B plus B SmartWorx WLNN551 Zonda 801.11 a/b/g/n WLAN User Manual manual

B&B; Electronics Zonda 801.11 a/b/g/n WLAN manual

manual

    Product Specification    802.11a/b/g/n Advanced Enterprise Device Server and Access Point Revision:  1.1  April 2013
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  2       B&B Confidential Copyright © 2013 B&B ® Inc. ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy, microfilm, retrieval system, or by any other means now known or hereafter invented without the prior written permission of B&B ® Inc. This document may not be used as the basis for manufacture or sale of any items without the prior written consent of B&B  Inc. B&B Inc. is a registered trademark of B&B Inc. Airborne™ is a trademark of B&B Inc. All other trademarks used in this document are the property of their respective owners. Disclaimer The information in the document is believed to be correct at the time of print. The reader remains responsible for the system design and for ensuring that the overall system satisfies its design objectives taking due account of the information presented herein, the specifications of other associated equipment, and the test environment. B&B ® Inc. has made commercially reasonable efforts to ensure that the information contained in this document is accurate and reliable. However, the information is subject to change without notice. No responsibility is assumed by B&B for the use of the information or for infringements of patents or other rights of third parties. This document is the property of B&B ® Inc. and does not imply license under patents, copyrights, or trade secrets. B&B, Inc. Headquarters B&B ® Inc.  707 Dayton Road  Ottawa, IL, 61350, USA Telephone: 815-433-5100 Toll Free (USA): 888-948-2248 Fax: 815-433-5109  Technical Support: 800-346-3119 / support@bb-elec.com Web Site: www.bb-elec.com
Airborne DP550 Family Databook    B&B Electronics, Inc.      3 Contents 1.0 Conventions ..................................................................................................................................... 5 1.1 Terminology ................................................................................................................................ 5 1.2 Notes ............................................................................................................................................ 5 1.3 Caution ......................................................................................................................................... 5 1.4 File Format .................................................................................................................................. 5 2.0 Product Description ........................................................................................................................ 6 3.0 Block Diagram ................................................................................................................................. 7 4.0 Model Numbers ............................................................................................................................... 8 5.0 Pin out and Connectors ................................................................................................................. 9 5.1 Digital UART Ports ....................................................................................................................11 5.2 Ethernet PHY Port .....................................................................................................................11 5.3 Serial Peripheral Interface (SPI) .............................................................................................11 5.4 Debug/Console Port ..................................................................................................................12 5.5 General Purpose Input/Output (GPIO) ...................................................................................12 5.6 Connector Definition .................................................................................................................13 6.0 Electrical & RF Specification ........................................................................................................14 6.1 AC Electrical Characteristics – Transmitter ...........................................................................18 6.2 Performance/Range ..................................................................................................................18 7.0 SPI Interface ...................................................................................................................................19 7.1 Pin-out .........................................................................................................................................19 7.2 SPI AC Characteristics .............................................................................................................20 7.3 SPI Protocol ...............................................................................................................................21 7.4 SPI Modes ..................................................................................................................................22 7.5 SPI Commands..........................................................................................................................22 8.0 Antenna ...........................................................................................................................................25 8.1 Antenna Selection .....................................................................................................................25 8.2 Host Board Mounted Antenna .................................................................................................25 8.3 Host Chassis Mounted Antenna..............................................................................................26 8.4 Embedded Antenna ..................................................................................................................26 8.5 Antenna Location ......................................................................................................................27 8.6 Performance ...............................................................................................................................27 9.0 RESET Function ............................................................................................................................29 10.0 Mechanical Outline ........................................................................................................................30 11.0 Recommended Footprint ..............................................................................................................31 11.1 Mounting Hole Specification ....................................................................................................31 11.2 Alternate Mounting Hardware ..................................................................................................31 12.0 Regulatory Certification and Agency Approvals ........................................................................32 12.1 FCC Statement ..........................................................................................................................32 12.2 FCC RF Exposure Statement ..................................................................................................33 12.3 Information for Canadian Users (IC Notice) ..........................................................................33 12.4 FCC/IC Modular Approval ........................................................................................................34 12.5 End Product Labeling ...............................................................................................................35 12.6 Regulatory Test Mode Support ...............................................................................................36 13.0 Physical & Environmental Approvals ..........................................................................................37
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  4       Figures Figure 1 – APMN-Q551/WLNN-SE/SP/AN/ER-DP550 Block Diagram ............................................... 7 Figure 2 - SPI Read/Write Timing ............................................................................................................20 Figure 3 - SPI Clock and Select Timing ..................................................................................................20 Figure 4 - Power on RESET Timing .........................................................................................................29 Figure 5 - RESET Timing ..........................................................................................................................29 Figure 6 – DP550 Mechanical Outline .....................................................................................................30 Figure 7 - Recommended PCB Footprint ................................................................................................31 Figure 8 - Full FCC/IC Label .....................................................................................................................36 Figure 9 - Minimum FCC/IC Label ...........................................................................................................36  Tables Table 1 - Model Numbers ........................................................................................................................... 8 Table 2 – Module Pin Definition ................................................................................................................. 9 Table 3 - UART Pin Definition ...................................................................................................................11 Table 4- Absolute Maximum Values1 .......................................................................................................14 Table 5 – Operating Conditions & DC Specification ..............................................................................14 Table 6 - RF Characteristics – 802.11a/b/g/n .........................................................................................16 Table 7 - Supported Data Rates by Band ...............................................................................................17 Table 8 - Operating Channels ...................................................................................................................17 Table 9 - Radio Typical Performance Range .........................................................................................18 Table 10 - SPI Pinout Details ....................................................................................................................19 Table 11 - SPI Signal Descriptions ..........................................................................................................19 Table 12 - SPI AC Timings ........................................................................................................................20 Table 13 - TX Message Header ...............................................................................................................21 Table 14 - RX Message Header ...............................................................................................................21 Table 15 - SPI Modes ................................................................................................................................22 Table 16 - SPI Command Description .....................................................................................................22 Table 17 - Embedded Antenna Options ..................................................................................................26 Table 18 - RESET Timing ..........................................................................................................................29 Table 19 - Regulatory Approvals ..............................................................................................................32 Table 20 - Modular Grant Numbers .........................................................................................................35 Table 21 - Mechanical Approvals .............................................................................................................37
Airborne DP550 Family Databook    B&B Electronics, Inc.      5 1.0  Conventions The following section outlines the conventions used within the document.  Where convention is deviated from the deviation takes precedence and should be followed. If you have any question related to the conventions used or clarification of indicated deviation please contact B&B Sales or Wireless Support. 1.1  Terminology Airborne Enterprise Device Server and AirborneDirect Enterprise Device Server are used in the opening section to describe the devices detailed in this document.  After this section the term module will be used to describe the devices. 1.2  Notes A note contains information that requires special attention. The following convention will be used. The area next to the indicator will identify the specific information and make any references necessary.  The area next to the indicator will identify the specific information and make any references necessary. 1.3  Caution A caution contains information that -- if not followed -- may cause damage to the product or injury to the user. The shaded area next to the indicator will identify the specific information and make any references necessary.  The area next to the indicator will identify the specific information and make any references necessary. 1.4  File Format These documents are provided as Portable Document Format (PDF) files. To read them, you need Adobe Acrobat Reader 4.0.5 or higher. For your convenience, Adobe Acrobat Reader is provided on the Radio Evaluation Kit CD. Should you not have the CD, go to the Adobe Web site (www.adobe.com) and download the latest version of the free Adobe Acrobat Reader.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  6       2.0  Product Description The WLNN-XX-DP550/APMN-Q550 family is the latest generation of 802.11 wireless device servers and adapters from B&B. The radio features the following: o  802.11a/b/g/n Wi-Fi Radio with 32bit ARM9 CPU (128/256Mb SDRAM, 64Mb Flash) o  Atheros AR6003 802.11a/b/g/n radio chipset. o  Supports Access Point, Infrastructure and AdHoc Client networks (Software selectable) o  Access Point device includes:   Up to eight (8) simultaneous clients   WEP, WPA-PSK and WPA2-PSK security   Integrated DHCP server   Tx Power Control   MAC address filtering o  Infrastructure device includes:   Supports WEP, WPA, WPA2, 802.11i and 802.1x Supplicant, with Certificates. o  The wireless device server includes integrated:   802.11a/b/g/n radio driver   TCP/IP stack, UDP, telnet, FTP server   Data bridging and buffering   Command Line Interface   Web interface   WPA Supplicant   802.11 Radio Driver o  Operating Temperature (-40°C to 85°C) o  Storage temp (-40°C to 85°C) o  36 pin high density SMT connector (Hirose DF12-36) o  Dual (2) Hirose U.FL RF connector for RF antenna o  Multiple host interfaces supported:   Dual UART (921.6K BAUD)   Serial (RS232/422/485)   SPI   10/100 Ethernet PHY (Bridge/Router modes supported) o  Advanced low power modes o  Rugged mounting options. o  No host driver required o Small form factor module (Dimensions: 40.6mm x 29.6mm x 7.5mm) o Worldwide Regulatory Support
Airborne DP550 Family Databook    B&B Electronics, Inc.      7 3.0  Block Diagram The following outlines the block diagram of the radio: Figure 1 – APMN-Q551/WLNN-SE/SP/AN/ER-DP550 Block Diagram   APMN-Q551 SDRAM memory size is 32MB.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  8       4.0  Model Numbers The following table identifies the model numbers associated with the device server family. Please contact B&B sales for details, quotes and availability. Table 1 - Model Numbers Model Number  Description Wi-Fi  Interface  Security RoHS 802.11 a/b/g/n Client 802.11 a/b/g/n Access Point UART RS232 RS485 SPI Ethernet GPIO WEP WPA WPA2 802.11i WLNN-AN-DP551  802.11a/b/g/n, UART Device Server    2              WLNN-ER-DP551  802.11a/b/g/n, 10/100 Ethernet Router Device Adapter    2               WLNN-SE-DP551 802.11a/b/g/n, UART Device Server with RS232/422/485 driver control   2              WLNN-SP-DP551  802.11a/b/g/n, SPI Device Server               APMN-Q551 802.11a/b/g/n Access Point, Ethernet Bridge/Router, Dual UART Device Server   2            Evaluation Kits WLNN-EK-DP551  802.11a/b/g/n Enterprise Class Access Point and Serial Device Server Module Evaluation Kit   
Airborne DP550 Family Databook    B&B Electronics, Inc.      9 5.0  Pin out and Connectors Pin definition is dependent upon the device type selected. The specific pin function is defined in Table 2 for each device type. Where multiple options are available for a single device type, these options are software selectable by the device firmware. Table 2 – Module Pin Definition Pin   Name  Device Type  Description 1  GND  All  Digital Ground 2  TDI  All  JTAG: Test data in 3  VDD  All  3.3VDC 4  VDD  All  3.3VDC 5  RTCK  All  JTAG: Return Test Clock 6  DTXD  All  DOUT Debug 7  /RESET  All  Module RESET 8  DRXD  All  DIN Debug 9 RXD2  UART  DIN UART2 RXD2  Serial  DIN UART2 RXD2  SPI  DIN UART2 RXD2  Ethernet  DIN UART2 G6  All  GPIO 10  TDO  All  JTAG: Test data out 11  /FRESET  All  Factory RESET 12 CTS1  UART  Clear-to-Send UART1 CTS  Serial  Clear-to-Send /SPI_SEL  SPI  SPI Select CTS1  Ethernet  Clear-to-Send UART1 F5  All  GPIO 13 NC  UART  No Connect NC  Serial  No Connect NC  SPI  No Connect RX+  Ethernet  Ethernet RX+ 14 NC  UART  No Connect NC  Serial  No Connect NC  SPI  No Connect RX-  Ethernet  Ethernet RX- 15  GND  All  Digital Ground 16  GND  All  Digital Ground 17 RTS2  UART  Ready-to-Send UART2 /TXEN  Serial  Line Driver Tx enable RTS2  SPI  Ready-to-Send UART2 RTS2  Ethernet  Ready-to-Send UART2 G2  All  GPIO 18 RTS1  UART  Ready-to-Send UART1 RTS  Serial  Ready-to-Send SPI_CLK  SPI  SPI Clock Input RTS1  Ethernet  Ready-to-Send UART1 F4  All  GPIO 19  CTS2  UART  Clear-to-Send UART2
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  10       Pin   Name  Device Type  Description RXEN  Serial  Line driver Rx enable CTS2  SPI  Clear-to-Send UART2 CTS2  Ethernet  Clear-to-Send UART2 G1  All  GPIO 20  TCK  All  JTAG: Test clock 21 TXD2  UART  DOUT UART2 TXD2  Serial  DOUT UART2 TXD2  SPI  DOUT UART2 TXD2  Ethernet  DOUT UART2 G7  All  GPIO 22 G0  UART  GPIO SER_MODE  Serial  Serial interface type selection (RS232/422/485) SPI_INT  SPI  SPI Interrupt G0  Ethernet  GPIO 23 LED_CON All Valid TCP/IP Connection Indicator F6  GPIO 24 RXD1  UART  DIN UART1 RXD1  Serial  DIN UART1 MOSI  SPI  DIN SPI RXD1  Ethernet  DIN UART1 F7  All  GPIO 25 LED_POST All POST Status Indicator F0  GPIO 26 LED_WLN_CFG All Module TCP/IP Configuration Indicator F3  GPIO 27 LED_RF_LINK All Module RF Link Status Indicator F2  GPIO 28 TXD1  UART  DOUT UART1 TXD1  Serial  DOUT UART1 MISO  SPI  DOUT SPI TXD1  Ethernet  DOUT UART1 F1  All  GPIO 29 NC  UART  No Connect NC  Serial  No Connect NC  SPI  No Connect TX-  Ethernet  Ethernet TX- 30 NC  UART  No Connect NC  Serial  No Connect NC  SPI  No Connect TX+  Ethernet  Ethernet TX+ 31  NTRST  All  JTAG: Test RESET signal 32  TMS  All  JTAG: Test mode select 33  VDD  All  3.3VDC 34  VDD  All  3.3VDC 35  LED_RF_ACT  All  Radio Status Indicator, driven by the radio. 36  GND  All  Digital Ground
Airborne DP550 Family Databook    B&B Electronics, Inc.      11 5.1  Digital UART Ports The device supports two digital UART ports. Use of these ports is determined by the device type choice made in firmware. The details of the ports can be seen in Table 3.  The availability of UART2 is selected in firmware. Table 3 - UART Pin Definition Device Type  UART  Serial  All Pin Definition  UART1 Pin UART2 Pin UART1 Pin UART2 Pin  Debug Data out (DOUT)  28  21  28  21  6 Data In (DIN)  24  9  24  9  8 Clear-to-Send (CTS)  12  19  12     Ready-to-Send (RTS)  18  17  18     Transmit Enable (/TXEN)      17     Receive Enable (/RXEN)      19     Serial Mode (SER_MOD)      22     The primary UART supports a 4-wire interface.  The secondary port supports a 4-wire interface except when being used with the Serial Device type, in which case it is reduced to a 2-wire only. The primary digital UART can be used as the primary connection for the Serial device type. This type supports a 7-wire interface to allow the definition of the serial interface type (RS232/3422/485) and the data transfer direction. Definitions of this interface can be seen in Table 3. The UART1 and UART2 interfaces support the following possible configurations: BAUD: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200, 230400, 460800, 921600 Flow Control: None, Hardware (CTS/RTS), Software (XON/XOFF) Default settings: 9600, 8, N, 1, No Flow Control. 5.2  Ethernet PHY Port A 10/100 Ethernet PHY interface is supported on all device types (except SPI).  It is enabled by default when the Ethernet device type is selected in firmware. This interface is a 10/100Mbps interface that supports auto negotiation and cross-over cabling. The interface also supports both half and full duplex for 10Mbps and 100Mbps. The interface uses a Broadcom BCM5241A Ethernet PHY.  Please refer to the manufacturer’s datasheet for interface details and appropriate design guidelines. 5.3  Serial Peripheral Interface (SPI) Please refer to section 7.0 for details on this interface.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  12       5.4  Debug/Console Port  A debug/console port is supported by a 2-wire serial interface defined in Table 3. This port is a bi-directional serial port intended for debug of the unit only.  It does not support data transfer. It is recommended that a connection to this port be supported via test points or a two pin header. The default settings for the debug port are 115200, 8, N 1, No Flow Control.  CAUTION: Do not use the debug port without contacting B&B Technical Support first. Potential damage to the module may occur. 5.5  General Purpose Input/Output (GPIO) A number of the interface pins support multiple functional definitions. Those alternately defined as GPIO pins can be selected as such via device firmware. The GPIO pins are digital I/O capable of supporting up to a 16mA drive current at 3.3VDC.
Airborne DP550 Family Databook    B&B Electronics, Inc.      13 5.6  Connector Definition There are a total of three connectors to the radio: CN1:   36 pin Digital Host interface. Hirose: DF12B-36DP-0.5V(XX) (0.50mm (.020") Pitch Plug, Surface Mount, Dual Row, Vertical, 4.00mm Stack Height, 36 Circuits) ANT1:   RF connector for 802.11a/b/g/n antenna. Hirose U.FL ANT2:   RF connector for 802.11a/b/g/n antenna (Default). Hirose U.FL.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  14       6.0  Electrical & RF Specification Table 4- Absolute Maximum Values1 Parameter  Min  Max  Unit Supply Voltage  -0.5  3.6  VDC Power Dissipation    2.00  W Operating Temperature Range  -40  85  oC Storage Temperature  -40  85  oC Note: 1. Values are absolute ratings, exceeding these values may cause permanent damage to the device. Table 5 – Operating Conditions & DC Specification Symbol  Parameter  Min  Typ  Max  Units VDD  Supply Voltage   3.14  3.30  3.60  V VIL  Input Low Level Voltage  -0.3    0.8   VIH  Input High Level Voltage  2.0    VDD + 0.3   VOL  Output Low Level Voltage      0.4   VOH  Output High Level Voltage  VDD - 0.4       IIR  Inrush current 400µs duration, source resistance 150mΩ     1500  mA ICCG  Operating Current – UART Data (802.11g) Connection Rate @ 54Mb/s UART 100% Duty Cycle @ 920K BAUD   320    mA ICCB  Operating Current – UART Data (802.11b) Connection rate @ 11Mb/s UART 100% Duty Cycle @ 920K BAUD   430    mA ICCG_ETH  Operating Current – Ethernet Data (802.11g) Transmitting @ 54Mb/s 10/100 Ethernet 100% Duty Cycle   370    mA ICCB_ETH  Operating Current – Ethernet Data (802.11b) Transmitting @ 11Mb/s 10/100 100% Duty Cycle   480    mA ICCU  Radio and CPU on. No data traffic (UART)    140    mA ICCE  Radio and CPU on. No data traffic (Ethernet)    190    mA ISBU0  Radio off (UART) CPU Idle, radio off (f/w control)   100    mA ISBE0  Radio off (Ethernet) CPU Idle, radio off (f/w control)   150    mA
Airborne DP550 Family Databook    B&B Electronics, Inc.      15 Symbol  Parameter  Min  Typ  Max  Units ISB1U  Doze Mode (UART/Serial) IEEE PSPoll mode (DTIM = 10), Associated, Idle, Beacon Interval = 100ms CPU Idle, wake on UART traffic   110    mA ISB1E  Doze Mode (Ethernet) IEEE PSPoll mode (DTIM = 10), Associated, Idle, Beacon Interval = 100ms CPU Idle, wake on Network traffic   160    mA ISB3U  Sleep Mode – UART/Serial Radio Off (disassociated) CPU Idle, wake on UART traffic   110    mA ISB3E  Sleep Mode – Ethernet Radio Off (disassociated) CPU Idle 110    150  mA
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  16       Table 6 - RF Characteristics – 802.11a/b/g/n Symbol  Parameter  Rate (Mb/s)  Min  Average  dBm / mW Peak  dBm / mW  Units POUTB Transmit Power Output 802.11b  11, 5.5, 2, 1    15.0  31.6      dBm POUTG Transmit Power Output 802.11g 6, 9, 12, 18, 24, 36, 48, 54    12.6  18.2      dBm POUTA Transmit Power Output 802.11a 6, 9, 12, 18, 24, 36, 48, 54    17.0  50.1      dBm PRSENB Receive Sensitivity 802.11b 11    -86   dBm 1    -92   PRSENG Receive Sensitivity 802.11g 54    -72   dBm 36    -78   18    -84   6    -89   PRSENA Receive Sensitivity 802.11a 54    -74   dBm 36    -80   18    -86   6    -90   FRANGEBG Frequency Range 802.11b/g   2401    2495  MHz FRANGEA Frequency Range 802.11a  4910 5150 5470 5725  4990       5350       5725       5825 MHz
Airborne DP550 Family Databook    B&B Electronics, Inc.      17 Table 7 - Supported Data Rates by Band Band  Supported Data Rates (Mb/s) 802.11b  11, 5.5, 2, 1 802.11a/g  54, 48, 36, 24, 18, 12, 9, 6 802.11n  65, 58.5, 42, 39, 26, 19.5 13, 6.5  Table 8 - Operating Channels Band  Region  Freq Range (GHz) No. of Channels  Channels 802.11b1,2 US/Canada  2.401 - 2.473  11  1 – 11 Europe  2.401 - 2.483  13  1 – 13 Japan  2.401 - 2.495  14  1 – 14 802.11g1,2 US/Canada  2.401 - 2.473  11  1 – 11 Europe  2.401 - 2.483  13  1 – 13 Japan  2.401 - 2.483  13  1 – 13 802.11a3 US/Canada  5.15 - 5.35, 5.725 - 5.825  13  36,40,44,48,52,56,60,64,149,153,157,161,165 Europe  5.15 - 5.35, 5.47 - 5.725  19  36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,128,132,136,140 Japan 4.91 – 4.99, 5.15 - 5.35, 5.47 - 5.725 23 36,40,44,48,52,56,60,64,100,104,108,112,116,120,124,128,132,136,140,184188,192,196 China  5.725 - 5.825  5  149,153,157,161,165   1. Only channels 1, 6 and 11 are non-overlapping. 2. Channel 14 is non-overlapping (Japan only). 3. Channel count denotes number of non-overlapping channels. Channels shown represent non-overlapping channel numbers.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  18       6.1  AC Electrical Characteristics – Transmitter Transmit power is automatically managed by the device for minimum power consumption. The MAXIMUM transmit power at the RF connector is typically +20dBm ± 2 dB for all bands (a/b/g/n) and rates. 6.2  Performance/Range The following table illustrates the typical data rates, performance and range that the device is capable of providing using an omni directional antenna. Table 9 - Radio Typical Performance Range Data Rate   Typical Outdoor Distance (Unity gain antenna) Typical Outdoor Distance (2dBi antenna gain on each end for B/G mode) 1.0 Mb/s  240m  380m 11.0 Mb/s  135m  215m 6Mb/s 802.11g  135m  215m 54Mb/s 802.11g  12m  19m Ranges are based on receiver sensitivity, Transmitter power, free-space path loss estimates, antenna gain factors, and link margin estimates. Actual range will vary from those stated. Non line-of-sight applications will result in typical values less than shown above.   The Data Rate is the supported connection rate for the wireless link. However, the actual data throughput for the link will be less than the stated data rates.
Airborne DP550 Family Databook    B&B Electronics, Inc.      19 7.0  SPI Interface The following section details the SPI interface specification for both hardware timing and SPI protocol. The device is a SPI slave and requires a compatible SPI master for operation. 7.1  Pin-out When the SPI interface is enabled, through the CLI or web interface, the following pins are assigned for communication. Table 10 - SPI Pinout Details Pin Definition  SPI  UART2 Pin  Debug Master In Slave Out (MISO)  28     Master Out Slave In (MOSI)  24     SPI Interrupt (SPI_INT)  22     SPI Clock (SPI_CLK)  18     SPI Select (/SPI_SEL)  12     Data In (RxD2, DTXD)    9  8 Data out (TxD2, DRXD)    21  6 Ready-to-Send (RTS2)    17   Clear-to-Send (CTS2)    19    Table 11 - SPI Signal Descriptions Pin Definition  Description Master In Slave Out (MISO)  Serial Data OUT; must be connected to the serial data in of the master. Master Out Slave In (MOSI)  Serial Data IN; Must be connected to the serial data out of the master. SPI Interrupt (SPI_INT)  Interrupt signal driver by slave see Table 16 for details of operation. SPI Clock (SPI_CLK)  SPI clock sourced from the master. SPI Select (/SPI_SEL)  Enable the SPI slave, sourced from the master. Active low signal.   Use of the SPI interface is mutually exclusive with the use of UART1 and the Ethernet ports, as the API interface reuses pins from both of these interfaces.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  20       7.2  SPI AC Characteristics The following specification identifies the required hardware timing to successfully implement a SPI interface with the Airborne Device Server module. Table 12 - SPI AC Timings Symbol  Parameter  Min  Typ  Max  Units fMAX  Maximum Clock Frequency       8.00  MHz tCS  SPI Select Low to Clock Rising Edge  100      ns tCH  Clock High  62.5      ns tCL  Clock Low  62.5      ns tDA  Clock High to Data Out      60  ns tDS  Clock Low to Data In Valid Set-up time  14      ns tDH  Clock Low to Data Valid Hold time  2      ns tCSH  Clock Falling Edge to SPI Select High  100      ns tDELAY  SPI Select High to SPI Select Low  40      µs Figure 2 - SPI Read/Write Timing  Figure 3 - SPI Clock and Select Timing
Airborne DP550 Family Databook    B&B Electronics, Inc.      21 7.3  SPI Protocol A SPI message is composed of a 4 byte header followed by 0 or more bytes of data.  The header data is full-duplex.  That is, the TX message header is sent to the Airborne Device Server module by the host at the same time that the RX message header is sent to the host from the Airborne Device Server. The TX message header consists of a Command (CMD) byte, followed by three Parameter (PARM) bytes.  They are described in the SPI Commands section 0 below. The RX message header is shifted out as the first four bytes of an SPI message regardless of the contents of the TX message header.  The RX message header consists of a RX Data Available field and a TX Buffer Available field.  The RX Data Available field indicates the number of data bytes the Device Server has available for the host.  The data can be received by the RXDATA command.  The TX Buffer Available field indicates how many data bytes the Device Server is able to accept from the host.  This data is to be shifted in by the host using the TXDATA (Table 16) command.  Both fields are 16 bit values and are stored in little-endian format (Least significant byte first).  The /SPI_SEL signal must be de-asserted between successive SPI messages.  The messages will not be processed correctly if /SPI_SEL is held asserted across multiple messages.  Table 13 - TX Message Header 0  1  2  3 CMD  PARM1  PARM2 Table 14 - RX Message Header 0  1  2  3 RX Data Available  TX Buffer Available    SPI data is transferred most significant bit first (msb).
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  22       7.4  SPI Modes The Airborne device supports the following four SPI modes. These are selectable through the command line or web interfaces. The default mode is zero (0). Table 15 - SPI Modes SPI Mode  Clock Idle  Clocking Edge 0  Low  High-Low (trailing edge) 1  Low  Low-High (leading edge) 2  High  Low-High (trailing edge) 3  High  High-Low (leading edge) 7.5  SPI Commands The following commands are available for use in the CMD message header.  Unused parameters should be set to zero. Table 16 - SPI Command Description Command (Hex)  Name  Description 0x00  NOP  The NOP command does nothing.   It is intended to be used when the host wants to simply retrieve the RX Message Header without any other operation. PARM1 and PARM2 are unused for this command and should be set to zero. 0x04  BREAK  The BREAK command will issue a break sequence to the module.   It is analogous to the BREAK signal on a common UART.  Use this command to issue a BREAK if the esc-mode-serial brk setting is configured in the module. PARM1 and PARM2 are unused for this command and should be set to zero. 0x08  TXINTCLR  The TXINTCLR command will clear the TX interrupt.   Use this command when the module is issuing a TX interrupt but the host has no more data to send.  This is analogous to the reset TX interrupt command on a common UART.  The result of this command is that the TX interrupt is cleared even though the host is not writing more data to the module. PARM1 and PARM2 are unused for this command and should be set to zero.
Airborne DP550 Family Databook    B&B Electronics, Inc.      23 Command (Hex)  Name  Description 0x10  INTENA  The INTENA command will configure the specific interrupts to be enabled from the module.  For this command, the PARM1 field will define the interrupts to be enabled.   The definition of the PARM1 field for this command is a bit-mask and is formatted as follows: Bit 7 Interrupt Sense – Determines the asserted state of the interrupt pin.  If this bit is set to a 1, the interrupt pin will be active high; otherwise the interrupt pin will be active low.  The module will use the setting of this bit from the most recently issued INTENA command to determine the Interrupt Sense. Bit 1 TX Interrupt – If this bit is set to a 1, the interrupt pin will be asserted when there is space available in the TX buffer.  The interrupt will be cleared when the module has TX data to process from the host.  Alternately, the host can clear this interrupt by using the TXINTCLR command if the host has no more data to send. Bit 0 RX Interrupt – If this bit is set to a 1, the interrupt pin will be asserted when there is RX data available.  The interrupt will be cleared when the host has received all the RX data available from the module. All other bits of PARM1 are unused for this command and should be set to zero. PARM2 is unused for this command and should be set to zero. For example, to enable TX interrupts with the interrupt pin active high, use the SPI message 0x10 0x82 0x00 0x00.  That is, SPI command 0x10, PARM1 is 0x82, PARM2 is 0x0000. Important: The INTENA command can only be used to enable the specified interrupts.  This command cannot be used to disable specified interrupts by setting the corresponding interrupt enable bits to zero in PARM1.  The INTDIS command must be used to disable the specified interrupts. 0x20  INTDIS  The INTDIS command will configure the specific interrupts to be disabled from the module.  For this command, the PARM1 field will define the interrupts to be disabled.   The definition of the PARM1 field for this command is a bit-mask and is formatted as follows: Bit 1  TX Interrupt – If this bit is set to a 1, The TX interrupt function will be disabled. Bit 0  RX Interrupt – If this bit is set to a 1, the RX interrupt function will be disabled. All other bits of PARM1 are unused for this command and should be set to zero. PARM2 is unused for this command and should be set to zero. For example, to disable TX interrupts, use the SPI message 0x20 0x02 0x00 0x00. That is, SPI command 0x20, PARM1 is 0x02, PARM2 is 0x0000.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  24       Command (Hex)  Name  Description 0x40  TXDATA  The TXDATA command is used to send data to the module to be interpreted as commands if the module is in CLI mode, or to be transmitted on the wireless link if the module has an active data connection established.   The host may send at most the number of bytes indicated by the TX Buffer Available field in the RX Message Header.  The actual number of bytes sent by the host is determined by the 16 bit value in PARM2.  The value in PARM2 is little-endian (least significant byte first) and must be less than or equal to the number in the TX Buffer Available field.  Any bytes sent in excess of this number will be ignored. PARM1 is unused for this command and should be set to zero. For example, to send the auth dpac dpac command, use the SPI message 0x40 0x00 0x0F 0x00 0x61 0x75 0x74 0x68 0x20 0x64 0x70 0x61 0x63 0x20 0x64 0x70 0x61 0x63 0x0D.  That is, SPI command 0x40, PARM1 is 0x00, PARM2 is 0x000F, followed by the text for auth dpac dpac. 0x80  RXDATA  The RXDATA command is used to receive data from the module.  In CLI mode, this data will be the local echoing of the commands issued to the module, as well as the command responses generated by the module.  If the module has an active data connection established, this data will be the data received on the wireless link.   The host may receive at most the number of bytes indicated by the RX Data Available field in the RX Message Header.  The actual number of bytes received by the host is determined by the 16 bit value in PARM2.  The value in PARM2 is little-endian (least significant byte first) and must be less than or equal to the number in the RX Data Available field.  If additional clock cycles are sent to the module beyond this number, meaningless data will be returned. PARM1 is unused for this command and should be set to zero. The TXDATA and RXDATA commands can be combined for full-duplex operation.  For example, a command byte of 0xC0 would be a TXDATA and RXDATA command combined.  The result of this command would be that the module would accept data being shifted in as TX data, while at the same time, RX data would be shifted out.  In this case, the number of bytes transferred for TXDATA must be equal to the number of bytes transferred for RXDATA.  The PARM2 parameter will indicate the number of bytes to be transferred for both the TXDATA and RXDATA commands.
Airborne DP550 Family Databook    B&B Electronics, Inc.      25 8.0  Antenna The unit supports antenna connections through two Hirose U.FL connectors (ANT1 and ANT2).  They are located on the top surface of the device next to the RF shielding. Antenna selection options are selectable through both the web and command line interfaces. Any antenna used with the system must be designed for operation within:  the 2.4GHz ISM band and must specifically support 2.412GHz to 2.482GHz for 802.11b/g, the 5GHz ISM band and must specifically support 5.1GHz to 5.9GHz for 802.11a operation. They are required to have a VSWR of 2:1 maximum referenced to a 50Ω system impedance. 8.1  Antenna Selection The Airborne radio supports a number of antenna options, all of which require connection to the U.FL connectors on the radio. The best antenna option will be determined by a number of factors.  These include the application, mechanical construction and desired performance. Since the number of possible combinations is enormous, we will review some of the more common solutions in this section. Contact Technical Support for more specific answers if your application is not covered during this discussion. The available antenna connections include: Host board mounted antenna Host chassis mounted antenna Embedded antenna Location and performance also need to be considered.  The following sections discuss these factors. 8.2  Host Board Mounted Antenna Host board mounting requires that an antenna connection be physically mounted to the host system board. It also requires that the host board include a U.FL connector to allow a U.FL to U.FL coaxial lead to connect from the radio to the host board. It will then require 50Ω matched PCB traces to be routed from the U.FL connector to the antenna mount. There are several sources for the U.FL to U.FL coaxial cable.  These include Hirose, Sunridge and IPEX. Please contact B&B for further part numbers and supply assistance. This approach can simplify assembly, but it does require that the host system configuration can accommodate an antenna location that is determined by the host PCB. This approach also makes it harder to seal the enclosure. Host board mounting also limits your choices of antenna.  You must use antennas that screw or press fit to the PCB mount connector. There are many antenna connector types, but if you wish to utilize the FCC/IOC modular approval the connector choice must comply with FCC regulations.  These state that a non-standard connector is required.  For example, RP-TNC/RP-SMA are allowed, and TNC/SMA are not.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  26       8.3  Host Chassis Mounted Antenna Host Chassis mounted antennas require no work on the host PCB. They use an antenna type called ‘flying lead’. There are two types of flying leads.  One provides a bulkhead mounted antenna connector and the other provides a bulk head mounted antenna. The type you choose will be determined by the application. A flying lead system connects a U.FL coaxial lead to the radio’s U.FL connector.  The other end of the coax is attached to either a bulkhead mounted antenna connector or directly to an antenna that has an integrated bulkhead mount.  In either case, the use of host chassis mounting significantly reduces the antenna system development effort.  It provides for greater flexibility in antenna choice and placement in the host system chassis. When using the flying lead antenna (integrated bulk head mounting) there are no connector choice restrictions for use with the FCC/IOC modular certification. However if the flying lead connector is used, the same restrictions as identified for the Host Mounted Antenna apply. There are many suppliers of flying lead antenna and connectors.  B&B’s Airborne Antenna product line offers a range of antenna solutions. 8.4  Embedded Antenna Embedded antennas can be the most interesting approach for M2M, industrial and medical applications. Their small form factor and the absence of any external mounting can make them very useful.  But they will typically provide lower performance than an external antenna. This does not make them unusable, but it will impact the choice of antenna type and it will require more focus on antenna placement. The three main embedded antenna types are PCB embedded, chip (PCB mounted) and flying lead.  Each has its advantages and disadvantages (See Table 17).  Table 17 - Embedded Antenna Options Antenna Type Features Cost  Size  Availability  Performance PCB Embedded  Lowest  Largest  Custom  Poor Chip  Low  Small  Standard  Poor Flying Lead  Low  Small  Standard  Fair  PCB Embedded – This approach embeds an antenna design into the host PCB. It is very common with add-in Wi-Fi cards (CF, PCMCIA, SDIO, etc.), as it requires no external connections and has the lowest production cost. But the lower production costs are offset by significant development costs and diminished performance and flexibility. Chip – The integration of a chip antenna is simple, and it requires a relatively small footprint on the host system.  But, like a PCB embedded antenna, there will be limitations in flexibility and performance.
Airborne DP550 Family Databook    B&B Electronics, Inc.      27 Many suppliers can provide chip antennas; many configuration and performance options are available. Flying Lead – Embedded flying lead antennas are similar to external flying lead antennas.  The difference is that the embedded antennas have smaller form factors and provide a range of chassis and board mounting options. Embedded flying lead antennas tend to provide more performance and flexibility than other approaches, since the location of the antenna is not determined by the host PCB design. The assembly of a system using embedded flying lead antennas may be slightly more complex, as the antenna is not necessarily mounted on the host PCBA. 8.5  Antenna Location The importance of location cannot be over stressed.  It can often be the difference between the success and failure of a Wi-Fi implementation.  There are several factors that need to be considered when determining location:   Distance of Antenna from radio.   Location of host system. − Proximity to RF blocking or absorbing materials. − Proximity to potential noise or interference. − Position relative to infrastructure (Access Points or Laptops).   Orientation of host system relative to infrastructure. − Is it known? − Is it static? The following things need to be considered during the development process: 1.  Minimize the distance between the radio and the location of the antenna. The coaxial cable between the two impacts the Transmit Power and Receive Sensitivity negatively. B&B recommends using 1.32-1.37mm outer diameter U.FL coaxial cables. 2.  Minimize the locations where metal surfaces come into contact or are close to the location of the antenna. 3.  Avoid locations where RF noise may occur, whether it is close to or overlapping the ISM bands. This would include microwave ovens and wireless telephone systems in the 2.4GHz frequency range. 4.  Mount the antenna as high on the equipment as possible. 5.  Locate the antenna where there is a minimum of obstruction between the antenna and the location of the Access Points. Access Points are typically located in the ceiling or high on walls. 6.  Keep the main antenna’s polarization vertical, or in-line with the antenna of the Access Points. 802.11 systems use vertical polarization and aligning both transmit and receive antenna maximizes the link quality. All of these factors will influence connection quality. 8.6  Performance Performance is difficult to define.  The appropriate metric changes with each application, and may be a combination of parameters and application requirements. The most important characteristic will normally be link quality. This
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  28       can be defined as the available bandwidth between the two devices.  The lower the link quality, the less likely it will be that the devices can communicate. Measurement of link quality can be made in several ways; Bit Error Rate (BER), Signal to Noise (SNR) ratio, Signal Strength and distortion. The link quality is used by the radio to determine the link rate.  In general, when the link quality for a given link rate drops below a predefined limit the radio will drop to the next lowest link rate and try to communicate at that rate. The reverse is also true.  If the radio observes good link quality at one rate it will try to move up to the next rate to see if communication can still be sustained. Note that for a given position the link quality improves as the link rate is reduced. As the link rate drops, the radios’ Transmit power and Receive sensitivity improve. Looking at the link rate is an indirect way of assessing the quality of the link between the device and an Access Point. You should strive to make the communication quality as good as possible in order to support the best link rate. But be careful not to over specify the link rate. Consider your application’s bandwidth requirements and tailor your link rate to optimize the link quality.  For example, if the link quality for a location at 6Mb/s is better than it would be for 54Mb/s, and the application only needs 2Mb/s of data throughput, the 6Mb/s rate would provide better link quality. Radio performance is only one of the things that contribute to the link quality.  Other factors include the items discussed earlier and choices made regarding overall antenna gain. The antenna gain contributes to the Equivalent Isotropically Radiated Power (EIRP) of the system. This is called link margin, and it is part of the overall measurement of the link quality.  Link Margin provides a measure of all the parts of the RF path that impact the communications between two systems. The basic equation looks like this: EIRP (dB) = TxP + TxA – TxC Link Margin (dB) = EIRP – FPL + (RxS + RxA – RxC) Where:  TxP = Transmitter output power (dBm) TxA = Transmitter antenna gain (dBi) TxC = Transmitter to Antenna coax cable loss (dB) FPL = Free Path Loss (dB) RxS = Receiver receive sensitivity (dBm) RxA = Receiver antenna gain (dBi) RxC = Receiver to Antenna coax cable loss (dB) This is a complex subject and we won’t try to cover it here.  B&B’s technical experts can help you if you need to explore it in more detail.  But you should understand that optimizing link quality involves a combination of hardware selection, design choices and radio configuration.
Airborne DP550 Family Databook    B&B Electronics, Inc.      29 9.0  RESET Function For correct operation of the on-board Power-on RESET (POR) and internal RESET controllers, the RESET pin on the WLNN-XX-DP550 family must obey the following timing and signal conditions.  Figure 4 - Power on RESET Timing  Figure 5 - RESET Timing  Table 18 - RESET Timing Symbol  Parameter  Min  Typ  Max  Units tPURST  Valid VDD to RESET valid       200  ms tRLRV  RESET Valid to RESET Low  0      ms tRPWI  Valid VDD to Internal RESET completed      200  ms tRPW  RESET Pulse Width  100      µs
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  30       10.0  Mechanical Outline Figure 6 – DP550 Mechanical Outline  Module Connector:   DF12B-36DS-0.5V(XX) (Hirose)  Hirose: 0.50mm (.020") Pitch Plug, Surface Mount, Dual Row, Vertical, 4.00mm Stack Height, 36 Circuits Board Connector:  DF12(4.0)-36DP-0.5V(XX)  (Hirose)  Hirose: 0.50mm (.020") Pitch Plug, Surface Mount, Dual Row, Vertical, 4.00mm Stack Height, 36 Circuits RF Connector:  U.FL   Hirose: Ultra Small Surface Mount Coaxial Connector  The standard mounting hardware for the DP550 device uses a friction fit for retention of the thru-hole pins to the host board.  To support this configuration, the maximum diameter of the thru-hole pin is 2.8mm. Although this exceeds the recommended mounting hole size (see section 11.1), the pin diameter is compliant and will compress to fit the recommended hole diameter.
Airborne DP550 Family Databook    B&B Electronics, Inc.      31 11.0  Recommended Footprint Figure 7 - Recommended PCB Footprint 15.90mmØ5.00mm (X4)Device Standoff Keepout AreaØ2.30mm (X4)Board outlineDimensions: mmTolerance: ± 0.15 (unless noted)29.60mm MAX40.60mm MAX213635Hirose DF12(4.0)-36DP-0.5V21.00mm32.00mm16.00mm10.50mmVIEWED FROM TOP 11.1  Mounting Hole Specification The mounting hole specification is important.  It allows for a tight and reliable friction-based interference between the host PCB and the DP550 stand-off hardware. Nominal Diameter:  2.2mm Tolerance:  +0.15mm/-0.00mm Host Board Thickness:  0.8mm to 1.6mm 11.2  Alternate Mounting Hardware B&B does support alternate mounting hardware for the DP550 platform. Please contact your B&B sales representative for further details.
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  32       12.0  Regulatory Certification and Agency Approvals  IMPORTANT! It is required that the following section be read and understood before use of the B&B Airborne™ device is permitted. Use of approved antenna is required for compliance to FCC and IC regulations.  The unit complies with the following agency approvals:  Table 19 - Regulatory Approvals Country  Standard  Status North America (US & Canada) FCC Part 15 Sec. 15.107, 15.109, 15.207, 15.209, 15.247 Modular Approval Pending Europe CISPR 16-1 :1993 ETSI EN 300 328 Part 1 V1.2.2 (2000-07) ETSI EN 300 328 Part 2 V1.1.1 (2000-07) Pending Japan ARIB STD-T71 v1.0, 14 (Dec 2000) ARIB RCR STD-T33 (June 19, 1997) ARIB STD-T66 v2.0 (March 28, 2002) Pending 12.1  FCC Statement This equipment has been tested and found to comply with Part 15 of the FCC Rules.   Operation is subject to the following two conditions: 1.  This device may not cause harmful interference, and 2.  This device must accept any interference received, including interference that may cause undesired operation. This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: Reorient or relocate the receiving antenna. Increase the separation between the equipment and receiver. Connect the equipment to an outlet on a circuit different from that to which the receiver is connected. Consult the dealer or an experienced radio/TV technician for assistance.
Airborne DP550 Family Databook    B&B Electronics, Inc.      33 Operations in the 5.15-5.25GHz and channel 5260MHz are restricted to indoor usage only. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. 12.2  FCC RF Exposure Statement To comply with FCC/IC RF exposure compliance requirements, the antenna used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operate in conjunction with any other antenna or transmitter.  As such, the radio component of this device is intended only for OEM integrators under the following two conditions:  •  The antenna must be installed such that 20 cm is maintained between the antenna and users.  •  The transmitter module may not be co-located with any other transmitter or antenna.  As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end product for any additional compliance requirements required with this module installed (e.g., digital device emissions, PC peripheral requirements).  In the event that these conditions cannot be met (for example, co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.  12.3  Information for Canadian Users (IC Notice) This device has been designed to operate with an antenna having a maximum gain of 5.5dBi in the 5GHz band and 4.1 in the 2.4GHz band. An antenna having a higher gain is strictly prohibited per regulations of Industry Canada. The required antenna impedance is 50Ω. Only approved antenna may be used with this equipment. Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the Equivalent Isotropically Radiated Power (EIRP) is not more than required for successful communication. Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. This radio transmitter (3913A-WLNN551) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  34       indicated for that type, are strictly prohibited for use with this device. Operations in the 5.15-5.25GHz and channel 5260MHz are restricted to indoor usage only. Cet émetteur radio (3913A-WLNN551) a été approuvé par Industrie Canada pour fonctionner avec les types d'antennes énumérés ci-dessous avec le gain maximal admissible et l'impédance d'antenne requise pour chaque type d'antenne indiqué. Types d'antennes ne figurent pas dans cette liste, ayant un gain supérieur au gain maximum indiqué pour ce type, sont strictement interdites pour une utilisation avec cet appareil. Les opérations dans l'5,15 à 5,25 GHz et 5260MHz canaux sont limités à une utilisation en intérieur uniquement. The following is a list of the Antenna’s approved to work with this transmitter, please contact your B&B representative if you have any questions. MFG  P/N  Max. Gain 2.4G (dBi)  Max. Gain 5G (dBi)  Impedance (ΩΩΩΩ) Laird  CAF 94505  2.0  4.0  50 Nearson  T131AH-2.4/4.9/5.X-S  2.0  2.0  50 Taoglas  GW.71.5153  3.8  5.5  50 Taoglas  PC.11.07.0100A  3.0  4.5  50 Taoglas  WS.01.B.305151  4.1  4.7  50 Taoglas  FXP.810.07.0100C  2.4  5.1  50 Taoglas  FXP.830.07.0100C  2.6  5.0  50 The installer of this radio equipment must ensure that the antenna is located or pointed such that it does not emit RF field in excess of Health Canada limits for the general population; consult Safety Code 6, obtainable from Health Canada’s website www.hc-sc.gc.ca. This Device complies with Industry Canada license-exempt RSS standard(s).Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. 12.4  FCC/IC Modular Approval This document describes the Airborne WLN FCC modular approval and the guidelines for use as outlined in FCC Public Notice (DA 00-1407).  The APMN-Q551/WLNN-XX-DP550 is covered by the following modular grants:
Airborne DP550 Family Databook    B&B Electronics, Inc.      35 Table 20 - Modular Grant Numbers Country  Standard  Grant North America (US) FCC Part 15 Sec. 15.107, 15.109, 15.207, 15.209, 15.247 Modular Approval F4AWLNN551 Canada  RSS 210 Modular Approval  3913A-WLNN551  By providing FCC modular approval on the Airborne WLN modules, the customers are relieved of any need to perform FCC part15 subpart C Intentional Radiator testing and certification, except where they wish to use an antenna that is not already certified.  B&B supports a group of pre-approved antenna; use of one of these antennas eliminates the need to do any further subpart C testing or certification. If an antenna is not on the list, it is a simple process to add it to the pre-approved list without having to complete a full set of emissions testing. Please contact B&B Technical support for details of our qualification processes. Please note that as part of the FCC requirements for the use of the modular approval, the installation of any antenna must require a professional installer. This is to prevent any non-authorized antenna being used with the radio. There are ways to support this requirement but the most popular is to utilize a non-standard antenna connector, this designation includes the reverse polarity versions of the most popular RF antenna types (SMA, TNC, etc.). For more details please contact B&B. The following documents are associated with this applications note: FCC Part 15 – Radio Frequency Devices FCC Public Notice – DA 00-1407 (June 26th, 2000) B&B recommends that during the integration of the radio, into the customers system, that any design guidelines be followed. Please contact B&B Technical Support if you have any concerns regarding the hardware integration. Contact B&B Technical support for a copy of the FCC and IOC grant certificates, the test reports and updated approved antenna list. 12.5  End Product Labeling This transmitter module is authorized only for use in devices where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the FCC and Industry of Canada Grant numbers as shown in Table 20.  The following label or similar must be placed on the outside of the product, utilizing the Airborne™ device, whenever physically possible:
B&B Electronics, Inc.    Airborne WLNN DP550 Family Databook  36       Figure 8 - Full FCC/IC Label  Figure 9 - Minimum FCC/IC Label  When the device is so small or for such use that it is not practicable to place the label shown in Figure 8, the label shown in Figure 9 may be used, however the information required shall also be placed in a prominent location in the instruction manual or pamphlet supplied to the user. Alternatively, the required information shown in Figure 8 shall be placed on the container in which the device is marketed. In all cases the FCC and IC identifiers must be displayed on the device in which the module is installed. 12.6  Regulatory Test Mode Support The Airborne Device Server includes support for all FCC, IC and ETSI test modes required to perform regulatory compliance testing on the module, please contact B&B Technical Support for details on enabling and using these modes.
Airborne DP550 Family Databook    B&B Electronics, Inc.      37 13.0  Physical & Environmental Approvals  The device has passed the following primary physical and environmental tests. The test methods referenced are defined in SAE J1455 Aug1994. Table 21 - Mechanical Approvals Test  Reference  Conditions Temperature Range (Operational)  Table 1B, Type 2b  -40°C to +85°C Temperature Range (Non-Operational)    -40°C to +85°C Humidity  Sect 4.2.3  0-95%RH @ 38°C condensing Fig 4a – 8 hours active humidity cycle Altitude  Sect 4.8 Operational: 0-12,000ft (62 KPa absolute pressure) Non-operational: 0-40,000ft (18.6 KPa absolute pressure) Vibration  Sect 4.9  Operational: 2.4 Grms, 10-1K Hz, 1hr per axis  Non-operational: 5.2 Grms, 10-1K Hz, 1hr per axis Shock  Sect 4.10  Operational: 20Gs MAX, 11ms half-sine pulse Product Drop  Sect 4.10.3.1  1m onto concrete, any face or corner, 1 drop Packaging Drop  Sect 4.10.2.1  32 inches onto concrete on each face and corner. Packaged in ‘for transit’ configuration. Accelerated Life Test  MIL-STD-883 Method 1015  1000hrs @ 125°C, static bias Test reports are available from B&B Technical Support.  Please contact directly for the latest documentation.

Navigation menu