0332 E07B 8D 21 A4 NMIV3 STA SAVA ;SAVE ACCUM
0333 E07E 68 PLA
0334 E07F 8D 20 A4 STA SAVPS ;SAVE PROCESSOR STATUS
0335 E082 D8 CLD
0336 E083 8E 22 A4 STX SAVX ;SAVE X
0337 E086 8C 23 A4 STY SAVY
0338 E089 68 PLA
0339 E08A 8D 25 A4 STA SAVPC ;PROGRAM COUNTER
0340 E08D 68 PLA
0341 E08E 8D 26 A4 STA SAVPC+1
0342 E091 BA TSX ;GET STACK PTR & SAVE IT
0343 E092 8E 24 A4 STX SAVS
0344 E095 ;TRACE THE ADDRESS
0345 E095 AC 14 A4 LDY HISTP ;GET POINTER TO HISTORY STACK
0346 E098 AD 26 A4 LDA SAVPC+1 ;SAVE HALT ADDR IN HISTORY STACK
0347 E09B 99 2E A4 STA HIST,Y
0348 E09E AD 25 A4 LDA SAVPC
0349 E0A1 99 2F A4 STA HIST+1,Y
0350 E0A4 20 88 E6 JSR NHIS ;UPDATE POINTER
0351 E0A7 AD 10 A4 LDA BKFLG ;SOFT BREAKS ON?
0352 E0AA F0 08 BEQ NMI5 ;NO ,DONT CHCK BRKPOINT LIST
0353 E0AC 20 6B E7 JSR CKB ;CHECK BREAKPOINT LIST
0354 E0AF 90 03 BCC NMI5 ;DID NOT HIT BREAKPOINT
0355 E0B1 4C 7F E1 NMI4 JMP IRQ2 ;HIT A BREAK-TRAP TO MONITOR
0356 E0B4 20 90 E7 NMI5 JSR DONE ;COUNT =0 ?
0357 E0B7 F0 F8 BEQ NMI4 ;YES,TRAP TO MONITOR
0358 E0B9 20 07 E9 JSR RCHEK ;CHK IF HE WANTS TO INTERR
0359 E0BC 4C 6D E2 JMP GOBK ;NOT DONE-RESUME EXECUTION
0360 E0BF
0361 E0BF ;POWER UP AND RESET ENTRY POINT (RST TRANSFERS HERE)
0362 E0BF D8 RSET CLD ;CLEAR DEC MODE
0363 E0C0 78 SEI ;DISABLE INTERRUPT
0364 E0C1 A2 FF LDX #$FF ;INIT STACK PTR
0365 E0C3 9A TXS
0366 E0C4 8E 24 A4 STX SAVS ;ALSO INIT SAVED STACK PTR
0367 E0C7 ;INITIALIZE 6522
0368 E0C7 A2 0E LDX #14
0369 E0C9 BD 43 E7 RS1 LDA INTAB1,X ;PB1-PB0,PA7-PA0 FOR PRNTR
0370 E0CC 9D 00 A8 STA DRB,X ;PB2=TTO,PB6=TTI
0371 E0CF CA DEX ;PB4-PB5=TAPE CONTROL,PB7=DATA
0372 E0D0 10 F7 BPL RS1 ;PB3 =SWITCH KB/TTY
0373 E0D2 ;INITIALIZE 6532
0374 E0D2 A2 03 LDX #3 ;PORTS USED FOR KB
0375 E0D4 BD 52 E7 RS2 LDA INTAB2,X ;PA0-PA7 AS OUTPUT
0376 E0D7 9D 80 A4 STA DRA2,X ;PB0-PB7 AS INPUT
0377 E0DA CA DEX
0378 E0DB 10 F7 BPL RS2
0379 E0DD ;INITIALIZE MONITOR RAM (6532)
0380 E0DD AD 56 E7 LDA INTAB3 ;CHECK IF NMIV2 HAS BEEN CHANGED
0381 E0E0 CD 02 A4 CMP NMIV2 ;IF IT HAS THEN ASSUME A COLD
0382 E0E3 D0 0C BNE RS3A ;START AND INITIALIZE EVERYTHING
0383 E0E5 AD 57 E7 LDA INTAB3+1
0384 E0E8 CD 03 A4 CMP NMIV2+1
0385 E0EB D0 04 BNE RS3A
0386 E0ED A2 10 LDX #16 ;THEY ARE EQUAL ,IT'S A WARM RESET
0387 E0EF D0 02 BNE RS3
0388 E0F1 A2 00 RS3A LDX #0 ;INIT EVERYTHING (POWER UP)
0389 E0F3 BD 56 E7 RS3 LDA INTAB3,X
0390 E0F6 9D 02 A4 STA NMIV2,X
0391 E0F9 E8 INX
0392 E0FA E0 15 CPX #21
0393 E0FC 90 F5 BCC RS3
0394 E0FE ;INITIALIZE DISPLAY (6520)
0395 E0FE A9 00 LDA #0 ;SET CONTR REG FOR DATA DIR REG
0396 E100 A2 01 LDX #1
0397 E102 20 13 E1 JSR SETREG
0398 E105 A9 FF LDA #$FF ;SET DATA DIR REG FOR OUTPUT
0399 E107 CA DEX
0400 E108 20 13 E1 JSR SETREG
0401 E10B A9 04 LDA #$04 ;SET CONTR REG FOR PORTS
0402 E10D E8 INX
0403 E10E 20 13 E1 JSR SETREG
0404 E111 D0 07 BNE RS3B
0405 E113 9D 00 AC SETREG STA RA,X
0406 E116 9D 02 AC STA RB,X
0407 E119 60 RTS
0408 E11A 58 RS3B CLI ;CLEAR INTERRUPT
0409 E11B
0410 E11B ;KB/TTY SWITCH TEST AND BIT RATE MEASUREMENT
0411 E11B A9 08 LDA #$08 ;PB3=SWITCH KB/TTY
0412 E11D 2C 00 A8 RS4 BIT DRB ;A^M ,PB6-> V (OVERFLOW FLG)
0413 E120 D0 22 BNE RS7 ;BRANCH ON KB
0414 E122 70 F9 BVS RS4 ;START BIT=PB6=0?
0415 E124 A9 FF LDA #$FF ;YES ,INITIALIZE TIMER T2
0416 E126 8D 09 A8 STA T2H
0417 E129 2C 00 A8 RS5 BIT DRB ;END OF START BIT ?
0418 E12C 50 FB BVC RS5 ;NO ,WAIT UNTIL PB6 BACK TO 1
0419 E12E AD 09 A8 LDA T2H ;STORE TIMING
0420 E131 49 FF EOR #$FF ;COMPLEMENT
0421 E133 8D 17 A4 STA CNTH30
0422 E136 AD 08 A8 LDA T2L
0423 E139 49 FF EOR #$FF
0424 E13B 20 7C FE JSR PATCH1 ;ADJUST IT
0425 E13E 20 13 EA RS6 JSR CRLOW ;CLEAR DISPLAY
0426 E141 4C 72 FF JMP PAT21
0427 E144 A2 13 RS7 LDX #19 ;CLEAR HARDWARE CURSORS
0428 E146 8A RS8 TXA
0429 E147 48 PHA
0430 E148 A9 00 LDA #0
0431 E14A 20 7B EF JSR OUTDD1
0432 E14D 68 PLA
0433 E14E AA TAX
0434 E14F CA DEX
0435 E150 10 F4 BPL RS8
0436 E152 30 EA BMI RS6
0437 E154
0438 E154 ;BRK INSTR (00) OR IRQ ENTRY POINT
0439 E154 8D 21 A4 IRQV3 STA SAVA
0440 E157 68 PLA
0441 E158 48 PHA ;GET STATUS
0442 E159 29 10 AND #$10 ;SEE IF 'BRK' , ISOLATE B FLG
0443 E15B D0 06 BNE IRQ1 ;TRAP WAS CAUSED BY "BRK" INSTRUC
0444 E15D AD 21 A4 LDA SAVA ;TRAP CAUSED BY IRQ SO TRANSFER
0445 E160 6C 00 A4 JMP (MONRAM) ;CONTROL TO USER THRU VECTOR
0446 E163 ;IS 'BRK' INSTR ,SHOW PC & DATA
0447 E163 ;PC IS OFF BY ONE , SO ADJUST IT
0448 E163 68 IRQ1 PLA
0449 E164 8D 20 A4 STA SAVPS ;SAVE PROCESSOR STATUS
0450 E167 8E 22 A4 STX SAVX
0451 E16A 8C 23 A4 STY SAVY
0452 E16D D8 CLD
0453 E16E 68 PLA ;PROGR CNTR
0454 E16F 38 SEC ;SUBTRACT ONE FROM RETURN ADDR
0455 E170 E9 01 SBC #1
0456 E172 8D 25 A4 STA SAVPC
0457 E175 68 PLA
0458 E176 E9 00 SBC #0
0459 E178 8D 26 A4 STA SAVPC+1
0460 E17B BA TSX ;GET STACK PTR & SAVE IT
0461 E17C 8E 24 A4 STX SAVS
0462 E17F ;SHOW PC AND DATA
0463 E17F 20 61 F4 IRQ2 JSR REGQ ;SHOW NEXT INSTRUCTION & CONTINUE
0464 E182
0465 E182 ;THIS ROUTINE WILL GET A CHR WITH "( )" FROM
0466 E182 ;KB/TTY & THEN WILL GO TO THE RESPECTIVE COMMAND
0467 E182 4C 59 FF START JMP PAT19 ;CLEAR DEC MODE & <CR>
0468 E185 A9 BC STA1 LDA #'<'+$80 ;"<" CHR WITH MSB=1 FOR DISP
0469 E187 20 7A E9 JSR OUTPUT
0470 E18A 20 96 FE JSR RED1 ;GET CHR & ECHO FROM KB/TTY
0471 E18D 48 PHA
0472 E18E A9 3E LDA #'>'
0473 E190 20 7A E9 JSR OUTPUT
0474 E193 68 PLA ;SCAN LIST OF CMDS FOR ENTERED CHR
0475 E194 A2 20 LDX #MCNT ;COUNT OF COMMANDS
0476 E196 DD C4 E1 MCM2 CMP COMB,X ;CHECK NEXT COMMAND IN LIST
0477 E199 F0 11 BEQ MCM3 ;MATCH , SO PROCESS THIS COMMAND
0478 E19B CA DEX
0479 E19C 10 F8 BPL MCM2
0480 E19E ;IS BAD COMMAND
0481 E19E 20 D4 E7 JSR QM
0482 E1A1 D8 COMIN CLD
0483 E1A2 20 FE E8 JSR LL
0484 E1A5 AE 24 A4 LDX SAVS
0485 E1A8 9A TXS
0486 E1A9 4C 82 E1 JMP START
0487 E1AC ;HAVE VALID COMMAND
0488 E1AC 8A MCM3 TXA ;CONVERT TO WORD (MULT BY 2)
0489 E1AD 0A ASL A ;2 BYTES (ADDR)
0490 E1AE AA TAX
0491 E1AF BD E5 E1 LDA MONCOM,X ;GET ADDRESS OF COMMAND PROCESSOR
0492 E1B2 8D 7D A4 STA JUMP
0493 E1B5 BD E6 E1 LDA MONCOM+1,X
0494 E1B8 8D 7E A4 STA JUMP+1
0495 E1BB 20 C1 E1 JSR JMPR ;CMD PROCESSORS CAN EXIT WITH 'RTS'
0496 E1BE 4C 82 E1 JMP START
0497 E1C1 6C 7D A4 JMPR JMP (JUMP) ;GO TO COMMAND
0498 E1C4
0499 E1C4 ;VALID COMMANDS
0500 E1C4 MCNT =32 ;COUNT
0501 E1C4 4554524D472FCOMB .DB "ETRMG/LDN*AXYPS "
0501 E1CA 4C444E2A415859505320
0502 E1D4 423F2348565A .DB "B?#HVZIK123456[]",$5E
0502 E1DA 494B3132333435365B5D5E
0503 E1E5
0504 E1E5 39F6CFF627E2MONCOM .DW EDIT,REENTR,REG,MEM,GO
0504 E1EB 48E261E2
0505 E1EF A0E2E6E23BE4 .DW CHNGG,LOAD,DUMP,ASSEM,CGPC,CGA
0505 E1F5 00D0D4E5EEE5
0506 E1FB F2E5F6E5EAE5 .DW CGX,CGY,CGPS,CGS,NXT5,BRKA
0506 E201 FAE50DE61BE6
0507 E207 4DE6FEE665E6 .DW SHOW,CLRBK,SHIS,REGT,TRACE
0507 E20D D9E6DDE6
0508 E211 9EFB0AE7BDE6 .DW MNEENT,KDISA,TOGTA1,TOGTA2,VECKSM
0508 E217 CBE694E6
0509 E21B E5E600B003B0 .DW BRKK,BASIEN,BASIRE
0510 E221 ;USER DEFINED FUNCTIONS
0511 E221 0C010F011201 .DW KEYF1,KEYF2,KEYF3
0512 E227
0513 E227 ;***** R COMMAND-DISPLAY REGISTERS *****
0514 E227 20 13 EA REG JSR CRLOW ;CLEAR DISP IF KB
0515 E22A A0 08 LDY #M4-M1 ;MESSAG & <CR>
0516 E22C 20 AF E7 JSR KEP
0517 E22F 20 24 EA JSR CRCK
0518 E232 20 3E E8 REG1 JSR BLANK
0519 E235 A0 09 LDY #SAVPC-ADDR ;OUTPUT PGR CNTR (SAVEPC+1,SAVEPC)
0520 E237 20 DD E2 JSR WRITAD
0521 E23A A9 20 LDA #SAVPS ;NOW THE OTHER 5 REGS
0522 E23C 8D 1C A4 STA ADDR
0523 E23F A9 A4 LDA #SAVPS/256
0524 E241 8D 1D A4 STA ADDR+1
0525 E244 A2 05 LDX #5 ;COUNT
0526 E246 D0 07 BNE MEM1 ;SHARE CODE
0527 E248
0528 E248 ;***** M COMMAND-DISPLAY MEMORY *****
0529 E248 20 AE EA MEM JSR ADDIN ;GET START ADDDRESS IN ADDR
0530 E24B B0 13 BCS MEM3
0531 E24D A2 04 MEIN LDX #4
0532 E24F A0 00 MEM1 LDY #0
0533 E251 20 3E E8 MEM2 JSR BLANK
0534 E254 A9 1C LDA #ADDR
0535 E256 20 58 EB JSR LDAY ;LOAD CONTENTS OF CURR LOCATION
0536 E259 20 46 EA JSR NUMA ;AND DISPLAY IT AS 2 HEX DIGITS
0537 E25C C8 INY
0538 E25D CA DEX ;DECR COUNTER
0539 E25E D0 F1 BNE MEM2
0540 E260 60 MEM3 RTS ;GET NEXT COMMAND
0541 E261
0542 E261 ;***** G COMMAND-RESTART PROCESSOR *****
0543 E261 20 37 E8 GO JSR PSL1 ;"/"
0544 E264 20 85 E7 JSR GCNT ;GET COUNT
0545 E267 20 F0 E9 JSR CRLF
0546 E26A 4C 86 E2 JMP GOBK1 ;RESUME EXECUTION
0547 E26D AD 0E A4 GOBK LDA REGF ;DISPLAY REGISTERS ?
0548 E270 F0 06 BEQ GOBK0 ;NO,BRANCH
0549 E272 20 32 E2 JSR REG1 ;SHOW THE SIX REG
0550 E275 20 24 EA JSR CRCK ;<CR>
0551 E278 20 07 E9 GOBK0 JSR RCHEK ;SEE IF HE WANTS TO INTERRUPT
0552 E27B AD 0F A4 LDA DISFLG ;DISASSEMBLE CURRENT INSTR ?
0553 E27E F0 06 BEQ GOBK1 ;NO,BRANCH
0554 E280 20 6C F4 JSR DISASM ;DISASM THIS INSTRUCTION
0555 E283 20 13 EA JSR CRLOW
0556 E286 AE 24 A4 GOBK1 LDX SAVS ;RESTORE SAVED REGS FOR RTI
0557 E289 9A TXS
0558 E28A AC 23 A4 LDY SAVY
0559 E28D AE 22 A4 LDX SAVX
0560 E290 AD 26 A4 LDA SAVPC+1
0561 E293 48 PHA ;PUT PC ON STACK
0562 E294 AD 25 A4 LDA SAVPC
0563 E297 48 PHA
0564 E298 AD 20 A4 LDA SAVPS ;STATUS ALSO
0565 E29B 48 PHA
0566 E29C AD 21 A4 LDA SAVA
0567 E29F 40 RTI ;AND AWAY WE GO...
0568 E2A0
0569 E2A0 ;***** / COMMAND-ALTER MEMORY *****
0570 E2A0 20 3E E8 CHNGG JSR BLANK
0571 E2A3 20 DB E2 JSR WRITAZ ;WRITE ADDR
0572 E2A6 20 3E E8 CHNG1 JSR BLANK
0573 E2A9 20 5D EA JSR RD2 ;GET VALUE
0574 E2AC 90 0A BCC CH2 ;ISN'T SKIP OR DONE
0575 E2AE C9 20 CMP #' '
0576 E2B0 D0 13 BNE CH3 ;NOT BLANK SO MUST BE DONE
0577 E2B2 ;SKIP THIS LOCATION
0578 E2B2 20 3E E8 JSR BLANK
0579 E2B5 4C C0 E2 JMP CH4
0580 E2B8 ;IS ALTER
0581 E2B8 20 78 EB CH2 JSR SADDR ;STORE ENTERED VALUE INTO MEMORY
0582 E2BB F0 03 BEQ CH4 ;NO ERROR IN STORE
0583 E2BD 4C 33 EB JMP MEMERR ;MEMORY WRITE ERROR
0584 E2C0 C8 CH4 INY
0585 E2C1 C0 04 CPY #4
0586 E2C3 D0 E1 BNE CHNG1 ;GO AGAIN
0587 E2C5 ;HAVE DONE LINE OR HAVE <CR>
0588 E2C5 20 CD E2 CH3 JSR NXTADD ;UPDATE THE ADDRESS
0589 E2C8 A9 0D LDA #CR ;CLEAR DISPL
0590 E2CA 4C E9 FE JMP PATC10 ;ONLY ONE <CR> & BACK TO MONITOR
0591 E2CD
0592 E2CD 98 NXTADD TYA ;ADD Y TO ADDR+1,ADDR
0593 E2CE 18 CLC
0594 E2CF 6D 1C A4 ADC ADDR
0595 E2D2 8D 1C A4 STA ADDR
0596 E2D5 90 03 BCC NXTA1
0597 E2D7 EE 1D A4 INC ADDR+1
0598 E2DA 60 NXTA1 RTS
0599 E2DB
0600 E2DB ;WRITE CURRENT VALUE OF ADDR
0601 E2DB ;PART OF / & SPACE COMM
0602 E2DB A0 00 WRITAZ LDY #0
0603 E2DD B9 1D A4 WRITAD LDA ADDR+1,Y
0604 E2E0 BE 1C A4 LDX ADDR,Y
0605 E2E3 4C 42 EA JMP WRAX
0606 E2E6
0607 E2E6 ;***** L COMMAND-GENERAL LOAD *****
0608 E2E6 ;LOAD OBJECT FROM TTY,USER,TYPE OR TAPE IN KIM-1 FORMAT
0609 E2E6 20 48 E8 LOAD JSR WHEREI ;WHERE INPUT
0610 E2E9 ;GET ";" , # OF BYTES AND SA
0611 E2E9 20 93 E9 LOAD1 JSR INALL ;GET FIRST CHAR
0612 E2EC C9 3B CMP #SEMICOLON ;LOOK FOR BEGINNING
0613 E2EE D0 F9 BNE LOAD1 ;IGNORE ALL CHARS BEFORE ";"
0614 E2F0 20 4D EB JSR CLRCK ;CLEAR CHECHSUM
0615 E2F3 20 4B E5 JSR CHEKAR ;READ RECORD LENGTH
0616 E2F6 AA TAX ;SAVE IN X THE # BYTES
0617 E2F7 20 4B E5 JSR CHEKAR ;READ UPPER HALF OF ADDRESS
0618 E2FA 8D 1D A4 STA ADDR+1
0619 E2FD 20 4B E5 JSR CHEKAR ;READ LOWER HALF OF ADDRESS
0620 E300 8D 1C A4 STA ADDR
0621 E303 8A TXA
0622 E304 F0 1B BEQ LOAD4 ;LAST RECORD (RECORD LENGTH=0)
0623 E306 ;GET DATA
0624 E306 20 FD E3 LOAD2 JSR RBYTE ;READ NEXT BYTE OF DATA
0625 E309 20 13 E4 JSR STBYTE ;STORE AT LOC (ADDR+1,ADDR)
0626 E30C CA DEX ;DECR RECORD LENGTH
0627 E30D D0 F7 BNE LOAD2
0628 E30F ;COMPARE CKSUM
0629 E30F 20 FD E3 JSR RBYTE ;READ UPPER HALF OF CHCKSUM
0630 E312 CD 1F A4 CMP CKSUM+1 ;COMPARE TO COMPUTED VALUE
0631 E315 D0 6E BNE CKERR ;CKSUM ERROR
0632 E317 20 FD E3 JSR RBYTE ;READ LOWER HALF OF CHECKSUM
0633 E31A CD 1E A4 CMP CKSUM
0634 E31D D0 66 BNE CKERR
0635 E31F F0 C8 BEQ LOAD1 ;UNTIL LAST RECORD
0636 E321 A2 05 LOAD4 LDX #5 ;READ 4 MORE ZEROS
0637 E323 20 FD E3 LOAD5 JSR RBYTE
0638 E326 CA DEX
0639 E327 D0 FA BNE LOAD5
0640 E329 20 93 E9 JSR INALL ;READ LAST <CR>
0641 E32C 4C 20 E5 JMP DU13 ;SET DEFAULT DEV & GO BACK
0642 E32F
0643 E32F ;LOAD ROUTINE FROM TAPE BY BLOCKS
0644 E32F ;CHECK FOR RIGHT FILE & LOAD FIRST BLOCK
0645 E32F A9 00 LOADTA LDA #$00 ;CLEAR BLOCK COUNT
0646 E331 8D 15 01 STA BLK
0647 E334 20 53 ED JSR TIBY1 ;LOAD BUFFER WITH A BLOCK
0648 E337 CA DEX ;SET X=0
0649 E338 8E 15 A4 STX CURPO2 ;CLEAR DISPLAY PTR
0650 E33B BD 16 01 LDA TABUFF,X ;BLK COUNT SHOULD BE ZERO
0651 E33E D0 EF BNE LOADTA ;NO, READ ANOTHER BLOCK
0652 E340 E8 INX
0653 E341 ;AFTER FIRST BLOCK OUTPUT FILE NAME
0654 E341 EE 11 A4 INC PRIFLG ;SO DO NOT GO TO PRINT.
0655 E344 A0 48 LDY #TMSG0-M1 ;PRINT "F="
0656 E346 20 AF E7 JSR KEP
0657 E349 BD 16 01 LOAD1A LDA TABUFF,X ;OUTPUT FILE NAME
0658 E34C 20 7A E9 JSR OUTPUT ;ONLY TO DISPLAY
0659 E34F E8 INX
0660 E350 E0 06 CPX #6
0661 E352 D0 F5 BNE LOAD1A
0662 E354 20 3E E8 JSR BLANK
0663 E357 A0 61 LDY #TMSG6-M1 ;PRINT "BLK= "
0664 E359 20 AF E7 JSR KEP
0665 E35C CE 11 A4 DEC PRIFLG ;RESTORE PRINTR FLG
0666 E35F 20 BD ED JSR ADDBK1 ;JUST OUTPUT BLK CNT
0667 E362 A2 01 LDX #1 ;RESTORE X
0668 E364 ;CHECK IF FILE IS CORRECT
0669 E364 BD 16 01 LOADT2 LDA TABUFF,X ;NOW CHCK FILE NAME
0670 E367 DD 2D A4 CMP NAME-1,X
0671 E36A D0 C3 BNE LOADTA ;IF NO FILENAME GET
0672 E36C E8 INX ;ANOTHER BLOCK
0673 E36D E0 06 CPX #6 ;FILENAME=5 CHRS
0674 E36F D0 F3 BNE LOADT2
0675 E371 8E 36 A4 STX TAPTR ;SAVE TAPE BUFF PTR
0676 E374 EE 11 A4 INC PRIFLG ;OUTPUT MSG ONLY TO DISPLAY
0677 E377 A9 00 LDA #0 ;CLEAR DISPLAY POINTER
0678 E379 8D 15 A4 STA CURPO2
0679 E37C A0 66 LDY #TMSG7-M1 ;PRINT "LOAD " WITHOUT CLR DISPL
0680 E37E 20 96 E3 JSR CKER1
0681 E381 CE 11 A4 DEC PRIFLG
0682 E384 60 RTS
0683 E385
0684 E385 ;LINE CKSUM ERROR
0685 E385 20 8E E3 CKERR JSR CKER0 ;SUBR SO MNEM ENTRY CAN USE IT
0686 E388 20 DB E2 JSR WRITAZ ;WRITE ADDR
0687 E38B 4C A1 E1 JMP COMIN
0688 E38E 20 FE E8 CKER0 JSR LL ;SET DEFAULT DEVICES
0689 E391 20 24 EA JSR CRCK ;<CR>
0690 E394 A0 52 CKER00 LDY #TMSG3-M1 ;PRINT "ERROR"
0691 E396 B9 00 E0 CKER1 LDA M1,Y ;DONT CLR DISPLAY TO THE RIGHT
0692 E399 C9 3B CMP #SEMICOLON
0693 E39B F0 06 BEQ CKER2
0694 E39D 20 7A E9 JSR OUTPUT ;ONLY TO TERMINAL
0695 E3A0 C8 INY
0696 E3A1 D0 F3 BNE CKER1
0697 E3A3 60 CKER2 RTS
0698 E3A4
0699 E3A4 ;LOAD ROUTINE FROM TAPE WITH KIM-1 FORMAT
0700 E3A4 20 4D EB LOADKI JSR CLRCK ;CLEAR CKSUM
0701 E3A7 20 EA ED LOADK1 JSR TAISET ;SET TAPE FOR INPUT
0702 E3AA 20 29 EE LOADK2 JSR GETTAP ;READ CHARACTER FROM TAPE
0703 E3AD C9 2A CMP #'*' ;BEGINNING OF FILE?
0704 E3AF F0 06 BEQ LOADK3 ;YES,BRNCH
0705 E3B1 C9 16 CMP #$16 ;IF NOT * SHOULD BE SYN
0706 E3B3 D0 F2 BNE LOADK1
0707 E3B5 F0 F3 BEQ LOADK2
0708 E3B7 20 FD E3 LOADK3 JSR RBYTE ;READ ID FROM TAPE
0709 E3BA 8D 21 A4 STA SAVA ;SAVE ID
0710 E3BD ;NOW GET ADDR TO DISPLAY
0711 E3BD ;& COMPARE ID AFTERWARDS
0712 E3BD 20 4B E5 JSR CHEKAR ;GET START ADDR LOW
0713 E3C0 8D 1C A4 STA ADDR
0714 E3C3 20 4B E5 JSR CHEKAR ;GET START ADDR HIGH
0715 E3C6 8D 1D A4 STA ADDR+1
0716 E3C9 20 25 E4 JSR GETID ;ID FROM HIM
0717 E3CC CD 21 A4 CMP SAVA ;DO IDS MATCH?
0718 E3CF D0 D3 BNE LOADKI ;NO ,GET ANOTHER FILE
0719 E3D1 A2 02 LOADK5 LDX #$02 ;GET 2 CHARS
0720 E3D3 20 29 EE LOADK6 JSR GETTAP ;1 CHAR FROM TAPE
0721 E3D6 C9 2F CMP #'/' ;LAST CHAR ?
0722 E3D8 F0 0E BEQ LOADK7 ;YES,BRNCH
0723 E3DA 20 84 EA JSR PACK ;CONVERT TO HEX
0724 E3DD B0 A6 BCS CKERR ;NOT HEX CHAR SO ERROR
0725 E3DF CA DEX
0726 E3E0 D0 F1 BNE LOADK6
0727 E3E2 20 13 E4 JSR STBYTE ;STORE & CHCK MEM FAIL
0728 E3E5 4C D1 E3 JMP LOADK5 ;NEXT
0729 E3E8 20 FD E3 LOADK7 JSR RBYTE ;END OF DATA CMP CKSUM
0730 E3EB CD 1E A4 CMP CKSUM ;LOW
0731 E3EE D0 95 BNE CKERR
0732 E3F0 20 FD E3 JSR RBYTE
0733 E3F3 CD 1F A4 CMP CKSUM+1 ;HIGH
0734 E3F6 D0 8D BNE CKERR
0735 E3F8 68 PLA ;CORRECT RTN INSTEAD OF WHEREI
0736 E3F9 68 PLA
0737 E3FA 4C 20 E5 JMP DU13 ;TELL HIM & GO BACK TO COMMAN
0738 E3FD
0739 E3FD ;GET 2 ASCII CHRS INTO 1 BYTE
0740 E3FD ;FOR TAPE (T) GET ONLY ONE HEX CHR
0741 E3FD AD 12 A4 RBYTE LDA INFLG ;INPUT DEVICE
0742 E400 C9 54 CMP #'T'
0743 E402 D0 03 BNE RBYT1
0744 E404 4C 93 E9 JMP INALL ;ONLY ONE BYTE FOR T (INPUT DEV)
0745 E407 20 93 E9 RBYT1 JSR INALL
0746 E40A 20 84 EA JSR PACK
0747 E40D 20 93 E9 JSR INALL
0748 E410 4C 84 EA JMP PACK
0749 E413
0750 E413 ;STORE AND CHECK MEMORY FAIL
0751 E413 20 4E E5 STBYTE JSR CHEKA ;ADD TO CKSUM
0752 E416 A0 00 LDY #0
0753 E418 20 78 EB JSR SADDR ;STORE AND CHCK
0754 E41B F0 03 BEQ *+5
0755 E41D 4C 33 EB JMP MEMERR ;MEMORY WRITE ERROR
0756 E420 A0 01 LDY #1 ;INC ADDR+1,ADDR BY 1
0757 E422 4C CD E2 JMP NXTADD
0758 E425
0759 E425 ;GET ID FROM LAST 2 CHR OF FILENAM
0760 E425 A2 04 GETID LDX #4 ;SEE WHAT HE GAVE US
0761 E427 BD 2E A4 GID1 LDA NAME,X ;GET LAST 2 CHARS
0762 E42A CA DEX
0763 E42B C9 20 CMP #' ' ;<SPACE> ?
0764 E42D F0 F8 BEQ GID1
0765 E42F BD 2E A4 LDA NAME,X ;CONVERT TO BINARY
0766 E432 20 84 EA JSR PACK
0767 E435 BD 2F A4 LDA NAME+1,X
0768 E438 4C 84 EA JMP PACK ;ID IS IN STIY
0769 E43B
0770 E43B ;***** D COMMAND-GENERAL DUMP *****
0771 E43B ;TO TTY,PRINTR,USER,X ,TAPE,TAKIM-1
0772 E43B AD 10 A4 DUMP LDA BKFLG ;SAVE IT TO USE IT
0773 E43E 48 PHA
0774 E43F A9 00 LDA #00
0775 E441 8D 10 A4 STA BKFLG
0776 E444 20 24 EA DU1 JSR CRCK ;<CR>
0777 E447 20 A3 E7 DU0 JSR FROM ;GET START ADDR
0778 E44A B0 FB BCS DU0 ;IN CASE OF ERROR DO IT AGAIN
0779 E44C 20 3E E8 JSR BLANK
0780 E44F 20 10 F9 JSR ADDRS1 ;TRANSFER ADDR TO S1
0781 E452 20 A7 E7 DU1B JSR TO ;GET END ADDR
0782 E455 B0 FB BCS DU1B
0783 E457 20 13 EA JSR CRLOW
0784 E45A AD 10 A4 LDA BKFLG ;EXECUTE WHEREO ONLY ONCE
0785 E45D D0 0E BNE DU1A
0786 E45F 20 71 E8 JSR WHEREO ;WHICH DEV (OUTFLG)
0787 E462 A9 00 LDA #0
0788 E464 8D 06 01 STA S2 ;CLEAR RECORD COUNT
0789 E467 8D 07 01 STA S2+1
0790 E46A EE 10 A4 INC BKFLG ;SET FLG
0791 E46D ;CHCK OUTPUT DEV
0792 E46D AD 13 A4 DU1A LDA OUTFLG
0793 E470 C9 4B CMP #'K' ;TAPE FOR KIM?
0794 E472 D0 04 BNE *+6
0795 E474 68 PLA ;PULL FLG
0796 E475 4C 87 E5 JMP DUMPKI ;YES, GO OUTPUT WHOLE FILE
0797 E478 A0 01 LDY #1 ;OUTPUT ONE MORE BYTE
0798 E47A 20 CD E2 JSR NXTADD
0799 E47D 20 F0 E9 DU2 JSR CRLF
0800 E480 20 07 E9 JSR RCHEK ;SEE IF HE WANTS TO INTERRUPT
0801 E483 ;CALCULATE # OF BYTES YET TO BE DUMPED
0802 E483 20 4D EB JSR CLRCK ;CLEAR CKSUM
0803 E486 AD 1C A4 LDA ADDR ;END ADDRESS-CURRENT ADDRESS
0804 E489 38 SEC
0805 E48A ED 1A A4 SBC S1
0806 E48D 48 PHA ;# OF BYTES LOW
0807 E48E AD 1D A4 LDA ADDR+1
0808 E491 ED 1B A4 SBC S1+1
0809 E494 D0 09 BNE DU6 ;# OF BYTES HIGH
0810 E496 ;SEE IF 24 OR MORE BYTES TO GO
0811 E496 68 PLA ;# BYTES HIGH WAS ZERO
0812 E497 F0 42 BEQ DU10 ;ARE DONE
0813 E499 C9 18 CMP #24 ;# BYTES > 24 ?
0814 E49B 90 05 BCC DU8 ;NO ,ONLY OUTPUT REMAINING BYTES
0815 E49D B0 01 BCS DU7 ;YES ,24 BYTES IN NEXT RECORD
0816 E49F 68 DU6 PLA
0817 E4A0 A9 18 DU7 LDA #24
0818 E4A2 ;OUTPUT ";" ,# OF BYTES AND SA
0819 E4A2 48 DU8 PHA
0820 E4A3 20 BA E9 JSR SEMI ;SEMICOLON
0821 E4A6 68 PLA
0822 E4A7 8D 19 A4 STA COUNT ;SAVE # OF BYTES
0823 E4AA 20 38 E5 JSR OUTCK ;OUTPUT # OF BYTES
0824 E4AD AD 1B A4 LDA S1+1 ;OUTPUT ADDRESS
0825 E4B0 20 38 E5 JSR OUTCK
0826 E4B3 AD 1A A4 LDA S1
0827 E4B6 20 38 E5 JSR OUTCK
0828 E4B9 ;OUTPUT DATA
0829 E4B9 20 31 E5 DU9 JSR OUTCKS ;GET CHAR SPEC BY S1 (NO PAG 0)
0830 E4BC A9 00 LDA #0 ;CLEAR DISP PTR
0831 E4BE 8D 15 A4 STA CURPO2
0832 E4C1 20 5D E5 JSR ADDS1 ;INCR S1+1,S1
0833 E4C4 CE 19 A4 DEC COUNT ;DECREMENT BYTE COUNT
0834 E4C7 D0 F0 BNE DU9 ;NOT DONE WITH THIS RECORD
0835 E4C9 ;OUTPUT CKSUM
0836 E4C9 AD 1F A4 LDA CKSUM+1
0837 E4CC 20 3B E5 JSR OUTCK1 ;WITHOUT CHEKA
0838 E4CF AD 1E A4 LDA CKSUM
0839 E4D2 20 3B E5 JSR OUTCK1
0840 E4D5 20 66 E5 JSR INCS2 ;INC VERTICAL COUNT
0841 E4D8 4C 7D E4 JMP DU2 ;NEXT RECORD
0842 E4DB ;ALL DONE
0843 E4DB A0 1C DU10 LDY #M5-M1 ;PRINT "MORE ?#
0844 E4DD 20 70 E9 JSR KEPR ;OUTPUT MSG AND GET AN ANSWER
0845 E4E0 C9 59 CMP #'Y'
0846 E4E2 D0 03 BNE *+5
0847 E4E4 4C 44 E4 JMP DU1 ;DUMP MORE DATA
0848 E4E7 68 PLA ;RESTORE FLG
0849 E4E8 8D 10 A4 STA BKFLG
0850 E4EB ;OUTPUT LAST RECORD
0851 E4EB 20 66 E5 JSR INCS2
0852 E4EE 20 BA E9 JSR SEMI ;OUTPUT ';'
0853 E4F1 A2 02 LDX #2
0854 E4F3 A9 00 LDA #0 ;OUTPUT # OF BYTES (0-LAST RECORD)
0855 E4F5 20 3B E5 JSR OUTCK1
0856 E4F8 AD 07 01 DU10A LDA S2+1 ;OUTPUT RECORD COUNT
0857 E4FB 20 3B E5 JSR OUTCK1 ;CHECKCUM IS THE SAME
0858 E4FE AD 06 01 LDA S2
0859 E501 20 3B E5 JSR OUTCK1
0860 E504 CA DEX
0861 E505 D0 F1 BNE DU10A
0862 E507 20 F0 E9 JSR CRLF
0863 E50A ;CLOSE TAPE BLOCK IF ACTIVE
0864 E50A AD 13 A4 DU11 LDA OUTFLG
0865 E50D C9 54 CMP #'T'
0866 E50F D0 0F BNE DU13 ;NO ,BRANCH
0867 E511 AD 37 A4 DU12 LDA TAPTR2 ;TAP OUTPUT BUFF PTR
0868 E514 C9 01 CMP #1 ;BECAUSE FIRST ONE IS BLK CNT
0869 E516 F0 08 BEQ DU13 ;NO DATA TO WRITE
0870 E518 A9 00 LDA #0 ;FILL REST BUFF ZEROS
0871 E51A 20 8B F1 JSR TOBYTE ;OUTPUT TO BUFF
0872 E51D 4C 11 E5 JMP DU12 ;FINISH THIS BLOCK
0873 E520 20 13 EA DU13 JSR CRLOW
0874 E523 18 CLC ;ENABLE INTERR
0875 E524 A9 00 LDA #T1I ;T1 FROM FREE RUNNING TO 1 SHOT
0876 E526 8D 0B A8 STA ACR
0877 E529 A9 34 DU14 LDA #$34 ;SET BOTH TAPES ON
0878 E52B 8D 00 A8 STA DRB
0879 E52E 4C FE E8 JMP LL
0880 E531
0881 E531 ;GET CHAR SPECIFIED BY START ADDR (S1)
0882 E531 A9 1A OUTCKS LDA #S1
0883 E533 A0 00 LDY #0
0884 E535 20 58 EB JSR LDAY
0885 E538
0886 E538 ;ADD TO CHECKSUM AND PRINT
0887 E538 20 4E E5 OUTCK JSR CHEKA ;CHCKSUM
0888 E53B 48 OUTCK1 PHA
0889 E53C AD 13 A4 LDA OUTFLG ;IF TAPE DO NOT CNVRT
0890 E53F C9 54 CMP #'T' ;TO TWO ASCII CHRS
0891 E541 D0 04 BNE OUTCK2
0892 E543 68 PLA
0893 E544 4C 8B F1 JMP TOBYTE ;OUTPUT TO TAP BUFF
0894 E547 68 OUTCK2 PLA
0895 E548 4C 46 EA JMP NUMA ;TWO ASCII REPRE
0896 E54B
0897 E54B 20 FD E3 CHEKAR JSR RBYTE ;TWO ASCII CHR---> 1 BYTE
0898 E54E 48 CHEKA PHA ;ADD TO CHECKSUM
0899 E54F 18 CLC
0900 E550 6D 1E A4 ADC CKSUM
0901 E553 8D 1E A4 STA CKSUM
0902 E556 90 03 BCC *+5
0903 E558 EE 1F A4 INC CKSUM+1
0904 E55B 68 PLA
0905 E55C 60 RTS
0906 E55D
0907 E55D ;ADD ONE TO START ADDR (S1)
0908 E55D EE 1A A4 ADDS1 INC S1
0909 E560 D0 03 BNE ADD1
0910 E562 EE 1B A4 INC S1+1
0911 E565 60 ADD1 RTS
0912 E566
0913 E566 EE 06 01 INCS2 INC S2 ;INCR VERTICAL COUNT
0914 E569 D0 03 BNE *+5
0915 E56B EE 07 01 INC S2+1
0916 E56E 60 RTS
0917 E56F
0918 E56F ;OPEN A FILE FOR OUTPUT TO TAPE BY BLOCKS
0919 E56F ;OUTPUT FILENAME GIVEN BY JSR WHEREO TO TAPE BUFF
0920 E56F A2 00 DUMPTA LDX #0 ;INITIALIZE TAPTR
0921 E571 8A TXA ;TO OUTPUT
0922 E572 8E 68 01 STX BLKO ;BLOCK COUNTER
0923 E575 8E 37 A4 STX TAPTR2 ;TAP OUTPUT BUFF PTR
0924 E578 20 8B F1 JSR TOBYTE ;TWO START OF FILE CHRS
0925 E57B BD 2E A4 DUMPT1 LDA NAME,X ;OUTPUT FILENAME
0926 E57E 20 8B F1 JSR TOBYTE
0927 E581 E8 INX
0928 E582 E0 05 CPX #5
0929 E584 D0 F5 BNE DUMPT1 ;5 FILENAME CHRS ?
0930 E586 60 RTS
0931 E587
0932 E587 ;DUMP ROUTINE TO TAPE WITH KIM-1 FORMAT
0933 E587 20 1D F2 DUMPKI JSR TAOSET ;SET TAPE FOR OUTPUT
0934 E58A A9 2A LDA #'*' ;TO EITHER 1 OR 2
0935 E58C 20 4A F2 JSR OUTTAP ;DIRECTLY TO TAPE
0936 E58F ;ID FROM LAST 2 CHRS OF FILENAME
0937 E58F 20 25 E4 JSR GETID
0938 E592 20 3B E5 JSR OUTCK1
0939 E595 20 4D EB JSR CLRCK
0940 E598 ;STARTING ADDR
0941 E598 AD 1A A4 LDA S1
0942 E59B 20 38 E5 JSR OUTCK ;WITH CHCKSUM
0943 E59E AD 1B A4 LDA S1+1
0944 E5A1 20 38 E5 JSR OUTCK
0945 E5A4 ;OUTPUT DATA
0946 E5A4 20 31 E5 DUK2 JSR OUTCKS ;OUTPUT CHR SPECIFIED BY S1+1,S1
0947 E5A7 20 5D E5 JSR ADDS1 ;INCREM S1+1,S1
0948 E5AA AD 1A A4 LDA S1 ;CHCK FOR LAST BYTE
0949 E5AD CD 1C A4 CMP ADDR ;LSB OF END ADDR
0950 E5B0 AD 1B A4 LDA S1+1
0951 E5B3 ED 1D A4 SBC ADDR+1
0952 E5B6 90 EC BCC DUK2 ;NEXT CHR
0953 E5B8 ;NOW SEND END CHR "/"
0954 E5B8 A9 2F LDA #'/'
0955 E5BA 20 4A F2 JSR OUTTAP ;DIRECTLY TO TAPE
0956 E5BD ;CHECKSUM
0957 E5BD AD 1E A4 LDA CKSUM
0958 E5C0 20 46 EA JSR NUMA ;ASCII REPRES
0959 E5C3 AD 1F A4 LDA CKSUM+1
0960 E5C6 20 46 EA JSR NUMA
0961 E5C9 ;TWO EOT CHRS
0962 E5C9 A9 04 LDA #$04
0963 E5CB 20 4A F2 JSR OUTTAP
0964 E5CE 20 4A F2 JSR OUTTAP
0965 E5D1 ;TURN TAPES ON
0966 E5D1 4C 20 E5 JMP DU13
0967 E5D4
0968 E5D4 ;***** * COMMAND-ALTER PROGRAM COUNTER *****
0969 E5D4 20 AE EA CGPC JSR ADDIN ;ADDR <=ADDRESS ENTERED FROM KB
0970 E5D7 20 DD E5 CGPC0 JSR CGPC1 ;TRANSFER ADDR TO SAVPC
0971 E5DA 4C 13 EA JMP CRLOW
0972 E5DD AD 1D A4 CGPC1 LDA ADDR+1 ;THIS WAY MNEMONICS CAN USE IT
0973 E5E0 8D 26 A4 STA SAVPC+1
0974 E5E3 AD 1C A4 LDA ADDR
0975 E5E6 8D 25 A4 STA SAVPC
0976 E5E9 60 RTS
0977 E5EA
0978 E5EA ;***** P COMMAND-ALTER PROCESSOR STATUS *****
0979 E5EA A2 00 CGPS LDX #0
0980 E5EC F0 0E BEQ CGALL
0981 E5EE
0982 E5EE ;***** A COMMAND-ALTER ACCUMULATOR *****
0983 E5EE A2 01 CGA LDX #1
0984 E5F0 D0 0A BNE CGALL
0985 E5F2
0986 E5F2 ;***** X COMMAND-ALTER X REGISTER *****
0987 E5F2 A2 02 CGX LDX #2
0988 E5F4 D0 06 BNE CGALL
0989 E5F6
0990 E5F6 ;***** Y COMMAND-ALTER Y REGISTER *****
0991 E5F6 A2 03 CGY LDX #3
0992 E5F8 D0 02 BNE CGALL
0993 E5FA
0994 E5FA ;***** S COMMAND-ALTER STACK POINTER *****
0995 E5FA A2 04 CGS LDX #4
0996 E5FC 20 D8 E7 CGALL JSR EQUAL ;PRINT PROMPT
0997 E5FF 20 5D EA JSR RD2 ;GET VALUE FROM KEYBOARD
0998 E602 B0 04 BCS GOERR
0999 E604 9D 20 A4 STA SAVPS,X
1000 E607 60 RTS
1001 E608 20 D4 E7 GOERR JSR QM
1002 E60B D0 EF BNE CGALL
1003 E60D
1004 E60D ;***** <SPACE> COMMAND-SHOW NEXT 5 MEMORY LOC *****
1005 E60D 20 3E E8 NXT5 JSR BLANK
1006 E610 A0 04 LDY #4 ;UPDATE ADDR FROM
1007 E612 20 CD E2 JSR NXTADD ;<M>=XXXX
1008 E615 20 DB E2 JSR WRITAZ ;OUTPUT ADDRESS
1009 E618 4C 4D E2 JMP MEIN ;DISPLAY CONTENTS OF NEXT 4 LOCS
1010 E61B
1011 E61B ;***** B COMMAND-SET BREAKPOINT ADDR *****
1012 E61B A0 27 BRKA LDY #M8-M1 ;PRINT "BRK"
1013 E61D 20 AF E7 JSR KEP
1014 E620 20 37 E8 BRK1 JSR PSL1 ;PRINT "/"
1015 E623 20 73 E9 JSR REDOUT ;GET BREAK NUMBER
1016 E626 38 SEC
1017 E627 E9 30 SBC #'0' ;0 THRU 3
1018 E629 30 04 BMI BKERR ;CHARACTER < '0' -ILLEGAL
1019 E62B C9 04 CMP #4 ;FOUR BRK POINTS
1020 E62D 30 05 BMI BKOK ;0 < CHARACTER < 4 -OK
1021 E62F 20 D4 E7 BKERR JSR QM ;ERROR
1022 E632 D0 EC BNE BRK1 ;ALLOW REENTRY OF BREAK NUMBER
1023 E634 0A BKOK ASL A ;*2 TO FORM WORD OFFSET
1024 E635 48 PHA ;SAVE IT
1025 E636 20 AE EA JSR ADDIN ;GET ADDRESS FOR BREAKPOINT
1026 E639 68 PLA
1027 E63A B0 10 BCS BKO2 ;BAD ADDRESS ENTERED
1028 E63C 20 3D FF JSR PATC18 ;<CR> & CLR BUFFERS
1029 E63F AA TAX ;# OF BRK
1030 E640 AD 1C A4 LDA ADDR ;STORE ENTERED ADDR IN BRKPT LIST
1031 E643 9D 00 01 STA BKS,X
1032 E646 AD 1D A4 LDA ADDR+1
1033 E649 9D 01 01 STA BKS+1,X
1034 E64C 60 BKO2 RTS ;ALL DONE
1035 E64D
1036 E64D ;***** ? COMMAND-SHOW CURRENT BREAKPOINTS *****
1037 E64D A0 00 SHOW LDY #0
1038 E64F 20 13 EA JSR CRLOW
1039 E652 20 3E E8 SH1 JSR BLANK
1040 E655 BE 00 01 LDX BKS,Y ;ADDRESS OF NEXT BREAKPOINT
1041 E658 B9 01 01 LDA BKS+1,Y
1042 E65B 20 42 EA JSR WRAX ;SHOW BREAKPOINT ADDRESS
1043 E65E C8 INY
1044 E65F C8 INY
1045 E660 C0 08 CPY #8
1046 E662 D0 EE BNE SH1
1047 E664 60 RTS
1048 E665
1049 E665 ;***** H COMMAND-SHOW TRACE STACK HISTORY *****
1050 E665 ;LAST FIVE INSTR ADDRS
1051 E665 A2 05 SHIS LDX #5 ;NUMBER OF ENTRIES
1052 E667 8E 29 A4 STX STIY+2
1053 E66A AC 14 A4 SH11 LDY HISTP ;POINTER TO LATEST ENTRY
1054 E66D 20 13 EA JSR CRLOW
1055 E670 20 3E E8 JSR BLANK
1056 E673 B9 2E A4 LDA HIST,Y ;OUTPUT ADDRESS OF ENTRY
1057 E676 20 46 EA JSR NUMA
1058 E679 B9 2F A4 LDA HIST+1,Y
1059 E67C 20 46 EA JSR NUMA
1060 E67F 20 88 E6 JSR NHIS ;UPDATE POINTER
1061 E682 CE 29 A4 DEC STIY+2
1062 E685 D0 E3 BNE SH11
1063 E687 60 RTS
1064 E688
1065 E688 ;UPDATE HISTORY POINTER (PART OF H)
1066 E688 C8 NHIS INY
1067 E689 C8 INY
1068 E68A C0 0A CPY #10
1069 E68C D0 02 BNE NH1
1070 E68E A0 00 LDY #0 ;WRAPAROUND AT 10
1071 E690 8C 14 A4 NH1 STY HISTP
1072 E693 60 RTS
1073 E694
1074 E694 ;***** 3 COMMAND-VERIFY TAPES *****
1075 E694 ;VERIFY CKSUM OF BLOCKS
1076 E694 20 48 E8 VECKSM JSR WHEREI ;GET THE FILE
1077 E697 20 93 E9 JSR INALL ;CHCK OBJ OR SOURCE
1078 E69A C9 0D CMP #CR ;FIRST CHR IS <CR> IF OBJ
1079 E69C D0 0E BNE VECK2 ;ASSUME SOURCE CODE
1080 E69E 20 93 E9 VECK1 JSR INALL ;OBJECT FILE
1081 E6A1 C9 3B CMP #SEMICOLON
1082 E6A3 D0 F9 BNE VECK1 ;IGNORE ALL CHARS BEFORE ';'
1083 E6A5 20 93 E9 JSR INALL
1084 E6A8 4C 60 FF JMP PAT20
1085 E6AB EA NOP
1086 E6AC 20 93 E9 VECK2 JSR INALL ;IT IS TEXT
1087 E6AF C9 0D CMP #CR
1088 E6B1 D0 F9 BNE VECK2
1089 E6B3 20 93 E9 JSR INALL ;NEED TO <CR> TO FINISH
1090 E6B6 C9 0D CMP #CR
1091 E6B8 D0 F2 BNE VECK2
1092 E6BA 4C 20 E5 JMP DU13 ;CLOSE FILE, IT IS OKAY
1093 E6BD
1094 E6BD ;***** 1 COMMAND-TOGGLE TAPE 1 CONTROL *****
1095 E6BD AD 00 A8 TOGTA1 LDA DRB
1096 E6C0 49 10 EOR #$10 ;INVERT PB4
1097 E6C2 8D 00 A8 STA DRB
1098 E6C5 29 10 AND #$10
1099 E6C7 F0 28 BEQ BRK3 ;IF 0 TAPE CNTRL IS ON
1100 E6C9 D0 2F BNE BRK4 ;IF $10 TAPE CNTRL IS OFF
1101 E6CB
1102 E6CB ;***** 2 COMMAND-TOGGLE TAPE 2 CONTROL *****
1103 E6CB AD 00 A8 TOGTA2 LDA DRB
1104 E6CE 49 20 EOR #$20 ;INVERT PB5
1105 E6D0 8D 00 A8 STA DRB
1106 E6D3 29 20 AND #$20
1107 E6D5 F0 1A BEQ BRK3
1108 E6D7 D0 21 BNE BRK4
1109 E6D9
1110 E6D9 ;***** V COMMAND-TOGGLE REGISTER DISP FLG *****
1111 E6D9 ;DISPLAY REGIST BEFORE EXEC
1112 E6D9 A2 0E REGT LDX #REGF
1113 E6DB D0 0A BNE TOGL
1114 E6DD
1115 E6DD ;****** Z COMMAND-TOGGLE DIS TRACE FLG *****
1116 E6DD ;DISPL NEXT INSTR BEFORE EXEC
1117 E6DD A2 0F TRACE LDX #DISFLG
1118 E6DF D0 06 BNE TOGL
1119 E6E1
1120 E6E1 ;***** \ COMMAND-TOGGLE PRINTER FLAG *****
1121 E6E1 A2 11 PRITR LDX #PRIFLG
1122 E6E3 D0 02 BNE TOGL
1123 E6E5
1124 E6E5 ;***** 4 COMMAND-TOGGLE SOFT BRK ENABL FLG *****
1125 E6E5 A2 10 BRKK LDX #BKFLG
1126 E6E7
1127 E6E7 BD 00 A4 TOGL LDA MONRAM,X ;LOAD FLAG
1128 E6EA F0 0A BEQ TOGL1 ;FLAG IS OFF ,SO TURN ON
1129 E6EC A9 00 LDA #0 ;FLAG IS ON ,SO TURN OFF
1130 E6EE 9D 00 A4 STA MONRAM,X
1131 E6F1 A0 24 BRK3 LDY #M7-M1 ;PRINT "OFF"
1132 E6F3 4C AF E7 BRK2 JMP KEP
1133 E6F6 38 TOGL1 SEC ;TURN FLAG ON BY SETTING NON-ZERO
1134 E6F7 7E 00 A4 ROR MONRAM,X ;FLAG IS ON MSB
1135 E6FA A0 21 BRK4 LDY #M6-M1 ;PRINT "ON"
1136 E6FC D0 F5 BNE BRK2
1137 E6FE
1138 E6FE ;***** # COMMAND-CLEAR ALL BREAKS *****
1139 E6FE A9 00 CLRBK LDA #0 ;STORE ZEROS INTO BRKPT LIST
1140 E700 A2 07 LDX #7
1141 E702 9D 00 01 RS20 STA BKS,X
1142 E705 CA DEX
1143 E706 10 FA BPL RS20
1144 E708 30 E7 BMI BRK3 ;PRINT "OFF"
1145 E70A
1146 E70A ;***** K COMMAND-DISASSEMBLE MEMORY *****
1147 E70A A9 2A KDISA LDA #'*' ;GET START ADDRESS
1148 E70C 20 7A E9 JSR OUTPUT
1149 E70F 20 AE EA JSR ADDIN
1150 E712 B0 F6 BCS KDISA ;IF ERROR DO IT AGAIN
1151 E714 20 D7 E5 JSR CGPC0 ;GET IT INTO PROG CNTR
1152 E717 20 37 E8 JSR PSL1 ;PRINT "/"
1153 E71A 20 85 E7 JSR GCNT ;GET COUNT
1154 E71D 20 24 EA JSR CRCK
1155 E720 4C 2B E7 JMP JD2
1156 E723 20 07 E9 JD1 JSR RCHEK ;SEE IF HE WANTS TO INTERRUPT
1157 E726 20 90 E7 JSR DONE
1158 E729 F0 17 BEQ JD4
1159 E72B 20 6C F4 JD2 JSR DISASM ;GO TO DISASSEMBLER
1160 E72E AD 25 A4 LDA SAVPC ;POINT TO NEXT INSTRUC LOCAT
1161 E731 38 SEC ;ONE MORE TO PROG CNTR
1162 E732 65 EA ADC LENGTH
1163 E734 8D 25 A4 STA SAVPC
1164 E737 90 03 BCC JD3
1165 E739 EE 26 A4 INC SAVPC+1
1166 E73C 20 24 EA JD3 JSR CRCK ;<CR>
1167 E73F 4C 23 E7 JMP JD1
1168 E742 60 JD4 RTS
1169 E743
1170 E743 ;INITIALIZATION TABLE FOR 6522
1171 E743 340037FF25FFINTAB1 .DB $34,$00,$37,$FF,$25,$FF,$25,$FF
1171 E749 25FF
1172 E74B FF FF 00 00 .DB $FF,$FF,$00,T1I+T2I
1173 E74F E1 FF 7F .DB MOFF+PRST+SP12,$FF,$7F
1174 E752 ;INITIALIZATION TABLE FOR 6532
1175 E752 FF FF 00 00 INTAB2 .DB $FF,$FF,$00,$00
1176 E756 ;INITIALIZATION TABLE FOR MONITOR RAM
1177 E756 7BE054E105EFINTAB3 .DW NMIV3,IRQV3,OUTDIS
1178 E75C C70802CA0380 .DB $C7,$08,$02,$CA,$03,$80,$00,$00
1178 E762 0000
1179 E764 00800D0D0000 .DB $00,$80,$0D,$0D,$00,$00,$00
1179 E76A 00
1180 E76B ;SEE IF WE HIT A SOFT BREAKPOINT (PART OF NMV3)
1181 E76B A2 07 CKB LDX #7 ;COMPARE BRKPT LIST TO TRAP ADDR
1182 E76D BD 00 01 CKB2 LDA BKS,X ;GET ADDRESS OF NEXT BREAKPOINT
1183 E770 CA DEX
1184 E771 CD 26 A4 CMP SAVPC+1 ;COMPARE TO SAVED PROGRAM COUNTER
1185 E774 D0 0A BNE CKB1
1186 E776 BD 00 01 LDA BKS,X
1187 E779 CD 25 A4 CMP SAVPC
1188 E77C D0 02 BNE CKB1 ;NO MATCH SO TRY NEXT BREAKPOINT
1189 E77E 38 SEC ;MATCH-SET MATCH FLAG
1190 E77F 60 RTS
1191 E780 CA CKB1 DEX
1192 E781 10 EA BPL CKB2 ;MORE TO GO
1193 E783 18 CLC ;NO MATCH -RESET MATCH FLAG
1194 E784 60 RTS
1195 E785
1196 E785 ;GET # OF LINES COUNT FOR GO-COMMAND,LIST-COMM
1197 E785 20 5D EA GCNT JSR RD2
1198 E788 90 02 BCC GCN1
1199 E78A 49 0C EOR #$0C ;<SPACE>---> $2C ,<CR>---> $01
1200 E78C 8D 19 A4 GCN1 STA COUNT
1201 E78F 60 RTS
1202 E790
1203 E790 ;CHECK IF COUNT HAS REACHED ZERO
1204 E790 ;COUNT=$2C MEANS FOREVER
1205 E790 AD 19 A4 DONE LDA COUNT ;IF COUNT=0 WE ARE DONE
1206 E793 C9 2C CMP #$2C ;THIS MEANS FOR EVER
1207 E795 F0 09 BEQ DON1 ;SET ACC DIFF FROM ZERO
1208 E797 F8 SED ;DECREMENT COUNT IN DECIMAL
1209 E798 38 SEC
1210 E799 E9 01 SBC #1
1211 E79B D8 CLD
1212 E79C 8D 19 A4 STA COUNT
1213 E79F 60 RTS
1214 E7A0 A9 2C DON1 LDA #$2C
1215 E7A2 60 RTS
1216 E7A3
1217 E7A3 A0 00 FROM LDY #0 ;PRINT "FR="
1218 E7A5 F0 02 BEQ TO1
1219 E7A7
1220 E7A7 A0 05 TO LDY #M3-M1 ;PRINT "TO="
1221 E7A9 20 AF E7 TO1 JSR KEP
1222 E7AC 4C B1 EA JMP ADDNE ;GET ADDRESS
1223 E7AF
1224 E7AF ;PRINT MSG POINTED TO BY Y REG
1225 E7AF B9 00 E0 KEP LDA M1,Y
1226 E7B2 48 PHA
1227 E7B3 29 7F AND #$7F ;STRIP OFF MSB
1228 E7B5 20 7A E9 JSR OUTPUT
1229 E7B8 C8 INY
1230 E7B9 68 PLA
1231 E7BA 10 F3 BPL KEP ;MSB =1 ?
1232 E7BC 60 RTS
1233 E7BD
1234 E7BD ;PRINT "*" ,BUT NOT TO TAPE RECORDER, NOR LOADING....
1235 E7BD ;PAPER TAPE OR TO DISPLAY
1236 E7BD AD 12 A4 PROMPT LDA INFLG ;WHICH DEV (FOR EDITOR)
1237 E7C0 C9 54 CMP #'T' ;NO PROMPT IF "T" OR "L"
1238 E7C2 4C EF FE JMP PATC11
1239 E7C5 20 42 E8 PROMP1 JSR TTYTST ;PROMPT ONLY TO TTY
1240 E7C8 D0 05 BNE PR2 ;BRANCH ON KB
1241 E7CA A9 2A LDA #'*'
1242 E7CC 4C 7A E9 PR1 JMP OUTPUT ;ONLY TO TERMIN
1243 E7CF A9 0D PR2 LDA #CR ;CLR DISP
1244 E7D1 4C 05 EF JMP OUTDIS
1245 E7D4
1246 E7D4 A9 3F QM LDA #'?' ;PRINT "?"
1247 E7D6 D0 F4 BNE PR1
1248 E7D8
1249 E7D8 A9 3D EQUAL LDA #'=' ;PRINT "="
1250 E7DA D0 F0 BNE PR1
1251 E7DC
1252 E7DC ;ON DELETE KEY OUTPUT SLASH IF TTY & ....
1253 E7DC ;BACK UP CURSOR IF KB (MAY NEED SCROLLING)
1254 E7DC 20 42 E8 PSLS JSR TTYTST ;TTY OR KB ?
1255 E7DF F0 56 BEQ PSL1 ;BRANCH ON TTY
1256 E7E1 20 9E EB JSR PHXY ;SAVE X,Y
1257 E7E4 CE 15 A4 DEC CURPO2 ;DECR DISP PNTR
1258 E7E7 AE 15 A4 LDX CURPO2
1259 E7EA E0 14 CPX #20 ;IF MORE THAN 20 JUST SCROLL THEM
1260 E7EC B0 0D BCS PSL0
1261 E7EE A9 20 LDA #' ' ;< 20 ,SO CLR CUR
1262 E7F0 20 02 EF JSR OUTDP1
1263 E7F3 CE 15 A4 DEC CURPO2
1264 E7F6 4C 02 E8 JMP PSL00
1265 E7F9 EA NOP
1266 E7FA EA NOP
1267 E7FB 20 F8 FE PSL0 JSR PATC12 ;CLR PRIFLG
1268 E7FE CA DEX ;ONE CHR LESS
1269 E7FF 20 2F EF JSR OUTD2A ;SCROLL THEM
1270 E802 AD 15 A4 PSL00 LDA CURPO2 ;DISBUF---> PRIBUFF
1271 E805 C9 15 CMP #21
1272 E807 90 13 BCC PSL0B
1273 E809 C9 29 CMP #41
1274 E80B 90 07 BCC PSL0A
1275 E80D A0 28 LDY #40 ;CHR 40-59
1276 E80F E9 28 SBC #40
1277 E811 4C 1E E8 JMP PSL0C
1278 E814 A0 14 PSL0A LDY #20 ;CHR 20-39
1279 E816 38 SEC
1280 E817 E9 14 SBC #20
1281 E819 4C 1E E8 JMP PSL0C
1282 E81C A0 00 PSL0B LDY #0 ;CHR 00-19
1283 E81E 8D 16 A4 PSL0C STA CURPOS
1284 E821 A2 00 LDX #0
1285 E823 B9 38 A4 PSL0D LDA DIBUFF,Y ;TRANSFER THEM
1286 E826 9D 60 A4 STA IBUFM,X
1287 E829 E8 INX
1288 E82A C8 INY
1289 E82B EC 16 A4 CPX CURPOS ;PRI PNTR
1290 E82E 90 F3 BCC PSL0D
1291 E830 20 38 F0 JSR OUTPR ;CLR PRI BUFF TO THE RIGHT
1292 E833 20 AC EB JSR PLXY ;RESTORE X,Y
1293 E836 60 RTS
1294 E837 A9 2F PSL1 LDA #'/' ;PRINT "/"
1295 E839 D0 91 BNE PR1
1296 E83B
1297 E83B 20 3E E8 BLANK2 JSR BLANK ;TWO SPACES
1298 E83E A9 20 BLANK LDA #' '
1299 E840 D0 8A BNE PR1
1300 E842
1301 E842 ;CHECK TTY/KBD SWITCH (Z=1 FOR TTY)
1302 E842 A9 08 TTYTST LDA #$08 ;CHECK IF TTY OR KB
1303 E844 2C 00 A8 BIT DRB ;TTY OR KB SWICTH =PB3
1304 E847 60 RTS
1305 E848
1306 E848 ;WHERE IS INPUT COMING FROM?
1307 E848 ;SET UP FOR INPUT ACTIVE DEVICE
1308 E848 A0 2A WHEREI LDY #M9-M1 ;PRINT "IN"
1309 E84A 20 70 E9 JSR KEPR ;OUTPUT MSG AND INPUT CHR
1310 E84D 8D 12 A4 STA INFLG
1311 E850 C9 54 CMP #'T'
1312 E852 D0 08 BNE WHE1
1313 E854 A2 00 LDX #0 ;FOR INPUT FILE FLG
1314 E856 20 A2 E8 JSR FNAM ;OPEN FILE FOR TAPE (1 OR 2)
1315 E859 4C 2F E3 JMP LOADTA ;GET FILE
1316 E85C C9 4B WHE1 CMP #'K' ;TAPE WITH KIM FORMAT
1317 E85E D0 08 BNE WHE2
1318 E860 A2 00 LDX #0 ;FOR INPUT FILE FLG
1319 E862 20 A2 E8 JSR FNAM ;OPEN FILE FOR TAP (1 OR 2)
1320 E865 4C A4 E3 JMP LOADKI ;THE WHOLE FILE
1321 E868 C9 55 WHE2 CMP #'U' ;USER RTN?
1322 E86A D0 04 BNE WHE3
1323 E86C 18 CLC ;SET FLG FOR INITIALIZATION
1324 E86D 6C 08 01 JMP (UIN) ;USER INPUT SETUP
1325 E870 60 WHE3 RTS
1326 E871
1327 E871 ;WHERE IS OUTPUT GOING TO?
1328 E871 ;SET UP FOR OUTPUT ACTIVE DEVICE
1329 E871 A0 2D WHEREO LDY #M10-M1 ;PRINT "OUT"
1330 E873 20 70 E9 JSR KEPR ;OUTPUT MSG & INPUT CHR
1331 E876 8D 13 A4 STA OUTFLG ;DEVICE FLG
1332 E879 ;TAPES
1333 E879 C9 54 CMP #'T'
1334 E87B D0 08 BNE WHRO1
1335 E87D A2 01 LDX #1 ;FOR OUTPUT FILE FLG
1336 E87F 20 A2 E8 JSR FNAM ;FILENAME & TAPE (1 OR 2)
1337 E882 4C 6F E5 JMP DUMPTA ;INITIALIZE FILE
1338 E885 C9 4B WHRO1 CMP #'K' ;TAPE WITH KIM FORMAT
1339 E887 D0 05 BNE WHRO2
1340 E889 A2 01 LDX #1 ;FOR OUTPUT FILE FLG
1341 E88B 4C A2 E8 JMP FNAM
1342 E88E ;PRINTER
1343 E88E C9 50 WHRO2 CMP #'P' ;PRINTER?
1344 E890 D0 05 BNE WHRO3
1345 E892 A9 0D LDA #CR ;OUTPUT LAST LINE IF ON
1346 E894 4C 00 F0 JMP OUTPRI ;& CLEAR PRINTER PTR
1347 E897 ;USER SET UP
1348 E897 C9 55 WHRO3 CMP #'U' ;USR RTN?
1349 E899 D0 04 BNE WHRO4
1350 E89B 18 CLC ;CLR FLG FOR INITIALIZATION
1351 E89C 6C 0A 01 JMP (UOUT) ;USER OUTPUT SETUP
1352 E89F ;ANY OTHER
1353 E89F 4C 13 EA WHRO4 JMP CRLOW
1354 E8A2
1355 E8A2 ;GET FILE NAME & TAPE UNIT
1356 E8A2 20 9E EB FNAM JSR PHXY ;SAVE IN/OUT FLG (X)
1357 E8A5 20 CF E8 JSR NAMO ;GET NAME
1358 E8A8 A0 50 WHICHT LDY #TMSG2-M1 ;PRINT "T="
1359 E8AA 20 70 E9 JSR KEPR ;OUTPUT MSG & INPUT CHR
1360 E8AD C9 0D CMP #CR
1361 E8AF D0 02 BNE TAP1
1362 E8B1 A9 31 LDA #'1' ;<CR> ==> TAPE 1
1363 E8B3 38 TAP1 SEC
1364 E8B4 E9 31 SBC #'1' ;SUBTRACT 31
1365 E8B6 30 04 BMI TAP2 ;ONLY 1,2 OK
1366 E8B8 C9 02 CMP #2
1367 E8BA 30 06 BMI TAP3 ;OK
1368 E8BC 20 D4 E7 TAP2 JSR QM ;ERROR
1369 E8BF 4C A8 E8 JMP WHICHT
1370 E8C2 20 AC EB TAP3 JSR PLXY ;IN/OUT FLG
1371 E8C5 9D 34 A4 STA TAPIN,X ;IF X=0 --> TAPIN (TAPE 1 OR 2)
1372 E8C8 20 83 FE JSR CUREAD ;GET ANYTHING
1373 E8CB 20 24 EA JSR CRCK ;<CR>
1374 E8CE 60 RTS ;IF X=1 --> TAPOUT (TAPE 1 OR 2)
1375 E8CF
1376 E8CF ;GET FILE NAME
1377 E8CF A0 4D NAMO LDY #TMSG1-M1 ;PRINT "F="
1378 E8D1 20 AF E7 JSR KEP ;NO CRLF
1379 E8D4 A0 00 LDY #0
1380 E8D6 20 5F E9 NAMO1 JSR RDRUP ;GET CHAR
1381 E8D9 C9 0D CMP #CR ;DONE?
1382 E8DB F0 0C BEQ NAMO2
1383 E8DD C9 20 CMP #' '
1384 E8DF F0 08 BEQ NAMO2
1385 E8E1 99 2E A4 STA NAME,Y ;STORE
1386 E8E4 C8 INY
1387 E8E5 C0 05 CPY #5
1388 E8E7 D0 ED BNE NAMO1
1389 E8E9 ;BLANK REST OF NAME
1390 E8E9 A9 20 NAMO2 LDA #' '
1391 E8EB C0 05 NAMO3 CPY #5
1392 E8ED F0 06 BEQ NAMO4
1393 E8EF 99 2E A4 STA NAME,Y
1394 E8F2 C8 INY
1395 E8F3 D0 F6 BNE NAMO3
1396 E8F5 4C 3E E8 NAMO4 JMP BLANK
1397 E8F8
1398 E8F8 ;SET INPUT FROM TERMINAL (KB OR TTY)
1399 E8F8 A9 0D INLOW LDA #CR
1400 E8FA 8D 12 A4 STA INFLG
1401 E8FD 60 RTS
1402 E8FE
1403 E8FE ;SET I/O TO TERMINAL (KB & D/P ,OR TTY)
1404 E8FE 20 F8 E8 LL JSR INLOW
1405 E901
1406 E901 ;SET OUTPUT TO TERMINAL (D/P OR TTY)
1407 E901 A9 0D OUTLOW LDA #CR
1408 E903 8D 13 A4 STA OUTFLG
1409 E906 60 OUTL1 RTS
1410 E907
1411 E907 ;ON <ESCAPE> STOPS EXECUTION & BACK TO MONITOR
1412 E907 ;ON <SPACE> STOPS EXECUTION & CONTINUE ON ANY OTHER KEY
1413 E907 20 42 E8 RCHEK JSR TTYTST ;TTY OR KB ?
1414 E90A F0 1A BEQ RCHTTY
1415 E90C 20 EF EC JSR ROONEK ;CLR MSK & GET A KEY
1416 E90F 88 DEY
1417 E910 30 13 BMI RCH3 ;RTN ON NO KEY
1418 E912 A2 00 LDX #0
1419 E914 20 82 EC JSR GETK2 ;GET THE KEY
1420 E917 C9 1B CMP #ESCAPE
1421 E919 F0 3B BEQ REA1 ;TO COMMAN & SET I/O TO TERMINAL
1422 E91B C9 20 CMP #' ' ;WAIT KEY
1423 E91D D0 06 BNE RCH3 ;RTN, IGNORE OTHER KEYS
1424 E91F 20 EF EC RCH2 JSR ROONEK ;WAIT TILL HE RELEASE IT &
1425 E922 88 DEY ;QUIT WAITING ON NEXT KEY
1426 E923 30 FA BMI RCH2
1427 E925 60 RCH3 RTS
1428 E926 70 13 RCHTTY BVS RCHT1 ;TTI=PB6 ---> V (OVERFL FLG)
1429 E928 2C 00 A8 RCHT2 BIT DRB ;WAIT TILL HE RELEASE IT
1430 E92B 50 FB BVC RCHT2
1431 E92D 20 0F EC JSR DELAY
1432 E930 20 DB EB JSR GETTTY ;GET A CHAR
1433 E933 C9 1B CMP #ESCAPE
1434 E935 F0 1F BEQ REA1 ;TO COMMAN
1435 E937 C9 20 CMP #' '
1436 E939 D0 ED BNE RCHT2
1437 E93B 60 RCHT1 RTS ;QUIT WAITING ON ANY KEY
1438 E93C
1439 E93C ;READ ONE CHAR FROM KB/TTY & PRESERVE X,Y
1440 E93C 20 9E EB READ JSR PHXY ;PUSH X & Y
1441 E93F 20 42 E8 JSR TTYTST ;TTY OR KB ?
1442 E942 D0 06 BNE READ1
1443 E944 20 DB EB JSR GETTTY
1444 E947 4C 4D E9 JMP READ2
1445 E94A 20 40 EC READ1 JSR GETKEY
1446 E94D 20 AC EB READ2 JSR PLXY ;PULL X & Y
1447 E950 29 7F AND #$7F ;STRIP PARITY
1448 E952 C9 1B CMP #ESCAPE
1449 E954 D0 E5 BNE RCHT1 ;RTN
1450 E956 20 3D FF REA1 JSR PATC18 ;<CR> & CLR BUFFERS
1451 E959 4C A1 E1 JMP COMIN ;BOTH I/O TO TERMINAL
1452 E95C
1453 E95C ;READ WITH RUBOUT OR DELETE POSSIBLE
1454 E95C 20 DC E7 RB2 JSR PSLS ;SLASH OR BACK SPACE
1455 E95F 20 83 FE RDRUP JSR CUREAD
1456 E962 C9 08 CMP #RUB ;RUBOUT
1457 E964 F0 04 BEQ RDR1
1458 E966 C9 7F CMP #$7F ;ALSO DELETE
1459 E968 D0 0C BNE RED2 ;ECHO IF NOT <CR>
1460 E96A ;RUBOUT TO DELETE CHAR
1461 E96A 88 RDR1 DEY
1462 E96B 10 EF BPL RB2
1463 E96D C8 INY
1464 E96E F0 EF BEQ RDRUP
1465 E970
1466 E970 ;OUTPUT MESSAGE THEN INPUT CHR
1467 E970 20 AF E7 KEPR JSR KEP
1468 E973
1469 E973 ;READ AND ECHO A CHAR FROM KB OR TTY
1470 E973 20 83 FE REDOUT JSR CUREAD
1471 E976 C9 0D RED2 CMP #CR
1472 E978 F0 C1 BEQ RCHT1 ;DO NOT ECHO <CR>
1473 E97A
1474 E97A ;OUTPUTS A CHAR TO EITHER TTY OR D/P
1475 E97A 48 OUTPUT PHA ;SAVE IT
1476 E97B AD 11 A4 OUT1 LDA PRIFLG ;IF LSB=1 OUTPUT ONLY TO DISP
1477 E97E 29 01 AND #$01
1478 E980 F0 04 BEQ OUT1A
1479 E982 68 PLA
1480 E983 4C 02 EF JMP OUTDP1 ;ONLY TO DISPL
1481 E986 20 42 E8 OUT1A JSR TTYTST ;TTY OR KB ?
1482 E989 D0 04 BNE OUT2
1483 E98B 68 PLA
1484 E98C 4C A8 EE JMP OUTTTY ;TO TTY
1485 E98F 68 OUT2 PLA
1486 E990 4C FC EE JMP OUTDP ;TO DISP & PRINTR
1487 E993
1488 E993 ;GET A CHR FROM CURRENT INPUT DEVICE (SET ON INFLG)
1489 E993 AD 12 A4 INALL LDA INFLG
1490 E996 C9 54 CMP #'T'
1491 E998 D0 03 BNE *+5
1492 E99A 4C 3B ED JMP TIBYTE ;CHAR FROM BUFFER
1493 E99D C9 4B CMP #'K' ;WITH KIM FORMAT
1494 E99F D0 03 BNE *+5
1495 E9A1 4C 29 EE JMP GETTAP ;DIRECTLY FROM TAPE
1496 E9A4 C9 4D CMP #'M' ;MEMORY FOR ASM?
1497 E9A6 D0 03 BNE *+5
1498 E9A8 4C D0 FA JMP MREAD
1499 E9AB C9 55 CMP #'U' ;USER ROUTINE?
1500 E9AD D0 04 BNE *+6
1501 E9AF 38 SEC ;SET FLG FOR NORMAL INPUT
1502 E9B0 6C 08 01 JMP (UIN)
1503 E9B3 C9 4C CMP #'L' ;TO LOAD PPR TAPE
1504 E9B5 D0 A8 BNE RDRUP
1505 E9B7 4C DB EB JMP GETTTY ; FROM TTY
1506 E9BA
1507 E9BA ;.FILE A2
1508 E9BA A9 3B SEMI LDA #SEMICOLON ;OUTPUT A ";"
1509 E9BC ;WRITE A CHR TO OUTPUT DEVICE (SET ON OUTFLG)
1510 E9BC 48 OUTALL PHA
1511 E9BD AD 13 A4 LDA OUTFLG
1512 E9C0 ;TAPE BY BLOCKS
1513 E9C0 C9 54 CMP #'T' ;TAPES ?
1514 E9C2 D0 04 BNE OUTA1
1515 E9C4 68 PLA
1516 E9C5 4C 8B F1 JMP TOBYTE ;OUTPUT ONE CHAR TO TAPE BUFFER
1517 E9C8 ;TAPE KIM FORMAT
1518 E9C8 C9 4B OUTA1 CMP #'K' ;KIM-1 ?
1519 E9CA D0 04 BNE OUTA2
1520 E9CC 68 PLA
1521 E9CD 4C 4A F2 JMP OUTTAP
1522 E9D0 ;PRINTER
1523 E9D0 C9 50 OUTA2 CMP #'P' ;PRINTER ?
1524 E9D2 D0 0E BNE OUTA3
1525 E9D4 38 SEC ;TURN PRINTER ON
1526 E9D5 6E 11 A4 ROR PRIFLG
1527 E9D8 68 PLA
1528 E9D9 08 PHP
1529 E9DA 20 00 F0 JSR OUTPRI
1530 E9DD 28 PLP
1531 E9DE 2E 11 A4 ROL PRIFLG ;RESTORE FLG
1532 E9E1 60 RTS
1533 E9E2 ;USER DEFINED
1534 E9E2 C9 55 OUTA3 CMP #'U' ;USER ROUTINE?
1535 E9E4 D0 04 BNE OUTA4
1536 E9E6 38 SEC ;SET FLG FOR NORMAL OUTPUT
1537 E9E7 6C 0A 01 JMP (UOUT) ;YES
1538 E9EA ;NOWHERE OR TO TTY ,D/P
1539 E9EA C9 58 OUTA4 CMP #'X' ;EAT IT?
1540 E9EC D0 8D BNE OUT1 ;OUTPUT TO TTY OR D/P
1541 E9EE 68 PLA
1542 E9EF 60 RTS
1543 E9F0
1544 E9F0 ;THIS ROUTINE OUTPUTS A CRLF TO ANY OUTPUT DEV
1545 E9F0 ;LF AND NULL IS SENT ONLY TO TTY
1546 E9F0 A9 0D CRLF LDA #CR
1547 E9F2 20 BC E9 JSR OUTALL
1548 E9F5 20 42 E8 JSR TTYTST ;TTY OR KB ?
1549 E9F8 D0 29 BNE CR2J
1550 E9FA AD 13 A4 LDA OUTFLG ;LF ONLY TO TTY
1551 E9FD C9 54 CMP #'T'
1552 E9FF F0 22 BEQ CR2J
1553 EA01 C9 4B CMP #'K'
1554 EA03 F0 1E BEQ CR2J
1555 EA05 C9 50 CMP #'P'
1556 EA07 F0 1A BEQ CR2J
1557 EA09 A9 0A LDA #LF
1558 EA0B 20 BC E9 JSR OUTALL
1559 EA0E A9 FF LDA #NULLC
1560 EA10 4C BC E9 JMP OUTALL
1561 EA13
1562 EA13 ;CRLF TO TERMINAL (TTY OR D/P) ONLY
1563 EA13 48 CRLOW PHA ;SAVE A
1564 EA14 AD 13 A4 LDA OUTFLG
1565 EA17 48 PHA
1566 EA18 20 01 E9 JSR OUTLOW
1567 EA1B 20 F0 E9 JSR CRLF
1568 EA1E 68 PLA
1569 EA1F 8D 13 A4 STA OUTFLG
1570 EA22 68 PLA
1571 EA23 60 CR2J RTS
1572 EA24
1573 EA24 ;OUTPUT <CR> TO TTY IF SWITCH ON TTY & INFLG NOT L
1574 EA24 ;DONT CLR DISPLAY BUT CLEARS PNTRS FOR NEXT LINE
1575 EA24 ;IF PRNTR HAS PRINTED ON 21RST CHR DONT OUTPUT <CR>
1576 EA24 AD 12 A4 CRCK LDA INFLG ;NO <CR> IF "L"
1577 EA27 C9 4C CMP #'L'
1578 EA29 D0 01 BNE CRCK1
1579 EA2B 60 RTS
1580 EA2C 20 42 E8 CRCK1 JSR TTYTST ;CHECK IF TTY OR KB
1581 EA2F F0 E2 BEQ CRLOW ;BRNCH IF TTY
1582 EA31 ;IF PRINTR PTR=0 ,DO NOT CLR PRI
1583 EA31 AD 16 A4 LDA CURPOS
1584 EA34 F0 05 BEQ CRCK2 ;IF PTR=0 ,NO <CR>
1585 EA36 A9 0D LDA #CR
1586 EA38 20 00 F0 JSR OUTPRI
1587 EA3B A9 8D CRCK2 LDA #CR+$80 ;<CR> ONLY FOR TV
1588 EA3D 4C 02 EF JMP OUTDP1
1589 EA40 EA NOP
1590 EA41 EA NOP
1591 EA42
1592 EA42 ;WRITE A THEN X IN ASCII TO THE OUTPUT DEV
1593 EA42 20 46 EA WRAX JSR NUMA
1594 EA45 8A TXA
1595 EA46
1596 EA46 ;PRINT ONE BYTE=TWO ASCII CHARS TO OUTPUT DEVICE
1597 EA46 48 NUMA PHA
1598 EA47 4A LSR A
1599 EA48 4A LSR A
1600 EA49 4A LSR A
1601 EA4A 4A LSR A
1602 EA4B 20 51 EA JSR NOUT
1603 EA4E 68 PLA
1604 EA4F 29 0F AND #$F
1605 EA51 18 NOUT CLC
1606 EA52 69 30 ADC #'0'
1607 EA54 C9 3A CMP #'9'+1
1608 EA56 90 02 BCC LT10
1609 EA58 69 06 ADC #6 ;CARRY IS SET
1610 EA5A 4C BC E9 LT10 JMP OUTALL
1611 EA5D
1612 EA5D ;READ TWO CHR & PACK THEM INTO ONE BYTE
1613 EA5D ;PART OF ALTER MEMORY , / COMM
1614 EA5D 20 73 E9 RD2 JSR REDOUT
1615 EA60 C9 0D CMP #CR ;<CR>?
1616 EA62 F0 17 BEQ RSPAC
1617 EA64 C9 20 CMP #' ' ;FOR MEMORY ALTER
1618 EA66 F0 13 BEQ RSPAC
1619 EA68 C9 2E CMP #'.' ;TREAT "." AS <SPACE>
1620 EA6A D0 04 BNE RD1
1621 EA6C A9 20 LDA #' '
1622 EA6E D0 0B BNE RSPAC
1623 EA70 20 84 EA RD1 JSR PACK
1624 EA73 B0 06 BCS RSPAC
1625 EA75 20 73 E9 JSR REDOUT
1626 EA78 4C 84 EA JMP PACK
1627 EA7B ;WAS SPACE OR <CR>
1628 EA7B 38 RSPAC SEC
1629 EA7C 60 RTS
1630 EA7D
1631 EA7D ;CONVERT ACC IN ASCII TO ACC IN HEX (4 MSB=0)
1632 EA7D 48 HEX PHA ;SAVE A
1633 EA7E A9 00 LDA #0 ;CLEAR STIY IF HEX
1634 EA80 8D 29 A4 STA STIY+2 ;BECAUSE ONLY ONCE
1635 EA83 68 PLA
1636 EA84 ;PACK TWO ASCII INTO ONE HEX (CALL SUBR TWO TIMES)
1637 EA84 ;RESULT IS GIVEN ON ACC WITH FIRST CHR INTO 4 MSB
1638 EA84 C9 30 PACK CMP #'0' ;< 30 ?
1639 EA86 90 F3 BCC RSPAC
1640 EA88 C9 47 CMP #'F'+1 ; > 47 ?
1641 EA8A B0 EF BCS RSPAC
1642 EA8C C9 3A CMP #'9'+1 ; < $10
1643 EA8E 90 06 BCC PAK1
1644 EA90 C9 40 CMP #'A'-1 ; > $10 ?
1645 EA92 90 E7 BCC RSPAC
1646 EA94 69 08 ADC #8 ;ADD 9 IF LETTER (C IS SET)
1647 EA96 2A PAK1 ROL A ;SHIFT A 4 TIMES
1648 EA97 2A ROL A
1649 EA98 2A ROL A
1650 EA99 2A ROL A
1651 EA9A 8E 2D A4 STX CPIY+3 ;SAVE X
1652 EA9D A2 04 LDX #4
1653 EA9F 2A PAK2 ROL A ;TRANSFER A TO STIY
1654 EAA0 2E 29 A4 ROL STIY+2 ; THRU CARRY
1655 EAA3 CA DEX
1656 EAA4 D0 F9 BNE PAK2
1657 EAA6 AE 2D A4 LDX CPIY+3 ;REST X
1658 EAA9 AD 29 A4 LDA STIY+2
1659 EAAC 18 CLC
1660 EAAD 60 RTS
1661 EAAE
1662 EAAE ;GET FOUR BYTE ADDR ,TAKE LAST FOUR CHR TO...
1663 EAAE ;CALCULATE ADDR .ALLOW DELETE ALSO
1664 EAAE 20 D8 E7 ADDIN JSR EQUAL
1665 EAB1 AD 15 A4 ADDNE LDA CURPO2 ;SAVE POSITION
1666 EAB4 48 PHA
1667 EAB5 A0 00 LDY #0
1668 EAB7 20 5F E9 ADDN1 JSR RDRUP
1669 EABA C9 0D CMP #CR
1670 EABC F0 09 BEQ ADDN2
1671 EABE C9 20 CMP #' '
1672 EAC0 F0 05 BEQ ADDN2
1673 EAC2 C8 INY
1674 EAC3 C0 0B CPY #11 ;ALLOW 10
1675 EAC5 90 F0 BCC ADDN1
1676 EAC7 68 ADDN2 PLA
1677 EAC8 8D 2D A4 STA CPIY+3 ;SAVE
1678 EACB C0 00 CPY #0 ;IF FIRST CHR PUT DEFAULT VALUES
1679 EACD D0 0D BNE ADDN3
1680 EACF A9 02 LDA #$02
1681 EAD1 8D 1D A4 STA ADDR+1 ;DEFAULT OF 0200
1682 EAD4 8D 1E A4 STA CKSUM ;DEFAULT
1683 EAD7 8C 1C A4 STY ADDR
1684 EADA 18 CLC
1685 EADB 60 RTS
1686 EADC A2 00 ADDN3 LDX #0
1687 EADE 88 DEY ;Y-4
1688 EADF 88 DEY
1689 EAE0 88 DEY
1690 EAE1 88 DEY
1691 EAE2 10 13 BPL ADDN5 ;BRANCH IF > 4 CHR
1692 EAE4 98 TYA
1693 EAE5 49 FF EOR #$FF
1694 EAE7 A8 TAY ;# OF LEADING 0
1695 EAE8 A9 30 ADDN4 LDA #$30
1696 EAEA 9D 1C A4 STA ADDR,X
1697 EAED E8 INX
1698 EAEE 88 DEY
1699 EAEF 10 F7 BPL ADDN4
1700 EAF1 AC 2D A4 LDY CPIY+3 ;NOW THE CHR
1701 EAF4 4C FD EA JMP ADDN6
1702 EAF7 98 ADDN5 TYA ;PUT CHR
1703 EAF8 18 CLC
1704 EAF9 6D 2D A4 ADC CPIY+3
1705 EAFC A8 TAY
1706 EAFD B9 38 A4 ADDN6 LDA DIBUFF,Y ;FROM DISP BUFF
1707 EB00 9D 1C A4 STA ADDR,X
1708 EB03 C8 INY
1709 EB04 E8 INX
1710 EB05 E0 04 CPX #4
1711 EB07 D0 F4 BNE ADDN6
1712 EB09 A2 01 LDX #1
1713 EB0B A0 00 LDY #0 ;CNVRT CHR TO HEX
1714 EB0D B9 1C A4 ADDN7 LDA ADDR,Y
1715 EB10 20 7D EA JSR HEX
1716 EB13 B0 16 BCS ADDN8
1717 EB15 C8 INY
1718 EB16 B9 1C A4 LDA ADDR,Y
1719 EB19 C8 INY
1720 EB1A 20 84 EA JSR PACK ;PACK TWO CHRS INTO 1 BYTE
1721 EB1D B0 0C BCS ADDN8 ;BRCNH IF ERROR
1722 EB1F 9D 1C A4 STA ADDR,X
1723 EB22 CA DEX
1724 EB23 10 E8 BPL ADDN7
1725 EB25 E8 INX ;X=0
1726 EB26 8E 1E A4 STX CKSUM ;TO INDICATE WE GOT AN ADDR
1727 EB29 18 CLC ;NO INVALID CHARS
1728 EB2A 60 RTS
1729 EB2B 20 94 E3 ADDN8 JSR CKER00 ;OUTPUT ERROR MSG
1730 EB2E 20 24 EA JSR CRCK ;<CR>
1731 EB31 38 SEC ;SET CARRY FOR INVALID CHR
1732 EB32 60 RTS
1733 EB33
1734 EB33 ;MEMORY FAIL TO WRITE MSG & SPECIFIC ADDRESS
1735 EB33 20 24 EA MEMERR JSR CRCK
1736 EB36 20 CD E2 JSR NXTADD ;ADD Y TO ADDR+1,ADDR
1737 EB39 A0 31 LDY #M11-M1 ;PRINT "MEM FAIL"
1738 EB3B 20 AF E7 JSR KEP ;FAIL MSG
1739 EB3E 20 DB E2 JSR WRITAZ ;PRINT ADDR+1 , ADDR
1740 EB41 4C A1 E1 JMP COMIN
1741 EB44
1742 EB44 ;CLEAR DISPLAY & PRINTER POINTERS
1743 EB44 A9 00 CLR LDA #0
1744 EB46 8D 15 A4 STA CURPO2 ;DISP PNTR
1745 EB49 8D 16 A4 STA CURPOS ;PRINTR PNTR
1746 EB4C 60 RTS
1747 EB4D
1748 EB4D ;CLEAR CKSUM
1749 EB4D A9 00 CLRCK LDA #0
1750 EB4F 8D 1F A4 STA CKSUM+1
1751 EB52 8D 1E A4 STA CKSUM
1752 EB55 60 RTS
1753 EB56
1754 EB56 ;CODE FOR PAGE ZERO SIMULATION
1755 EB56 ;SUBR LDAY-SIMULATES LDA (N),Y INSTR WITHOUT PAG 0
1756 EB56 ;BY PUTTING INDIR ADDR INTO RAM & THEN EXEC LDA NM,Y
1757 EB56 A9 25 PCLLD LDA #SAVPC ;FOR DISASSEMBLER
1758 EB58 8C 2D A4 LDAY STY CPIY+3 ;SAVE Y
1759 EB5B A8 TAY
1760 EB5C B9 00 A4 LDA MONRAM,Y ;MONRAM=MONITOR RAM
1761 EB5F 8D 2B A4 STA LDIY+1
1762 EB62 B9 01 A4 LDA MONRAM+1,Y
1763 EB65 8D 2C A4 STA LDIY+2
1764 EB68 AC 2D A4 LDY CPIY+3 ;REST Y
1765 EB6B A9 B9 LDA #$B9 ;INST FOR LDA NM,Y
1766 EB6D 8D 2A A4 STA LDIY
1767 EB70 A9 60 LDA #$60 ;RTS
1768 EB72 8D 2D A4 STA LDIY+3
1769 EB75 4C 2A A4 JMP LDIY ;START EXECUTING LDA (),Y
1770 EB78
1771 EB78 ;SUBR STORE AT ADDR & CMP WITHOUT PAG 0
1772 EB78 ;REPLACES STA (ADDR),Y & CMP (ADDR),Y
1773 EB78 ;LOOK THAT ADDR & ADDR+1 ARE NOT ON PAG 0
1774 EB78 48 SADDR PHA
1775 EB79 AD 1C A4 LDA ADDR
1776 EB7C 8D 28 A4 STA STIY+1
1777 EB7F 8D 2B A4 STA CPIY+1
1778 EB82 AD 1D A4 LDA ADDR+1
1779 EB85 8D 29 A4 STA STIY+2
1780 EB88 8D 2C A4 STA CPIY+2
1781 EB8B A9 99 LDA #$99 ;STA INSTR
1782 EB8D 8D 27 A4 STA STIY
1783 EB90 A9 D9 LDA #$D9 ;CMP INSTR
1784 EB92 8D 2A A4 STA CPIY
1785 EB95 A9 60 LDA #$60 ;RTS
1786 EB97 8D 2D A4 STA LDIY+3
1787 EB9A 68 PLA
1788 EB9B 4C 27 A4 JMP STIY ;START EXECUTING STA (),Y
1789 EB9E
1790 EB9E ;PUSH X & Y WITHOUT CHANGING THE REGS
1791 EB9E 8D 2D A4 PHXY STA CPIY+3 ;SAVE ACC
1792 EBA1 98 TYA
1793 EBA2 48 PHA ;PUSH Y
1794 EBA3 8A TXA
1795 EBA4 48 PHA ;PUSH X
1796 EBA5 20 BA EB JSR SWSTAK ;SWAP X , Y WITH RTRN ADDR FROM S`
1797 EBA8 AD 2D A4 LDA CPIY+3
1798 EBAB 60 RTS
1799 EBAC
1800 EBAC ;PULL X & Y WITHOUT CHANGING ACC
1801 EBAC ;IT HAS TO BE CALLED BY JSR & NOT BY JMP INSTR
1802 EBAC ;SINCE IT SWAPS THE STACK
1803 EBAC 8D 2D A4 PLXY STA CPIY+3
1804 EBAF 20 BA EB JSR SWSTAK ;SWAP X , Y WITH RTRN ADDR FROM`
1805 EBB2 68 PLA
1806 EBB3 AA TAX ;PULL X
1807 EBB4 68 PLA
1808 EBB5 A8 TAY ;PULL Y
1809 EBB6 AD 2D A4 LDA CPIY+3
1810 EBB9 60 RTS
1811 EBBA
1812 EBBA ;SWAP STACK
1813 EBBA BA SWSTAK TSX
1814 EBBB A9 02 LDA #2
1815 EBBD 48 SWST1 PHA
1816 EBBE BD 06 01 LDA $0106,X ;GET PCH OR PCL
1817 EBC1 BC 04 01 LDY $0104,X ;GET Y OR X REGS
1818 EBC4 9D 04 01 STA $0104,X
1819 EBC7 98 TYA
1820 EBC8 9D 06 01 STA $0106,X
1821 EBCB CA DEX
1822 EBCC 68 PLA
1823 EBCD 38 SEC
1824 EBCE E9 01 SBC #1
1825 EBD0 D0 EB BNE SWST1
1826 EBD2 BD 08 01 LDA $0108,X ;RESTORE Y & X FROM STACK
1827 EBD5 A8 TAY
1828 EBD6 BD 07 01 LDA $0107,X
1829 EBD9 AA TAX
1830 EBDA 60 RTS
1831 EBDB
1832 EBDB ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1833 EBDB ;GET A CHAR FROM TTY SUBR INTO ACC ,SAVES X
1834 EBDB 8A GETTTY TXA ;SAVE X
1835 EBDC 48 PHA
1836 EBDD A2 07 LDX #$07 ;SET UP FOR 8 BIT CNT
1837 EBDF 8E 2A A4 STX CPIY ;CLR MSB
1838 EBE2 2C 00 A8 GET1 BIT DRB ;A^M , PB6->V
1839 EBE5 70 FB BVS GET1 ;WAIT FOR START BIT
1840 EBE7 20 0F EC JSR DELAY ;DELAY 1 BIT
1841 EBEA 20 23 EC JSR DEHALF ;DELAY 1/2 BIT TIME
1842 EBED AD 00 A8 GET3 LDA DRB ;GET 8 BITS
1843 EBF0 29 40 AND #$40 ;MASK OFF OTHER BITS,ONLY PB6
1844 EBF2 4E 2A A4 LSR CPIY ;SHIFT RIGHT CHARACTER
1845 EBF5 0D 2A A4 ORA CPIY
1846 EBF8 8D 2A A4 STA CPIY
1847 EBFB 20 0F EC JSR DELAY ;DELAY 1 BIT TIME
1848 EBFE CA DEX
1849 EBFF D0 EC BNE GET3 ;GET NEXT BIT
1850 EC01 20 0F EC JSR DELAY ;DO NOT CARE FOR PARITY BIT
1851 EC04 20 23 EC JSR DEHALF ;UNTIL WE GET BACK TO ONE AGAIN
1852 EC07 68 PLA ;RESTORE X
1853 EC08 AA TAX
1854 EC09 AD 2A A4 LDA CPIY
1855 EC0C 29 7F AND #$7F ;CLEAR PARITY BIT
1856 EC0E 60 RTS
1857 EC0F
1858 EC0F ;DELAY 1 BIT TIME AS GIVEN BY BAUD RATE
1859 EC0F AD 18 A4 DELAY LDA CNTL30 ;START TIMER T2
1860 EC12 8D 08 A8 STA T2L
1861 EC15 AD 17 A4 LDA CNTH30
1862 EC18 8D 09 A8 DE1 STA T2H
1863 EC1B AD 0D A8 DE2 LDA IFR ;GET INT FLG FOR T2
1864 EC1E 29 20 AND #MT2
1865 EC20 F0 F9 BEQ DE2 ;TIME OUT ?
1866 EC22 60 RTS
1867 EC23
1868 EC23 ;DELAY HALF BIT TIME
1869 EC23 ;TOTAL TIME DIVIDED BY 2
1870 EC23 AD 17 A4 DEHALF LDA CNTH30
1871 EC26 4A LSR A ;LSB TO CARRY
1872 EC27 AD 18 A4 LDA CNTL30
1873 EC2A 6A ROR A ;SHIFT WITH CARRY
1874 EC2B 8D 08 A8 STA T2L
1875 EC2E AD 17 A4 LDA CNTH30
1876 EC31 4A LSR A
1877 EC32 8D 09 A8 STA T2H
1878 EC35 4C 1B EC JMP DE2
1879 EC38
1880 EC38 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1881 EC38 A9 00 GETKD0 LDA #0
1882 EC3A 8D 77 A4 STA IDOT ;GO ANOTHER 90 DOTS
1883 EC3D 20 50 F0 JSR IPO0 ;OUTPUT 90 DOTS TO PRI (ZEROS)
1884 EC40
1885 EC40 ;GET A CHAR FROM KB SUBROUTINE
1886 EC40 ;FROM KB Y=ROW ,STBKEY=COLUMNS (STROBE)
1887 EC40 ;X=CTRL OR SHIFT ,OTHERWISE X=0
1888 EC40 20 EF EC GETKEY JSR ROONEK ;WAIT IF LAST KEY STILL DOWN
1889 EC43 20 2A ED GETKY JSR DEBKEY ;DEBOUNCE KEY (5 MSEC)
1890 EC46 ;CTRL OR SHIFT ?
1891 EC46 A9 8F LDA #$8F ;CHCK CLMN 5,6,7
1892 EC48 8D 80 A4 STA DRA2
1893 EC4B AD 82 A4 LDA DRB2 ;CHCK ROW 1
1894 EC4E 4A LSR A
1895 EC4F B0 20 BCS GETK1 ;IF=1 ,NO CTRL OR SHIFT
1896 EC51 A2 03 LDX #3 ;CLMN 5,6,7 (CNTRL,SHIFTL,SHIFTR)
1897 EC53 A9 7F LDA #$7F ;CTRL OR SHIFT ,SO WHICH ONE?
1898 EC55 38 GETK0 SEC
1899 EC56 6A ROR A
1900 EC57 48 PHA
1901 EC58 20 0B ED JSR ONEK2 ;LETS GET CTRL OR SHIFT INTO X
1902 EC5B AD 82 A4 LDA DRB2
1903 EC5E 4A LSR A ;ONLY ROW 1
1904 EC5F 90 06 BCC GETK00 ;GOT YOU
1905 EC61 68 PLA
1906 EC62 CA DEX
1907 EC63 D0 F0 BNE GETK0
1908 EC65 F0 DC BEQ GETKY ;THERE IS A MISTAKE CHECK AGAIN
1909 EC67 68 GETK00 PLA ;NOW GET STBKEY INTO X
1910 EC68 AD 2B A4 LDA STBKEY ;CLMN INTO X
1911 EC6B 49 FF EOR #$FF ;COMPLEMENT BECAUSE STRBS ARE 0
1912 EC6D AA TAX ;CTRL OR SHIFT TO X
1913 EC6E EE 2A A4 INC KMASK ;SET MSK=$01
1914 EC71 ;NOW GET ANY KEY
1915 EC71 20 05 ED GETK1 JSR ONEKEY ;GET A KEY
1916 EC74 88 DEY ;CHK THE ROW (1-8)
1917 EC75 D0 09 BNE GETK1B ;CHK IF CTRL OR SHIFT
1918 EC77 AD 2B A4 LDA STBKEY ;WERE ENTERED AT THE LAST MOMENT
1919 EC7A C9 F7 CMP #$F7 ;IF CLMN 5,6,7,8 TO IT AGAIN
1920 EC7C B0 04 BCS GETK2
1921 EC7E 90 C3 BCC GETKY ;SEND IT TO GET CTRL OR SHIFT
1922 EC80 30 C1 GETK1B BMI GETKY ;NO KEY ,CLEAR MSK
1923 EC82 ;WE HAVE A KEY ,DECODE IT
1924 EC82 20 2C ED GETK2 JSR DEBK1 ;DEBOUNCE KEY (5 MSEC)
1925 EC85 98 TYA ;MULT BY 8
1926 EC86 0A ASL A
1927 EC87 0A ASL A
1928 EC88 0A ASL A
1929 EC89 A8 TAY ;NOW Y HAS ROW ADDR FROM ROW 1
1930 EC8A AD 2B A4 LDA STBKEY ;ADD COLUMN TO Y
1931 EC8D 4A GETK3 LSR A
1932 EC8E 90 03 BCC GETK4
1933 EC90 C8 INY
1934 EC91 D0 FA BNE GETK3
1935 EC93 B9 21 F4 GETK4 LDA ROW1,Y ;GET THE CHR
1936 EC96 48 PHA
1937 EC97 8A TXA ;SEE IF CTRL OR SHIFT WAS USED
1938 EC98 F0 24 BEQ GETK7 ;BRCH IF NO CTRL OR SHIFT
1939 EC9A 29 10 AND #$10 ;CTRL ?
1940 EC9C F0 06 BEQ GETK5 ;NO ,GO GETKS
1941 EC9E 68 PLA
1942 EC9F 29 3F AND #$3F ;MSK OFF 2 MSB FOR CONTROL
1943 ECA1 4C BF EC JMP GETK8 ;EXIT
1944 ECA4 68 GETK5 PLA
1945 ECA5 48 PHA ;SAVE IT
1946 ECA6 29 40 AND #$40 ;IF ALPHA CHARS DO NOT SHIFT
1947 ECA8 D0 14 BNE GETK7
1948 ECAA 68 PLA
1949 ECAB 48 PHA
1950 ECAC 29 0F AND #$0F ;ONLY LSB
1951 ECAE F0 0E BEQ GETK7 ;DO NOT INTERCHANGE <SPACE> OR 0
1952 ECB0 C9 0C CMP #$0C ;ACC>=$0C ?
1953 ECB2 B0 05 BCS GETK6 ;YES ACC>=$0C
1954 ECB4 68 PLA ;NO, ACC<$0C
1955 ECB5 29 EF AND #$EF ;STRIP OFF BIT 4
1956 ECB7 D0 06 BNE GETK8 ;EXIT
1957 ECB9 68 GETK6 PLA ;ACC>=$0C
1958 ECBA 09 10 ORA #$10 ;BIT 4= 1
1959 ECBC D0 01 BNE GETK8 ;EXIT
1960 ECBE 68 GETK7 PLA
1961 ECBF ;CHECK FOR "ADV PAP","PRI LINE", OR "TOGL PRIFLG"
1962 ECBF ;IN THIS WAY WE DONT HAVE TO CHCK FOR THIS COMM
1963 ECBF C9 60 GETK8 CMP #$60 ;ADV PAPER COMM
1964 ECC1 D0 06 BNE GETK11
1965 ECC3 E0 00 CPX #0 ;IF SHIFT IS NOT ADV PAPER
1966 ECC5 F0 25 BEQ GETK10 ;NO SHIFT ,SO ADVPAPER
1967 ECC7 29 4F AND #$4F ;CONVRT TO "@"
1968 ECC9 C9 1C GETK11 CMP #$1C ;SEE IF TOGGL PRIFLG (CONTRL PRI)
1969 ECCB D0 14 BNE GETK13
1970 ECCD 20 E1 E6 JSR PRITR ;GO TOGGLE FLG
1971 ECD0 A0 01 LDY #1 ;GET THE PTRS BACK 3 SPACES
1972 ECD2 B9 15 A4 GETK12 LDA CURPO2,Y
1973 ECD5 38 SEC
1974 ECD6 E9 03 SBC #3 ;BECAUSE "ON ,OFF" MSGS
1975 ECD8 99 15 A4 STA CURPO2,Y
1976 ECDB 88 DEY
1977 ECDC 10 F4 BPL GETK12
1978 ECDE 4C 40 EC JMP GETKEY
1979 ECE1 C9 5C GETK13 CMP #BACKSLASH ;PRINT LINE COMMAND
1980 ECE3 D0 06 BNE GETK14
1981 ECE5 20 4A F0 JSR IPS0 ;PRINT WHATEVER IS IN BUFFER
1982 ECE8 4C 40 EC JMP GETKEY
1983 ECEB 60 GETK14 RTS
1984 ECEC 4C 38 EC GETK10 JMP GETKD0
1985 ECEF
1986 ECEF ;WAIT IF LAST KEY STILL DOWN (ROLLOVER)
1987 ECEF AD 82 A4 ROONEK LDA DRB2 ;SEE IF KEY STILL DOWN
1988 ECF2 C9 FF CMP #$FF
1989 ECF4 F0 0A BEQ ROO1 ;NO KEY AT ALL, CLR ROLLFL
1990 ECF6 0D 7F A4 ORA ROLLFL ;ACCEPT ONLY LAST KEY
1991 ECF9 49 FF EOR #$FF ;STRBS ARE ZEROS TO INVER
1992 ECFB D0 F2 BNE ROONEK
1993 ECFD 20 2A ED JSR DEBKEY ;CLR KMASK & DEBOUNCE RELEASE
1994 ED00 A9 00 ROO1 LDA #0 ;CLR KMASK
1995 ED02 8D 2A A4 STA KMASK
1996 ED05 ;GO THRU KB ONCE AND RTN ,IF ANY
1997 ED05 ;KEY Y=ROW (1-8) & STBKEY=CLMN
1998 ED05 ;IF NO KEY Y=0 ,STBKEY=$FF
1999 ED05 A9 7F ONEKEY LDA #$7F ;FIRST STROBE TO MSB
2000 ED07 D0 02 BNE ONEK2 ;START AT ONEK2
2001 ED09 38 ONEK1 SEC ;ONLY ONE PULSE (ZERO)
2002 ED0A 6A ROR A ;SHIFT TO RIGHT
2003 ED0B 8D 80 A4 ONEK2 STA DRA2 ;OUTPUT CLMN STROBE
2004 ED0E 8D 2B A4 STA STBKEY ;SAVE IT
2005 ED11 A0 08 LDY #8 ;CHECK 8 ROWS
2006 ED13 AD 82 A4 LDA DRB2 ;ANY KEY ?
2007 ED16 0D 2A A4 ORA KMASK ;DISABLE ROW 1 IF CTRL OR SHIFT
2008 ED19 8D 7F A4 STA ROLLFL ;SAVE WHICH KEY IT WAS
2009 ED1C 0A ONEK3 ASL A
2010 ED1D 90 0A BCC ONEK4 ;JUMP IF KEY (ZERO)
2011 ED1F 88 DEY
2012 ED20 D0 FA BNE ONEK3
2013 ED22 AD 2B A4 LDA STBKEY
2014 ED25 C9 FF CMP #$FF ;LAST CLMN ?
2015 ED27 D0 E0 BNE ONEK1 ;NO ,DO NEXT CLMN
2016 ED29 60 ONEK4 RTS
2017 ED2A
2018 ED2A A2 00 DEBKEY LDX #0 ;CLEAR CNTRL OR SHIFT
2019 ED2C A9 00 DEBK1 LDA #0 ;CLR KMASK
2020 ED2E 8D 2A A4 STA KMASK
2021 ED31 A9 88 LDA #DEBTIM ;DEBOUNCE TIME FOR KEYBOARD
2022 ED33 8D 08 A8 STA T2L
2023 ED36 A9 13 LDA #DEBTIM/256
2024 ED38 4C 18 EC JMP DE1 ;WAIT FOR 5 MSEC
2025 ED3B
2026 ED3B ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2027 ED3B ;GET A CHAR FROM TAPE SUBROUTINE
2028 ED3B ;A BUFFER IS USED TO GET BLOCKS OF DATA
2029 ED3B ;FROM TAPE ,EXCEPT WHEN FORMAT EQUAL TO
2030 ED3B ;KIM-1 (THE WHOLE FILE IS LOADED AT ONE TIME)
2031 ED3B 20 9E EB TIBYTE JSR PHXY ;PUSH X
2032 ED3E AE 36 A4 LDX TAPTR ;POINTER FOR BUFFER
2033 ED41 E0 50 CPX #80 ;IS BUFFER EMPTY ?
2034 ED43 D0 03 BNE TIB1
2035 ED45 20 53 ED JSR TIBY1 ;LOAD ANOTHER BLOCK
2036 ED48 BD 16 01 TIB1 LDA TABUFF,X
2037 ED4B E8 INX
2038 ED4C 8E 36 A4 STX TAPTR
2039 ED4F 20 AC EB JSR PLXY ;PULL X
2040 ED52 60 RTS
2041 ED53 ;LOAD A BLOCK FROM TAPE INTO BUFFER
2042 ED53 20 EA ED TIBY1 JSR TAISET ;SET TAPE FOR INPUT
2043 ED56 20 29 EE TIBY3 JSR GETTAP ;GET A CHAR FROM TAPE
2044 ED59 C9 23 CMP #'#' ;CHECK FIRST CHR FOR
2045 ED5B F0 06 BEQ TIBY4 ;START OF BLOCK
2046 ED5D C9 16 CMP #$16 ;IF NOT # SHOULD BE SYN
2047 ED5F D0 F2 BNE TIBY1
2048 ED61 F0 F3 BEQ TIBY3
2049 ED63 A2 00 TIBY4 LDX #0
2050 ED65 20 29 EE TIBY5 JSR GETTAP ;NOW LOAD INTO BUFFER
2051 ED68 9D 16 01 STA TABUFF,X
2052 ED6B E8 INX
2053 ED6C E0 52 CPX #82
2054 ED6E D0 F5 BNE TIBY5
2055 ED70 AD 00 A8 LDA DRB
2056 ED73 29 CF AND #$CF
2057 ED75 8D 00 A8 STA DRB ;TURN OFF TAPES
2058 ED78 58 CLI ;ENABL INTERR
2059 ED79 20 BD ED JSR ADDBK1 ;DISPLAY BLK COUNT
2060 ED7C A2 00 LDX #0 ;TO CLEAR PTR IN TIBYTE
2061 ED7E AD 15 01 LDA BLK ;CHECK THE BLOCK COUNT
2062 ED81 F0 05 BEQ TIBY5A ;IF FIRST BLK ,DO NOT CMP
2063 ED83 DD 16 01 CMP TABUFF,X
2064 ED86 D0 28 BNE TIBY7 ;BRANCH IF WE MISSED ONE BLOCK
2065 ED88 E8 TIBY5A INX
2066 ED89 8E 36 A4 STX TAPTR
2067 ED8C EE 15 01 INC BLK ;INCR BLK CONT
2068 ED8F AD 67 01 LDA TABUFF+81 ;STORE THIS BLK CKSUM
2069 ED92 48 PHA
2070 ED93 AD 66 01 LDA TABUFF+80
2071 ED96 48 PHA
2072 ED97 CE 12 A4 DEC INFLG ;SET INFLG DIFF FROM OUTFLG
2073 ED9A 20 E7 F1 JSR BKCKSM ;COMPUT BLK CKSUM FOR THIS BLK
2074 ED9D 68 PLA
2075 ED9E CD 66 01 CMP TABUFF+80 ;DO THEY AGREE ?
2076 EDA1 D0 0C BNE TIBY6
2077 EDA3 68 PLA
2078 EDA4 CD 67 01 CMP TABUFF+81
2079 EDA7 D0 07 BNE TIBY7
2080 EDA9 EE 12 A4 INC INFLG ;RESTORE INPUT DEVICE
2081 EDAC A2 01 LDX #1 ;TO GET FIRST CHR IN TIBYTE
2082 EDAE 60 RTS
2083 EDAF 68 TIBY6 PLA ;RESTORE STACK PTR
2084 EDB0 68 TIBY7 PLA
2085 EDB1 68 PLA
2086 EDB2 68 PLA
2087 EDB3 68 PLA
2088 EDB4 20 8E E3 JSR CKER0
2089 EDB7 4C A1 E1 JMP COMIN
2090 EDBA
2091 EDBA ;ADD 1 TO BLK COUNT AND OUTPUT IT
2092 EDBA EE 15 01 ADDBLK INC BLK ;INCR BLK CNT
2093 EDBD EE 11 A4 ADDBK1 INC PRIFLG ;SO DONT OUTPUT TO PRINTR
2094 EDC0 A9 12 LDA #18 ;ONLY OUTPUT IN THIS POSITION
2095 EDC2 8D 15 A4 STA CURPO2
2096 EDC5 AD 4A A4 LDA DIBUFF+18 ;SAVE DISBUF (FOR EDIT)
2097 EDC8 48 PHA
2098 EDC9 AD 4B A4 LDA DIBUFF+19
2099 EDCC 48 PHA
2100 EDCD AE 13 A4 LDX OUTFLG ;SAVE OUTFLG
2101 EDD0 A9 0D LDA #CR
2102 EDD2 8D 13 A4 STA OUTFLG ;TO OUTPUT TO TERMINAL
2103 EDD5 AD 16 01 LDA BLK+1 ;BLK CNT COMING FROM TAPE
2104 EDD8 20 46 EA JSR NUMA ;OUTPUT IN ASCII
2105 EDDB 8E 13 A4 STX OUTFLG ;RESTORE OUTFLG
2106 EDDE 68 PLA
2107 EDDF 8D 4B A4 STA DIBUFF+19
2108 EDE2 68 PLA
2109 EDE3 8D 4A A4 STA DIBUFF+18
2110 EDE6 CE 11 A4 DEC PRIFLG ;RESTORE PRI FLG
2111 EDE9 60 RTS
2112 EDEA
2113 EDEA ;SET TAPE (1 OR 2) FOR INPUT
2114 EDEA A9 37 TAISET LDA #$37 ;SET PB7 FOR INPUT
2115 EDEC 8D 02 A8 STA DDRB
2116 EDEF AD 34 A4 LDA TAPIN ;INPUT FLG (TAP 1=2 OR TAP 2=1)
2117 EDF2 20 1C EE JSR TIOSET ;RESET PB4 OR PB5
2118 EDF5 A9 EE LDA #MOFF+DATIN ;SET CA2=1 (DATA IN)
2119 EDF7 8D 0C A8 STA PCR
2120 EDFA A9 FF LDA #$FF ;PREPARE T2
2121 EDFC 8D 08 A8 STA T2L ;LACTH
2122 EDFF ;CHCK BIT BY BIT UNTIL $16
2123 EDFF 20 3B EE SYNC JSR RDBIT ;GET A BIT IN MSB
2124 EE02 4E 2A A4 LSR CPIY ;MAKE ROOM FOR BIT
2125 EE05 0D 2A A4 ORA CPIY ;PUT BIT INTO MSB
2126 EE08 8D 2A A4 STA CPIY
2127 EE0B C9 16 CMP #$16 ;SYN CHAR ?
2128 EE0D D0 F0 BNE SYNC
2129 EE0F A2 05 LDX #$05 ;TEST FOR 5 SYN CHARS
2130 EE11 20 29 EE SYNC1 JSR GETTAP
2131 EE14 C9 16 CMP #$16
2132 EE16 D0 E7 BNE SYNC ;IF NOT 2 CHAR RE-SYNC
2133 EE18 CA DEX
2134 EE19 D0 F6 BNE SYNC1
2135 EE1B 60 RTS
2136 EE1C
2137 EE1C ;SET PB4 OR PB5 OFF
2138 EE1C ;USED BY IN/OUT SET UPS
2139 EE1C D0 04 TIOSET BNE TIOS1 ;BRCH IF TAP1
2140 EE1E A9 14 LDA #$14 ;SET TAP 2 OFF (PB5=0)
2141 EE20 D0 02 BNE TIOS2
2142 EE22 A9 24 TIOS1 LDA #$24 ;SET TAP 1 OFF (PB4=0)
2143 EE24 8D 00 A8 TIOS2 STA DRB
2144 EE27 78 SEI ;DISABLE INTERR WHILE TAP
2145 EE28 60 RTS
2146 EE29
2147 EE29 ;GET 1 CHAR FROM TAPE AND RETURN
2148 EE29 ;WITH CHR IN ACC, USE CPIY TO ASM CHR ,USES Y
2149 EE29 A0 08 GETTAP LDY #$08 ;READ 8 BITS
2150 EE2B 20 3B EE GETA1 JSR RDBIT ;GET NEXT DATA BIT
2151 EE2E 4E 2A A4 LSR CPIY ;MAKE ROOM FOR MSB
2152 EE31 0D 2A A4 ORA CPIY ;OR IN SIGN BIT
2153 EE34 8D 2A A4 STA CPIY ;REPLACE CHAR
2154 EE37 88 DEY
2155 EE38 D0 F1 BNE GETA1
2156 EE3A 60 RTS
2157 EE3B ;GET ONE BIT FROM TAPE AND
2158 EE3B ;RETURN IT IN SIGN OF A (MSB)
2159 EE3B AD 08 A4 RDBIT LDA TSPEED ;ARE WE IN C7 OR 5B,5A FREQUENC`
2160 EE3E 30 27 BMI RDBIT4 ;JUMP TO C7 FREQ FORMAT
2161 EE40 20 75 EE JSR CKFREQ ;START BIT IN HIGH FREQ
2162 EE43 20 75 EE RDBIT1 JSR CKFREQ ;HIGH TO LOW FREQ TRANS
2163 EE46 B0 FB BCS RDBIT1
2164 EE48 AD 96 A4 LDA DIV64 ;GET HIGH FREQ TIMING
2165 EE4B 48 PHA
2166 EE4C A9 FF LDA #$FF ;SET UP TIMER
2167 EE4E 8D 96 A4 STA DIV64
2168 EE51 20 75 EE RDBIT2 JSR CKFREQ ;LOW TO HIGH FREQ TRANS
2169 EE54 90 FB BCC RDBIT2 ;WAIT TILL FREQ IS HIGH
2170 EE56 68 PLA
2171 EE57 38 SEC
2172 EE58 ED 96 A4 SBC DIV64 ;(256-T1) - (256-T2) =T2-T1
2173 EE5B 48 PHA ;LOW FREQ TIME-HIGH FREQ TIME
2174 EE5C A9 FF LDA #$FF
2175 EE5E 8D 96 A4 STA DIV64 ;SET UP TIMER
2176 EE61 68 PLA
2177 EE62 49 FF EOR #$FF
2178 EE64 29 80 AND #$80
2179 EE66 60 RTS
2180 EE67 ;EACH BIT STARTS WITH HALF PULSE OF 2400 & THEN
2181 EE67 ;3 HALF PULSES OF 1200 HZ FOR 0 ,3 PUSLES OF 2400 FOR 1
2182 EE67 ;THE READING IS MADE ON THE FOURTH 1/2 PULSE ,WHERE
2183 EE67 ;THE SIGNAL HAS STABILIZED
2184 EE67 20 75 EE RDBIT4 JSR CKFREQ ;SEE WHICH FREQ
2185 EE6A 90 FB BCC RDBIT4
2186 EE6C 20 75 EE JSR CKFREQ
2187 EE6F 20 75 EE JSR CKFREQ
2188 EE72 4C B5 FF JMP PATC24 ;NOW READ THE BIT
2189 EE75
2190 EE75 2C 00 A8 CKFREQ BIT DRB ;ARE WE HIGH OR LOW ?
2191 EE78 30 27 BMI CKF4
2192 EE7A 2C 00 A8 CKF1 BIT DRB ;WAIT TILL HIGH
2193 EE7D 10 FB BPL CKF1
2194 EE7F 65 00 ADC $00 ;EQUALIZER
2195 EE81 AD 09 A8 CKF2 LDA T2H ;SAVE CNTR
2196 EE84 48 PHA
2197 EE85 AD 08 A8 LDA T2L
2198 EE88 48 PHA
2199 EE89 A9 FF LDA #$FF
2200 EE8B 8D 09 A8 STA T2H ;START CNTR
2201 EE8E AD 08 A4 LDA TSPEED
2202 EE91 30 06 BMI CKF3 ;SUPER SPEED ?
2203 EE93 68 PLA
2204 EE94 CD 08 A4 CMP TSPEED ;HIGH OR LOW FREC
2205 EE97 68 PLA ;C=1 IF HIGH ,C=0 IF LOW
2206 EE98 60 RTS
2207 EE99 68 CKF3 PLA
2208 EE9A CD 08 A4 CMP TSPEED ;CENTER FREQ
2209 EE9D 68 CKF3A PLA
2210 EE9E E9 FE SBC #$FE
2211 EEA0 60 RTS
2212 EEA1 2C 00 A8 CKF4 BIT DRB ;WAIT TILL LOW
2213 EEA4 30 FB BMI CKF4
2214 EEA6 10 D9 BPL CKF2 ;GO GET TIMING
2215 EEA8
2216 EEA8 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2217 EEA8 ;OUTPUT ACC TO TTY SUBROUTINE
2218 EEA8 ;X,Y ARE PRESERVED
2219 EEA8 48 OUTTTY PHA ;SAVE A
2220 EEA9 20 9E EB JSR PHXY ;PUSH X
2221 EEAC 8D 27 A4 STA STIY ;PUT CHAR HERE
2222 EEAF 20 0F EC JSR DELAY ;STOP BIT FROM LAST CHAR
2223 EEB2 AD 00 A8 LDA DRB
2224 EEB5 29 FB AND #$FB ;START BIT PB2=0
2225 EEB7 8D 00 A8 STA DRB ;TTO=PB2
2226 EEBA 8D 28 A4 STA STIY+1 ;SAVE THIS PATTERN
2227 EEBD 20 0F EC JSR DELAY
2228 EEC0 A2 08 LDX #$08 ;8 BITS
2229 EEC2 2E 27 A4 ROL STIY ;GET FIRST LSB INTO BIT 2
2230 EEC5 2E 27 A4 ROL STIY
2231 EEC8 2E 27 A4 ROL STIY
2232 EECB 6E 27 A4 OUTT1 ROR STIY
2233 EECE AD 27 A4 LDA STIY
2234 EED1 29 04 AND #$04 ;GET ONLY BIT 2 FOR PB2
2235 EED3 0D 28 A4 ORA STIY+1 ;PUT BIT INTO PATTERN
2236 EED6 8D 00 A8 STA DRB ;NOW TO TTY
2237 EED9 08 PHP ;PRESERVE CARRY FOR ROTATE
2238 EEDA 20 0F EC JSR DELAY
2239 EEDD 28 PLP
2240 EEDE CA DEX
2241 EEDF D0 EA BNE OUTT1
2242 EEE1 A9 04 LDA #$04 ;STOP BIT
2243 EEE3 0D 28 A4 ORA STIY+1
2244 EEE6 8D 00 A8 STA DRB
2245 EEE9 20 0F EC JSR DELAY ;STOP BIT
2246 EEEC 20 AC EB JSR PLXY ;PULL X
2247 EEEF 68 PLA
2248 EEF0 C9 0A CMP #LF
2249 EEF2 F0 07 BEQ OUTT2
2250 EEF4 C9 FF CMP #NULLC
2251 EEF6 F0 03 BEQ OUTT2
2252 EEF8 4C 05 EF JMP OUTDIS ;USE THAT BUFF
2253 EEFB 60 OUTT2 RTS
2254 EEFC
2255 EEFC ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2256 EEFC ;OUTPUT A CHR TO D/P SUBR (SINGLE ENTRY FOR BOTH SUBR)
2257 EEFC ;IF CHAR=<CR> CLEAR DISPLAY & PRINTER
2258 EEFC 20 00 F0 OUTDP JSR OUTPRI ;FIRST TO PRI THEN TO DISP
2259 EEFF EA NOP
2260 EF00 EA NOP
2261 EF01 EA NOP
2262 EF02 6C 06 A4 OUTDP1 JMP (DILINK) ;HERE HE COULD ECHO SOMEWHERE ELSE`
2263 EF05
2264 EF05 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2265 EF05 ;OUTPUT ACC TO DISPLAY SUBROUTINE
2266 EF05 ;IF SIGN BIT (MSB)=1 DISP DO NOT CLR TO THE RIGHT
2267 EF05 48 OUTDIS PHA ;SAVE A
2268 EF06 20 9E EB JSR PHXY ;PUSH X
2269 EF09 C9 0D CMP #CR ;<CR> ?
2270 EF0B D0 07 BNE OUTD1
2271 EF0D A2 00 LDX #0 ;YES
2272 EF0F 8E 15 A4 STX CURPO2 ;CLEAR DISP POINTER
2273 EF12 F0 42 BEQ OUTD5 ;GO CLEAR DISP
2274 EF14 4C 9C FE OUTD1 JMP PATCH4
2275 EF17 E0 3C OUTD1A CPX #60 ;LAST CHAR FOR DISP?
2276 EF19 90 05 BCC OUTD2
2277 EF1B 20 AC EB JSR PLXY ;GO BACK
2278 EF1E 68 PLA ;DO NOT STORE
2279 EF1F 60 RTS
2280 EF20 9D 38 A4 OUTD2 STA DIBUFF,X ;PUT CHAR IN BUFF
2281 EF23 EE 15 A4 INC CURPO2 ;INC POINTER
2282 EF26 E0 14 CPX #20 ;DISPLAY FULL?
2283 EF28 90 1E BCC OUTD4
2284 EF2A 20 2F EF JSR OUTD2A ;THIS WAY SCROLL IS A SUBR
2285 EF2D 30 47 BMI OUTD7 ;EXIT DISP
2286 EF2F ;YES, SCROLL CHARS TO THE LEFT
2287 EF2F 8A OUTD2A TXA ;X---> Y
2288 EF30 A8 TAY
2289 EF31 A2 13 LDX #19 ;ADDR FOR DISP DO NOT
2290 EF33 8E 27 A4 OUTD3 STX STIY ;DECREM IN BINARY
2291 EF36 B9 38 A4 LDA DIBUFF,Y ;FROM BUFFER TO DISP
2292 EF39 09 80 ORA #$80 ;NO CURSOR
2293 EF3B 20 7B EF JSR OUTDD1 ;CONVERT X INTO REAL ADDR
2294 EF3E 88 DEY
2295 EF3F CE 27 A4 DEC STIY
2296 EF42 AE 27 A4 LDX STIY
2297 EF45 10 EC BPL OUTD3 ;AGAIN UNTIL WHOLE DISP
2298 EF47 60 RTS
2299 EF48 48 OUTD4 PHA
2300 EF49 09 80 ORA #$80 ;NO CURSOR
2301 EF4B 20 7B EF JSR OUTDD1 ;X=<$19 ,CONVRT TO REAL ADDR
2302 EF4E 68 PLA
2303 EF4F 29 80 AND #$80 ;IF MSB=0 CLEAR REST OF DISPLAY
2304 EF51 D0 23 BNE OUTD7
2305 EF53 AE 15 A4 LDX CURPO2
2306 EF56 ;CLEAR DISP TO THE RIGHT
2307 EF56 E0 14 OUTD5 CPX #20
2308 EF58 B0 1C BCS OUTD7
2309 EF5A 8E 27 A4 STX STIY
2310 EF5D A9 A0 LDA #' '+$80 ;<SPACE>
2311 EF5F 20 7B EF JSR OUTDD1 ;CONVRT TO REAL ADDR
2312 EF62 EE 27 A4 INC STIY
2313 EF65 AE 27 A4 LDX STIY
2314 EF68 D0 EC BNE OUTD5 ;GO NEXT
2315 EF6A 4C 76 EF JMP OUTD7
2316 EF6D EA NOP
2317 EF6E EA NOP
2318 EF6F EA NOP
2319 EF70 EA NOP
2320 EF71 EA NOP
2321 EF72 EA NOP
2322 EF73 EA NOP
2323 EF74 EA NOP
2324 EF75 EA NOP
2325 EF76 20 AC EB OUTD7 JSR PLXY ;REST ,SO PRINTR INDEPEN
2326 EF79 68 PLA
2327 EF7A 60 RTS
2328 EF7B
2329 EF7B ;CONVERT X INTO REAL ADDR FOR DISPLAY
2330 EF7B ;AND OUTPUT IT PB=DATA ; PA=W,CE ,A0 A1 (6520)
2331 EF7B 48 OUTDD1 PHA ;SAVE DATA
2332 EF7C 8A TXA
2333 EF7D 48 PHA ;SAVE X
2334 EF7E 4A LSR A ;DIVIDE X BY 4
2335 EF7F 4A LSR A ;TO GET CHIP SELECT
2336 EF80 AA TAX ;BACK TO X
2337 EF81 A9 04 LDA #4 ;FIRST CHIP SELECT
2338 EF83 E0 00 CPX #0 ;FIRST CHIP ?
2339 EF85 F0 04 BEQ OUTDD3
2340 EF87 0A OUTDD2 ASL A
2341 EF88 CA DEX
2342 EF89 D0 FC BNE OUTDD2 ;BACK TILL RIGH CS
2343 EF8B 8D 28 A4 OUTDD3 STA STIY+1 ;SAVE CS TEMPORARILY
2344 EF8E 68 PLA ;GET X AGAIN FOR CHAR
2345 EF8F 29 03 AND #$03 ;IN THAT CHIP
2346 EF91 0D 28 A4 ORA STIY+1 ;OR IN CS AND CHAR
2347 EF94 ;STORE ADDR AND DATA INTO DISPL
2348 EF94 49 FF EOR #$FF ;W=1 , CE=0 & A1,A0
2349 EF96 8D 00 AC STA RA
2350 EF99 AA TAX ;SAVE A IN X
2351 EF9A 68 PLA ;GET DATA
2352 EF9B 48 PHA
2353 EF9C 8D 02 AC STA RB
2354 EF9F 8A TXA
2355 EFA0 49 80 EOR #$80 ;SET W=0
2356 EFA2 8D 00 AC STA RA
2357 EFA5 EA NOP
2358 EFA6 09 7C ORA #$7C ;SET CE=1
2359 EFA8 8D 00 AC STA RA
2360 EFAB A9 FF LDA #$FF ;SET W=1
2361 EFAD 8D 00 AC STA RA
2362 EFB0 68 PLA ;RETURN DATA
2363 EFB1 60 RTS
2364 EFB2
2365 EFF9 *=$EFF9
2366 EFF9 EA .DB $EA
2367 F000 *=$F000
2368 F000 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2369 F000 ;OUTPUT ACC TO PRINTER SUBROUTINE
2370 F000 ;PRINTS ON 21RST CHAR OR WHEN <CR>
2371 F000 ;IT WILL PUT IT ON BUBFFER BUT WONT PRINT IF
2372 F000 ;PRIFLG=0
2373 F000 48 OUTPRI PHA ;SAVE CHR TO BE OUTPUT
2374 F001 20 9E EB JSR PHXY ;SAVE X
2375 F004 C9 0D CMP #CR ;SEE IF CR
2376 F006 F0 07 BEQ OUT01 ;YES SO PRINT THE BUFF
2377 F008 AE 16 A4 LDX CURPOS ;PTR TO NEXT POS IN BUFF
2378 F00B E0 14 CPX #20 ;SEE IF BUFF FULL
2379 F00D D0 16 BNE OUT04 ;NOT FULL SO RETURN
2380 F00F ;<CR> SO FILL REST OF BUFFER WITH BLANKS
2381 F00F 48 OUT01 PHA
2382 F010 A9 00 LDA #0 ;CURPOS = 0
2383 F012 AE 16 A4 LDX CURPOS ;SEE IF ANYTHING IN BUFFER
2384 F015 8D 16 A4 STA CURPOS
2385 F018 20 38 F0 JSR OUTPR ;CLEAR PRIBUF TO THE RIGHT
2386 F01B ;BUFFER FILLED SO PRINT IT
2387 F01B 20 45 F0 JSR IPST ;START THE PRINT
2388 F01E A2 00 LDX #0 ;STORE CHR IN BUFF (FIRST LOC)
2389 F020 68 PLA ;GET IT
2390 F021 C9 0D CMP #CR ;DONT STORE IF <CR>
2391 F023 F0 0E BEQ OUT05
2392 F025 9D 60 A4 OUT04 STA IBUFM,X ;STORE CHR IN BUFF
2393 F028 EE 16 A4 INC CURPOS ;INCR BUFF PNTR
2394 F02B E8 INX
2395 F02C 29 80 AND #$80
2396 F02E D0 03 BNE OUT05 ;DONT CLR IF MSB=1
2397 F030 20 38 F0 JSR OUTPR ;CLEAR PRIBUFF TO THE RIGHT
2398 F033 20 AC EB OUT05 JSR PLXY ;RESTORE REGS
2399 F036 68 PLA
2400 F037 60 RTS
2401 F038 A9 20 OUTPR LDA #' ' ;FILL REST OF BUFF WITH BLANKS
2402 F03A E0 14 OUTPR1 CPX #20 ;SEE IF END OF BUFF
2403 F03C F0 06 BEQ OUTPR2
2404 F03E 9D 60 A4 STA IBUFM,X ;NO SO STORE BLANK
2405 F041 E8 INX ;INCR BUFF PNTR
2406 F042 10 F6 BPL OUTPR1
2407 F044 60 OUTPR2 RTS
2408 F045
2409 F045 ;SUB TO OUTPUT BUFFER, 70 DOTS (10 DOTS AT
2410 F045 ;A TIME BY 7 ROWS) FOR EACH LINE OF PRINTING
2411 F045 2C 11 A4 IPST BIT PRIFLG ;PRINT FLG ON ?
2412 F048 10 2E BPL IPO4
2413 F04A 20 CB F0 IPS0 JSR PINT ;INITIALIZE VALUES
2414 F04D 20 E3 F0 JSR IPSU ;SET UP FIRS OUTPUT PATTERN
2415 F050 A9 C1 IPO0 LDA #PRST+SP12+MON ;TURN MOTOR ON
2416 F052 8D 0C A8 STA PCR
2417 F055 20 A0 FF JSR PAT23 ;TIME OUT ?
2418 F058 D0 0C BNE IPO2 ;NO, START SIGNAL RECEIVED
2419 F05A 20 A0 FF JSR PAT23 ;YES, TRY AGAIN
2420 F05D D0 07 BNE IPO2 ;OK
2421 F05F 4C 79 F0 JMP PRIERR ;TWO TIME OUTS - ERROR
2422 F062 EA NOP
2423 F063 EA NOP
2424 F064 EA NOP
2425 F065 EA NOP
2426 F066 20 87 F0 IPO2 JSR PRNDOT ;STRB P1=1 PRINT DOTS (1.7MSEC)
2427 F069 20 87 F0 JSR PRNDOT ;STRB P2=1 PRINT DOTS (1.7MSEC)
2428 F06C ;CHECK FOR 90, WHEN 70 PRNDOT WILL OUTPUT ZEROS
2429 F06C AD 77 A4 LDA IDOT
2430 F06F C9 5A CMP #90
2431 F071 90 F3 BCC IPO2 ;L.T. 90 THEN GO STROB P1
2432 F073 A9 E1 IPO3 LDA #PRST+SP12+MOFF ;TURN MOTOR OFF
2433 F075 8D 0C A8 STA PCR
2434 F078 60 IPO4 RTS
2435 F079
2436 F079 20 44 EB PRIERR JSR CLR ;CLEAR PRI PNTR
2437 F07C 20 B1 FE JSR PATCH5 ;TURN PRI OFF
2438 F07F A0 3B LDY #M12-M1
2439 F081 20 AF E7 JSR KEP
2440 F084 4C A1 E1 JMP COMIN ;BACK WHERE SUBR WAS CALLED
2441 F087
2442 F087 ;SUBR TO INCR DOT COUNTER,WHEN
2443 F087 ;NEG TRANS OUTPUT CHR FOR 1.7 MSEC
2444 F087 ;CLEAR & SET UP NEXT PATTERN
2445 F087 A9 00 PRNDOT LDA #0 ;CLR INTERRPTS
2446 F089 8D 01 A8 STA DRAH
2447 F08C AD 0D A8 PRDOT0 LDA IFR
2448 F08F 29 02 AND #MSP12 ;ANY STROBES ?
2449 F091 F0 F9 BEQ PRDOT0
2450 F093 AD 0C A8 LDA PCR
2451 F096 49 01 EOR #$01
2452 F098 8D 0C A8 STA PCR
2453 F09B EE 77 A4 INC IDOT
2454 F09E AD 79 A4 LDA IOUTU ;2 LEFT ELEM
2455 F0A1 0D 00 A8 ORA DRB ;DO NOT TURN TTY OUTPUT OFF
2456 F0A4 8D 00 A8 STA DRB
2457 F0A7 AD 78 A4 LDA IOUTL ;7 RIGHT ELEM, CLR CA1 INTER FLG
2458 F0AA 8D 01 A8 STA DRAH
2459 F0AD A9 A4 LDA #PRTIME
2460 F0AF 8D 08 A8 STA T2L
2461 F0B2 A9 06 LDA #PRTIME/256 ;START T2 FOR 1.7 MSEC
2462 F0B4 8D 09 A8 STA T2H
2463 F0B7 20 E3 F0 JSR IPSU ;SET NEXT PATTERN WHILE WAITING
2464 F0BA 20 1B EC JSR DE2 ;WAIT TILL TIME OUT
2465 F0BD A9 00 LDA #0 ;THERMAL ELEM OFF
2466 F0BF 8D 01 A8 STA DRAH
2467 F0C2 AD 00 A8 LDA DRB ;BUT DONT CHANGE TAPE CONTROLS
2468 F0C5 29 FC AND #$FC
2469 F0C7 8D 00 A8 STA DRB
2470 F0CA 60 RTS
2471 F0CB
2472 F0CB ; SUBROUTINE PINT -- INIT VARS FOR PRINTER
2473 F0CB A9 FF PINT LDA #$FF
2474 F0CD 8D 74 A4 STA IDIR ;DIRECTION <= -
2475 F0D0 A9 05 LDA #5
2476 F0D2 8D 75 A4 STA ICOL ;COLUMN <= LEFTMOST +1
2477 F0D5 A9 01 LDA #1
2478 F0D7 8D 76 A4 STA IOFFST ;OFFSET <= LEFT CHARACTER
2479 F0DA 8D 7C A4 STA IMASK
2480 F0DD A9 00 LDA #0
2481 F0DF 8D 77 A4 STA IDOT ;DOT COUNTER <= 0
2482 F0E2 60 RTS
2483 F0E3
2484 F0E3 ;THE VARIABLES FOR THE PRINTER ARE AS FOLLOWS:
2485 F0E3 ;
2486 F0E3 ;IDIR DIRECT HEAD IS CURRENTLY MOVING (0=+, $FF=-)
2487 F0E3 ;ICOL CLMN TO BE PRNTED NEXT (LEFTMOST=0,RIGHTMOST=4)
2488 F0E3 ;IOFFST OFFSET N PRINT BUFF (0=LEFT CHR, 1=RIGHT CHR)
2489 F0E3 ;IDOT COUNT OF NUMBER OF DOTS PRINTED THUS FAR
2490 F0E3 ;IOUTL SOLENOID PATTERN (8 CHRS ON RIGHT)
2491 F0E3 ;IOUTU SOLENOID PATTERN (2 CHRS ON LEFT)
2492 F0E3 ;IBITL 1 BIT MSK USED IN SETTING NEXT SOLENOID VALUE
2493 F0E3 ;IBITU UPPER PART OF MASK
2494 F0E3 ;IBUFM START OF PRINT BUFFER (LEFTMOST CHR FIRST)
2495 F0E3 ;IMASK MASK FOR CURRENT ROW BEING PRINTED
2496 F0E3 ;JUMP ADDRESS OF TABLE FOR CURRENT COLUMN
2497 F0E3 ;
2498 F0E3 ; THE DOT PATTERNS FOR THE CHRS ARE STORED SO THAT...
2499 F0E3 ;EACH BYTE CONTAINS THE DOTS FOR ONE COLUMN OF ONE...
2500 F0E3 ;CHR. SINCE EACH COLUMN CONTAINS SEVEN DOTS ,
2501 F0E3 ;THIS MEANS THAT ONE BIT PER BYTE IS UNUSED.
2502 F0E3 ; THE PATTERNS ARE ORGANIZED INTO 5 TABLES OF 64...
2503 F0E3 ;BYTES WHERE EACH TABLE CONTAINS ALL THE DOT...
2504 F0E3 ;PATTERNS FOR A PARTICULAR COLUMN. THE BYTES IN EACH...
2505 F0E3 ;TABLE ARE ORDERED ACCORDING TO THE CHR CODE OF...
2506 F0E3 ;THE CHR BEING REFERENCED. THE CHR CODE CAN...
2507 F0E3 ;THUS BE USED TO DIRECTLY INDEX INTO THE TABLE.
2508 F0E3
2509 F0E3 ;SUBROUTINE IPSU -- SET UP OUTPUT PATTERN FOR PRINTER
2510 F0E3 ; THIS ROUTINE IS CALLED IN ORDER TO
2511 F0E3 ;SET UP THE NEXT GROUP OF SOLENOIDS TO
2512 F0E3 ;BE OUTPUT TO THE PRINTER.
2513 F0E3 ; ON ENTRY THE CONTENTS OF ALL REGISTERS
2514 F0E3 ;ARE ARBITRARY
2515 F0E3 ; ON EXIT THE CONTENTS OF A,X,Y ARE UNDEFINED
2516 F0E3 A2 00 IPSU LDX #0 ;X POINTS TO VAR BLOCK FOR PRNTR
2517 F0E5 20 21 F1 JSR INCP ;ADVANCE PTRS TO NXT DOT POSITION
2518 F0E8 ;X NOW CONTAINS INDEX INTO PRINT BUFFER
2519 F0E8 BD 60 A4 IPS1 LDA IBUFM,X ;LOAD NEXT CHAR FROM BUFFER
2520 F0EB 29 3F AND #$3F
2521 F0ED A8 TAY
2522 F0EE A9 7D LDA #JUMP ;A<= DOT PATTERN FOR CHAR & COL
2523 F0F0 20 58 EB JSR LDAY
2524 F0F3 2C 7C A4 BIT IMASK ;SEE IF DOT IS SET
2525 F0F6 F0 16 BEQ IPS2 ;NO SO GO ON TO NEXT CHAR
2526 F0F8 AD 7A A4 LDA IBITL ;DOT ON SO SET THE CURR SOLENOID
2527 F0FB F0 08 BEQ IPS3 ;LSB OF SOL MASK IS 0 , DO MSB
2528 F0FD 0D 78 A4 ORA IOUTL ;SET THE SOLENOID IN THE PATTERN
2529 F100 8D 78 A4 STA IOUTL
2530 F103 D0 09 BNE IPS2 ;BRANCH ALWAYS
2531 F105 AD 7B A4 IPS3 LDA IBITU ;SOLENOID IS ONE OF THE 2 MSD
2532 F108 0D 79 A4 ORA IOUTU ;SET THE BIT IN THE PATTERN
2533 F10B 8D 79 A4 STA IOUTU
2534 F10E 0E 7A A4 IPS2 ASL IBITL ;SHIFT MSK TO NXT CHR POSITION
2535 F111 2E 7B A4 ROL IBITU
2536 F114 CA DEX ;DECR PTR INTO BUFFER
2537 F115 CA DEX
2538 F116 10 D0 BPL IPS1 ;NOT END YET
2539 F118 ;SOLENOID PATTERN IS SET UP IN IOUTU,IOUTL
2540 F118 AD 79 A4 LDA IOUTU ;LEFTMOST 2
2541 F11B 29 03 AND #$03 ;DISABLE FOR SEGMENTS
2542 F11D 8D 79 A4 STA IOUTU
2543 F120 60 RTS
2544 F121
2545 F121 ; SUBROUTINE INCP
2546 F121 ;THIS SUBROUTINE IS USED TO UPDATE THE PRINTER VARIABLES
2547 F121 ;TO POINT TO THE NEXT DOT POSITION TO BE PRINTED
2548 F121 ;X REG IS USED TO POINT TO THE VARIABLE BLOCK OF
2549 F121 ;BEING UPDATED
2550 F121 ;ON EXIT X CONTAINS THE POINTER TO THE LAST CHARACTER IN
2551 F121 ;THE PRINT BUFFER
2552 F121 ;CONTENTS OF A,Y ON EXIT ARE ARBITRARY
2553 F121 BD 74 A4 INCP LDA IDIR,X ;EXAMINE DIRECTION(+ OR -)
2554 F124 10 1E BPL OP03 ;DIRECTION = +
2555 F126 ;*DIRECTION = -
2556 F126 BD 75 A4 LDA ICOL,X ;SEE WHAT THE COLUMN IS
2557 F129 F0 05 BEQ OP04 ;COLUMN = 0 SO END OF DIGIT
2558 F12B ;**COLUMN # 0 SO JUST DECREMENT COLUMN
2559 F12B DE 75 A4 DEC ICOL,X
2560 F12E 10 33 BPL NEWCOL ;BRANCH ALWAYS
2561 F130 ;**COLUMN = 0 SO SEE IF EVEN OR ODD DIGIT
2562 F130 BD 76 A4 OP04 LDA IOFFST,X
2563 F133 F0 0A BEQ OP07 ;OFFSET = 0 SO DIRECTION CHANGE
2564 F135 ;***OFFSET = 1 SO MOVE TO RIGHT DIGIT
2565 F135 DE 76 A4 DEC IOFFST,X ;OFFSET <= 0 (LEFT CHARACTER)
2566 F138 A9 04 LDA #4 ;COLUMN <= 4
2567 F13A 9D 75 A4 STA ICOL,X
2568 F13D 10 24 BPL NEWCOL ;BRANCH ALWAYS
2569 F13F ;***OFFSET = 0 SO CHANGE DIRECTION TO +
2570 F13F FE 74 A4 OP07 INC IDIR,X ;DIRECTION <= $00 (+)
2571 F142 10 1C BPL NEWROW ;BRANCH ALWAYS
2572 F144 ;*DIRECTION = +
2573 F144 BD 75 A4 OP03 LDA ICOL,X ;SEE IF LAST COLUMN IN DIGIT
2574 F147 C9 04 CMP #4
2575 F149 F0 05 BEQ OP05 ;COLUMN = 4 SO GO TO NEXT DIGIT
2576 F14B FE 75 A4 INC ICOL,X ;JUST INCR COLUMN-NOT END OF DIGIT
2577 F14E 10 13 BPL NEWCOL ;BRANCH ALWAYS
2578 F150 ;**AT COLUMN 4 -- SEE IF LEFT OR RIGHT DIGIT
2579 F150 BD 76 A4 OP05 LDA IOFFST,X
2580 F153 D0 08 BNE OP06 ;OFFSET # 0 SO RIGHT DIGIT
2581 F155 9D 75 A4 STA ICOL,X ;COLUMN <= 0
2582 F158 FE 76 A4 INC IOFFST,X ;OFFSET <= 1 (RIGHT CHARACTER)
2583 F15B 10 06 BPL NEWCOL ;BRANCH ALWAYS
2584 F15D ;***OFFSET = 1 SO DIRECTION CHANGE
2585 F15D DE 74 A4 OP06 DEC IDIR,X ;DIRECTION <= $FF (-)
2586 F160
2587 F160 ;START OF NEW PRINT ROW
2588 F160 1E 7C A4 NEWROW ASL IMASK,X ;UPDATE ROW MASK FOR DOT PATTERNS
2589 F163 ;START OF NEW PRINT COLUMN
2590 F163 A9 00 NEWCOL LDA #0 ;CLEAR OUTPUT PATTERN
2591 F165 9D 78 A4 STA IOUTL,X ;PATTERN FOR 8 RIGHT CHRS
2592 F168 9D 79 A4 STA IOUTU,X ;PATTERN FOR 2 LEFT SOLEN
2593 F16B 9D 7B A4 STA IBITU,X ;OUTPUT MSK FOR LEFTMOST SOLEN
2594 F16E A9 01 LDA #1
2595 F170 9D 7A A4 STA IBITL,X ;OUTPUT MSK FOR RIGHTMOST SOLEN
2596 F173 ;GET ADDRESS OF DOT PATTERN TABLE FOR NEXT COLUMN
2597 F173 BD 75 A4 LDA ICOL,X ;GET COLUMN NUMBER (0-4)
2598 F176 0A ASL A ;*2 ,INDEX INTO TBL OF TBL ADDRS
2599 F177 A8 TAY
2600 F178 B9 D7 F2 LDA MTBL,Y ;LSB OF ADDR OF TABLE
2601 F17B 9D 7D A4 STA JUMP,X ;PTR TO TBL WITH DOT PATTERNS
2602 F17E B9 D8 F2 LDA MTBL+1,Y ;MSB OF TABLE ADDRESS
2603 F181 9D 7E A4 STA JUMP+1,X
2604 F184 A9 12 LDA #18 ;COMPUTE INDEX INTO PRNTR BUFFER
2605 F186 1D 76 A4 ORA IOFFST,X ;+1 IF RIGHT CHR
2606 F189 AA TAX
2607 F18A 60 RTS
2608 F18B
2609 F18B ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
2610 F18B ;OUTPUT ACC TO TAPE BUFFER SUBROUTINE
2611 F18B ; & WHEN FULL OUTPUT BUFF TO TAPE.
2612 F18B ; IF INFLG=OUTFLG= T USE TWO BUFFERS
2613 F18B ;OTHERWISE USE SAME BUFFER FOR INPUT
2614 F18B ;AND OUTPUT (MONIT BUFFER)
2615 F18B 20 9E EB TOBYTE JSR PHXY ;SAVE X
2616 F18E AE 37 A4 LDX TAPTR2 ;TAPE BUFFER POINTER FOR OUTPUT
2617 F191 20 0F F2 JSR BKCK2 ;STORE IN BUFFER
2618 F194 E8 INX
2619 F195 8E 37 A4 STX TAPTR2 ;FOR NEXT
2620 F198 E0 50 CPX #80 ;BUFFER FULL?
2621 F19A D0 32 BNE TABY3 ;NO , GO BACK
2622 F19C ;OUTPUT A BLOCK FROM BUFFER TO TAPE
2623 F19C 20 E7 F1 JSR BKCKSM ;COMPUT BLOCK CHECKSUM
2624 F19F 20 1D F2 JSR TAOSET ;SET TAPE FOR OUTPUT
2625 F1A2 A9 23 LDA #'#' ;CHAR FOR BEGINNING
2626 F1A4 20 4A F2 JSR OUTTAP ;OF BLOCK
2627 F1A7 ;OUTPUT CHRS FROM ACTIVE BUFFER
2628 F1A7 20 D2 F1 TABY2 JSR CKBUFF ;LOAD CHR FROM ACTIVE BUFFER
2629 F1AA 20 4A F2 JSR OUTTAP ; FROM BUFFER
2630 F1AD E8 INX
2631 F1AE E0 53 CPX #83 ;2 BLOCK CKSUM CHR + 1 EXTRA CHR..
2632 F1B0 D0 F5 BNE TABY2 ;OTHERWISE ERROR
2633 F1B2 AD 00 A8 LDA DRB
2634 F1B5 29 CF AND #$CF ;TURN TAPES OFF PB5,PB4
2635 F1B7 8D 00 A8 STA DRB
2636 F1BA 58 CLI ;ENABLE INTERRUPT
2637 F1BB A9 00 LDA #0
2638 F1BD 8D 37 A4 STA TAPTR2 ;CLR TAPE BUFF PTR
2639 F1C0 A9 00 LDA #T1I ;RESET FREE RUNNING TO 1 SHOT
2640 F1C2 8D 0B A8 STA ACR
2641 F1C5 20 9A FF JSR PAT22 ;ADD 1 TO BLK COUNT & OUTPUT
2642 F1C8 AD 68 01 LDA BLKO ;PUT BLK CNT IN FIRST LOC (TABUFF)
2643 F1CB 20 8B F1 JSR TOBYTE
2644 F1CE 20 AC EB TABY3 JSR PLXY
2645 F1D1 60 RTS
2646 F1D2
2647 F1D2 ;CHCK ACTIVE BUFFER AND LOAD A CHR
2648 F1D2 ;CARRY=0 IF ONLY 1 BUFFER ,C=1 IF 2 BUFFERS
2649 F1D2 AD 12 A4 CKBUFF LDA INFLG
2650 F1D5 CD 13 A4 CMP OUTFLG
2651 F1D8 D0 08 BNE CBUFF1
2652 F1DA C9 54 CMP #'T' ;SEE IF INFLG=OUTFLG = T
2653 F1DC D0 04 BNE CBUFF1
2654 F1DE 38 SEC ;USE PAGE 1 FOR OUTPUT BUFFER
2655 F1DF B5 AD LDA TABUF2,X
2656 F1E1 60 RTS
2657 F1E2 18 CBUFF1 CLC ;USE SAME BUFFER FOR I/O
2658 F1E3 BD 16 01 LDA TABUFF,X
2659 F1E6 60 RTS
2660 F1E7
2661 F1E7 ;COMPUTE BLOCK CHECKSUM & PUT IT
2662 F1E7 ;AT THE END OF ACTIVE BUFFER
2663 F1E7 A9 00 BKCKSM LDA #0 ;CLEAR BLK CKSUM LOCAT
2664 F1E9 8D 66 01 STA TABUFF+80
2665 F1EC 8D 67 01 STA TABUFF+81
2666 F1EF A2 4F LDX #79
2667 F1F1 20 D2 F1 BKCK1 JSR CKBUFF ;GET CHR FROM EITHER BUFFER
2668 F1F4 18 CLC
2669 F1F5 6D 66 01 ADC TABUFF+80 ;ADD TO CKSUM
2670 F1F8 8D 66 01 STA TABUFF+80
2671 F1FB 90 03 BCC *+5
2672 F1FD EE 67 01 INC TABUFF+81
2673 F200 CA DEX
2674 F201 10 EE BPL BKCK1 ;DO THE WHOLE BUFFER
2675 F203 A2 50 LDX #80
2676 F205 AD 66 01 LDA TABUFF+80 ;PUT CKSUM INTO RIGHT BUFFER
2677 F208 20 0F F2 JSR BKCK2
2678 F20B E8 INX
2679 F20C AD 67 01 LDA TABUFF+81
2680 F20F 48 BKCK2 PHA ;OUTPUT A CHAR TO RIGHT BUFFER
2681 F210 20 D2 F1 JSR CKBUFF ;GET WHICH BUFFER
2682 F213 68 PLA
2683 F214 B0 04 BCS BKCK3 ;BRNCH TO SECOND BUFFER
2684 F216 9D 16 01 STA TABUFF,X
2685 F219 60 RTS
2686 F21A 95 AD BKCK3 STA TABUF2,X ;TO PAG 1
2687 F21C 60 RTS
2688 F21D
2689 F21D ;SET TAPE (1 OR 2) FOR OUTPUT
2690 F21D 20 C0 F2 TAOSET JSR SETSPD ;SET UP SPEED (# OF HALF PULSES)
2691 F220 AD 35 A4 LDA TAPOUT ;OUTPUT FLG (TAPE 1 OR 2)
2692 F223 20 1C EE JSR TIOSET ;SET PB4 OR PB5 TO ZERO
2693 F226 A9 EC LDA #DATOUT+MOFF ;SET CA2=0 (DATA OUT)
2694 F228 8D 0C A8 STA PCR
2695 F22B A9 C0 LDA #T1FR ;SET TIMER IN FREE RUNNING
2696 F22D 8D 0B A8 STA ACR
2697 F230 A9 00 LDA #00
2698 F232 8D 05 A8 STA T1CH ;START TIMER T1
2699 F235 AE 09 A4 LDX GAP ;OUTPUT 4*GAP SYN BYTES
2700 F238 A9 16 TAOS1 LDA #$16 ;SYN CHAR
2701 F23A 20 4A F2 JSR OUTTAP ;TO TAPE
2702 F23D 20 4A F2 JSR OUTTAP
2703 F240 20 4A F2 JSR OUTTAP
2704 F243 20 4A F2 JSR OUTTAP
2705 F246 CA DEX
2706 F247 D0 EF BNE TAOS1
2707 F249 60 RTS
2708 F24A
2709 F24A ;OUTPUT ACC TO TAPE
2710 F24A 8E 2D A4 OUTTAP STX CPIY+3 ;SAVE X
2711 F24D A0 07 LDY #$07 ;FOR THE 8 BITS
2712 F24F 8C 27 A4 STY STIY
2713 F252 AE 08 A4 LDX TSPEED
2714 F255 30 39 BMI OUTTA1 ;IF ONE IS SUPER HIPER
2715 F257 48 PHA
2716 F258 A0 02 TRY LDY #2 ;SEND 3 UNITS
2717 F25A 8C 28 A4 STY STIY+1 ;STARTING AT 3700 HZ
2718 F25D BE 0A A4 ZON LDX NPUL,Y ;#OF HALF CYCLES
2719 F260 48 PHA
2720 F261 B9 0B A4 ZON1 LDA TIMG,Y ;SET UP LACTH FOR NEXT
2721 F264 8D 06 A8 STA T1LL ;PULSE (80 OR CA) (FREC)
2722 F267 A9 00 LDA #0
2723 F269 8D 07 A8 STA T1LH
2724 F26C 2C 0D A8 ZON2 BIT IFR ;WAIT FOR PREVIOUS
2725 F26F 50 FB BVC ZON2 ;CYCLE (T1 INT FLG)
2726 F271 AD 04 A8 LDA T1L ;CLR INTERR FLG
2727 F274 CA DEX
2728 F275 D0 EA BNE ZON1 ;SEND ALL CYCLES
2729 F277 68 PLA
2730 F278 CE 28 A4 DEC STIY+1
2731 F27B F0 05 BEQ SETZ ;BRCH IF LAST ONE
2732 F27D 30 07 BMI ROUT ;BRCH IF NO MORE
2733 F27F 4A LSR A ;TAKE NEXT BIT
2734 F280 90 DB BCC ZON ;...IF IT'S A ONE...
2735 F282 A0 00 SETZ LDY #0 ;SWITCH TO 2400 HZ
2736 F284 F0 D7 BEQ ZON ;UNCONDITIONAL BRCH
2737 F286 CE 27 A4 ROUT DEC STIY ;ONE LESS BIT
2738 F289 10 CD BPL TRY ;ANY MORE? GO BACK
2739 F28B 68 ROUT1 PLA ;RECOVER CHR
2740 F28C AE 2D A4 LDX CPIY+3 ;RESTORE X
2741 F28F 60 RTS
2742 F290
2743 F290 ;OUTPUT HALF PULSE FOR 0 (1200 HZ) &
2744 F290 ;TWO HALF PULSES FOR 1 (2400 HZ) (00 TSPEED)
2745 F290 48 OUTTA1 PHA
2746 F291 8D 28 A4 STA STIY+1 ;STORE ACC
2747 F294 A2 02 OUTTA2 LDX #2 ;# OF HALF PULSES
2748 F296 A9 D0 LDA #$D0 ;1/2 PULSE OF 2400
2749 F298 8D 06 A8 STA T1LL
2750 F29B A9 00 LDA #00
2751 F29D 8D 07 A8 STA T1LH
2752 F2A0 20 BC FF JSR PATC25 ;WAIT TILL COMPLETED
2753 F2A3 4E 28 A4 LSR STIY+1 ;GET BITS FROM CHR
2754 F2A6 B0 0A BCS OUTTA3
2755 F2A8 A9 A0 LDA #$A0 ;BIT=0 ,OUTPUT 1200 HZ
2756 F2AA 8D 06 A8 STA T1LL
2757 F2AD A9 01 LDA #$01
2758 F2AF 8D 07 A8 STA T1LH
2759 F2B2 20 BC FF OUTTA3 JSR PATC25
2760 F2B5 CA DEX
2761 F2B6 10 FA BPL OUTTA3 ;OUTPUT 3 HALF PULSES
2762 F2B8 88 DEY
2763 F2B9 10 D9 BPL OUTTA2 ;ALL BITS ?
2764 F2BB 4C 8B F2 JMP ROUT1 ;RESTORE REGS
2765 F2BE EA NOP
2766 F2BF EA NOP
2767 F2C0
2768 F2C0 ;SET SPEED FROM NORMAL TO 3 TIMES NORMAL
2769 F2C0 AD 08 A4 SETSPD LDA TSPEED ;SPEED FLG
2770 F2C3 6A ROR A ;NORMAL OR 3* NORM
2771 F2C4 A9 0C LDA #12
2772 F2C6 90 02 BCC SETSP1
2773 F2C8 A9 04 LDA #4
2774 F2CA 8D 0A A4 SETSP1 STA NPUL
2775 F2CD A9 12 LDA #18
2776 F2CF 90 02 BCC SETSP2
2777 F2D1 A9 06 LDA #6
2778 F2D3 8D 0C A4 SETSP2 STA TIMG+1
2779 F2D6 60 RTS
2780 F2D7 ;.FILE A3/2
2781 F2D7
2782 F2D7 ; ADDRESS TABLE FOR EACH PRINT COLUMN
2783 F2D7 ; EACH TBL CONTAINS DOT PATTERNS FOR 1 OF THE 5 COLUMNS.
2784 F2D7 ; DATA ARE STORED WITH EACH BYTE DEFINING ONE COLUMN...
2785 F2D7 ; OF A CHARACTER, WITH THE TOP DOT CORRESPONDING TO THE..
2786 F2D7 ; LSB IN THE BYTE
2787 F2D7 E1F221F361F3MTBL .DW COL0,COL1,COL2,COL3,COL4
2787 F2DD A1F3E1F3
2788 F2E1
2789 F2E1 ;DOT PATTERNS FOR COLUMN ZERO (LEFTMOST COLUMN)
2790 F2E1 3E7E7F3E7F7FCOL0 .DB $3E,$7E,$7F,$3E,$7F,$7F,$7F,$3E ;@ -- G
2790 F2E7 7F3E
2791 F2E9 7F00207F7F7F .DB $7F,$00,$20,$7F,$7F,$7F,$7F,$3E ;H -- O
2791 F2EF 7F3E
2792 F2F1 7F3E7F46013F .DB $7F,$3E,$7F,$46,$01,$3F,$07,$7F ;P -- W
2792 F2F7 077F
2793 F2F9 6307617F0300 .DB $63,$07,$61,$7F,$03,$00,$02,$40 ;X -- (
2793 F2FF 0240
2794 F301 000000142463 .DB $00,$00,$00,$14,$24,$63,$60,$00 ; -- '
2794 F307 6000
2795 F309 000014084008 .DB $00,$00,$14,$08,$40,$08,$40,$60 ;( -- /
2795 F30F 4060
2796 F311 3E4462411827 .DB $3E,$44,$62,$41,$18,$27,$3C,$01 ;0 -- 7
2796 F317 3C01
2797 F319 364600400814 .DB $36,$46,$00,$40,$08,$14,$41,$02 ;8 -- ?
2797 F31F 4102
2798 F321
2799 F321 ;DOT PATTERNS FOR COLUMN 1
2800 F321 410949414149COL1 .DB $41,$09,$49,$41,$41,$49,$09,$41 ;@ -- G
2800 F327 0941
2801 F329 084140084002 .DB $08,$41,$40,$08,$40,$02,$06,$41 ;H -- O
2801 F32F 0641
2802 F331 094109490140 .DB $09,$41,$09,$49,$01,$40,$18,$20 ;P -- W
2802 F337 1820
2803 F339 140851410400 .DB $14,$08,$51,$41,$04,$00,$01,$40 ;X -- (
2803 F33F 0140
2804 F341 0000077F2A13 .DB $00,$00,$07,$7F,$2A,$13,$4E,$04 ; -- '
2804 F347 4E04
2805 F349 1C4108083008 .DB $1C,$41,$08,$08,$30,$08,$00,$10 ;( -- /
2805 F34F 0010
2806 F351 514251411445 .DB $51,$42,$51,$41,$14,$45,$4A,$71 ;0 -- 7
2806 F357 4A71
2807 F359 494900341414 .DB $49,$49,$00,$34,$14,$14,$41,$01 ;8 -- ?
2807 F35F 4101
2808 F361
2809 F361 ;DOT PATTERNS FOR COLUMN 2
2810 F361 5D0949414149COL2 .DB $5D,$09,$49,$41,$41,$49,$09,$41 ;@ -- G
2810 F367 0941
2811 F369 087F4114400C .DB $08,$7F,$41,$14,$40,$0C,$08,$41 ;H -- O
2811 F36F 0841
2812 F371 095119497F40 .DB $09,$51,$19,$49,$7F,$40,$60,$18 ;P -- W
2812 F377 6018
2813 F379 087849410841 .DB $08,$78,$49,$41,$08,$41,$01,$40 ;X -- (
2813 F37F 0140
2814 F381 004F00147F08 .DB $00,$4F,$00,$14,$7F,$08,$59,$02 ; -- '
2814 F387 5902
2815 F389 22223E3E0008 .DB $22,$22,$3E,$3E,$00,$08,$00,$08 ;( -- /
2815 F38F 0008
2816 F391 497F51491245 .DB $49,$7F,$51,$49,$12,$45,$49,$09 ;0 -- 7
2816 F397 4909
2817 F399 494944002214 .DB $49,$49,$44,$00,$22,$14,$22,$51 ;8 -- ?
2817 F39F 2251
2818 F3A1
2819 F3A1 ;DOT PATTERNS FOR COLUMN 3
2820 F3A1 550949412249COL3 .DB $55,$09,$49,$41,$22,$49,$09,$49 ;@ -- G
2820 F3A7 0949
2821 F3A9 08413F224002 .DB $08,$41,$3F,$22,$40,$02,$30,$41 ;H -- O
2821 F3AF 3041
2822 F3B1 092129490140 .DB $09,$21,$29,$49,$01,$40,$18,$20 ;P -- W
2822 F3B7 1820
2823 F3B9 140845001041 .DB $14,$08,$45,$00,$10,$41,$01,$40 ;X -- (
2823 F3BF 0140
2824 F3C1 0000077F2A64 .DB $00,$00,$07,$7F,$2A,$64,$26,$01 ; -- '
2824 F3C7 2601
2825 F3C9 411C08080008 .DB $41,$1C,$08,$08,$00,$08,$00,$04 ;( -- /
2825 F3CF 0004
2826 F3D1 454049557F45 .DB $45,$40,$49,$55,$7F,$45,$49,$05 ;0 -- 7
2826 F3D7 4905
2827 F3D9 492900004114 .DB $49,$29,$00,$00,$41,$14,$14,$09 ;8 -- ?
2827 F3DF 1409
2828 F3E1 ;DOT PATTERNS FOR COLUMN 4
2829 F3E1 1E7E36221C41COL4 .DB $1E,$7E,$36,$22,$1C,$41,$01,$7A ;@ -- G
2829 F3E7 017A
2830 F3E9 7F000141407F .DB $7F,$00,$01,$41,$40,$7F,$7F,$3E ;H -- O
2830 F3EF 7F3E
2831 F3F1 065E4631013F .DB $06,$5E,$46,$31,$01,$3F,$07,$7F ;P -- W
2831 F3F7 077F
2832 F3F9 63074300607F .DB $63,$07,$43,$00,$60,$7F,$02,$40 ;X -- (
2832 F3FF 0240
2833 F401 000000141263 .DB $00,$00,$00,$14,$12,$63,$50,$00 ; -- '
2833 F407 5000
2834 F409 000014080008 .DB $00,$00,$14,$08,$00,$08,$00,$03 ;( -- /
2834 F40F 0003
2835 F411 3E4046221039 .DB $3E,$40,$46,$22,$10,$39,$31,$03 ;0 -- 7
2835 F417 3103
2836 F419 361E00004114 .DB $36,$1E,$00,$00,$41,$14,$08,$06 ;8 -- ?
2836 F41F 0806
2837 F421
2838 F421 ;ASCII CHARACTERS FOR KB
2839 F421 2008000D0000ROW1 .DB $20,$08,$00,$0D,$00,$00,$00,$00
2839 F427 0000
2840 F429 00605C000000ROW2 .DB $00,$60,'\',$00,$00,$00,$7F,$00
2840 F42F 7F00
2841 F431 2E4C502D3A30ROW3 .DB ".LP-:0;/"
2841 F437 3B2F
2842 F439 4D4A494F3938ROW4 .DB "MJIO98K,"
2842 F43F 4B2C
2843 F441 424759553736ROW5 .DB "BGYU76HN"
2843 F447 484E
2844 F449 434452543534ROW6 .DB "CDRT54FV"
2844 F44F 4656
2845 F451 5A4157453332ROW7 .DB "ZAWE32SX"
2845 F457 5358
2846 F459 00001B51315EROW8 .DB $00,$00,$1B,"Q1",$5E,"]["
2846 F45F 5D5B
2847 F461
2848 F461 ;DISASSEMBLE INSTRUCTIONS AND SHOW REGS IS REGF SET
2849 F461 AD 0E A4 REGQ LDA REGF ;GET FLAG
2850 F464 F0 06 BEQ DISASM
2851 F466 20 32 E2 JSR REG1 ;SHOW THE SIX REGS
2852 F469 20 24 EA JSR CRCK ;<CR>
2853 F46C
2854 F46C 20 45 F5 DISASM JSR PRBL2
2855 F46F 20 3C F5 JSR PRPC ;OUTPUT PROG COUNTR
2856 F472 A0 00 LDY #0
2857 F474 20 56 EB JSR PCLLD
2858 F477 A8 TAY
2859 F478 4A LSR A
2860 F479 90 0B BCC IEVEN
2861 F47B 4A LSR A
2862 F47C B0 17 BCS ERR
2863 F47E C9 22 CMP #$22
2864 F480 F0 13 BEQ ERR
2865 F482 29 07 AND #7
2866 F484 09 80 ORA #$80
2867 F486 4A IEVEN LSR A
2868 F487 AA TAX
2869 F488 BD 5B F5 LDA MODE,X
2870 F48B B0 04 BCS RTMODE
2871 F48D 4A LSR A
2872 F48E 4A LSR A
2873 F48F 4A LSR A
2874 F490 4A LSR A
2875 F491 29 0F RTMODE AND #$F
2876 F493 D0 04 BNE GETFMT
2877 F495 A0 80 ERR LDY #$80
2878 F497 A9 00 LDA #0
2879 F499 AA GETFMT TAX
2880 F49A BD 9F F5 LDA MODE2,X
2881 F49D 8D 16 01 STA FORMA
2882 F4A0 29 03 AND #3
2883 F4A2 85 EA STA LENGTH
2884 F4A4 98 TYA ;OPCODE
2885 F4A5 29 8F AND #$8F
2886 F4A7 AA TAX
2887 F4A8 98 TYA ;OPCODE IN A AGAIN
2888 F4A9 A0 03 LDY #3
2889 F4AB E0 8A CPX #$8A
2890 F4AD F0 0B BEQ MNNDX3
2891 F4AF 4A MNNDX1 LSR A
2892 F4B0 90 08 BCC MNNDX3
2893 F4B2 4A LSR A
2894 F4B3 4A MNNDX2 LSR A
2895 F4B4 09 20 ORA #$20
2896 F4B6 88 DEY
2897 F4B7 D0 FA BNE MNNDX2
2898 F4B9 C8 INY
2899 F4BA 88 MNNDX3 DEY
2900 F4BB D0 F2 BNE MNNDX1
2901 F4BD 48 PHA ;SAVE MNEMONIC TABLE INDEX
2902 F4BE 20 56 EB JSR PCLLD
2903 F4C1 20 46 EA JSR NUMA
2904 F4C4 20 45 F5 JSR PRBL2 ;PRINT LAST BLANK
2905 F4C7 68 PLA
2906 F4C8 A8 TAY
2907 F4C9 B9 B9 F5 LDA MNEML,Y
2908 F4CC 8D 17 01 STA LMNEM
2909 F4CF B9 F9 F5 LDA MNEMR,Y
2910 F4D2 8D 18 01 STA RMNEM
2911 F4D5 A2 03 LDX #3 ;MUST BE
2912 F4D7 A9 00 PRMN1 LDA #0
2913 F4D9 A0 05 LDY #5
2914 F4DB 0E 18 01 PRMN2 ASL RMNEM
2915 F4DE 2E 17 01 ROL LMNEM
2916 F4E1 2A ROL A
2917 F4E2 88 DEY
2918 F4E3 D0 F6 BNE PRMN2
2919 F4E5 69 BF ADC #'?'+$80 ;ADD "?" OFFSET
2920 F4E7 20 BC E9 JSR OUTALL
2921 F4EA CA DEX
2922 F4EB D0 EA BNE PRMN1
2923 F4ED 20 45 F5 JSR PRBL2
2924 F4F0 A2 06 LDX #6
2925 F4F2 A9 00 LDA #0
2926 F4F4 8D 29 A4 STA STIY+2 ;FLAG
2927 F4F7 E0 03 PRADR1 CPX #3
2928 F4F9 D0 1E BNE PRADR3 ;IF X=3 PRINT ADDR VALUE
2929 F4FB A4 EA LDY LENGTH
2930 F4FD F0 1A BEQ PRADR3 ;1 BYTE INSTR
2931 F4FF AD 16 01 PRADR2 LDA FORMA
2932 F502 C9 E8 CMP #$E8 ;RELATIVE ADDRESSING
2933 F504 20 56 EB JSR PCLLD
2934 F507 B0 27 BCS RELADR
2935 F509 ;SE IF SYMBOL
2936 F509 48 PHA
2937 F50A AD 29 A4 LDA STIY+2
2938 F50D D0 03 BNE MR11A
2939 F50F EE 29 A4 INC STIY+2 ;SHOW WE WERE HERE
2940 F512
2941 F512 68 MR11A PLA
2942 F513 20 46 EA JSR NUMA
2943 F516 88 DEY
2944 F517 D0 E6 BNE PRADR2
2945 F519 0E 16 01 PRADR3 ASL FORMA
2946 F51C 90 0E BCC PRADR4
2947 F51E BD AC F5 LDA CHAR1-1,X
2948 F521 20 BC E9 JSR OUTALL
2949 F524 BD B2 F5 LDA CHAR2-1,X
2950 F527 F0 03 BEQ PRADR4
2951 F529 20 BC E9 JSR OUTALL
2952 F52C CA PRADR4 DEX
2953 F52D D0 C8 BNE PRADR1
2954 F52F 60 RTS
2955 F530 20 4D F5 RELADR JSR PCADJ3
2956 F533 AA TAX
2957 F534 E8 INX
2958 F535 D0 01 BNE PRNTXY
2959 F537 C8 INY
2960 F538 98 PRNTXY TYA
2961 F539 4C 42 EA JMP WRAX ;PRINT A &X
2962 F53C AD 26 A4 PRPC LDA SAVPC+1 ;PRINT PC
2963 F53F AE 25 A4 LDX SAVPC
2964 F542 20 42 EA JSR WRAX
2965 F545 A9 20 PRBL2 LDA #' '
2966 F547 4C BC E9 JMP OUTALL
2967 F54A A5 EA LDA LENGTH
2968 F54C 38 SEC
2969 F54D AC 26 A4 PCADJ3 LDY SAVPC+1 ;PRG CNTR HIGH
2970 F550 AA TAX
2971 F551 10 01 BPL PCADJ4
2972 F553 88 DEY
2973 F554 6D 25 A4 PCADJ4 ADC SAVPC ;PROG CNTR LOW
2974 F557 90 01 BCC RTS1
2975 F559 C8 INY
2976 F55A 60 RTS1 RTS
2977 F55B
2978 F55B 40024503D008MODE .DB $40,2,$45,3,$D0,8,$40,9
2978 F561 4009
2979 F563 30224533D008 .DB $30,$22,$45,$33,$D0,8,$40,9
2979 F569 4009
2980 F56B 40024533D008 .DB $40,2,$45,$33,$D0,8,$40,9
2980 F571 4009
2981 F573 400245B3D008 .DB $40,2,$45,$B3,$D0,8,$40,9
2981 F579 4009
2982 F57B 00224433D08C .DB 0,$22,$44,$33,$D0,$8C,$44,0
2982 F581 4400
2983 F583 11224433D08C .DB $11,$22,$44,$33,$D0,$8C,$44,$9A
2983 F589 449A
2984 F58B 10 22 44 33 .DB $10,$22,$44,$33
2985 F58F D0 08 40 09 .DB $D0,8,$40,9
2986 F593 10224433D008 .DB $10,$22,$44,$33,$D0,8,$40,9
2986 F599 4009
2987 F59B 62 13 78 A9 .DB $62,$13,$78,$A9
2988 F59F
2989 F59F 002101020080MODE2 .DB 0,$21,1,2,0,$80,$59,$4D
2989 F5A5 594D
2990 F5A7 1112064A051D .DB $11,$12,6,$4A,5,$1D
2991 F5AD
2992 F5AD 2C292C23282ECHAR1 .DB ",",$29,",#(","."
2993 F5B3 590058000041CHAR2 .DB "Y",0,"X",0,0,"A"
2994 F5B9
2995 F5B9 1C8A1C235D8BMNEML .DB $1C,$8A,$1C,$23,$5D,$8B,$1B
2995 F5BF 1B
2996 F5C0 A1 .DB $A1
2997 F5C1 9D8A1D239D8B .DB $9D,$8A,$1D,$23,$9D,$8B,$1D,$A1
2997 F5C7 1DA1
2998 F5C9 002919AE69A8 .DB 0,$29,$19,$AE,$69,$A8,$19,$23
2998 F5CF 1923
2999 F5D1 24531B232453 .DB $24,$53,$1B,$23,$24,$53,$19,$A1
2999 F5D7 19A1
3000 F5D9 001A5B5BA569 .DB 0,$1A,$5B,$5B,$A5,$69,$24,$24
3000 F5DF 2424
3001 F5E1 AEAEA8AD2900 .DB $AE,$AE,$A8,$AD,$29,0,$7C,0
3001 F5E7 7C00
3002 F5E9 159C6D9CA569 .DB $15,$9C,$6D,$9C,$A5,$69,$29,$53
3002 F5EF 2953
3003 F5F1 84133411A569 .DB $84,$13,$34,$11,$A5,$69,$23,$A0
3003 F5F7 23A0
3004 F5F9
3005 F5F9 D8625A482662MNEMR .DB $D8,$62,$5A,$48,$26,$62,$94
3005 F5FF 94
3006 F600 88 .DB $88
3007 F601 5444C8546844 .DB $54,$44,$C8,$54,$68,$44,$E8,$94
3007 F607 E894
3008 F609 00B4088474B4 .DB 0,$B4,8,$84,$74,$B4,$28,$6E
3008 F60F 286E
3009 F611 74F4CC4A72F2 .DB $74,$F4,$CC,$4A,$72,$F2,$A4,$8A
3009 F617 A48A
3010 F619 00AAA2A27474 .DB 0,$AA,$A2,$A2,$74,$74,$74,$72
3010 F61F 7472
3011 F621 4468B232B200 .DB $44,$68,$B2,$32,$B2,0,$22,0
3011 F627 2200
3012 F629 1A1A26267272 .DB $1A,$1A,$26,$26,$72,$72,$88,$C8
3012 F62F 88C8
3013 F631 C4CA26484444 .DB $C4,$CA,$26,$48,$44,$44,$A2,$C8
3013 F637 A2C8
3014 F639
3015 F639 ;*******************************
3016 F639 ;*** AIM TEXT EDITOR ***
3017 F639 ;*** 05/01/78 ***
3018 F639 ;*******************************
3019 F639
3020 F639 ; R=READ FROM ANY INPUT DEVICE
3021 F639 ; I=INSERT A LINE FROM INPUT DEV
3022 F639 ; K=DELETE A LINE
3023 F639 ; U-GO UP ONE LINE
3024 F639 ; D=GO DOWN ONE LINE
3025 F639 ; L=LIST LINES TO OUTPUT DEV
3026 F639 ; T=GO TO TOP OF TEXT
3027 F639 ; B=GO TO BOTTOM OF TEXT
3028 F639 ; F=FIND STRING
3029 F639 ; C=CHANGE STRING TO NEW STRING
3030 F639 ; Q=QUIT EDITOR
3031 F639 ; <SPACE>=DISPLAY CURRENT LINE
3032 F639
3033 F639 ;***** E COMMAND-EDITOR ENTRY (FROM MONITOR) *****
3034 F639 20 13 EA EDIT JSR CRLOW
3035 F63C A0 6C LDY #EMSG1-M1
3036 F63E 20 AF E7 JSR KEP ;START UP MSG
3037 F641 20 13 EA JSR CRLOW
3038 F644 20 A3 E7 EDI0 JSR FROM
3039 F647 B0 FB BCS EDI0
3040 F649 AD 1E A4 LDA CKSUM ;IS CLR IF ADDR WAS INPUTTED
3041 F64C F0 03 BEQ *+5
3042 F64E 20 DB E2 JSR WRITAZ ;OUTPUT DEFAULT ADDR (0200)
3043 F651 A2 01 LDX #1
3044 F653 BD 1C A4 EDI1 LDA ADDR,X
3045 F656 95 E3 STA TEXT,X
3046 F658 95 E1 STA BOTLN,X
3047 F65A 9D 1A A4 STA S1,X ;FOR MEMORY TEST
3048 F65D CA DEX
3049 F65E 10 F3 BPL EDI1
3050 F660 20 3B E8 JSR BLANK2
3051 F663 20 A7 E7 EDI2 JSR TO ;END
3052 F666 B0 FB BCS EDI2
3053 F668 20 BC F8 JSR TOPNO ;TRANSF TEXT TO ADDR FOR RAM CHECK
3054 F66B AD 1E A4 LDA CKSUM ;IS CLR IF ADDR WAS INPUTTED
3055 F66E F0 10 BEQ EDI4 ;BRNCH IF NOT DEFAULT VALUE
3056 F670 20 34 F9 JSR SAVNOW
3057 F673 20 B6 F6 EDI3 JSR EDI ;CARRY IS SET IF NO RAM THERE
3058 F676 90 FB BCC EDI3
3059 F678 A9 00 LDA #0 ;SET UPPER LIMIT TO BEGINNING...
3060 F67A 8D 1C A4 STA ADDR ;OF PAGE
3061 F67D 20 DB E2 JSR WRITAZ ;OUTPUT DEFAULT VALUE ,UPPER LIMIT
3062 F680 AD 1C A4 EDI4 LDA ADDR
3063 F683 85 E5 STA END
3064 F685 AD 1D A4 LDA ADDR+1
3065 F688 85 E6 STA END+1
3066 F68A 20 34 F9 JSR SAVNOW
3067 F68D ;NOW SEE IF MEMORY IS THERE
3068 F68D 20 B6 F6 EDI5 JSR EDI
3069 F690 90 FB BCC EDI5
3070 F692 A5 E6 LDA END+1 ;CMP WITH END
3071 F694 CD 1D A4 CMP ADDR+1
3072 F697 F0 11 BEQ EDI7
3073 F699 B0 13 BCS EDI8
3074 F69B 20 BC F8 EDI6 JSR TOPNO ;RESTORE NOWLN
3075 F69E A9 00 LDA #0
3076 F6A0 91 DF STA (NOWLN),Y ;END OF TEXT MARKER
3077 F6A2 20 13 EA JSR CRLOW
3078 F6A5 A9 52 LDA #'R' ;FORCE READ COMMAND
3079 F6A7 4C 8D FA JMP ENTRY
3080 F6AA A5 E5 EDI7 LDA END ;IF ZERO MEM IS OKAY
3081 F6AC F0 ED BEQ EDI6
3082 F6AE A9 00 EDI8 LDA #0
3083 F6B0 8D 1C A4 STA ADDR
3084 F6B3 4C 33 EB JMP MEMERR ;NO MEMORY FOR THOSE LIMITS
3085 F6B6
3086 F6B6 A0 00 EDI LDY #0 ;CHCK IF MEMORY WRITES
3087 F6B8 20 B7 FE JSR PATCH6 ;GET BYTE ADDR BY ADDR,ADDR+1
3088 F6BB 48 PHA ;SAVE IT
3089 F6BC A9 AA LDA #$AA ;SET THIS PATTERN
3090 F6BE 20 78 EB JSR SADDR ;CHCK IT
3091 F6C1 D0 09 BNE EDI2B
3092 F6C3 68 PLA
3093 F6C4 20 78 EB JSR SADDR ;RESTORE CHR
3094 F6C7 EE 1D A4 INC ADDR+1 ;NEXT PAG
3095 F6CA 18 CLC ;IT WROTE
3096 F6CB 60 RTS
3097 F6CC 38 EDI2B SEC ;DIDNT WRITE
3098 F6CD 68 PLA
3099 F6CE 60 RTS
3100 F6CF
3101 F6CF ;***** T COMMAND-REENTRY EDITOR *****
3102 F6CF ;RE-ENTRY POINT,TEXT ALREADY THERE
3103 F6CF 20 24 EA REENTR JSR CRCK ;<CR> IF PRI ON
3104 F6D2 20 BC F8 TP JSR TOPNO ;GO TO TOP
3105 F6D5 4C B9 F7 JMP IN03A ;DISPLAY LINE
3106 F6D8
3107 F6D8 ;***** U COMMAND-UP LINE *****
3108 F6D8 ;GO UP ONE LINE BUT...
3109 F6D8 ;DOWN IN ADDRESSING MEMORY
3110 F6D8 20 DB F8 DNNO JSR ATTOP ;THIS RTN DOESNT PRINT
3111 F6DB 90 06 BCC DOW1 ;NOT TOP
3112 F6DD 20 27 F7 JSR PLNE ;ARE AT TOP
3113 F6E0 4C 78 FA JMP ERR0
3114 F6E3 A0 00 DOW1 LDY #0
3115 F6E5 20 1D F9 JSR SUB ;DECREMENT NOWLN PAST <CR>
3116 F6E8 20 1D F9 DOW2 JSR SUB
3117 F6EB 20 DB F8 JSR ATTOP
3118 F6EE B0 30 BCS UP4
3119 F6F0 B1 DF LDA (NOWLN),Y
3120 F6F2 C9 0D CMP #CR
3121 F6F4 D0 F2 BNE DOW2
3122 F6F6 4C 28 F9 JMP AD1
3123 F6F9
3124 F6F9 ;***** D COMMAND-DOWN LINE *****
3125 F6F9 ;GO DOWN ONE LINE BUT...
3126 F6F9 ;UP IN ADDRESSING MEMORY
3127 F6F9 20 09 F7 UP JSR UPNO
3128 F6FC 20 27 F7 JSR PLNE ;DISPLAY LINE & CHCK BOTTOM
3129 F6FF 20 E9 F8 JSR ATBOT
3130 F702 90 1C BCC UP4
3131 F704 A0 72 LDY #EMSG2-M1 ;PRINT "END"
3132 F706 4C AF E7 JMP KEP
3133 F709 A0 00 UPNO LDY #0
3134 F70B 20 E9 F8 JSR ATBOT
3135 F70E 90 03 BCC UP1
3136 F710 4C 5C FA JMP ENDERR
3137 F713 B1 DF UP1 LDA (NOWLN),Y
3138 F715 F0 09 BEQ UP4
3139 F717 C8 INY
3140 F718 C9 0D CMP #CR
3141 F71A D0 F7 BNE UP1
3142 F71C 98 TYA
3143 F71D 20 2A F9 JSR ADDA ;ADD LENGTH TO CURRENT LINE
3144 F720 60 UP4 RTS
3145 F721
3146 F721 ;***** B COMMAND-GO TO BOTTOM *****
3147 F721 20 C5 F8 BT JSR SETBOT
3148 F724 ;START U-COMMAND HERE
3149 F724 20 D8 F6 DOWN JSR DNNO ;U COMMAND
3150 F727
3151 F727 ;***** <SPACE> COMMAND-DISPLAY CURRENT LINE *****
3152 F727 A0 00 PLNE LDY #0 ;PRINT CURRENT LINE
3153 F729 B1 DF P02 LDA (NOWLN),Y
3154 F72B F0 0E BEQ P01 ;PAST END ?
3155 F72D C9 0D CMP #CR ;DONE?
3156 F72F F0 0A BEQ P01
3157 F731 20 BC E9 JSR OUTALL ;PUT IT SOMEWHERE
3158 F734 99 38 A4 STA DIBUFF,Y
3159 F737 C8 INY
3160 F738 4C 29 F7 JMP P02
3161 F73B 84 EA P01 STY LENGTH
3162 F73D 84 E9 STY OLDLEN
3163 F73F AC 13 A4 P03 LDY OUTFLG ;ONE MORE <CR> FOR TAPE
3164 F742 C0 0D CPY #CR
3165 F744 F0 03 BEQ P00
3166 F746 4C F0 E9 JMP CRLF ;TO OUTPUT DEV
3167 F749 4C 24 EA P00 JMP CRCK ;<CR>, & DONT CLR DISPL
3168 F74C
3169 F74C ;***** K COMMAND-KILL LINE *****
3170 F74C ;DELETE CURRENT LINE
3171 F74C 20 B6 F8 DLNE JSR KIFLG ;CLR K OR I COMM FLG
3172 F74F EA NOP
3173 F750 EA NOP
3174 F751 EA NOP
3175 F752 20 27 F7 JSR PLNE
3176 F755 20 E9 F8 JSR ATBOT
3177 F758 B0 CD BCS PLNE ;AT END OF TEXT
3178 F75A A0 00 LDY #0
3179 F75C 84 EA STY LENGTH
3180 F75E 20 3F F9 JSR REPLAC ;KILL LINE
3181 F761 4C 27 F7 JMP PLNE
3182 F764
3183 F764 ;***** I COMMAND-INSERT LINE *****
3184 F764 20 6D F7 IN JSR INL
3185 F767 20 F9 F6 JSR UP ;DISPLAY NEXT LINE DOWN
3186 F76A 4C 78 FA JMP ERR0 ;IF AT BOTTOM PRINT "END"
3187 F76D 20 B6 F8 INL JSR KIFLG ;CLR K OR I COMM FLG
3188 F770 A0 00 LDY #0 ;GET LINE INTO DIBUFF
3189 F772 84 E9 STY OLDLEN
3190 F774 20 BD E7 JSR PROMPT
3191 F777 20 44 EB JSR CLR
3192 F77A 20 93 E9 IN02 JSR INALL
3193 F77D 20 F8 FE JSR PATC12 ;CLR, SO WE CAN OUTPUT TO PRI
3194 F780 C9 7F CMP #$7F ;RUB
3195 F782 4C 2A FF JMP PATC17 ;NO ZEROS IN CASE OF PAPER TAPE
3196 F785 C9 0A IN02A CMP #LF
3197 F787 F0 F1 BEQ IN02
3198 F789 C9 0D CMP #CR
3199 F78B F0 1B BEQ IN03
3200 F78D C0 3C CPY #60 ;DO NOT INCR Y IF 60
3201 F78F B0 08 BCS IN03B
3202 F791 99 38 A4 STA DIBUFF,Y
3203 F794 C8 INY
3204 F795 C0 3C CPY #60
3205 F797 D0 E1 BNE IN02 ;CONTIN , DISP WONT ALLOW > 60 CHR`
3206 F799 A0 3C IN03B LDY #60 ;SET Y TO MAX OF 60
3207 F79B A9 01 LDA #$01
3208 F79D 0D 11 A4 ORA PRIFLG ;DO NOT OUTPUT TO PRI ANY MORE
3209 F7A0 8D 11 A4 STA PRIFLG ;OTHERWISE CLOBBERS THE BUFFER
3210 F7A3 8C 15 A4 STY CURPO2
3211 F7A6 D0 D2 BNE IN02 ;GO BACK
3212 F7A8 84 EA IN03 STY LENGTH
3213 F7AA C0 00 CPY #0 ;FIRST CHAR?
3214 F7AC D0 17 BNE IN05
3215 F7AE AD 19 A4 LDA COUNT ;K OR I COMM FLG ?
3216 F7B1 D0 12 BNE IN05 ;BRANCH IF C COMMAND
3217 F7B3 20 24 EA JSR CRCK ;<CR> IF PRI PNTR DIFF FROM 0
3218 F7B6 20 03 FF JSR PATC13 ;TURN ON TAPES & SET DEFAULT DEV
3219 F7B9 20 27 F7 IN03A JSR PLNE ;DISPLAY NEXT LINE DOWN
3220 F7BC 20 09 F7 JSR UPNO ;PRINT "END" IF BOTTOM
3221 F7BF 20 D8 F6 JSR DNNO
3222 F7C2 4C 78 FA JMP ERR0
3223 F7C5 20 3F F9 IN05 JSR REPLAC ;INSERT THE LINE
3224 F7C8 4C 24 EA JMP CRCK ;<CR> IF PRI PTR NOT 0
3225 F7CB
3226 F7CB ;***** R COMMAND-READ LINE *****
3227 F7CB ;READ TEXT FROM ANY INPUT DEVICE UNTIL
3228 F7CB ;TWO CONSECUTIVE <CR> ARE ENCOUNTER.
3229 F7CB 20 48 E8 INPU JSR WHEREI
3230 F7CE AC 12 A4 LDY INFLG ;IF TAPE DO NOT ERRASE BUFFER
3231 F7D1 C0 54 CPY #'T'
3232 F7D3 F0 03 BEQ INPU1
3233 F7D5 20 13 EA JSR CRLOW
3234 F7D8 20 6D F7 INPU1 JSR INL
3235 F7DB 20 09 F7 JSR UPNO ;NEXT LINE
3236 F7DE 4C D8 F7 JMP INPU1
3237 F7E1
3238 F7E1 ;***** L COMMAND-LIST LINES *****
3239 F7E1 ;PRINT FROM HERE N LINES TO ACTIVE OUTPUT DEV
3240 F7E1 20 37 E8 LST JSR PSL1 ;PRINT "/"
3241 F7E4 20 85 E7 JSR GCNT ;GET LINES COUNT
3242 F7E7 20 13 EA JSR CRLOW
3243 F7EA 20 71 E8 JSR WHEREO ;WHERE TO
3244 F7ED 4C F8 F7 JMP LST02 ;ONE MORE LINE
3245 F7F0 20 07 E9 LST01 JSR RCHEK
3246 F7F3 20 90 E7 JSR DONE
3247 F7F6 F0 0B BEQ LST3
3248 F7F8 20 27 F7 LST02 JSR PLNE
3249 F7FB 20 09 F7 JSR UPNO ;NEXT LINE
3250 F7FE 20 E9 F8 JSR ATBOT
3251 F801 90 ED BCC LST01 ;NO
3252 F803 20 3F F7 LST3 JSR P03 ;ONE MORE CRLF FOR TAPE
3253 F806 20 0D FF JSR PATC14 ;CLOSE TAPE IF NEEDED
3254 F809 4C 5C FA JMP ENDERR
3255 F80C
3256 F80C ;***** F COMMAND-FIND STRING *****
3257 F80C ;FIND STRING AND PRINT LINE TO TERMINAL
3258 F80C 20 1E F8 FCHAR JSR FCH
3259 F80F AD 15 A4 FCHA1 LDA CURPO2 ;SAVE BUFFER PNTR
3260 F812 48 PHA
3261 F813 20 44 EB JSR CLR ;CLEAR DISP PNTR
3262 F816 20 27 F7 JSR PLNE
3263 F819 68 PLA
3264 F81A 8D 15 A4 STA CURPO2
3265 F81D 60 RTS
3266 F81E ;FIND A CHARACTER STRING
3267 F81E A0 00 FCH LDY #0
3268 F820 20 BD E7 JSR PROMPT
3269 F823 20 5F E9 FC1 JSR RDRUP ;GET THE CHARACTER
3270 F826 C9 0D CMP #CR ;REUSE OLD ARGUMENT??
3271 F828 D0 0A BNE FC3
3272 F82A C0 00 CPY #0 ;FIRST CHAR?
3273 F82C D0 06 BNE FC3
3274 F82E 20 09 F7 FC2 JSR UPNO ;NEXT LINE DOWN
3275 F831 4C 49 F8 JMP FC5
3276 F834 C9 0D FC3 CMP #CR ;DONE
3277 F836 F0 0B BEQ FC4
3278 F838 99 EB 00 STA STRING,Y
3279 F83B C8 INY
3280 F83C C0 14 CPY #20 ;MAX LENGTH
3281 F83E D0 E3 BNE FC1
3282 F840 4C 72 FA JMP ERROR
3283 F843 20 24 EA FC4 JSR CRCK ;CLEAR DISPLAY
3284 F846 8C 29 A4 STY STIY+2 ;COUNT OF CHARACTERS
3285 F849 A0 00 FC5 LDY #0
3286 F84B 8C 15 A4 STY CURPO2 ;START AT BEGINNING OF LINENTR IS
3287 F84E AC 15 A4 FC6 LDY CURPO2 ;CLOBBER
3288 F851 A2 00 LDX #0
3289 F853 B1 DF FC7 LDA (NOWLN),Y ;GET THE CHARACTER
3290 F855 D0 03 BNE FC8 ;NOT AT END
3291 F857 4C 5C FA JMP ENDERR
3292 F85A C9 0D FC8 CMP #CR ;END OF LINE
3293 F85C F0 D0 BEQ FC2
3294 F85E D5 EB CMP STRING,X
3295 F860 F0 06 BEQ FC9
3296 F862 EE 15 A4 INC CURPO2
3297 F865 4C 4E F8 JMP FC6
3298 F868 C8 FC9 INY
3299 F869 E8 INX
3300 F86A EC 29 A4 CPX STIY+2 ;DONE?
3301 F86D D0 E4 BNE FC7
3302 F86F 60 RTS
3303 F870
3304 F870 ;***** Q COMMAND-EXIT EDITOR *****
3305 F870 ; EXIT THE TEXT EDITOR NEATLY
3306 F870 20 13 EA STOP JSR CRLOW
3307 F873 4C A1 E1 JMP COMIN
3308 F876
3309 F876 ;***** C COMMAND-CHANGE STRING *****
3310 F876 ;CHANGE STRING TO ANOTHER STRING IN A LINE
3311 F876 20 B2 F8 CHNG JSR CFLG ;SET C COMMAND FLG
3312 F879 20 0C F8 JSR FCHAR ;FIND CORRECT LINE
3313 F87C 20 3C E9 CHN1 JSR READ ;IS <CR> IF OK
3314 F87F C9 0D CMP #CR
3315 F881 F0 09 BEQ CHN2
3316 F883 20 2E F8 JSR FC2 ;TRY NEXT ONE
3317 F886 20 0F F8 JSR FCHA1 ; SHOW LINE
3318 F889 4C 7C F8 JMP CHN1
3319 F88C AD 29 A4 CHN2 LDA STIY+2 ;GET CHAR COUNT
3320 F88F 85 E9 STA OLDLEN ;GET READY FOR REPLAC
3321 F891 AD 15 A4 LDA CURPO2 ;PNTR TO BEGINNING OF STRING
3322 F894 48 PHA ;SAVE IT
3323 F895 20 2A F9 JSR ADDA ;ADD TO NOWLN (LINE PNTR)
3324 F898 20 44 EB JSR CLR ;CLEAR DISP
3325 F89B A0 05 LDY #M3-M1 ;PRINT "TO"
3326 F89D 20 AF E7 JSR KEP
3327 F8A0 A0 00 LDY #0
3328 F8A2 20 7A F7 JSR IN02 ;GET NEW STRING & REPLAC
3329 F8A5 68 PLA
3330 F8A6 AA TAX
3331 F8A7 F0 06 BEQ CHN4
3332 F8A9 20 1D F9 CHN3 JSR SUB ;RESTORE NOWLN WHERE IT WAS
3333 F8AC CA DEX
3334 F8AD D0 FA BNE CHN3
3335 F8AF 4C 27 F7 CHN4 JMP PLNE ;DISPLAY THE CHANGED LINE
3336 F8B2
3337 F8B2 ;THE FOLLOWING ARE SUBROUTINES USED BY COMMANDS
3338 F8B2 A9 01 CFLG LDA #1 ;SET FLG FOR C COMMAND
3339 F8B4 D0 02 BNE KI2
3340 F8B6 A9 00 KIFLG LDA #0 ;CLR K OR I COMMAND FLG
3341 F8B8 8D 19 A4 KI2 STA COUNT
3342 F8BB 60 RTS
3343 F8BC
3344 F8BC A5 E3 TOPNO LDA TEXT ;SET CURRENT LINE TO TOP
3345 F8BE A6 E4 LDX TEXT+1
3346 F8C0 85 DF TPO1 STA NOWLN
3347 F8C2 86 E0 STX NOWLN+1
3348 F8C4 60 RTS
3349 F8C5
3350 F8C5 A5 E1 SETBOT LDA BOTLN ;SET CURRENT LINE TO BOTTOM
3351 F8C7 A6 E2 LDX BOTLN+1
3352 F8C9 85 E7 STA SAVE
3353 F8CB 86 E8 STX SAVE+1
3354 F8CD 4C C0 F8 JMP TPO1
3355 F8D0
3356 F8D0 AD 1C A4 RESNOW LDA ADDR ;RESTORE CURRENT LINE ADDRESS
3357 F8D3 85 DF STA NOWLN
3358 F8D5 AD 1D A4 LDA ADDR+1
3359 F8D8 85 E0 STA NOWLN+1
3360 F8DA 60 RTS
3361 F8DB
3362 F8DB ; SEE IF CURRENT LINE AT TOP (C SET IF SO)
3363 F8DB A5 DF ATTOP LDA NOWLN
3364 F8DD C5 E3 CMP TEXT
3365 F8DF D0 16 BNE AT01
3366 F8E1 A5 E0 LDA NOWLN+1
3367 F8E3 C5 E4 CMP TEXT+1
3368 F8E5 D0 10 BNE AT01
3369 F8E7 38 SEC
3370 F8E8 60 RTS
3371 F8E9
3372 F8E9 ; SEE IF CURRENT LINE AT BOTTOM (C SET IF SO)
3373 F8E9 A5 DF ATBOT LDA NOWLN
3374 F8EB A6 E0 LDX NOWLN+1
3375 F8ED C5 E1 CMP BOTLN
3376 F8EF D0 06 BNE AT01
3377 F8F1 E4 E2 CPX BOTLN+1
3378 F8F3 D0 02 BNE AT01
3379 F8F5 38 AT02 SEC
3380 F8F6 60 RTS
3381 F8F7 18 AT01 CLC
3382 F8F8 60 RTS
3383 F8F9
3384 F8F9 ;SEE IF WE RAN PAST END OF BUFFER LIMIT
3385 F8F9 A5 E1 ATEND LDA BOTLN
3386 F8FB A6 E2 LDX BOTLN+1
3387 F8FD E4 E6 CPX END+1 ;HIGH BYTE > OR = ?
3388 F8FF 90 F6 BCC AT01
3389 F901 D0 F2 BNE AT02
3390 F903 C5 E5 CMP END ;LOW BYTE > OR = ?
3391 F905 90 F0 BCC AT01
3392 F907 B0 EC BCS AT02
3393 F909
3394 F909 ; SAVE CURRENT LINE (NEWLN) IN S1
3395 F909 A5 DF NOWS1 LDA NOWLN
3396 F90B A6 E0 LDX NOWLN+1
3397 F90D 4C 16 F9 JMP ADDS1A
3398 F910
3399 F910 ; MOVE ADDR INTO S1
3400 F910 AD 1C A4 ADDRS1 LDA ADDR
3401 F913 AE 1D A4 LDX ADDR+1
3402 F916 8D 1A A4 ADDS1A STA S1
3403 F919 8E 1B A4 STX S1+1
3404 F91C 60 RTS
3405 F91D
3406 F91D ; SUBTRACT ONE FROM CURRENT LINE (NOWLN)
3407 F91D C6 DF SUB DEC NOWLN
3408 F91F A5 DF LDA NOWLN
3409 F921 C9 FF CMP #$FF
3410 F923 D0 02 BNE SUB1
3411 F925 C6 E0 DEC NOWLN+1
3412 F927 60 SUB1 RTS
3413 F928
3414 F928 ; ADD ACC TO CURRENT LINE (NOWLN)
3415 F928 A9 01 AD1 LDA #1
3416 F92A 18 ADDA CLC
3417 F92B 65 DF ADC NOWLN
3418 F92D 85 DF STA NOWLN
3419 F92F 90 02 BCC ADDA1
3420 F931 E6 E0 INC NOWLN+1
3421 F933 60 ADDA1 RTS
3422 F934
3423 F934 A5 DF SAVNOW LDA NOWLN ;SAVE CURRENT LINE INTO ADDR
3424 F936 8D 1C A4 STA ADDR
3425 F939 A5 E0 LDA NOWLN+1
3426 F93B 8D 1D A4 STA ADDR+1
3427 F93E 60 REP2 RTS
3428 F93F
3429 F93F ;MOVE CURRENT TEXT AROUND TO HAVE
3430 F93F ;SPACE TO PUT IN THE NEW BUFFER
3431 F93F A4 EA REPLAC LDY LENGTH
3432 F941 C4 E9 CPY OLDLEN ;COMPARE OLD AND NEW LENGTHS
3433 F943 D0 1A BNE R2W ;BRANCH IF DIFF
3434 F945 F0 07 BEQ R87 ;LENGTHS ARE EQUAL. JUST REPLACE
3435 F947 A9 0D R8 LDA #CR
3436 F949 91 DF STA (NOWLN),Y
3437 F94B 20 4A FA JSR GOGO
3438 F94E
3439 F94E ;LENGTH = OLDLEN
3440 F94E 88 R87 DEY
3441 F94F C0 FF CPY #$FF
3442 F951 F0 EB BEQ REP2
3443 F953 B9 38 A4 R88 LDA DIBUFF,Y
3444 F956 91 DF STA (NOWLN),Y
3445 F958 20 4A FA JSR GOGO
3446 F95B 88 DEY
3447 F95C 10 F5 BPL R88
3448 F95E 60 RTS
3449 F95F B0 6E R2W BCS R100 ;LENGTH > OLDLEN
3450 F961
3451 F961 ;LENGTH < OLDLEN
3452 F961 20 34 F9 JSR SAVNOW ;PUT NOWLN INTO ADDR
3453 F964 20 10 F9 JSR ADDRS1 ;PUT IT IN S1 ALSO
3454 F967 A5 E9 LDA OLDLEN
3455 F969 38 SEC
3456 F96A E5 EA SBC LENGTH ;GET DIFFERENCE IN LENGTHS
3457 F96C A4 EA LDY LENGTH
3458 F96E D0 07 BNE RQP
3459 F970 AE 19 A4 LDX COUNT ;C-COMM ?
3460 F973 D0 02 BNE RQP ;YES, JUMP
3461 F975 69 00 ADC #0 ;INCLUDE <CR>
3462 F977 48 RQP PHA
3463 F978 18 CLC
3464 F979 6D 1A A4 ADC S1
3465 F97C 8D 1A A4 STA S1
3466 F97F 90 03 BCC R6
3467 F981 EE 1B A4 INC S1+1
3468 F984 A9 1A R6 LDA #S1
3469 F986 20 58 EB JSR LDAY
3470 F989 91 DF STA (NOWLN),Y ;...AND NOVE IT UP (DOWN IN ADDR)
3471 F98B 20 4A FA JSR GOGO
3472 F98E AA TAX
3473 F98F AD 1A A4 LDA S1
3474 F992 C5 E1 CMP BOTLN ;DONE ??
3475 F994 D0 07 BNE R5
3476 F996 AD 1B A4 LDA S1+1
3477 F999 C5 E2 CMP BOTLN+1
3478 F99B F0 0E BEQ R7
3479 F99D 20 28 F9 R5 JSR AD1
3480 F9A0 EE 1A A4 INC S1
3481 F9A3 D0 03 BNE R55
3482 F9A5 EE 1B A4 INC S1+1
3483 F9A8 4C 84 F9 R55 JMP R6
3484 F9AB 20 D0 F8 R7 JSR RESNOW ;RESTORE NOWLN
3485 F9AE 68 PLA ;RESTORE DIFFERENCE
3486 F9AF 8D 2A A4 STA CPIY ;SAVE IT
3487 F9B2 A5 E1 LDA BOTLN
3488 F9B4 38 SEC
3489 F9B5 ED 2A A4 SBC CPIY ;AND SUBTRACT IT FROM BOTTOM
3490 F9B8 85 E1 STA BOTLN
3491 F9BA B0 02 BCS R9
3492 F9BC C6 E2 DEC BOTLN+1
3493 F9BE AD 19 A4 R9 LDA COUNT ;C COMM OR K ,I COMM ?
3494 F9C1 D0 04 BNE R10
3495 F9C3 A4 EA LDY LENGTH
3496 F9C5 D0 05 BNE R11
3497 F9C7 A4 EA R10 LDY LENGTH
3498 F9C9 D0 83 BNE R87
3499 F9CB 60 RTS
3500 F9CC 4C 47 F9 R11 JMP R8
3501 F9CF
3502 F9CF ;LENGTH > OLDLEN
3503 F9CF A5 EA R100 LDA LENGTH ;NEW LINE IS LONGER
3504 F9D1 38 SEC
3505 F9D2 E5 E9 SBC OLDLEN
3506 F9D4 A4 E9 LDY OLDLEN
3507 F9D6 D0 02 BNE R101 ;ALREADY HAVE ROOM FOR CR
3508 F9D8 69 00 ADC #0 ;ADD ONE TO DIFFERENCE
3509 F9DA 48 R101 PHA
3510 F9DB 20 34 F9 JSR SAVNOW ;NOWLN INTO S1
3511 F9DE 20 C5 F8 JSR SETBOT
3512 F9E1 A0 00 LDY #0
3513 F9E3 B1 DF R102 LDA (NOWLN),Y
3514 F9E5 C9 00 CMP #0
3515 F9E7 F0 06 BEQ R108
3516 F9E9 20 28 F9 JSR AD1
3517 F9EC 4C E3 F9 JMP R102
3518 F9EF 68 R108 PLA
3519 F9F0 48 PHA
3520 F9F1 18 CLC
3521 F9F2 65 E1 ADC BOTLN ;ADD DIFFERENCE TO END
3522 F9F4 85 E1 STA BOTLN ;STORE NEW END
3523 F9F6 90 02 BCC R103
3524 F9F8 E6 E2 INC BOTLN+1
3525 F9FA 20 F9 F8 R103 JSR ATEND
3526 F9FD 90 0B BCC R107
3527 F9FF A5 E7 LDA SAVE ;RESTORE OLD BOTTOM
3528 FA01 85 E1 STA BOTLN
3529 FA03 A5 E8 LDA SAVE+1
3530 FA05 85 E2 STA BOTLN+1
3531 FA07 4C 5C FA JMP ENDERR ;RAN PAST BUFFER END
3532 FA0A 20 09 F9 R107 JSR NOWS1 ;SAVE CURRENT END
3533 FA0D 68 PLA
3534 FA0E 18 CLC
3535 FA0F 65 DF ADC NOWLN
3536 FA11 85 DF STA NOWLN
3537 FA13 90 02 BCC R104
3538 FA15 E6 E0 INC NOWLN+1
3539 FA17 A9 1A R104 LDA #S1
3540 FA19 20 58 EB JSR LDAY
3541 FA1C 91 DF STA (NOWLN),Y
3542 FA1E 20 4A FA JSR GOGO
3543 FA21 AD 1A A4 LDA S1
3544 FA24 CD 1C A4 CMP ADDR
3545 FA27 D0 08 BNE R105
3546 FA29 AD 1B A4 LDA S1+1
3547 FA2C CD 1D A4 CMP ADDR+1 ;BACK WHERE WE STARTED ??
3548 FA2F F0 13 BEQ R106 ;BRANCH IF DONE
3549 FA31 20 1D F9 R105 JSR SUB
3550 FA34 CE 1A A4 DEC S1
3551 FA37 AD 1A A4 LDA S1
3552 FA3A C9 FF CMP #$FF
3553 FA3C D0 03 BNE R1051
3554 FA3E CE 1B A4 DEC S1+1
3555 FA41 4C 17 FA R1051 JMP R104
3556 FA44 20 D0 F8 R106 JSR RESNOW
3557 FA47 4C BE F9 JMP R9
3558 FA4A
3559 FA4A ;SEE IF IT WROTE INTO MEMORY
3560 FA4A D1 DF GOGO CMP (NOWLN),Y
3561 FA4C F0 0D BEQ GOGO1
3562 FA4E ;MOVE ADDRESS
3563 FA4E A5 DF LDA NOWLN
3564 FA50 8D 1C A4 STA ADDR
3565 FA53 A5 E0 LDA NOWLN+1
3566 FA55 8D 1D A4 STA ADDR+1
3567 FA58 4C 33 EB JMP MEMERR
3568 FA5B 60 GOGO1 RTS ;OK
3569 FA5C
3570 FA5C 20 44 EB ENDERR JSR CLR ;CLEAR PNTR
3571 FA5F A0 72 LDY #EMSG2-M1 ;PRINT "END"
3572 FA61 20 AF E7 JSR KEP
3573 FA64 20 D8 F6 JSR DNNO ;BACK UP TO LAST LINE
3574 FA67 20 42 E8 JSR TTYTST ;IF TTY <CR>
3575 FA6A D0 03 BNE ENDE2
3576 FA6C 20 13 EA JSR CRLOW
3577 FA6F 4C 78 FA ENDE2 JMP ERR0
3578 FA72 20 FE E8 ERROR JSR LL
3579 FA75 20 D4 E7 JSR QM
3580 FA78 20 44 EB ERR0 JSR CLR
3581 FA7B A2 FF LDX #$FF
3582 FA7D COM =ERR0
3583 FA7D 9A TXS
3584 FA7E 20 FE E8 JSR LL ;I/O TO TERMINAL (KB,D/P OR TTY)
3585 FA81 D8 CLD
3586 FA82 20 88 FA JSR COMM
3587 FA85 4C 78 FA JMP ERR0
3588 FA88
3589 FA88 ;GET EDITOR COMMANDS & DECODE
3590 FA88 A2 00 COMM LDX #0
3591 FA8A 20 BC FE JSR PATCH8 ;READ A CHAR WITH "=< >"
3592 FA8D A2 0B ENTRY LDX #COMCN1
3593 FA8F DD AC FA CD02 CMP COMTBL,X ;COMPARE WITH ALLOWABLE COMMANDS
3594 FA92 F0 0C BEQ CFND1 ;MATCH ,SO PROCESS COMMAND
3595 FA94 CA DEX
3596 FA95 10 F8 BPL CD02
3597 FA97 20 D4 E7 JSR QM ;NOT IN LIST ,SO NOT LEGAL COMMAND
3598 FA9A 20 24 EA JSR CRCK
3599 FA9D 4C 78 FA JMP ERR0
3600 FAA0 20 17 FF CFND1 JSR PATC15 ;<CR> & START DECODING COMMAND
3601 FAA3 BD B9 FA LDA JTBL+1,X
3602 FAA6 8D 1B A4 STA S1+1
3603 FAA9 6C 1A A4 JMP (S1)
3604 FAAC
3605 FAAC COMCN1 =11
3606 FAAC ;COMMAND TABLE
3607 FAAC 4B2052495544COMTBL .DB "K RIUDLTBFQC"
3607 FAB2 4C5442465143
3608 FAB8 4CF727F7CBF7JTBL .DW DLNE,PLNE,INPU,IN,DOWN,UP
3608 FABE 64F724F7F9F6
3609 FAC4 E1F7D2F621F7 .DW LST,TP,BT,FCHAR,STOP,CHNG
3609 FACA 0CF870F876F8
3610 FAD0
3611 FAD0 ;READ FROM MEMORY FOR ASSEMBLER
3612 FAD0 98 MREAD TYA
3613 FAD1 48 PHA
3614 FAD2 A0 00 LDY #0
3615 FAD4 B1 DF LDA (NOWLN),Y
3616 FAD6 8D 2A A4 STA CPIY
3617 FAD9 20 28 F9 JSR AD1
3618 FADC 68 PLA
3619 FADD A8 TAY
3620 FADE AD 2A A4 LDA CPIY
3621 FAE1 60 RTS
3622 FAE2
3623 FAE2 ;THIS PROGRAM CONVERS MNEMONIC INSTRUCTIONS INTO MACHINE
3624 FAE2 ;CODE AND STORES IT IN THE DESIGNATED MEMORY AREA
3625 FAE2
3626 FAE2 ;ROM TABLE LOCATIONS:
3627 FAE2 00020008F2FFTYPTR1 .DB 00,02,00,08,$F2,$FF,$80,01
3627 FAE8 8001
3628 FAEA C0E2C0C0FF00 .DB $C0,$E2,$C0,$C0,$FF,00,00
3628 FAF0 00
3629 FAF1 0800108040C0TYPTR2 .DB 08,00,$10,$80,$40,$C0,00,$C0
3629 FAF7 00C0
3630 FAF9 00400000E420 .DB $00,$40,00,00,$E4,$20,$80
3630 FAFF 80
3631 FB00 00FC000808F8CORR .DB 00,$FC,00,08,08,$F8,$FC,$F4
3631 FB06 FCF4
3632 FB08 0C1004F40020 .DB $0C,$10,04,$F4,00,$20,$10
3632 FB0E 10
3633 FB0F 00000F010101SIZEM .DB 00,00,$0F,01,01,01,$11,$11
3633 FB15 1111
3634 FB17 020211110212 .DB 02,02,$11,$11,02,$12,00
3634 FB1D 00
3635 FB1E
3636 FB1E 000810182028STCODE .DB $00,$08,$10,$18,$20,$28,$30,$38
3636 FB24 3038
3637 FB26 404850586068 .DB $40,$48,$50,$58,$60,$68,$70,$78
3637 FB2C 7078
3638 FB2E 80889098ACA8 .DB $80,$88,$90,$98,$AC,$A8,$B0,$B8
3638 FB34 B0B8
3639 FB36 CCC8D0D8ECE8 .DB $CC,$C8,$D0,$D8,$EC,$E8,$F0,$F8
3639 FB3C F0F8
3640 FB3E 0C2C4C4C8CAC .DB $0C,$2C,$4C,$4C,$8C,$AC,$CC,$EC
3640 FB44 CCEC
3641 FB46 8A9AAABACADA .DB $8A,$9A,$AA,$BA,$CA,$DA,$EA,$FA
3641 FB4C EAFA
3642 FB4E 0E2E4E6E8EAE .DB $0E,$2E,$4E,$6E,$8E,$AE,$CE,$EE
3642 FB54 CEEE
3643 FB56 0D2D4D6D8DAD .DB $0D,$2D,$4D,$6D,$8D,$AD,$CD,$ED
3643 FB5C CDED
3644 FB5E 0D0D0C0D0E0DTYPTB .DB 13,13,12,13,14,13,12,13
3644 FB64 0C0D
3645 FB66 0D0D0C0D0D0D .DB 13,13,12,13,13,13,12,13
3645 FB6C 0C0D
3646 FB6E 0F0D0C0D090D .DB 15,13,12,13,9,13,12,13
3646 FB74 0C0D
3647 FB76 080D0C0D080D .DB 8,13,12,13,8,13,12,13
3647 FB7C 0C0D
3648 FB7E 0F060B0B040A .DB 15,6,11,11,4,10,8,8
3648 FB84 0808
3649 FB86 0D0D0D0D0D0F .DB 13,13,13,13,13,15,13,15
3649 FB8C 0D0F
3650 FB8E 070707070509 .DB 7,7,7,7,5,9,3,3
3650 FB94 0303
3651 FB96 010101010201 .DB 1,1,1,1,2,1,1,1
3651 FB9C 0101
3652 FB9E
3653 FB9E ;PROGRAM STARTS HERE
3654 FB9E AD 25 A4 MNEENT LDA SAVPC ;TRANSF PC TO ADDR
3655 FBA1 8D 1C A4 STA ADDR
3656 FBA4 AD 26 A4 LDA SAVPC+1
3657 FBA7 8D 1D A4 STA ADDR+1
3658 FBAA 20 24 EA STARTM JSR CRCK ;<CR> IF PRI PTR DIFF FROM 0
3659 FBAD A9 00 LDA #0
3660 FBAF 8D 37 A4 STA CODFLG
3661 FBB2 20 3E E8 JSR BLANK
3662 FBB5 20 DB E2 JSR WRITAZ ;WRITE ADDRESS
3663 FBB8 20 3B E8 JSR BLANK2
3664 FBBB 20 3B E8 JSR BLANK2
3665 FBBE 4C 06 FE JMP MNEM ;JUMP TO INPUT MNEMONIC OPCODE
3666 FBC1 A9 00 MODEM LDA #00 ;SET UP TO FORM MODE MATCH
3667 FBC3 8D 26 01 STA TMASK1
3668 FBC6 8D 27 01 STA TMASK2
3669 FBC9 20 3E E8 JSR BLANK
3670 FBCC AC 2E 01 LDY TYPE
3671 FBCF 38 SEC
3672 FBD0 6E 26 01 PNTLUP ROR TMASK1 ;SHIFT POINTER TO INSTRUCTION TYPE
3673 FBD3 6E 27 01 ROR TMASK2
3674 FBD6 88 DEY
3675 FBD7 D0 F7 BNE PNTLUP
3676 FBD9
3677 FBD9 ;TEST FOR ONE BYTE INSTRUCTION
3678 FBD9 AC 2E 01 LDY TYPE
3679 FBDC C0 0D CPY #$0D
3680 FBDE D0 05 BNE RDADDR
3681 FBE0 A2 00 LDX #00
3682 FBE2
3683 FBE2 ;INPUT ADRESS FIELD
3684 FBE2 4C CB FC JMP OPCOMP
3685 FBE5 A0 06 RDADDR LDY #06 ;CLEAR ADDRESS FIELD (NON HEX)
3686 FBE7 A9 51 LDA #'Q'
3687 FBE9 99 32 01 CLRLUP STA ADFLD-1,Y
3688 FBEC 88 DEY
3689 FBED D0 FA BNE CLRLUP ;(LEAVES Y = 0 FOR NEXT PHASE)
3690 FBEF 20 5F E9 JSR RDRUP ;WITH RUBOUT
3691 FBF2 C9 20 CMP #' ' ;IGNORE SPACE CHARACTERS
3692 FBF4 F0 EF BEQ RDADDR
3693 FBF6 99 33 01 STORCH STA ADFLD,Y ;STORE ADDRESS CHARACTER
3694 FBF9 C8 INY
3695 FBFA C0 07 CPY #07
3696 FBFC B0 5C BCS TRY56
3697 FBFE 20 5F E9 JSR RDRUP ;READ REMAINDER OF ADDRESS CHARS
3698 FC01 C9 20 CMP #' ' ;THRU WHEN <SPACE> OR <CR>
3699 FC03 D0 05 BNE STOR1
3700 FC05 EE 37 A4 INC CODFLG ;SET CODE FLG
3701 FC08 D0 04 BNE EVAL
3702 FC0A C9 0D STOR1 CMP #CR ;CHECK FOR <CR>
3703 FC0C D0 E8 BNE STORCH
3704 FC0E
3705 FC0E ;SEPARATE ADDRESS MODE FROM ADDRESS FIELD
3706 FC0E 8C 31 A4 EVAL STY TEMPX ;TEMPX NOW HAS NUMBER OF CHAR
3707 FC11 AD 33 01 LDA ADFLD ;CHECK FIRST CHAR FOR # OR (
3708 FC14 C9 23 CMP #'#'
3709 FC16 F0 25 BEQ HATCJ
3710 FC18 C9 28 CMP #'('
3711 FC1A F0 5A BEQ PAREN
3712 FC1C AD 31 A4 LDA TEMPX ;CHECK FOR ACCUMULATOR MODE
3713 FC1F C9 01 CMP #01
3714 FC21 D0 05 BNE TRYZP
3715 FC23 A2 01 ACCUM LDX #01
3716 FC25 4C CB FC JMP OPCOMP
3717 FC28 C9 02 TRYZP CMP #02 ;CHECK FOR ZERO PAGE MODE
3718 FC2A D0 14 BNE TRY34
3719 FC2C AD 2E 01 LDA TYPE ;CHCK FOR BRNCH WITH RELATIVE ADDR`
3720 FC2F C9 0C CMP #$0C
3721 FC31 D0 05 BNE ZPAGE
3722 FC33 A2 02 LDX #02
3723 FC35 4C CB FC JMP OPCOMP
3724 FC38 A2 05 ZPAGE LDX #05
3725 FC3A 4C CB FC JMP OPCOMP
3726 FC3D 4C B6 FC HATCJ JMP HATCH
3727 FC40 A9 04 TRY34 LDA #04 ;CHECK FOR ABSOLUTE OR ZP,X ORZP,`
3728 FC42 CD 31 A4 CMP TEMPX
3729 FC45 90 15 BCC ABSIND
3730 FC47 A2 02 LDX #02
3731 FC49 20 F1 FD JSR XORYZ ;CC = X, CS = Y, NE = ABSOLUTE
3732 FC4C D0 58 BNE ABSOL
3733 FC4E 90 05 BCC ZPX
3734 FC50 A2 03 ZPY LDX #03 ;CARRY SET SO ZP,Y MODE
3735 FC52 4C CB FC JMP OPCOMP
3736 FC55 A2 04 ZPX LDX #04 ;CARRY CLEAR SO ZP,X MODE
3737 FC57 4C CB FC JMP OPCOMP
3738 FC5A B0 69 TRY56 BCS ERRORM
3739 FC5C 20 EF FD ABSIND JSR XORY ;CC=ABS,X CS=ABS,Y NE=ERROR
3740 FC5F D0 64 BNE ERRORM
3741 FC61 90 0F BCC ABSX
3742 FC63 A9 09 ABSY LDA #09
3743 FC65 CD 2E 01 CMP TYPE
3744 FC68 D0 04 BNE ABSY1
3745 FC6A A2 0E LDX #$0E
3746 FC6C D0 5D BNE OPCOMP
3747 FC6E A2 08 ABSY1 LDX #$08
3748 FC70 D0 59 BNE OPCOMP
3749 FC72 A2 09 ABSX LDX #09 ;CARRY CLEAR SO ABS,X MODE
3750 FC74 D0 55 BNE OPCOMP
3751 FC76 AD 36 01 PAREN LDA ADFLD+3 ;SEE IF (HH,X),(HH)Y OR (HHHH)
3752 FC79 C9 2C CMP #',' ;(HHX) (HH),Y ARE OK TOO
3753 FC7B F0 04 BEQ INDX ;COMMA IN 4TH POSITION = (HH,X)
3754 FC7D C9 58 CMP #'X' ;X IN 4TH POSITION = (HHX)
3755 FC7F D0 04 BNE TRYINY
3756 FC81 A2 0B INDX LDX #$0B
3757 FC83 D0 46 BNE OPCOMP
3758 FC85 C9 29 TRYINY CMP #')' ;")" IN 4TH POS = (HH)Y OR (HH),Y
3759 FC87 D0 0B BNE TRYJMP
3760 FC89 20 EF FD JSR XORY ;CHCK TO SEE IF Y INDEX REG DESIRE
3761 FC8C D0 37 BNE ERRORM
3762 FC8E 90 35 BCC ERRORM
3763 FC90 A2 0A LDX #$0A
3764 FC92 D0 37 BNE OPCOMP
3765 FC94 AD 38 01 TRYJMP LDA ADFLD+5 ;CHECK FOR FINAL PAREN
3766 FC97 C9 29 CMP #')'
3767 FC99 D0 2A BNE ERRORM
3768 FC9B AD 2E 01 LDA TYPE ;CONFIRM CORRECT ADDRESS TYPE
3769 FC9E C9 0B CMP #$0B
3770 FCA0 D0 23 BNE ERRORM
3771 FCA2 A2 0D LDX #$0D ;OK, FORM IS JMP (HHHH)
3772 FCA4 D0 25 BNE OPCOMP
3773 FCA6 AD 2E 01 ABSOL LDA TYPE ;CHECK FOR BRANCH TO ABSOLUTE LOC
3774 FCA9 C9 0C CMP #$0C
3775 FCAB D0 05 BNE ABSOL1
3776 FCAD A2 02 LDX #02
3777 FCAF 4C CB FC JMP OPCOMP
3778 FCB2 A2 0C ABSOL1 LDX #$0C
3779 FCB4 D0 15 BNE OPCOMP
3780 FCB6 ;SELECT IMMEDIATE ADDRESSING TYPE
3781 FCB6 AD 2E 01 HATCH LDA TYPE
3782 FCB9 C9 01 CMP #01
3783 FCBB F0 04 BEQ IMMED1
3784 FCBD A2 07 LDX #07
3785 FCBF D0 0A BNE OPCOMP
3786 FCC1 A2 06 IMMED1 LDX #06
3787 FCC3 D0 06 BNE OPCOMP
3788 FCC5 20 94 E3 ERRORM JSR CKER00 ;OUTPUT ERROR MESSAGE
3789 FCC8 4C AA FB JMP STARTM
3790 FCCB
3791 FCCB ;COMPUTE FINAL OP CODE FOR DEFINED ADDRESING MODE
3792 FCCB BD E2 FA OPCOMP LDA TYPTR1,X ;MATCH TYPE MASK WITH VALID MODE
3793 FCCE F0 05 BEQ OPCMP1 ;PATTERNS & SKIP 1ST WORD TEST IF
3794 FCD0 2D 26 01 AND TMASK1 ;ALREADY ZERO
3795 FCD3 D0 08 BNE VALID
3796 FCD5 BD F1 FA OPCMP1 LDA TYPTR2,X ;TEST 2ND PART
3797 FCD8 2D 27 01 AND TMASK2 ;INST DOES NOT HAVE SPECIFIED MODE
3798 FCDB F0 E8 BEQ ERRORM
3799 FCDD 18 VALID CLC ;FORM FINAL OP CODE
3800 FCDE BD 00 FB LDA CORR,X
3801 FCE1 6D 34 A4 ADC OPCODE
3802 FCE4 8D 34 A4 STA OPCODE
3803 FCE7
3804 FCE7 ;PROCESS ADRESSES TO FINAL FORMAT
3805 FCE7 BD 0F FB LDA SIZEM,X ;OBTAIN ADDRESS FORMAT FROM TABLE
3806 FCEA C9 00 CMP #00
3807 FCEC F0 50 BEQ ONEBYT
3808 FCEE C9 0F CMP #$0F ;NEED BRANCH COMPUTATION?
3809 FCF0 F0 1D BEQ BRNCHC
3810 FCF2 8D 33 A4 STA TEMPA ;SAVE START POINT & CHAR COUNT
3811 FCF5 29 0F AND #$0F ;SEPARATE CHARACTER COUNT
3812 FCF7 A8 TAY ;LOAD ADDR BYTES INTO Y (0,1,OR 2)
3813 FCF8 8D 2F A4 STA BYTESM ;SAVE IN BYTES
3814 FCFB EE 2F A4 INC BYTESM ;TO INSTR LENGTH (1,2,OR 3 BYTES)
3815 FCFE AD 33 A4 LDA TEMPA ;SEPARATE STARTING POINT
3816 FD01 29 F0 AND #$F0
3817 FD03 4A LSR A
3818 FD04 4A LSR A
3819 FD05 4A LSR A
3820 FD06 4A LSR A
3821 FD07 AA TAX ;AND PUT IT IN X
3822 FD08 20 12 FD JSR CONVRT ;CONVERT ASCII ADDRESS TO HEX
3823 FD0B B0 B8 BCS ERRORM ;SKIP OUT IF ERROR IN INPUT
3824 FD0D 90 1D BCC STASH
3825 FD0F 4C 86 FD BRNCHC JMP BRCOMP
3826 FD12
3827 FD12 ;############ SUBROUTINE ###############
3828 FD12 ;CONVERT FORMATTED ADDRESS INTO PROPER HEX ADDRESS
3829 FD12 BD 33 01 CONVRT LDA ADFLD,X ;PICK UP 1ST ADDRES CHARACTER
3830 FD15 20 7D EA JSR HEX ;CONVERT TO MOST SIG HEX
3831 FD18 B0 11 BCS ERRFLG
3832 FD1A E8 INX ;GET NEXT ASCII CHARACTER
3833 FD1B BD 33 01 LDA ADFLD,X
3834 FD1E E8 INX ;POINT TO NEXT CHARACTER, IF ANY
3835 FD1F 20 84 EA JSR PACK
3836 FD22 B0 07 BCS ERRFLG
3837 FD24 99 34 A4 STA OPCODE,Y ;SAVE IN MOST SIG. BYTE LOCATION
3838 FD27 88 DEY ;SET UP FOR NEXT ADDR BYTE, IF ANY
3839 FD28 D0 E8 BNE CONVRT ;IF NECESSARY, FORM NEXT ADDR BYTE
3840 FD2A 18 CLC
3841 FD2B 60 ERRFLG RTS ;NON HEX CLEARED CARRY
3842 FD2C ;#############
3843 FD2C
3844 FD2C AC 2F A4 STASH LDY BYTESM ;SET UP TO STORE COMMAND
3845 FD2F 88 DEY
3846 FD30 B9 34 A4 STSHLP LDA OPCODE,Y
3847 FD33 20 78 EB JSR SADDR ;STORE ONE BYTE OF COMMAND
3848 FD36 C0 00 CPY #00
3849 FD38 F0 0B BEQ FORMDS
3850 FD3A 88 DEY
3851 FD3B B8 CLV
3852 FD3C 50 F2 BVC STSHLP ;REPEAT TILL THRU
3853 FD3E
3854 FD3E A9 01 ONEBYT LDA #01 ;SET BYTES = 1
3855 FD40 8D 2F A4 STA BYTESM
3856 FD43 D0 E7 BNE STASH
3857 FD45
3858 FD45 ;FORMAT FOR SYSTEM 65 DISPLAY (REFORMAT FOR AIM)
3859 FD45 20 44 EB FORMDS JSR CLR
3860 FD48 20 DD E5 JSR CGPC1 ;ADDR TO SAVPC FOR DISASSEMBLY
3861 FD4B 20 42 E8 JSR TTYTST ;IF TTY DO NOT GO TO DISASS
3862 FD4E D0 08 BNE FORMD1
3863 FD50 20 3B E8 JSR BLANK2 ;IT IS TTY
3864 FD53 20 3B E8 JSR BLANK2
3865 FD56 D0 11 BNE FORMD2 ;OUTPUT OPCODE
3866 FD58 20 6C F4 FORMD1 JSR DISASM
3867 FD5B 20 24 EA JSR CRCK ;<CR> IF PRI PTR DIFF FROM 0
3868 FD5E AD 37 A4 LDA CODFLG ;SEE IF HE WANTS CODE ALSO
3869 FD61 F0 1A BEQ FORM1
3870 FD63 20 3E E8 JSR BLANK
3871 FD66 20 3C F5 JSR PRPC ;PROG CNTR
3872 FD69 ;OUTPUT OPCODE
3873 FD69 AE 2F A4 FORMD2 LDX BYTESM
3874 FD6C A0 00 LDY #00
3875 FD6E A9 1C DISPLY LDA #ADDR ;DO LDA (ADDR),Y ,WHITOUT PAG 0
3876 FD70 20 58 EB JSR LDAY
3877 FD73 20 46 EA JSR NUMA
3878 FD76 20 3E E8 JSR BLANK
3879 FD79 C8 INY
3880 FD7A CA DEX
3881 FD7B D0 F1 BNE DISPLY
3882 FD7D
3883 FD7D ;POINT TO NEXT INSTRUCTION LOCATION
3884 FD7D AC 2F A4 FORM1 LDY BYTESM ;ADD BYTESM TO ADDR
3885 FD80 20 CD E2 JSR NXTADD
3886 FD83 4C 24 FF JMP PATC16 ;UPDATE PC
3887 FD86
3888 FD86 ;RELATIVE BRANCH ADDRESS COMPUTATION
3889 FD86 AD 31 A4 BRCOMP LDA TEMPX
3890 FD89 C9 02 CMP #02 ;IF REL BRANCH INPUT, USE IT
3891 FD8B D0 11 BNE COMPBR
3892 FD8D A2 00 LDX #00
3893 FD8F A0 01 LDY #01
3894 FD91 20 12 FD JSR CONVRT
3895 FD94 B0 40 BCS ERRJMP
3896 FD96 A9 02 LDA #02
3897 FD98 8D 2F A4 STA BYTESM ;SET PROPER BYTES
3898 FD9B 4C 2C FD JMP STASH
3899 FD9E A2 00 COMPBR LDX #00
3900 FDA0 A0 02 LDY #02
3901 FDA2 20 12 FD JSR CONVRT
3902 FDA5 B0 2F BCS ERRJMP
3903 FDA7 AD 1D A4 LDA ADDR+1 ;ADD BRANCH OFFSET
3904 FDAA 8D 27 01 STA MOVAD+1
3905 FDAD AD 1C A4 LDA ADDR
3906 FDB0 18 CLC
3907 FDB1 69 02 ADC #02
3908 FDB3 8D 26 01 STA MOVAD
3909 FDB6 90 03 BCC CMPBR1
3910 FDB8 EE 27 01 INC MOVAD+1
3911 FDBB 38 CMPBR1 SEC ;COMPUTE BRANCH RELATIVE ADDRESS
3912 FDBC AD 35 A4 LDA OPCODE+1
3913 FDBF ED 26 01 SBC MOVAD
3914 FDC2 8D 35 A4 STA OPCODE+1
3915 FDC5 AD 36 A4 LDA OPCODE+2
3916 FDC8 ED 27 01 SBC MOVAD+1
3917 FDCB 8D 36 A4 STA OPCODE+2
3918 FDCE C9 00 CMP #00
3919 FDD0 F0 0E BEQ FORWRD
3920 FDD2 C9 FF CMP #$FF
3921 FDD4 F0 03 BEQ BACKWD
3922 FDD6 4C C5 FC ERRJMP JMP ERRORM
3923 FDD9 AD 35 A4 BACKWD LDA OPCODE+1 ;CHECK IN RANGE
3924 FDDC 30 09 BMI OK
3925 FDDE 10 F6 BPL ERRJMP
3926 FDE0 AD 35 A4 FORWRD LDA OPCODE+1
3927 FDE3 10 02 BPL OK
3928 FDE5 30 EF BMI ERRJMP
3929 FDE7 A9 02 OK LDA #02 ;SET UP FOR STASH
3930 FDE9 8D 2F A4 STA BYTESM
3931 FDEC 4C 2C FD JMP STASH
3932 FDEF
3933 FDEF ;###### SUBROUTINE ########
3934 FDEF ;SUBROUTINE FOR DETERMINING X OR Y OR NEITHER
3935 FDEF A2 04 XORY LDX #04
3936 FDF1 BD 33 01 XORYZ LDA ADFLD,X
3937 FDF4 C9 2C CMP #','
3938 FDF6 D0 04 BNE XORY1
3939 FDF8 E8 INX
3940 FDF9 BD 33 01 LDA ADFLD,X
3941 FDFC C9 58 XORY1 CMP #'X'
3942 FDFE F0 03 BEQ ISX
3943 FE00 C9 59 CMP #'Y'
3944 FE02 XORYRT
3945 FE02 60 RTS ;NOT ZERO IS NOT X OR NOT Y
3946 FE03 18 ISX CLC ;CARRY SET IS Y
3947 FE04 90 FC BCC XORYRT ; CARRY CLEAR IS X
3948 FE06 ;####### END OF SUB ########
3949 FE06
3950 FE06 ; INPUT FOR MNEMONIC CODE
3951 FE06 A0 00 MNEM LDY #00
3952 FE08 8C 34 A4 STY OPCODE
3953 FE0B 8C 35 A4 STY OPCODE+1
3954 FE0E 8C 36 A4 STY OPCODE+2 ;CLEARS OPCODE FOR NEW INPUT
3955 FE11 8C 26 01 STY MOVAD ;CLEARS UNUSED BIT IN FINAL FORMAT
3956 FE14 20 5F E9 RDLUP JSR RDRUP
3957 FE17 C9 2A CMP #'*' ;COMMAND TO LOAD POINTER
3958 FE19 F0 58 BEQ STLOAD ;GO TO SET CURRENT ADDRESS POINTER
3959 FE1B C9 20 CMP #' ' ;IGNORE SPACE BAR INPUT
3960 FE1D F0 F5 BEQ RDLUP
3961 FE1F 29 1F AND #$1F ;MASK OFF UPPER 3 BITS
3962 FE21 99 30 01 STA CH,Y
3963 FE24 98 TYA
3964 FE25 AA TAX ;Y----> X
3965 FE26 FE 30 01 INC CH,X ;FORMAT TO MATCH DISASSEMBLER TBL
3966 FE29 C8 INY
3967 FE2A C0 03 CPY #03 ;REPEAT FOR EACH OF 3 CHARACTERS
3968 FE2C D0 E6 BNE RDLUP
3969 FE2E
3970 FE2E ;COMPRESS 3 FORMATED CHARACTERS TO MOVAD & MOVAD+1
3971 FE2E A0 03 LDY #03 ;SET UP OUTER LOOP
3972 FE30 B9 2F 01 OUTLUP LDA CH-1,Y ;COMPRESS 3 CHARACTERS
3973 FE33 A2 05 LDX #05 ;SET UP INNER LOOP
3974 FE35 4A INLUP LSR A ;SHIFT 5 BITS ACC TO MOVAD,MOVAD+1
3975 FE36 6E 26 01 ROR MOVAD
3976 FE39 6E 27 01 ROR MOVAD+1
3977 FE3C CA DEX
3978 FE3D D0 F6 BNE INLUP
3979 FE3F 88 DEY
3980 FE40 D0 EE BNE OUTLUP
3981 FE42
3982 FE42 ;SEARCH FOR MATCHING COMPRESSED CODE
3983 FE42 A2 40 LDX #$40
3984 FE44 AD 26 01 SRCHLP LDA MOVAD
3985 FE47 DD B8 F5 SRCHM CMP MNEML-1,X ;MATCH LEFT HALF
3986 FE4A F0 05 BEQ MATCH
3987 FE4C CA DEX
3988 FE4D D0 F8 BNE SRCHM ;IF NO - TRY AGAIN
3989 FE4F F0 0B BEQ MATCH1
3990 FE51 AD 27 01 MATCH LDA MOVAD+1 ;ALSO MATCH RIGHT HALF
3991 FE54 DD F8 F5 CMP MNEMR-1,X
3992 FE57 F0 06 BEQ GOTIT
3993 FE59 CA DEX
3994 FE5A D0 E8 BNE SRCHLP
3995 FE5C 4C C5 FC MATCH1 JMP ERRORM
3996 FE5F
3997 FE5F ;GET INSTRUCTION TYPE FROM TYPE TABLE
3998 FE5F BD 5D FB GOTIT LDA TYPTB-1,X
3999 FE62 8D 2E 01 STA TYPE
4000 FE65
4001 FE65 ;GET OPCODE FROM OP CODE UE
4002 FE65 BD 1D FB LDA STCODE-1,X
4003 FE68 8D 34 A4 STA OPCODE
4004 FE6B 4C C1 FB JMP MODEM
4005 FE6E
4006 FE6E ;THIS SECTION SETS THE CURRENT ADDRESS POINTER
4007 FE6E A9 2A STLO LDA #'*'
4008 FE70 20 7A E9 JSR OUTPUT
4009 FE73 20 AE EA STLOAD JSR ADDIN ;GET ADDR
4010 FE76 B0 F6 BCS STLO ;IN CASE OF ERROR
4011 FE78 4C 24 FF JMP PATC16 ;ADDR TO PC THEN TO STARTM
4012 FE7B
4013 FE7B ;PATCHES TO CORRECT PROBLEMS WITHOUT
4014 FE7B ;CHANGING ENTRY POINTS TO THE ROUTINES
4015 FE7B 41 .DB "A"
4016 FE7C 38 PATCH1 SEC ;ADJUST BAUD
4017 FE7D E9 2C SBC #44
4018 FE7F 8D 18 A4 STA CNTL30
4019 FE82 60 RTS
4020 FE83
4021 FE83 8A CUREAD TXA ;SAVE X , OUTPUT CUR
4022 FE84 48 PHA
4023 FE85 AE 15 A4 LDX CURPO2
4024 FE88 E0 14 CPX #20 ;ONLY IF < 20
4025 FE8A B0 05 BCS PAT2A
4026 FE8C A9 DE LDA #$DE
4027 FE8E 20 7B EF JSR OUTDD1
4028 FE91 68 PAT2A PLA
4029 FE92 AA TAX
4030 FE93 4C 3C E9 JMP READ ;CONTINUE
4031 FE96
4032 FE96 20 3C E9 RED1 JSR READ ;READ & ECHO WITHOUT CURSOR
4033 FE99 4C 76 E9 JMP RED2
4034 FE9C
4035 FE9C AE 15 A4 PATCH4 LDX CURPO2 ;DONT DO ANYTHING IF "8D"
4036 FE9F C9 8D CMP #CR+$80 ;SO <CR> FOR TV & NOT FOR DISP
4037 FEA1 D0 0B BNE PAT4A
4038 FEA3 A9 A0 LDA #' '+$80 ;CLR CURSOR
4039 FEA5 20 7B EF JSR OUTDD1
4040 FEA8 20 44 EB JSR CLR ;CLR PNTRS
4041 FEAB 4C 76 EF JMP OUTD7 ;EXIT
4042 FEAE 4C 17 EF PAT4A JMP OUTD1A ;CONTINUE
4043 FEB1
4044 FEB1 8D 11 A4 PATCH5 STA PRIFLG ;TURN PRI OFF
4045 FEB4 4C 73 F0 JMP IPO3
4046 FEB7
4047 FEB7 A9 1C PATCH6 LDA #ADDR ;SIMULATE LDA (ADDR),Y
4048 FEB9 4C 58 EB JMP LDAY
4049 FEBC
4050 FEBC 20 3C E9 PATCH8 JSR READ ;READ & ECHO WITH CARROTS
4051 FEBF 48 PHA
4052 FEC0 20 D8 E7 JSR EQUAL
4053 FEC3 A9 3C LDA #'<'
4054 FEC5 20 7A E9 JSR OUTPUT
4055 FEC8 68 PLA
4056 FEC9 48 PHA
4057 FECA C9 0D CMP #CR
4058 FECC F0 03 BEQ PATC8C
4059 FECE 20 7A E9 JSR OUTPUT
4060 FED1 A9 3E PATC8C LDA #'>'
4061 FED3 20 7A E9 JSR OUTPUT
4062 FED6 68 PLA
4063 FED7 60 RTS
4064 FED8
4065 FED8 C9 F7 PATCH9 CMP #$F7 ;CHCK LOWER TRANSITION OF TIMER
4066 FEDA B0 06 BCS PAT9A
4067 FEDC CD 08 A4 CMP TSPEED
4068 FEDF 4C 9D EE JMP CKF3A
4069 FEE2 CD 08 A4 PAT9A CMP TSPEED
4070 FEE5 68 PLA
4071 FEE6 C9 FF CMP #$FF
4072 FEE8 60 PAT9B RTS
4073 FEE9
4074 FEE9 20 F0 E9 PATC10 JSR CRLF ;CLR DISP (ONLY 1 <CR>)
4075 FEEC 4C 85 E1 JMP STA1
4076 FEEF
4077 FEEF F0 F7 PATC11 BEQ PAT9B ;GO OUTPUT PROMPT
4078 FEF1 C9 4C CMP #'L' ;NO PROMPT FOR "T" OR "L"
4079 FEF3 F0 F3 BEQ PAT9B
4080 FEF5 4C C5 E7 JMP PROMP1
4081 FEF8
4082 FEF8 48 PATC12 PHA ;CLEAR PRIFLG SO WE CAN OUTPUT
4083 FEF9 AD 11 A4 LDA PRIFLG ;TO PRINTER IF FLG WAS ON (MSB)
4084 FEFC 29 F0 AND #$F0
4085 FEFE 8D 11 A4 STA PRIFLG
4086 FF01 68 PLA
4087 FF02 60 RTS
4088 FF03
4089 FF03 AD 12 A4 PATC13 LDA INFLG ;TURN TAPES ON ONLY IF TAPES
4090 FF06 C9 54 CMP #'T'
4091 FF08 D0 DE BNE PAT9B
4092 FF0A 4C 29 E5 JMP DU14 ;TURN ON TAPES & SET DEF DEV
4093 FF0D
4094 FF0D AD 13 A4 PATC14 LDA OUTFLG ;TURN ON TAPES ONLY IF TAPES
4095 FF10 C9 54 CMP #'T'
4096 FF12 D0 D4 BNE PAT9B
4097 FF14 4C 0A E5 JMP DU11
4098 FF17
4099 FF17 20 F0 E9 PATC15 JSR CRLF ;DECODE COMMAND
4100 FF1A 8A TXA ;SAVE INDEX
4101 FF1B 0A ASL A
4102 FF1C AA TAX
4103 FF1D BD B8 FA LDA JTBL,X ;PART OF ENTRY
4104 FF20 8D 1A A4 STA S1
4105 FF23 60 RTS
4106 FF24
4107 FF24 20 DD E5 PATC16 JSR CGPC1 ;ADDR TO PC
4108 FF27 4C AA FB JMP STARTM ;BACK TO MNEMONIC START
4109 FF2A
4110 FF2A F0 0E PATC17 BEQ PAT17B ;RUB, SO READ ANOTHER
4111 FF2C C9 00 CMP #0
4112 FF2E F0 03 BEQ PAT17A
4113 FF30 4C 85 F7 JMP IN02A ;NEITHER ,CONTINUE
4114 FF33 20 93 E9 PAT17A JSR INALL ;SKIP ON ZEROS
4115 FF36 C9 7F CMP #$7F ;UNTILL RUB
4116 FF38 D0 F9 BNE PAT17A
4117 FF3A 4C 7A F7 PAT17B JMP IN02 ;GO BACK
4118 FF3D
4119 FF3D 20 F8 FE PATC18 JSR PATC12 ;RESET PRIFLG
4120 FF40 48 PHA
4121 FF41 20 42 E8 JSR TTYTST ;IF TTY JUST RTN
4122 FF44 D0 02 BNE PAT18A
4123 FF46 68 PLA
4124 FF47 60 RTS
4125 FF48 20 FE E8 PAT18A JSR LL ;SET TO LOW SPEED
4126 FF4B 20 45 F0 JSR IPST ;PRINT WHAT IS IN BUFFER
4127 FF4E 20 44 EB JSR CLR ;CLR PRINTER BUFFER BY OUTPUTTING
4128 FF51 20 3E E8 JSR BLANK ;AN SPACE
4129 FF54 20 44 EB JSR CLR
4130 FF57 68 PLA ;RTN ACC
4131 FF58 60 RTS
4132 FF59
4133 FF59 D8 PAT19 CLD
4134 FF5A 20 24 EA JSR CRCK
4135 FF5D 4C 85 E1 JMP STA1
4136 FF60
4137 FF60 F0 0D PAT20 BEQ VECK4 ;END (DATA BYTES=0)
4138 FF62 18 CLC
4139 FF63 69 04 ADC #4
4140 FF65 AA TAX
4141 FF66 20 93 E9 VECK5 JSR INALL ;SKIP OVER DATA
4142 FF69 CA DEX
4143 FF6A D0 FA BNE VECK5
4144 FF6C 4C 9E E6 JMP VECK1 ;PROCESS NEXT RCD
4145 FF6F 4C 20 E5 VECK4 JMP DU13
4146 FF72
4147 FF72 A0 00 PAT21 LDY #0
4148 FF74 B9 88 FF PAT21A LDA POMSG,Y ;RESET MSG
4149 FF77 F0 06 BEQ PAT21B
4150 FF79 20 7A E9 JSR OUTPUT
4151 FF7C C8 INY
4152 FF7D D0 F5 BNE PAT21A
4153 FF7F 20 F0 E9 PAT21B JSR CRLF
4154 FF82 20 F0 E9 JSR CRLF
4155 FF85 4C 82 E1 JMP START
4156 FF88
4157 FF88 2020524F434BPOMSG .DB " ROCKWELL AIM 65"
4157 FF8E 57454C4C2041494D203635
4158 FF99 00 .DB 0
4159 FF9A
4160 FF9A EE 68 01 PAT22 INC BLKO
4161 FF9D 4C BD ED JMP ADDBK1
4162 FFA0
4163 FFA0 A9 FF PAT23 LDA #$FF ;START TIMER
4164 FFA2 8D 97 A4 STA DI1024
4165 FFA5 AD 85 A4 PAT23A LDA RINT ;TIME OUT?
4166 FFA8 30 08 BMI PAT23B ;YES
4167 FFAA AD 0D A8 LDA IFR ;START SIGNAL?
4168 FFAD 29 10 AND #MPRST
4169 FFAF F0 F4 BEQ PAT23A ;NO
4170 FFB1 60 RTS ;YES
4171 FFB2 A9 00 PAT23B LDA #0 ;TIME OUT RETURN
4172 FFB4 60 RTS
4173 FFB5
4174 FFB5 20 75 EE PATC24 JSR CKFREQ ;READ BIT FROM FOURTH HALF PULSE
4175 FFB8 6A ROR A
4176 FFB9 29 80 AND #$80
4177 FFBB 60 RTS
4178 FFBC
4179 FFBC 2C 0D A8 PATC25 BIT IFR ;WAIT TILL TIMES OUT
4180 FFBF 50 FB BVC PATC25
4181 FFC1 AD 04 A8 LDA T1L ;CLR INTERRUPT FLG
4182 FFC4 60 RTS
4183 FFC5
4184 FFF9 *=$FFF9
4185 FFF9 ;INTERRUPT VECTORS
4186 FFF9 FA .DB $FA
4187 FFFA 75E0BFE078E0 .DW NMIV1,RSET,IRQV1 ;SET UP VECTORS
4188 10000 ;.END A0/1
4189 10000 SEMICOLON =$3B
4190 10000 BACKSLASH =$5C
4191 10000 .END M1
Label Value Label Value Label Value
------------------ ------------------ ------------------
ASSEM D000 ADFLD 0133 ADDR A41C
ACR A80B ADDS1 E55D ADD1 E565
ADDIN EAAE ADDNE EAB1 ADDN1 EAB7
ADDN2 EAC7 ADDN3 EADC ADDN4 EAE8
ADDN5 EAF7 ADDN6 EAFD ADDN7 EB0D
ADDN8 EB2B ADDBLK EDBA ADDBK1 EDBD
ATTOP F8DB ATBOT F8E9 AT02 F8F5
AT01 F8F7 ATEND F8F9 ADDRS1 F910
ADDS1A F916 AD1 F928 ADDA F92A
ADDA1 F933 ACCUM FC23 ABSIND FC5C
ABSY FC63 ABSY1 FC6E ABSX FC72
ABSOL FCA6 ABSOL1 FCB2 BASIEN B000
BASIRE B003 BOTLN 00E1 BKS 0100
BYTESM A42F BKFLG A410 BLK 0115
BLKO 0168 BRKA E61B BRK1 E620
BKERR E62F BKOK E634 BKO2 E64C
BRKK E6E5 BRK3 E6F1 BRK2 E6F3
BRK4 E6FA BLANK2 E83B BLANK E83E
BKCKSM F1E7 BKCK1 F1F1 BKCK2 F20F
BKCK3 F21A BT F721 BRNCHC FD0F
BRCOMP FD86 BACKWD FDD9 BACKSLASH 005C
CH 0130 CODFLG A437 CURPO2 A415
CURPOS A416 CNTH30 A417 CNTL30 A418
COUNT A419 CKSUM A41E CPIY A42A
CRA AC01 CRB AC03 CR 000D
COMIN E1A1 COMB E1C4 CHNGG E2A0
CHNG1 E2A6 CH2 E2B8 CH4 E2C0
CH3 E2C5 CKERR E385 CKER0 E38E
CKER00 E394 CKER1 E396 CKER2 E3A3
CHEKAR E54B CHEKA E54E CGPC E5D4
CGPC0 E5D7 CGPC1 E5DD CGPS E5EA
CGA E5EE CGX E5F2 CGY E5F6
CGS E5FA CGALL E5FC CLRBK E6FE
CKB E76B CKB2 E76D CKB1 E780
CRLF E9F0 CRLOW EA13 CR2J EA23
CRCK EA24 CRCK1 EA2C CRCK2 EA3B
CLR EB44 CLRCK EB4D CKFREQ EE75
CKF1 EE7A CKF2 EE81 CKF3 EE99
CKF3A EE9D CKF4 EEA1 CKBUFF F1D2
CBUFF1 F1E2 COL0 F2E1 COL1 F321
COL2 F361 COL3 F3A1 COL4 F3E1
CHAR1 F5AD CHAR2 F5B3 CHNG F876
CHN1 F87C CHN2 F88C CHN3 F8A9
CHN4 F8AF CFLG F8B2 COM FA78
COMM FA88 CD02 FA8F CFND1 FAA0
COMCN1 000B COMTBL FAAC CORR FB00
CLRLUP FBE9 CONVRT FD12 COMPBR FD9E
CMPBR1 FDBB CUREAD FE83 DILINK A406
DISFLG A40F DIBUFF A438 DRA2 A480
DDRA2 A481 DRB2 A482 DDRB2 A483
DNPA7 A484 DPPA7 A485 DIV1 A494
DIV8 A495 DIV64 A496 DI1024 A497
DRB A800 DRAH A801 DDRB A802
DDRA A803 DRA A80F DATIN 000E
DATOUT 000C DEBTIM 1388 DUMP E43B
DU1 E444 DU0 E447 DU1B E452
DU1A E46D DU2 E47D DU6 E49F
DU7 E4A0 DU8 E4A2 DU9 E4B9
DU10 E4DB DU10A E4F8 DU11 E50A
DU12 E511 DU13 E520 DU14 E529
DUMPTA E56F DUMPT1 E57B DUMPKI E587
DUK2 E5A4 DONE E790 DON1 E7A0
DELAY EC0F DE1 EC18 DE2 EC1B
DEHALF EC23 DEBKEY ED2A DEBK1 ED2C
DISASM F46C DNNO F6D8 DOW1 F6E3
DOW2 F6E8 DOWN F724 DLNE F74C
DISPLY FD6E END 00E5 ENPA7 A486
EPPA7 A487 ESCAPE 001B EQS 00BD
EMSG1 E06C EMSG2 E072 EQUAL E7D8
ERR F495 EDIT F639 EDI0 F644
EDI1 F653 EDI2 F663 EDI3 F673
EDI4 F680 EDI5 F68D EDI6 F69B
EDI7 F6AA EDI8 F6AE EDI F6B6
EDI2B F6CC ENDERR FA5C ENDE2 FA6F
ERROR FA72 ERR0 FA78 ENTRY FA8D
EVAL FC0E ERRORM FCC5 ERRFLG FD2B
ERRJMP FDD6 FORMA 0116 FROM E7A3
FNAM E8A2 FCHAR F80C FCHA1 F80F
FCH F81E FC1 F823 FC2 F82E
FC3 F834 FC4 F843 FC5 F849
FC6 F84E FC7 F853 FC8 F85A
FC9 F868 FORMDS FD45 FORMD1 FD58
FORMD2 FD69 FORM1 FD7D FORWRD FDE0
GAP A409 GO E261 GOBK E26D
GOBK0 E278 GOBK1 E286 GETID E425
GID1 E427 GOERR E608 GCNT E785
GCN1 E78C GETTTY EBDB GET1 EBE2
GET3 EBED GETKD0 EC38 GETKEY EC40
GETKY EC43 GETK0 EC55 GETK00 EC67
GETK1 EC71 GETK1B EC80 GETK2 EC82
GETK3 EC8D GETK4 EC93 GETK5 ECA4
GETK6 ECB9 GETK7 ECBE GETK8 ECBF
GETK11 ECC9 GETK12 ECD2 GETK13 ECE1
GETK14 ECEB GETK10 ECEC GETTAP EE29
GETA1 EE2B GETFMT F499 GOGO FA4A
GOGO1 FA5B GOTIT FE5F HISTM A42E
HISTP A414 HIST A42E HEX EA7D
HATCJ FC3D HATCH FCB6 IRQV4 A400
IRQV2 A404 INFLG A412 IBUFM A460
IDIR A474 ICOL A475 IOFFST A476
IDOT A477 IOUTL A478 IOUTU A479
IBITL A47A IBITU A47B IMASK A47C
IFR A80D IER A80E IRQV1 E078
IRQV3 E154 IRQ1 E163 IRQ2 E17F
INCS2 E566 INTAB1 E743 INTAB2 E752
INTAB3 E756 INLOW E8F8 INALL E993
IPST F045 IPS0 F04A IPO0 F050
IPO2 F066 IPO3 F073 IPO4 F078
IPSU F0E3 IPS1 F0E8 IPS3 F105
IPS2 F10E INCP F121 IEVEN F486
IN F764 INL F76D IN02 F77A
IN02A F785 IN03B F799 IN03 F7A8
IN03A F7B9 IN05 F7C5 INPU F7CB
INPU1 F7D8 INDX FC81 IMMED1 FCC1
ISX FE03 INLUP FE35 JUMP A47D
JMPR E1C1 JD1 E723 JD2 E72B
JD3 E73C JD4 E742 JTBL FAB8
KEYF1 010C KEYF2 010F KEYF3 0112
KMASK A42A KDISA E70A KEP E7AF
KEPR E970 KIFLG F8B6 KI2 F8B8
LENGTH 00EA LMNEM 0117 LDIY A42A
LF 000A LOAD E2E6 LOAD1 E2E9
LOAD2 E306 LOAD4 E321 LOAD5 E323
LOADTA E32F LOAD1A E349 LOADT2 E364
LOADKI E3A4 LOADK1 E3A7 LOADK2 E3AA
LOADK3 E3B7 LOADK5 E3D1 LOADK6 E3D3
LOADK7 E3E8 LL E8FE LT10 EA5A
LDAY EB58 LST F7E1 LST01 F7F0
LST02 F7F8 LST3 F803 MOVAD 0126
MONRAM A400 MON 00C0 MOFF 00E0
MPRST 0010 MSP12 0002 MT2 0020
M1 E000 M3 E005 M4 E008
M5 E01C M6 E021 M7 E024
M8 E027 M9 E02A M10 E02D
M11 E031 M12 E03B MCM2 E196
MCM3 E1AC MCNT 0020 MONCOM E1E5
MEM E248 MEIN E24D MEM1 E24F
MEM2 E251 MEM3 E260 MEMERR EB33
MTBL F2D7 MNNDX1 F4AF MNNDX2 F4B3
MNNDX3 F4BA MR11A F512 MODE F55B
MODE2 F59F MNEML F5B9 MNEMR F5F9
MREAD FAD0 MNEENT FB9E MODEM FBC1
MNEM FE06 MATCH FE51 MATCH1 FE5C
NOWLN 00DF NMIV2 A402 NPUL A40A
NAME A42E NULLC 00FF NMIV1 E075
NMIV3 E07B NMI4 E0B1 NMI5 E0B4
NXTADD E2CD NXTA1 E2DA NXT5 E60D
NHIS E688 NH1 E690 NAMO E8CF
NAMO1 E8D6 NAMO2 E8E9 NAMO3 E8EB
NAMO4 E8F5 NUMA EA46 NOUT EA51
NEWROW F160 NEWCOL F163 NOWS1 F909
OLDLEN 00E9 OPCODE A434 OUTFLG A413
OUTCKS E531 OUTCK E538 OUTCK1 E53B
OUTCK2 E547 OUTLOW E901 OUTL1 E906
OUTPUT E97A OUT1 E97B OUT1A E986
OUT2 E98F OUTALL E9BC OUTA1 E9C8
OUTA2 E9D0 OUTA3 E9E2 OUTA4 E9EA
ONEKEY ED05 ONEK1 ED09 ONEK2 ED0B
ONEK3 ED1C ONEK4 ED29 OUTTTY EEA8
OUTT1 EECB OUTT2 EEFB OUTDP EEFC
OUTDP1 EF02 OUTDIS EF05 OUTD1 EF14
OUTD1A EF17 OUTD2 EF20 OUTD2A EF2F
OUTD3 EF33 OUTD4 EF48 OUTD5 EF56
OUTD7 EF76 OUTDD1 EF7B OUTDD2 EF87
OUTDD3 EF8B OUTPRI F000 OUT01 F00F
OUT04 F025 OUT05 F033 OUTPR F038
OUTPR1 F03A OUTPR2 F044 OP04 F130
OP07 F13F OP03 F144 OP05 F150
OP06 F15D OUTTAP F24A OUTTA1 F290
OUTTA2 F294 OUTTA3 F2B2 OPCOMP FCCB
OPCMP1 FCD5 ONEBYT FD3E OK FDE7
OUTLUP FE30 PRIFLG A411 PCR A80C
PRST 0000 PRTIME 06A4 PRITR E6E1
PROMPT E7BD PROMP1 E7C5 PR1 E7CC
PR2 E7CF PSLS E7DC PSL0 E7FB
PSL00 E802 PSL0A E814 PSL0B E81C
PSL0C E81E PSL0D E823 PSL1 E837
PACK EA84 PAK1 EA96 PAK2 EA9F
PCLLD EB56 PHXY EB9E PLXY EBAC
PRIERR F079 PRNDOT F087 PRDOT0 F08C
PINT F0CB PRMN1 F4D7 PRMN2 F4DB
PRADR1 F4F7 PRADR2 F4FF PRADR3 F519
PRADR4 F52C PRNTXY F538 PRPC F53C
PRBL2 F545 PCADJ3 F54D PCADJ4 F554
PLNE F727 P02 F729 P01 F73B
P03 F73F P00 F749 PNTLUP FBD0
PAREN FC76 PATCH1 FE7C PAT2A FE91
PATCH4 FE9C PAT4A FEAE PATCH5 FEB1
PATCH6 FEB7 PATCH8 FEBC PATC8C FED1
PATCH9 FED8 PAT9A FEE2 PAT9B FEE8
PATC10 FEE9 PATC11 FEEF PATC12 FEF8
PATC13 FF03 PATC14 FF0D PATC15 FF17
PATC16 FF24 PATC17 FF2A PAT17A FF33
PAT17B FF3A PATC18 FF3D PAT18A FF48
PAT19 FF59 PAT20 FF60 PAT21 FF72
PAT21A FF74 PAT21B FF7F POMSG FF88
PAT22 FF9A PAT23 FFA0 PAT23A FFA5
PAT23B FFB2 PATC24 FFB5 PATC25 FFBC
QM E7D4 RMNEM 0118 REGF A40E
ROLLFL A47F RINT A485 RA AC00
RB AC02 RUB 0008 RSET E0BF
RS1 E0C9 RS2 E0D4 RS3A E0F1
RS3 E0F3 RS3B E11A RS4 E11D
RS5 E129 RS6 E13E RS7 E144
RS8 E146 REG E227 REG1 E232
RBYTE E3FD RBYT1 E407 REGT E6D9
RS20 E702 RCHEK E907 RCH2 E91F
RCH3 E925 RCHTTY E926 RCHT2 E928
RCHT1 E93B READ E93C READ1 E94A
READ2 E94D REA1 E956 RB2 E95C
RDRUP E95F RDR1 E96A REDOUT E973
RED2 E976 RD2 EA5D RD1 EA70
RSPAC EA7B ROONEK ECEF ROO1 ED00
RDBIT EE3B RDBIT1 EE43 RDBIT2 EE51
RDBIT4 EE67 ROUT F286 ROUT1 F28B
ROW1 F421 ROW2 F429 ROW3 F431
ROW4 F439 ROW5 F441 ROW6 F449
ROW7 F451 ROW8 F459 REGQ F461
RTMODE F491 RELADR F530 RTS1 F55A
REENTR F6CF RESNOW F8D0 REP2 F93E
REPLAC F93F R8 F947 R87 F94E
R88 F953 R2W F95F RQP F977
R6 F984 R5 F99D R55 F9A8
R7 F9AB R9 F9BE R10 F9C7
R11 F9CC R100 F9CF R101 F9DA
R102 F9E3 R108 F9EF R103 F9FA
R107 FA0A R104 FA17 R105 FA31
R1051 FA41 R106 FA44 RDADDR FBE5
RDLUP FE14 RED1 FE96 SAVE 00E7
STRING 00EB S1 A41A S2 0106
SAVPS A420 SAVA A421 SAVX A422
SAVY A423 SAVS A424 SAVPC A425
STIY A427 STBKEY A42B SR A80A
SP12 0001 SETREG E113 START E182
STA1 E185 STBYTE E413 SHOW E64D
SH1 E652 SHIS E665 SH11 E66A
SEMI E9BA SADDR EB78 SWSTAK EBBA
SWST1 EBBD SYNC EDFF SYNC1 EE11
SETZ F282 SETSPD F2C0 SETSP1 F2CA
SETSP2 F2D3 STOP F870 SETBOT F8C5
SUB F91D SUB1 F927 SAVNOW F934
SIZEM FB0F STCODE FB1E STARTM FBAA
STORCH FBF6 STOR1 FC0A STASH FD2C
STSHLP FD30 SRCHLP FE44 SRCHM FE47
STLO FE6E STLOAD FE73 SEMICOLON 003B
TEXT 00E3 TYPE 012E TMASK1 0126
TMASK2 0127 TEMPX A431 TEMPA A433
TSPEED A408 TIMG A40B TAPIN A434
TAPOUT A435 TAPTR A436 TAPTR2 A437
TABUFF 0116 TABUF2 00AD T1L A804
T1CH A805 T1LL A806 T1LH A807
T2L A808 T2H A809 T2I 0000
T1I 0000 T1FR 00C0 TMSG0 E048
TMSG1 E04D TMSG2 E050 TMSG3 E052
TMSG5 E05F TMSG6 E061 TMSG7 E066
TOGTA1 E6BD TOGTA2 E6CB TRACE E6DD
TOGL E6E7 TOGL1 E6F6 TO E7A7
TO1 E7A9 TTYTST E842 TAP1 E8B3
TAP2 E8BC TAP3 E8C2 TIBYTE ED3B
TIB1 ED48 TIBY1 ED53 TIBY3 ED56
TIBY4 ED63 TIBY5 ED65 TIBY5A ED88
TIBY6 EDAF TIBY7 EDB0 TAISET EDEA
TIOSET EE1C TIOS1 EE22 TIOS2 EE24
TOBYTE F18B TABY2 F1A7 TABY3 F1CE
TAOSET F21D TAOS1 F238 TRY F258
TP F6D2 TOPNO F8BC TPO1 F8C0
TYPTR1 FAE2 TYPTR2 FAF1 TYPTB FB5E
TRYZP FC28 TRY34 FC40 TRY56 FC5A
TRYINY FC85 TRYJMP FC94 UDRB A000
UDRAH A001 UDDRB A002 UDDRA A003
UT1L A004 UT1CH A005 UT1LL A006
UT1LH A007 UT2L A008 UT2H A009
USR A00A UACR A00B UPCR A00C
UIFR A00D UIER A00E UDRA A00F
UIN 0108 UOUT 010A UP F6F9
UPNO F709 UP1 F713 UP4 F720
VECKSM E694 VECK1 E69E VECK2 E6AC
VALID FCDD VECK5 FF66 VECK4 FF6F
WRITAZ E2DB WRITAD E2DD WHEREI E848
WHE1 E85C WHE2 E868 WHE3 E870
WHEREO E871 WHRO1 E885 WHRO2 E88E
WHRO3 E897 WHRO4 E89F WHICHT E8A8
WRAX EA42 XORY FDEF XORYZ FDF1
XORY1 FDFC XORYRT FE02 ZON F25D
ZON1 F261 ZON2 F26C ZPAGE FC38
ZPY FC50 ZPX FC55
tasm: Number of errors = 0
AIM 65 MICROCOMPUTER MONITOR PROGRAM LISTING
Rockwell International
Document No. 29650 N36L
Rev. 1, April 1979
I used the Telemark Cross Assembler v3.1 (TASM) to re-create the source code.
See http://www.halcyon.com/squakvly/
I tried to exactly duplicate the original source but some errors may exist.
The exceptions are when the original had a hexadecimal constant instead
of an ASCII constant or ASCII equate (especially CR) in some immediate
mode instructions; I changed them to ASCII constants or an equate.
For example, line 468 in the printed listing is:
0468 E185 A9 BC STA1 LDA #$BC ;"<" CHR WITH MSB=1 FOR DISP
My version is:
0468 E185 A9 BC STA1 LDA #'<'+$80 ;"<" CHR WITH MSB=1 FOR DISP
The TASM assembler is not the same one that Rockwell used to write the
code, so some assembler directives and opcode formats are different.
However, the ASM file uses the same line numbering as the printed listing.
That is, line 1000 in the printed listing corresponds to line 1000 in the
ASM file and line 1000 in the LST file.
I could not fully read eight lines in the program listing because I was
looking at a scanned copy, not the original. The rightmost characters
were lost in the binding. These are the lines:
0149 HIST =NAME ;FOUR LAST ADDR + NEXT (SINGL STEP)
1796 JSR SWSTAK ;SWAP X , Y WITH RTRN ADDR FROM S
1804 JSR SWSTAK ;SWAP X , Y WITH RTRN ADDR FROM
2159 RDBIT LDA TSPEED ;ARE WE IN C7 OR 5B,5A FREQUENC
2262 OUTDP1 JMP (DILINK) ;HERE HE COULD ECHO SOMEWHERE ELSE
3205 BNE IN02 ;CONTIN , DISP WONT ALLOW > 60 CHR
3719 LDA TYPE ;CHCK FOR BRNCH WITH RELATIVE ADDR
3727 TRY34 LDA #04 ;CHECK FOR ABSOLUTE OR ZP,X ORZP,
NOTE: I have since been told that the cut-off lines above exist in the
original manual.
+------------------------------------------------------------------------
| TOPIC -- AIM Computer -- AIM BASIC Language Reference Manual
+------------------------------------------------------------------------
AIM 65 MICROCOMPUTER BASIC LANGUAGE REFERENCE MANUAL
Rockwell International Corporation
Document No 29650 N49
March 1979
TABLE OF CONTENTS
100 Installing BASIC in the AIM 65
200 Getting Started With Basic
201 BASIC Command Set
202 Direct and Indirect Commands
203 Operating on Programs and Lines
204 Printing Data
205 Number Format
206 Variables
207 Relational Tests
208 Looping
209 Matrix Operations
210 Subroutines
211 Entering Data
212 Strings
300 Statement Definitions
301 Special Characters
302 Operators
303 Commands
304 Program Statements
305 Input/Output Statements
306 String Functions
307 Arithmetic Functions
A Error Messages
B Space Hints
C Speed Hints
D Converting BASIC Programs not Written for AIM 65 BASIC
E ASCII Character Codes
F Assembly Language Subroutines
G Storing AIM 65 BASIC Programs on Cassette
H ATN Implementation
INTRODUCTION
Before a computer can perform any useful function, it must be "told" what to do. Unfortunately,
at this time, computers are not capable of understanding English or any other "human" language.
This is primarily because our languages are rich with ambiguities and implied meanings. The
computer must be told precise instructions and the exact sequence of operations to be performed
in order so accomplish any specific task. Therefore, in order to facilitate human communication
with a computer, programming languages have been developed.
Rockwell AIM 65 8K BASIC by Microsoft is a programming language both easily understood and
simple to use. It serves as an excellent "tool" for applications in areas such as business, science,
and education. After only a few hours of using BASIC, you will find that you can already write
programs with an ease that few other computer languages can duplicate.
Originally developed at Dartmouth University, the BASIC language has found wide acceptance in
the computer field. Although it is one of the simplest computer languages to use, it is very powerful.
BASIC uses a small set of common English words as its "comnmands." Designed specifically as an
"interactive" language, you can give a command such as "PRINT 2 + 2," and BASIC will immediately
reply with "4." It is not necessary to submit a card deck wish your program on it and then wait
hours for the results. Instead, the full power of the computer is "at your fingertips."
We hope that you enjoy BASIC, and are successful in using it to solve all of your programming
problems.
100 INSTALLING BASIC IN THE AIM 65
ROM INSTALLATION PROCEDURE
Before handling the BASIC ROM circuits, be sure to observe the precautions outlined in Section 1.4
of the AIM 65 User's Guide.
To install the ROMs, turn off power to the AIM 65. Inspect the pins on the two BASIC ROMs to
ensure that they are straight and free of foreign material. While supporting the AIM 65 Master
Module beneath the ROM socket, insert ROM number R3225 into Socket Z25, being careful to
observe the device orientation. Now insert ROM number R3226 into Socket Z26. Be certain that
both ROM's are completely inserted into their sockets, then turn on power to the AIM 65.
ENTERING BASIC
To enter and initialize BASIC, type 5 after the monitor prompt is displayed. AIM 65 will respond
with:
<5>
MEMORY SIZE? ^
Type the highest address in memory that is to be allocated to the BASIC program, in decimal. End
the entry by typing RETURN. BASIC will allocate memory from 530 (212 in hex) through the
entered address. If BASIC is to use all available memory, type RETURN without entering an
address. The highest address is 1024 (400 hex) in the 1K RAM version of AIM 65, and 4096
(1000 hex) in the 4K RAM version.
BASIC will then ask:
WIDTH? ^
Type in the output line width of the printer (or any other output device that is being used) and end
the
input with RETURN.
The entered number may vary from 1 to 255, depending on the output device. If RETURN is typed
without entering a number, the output line width is set to a default value of 20, which is the column
width of the AIM 65 printer.
BASIC will respond with:
XXXX BYTES FREE
where XXXX is the number of bytes available for BASIC program, variables, matrix storage, and
string space. If all available memory was allocated, BASIC will reply with:
494 BYTES FREE (for 1K RAM; i.e., 1024-530)
or
3566 BYTES FREE (for 4K RAM; i.e., 4096-530)
BASIC will display:
^ AIM 65 BASIC Vn.n
where n.n is the version number.
BASIC is now in the command entry mode as indicated by the BASIC prompt (^) in the display
column 1. Subject 201 gets you started into the BASIC commands.
Read the following paragraphs first, however, so understand how to exit and reenter the BASIC
and how the BASIC cursor prompt operates.
CAUTION
Entering BASIC with the 5 key causes the allocated
memory to be initialized with AA (hex) in all bytes,
starting with address 532. This, of course, destroys
any previous BASIC programs, data in the AIM 65
Editor Text Buffer, or machine level routines that
may have been stored in this portion of memory.
Be sure to save any desired data or programs that
may exist in this area before entering BASIC with
the 5 key.
Note that text in the Text Buffer or machine level
routine may co-exist in memory with BASIC by
locating such text or routines in upper memory
and entering the highest BASIC address with a
value lower than the starting address of such text
or routines.
EXITING BASIC
To escape from BASIC and return to the AIM 65 Monitor, type ESC any time the BASIC command
cursor is displayed. You can also escape BASIC while a program is running, by pressing the F1 key
(see Subject 301).
Pressing RESET will also cause the AIM 65 Monitor to be entered as well as performing a hardware
reset of AIM 65.
REENTERING BASIC
BASIC may be reentered by typing 6 whenever the AIM 65 Monitor prompt is displayed. In this
case, however, any existing BASIC program is retained in memory. AIM 65 will respond to a
Key 6 entry with:
<6>
^6>
BASIC CURSOR
The BASIC cursor (^), displayed in column 1 whenever BASIC is in the command entry mode,
indicates that a BASIC command can be entered. The last displayed data resulting from the previous
command is retained except for column 1 to provide information continuity with the previous
command or displayed output data. This is especially helpful when the printer control is turned off
to preserve printer paper.
When the first character of the next command is typed, the display will blank except for the newly
typed character. The cursor then advances across the display in accordance with typed characters
to indicate the character input position.
The displayed cursor does not appear on the printer output, thus any data printed in column 1 will
be retained.
CAUTION
The minus sign associated with any negative values
that are displayed starting in column 1 will be
replaced with the cursor in the BASIC command
entry mode. In the case of direct commands, the
minus sign will only flash before the cursor is
displayed if the printer control is on or may not
appear at all if the printer control is off. In order
to retain the minus sign, a leading blank should
be displayed before the value is displayed (see
Subject 204).
PRINTER CONTROL
While in the BASIC command entry mode, the printer may be turned on or off by typing PRINT
while CNTL is pressed (CNTL PRINT). The on/off state of the printer is displayed after typing
PRINT.
If the printer is turned off, statements in the BASIC command entry mode and data output from
PRINT commands will be directed to the display only. If the printer is turned on, all commands
and data from PRINT commands will be directed to both the printer and display. With the printer
off, data can still be directed to the printer by using the PRINT) command (see Subject 305).
Similarly, INPUT statements will output data to the printer in response to the printer control state.
An INPUT! statement will output data to the printer even if the printer control is off (see
Subject 305).
200 GETTING STARTED WITH BASIC
201 BASIC COMMAND SET
This section is not intended to be a detailed course in BASIC programming. It will, however, serve
as an excellent introduction for those of you unfamiliar with the language.
We recommend that you try each example in this section as it is presented. This will enhance your
"feel" for BASIC and how it is used. Table 201-1 lists all the AIM 65 BASIC commands.
NOTE
Any time the cursor (^) is displayed in column 1
a BASIC command may be typed in. End all
commands to BASIC by typing RETURN. The
RETURN tells BASIC that you have finished
typing the command. If you make an error, type
a DEL (RUBOUT on a TTY) to eliminate the
last character. Repeated use of DEL will
eliminate previous characters. An @ symbol
will eliminate that entire line being typed.
Table 201.1. AIM 65 BASIC Commands
Commands Input/Output
-------- ------------
CLEAR DATA
CONT GET
FRE INPUT
LIST POS
LOAD PRINT
NEW READ
PEEK SPC
POKE TAB
RUN
SAVE
String Functions
----------------
Program Statements ASC
------------------ CHR$
DEF FN LEFT$
DIM LEN
END MID$
FOR RIGHT$
GOSUB STR$
GOTO VAL
IF...GOTO
IF...THEN
LET Arithmetic Functions
NEXT --------------------
ON...GOSUB ABS
ON...GOTO ATN*
REM COS
RESTORE EXP
RETURN INT
STOP LOG
USR RND
WAIT SIN
SGN
SQR
TAN
* Although the ATN function is not included in AIM 65 BASIC,
the ATN command is recognized (see Appendix H).
202 DIRECT AND INDIRECT COMMANDS
DIRECT COMMANDS
Try typing in the following:
PRINT 10-4 (end with RETURN)
BASIC will immediately print:
6
The print statement you typed in was executed as soon as you hit the RETURN key. This is called
a direct command. BASIC evaluated the formula after the "PRINT" and then typed out its value,
in this case "6".
Now try typing in this:
PRINT 1/2,3*10 ("*" means multiply, "/" means divide)
BASIC will print:
.5 30
As you can see, BASIC can do division and multiplication as well as subtraction. Note how a ","
(comma) was used in the print command to print two values instead of just one. The command
divides a line into 10-character-wide columns. The comma causes BASIC to skip to the next
10-column field on the terminal, where the value 30 is printed.
INDIRECT COMMANDS
There is another type of command called an Indirect Command. Every Indirect command begins
with a Line Number. A Line Number is any integer from 0 to 63999.
Try typing in these lines:
10 PRINT 2+3
20 PRINT 2-3
A sequence of Indirect Commands is called a "Program." Instead of executing indirect statements
immediately, BASIC saves Indirect Commands in memory. When you type in RUN, BASIC will
execute the lowest numbered indirect statement that has been typed in first, then the next higher,
etc., for as many as were typed in.
In the example above, we typed in line 10 first and line 20 second. However, it makes no difference
in what order you type in indirect statements. BASIC always puts them into correct numerical order
according to the Line Number.
Suppose we type in
RUN
BASIC will print:
5
-1
203 OPERATING ON PROGRAMS AND LINES
In Subject 202, we typed a two-line program into memory. Now let's see how BASIC can be used
to operate on either or both lines.
LISTING A PROGRAM
If we want a listing of the complete program currently in memory, we type in
LIST
BASIC will reply with:
10 PRINT 2+3
20 PRINT 2-3
DELETING A LINE
Sometimes it is desirable to delete a line of a program altogether. This is accomplished by typing
the Line Number of the line so be deleted, followed by a carriage return.
Type in the following:
10
LIST
BASIC will reply with:
20 PRINT 2-3
We have now deleted line 10 from the program.
REPLACING A LINE
You can replace line 10, rather than just deleting it, by typing the new line 10 and hitting
RETURN.
Type in the following:
10 PRINT 3-3
LIST
BASIC will reply with:
10 PRINT 3-3
20 PRINT 2-3
It is not recommended that lines be numbered consecutively. It may become necessary to insert a
new line between two existing lines. An increment of 10 between line numbers is generally sufficient.
DELETING A PROGRAM
If you want to delete the complete program currently stored in memory, type in "NEW." If you
are finished running one program and are about to read in a new one, be sure to type in "NEW"
first.
Type in the following:
NEW
Now type in:
LIST
204 PRINTING DATA
If is often desirable to include explanatory text along with answers that are printed out.
Type in the following:
PRINT "ONE HALF EQUALS", 1/2
BASIC will reply with:
ONE THIRD EOUALS
.5
As explained in Subject 202, including a "," in a PRINT statement causes it to space over to the
next 10-column field before the value following the "," is printed.
If we use a ";" instead of a comma, the next value will be printed immediately following the
previous value.
NOTE
Numbers are always printed with at least one
trailing space. Any text to be printed must
always be enclosed in double quotes.
Try the following examples:
1. PRINT "ONE HALF EQUALS"; 1/2
ONE HALF EQUALS .5
2. PRINT 1,2,3
1 2
3
...
3. PRINT 1;2;3
1 2 3
4. PRINT -1;2;-3
-1 2 -3
205 NUMBER FORMAT
We will digress for a moment to explain the format of numbers in BASIC. Numbers are stored
internally to over nine digits of accuracy. When a number is printed, only nine digits are shown.
Every number may also have an exponent (a power of ten scaling factor).
The largest number that may be presented in AIM 65 BASIC is 1.70141183*10^38, while the
smallest positive number is 2.93873588*10^-39.
When a number is printed, the following rules define the format:
1. If the number is negative, a minus sign (-) is printed. If the number is positive, a space is
printed.
2. If the absolute value of the number is an integer in the range 0 to 999999999, it is
printed as an integer.
3. If the absolute value of the number is greater than or equal to 0.01 and less than or equal
to 999999999, it is printed in fixed point notation, with no exponent.
4. If the number does not fall under categories 2 or 3, scientific notation is used.
Scientific notation is formatted as follows: SX.XXXXXXXXESTT. (Each X is some integer,
0 to 9.)
The leading "S" is the sign of the number: a space for a positive number and a "-" for
for a negative one. One non-zero digit is printed before the decimal point. This it
followed by the decimal point and then the other eight digits of the mantissa. An
"E" is then printed (for exponent), followed by the sign (S) of the exponent; then
the two digits (TT) of the exponent itself. Leading zeroes are never printed; i.e.,
the digit before the decimal is never zero. Trailing zeroes are never printed. If there
is only one digit to print after all trailing zeroes are suppressed, no decimal point is
printed. The exponent sign will be "+" for positive and "-" for negative. Two
digits of the exponent are always printed; that is, zeroes are not suppressed in the
exponent field. The value of any number expressed thus is the number so the left
of the "E" times 10 raised to the power of the number to the right of the "E".
Regardless of what format is used, a space is always printed following a number. BASIC checks
to see if the entire number will fit on the current line. If it cannot, a carriage return/line feed is
executed before printing the number.
Following are examples of various numbers and the output format in which BASIC will output them:
NUMBER OUTPUT FORMAT
------------- -------------
+1 1
-1 -1
6523 6523
-23.460 -23.46
1E20 1E+20
-12.3456E-7 -1.23456E-06
1.234567E-10 1.23457E-10
1000000000 1E+09
999999999 999999999
.1 .1
.01 .01
.000123 1.23 E-04
A number input from the keyboard or a numeric constant used in a BASIC program may have as
many digits as desired, up to the maximum length of a line (72 characters) or maximum numeric
value. However, only the first 10 digits are significant, and tenth digit is rounded up.
PRINT 1.23456789876543210
1.2345679
206 VARIABLES
ASSIGNING VARIABLES WITH AN INPUT STATEMENT
Following is an example of a program that reads a value from the keyboard and uses that value to
calculate and print a result:
10 INPUT R
20 PRINT 3.14159*R*R
RUN
?10
314.159
Here's what's happening: When BASIC encounters the input statement, it outputs a question mark
(?) on the display and then waits for you to type in a number. When you do (in the above example,
10 was typed), execution continues with the next statement in the program after the variable (R)
has been set (in this case to 10). In the above example, line 20 would now be executed. When the
formula after the PRINT statement is evaluated, the value 10 is substituted for the variable R each
time R appears in the formula. Therefore, the formula becomes 3.14159*10*10, or 314.159.
If we wanted so calculate the area of various circles, we could rerun the program for each successive
circle. But, there's an easier way to do it simply by adding another line to the program, as follows:
30 GOTO 10
RUN
?10
314.159
?3
28.27431
?4.7
69.3977231
?
By putting a "GOTO" statement on the end of our program, we have caused it to go back to line 10
after it prints each answer for the successive circles. This could have gone on indefinitely, but we
decided to stop after calculating the area for three circles. This was accomplished by typing a
carriage return to the input statement (thus a blank line).
VARIABLE NAMES
The letter "R" in the program above is a "variable." A variable name can be any alphabetic
character and may be followed by any alphanumeric character (letters A to Z, numbers 0 to 9).
Any alphanumeric characters after the first two are ignored.
Here are some examples of legal and illegal variable names:
Legal Illegal
A % (first character must be alphabetic)
Z1 ZIABCD (variable name too long)
TP TO (variable names cannot be reserved words)
PSTG$ RGOTO (variable names cannot contain reserved words)
COUNT
ASSIGNING VARIABLES WITH A LET OR ASSIGNMENT STATEMENT
Besides having values assigned to variables with an input statement, you can also set the value of a
variable with a LET or assignment statement.
Try the following examples:
A=5
PRINT A, A*2
5 10
LET Z=7
PRINT Z, Z-A
7 2
As you will notice from the examples, the "LET" is optional in an assignment statement.
BASIC "remembers" the values that have been assigned to variables using this type of statement.
This "remembering" process uses space in the memory to store the data.
The values of variables are discarded (and the space in memory used to store them is released) when
one of four conditions occur:
* A new line is typed into the program or an old line is deleted
* A CLEAR command is typed in
* A RUN command is typed in
* NEW is typed in
Another important fact is that if a variable is encountered in a formula before it is assigned a value,
it is automatically assigned the value zero. Zero is then substituted as the value of the variable in
the
particular formula. Try the example below:
PRINT Q;Q+2;Q*2
0 2 0
RESERVED WORDS
The words used as BASIC statements are "reserved" for this specific purpose. You cannot use these
words as variable names or inside of any variable name. For instance, "FEND" would be illegal
because "END" is a reserved word.
Table 206-1 is a list of the reserved words in BASIC.
Table 206-1. AIM 65 BASIC Reserved Words
ABS FN LIST PRINT SPC
AND FOR LOAD POS SQR
ASC FRE LOG READ STEP
ATN GET MID$ REM STOP
CHR$ GOSUB NEW RESTORE STR$
CLEAR GOTO NEXT RETURN TAB
CONT IF NOT RIGHT$ TAN
COS INPUT NULL RND THEN
DATA INT ON RUN TO
DEF LEFT$ OR SAVE USR
DIM LEN PEEK SGN VAL
END LET POKE SIN WAIT
EXP
REMARKS
The REM (short for "remark") statement is used to insert comments or notes into a program. When
BASIC encounters a REM statement, the rest of the line is ignored.
This serves mainly as an aid for the programmer and serves no useful function as far as the operation
of the program in solving a particular problem.
207 RELATIONAL TESTS
Suppose we wanted to write a program to check whether a number is zero. With the statements
we've gone over so far, this could not be done. What is needed is a statement which can be used
to conditionally branch to another statement. The "IF-THEN" statement does just that.
Type in the following program: (remember, type NEW first)
10 INPUT B
20 IF B=0 THEN 55
30 PRINT "NON-ZERO"
40 GOTO 10
50 PRINT "ZERO"
60 GOTO 10
When this program is typed and run, it will ask for a value for B. Type in any value you wish.
The AIM 65 will then come to the "IF" statement. Between the "IF" and the "THEN" portion
of the statement there are two expressions separated by a "relation."
A relation is one of the following six symbols:
RELATION MEANING
-------- ------------------------
= EQUAL TO
> GREATER THAN
< LESS THAN
<> NOT EQUAL TO
<= or =< LESS THAN OR EQUAL TO
=> or >= GREATER THAN OR EQUAL TO
The IF statement is either true or false, depending upon whether the two expressions satisfy the
relation. For example, in the program we just did, if 0 was typed in for B the IF statement would
be true because 0=0. In this case, since the number after the THEN is 50, execution of the program
would continue at line 50. Therefore, "ZERO" would be printed and then the program would
jump back to line 10 (because of the GOTO statement in line 60).
Suppose a 1 was typed in for B. Since 1=0 is false, the IF statement would be false and the program
would continue execution with the next line. Therefore, "NON-ZERO" would be printed and the
GOTO in line 40 would send the program back to line 10.
A PROGRAM USING RELATIONS
Now try the following program for comparing two numbers:
10 INPUT A,B
20 IF A<=B THEN 50
30 PRINT "A IS BIGGER"
40 GOTO 10
50 IF A<B THEN 80
60 PRINT "THEY ARE THE SAME"
70 GOTO 10
80 PRINT "B IS BIGGER"
90 GOTO 10
When this program is run, line 10 will input two numbers from the keyboard. At line 20, if A is
greater than B, A<=B will be false. This will cause the next statement to be executed, printing
"A IS BIGGER" and then line 40 sends the computer back to line 10 to begin again.
At line 20, if A has the same value as B, A<=B is true so we go to line 50. At line 50, since A has
the same value as B, A<B is false; therefore, we go to the following statement and print "THEY
ARE THE SAME." Then line 70 sends us back to the beginning again.
At line 20, if A is smaller than B, A<=B is true so we goto line 50. At line 50, A<B will be true
so we then go to line 80. "B IS BIGGER" is then printed and again we go back to the beginning.
Try running the last two programs several times. It may be easier to understand if you try writing
your own program at this time using the IF-THEN statement. Actually trying programs of your
own is the quickest and easiest way to understand how BASIC works. Remember, to stop these
programs just give a RETURN to the input statement.
208 LOOPING
One advantage of computers is their ability to perform repetitive tasks. Let's take a closer look and
see how this works.
A SQUARE ROOT PROGRAM
Suppose we want a table of square roots from 1 to 9. The BASIC function for square root is "SQR";
the form being SORIX), X being the number whose square root is to be calculated. We could write
the program as follows:
10 PRINT 1,SQR(1)
20 PRINT 2,SQR(2)
30 PRINT 3,SQR(3)
40 PRINT 4,SQR(4)
50 PRINT 5,SQR(5)
60 PRINT 6,SQR(6)
70 PRINT 7,SQR(7)
80 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
AN IMPROVED SQUARE ROOT PROGRAM
This program will do the job, but is terribly inefficient. We can improve the program considerably
by using the IF statement just introduced as follows:
10 N=1
20 PRINT N;SQR(N)
3D N=N+1
40 IF N<=9 THEN 20
When this program is run, its output will look exactly like that of the 9 statement program above
it. Let's look at how it works:
At line 10 we have a LET statement which sets the value of the variable N equal to 1. At line 20
we print N and the square root of N using its current value. It thus becomes 20 PRINT 1;SQR(1),
and this calculation is printed out.
At line 30 we use what will appear at first to be a rather unusual LET statement. Mathematically,
the statement N=N+1 is nonsense. However, the important thing to remember is that in a LET
statement, the symbol "=" does not signify equality. In this case, "=" means "to be replaced
with." All the statement does is to take the current value of N and add 1 to it. Thus, after the
first time through line 30, N becomes 2.
At line 40, since N now equals 2, N<=9 is true so the THEN portion branches us back to line 20,
with N now at a value of 2.
The overall result is that lines 20 through 40 are repeated, each time adding 1 to the value of N.
When N finally equals 9 at line 20, the next line will increment it to 11. This results in a false
statement at line 40, and since there are no further statements to the program it stops.
BASIC STATEMENTS FOR LOOPING
This technique is referred to as "looping" or "iteration." Since it is used quite extensively in
programming, there are special BASIC statements for using it. We can show these with the
following program:
10 FOR N=1 TO 9
20 PRINT N;SQR(N)
30 NEXT N
The output of the program listed above will be exactly the same as the previous two programs.
At line 10, N is set to equal 1. Line 20 causes the value of N and the square root of N so be printed.
At line 30 we sees new type of statement. The "NEXT N" statement causes one to be added to N,
and then if N<=9 we go back to the statement following the "FOR" statement. The overall
operation then is the same as with the previous program.
Notice that the variable following the "FOR" is exactly the same as the variable after the "NEXT."
There is nothing special about the N in this case. Any variable could be used, as long as it is the
same in both the "FOR" and the "NEXT" statements. For instance, "Z1" could be substituted
everywhere there is an "N" in the above program and it would function exactly the same.
ANOTHER SQUARE ROOT PROGRAM
Suppose we want to print a table of square roots of each even number from 10 to 20. The
following program performs this task:
10 N=10
20 PRINT N;SQR(N)
30 N=N+2
40 IF N<=20 THEN 20
Note the similarity between this program and our "improved" square root program. This program
can also be written using the "FOR" loop just introduced.
10 FOR N=10 TO 20 STEP 2
20 PRINT N;SQR(N)
30 NEXT N
Notice that the only major difference between this program and the previous one using "FOR"
loops is the addition of the "STEP 2" clause.
This tells BASIC to add 2 to N each time, instead of 1 as in the previous program. If no "STEP"
is given in a "FOR" statement, BASIC assumes that 1 is to be added each time. The "STEP" can
be followed by any expression.
A COUNT-BACKWARD PROGRAM
Suppose we wanted to count backward from 10 to 1. A program for doing this would be as
follows:
10 I=10
20 PRINT I
30 I=I-1
40 IF I>=1 THEN 20
Notice that we are now checking to see that I is greater than or equal to the final value. The reason
is that we are now counting by a negative number. In the previous examples it was the opposite, so
we were checking for a variable less than or equal to the final value.
SOME OTHER LOOPING OPERATIONS
The "STEP" statement previously shown can also be used with negative numbers to accomplish this
same result. This can be done using the same format as in the other program:
10 FOR I=10 TO 1 STEP -1
20 PRINT I
30 NEXT I
"FOR" loops can also be "nested." For example:
10 FOR I=1 TO 5
20 FOR J=1 TO 3
30 PRINT I,J
40 NEXT J
50 NEXT I
Notice that "NEXT J" precedes "NEXT I." This is because the J-Ioop is inside the I-loop. The
following program is incorrect; run it and see what happens:
10 FOR I=1 TO 5
20 FOR J=1 TO 3
30 PRINT I,J
40 NEXT I
50 NEXT J
It does not work because when the "NEXT I" is encountered, all knowledge of the J-loop is lost.
This happens because the J-loop is "inside" the I-loop.
209 MATRIX OPERATIONS
It is often convenient to be able to select any element in a table of numbers. BASIC allows this to
be done through the use of matrices.
A matrix is a table of numbers. The name of this table (the matrix name) is any legal variable name,
"A" for example. The matrix name "A" is distinct and separate from the simple variable "A," and
you could use both in the same program.
To select an element of the table, we subscript "A": that is, to select the I'th element, we enclose I
in parentheses "(I)" and then follow "A" by this subscript. Therefore, "A(I)" is the I'th element in
the matrix "A."
"A(1)" is only one element of matrix A, and BASIC must be told how much space so allocate for
the entire matrix. This is done with a "DIM" statement, using the format "DIM A(15)." In this
case, we have reserved space for the matrix index "I" to go from 0 to 15. Matrix subscripts always
start as 0; therefore, in the above example, we have allowed for 16 numbers in matrix A.
If "A(1)" is used in a program before is has been dimensioned, BASIC reserves space for 11 elements
(0 through 10).
A SORT PROGRAM
As an example of how matrices are used, try the following program so sort a list of 8 numbers, in
which you pick the numbers to be sorted:
10 DIM A(8) 110 A(I)=A(I+1)
20 FOR I=1 TO 8 120 A(I+1)=T
30 INPUT A(I) 130 F=1
50 NEXT I 140 NEXT I
70 F=0 150 IF F=1 THEN 70
80 FOR I=1 TO 7 160 FOR I=1 TO 8
90 IF A(I)<=A(I+1) THEN 140 170 PRINT A(I)
100 T=A(I) 180 NEXT I
When line 10 is executed, BASIC sets aside space for 9 numeric values, A(0) through A(8).
Lines 20 through 50 get the unsorted list from the user. The sorting itself is done by going through
the list of numbers and switching any two that are not in order. "F" is used to indicate if any
switches were made; if any were made, line 150 tells BASIC to go back and check some more.
If we did not switch any numbers, or after they are all in order, lines 160 through 180 will print
out the sorted list. Note that a subscript can be any expression.
210 SUBROUTINES
If you have a program that performs the same action in several different places, you could duplicate
the same statements for the action in each place within the program.
The "GOSUB" and "RETURN" statements can be used to avoid this duplication. When a "GOSUB"
is encountered, BASIC branches to the line whose number follows the "GOSUB." However, BASIC
remembers where it was in the program before it branches. When the "RETURN" statement is
encountered, BASIC goes back to the first statement following the last "GOSUB" that was
executed. Observe the following program:
10 PRINT "WHAT IS THE NUMBER";
30 GOSUB 100
40 T=N
50 PRINT "SECOND NUMBER";
70 GOSUB 100
80 PRINT "THE SUM IS"; T+N
90 STOP
100 INPUT N
110 IF N=INT(N) THEN 140
120 PRINT "MUST BE INTEGER."
130 GOTO 100
140 RETURN
This program asks for two numbers (which must be integers), and then prints their sum. The
subroutine in this program is lines 100 to 140. The subroutine asks for a number, and if it is not
an integer, asks for a new number. It will continue to ask until an integer value is typed in.
The main program prints "WHAT IS THE NUMBER," and then calls the subroutine so get the value
of the number into N. When the subroutine returns (to line 40), the value input is saved in the
variable T. This is done so that when the subroutine is called a second time, the value of the first
number will not be lost.
"SECOND NUMBER" is then printed, and the second value is entered when the subroutine is
again called.
When the subroutine returns the second time, "THE SUM IS" is printed, followed by the sum.
T contains the value of the first number that was entered and N contains the value of the second
number.
STOPPING A PROGRAM
The next statement in the program is a "STOP" statement. This causes the program to stop
execution at line 90. If the "STOP" statement was excluded from the program, we would "fall
into" the subroutine at line 100. This is undesirable because we would be asked to input another
number. If we did, the subroutine would try to return; and since there was no "GOSUB" which
called the subroutine, an RG error would occur. Each "GOSUB" executed in a program should
have a matching "RETURN" executed later. The opposite also applies: a "RETURN" should be
encountered only if it is part of a subroutine which has been called by a "GOSUB."
Either "STOP" or "END" can be used to separate a program from its subroutines. "STOP" will
print a message saying at what line the "STOP" was encountered.
211 ENTERING DATA
Suppose you had to enter numbers to your program that did not change each time the program was
run, but you would like it to be easy to change them if necessary. BASIC contains special state-
ments, "READ" and "DATA," for this purpose.
Consider the following program:
10 PRINT "GUESS A NUMBER";
20 INPUT G
30 READ D
40 IF D = -999999 THEN 90
50 IF D<>G THEN 30
60 PRINT "YOU ARE CORRECT"
70 END
90 PRINT "BAD GUESS, TRY AGAIN."
95 RESTORE
100 GOTO 10
110 DATA 1,393,-39,28,391,-8,0,3.14,90
120 DATA 89,5,10,15,-34,-999999
When the "READ" statement is encountered, the effect is the same as an INPUT statement. But,
instead of getting a number from the keyboard, a number is read from the "DATA" statements.
The first time a number is needed for a READ, the first number in the first DATA statement is
read. The second time one is needed, the second number in the first DATA statement is read.
When the all numbers of the first DATA statement have been read in this manner, the second
DATA statement will be used. DATA is always read sequentially in this manner, and there may
be any number of DATA statements in your program.
The purpose of this program is to play a little game in which you try to guess one of the numbers
contained in the DATA statements. For each guess that is typed in, we read through all of the
numbers in the DATA statements until we find one that matches the guess.
If more values are read than there are numbers in the DATA statements, an out of data (OD) error
occurs. That is why in line 40 we check to see if -999999 was read. This is not one of the numbers
to be matched, but is used as a flag to indicate that all of the data (possible correct guesses) has
been read. Therefore, if -999999 was read, we know that the guess was incorrect.
Before going back to line 10 for another guess, we need to make the READ's begin with the first
piece of data again. This is the function of the "RESTORE." After the RESTORE is encountered,
the next piece of data read will be the first number in the first DATA statement again.
DATA statements may be placed anywhere within the program. Only READ statements make use
of the DATA statements in a program, and any other time they are encountered during program
execution they will be ignored.
212 STRINGS
A list of characters is referred to as a "String." Rockwell, R6500, and THIS IS A TEST are all
strings. Like numeric variables, string variables can be assigned specific values. String variables
are
distinguished from numeric variables by a "$" after the variable name.
For example, try the following:
A$="ROCKWELL R6500"
PRINT A$
ROCKWELL R6500
In this example, we set the string variable A$ to the string value "ROCKWELL R6500." Note that
we also enclosed the character string so be assigned to A$ in quotes.
LEN FUNCTION
Now that we have set A$ to a string value, we can find out what the length of this value is (the
number of characters it contains). We do this as follows:
PRINT LEN(A$),LEN("MICROCOMPUTER")
14 13
The "LEN" function returns an integer equal to the number of characters in a string.
A string expression may contain from 0 to 255 characters. A string containing 0 characters is called
the "null" string. Before a string variable is set to a value in the program, it is initialized to the
null
string. Printing a null string on the terminal will cause no characters to be printed, and the printer
or cursor will not be advanced to the next column. Try the following:
PRINT LEN(Q$);Q$;3
0 3
Another way to create the null string is: Q$=""
Setting a string variable to the null string can be used to free up the string space used by a non-null
string variable.
LEFT$ FUNCTION
It is often desirable to access parts of a string and manipulate them. Now that we have set A$ to
"ROCKWELL R6500," we might want to print out only the first eight characters of A$. We would
do so like this:
PRINT LEFT$(A$,8)
ROCKWELL
"LEFT$" is a string function which returns a string composed of the leftmost N characters of its
string argument. Here is another example:
FOR N=1 TO LEN(A$):PRINT LEFT$(A$,N):NEXT N
R
RO
ROC
ROCK
ROCKW
ROCKWE
ROCKWEL
ROCKWELL
ROCKWELL R
ROCKWELL R6
ROCKWELL R65
ROCKWELL R650
ROCKWELL R6500
Since A$ has 14 characters this loop will be executed with N=1,2,3,...,13,14. The first time
through only the first character will be printed, the second time the first two characters will be
printed, etc.
RIGHT$ FUNCTION
Another string function, called "RIGHT$," returns the right N characters from a string expression.
Try substituting "RIGHT$" for "LEFT$" in the previous example and see what happens.
MID$ FUNCTION
There is also a string function which allows us to take characters from the middle of a string. Try
the following:
FOR N=1 TO LEN(A$):PRINT MID$(A$,N):NEXT N
ROCKWELL R6500
OCKWELL R6500
CKWELL R6500
KWELL R6500
WELL R6500
ELL R6500
LL R6500
L R6500
R6500
R6500
6500
500
00
0
"MID$" returns a string starting at the Nth position of A$ so the end (last character) of A$. The
first position of the string is position 1 and the last possible position of a string is position 255.
Very often it is desirable to extract only the Nth character from a string. This can be done by
calling MID$ with three arguments. The third argument specifies the number of characters to
return.
For example:
FOR N=1 TO LEN(A$):PRINT MID$(A$,N,1),MID$(A$,N,2):NEXT N
R RO
O OC
C CK
K KW
W WE
E EL
L LL
L L
R
R R6
6 65
5 50
0 00
0 0
CONCATENATION-JOINING STRINGS
Strings may also be concatenated (put or joined together) through the use of the "+" operator.
Try the following:
B$="BASIC FOR"+" "+A$
PRINT B$
BASIC FOR ROCKWELL R6500
Concatenation is especially useful if you wish to take a string apart and then put it back together
with slight modifications. For instance:
C$=LEFT$(B$,9)+"-"+MID$(B$,11,8)+"-"+RIGHT$(B$,5)
PRINT C$
BASIC FOR-ROCKWELL-R6500
VAL AND STRS FUNCTIONS
Sometimes it is desirable to convert a number to its string representation, and vice-versa. "VAL"
and "STR$" perform these functions.
Try the following:
STRING$="567.8"
PRINT VAL(STRING$)
567.8
STRING$=STR$(3.1415)
PRINT STRINGS$,LEFT$(STRING$,5)
3.1415 3.14
"STR$" can be used to perform formatted I/O on numbers. You can convert a number to a string
and then use LEFT$, RIGHT$, MID$ and concatenation to reformat the number as desired.
"STR$" can also be used to conveniently find out how many print columns a number will take.
For example:
PRINT LEN(STR$(3.157))
6
If you have an application in which a user is typing in a question such as "WHAT IS THE VOLUME
OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT 5.1 FEET?" you can use "VAL" to
extract the numeric values 5.36 and 5.1 from the question.
CHR$ FUNCTION
CHR$ is a string function which returns a one character string which contains the alphanumeric
equivalent of the argument, according so the conversion table in Appendix E. ASC takes the first
character of a string and converts it to its ASCII decimal value.
One of the most common uses of CHR$ is to send a special character to a terminal.
100 DIM A$(15)
110 FOR I=1 TO 15
120 READ A$(I)
130 NEXT I
120 F=0:I=1
130 IF A$(I)<=A$(I+1) THEN 180
140 T$=A$(I+1)
150 A$(I+1)=A$(I)
160 A$(I)=T$
170 F=1
180 I=I+1
185 IF I<15 THEN 130
190 IF F THEN 120
200 FOR I=1 TO 15
202 PRINT A$(I)
204 NEXT I
220 DATA AIM 65,DOG
230 DATA CAT,R6500
240 DATA ROCKWELL,RANDOM
250 DATA SATURDAY,"***ANSWER***"
260 DATA MICRO,FOO
270 DATA COMPUTER,MED
280 DATA NEWPORT BE-ACH,DALLAS,ANAHEIM
ADDITIONAL STRING CONSIDERATIONS
1. A string may contain from 0 to 255 characters. All string variable names end in a dollar
sign ($); for example, A$, B9$, K$, HELLO$.
2. String matrices may be dimensioned exactly like numeric matrices. For instance,
DIM A$(10,10) creates a string matrix of 121 elements, eleven rows by elevon columns
(rows 0 to 10 and columns 0 to 10). Each string matrix element is a complete string,
which can be up to 255 characters in length.
NAME EXAMPLE PURPOSE/USE
---- ------- -----------
DIM 25 DIM A$(10,10) Allocates space for a pointer and length for
each element of a string matrix. No string
space is allocated.
LET 27 LET A$="FOO"+V$ Assigns the value of a string expression to
a string variable. LET is optional.
= String comparison operators. Comparison
> is made on the basis of ASCII codes, a
< character at a time until a difference is
<= or =< found. If during the comparison of two
>= or => strings, the end of one is reached, the
<> shorter string is considered smaller.
Note that "A " is greater than "A" since
trailing spaces are significant.
+ 30 LET Z$=R$+Q$ String concatenation. The resulting string
must be less than 256 characters in length
or an LS error will occur.
INPUT 40 INPUT X$ Reads a string from the keyboard. String
does not have to be quoted; but if not,
leading blanks will be ignored and the
string will be terminated on a "," or ":"
character.
READ 50 READ X$ Reads a string from DATA statements
within the program. Strings do not have
to be quoted; but if they are not, they
are terminated on a "," or ":" character
and leading spaces are ignored. See
DATA for the format of string data.
PRINT 60 PRINT X$ Prints the string expression on the
70 PRINT "FOO"+A$ display/printer.
300 STATEMENT DEFINITIONS
301 SPECIAL CHARACTERS
CHARACTER USE
--------- ---
@ Erases current line being typed, and types a carriage return/line
feed.
DEL Erases last character typed. If no more characters are left on
the line, types a carriage return/line feed.
RETURN A RETURN must end every line typed in. Returns cursor to
the first position (leftmost) on line, and prints the line if the
printer is on.
F1 Interrupts execution of a program or a list command. F1 has
effect when a statement finishes execution, or in the case of
interrupting a LIST command, when a complete line has
finished printing. In both cases a return is made to BASIC's
command level and OK is typed.
Prints "BREAK IN LINE XXXX," where XXXX is the line
number of the next statement to be executed.
There is no F1 key on a TTY. However, when TTY is being
used, the AIM 65's F1 key is operational and can be used.
: (colon) A colon is used to separate statements on a line. Colons may
be used in direct and indirect statements. The only limit on
the number of statements per line is the line length. It is not
possible to GOTO or GOSUB to the middle of a line.
? Question marks are equivalent to PRINT. For instance, ? 2+2
is equivalent to PRINT 2+2. Question marks can also be used
in indirect statements. 10 ? X, when listed, will be typed as
10 PRINT X.
$ A dollar sign ($) suffix on a variable name establishes the
variable as a character string.
% A percent sign (%) suffix on a variable name establishes the
variable as an integer
! An exclamation sign (!) suffix on an INPUT, PRINT, or ?
command causes the input or output to be printed even
though the printer is turned off.
ESC Returns control to the Monitor.
CNTL PRINT Turns the AIM 65 printer on if it is off, and off if it is on.
302 OPERATORS
SYMBOL SAMPLE STATEMENT PURPOSE/USE
------ ---------------- -----------
= A=100 Assigns a value to a variable
LET Z=2.5 The LET is optional
- B=-A Negation. Note that 0-A is subtraction,
while -A is negation.
^ (F3 key) 130 PRINT X^3 Exponentiation (equal to X*X*X in
in the sample statement)
0^0=1 0 to any other power = 0
A^B, with A negative and B not an
integer gives an FC error.
* 140 X=R*(B*D) Multiplication.
/ 150 PRINT X/1.3 Division.
+ 160 Z=R+T+Q Addition
- 170 J=100-I Subtraction
RULES FOR EVALUATING EXPRESSIONS:
1) Operations of higher precedence are performed before operations of lower precedence.
This means the multiplication and divisions are performed before additions and subtractions.
As an example, 2+10/5 equals 4, not 2.4. When operations of equal precedence are found
in a formula, the left hand one is executed first: 6-3+5=8, not -2.
2) The order in which operations are performed can always be specified explicitly through the
use of parentheses. For instance, to add 5 to 3 and then divided that by 4, we would use
(5+3)/4, which equals 2. If instead we had used 5+3/4, we would get 5.75 as a result
(5 plus 3/4).
The precedence of operators used in evaluating expressions is as follows, in order beginning with the
highest precedence :
NOTE
Operators listed on the same line have the same
precedence.
1) Expressions in parentheses are always evaluated first
2) ^ (F3 KEY) ExponentiatiOn
3) NEGATION -X where X may be a formula
4) * and / Multiplication and Division
5) + and - Addition and Subtraction
6) RELATIONAL OPERATORS: = Equal
(equal precedence for all six) <> Not Equal
< Less Than
> Greater Than
=< or <= Less Than or Equal
=> or >= Greater Than or Equal
(These three below are Logical Operators)
7) NOT Logical and bitwise "NOT" like
negation, not takes only the formula
to its right as an argument
8) AND Logical and bitwise "AND"
9) OR Logical and bitwise "OR"
A relational expression can be used as part of any expression.
Relational Operator expressions will always have a value of True (-1) or a value of False (0).
Therefore, (5=4)=0, (5=5)=-1, (4>5)=0, (4<5)=-1, etc.
The THEN clause of an IF statement is executed whenever the formula after the IF is not equal to 0.
That is to say, IF X THEN ... is equivalent to IF X<>0 THEN ....
SYMBOL SAMPLE STATEMENT PURPOSE/USE
------ ---------------- -----------
- 10 IF A=15 THEN 40 Expression Equals Expression
<> 70 IF A<>0 THEN 5 Expression Does Not Equal Expression
> 30 IF B>100 THEN 8 Expression Greater Than Expression
< 160 IF B<2 THEN 10 Expression Less Than Expression
<=,=< 180 IF 100<=B+C THEN 10 Expression Less Than or Equal To
Expression
>=,=> 190 IF Q=>R THEN 50 Expression Greater Than Or Equal To
Expression
AND 2 IF A<5 AND B<2 THEN 7 If expression 1 (A<5) AND expression 2
(B<2) are both true, then branch to
line 7
OR IF A<1 OR B<2 THEN 2 If either expression 1 (A<1) OR
expression 2 (B<2) is true, then branch
to line 2
NOT IF NOT Q3 THEN 4 If expression "NOT Q3" is true (Because
Q3 is false), then branch to line 4
Note: NOT -1=0 (NOT true=false)
AND, OR, and NOT can be used for bit manipulation, and for performing boolean operations.
These three operators convert their arguments to sixteen bit, signed two's-complement integers in
the range -32768 to +32767. They then perform the specified logical operation on them and return
a result within the same range. If the arguments are not in this range, an "FC" error results.
The operations are performed in bitwise fashion, this means that each bit of the result is obtained
by examining the bit in the same position for each argument.
The following truth table shows the logical relationship between bits:
OPERATOR ARGUMENT 1 ARGUMENT 2 RESULT
-------- ---------- ---------- ------
AND 1 1 1
0 1 0
1 0 0
0 0 0
OR 1 1 1
1 0 1
0 1 1
0 0 0
NOT 1 - 0
0 - 1
EXAMPLES: (In all of the examples below, leading zeroes on binary numbers are not shown.)
63 AND 16=16 Since 63 equals binary 111111 and 16 equals binary 10000, the result
of the AND is binary 10000 or 16.
15 AND 14=14 15 equals binary 1111 and 14 equals binary 1110, so 15 AND 14
equals binary 1110 or 14.
-1 AND 8=8 -1 equals binary 1111111111111111 and 8 equals binary 1000, so
the result is binary 1000 or 8 decimal.
4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the result is binary 0
because nons of the bits in either argument match to give a 1 bit in
the result.
4 OR 2=6 Binary 100 OR'd with binary 10 equals binary 110, or 6 decimal.
10 OR 10=10 Binary 1010 OR'd with binary 1010 equals binary 1010, or 10 decimal.
-1 OR -2=-1 Binary 1111111111111111 (-1) OR'd with binary 1111111111111110
(-2) equals binary 1111111111111111, or -1.
NOT 0=-1 The bit complement of binary 0 to 16 places is sixteen ones
(1111111111111111) or -1. Also NOT -1=0.
NOT X NOT X is equal to -(X+1). This is because to form the sixteen bit
two's complement of the number, you take the bit (one's)
complement and add one.
NOT 1=-2 The sixteen bit complement of 1 is 1111111111111110, which is
equal to -(1+1) or -2.
A typical use of the bitwise operators is to test bits set in the computer's locations which reflect
the
state of some external device.
Bit position 7 is the most significant bit of a byte, while position 0 is the least significant.
For instance, suppose bit 1 of location 40963 is 0 when the door to Room X is closed, and 1 if the
door is open. The following program will print "Intruder Alert" if the door is opened:
10 IF NOT (PEEK(40963) AND 2) THEN 10 This line will execute over and over until
bit 1 (masked or selected by the 2)
becomes a 1. When that happens, we go
to line 20.
20 PRINT "INTRUDER ALERT" Line 20 will output "INTRUDER
ALERT."
However, we can replace statement 10 with a "WAIT" statement, which has exactly the same effect.
10 WAIT 40963,2 This line delays the execution of the
next statement in the program until
bit 1 of location A003 becomes 1. The
WAIT is much faster than the equivalent
IF statement and also takes less bytes
of program storage.
The following is another useful way of using relational operators:
125 A=-(B>C)*B-(B<=C)*C This statement will set the variable A
to MAX(B,C) = the larger of the two
variables B and C.
303 COMMANDS
A BASIC command may be entered when the cursor is displayed. This is called the "Command Level."
Commands may be used as program statements. Certain commands, such as LIST, NEW, and LOAD
will terminate program execution when they finish. Each command may require one or more
arguments in addition to the command statement, as defined in the syntax/function description. An
argument without parenthesis is required to be entered without parenthesis. Arguments contained
within parenthesis are required to be entered with the shown parenthesis. Arguments within brackets
are optional. Optional arguments, if included, must be entered with or without accompanying
parenthesis, however shown.
STATEMENT SYNTAX/FUNCTION EXAMPLE
CLEAR CLEAR CLEAR
Clears all program variables, resets "FOR"
and "GOSUB" state, and restores data.
STATEMENT SYNTAX/FUNCTION EXAMPLE
CONT CONT CONT
Continues program execution after the F1
key or a STOP or INPUT statement termi-
nates execution. You cannot continue after
any error, after modifying your program, or
before your program has been run. One of
the main purposes of CONT is debugging.
Suppose at some point after running your
program, nothing is printed. This may be
because your program is performing some
time consuming calculation, but it may be
because you have fallen into an "infinite
loop." An infinite loop is a series of BASIC
statements from which there is no excape.
BASIC will keep executing the series of
statements over and over; until you inter-
vene or until power to the AIM 65 is
turned off. If you suspect your program
is in an infinite loop, press F1 until the
BREAK message is displayed. The line
number of the statement BASIC was
executing will be displayed. After BASIC
has displayed the cursor, you can use
PRINT to type out some of the values of
your variables. After examining these
values you may become satisfied that your
program is functioning correctly. You
should then type in CONT to Continue
executing your program where it left off, or
type a direct GOTO statement to resume
execution of the program at a different line.
You could also use assignment statements
to set some of your variables to different
values. Remember, if you interrupt a
program with the F1 key and expect to
continue it later, you must not get any
errors or type in any new program lines.
If you do, you won't be able to continue
and will get a "CN" (continue not) error.
It is impossible to continue a direct
command. CONT always resumes
execution at the next statement to be
executed in your program when F1 was
typed.
STATEMENT SYNTAX/FUNCTION EXAMPLE
FRE FRE (expression) 270 PRINT FRE(0)
Gives the number of memory bytes
currently unused by BASIC. A dummy
operand--0 or 1--must be used.
STATEMENT SYNTAX/FUNCTION EXAMPLE
LIST LIST [[start line] [-[end line]]]
Lists current program optionally starting at
specified line. List can be interrupted with
the F1 key. (BASIC will finish listing the
current line.)
Lists entire program LIST
Lists just line 100. LIST 100
Lists lines 100 to 1000. LIST 100-1000
Lists from current line to line 1000. LIST -1000
Lists from line 100 to end of program. LIST 100-
STATEMENT SYNTAX/FUNCTION EXAMPLE
LOAD LOAD LOAD
Loads a BASIC program from the cassette
tape. When done, the LOAD will display
the cursor. See Appendix G for more
information.
STATEMENT SYNTAX/FUNCTION EXAMPLE
NEW NEW NEW
Deletes current program and all variables.
STATEMENT SYNTAX/FUNCTION EXAMPLE
PEEK PEEK (address) 356 PRINT PEEK(I)
The PEEK function returns the contents of
memory address I in decimal. The value
returned will be =>0 and <=255. If I is
>65535 or <0, an FC error will occur.
An attempt to read a non-existent memory
address will return an unknown value.
STATEMENT SYNTAX/FUNCTION EXAMPLE
POKE POKE location, byte 357 POKE I,J
The POKE statement stores the byte
specified by its second argument (J) into
the location given by its first argument (I).
The byte to be stored must be =>0 and
<=255, or an FC error will occur. The
address (I) must be =>0 and <=65535, or
an FC error result. Caution: Careless use
of the POKE statement may cause your
program, BASIC, or the Monitor functions
to operate incorrectly, to hang up, and/or
cause loss of your program. Note that
Pages 0 and 1 in memory are reserved for
use by BASIC and should not be used for
user program variable storage. A POKE to
a non-existent memory location is harmless.
One of the main uses of POKE is to pass
arguments to machine language subroutines.
(See Appendix F.) You could also use
PEEK and POKE to write a memory
diagnostic or an assembler in BASIC.
STATEMENT SYNTAX/FUNCTION EXAMPLE
RUN RUN line number RUN 200
Starts execution of the program currently in
memory at the specified line number. RUN
deletes all variables [does a CLEAR) and
restores DATA. If you have stopped your
program and wish to continue execution at
some point in the program, use a direct
GOTO statement to start execution of your
program at the desired line, or CONT to
continue after a break.
Start program execution at the lowest RUN
numbered statement.
STATEMENT SYNTAX/FUNCTION EXAMPLE
SAVE SAVE SAVE
Saves the current program in the AIM 65
memory on cassette tape. The program in
memory is left unchanged. More than one
program may be stored on cassette using
this command.
See Appendix G for more information.
304 PROGRAM STATEMENTS
In the following description of statements, an argument of B, C, V or W denotes a numeric variable,
X denotes a numeric expression, X$ denotes a string expression and an I or J denotes an expression
that is truncated to an integer before the statement is executed. Truncation means that any
fractional part of the number is lost, e.g., 3.9 becomes 3, 4.01 becomes 4.
An expression is a series of variables, operators, function calls and constants which after the
operations and function calls are performed using the precedence rules, evaluates to a numeric
or string value.
A constant is either a number (3.14) or a string literal ("FOO").
STATEMENT SYNTAX/FUNCTION EXAMPLE
DEF DEF FNx [(argument list)] = expression 100 DEF FNA(V)=V/B+C
The user can define functions like the built-
in functions (SQR, SGN, ABS, etc.) through
the use of the DEF statement. The name
of the function is "FN" followed by any
legal variable name, for example: FNX,
FNJ7, FNKO, FNR2. User defined func-
tions are restricted to one line. A function
may be defined to be any expression, but
may only have one argument. In the
example, B and C are variables that are used
in the program. Executing the DEF state-
ment defines the function. User defined
functions can be redefined by executing
another DEF statement for the same
function. "V" is called the dummy variable.
Execution of this statement following the 100 Z=FNA(3)
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.
STATEMENT SYNTAX/FUNCTION EXAMPLE
DIM DIM variable (size 1, [size 2...]) 113 DIM A(3),B(10)
Allocates space for matrices. All matrix
elements are set to zero by the DIM
statement.
Matrices can have from one to 255 114 DIM R3(5,5),
dimensions. D$(2,2,2)
Matrices can be dimensioned dynamically 115 DIM Q1(N),Z(2*I)
during program execution. If a matrix is
not explicitly dimensioned with a DIM
statement, it is assumed to be a single
dimensioned matrix of whose single
subscript may range 0 to 10 (eleven
elements).
If this statement was encountered before a 117 A(8)=4
DIM statement for A was found in the
program, it would be as if a DIM A(10)
had been executed previous to the execu-
tion of line 117. All subscripts start at
zero (0), which means that DIM X(100)
really allocates 101 matrix elements.
STATEMENT SYNTAX/FUNCTION EXAMPLE
END END 999 END
Terminates program execution without
printing a BREAK message. (See STOP.)
CONT after an END statement causes
execution to resume at the statement after
the END Statement. END can be used
anywhere in the program, and is optional.
STATEMENT SYNTAX/FUNCTION EXAMPLE
FOR FOR variable = expression to expression 300 FOR V=1 TO 9.3
[STEP expression] (See NEXT statement) STEP .6
V is set equal to the value of the expression
following the equal sign, in this case 1. This
value is called the initial value. Then the
statements between FOR and NEXT are
executed. The final value is the value of the
expression following the TO. The step is
the value of the expression following STEP.
When the NEXT statement is encountered,
the step is added to the variable.
If no STEP was specified, it is assumed to 310 FOR V=1 TO 9.3
be one. If the step is positive and the new
value of the variable is <= the final value
(9.3 in this example), or the step value is
negative and the new value of the variable
is => the final value, then the first state-
ment following the FOR statement is
executed. Otherwise, the statement
following the NEXT statement is executed.
All FOR loops execute the statements
between the FOR and the NEXT at least
once, even in cases like FOR V=1 TO 0.
Note that expressions (formulas) may be 315 FOR V=10*N TO
used for the initial, final and step values 3.4/Q STEP SQR(R)
in a FOR loop. The values of the expres-
sions are computed only once, before the
body of the FOR...NEXT loop is
executed.
When the statement after the NEXT is 320 FOR V=9 TO 1
executed, the loop variable is never equal STEP -1
to the final value, but is equal to whatever
value caused the FOR...NEXT loop to
terminate. The statements between the
FOR and its corresponding NEXT in both
examples above (310 and 320) would be
executed nine times.
Error: do not use nested FOR...NEXT 330 FOR W=1 TO 10:
loops with the same index variable. FOR W=1 TO 5:NEXT
W:NEXT W
FOR loop nesting is limited only by the
available memory. (See Appendix C.)
STATEMENT SYNTAX/FUNCTION EXAMPLE
GOSUB GOSUB line number 10 GOSUB 910
Branches to the specified statement (910)
until a RETURN is encountered; when a
branch is then made to the statement after
the GOSUB. GOSUB nesting is limited
only by the available memory.
STATEMENT SYNTAX/FUNCTION EXAMPLE
GOTO GOTO line number 50 GOTO 100
Branches to the statement specified.
STATEMENT SYNTAX/FUNCTION EXAMPLE
IF...GOTO IF expression GOTO line number ... 32 IF X<=Y+23.4
Equivalent to IF...THEN, except that GOTO 92
IF...GOTO must be followed by a line
number, while IF...THEN can be
followed by either a line number or
another statement.
STATEMENT SYNTAX/FUNCTION EXAMPLE
IF...THEN IF expression THEN line number ... IF X<10 THEN 5
Branches to specified statement if the
relation is True.
Executes all of the statements on the 20 IF X<0 THEN PRINT
remainder of the THEN if the relation "X LESS THAN 0"
is True.
WARNING: The "Z=A" will never be 25 IF X=5 THEN 50:Z=A
executed because if the relation is true,
BASIC will branch to line 50. If the
relation is false BASIC will proceed to
to the line following line 25.
In this example, if X is less than 0, the 26 IF X<0 THEN PRINT
PRINT statement will be executed and "ERROR, X NEGATIVE":
then the GOTO statement will branch to GOTO 350
line 350. If the X was 0 or positive,
BASIC will proceed to execute the lines
after line 26.
STATEMENT SYNTAX/FUNCTION EXAMPLE
LET [LET] variable = expression 300 LET W=X
Assigns a value to a variable,
"LET" is optional. 310 V=5.1
STATEMENT SYNTAX/FUNCTION EXAMPLE
NEXT NEXT [variable] [,variable] ... 340 NEXT V
Marks the end of a FOR loop.
If no variable is given, matches the most 345 NEXT
recent FOR loop,
A single NEXT may be used to match 350 NEXT V,W
multiple FOR statements. Equivalent
to NEXT V:NEXT W.
STATEMENT SYNTAX/FUNCTION EXAMPLE
ON...GOSUB ON expression GOSUB line [,line] ... 110 ON I GOSUB 50,60
Identical to "ON...GOTO," except that
a subroutine call (GOSUB) is executed
instead of a GOTO. RETURN from the
GOSUB branches to the statement after
the ON...GOSUB.
STATEMENT SYNTAX/FUNCTION EXAMPLE
ON...GOTO ON expression GOTO line [, line] ... 100 ON I GOTO 10,20,
Branches to the line indicated by the 30,40
I'th number after the GOTO. That is:
IF I=1, THEN GOTO LINE 10
IF I=2, THEN GOTO LINE 20
IF I=3, THEN GOTO LINE 30
IF I=4, THEN GOTO LINE 40.
If I=0, or I attempts to select a nonexistent
line (>=5 in this case), the statement after
the ON statement is executed. However, if
I is >255 or <0, an FC error message will
result. As many line numbers as will fit on
a line can follow an ON...GOTO.
This statement will branch to line 40 if the 105 ON SGN(X)+2
expression X is less than zero, to line 50 if GOTO 40,50,60
it equals zero, and to line 60 if it is greater
than zero.
STATEMENT SYNTAX/FUNCTION EXAMPLE
REM REM any text 500 REM NOW SET
Allows the programmer to put comments V=0
in his program. REM statements are not
executed, but can be branched to. A REM
statement is terminated by end of line, but
not by a ":".
In this case the V=0 will never be executed 505 REM SET V=0:
by BASIC. V=0
In this case V=0 will be executed, 505 V=0: REM SET
V=0
STATEMENT SYNTAX/FUNCTION EXAMPLE
RESTORE RESTORE 510 RESTORE
Allows the re-reading of DATA statements,
After a RESTORE, the next piece of data
read will be the first piece listed in the first
DATA statement of the program. The
second piece of data read will be the second
piece listed in the first DATA statement,
and so on as in a normal READ operation.
STATEMENT SYNTAX/FUNCTION EXAMPLE
RETURN RETURN 50 RETURN
Causes a subroutine to return to the state-
ment after the most recently executed
GOSUB.
STATEMENT SYNTAX/FUNCTION EXAMPLE
STOP STOP 900 STOP
Causes a program to stop execution and to
enter command mode.
Prints BREAK IN LINE 900. (As per this
example.) CONT after a STOP branches
to the statement following the STOP.
STATEMENT SYNTAX/FUNCTION EXAMPLE
USR USR (argument) 200 V=USR(W)
Calls the user's machine language subroutine
with the argument. See PEEK and POKE in
Subject 303, and Appendix F.
SYMBOL SYNTAX/FUNCTION EXAMPLE
WAIT WAIT (address, mask [, select] ) 805 WAIT I,J,K
This statement reads the contents of the 806 WAIT I,J
addressed location, does an Exclusive-OR
with the select value, and then ANDs the
result with the mask. This sequence is
repeated until a non-zero result is obtained,
at which time execution continues at the
statement that follows WAIT. If the WAIT
statement has no select argument, the
select value is assumed to be zero. If you
are waiting for a bit to become zero, there
should be a "one" in the corresponding
bit position of the select value. The select
value (K) and the mask value (J) can range
from 0 to 255. The address (I) can range
from 0 to 65535.
305 INPUT/OUTPUT STATEMENTS
STATEMENT SYNTAX/FUNCTION EXAMPLE
DATA DATA item [, item...] 10 DATA 1,3,-1E3,.04
Specifies data, read from left to right.
Information appears in data statements in
the same order as it will be read in the
program.
Strings may be read from DATA state- 20 DATA "FOO",Z1
ments. If you want the string to contain
leading spaces (blanks), colons (:) or
commas (,), you must enclose the string
in double quotes. It is illegal so have a
double quote within string data or a
string literal. (""BASIC"" is illegal.)
STATEMENT SYNTAX/FUNCTION EXAMPLE
INPUT INPUT [!] ["prompt string literal";] 3 INPUT V,W,W2
variable [, variable] ...
Requests data from the keyboard (to be
typed in). Each value must be separated
from the preceeding value by a comma (,).
The last value typed should be followed by
a carriage return. A "?" is displayed as a
prompt character. Only constants may be
typed in as a response to an INPUT state-
ment, such as 4.5E-3 or "CAT." If more
data was requested in an INPUT statement
than was typed in, a "??" is printed and
the rest of the data should be typed in. If
more data was typed in than was requested,
the warning "EXTRA IGNORED" will be
displayed. Strings must be input in the
same format as they are specified in DATA
statements.
Optionally displays a prompt string 5 INPUT "VALUE";V
("VALUE") before requesting data from
the keyboard. If RETURN is typed to an
input statement, BASIC returns to com-
command mode. Typing CONT after an
INPUT command has been interrupted
will cause execution to resume at the
INPUT statement.
If the optional character ! is included 15 INPUT! "VALUE";V
following INPUT, then the prompts from
the INPUT statement and the user's entries
will be printed (even if the printer is
turned off) and displayed.
STATEMENT SYNTAX/FUNCTION EXAMPLE
POS POS (expression) 260 PRINT POS(I)
Gives the current position of the cursor on
the display. The leftmost character position
on the display is position zero. A dummy
operand--0 or 1--must be used.
STATEMENT SYNTAX/FUNCTION EXAMPLE
PRINT PRINT [!] expression [, expression] 360 PRINT X,Y;Z
Prints the value of expressions on the 370 PRINT " "
display/printer. If the list of values to be 380 PRINT X,Y;
printed out does not end with a comma 390 PRINT "VALUE IS";A
(,) or a semicolon (;), then a carriage 400 PRINT A2,B,
return/line feed is executed after all the
values have been printed. Strings enclosed
in quotes (") may also be printed. If a
semicolon separates two expressions in
the list, their values are printed next to
each other. If a comma appears after an
expression in the list, and the print head
is at print position 11 or more, then a
carriage return/line feed is executed. If
the print head is before print position 11,
then spaces are printed until the carriage
is at the beginning of the next 10 column
field. If there is a blank string enclosed in
quotes, as in line 370 of the examples,
then a carriage return/line feed is
executed.
"VALUE IS" will be displayed and printed. 410 PRINT ! "VALUE
IS";A
String expressions may be printed. 420 PRINT MID$(A$,2);
STATEMENT SYNTAX/FUNCTION EXAMPLE
READ READ variable [, variable] 490 READ V,W
Read data into specified variables from a
DATA statement. The first piece of data
read will be the first piece of data listed in
the first DATA statement of the program.
The second piece of data read will be the
second piece listed in the first DATA
statement, and so on. When all of the data
have been read from the first DATA state-
ment, the next piece of data to be read will
be the first piece listed in the second DATA
statement of the program. Attempting to
read more data than there is in all the
DATA statements in a program will cause
an OD (out of data) error.
STATEMENT SYNTAX/FUNCTION EXAMPLE
SPC SPC (expression) 250 PRINT SPC(I)
Prints I space [or blank) characters on the
terminal. May be used only in a PRINT
statement. I must be =>0 and <=255 or
an FC error will result.
STATEMENT SYNTAX/FUNCTION EXAMPLE
TAB TAB (expression) 240 PRINT TAB(I)
Spaces to the specified print position
(column) on the printer. May be used
only in PRINT statements. Zero is the
leftmost column on the termainl, 19 the
rightmost. If the carriage is beyond pos
position I, then no printing is done. I must
be =>0 and <=255.
If I is greater than 19, the printer will skip
the required number of lines to arrive at
the specified position.
306 STRING FUNCTIONS
STATEMENT SYNTAX/FUNCTION EXAMPLE
ASC ASC (string expression) 300 PRINT ASC(X$)
Returns the ASCII numeric value of the
first character of the string expression X$.
See Appendix E for an ASCII/number
conversion table. An FC error will occur
if X$ is the null string.
STATEMENT SYNTAX/FUNCTION EXAMPLE
CHR$ CHR$ (expression) 275 PRINT CHR$(I)
Returns one character, the ASCII equiva-
lent of the argument (I) which must be a
number between 0 and 255. See Appendix E.
STATEMENT SYNTAX/FUNCTION EXAMPLE
GET GET string variable 10 GET A$
Inputs a single character from the keyboard.
If data is at the keyboard, it is put in the
variable specified in the GET statement.
If no data is available, the BASIC program
will continue execution.
GET can only be used as an indirect
command.
STATEMENT SYNTAX/FUNCTION EXAMPLE
LEFT$ LEFT$ (string expression, length) 310 PRINT LEFT$(X$,I)
Gives the leftmost I characters of the string
expression X$. If I<=0 or >255 an FC
error occurs.
STATEMENT SYNTAX/FUNCTION EXAMPLE
LEN LEN (string expression) 220 PRINT LEN(X$)
Gives the length of the string expression X$
in characters (bytes). Non-printing charac-
ters and blanks are counted as part of the
length.
STATEMENT SYNTAX/FUNCTION EXAMPLE
MID$ MID$ [string expression, start [, length]) 330 PRINT MID$(X$,I)
MID$ called with two arguments returns
characters from the string expression X$
starting at character position I. If
I>LEN(X$), then MID$ returns a null
(zero length) string. If I<=0 or >255,
an FC error occurs,
MID$ called with three arguments returns 340 PRINT MID$(X$,
a string expression composed of the I,J)
characters of the string expression X$
starting at the Ith character for J characters.
If I>LEN(X$), MID$ returns a null string.
If I or J <=0 or >255, an FC error occurs.
If J specifies more characters than are left
in the string, all characters from the Ith on
are returned.
STATEMENT SYNTAX/FUNCTION EXAMPLE
RIGHT$ RIGHT$ (string expression, length) 320 PRINT RIGHT$
Gives the rightmost I characters of the (X$,I)
string expression X$. When I<=0 or
>255 an FC error will occur. If
I>=LEN(X$) then RIGHT$ returns all
of X$.
STATEMENT SYNTAX/FUNCTION EXAMPLE
STR$ STR$ (expression) 290 PRINT STR$(X)
Gives a string which is the character repre-
sentation of the numeric expression X.
For instance, STR$(3.1)="3.1."
STATEMENT SYNTAX/FUNCTION EXAMPLE
VAL VAL (string expression) 280 PRINT VAL(X$)
Returns the string expression X$ converted
to a number. For instance.
VAL("3.1")=3.1. If the first non-space
character of the string is not a plus (+) or
minus (-) sign; a digit or a decimal point (.)
then zero will be returned.
307 ARITHMETIC FUNCTIONS
STATEMENT SYNTAX/FUNCTION EXAMPLE
ABS ABS (expression) 120 PRINT ABS(X)
Gives the absolute value of the expression
X. ABS returns X if X>=0, -X otherwise.
STATEMENT SYNTAX/FUNCTION EXAMPLE
ATN ATN (expression) 210 PRINT ATN(X)
Gives the arcTangent of the expression X.
The result is returned in radians and ranges
from -PI/2 to PI/2 (PI/2=1.5708). If you
want to use this function, you must provide
the code in memory. See Appendix H for
implementation details.
STATEMENT SYNTAX/FUNCTION EXAMPLE
COS COS (expression) 200 PRINT COS(X)
Gives the cosine of the expression X. X is
interpreted as being in radians.
STATEMENT SYNTAX/FUNCTION EXAMPLE
EXP EXP (expression) 150 PRINT EXP(X)
Gives the constant "E" (2.71828) raised so
the power X (E^X). The maximum argu-
ment that can be passed to EXP without
overflow occurring is 88.0296.
STATEMENT SYNTAX/FUNCTION EXAMPLE
INT INT (expression) 140 PRINT INT(X)
Returns the largest integer less than or
equal to its expression X. For example:
INT(.23)=0, INT(7)=7, INT(-.1)=-1,
INT(-2)=-2, INT(1.1)=1.
The following would round X to 0 decimal
places:
INT(X*10^D+.5)/10^D
STATEMENT SYNTAX/FUNCTION EXAMPLE
LOG LOG (expression) 160 PRINT LOG(X)
Gives the natural (Base E) logarithm of its
expression X. To obtain the Base Y
logarithm of X use the formula LOG(X)/
LOG(Y). Example: The base 10 (com-
mon) log of 7 = LOG(7)/LOG(10).
STATEMENT SYNTAX/FUNCTION EXAMPLE
RND RND (parameter) 170 PRINT RND(X)
Generates a random number between 0
and 1. The parameter X controls the
generation of random numbers as follows:
X<0 starts a new sequence of random
numbers using X. Calling RND with the
same X starts the same random number
sequence. X=0 gives the last random
number generated. Repeated calls to
RND(0) will always return the same
random number. X>0 generates a new
random number between 0 and 1.
Note that (B-A)*RND(1)+A will
generate a random number between
A and B.
STATEMENT SYNTAX/FUNCTION EXAMPLE
SGN SGN (expression) 230 PRINT SGN(X)
Gives 1. If X>0, 0 if X=0, and -1 if
X<0.
STATEMENT SYNTAX/FUNCTION EXAMPLE
SIN SIN (expression) 190 PRINT SIN(X)
Gives the sine of the expression X. X is
interpreted as being in radians. Note:
COS(X) =SIN(X+3.14159/2) and that
1 Radian = 180/PI degrees = 57.2958
degrees; so that the sine of X degrees=
SIN(X/57.2958).
STATEMENT SYNTAX/FUNCTION EXAMPLE
SQR SQR (expression) 180 PRINT SQR(X)
Gives the square root of the expression X.
An FC error will occur if X is less than zero,
STATEMENT SYNTAX/FUNCTION EXAMPLE
TAN TAN (expression) 200 PRINT TAN(X)
Gives the tangent of the expression X. X is
interpreted as being in radians.
DERIVED FUNCTIONS
The following functions, while not intrinsic to BASIC, can be calculated using the existing BASIC
functions:
FUNCTION FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS
SECANT SEC(X) = 1/COS(X)
COSECANT CSC(X) = 1/SIN(X)
COTANGENT COT(X) = 1/TAN(X)
INVERSE SINE* ARCSIN(X) = ATN(X/SQR(-X*X+1))
INVERSE COSINE* ARCCOS(X) = -ATN(X/SQR(-X*X+1))+1.5708
INVERSE SECANT* ARCSEC(X) = ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708
INVERSE COSECANT* ARCCSC(X) = ATN(1/SQR(X*X-1))+(SGN(X)-1)*1.5708
INVERSE COTANGENT* ARCCOT(X) = -ATN(X)+1.5708
HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2
HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(-X))/2
HYPERBOLIC TANGENT TANH(X) = -EXP(-X)/(EXP(X)+EXP(-X))*2+1
HYPERBOLIC SECANT SECH(X) = 2/(EXP(X)+EXP(-X))
HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)-EXP(-X))
HYPERBOLIC
COTANGENT COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+1
*These functions require the user-defined ATN function. See Appendix H for details.
FUNCTION FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS
INVERSE HYPERBOLIC
SINE ARGSINH(X) = LOG(X+SQR(X*X+1))
INVERSE HYPERBOLIC
COSINE ARGCOSH(X) = LOG(X+SQR(X*X-1))
INVERSE HYPERBOLIC
TANGENT ARGTANH(X) = LOG((1+X)/(1-X))/2
INVERSE HYPERBOLIC
SECANT ARGSECH(X) = LOG((XQR(-X*X+1)+1)/X
INVERSE HYPERBOLIC
COSECANT ARGCSCH(X) = LOG((SGN(X)*SQR(X*X+1)+1)/X)
INVERSE HYPERBOLIC
COTANGENT ARGCOTH(X) = LOG((X+1)/(X-1))/2
A ERROR MESSAGES
If an error occurs, BASIC outputs an error message, returns to command level and displays the
cursor. Variable values and the program text remain intact, but the program can not be continued
and all GOSUB and FOR context is lost.
When an error occurs in a direct statement, no line number is printed.
Format of error messages:
Direct Statement ?XX ERROR
Indirect Statement ?XX ERROR IN YYYYY
In both of the above examples, "XX" will be the error code. The "YYYYY" will be the line
number where the error occured for the indirect statement.
The following are the possible error codes and their meanings:
ERROR CODE MEANING
BS Bad Subscript. An attempt was made to reference a matrix element
which is outside the dimensions of the matrix. This error can occur
if the wrong number of dimensions are used in a matrix reference;
for instance, LET A(1,1,1)=Z when A has been dimensioned DIM
A(2,2).
CN Continue error, Attempt to continue a program when none exists, an
error occured, or after a new line was typed into the program.
DD Double Dimension. After a matrix was dimensioned, another DIM
statement for the same matrix was encountered. This error often
occurs if a matrix has been given the default dimension 10 because
a statement like A(I)=3 is encountered and then later in the program
a DIM A(100) is found,
FC Function Call error, The parameter passed to a math or string func-
tion was out of range. FC errors can occur due to:
1. A negative matrix subscript (LET A(-1)=0)
2. An unreasonably large matrix subscript (>32767)
3. LOG-negative or zero argument
4. SQR-negative argument
5. A^B with A negative and B not an integer
6. A call to USR before the address of the machine language
subroutine has been patched in
7. Calls to MID$, LEFT$, RIGHT$, WAIT, PEEK, POKE,
TAB, SPC or ON...GOTO with an improper argument.
ID Illegal Direct. You cannot use an INPUT, DEF or GET statement as
a direct command.
LS Long String. Attempt was made by use of the concantenation operator
to create a string more than 255 characters long.
NF NEXT without FOR. The variable in a NEXT statement corresponds
to no previously executed FOR statement.
OD Out of Data. A READ statement was executed but all of the DATA
statements in the program have already been read. The program tried
to read too much data or insufficient data was included in the
program.
OM Out of Memory. Program too large, too many variables, too many
FOR loops, too many GOSUB's, too complicated an expression, or
any combination of the above. (see Appendix B)
OV Overflow. The result of a calculation was too large to be represented
in BASIC's number format. If an underflow (too small result) occurs,
zero is given as the result and execution continues without any error
message being printed.
RG RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed,
SN Syntax error. Missing parenthesis in an expression, illegal character in
a line, incorrect punctuation, etc.
ST String Temporaries. A string expression was too complex. Break it
into two or more shorter expressions.
TM Type Mismatch. The left side of an assignment statement was a
numeric variable and the right side was a string, or vice versa; or, a
function which expected a string argument was given a numeric
one or vice versa.
UF Undefined Function. Reference was made to a user function which
has never been defined.
US Undefined Statement. An attempt was made to GOTO, GOSUB or
THEN to a statement which does not exist.
/0 Division by Zero
B SPACE HINTS
In order to make your program smaller and save space, the following hints may be useful.
1. Use multiple statements per line. There is a five-byte of overhead associated with each
line in the program. Two of these five bytes contain the line number of the line in binary.
This means that no matter how many digits you have in your line number (minimum line
number is 0, maximum is 63999), it takes the same number of bytes. Putting as many
statements as possible on a line will cut down on the number of bytes used by your
program.
2. Delete all unnecessary spaces from your program. For instance:
10 PRINT X, Y, Z
uses three more bytes than
10 PRINTX,Y,Z
Note: All spaces between the line number and the first non-blank character are ignored.
3. Delete all REM statements. Each REM statement uses at least one byte plus the number
in the comment text. For instance, the statement 130 REM THIS IS A COMMENT uses
24 bytes of memory.
In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of memory
including the colon before the REM.
4. Use variables instead of constants. Suppose you use the constant 3.14159 ten times in
your program. If you insert a statement
10 P=3.1.4159
in the program, and use P instead of 3.14159 each time it is needed, you will save 40
bytes. This will also result in a speed improvement.
5. A program need not end with an END, so an END statement at the end of a program
may be deleted.
6. Reuse variables. If you have a variable T which is used so hold a temporary result in one
part of the program and you need a temporary variable later in your program, use it
again. Or, if you are asking the terminal user to give a YES or NO answer to two differ-
ent questions at two different times during the execution of the program, use the same
temporary variable A$ to store the reply.
7. Use GOSUB's to execute sections of program statements that perform identical actions.
8. Use the zero elements of matrices; for instance, A(0), B(0,X).
STORAGE ALLOCATION INFORMATION
Simple (non-matrix) numeric and strong variables like V use 7 bytes; 2 for the variable name, and
5 for the value. Simple non-matrix string variables also use 7 bytes; 2 for the variable name, 1 for
the
length, 2 for a pointer, and 2 are unused.
Matrix variables require 7 bytes to hold the header, plus additional bytes to hold each matrix element.
Each element that is an integer variable requires 2 bytes. Elements that are string variables or
floating
point variables require 3 bytes or 5 bytes, respectively.
String variables also use one byte of string space for each character in the string. This is true
whether the string variable is a simple string variable like A$, or an element of a string matrix
such as Q1$(5,2).
When a new function is defined by a DEF statement, 7 bytes are used to store the definition.
Reserved words such as FOR, GOTO or NOT, and the names of the intrinsic functions such as
COS, INT and STR$ take up only one byte of program storage. All other characters in programs
use one byte of program storage each.
When a program is being executed, space is dynamically allocated on the stack as follows:
1. Each active FOR...NEXT loop uses 22 bytes.
2. Each active GOSUB (one that has not returned yet) uses 6 bytes.
3. Each parenthesis encountered in an expression uses 4 bytes and each temporary result
calculated in an expression uses 12 bytes.
C SPEED HINTS
The hints below should improve the execution time of your BASIC program. Note that some of
these hints are the same as those used to decrease the space used by your programs. This means
that in many cases you can increase the efficiency of both the speed and size of your programs at
the same time.
1. Delete all unnecessary spaces and REM's from the program. This may cause a small
decrease in execution time because BASIC would otherwise have to ignore or skip
over spaces and REM statements.
2. THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT.
Use variables instead of constants. It takes more time to convert a constant to its
floating point representation than it does to fetch the value of a simple or matrix
variable. This is especially important within FOR...NEXT loops or other code that
is executed repeatedly.
3. Variables which are encountered first during the execution of a BASIC program are
allocated at the start of the variable table. This means that a statement such as
5 A=0:B=A:C=A, will place A first, B second, and C third in the symbol table
(assuming line 5 is the first statement executed in the program). Later in the program,
when BASIC finds a reference to the variable A, it will search only one entry in the
symbol table to find A, two entries to find B and three entries to find C, etc.
4. Use NEXT statements without the index variable. NEXT is somewhat faster than
NEXT I because no check is made to see whether the variable specified in the NEXT
is the same as the variable in the most recent FOR statement.
D CONVERTING BASIC PROGRAMS NOT WRITTEN FOR AIM 65 BASIC
Though implementations of BASIC on different computers are in many ways similar, there are some
incompatibilities which you should watch for if you are planning to convert some BASIC programs
that were not written in AIM 65 BASIC.
1. Matrix subscripts. Some BASICs use "[" and "]" to denote matrix subscripts. AIM 65
BASIC uses "(" and ")".
2. Strings. A number of BASICs force you to dimension (declare) the length of strings
before you use them. You should remove all dimension statements of this type from
the program. In some of these BASICs, a declaration of the form DIM A$(I,J) declares
a string matrix of J elements each of which has a length I. Convert DIM statements of
this type to equivalent ones in AIM 65 BASIC: DIM A$(J).
AIM 65 BASIC uses "+" for string concatenation, not "," or "&".
AIM 65 BASIC uses LEFT$, RIGHT$ and MID$ to take substrings of strings. Other
BASICs uses A$(I) to access the Ith character of the string A$, and A$(I,J) to take a
substring of A$ from character position I to character position J. Convert as follows:
OLD AIM 65
A$(I) MID$(A$,I,1)
A$(I,J) MID$(A$,I,J-I+1)
This assumes that the reference to a substring of A$ is in an expression or is on the
right side of an assignment. If the reference to A$ is on the left hand side of an
assignment, and X$ is the string expression used to replace characters in A$, convert
as follows:
OLD AIM 65
A$(I)=X$ A$=LEFT$(A$,I-1)+X$+MID$(A$,I+1)
A$(I,J)=X$ A$=LEFT$(A$,I-1)+X$+MID$(A$,J+1)
3. Multiple assignments. Some BASICs allow statements of the form: 500 LET B=C=0.
This statement would set the variables B & C to zero.
In AIM 65 BASIC this has an entirely different effect. All the "='s" to the right of the
first one would be interpreted as logical comparison operators. This would set the
variable B to -1 if C equaled 0. If C did not equal 0, B would be set to 0. The easiest
way to convert statements like this one is to rewrite them as follows:
500 C=0:B=C
4. Some BASICs use "/" instead of ":" to delimit multiple statements per line. Change all
occurrences of "/" to ":" in the program.
5. Programs which use the MAT functions available in some BASICs will have to be
re-written using FOR...NEXT loops to perform the appropriate operations.
6. A PRINT statement with no arguments will not cause a paper feed on the printer. To
generate a paper feed (blank line), use PRINT "space"
E ASCII CHARACTER CODES
DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
------- ---- ------- ---- ------- ----
000 NUL 043 + 086 V
001 SOH 044 , 087 W
002 STX 045 - 088 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 [
006 ACK 049 1. 092 /
007 BEL 050 2 093 ]
008 BS 051 3 094 ^
009 HT 052 4 095 _
010 LF 053 5 096 `
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 SO 057 9 100 d
015 SI 058 : 101 e
016 DLE 059 ; 102 f
017 DC1 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 l
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 EM 068 D 111 o
026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 US 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 w
034 " 077 M 120 x
035 # 078 N 121 y
036 $ 079 O 122 z
037 % 080 P 123 {
038 & 081 Q 124 |
039 ' 082 R 125 }
040 ( 083 S 126 ~
041 ) 084 T 127 DEL
042 * 085 U
LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout on TTY
F ASSEMBLY LANGUAGE SUBROUTINES
AIM 65 BASIC allows a user to link to assembly language subroutines, via the USR(W) function.
This function allows one parameter to be passed between BASIC and a subroutine.
The first step is to allocate sufficient memory for the subroutine. AIM 65 BASIC always uses all
RAM memory locations, beginning at decimal location 530 (hex location 212), unless limited by
the user. You can limit BASIC's memory useage by answering the prompt MEMORY SIZE? (see
Subject 100) with some number less than 4096, assuming a 4K system. This will leave sufficient
space for the subroutine as the top of RAM.
For example, if your response to MEMORY SIZE? is "2048", 1518 bytes at the top of RAM
will be free for assembly language subroutines.
Parameter (W), passed to a subroutine by USR(W), will be converted to floating-point accumulator
located at $A9. The floating-point accumulator has the following format:
ADDRESS CONTENT
$A9 Exponent + $81 ($80 if mantissa = 00)
$AA-$AD Mantissa, normalized so that Bit 7 of MSB is set.
$AA is MSB, $AD is LSB.
$AE Sign of mantissa
A parameter passed to an assembly language subroutine from BASIC can be truncated by the sub-
routine to a 2-byte integer and deposited in $AC (MSB) and $AD (LSB). If the parameter is
greater than 32767 or less than -32768, an FC error will result. The address of the subroutine
that converts a floating-point number to an integer is located in $B006, $B007.
A parameter passed to BASIC from an assembly language subroutine will be converted to floating-
point. The address of the subroutine that performs this conversion is in $B008, $B009. The
integer MSB ($AC) must be in the accumulator; the integer LSB ($AD) must be in the Y register.
Prior to executing USR, the starting address of the assembly language subroutine must be stored
in locations $04 (LSB) and $05 (MSB). This is generally performed using the POKE command.
Note that more than one assembly language subroutine may be called from a BASIC program,
by changing the starting address in $04 and $05.
Figure F-1 is the listing for a BASIC program that calls an assembly language subroutine located at
$A00. Here's what the BASIC program does:
* Line 10 - Stores the starting address of the assembly language subroutine ($A00) into
locations $04 and $05, using POKE.
* Line 20 - Asks for a number "N".
* Line 30 - Calls the subroutine, with N as the parameter.
* Line 40 - Upon return from the subroutine, the BASIC program prints X, the parameter
passed from the subroutine to the BASIC program.
* Line 50 - Loops back to get a new N
ROCKWELL AIM 65
<5>
MEMORY SIZE? 2048
WIDTH?
1518 BYTES FREE
AIM 65 BASIC V1.1
OK
10 POKE 04,0: POKE 05
,10
20 INPUT"NUMBER";N
30 X=USR(N)
40 PRINTX
50 GOTO 20
Figure F-1. BASIC Program That Calls Assembly Language Subroutine
The assembly language subroutine (Figure F-2) performs these operations:
* Prints the floating-point accumulator ($A9-$AE), using Monitor subroutines NUMA
($EA46), BLANK ($E83E) and CRLF ($E9F0),
* Converts the floating-point accumulator to an integer, using the subroutine at $BF00.
The address $BF00 was found in locations $B006, $B007. (Address $BF00 may vary
with different versions of BASIC. Be sure to check locations $B006 and $B007 for the
correct address.)
* After conversion, the program again prints the floating point accumulator,
* The program then swaps the bytes of the integer.
* Finally, the program converts the result to floating point and returns to BASIC (JMP
C0D3). Address $C0D3 was found in locations $B008, $B009. (Address $C0D3 may
vary with different versions of BASIC. Be sure to check locations $B008 and $B009
for the correct address.
<1>
0A26 *=A00
0A00 A0 LDY #00
0A02 A2 LDX #00
0A04 B5 LDA A9,X
0A06 20 JSR EA46
0A09 20 JSR E83E
0A0C E8 INX
0A0D E0 CPX #06
0A0F D0 BNE 0A04
0A11 20 JSR E9F0
0A14 C0 CPY #00
0A16 F0 BEQ 0A1F
0A13 A5 LDA AD
0A18 A4 LDY AC
0A1C 4C JMP C0D3
0A1F 20 JSR BF00
0A22 C8 INY
0A23 D0 BNE 0A02
0A25 00 BRK
0A26
Figure F-2 Assembly Language Subroutine
Figure F-3 shows the print-out for various values of "N".
<6>
OK
RUN
NUMBER? 128
88 80 00 00 00 00
88 00 00 00 80 00
-32768
NUMBER? 1
81 80 00 00 00 00
81 00 00 00 01 00
256
NUMBER? 4097
8D 80 06 00 00 00
8D 00 00 10 01 00
272
NUMBER? 256
89 80 00 00 00 00
89 00 00 01 00 00
1
Figure F-3. Output for Example
G STORING AIM 65 BASIC PROGRAMS ON CASSETTE
AIM 65 BASIC Programs can be stored on cassette tape by using BASIC's SAVE and LOAD
commands, or by using the AIM 65 Editor. Before employing either procedure be sure to care-
fully observe the recorder installation and operation procedures given in Section 9 of the
AIM 65 User's Guide.
RECORDING ON CASSETTE USING THE BASIC SAVE COMMAND
The procedure to store a BASIC program is:
1. Install a cassette in the recorder, and manually position the tape to the program record
position. Be sure to initialise the counter at the start of the tape.
Note: Since remote control must be used to retrieve a BASIC program, observe the
tape gap CAUTION in Section 9.1.5 (Step 1) of the AIM 65 User's Guide.
2. While in BASIC, type in SAVE. BASIC will respond with:
OUT=
3. Enter a T (for "Tape"). BASIC will display:
OUT=T F=
4. Enter the file name (up to five characters). If the file name is FNAME, BASIC will
display:
OUT=T F=FNAME T=
5. Put the recorder into Record mode.
6. Enter the recorder number (1 or 2) and type RETURN.
7. If remote control is being used, observe the procedures outlined in Section 9.1.5 of
the AIM 65 User's Guide.
8. When recording has been completed, BASIC will display the cursor.
9. Switch the recorder out of record mode.
RETRIEVING A PROGRAM FROM CASSETTE USING THE BASIC LOAD COMMAND
The procedure to retrieve a BASIC program is:
1. Install the cassette in the recorder., and manually position the tape to about five counts
before the beginning of the desired file.
Note: Remote control must be used when retrieving a file via BASIC.
2. While in BASIC, type in LOAD. BASIC will respond with:
IN=
3. Enter a T (for "Tape"). BASIC will display:
IN=T F=
4. Enter the file name. If the file name is FNAME, BASIC will display:
IN=T F=FNAME T=
5. Enter the recorder number (1 or 2) and type RETURN.
6. Put the recorder into play mode. Be sure to observe the procedures outlined in
Section 9.1.6 of the AIM 65 User's Guide.
While the file is being read, each line will be displayed (and printed, if the printer is on).
If the printer is on, the tape gap ($A409) will probably have to be increased.
The file being loaded will not overlay any BASIC statements already entered unless
the statement numbers are the same.
7. When loading has been completed. BASIC will display the cursor.
8. Switch the recorder out of play mode.
CASSETTE OPERATIONS USING THE AIM 65 EDITOR
AIM 65 BASIC programs can also be stored and retrieved from cassette using the AIM 65 Editor.
However, if the program is to be retrieved by BASIC at some future time, one rule must be
observed:
When BASIC stores a program on cassette, it inserts a CTRL/Z after the last line. The
AIM 65 Editor will strip off the CTRL/Z when it retrieves the program. Therefore,
before storing a BASIC program from the Editor, the user must insert a CTRL/Z
following the last line of the program.
H ATN IMPLEMENTATION
The ATN function (see Subject 307) can be programmed in RAM using the AIM 65 Mnemonic
Entry (I) and Alter Memory Locations (/) commands, as shown below. The program is written
for the AIM 65 with 4K bytes of RAM. The ATN function can be relocated elsewhere in memory
by changing the starting addresses of the instructions and constants, the conditional branch
addresses, the vector to the constants start address and the vector to the ATN function starT
address.
ATN FUNCTION CONSTANTS ENTERED BY ALTER MEMORY <M>
<M> = 0F80 XX XX XX XX Constants Starting Address = 0F80
</> = 0F80 0B 76 83 83 8
</> 0F84 BD D3 79 1E
</> 0F88 F4 A6 F5 7B
</> 0F8C 83 FC B0 10
</> 0F90 7C 0C 1F 67
</> 0F94 CA 7C DE 53
</> 0F98 CB C1 7D 14
</> OF9C 64 70 4C 7D
</> 0FA0 B7 EA 51. 7A
</> 0FA4 7D 63 30 88
</> 0FA8 7E 7E 92 44
</> 0FAC 99 3A 7E 4C
</> 0FR0 CC 91 C7 7F
</> 0FB4 AA AA AA 13
</> 0FR8 81 00 00 00
</> 0FBC 00
ATN FUNCTION INSTRUCTIONS STORED BY MNEMONIC ENTRY (I)
<I>
XXXX *=0FBD Instructions Starting Address = 0F8D
0FBD A5 LDA AE
0FBF 48 PHA
0FC0 10 BPL 0FC5
0FC2 20 JSR CCB8
0FC5 AS LDA A9
0FC7 48 PHA
0FC8 C9 CMP #81
0FCA 90 BCC 0FD3
0FCC A9 LDA #FB
0FCE A0 LDY #C6
0FD0 20 JSR C84E
0FD3 A9 LDA #80 \ Starting Address of Constants = 0F80
0FD5 A0 LDY #0F /
0FD7 20 JSR CD44
0FDA 68 PLA
0FDB C9 CMP #81
0FDD 90 BCC 0FE6
0FDF A9 LDA #4E
0FE1 A0 LDY #CE
0FE3 20 JSR C58F
0FE6 68 PLA
0FE7 10 BPL 0FEC
0FE9 4C JMP CCB8
0FEC 60 RTS
0FEC
BASIC INITIALIZATION FOR ATN FUNCTION
BASIC memory must be initialized below the memory allocated to the ATN function. The ATN
vector in RAM must also be changed from the address of the FC error message to the starting
address of the ATN function instructions. This can be done using BASIC initialization, as follows:
<5>
MEMORY SIZE? 3968 Limit BASIC to F80
WIDTH? 16
3438 BYTES FREE
AIM 65 BASIC V1.1
POKE 188,189 Change ATN function vector low to $BD
POKE 189,15 Change ATN function vector high to $0F
?ATN (TAN(.5)) Test case to verify proper ATN function program
.5 Expected answer = .5
SAVING ATN OBJECT CODE ON CASSETTE
The object code for the ATN function can be saved on cassette by dumping addresses $00BB
through $00BD (Jump instruction to ATN) and $0F80 through $0FEC (constants and instructions)
after the function is initially loaded and verified.
The ATN function can then be loaded from cassette by executing the Monitor L command after
BASIC has been initialized via the 5 command. After the ATN function has been loaded, reenter
BASIC with the 6 command.
###

Navigation menu